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Abstract

This thesis presents a critical analysis ofnormalisation by evaluationas a technique for

speeding up compilation of typed functional programming languages. Our investiga-

tion focuses on the SML.NET compiler and its typed intermediate language MIL. We

implement and measure the performance of normalisation by evaluation for MIL across

a range of benchmarks. Taking a different approach, we also implement and measure

the performance of a graph-basedshrinking reductionsalgorithm for SML.NET.

MIL is based on Moggi’s computational metalanguage. As a stepping stone to

normalisation by evaluation, we investigate strong normalisation of the computational

metalanguage by introducing an extension of Girard-Tait reducibility. Inspired by pre-

vious work on local state and parametric polymorphism, we define reducibility for

continuationsand more generally reducibility forframe stacks. First we prove strong

normalistion for the computational metalanguage. Then we extend that proof to in-

clude features of MIL such as sums and exceptions.

Taking an incremental approach, we construct a collection of increasingly sophisti-

cated normalisation by evaluation algorithms, culminating in a range of normalisation

algorithms for MIL. Congruence rules andα-rules are captured by a compositional

parameterised semantics.Defunctionalisationis used to eliminateη-rules. Normalis-

ation by evaluation for the computational metalanguage is introduced using a monadic

semantics. Variants in which the monadic effects are made explicit, using either state

or control operators, are also considered.

Previous implementations of normalisation by evaluation with sums have relied

on continuation-passing-syle or control operators. We present a new algorithm which

instead uses a single reference cell and a zipper structure. This suggests a possible

alternative way of implementing Filinski’smonadic reflectionoperations.

In order to obtain benchmark results without having to take into account all of

the features of MIL, we implement two different techniques for eliding language con-

structs. The first is not semantics-preserving, but is effective for assessing the effi-

ciency of normalisation by evaluation algorithms. The second is semantics-preserving,

but less flexible. In common with many intermediate languages, but unlike the compu-

tational metalanguage, MIL requires all non-atomic values to be named. We use either



control operators or state to ensure each non-atomic value is named.

We assess our normalisation by evaluation algorithms by comparing them with a

spectrum of progressively more optimised, rewriting-based normalisation algorithms.

The SML.NET front-end is used to generate MIL code from ML programs, including

the SML.NET compiler itself. Each algorithm is then applied to the generated MIL

code. Normalisation by evaluation always performs faster than the most naı̈ve algo-

rithms — often by orders of magnitude. Some of the algorithms are slightly faster than

normalisation by evaluation. Closer inspection reveals that these algorithms are in fact

defunctionalised versions of normalisation by evaluation algorithms.

Our normalisation by evaluation algorithms perform unrestricted inlining of func-

tions. Unrestricted inlining can lead to a super-exponential blow-up in the size of

target code with respect to the source. Furthermore, the worst-case complexity of

compilation with unrestricted inlining is non-elementary in the size of the source code.

SML.NET alleviates both problems by using a restricted form of normalisation based

on Appel and Jim’sshrinking reductions. The original algorithm is quadratic in the

worst case. Using a graph-based representation for terms we implement a composi-

tional linear algorithm. This speeds up the time taken to perform shrinking reductions

by up to a factor of fourteen, which leads to an improvement of up to forty percent in

total compile time.
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Chapter 1

Introduction

In this thesis we investigatenormalisation by evaluation(NBE) and assess its use as

a technique for speeding up the compilation of typed functional programming lan-

guages. Focusing on the SML.NET compiler, we implement normalisation by eval-

uation for SML.NET and compare its performance with that of other normalisation

algorithms. Following a different path, closer to that of the existing compiler, we also

implement and assess the performance of a graph-basedshrinking reductionsalgorithm

for SML.NET.

With the development of increasingly powerful hardware, the speed of compilation

is constantly improving. However, as hardware becomes more powerful compilers

take advantage of this extra power. Increasingly, compilers for typed functional pro-

gramming languages usetyped intermediate languages. These offer many advantages

over untyped intermediate languages, but typically lead to longer compile times. Some

compilers also usewhole program compilation. This enables more aggressive optimi-

sations to be performed, but means the program must be recompiled entirely every

time a change is made, even if this change affects only a single module.

Typed intermediate languages have recently become popular [Mor95, TMC+96,

Sha97a, SLM98, Sha97b, JM97, PCHS00, BK00]. The main idea of this line of work

is to preserve type information throughout compilation. This offers a number of ad-

vantages over untyped compilation. In particular, the type information allows new

type-directed program transformations to be performed. As a further benefit, the type

information can be used to validate code. For instance, type information has been used

19



20 Chapter 1. Introduction

to direct the generation of provably secure mobile code [Nec00]. Being able to type-

check intermediate code is also useful for debugging the compiler itself. There are,

of course, disadvantages of keeping type information available. If one is not careful

about how types are implemented, then concrete representations of types can become

very large, and this can be expensive, both in terms of time and space.

The main advantage of whole program compilation is that it allows more optimisa-

tion to be performed than separate compilation does. In particular, more optimisations

can take place across module boundaries, and certain optimisations such as monomor-

phisation become more feasible than with separate compilation. The disadvantage is

the length of time taken to recompile the program when a small change has been made

to a single module. A separate compiler would just recompile the relevant module, but

a whole program compiler has to recompile the entire program.

The technique ofnormalisation by evaluationhas been studied in many settings.

In particular, it has been suggested that normalisation by evaluation is an efficient way

of performing normalisation [BS91, BES98, BES03], but until now it has not been

applied to compilation. The SML.NET compiler, which compiles Standard ML source

code to .NET bytecode, spends a significant proportion of time normalising terms in its

typed intermediate language MIL. Motivated by this, we investigate the hypothesis that

normalisation by evaluation is both fast (compared with rewriting-based normalisation

algorithms), and viable as a technique for the implementation of compilers for typed

functional programming languages.

1.1 SML.NET

SML.NET [smla, BKR, BKR04] is a compiler for the strict functional programming

language Standard ML [MTHM97, GR04]. It is based on MLj [mlj, BKR98, BK99]

which is an ML to Java bytecode compiler. It takes a Standard ML program and pro-

duces .NET bytecode as output. The important features of SML.NET are:

• a typed intermediate language MIL

• whole program compilation
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Figure 1.1: The phases of the SML.NET compiler

• interoperability with other .NET programs and libraries

The interoperability extensions are a key part of SML.NET, but they are not rele-

vant to the concerns of this thesis. Typically they form only a small part of a program

and SML.NET does not try to optimise them, so they have little impact on compilation

time.

The structure of SML.NET is illustrated in Figure 1.1. The frontend takes a Stan-

dard ML program as input and outputs a MIL term representing the whole program.

The rewriting phase performs rewrite operations on the MIL term, outputting another

MIL term. Finally, the backend converts this MIL term into .NET bytecode.

Most of the compile time is accounted for by the rewriting phase. The rewrit-

ing phase is divided into a series of transformations on the MIL term. One of these,

simplify, is invoked many times. In fact, the majority of the time in the rewriting

phase is spent in thesimplify transformation. Thesimplify transformation applies

rewrite rules similar to those of theλ-calculus [Bar84] and the computational meta-

language [Mog91, HD94]. It has been identified as a bottleneck in the SML.NET

compilation process.
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1.2 MIL and the computational metalanguage

The computational metalanguage arose out of Moggi’s seminal work on usingmonads

to model notions of computation [Mog91, Mog89]. It can be characterised as an exten-

sion of simply-typedλ-calculus with computation types. The type system is extended,

such that side-effecting computations which return a value of typeA are assigned the

computation typeT A. The computational metalanguage captures the essence of com-

putation without committing to any particular monad. Manyλ-calculus techniques can

easily be adapted to the computational metalanguage. Some typical examples of mon-

ads are: the lifting monad (which captures partiality), the state monad, the exceptions

monad and the continuation monad [Mog91].

MIL is based on Moggi’s computational metalanguage. It incorporates a type and

effect system, which supports effect-based optimisations in addition to the generic

ones [BK00]. The monad used models partiality, exceptions and operations on ML

references.

1.3 Normalisation by evaluation

There are a number of different ways in whichnormalisationcan be defined. However,

the essence of normalisation is that it defines a procedure for obtaining acanonical

version of a term or program which we call itsnormal form. We call a function from

terms to normal forms anormalisation function. Given an appropriate definition of

normal form, optimising a program, or performing transformations such assimplify

can be seen as an instance of normalisation.

The motivation behind normalisation by evaluation is the idea thatsemanticsis

crucial to the characterisation of normal forms. One would like programs with the

same meaning to have the same normal form. If this is the case, and we have a function

for computing the meaning of a program, anevaluation function~ ·�, then all we need

is a suitablereification function↓, which reifiesa semantic object to its corresponding

normal form. We then obtain a normalisation function:

norm(e) =↓ ~e� (1.1)
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Equation (1.1) captures the essence of normalisation by evaluation. Of course, we

have to be careful about how we define the semantics. The semantics needs to con-

tain enough syntactic information in order to be able to reconstruct a term (using an

appropriate reification function).

Conventional rewriting-based normalisation is defined syntactically via a collection

of reduction rules. These are applied repeatedly until no more rules are applicable.

The resulting term is said to be in normal form. Normalisation by evaluation offers an

alternative approach to normalisation, with a greater emphasis on semantics.

1.3.1 Residualising semantics versus runtime semantics

We distinguish between two kinds of denotational semantics. Theresidualising se-

manticsis the semantics used for normalisation by evaluation. In the context of com-

pilation, the residualising semantics identifies terms which compile to the same target

code. In contrast, theruntime semanticscaptures the run-time behaviour of a program.

Two programs have the same runtime semantics if they are behaviourally equivalent.

In any programming language which supports general recursion it is not possible to de-

cide whether two arbitrary programs have the same runtime semantics, or even whether

a given program terminates (the halting problem).

Ideally, the residualising semantics should agree with the runtime semantics, in the

sense that all terms identified in the residualising semantics are also identified in the

runtime semantics. In this case we say that any normalisation by evaluation algorithm

arising from the residualising semantics issemantics-preserving. For the purpose of

defining normalisation by evaluation algorithms it is unnecessary to consider the run-

time semantics. Thus, we shall usually omit it.

1.4 Contributions

The key contributions of this thesis are the following:

• Application of normalisation by evaluation to compiler optimisation.
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• Evaluation of the performance of normalisation by evaluation algorithms in com-

parison with rewriting-based normalisation algorithms. The results show that the

performance of normalisation by evaluation is competitive with with that of the

most optimised rewriting-based normalisation algorithms.

• A variant of the reducibility method for proving strong normalisation using con-

tinuations, or more generally frame stacks. These methods were applied to the

computational metalanguage with extensions including sums and exceptions.

• Variants of normalisation by evaluation:

– for the computational metalanguage

– with η-contraction

– with sums using state instead of first-class continuations

– for a compiler intermediate language MIL

• Obtaining normalisation by evaluation algorithms by program transformation.

• Evaluation of the performance of a shrinking reductions algorithm for a produc-

tion compiler using a ‘one-pass’ imperative algorithm.

1.5 Literature overview

In this section we give a brief overview of existing work that is relevant to the thesis.

1.5.1 Lambda calculus

The λ-calculus [Chu41] lays the foundation for functional programming languages.

Barendregt gives a comprehensive account of the untypedλ-calculus in [Bar84]. Han-

kin’s book [Han94] provides a lighter introduction toλ-calculi including some typed

variants. Barendregt [Bar92] gives a more comprehensive introduction to typedλ-

calculi. He emphasises the difference between Curry-style and Church-style typing,

and introduces higher order typedλ-calculi via pure type systems and theλ-cube.
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Girard [Gir72] and Reynolds [Rey74] independently discovered the second order

λ-calculus.

De Bruijn [dB70] and Howard [How80] independently clarified the relationship

between logic and typedλ-calculi — the so-calledCurry-Howard isomorphism. Girard

et al.’s book [GLT89] explains the correspondence and gives an account of typedλ-

calculi from a proof-theoretic perspective.

1.5.2 Strong normalisation and reducibility

Strong normalisation for the simply-typedλ-calculus (or rather its proof-theoretic

counterpart) using a reducibility argument was first proved by Tait [Tai67]. Prawitz

adapted the proof to include sums [Pra71]. Making “splendid use of impredicativ-

ity” [Gal90] the reducibility method was extended by Girard [Gir72] to System F and

Fω. Subsequently Girard’s proof has been adapted to other higher-order calculi such as

the Calculus of Constructions [Coq90]. The impredicative reducibility techniques can

also be adapted to calculi with positive inductive types. Abel and Altenkirch [AA00]

give a predicative strong normalisation proof for the simply-typedλ-calculus extended

with strictly positive recursive types. Gallier [Gal90] gives an overview of reducibility

proofs, with an emphasis on strong normalisation for higher-orderλ-calculi.

1.5.3 The computational metalanguage and monads

Moggi introduced the computational metalanguage [Mog91, Mog89] as the inter-

nal language of a cartesian closed category with astrong monad. First Hatcliff and

Danvy [HD94], and then Sabry and Wadler [SW97] explored the relationship between

the computational metalanguage and continuation-passing style (CPS).

Wadler [Wad90] identified a connection between monads and list comprehensions,

and showed showed how monads can be used to capture side-effecting computations in

pure functional programming languages. Peyton Jones and Wadler [PW93] extended

this work in order to perform I/O in non-strict functional programming languages. The

Haskell [PJ03] programming language uses monads to manage side-effects in this way.

Wadler and Thiemann [WT03] showed that monads can be used to describe effect-
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typing systems. Independently, Tolmach [Tol98] and Benton and Kennedy [BK00] im-

plemented typed-intermediate languages for ML compilers based on the computational

metalanguage, and monadic effects.

Filinski [Fil94, Fil96, Fil99a] showed that the continuation monad can be used to

simulate all otherdefinablemonads. Furthermore he used this result to implement

monadic reflectionoperations, in the SML/NJ [smlb] compiler, for arbitrary definable

monads. The monadic reflection operations allow one to convert back and forth be-

tween representations of effects as behaviour and as data. Benton [Ben04] applied

Filinski’s technique in order to define monadic embedded interpreters in ML. Filinski

used monadic reflection to obtain an extensional CPS transform [Fil01a].

Benton, Hughes and Moggi give a survey of monads from a variety of perspec-

tives [BHM02].

1.5.4 Normalisation by evaluation

Although, the phrase “normalisation by evaluation” was not coined until much later,

Martin-Löf [ML75] used normalisation by evaluation in his work on intuitionistic type-

theory, as a way of proving normalisation.

Berger and Schwichtenberg [BS91] defined an “inverse of the evaluation func-

tional” (a reification function) for simply-typedλ-calculus. This gave the standard

normalisation by evaluation algorithm for simply-typedλ-calculus.

Berger [Ber93] showed how to extract a normalisation by evaluation algorithm

from a proof of strong normalisation.

Berger et al. [BES98, BES03] used normalisation by evaluation to speed up the

M theorem prover. They give a domain theoretic semantics for normalisation

by evaluation for the simply-typedλ-calculus extended with constants and a class of

rewrite rules involving those constants.

Meanwhile Altenkirch et al. [AHS95] gave a categorical account of normalisation

by evaluation for simply-typedλ-calculus using a “twisted gluing” construct. Cubric

et al. [CDS98] investigated normalisation by evaluation for simply-typedλ-calculus

using the Yoneda embedding. Subsequently Fiore [Fio02] analysed normalisation by

evaluation for simply-typedλ-calculus via “extensional normalisation” using the stan-
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dard (not twisted) categorical gluing construct.

Mogensen [Mog99] gave a normalisation by evaluation algorithm for untypedλ-

calculus, and an implementation in Scheme [KCE98]. Aehlig and Joachimski [AJ04]

studied normalisation by evaluation for untypedλ-calculus using term-rewriting tech-

niques. Filinski and Rohde [FR04] gave a semantic account of normalisation by eval-

uation for untypedλ-calculus using minimal invariants.

Filinski [Fil01b] introduced normalisation by evaluation for the computationalλ-

calculus, using layered monads [Fil99a] for formalising name generation and for col-

lecting bindings. He extended his algorithm to handle products and sums, and outlined

how to prove correctness using a Kripke logical relation.

Altenkirch et al. [ADHS01] described normalisation by evaluation for the simply-

typedλ-calculus extended with unit, products and sums. They used normalisation by

evaluation to obtain a completeness result for almost bicartesian closed categories.

Coquand and Dybjer [CD97] investigated normalisation by evaluation in intuition-

istic model theory. They gave a normalisation by evaluation algorithm for combinatory

logic.

Altenkirch et al. [AHS96] gave a normalisation by evaluation algorithm for a poly-

morphic version of combinatory logic. They extracted the algorithm from a categorical

model. Subsequently they extended this work to System F [AHS97].

Vestergaard [Ves] used a syntactic approach to investigate normalisation by evalu-

ation for System F.

Beylin and Dybjer [BD95] constructed a normalisation by evaluation algorithm for

the free monoid using a free monoidal category.

1.5.5 Type-directed partial evaluation

Type-directed partial evaluation(TDPE) arises as a special case of normalisation by

evaluation in which the residualising semantics coincides with the runtime semantics

of a programming language. The native evaluator for the programming language can

be used to implement the semantics. The reification function acts as a decompiler.

Furthermore, because the residualising semantics coincides with the runtime seman-

tics, arbitrary code can be run before calling reify, which is where the partial evaluation
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arises. One advantage of TDPE over other variants of normalisation by evaluation is

the fact that it can use a native evaluator. Thus, if the evaluator is already optimised

then it gives rise to efficient normalisation algorithms. We do not use TDPE, as we

shall need to use non-standard semantics. Also, our primary concern is normalisation

rather than partial evaluation. However, much of the normalisation by evaluation and

TDPE literature overlaps.

Danvy [Dan96] discovered type-directed partial evaluation (TDPE) independently

of normalisation by evaluation. Filinski gave a semantic analysis and correctness

proof for call-by-name [Fil99b] and for call-by-value [Fil01b, DF02] TDPE. Filin-

ski and Yang [Yan99] implemented TDPE in ML using the native ML evaluator and

a clever encoding of types. Rose [Ros] implemented TDPE in Haskell using the na-

tive evaluator and type classes. Danvy’s lecture notes provide a good introduction to

TDPE [Dan98].

Balat et al. [BCF04] gave a categorical treatment of normalisation by evaluation

for the simply-typedλ-calculus extended with unit, products and sums. Their notion

of normalisation closely follows that of Altenkirch et al. [ADHS01], but the analy-

sis follows that of Fiore [Fio02]. They also gave an implementation of TDPE for

the simply-typedλ-calculus extended with unit, products and sums, using the set/

cupto [GRR98] control operators.

The book by Jones et al. [JGS93] provides an introduction to more conventional

syntax-directed partial evaluation.

1.5.6 Control operators

Delimited continuations in the form of shift and reset control operators have been used

in implementations of type-direct partial evaluation since its inception [Dan96]. They

prove to be useful in the implementation of normalisation by evaluation algorithms,

often giving a more concise direct-style alternative to continuation-passing style.

Continuation-passing style [Plo75] provides a declarative way of analysing and

manipulating control flow. Each function is augmented with an extra continuation

parameter representing the rest of the computation. In contrast, first-class control op-

erators such as call/cc, allow control flow to be manipulated indirect-style, that is,
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without every function having a continuation parameter.

The untyped call/cc operator was added to Scheme [CFW86] as a means of captur-

ing the current continuation. It is closely related to Landin’s J [Thi98], and Reynolds

escape [Rey98].

Duba et al. [DHM91] showed how to assign a typing to call/cc in ML. The call/cc

operator is now supported by ML compilers such as SML/NJ and MLton [mlt].

Felleisen and others [Fel88, FWFD88] introduced the control/ prompt operators

for handling delimited continuations. Rather than capturing the continuation from the

start of the program to a given point in a program (as with call/cc), control and prompt

allows one to capture the continuation between apromptand a given point.

Danvy and Filinski [DF90, DF92] introduced the shift/ reset operators for manip-

ulating delimited continuations. The control/ prompt operators were obtained oper-

ationally. In contrast, Danvy and Filinski derived shift/ reset by iterating the CPS

transform twice, thus obtaining a denotational continuation semantics for delimited

continuations. Danvy and Filinski also generalised shift/ reset further by iterating the

CPS transform repeatedly to obtain theCPS hierarchy. This gives rise to a hierarchy

of delimited continuation operators allowing one to capture continuations from any of

a number of prompts up to a given point.

Wadler [Wad94] used monads to model, and as a basis for typing, delimited contin-

uations. In his work on monadic reflection Filinski [Fil94, Fil96] showed that shift and

reset can be used to model anydefinablemonad. Furthermore, he gave an implementa-

tion of shift and reset in SML/NJ using call/cc and a single reference cell. Gasbichler

and Sperber [GS02] gave a direct implementation of shift/ reset in a modified version

of Scheme.

Kameyama and Hasegawa gave a sound and complete axiomatisation of delimited

continuations [KH03]. The axioms support equational reasoning in direct-style. Sub-

sequently Kameyama [Kam04a, Kam04b] extended the axiomatisation to the higher

level delimited continuations operators arising from the CPS hierarchy.

Gunter et al. [GRR98] gave a generalisation of shift/ reset using the set/ cupto

construction. This allows a hierarchy of delimited continuations to be invoked by

naming the start of each delimited continuation. The set operator is much like the reset



30 Chapter 1. Introduction

operator, except a name is associated with a prompt. The cupto operator is much like

the shift operator, but rather than capturing the continuation up to the closest enclosing

prompt, it captures the continuation up to an arbitrary named prompt.

Recently Shan [cS04] gave an overview of the various control operators for delim-

ited continuations, and showed that “dynamic” operators such as Felleisen’s control

can be given a continuation-passing semantics using recursive continuations.

1.5.7 Typed intermediate languages

Recently, the use of typed-intermediate languages in compilers for typed functional

programming languages has become increasingly widespread.

Shao and Appel [SA95] obtained improvements both in heap usage and in the speed

of compiled code, by performing various type-based optimisations on intermediate

representations for the SML/NJ compiler.

The goal of FLINT [Sha97b, Sha97a] is to create a common typed intermediate

language for compiling typed functional programming languages. The current “work-

ing version” (110.48) of the SML/NJ compiler [smlb] uses FLINT as an intermediate

language.

Peyton Jones and Meijer [JM97] proposed a typed intermediate language based on

Barendregt’sλ cube [Bar92].

TAL [MWCG99] (Typed Assembly Language) is a typed low-level language, for

performing well-typed optimisation in the backend of a compiler.

The TIL (Typed Intermediate Language) and TILT (TIL Two) compilers [Mor95,

TMC+96, PCHS00] were specifically designed with compilation using typed interme-

diate representations in mind.

The MLton [mlt, CJW00] compiler takes advantage of typed intermediate lan-

guages.

Type and effect systems [NNH99] are used for inferring side-effects. If we know

that a section of code can have only a certain class of side-effect then this enables all

kinds of optimisations to be performed. For example:

• If a computation has no side-effects, then it is safe to duplicate it.
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• If a computation has no side-effects, and its result is never used, then it is safe to

eliminate it completely.

• Consecutive computations whose only side-effects are reading the store can be

reordered.

• If a computation can throw only a certain class of exception, then there is no

need for a handler to check for other kinds of exception.

Jouvelot and Gifford [JG89] used a continuation semantics to handle effects.

Thielecke [Thi03] extended this line of work to the typed setting, making use of a

polymorphic answer type for controlling effects.

A refinement of typed intermediate languages is to combine types and effects. The

ML-Kit compiler uses a type and effect system for memory management using re-

gions [TT97, TBE+01]. MIL uses the type system to keep track of effect information.

MIL was first used as the typed intermediate language for the MLj compiler [mlj,

BKR98, BK99]. Subsequently MLj became SML.NET [smla, BKR, BKR04].

1.5.8 Shrinking reductions

Shrinking reduction is a restricted form of reduction in which terms can only decrease

in size. Shrinking reduction is used in the SML/NJ compiler [smlb, App92] as a restric-

tion of usualβη-reduction. Appel and Jim [AJ97] improved the shrinking reduction

algorithm used by the SML/NJ compiler. However, the worst case time complexity

of the improved algorithm is quadratic. They also described a linear-time imperative

algorithm, which they did not implement. Other ML compilers [mlt, mlj, smla] also

make use of shrinking reduction phases, which use variants of the quadratic algorithm.

1.6 Structure of this thesis

In Chapter 2 we introduce the concepts and notation required for the rest of the the-

sis. We present our treatment ofλ-calculi, the computational metalanguage and MIL.

We then formalise normalisation and normalisation by evaluation, and outline some

techniques for proving correctness of normalisation by evaluation algorithms.
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In Chapter 3 we present three proofs of strong-normalisation for the computational

metalanguage. The first proof uses a translation into simply-typedλ-calculus extended

with an additional reduction rule, followed by a combinatorial argument. The second

proof extends Girard-Tait reducibility withcontinuationsfor handling computations.

The same technique is then applied to extensions and variations of the computational

metalanguage. The final proof extends reducibility with frame stacks — a general-

isation of continuations. Reducibility over terms is defined uniformly for all term

constructors as a function of reducibility over frame stacks. This technique is the most

general, and we demonstrate how it can be used to prove strong normalisation for an

extension of the computational metalanguage with sums.

In Chapter 4 we return to our discussion of normalisation by evaluation. Norm-

alisation by evaluation for simply-typedλ-calculus is extended to the computational

metalanguage, first using a monadic semantics, and then using explicit side-effects.

Starting from the normalisation by evaluation algorithm for simply-typedλ-calculus,

we show how to eliminateη-expansion, and also how to incorporateη-reduction us-

ing program transformations. A normalisation by evaluation algorithm forλml∗ — a

restriction of the computational metalanguage — is extended to handle sums, using

first-class control operators. We then present an alternative algorithm using state and

a zipperstructure. Finally we discuss practical issues and outline how to implement

normalisation by evaluation in ML, taking advantage of the ML module system.

In Chapter 5 we extend and adapt the normalisation by evaluation algorithms for

the computational metalanguage to a version of MIL which we generate using the

SML.NET frontend. This provides a platform for benchmarking normalisation by eval-

uation on realistic examples. Two different modular approaches, which allow features

to be added incrementally, are introduced. Then we describe how to implement some

of the additional features of MIL.

In Chapter 6 we present performance results for the normalisation by evaluation

algorithms of Chapter 5. The normalisation by evaluation algorithms are compared

with a spectrum of (increasingly optimised) rewriting-based normalisation algorithms.

The MIL terms are generated from actual ML programs by the SML.NET frontend. In

deriving the spectrum of normalisation algorithms, we discover an alternative view of
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normalisation by evaluation— by program transformation.

In Chapter 7 we describe a different approach to normalisation using shrinking

reductions A one-pass imperative algorithm using a graph-based representation for

terms is presented. We discuss our implementation of the algorithm for SML.NET,

as a replacement for the existing algorithm. We present benchmarks, which show a

significant improvement over the original version.

In Chapter 8 we conclude and discuss future work.





Chapter 2

Background

In this chapter we set the scene for the rest of the thesis. We introduce some nota-

tion and terminology for the metalanguage and object languages. Then we present the

untypedλ-calculus. Simple types are added, followed by products, sums and compu-

tations. We describe the intermediate language MIL and a useful variantλMIL. Then

we define normalisation and introduce normalisation by evaluation as a method for

performing normalisation.

2.1 The metalanguage and notation

Functional programming languages such as ML are based on theλ-calculus. In this

thesis the object languages we are interested in are primarily variants of theλ-calculus.

It is also convenient to useλ-style notation as part of our metalanguage for defining and

reasoning about algorithms which manipulate object language terms. To distinguish

between the object language and the metalanguage, we use conventionalλ-notation

for the metalanguage andsans-serif type for object language syntax constructors.

In the metalanguageλx.s denotes an anonymous function abstraction, and juxta-

position f a denotes the application of the functionf to the argumenta. For example,

(λx.x+1)2 denotes the number 3.

Ultimately we shall use ML to implement the algorithms specified in our meta-

language. An object language can then be defined using ML datatypes. This is dis-

35
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cussed further in§4.9.

We assume the usual set theoretic, logical and arithmetic operations are available

in the metalanguage. In the metalanguage we identify types with sets. We writes : A

to indicate that the metalanguage terms has typeA or equivalently thats is a member

of the setA. The set-theoretic function space between setsA andB is writtenA→ B.

The product of setsA1, . . . ,Ak is written A1× · · · ×Ak. We also define a singleton set

(nullary product)1 with a single element (). The disjoint union (or disjoint sum) of sets

A1, . . . ,Ak is writtenA1+ . . .+Ak or]S whereS = {Ai}. Tuples are written using round

brackets. In the metalanguage we elide sum injections and use syntax to distinguish

the different branches of a sum. For instance, consider the set of metalanguage terms

of typeS = E+ (A→ B). We can lete range overE, and f range overA→ B. Then a

metalanguage termeof typeS is in the left branch and a metalanguage termf of type

S is in the right branch. Of course, this would not work if two branches were of the

same type, but in this thesis the branches of the sum always have distinct types, so this

is not a problem.

We shall overload type constructors for use both in the metalanguage and the object

languages. This does not lead to ambiguity as it is clear from context whether a type

refers to the metalanguage or the object language. We assume an infinite set of object

variablesV ranged over byx,y,z. . . . An objectlanguageis defined as a set ofterms,

given by a grammar along with a set of typing constraints. In the case of untyped

languages, this set is empty. Upper case letters denote types, and lower case letters

denote terms. For a termm, we distinguish between the bound variablesbv(m) and the

free variablesfv(m) of m. For each language, the usual capture-avoiding substitution

m[x :=n] is defined as the termm in which n is substituted for all free occurrences of

x, with bound variables renamed appropriately in order to prevent variable capture.

List notation We find it convenient to make use of lists in the metalanguage. We use

the following notation:

• 〈〉 denotes the empty list.

• 〈x1, . . . , xn〉 denotes the list of lengthn with elementsx1, . . . , xn.
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• xs++ysdenotes the concatenation of the listysonto the end of the listxs.

• x :: xsdenotes the list〈x〉++ xs.

• A list denotes the set of lists whose elements are taken from the setA.

We also define some basic functions on lists. Throughout the thesis we shall define

functions by pattern matching.

rev 〈〉 = 〈〉

rev (x :: xs) = rev(xs)++ 〈x〉

map:(A→ B)→ A list→ B list

map f 〈〉 = 〈〉

map f (x :: xs) = ( f x) :: (map f xs)

unzip:(A ×B) list→ (A list×B list)

unzip〈〉 = (〈〉, 〈〉)

unzip((x,y) :: ps) = (x :: xs′,y:: ys′)

where (xs′,ys′) = unzip ps

• rev xsreverses the listxs. Of course, in actual implementations this is imple-

mented more efficiently using an accumulator.

• map f xsappliesf to each element ofxsto give a new list.

• unzip pstakes a list of pairs and returns the corresponding pair of lists.

2.1.1 Relations and calculi

A binary relationon a setS is a subset ofS×S. A subrelationR′ of R is a subset of

R. We often use infix notationeRe′ for binary relation membership (e,e′) ∈ R.
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Equivalence relation An equivalence relation is a binary relationR that is reflexive:

(e,e) ∈R for all m, symmetric: (e,e′) ∈R iff (e′,e) ∈R, and transitive: whenever (e,e′) ∈

R and (e′,e′′) ∈ R we have that (e,e′′) ∈ R.

Calculus We define acalculusas an object language along with an equivalence rela-

tionR on terms. We callR theconvertibility relation. We are particularly interested in

two flavours of calculi, each with a different set of restrictions placed onR: equational

calculi and reduction calculi.

2.1.2 Equational calculi

We wish to defineequational calculias systems for performing equational reasoning.

We would like the convertibility relation≡ to satisfy the following properties:

• It should includeα-conversion. In other words, if two terms differ only in the

names of their bound variables then they are convertible. We writem=α m′ if m

is α-convertible tom′.

• It should be acongruence: wheneverm1 ≡ m′1, . . . ,mn ≡ m′n andC is ann-ary

syntax constructor then we haveC(m1, . . . ,mn) ≡ C(m′1, . . . ,m
′
n).

• It should include a collection ofconversion rules. Whereas theα rules and the

congruence property are fixed by syntactic properties of the language, the con-

version rules are arbitrary, and embody the core of the convertibility relation.

We define anequational calculusas a calculus induced by an object languageL

and a collection of conversion rules, whereby≡ is the least equivalence relation which

containsα-conversion, is a congruence and contains the conversion rules.

2.1.3 Reduction calculi

We define areduction calculusas an object languageL and areduction relation−→.

The convertibility relation is given as←→∗ the reflexive, symmetric, transitive closure

of −→.
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We specify the reduction relation via a collection ofreduction rules. These play

a similar role to the conversion rules of equational calculi, but can only be applied

left-to-right. Often reduction relations will also have a congruence property, although

for calculi with η-expansions this must be weakened. The congruence property for

reduction calculi is:

For each syntax constructorC (with arity n), and 1≤ i ≤ n, whenever
mi −→ m′i we have thatC(m1, . . . ,mi , . . . ,mn) −→ C(m1, . . . ,m′i , . . . ,mn).

The only constraints we impose on the reduction relation are that:

• It includes the reduction rules.

• It respectsα-conversion: ifm−→ n andm=α m′ then there existsn′ such that

m′ −→ n′ andn=α n′.

• It is a subrelation of the congruence closure of the reduction rules (that is, the

relation given by closing the reduction rules under the congruence property).

Some reduction rules always decrease the size of a term, and similarly others al-

ways increase the size of a term. We call a reduction rule which always decreases the

size of a term acontraction, and a reduction rule which always increases the size of

a term anexpansion. We call a term which matches the left-hand side of a reduction

rule a redex. We call e′ the reductof the reductione−→ e′. We write←→ for the

symmetric closure of−→ and−→∗ for the transitive reflexive closure of−→.

Each reduction calculus has an underlying equational calculus, whose convertibil-

ity relation≡ is the least equivalence relation which containsα-conversion, is a con-

gruence and contains the reduction rules. Note that−→ ⊆←→∗ ⊆ ≡.

2.2 λ-calculi

Each object language gives rise to both equational and reduction calculi. We have

already noted that each reduction calculus has an underlying equational calculus given

by closing the convertibility relation underα- and congruence rules. One can also

obtain a reduction calculus from an equational calculus bydirecting the conversion
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Figure 2.1: Relationships betweenλ-calculi

rules, that is, applying them in only one direction. Sometimes there is a choice. For

instance,η-rules can either be instantiated as contractions or as expansions.

In the remainder of this chapter we present equational variants of the calculi of

interest. Subsequently, where necessary, corresponding reduction calculi will be ob-

tained by directing conversion rules appropriately.

In general we shall use the convention that lowercase lambdaλ (with appropriate

annotations) denotes a calculus, and uppercase lambdaΛ (with appropriate annota-

tions) denotes the underlying language.

Figure 2.1 illustrates the relationships between the differentλ-calculi covered in

this chapter. Arrows with a vertical component indicate extensions. Horizontal arrows

indicate variations.

2.2.1 The untypedλ-calculus (λu)

The syntax ofλ-terms is as follows:

m,n ::= x | lam(x,m) | app(m,n)

Terms are variables, abstractions or applications.Λu denotes the set of untypedλ-

terms. The conversion rules are:

(→.β) app(lam(x,m),n) ≡m[x :=n]

(→.η) lam(x,app(m, x)) ≡m, if x < fv(m)
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2.2.2 The simply-typedλ-calculus (λ→)

We present our typed calculi by first specifying the syntax of types andpre-terms, then

giving typing rules which act as constraints on pre-terms to give the set of terms. We

further constrain the convertibility relation such that terms are convertible only if they

have the same type. We assume a global assignment from variable names to typesΓ,

such thatΓ(x) is uniquely defined for each variablex ∈ V.

The syntax of types and pre-terms is as follows:

types A,B ::=O | A→ B

pre-terms m,n ::= xA | lam(xA,m) | app(m,n)

We assume a single base typeO, and the usual function type-constructor. The pre-

terms are the same as the terms of the untypedλ-calculus, but with type annotations

on the variables. Type annotation are often omitted when they are not necessary. The

typing rules are:

xA : A
Γ(x) = A

x : A m: B

lam(xA,m) : A→ B

m : A→ B n : A
app(m,n) : B

lam is theintroductionsyntax constructor for functions — it introduces a term of func-

tion type.app is theeliminationsyntax constructor for functions — iteliminatesa term

of function type. In general each type constructor gives rise to an introduction syntax

constructor and an elimination syntax constructor. Each elimination syntax construc-

tor gives rise toelimination contextswith a hole for the term to be eliminated to be

plugged in. Thus function elimination contexts are one-holed contexts of the form:

EA→B[ ] ::= app([ ] ,n)

In general we shall letEA[ ] range over elimination contexts with holes of typeA.

EA[m] is the term obtained by pluggingm in EA[ ]. Λ→ denotes the set of simply-

typedλ-terms.

Church versus Curry We have chosen a Church-style [Bar92] presentation because

it meshes well with our ML implementations, and the MIL language has Church-style
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type annotations. Most of our development would work equally well in a Curry-

style [Bar92]. In the Curry-style one works with untyped, but typeable, terms. Types

are assigned via typing contexts. In the Church-style one works with explicitly typed

terms.

The conversion rules are the same as for the untyped case (modulo type annota-

tions):

(→.β) app(lam(x,m),n) ≡m[x :=n]

(→.η) lam(x,app(m, x)) ≡m, if x < fv(m)

Notice that the left-hand-side of→.β contains a→-introduction term inside a→-

elimination term — in other words an elimination context with an introduction term

plugged in the hole. In generalβ-rules follow this pattern.η-rules are not quite so easy

to characterise. In general they capture some notion ofextensionality. In this case→.η

ensures that ifapp( f ,m) ≡ app( f ′,m) for all m, then it must be the case thatf ≡ f ′.

2.2.3 Products and sums

It is natural to extend typedλ-calculi with products and sums. The introduction for

products is a pair, and the elimination is a projection. The introduction for sums is

an injection, and the elimination is a case split. Generally we use binary products

and sums, and sometimes a nullary product — the unit — as well. The syntax of the

simply-typedλ-calculus with unit, binary products and sums appears in Figure 2.2.

Elimination contexts for products and sums are given by:

EA×B[ ] ::= proj1([ ]) | proj2([ ])

EA+B[ ] ::= case [ ] of (x1⇒n1 | x2⇒ n2)

Note that there is no elimination for unit as the nullary tuple∗ has no projections.

The typing rules are those ofλ→ plus the additional rules for unit, products and

sums shown in Figure 2.3.

Λ+1 denotes the set of terms of this language.Λ+ denotes the subset ofΛ+1 with

unit type removed.Λ× denotes the subset with sum and unit type removed, andΛ×1

the subset with sum type removed.
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types A,B ::=O | A→ B | 1 | A×B | A+B

pre-terms m,n ::= xA | ∗

| lam(xA,m) | app(m,n)

| pair(m,n) | proj1(m) | proj2(m)

| inj1(m) | inj2(m) | case m of (xA
1⇒n1 | x

B
2 ⇒ n2)

Figure 2.2: Syntax ofλ+1

Unit

∗ : 1
Products

m : A n : B
pair(m,n) : A×B

m : A1×A2

proj1(m) : A1

m : A1×A2

proj2(m) : A2

Sums
m : A

inj1(m) : A+B
m : B

inj2(m) : A+B

x1 : A1 x2 : A2 m : A1+A2 n1 : B n2 : B

case m of (xA1
1 ⇒n1 | x

A2
2 ⇒ n2) : B

Figure 2.3: Typing rules for1, × and+



44 Chapter 2. Background

There are additional conversion rules for the new constructions. The conversion

rules for products are straightforward:

(×.β1) proj1(pair(m1,m2)) ≡m1

(×.β2) proj2(pair(m1,m2)) ≡m2

(×.η) pair(proj1(m),proj2(m)) ≡m

These rules can easily be generalised forn-ary products. Then we can use the fact

that unit is a nullary product to obtain the rules for unit. Then-ary counterpart of a pair

is a tupletuple(m1, . . . ,mn), and then-ary counterpart of a binary projection is ann-ary

projectionproji(m)(1≤ i ≤ n). The generalisedβ-rule is:

proji(tuple(m1, . . . ,mi , . . .mn)) ≡mi (2.1)

Whenn= 0 this is vacuous. Thus there is noβ-rule for unit. The generalisedη-rule is:

tuple(proj1(m), . . . ,projn(m)) ≡m (2.2)

Settingn= 0 gives:

(1.η) ∗ ≡m

If reading this from left-to-right, we may be concerned as to the origin ofm. In

principle m could be any term of type unit. However, we only ever apply it from

right-to-left. Following others [JG95] we call the right-to-left application of1.η an

η-expansion, even though the size of the term does not increase. We justify this by

noting that1.η is a special case of Equation (2.2), wheren = 0. For n > 0 applying

Equation (2.2) right-to-left does increase the size of the term. One can also derive

1.η-expansion from categorical considerations [JG95].

Remark In general we call the left-to-right application of anη-rulecontraction, and

the right-to-left applicationexpansion. Note that, if in doubt, the left hand side of an

η-rule (orβ-rule) can always be identified as such, as it must contain an introduction

term for the relevant type-constructor.
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The conversion rules for sums are as follows:

(+.β1) case inj1(m) of (x1⇒n1 | x2⇒ n2) ≡ n1[x1 :=m]

(+.β2) case inj2(m) of (x1⇒n1 | x2⇒ n2) ≡ n2[x2 :=m]

(+.η) case m of (x1⇒ inj1(x1) | x2⇒ inj2(x2)) ≡m

(+.·.CC) EA[case m of (x1⇒n1 | x2⇒ n2)] ≡ case m of x1⇒EA[n1]
| x2⇒EA[n2]

whereA= B ·C and· is one of→,×,+. The+.·.CC rules arecommuting conversions.

Applying a commuting conversion does not change the essential structure of a term,

although, as in this case, it may duplicate or share contexts. In general commuting

conversions arise when the form of elimination terms for a given type constructor in-

cludes a subterm whose type is independent of the term being eliminated — in other

words, the elimination includes an auxiliary term. For instance, eliminations for sums

have the form:case m of (xA1
1 ⇒ n1 | x

A2
2 ⇒ n2). The term being eliminatedm has

type A1+A2, but n1,n2 have typeB, whereB is any type, so they are auxiliary to the

elimination. The commuting conversions allow contexts to be moved in or out of the

auxiliary terms.

Note that replacing theη-rule+.η and the commuting conversion rules+.·.CC with

the generalisedη-rule:

case m of (x1⇒n[z:= inj1(x1)] | x2⇒ n[z:= inj2(x2)]) ≡ n[z:=m] (2.3)

leaves the convertibility relation unchanged. However, we usually find it more conve-

nient to use the former rules.

Binary sums can be generalised ton-ary sums in a similar way to the way in which

binary products can be generalised ton-ary products. In§2.2.4 we discuss unary sums.

2.2.4 The computational metalanguage (λml)

The computational metalanguage extends the simply-typedλ-calculus with computa-

tion types and corresponding syntax constructors. The syntax of types and pre-terms

is as follows:
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types A,B ::=O | A→ B | T A

pre-terms m,n ::= xA | lam(xA,m) | app(m,n) | val(m) | let xA⇐m in n

The T type constructor is for computation types. The typeT A is the type of a

computation which returns a value of typeA. The introductionval(m) is just the trivial

computation which returnsm, and the eliminationlet x⇐m in n is the composite

computation which first performs the computationm and then binds the result to the

variablex in the computationn. The typing rules are as follows:

xA : A
Γ(x) = A

m : B

lam(xA,m) : A→ B

m : A→ B n : A
app(m,n) : B

m : A
val(m) : T A

m : T A n: T B

let xA⇐m in n : T B

A term of the computational metalanguage is a pre-term which is typeable by the

above rules.Λml denotes the set of computational metalanguage terms. Acomputation

is a term of computation type. Avalueis a term of non-computation type.

We have three additional conversion rules in addition to those for the simply-typed

λ-calculus:

(T.β) let x⇐val(m) in n≡ n[x :=m]

(T.η) let x⇐m in val(x) ≡m

(T.T.CC) let y⇐ (let x⇐m in n) in p≡ let x⇐m in let y⇐n in p, if x < fv(p)

Note that adding unit, products and sums does not cause any complications. We

can easily add them in the same manner as we did for the simply-typedλ-calculus.

Unary sums Syntactically the computational metalanguage can be seen as a restric-

tion of the simply-typedλ-calculus with unary sums.

let x⇐m in n' case m of (x⇒n)

val(m) ' inj(m)
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E′v(O) =O

E′v(A→ B) = (E′v(A)→Ev(B))

Ev(A) = T(E′v(A))

Ev(x) = val(x)

Ev(lam(x,m)) = val(lam(x,Ev(m)))

Ev(app(m,n)) = let x⇐Ev(m) in let y⇐Ev(n) in app(x,y)

wherex,y are fresh

Figure 2.4: Call-by-value embedding ofλ→ into λml

The restriction is thatlet x⇐m in n must have computation type, whereas the

unary sum constructioncase m of (x⇒ n) can have any type. This in turn restricts

the commuting conversions, such that the computational metalanguage has only one

commuting conversionT.T.CC, whereas the unarycase gives rise to one commuting

conversion for each type constructor. Filinski [Fil96] has considered a generalisedlet

which has similar properties to unarycase.

Related calculi It is common to work with a restricted form ofλml in which all

functions must take values and return computations, thus having typeA→ T B, and

the computation constructor can be applied only to values. Following Sabry and

Wadler [SW97] we call this calculusλml∗. We writeΛml∗ for the set of allλml∗-terms.

Unlike Sabry and Wadler, we regard both values and computations — rather than just

computations — as terms.

λml∗ contains the call-by-value embedding [HD94] of simply-typedλ-calculus into

the computational metalanguage. The restriction of function arguments to value types

embodies the call-by-value nature of functions. Note thatpurefunctions of typeA→ B

(whereB is of value type),call-by-namefunctions of typeT A→ T B, andmetacompu-

tationsof typeT(T A) are all disallowed byλml∗. The call-by-value embedding function

Ev is defined on simply-typedλ-calculus types and terms. It appears in Figure 2.4. The
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embedding functionEv maps simple types toλml∗ computation types, andλ→ terms to

λml∗ computation terms. The auxiliary functionE′v maps simple types toλml∗ value

types.

It turns out that the terms ofλml∗ are so restricted that we can dispense with

the val syntax constructor and computation types, replacing them by simple syntac-

tic separation of valuesv from termsm. This leaves us with a variant ofΛ→ ex-

tended with thelet-construction, and we have a subsetλc∗ of Moggi’s computational

λ-calculusλc [Mog89]. Sabry and Wadler discuss in detail the correspondences be-

tweenλml, λml∗, λc∗ andλc [SW97].

2.3 MIL

MIL is the monadic intermediate languageused by the SML.NET compiler. It is es-

sentially an extension ofλml∗ restricted so that non-atomic values must be named. We

also consider an unrestricted variant which we callλMIL. We distinguish between

concrete implementations of MIL andλMIL, and simplified versions we use for expo-

sition. MIL as implemented in the SML.NET compiler contains various features which

are not relevant to most of this thesis. We now present simplified MIL and simplified

λMIL. Value types are defined by:

A,B ::= X | Int | A ref | 1 | A→ Tε(B) | A×B | A+B | µX.A

Unit, functions, products and sums are covered in§2.2. The integer typeInt is a base

type. A reference cellhas typeA ref, whereA is the type of the contents of the cell.X

ranges over type variables for recursive types andµ is the type constructor for recursive

types.µX.A is the recursive type in whichX is bound toµX.A insideA. Recursive types

allow datatypes such as lists to be defined. For instance:

µX.1+ Int×X

is the type of lists of integers.

We will assume that type variables do not occur free. The distinction between

negativeandpositiveoccurrences of type variables will be important when we come to



2.3. MIL 49

consider normalisation with recursive types in Chapter 5. One way of characterising

negative and positive occurrences is as follows:

• A free occurrence of a type variable is said to bepositivein a typeA iff it is on

the left hand side of an even number of function types.

• A free occurrence of a type variable is said to benegativein a typeA iff it is on

the right hand side of an odd number of function types.

Thus a typeA can include both positive and negative occurrences of the free type

variableX. More concretely recursive predicatesisNegativeandisPositiveare defined

in Figure 2.5. The predicateisNegative(X,A) holds if the type variableX occurs nega-

tively in the typeA. The predicateisPositive(X,A) holds if the type variableX occurs

positively inA.

A computation typeTε(A) is parameterised by a finite set of effectsε and a value

typeA, the return type. Effects range over subsets of{⊥, r,w,a}]E, whereE is the set of

exceptions. The effects are divergence (⊥), reading from a reference cell (r), writing to

a reference cell (w), allocating a new reference cell (a) and raising an exceptionE ∈ E.

Inclusion on sets of effects induces a subtyping relation:

A≤ A
ε ⊆ ε′ A≤ A′

Tε(A) ≤ Tε′(A′)
A≤ A′

µX.A≤ µX.A′

A≤ A′ B≤ B′

A×B≤ A′×B′
A≤ A′ B≤ B′

A+B≤ A′+B′
A′ ≤ A C≤C′

A→C ≤ A′→C′

whereA,B range over value types andC over computation types.

The pre-terms ofλMIL appear in Figure 2.6. The introduction and elimination

constructors for recursive types are, respectively,fold andunfold. Elimination contexts

for recursive types are given by:

EµX.A[ ] ::= unfold([ ])

Rather than the usualhandle construct, MIL uses Benton and Kennedy’sexcep-

tional syntax[BK01]. The introduction termraise(E) raises the exceptionE, as nor-

mal. However, thetry construct is a generalisation oflet. The elimination term
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isNegative(X,Y) = false

isNegative(X, Int) = false

isNegative(X,A ref) = isNegative(X,A)

isNegative(X,1) = false

isNegative(X,A→ Tε(B)) = isPositive(X,A) ∨ isNegative(X,B)

isNegative(X,A×B) = isNegative(X,A) ∨ isNegative(X,B)

isNegative(X,A+B) = isNegative(X,A) ∨ isNegative(X,B)

isNegative(X,µY.A) = false, if X = Y

isNegative(X,µY.A) = isNegative(A), otherwise

isPositive(X,Y) = true, if X = Y

isPositive(X,Y) = false, otherwise

isPositive(X, Int) = false

isPositive(X,A ref) = isPositive(X,A)

isPositive(X,1) = false

isPositive(X,A→ Tε(B)) = isNegative(X,A) ∨ isPositive(X,B)

isPositive(X,A×B) = isPositive(X,A) ∨ isPositive(X,B)

isPositive(X,A+B) = isPositive(X,A) ∨ isPositive(X,B)

isPositive(X,µY.A) = false, if X = Y

isPositive(X,µY.A) = isPositive(A), otherwise

Figure 2.5: Predicates for negative and positive occurrences of type variables
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Atoms a,b ::= xA | ∗ | cA

Values v,w ::= a

| lam(xA,m)

| pair(a,b) | proj1(a) | proj2(b)

| inj1(a) | inj2(a)

| foldµX.A(a) | unfold(a)

Computations m,n ::= app(a,b)

| val(v) | raise(E) | try x⇐m in n unless H

| case a of (x1⇒n1 | x2⇒ n2)

| read(a) | write(a,b) | new

Figure 2.6: Pre-terms of MIL

try x⇐m in n unless H first performs the computationm. If an exception is not thrown

then the result is bound tox, and the computationn is performed. If an exceptionE is

thrown then it is passed to the handlerH. Elimination contexts for computations are

now given by:

ETε(A)[ ] ::= try x⇐ [ ] in m unless H

A handler HA is a list of pairs (E,m) associating exceptions with computations of

type A. We write H(E) for the first computation inH which is associated with the

exceptionE. Any subsequent pairs associatingE to a computation are redundant. IfE

is not associated with any computation inH, thenH(E) denotesraise(E). A handler

H handles an exceptionE by performing the computationH(E).

Handlers can be composed as follows:

H;H′ = (map(λ(E,m).try x⇐m in val(x) unless H′) H)++H′ (2.4)

wheremapis the usual map function as defined in§2.1.

If an exceptionE is passed to the handler (H;H′), then it is first passed toH. If H

catchesE thenH(E) is invoked, but this may raise a further exception which is passed
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on toH′. If H does not catchE then it is passed on toH′.

The other constructs we have not yet discussed are for managing references.

• new allocates a new reference cell

• read(a) returns the contents of reference cella.

• write(a,b) writes the valueb into the reference cella.

We shall not attempt to perform conversions involving references. Thus, the above

syntax constructors can effectively be treated as constants.

We introduce some syntactic sugar:

let x⇐m in n= try x⇐m in n unless 〈〉

letval x⇐v in n= let x⇐val(v) in n

letfun f (x)⇐m in n= letval f⇐ lam(x,m) in n

Notice that the only place where non-atomic values can occur is inval(v). The only

way to use a value inside aval(v) is to bind it to a variable usingtry. Thus, in MIL, all

non-atomic values must be named before being used. The idea is that atoms are small,

so can be safely duplicated, whereas non-atomic values are potentially large, so they

should be named in case they need to be used more than once.

It is sometimes useful to relax the distinction between atoms and non-atoms. We

call the resulting languageλMIL. λMIL is a strict extension ofλml∗. We useλMIL

to define the typing rules and convertibility relation for MIL. The pre-terms ofλMIL

appear in Figure 2.7.

The typing rules forλMIL appear in Figure 2.8. MIL has the same typing rules

(with appropriate restrictions on values).ΛMIL denotes the set of terms ofλMIL

terms, andMIL denotes the set of terms of MIL.

Now we present the conversion rules forλMIL. The β- andη-conversion rules

appear in Figure 2.9. Because of the restriction thatcase terms must have computation

type, there are only two commuting conversions. These appear in Figure 2.10. The first

(T.T.CC) is for atry inside atry. The second (+.T.CC) is for acase inside atry. The

convertibility relation for MIL is simply the restriction of the convertibility relation for

λMIL to MIL terms.
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Values v,w ::= xA | ∗ | cA

| lam(xA,m)

| pair(v,w) | proj1(v) | proj2(v)

| inj1(v) | inj2(v)

| foldµX.A(v) | unfold(v)

Computations m,n ::= app(v,w)

| val(v) | raise(E) | try x⇐m in n unless H

| case v of (x1⇒n1 | x2⇒ n2)

| read(v) | write(v,w) | new

Figure 2.7: Pre-terms ofλMIL

For the remainder of the thesis MIL andλMIL will be used to refer to their simpli-

fied versions, except where specified otherwise.

2.4 Normalisation

Normalisation is a process which takes a terme and returns an equivalent terme′ in a

special form called anormal form. We define normalisation with respect to a calculus

with object languageL and convertibility relation≡, and a subset ofL, the set of

normal formsL-nf .

• Normalisationis the process of taking a termeand obtaining another terme′ (if

such a term exists) such thate′ ∈ L-nf ande≡ e′.

• A function norm:L→L-nf is anormalisation functionif for all e∈ L we have

that if norm(e) terminates, thennorm(e) ≡ e.

• A normalisation functionnorm is soundif whenevere≡ e′ then eithernorm(e)

andnorm(e′) are both undefined (diverge) ornorm(e) = norm(e′).
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Atoms

xA : A
Γ(x) = A

∗ : 1 cA : A
Functions

x : A m: Tε(B)

lam(xA,m) : A→ Tε(B)

v : A→ Tε(B) w : A
app(v,w) : Tε(B)

Products
v : A w : B

pair(v,w) : A×B
v : A1×A2

proj1(v) : A1

v : A1×A2

proj2(v) : A2

Computations
v : A

val(v) : T∅(A) raise(E) : T{E}(A)

x : A m: Tε(A) n : Tε(B) H : Tε(B)

try xA⇐m in n unless H : Tε(B)
Sums

v : A
inj1(v) : A+B

v : B
inj2(v) : A+B

x1 : A1 x2 : A2 v : A1+A2 n1 : Tε(B) n2 : Tε(B)

case v of (xA1
1 ⇒n1 | x

A2
2 ⇒ n2) : Tε(B)

Recursive types
v : A[X :=µX.A]

foldµX.A(v) : µX.A
v : µX.A

unfold(v) : A[X :=µX.A]

References

new : T{a}(A ref)
v : A ref

read(v) : T{r}(A)
v : A ref w: A

write(v,w) : T{w}(1)

Subtyping
e : A
e : A′

A≤ A′

Figure 2.8: Typing rules forλMIL
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(→.β) app(lam(x,m),v) ≡m[x :=v]

(→.η) lam(x,app(v, x)) ≡ v, if x < fv(v)

(1.η) ∗ ≡ v

(×.β1) proj1(pair(v1,v2)) ≡ v1

(×.β2) proj2(pair(v1,v2)) ≡ v2

(×.η) pair(proj1(v),proj2(v)) ≡ v

(T.β) try x⇐val(v) in m unless H ≡m[x :=v]

(T.η) try x⇐m in val(x) unless 〈〉 ≡m

(Texn.β) try x⇐ raise(E) in n unless H ≡ H(E)

(+.β1) case inj1(v) of (x1⇒n1 | x2⇒ n2) ≡ n1[x1 :=v]

(+.β2) case inj2(v) of (x1⇒n1 | x2⇒ n2) ≡ n2[x2 :=v]

(+.η) case v of x1⇒val(inj1(x1))
| x2⇒val(inj2(x2))

≡ val(v)

(µ.β) unfold(foldµX.A(v)) ≡ v

(µ.η) foldµX.A(unfold(v)) ≡ v

Figure 2.9:β- andη-rules forλMIL

(T.T.CC)

try y⇐ (try x⇐m in n unless H) in p unless H′ ≡

try x⇐m in (try y⇐n in p unless H′) unless H;H′,

if x < fv(p) andx < fv(H′(E)) for anyE ∈ E

(+.T.CC)

try y⇐ (case v of (x1⇒n1 | x2⇒ n2)) in m unless H ≡

case v of x1⇒ try y⇐n1 in m unless H
| x2⇒ try y⇐n2 in m unless H

Figure 2.10: CC-rules forλMIL
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• The set of normal forms iscanonicalif whenevere∈ L-nf ande≡ e′ then either

e′ <L-nf or e= e′.

We shall distinguish between two different approaches to normalisation:reduction-

basedand equational. For normalisation by evaluation we will mainly work with

equational normalisation. However, in many cases there is a correspondence between

the two notions and it can be useful to move back and forth between them.

Normal forms and α-equivalence In defining canonical normal forms and sound

normalisation functions we will find it convenient to identify terms up to

α-equivalence. For instance, we shall assert thatlam(x, x) = lam(y,y). Note that tech-

nically this is not necessary, but it simplifies the presentation. The alternative would be

to define a function for providing a canonical renaming of bound variables. By virtue

of the fact that we always generate fresh names (deterministically) for bound variables

our ML implementations of normalisation functions do give unique normal forms with

respect toα-conversion. In the sequel we identify terms up toα-conversion.

2.4.1 Reduction-based normalisation

Reduction-basednormalisation applies to a reduction calculus (L,−→), and is prob-

ably the more familiar notion of normalisation. The convertibility relation is←→∗.

Normal forms are obtained by repeatedly applying directed reduction rules to a term

until no more rules are applicable. The set of normal forms is the set of all irreducible

terms.

Typically we will obtain a reduction calculus from an equational calculus, and the

reduction rules (and a corresponding reduction relation) from a convertibility relation

by directing the conversion rules. In the case ofλ-calculi we always read theβ-rules

and commuting conversions from left-to-right. Theη-rules can either be read left-to-

right, as contractions, or (with extra side-conditions) from right-to-left, as expansions.

For example, the reduction rules for the simply-typedλ-calculus withβ-reduction

andη-contraction are given by reading both the conversion rules from left-to-right:
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(→.β) app(lam(x,m),n) −→ m[x :=n]

(→.η) lam(x,app(m, x)) −→ m, if x < fv(m)

Definition 2.1.

• A term isweakly normalisingif it has a normal form.

• A reduction sequencestarting from a term m1 is a (possibly infinite) sequence of

terms m1,m2, . . . such that for all i we have that mi −→ mi+1.

• A term isstrongly normalisingif all reduction sequences starting from that term

are finite. In other words, every term has a normal form.

• A term m isconfluentif whenever m−→∗ m′ and m −→∗ m′′ there exists m′′′

such that m′ −→∗ m′′′ and m′′ −→∗ m′′′.

It is natural to extend the notions of normalisation and confluence to entire calculi.

A reduction calculus is weakly normalising/ strongly normalising/ confluent if all

terms are weakly normalising/ strongly normalising/ confluent. If a reduction calculus

is weakly normalising then normal forms always exist, and hence it gives rise to a total

normalisation function. If a reduction calculus is confluent then normal forms are

unique, and hence it gives rise to a sound normalisation function.

In Chapter 3 we shall give some general techniques for proving strong normalis-

ation. As we shall see later, strong normalisation turns out to be a useful stepping stone

to proving correctness of normalisation by evaluation algorithms.

2.4.2 Equational normalisation

Equational normalisationis simply our general notion of normalisation applied to an

equational calculus. There are many possible choices of normal form. Usually we seek

a canonical set of normal forms, and correspondingly a sound normalisation function.

Normal forms are typically defined syntactically.

Often normal forms correspond with those of a related reduction calculus. Some-

times, however, additional reduction rules must be introduced in addition to those aris-

ing directly from the conversion rules.
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Remark For some calculi (such as the untypedλ-calculus) it is not possible to com-

pute a normal form for all terms. However, for most of the calculi we are interested in

all terms do have well-defined normal forms. Indeed, it would seem a desirable prop-

erty of a compiler that every source program compiles to a well-defined executable,

and consequently one would hope that every intermediate language term is optimised

(normalised) to a well-defined target term.

Remark If a reduction calculus is weakly normalising and confluent then it gives rise

to an equational calculus with canonical normal forms. Weak normalisation guarantees

that normal forms exist, and confluence guarantees that normal forms are unique up to

α-conversion. The normal forms of the equational calculus are defined as the normal

forms of the reduction calculus (recall that we identify terms up toα-conversion).

Remark Existence and uniqueness of normal forms are important properties for

equational calculi. Notice that there is no counterpart to strong normalisation in equa-

tional calculi.

Example: consider the simply-typedλ-calculus withβ-reduction andη-contraction.

This calculus is strongly (and hence weakly) normalising [GLT89] and also conflu-

ent [Bar84]. Thus we can define the canonical normal forms of the equational calculus

to be the same as those of the reduction calculus.

Example: consider the simply-typedλ-calculus with products and sums where the

reduction rules are obtained by reading the conversion rules from left-to-right. This

calculus is not confluent:

app(case y of (x1⇒ inj1(x1) | x2⇒ inj2(x2)),z)

+.η

uujjjjjjjjjjjjjjjjjjjjjjjjjjjj

+.CC

��
app(y,z) case y of (x1⇒app(inj1(x1),z) | x2⇒ app(inj2(x2),z))

Hence the reduction-based notion of normal form does not coincide with a canonical

equational normal form.

Semantic normalisation[Fil01b] is an instance of canonical equational normalis-

ation in which rather than defining the convertibility relation directly it is induced by
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a denotational semantics. In other words a normal formm′ for a termm is defined

as a canonical representative of the equivalence class of terms which have the same

denotation asm.

2.4.3 The structure of normal forms

It is often useful to describe the structure of normal forms. One way of doing so is by

giving a syntax for normal forms. For instance, a standard example of normal forms

for the simply-typedλ-calculus withβ- andη-conversion is as follows:

Normal forms m ::= nO | lam(xA,m)

Neutral terms nA ::= xA | app(nB→A,m)

wherem ranges over normal forms, andnA overneutral termsof typeA. Here, normal

forms arelong normal forms[JG95, Hue76]. In general,long normal formsare ob-

tained by generating a reduction relation by readingβ- andCC-rules from left-to-right,

butη-rules from right-to-left (η-expansion).

(→.β) app(lam(x,m),n) −→ m[x :=n]

(→.η) m −→ lam(x,app(m, x)), wherex < fv(m)

The η-rule also has to be further restricted in order to prevent infinite expansion.η-

expansion is only applicable tom if the resulting term contains no newβ-redexes. The

reduction relation is restricted such that it always satisfies the congruence property,

except where doing so violates the side-condition on creating newβ-redexes. For in-

stance:

f O→O −→ lam(xO,app( f , x))

but we do not have:

app( f O→O,m) −→ app(lam(xO,app( f , x)),m)

becauseapp(lam(xO,app( f , x)),m) is aβ-redex.
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2.4.4 Normal forms from reductions

If one starts with a reduction calculus, then it is often possible to construct a syntax

for normal forms by starting with the syntax for terms and gradually restricting this

according to the reduction rules. For example, consider untypedλ-calculus withβ-

reduction, but noη-rule. The syntax of terms is:

m,n ::= x | app(n,m) | lam(x,m)

Now, a normal form cannot contain aβ-redex, so we must somehow restrict the

form of applications. Specifically, an abstraction cannot be applied. We introduce a

new syntactic category ofneutral termsfor terms which can be applied. Again these

cannot containβ-redexes:

Normal forms m ::= x | app(n,m) | lam(x,m)

Neutral terms n ::= x | app(n,m)

wheren ranges over normal forms andm ranges over neutral terms. We can simplify

this, as neutral terms coincide with a subset of normal forms, to give:

Normal forms m ::= n | lam(x,m)

Neutral terms n ::= x | app(n,m)

Naturally this technique can be used for equational calculi too, by directing the

conversion rules.

Unfortunately, it is not always possible to give a neat syntactic characterisation of

normal forms. For instance, if we addη-contraction then this results in a restriction on

the form of normal forms occurring inside abstractions. Specifically,lam(x,m) is only

a valid normal form ifm is not of the formapp(n, x) wherex< fv(n). We can explicitly

state this as a restriction on the syntax, but it is not possible to express directly in

the BNF. Similarly it is not entirely straightforward to construct a normalisation by

evaluation algorithm which performsη-contraction. Nevertheless, this technique does

provide a general way to obtain the structure of normal forms from a reduction relation.
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2.5 Normalisation by evaluation

We present normalisation by evaluation as a method for performing canonical equa-

tional normalisation. However, the normal forms produced by canonical equational

normalisation will often coincide with those produced by reduction-based normalis-

ation, so we shall sometimes use reduction-based techniques in order to reason about

normalisation by evaluation.

Normalisation by evaluation gives a sound normalisation functionnorm for a lan-

guageL with convertibility relation≡ and normal formsL-nf :

norm:L→L-nf

norm(e) =↓ ~e�

~ ·� is called theresidualising semantics. ~L� denotes asemantic domainin which

terms are interpreted, and~e� the meaning of the terme, where~e�:~L�. Thereifi-

cation function↓ :~L�→L-nf (‘reify’) takes semantic objects to normal forms.

We require that the following properties hold:

(soundness) e≡ e′ =⇒ ~e� = ~e′ � (2.5)

(consistency) e≡ norm(e) (2.6)

Given the typing constraint fornorm, consistency ensures thatnorm is a normalisation

function. The soundness property stated here, is soundness of the residualising seman-

tics. Note that soundness of the residualising semantics implies soundness ofnorm.

Hence, (2.5) and (2.6) guarantee thatnorm is a sound normalisation function.

2.5.1 Example: the free monoid

Our first example of normalisation by evaluation, the free monoid, is rather simple.

It does not relate directly to the main body of this thesis, but it does provide a basic

illustration of normalisation by evaluation.

Source language

(Exp) m,n ::= 1 | x |m×n
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Terms are built up from a distinguished unit, variables and multiplication, which rep-

resent the monoid operations

Conversion rules

(associativity) (a×b)×c≡ a× (b×c)

(right identity) a×1≡ a

(left identity) 1×a≡ a

The conversion rules are simply the monoid laws.

Normal form

(Exp-nf) m ::= 1 | x×m

Normal forms result from eliminating units and associating brackets to the right.

An alternative perspective is to view terms as binary trees, and normalisation as the

process of flattening these to lists. Indeed, a basic list semantics gives rise to a norm-

alisation by evaluation algorithm.

Residualising semantics

~Exp� = V list

~1� = 〈〉

~ x� = 〈x〉

~m×n� = ~m�++~n�

Reification

↓:~Exp�→ Exp-nf

↓ 〈〉 = 1

↓ (x :: xs) = x× (↓ xs)

Normalisation

norm(m) =↓ ~m�

Unit is interpreted as the empty list, a variable is interpreted as a singleton list,

and multiplication is interpreted as list concatenation. The reification function simply

witnesses the isomorphism between normal forms and lists.
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2.5.2 Typed calculi and environments

For typed calculi it is convenient to take the usual approach of partitioning the semantic

domain according to type.LA denotes the subset ofL consisting of terms of typeA

(similarlyL-nfA denotes the normal form terms of typeA). ~LA�, or more concisely

~A�, denotes the semantic domain used to interpret terms of typeA. Correspondingly

we define a type-indexed version of the reification function↓A :~A�→ L-nfA. The

normalisation function becomes:

norm:L→L-nf

norm(eA) =↓A ~e�

In the case ofλ-calculi we shall use an environment semantics in which the se-

mantics is parameterised by an environmentρ, mapping variable names to semantic

objects (with an appropriate type restriction in the case of typed calculi). The terme

in environmentρ is interpreted as~e�ρ. For the typed case this gives a normalisation

function of the form:

norm:L→L-nf

norm(eA) =↓A ~e�↑

where↑ is the initial environment.↑ might be the empty environmentε, which makes

sense if we want only to normalise closed terms. If we want to handle open terms as

well, then we can define↑ to map each variable to a corresponding semantic object

which somehow encapsulates the name and type of the variable. This is the approach

we shall usually take.

2.5.3 Example: simply-typedλ-calculus and long normal forms

Our second example of normalisation by evaluation is the one which has been

most studied in the literature [BS91, BES98, BES03, Ber93, Fio02, AHS95]. This

normalisation by evaluation algorithm forms the basis for most of the normalisation by
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evaluation algorithms explored in this thesis. It illustrates normalisation by evaluation

for typed-calculi using an environment semantics.

Recall from§2.4.3 that long normal forms are given by:

Normal forms m ::= nO | lam(xA,m)

Neutral terms nA ::= xA | app(nB→A,m)

We writeΛ→-nf for the set of normal forms andΛ→-nefor the set of neutral terms. In

general we shall use the suffix -nf for the set of normal forms of a language, and -ne

for the set of neutral terms.

We choose a set-theoretic semantics in which the base type is interpreted by the set

of normal forms of base type and functions are interpreted by the set-theoretic function

space:

~O� = Λ→-nfO

~A→ B� = ~A�→ ~B�

The semantics of terms is standard:

~ x�ρ = ρ(x)

~ lam(x,m)�ρ = λs.~m�ρ[x7→s]

~app(m,n)�ρ = ~m�ρ(~n�ρ)

The type-indexed↓ is defined mutually recursively with another type-indexed function

↑ (‘reflect’) which reflectsa neutral term in the semantics.

↓A:~A�→ Λ→-nfA

↑A:Λ→-neA→ ~A�

↓O e= e

↓A→B f = lam(x,↓B ( f (↑A x))), x fresh

↑O e= e

↑A→B e= λs. ↑B (app(e, (↓A s)))
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To normalise a termeA we have:

norm(eA) =↓A ~e�↑

where↑ denotes the environment mappingxA to ↑A x.

2.5.4 Reflection

Perhaps the easiest way to motivate the role of reflection is to begin by considering the

function↑ restricted to variables. In order to define the semantics on open terms we

need a suitable initial environment↑, which maps a variablexA to a semantic object

↑A x of typeA. For the purposes of normalisation by evaluation thex must be somehow

encoded in↑A x in such a way that it is possible to extractx — in particular reifying it

should return the normal form of the variable.1

↓A ↑A x= norm(xA) (2.7)

It turns out that reflection is also necessary in the definition of↓. In particular, in order

to reify a function it must be applied to the semantic representation of a fresh variable.

Furthermore, in the definition of↑ it is necessary to obtain a semantic representation

of other neutral terms apart from variables. Thus↑ is defined over all neutral terms,

and for any neutral termnA:

↓A ↑A n= norm(nA) (2.8)

This property follows from the characteristic property of reflection:

~nA�↑ =↑
A n (2.9)

Reflecting a neutral term is the same as interpreting it in the initial environment.

1Notice that in general the long normal form of a neutral term can be obtained just usingη-expansion.
This is because a neutral term contains noβ- orCC-redexes, andη-expansion is not allowed to introduce
newβ- or CC-redexes.
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Remark A common mistake is to ask the question of whether normalisation can be

performed as reify composed with reflect. Clearly this could not work in general, as

reflect is only defined on neutral terms.

Remark A standard normalisation by evaluation method for dealing with constants

in λ-calculi, which we will use later, is to interpret constants by reflecting them in the

semantics, calling↑ at the appropriate type. In effect this amounts to treating such

constants as if they are neutral oruninterpreted.

2.5.5 Example: untypedλ-calculus andβ-normal form

We consider the untypedλ-calculus with just theβ-rule. Normal forms are given by:

(Λu-nf) m ::= n | lam(x,m)

(Λu-ne) n ::= x | app(n,m)

Terms are interpreted in a domain given by a recursive domain equation. Infor-

mally, a term is either interpreted as raw syntactic material, or as a function from

semantic objects to semantic objects.

~Λu� � Λu-ne+ (~Λu�→ ~Λu�)

~ x�ρ = ρ(x)

~ lam(x,e)�ρ = λs.~e�ρ[x7→s]

~app(e1,e2)�ρ = f (~e2�ρ), if f = ~e1�ρ is a function

= app(m,↓ (~e2�ρ)), if m= ~e1�ρ is a term

↓:~Λu�→ Λu-nf

↓ e= e, if e is a term

↓ f = lam(x,↓ f (x)), (x fresh) if f is a function

norm(e) =↓ (~e�↑)

where↑ x= x.
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We do not give a formal account of recursive domain equations.� is read as “is

isomorphic to”. So~Λu� is isomorphic toΛu-nf + (~Λu�→ ~Λu�). If we were to

give a formal semantics we could take~Λu� to be a CPO [Win93], and assume that

S→ S′ denotes the continuous function space between CPOs. In ML programs we

simulate recursive domains using datatypes.

datatype term = Var of string

| Lam of string * term | App of term * term

datatype sem = Neutral of term | Fun of sem -> sem

The datatypeterm representsΛu, andsem represents~Λu�.

2.6 Parameterised semantics and compositionality

Generally we want to give acompositionalsemantics for our equational calculi, in that

the semantics of a term is defined in terms of the semantics of its component parts.

Observe that any terme can be expressed as ann-ary term constructorC applied ton

subtermse1 . . .en.

Definition 2.2. A function f on terms of a language iscompositionalif f can be

defined such that for any term e= C(e1, . . . ,en) we have that f(e) is a function of

f (e1), . . . , f (en).

At the very least, compositionality of asemanticsensures that it is sound with

respect to the congruence rules.

Lemma 2.3. If ~ ·� is compositional,C is an n-ary term constructor, and~e1� =

~e′1�, . . . ,~en� = ~e′n� then~C(e1, . . . ,en)� = ~C(e′1, . . . ,e
′
n)�.

Proof.

~C(e1, . . . ,en)� = f (~e1�, . . . ,~en�), for some functionf

= f (~e′1�, . . . ,~e
′
n�)

= ~C(e′1, . . . ,e
′
n)�

�
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We capture compositionality explicitly using the notion of aparameterised seman-

tics. A parameterised semantics is specified in terms of a set of parameters: one for

each term constructor. Instantiating all of these parameters gives a concrete semantics.

Different instantiations give different concrete semantics.

Sometimes certain parameters are leftuninterpreted. The semantics of ann-ary

uninterpreted parameterp is given by definingp(s1, . . . , sn) as ann-tuple (s1, . . . , sn)

tagged with the parameterp, which we simply write asp(s1, . . . , sn).

2.6.1 Example: the free monoid

We give a parameterised semantics for the free monoid, with parametersunit, elt and

prod:

~1� = unit

~ x� = elt(x)

~e1×e2� = prod(~e1�,~e2�)

In §2.5.1 this was instantiated with the monoid of lists:

~Exp� = V list

unit= 〈〉

elt(x) = 〈x〉

prod(l1, l2) = l1++ l2

Another alternative is to use the monoid of functions from terms to terms:

~Exp� = Exp→ Exp

unit= λe.e

elt(x) = λe.x×e

prod( f1, f2) = f1◦ f2

↓ f = f (1)
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~ x�ρ = ρ(x)

~ lam(x,e)�ρ = lam(λs.~e�ρ[x7→s])

~app(e1,e2)�ρ = app(~e1�ρ,~e2�ρ)

Figure 2.11: Parameterised semantics forΛu andΛ→

Beylin and Dybjer [BD95] constructed this algorithm from a free monoidal cat-

egory. It can also be seen as a version of the list-based algorithm in which lists are

encoded as partially applied concatenation functions [Hug86, DN01]. The motivation

for representing lists as partially applied concatenation functions, is that concatenation

becomes a constant time operation, whereas concatenation on linked lists is linear.

2.6.2 Example: the (untyped/ simply-typed) λ-calculus

A parameterised semantics for bothΛu andΛ→, with parameterslamandapp, is given

in Figure 2.11. Note how the abstraction is interpreted aslam applied to a function.

As well as covering the congruence rules, this also captures theα-rules — the name of

the bound variable is irrelevant. In general bound variables give rise to functions in a

parameterised semantics. For instance the parameterlet can be used to interpretlet in

the computational metalanguage, where~ let x⇐m in n�ρ = let(~m�ρ,λs.~n�ρ[x7→s]).

Remark By leaving all the parametersuninterpreted, we obtainhigher-order ab-

stract syntax[PE88].

The semantics of§2.5.5 can be easily obtained:

lam : ~Λu�→ ~Λu�

app: (~Λu�×~Λu�)→ ~Λu�

lam( f ) = f

app( f , s) = f (s), if f is a function

= app( f ,↓ s), if f is a term
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Given that the residualising semantics of the simply-typedλ-calculus from§2.5.3

does not use the type annotations on bound variables, the parameters can also be in-

stantiated to give the semantics of§2.5.3:

lam : (~A�→ ~B�)→ (~A�→ ~B�)

app: ((~A�→ ~B�)×~A�)→ ~B�

lam( f ) = f

app( f , s) = f (s)

In Chapter 4 we will consider other normalisation by evaluation algorithms using

the same parameterised semantics. In§4.8 we introduce an alternative parameterised

semantics forΛ→, which does make use of the type annotations on bound variables.

This allows us to dispense with the type-index on↓.

Remark In the above examples we have explicitly specified the types of the instan-

tiated parameters. Usually we shall omit the types, as they are easy to infer.

2.7 Proof techniques for normalisation by evaluation

The focus of this thesis is the application of normalisation by evaluation, rather than

providing completely formal correctness proofs. However, it can be illuminating to

have some appreciation of the proof techniques one might use. We recall the two

properties which are needed for correctness of normalisation by evaluation:

(soundness) e≡ e′ =⇒ ~e� = ~e′ �

(consistency) e≡ norm(e)

Usually soundness is easy to prove by induction on the proof thate≡ e′. The

difficult part tends to be proving consistency.
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2.7.1 Direct proof

Sometimes we can prove soundness of the semantics and consistency ofnormdirectly

without using any special techniques. We illustrate this approach with the free monoid

using the list semantics.

Soundness of the semantics is straightforward to prove by induction on the proof

that a ≡ b. The associative law follows from associativity of concatenation and the

identity laws follow from the property that the empty list is the identity for list con-

catenation. In other words, lists satisfy the monoid laws. Consistency is slightly more

difficult to prove. It is proved by induction on the structure of terms using the following

lemma:

Lemma 2.4. ↓ (~a�++~b�) ≡ (↓ ~a�)∗ (↓ ~b�)

Proof. Observe that~a� and~b� are just lists〈a1, . . . ,an〉 and〈b1, . . . ,bm〉 respectively.

Then:

↓ (~a�++~b�) =↓ 〈a1, . . . ,an,b1, . . . ,bm〉 (expanding out lists)

= (a1∗ · · · ∗ (an∗ (b1∗ · · · ∗ (bm∗1)))) (definition of↓)

≡ (a1∗ · · · ∗ (an∗1))∗ (b1∗ · · · ∗ (bm∗1)) (conversion rules)

= (↓ 〈a1, . . . ,an〉)∗ (↓ 〈b1, . . . ,bm〉) (definition of↓)

= (↓ ~a�)∗ (↓ ~b�) (contracting lists)

�

Lemma 2.5 (consistency).e≡ norm(e)

Proof. The only interesting case is multiplication:

norm(a∗b) =↓ (~a∗b�) (definition ofnorm)

=↓ (~a�++~b�) (definition of~ ·�)

≡ (↓ ~a�)∗ (↓ ~b�) (Lemma 2.4)

= norm(a)∗norm(b) (definition ofnorm)

≡ a∗b (induction hypothesis)

�
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2.7.2 Using the existence of normal forms

A direct proof of consistency is often non-trivial. However, if we already know that

normal forms exist, then the task becomes much easier. After proving soundness of

the semantics, we just need to show that normal forms are preserved bynorm.

Proposition 2.6. Suppose norm(e) =↓ ~e�. If:

1. For all e,e′ ∈ L, if e≡ e′ then~e� = ~e′ �.

2. For all e∈ L there exists e′ ∈ L-nf such that e≡ e′.

3. For all e∈ L-nf we have e= norm(e).

then norm is a normalisation by evaluation function.

Proof. 1 is soundness. Now we show consistency. By 2, given anye there existse′ ∈

L-nf with e≡ e′. By 3,e′ = norm(e′), and hencee≡ norm(e′). But by soundness~e�=

~e′ �, and hencenorm(e) = norm(e′) by definition ofnorm. Thuse≡ norm(e). �

We illustrate this technique with simply-typedλ-calculus and the normalisation by

evaluation algorithm of§2.5.3. Soundness follows by straightforward induction on the

proof thate≡ e′ using the following substitution lemma:

Lemma 2.7. ~m�ρ[x 7→ ~n�ρ] = ~m[x :=n] �ρ

Proof. Induction on the structure ofm. �

It is standard that every term is convertible to a long normal form [JG95, Hue76].

Hence we just need to show foreA in normal form thateA = norm(eA). The proof is by

induction on the structure of terms. There are two cases.

λ-abstractions

norm(lam(x,m))A→B)

=↓A→B ~ lam(x,m)�↑ (definition ofnorm)

= lam(x,↓B ((λs.~m�↑[x7→s])(↑
A x))), x fresh (definition of↓ and~ ·�)

= lam(x,↓B ~m�↑[x7→↑Ax]) (meta-levelβ-reduction)

= lam(x,↓B ~m�↑) (definition of↑)

= lam(x,norm(mB)) (definition ofnorm)

= lam(x,m) (induction hypothesis)
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Note that it is safe to assume thatx is chosen as the fresh variable in the definition

of reify, as this is the only place we generate bound variables and this variable

will never be used elsewhere.

We could be completely formal about fresh-name generation using a method

such as: FreshML/ FM set theory [SPG03, GP01], term families/ de Bruijn

levels/ de Bruijn indices [BES98, dB72], or a name generation monad [Fil01b].

However, we chose not to because this would significantly complicate the expo-

sition with boring details.

Neutral terms We write app(m1, . . . ,mk) for app(. . .app(m1,m2), . . . ,mk). Neutral

terms of typeO have the formapp(x,m1, . . . ,mk), wherem1:A1, . . . ,mk:Ak are

normal:

norm((app(x,m1, . . . ,mk))
O)

=↓O ~ (app(x,m1, . . . ,mk))�↑ (definition ofnorm)

= ~ (app(x,m1, . . . ,mk))�↑ (definition of↓)

= ~ x�↑~m1�↑ . . .~mk�↑ (definition of~ ·�)

= (↑A1→···→An→0 x)~m1�↑ . . .~mk�↑ (definition of~ x�↑)

=↑O app(x,↓A1 ~m1�↑, . . . ,↓
An ~mk�↑) (definition of↑A→B

appliedk times)

=↑O (app(x,m1, . . . ,mk)) (definition ofnormand

induction hypothesis

applied to eachmi)

= app(x,m1, . . . ,mk) (definition of↑O)

Hencenormis a normalisation by evaluation function for simply-typedλ-calculus with

long normal forms.

Proposition 2.6 gives not only thatnorm is a normalisation by evaluation function,

but also that it is total. One would expect that if normal forms exist for all terms, then a

normalisation by evaluation algorithm should terminate on all inputs. However, prov-

ing termination directly is often non-trivial. Typically we prove existence of normal

forms in an equational calculus by appealing to a normalisation proof in a reduction
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calculus. In effect we lift a termination proof in a reduction calculus up to a proof of

termination and correctness of a normalisation by evaluation algorithm. We discuss

approaches to normalisation in Chapter 3.

Berger et al. [BS91, BES98, BES03] use the existence of normal forms in order

to prove correctness of normalisation by evaluation. Our proof of consistency is es-

sentially the same as theirs. Fiore [Fio02] uses the same idea, but works entirely in a

categorical framework.

2.7.3 Other proof techniques

The standard normalisation by evaluation algorithm for obtaining long normal

forms for the simply-typedλ-calculus has been proved correct using a variety of dif-

ferent techniques including the following:

• Berger [Ber93] starts with a constructive strong normalisation proof, from which

he extracts a normalisation by evaluation algorithm.

• Hofmann [Hof99] uses a logical relation between semantic objects and terms.

• Filinski [Fil99b] uses semantic normalisation and a Kripke logical relation to

prove correctness of TDPE — a stronger property than correctness of normalis-

ation by evaluation.

• Vestergaard [Ves01] takes a rewriting-theoretic approach using a two-levelλ-

calculus [NN92].

• A range of categorical techniques [AHS95, CDS98, Fio02].

Berger and Hofmann’s techniques are both connected to the method of§2.7.2.

First, strong normalisation implies the existence of normal forms. Second, strong

normalisation for simply-typedλ-calculus can be proved using a logical

relation [GLT89]. We believe that one can view Hofmann’s proof as a transforma-

tion of the proof of§2.7.2 in which a logical relations proof that normal forms exist

has been inlined.
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We shall not rigorously prove our algorithms correct, but we shall use Proposi-

tion 2.6 to justify the algorithms in Chapter 4 and Chapter 5.

2.8 Corollaries of normalisation by evaluation

Uniqueness of normal forms By definition a normalisation functionnormwhich is

sound and consistent defines a unique normal form for an equational calculus.

Confluence If in proving correctness ofnorm, the conversion rules are applied only

in one direction then this gives rise to a reduction-calculus with unique normal forms,

that is, a confluent reduction-calculus. Hence normalisation by evaluation can be used

for proving confluence. Coquand and Dybjer [CD97], and Dybjer and Filinski [DF02]

use this idea to prove confluence of a combinatory calculus.

Another way of proving confluence is from strong normalisation, correctness of

normalisation by evaluation and preservation of normal forms.

Theorem 2.8.Let (L,−→) be a reduction calculus. If:

1. (L,−→) is strongly normalising with normal formsL-nf .

2. norm:L→L-nf is a normalisation by evaluation function for(L,←→∗)

3. For all e∈ L-nf we have e= norm(e).

then(L,−→) is confluent.

Proof. Supposee−→∗ m ande−→∗ n. By 1, m−→∗ m′ andn−→∗ n′ wherem′,n′ ∈

L-nf . By 2, m′ = norm(m′) andn′ = norm(n′). But m′←→∗ n′, and by soundness of

normwe have thatnorm(m′) = norm(n′). Hencem′ = n′. �

Completeness A semantics is complete if for anye,e′:

~e� = ~e′ � =⇒ e≡ e′

This follows from soundness and consistency as:

~e� = ~e′ � =⇒ norm(e) = norm(e′) =⇒ e≡ e′
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Altenkirch et al. [ADHS01] used normalisation by evaluation in this way to obtain a

completeness proof for a categorical model ofλ+1.

Decidability One of the primary uses of normalisation is for deciding whether two

terms are convertible — just compare their normal forms for syntactic equality. Ifnorm

is total, that is,norm(e) is defined for alle∈ L, then≡ is clearly decidable.

Complexity Decidability ofβ- andβη-equality for the simply-typedλ-calculus has

worst case time complexity [Vor97, Vor04] given by the non-elementary function:

22.
. .

2}
cn

wheren is the size of the term, andc is some constant. Decidability is trivially re-

ducible to normalisation. Hence normalisation is at least as complex. Consequently

we do not try to reason about the asymptotic complexity of our normalisation by eval-

uation algorithms, but instead take an empirical approach to evaluating the efficiency

of normalisation by evaluation as compared with other normalisation algorithms.



Chapter 3

Normalisation for the computational

metalanguage

In subsequent chapters we investigate normalisation by evaluation for the compu-

tational metalanguage and related calculi. In this chapter we consider reduction-based

normalisation for the computational metalanguage. This is interesting in its own right,

but also allows us to apply Proposition 2.6. We concentrate on showing that the comp-

utational metalanguage is strongly normalising, although in order to apply Propo-

sition 2.6 it is actually sufficient to prove weak normalisation (existence of normal

forms).

Another property of reduction calculi one is often interested in is confluence. As

illustrated in§2.8, confluence can be obtained as a corollary of normalisation by evalu-

ation, so we do not pursue it further. Other proofs of confluence for the computational

metalanguage appear in the literature [BBdP98, BHT97].

Remark Although it can be useful to know that reductions can be applied in any

order, confluence (or uniqueness of normal forms) is not essential in compiler imple-

mentations. Providing that the target code is semantically equivalent to the source, it

does not matter that there may be other possible normal forms.

This chapter is concerned with reduction calculi. For the remainder of the chapter

read reduction calculus for calculus. We obtain reduction rules for the computational

metalanguage by directingβ-, CC- andη-rules from left-to-right. The rules appear in

77
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(→.β) app(lam(x,m),n) −→ m[x :=n]

(→.η) lam(x,app(m, x)) −→ m, if x < fv(m)

(T.β) let x⇐val(m) in n −→ n[x :=m]

(T.η) let x⇐m in val(x) −→ m

(T.T.CC) let y⇐ (let x⇐m in n) in p −→ let x⇐m in let y⇐n in p, if x < fv(p)

Figure 3.1: Reductions for the computational metalanguage

Figure 3.1.

In our reducibility proofs we will need asubstitutivityresult.

Proposition 3.1 (Substitutivity). If m −→ m′ then m[x :=n] −→ m′[x :=n].

Proof. Induction on the derivation ofm −→ m′. �

The rest of this chapter is structured as follows. In§3.1 we give an overview

of our approach to proving strong normalisation for the computational metalanguage.

In §3.2 we outline an alternative proof of strong normalisation for the computational

metalanguage by translation into a simpler calculus. In§3.3 we give a strong norm-

alisation proof using reducibility and continuations. In§3.4 we give some variations

and extensions of reducibility for continuations. In§3.5 we generalise reducibility

over continuations to reducibility over frame stacks. Finally, in§3.6 we discuss some

related work.

3.1 Strong normalisation and(−)>>

We shall prove that the computational metalanguage is strongly normalising. In§3.2

we outline a combinatorial proof using a translation into the simply-typedλ-calculus

extended with a commuting conversion corresponding toT.T.CC. Similar proofs by

translation appear in the literature [BBdP98, BHT97]. This successfully establishes

termination, but only by relatingλml to some other system for which we happen to

have a result to hand.
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A direct proof of strong normalisation is problematic for the same reason that it

is for the simply-typedλ-calculus: one of the reductions for computations performs

substitution of one term within another. Thus a reduction step may make a term grow

larger, and create subterms not present before. The consequence is that straightfor-

ward induction over the structure of terms or types is not enough to prove termination.

In §3.3 we present a semantic proof of strong normalisation forλml, by adapting a

standard technique from theλ-calculus. We define an auxiliary notion ofreducibility

at every type, that is linked to strong normalisation, but amenable to induction over

the structure of types. Roughly, reducibility is the logical predicate induced by strong

normalisation at ground types. We can show that all reducible terms are strongly nor-

malising, and then the fundamental theorem of logical relations ensures that in fact all

terms are reducible.

Our presentation of reducibility follows the style in Chapter 6 of Girard et al.’s

book [GLT89]. Our addition is to find a suitable definition for reducibility at compu-

tation types. A first informal attempt might be to echo the definition for functions:

(Bad 1) Termmof typeT A is reducible if for all reduciblen of typeT B, the term

let x⇐m in n is reducible.
This is not inductive over types, as the definition of reducibility at typeT Adepends on

reducibility at typeT B, which may be more complex. We can try to patch this:

(Bad 2) Termm of type T A is reducible if for all strongly normalisingn of

typeT B, the termlet x⇐m in n is strongly normalising.

This is now inductive, but in practice too weak to handle substitution. We need to look

more closely at the contexts in which computation terms likem can be used. These

continuationsare nestings oflet x⇐ [ ] in n, and give us our successful definition of

reducibility:

(Good 1) Termm of type T A is reducible if for all reducible continuationsK, the

applicationK @m is strongly normalising.

Here application means plugging termm into the hole [ ] withinK. Of course, we now

have to define reducibility for continuations:

(Good 2) ContinuationK accepting terms of typeT A is reducible if for all reducible

v of typeA, the applicationK @val(v) is strongly normalising.



80 Chapter 3. Normalisation for the computational metalanguage

This termval(v) is the trivial computation returning valuev. By moving to the sim-

pler value typeA we avoid a potential circularity, and so get a notion of reducibility

defined by induction on types. What is more, the characterisation by continuations

is strong enough that the remainder of the strong normalisation proof goes through

without undue difficulty.

Looking beyond reducibility, this jump over continuations offers a quite general

method to leap-frog concepts from value typeA up to computation typeT A, whether

or not we know the nature ofT. If we write K > m when K applied tom strongly

normalises, then for any predicateφ ⊆ A we define in turn:

φ> = {K | K > val(v) for all v ∈ φ }

φ>> = {M | K >m for all K ∈ φ> } ⊆ T A

This is our operation of>>-lifting: to take a predicateφ on value typeA and return

anotherφ>> on the computation typeT A, by a “leap-frog” overφ> on continuations.

We believe that the use of>>-lifting in the metalanguageλml is original. It was

inspired by similar constructions applied to specific notions of computation; it is also

related to Pitts’s>>-closure, and that in turn has analogues in earlier work on reducibil-

ity. §3.6 discusses this further.

3.2 Strong normalisation by translation

Our first proof of strong normalisation forλml is by translation into a simpler calculus.

In general we can prove strong normalisation for a calculusλ1 by translation to another

calculusλ2 if the translation preserves reductions and the target calculus is already

known to be strongly normalising.

We use the translationΦ in Figure 3.2 which strips out all computation types and

terms; essentially by instantiating the type constructorT as the identity. The target

calculusλassochas exactly the types and terms of the simply-typedλ-calculus together

with one extra reduction rule:

(assoc) app(lam(y,n),app(lam(x,m), l)) −→

app(lam(x,app(lam(y,n),m)), l) if x < fv(n)
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Types

Φ(O) =O

Φ(T A) = Φ(A)

Φ(A→ B) = Φ(A)→ Φ(B)

Terms

Φ(x) = x

Φ(lam(x,m)) = lam(x,Φ(m))

Φ(app(m,n)) = app(Φ(m),Φ(n))

Φ(val(m)) = Φ(m)

Φ(let x⇐m in n) = app(lam(x,Φ(n)),Φ(m))

Figure 3.2: TranslationΦ from λml to λassoc.

These two terms areβ-interconvertible, soassoc-reduction is admissible within the the-

ory of theλ-calculus, but seems not very widely used. It is, for example, an instance

of Sabry and Felleisen’s reductionβlift , that captures one kind of “administrative” re-

duction for code written in continuation-passing style [SF93, Definition 7].

The following result confirms that translation properly respects the structure and

behaviour ofλml terms.

Lemma 3.2. The translationΦ preserves types, substitution and reduction steps.

(i) If m : A thenΦ(m) : Φ(A).

(ii) Φ(m[x :=n]) = Φ(m)[x :=Φ(n)].

(iii) If m→m′ in λml thenΦ(m)→ Φ(m′) in λassoc.

Proof. Parts (i) and (ii) follow by induction on the derivation ofm : A and the structure

of m respectively. For part (iii) we observe that each reduction ofλml maps to a single

reduction ofλassoc:

• Φ(→.β) andΦ(→.η) are exactlyβ andη;
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• Φ(T.β) is alsoβ;

• Φ(T.η) is a special case ofβ; and

• Φ(T.T.CC) isassoc.

The proof forT.β andT.η uses result (ii) on substitution. �

Because of the addition ofassoc-reduction, it is not immediate that the calculus

λassoc is strongly normalising. However, it is close enough to base a combinatorial

proof on the knownβ-normalisation, counting reduction steps of different kinds. We

define three measures on lambda-terms:s(m) is an asymmetrically weighted measure

of term size;b(m) countsβ-reductions; andf (m) combines the two.

s(x) = 1

s(lam(x,m)) = s(m)

s(app(m,n)) = s(m)+2s(n)

b(m) = length of longestβ-reduction sequence fromm

f (n) = 〈b(m), s(m)〉 lexicographically ordered.

Both η andassocdecrease measures(m), which shows that they are strongly normal-

ising on their own. Measureb(m) is well-defined, as we know thatβ is strongly nor-

malising, and naturallyβ decreasesb(m). The measuref (m) is then enough to prove

thatλassocis strongly normalising provided we can show thatη andassoc-reductions

do not increaseb(m).

Forη this is straightforward, as it introduces no newβ-redexes. The case ofassoc-

reduction requires more sophistication. What we must show is that for anym→assocm′,

if m′ has aβ-reduction sequenceρ′ to normal form, thenmhas a matching sequenceρ

that is at least as long. The following reduction diagram illustrates the need to consider
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complete sequences.

app(lam(y,n),app(lam(x,m), l)) assoc//

β

��

app(lam(x,app(lam(y,n),m)), l)

β
��

n

��

app(lam(x,n), l)

��
? app(lam(x,n), l′)

wherex,y < fv(m)∪ fv(n).

Given a reduction sequenceρ′ on the right we attempt to construct anotherρ on the

left, when it happens that variablex does not appear inm. Applying functionlam(y,n)

on both sides seems a natural match, but the resulting right-hand termapp(lam(x,n), l)

may have reductions inl not available on the left. The solution is to postpone the left-

hand reduction as long as possible, which we do by annotating terms to keep track of

what reductions are pending. We omit the details of the proof — the final result is

that for every complete sequenceρ′ on the right, there is a matchingρ on the left, but

individual reductions may be reordered.

Theorem 3.3.Bothλassocandλml are strongly normalising.

Proof. By Lemma 3.2(iii) any infinite reduction sequence inλml translates to an infinite

reduction sequenceλassoc. But there are no such sequences as everyλassocreduction

decreases the well-founded measuref (m). Thus every term inλassocandλml strongly

normalises. �

3.3 Reducibility with continuations

Our second strong normalisation proof extends Tait’s type-directed reducibility ap-

proach [Tai67], making use of>>-lifting. We follow closely the style of Girard et

al. [GLT89, Chapter 6].

As explained earlier, the key step is to find an appropriate definition of reducibil-

ity for computation types, which we do by introducing a mechanism for managing

continuations.
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3.3.1 Continuations

Informally, a continuation should capture how the result of a computation might be

used in a larger program. Our formal definition is structured to support inductive proof

about these uses.

• A term abstraction(x)n of typeT A( T B is a computation termn of typeT B

with a distinguished free variablex of typeA.

• A continuation Kis a finite list of term abstractions, with length|K|.

K ::= Id | K ◦ (x)n
|Id| = 0

|K ◦ (x)n| = |K|+1

• Continuations have types assigned using the following rules:

Id : T A( T A
(x)n : T A( T B K : T B( TC

K ◦ (x)n : T A( TC
.

• We apply a continuation of typeT A( T B to a computation termm of typeT A

by wrappingm in let-statements that use it:

Id @m=m

(K ◦ (x)n) @m= K @ (let x⇐m in n)

Notice that when|K| > 1 this is a genuine nested stack of computations, not just

simple sequencing: i.e.

let x1⇐ (let x2⇐ (. . . (let xn⇐m in nn)) . . . in n2) in n1

rather than

let x1⇐m1 in let x2⇐m2 in . . . in let xn⇐mn in n .

• We define a notion of reduction on continuations:

K −→ K′
def
⇐⇒ ∀m . K @m→ K′@m ⇐⇒ K @x→ K′@x
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m∈ redO if m : O is strongly normalising

f ∈ redA→B if app( f ,m) ∈ redB for all m∈ redA

p ∈ redA×B if proj1(p) ∈ redA andproj2(p) ∈ redB

m∈ redT A if K @m is strongly normalising for allK ∈ red>T A

K ∈ red>T A if K @val(v) is strongly normalising for allv ∈ redA.

Figure 3.3: Reducibility forλml

where the right-hand equivalence follows from Proposition 3.1. A continuation

K is strongly normalisingif all reduction sequences starting fromK are finite;

and in this case we writemax(K) for the length of the longest.

Lemma 3.4. If K −→ K′, for continuations K and K′, then|K′| ≤ |K|.

Proof. SupposeK = Id ◦ (x1)n1 ◦ · · · ◦ (xk)nk. Then its applicationK @x = let x1⇐

(. . . (let xk⇐ x in nk) . . . ) in n1 and there are only two reductions that might change the

length ofK.

• T.η whereni = val(xi) for somei. ThenK → K′ whereK′ = Id ◦ (x1)n1 ◦ · · · ◦

(xi−1)ni−1◦ (xi+1)ni+1◦ · · · ◦ (xk)nk and|K′| = |K| −1.

• T.T.CC may occur at positioni for 1≤ i < n to giveK′ = (x1)n1◦ · · · ◦ (xi−1)ni ◦

(xi+1)(let xi⇐ni+1 in ni)◦ (xi+2)ni+2◦ · · · ◦ (xk)nk. Again |K′| = |K| −1.

Hence|K′| ≤ |K| as required. �

3.3.2 Reducibility and activity

Figure 3.3 defines two sets by induction on the structure of types: reducible terms

redA of type A, and reducible continuationsred>T A of typeT A( T B for someB. As

described in the introduction, for computations we useredT A= red>>A .
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Reduction Rewrite context Active term

→.β app(−,n) lam(x,m)

→.η − lam(x,app(m, x))

×.βi proji(−) pair(m,n)

×.η − pair(proj1(m),proj2(m))

T.β let x⇐− in m val(n)

T.η let x⇐m in − val(x)

T.T.CC let y⇐− in n let x⇐ l in m

Figure 3.4: Activity forλml

We also need to classify some terms asinactive1; we do this by decomposing every

reduction into a rewrite context with a hole that must be plugged with a term of a

particular form (see Figure 3.4).

From this we define:

• Termm is activeif R[m] is a redex for at least one of the rewrite contexts.

• Termm is inactiveif R[m] is not a redex for any of the rewrite contexts.

The inactive terms are those of the formx, app(m,n), proj1(m) andproj2(m); i.e. com-

putation types add no new inactive terms.

The basic properties of reducibility now follow (CR 1)–(CR 4) of [GLT89].

Theorem 3.5.For every term m of type A, the following hold.

(i) If m ∈ redA, then m is strongly normalising.

(ii) If m ∈ redA and m→m′, then m′ ∈ redA.

(iii) If m is inactive, and whenever m→m′ then m′ ∈ redA, then m∈ redA.

1 Girard et al [GLT89] (and the paper on which this chapter is based [LS05]) use the wordneutral.
But we have already usedneutralfor a stronger notion 2.4.3, so we use the wordinactiveinstead. In the
terminology of this thesis, we have that the termm is neutral iff it is inactive and all active subterms of
m are in normal form.



3.3. Reducibility with continuations 87

(iv) If m is inactive and normal then m∈ redA.

Proof. Part (iv) is a trivial consequence of (iii), so we need only prove (i)–(iii), which

we do by induction over types. The proof for ground, function and product types

proceeds as normal [GLT89].

Ground type

(i) Saym∈ redO. Thenm is SN by definition.

(ii) Supposem∈ redO andm→m′. Thenm′ is SN and hence reducible.

(iii) Take m : O inactive withm′ ∈ redO wheneverm→m′. Thenm′ is SN whenever

m→m′. Thusm is SN andm∈ redO.

Function types

(i) Say m ∈ redA→B. By the induction hypothesis (iv)x ∈ redA and by definition

app(m, x) ∈ redB. Now by the induction hypothesis (i)app(m, x) is SN and hence

m is SN.

(ii) Supposem∈ redA→B andm→m′. Whenevern∈ redA we haveapp(m,n) ∈ redB.

By the induction hypothesis (ii)app(m′,n) ∈ redB. Thusm′ ∈ redA→B.

(iii) Take m : A→ B inactive withm′ ∈ redA→B wheneverm→m′. Supposen∈ redA.

We prove by induction onmax(n) thatapp(m,n) ∈ redB. app(m,n) may reduce

as follows:

– app(m′,n), wherem→m′, which is reducible asm′ ∈ redA→B.

– app(m,n′), wheren→ n′, which is reducible by the induction hypothesis.

There are no other possibilities asm is inactive. Hencem is reducible.
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Product types

(i) Say m ∈ redA×B. Then proj1(m) ∈ redA and by the induction hypothesis (i)

proj1(m) is SN. Hencem is SN.

(ii) Supposem∈ redA1×A2 andm→ m′. Thenproji(m) ∈ redAi , for i = 1,2. By the

induction hypothesis (ii)proji(m
′) ∈ redAi . Hencem′ ∈ redA1×A2.

(iii) Take m : A1×A2 inactive withm′ ∈ redA1×A2 wheneverm→ m′. We prove by

induction onmax(m) thatproji(m) ∈ redAi for i = 1,2. Asm is inactive,proji(m)

can only reduce toproji(m
′), wherem→m′, which is reducible asm′ ∈ redA1×A2.

Hencem is reducible.

Computation types

(i) Saym∈ redT A. By the induction hypothesis (i), everyn ∈ redA hasn and hence

val(n) SN. ThusId:T A( T A is reducible andm is SN as required.

(ii) Supposem∈ redT A andm→ m′. For all K ∈ red>T A, applicationK @m is SN,

andK @m→ K @m′, soK @m′ is SN too and hencem′ is reducible.

(iii) Take m : T A inactive with m′ ∈ redT A wheneverm→ m′. We have to show

that K @m is SN for eachK ∈ red>T A. First, we have thatK @val(x) is SN as

x∈ redA by the induction hypothesis (iv). HenceK itself is SN, and we can work

by induction onmax(K). ApplicationK @m may reduce as follows:

– K @m′, wherem→m′, which is SN by reducibility ofK andm′.

– K′@m, whereK→ K′. Now, given anyn ∈ redA, we have thatK @val(n)

is SN asK is reducible; andK @val(n)→ K′@val(n), so K @val(n) is

also SN. ThusK′ is reducible withmax(K′) <max(K), so by the induction

hypothesisK′@m is SN.

There are no other possibilities asm is inactive. HenceK @m is SN, andm is

reducible.

�
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3.3.3 Reducibility theorem

We show that all terms are reducible, and hence strongly normalising, by induction on

their syntactic structure. This requires an appropriate lemma for each term constructor.

Functions

Lemma 3.6. If m : A→ B and n: A are reducible, then so isapp(m,n).

Proof. By definition of reducibility on functions. �

Lemma 3.7. If m[x :=n] : B is reducible for all reducible n: A thenlam(x,m) : A→ B

is reducible.

Proof. Supposen ∈ redA. We show by induction onmax(m)+max(n) that the term

app(lam(x,m),n) is reducible.app(lam(x,m),n) may reduce as follows:

• app(lam(x,m′),n), wherem→m′, which is reducible by Theorem 3.5(ii) and the

induction hypothesis.

• app(lam(x,m),n′), wheren→ n′, which is reducible by Theorem 3.5(ii) and the

induction hypothesis.

• m[x :=n], which is reducible by hypothesis.

By Theorem 3.5(iii),app(lam(x,m),n) is reducible. Hencelam(x,m) is reducible.

�

Products

Lemma 3.8. If m : A1×A2 is reducible, thenproji(m) is reducible.

Proof. By definition of reducibility on products. �

Lemma 3.9. If m1 : A1 and m2 : A2 are reducible, then so ispair(m1,m2).

Proof. We show by induction onmax(m1) +max(m2) that proji(pair(m1,m2)) is re-

ducible.proji(pair(m1,m2)) may reduce as follows:
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• proji(pair(m1
′,m2)), wherem1→m1

′, which is reducible by Theorem 3.5(ii) and

the induction hypothesis.

• proji(pair(m1,m2
′)), wherem2→m2

′, which is reducible by Theorem 3.5(ii) and

the induction hypothesis.

• mi , which is reducible by hypothesis.

By Theorem 3.5(iii),proji(pair(m1,m2)) is reducible. Hencepair(m1,m2) is re-

ducible. �

Computations

Lemma 3.10. If n : A is reducible, then so isval(n).

Proof. Let K be a reducible continuation. By definitionK @val(n) is SN asn is re-

ducible. Henceval(n) is reducible. �

We now wish to show that formation oflet-terms preserves reducibility. That will

be Lemma 3.12, but we first need a result on the strong normalisation oflet-terms in

context. This is the key component of our overall proof, and is where our attention

to the stack-like structure of continuations pays off: the challenging case is the com-

muting conversionT.T.CC, which does not change its component terms; but does alter

the continuation stack length, and this gives enough traction to maintain the induction

proof.

Lemma 3.11. Let x : A be a variable, m: A,n : T B be terms and K: T B( TC a

continuation, such that m and K@n[x :=m] are strongly normalising. Then, the term

K @ (let x⇐val(m) in n) is strongly normalising.

Proof. We show by induction on|K|+max(K @n)+max(m) that the reducts ofK @

(let x⇐val(m) in n) are all SN. The interesting reductions are as follows:

• T.β giving K @n[x :=m], which is SN by hypothesis.

• T.η whenN = val(x), giving K @val(m). But K @val(m) = K @n[x :=m], which

is again SN by hypothesis.
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• T.T.CC in the case whereK = K′ ◦ (y)p with x < fv(p); giving the reductK′@

(let x⇐val(m) in (let y⇐n in p)). We aim to apply the induction hypothesis

with K′ and (let y⇐n in p) for K andn. Now

K′@ (let y⇐n in p)[x :=m] = K′@ (let y⇐n[x :=m] in p)

= K @ (n[x :=m])

which is SN by hypothesis. Also

|K′|+max(K′@ (let y⇐n in p))+max(m) < |K|+max(K @n)+max(m)

as |K′| < |K| and (K′@ (let y⇐n in p)) = (K @n). Applying the induction hy-

pothesis gives thatK′@ (let x⇐val(m) in (let y⇐m in p)) is SN as required.

Other reductions are confined toK @n or m, and can be treated by the induction

hypothesis, decreasingmax(K @n) or max(m) respectively. �

We are now in a position to state and prove a lemma on reducibility forlet-terms.

Lemma 3.12. If m : T A is reducible and N: T B with n[x := p] reducible for all re-

ducible p: A, then(let x⇐m in n) is reducible.

Proof. Let K : T B( TC be a reducible continuation. We need to show thatK @

(let x⇐m in n) is SN. Now for anyp : A reducible,K @n[x := p] is SN by reducibility

of K andn[x := p]. But p is also SN, by Theorem 3.5(i), and so Lemma 3.11 shows

that K @ (let x⇐val(p) in n) is SN too. ThusK ◦ (x)n is reducible and applying to

reduciblem gives thatK @ (let x⇐m in n) is SN. �

We finally move towards the desired result via a stronger result on substitutions

into open terms.

Theorem 3.13. Let m be any term, with free variables x1 : A1, . . . , xk : Ak. If p1 :

A1, . . . , pk : Ak are reducible then m[x1 := p1, . . . , xk := pk] is reducible.

Proof. By induction on the structure of terms:

• x: x[~x := ~p] =
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– x, if x, xi for 1≤ i ≤ k, which is reducible by Theorem3.5(iv).

– pi , if x= xi for somei, which is reducible by hypothesis.

• app(m,n): By the induction hypothesism[~x:= ~p] andn[~x:= ~p] are reducible, and

by Lemma 3.6 so isapp(m,n)[~x := ~p].

• lam(x,m): By the induction hypothesism[~x := ~p, x := n] is reducible for all re-

duciblen, and by Lemma 3.7 so islam(x,m)[~x := ~p].

• proji(m): By the induction hypothesism[~x := ~p] is reducible, and by Lemma 3.8

so isproji(m)[~x := ~p].

• pair(m,n): By the induction hypothesism[~x:= ~p] andn[~x:= ~p] are reducible, and

by Lemma 3.9 so ispair(m,n)[~x := ~p].

• val(m): By the induction hypothesism[~x := ~p] is reducible, and by Lemma 3.10

so isval(m)[~x := ~p] = val(m[~x := ~p]).

• let x⇐m in n: By the induction hypothesism[~x := ~p] is reducible andn[~x :=

~p, x := l] is reducible for all reduciblel. Lemma 3.12 then gives that the term

(let x⇐m in n)[~x := ~p] = let x⇐m[~x := ~p] in n[~x := ~p] is reducible too.

�

Theorem 3.14.Each term m ofλml is reducible, and hence strongly normalising.

Proof. Apply Theorem 3.13 withpi = xi , where thexi are all reducible by Theo-

rem 3.5(iv). This gives us thatm is reducible, and by Theorem 3.5(i) also strongly

normalising. �

Remark Notice the difference between reducibility lemmas for functions and prod-

ucts versus those for computations. In the case of functions and products, the reducibil-

ity lemma for the elimination follows immediately from the definition of reducibility,

whereas the reducibility lemma for the introduction is non-trivial. Conversely in the

case of computations, the reducibility lemma for the introduction follows immediately

from the definition of reducibility, whereas the reducibility lemma for the elimination

is non-trivial.
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Adding η-expansion The strong normalisation proofs in this chapter are for calculi

in which theη-rule is oriented as a contraction. The standard extensional normalisation

by evaluation algorithms give long normal forms, which arise fromη-expansion. Stan-

dard techniques can be used to treatη-expansion orthogonally toβ- and CC-reduction

(for example, see [AJ04]).

3.4 Variations on reducibility with continuations

In this section we apply>>-lifting to some extensions ofλml: with sum types, with ex-

ceptions; and in the computational lambda-calculusλc. Both sums and exceptions have

existing normalisation results in the standard lambda-calculus (for example, [dG02]

and [Lil99, Theorem 6.1]); we know of no prior proofs for them inλml. More impor-

tant, though, is to see how>>-lifting adapts to these features. The key step is to extend

our formalised continuations with new kinds of observation. Once this is done, we can

use these to lift predicates to computation types. The case of reducibility, and hence a

proof of strong normalisation, then goes through as usual.

3.4.1 Reducibility for Sums

Prawitz showed how to extend the reducibility method2 to sums [Pra71]. He worked

in the context of proof theory, but the Curry-Howard isomorphism transfers this across

to the simply-typedλ-calculus with sums. The method is quite intricate: for a termm

of sum type to be reducible, not only must the immediate subterms ofm be reducible,

but also a certain class of subterms ofm′ must be reducible wheneverm reduces tom′.

This significantly complicates a general proof with sums.

In the computational metalanguage, we have an opportunity to simplify things by

restricting attention to sums with acase construct in which each branch must be a

computation. In fact, this is just thecase construct of MIL. The reductions for sums

are:

2Prawitz’sstrong validitycorresponds to Girard’s notion of reducibility.



94 Chapter 3. Normalisation for the computational metalanguage

(+.βi) case inji(m) of x1⇒n1

| x2⇒n2

−→ ni [xi :=m]

(+.η) case m of x1⇒ inj1(x1)
| x2⇒ inj2(x2)

−→ m

(+.CC) let y⇐

(
case l

of x1⇒m1

| x2⇒m2

)
in n −→

case l of x1⇒ let y⇐m1 in n
| x2⇒ let y⇐m2 in n

if x1, x2 < fv(n)

To record possible uses of sum terms, we introducesum continuations:

• A sum abstraction((x1)n1, (x2)n2) of typeA+B( TC is a pair of term abstrac-

tions (x1)n1 of typeA( TC and (x2)n2 of typeB( TC.

• A sum continuation Sis a sum abstraction inside a continuation.

S ::= K ◦ ((x1)n1, (x2)n2)

• Sum continuations are typed as follows:

((x1)n1, (x2)n2) : A+B( TC K : TC( T D
K ◦ ((x1)n1, (x2)n2) : A+B( T D

• We apply a sum continuation of typeA+B( TC to a sum termmof typeA+B

as follows:

(K ◦ ((x1)n1, (x2)n2)) @m= K @ (case m of (x1⇒n1 | x2⇒ n2))

• We extend reduction on continuations to reduction on sum continuations:

S→ S′
def
⇐⇒ ∀m . S@m→ S′@m ⇐⇒ S@x→ S′@x

A sum continuationS is strongly normalisingif all reduction sequences starting

from S are finite.
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Lemma 3.15. If S→ S′, for continuations S and S′, then|S′| ≤ |S|.

As with computations, we extend reducibility to sums via a leap-frog over re-

ducibility for their continuations:

• Sum continuationS : A+B( TC is reducible if:

– S@ (inj1(m)) is strongly normalising for all reduciblem : A and

– S@ (inj2(n)) is strongly normalising for all reduciblen : B.

• Sum termm: A+B is reducible ifS@m is strongly normalising for all reducible

sum continuationsS of type (A+B)( TC.

This reducibility is sufficient to prove strong normalisation forλml with sums in the

manner of§3.3.3. First we need to extend the proof of Theorem 3.5 to sum types:

Proof.

(i) Saym∈ redA+B. Supposen1:A,n2:B are reducible. By the induction hypothesis

(i) n1,n2 are SN. By induction onmax(n1):

case inj1(n1) of x1⇒val(inj1(x1))

| x2⇒val(inj2(x2))

is SN and by induction onmax(n2):

case inj2(n2) of x1⇒val(inj1(x1))

| x2⇒val(inj2(x2))

is SN. ThusId ◦ ((x1)val(inj1(x1)), (x2)val(inj1(x2))) is reducible and:

case m of x1⇒val(inj1(x1))

| x2⇒val(inj2(x2))

and hencem is SN as required.

(ii) Supposem∈ redA+B andm→m′. For all reducibleS : A+B( T B, application

S@m is SN, andS@m→S@m′, soS@m′ is SN too and henceS′ is reducible.
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(iii) Take m : A1+ A2 inactive withm′ ∈ redA1+A2 wheneverm→ m′. We have to

show thatS@m is SN for each reducibleS : A1+A2( T B. First, we have that

S@inji(xi) is SN asxi ∈ redAi by the induction hypothesis (iv). HenceS itself is

SN, and we can work by induction onmax(S). ApplicationS @m may reduce

as follows:

– S@m′, wherem→m′, which is SN by reducibility ofS andm′.

– S′@m, whereS→ K′. Now given anyl i ∈ redAi , S@inji(l i)→S′@inji(l i)

which is SN by reducibility ofS. ThusS′ is reducible withmax(S′) <

max(S), and by the induction hypothesisS′@m is SN.

There are no other possibilities asm is inactive. HenceS @m is SN, andm is

reducible.

�

Now we just need to prove appropriate reducibility lemmas for sums.

Lemma 3.16. If mi : Ai is reducible, then so isinji(mi).

Proof. Straightforward from the definition of reducibility for sum continuations.�

Just like for computations, the difficult part is the elimination term constructor,

namelycase. This time we need a suitably-crafted closure property for strong norm-

alisation under+.βi-expansion.

Lemma 3.17. Let x1, x2 : A1,A2 be variables, m: Ai ,n1,n2 : T B be terms and K:

T B( TC a continuation, such that m and K@ni [xi :=m] are strongly normalising.

Then K@ (case inji(m) of (x1⇒n1 | x2⇒ n2)) is strongly normalising.

The proof is similar to that of Lemma 3.11, except that one proves by induction on

|K|+max(K @n1)+max(K @n2)+max(m) that the reducts of

K @ (case inji(m) of (x1⇒n1 | x2⇒ n2))

are all SN.

We can then state and prove the reducibility lemma forcase-terms.
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Lemma 3.18. If m : A1+A2 is reducible and n1,n2 : T B with ni [xi := l] reducible for

all reducible l: Ai , for i = {1,2} thencase m of (x1⇒n1 | x2⇒ n2) is reducible.

Proof. Let K : T B( TC be a reducible continuation. We need to show thatK @

(case m of (x1⇒n1 | x2⇒ n2)) is SN. Now for anyl i : Ai reducible,K @ni [xi := l i ]

is SN by reducibility ofK and ni [xi := l]. But l i is also SN, by Theorem 3.5(i),

and so Lemma 3.17 shows thatK @ (case inji(l i) of (x1⇒n1 | x2⇒ n2)) is SN too.

Thus K ◦ ((x1)n1, (x2)n2) is reducible and applying to reduciblem gives thatK @

(case m of (x1⇒n1 | x2⇒ n2)) is SN. �

The strong normalisation result now follows from a straightforward extension of

Theorem 3.13 with sums.

To apply this to a more generalcase construction, we can move toframe stacks:

nested collections of elimination contexts for any type constructor [Pit00]. Frame

stacks generalise continuations, and in§3.5 we use them to give a leap-frog defini-

tion of reducibility not just for computations, but also for sums, products and function

types. This in turn gives a proof of strong normalisation forλml with full sums, as well

as the simply-typed lambda-calculus with sums.

One special case of this brings us full circle:λml trivially embeds into the simply-

typedλ-calculus withunarysums.

val(m) 7→ inj(m) let x⇐m in n 7→ case m of (x⇒n)

As discussed in§2.2.4, the two languages are essentially the same, except thatλml

has tighter typing rules and admits fewer reductions. Frame stacks and>>-reducibility

then provide strong normalisation for both calculi.

3.4.2 Reducibility for Exceptions

Extending the computational metalanguage with the exceptional syntax of MIL (§2.3),

and directing the conversion rules we obtain the new reduction rules:
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(T.β) try x⇐val(v) in m unless H −→ m[x :=v]

(Texn.β) try x⇐ raise(E) in m unless H −→ H(E)

(T.η) try x⇐m in val(x) unless H −→ m

(T.T.CC) try y⇐ (try x⇐m in n unless H) in p unless H′ −→

try x⇐m in (try y⇐n in p unless H′) unless H;H′,

if x < fv(p) andx < fv(H′(E)) for anyE ∈ E

Recall thatlet is a special case oftry, with the empty handler〈〉:

let x⇐m in n= try x⇐m in n unless 〈〉

For>>-lifting in this calculus, we generalise continuations to cover the observable be-

haviour of exception raising, by associating a handler to every step of the continuation.

K ::= Id | K ◦ ((x)n,H)

(K ◦ ((x)n,H)) @m = K @ (try x⇐m in n unless H)

Computation types are extended to include exception annotations as in MIL. We now

say that continuationK : Tε(A)( Tε′(B) is reducible if:

• K @ (val(m)) is strongly normalising for all reduciblem : A, and in addition

• K @ (raise(E)) is strongly normalising for all exceptionsE ∈ ε

Building >>-reducibility on this is enough to give strong normalisation forλml with

exceptions, with a proof in the manner of§3.3.3.

The proof for exceptions is effectively a combination of the original proof for com-

putations, and that for sums. We concentrate on the key lemma. In fact it makes sense

to divide this into two parts: one forT.β-closure, and the other forTexn.β-closure. The

first part is very similar to Lemma 3.11.

Lemma 3.19.Let x: A be a variable, m: A,n0, . . . ,nk : Tε′(B) be terms and K: Tε′(B)(

Tε′′(C) a continuation. Let H= 〈(E1,n1), . . . (Ek,nk)〉 be a handler for exceptions

E1 . . .Ek. Suppose that m,n1, . . . ,nk and K@n0[x :=m] are strongly normalising. Then,

the term K@ (try x⇐val(m) in n0 unless H) is also strongly normalising.
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The only difference is the presence of the exception annotations and the handler.

The proof is a straightforward extension of that of Lemma 3.11. The second part is

slightly more involved, because the effect annotations become important.

Lemma 3.20.Let x: A be a variable, m: A,n0, . . . ,nk : Tε′(B) be terms and K: Tε′(B)(

Tε′′(C) a continuation. Let H= 〈(E1,n1), . . . (Ek,nk)〉 be a handler for exceptions

E1 . . .Ek. Letε be a finite set of exceptions. Suppose that:

• m,n0,n1, . . . ,nk are strongly normalising,

• for 1≤ i ≤ k we have that K@ni is strongly normalising, and

• for all exceptions E∈ (ε− {E1, . . .Ek}), we have that K@raise(E) is strongly

normalising.

Then, for all exceptions E∈ ε, the term K@ (try x⇐ raise(E) in n0 unless H) is also

strongly normalising.

Here the proof is by induction on|K|+max(m)+max(n0)+max(K @n1)+ · · ·+

max(K @nk)+
∑

E∈(ε−{E1,...Ek})(max(K @raise(E))). Note the restriction of the univer-

sal quantifier to a finite set of exceptions. This is not a problem, as the type system

only supports a finite number of exceptions for a given term.

The rest of the strong normalisation proof is straightforward. Note that strong

normalisation does not hold if, as in ML (and the full version of MIL), exceptions are

allowed to carry values [Lil99].

3.4.3 Reducibility for the computationalλ-calculus

Strong normalisation forλml implies strong normalisation for the subcalculusλml∗.

However, despite the close correspondence betweenλml∗ andλc [SW97], we do not

immediately get strong normalisation forλc. The reason is the existence of two addi-

tional reduction rules inλc:

let.1 app(p,m) −→ let x⇐ p in app(x,m) if x < fv(m)

let.2 app(v,q) −→ let y⇐q in app(v,y) if y < fv(v)
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wherep,q range over non-values, andv ranges over values. We can adapt our proof,

again using continuations in a leap-frog definition of reducibility:

Ground value v ∈ redO if v is strongly normalising

Function value v ∈ redA→B if, for all m∈ redA∪ red>>A , app(v,m) ∈ red>>B

Continuation K ∈ red>A if, for all v ∈ redA, K @v is strongly normalising

Non-value p ∈ red>>A if, for all K ∈ red>A, K @p is strongly normalising

The distinction between values and non-values is crucial. There is no explicit com-

putation type constructor inλc, but non-values are always computations. ThusredA

is reducible values of typeA, andred>>A is reducible non-values of typeA, playing

the role ofredT A. This>>-reducibility leads to a proof of strong normalisation forλc,

accounting for both additional reductions.

3.5 Reducibility with frame stacks

We can view continuations as a mechanism for absorbingT.T.CC-reductions. In the

key lemma, Lemma 3.11,T.T.CC-reduction does not change the main premises of the

hypothesis (mandK @n[x :=m] are strongly normalising), but simply reduces the size

of the continuation. Frame stacks provide a more general mechanism for absorbing

commuting conversions. We illustrate the use of frame stacks using an extension of

λml with sums in which instead of the MIL typing rules we use the more general typing

rules of Figure 2.3.
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Definition 3.21 (frame stacks).

(frames) F ::= app([ ] ,n) | proji([ ])

| let x⇐ [ ] in n

| case [ ] of (x1⇒n1 | x2⇒ n2)

(frame stacks) S ::= Id | S◦F

(stack length) |Id| =O

|S◦F| = |S|+1

(plugging) Id[m] =m

(S◦F)[m] = S[(F[m])]

Frames are just elimination contexts — which when plugged with a corresponding

introduction term result inβ-redexes. A frame stack is a collection of nested elimina-

tion contexts. Note that our notation has changed from the last section. Instead of term

abstractions we now have frames. Instead of continuation application we have frame

stack plugging. The change of notation highlights the syntactic aspects of the frame

stack approach.

The reduction rules appear in Figure 3.5. By considering a termmplugged into an

arbitrary frame stackS we are able to reason by induction. Performing a CC-reduction

on S always reduces the size ofS. In effect frame stacks allow us to capture the

essence ofβ-reduction whilst absorbing CC-reductions in the frame stack. The key

step in proving strong normalisation is to obtain strong normalisation closure prop-

erties with respect to eachβ-expansion over all possible frame stacks. The closure

properties capture the interactions betweenβ-reductions and CC-reductions. Once we

have proved these closure properties, it is relatively straightforward to prove that all

terms are reducible, and hence strongly normalising, using the usual logical relations

pattern.

Analogously to continuations we define reduction on frame stacks.

Definition 3.22 (frame stack reduction).

S→ S′
def
⇐⇒ ∀m.S[m]→ S′[m] ⇐⇒ S[x]→ S′[x]
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(→.β) app(lam(x,m),n) −→ m[x :=n]

(→.η) lam(x,app(m, x)) −→ m, if x < fv(m)

(×.β1) proj1(pair(m1,m2)) −→ m1

(×.β2) proj2(pair(m1,m2)) −→ m2

(+.β1) case inj1(m) of (x1⇒n1 | x2⇒ n2) −→ n1[x1 :=m]

(+.β2) case inj2(m) of (x1⇒n1 | x2⇒ n2) −→ n2[x2 :=m]

(+.η) case m of (x1⇒ inj1(x1) | x2⇒ inj2(x2)) −→ m

(+.·.CC) F[case m of (x1⇒n1 | x2⇒ n2)] −→ case m of x1⇒F[n1]
| x2⇒F[n2]

(T.β) let x⇐val(m) in n −→ n[x :=m]

(T.η) let x⇐m in val(x) −→ m

(T.T.CC) let y⇐ (let x⇐m in n) in p≡ let x⇐m in let y⇐n in p,

if x < fv(p)

Figure 3.5: Reductions for an extension ofλml with sums and products

where the right-hand equivalence follows from Proposition 3.1. A frame stackS is

strongly normalisingif all reduction sequences starting fromS are finite.

Lemma 3.23. If S→ S′, for frame stacks S,S′, then|S′| ≤ |S|.

The proof of this lemma is similar to that of Lemma 3.4.

Reducibility is defined on terms and stack frames.

Definition 3.24 (reducibility).

• Id is reducible.

• S◦app([ ] ,n) : (A→ B)(C is reducible if S and n are reducible.

• S◦proji([ ]) : (A×B)(C is reducible if S is reducible.

• S : T A( C is reducible if S[val(m)] is strongly normalising for all reducible

m : A.
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• S : (A+B)(C is reducible if S[inj1(m)] is strongly normalising for all reducible

m : A, and S[inj2(n)] is strongly normalising for all reducible n: B.

• m:A is reducible if S[m] is strongly normalising for all reducible S: A(C.

Lemma 3.25. If m : A is reducible then m is strongly normalising.

Proof. Follows immediately from reducibility ofId and the definition of reducibility

on terms. �

Lemma 3.26. x : A is reducible.

Proof. By induction onA.

O: The only frame stack with a hole of base type is the identity. Clearlyx is SN.

A→ B: SupposeS : (A→ B)(C is reducible. Then eitherS = Id, or S = S′ ◦n where

S′ : B(C andn : A are reducible. The first case is trivial. For the second case

we need to show thatS′ ◦n[x] =S′[app(x,n)] is SN. By the induction hypothesis

and the definition of reducibilityS′[x′] is SN, and thusS′ is SN. By Lemma 3.25

n is SN. Now, by inspection,app(x,n) cannot interact withS′. Hence by induc-

tion onmax(S′)+max(n), S′[app(x,n)] is SN.

A×B: SupposeS : (A× B)( C is reducible. Then eitherS = Id, S = S′ ◦ proj1([ ])

whereS′ : A( C, or S = S′ ◦ proj2([ ]) where S′ : B( C. The first case is

trivial. For the second case we need to show thatS′ ◦proj1([ ])[ x] = S′[proj1(x)]

is SN. By the induction hypothesis and the definition of reducibilityS′[x′] is SN,

and thusS′ is SN. Now, by inspection,proj1(x) cannot interact withS′. Hence

by induction onmax(S′), S′[proj1(x)] is SN. The third case is symmetric to the

second.

T A: By the induction hypothesisx′ : A is reducible. Thus given any reducibleS :

T A( T B, S[val(x′)] is SN. Hence by substitutivityS[x] is SN.

A+B: By the induction hypothesisx′ : A is reducible. Thus given any reducibleS :

(A+B)(C, S[inj1(x′)] is SN. Hence by substitutivityS[x] is SN.
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�

Lemma 3.27. If S : A(C is reducible then S is strongly normalising.

Proof. Immediate corollary of Lemma 3.26. �

Each type constructor has an associatedβ-rule. Eachβ-rule gives rise to an SN-

closure property, which we use in the corresponding part of the proof of our main

theorem. These closure properties generalise Lemma 3.11.

Lemma 3.28 (SN-closure).

→ If S[m[x :=n]] and n are strongly normalising then S[app(lam(x,m),n)] is

strongly normalising.

×.1 If S[m] and n are strongly normalising then S[proj1(pair(m,n))] is strongly nor-

malising.

×.2 If S[n] and m are strongly normalising then S[proj2(pair(m,n))] is strongly nor-

malising.

T If S[n[x :=m]] and m are strongly normalising then S[let x⇐val(m) in n] is

strongly normalising.

+.1 If S[n1[x1 :=m]] , S[n2] and m are strongly normalising then

S[case inj1(m) of (x1⇒n1 | x2⇒ n2)] is strongly normalising.

+.2 If S[n2[x2 :=m]] , S[n1] and m are strongly normalising then

S[case inj2(m) of (x1⇒n1 | x2⇒ n2)] is strongly normalising.

Proof.

→,×.1,×.2: By induction onmax(S)+max(m)+max(n).

T: By induction on|S|+max(S[n[x :=m]]) +max(m).

+.1: By induction on|S|+max(S[n1[x1 :=m]]) +max(S[n2]) +max(m).

+.2: By induction on|S|+max(S[n2[x2 :=m]]) +max(S[n1]) +max(m).
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�

Now we can obtain similar reducibility-closure properties for each type constructor.

Lemma 3.29 (reducibility-closure).

→ If m[x :=n] is reducible for all reducible n, thenlam(x,m) is reducible.

× If m,n are reducible, thenpair(m,n) is reducible.

T If m is reducible, and n[x:= p] is reducible for all reducible p, thenlet x⇐m in n

is reducible.

+ If m is reducible, n1[x1 := l] is reducible for all reducible l, and n2[x2 := p] is

reducible for all reducible p, thencase m of (x1⇒n1 | x2⇒ n2) is reducible.

Proof. Each property follows from the corresponding part of Lemma 3.28 using Lem-

mas 3.25-3.27. �

Theorem 3.30.Let m be any term. Suppose x1 : A1, . . . , xk : Ak includes all the free

variables of m. If p1 : A1, . . . , pk : An are reducible then m[x1 := p1, . . . , xk := pk] is

reducible.

Proof. By induction on the structure of terms using Lemma 3.29. �

Theorem 3.31 (strong normalisation).All terms are strongly normalising.

Proof. Let m be a term with free variablesx1, . . . , xk. By Lemma 3.26,x1, . . . , xk are

reducible. Hence, by Theorem 3.30,m is strongly normalising. �

3.6 Related Work

Existing proofs of strong normalisation forλml are based on translations into other

calculi, which are already known to be strongly normalising. Benton et al., working

from a logical perspective, translateλml into aλ-calculus with sums, and then invoke

the result of Prawitz [BBdP98]. In a report onmonadic type systems— a generalisation

of pure type systems and the computational metalanguage — Barthe et al. [BHT97]
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prove strong normalisation by translation into aλ-calculus with an extra reductionβ′.

They then usefiniteness of developments[Bar84] to show that this target calculus is

strongly normalising. Hatcliff and Danvy [HD94] state thatT-reductions are strongly

normalising, although they do not indicate a specific proof method. These approaches

do not use reducibility, although Benton et al. mention a draft adaptation of Prawitz’s

reducibility for sums to handle computation types.

In [Pit00], Pitts employs>>-closureto define an operational form of relational para-

metricity for a polymorphic PCF. Here the computational effect is nontermination, and

(−)>> leads to an operational analogue of the semantic concept of “admissible” rela-

tions. Abadi in [Aba00] investigates further the connection between>>-closure and

admissibility.

The notion of>>-closed is different from our lifting: it expresses a property of a

set of terms at a single type, whereas we lift a predicateφ on terms of typeA to φ>>

on terms of a different typeT A. However, the concept is clearly related, and the clo-

sure operation makes some appearance in the literature on reducibility, in connection

with saturationandsaturatedsets of terms. Loosely, saturation is the property one

wishes candidates for reducibility to satisfy; and this can sometimes be expressed as

>>-closure. Examples include Girard’s reducibility candidates for linear logic [Gir87,

pp. 72–73] and Parigot’s work onλµ and classical natural deduction [Par97, pp. 1469–

1471]. For Girard the relevant continuations are the linear dualsA⊥, while for Parigot

they are applicative contexts, lists of arguments in normal formN<ω. We conjecture

that in their style our>>-lifting could be presented as an insertion{ [v] | v : redA } fol-

lowed by saturation (although we then lose the notion of reducible continuations).

Melli ès and Vouillon usebiorthogonalityin their work on ideal models for types;

this is a closure operation based on an orthogonality relation matching our

K > m [VM04a, VM04b]. They make a case for the importance of orthogonality,

highlighting the connection to reducibility. They also deconstruct contexts into frame

stacks for finer analysis: elsewhere, Vouillon notes the correspondence between differ-

ent forms of continuation and possible observations [Vou04].
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Normalisation by evaluation

In this chapter we describe techniques for working with normalisation by evalua-

tion. We have already seen, in§2.6, how a parameterised semantics allows us to

neatly encapsulate different variants of a semantics. It is natural to implement pa-

rameterised semantics in SML using the module system [DF02], or in Haskell using

type classes [AU04].

We use a parameterised semantics as the basis for investigating a number of vari-

ants of normalisation by evaluation for the computational metalanguage. In doing so

we highlight some general techniques which are useful for applying normalisation by

evaluation.

The first two sections of this chapter focus on the the computational aspect of the

computational metalanguage. In§4.1 we begin with a standard monadic semantics.

The monadic parameters are instantiated with appropriateresidualising monadswhich

contain enough syntactic information to retrieve a normal form: a continuation monad

and a state-based accumulation monad. These monads are used to encapsulate com-

putation bindings. In§4.2 we characterise residualising monads, using the proof tech-

nique of§2.7.2 to derive equations which residualising monads must satisfy.

In §4.3 we observe thatpure residualising monads can actually be viewed as arte-

facts of normalisation by evaluation, and it is in fact sufficient to use the internal monad

of a sufficiently expressive metalanguage. Specifically, the metalanguage should either

include support for delimited continuations (corresponding to the continuation monad)

or state (corresponding to the accumulation monad). The side-effecting operations ap-

107



108 Chapter 4. Normalisation by evaluation

pear in the definition of the reification and reflection functions but not in the semantics

itself. The ability to move syntactic information, and also computation, back and forth

between the semantics and the reification function, proves to be a powerful tool in the

application of normalisation by evaluation.

The rest of this chapter explores other aspects of normalisation by evaluation. In

§4.4 we consider how to restrict normalisation by evaluation in order to preventη-

expansion, and how to performη-contraction instead. In§4.5 we discuss sums. The

usual TDPE approach of greedily eliminating sums as soon as they are introduced

is taken, and an implementation using delimited continuations is given. In§4.6 we

present a new algorithm which uses binding trees, a zipper structure, and a single

reference cell. In§4.7 we outline how to handle polymorphism and recursive types. In

§4.8 we show how types can be embedded in the semantics. This allows the type index

on the reify function to be dispensed with. Finally, in§4.9 we discuss the practicalities

of implementing normalisation by evaluation in ML.

4.1 The computational metalanguage using monads

We begin with a straightforward parameterised semantics for the computational meta-

language (with parameters:lam,app,val, let):

~ x�ρ = ρ(x)

~ lam(xA,e)�ρ = lam(λsA.~e�ρ[x7→s])

~app(e1,e2)�ρ = app(~e1�ρ,~e2�ρ)

~val(e)�ρ = val(~e�ρ)

~ let xA⇐e1 in e2�ρ = let(~e1�ρ,λs
A.~e2�ρ[x7→s])

We restrict ourselves to a monadic residualising semantics:

~O� = ΛmlO
~A→ B� = ~A�→ ~B�

~T A� = Comp(~A�)

Compis a further parameter corresponding to the particular choice of monad we use.

We callComp, val andlet the monadic parameters.
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The monad laws The residualising semantics must satisfy the monad laws:

let(val(v), f ) = f v (4.1)

let(s,λv.val(v)) = s (4.2)

let(let(s,λv.s′),λv′.s′′) = let(s,λv.let(s′,λv′.s′′)) (4.3)

The monad laws are just the semantic counterparts of the monadic conversion rules,

or in other words the monadic conversion rules expressed in higher order abstract syn-

tax. These laws ensure that the residualising semantics is sound.

Remark The parametersComp, val, andlet correspond to the standard categorical

notion of a Kleisli triple (T,η, ∗) where:

Comp= T

val(v) = η(v)

let(s, f ) = f ∗ s

Normal forms for the computational metalanguage are given by:

Normal forms m ::= n0 | lam(xA,m) | val(m) | let yA⇐nT A in m

Neutral terms nA ::= xA | app(nB→A,m)

The non-computational part of the algorithm is standard:

lam( f ) = f

app( f , s) = f s

↓O e= e

↓A→B f = lam(xA,↓ ( f (↑A x))), x fresh

↓T A c= . . .

↑O e= e

↑A→B e= λs. ↑B (app(e, (↓A s)))

↑T A e= . . .
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The monad needs to contain enough syntactic information in order to be able to

store the bindings associated with thelet construct. TheT.T.CC rule allows us to view

the bindings associated with a computation as a list. In essence, the monad should

encapsulate a stack of bindings.

One option is to use the continuation monad with answer domain the set of normal

form terms:

Comp(~A�) = (~A�→ Λml-nf)→ Λml-nf

val(s) = λκ.κ s

let(t, f ) = λκ.t(λs. f s κ)

↓T A t = t(λs.val(↓A s))

↑T A e= λκ.let xA⇐e in κ(↑A x), x fresh

The semantics is a standard continuation semantics. The reification function just passes

the identity continuation. The reflection function uses the continuation to gather to-

getherlet-bindings. The important aspect of this monad is that the answer domain is

syntactic. It is this property which allows the list of bindings to be represented.

Another alternative, with a more explicit representation for the stack of bindings,

is a state-based monad such as the accumulation monad overV ×Λml lists:

Comp(~A�) = 〈V ×Λml〉×~A�

val(s) = (〈〉, s)

let((bs, s), f ) = (bs++bs′, s′), where (bs′, s′) = f s

↓T A (〈〉, s) = val(↓A s)

↓T B ((xA,e) :: bs, s) = let xA⇐e in ↓T B (bs, s)

↑T A e= (〈xA,e〉,↑A x), x fresh
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Here a computation is a pair consisting of a list of computation bindings and a semantic

value. Lifting a value to a computation just gives a trivial computation with no bind-

ings, whereas sequencing uses the value of the first computation to generate another

computation, then concatenates the lists of bindings. Reifying a computation simply

wraps the reified value inside its bindings. Reflecting a computation term creates a new

binding. Another possibility is to accumulate bindings using higher order functions.

Remark It should be noted that there is not a singlecanonicalchoice of residualising

monad. Accumulation monads and continuation monads are both equally valid.

4.2 Characterising the residualising monad

The choice of continuation monad versus accumulation monad in the residualising

semantics raises the question of what constraints the residualising monad should sat-

isfy. Filinski [Fil01b] gives one possible answer in the setting of the computational

λ-calculus. We arrive at a slightly different answer motivated by the proof technique

of §2.7.2. We know from Chapter 3 that normal forms exist. Assuming soundness

of the residualising semantics, in order to prove correctness ofnorm all that remains

is to prove thatnorm(e) = e for all normal formse. Extending the inductive proof of

§2.7.2 to the computational metalanguage we have two new cases corresponding to the

computational syntax constructors:

norm(val(m)T A) = val(m) (4.4)

norm(let xA⇐nT A in m) = let xA⇐nT A in m (4.5)

These equations can be rewritten in terms of the monadic parameters. Expanding

the left-hand side of the first equation gives:

↓T A val(~m�↑) = val(m)

Using the induction hypothesis the right-hand side expands to:

↓T A val(~m�↑) = val(↓A ~m�↑)
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Moving to the second equation, and expanding the left-hand side:

↓T B let(~nT A�↑,λs.~m�↑[x7→s]) = let xA⇐nT A in m

By the reflection equation (2.9) this can be rewritten as:

↓T B let(↑T A n,λs.~m�↑[x7→s]) = let xA⇐nT A in m

Expanding the right-hand side using the induction hypothesis:

↓T B let(↑T A n,λs.~m�↑[x7→s]) = let xA⇐nT A in ↓T B ~m�↑

Hence it is a necessary and sufficient condition that the residualising monad sup-

ports extensions of the reification and reflection functions such that the following equa-

tions hold:

↓T A val(~m�↑) = val(↓A ~m�↑) (4.6)

↓T B let(↑T A n,λs.~m�↑[x7→s]) = let xA⇐nT A in ↓T B ~m�↑ (4.7)

These equations play a similar role to Filinski’sbindandcollect[Fil01b]. It is straight-

forward to verify that these equations are satisfied by the normalisation by evaluation

algorithms using either the continuation monad or the accumulation monad. We say

that a residualising monad isvalid if it satisfies (4.6) and (4.7).

Proposition 4.1. The continuation monad of§4.1 is valid.

Proof.
(4.6):

↓T A val(~m�↑) =↓
T A λκ.κ(~m�↑)

= (λκ.κ(~m�↑))(λs.val(↓A s))

= val(↓A ~m�↑)

(4.7):

↓T B let(↑T A n,λs.~m�↑[x7→s]) =↓
T B λκ. ↑T A n(λs.~m�↑[x7→s]κ)

=↓T B λκ.let xA⇐n in κ~m�↑

= let xA⇐n in (λs.val(↓A s))(val(~m�↑))

= let xA⇐nT A in ↓T B ~m�↑

�
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Proposition 4.2. The accumulation monad of§4.1 is valid.

Proof.
(4.6):

↓T A val(~m�↑) =↓
T A (〈〉,~m�↑)

= val(↓A ~m�↑)

(4.7):

↓T B let(↑T A n,λs.~m�↑[x7→s]) =↓
T B let((〈(xA,n)〉,↑A x),λs.~m�↑[x7→s])

=↓T B ((xA,n) :: bs′, s′), where (bs′, s′) = ~m�A
↑

x

= let xA⇐nT A in ↓T B ~m�↑

�

4.3 The computational metalanguage using side-effects

It is apparent, just by inspecting actual TDPE implementations [Dan98, DF02], that if

our metalanguage is ‘sufficiently expressive’ then we can in fact use its internal monad.

Extra expressive power is required in the form of side-effecting operations used in the

definition of↓. For instance, if the metalanguage supports state, then rather than using

an accumulation monad, it is possible to construct a global list of bindings.

4.3.1 State and delimited continuations

It is necessary to modify our notion of metalanguage. Up to this point it has been

reasonable to view the metalanguage as apure mathematical language. Apart from

name generation, and occasionally non-termination, our algorithms have not allowed

side-effects. We now wish to incorporate state and control effects in the metalanguage.

Given that our implementation language is going to be Standard ML extended with

first-class control, this is what we shall base our metalanguage on. Thus, we shall now

assume our metalanguage is call-by-value and supports state and first-class control.

State is handled in the metalanguage using reference cells. Following ML, refer-

ence cells can be:
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• created:ref(v) returns a fresh reference cell initialised with the valuev.

• assigned to:x := v assigns the valuev to the cellx.

• dereferenced: !x gives the contents of reference cellx.

State provides a side-effecting alternative to the accumulation monad. Similarly we

can construct a side-effecting alternative to the continuation monad —delimited con-

tinuations. Delimited continuations are manipulated using the shift and reset control

operators [DF90, DF92]. The reset operatorl·m delimits the start of a continuation.

We call the continuation up to the reset aninitial continuation. The shift operator

S takes aλ-abstraction as an argument, and delimits the end of a continuation. The

operationS(λκ.e) behaves as follows:

• First, the continuation delimited by the nearest enclosing reset (initial continua-

tion) and the shift is bound toκ.

• Second, the expressione (which may depend onκ) is evaluated.

• Third, the resulting value is passed to the initial continuation.

For example, consider:

100+l1+S(λκ.κ(2)+ κ(3))m = 107

The reset operator sets the initial continuation to 100+ [ ]. Inside the second argument

to the shift operator the variableκ is bound to 1+ [ ]. Thenκ(2)+κ(3)= (1+ [2])+ (1+

[3]) = 7 is passed to the initial continuation 100+ [7] = 107.

Here is another example:

100+lif (S(λκ.κ(true)+ κ(false))) then 1 else 2m = 103

The initial continuation is 100+ [ ]. The delimited continuationκ is then bound to

if [ ] then 1 else 2. Finally,κ(true)+ κ(false)= 1+2= 3 is passed to the initial contin-

uation to give 100+ [3] = 103.

In fact the argument to shift need not be aλ-abstraction, although it must be a

function. The argument can always beη-expanded to give aλ abstraction:Sm =

S(λκ.m κ).
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Formally, shift and reset are defined by their denotational semantics, which is given

by their CPS transforms [DF90, DF92]. We want to be able to use equational reason-

ing (in direct-style) on expressions involving shift and reset. We take advantage of

Kameyama and Hasegawa’s axiomatisation of delimited continuations [KH03]. The

axioms for shift and reset are as follows:

(βv) (λx.m)v=m[x :=v]

(ηv) λx.vx= v, if x is not free inv

(βΩ) (λx.P[x])m= P[m], if x is not free inP

(reset-value) lvm = v

(reset-lift) l(λx.m)lnmm = (λx.lmm)lnm

(S-elim) S(λκ.κ m) =m, if κ is not free inm

(reset-S) lP[Sm]m = lm(λx.lP[x]m)m, if x is not free inP

(S-reset) S(λκ.lmm) = S(λκ.m)

wherex ranges over variables (in the metalanguage),v ranges over values (in the meta-

language),m,n range over terms (in the metalanguage), andf ranges overpure evalu-

ation contexts(in the metalanguage).

Implicitly we are assuming the metalanguage is an extension of the call-by-value

λ-calculus. Values in the metalanguage are variables, constants andλ-abstractions.

Pure evaluation contexts are given by the grammar:

P ::= [ ] | P m| v P

To avoid confusion when considering metalanguage terms which contain object

language terms, in the sequel we restrictx,v,m,n to range only over object language

entities and not over metalanguage entities.

Call-by-value via thunks Filinski [Fil94] implements shift and reset as functions in

SML/NJ using call/cc and a single reference cell. Note thatl·m cannot be defined di-

rectly as a call-by-value function, as the operationlsm would then be ill-defined. The
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arguments must not be evaluated until the start of the delimited continuation associ-

ated with the reset has been registered. Filinski’s solution is to delay the evaluation of

the argument to reset by passing it as athunk— a function from unit to some other

type [HD97]. As we use ML as our implementation language, we take the same ap-

proach and define the call-by-value function<·> as follows:

<t> = lt()m

wheret is a thunk. We use<λ().s> in place oflsm. For instance, the last example

becomes:

100+<λ().if (S(λκ.κ(true)+ κ(false))) then 1 else 2> = 103

4.3.2 Normalisation by evaluation with side-effects

We assume that the metalanguage supports both delimited continuations and state.

This is not an unreasonable assumption for an implementation language. For instance,

SML/NJ supports state and call/cc, and delimited continuations are implementable in

terms of state and call/cc [Fil94].

Using the internal monad of the metalanguage (in other words the identity monad

with side-effects), the monadic parameters are:

Comp(~A�) = ◦~A�

val(s) = s

let(val(s), f ) = f s

Notice that this looks very much like the identity monad. Indeed, this definition

of the semantics does make sense in a pure metalanguage, and can be used to “run”

programs in such a setting. However, in order to use this definition for normalisation by

evaluation it is crucial that the metalanguage has side-effects. We use the◦(·) operator

to introduce the possibility of side-effects.

Reification and reflection are defined abstractly in terms of side-effecting parame-

tersbind andcollect:
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↓A:~A�→ Λml-nfA

↑A:Λml-neA→ ~A�

↓O e= e

↓A→B f = lam(xA,↓B ( f (↑A x))), x fresh

↓T A s= collect(val(↓A s))

↑O e= e

↑A→B e= λsA. ↑B (app(e, (↓A s)))

↑T A e= bindT A(e)

norm(eA) =↓A (~e�↑)

Informally, bind registers a ‘let-binding’ (using side-effects) andcollect extracts

all of the registered bindings (using side-effects). We have two concrete implemen-

tations ofbind andcollect in mind: one using delimited continuations, and the other

using state. Inspired by TDPE implementations and Filinski’s monadic reflection op-

erations [Fil96] we try the following definitions using delimited continuations:

collect(e) = <λ().e>

bindT A(e) = S(λκ.let xA⇐e in <λ().κ(↑A x)>), x fresh

This cannot work because shift may be called outside of any enclosing reset. For

instance, consider normalisinglam(xTO, x). This is interpreted as a function and then

reified at function type:

↓TO→TO f = lam(xTO,↓TO ( f (↑TO x))), x fresh

The argument is reflected at computation type and shift is invoked. The reset which

was supposed to delimit the start of the continuation captured by the shift operator

occurs inside the call to reify at typeTO. In order to solve the problem, the call tobind

(which contains the shift operator) needs to be delayed until reify is called. This can
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be achieved using thunks as we did with the reset operator. The monadic parameters

are changed as follows:

Comp(~A�) = 1→ ◦~A�

val(s) = λ().s

let(s, f ) = λ(). f (s())

This is reminiscent of F̈urhmann and Thielecke’s delaying transform [FT04, Section 6],

in that we delay the evaluation of the body of a function, rather than the argument

passed to it. Normalisation by evaluation is given by:

↓A:~A�→ Λml-nfA

↑A:Λml-neA→ ~A�

↓O e= e

↓A→B f = lam(xA,↓B ( f (↑A x))), x fresh

↓T A s= collect(λ().val(↓A s()))

↑O e= e

↑A→B e= λsA. ↑B (app(e, (↓A s)))

↑T A e= λ().bindT A(e)

norm(eA) =↓A (~e�↑)

Now we derive counterparts to (4.6) and (4.7) in terms ofbind andcollect. The

left-hand-side of Equation (4.6) can be rewritten as:

↓T A val(~m�↑) =↓
T A λ().~m�↑

= collect(λ().val(↓A ~m�↑))

= collect(λ().val(m))

and by the induction hypothesis, the right-hand-side can be rewritten as:

val(↓A ~m�↑) = val(m)
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Similarly the left-hand-side of Equation (4.7) can be rewritten as:

↓T B let(↑T A n,λs.~m�↑[x7→s]) = collect(λ().val(↓B ((λs.~m�↑[x7→s]) ((↑T A n) ())) ()))

= collect(λ().val(↓B ((λs.~m�↑[x7→s]) (bindT A(n))) ()))

Thusbind andcollectmust satisfy the following equations:

collect(λ().val(m)) = val(m) (4.8)

collect(λ().val(↓B ((λs.~m�↑[x7→s]) (bindT A(n)) ()))) = let xA⇐nT A in ↓T B ~m�↑
(4.9)

Remark As well as these equations being satisfied it is also necessary that the side-

effects are suitably constrained. For example, the overall behaviour of the program

should not leave any “dangling” side-effects. We shall not dwell on precisely what the

constraints on side-effects should be, but claim that our side-effects are well-behaved.

Any side-effects we introduce are always consumed and none of our side-effects are

externally visible (unlike I/O operations, for instance).

Thebind andcollectparameters can be instantiated (rather concisely) using delim-

ited continuations, or alternatively using global state.

Using delimited continuations to manage the bindings:

collect( f ) = < f>

bindT A(e) = S(λκ.let xA⇐e in <λ().κ(↑A x)>), x fresh

Using state we can implement the bindings directly as an updateable listbindings.

collect( f ) =
let bs0 = (!bindings)
bindings:= 〈〉
let e= f ()
let e′ = wrap(rev(!bindings),e)
bindings:= bs0

returne′

bindT A(e) =
bindings:= (xA,e) :: (!bindings)
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return↑A x, wherex is fresh

wrap(〈〉,e) = e
wrap((xA,m) :: bs,e) = let xA⇐m in wrap(bs,e)

• The auxiliary functionwrap(bs,e) outputs the bindingsbs and the terme, as a

nested sequence oflets.

• collect( f ) saves the bindings and resets them to be empty. Thenf () is invoked

and the result bound toe, which may have the side-effect of creating new bind-

ings. Any new bindings are wrapped arounde. (Recall from§2.1 thatrevsimply

reverses a list.) Before exiting, the bindings are restored to their initial value.

• bindT A(e) creates a new binding (xA,e).

Remark Because of the save/ restore pattern incollect, the initial value (before

running the algorithm) ofbindings is unimportant. In our implementations it is the

empty list.

We now outline how to verify that both the continuations-based and state-based

versions ofbind andcollectsatisfy (4.8) and (4.9).

Continuations We make use of Kameyama and Hasegawa’s axiomatisation of shift

and reset as described in§4.3.1. Recall that values in the metalanguage (§4.3.1) are

given by variables, constants and lambda abstractions. In particular, observe that object

language terms can be regarded as constants. Similarly object language contexts can

be regarded as lambda abstractions. For instance:

• app(x,y) is an object language term, and a metalanguage constant.

• val([ ]) is an object language context, and a metalanguage lambda abstraction:

λs.val(s).

This observation enables us to apply Kameyama and Hasegawa’s axioms to meta-

language terms which contain object language terms (and contexts).
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(4.8):

collect(λ().val(m))

= <λ().val(m)>

= val(m)

(reset-value)

(4.9):

collect(λ().val(↓B ((λs.~m�↑[x7→s]) (bindT A(n)) ())))

= <λ().val(↓B ((λs.~m�↑[x7→s]) (bindT A(n)) ()))>

= <λ().val(↓B ((λs.~m�↑[x7→s]) (S(λκ.let xA⇐n in k(↑A x))) ()))>

= <λ().(λκ.let xA⇐n in κ(↑A x)) (λr.<λ().val(↓B ((λs.~m�↑[x7→s]) r ()))>)>

(reset-S, using thatval(↓B ((λs.~m�↑[x7→s]) [ ] ()))

is a pure evaluation context of the formv (v ((v [ ]) m)))

= <λ().let xA⇐n in (λr.<λ().val(↓B ((λs.~m�↑[x7→s]) r ())>) (↑A x))>

= <λ().let xA⇐n in <λ().val(↓B ((λs.~m�↑[x7→s]) (↑A x) ()))>>

(βv, using that↑A x is always a value)

= <λ().let xA⇐n in <λ().val(↓B (~m�↑ ()))>>

(βv, again using that↑A x is always a value)

= <λ().let xA⇐n in ↓T B ~m�↑>

Unfortunately, we are left with the outer enclosing reset. We claim that, although

it uses side-effects internally, the functionnormhas no externally visible side-effects

(including non-termination). We leave the formalisation and proof of this claim as

future work. Assuming our claim holds, then the contents of the reset evaluates to a

value; hence by (reset-value) the reset can be removed and (4.9) follows.

Global state Here, the equational rules are more complex. We omit the details,

because they are somewhat involved, but in principle this could be formalised.

(4.8):

collect(λ().val(m))
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=

let bs0 = (!bs)
bs:= 〈〉
let e= val(m)
let e′ = wrap(rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
let e= val(m)
let e′ = wrap(rev(〈〉,e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
let e= val(m)
let e′ = e
bs:= bs0

returne′

=

let e= val(m)
let e′ = e
returne′

=

val(m)

(4.9):

collect(λ().val(↓B ((λs.~m�↑[x7→s]) (bindT A(n)) ())))
=

let bs0 = (!bs)
bs:= 〈〉
let e= val(↓B ((λs.~m�↑[x7→s]) (bindT A(n)) ()))
let e′ = wrap(rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
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bs:= 〈〉
let s= bindT A(n)
let e= val(↓B (~m�↑[x7→s] ()))
let e′ = wrap(rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
bs:= (xA,n) :: (!bs)
let s=↑A x
let e= val(↓B (~m�↑[x7→s] ()))
let e′ = wrap(rev((!bs)),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈(xA,n)〉
let e= val(↓B (~m�↑ ()))
let e′ = wrap(rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
let e= val(↓B (~m�↑ ()))
let e′ = wrap((xA,n) :: rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
let e= val(↓B (~m�↑ ()))
let e′ = let xA⇐n in wrap(rev(!bs),e)
bs:= bs0

returne′

=

let bs0 = (!bs)
bs:= 〈〉
let e= val(↓B (~m�↑ ()))
let e′ = wrap(rev(!bs),e)
bs:= bs0
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returnlet xA⇐n in e′

=

let xA⇐n in collect(λ().val(↓B (~m�↑ ())))
=

let xA⇐n in ↓T B ~m�↑

It is interesting to note how much longer the derivations are here (even without all

the details), than in the case of delimited continuations or in the case of monads. This

highlights the gap between reasoning about functional programs and reasoning about

imperative programs.

Relation to monadic reflection The algorithm with delimited continuations is di-

rectly justified by Filinski’s monadic reflection operations. The idea is that monadic

values can bereflected(µ) as side-effecting computations, and conversely (delayed)

side-effecting computations can bereified ([·]) as monadic values. In particular for the

continuation monad, these operations are defined as:

µ(c) = S(c)

[t] = λκ.<λ().κ(t())>

We have essentially usedµ to reflect a computation (in↑T A), and then used[·]

to reify the computation (in↓T A). µ introduces side-effects and[·] consumes them.

It is sound to use this technique to transform a pure program using monads into a

side-effecting program providing that whenever side-effects are introduced they are

also consumed. Using a thunk to encapsulate the computation, allows us to force

the evaluation of the computation once we know that the side-effects are going to be

consumed.

Note that the thunks are necessary even if the side-effect is not delimited continua-

tions. For instance, consider the termlam(xT A,c1), wherec is a constant. Calling reify

at typeT A→ 1 calls reflect at typeT A. Now, this is where the side-effect must register

a binding. But there is no call to collect, so this side-effect cannot be consumed. It is

unsound to leave side-effects dangling like this. If, on the other hand, the computation

had been delayed, then it would never be evaluated (as this could happen only if collect

were called).
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Turning things on their head, we can view the use of monadic operations in the

definition of the semantics as a technique for transferring (side-effecting) functionality

from ↓ into the residualising semantics1. It is not particularly surprising that side-

effects and suitable (pure) monads are interchangeable: Moggi’s original motivation

for using monads was to model computational effects. What is remarkable is that if we

use side-effects then they need only be introduced in the definition of↓.

Our monadic normalisation by evaluation algorithms for the computational meta-

language are similar to Filinski’s normalisation by evaluation algorithms for the comp-

utationalλ-calculus [Fil01b]. The shift and reset operators have long been used to

implement partial evaluation [LD94]. Sumii and Kobayashi showed how to use state

instead [SK01]. Danvy [Dan98] presents TDPE using delimited continuations, then us-

ing state. These algorithms are similar to our effect-based normalisation by evaluation

algorithms for the computational metalanguage.

4.3.3 Restriction toλml∗

If we restrict ourselves toλml∗, then the typing restriction ensures that each compu-

tation will be used, and by a judicious repositioning of thecollect operation we can

remove the need for computations to be delayed. The monadic parameters then be-

come:

Comp(~A�) = ◦~A�

val(s) = s

let(val(s), f ) = f s

and the normalisation by evaluation algorithm becomes:

1This pattern of transferring functionality between↓ and the residualising semantics works both
ways, and is a useful tool in the application of normalisation by evaluation.
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↓A:~A�→ Λml-nfA

↑A:Λml-neA→ ~A�

↓O e= e

↓A→B f = lam(xA,collect(λ(). ↓B ( f (↑A x)))), x fresh

↓T A s= val(↓A s())

↑O e= e

↑A→B e= λsA. ↑B (app(e, (↓A s)))

↑T A e= bindT A(e)

norm(eA) = collect(λ(). ↓A (~e�↑))

The only place a computation can be introduced is through a top-level function

application or when applying the function inside↓A→B. In both cases the side-effects

are consumed bycollect.

4.4 Alternatives toη-expansion

Reduction calculi which includeη-expansions but notη-reductions have a number of

desirable properties. In particular they are usually confluent, whilst corresponding

calculi with someη-contractions in place of expansion are not. For instance, consider

Λ×1 with the reduction rules:

(→.β) app(lam(x,m),n) −→ m[x :=n]

(→.η) lam(x,app(m, x)) −→ m, if x < fv(m)

(×.βi) proji(pair(m1,m2)) −→ mi

(×.η) pair(proj1(m),proj2(m)) −→ m

(1.η) m −→ ∗

Now:
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lam(x,app( f A→1, x)) −→ lam(x,∗)

which is irreducible, and hence normal, but:

lam(x,app( f A→1, x)) −→ f

which is also irreducible, and hence normal. Thus this calculus is not confluent2.

Recall from§2.2.3 that1.η is an expansion. It might seem natural to have a calculus

with onlyη-contractions. But this does not appear to be possible in the case of1. If→.η

and×.η are read as expansions instead of reductions then this does lead to a confluent

calculus.

Directingη-rules asη-expansions generally gives rise to simple syntactic charac-

terisations of normal forms. In turn, this gives rise to rather natural normalisation by

evaluation algorithms. In contrast, directingη-rules asη-contractions, leads to some-

what unnatural side-conditions on the structural rules for normal forms. In turn these

manifest themselves as more complicated normalisation by evaluation algorithms. To

illustrate the difference in normal forms consider normal forms for simply-typedλ-

calculus. Recall from§2.4.3 that long normal forms (which arise fromη-expansions)

are given by:

Normal forms m ::= nO | lam(xA,m)

Neutral terms nA ::= xA | app(nB→A,m)

Normal forms for the calculus with noη-rules are the same except a neutral term of

any type (not justO) is also a normal form:

Normal forms m ::= nA | lam(xA,m)

Neutral terms nA ::= xA | app(nB→A,m)

Normal forms for the calculus withη-contraction in place ofη-expansion are not so

easily characterised. They are the same as for the calculus withoutη-rules, but with

2Curien and Di Cosmo [CD91] show how to make this calculus confluent by adding a family of
rewrite rules arising from type-isomorphisms involving1.
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a side-condition on the body of lambda abstractions — namely subterms of the form

lam(xA,app(n, x)) such thatx < fv(n) are not admitted.

Despite the advantages ofη-expansion, there are also disadvantages. The obvi-

ous disadvantage is the blow-up in the size of normal forms — the bigger the types,

the bigger the normal form. This can be particularly problematic for sums, as it can

lead to an exponential increase in the size of terms3. Recursive types are even more

problematic.η-expansion does not terminate for recursive types (see§4.5).

One option is to performη-contraction instead. An easier alternative is to suppress

η-expansion, and not perform anyη-contraction. This has the advantage of simplicity

and reducing blow-up in the size of terms, but the disadvantage of not identifying as

many terms as in the presence ofη-rules. For more complicated calculi (involving

sums, for instance), it is sometimes necessary to applyη-rules in both directions in

order to obtain canonical normal forms.

In Chapter 2 we have already seen examples of normalisation by evaluation which

do not performη-expansion. We illustrate how such an algorithm can be derived from

the standard normalisation by evaluation algorithm for simply-typedλ-calculus using

simple program transformations. We then show how through further program transfor-

mation it is possible to incorporateη-contractions.

Terminology We refer to normalisation by evaluation algorithms which perform

normalisation with respect to all conversion rules (β, η and CC) asextensionalor η-

NBE algorithms. We refer to normalisation by evaluation algorithms which perform

normalisation with respect to justβ- and CC-rules asintensionalor β-NBE or βCC-

NBEalgorithms.

4.4.1 Suppressingη-expansion

We begin with the normalisation by evaluation algorithm of§2.5.3 using the parame-

terised semantics of Figure 2.11. The first step is todefunctionalise[Rey98, DN01] the

reflection function. Defunctionalisation is a program transformation which converts

3In fact sums are problematic for other reasons. Even withη-expansion and the usual reduction rules,
we do not obtain a confluent reduction calculus.
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~O� = Λ→O
~A→ B� = (~A�→ ~B�)+Λ→A→B

app( f , s) = f s

app(e, s) = app(e,↓ s)

↓A:~A�→ Λ→-nfA

↑A:Λ→-neA→ ~A�

↓O e= e

↓A→B f = lam(xA,↓B (app( f ,↑A x))), xA fresh

↑O e= eO

↑A→B e= eA→B

norm(eA) =↓A (~e�↑)

Figure 4.1: NBE forλ→ with defunctionalised reflection

higher order programs into first-order programs. Typically one defunctionalises the

whole program. Banerjee et al. [BHR01] give a correctness proof for whole-program

defunctionalisation. In our case we only defunctionalise theλ-abstraction introduced

by the reflection function at function type:

↑A→B e= λs. ↑B (app(e, (↓A s)))

The free (meta)variables in thisλ-abstraction aree,A,B. Thus, this abstraction

can be encoded by the termeA→B. Wherever this function is applied, in the original

program, the application is replaced, in the transformed program, by the body of the

abstraction with appropriate values substituted in for the free and bound variables:
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~O� = Λ→O
~A→ B� = (~A�→ ~B�)+Λ→A→B

app( f , s) = f s

app(e, s) = app(e,↓ s)

↓A:~A�→ Λ→-nfA

↑A:Λ→-neA→ ~A�

↓O e= e

↓A→B f = lam(xA,↓B ( f xA)), xA fresh

↓A→B e= lam(xA,↓B (app(e,↓A xA))), xA fresh

↑O e= eO

↑A→B e= eA→B

norm(eA) =↓A (~e�↑)

Figure 4.2: NBE forλ→ with explicit η-expansion

↑B (app(e, (↓A s)))

The definition of~A→ B� is modified to contain terms of typeA→ B (arising

from calling the reflect function at typeA→ B) in addition to functions from~A� to

~B�. Correspondingly theappparameter is extended to handle application of terms as

well as functions. The algorithm appears in Figure 4.1. We distinguish between terms

and functions in the semantics by lettinge range over terms andf over functions.

Defunctionalising reflect has the effect of delaying the reflection operation until

the resulting value is used. Inlining reflection and application gives the algorithm of

Figure 4.2. It now becomes apparent exactly whereη-expansion takes place. Reifying
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~Λu� � Λu-ne+ (~Λu�→ ~Λu�)

app( f , s) = f s

app(e, s) = app(e,↓ s)

↓:~Λu�→ Λu-nf

↑:Λu-ne→ ~Λu�

↓ e= e

↓ f = lam(x,↓ ( f x)), x fresh

↑ e= e

norm(e) =↓ (~e�↑)

Figure 4.3: The standardβ-NBE algorithm for untypedλ-calculus

a term at function typeη-expands it.

Note that the semantics after defunctionalisation is no longer sound with respect

to βη-conversion (extensional), but is sound with respect to justβ-conversion (inten-

sional). We can reintroduce extensionality by defining the following equation on se-

mantic objects:

eA =↑A e (4.10)

where↑ is defined as in the original algorithm:

↑A:Λ→-neA→ ~A�

↑O e= e

↑A→B e= λs. ↑B (app(e, (↓A s)))

Alternatively theη-expansion clauses can be stripped out of the reification function:
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↓O e= e

↓A→B f = lam(xA,↓B ( f x)), x fresh

norm(eA) =↓A (~e�↑)

This gives aβ-NBE algorithm for simply-typedλ-calculus. Observe that the type

parameters are redundant and we can coalesce the semantics into a single untyped

domainS:

S ' Λ→+ (S→ S)

Then by simply erasing the type annotations we obtain the usualβ-NBE algorithm for

untypedλ-calculus. This algorithm is part of normalisation by evaluation folklore but

has only recently been studied formally. Aehlig and Joachimski [AJ04] use rewriting

theory. Filinski and Rohde [FR04] give a domain theoretic account. The algorithm

appears in Figure 4.3.

The transformation into the form of Figure 4.2 can easily be extended to other type

constructors. The general method is:

• Extend the semantics of each type to include terms of that type.

• Modify each elimination parameter to handle syntax.

• Define reflection as the identity.

• Introduce anη-expansion clause for each type constructor in the reification func-

tion.

An intensional NBE algorithm is then obtained by dropping all of theη-expansion

clauses.

4.4.2 Performingη-contraction

One way of modifying a normalisation by evaluation algorithm to performη-

contraction is simply to check whenever anη-redex is created in the output and re-

duce it. The only redexes theseη-contractions can create are moreη-redexes. There
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~Λu� � (Λu+ (V→ Λu))× (~Λu�→ ~Λu�)

lam( f ) = (λx.lam(x,↓ ( f (↑ x))), f )

app((·, f ), s) = f s

↓ (e, f ) = e

↓ (g, f ) = g x, x fresh

↑ e= (e,λv. ↑ app(e,v))

norm(e) =↓ (~e�↑)

Figure 4.4: Gluedβ-NBE for untypedλ-calculus

are two problems with this approach. The first is thatη-contraction takes place in↓

and outside of the semantics, and hence the semantics is not sound with respect toη-

contraction. From a practical perspective this is not a problem, but one might hope that

it would be possible to ‘move theη-contraction back into the semantics’. The second

problem is that the naı̈ve way of detecting→.η-redexes is potentially rather inefficient.

It involves traversing the entire body of the relevant lambda in order to establish that

the bound variable only occurs once.

We solve the first problem by moving to a semantics in which every semantic com-

ponent always has a syntactic representationglued to it. This is reminiscent of Co-

quand and Dybjer’s take on normalisation by evaluation for simply-typed combinatory

logic [CD97]. The algorithm appears in Figure 4.4.

An easy way of showing that the glued algorithm is equivalent to the standard one

is to defunctionalise both versions and observe that the resulting algorithm is the same

in each case (Figure 4.5).

We can adjust the algorithm of Figure 4.4 to performη-contraction simply by mod-

ifying the abstraction parameter as follows:
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~Λu� � Λu+ (V ×Λu× (V→ ~Λu�))

↓ e= e

↓ c= lam(x,↓ app(c, x)), x fresh

~ x�ρ = ρ x

~ lam(x,m)�ρ = (x,m,ρ)

~app(m,n)�ρ = app(~m�ρ,~n�ρ)

app(e, s) = app(e,↓ s)

app((x,e,ρ), s) = ~e�ρ[x7→s]

Figure 4.5: Defunctionalisedβ-NBE for untypedλ-calculus

lam( f ) = (λx.eta-reduce(lam(x,↓ ( f (↑ x)))), f )

eta-reduce(lam(x,app(m, x))) =m, if x < fv(m)

eta-reduce(lam(x,app(m, x))) = lam(x,app(m, x)), otherwise

The second problem can be solved by augmenting the semantics with variable

count information. We omit the details, but we have implemented such an algorithm

in ML. A simpler approach, which may be more efficient in practice would be to rely

on the invariant that bound variables are unique, and maintain a global variable count.

It is straightforward to extend our approach toη-contraction in order to handle other

type constructors such as computations and products. In fact, functions are harder to

deal with than other constructors, as the→.η-rule depends on counting occurrences,

whereas otherη-rules do not. In practice, it may be easier simply to perform theη-

reduction as part of the reify function, rather than using the gluing construction (though

technically this is not normalisation by evaluation).
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4.5 Sums

Adding sums to normalisation by evaluation algorithms is an interesting non-trivial

problem. The primary difficulty is in defining a suitable normal form. If we forget

aboutη-conversion then this solves the problem. However, theη-rule allows us to

perform some rather useful optimisations such as:

In the presence of theη-rule we cannot obtain unique normal forms for all convert-

ible terms simply by applying all the rules in one direction. This is a good example

of a situation in which the ‘reduction-free’ nature of normalisation by evaluation is

important. In other words it makes more sense to think about equational normal forms

rather than reduction-based normal forms (although we believe it is possible to extend

the reduction calculus in such a way that the two notions can be made to coincide).

4.5.1 Greedy elimination of sums

Perhaps the simplest solution to the problem of sums is the one adopted by the TDPE

community. This approach is motivated by ease of implementation using the shift/reset

control operators. It relies on sum terms always being bound to a variable. This rules

out the simply-typedλ-calculus extended with sums, as here we have terms such as:

lam( f A→(B+C), lam(xA,app( f , x)))

where the application is of sum type. However the restricted version of the comp-

utational metalanguageλml∗ and the computationalλ-calculus can easily be made to

satisfy this property. Also this approach does not handle sum constants or open terms

(although both of these features can easily be simulated by an extra abstraction). The

idea is that a case split is introduced immediately inside each context in which a sum

variable is bound. The resulting normal forms are relatively easy to define (compared

to the alternatives). Filinski formalises the idea in the setting of the computational

λ-calculus [Fil01b].

The approach has the distinct disadvantage of producing normal forms which are

exponentially large in the number of nested sum variables, and potentially contain a

large amount of redundancy. It is not dissimilar to representing a boolean formula as a
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truth table. Balat and Danvy [BD02] show how to eliminate some of the redundancy

by using memoisation to prevent nested case splits on the same guard.

In his thesis Ghani used categorical techniques to study normalisation properties of

the simply-typedλ-calculus extended with sums [Gha95].

Altenkirch et al. [ADHS01] give a characterisation of normal forms for simply-

typed λ-calculus with sums using an extended calculus supporting multiple simul-

taneous case splits.4 A key advantage of these normal forms is that they remove a

certain amount of redundancy. Altenkirch et al. define and prove correct a normalis-

ation algorithm for obtaining their normal forms. Unfortunately it is not immediately

clear how to implement their algorithm as it depends on abstract categorical concepts.

Nevertheless we have implemented it using a modified version of the standard TDPE

approach. We have also implemented variations which do not depend on first-class

control operators.

Balat, Di Cosmo and Fiore [BCF04] have recently given an alternative treatment

of Altenkirch et al.’s approach in which rather than extending the calculus they simply

quotient out the order in which case splits occur. They also provide an implementation

which takes advantage of the more general set/cupto [GRR98] control operators instead

of shift/reset.

We now give details of how to incorporate sums into normalisation by evaluation

algorithms. We shall concentrate on the basic approach of Filinski, but indicate how

it can be adapted to remove redundancy. We also present a version in which we use

global state and an appropriate data structure in place of control operators.

We call the languageΛml∗ extended with sums and productsΛml∗+. We call the

corresponding equational calculus (with all the usualβ, η and CC rules)λ+ml∗. There

are several choices as to how to add sums and products intoΛml∗. In particular we can

choose whether the associated elimination terms must be computations or not. The ad-

vantage of asserting that eliminations must be of computation type, is that this ensures

intermediate subterms are named. We insist thatcaseterms must have computation

type. It would seem natural to do the same for projections, but as projections do not

involve any auxiliary subterms this would require changing rather than restricting our

4Ghani hinted in his thesis [Gha95] that multiple simultaneous case splits might be useful.
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~ x�ρ = ρ(x)

~ lam(xA,e)�ρ = lam(λsA.~e�ρ[x7→s])

~app(e1,e2)�ρ = app(~e1�ρ,~e2�ρ)

~val(e)�ρ = val(~e�ρ)

~ let xA⇐e1 in e2�ρ = let(~e1�ρ,λv
A.~e2�ρ[x7→v])

~ inj1(e)�ρ = inj1(~e�ρ)

~ inj2(e)�ρ = inj2(~e�ρ)

~case m of (x1⇒n1 | x2⇒ n2)�ρ = case

 ~m�ρ,λv1.~n1�ρ[x1 7→v1] ,
λv2.~n2�ρ[x2 7→v2]


Figure 4.6: Parameterised semantics forΛml∗+

existing typing rules. Also note that MIL treats projections as values. Thus the typing

rules forΛml∗+ are the same as those ofΛml∗ plus those of Figure 2.3 with the added

restriction thatcase terms must have computation type:

x1 : A1 x2 : A2 m : A1+A2 n1 : T B n2 : T B

case m of (xA1
1 ⇒n1 | x

A2
2 ⇒ n2) : T B

A parameterised semantics forΛml∗+ appears in Figure 4.6.

Filinski defines normal forms using aquarantined context[Fil01b]. This ensures

that case splits are performed on sum variables as soon as they are introduced. We

achieve the same goal forλ+ml∗ using a grammar annotated with types and bound vari-

ables:

Normal values v,w ::= u0 | lam(xA,m[xA]) | pair(v,w) | inj1(v) | inj2(v)

Neutral values uA ::= xA | proj1(uA×B) | proj2(uB×A)

Split computations m[xA+B] ::= case x of (xA
1⇒m[xA

1 ] | xB
2 ⇒m[xB

2 ])

Plain computations m[xA] ::= val(v) | let yB⇐app(u,v) in m[yB]

The set of normal formsΛml∗+-nf is the union of the normal values, the split compu-

tations and the plain computations. The set of neutral termsΛml∗+-ne is just the set of

neutral values.
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The residualising semantics is standard:

~O� = ΛmlO
~A→ B� = ~A�→ ~B�

~A×B� = ~A�×~B�

~A+B� = ~A�+~B�

~T A� = Comp(~A�)

We use the internal monad of the metalanguage:

Comp(~A�) = ◦~A�

val(s) = s

let(val(s), f ) = f s

and the method of§4.3.3 in order to avoid the need for thunks:

↓O e= e

↓A→T B f = lam(xA,collect(λ(). ↓T B ( f (↑A x)))), xA fresh

↓A×B (s, s′) = pair(↓A s,↓B s′)

↓A1+A2 inj i(s) = inji(↓
Ai s)

↓T A s= val(↓A s)

↑O e= e

↑A→T B e= λsA. ↑T B (app(e, (↓A s)))

↑A×B e= (↑A proj1(e),↑B proj2(e))

↑A1+A2 e= bindA1+A2(e)

↑T A e= bindT A(e)

norm(eT A) = collect(λ(). ↓T A (~e�↑))

Thebind andcollect functions must satisfy the additional equation:

collect(λ().

val(↓B (λs.cases of s1⇒ ~m1�↑[x1 7→s1] | s2⇒ ~m2�↑[x2 7→s2])(bindA1+A2(u))))

= case u of (xA1
1 ⇒↓

T B ~m1�↑ | x
A2
2 ⇒ ↓

T B ~m2�↑) (4.11)
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4.5.2 Sums using delimited continuations

Assuming the metalanguage supports delimited continuations we can definebind on

computations, andcollectas before, and extendbind to sums:

collect( f ) = < f>

bindT A(e) = S(λκ.let xA⇐e in <λ().κ(↑A x)>),

x fresh

bindA1+A2(e) = S(λκ.case e of (x1⇒<λ().κ(↑
A1 x1)> | x2⇒ <λ().κ(↑

A2 x2)>)),

x1, x2 fresh

In bindA1+A2(e), the shift operation inserts a case split at the start of the current context

and then follows both branches of the sum. As usual the reset operator marks the start

of a new context in which a variable has been bound.

4.6 Sums using global state

As shown in§4.5.2, sums can be dealt with using a straightforward modification of the

normalisation by evaluation algorithm for the computational metalanguage, providing

we use delimited continuations. However, it is not immediately clear how to do the

same thing in the state-based setting. The challenge is to definebind at sum types.

We want to return both the left injection and the right injection of a sum. This is easy

to do using shift and reset, as the same continuation can be invoked twice, but in the

state-based setting we do not have access to first class continuations.

Other authors have also considered using global state (or an accumulation monad)

in place of delimited continuations (or a continuation monad).

Filinski [Fil01b] wrote:

Products could be added to an accumulation-based interpretations without
too much trouble, but sums apparently require the full power of applying
a single continuation multiple times.

Sumii and Kobayashi [SK01] wrote:
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Note that state-based let-insertion does not subsume continuation-based
PE [[LD94]], whose goal is not only context propagation in let-expressions
but also contextduplicationin conditional expressions.[footnote]

and then in the footnote:

It is possible as well to treat conditional expressions by using state instead
of continuations (Zhe Yang, personal communication, January 2000), but
it remains to see whether this “state-based if-insertion” is correct and ef-
ficient, because it is more complex than state-based let-insertion and be-
cause it duplicates some static computation.

Our solution is to first return the left injection, but to record (using global state)

that we still need to visit the right injection. Rather than a binding list we require a

binding tree. Which branch we are currently in is recorded in the binding tree along

with the bindings. The binding tree is reset every timecollect is called. The thunk

passed tocollect is invoked repeatedly. Each invocation builds another path through

the binding tree, and returns the computation to be plugged in the hole at the end of that

path. Eventually the entire binding tree is assembled, along with a collection of com-

putation terms. The binding tree is output, with each hole plugged by the appropriate

computation term.

4.6.1 Binding trees

We describe binding trees using the datatype:

B = hole | comp (eT A, xA,B) | sum (vA1+A2, xA1
1 ,B1, x

A2
2 ,B2,bool)

and the plugging operation, which plugs a binding treet containingk holes, using a list

esof k computation terms:

t[es] = let (e′, ) = plugTree(t,es)

in e′
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whereplugTreeis defined as:

plugTree(hole,e:: es) = (e,es)

plugTree(comp (e, x, t),es) = let (e′,es′) = plugTree(t,es)

in (let x⇐e in e′,es′)

plugTree(sum (v, x1, t1, x2, t2, ),es) = let (e1,es′) = plugTree(t1,es)

(e2,es′′) = plugTree(t2,es′)

in (case v of (x1⇒e1 | x2⇒ e2),es′′)

Binding trees are constructed from holes, computation bindings and sum bindings.

The plugging operationt[es] is used to obtain the term represented byt with all the

holes plugged with terms fromes.

It is sometimes useful to grow a tree by plugging the holes with other trees. We

overload the plugging operation as follows:

t[ts] = let (t′, ) = plugTree(t, ts)

in t′

whereplugTreeis defined as:

plugTree(hole, t :: ts) = (t, ts)

plugTree(comp (e, x, t), ts) = let (t′, ts′) = plugTree(t, ts)

in (comp (e, x, t′), ts′)

plugTree(sum (v, x1, t1, x2, t2,b), ts) = let (t′1, ts
′) = plugTree(t1, ts)

(t′2, ts
′′) = plugTree(t2, ts

′)

in (sum (v, x1, t
′
1, x2, t

′
2,b), ts′′)

4.6.2 The zipper structure

We will need to be able to construct the binding tree incrementally by moving up and

down the tree structure and modifying nodes. One way to achieve this is to use a

mutable data structure. A much cleaner approach, particularly for an implementation

in a functional programming language, is to use Huet’s ‘zipper’ structure [Hue97].

A locationin the tree is represented by a pair of the current subtree and apathfrom

the root of the tree to the root of the current subtree. A path has to contain enough
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information to be able to move anywhere in the tree above the current subtree. Paths

are given by the datatype:

P = top

| down ((eT A, xA),P)

| left ((vA1+A2, xA1
1 , x

A2
2 ),B,P)

| right ((vA1+A2, xA1
1 , x

A2
2 ),B,P)

This is essentially thederivative, that is the type of one-holed contexts, of the

binding tree datatype [McB01]5. This is not quite the derivative, because the boolean

flag has disappeared. The reason why the flag is no longer present is that it is now

redundant. Theleft andright constructors encode which branch a path is in.

The type of locations isB×P. The zipper functions allow movement around the

tree, and the current subtree to be changed.

go down(comp (e, x, t), p) = return (t,down ((e, x), p))
go down(sum (v, x1, t1, x2, t2, true), p) = return (t1, left ((v, x1, x2), t2, p))
go down(sum (v, x1, t1, x2, t2, false), p) = return (t2, right ((v, x1, x2), t1, p))

go up(t,down ((e, x), p)) = return (comp (e, x, t), p)
go up(t1, left ((v, x1, x2), t2, p)) = return (sum (v, x1, t1, x2, t2, true), p)
go up(t2, right ((v, x1, x2), t1, p)) = return (sum (v, x1, t1, x2, t2, false), p)

go right(t1, left ((v, x1, x2), t2, p)) = return (t1, right ((v, x1, x2), t2, p))
go left(t2, right ((v, x1, x2), t1, p)) = return (t2, left ((v, x1, x2), t1, p))

change(( , p), t) = return (t, p)

4.6.3 The cursor

We use a single reference cellcursoras a cursor to indicate the current position in the

tree.

initialiseCursor() = cursor:= (hole, top)

down() = cursor:= go down(!cursor)

5McBride’s notion of differentiating datatypes is also related to Joyal’s theory of species [Joy81,
Joy87, BLL98].
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up() = cursor:= go up(!cursor)
left() = cursor:= go left(!cursor)
right() = cursor:= go right(!cursor)

insert(t) = cursor:= change(!cursor, t)

The functioninitialiseCursorsetscursor to point to the root of an empty tree. The

other functions simply specialise the zipper functions to the cursor. It is easy to see that

each of the specialised zipper functions can be implemented in constant time, using the

fact that !cursor is always overwritten.

We define a functionresetCursorfor resetting the cursor to the root of the tree.

If its argument is true, then this also flips the branch flags on the way up, in order to

indicate that on the next pass we want to move onto the next branch of the tree. It

returns true if the whole tree has been explored, and false otherwise.

resetCursor(top,b) = returnb
resetCursor(left( ), true) =

right()
up()
returnresetCursor(!cursor, false)

resetCursor(right( ), true) =
left()
up()
returnresetCursor(!cursor, true)

resetCursor( ,b) =
up()
returnresetCursor(!cursor,b)

Sum bindings are flipped by moving left or right before moving up. It is only

necessary to flip branches if the whole of the current subtree has been explored.

4.6.4 Thebind and collect functions

The bind function creates a new binding if necessary, moves down the binding tree,

and reflects the appropriate binder.

bindT A(e) =
let x= getCompBinder(!cursor,e)
down()
return↑A x
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bindA1+A2(e) =
let (x1, x2,b) = getSumBinder(e)
if inLeftBranch(b) then

down()
return↑A1 x1

else if inRightBranch(b) then
down()
return↑A2 x2

inLeftBranch(b) = b
inRightBranch(b) = notb

getCompBinder((hole, p),e) =
insert(comp (e, x,hole)), x fresh
returnx

getCompBinder((comp ( , x, ), ), ) =
returnx

getSumBinder((hole, ),v) =
let b= true
insert(sum (v, x1,hole, x2,hole,b)), x1, x2 fresh
return (x1, x2,b)

getSumBinder((sum ( , x1, , x2, ,b), ), ) =
return (x1, x2,b)

The auxiliary functionsgetCompBinderandgetSumBinderare used to create a new

binding if one does not already exist, then return the binder pointed to by the cursor.

The collect function resets the binding tree and generates a list of computation

terms and a new binding tree. Then it outputs the term corresponding to the binding

tree with the list of terms plugged in the holes.

collect( f ) =
let cursor0 =!cursor
initialiseCursor()
let es= splurge( f )
let e= (!cursor)[es]
cursor:= cursor0
returne

splurge( f ) =
let e= f ()
let done= resetCursor(!cursor, true)
if not donethen returne:: splurge( f )
else return〈e〉
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The auxiliary functionsplurgeinvokes its argument, then resets the cursor, and recurses

until the binding tree has been completely explored.

4.6.5 Discussion

We have described an algorithm for performing normalisation by evaluation onλ+ml∗

using global state as a side-effect. Furthermore, by using the zipper structure we need

only to use a single state cell. It is straightforward to translate our implementation to

Filinski’s setting ofλc extended with sums, and given that we are using the standard

semantics, the same technique can be used for TDPE. In fact we have implemented

a TDPE algorithm in ML which uses this technique. We believe that our method can

be adapted in order to replace the use of set/ cupto with global state, in Balat et al.’s

algorithm for performing TDPE onλ+.

Addressing Sumii and Kobayashi’s quotation from the beginning of this section, we

claim that ours is a correct algorithm for “state-based case-insertion” (a generalisation

of “state-based if-insertion”). We leave the question of efficiency to Chapter 6. It is

true that our state-based implementation is effectively simulating the application of a

continuation twice, and that it duplicates some static computation (which need not be

duplicated if first-class continuations are available). It seems unlikely that it would be

possible to use state and a native evaluator without duplicating some computation, but

it may be possible to improve efficiency by performing some kind of memoisation.

Filinski uses a monadic counterpart of the algorithm of§4.5.2, which uses the

continuation monad. In order to store the binding data for sums in the monad it is

necessary that sums are treated as computations. It is most natural to work with an

extension ofλc rather thanλml∗, asλc has a monadic semantics for all terms, as all

terms are computations.

It is also possible to construct a monadic counterpart for the state-based algorithm.

The relevant monad combines an accumulation monad over binding trees with the list

(non-determinism) monad. The list contains the semantic values of the terms which are

to be plugged in the tree. Thus, with regard to Filinski’s quotation at the beginning of

this section, we claim that itis possible to extend an accumulation-based interpretation

to sums.
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The non-deterministic accumulation monad is defined as follows:

TA = B×A list

val(s) = (hole, 〈s〉)

let((t,vs), f ) = let (ts′,vs′) = unzip(map f vs)

in (t[ts′],vs′)

We omit the details of the normalisation by evaluation algorithm, but note that

it is straightforward to construct from the definition of the residualising monad. We

expect that threading a monad through values as well as computations is likely to be

less efficient than using an appropriate side-effect, but that it is also likely to be easier

to reason about. However, with the non-deterministic accumulation monad there is no

unnecessary duplication of computation because non-determinism allows all branches

to be returned at once. Note that the branch flag in the binding tree datatype becomes

redundant for the same reason.

Our use of state and the zipper structure can be seen as an instance of a more general

technique. The same approach can be used to simulate a wide-range of uses of shift/

reset, using state but no first-class control operators. The main idea is to partition the

body of a shift operation into a component which can be computed before the captured

continuation is invoked and a collection of other components which depend on the

captured continuation. The first component is stored in global state (possibly using a

zipper for convenience). The subsequent components are obtained by repeated calling

a function (simulating the replication of a continuation). It would be interesting to

investigate how far this approach can be taken, and how general it is. It might even

be possible to use something similar to obtain a state-based alternative to Filinski’s

generic monadic reflection operations [Fil94, Fil96, Fil99a].

4.7 Polymorphism and recursive types

It is not difficult to add polymorphism to normalisation by evaluation algorithms. Es-

sentially one just adds a second environment — a type environment. Then the reifi-

cation and reflection functions defined on polymorphic types follow a similar pat-

tern to those defined on function types. Vestergaard’s unpublished manuscript [Ves]
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gives a syntactic account of normalisation by evaluation for System F. Altenkirch et

al. [AHS96, AHS97] give a categorical treatment.

In principle recursive types are easy to add to normalisation by evaluation algo-

rithms. However, the resulting algorithms may not terminate. Admittingη-expansion

leads to non-terminating reduction sequences, and evenβ-reduction can lead to non-

termination, if we are not careful. We discuss these issues further, and show how to

implement normalisation by evaluation with recursive types in§5.5.

4.8 Embedding types in the semantics

Most presentations of normalisation by evaluation adopt a Curry-style typing disci-

pline. For many purposes it does not make any difference whether the Church-style or

the Curry-style is used. However, it turns out that the Church-style does allow for a

useful modification of normalisation by evaluation algorithms, which is not so easily

expressed in the Curry-style. Instead of indexing the reification function with a type

it is sufficient to use an unindexed reification function and fold the types of bound

variables into the semantics. We illustrate the technique withλ→.

Parameters which take abstractions as arguments have to be annotated with the

types of bound variables:

~ x�ρ = ρ(x)

~ lam(xA,e)�ρ = lamA(λs.~e�ρ[x7→s])

~app(e1,e2)�ρ = app(~e1�ρ,~e2�ρ)

We can still define the semantic domains separately for each type, but later it will also

be necessary to consider a universal domain:
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~O� = Λ→-neO

~A→ B� = (~A�→ ~B�)×τA

~Λ→ � =
⊎
~A�, whereA ranges over all types

lamA( f ) = ( f ,A)

app(( f ,A), s) = f (s)

τA is a singleton domain consisting only of the typeA.

The reification function is defined by pattern matching. Semantic objects are either

terms ranged over bye, or a (function, type) pair ranged over by (f, A).

↓A:~Λ→ �→ Λ→-nfA

↑A:Λ→-neA→ ~Λ
→ �

↓ (e) = e

↓ ( f ,A) = lam(xA,↓ ( f (↑A x))), xA fresh

↑O e= e

↑A→B e= (λs. ↑B (app(e,↓ s)),A→ B)

Because↓ is not type-indexed, it is not necessary to know the type of a term in order

to normalise it:

norm(e) =↓ (A)~e�↑

Sheard [She97] used the idea of embedding types in the semantics for a variant of

TDPE. In the next section we discuss how embedding types in the semantics can be

useful in actual implementations.

4.9 Implementing normalisation by evaluation in SML

In this section we describe how we implement normalisation by evaluation algorithms

in SML. First we define some auxiliary structures. Fresh variable names are generated

using a global counter.
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structure Supply =

struct
val count = ref 0

fun init () =

count := 0

fun new s =

let val this = !count

in
count := this + 1;

s ˆ (Int.toString this)

end
end

Many data structures are suitable for implementing environments, including func-

tions, lists, binary trees and hash tables. In many applications the number of variables

is likely to be limited such that it might well be reasonable just to use an array of

fixed length. If memory is cheap, then this is likely to be quite efficient. Here we use

SML/NJ’s map data structure, which is implemented using red-black trees. We use

strings for variable names (and hence for indexing the map).6

(* string as a key *)

structure StringKey : ORD_KEY =

struct
type ord_key = string

val compare = String.compare

end

(* map from string to ’a *)

structure StringMap = BinaryMapFn(StringKey)

structure Env =

struct
type ’a env = ’a StringMap.map

6In our implementation of normalisation by evaluation for MIL we use the SML/NJ map data struc-
ture in conjunction with integer variable names.
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val extend = StringMap.insert

val lookup = StringMap.find

fun init () = StringMap.empty

end

extend(env, x, v) extends the environmentenv with the bindingx 7→ v.

lookup(env, x) returns the semantic value to whichx is bound inenv.

We now define simple types and syntax for Church-styleλ-calculus terms in which

bound variables have type annotations.

structure Typing =

struct
datatype Type = B | F of Type * Type

end

B represents the base typeO.

F(A,B) represents a function of typeA→ B.

structure Syntax =

struct
type ide = string

datatype exp = VAR of ide

| LAM of (ide * Typing.Type) * exp

| APP of exp * exp

end

VAR, LAM, andAPP represent respectively variables, abstractions and applications.

The type annotations on bound variables allow us to perform normalisation by eval-

uation on closed terms without explicitly passing a type parameter to the normalisation

function.

In order to stay within the limits of the ML type system we assume a single se-

mantic domain for interpreting all terms. The types of the parameters are given by the

following signature:

signature SEMANTIC_PARMS =

sig
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type sem

val lam : ((sem -> sem) * Typing.Type) -> sem

val app : (sem * sem) -> sem

end

We define a functor for the parameterised semantics.

functor Semantics (I : SEMANTIC_PARMS) :

sig
val eval : Syntax.exp * I.sem Env.env -> I.sem

end =

struct
open Syntax I

fun eval (VAR x, env) =

Env.lookup(env, x)

| eval (LAM ((x, t), m), env) =

lam (fn s => eval (m, Env.extend (env, x, s)), t)

| eval (APP (m, n), env) =

let val f = eval (m, env)

val s = eval (n, env)

in
app (f, s)

end
end

We find it convenient to instantiate the semantic parameters, and define the reification

function at the same time using aresidualiser7 . This is particularly useful for norm-

alisation by evaluation algorithms in which the semantic parameters call the reification

function, such as in§4.4.

signature RES =

sig
include SEMANTIC_PARMS

val reify : sem -> Syntax.exp

end

TheNorm functor takes a residualiser and gives a normalisation function.

7This idea, and the following implementation of parameterised semantics using ML functors, is
essentially due to Filinski [Fil02].
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functor Norm(I : RES) :

sig
val norm : Syntax.exp -> Syntax.exp

end =

struct
structure ResidualisingSemantics = Semantics (I)

fun norm e =

(Supply.init ();

I.reify (ResidualisingSemantics.eval (e, Env.init ())))

end

Now we define a residualiser for performing normalisation with respect toβ-

reduction andη-expansion.

structure Residualiser1 : RES =

struct
open Syntax Typing

datatype sem = REFLECT of exp

| FUN of ((sem -> sem) * Type)

fun reify (REFLECT m) = m

| reify (FUN (f, t)) =

let val x = Supply.new "x"

in
LAM ((x, t), reify (f (reflect t (VAR x))))

end

and reflect B m = REFLECT m

| reflect (F(t1, t2)) f =

FUN (fn s => reflect t2 (APP (f, reify t1 s)))

val lam = FUN

fun app (FUN (f, _), s) = f s

| app _ = raise Fail "Not a function"

end

Passing the residualiser to theNorm1 structure.

structure Norm1 = Norm(Residualiser1)
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gives rise to the normalisation by evaluation functionNorm1.norm.

Here is an alternative residualiser in which the reflect function has been defunc-

tionalised and the apply function inlined in order to makeη-expansion explicit.

structure Residualiser2 : RES =

struct
open Syntax Typing

datatype sem = REFLECT of exp * Type

| FUN of ((sem -> sem) * Type)

fun reify (REFLECT (m, B)) = m

| reify (REFLECT (m, F(t1, t2)) =

let val x = Supply.new "x"

in
LAM ((x, t),

reify (APP (m, reify (REFLECT (VAR x, t)))))

end
| reify (FUN (f, t)) =

let val x = Supply.new "x"

in
LAM ((x, t), reify (f (REFLECT (VAR x, t))))

end

val lam = FUN

fun app (FUN (f, _), s) = f s

| app (REFLECT (m, F(t1, t2)), s) =

REFLECT (APP (m, reify s), t2)

end

structure Norm2 = Norm(Residualiser2)

Now we remove theη-expansion to obtain a normalisation by evaluation algorithm for

performing justβ-reduction.

structure Residualiser3 : RES =

struct
open Syntax Typing

datatype sem = REFLECT of exp
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| FUN of ((sem -> sem) * Type)

fun reify (REFLECT m) = m

| reify (FUN (f, t)) =

let val x = Supply.new "x"

in
LAM ((x, t), reify (f (REFLECT (VAR x, t))))

end

val lam = FUN

fun app (FUN (f, _), s) = f s

| app (REFLECT (m, s) = REFLECT (APP (m, reify s))

end

structure Norm3 = Norm(Residualiser3)

Sums can be simulated in ML using datatypes.

datatype (’a,’b) Sum = Inj1 of ’a | Inj2 of ’b

The constructorsInj1 andInj2 give the first and second injections into a binary sum.

case s ofx1⇒ s1 | x2⇒ s2 is translated to:

case s of Inj1 x1 => s1

| Inj2 x2 => s2

Shift and reset are implemented using call/cc and a single reference cell, as de-

scribed by Filinski [Fil94].

An alternative approach to implementing normalisation by evaluation, proposed

by Filinski and Yang [Yan99], uses a clever technique to encode types in such a way

that the type includes the corresponding reify and reflect functions at that type. This

approach allows the native ML evaluator to be used, and can be used for TDPE or

decompilation of existing code. However, we would like to be able to change the

semantics in ways which are not possible using this technique. Thus we use a universal

semantic datatype and a custom evaluator instead.

Danvy et al. [DRR01] usephantom typesto statically constrain the output of TDPE

to be in normal form.
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Implementation

We have implemented a variety of normalisation by evaluation algorithms which incor-

porate features of MIL. Initially these began as standalone prototype implementations

on ‘toy languages’. Subsequently they were developed into full-blown normalisation

by evaluation algorithms which operate on actual MIL generated by the SML.NET

compiler from ML source code.

In this chapter we describe the incremental process we used for moving from a

basic normalisation by evaluation algorithm for the computational metalanguage to

normalisation by evaluation algorithms for MIL. Normalisation by evaluation for the

computational metalanguage can be adapted naturally to include many of the features

of MIL. We begin by adapting both the normalisation by evaluation algorithm for the

computational metalanguage, and MIL, as little as possible in order to allow them to

work together. The idea is that this provides a platform for assessing normalisation by

evaluation and incrementally adding new features. After establishing a framework for

studying normalisation by evaluation on MIL, we extend it.

The rest of this chapter is structured as follows. In§5.1 we discuss differences

between the simplified and full versions of MIL andλMIL. In §5.2 we discuss the

relationship between MIL andλMIL. In §5.3 we introduce our first normalisation

by evaluation algorithm forλMIL. This algorithm is not semantics-preserving. In

§5.4 we give an improved algorithm which is semantics-preserving. In§5.5 we add

sums and recursive types. In§5.6 we add exceptions. In§5.7 we give a normalisation

by evaluation algorithm which targets MIL rather thanλMIL. Finally, in §5.8 we

155
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summarise our range of normalisation by evaluation implementations.

5.1 Full versus simplifiedMIL /λMIL

In the first four chapters of this thesis we have worked exclusively with simplified

versions of MIL andλMIL. Mostly, the implementation details are not important, so

we shall continue to use the simplified calculi. However, in this chapter, and the next,

we shall indicate where the concrete implementation requires special attention.

5.1.1 Arity-raising

In concrete MIL andλMIL, terms arearity-raised: functions, computations, sums

and products aren-ary rather than binary or unary. In contrast, simplified MIL and

λMIL have unary functions and computations, whilst products and sums are binary,

and there is also a unary product1. Arity-raising is not difficult to handle, though

it does introduce a few subtleties, and the semantics has to be augmented with arity

information in certain places.

5.1.2 Source information

For debugging purposes, all bound variables in the implementation are annotated with

a string. This string is the name of the corresponding source variable, if any, and the

empty string otherwise. We embed the source information in the semantics using the

same technique that we used to embed the type annotations on bound variables in§4.8.

Each parameter that takes an abstraction as an argument is augmented with an extra

parameter for the source information.

5.2 MIL versusλMIL

MIL is rather unlike the otherλ-calculi to which we have applied normalisation by

evaluation. There is a syntactic distinction betweenatomic and non-atomicvalues.

The syntax ensures that all non-atomic values are named. This is a desirable property
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for a compiler intermediate language to have, as it exposes the control flow and enables

all kinds of program transformations to be naturally expressed [App92].

Recall from Chapter 2 that MIL is just a restriction ofλMIL, and the convertibil-

ity relation of MIL is correspondingly defined as the restriction of the convertibility

relation ofλMIL to MIL. Now, λMIL is just an extension ofλml∗ and, as is shown

in the rest of this chapter, one can define normalisation by evaluation forλMIL as an

extension of normalisation by evaluation forλml∗.

A natural question to ask is whether one can obtain a normalisation by evaluation

algorithm for MIL simply by restricting the normalisation by evaluation algorithm for

λMIL. Unfortunately, this does not work, as the normal forms often lie outside of MIL.

For instance,letval x⇐pair(a,b) in app( f , x) normalises toapp( f ,pair(a,b)) in λMIL,

but this term is not a valid MIL term aspair(a,b) is not an atom.

It is not entirely clear what canonical normal forms should be for MIL. For in-

stance:

• The order in which independent values are bound is not important:

letfun f (x)⇐m in letval z⇐proj1(y) in f z

≡ letval z⇐proj1(y) in letfun f (x)⇐m in f z

(5.1)

• The same non-atomic value may be bound more than once:

letfun f (x)⇐m in letfun g(x)⇐m in val(pair( f ,g))

≡ letfun f (x)⇐m in val(pair( f , f ))

(5.2)

Recall that the set of MIL termsMIL is a strict subset of the set ofλMIL terms

ΛMIL. One way of defining normal forms is to define a functionmilify from ΛMIL

to MIL such thatmilify(e) ≡ e. If such a function exists then it can be composed with

a normalisation function forλMIL to give a normalisation function for MIL. In fact

no such function can exist, as there areλMIL terms which are not convertible to any

MIL terms. For instance, the value termpair(pair(a,b),c) cannot be converted to a
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value term in MIL, as the only way of namingpair(a,b) is inside a computation term.

However, the MIL term output by the frontend is always a computation term, and it is

possible to define versions ofmilify restricted to computation terms. We shall discuss

how to do this in section 5.7. For now we concentrate on normalisation by evaluation

for λMIL. Note that we can still use the frontend to generateλMIL terms, and obtain

useful performance data, without having to consider normalisation by evaluation for

MIL.

Parameterised semantics As usual we give a parameterised semantics forΛMIL

(Figure 5.1). Type annotations are attached to the parameters which interpret terms

with bound variables.

Unknown terms and types λMIL has many new constructs on top ofλml∗ for fea-

tures such as sums, recursive types, exceptions and references. There are a number of

possible ways of dealing with these. We take an incremental approach, in which we

begin by eliding the constructs that we do not wish to handle (essentially pretending

they have no semantic content at all), then subsequently deal with them one-by-one.

We call the terms we wish to elideunknown termsand the types we wish to elide

unknown types.

5.3 Absorbing values for unknowns

As a first attempt, we introduce a specialabsorbingvalue-term constructorunknown

to which unknown values will be normalised. Unknown computation terms will be

normalised toval(unknown). Unknown values could potentially be of any type, so we

add the typing rule:

unknown:A

Values of unknown type will be normalised tounknown and computations of unknown

type toval(unknown). The idea is that new term constructors be incrementally added to

the algorithm. The value termunknown is absorbingin that placing it in an elimination
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~ x�ρ = ρ(x)

~∗�ρ = star

~cA�ρ = constantA(c)

~ lam(xA,m)�ρ = lamA(λs.~m�ρ[x7→s])

~pair(v,w)�ρ = pair(~v�ρ,~w�ρ)

~proji(v)�ρ = proji(~v�ρ)

~ inji(v)�ρ = inj i(~v�ρ)

~ foldµX.A(v)�ρ = foldµX.A(~v�ρ)

~unfold(v)�ρ = unfold(~v�ρ)

~app( f ,v)�ρ = app(~ f �ρ,~v�ρ)

~val(v)�ρ = val(~v�ρ)

~ let xA⇐m in n�ρ = letA(~m�ρ,λv.~n�ρ[x7→v])

~case v of (xA1
1 ⇒n1 | x

A2
2 ⇒ n2)�ρ = case(A1,A2)

 ~v�ρ,λs.~n1�ρ[x1 7→s] ,
λs.~n2�ρ[x2 7→s]


~ raise(E)�ρ = raise(E)

~ try xA⇐m in n unless H �ρ = tryA(~m�ρ,λs.~n�ρ[x7→s] ,H~H �ρ)

~ read(v)�ρ = read(~v�ρ)

~write(v,w)�ρ = write(~v�ρ,~w�ρ)

~new�ρ = new

H~H �ρ =map(λ(E,n).(E,λ().~n�ρ)) H

Figure 5.1: Parameterised semantics forΛMIL
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context gives anotherunknown. For instance, for sums and products, this property is

captured by the absorbing conversion rules:

(→ .ABS) app(unknown,v) ≡ unknown

(×.ABS(i)) proji(unknown) ≡ unknown

This approach has the advantage of being easy to implement, and the resulting

term containing only the parts of the source term which are relevant to the normalis-

ation algorithm. Assuming a significant proportion of the source term is not unknown,

it should provide us with an indication of the behaviour of normalisation by evaluation

algorithms on realistically sized terms. It has the obvious disadvantage that the result-

ing code has large chunks missing, so it cannot be used to compile code. However, this

is not so important for the purposes of benchmarking normalisation algorithms.

5.3.1 Normalisation

We consider extensional normalisation forλMIL restricted to the conversion rules for

unit, functions, products and computations, where sums, recursive types, exceptions

and references, and their associate terms are unknown. Thus, the conversion rules are:

1.η, →.β, →.η, ×.βi, ×.η, T.β, T.η, T.T.CC,→ .ABS and×.ABS(i). We obtain long

normal forms, corresponding toη-expansion. They are given by the grammar:

Normal values v,w ::= u0 | ∗ | lam(xA,m) | pair(v,w) | unknown

Neutral values uA ::= xA | cA | proj1(uA×B) | proj2(uB×A)

Normal computations m ::= val(v) | let xA⇐app(uB,v) in m

v,w ranges over normal values,nA over neutral values of typeA, andm over normal

computations. The set of normal formsΛMIL- nf is the union of the set of normal

values and the set of normal computations.

We shall now present a normalisation by evaluation algorithm. A residualising

semantics using the continuation monad appears in Figure 5.2. The semantic domain

for each value type is augmented withunknown, the interpretation of unknown values.

Unknown types are simply interpreted asunknown. Note that the parameterCompis
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~ Int� = ΛMIL- nf Int +unknown

~A ref � = unknown

~1� = star+unknown

~A→ Tε(B)� = (~A�→ ~Tε(B)�)+unknown

~A×B� = (~A�×~B�)+unknown

~A+B� = unknown

~µX.A� = unknown

~Tε(A)� = Compε(~A�)

Figure 5.2: Semantics with absorbing values forλMIL

annotated with a set of effects. In our implementations we just pass the effects through

unchanged, but potentially one could do something more sophisticated with them. The

semantic parameters appear in Figure 5.3. Parameters which eliminate values, namely

appandproj, returnunknownif the elimination argument isunknown. Unknown values

are interpreted asunknownand unknown computations asval(unknown).

The reification and reflection functions appear in Figure 5.4. They are standard,

except:

• unknown, at any type, is reified asunknown; and

• any value, at an unknown type, is reflected asunknown.

5.3.2 Implementation issues

A number of implementation issues arise:

• Concrete MIL includes some support for polymorphism. We conveniently ig-

nore polymorphism (without just normalising every polymorphic function to

unknown), by applying SML.NET’s monomorphisation transformation as a pre-

processing stage.
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star is uninterpreted

constantA(c) =↑A c

lam( f ) = f

app( f , s) = f s

app(unknown, s) = unknown

pair(s1, s2) = (s1, s2)

proji(s1, s2) = si

proji(unknown) = unknown

val(s) = λκ.κ s

let(t, f ) = λκ.t(λs. f s κ)

foldµX.A(s) = unknown

unfold(s) = unknown

inj i(s) = unknown

case(p, f1, f2) = val(unknown)

raise(E) = val(unknown)

try(s, f1,H) = val(unknown)

read(s) = val(unknown)

write(s, s′) = val(unknown)

new= val(unknown)

Compε(~A�) = (~A�→ ΛMIL- nfTε(A))→ ΛMIL- nfTε(A)

Figure 5.3: Semantic parameters with absorbing values forλMIL

• We do not take advantage of MIL’s effect annotations, but we do preserve them.

• The implementation includes support for .NET interoperability via various addi-

tions to MIL. We just treat these as unknown terms in the normal way.

5.4 Fixed constants for unknowns

At first sight, one might ask why it is not just as straightforward simply to leave un-

known terms as is, rather than normalising them tounknown (or val(unknown)). One

problem is how to define the semantics. The hope is to preserve the term, so it would

seem reasonable simply to interpret unknown terms as themselves.

It then becomes necessary to extend the definitions of the semantic parameters. Our

discussion focuses onapp, but the same principles apply to other elimination parame-

ters as well. We need to defineapp(u, s) for u the interpretation of an unknown value.

In the absorbing semantics, ifu wereunknownthen we would just returnunknown.

Now, u is a term, so analogously we would like to return another term. This should be
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↓A:~A�→ ΛMIL- nfA
↑A:ΛMIL- neA→ ~A�

↓A unknown= unknown

↓Int e= e

↓1 star= ∗

↓A→B f = lam(xA,↓B ( f (↑A x))), xA fresh

↓A×B (s1, s2) = pair(↓A s1,↓
B s2)

↓Tε(A) t = t(λs.val(↓A s))

↑Int e= e

↑1 e= star

↑A→B e= λs. ↑B (app(e, (↓A s)))

↑A×B e= (↑A proj1(e),↑B proj2(e))

↑Tε(A) e= λκ.let xA⇐e in κ(↑A x), xA fresh

↑A e= unknown

norm(eA) =↓A ~e�↑

Figure 5.4: Extensional NBE with absorbing values
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u applied to a term whichs denotes. The obvious way to obtain a syntactic represen-

tation ofs is to reify it. But, we have defined↓ as a type-indexed function, so we need

to know the type ofs. One possibility is to embed a type-inference algorithm in the

semantics. A simpler solution is to use the technique explained in Chapter 4 to embed

the types of bound variables in the semantics. Then↓ can be defined without a type

parameter.

Note, however, that the resulting semantics is not sound with respect toη-rules. It

is sound with respect to theβ andCC rules, though. In fact, it is just the usual seman-

tics for intensional normalisation by evaluation in the computational metalanguage,

where unknown terms are interpreted as fixed constants. One can obtain a pseudo

normalisation by evaluation algorithm from this semantics which performs some but

not all η-expansion. Specifically, known terms are expanded and unknown ones are

not. However, this ad hocη-expansion seems somewhat unnatural. A more natural ap-

proach is just to take the usual semantics for extensional normalisation by evaluation

where unknown terms are interpreted as fixed constants. But then type inference be-

comes necessary again, as in extensional normalisation by evaluation a fixed constant

cA is interpreted as:

↑A c

Of course, for intensional normalisation by evaluation, this issue does not arise because

reflection is just the identity. Given that we would be unlikely to want to performη-

expansion in a compiler anyway, we shall avoid type-inference in the semantics, and

implement intensional normalisation by evaluation instead.

As a further improvement over absorbing normalisation we shall normalise known

subterms which appear inside unknown terms. This is expressed by treating unknown

syntax constructors, rather than unknown terms, as fixed constants.

5.4.1 Normalisation

We consider intensional normalisation forλMIL restricted to the conversion rules for

unit, functions, products and computations, where sums, recursive types, exceptions

and references, and their associate terms are unknown. Thus, the conversion rules are:

→.β, ×.βi, T.β, T.T.CC. Normal forms are given by the grammar:
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~ Int� = ΛMIL- neInt

~A ref � = ΛMIL- neA ref

~1� = star

~A→ Tε(B)� = ((~A�→ ~Tε(B)�)×τA)+ΛMIL- neA→Tε(B)

~A×B� = (~A�×~B�)+ΛMIL- neA×B

~A+B� = ΛMIL- neA+B

~Tε(A)� = Compε(~A�)

Figure 5.5: Semantics with fixed constants forλMIL

Normal values v,w ::= u | lam(x,m) | pair(v,w)

Neutral values u ::= x | ∗ | c | proji(u) | inji(v) | foldµX.A(u) | unfold(u)

Normal computations m,n ::= val(v) | p | let x⇐ p in m

Neutral computations p ::= app(u,v)

| case m of (x1⇒n1 | x2⇒ n2)

| raise(E) | try x⇐m in n unless H

| read(v) | write(v,w) | new

v,w ranges over normal values,u over neutral values,m,n over normal computations

and p over neutral computations. The set of normal formsΛMIL- nf is the union of

the set of normal values and the set of normal computations. The set of neutral terms

ΛMIL- ne is the union of the set of neutral values and the set of neutral computations.

We now present our intensional normalisation by evaluation algorithm with un-

known syntax constructors interpreted as fixed constants.

The parameterised semantics of Figure 5.1 still applies, but this time the extra

type annotations on the parameters are needed. A residualising semantics, using the

metalanguage’s internal monad and making use of the shift and reset control operators,

appears in Figure 5.5. The semantics is the standard one for intensional normalisation

by evaluation, except unknown types are interpreted as the set of neutral terms of the
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star is uninterpreted

constantA(c) = cA

lamA( f ) = ( f ,A)

app(( f ,A), s) = f s

app(e, sA) = app(e,↓ s)

pair(s1, s2) = (s1, s2)

proji(s1, s2) = si

proji(e) = proji(e)

inj i(s) = inji(↓ s)

foldµX.A(s) = foldµX.A(↓ s)

unfold(s) = unfold(↓ s)

case(p, f1, f2) = case ↓ p of (x1⇒↓ f1(x1) | x2⇒ ↓ f2(x2))

val(v) is uninterpreted

letA(val(v), f ) = f v

letA(e, f ) = bindCmpT∅(A)(e, f )

raise(E) = raise(E)

tryA(s, f ,H) = try ↓ s⇐ xA in ↓ f (x) unless ↓ H

read(s) = read(↓ s)

write(s, s′) = write(↓ s,↓ s′)

new= new

Compε(~A�) = val(~A�)+ΛMIL- neTε(A)

collect(t) = <t>

bindCmpT∅(A)(e, f ) = S(λκ.let xA⇐e in collect(λ().κ( f x))), xA fresh

Figure 5.6: Semantic parameters with fixed constants forλMIL
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↓:~ΛMIL �→ ΛMIL- nf

↓ e= e

↓ ( f ,A) = lam(xA,collect(λ(). ↓ ( f x))), xA fresh

↓ star= ∗

↓ (s1, s2) = pair(↓A s1,↓
B s2)

↓ val(s) = val(↓ s)

norm(e) =↓ ~e�↑

where e ranges over terms

s ranges over all semantic objects

f ranges over functions

Figure 5.7: Intensional NBE with fixed constants

corresponding type. The semantic parameters appear in Figure 5.6. Each unknown

parameter is instantiated by reifying all of its arguments.

Reification is defined in Figure 5.7. It is the usual non-type-indexed flavour of§4.8.

5.4.2 Implementation issues

This time we treat both polymorphic terms and .NET interoperability terms as fixed

constants. Because we are using fixed constants merely for syntax constructors, fur-

ther reductions are not blocked. We could have used SML.NET’s monomorphisation

phase as before, but the monomorphisation phase has the side-effect of performing fur-

ther reductions. We prefer to perform those reductions through our normalisation by

evaluation algorithm.

For future work we suggest adding polymorphism to the normalisation by evalua-

tion algorithm. As indicated in§4.7 this should be reasonably straightforward to do by

adding a type environment to the semantics.
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5.5 Sums and recursive types

We have already seen one algorithm implementing normalisation by evaluation forλ+ml∗

using delimited continuations in§4.5.2. We now adapt this technique to the setting in

which we have fixed constants for unknowns, and we do not performη-expansion. We

also add recursive types.

Recursive types are problematic for two reasons:

• First, if we admit negative recursive types then we can embed the untypedλ-

calculus, giving rise to non-terminating terms (underβ-reduction). For example,

app(lam(xA,app(unfold(x), x)), foldA(lam(xA,app(unfold(x), x))))

whereA= µX.(X→ X)

β-reduces to itself.

• Second, it is evident thatη-expansion does not terminate — even for positive re-

cursive types. For instance, a variable of list type can beη-expanded as follows:

x:µX.(1+ (Int ∗X)) =

foldµX.(1+(Int∗X))(case unfold(x) of (x1⇒ () | x2⇒ pair(proj1(x2),proj2(x2))))

But, proj2(x2) is another neutral term of typeµX.(1+ (Int∗X)), so this expansion

can be applied ad infinitum.

We have already decided not to performη-expansion, so that solves the second

problem. One approach to the first problem, is simply to ignore it! Many programs

do not use negative recursive types in a way which could lead to non-termination, so

this is sufficient for obtaining benchmarks. We have validated this assertion empiri-

cally. However, this approach would not be very satisfactory for an actual compiler.

A compiler should terminate on all inputs. Our solution is to add a side-condition to

theµ.β-rule such that it can be applied only when the recursive type has no negative

occurrences of the bound variable:

(µ.β′) unfold(foldµX.A(v)) ≡ v, if not isNegative(X,A)
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5.5.1 Normalisation

Extending the normalisation problem of 5.4.1 to include sums and recursive types, we

add the rules:+.βi, +.T.CC andµ.β′. Normal forms are now given by the grammar:

Normal values v,w ::= u | lam(x,m) | pair(v,w)

| inji(v) | foldX.A(v)

Neutral values u ::= x | ∗ | c | proji(u) | unfold(u)

Normal computations m,n ::= val(v) | p | let x⇐ p in m

| case m of (x1⇒n1 | x2⇒ n2)

Neutral computations p ::= app(u,v)

| raise(E) | try x⇐m in n unless H

| read(v) | write(v,w) | new

The interpretation of sums and recursive types is:

~A1+A2� = (inj1(~A1�)+ inj2(~A2�))+ΛMIL- neA1+A2

~µX.A� = foldµX.A(~A[X :=µX.A] �)+ΛMIL- neµX.A

The parameters for sums and recursive types are:

inj is uninterpreted

case·(inj i(v), f1, f2) = fi v

caseA1+A2(e, f1, f2) = bindSumA1+A2(e, f1, f2)

fold is uninterpreted

unfold(foldµX.A(s)) = s, if X does not occur negatively inA

unfold(foldµX.A(s)) = unfold(foldX.A(↓ s)), if X does occur negatively inA

unfold(e) = unfold(e)

bindSumA1+A2(e, f1, f2) = S

(
λκ.case e

of xA1
1 ⇒collect(λ().κ( f1(x1)))

| xA2
2 ⇒collect(λ().κ( f2(x2)))

)
,

x1, x2 fresh

The reification function is extended as follows:
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↓ inj i(s) = inji(↓ s)

↓ foldµX.A(s) = foldX.A(↓ s)

5.5.2 Implementation issues

In concrete MIL the case statement is arity raised and also has an optional default case.

The algorithm we have described is easily generalised to this setting. ML itself has

a built-in boolean type, which SML.NET translates to a sum type in MIL. ML does

not allow user-defined sum types, although they can be simulated using datatypes.

Recursive sum types arising from ML datatypes (such as lists) are very common in

MIL code. Hence, adding recursive types to our normalisation by evaluation algorithm

enables significantly more conversions than just adding sum types.

There is a practical problem with performing+.T.CC-conversion: each time it is

applied, a term is duplicated. This can easily lead to an exponential blow-up in the

size of terms, and is known to be a problem in practice [BD02]. There are a number

of ways of alleviating the problem. We return to this issue in Chapter 6, once we have

some concrete data.

5.6 Exceptions

Exceptions do not really add anything new. Essentially they can be seen as a combina-

tion of computations and sums (the exception monad is given by a sum). Extending the

normalisation problem of 5.5.1 to exceptions, we add theTexn.β rule, and generalise

T.T.CC and+.T.CC to the versions of Figure 2.10. Normal forms are now given by

the grammar:
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Normal values v,w ::= u | lam(x,m) | pair(v,w)

| inji(v) | foldX.A(v)

Neutral values u ::= x | ∗ | c | proji(u) | unfold(u)

Normal computationsm,n ::= val(v) | raise(E) | p

| try x⇐ p in m unless H | case m of (x1⇒n1 | x2⇒ n2)

Neutral computations p ::= app(u,v)

| read(v) | write(v,w) | new

whereH(E) is normal for all exceptionsE.

The interpretation of computations is extended to account for exceptions:

Compε(A) = raise(ε∩E)+val(~A�)+ΛMIL- neTε(A)

Analogously to the case of sums, the shift operator is used to follow each branch

of a try. First, the default branch (for the case in which no exception is raised) is taken,

then each of the branches of the handler are taken.

raise is uninterpreted

tryA(val(v), f ,H) = f v

tryA(raise(E), f ,H) = H(E)

tryA(e, f ,H) = bindExnA(e, f ,H)

bindExnA(e, f ,H) = S(λκ.try xA⇐e in collect(λ().κ( f x)) unless H′),

where

xA is fresh

H′ =map(λ(E, t).(E,collect(λ().κ(t())))) H

Reifying the semantic representation of an exception just gives the syntactic repre-

sentation of the exception:

↓ raise(E) = raise(E)
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5.7 Targeting MIL

One way of translatingλMIL terms into MIL is to use a call-by-value embedding. The

call-by-value embedding ofλMIL into itself simply names every non-atomic value. It

appears in Figure 5.8. The embedding is very similar to Moggi’s call-by-value em-

bedding of simply-typedλ-calculus into the computational metalanguage. Various

authors [Dan92, HD94, SW97] have noted the similarity between the call-by-value

embedding and call-by-value CPS transformations. In particular, the call-by-value em-

bedding introducesadministrative redexes. In other words, it introduces more names

than are necessary. For instance, some atoms are renamed.

Just like for CPS transformations, one can perform the embedding and reduce the

administrative redexes in one pass — this gives a one-pass monadic transformation.

We shall use the same machinery to combine normalisation by evaluation with the

call-by-value embedding and administrative reductions.

5.7.1 Straight to MIL

Using delimited continuations a one-pass transformation can effectively be folded into

the normalisation by evaluation algorithm. We consider intensional normalisation for

MIL restricted to the conversion rules for unit, functions, products and computations,

where sums, recursive types, exceptions and references, and their associate terms are

unknown. In other words this is the MIL version of the normalisation problem dis-

cussed in 5.4.1. The conversion rules are:→.β, ×.βi, T.β, T.T.CC. Normal forms are

given by the grammar:

Normal values v,w ::= u | lam(x,m) | pair(a,b)

Atoms a,b ::= x | ∗ | c

Neutral values u ::= a | proji(a) | inji(a) | foldX.A(a) | unfold(a)

Normal computations m,n ::= val(v) | p | let x⇐ p in m

Neutral computations p ::= app(a,b)

| case m of (x1⇒n1 | x2⇒ n2)

| raise(E) | try x⇐m in n unless H

| read(a) | write(a,b) | new
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Values

E′v:ΛMIL A→MIL T∅(A)

E′v(x) = val(x)

E′v(∗) = val(∗)

E′v(c) = val(c)

E′v(lam(x,m)) = val(lam(x,Ev(m)))

E′v(pair(v,w)) = let x⇐E′v(v) in let y⇐E′v(w) in val(pair(v,w))

E′v(proji(v)) = let x⇐E′v(v) in val(proji(x))

E′v(inji(v)) = let x⇐E′v(v) in val(inji(x))

E′v(foldX.A(v)) = let x⇐E′v(v) in val(foldA(x))

E′v(unfold(v)) = let x⇐E′v(v) in val(unfold(x))

Computations

Ev:ΛMIL Tε(A)→MIL Tε(A)

Ev(app(v,w)) = let x⇐E′v(v) in let y⇐E′v(w) in app(x,y)

Ev(val(v)) = let x⇐E′v(v) in val(x)

Ev(raise(E)) = raise(E)

Ev(try x⇐m in n unless H) = try x⇐Ev(m) in Ev(n) unless EH
v (H)

Ev(case v of (x1⇒n1 | x2⇒ n2)) = let y⇐E′v(v)
in case y of (x1⇒Ev(n1) | x2⇒Ev(n2))

Ev(new) = new

Ev(read(v)) = let x⇐E′v(v) in read(x)

Ev(write(v,w)) = let x⇐E′v(v) in let y⇐E′v(w) in write(x,y)

where x,y are fresh

Handlers

EH
v :E×ΛMIL list→ E×MIL list

EH
v (H) =map(λ(E,n).(E,Ev(n))) H

Figure 5.8: Call-by-value embedding ofΛMIL into MIL
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Analogously tobindCmp, we find it useful to define a parameterbindValfor naming

values. CallingbindVal(v) ensures thatv is bound to a variable if it is non-atomic.

bindVal(a) = a

bindVal(v) = S(λκ.tail(letval x⇐v in <κ x>))

tail : MIL →MIL

tail(letval x⇐v in val(x)) = v

tail(m) =m

The functiontail performstail-call elimination. It ensures that values are not

named when they appear in tail position. We write↓n for (bindVal◦ ↓). The seman-

tics is the same as that of Figure 5.5 but restricted toMIL . It appears in Figure 5.9.

The semantic parameters appear in Figure 5.10. Whenever a valuev is reified, and an

atom is expected, an atomicity check is performed. Ifv is atomic then it is not named,

and if v is non-atomic then it is named. Reification is defined in Figure 5.11. Again,

non-atomic values are named.

Remark The astute reader may have noticed the fact that unlikebindCmp, the pa-

rameterbindVal does not take a type argument. TechnicallybindVal should take a

type, because we need to know the type of the value. In order to output a term of

the form letval xA⇐ v in n, we need to know the typeA. In general, we do not have

this type. Fortunately, in the implementation we can cheat. In concrete MIL, the term

letval x⇐ v in n is a real term — not just syntactic sugar forlet x⇐ val(v) in n. Fur-

thermore, it does not requirex to have a type annotation.

5.7.2 Limitations

The normalisation by evaluation algorithm we have just described can introduce a sig-

nificant amount of redundancy. One of the reasons for naming non-atomic values is so

that they can be used many times without significantly increasing the size of the term.

This is particularly true of functions. One might wish that any sharing of values in the

source term be preserved in the normal form. But inevitably, this information must
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~ Int� =MIL -neInt

~A ref � =MIL -neA ref

~1� = star

~A→ Tε(B)� = ((~A�→ ~Tε(B)�)×τA)+MIL -neA→Tε(B)

~A×B� = (~A�×~B�)+ΛMIL- neA×B

~A+B� =MIL -neA+B

~Tε(A)� = Compε(~A�)

Figure 5.9: Semantics with fixed constants for MIL

be lost, as the semantics models allβ-equivalent terms, some of which may be highly

redundant.

It should be possible to rediscover some amount of sharing using some form of

common-subexpression elimination. We have written a prototype implementation, in

which we remove a certain amount of redundancy using a generalisation of the tech-

niques of Altenkirch et al. [ADHS01] and Balat et al. [BCF04], for performing norm-

alisation by evaluation with sums.

5.8 Implementations

This chapter has outlined our approach to implementing normalisation by evaluation

algorithms for SML.NET. We have implemented all of the algorithms described, to-

gether with a number of variations.

• We have implemented versions of the algorithms of§5.3 and§5.4 using: the

continuation monad, the accumulation monad, state and delimited continuations.

• We have implemented extensional and intensional variants of the absorbing al-

gorithm.

• We have extended the algorithms of§5.3 and§5.4 with sums and exceptions. In
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star is uninterpreted

constantA(c) = cA

lamA( f ) = ( f ,A)

app(( f ,A), s) = f s

app(e, sA) = app(bindVal(e),↓ s)

pair(s1, s2) = (s1, s2)

proji(s1, s2) = si

proji(e) = proji(bindVal(e))

inj i(s) = inji(↓n s)

foldµX.A(s) = foldµX.A(↓n s)

unfold(s) = unfold(↓n s)

case(v, f1, f2) = case ↓n v of (x1⇒↓ f1(x1) | x2⇒ ↓ f2(x2))

val(v) is uninterpreted

letA(val(v), f ) = f v

letA(e, f ) = bindCmpA(e, f )

raise(E) = raise(E)

tryA(s, f ,H) = try ↓ s⇐ xA in ↓ f (x) unless ↓ H

read(s) = read(↓ s)

write(s, s′) = write(↓n s,↓n s′)

new= new

Compε(~A�) = val(~A�)+MIL -neTε(A)

collect(t) = <t>

bindCmpA(e, f ) = S(λκ.let xA⇐e in collect(λ().κ( f x))), xA fresh

Figure 5.10: Semantic parameters with fixed constants for MIL
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↓:~ΛMIL �→ ΛMIL- nf

↓ e= e

↓ ( f ,A) = lam(xA,collect(λ(). ↓ ( f x))), xA fresh

↓ star= ∗

↓ (s1, s2) = pair(↓n s1,↓n s2)

↓ val(s) = <val(↓ s)>

norm(e) =↓ ~e�↑

Figure 5.11: Intensional NBE for MIL

the first instance this was using shift and reset. Subsequently we have also imple-

mented a version with fixed constants which uses state and the zipper structure

as described in§4.6.

• We have implemented the straight to MIL algorithm using delimited continua-

tions.

In the next chapter we assess the performance of these algorithms and compare them

with rewriting-based normalisation algorithms.





Chapter 6

Performance and analysis

In this chapter we assess the efficiency of normalisation by evaluation algorithms on

MIL terms corresponding to actual ML programs. We do this by benchmarking against

a range of rewriting-based normalisation algorithms. We consider the normalisation

problems of the previous chapter: unknown terms as absorbing values or as fixed con-

stants, with and withoutη-expansion, with sums, etc.

For each normalisation problem we begin with a naı̈ve algorithm which just per-

forms a depth-first traversal of the term structure contracting redexes recursively, using

an auxiliary substitution function. Straightforward optimisations, such as using an en-

vironment and not reducing inside abstractions that are never applied, are then added.

For each normalisation problem this process gives rise to aspectrumof normalisation

algorithms ranging from the naı̈ve algorithm up to normalisation by evaluation.

The benchmarks range from a basic quicksort program, which just sorts a list of

integers, through to a full bootstrap of the SML.NET compiler. The release version

of SML.NET is compiled under the SML/NJ [smlb] compiler. We have also ported

SML.NET to the MLton [mlt] compiler. We compare algorithms compiled under

SML/NJ against algorithms compiled under MLton. All tests were performed on a

PC with an AMD Athlon 1.4Ghz CPU and 512MB of RAM.

If we take a closer look at the optimisations made to the most naı̈ve normalisation

algorithm, it becomes apparent that each optimisation moves the algorithm closer to

normalisation by evaluation. In fact the normalisation by evaluation algorithm can

be obtained by a series of straightforward program transformations. This provides yet

179
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another angle on normalisation by evaluation. This perspective is closely related to that

of Ager et al. [ABDM03] in their work on obtaining abstract machines from evaluation

functions and vice-versa. Program transformations give a way to move neatly back

and forth between algorithms. This could be especially useful if a particular extension

is most easily expressed in one algorithm, but also of use in another. For instance,

there are various normalisation by evaluation algorithms which handle sums, but it

is not entirely clear what their more naı̈ve counterparts would look like. Program

transformation provides a means to find out.

The rest of this chapter is structured as follows. In§6.1 we mention some related

work. In§6.2 we introduce a spectrum of normalisation algorithms. In§6.3 we discuss

our framework for obtaining results. In§6.4 we present results for normalisation using

absorbing values for unknowns. In§6.5 we present results for normalisation using

fixed constants for unknowns. In§6.6 we outline some of the practical difficulties

we encountered in trying to obtain meaningful results. In§6.7 we summarise our

main results. Finally, in§6.8 we discuss how to obtain normalisation by evaluation

algorithms by program transformation.

6.1 Related work

Berger et al. [BES98] measure the speed of normalisation by evaluation for simply-

typedλ-calculus using a Scheme implementation. They compare: normalisation by

evaluation with the native Scheme evaluator; normalisation by evaluation with a hand-

coded evaluator; and a naı̈ve recursive normalisation algorithm. Their benchmarks

areλ-encodings of iterated functions that were deliberately chosen because they take

manyβ-reductions to normalise, but always reduce to the identity. Their normalis-

ation by evaluation algorithms are extensional (giving long normal forms), whereas

their näıve algorithm only performsβ-reduction1. The algorithms give the same nor-

mal forms because the benchmarks do not contain anyη-redexes. Their normalisation

by evaluation algorithms are much faster than the naı̈ve algorithm. Interestingly, the

normalisation by evaluation algorithm which uses the native evaluator is faster than the

1In fact their näıve algorithm is just a Scheme implementation of the algorithm of Figure 6.1
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norm-naive: Λu→ Λu-nf

norm-naive(x) = x

norm-naive(lam(x,m)) = lam(x,norm-naive(m))

norm-naive(app(m,n)) = app(norm-naive(m),norm-naive(n))

app(lam(x,m),n) = norm-naive(m[x :=n])

app(m,n) = app(m,n)

Figure 6.1: A näıve normalisation algorithm

one which uses a hand-coded evaluator.

Our tests are much more comprehensive: we use non-trivial benchmarks compiled

from actual ML programs; our object language,λMIL, is considerably more complex

than simply-typedλ-calculus; and we cover a wide range of different normalisation

algorithms.

6.2 A spectrum of normalisation algorithms

To simplify the presentation we illustrate a spectrum of algorithms, from most naı̈ve to

normalisation by evaluation, using the untypedλ-calculus with justβ-conversion. The

same optimisations are easily adapted toλMIL.

The starting point is the naı̈ve applicative-order normalisation algorithm defined

in Figure 6.1. The functionnorm-naivetraverses the term structure depth-first. The

only interesting case is an applicationapp(m,n). Firstm andn are normalised, then if

the normal form ofm is a lambda, aβ-reduction is performed. It is easy to see that if

norm-naive(e) terminates then it will return the normal form ofe. Of course, the un-

typedλ-calculus is not strongly normalising with respect toβ-reduction sonorm-naive

may not terminate.

A simple optimisation is to pass an environment around instead of explicitly per-

forming substitution (Figure 6.2). When aβ-redex is encountered (the first-line ofapp),
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ρ : V→ Λu-nf

normρ : Λu→ Λu-nf

normρ(x) = ρ x

normρ(lam(x,m)) = lam(x,normρ(m))

normρ(app(m,n)) = app(normρ(m),normρ(n),ρ)

app(lam(x,m),n,ρ) = normρ[x7→n](m)

app(m,n,ρ) = app(m,n)

↑ x= x

norm-env(m) = norm↑(m)

Figure 6.2: Normalisation with an environment

the argument is bound in the environment. Whenever the bound variable is encoun-

tered its value is looked up in the environment. The initial environment↑ is simply the

identity.

Note that it is unnecessary to normalise inside lambdas which are applied. The

β-reduction step will perform the normalisation anyway. We observe that the normal-

isation function can be decomposed into two functions:

• The first functionwnf reduces toweak normal form(Λu-wnf), reducing every-

where except inside unapplied lambdas.

• The second functionnf reduces inside the remaining lambdas to give a normal

form.

Figure 6.3 shows a versionnorm-wnf0without environments.

Reintroducing environments is a bit subtle. The problem is that we need to record

the fact that variables must eventually be substituted for inside a lambda, without ac-

tually performing the substitution. The solution is to useclosures[Lan64], which are



6.2. A spectrum of normalisation algorithms 183

wnf : Λu→ Λu-wnf

wnf(x) = x

wnf(lam(x,m)) = lam(x,m)

wnf(app(m,n)) = app(wnf(m),wnf(n))

app(lam(x,m),n) = wnf(m[x :=n])

app(m,n) = app(m,n)

nf : Λu-wnf→ Λu-nf

nf(x) = x

nf(app(m,n)) = app(nf(m),nf(n))

nf(lam(x,m)) = lam(x,nf(wnf m))

norm-wnf0= nf ◦wnf

Figure 6.3: Normalisation with weak normal forms and no environment

lambda abstractions augmented with an environment:

(Λu) m,n ::= x | app(m,n) | lam(x,m)

(Λuclos) p,q ::= x | app(p,q) | closureρ(x,m)

Using closures we obtain the normalisation algorithm of Figure 6.4. Closures are

produced whenwnf is applied to aλ-abstraction. Theλ-abstraction is augmented with

the current environment. Closures are consumed bynf . The environment of the closure

is used to obtain the weak normal form of the body.

We observe thatnorm-wnf looks rather like a normalisation by evaluation algo-

rithm; wnf plays a similar role to the evaluation function, andn f plays a similar role

to ↓. Bearing in mind that: (i) closures encode higher-order functions, and (ii) our pa-

rameterised semantics forΛu uses higher-order functions to interpretλ-abstractions,

we transform the closures into higher-order functions. This transformation is the in-

verse of closure conversion [App92]. The resulting algorithm appears in Figure 6.5.u
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ρ : V→ Λclos

wnfρ:Λu→ Λuclos

wnfρ(x) = ρ x

wnfρ(lam(x,m)) = closureρ(x,m)

wnfρ(app(m,n)) = app(wnfρ(m),wnfρ(n))

app(closureρ(x,m), p) = wnfρ[x7→p](m)

app(p,q) = app(p,q)

nf : Λuclos→ Λu-nf

nf(x) = x

nf(app(p,q)) = app(nf(p),nf(q))

nf(closureρ(x,m)) = lam(x,nf(wnfρm))

↑ x= x

norm-wnf(m) = nf(wnf↑(m))

Figure 6.4: Normalisation with weak normal forms and closures

ranges over~Λu-ne� and f ranges over functions.

We have renamedwnf(·) as~ ·�, andnf as↓. Note that, unlike closures, higher

order functions do not include the name of the bound variable — hence the introduction

of the fresh variablex in ↓. We could embed the name in the semantics, but then it

would not modelα-conversion.

norm-nbe′ is indeed a normalisation by evaluation algorithm. Expressed using the

parameterised semantics of Figure 2.11 it becomes:
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~Λu� ' ~Λu-ne�+ (~Λu�→ ~Λu�)

~Λu-ne� ' V + (~Λu-ne�×~Λu�)

ρ : V→ ~Λu�

~ ·�ρ : Λ→ ~Λu�

~ x�ρ = ρ x

~ lam(x,m)�ρ = λv.~m�ρ[x7→v]

~app(m,n)�ρ = app(~m�ρ,~n�ρ)

app( f , s) = f s

app(u, s) = (u, s)

↓ : ~Λu�→ Λ-nf

↓ x= x

↓ (u, s) = app(↓ u,↓ s)

↓ f = lam(x,↓ f x), x fresh

↑ x= x

norm-nbe′(m) =↓ (~m�↑)

Figure 6.5: Intensional NBE with a higher-order semantics for neutral terms
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~Λu� ' ~Λu-ne�+ (~Λu�→ ~Λu�)

~Λu-ne� ' V + (~Λu-ne�×~Λu�)

lam( f ) = f

app( f , s) = f s

app(u, s) = (u, s)

↓ : ~Λu�→ Λ-nf

↓ x= x

↓ (u, s) = app(↓ u,↓ s)

↓ f = lam(x,↓ f x) (x fresh)

↑ x= x

norm-nbe′(m) =↓ (~m�↑)

whereu ranges over~Λu-ne� and f ranges over functions.

This is rather close to the normalisation by evaluation algorithms in the rest of this

thesis. The main difference is that neutral terms have a higher-order semantics, rather

than being interpreted as themselves. We now change the interpretation of neutral

terms to be:

~Λu-ne� ' V + (~Λu-ne�×Λu)

and move the call↓ s insideapp. Note that↓ has become the identity on neutral terms.

Also note that~Λu-ne� is now isomorphic toΛu-ne, so we can simply interpret neutral

terms as themselves. This gives the standard normalisation by evaluation algorithm of

Figure 4.3:
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~Λu� ' Λu-ne+ (~Λu�→ ~Λu�)

lam( f ) = f

app( f , s) = f s

app(u, s) = app(u,↓ s)

↓ : ~Λu�→ Λu-nf

↓ u= u

↓ f = lam(x,↓ f x) (x fresh)

↑ x= x

norm-nbe(m) =↓ (~m�↑)

whereu ranges overΛu-ne and f ranges over functions. We now have a spectrum

of normalisation algorithms forβ-reduction onΛu-terms ranging fromnorm-naiveto

norm-nbe.

6.3 Obtaining the results

6.3.1 Benchmark programs

We use several ML source programs for benchmarking. The first five benchmarks are

demos distributed with SML.NET.

• sort simply sorts a list of integers using quicksort (∼ 70 lines of ML code).

• xq is an interpreter for an XQuery-like language for querying XML documents

(∼ 1,300 lines of ML code).

• mllex is a port of SML/NJ’s ML-Lex utility (∼ 1,400 lines of ML code).

• raytrace is a port to SML of the winning entry from the Third Annual ICFP

Programming Contest (∼ 2,500 lines of ML code).
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• mlyacc is a port of SML/NJ’s ML-Yacc utility (∼ 6,200 lines of ML code).

The remaining benchmarks are much larger.

• hamlet is Andreas Rossberg’s SML interpreter (∼ 20,000 lines of ML code).

• bootstrap is SML.NET compiling itself (∼ 80,000 lines of ML code).

We shall give the times (in milliseconds) for normalising theΛMIL term for each

ML program, where the normalisation algorithms have been compiled under both

SML/NJ and under MLton.

6.3.2 Interfacing with SML.NET

SML.NET has an extensible interactive environment for coordinating the compilation

of programs. It includes amakecommand which compiles an ML program. We

have adapted themakecommand to create a newmakemilcommand. Themakemil

command uses the frontend to generate MIL code which is then normalised. The

choice of which normalisation algorithms to perform and the value of various other

parameters is configurable through the interactive environment. One of the parameters

makemil.factorspecifies a repeat factor for normalisation. For some of the smaller ex-

amples it is necessary to set this to a value higher than one in order for the timing to

be long enough to be measured accurately. The timing is performed using SML.NET’s

built-in timing mechanism, which is normally used for reporting compile times.

6.3.3 Intensional versus extensional normalisation by evaluation

It would have been interesting to collect and analyse comprehensive results for both

intensional and extensional variants of normalisation by evaluation. However, due to

time constraints this was not possible; instead, we have chosen to focus on intensional

variants of normalisation by evaluation. Some of the reasons for choosing intensional

over extensional normalisation by evaluation are:

• η-expansion does not terminate for recursive types.

• It is not generally desirable to performη-expansion in a compiler.
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• If desired,η-reduction can be easily added to intensional normalisation by eval-

uation algorithms.

• Extensional normalisation by evaluation with fixed constants for unknowns de-

pends on building type-inference into the semantics. This is not difficult to do in

principle, but we have not implemented such an algorithm.

6.4 Absorbing values for unknowns

Following Chapter 5 we begin by recording results for normalisation with absorbing

values for unknowns. The normalisation problem is an intensional version of the one

described in§5.3. In order to try to reduce the amount of the term which is designated

unknown, it is monomorphised before being normalised. We record only the time

taken for normalisation. Unfortunately the compiler’s monomorphisation phase also

performs some reductions which could be performed by the normalisation algorithms.

Because of this, and the fact that absorbing normalisation is not semantics-preserving,

we shall treat the results of this section with some caution.2

The normalisation algorithms correspond to those of§6.2 extended toΛMIL.

• naive∗ is a basic applicative-order normalisation algorithm.

• env∗ uses environments.

• wnf∗ uses closures.

• nbe∗ uses normalisation by evaluation with the continuation monad.

Table 6.1 and Table 6.2 show the normalisation times using absorbing values for

unknowns under SML/NJ and MLton. A chart of the results appears in Figure 6.6.

These results show that simply using an environment invariably leads to an order

of magnitude speed-up over the naı̈ve algorithm. Normalising via weak normal form,

2 The primary reason for doing the tests with absorbing values at all is that they offer a quick (and
somewhat dirty) way of checking that normalisation by evaluation is competitive with other algorithms.
If normalisation by evaluation were not as fast as a naı̈ve algorithm, in this relatively simple case, then
it would probably not have been worth pursuing further.
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Table 6.1: Normalisation times using absorbing values under SML/NJ

(ms) naive∗ env∗ wnf∗ nbe∗

sort 111 1.13 0.44 0.90
xq 452 2.92 1.63 3.29
mllex 371 2.90 1.40 2.40
raytrace 779 4.46 1.97 3.77
mlyacc 2223 10.61 5.50 11.81
hamlet 5056 13.92 6.81 11.71
bootstrap 88846 85.13 68.12 142.93

Table 6.2: Normalisation times using absorbing values under MLton

(ms) naive∗ env∗ wnf∗ nbe∗

sort 54 1.17 0.30 0.33
xq 176 2.65 0.78 1.15
mllex 195 2.47 0.59 0.76
raytrace 310 3.44 0.69 0.98
mlyacc 906 6.57 2.45 4.05
hamlet 1792 9.71 2.10 3.30
bootstrap 14360 27.23 11.61 21.23
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with environments and closures, is also of some benefit, but not as much as we might

expect. Thenbe∗ algorithm is actually slightly slower thanwnf∗, and even sometimes

slower thanenv∗. We conjecture that the results are biased towardsenv∗ because the

pre-processing phase removes a large amount of redundant code, and this is one of the

problemswnf∗ (andnbe∗) address.

6.5 Fixed constants for unknowns

For the rest of our tests we use fixed constants for unknowns. This preserves the

semantics, and allows for many more reductions than absorbing normalisation. No

preprocessing is performed, but the raw MIL term generated by the frontend is fed into

the normalisation algorithm.

6.5.1 Choosing an interpretation for computations

We now compare the performance of normalisation by evaluation algorithms using

different interpretations for computations. The normalisation problem is essentially

that of§5.4. It is extended slightly in that+.βi-reduction is performed. This is an easy

extension. However, adding+.T.CC-reduction as well is considerably more complex.

We do this in§6.5.3. We compare the normalisation by evaluation algorithms with a

normalisation algorithmwnf which uses closures.

• nbec uses delimited continuations.

• nbes uses a state cell to store a list of bindings.

• nbef uses a state cell to store a functional representation of a list of bindings.

• nbemc uses the continuation monad with answer type computation terms.

• nbems uses an accumulation monad over a list of bindings.

• nbem f uses an accumulation monad over a functional representation of a list of

bindings.
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Table 6.3: Normalisation times for different interpretations of computations

(ms) SML/NJ MLton

wnf 2993 350
nbec 2913 143186
nbes 2980 391
nbef 2749 370
nbemc 2980 370
nbems 2809 400
nbem f 2950 391
nber 2783 390

• nber uses higher-order rewriting to performT.T.CC-reduction. This is the algo-

rithm one obtains by ‘refunctionalising’wnf.

For this test we use thehamlet benchmark. The results appear in Table 6.3. With

one exception, the results are strikingly similar. Excluding delimited continuations

under MLton, the choice of interpretation for computations does not significantly affect

the normalisation time. Furthermore, the normalisation by evaluation algorithms take

about the same time aswnf.

It is not particularly surprising that delimited continuations are so slow under

MLton, as it was not designed with first-class continuations in mind. In contrast, the

design of SML/NJ was strongly influenced by work on continuations [App92], and

call/cc was a natural extension.

Grobauer and Yang [GY99] describe a slight modification of TDPE in which one

can remove some calls to reset. They use this modification to obtain monomorphically-

typed instances of shift and reset, which enables them to perform the Second Futamura

transformation on their TDPE algorithm. We tried applying their technique tonbec, but

it had no discernible effect on the performance.
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6.5.2 Comparing normalisation by evaluation against other algo-

rithms

Now we compare the performance of normalisation by evaluation with other normal-

isation algorithms across all of our benchmarks. We chosenbef , as it performs well

under both SML/NJ and MLton. We could just as well have chosen any of the other

normalisation by evaluation algorithms apart fromnbec. In addition townf we have

applicative-order normalisation algorithms:naive, which does not use environments;

andenv, which does.

The algorithmnaive is so slow that we omit results for it. Even on thesort

benchmark it did not terminate after our threshold of 106 milliseconds. The results for

SML/NJ appear in Table 6.4 and those for MLton appear in Table 6.5. Thebootstrap

benchmark takes longer than 106 milliseconds, even with the more sophisticated norm-

alisation algorithms. Figure 6.7 shows a chart of the results.

The algorithmenv is typically several times slower thanwnf andnbef . The al-

gorithmswnf andnbef are roughly the same speed on all the benchmarks. This is

encouraging because it indicates that normalisation by evaluation is indeed fast com-

pared with other normalisation algorithms. It performs roughly the same as an opti-

mised normalisation algorithm. It also indicates that both the compilers are doing a

good job of compiling higher-order representations.

We believe that the long normalisation times forbootstrap are due to the blow-up

in code size caused by unrestricted inlining. Even the smallerhamlet example gives

an order of magnitude increase in the size of the target MIL as compared with the

source. This might be partially alleviated by removing some redundancy as suggested

in §5.7.2. Alternatively, the blow-up can be eliminated by using shrinking reductions

as described in Chapter 7, but this gives a very different flavour of algorithm to the

normalisation by evaluation algorithms discussed so far.

Remark Because SML.NET is a whole program compiler, it always includes the ba-

sis library in the source MIL term; so even small ML programs translate to a relatively

large MIL term. The vast majority of our simplest benchmark,sort, is just the basis

library. However, most of the basis is not used. The hope would be that most of the
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Table 6.4: Normalisation times using fixed constants under SML/NJ

(ms) env wnf nbef

sort 131 95 115
xq 932 206 197
mllex 8212 861 860
raytrace 874 497 463
mlyacc 4137 802 991
hamlet 17335 2993 2749
bootstrap > 106 > 106 > 106

Table 6.5: Normalisation times using fixed constants under MLton

(ms) env wnf nbef

sort 39 15 19
xq 133 44 44
mllex 805 121 125
raytrace 101 118 121
mlyacc 501 135 133
hamlet 2453 350 370
bootstrap > 106 > 106 > 106
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Table 6.6: Normalisation times for sums

(ms) wnf+ nbe+c nbe+s nbe+r
sort (SML/NJ) 779 725 1953 648
xq (SML/NJ) 1292 1152 4938 1051
sort (MLton) 143 3055 781 104
xq (MLton) 230 5398 1953 167
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Figure 6.8: Normalisation times for sums

source term is immediately discarded (there is no point in optimising dead code). In-

deed, not reducing inside lambdas (as in the closure-based normalisation algorithms,

and the normalisation by evaluation algorithms) achieves this aim. This is reflected in

the benchmarks that use fixed constants.

6.5.3 Sums

We have extended some of the algorithms of the previous section to perform+.T.CC-

reduction as described in§4.5 and§5.5.

• wnf+ is an extension ofwnf which performs+.T.CC-reduction.

• nbe+c uses delimited continuations as described in§4.5.2.

• nbe+s uses a single reference cell and a zipper as described in§4.6.
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• nbe+r uses higher-order rewriting to performT.T.CC- and+.T.CC-reduction. It

is a ‘refunctionalised’ version ofwnf+.

As remarked in§5.5, +.T.CC-reduction does, in practice, lead to exponential

growth in the size of terms. Thus, we were only able to obtain results for two of

the benchmarks:sort andxq. The results appear in Table 6.6. Figure 6.8 shows a

chart of the results.

Under SML/NJ the timings forwnf+, nbe+c andnbe+r are roughly the same. Under

MLton the same is true ofwnf+ andnbe+r . Under both SML/NJ and MLtonnbe+s is

slower than the fastest algorithms. This is not surprising given that it does duplicate

some computation. Under MLtonnbe+s is actually faster thannbe+c due to MLton’s

slow implementation of call/cc.

Remark Under both compilers thenbe+r function appears to be slightly faster than

wnf+. This is rather curious given thatwnf+ is a defunctionalised variant ofnbe+r .

However, there is not really enough data, and the difference is not large enough, to be

sure.

6.5.4 Size of terms

In theory unrestrictedβ-reduction could lead to a non-elementary blow-up in the size

of terms. Adding sums and+.T.CC-reduction makes matters even worse, and seems

to be a bigger problem in practice. SML.NET includes a metric for the size of MIL

terms.3 We use this metric to compare the size of terms before and after normalisation.

Roughly, the metric gives one for the size of syntax constructors, one for constants and

zero for variables.

The sizes are shown in Table 6.7 where:

• source is the size of the source term.

• source* is the size of the source term after monomorphisation, where unknown

terms are given size 0.

3This is used internally to decide when to perform certain optimisations such as inlining.



6.6. Obstacles 197

Table 6.7: Size of terms before and after normalisation

(ms) source source* norm norm* norm+

sort 9885 1007 8407 3 243069
xq 13967 2820 17822 55 290007
mllex 14494 3720 125519 18 ?
raytrace 18145 6627 35583 26 ?
mlyacc 24239 6397 96123 194 ?
hamlet 56321 28757 846266 143 ?
bootstrap 152853 140329 ? 866 ?

• norm is the size of the normal form where fixed constants are used for unknowns.

• norm* is the size of the normal form where absorbing values are used for un-

knowns.

• norm+ is the size of the normal form in the presence of+.T.CC.

The entries marked ? indicate where a result was not obtained because the algorithm

did not terminate within the 106 millisecond threshold.

The blow-up due to unrestrictedβ-reduction can be significant. In the case of

hamlet the normalised term is over 15 times larger than the source. As expected,

+.T.CC-reduction has an even more dramatic effect. In the case ofsort the normalised

term is almost 25 times larger than the source term.

As well as showing large increases in size for normalisation with fixed constants for

unknowns, Table 6.7 also illustrates how much information is lost by using absorbing

values for unknowns. In the case ofsort, for instance, the normal form is over 3,000

times smaller than original source term.

6.6 Obstacles

We encountered a number of difficulties in trying to collect accurate results. The first

problem was that the numbers were being recorded under Windows XP. It is not possi-

ble to guarantee that the operating system will not interrupt a process under Windows.

By assigning a high priority to the ML processes, and minimising the number of other
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programs running in the background we were able to reduce interruptions significantly.

We do not believe that, after having taken these precautions, the operating system had

a significant impact on the accuracy of our results.

The second problem was with memory management and, in particular, garbage col-

lection. It is difficult to predict or influence when garbage collection takes place, and

it can have a significant effect on running time. Both SML/NJ and MLton include a

function to force garbage collection to take place. By forcing garbage collection imme-

diately before timing each of our algorithms we were able to improve the consistency

of the timings.

However, we did observe some unusual patterns. To begin with we configured

SML.NET to perform each normalisation algorithm in turn automatically, without re-

quiring any user interaction. Under SML/NJ running each normalisation by evaluation

algorithm in turn leads to each successive algorithm being slightly slower than the

previous one. When the order is changed the same thing happened. Usually MLton

seems to be more predictable, and the times less affected by the order in which the

algorithms are run, or how many times they are run. We did observe one anomaly,

though. We noticed thatnbef was taking about half the time of the other normalisation

by evaluation algorithms. Further investigation revealed that this was only the case if

nbef was run immediately afternbes. Another factor which can make benchmarking

difficult is the complexity of modern hardware. Long pipelines, caches, high memory

latencies and concurrency all affect the predictability of performance. In order to get

more meaningful results from both SML/NJ and MLton we restarted SML.NET for

each timing.

6.7 Summary

We summarise our key results:

• naivetypically performs orders of magnitude slower than algorithms which use

an environment.

• envis typically several times slower thanwnf.
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• For normalisation by evaluation, the choice of interpretation for computations

has little effect on performance — with one notable exception:

• Under MLtonnbec is orders of magnitude slower than the other normalisation

by evaluation algorithms.

• Apart from nbec under MLton, the normalisation by evaluation algorithms are

about the same speed aswnf.

• Under both SML/NJ and MLton,nbe+r is an order of magnitude faster thannbe+s .

• Under SML/NJnbe+c is about the same speed asnbe+r .

• Under MLtonnbe+c is several times slower thannbe+s (presumably because of

MLton’s inefficient implementation of call/cc).

Our main conclusion is that normalisation by evaluation is indeed efficient — com-

paring favourably to optimised rewriting-based normalisation algorithms.

6.8 Normalisation by evaluation by program transfor-

mation

The development of§6.2 suggests that we might derive normalisation by evaluation

algorithms by program transformation. We have actually found this to be a rather use-

ful tool. The idea applies to all of the normalisation problems we have benchmarked

in this chapter. The general pattern is to start with an existing algorithm, which is typ-

ically operationally inspired, and then to apply a few simple program transformations

to obtain a normalisation by evaluation algorithm, with a denotational component.

The key steps, in the case of theλ-calculus and extensions, are: splitting the norm-

alisation function into two stages, introducing environments, and “refunctionalisation”.

As our results show, the final stage is not necessarily an optimisation, so may not al-

ways be of practical interest. However, normalisation by evaluation does provide a

rather powerful framework for reasoning about normalisation and semantics, so the fi-

nal stage is interesting in its own right. As an example, one might start with an existing
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normalisation algorithm which is known to be correct, and then derive a corresponding

normalisation by evaluation algorithm, which is correct by correctness of the program

transformations, from which other semantic (e.g. completeness) and syntactic (e.g.

confluence) properties can then be extracted.
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Shrinking reductions

Theβ-normalisation algorithms we have considered so far have reduced allβ-redexes

in a term. Performingβ-reduction corresponds to inlining. It is well-known that un-

restricted inlining can lead to a large blow-up in the size of terms. Our testing has

shown that this is an issue in practice. For instance the output term from the second

hamlet benchmark of the previous chapter is more than fifteen times the size of the

input. What is more, the worst case time complexity of normalisation in simply-typed

λ-calculus is known to be bad (see§2.8). The failure to obtain results at all for the

secondbootstrap benchmark can be attributed to this.

To solve the problem of normalised terms getting too big, functional language com-

pilers such as SML/NJ and SML.NET perform a restricted form ofβ-reduction in

which terms are guaranteed to decrease in size. Thesimplify transformation performs

suchshrinking reductions. In particular,→.β-redexes are reduced only if the bound

variable has at most one use.

Appel and Jim [AJ97] describe three algorithms for shrinking reductions. The

first ‘näıve’ and second ‘improved’ algorithms both have quadratic worst-case time

complexity, and the third ‘imperative’ algorithm is linear, but requires a mutable rep-

resentation of terms. Appel and Jim did not implement the third algorithm, which does

not integrate easily in a mainly-functional compiler. Both SML/NJ and SML.NET

use the ‘improved’ algorithm, which is reasonably efficient in practice. Neverthe-

less, SML.NET spends a significant amount of time performing shrinking reductions.

We have now implemented a variant of the imperative algorithm in SML.NET, and

201
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achieved significant speedups.

The rest of the chapter is structured as follows. In§7.1 we formalise shrinking re-

ductions for a variant of MIL, and give some normalisation results. In§7.2 we outline

Appel and Jim’s shrinking reduction algorithms. In§7.3 we introduce a graph-based

representation of MIL terms. This supports movement around the term, both through

traversing the underlying tree structure and via connections between variable occur-

rences. In§7.4 we describe in detail our one-pass imperative algorithm for performing

shrinking reductions on MIL terms. Following Appel and Jim this uses an abstract

variant of our graph-based representation. In§7.5 we state and informally justify some

correctness properties for our algorithm. In§7.6 we compare our one-pass algorithm

with the existing shrinking reductions algorithm used in SML.NET. Finally, in§7.7 we

summarise.

7.1 Normalisation for shrinking reductions

For the rest of this chapter we use a slightly modified version of simplified MIL. The

syntax is as follows:

Atoms a,b ::= x | ∗ | c

Values v,w ::= a | pair(a,b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)

Computations m,n, p ::= app(a,b) | letfun f (x)⇐m in n

| val(v) | let x⇐m in n | case a of (x1⇒n1 | x2⇒ n2)

where variables are ranged over byf ,g, x,y,z, and constants are ranged over byc.

The only significant change change is that theletfun construct is now more than just

syntactic sugar for binding a lambda. This allows us to bind recursive as well as non-

recursive functions. Note that exceptions, references and recursive types have been

removed, but the analysis and implementation extends straightforwardly to include

them. Indeed, we have implemented the algorithms described in this chapter in the

actualy SML.NET compiler for the full version of MIL.

We define thesizeof MIL terms |·| as:
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|a| = 1

|proji(a)| = |inji(a)| = 2

|app(a,b)| = |pair(a,b)| = 3

|letfun f (x)⇐m in n| = |m|+ |n|+1

|let x⇐m in n| = |m|+ |n|+1

|val(v)| = |v|+1

|case a of (x1⇒n1 | x2⇒ n2)| = |n1|+ |n2|+2

We say that a reduction is a shrinking reduction if it always reduces the size of terms.

The most important reductions are given by the shrinkingβ-rules:

(→ .β0) letfun f (x)⇐n in m −→ m, f < fv(m)

(→ .β1) letfun f (x)⇐m in C[app( f ,a)] −→ C[m[x :=a]] , f < fv(C[·],m,a)

(T.β0) letval x⇐v in m −→ m, x < fv(m)

(T.βa) letval x⇐a in m −→ m[x :=a]

(×.β) letval y⇐pair(a1,a2) in C[proji(y)]

−→ letval y⇐pair(a1,a2) in C[ai ]

(+.β) letval y⇐ inji(a)
in C[case y of (x1⇒n1 | x2⇒ n2)]

−→ letval y⇐ inji(a) in C[ni [xi :=a]]

We write Rβ for the one-step reduction relation defined by theβ-rules. Thesimplify

transformation also performs commuting conversions. These ensure that bindings are

explicitly sequenced, which enables further rewriting.

(T.CC) let y⇐ (let x⇐m in n) in p

−→ let x⇐m in let y⇐n in p

(→.CC) let y⇐ (letfun f (x)⇐m in n) in p

−→ letfun f (x)⇐m in let y⇐n in p

(+.CC) let y⇐ (case a of (x1⇒n1 | x2⇒ n1)) in m

−→ letfun f (y)⇐m in case a of x1⇒ let y1⇐n1 in app( f ,y1)
| x2⇒ let y2⇐n2 in app( f ,y2)

We writeRCC for the reduction relation defined by the CC-rules, andR for Rβ∪RCC.

Unlike theβ rules, the commuting conversions are not actually shrinking reductions.

However,T.CC and→.CC do not change the size, whilst+.CC gives only a constant

increase in the size.
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An alternative to the+.CC rule is:

(+.CC′) let y⇐case a of (x1⇒n1 | x2⇒ n2) in m

−→ case a of (x1⇒ let y1⇐n1 in m1 | x2⇒ let y2⇐n2 in m2)

wherey1,y2 are fresh,mi =m[y:=yi ]. This rule duplicates the termmand can exponen-

tially increase the term’s size. The+.CC rule instead creates a single new abstraction,

shared across both branches of thecase, though this inhibits some further rewriting.

We writeR′CC for the reduction relation defined by the CC-rules where (+.CC) is re-

placed by (+.CC′), andR′ for Rβ∪R′CC.

Proposition 7.1. R′ is strongly-normalising.

Proof. First, note thatRβ is strongly-normalising asRβ-reduction strictly decreases the

size of terms. We define the measures|·|β for β-reduction:

|a|β = 1

|proji(a)|β = |inji(a)|β = 2

|app(a,b)|β = |pair(a,b)|β = 3

|letfun f (x)⇐m in n|β = |m|β+ |n|β+1

|let x⇐m in n|β = |m|β+ |n|β+1

|val(v)|β = |v|β+1

|case a of (x1⇒n1 | x2⇒ n2)|β =max(|n1|β, |n2|β)+2

and|·|CC for CC-reduction:

|a|CC = 1

|proji(a)|CC = |inji(a)|CC = 2

|app(a,b)|CC = |pair(a,b)|CC = 3

|letfun f (x)⇐m in n|CC = |m|CC+ |n|CC+1

|let x⇐m in n|CC = |m|
2
CC+ |n|CC+1

|val(v)|CC = |v|CC+1

|case a of (x1⇒n1 | x2⇒ n2)|CC =max(|n1|CC, |n2|CC)+2

The lexicographic ordering (|·|β, |·|CC) is a measure forR′-reduction. Each shrinking

β-reduction decreases|·|β, whilst each CC-reduction decreases|·|CC and leaves|·|β un-

changed. �

Proposition 7.2. R is strongly-normalising.

The proof usesR′-reduction to simulateR-reduction. The full details are omitted,

but the idea is that for anyR-reduction a corresponding non-empty sequence ofR′-

reductions can be performed. Thus, given that allR′-reduction sequences are finite,
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all R-reduction sequences must also be finite. The proof is slightly complicated by the

fact that no non-empty sequence ofR′-reductions corresponds with theβ-reduction of

a function introduced by the+.CC rule. A simple way of dealing with this is to count

a+.CC′-reduction as two reductions.

Note thatR-reductions are not confluent. The failure of confluence is due to the

(+.CC) rule. Replacing (+.CC) with (+.CC′) does give a confluent system. Confluence

can make reasoning about reductions easier, but we do not regard failure of confluence

as a problem. In our case, preventing exponential growth in the size of terms is far

more important.

7.2 Previous Work

Appel and Jim [AJ97] considered a calculus which is essentially a sub-calculus of

our simplified MIL 1. In our setting the reductions that their algorithms perform are

equivalent to:→ .β1-, ×.β-, T.β0-, and a restriction of→ .β0-reduction. Appel and

Jim show that their calculus is confluent in the presence of these reductions, and other

‘δ-rules’ satisfying certain criteria.

The reductions rely on knowing the number of occurrences of a particular variable.

The quadratic algorithms store this information in a tableCount mapping variable

names to their number of occurrences. Appel and Jim’s naı̈ve algorithm repeatedly (i)

zeros the usage counts, (ii) performs acensuspass over the whole term to update the

usage counts and then (iii) traverses the term performing reductions on the basis of the

information inCount, until there are no redexes remaining.

The improved algorithm, used in SML/NJ and SML.NET, dynamically updates the

usage counts as reductions are performed. This allows more reductions to be performed

on each pass, and requires a full census to be performed only once. The improved

algorithm is better in practice, but both algorithms have worst-case time complexity

Θ(n2) wheren is the size of the input term.

Appel and Jim’s restricted version of→ .β0-reduction is given by the two dead-

function elimination rules:

1In fact their calculus isn-ary, like the full version of MIL.
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f ax

let be in

appval

pair

Figure 7.1: Pictorial representation oflet x⇐app( f ,a) in val(pair(x, x))

letfun f (x)⇐n in m −→ m, f < fv(m,n)

letfun f (x)⇐C[app( f ,a)] in m −→ m, f < fv(C[·],m)

The fact that reductions are triggered only when thetotal number of occurrences of

a variable is 0 or 1 explains the rather strange form of the dead-function elimination

rules. In SML.NET, separate names are used for recursive and non-recursive occur-

rences of functions, so the unrestricted→ .β0-rule is used.

7.3 A Graph-based Representation

Our imperative algorithm works with a mutable graph representation comprising a

doubly-linked expression tree and a list of pairs of circular doubly-linked lists collect-

ing all the recursive (respectively non-recursive) uses of each variable. Such graphs

can naturally be presented pictorially as shown by the example in Fig. 7.1.

Figure 7.2 shows theβ-reductions for functions in this pictorial form. We find the

pictorial representation intuitively very useful, but awkward to reason with or use in

presenting algorithms. Hence, like Appel and Jim, we will work with a more abstract

structure comprising an expression tree and a collection of maps which capture the

additional graphical structure between nodes of the tree.

The structure of expression trees is determined by the abstract syntax of simplified

MIL. In order to capture mutability we use ML-style references. Each node of the

expression tree is a reference cell. We call the entities which reference cells contain
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x ...f ...c c c
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x ...f ...* * *

(→.β  )
1

Figure 7.2: Graph reductions

objects. Given a reference celll, we write !l to denote the contents ofl, andl := u to

denote the assignment of the objectu to l.

Atoms !a, !b ::= r | ∗ | c

Values !v, !w ::= a | pair(a,b) | proj1(a) | proj2(a) | inj1(a) | inj2(a)

Computations !m, !n, !p ::= app(a,b) | letfun f (x)⇐m in n

| val(v) | let x⇐m in n | case a of (x1⇒n1 | x2⇒ n2)

e ::= v |m d::= e | x | r

where f ,g, x,y,z range over defining occurrences, andr, s, t over uses. For the parent

of the nodee, we writeparent(e). A distinguished sentinel node,root, marks the top

of the expression tree. The objectdead (omitted from the grammar) is used to indicate

a deadnode. If a node is dead then it has no parent. Theroot node is the parent of

the proper expression tree and is always dead. We definechildren(e) of an expression

node to be the set of nodes appearing in !e.

Initially both parentandchildren are entirely determined by the expression tree.

However, in our algorithm we take advantage of theparentmap in order to classify

expression nodes as active or inactive. We ensure that the following invariant is main-

tained: for all expression nodese, either

• e is active:parent(d) = e, for all d ∈ children(e);
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• e is inactive: !(parent(d)) = dead for all d ∈ children(e); or

• e is dead: !e= dead.

We definesplicingas the operation which takes one subtreem and substitutes it in

place of another subtreen. The subtreem is removed from the expression tree and then

reintroduced in place ofn. The parent map is adjusted accordingly for the children of

m. We definesplicing a copyas the corresponding operation which leaves the original

copy of m in place. The operationdqe returns a new node containingq, with parent

root. When embedded in an enclosing nodee[dqe], the parent ofdqe is e. In patterns,

d·e matches against the contents of a node.

Thedef-usemaps abstract the structures used for representing occurrences:

• def(r) gives the defining occurrence of the user.

• non-rec-uses(x) is the set of non-recursive uses of the defining occurrencex.

• rec-uses(x) is the set of recursive uses of the defining occurrencex.

In the real implementation occurrences are held in a pair of doubly-linked circular lists,

such that each pair of lists intersects at a defining occurrence. We find it convenient to

overload the maps to be defined over all occurrences and also define some additional

maps:

non-rec-uses(r) = non-rec-uses(def(r))

rec-uses(r) = rec-uses(def(r)) def(x) = x

occurrences(r) = uses(r)∪{def(r)} uses(r) = non-rec-uses(r)∪ rec-uses(r)

None of these additional definitions affects the implementation.

The graph structure allows constant time movement up and down the expression

tree in the normal way, but also allows constant time non-local movement via the

occurrence lists. For example, consider the dead-function eliminations:

letfun f (x)⇐m in C[letfun g(y)⇐app( f ,y) in n]

−→(→.β0) letfun f (x)⇐m in C[n] −→(→.β0) C[n]
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Figure 7.3: Triggering non-local reductions

where f ,g < f v(C,n), illustrated in Fig. 7.3. After one reduction,g is dead, so its

definition can be deleted, removing the use off . But this use was connected to its

defining occurrence, andf is now dead. The defining occurrence is connected to its

parent, so the new dead-function redex can be reduced.

7.4 A One-pass Algorithm

In contrast to Appel and Jim’s imperative algorithm, the algorithm we have imple-

mented operates in one-pass. Essentially, the one-pass algorithm performs a depth-

first traversal of the expression tree, reducing redexes on the way back up the tree. Of

course, these reductions may trigger further reductions elsewhere in the tree. By care-

fully deactivating parts of the tree, we are able to control the reduction order and limit

the testing required for new redexes. Here is an outline of our one-pass imperative

algorithm:

contract(e) = reduceCCs(e)
deactivate(e)
applycontractto children ofe
reactivate(e)
reduce(e)

reduce(e) = if e is a redex then
reducee in place
perform further reductions triggered by reducinge

The operationreduceCCs(e) performs commuting conversions on the way down

the tree. The order of commuting conversions can have a significant effect on code
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quality, a poor choice leading to many jumps to jumps. We have found that the ap-

proach of doing them on the way down works well in practice (although the contract

algorithm would still be valid without the call toreduceCCs).

reduceCCs(e) = case !eof
(let y⇐e′ in p)⇒

if reduceCC(e, t,e′, p) , ∅ thenreduceCCs(e) else skip
( )⇒ skip

reduceCC(e,y,e′, p) = casee′ of
(letfun f (x)⇐m in n)⇒

splicedlet y⇐n in pe in place ofe′

splicedletfun f (x)⇐m in e′e in place ofe
return{e′}

(let x⇐m in n)⇒
splicedlet y⇐n in pe in place ofe′

splicedlet x⇐m in e′e in place ofe
return{e′}

(case a of (x1⇒n1 | x2⇒ n2))⇒
splicedlet y1⇐n1 in dapp( f ,y1)ee in place ofn1

splicedlet y2⇐n2 in dapp( f ,y2)ee in place ofn2

splicedletfun f (y)⇐ p in dcase a of (x1⇒n1 | x2⇒ n2)ee
in place ofe
return{n1,n2}

( )⇒ return∅

Note that commuting conversions can also be triggered by other reductions. The return

value forreduceCCwill be used in the definition ofreducein order to catch reductions

which are triggered by applying commuting conversions.

deactivate(e) deactivatese: parent(d) is set todead for everyd ∈ children(e).

reactivate(e) reactivatese: parent(d) is set toe for everyd ∈ children(e).

Deactivating nodes on the way down prevents reductions from being triggered

above the current node in the tree. On the way back up the nodes are reactivated, al-

lowing any new redexes to be reduced. Because subterms are known to be normalised,

fewer tests are needed for new redexes. Consider, for example:

let y⇐ (let x⇐m in n) in p −→T.CC let x⇐m in let y⇐n in p
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Because we know thatlet x⇐m in n is in normal form,m cannot be of the form

let(. . . ), letfun(. . . ),case(. . . ) or val(. . . ). Hence, it is not necessary to check whether

let x⇐m in let y⇐n in p is a redex. (Of course,let y⇐n in p may still be a redex,

and indeed exposing such redexes is one of the main purposes of performing CC-

reduction.)

Rather than placing them in a redex set, as in Appel and Jim’s imperative algorithm,

reduce(e) reduces any new redexes created insidee (but none that are created above

e in the expression tree). Ifreduce(e) is invoked on an expression node which is not

a redex, then no action is performed. Thereducefunction also returns a boolean to

indicate whether a reduction took place. As we shall see, this is necessary in order to

detect the triggering of new reductions. We now expand the definition ofreduce.

reduce(e) = case !eof
(letfun f (x)⇐m in n)⇒

if non-rec-uses( f ) = ∅ then
splicen in place ofe
reduceOccs(cleanExp(m))
return true

else ifrec-uses( f ) = ∅ andnon-rec-uses( f ) = { f ′} then
let focus= parent(parent( f ′))
case !focusof
(app( f ′,a)⇒

splicen in place ofe
splicem in place offocus
let (occs, redexes) = substAtom(x,a)
reduceOccs(occs∪cleanExp(a))
reduceRedexes(redexes)
return true

( )⇒ return false
else return false

(let x⇐dval(v)e in n)⇒
if uses(x) = ∅ then

splicen in place ofe
reduceOccs(cleanExp(parent(v)))
return true

else ifv is an atoma then
splicen in place ofe
let (occs, redexes) = substAtom(x,a)
reduceOccs(occs∪cleanExp(parent(a)))
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reduceRedexes(redexes)
return true

else case !v of
(pair(a,b))⇒

if e is fresh then
let redexes= reduceProjections(e, x,a,b,uses(x))
if redexes= ∅ then return false
else

reduceRedexes(redexes)
reduce(e)
return true

else return false
(inji(a))⇒

if e is fresh then
let (occs, redexes) = reduceCases(e, x, i,a,uses(x))
if redexes= ∅ then return false
else

reduceOccs(occs)
reduceRedexes(redexes)
reduce(e)
return true

else return false
( )⇒ return false

(let y⇐e′ in p)⇒
let redexes= reduceCC(e,y,e′, p)
for e′′ ∈ redexesdo reduce(e′′)
return true

( )⇒ return false

The first case coversβ-reductions on functions, with two sub-cases:

• (→ .β0) If the function is dead, its definition is removed, the continuation spliced

in place ofe, and any uses within the dead body deleted, possibly triggering new

reductions.

• (→ .β1) If the function has one occurrence, which is non-recursive, it is inlined.

The continuation ofe is spliced in place ofe, the function body is inlined with the

argument substituted for the parameter, and the argument deleted. Substitution

may trigger further reductions.
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The second case coversβ-reductions on computations as well as some instances of

β-reduction on products and sums. It is divided into four sub-cases.

• (T.β0) If a value is dead, then its definition can be removed. The continuation is

spliced in place ofe. Then the uses inside the dead function body are deleted,

possibly triggering new reductions.

• (T.βa) If a value is atomic, then it can be inlined. First the continuation ofe is

spliced in place ofe. Then the atom is substituted for the bound variable. Finally

the atom is deleted.

• (×.β) If a pair is bound to a variablex, and this is the first timeehas been visited,

then any projections ofx are reduced. If this is the first timee has been visited,

then we say thate is fresh. In practice freshness is indicated by setting a global

flag. For efficiency, new projections will subsequently be reduced as and when

they are created.

• (+.β) This follows exactly the same pattern as×.β-reduction. The only difference

is that the reduction itself is more complex, so can trigger new reductions in

different ways.

The third case deals with commuting conversions.

The algorithm ensures that the current reduction is complete before any new reduc-

tions are triggered. Potential new redexes created by the current reduction are encoded

and executed after the current reduction has completed.

reduceUp(e) reduces aboveeas far as possible:

reduceUp(e) = if reduce(e) thenreduceUp(parent(e)) else skip

reduceRedexesreduces a set of expression redexes, whilstreduceOccsreduces a set of
occurrence redexes:

reduceRedexes(redexes) = for eache∈ redexesdo reduceUp(e)
reduceOccs(xs) = for eachr ∈ xsdo

if isSmall(r) thenreduceUp(parent(def(r))) else skip
isSmall(r) = r < rec-uses(r) and|non-rec-uses(r)| ≤ 1

cleanExp(e) removes all occurrences and subexpressions insidee and returns a set of

occurrence redexes.
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cleanExp(e) = case !eof
(dead)⇒ return∅
(c)⇒

e := dead
return∅

(∗)⇒
e := dead
return∅

(r)⇒
e := dead
returndeleteUse(r)

(letfun f (x)⇐m in n)⇒
e, f , x := dead
returncleanExp(m)∪cleanExp(n)

(app(a,b))⇒
e := dead
returncleanExp(a)∪cleanExp(b)

. . . (similar for the other MIL constructs)

Remark Marking nodes as dead ensures that unnecessary work is not done on dead

redexes. A crucial difference between the imperative algorithms and the improved

quadratic one is that reduction in the former immediately detects new redexes, whereas

the improved quadratic algorithm only detects new (non-local) redexes on a subsequent

traversal.

deleteUse(r) removesr and returns a set of 0 or 1 occurrence redexes:

deleteUse(r) =
if r is already dead then return∅
let s= nextOcc(r)
uses(s) := uses(s)−{r}
return{s}

nextOcc(r) =
let x= def(r)
if r is non-recursive then returns∈ (non-rec-uses(x)∪{x})−{r}
else ifr is recursive then returns∈ (rec-uses(x)∪{x})−{r}

reduceProjections(e, x,a1,a2, xs) reduces projections indexed byxs. e is an expression

node of the formletval x⇐pair(a1,a2) in m, andxs is a subset of the uses ofx.
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reduceProjections(e, x,a1,a2, xs) =
let redexes:= ∅
for eachs∈ xsdo

let focus= parent(parent(s))
case !focusof
(proji(s))⇒

splice a copy ofai in place offocus
redexes:= redexes∪{parent(focus)}

( )⇒ skip
returnredexes

All the projections in which a member ofxs participates are reduced, and a set of

expression redexes is constructed. Each projection can trigger the creation of a new

T.βa-redex. For instance, consider:

letval x⇐pair(a,b) in letval y⇐proj1(x) in m

−→×.β letval x⇐pair(a,b) in letval y⇐a in m

−→T.βa letval x⇐pair(a,b) in m

reduceCases(e, x, i,a, xs) reduces case-splits indexed byxs. e is an expression node of

the formletval x⇐ inji(a) in m, andxs is a subset of the uses ofx.

reduceCases(e, x, i,a, xs) =
let occs:= ∅
let redexes:= ∅
for eachs∈ xsdo

let focus= parent(parent(s))
case !focusof
(case s of (x1⇒n1 | x2⇒ n2))⇒

occs:= occs∪cleanExp(n3−i)
deleteUse(s)
spliceni in place offocus
let (occs′, redexes′) = substAtom(xi ,a)
occs:= occs∪occs′

redexes:= redexes∪ redexes′∪{parent(focus)}
x1, x2 := dead

( )⇒ skip
return (occs, redexes)

The structure ofreduceCasesis similar to that ofreduceProjections. However, it is

slightly more complex because a single+.β-reduction inlines multiple atoms, splices
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one branch of acase and discards the other. Discarding the branch which is not taken

gives a set of occurrence redexes as well as the expression redexes.

substAtom(x,a) substitutes the atoma for all the uses of the defining occurrencex. It

returns a pair of a set of occurrence redexes and a set of expression redexes.

substAtom(x,a) = case (!a) of
(r)⇒ substUse(x, r)
( )⇒

for eachr ∈ uses(x) do
splice a copy ofa in place ofr
x := dead

return (∅,∅)

This is straightforward for non-variable atoms, as it cannot generate new redexes. In

contrast, substituting a variable can trigger×.β- and+.β-reductions.

substUse(x, r) substitutesr for all the uses of the defining occurrencex.

substUse(x, r) =
let xs= uses(x)
if r ∈ rec-uses(r) then

rec-uses(r) := rec-uses(r)∪ xs
else ifr ∈ non-rec-uses(r)

non-rec-uses(r) := non-rec-uses(r)∪ xs
x := dead
let e= parent(def(r))
case !eof
(letval y⇐dpair(a1,a2)e in m)⇒

for eachs∈ xsdodef(s) := def(r)
let redexes= reduceProjections(e,y,a1,a2, xs)
return (∅, redexes)

(letval y⇐dinji(ai)e in m)⇒
for eachs∈ xsdodef(s) := def(r)
let (occs, redexes) = reduceCases(e,y, i,ai , xs)
return (occs, redexes)

( )⇒ return (∅,∅)

Substitution is implemented by merging two sets together. Concretely, this

amounts to the constant-time operation of inserting one doubly-linked circular list in-

side another. In addition, ifx is bound to a pair, then projections are reduced, or ifx is

bound to an injection, then case-splits are reduced.



7.5. Analysis 217

7.5 Analysis

There are two obvious operations mapping terms from the functional to the imperative

representations, which we callmutify and demutify, respectively. We have a semi-

formal argument for the following:

Proposition 7.3. Let e be a term and e′ = (demutify◦contract◦mutify)(e). Then e′ is

a normal form for e.

The argument uses the invariants of§7.3, plus the invariant that the children of

the current node are in normal form. When new redexes are created, this invariant is

modified such that subterms may contain redexes, but only those stored in appropriate

expression redex sets or occurrence redex sets. It is reasonably straightforward to

verify that the operations which update the graph structure do in fact correspond to

MIL reductions. Whencontractterminates, all the redex sets are empty and the term

is in normal form.

7.5.1 Complexity without Commuting Conversions

Although our approach of performing CCs on the way down the tree works well in

practice, the worst case time complexity is still quadratic in the size of the term. We

define a version of our algorithmcontractβ which does not perform commuting con-

versions. This is obtained simply by removing the call toreduceCCsfrom contract,

and the test for commuting conversions fromreduce.

Proposition 7.4. contractβ(e) is linear in the size of e.

The argument is very similar to that of Appel and Jim [AJ97] for their imperative

algorithm. Most of the operations take constant time and shrink the size of the term; the

exception is substitution. In the case where a non-variable is substituted for a variable

x, the operation is linear in the number of uses ofx. But it is only possible to subsitute

a non-variable for a variable once, therefore the total time spent substituting atoms is

linear. In the case where a variabley is substituted for a variablex, the operation is

constant, providingy is not bound to a pair or an injection. Ify is bound to a pair or an
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injection, then the operation is linear in the number of uses ofx. Again, once bound to

a pair or an injection, a variable cannot be rebound, so the time remains linear.

Crucially, this argument relies on the fact that back pointers from uses back to

defining occurrences are maintained only for pairs and injections. In our SML.NET

implementation we found that maintaining back pointers fromall uses back to defining

occurrences does not incur any significant cost in practice. Even when bootstrapping

the compiler (∼ 80,000 lines of code) there was no discernible difference in compile

time. Maintaining back pointers also allows us to perform various other rewrites in-

cludingη-reductions. In the presence of all backpointers, optimising the union opera-

tion to always add the smaller list to the larger one guaranteesO(n log n) behaviour.

Using an efficientunion-find[CLR90, GI91] algorithm would restore essentially linear

complexity.

7.5.2 Complexity with Commuting Conversions

Näıvely reducing commuting conversions can give quadratic behaviour. For instance,

consider the following (innermost first) reductions:

let xk⇐ (let xk−1⇐ . . . let x1⇐m1 in m2 in . . .mk) in n

−→∗ (S(k−1) T.CC-reductions)

let xk⇐ (let x1⇐m1 in . . . let xk−1⇐mk−1 in mk) in n

−→∗ (k−1 T.CC-reductions)

let x1⇐m1 in . . . let xk⇐mk in n

The total number of reductions is given by the recurrence:S(1)= 0,S(k) = S(k−

1)+ k−1. This has solutionS(k) = k(k−1)/2. Assuming each of themis andn have

constant size, thenk is linear in the size of the term. Hence the number of reductions

is quadratic in the size of the term. If thecontract function directly performed these

reductions, then it would also be quadratic.

Another problem is that+.CC-reductions can introduce ‘useless functions’:
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let z⇐ (let y⇐ (case a of (x1⇒n1 | x2⇒ n2)) in m) in p

−→∗ letfun f (y)⇐m
in let z⇐case a of x1⇒ let y1⇐n1 in app( f ,y1)

| x2⇒ let y2⇐n2 in app( f ,y2)
in p

−→∗ letfun f (y)⇐m
in letfun g(z)⇐ p

in case a of x1⇒ let y1⇐n1 in let z1⇐app( f ,y1) in app(g,z1)
| x2⇒ let y2⇐n2 in let z2⇐app( f ,y2) in app(g,z2)

The functiong is useless in the sense that it is always applied to the result of

applying f to an argument. One might hope thatg be composed withf . If we change

the reduction order, such that the commuting conversions are performed outermost

first, then it is:

let z⇐ (let y⇐ (case a of (x1⇒n1 | x2⇒ n2)) in m) in p

−→∗ let y⇐ (case a of (x1⇒n1 | x2⇒ n2)) in let z⇐m in n

−→∗ letfun f (y)⇐ let z⇐m in p
in case a of x1⇒ let y1⇐n1 in app( f ,y1)

| x2⇒ let y2⇐n2 in app( f ,y2)

Fortunately, given the limited ways in which commuting conversions can trigger

other reductions, the full imperative algorithm can get away with performing commut-

ing conversions outermost first, with an initial call toreduceCCs(e) before recursively

contractinge’s children. The operationreduceCCs(e) repeatedly checkse to see if it

is a CC-redex. If it is, then it performs the commuting conversion, and iterates. If not,

then it returns.

The previous example of quadratic behaviour due to commuting conversions be-

comes linear with this reduction strategy. However, quadratic behaviour can still arise

through inlining functions that trigger further commuting conversions:

letfun fk(xk) ⇐ let yk⇐app(g, xk) in app(g,yk)

fk−1(xk−1) ⇐ let yk−1⇐app( fk, xk−1) in app(g,yk−1)

...

f1(x1) ⇐ let y1⇐app( f2, x1) in app(g,y1)

in app( f1,a)
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contract takes quadratic time to reduce this term. In order to get a linear number

of reductions, one would have to inline all the functions first, before performing any

commuting conversions.

It is unfortunate that CCs and inlining conspire to produce quadratic complexity.

Sabry and Wadler’s study of CPS translations offers an interesting insight [SW97].

In their variant of Moggi’s computational lambda calculusλc∗∗, terms are in CC-

normal form by definition, andβ-reduction of an application is combined with CC-

normalisation of its enclosing let-expression: adopting this more refined notion of re-

dex may allow us to achieve linear complexity.

7.5.3 Shrinking reductions as normalisation by evaluation

We can view our imperative algorithm as an instance of normalisation by evaluation.

If, as in Proposition 7.3, we state the problem as performing normalisation on the

functional representation, then we obtain the normalisation functionnorm:

norm= demutify◦contract◦mutify

It turns out thatcontractandmutify can be quite naturally composed. Then we can

define:

~ ·� = contract◦mutify

↓ = demutify

to give the usual characterisation of normalisation by evaluation. The object language

is the functional representation and the residualising semantics is given by the nor-

malised imperative representation. This is not entirely satisfactory as an instance of

normalisation by evaluation, as the semantics does not seem very natural — it is rather

close to being a term model. However, it seems unlikely that there is a more natural

denotational semantics for shrinking reductions. The process of normalisation in such

a system is inherently rather syntactic in nature.
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Table 7.1: Total compile time

(seconds) SML/NJ MLton
simplify mcd simplify mcd

sort 2.11 3.47 0.46 0.52
xq 13.13 14.36 2.46 1.76
mllex 11.64 15.97 2.39 2.03
raytrace 18.14 23.95 4.30 3.03
mlyacc 57.25 43.77 10.05 6.04
hamlet 218.71 155.82 43.70 26.22
bootstrap 1311.01 1189.60 289.24 221.18

7.6 Performance

We have extended our one-pass imperative algorithmcontract to the whole of MIL

and compared its performance with the current implementation ofsimplify. Replacing

simplify with contract is not entirely straightforward, as all the other phases in the

pipeline are written to work on a straightforward immutable tree datatype for terms,

which is incompatible with the representation used incontract. We therefore make

use ofmutify anddemutifyto change representation before and aftercontract. Since

bothmutifyanddemutifycompletely rebuild the term, they are very expensive – calling

mutifyanddemutifygenerally takes longer thancontract itself. Ideally, of course, all

the phases would use the same representation. However, using two representations

allowed us to compare the running times ofsimplifyandcontracton real programs.

We use the benchmark programs of Chapter 6. Table 7.1 compares the total compile

times of the benchmark programs for the existing compiler, usingsimplify, and for the

modified one, usingdemutify◦ contract◦ mutify. Each benchmark was run under two

different versions of SML.NET. One was compiled under SML/NJ and the other under

MLton. Benchmarks were run on a 1.4Ghz AMD Athlon PC equipped with 512MB of

RAM and Microsoft Windows XP SP1.

On small benchmarks, the current compiler is faster. But for medium and large

benchmarks, we were surprised to discover thatdemutify◦ contract◦ mutify is faster

thansimplify, even though much of the time is spent in useless representation changes.

Table 7.2 and Table 7.3 give the total time spent performing shrinking-reductions
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Table 7.2: Shrinking reduction time under SML/NJ

(seconds) Total Breakdown ofmcd
simplify mcd contract mutify demutify

sort 1.00 2.00 0.70 0.87 0.43
xq 5.86 5.98 3.61 1.90 0.47
mllex 6.09 7.49 3.16 3.31 1.02
raytrace 9.32 11.76 5.44 5.16 1.17
mlyacc 33.16 19.96 8.60 9.42 1.94
hamlet 84.49 56.36 21.53 26.24 8.59
bootstrap 439.16 282.38 100.11 129.60 52.67

Table 7.3: Shrinking reduction time under MLton

(seconds) Total Breakdown ofmcd
simplify mcd contract mutify demutify

sort 0.22 0.11 0.07 0.02 0.02
xq 1.46 0.54 0.13 0.35 0.06
mllex 1.21 0.57 0.23 0.27 0.07
raytrace 2.13 0.65 0.19 0.37 0.09
mlyacc 5.63 1.26 0.37 0.68 0.21
hamlet 23.27 5.54 2.77 1.85 0.92
bootstrap 107.17 36.60 18.41 11.82 6.38

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

2.00

sort xq mllex raytrace mlyacc hamlet bootstrap

tcontract / tsimplify (SML/NJ)
mcd / simplify (SML/NJ)
contract / simplify (SML/NJ)
tcontract / tsimplify (MLton)
mcd / simplify (MLton)
contract / simplify (MLton)

Figure 7.4: Comparingcontractwith simplify
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in the current compiler (simplify), in the modified compiler (mcd), and a breakdown

of mcd into the total time spent inmutify, contractanddemutify. Figure 7.4 gives a

graphical comparison.tcontractis the total compile time using the modified compiler,

and tsimplify is the total compile time using the existing compiler. Under SML/NJ,

a decrease of nearly 30% in the total compile time is seen in some cases. Under

MLton, there is a decrease of up to 40% in total compile time. This is a significant

improvement, given that in the existing compiler only around 50% of compile time

is spent performing shrinking reductions. Comparing the actual shrinking reduction

time, contract is up to four times faster thansimplify under SML/NJ, and up to 15

times faster under MLton. The level of improvement under MLton is striking. Our

results suggest that MLton is considerably better than SML/NJ at compiling ML code

which makes heavy use of references.

As an exercise, one of the other transformationsdeunit, which removes redundant

units was translated to use the new representation. Thecontractfunction is called be-

fore and afterdeunit, so this enabled us to eliminate one call todemutifyand one call to

mutify. This translation was easy to do and did not change the performance ofdeunit.

We believe that it should be reasonably straightforward, if somewhat tedious, to trans-

late the rest of the transformations to work directly with the mutable representation.

7.7 Summary

We have implemented and extended Appel and Jim’s imperative algorithm for shrink-

ing reductions and shown that it can yield significant reductions in compile times rel-

ative to the algorithm currently used in SML/NJ and SML.NET. The improvements

are such that, for large programs, it is even worth completely changing representations

before and after thesimplifyphase, but this is clearly suboptimal. The results of this

experiment indicate that it would be worth the effort of rewriting some of the other

phases of the compiler to use the graph-based representation.
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Conclusion

8.1 Summary

We have successfully applied normalisation by evaluation for normalising non-trivial

terms in a non-trivial language MIL. The benchmarks confirm that normalisation by

evaluation is faster than naı̈ve normalisation algorithms, and is competitive with care-

fully optimised algorithms.

We have implemented a spectrum of normalisation algorithms for MIL ranging

from a simple recursion over the structure of terms to normalisation by evaluation.

These are related by straightforward program transformations. New features can be

added to one algorithm and propagated to others by taking advantage of program trans-

formations.

The computational metalanguage is at the core of MIL. We have described a gen-

eral technique based on Girard-Tait reducibility for proving strong normalisation for

the computational metalanguage and related calculi. Introducing frame stacks gives

a uniform and effective way to handle normalisation with commuting conversions, as

from computation types, sum types, and similar.

We have explored the space of normalisation by evaluation algorithms for a range

of λ-calculus variants. In doing so we have exposed normalisation by evaluation as a

practical implementation tool for normalisation and, in particular, compiler optimisa-

tion. We suggest that even if an implementation does not directly use normalisation
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by evaluation, it can be a useful tool in the design and analysis of normalisation algo-

rithms. Normalisation by evaluation provides a direct connection between normalis-

ation and denotational semantics.

Following a different path, we have implemented a much improved shrinking re-

ductions algorithm in SML.NET. This significantly reduces compilation time, and

takes advantage of a graph-based representation for terms. As far as we are aware

this is the first implementation of a graph-based shrinking reductions algorithm in a

production compiler.

8.2 Conclusions

Our main conclusions are as follows:

• Normalisation by evaluation is competitive with optimised rewriting-based

normalisation algorithms, and is a practical tool for performing normalisation.

• Even though the worst case time-complexity ofβ-decidability, and hence norm-

alisation, is given by a non-elementary function, unrestrictedβ-reduction is sur-

prisingly tractable on medium sized examples such ashamlet.

• Normalisation by evaluation is not necessarily ideal for use in a compiler, be-

cause it is best suited to performing unrestrictedβ-reduction, whereas compilers

usually restrictβ-reduction to some degree.

• Despite some doubts expressed in the literature, either a single state cell, or a

non-deterministic accumulation monad can be used to implement normalisation

by evaluation for sums, without the need for continuations or first-class control

operators.

• The graph-based shrinking reductions algorithm is both feasible and desirable

for implementation in a full compiler. It offers a significant speed-up and a more

direct representation than census-based algorithms.
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8.3 General observations

We now make some more general observations:

• Derivation by program transformation is a useful technique. Recent work by

Danvy and his students has promoted the idea of relating operational and deno-

tational worlds by way of a series of elementary program transformations such

as defunctionalisation and CPS transformations. Our use of program transforma-

tions, in order to derive the spectrum of normalisation algorithms in Chapter 6,

follows a similar pattern. We suspect that this approach might offer the most

perspicuous explanation of normalisation by evaluation to those unfamiliar with

the area.

• Delimited continuations are useful. It seems that many of our normalisation

by evaluation programs are most naturally expressed using the shift and reset

control operators — particularly when sums are involved. We have shown that

it is also possible to use state instead, though then the code becomes harder to

understand and harder to analyse. The number of existing applications which

use delimited continuations is somewhat limited, but they seem to fit well with

normalisation by evaluation (and TDPE). Balat et al. [BCF04] even make use of

a generalisation of shift and reset in the context of TDPE for sums.

• Typically the MLton compiler produces significantly faster code than SML/NJ.

There is likely to be a number of factors involved. The most obvious differ-

ence between the compilers is that MLton is a whole-program compiler, whilst

SML/NJ is a separate compiler. We believe that this difference is an important

factor. It is interesting to note that thecontractalgorithm performs particularly

well when compiled under MLton — often an order of magnitude faster than

when compiled under SML/NJ. This suggests that MLton is better than SML/NJ

at optimising code which uses ML references.

• Sometimes imperative techniques are preferable to declarative approaches. For

instance, the use of mutable graph-based data structures allowed us to obtain

a significant speed-up in the SML.NET compiler. We believe that graph-based
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data structures can also be used to open up new optimisation opportunities in

SML.NET.

8.4 Future work

The three main strands of this thesis:>>-lifting, normalisation by evaluation and

shrinking reductions; offer many avenues for future research. Here we outline a few.

8.4.1 Strong normalisation, confluence and sums

Pitts [Pit00] used frame stacks and>>-closure for reasoning about termination in a

polymorphic language. It would be interesting to investigate the feasibility of extend-

ing our strong normalisation proofs to include System F style polymorphism.

As has been illustrated throughout this thesis, the addition of sums toλ-calculi

makes their analysis considerably more involved. Altenkirch et al. [ADHS01] and

Balat et al. [BCF04] have defined equational normal forms forλ+1. However, the

usual presentation of simply-typedλ-calculus with sums, as a reduction calculus, is

not confluent. We conjecture that by defining appropriate reduction rules in addition to

the usual ones, it is possible to obtain a strongly normalising and confluent reduction

calculus which agrees with the equational calculus. It would be interesting to try to

adapt frame stack reducibility to this setting in order to prove strong normalisation.

Confluence would then follow from correctness of normalisation by evaluation.

In the equational setting it is possible to define alternative normal forms which are

slightly smaller than those of Altenkirch et al. and Balat et al. First, it would seem

desirable sometimes to apply the+.η rule as a reduction. For instance, one might hope

that the normal form oflam(x0+0, x) be itself rather than:

lam(x0+0,case x of (x1⇒ inj1(x1) | x2⇒ inj2(x2)))

It seems feasible to adapt normalisation by evaluation to do this, but it requires further

work. Second, the scope of case splits can sometimes be pushed further into a term.

The normal forms described so far lift case splits up as far as possible. For example:

lam(x,case x of (x1⇒ lam(y,m1) | x2⇒ lam(y,m2)))
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can be rewritten as:

lam(x, lam(y,case x of (x1⇒m1 | x2⇒m2)))

The reason why the case split is lifted up as far as possible is to ensure that case splits

on the same guard are unified into a single case split. However, this case split can often

be pushed back down whilst still remaining unified, as in the example above.

The algorithms of Altenkirch et al. [ADHS01] and Balat et al. [BCF04] are not

directly applicable toλMIL, although they can be adapted. We have a prototype im-

plementation in SML.NET. In fact the algorithm forλMIL (or λml∗) is rather simpler

than the one forλ+. Roughly, this is because of the fact that functions always return

computations. Thus, if a function returns a sum, it must be a sum computation, which

must be bound to a variable before being used. Unfortunately, the naı̈ve approach re-

names each such application, even it has no side-effects. This immediately removes

one of the main benefits of the normalisation by evaluation algorithms forλ+, that is,

in removing redundancy. It would be interesting to try to recover the elimination of

redundancy. One, rather radical, approach would be to extendλMIL to allow pure

functions.

8.4.2 Revisiting Normalisation by evaluation

Normalisation by evaluation by program transformation We have seen that

normalisation by evaluation algorithms can be obtained by a series of program trans-

formations. We believe that this approach offers a particularly intuitive insight into the

nature of normalisation by evaluation. We claim that it is possible to use program trans-

formations to derive each of our normalisation by evaluation algorithms. Formalising

this process would give an alternative method for proving correctness of normalisation

by evaluation.

Normalisation by evaluation from normal forms There is a striking correspon-

dence between the structure of normal forms and the structure of normalisation by

evaluation algorithms. If one already knows the structure of normal forms then this

makes the task of finding a suitable normalisation by evaluation algorithm considerably
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easier. If we restrict ourselves to a compositional semantics, expressed as a parame-

terised semantics, and take advantage of the convertibility relation, then this constrains

the possible semantics. We suspect that in general it should be possible to generate a

suitable model and normalisation by evaluation algorithm from normal forms in this

way.

The semantics can be seen as an encoding of normal forms. For instance, in the

standard normalisation by evaluation algorithm for simply-typedλ-calculus with long

normal forms, neutral terms are simply encoded as themselves, and lambda abstrac-

tions are encoded as functions between semantic objects.

Formal proofs The main focus of this thesis has been practical applications of norm-

alisation by evaluation, but it should be possible to prove formally that our normalis-

ation by evaluation algorithms are correct. Perhaps the most important omissions are

a formal treatment of fresh names and correctness proofs for the ML implementations.

Fresh names can be handled using either FM-set theory [GP01], term families [BES98]

or a name generation monad [Fil01b]. As far as correctness of the ML implementations

goes, the first problem is that although the method of§2.7.2 shows that a normalisation

by evaluation algorithm is correct, it does not show that following a call-by-value eval-

uation strategy will lead to termination. The second problem is that if one wants to

be completely formal then it is necessary to show that the semantics of ML actually

corresponds with that of the metalanguage. Filinski and Dybjer [DF02] and Filinski

and Rohde [FR04] do this using realisability interpretations.

Partial normalisation by evaluation Although a few of our calculi are partial, in

the sense that not all terms have normal forms, we have mainly focused on total calculi

— which makes sense for a compiler. It would be interesting to apply the techniques

of Filinski and Rohde [FR04] in order formally to analyse normalisation by evaluation

with recursive types and the alternative untyped normalisation by evaluation algorithm.
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8.4.3 Extending normalisation by evaluation further

Type isomorphisms Type isomorphisms give rise to a number of useful optimisa-

tions in functional compilers. For instance, SML.NET has an arity-raising transforma-

tion which takes advantage of the isomorphism:

A1→ ·· · → An→ B' (A1→ ·· · → An)→ B

If a function f :A1→·· ·→ An→ B occurs only fully applied, then it can be transformed

into a functionf ′:(A1→ ·· · → An)→ B. Correspondingly an applicationf a1 . . .an can

be transformed intof ′(a1, . . . ,an).

Another example is the deunit transformation, which takes advantage of type iso-

morphisms involving the unit type, such as:

A×1' A

Curien and Di Cosmo [CD91] show how a second order typedλ-calculus with prod-

ucts and unit can be made confluent in the presence ofη-contraction on products and

functions, and the1.η-expansion rule:

m1 −→ ∗

by adding a family of reductions derived from unit type isomorphisms.

It should be possible to implement a normalisation by evaluation algorithm for

such a system. Essentially isomorphic types would become identified in the semantics.

In this context the1.η-expansion rule should be viewed as one of the family of type

isomorphism rules, rather than as anη-expansion. The semantics of the absorbing

value termunknown appears to be strikingly similar to that of∗ in this setting.

Incorporating the unit type isomorphisms in the normalisation by evaluation algo-

rithm for MIL would allow us to merge the deunit transformation into the simplify

transformation. As well as cutting out a stage of compilation this would also have the

advantage of ensuring that terms were normal with respect to unit isomorphism rules

after eachsimplifystage.
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Normalisation by evaluation for algebraic structures The free monoid is a simple

structure. Correspondingly it gives rise to a simple normalisation by evaluation algo-

rithm. In collaboration with Danvy, we have implemented similar normalisation by

evaluation algorithms for a variety of more complex algebraic structures, such as: a

hierarchy of free monoids each distributing over those lower in the hierarchy, groups,

rings and boolean algebras.

Perhaps the most complex algebraic structures we have looked at arose from the

equational theory given by Tarksi’s High School Maths problem [BY01]. The equa-

tional theory is interesting because it agrees with the theory of type isomorphisms in

a categorical model of simply-typedλ-calculus with sums [FCB02]. What makes the

problem more interesting is that the equational theory is not complete either for the

standard model of arithmetic or the categorical model. Furthermore, it has been shown

that there is no finite axiomatisation of either model. However, equality of terms in

both models is decidable. We have implemented a normalisation by evaluation al-

gorithm which performs normalisation by evaluation with respect to the equational

theory. It would be interesting to try to define a notion of semantic normal form, and a

corresponding normalisation by evaluation algorithm for each of the models.

Effects One of the primary strengths of MIL is its effect-typing system. This makes

it easy to express a variety of effect-based optimisations. One example, which appears

quite straightforward to incorporate in normalisation by evaluation, is the use of effect

information to simplify exception handlers. We believe it should be possible to incor-

porate other effect-based optimisations as well. An obvious one which would be likely

to be useful is dead-code elimination for effect-free computations:

let x⇐m in n≡ n

wherem has no side-effects andx < fv(n).

Common value elimination Unrestrictedβ-reduction tends to produce very large

normal forms. This is nicely illustrated by the order of magnitude increase in the

size of the term output by thehamlet benchmark, against the size of the input term.

One solution is to perform restrictedβ-reductions such as shrinking reductions. But
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this changes the residualising semantics, and does not seem to fit so well with the

normalisation by evaluation framework.

Balat and Danvy [BD02] describe how to perform some common value elimina-

tion, using memoisation, in an ML implementation of TDPE. This covers conversions

such as:

letval x⇐v in C[letval y⇐v in m] ≡ letval x⇐v in C[m[y:= x]]

However, their approach does not produce canonical normal forms with respect to

the semantics, and does not detect the same value appearing in separate branches of

a term. Essentially the problem is the same as the one of extensional normalisation

for simply-typedλ-calculus with sums [ADHS01, BCF04]. We believe that a similar

solution can be adopted. In particular, it should be possible to make use of the set/cupto

control operators in order to implement a normalisation by evaluation algorithm which

performs common value elimination.

8.4.4 Shrinking reductions

Graph-based representations Making more extensive use of the graph-based repre-

sentation would allow many transformations to be written in a different style, for exam-

ple replacing explicit environments with extra information on binding nodes, though

this does not interact well with the hash-consing currently used for types [SLM98].

More speculatively, we would like to investigate more principled mutable graph-

based intermediate representations. There has been much theoretical work on graph-

based representations of proofs and programs, yet these do not seem to have been

exploited in compilers for higher-order languages (though of course, compilers for im-

perative languages have used a mutable flow-graph representations for decades). With

a careful choice of representation, some of our transformations (such as the commut-

ing conversion forlet) could simply be isomorphisms, and we believe that a better

treatment of shared continuations in the other commuting conversions would also be

possible.
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Types It should be possible to use a graphical representation for types, and def-use

structures for type variables. However, we have not done this with MIL as SML.NET

uses a special hash-consed representation for types [SLM98]. This allows for a great

deal of sharing, which is necessary because types can get very big. Unfortunately this

sharing is incompatible with the in-place updates one would like to do on the graphical

representation. The tension between sharing and mutability seems to be a critical issue

in the choice of intermediate representations. An alternative approach which might

work is to add let bindings at the level of types as in the TILT compiler [PCHS00].

This allows one to make sharing explicit.

Keeping the immutable representation It has been suggested [Gon04] that it may

in fact be possible to implement the linear algorithm using an immutable term repre-

sentation with def-use information on the side. This would be particularly useful for

incorporating into existing compilers which use an immutable representation. It is not

clear how feasible this would be, or how well it would scale, but it would be interesting

to investigate.

Eliminating the immutable representation Using the graphical representation all

the way through would allow us to get rid of the expensive calls tomutifyanddemutify.

This should give a large improvement in compilation time — potentially speeding up

contraction by a factor of two to three. The experience of translatingdeunitsuggests

that the speed of other transformations should not be adversely affected by using the

graphical representation.
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