Normalisation by Evaluation in the
Compilation of Typed Functional
Programming Languages

Sam Lindley

Doctor of Philosophy
Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
2005

Abstract

This thesis presents a critical analysisiofmalisation by evaluatioas a technique for
speeding up compilation of typed functional programming languages. Our investiga-
tion focuses on the SML.NET compiler and its typed intermediate language MIL. We
implement and measure the performance of normalisation by evaluation for MIL across
a range of benchmarks. Taking dfdrent approach, we also implement and measure
the performance of a graph-basgdinking reductionslgorithm for SML.NET.

MIL is based on Moggi's computational metalanguage. As a stepping stone to
normalisation by evaluation, we investigate strong normalisation of the computational
metalanguage by introducing an extension of Girard-Tait reducibility. Inspired by pre-
vious work on local state and parametric polymorphism, we define reducibility for
continuationsand more generally reducibility fdrame stacksFirst we prove strong
normalistion for the computational metalanguage. Then we extend that proof to in-
clude features of MIL such as sums and exceptions.

Taking an incremental approach, we construct a collection of increasingly sophisti-
cated normalisation by evaluation algorithms, culminating in a range of normalisation
algorithms for MIL. Congruence rules amdrules are captured by a compositional
parameterised semantidSefunctionalisationis used to eliminat@-rules. Normalis-
ation by evaluation for the computational metalanguage is introduced using a monadic
semantics. Variants in which the monaditeets are made explicit, using either state
or control operators, are also considered.

Previous implementations of normalisation by evaluation with sums have relied
on continuation-passing-syle or control operators. We present a new algorithm which
instead uses a single reference cell and a zipper structure. This suggests a possible
alternative way of implementing Filinskimonadic reflectiormperations.

In order to obtain benchmark results without having to take into account all of
the features of MIL, we implement twoftierent techniques for eliding language con-
structs. The first is not semantics-preserving, butfisative for assessing thete
ciency of normalisation by evaluation algorithms. The second is semantics-preserving,
but less flexible. In common with many intermediate languages, but unlike the compu-
tational metalanguage, MIL requires all non-atomic values to be named. We use either

control operators or state to ensure each non-atomic value is named.

We assess our normalisation by evaluation algorithms by comparing them with a
spectrum of progressively more optimised, rewriting-based normalisation algorithms.
The SML.NET front-end is used to generate MIL code from ML programs, including
the SML.NET compiler itself. Each algorithm is then applied to the generated MIL
code. Normalisation by evaluation always performs faster than the miva algo-
rithms — often by orders of magnitude. Some of the algorithms are slightly faster than
normalisation by evaluation. Closer inspection reveals that these algorithms are in fact
defunctionalised versions of normalisation by evaluation algorithms.

Our normalisation by evaluation algorithms perform unrestricted inlining of func-
tions. Unrestricted inlining can lead to a super-exponential blow-up in the size of
target code with respect to the source. Furthermore, the worst-case complexity of
compilation with unrestricted inlining is non-elementary in the size of the source code.
SML.NET alleviates both problems by using a restricted form of normalisation based
on Appel and Jim’'shrinking reductions The original algorithm is quadratic in the
worst case. Using a graph-based representation for terms we implement a composi-
tional linear algorithm. This speeds up the time taken to perform shrinking reductions
by up to a factor of fourteen, which leads to an improvement of up to forty percent in
total compile time.

Acknowledgements

Many people have contributed to my well-being in the time that | have spent writing
my thesis. | would like to thank them all. Here, | shall just mention those who had a
direct impact on my thesis.

First, and foremost, | would like to thank my supervisor, lan Stark. He provided
me with invaluable guidance throughout my PhD. His insightful comments and unwa-
vering enthusiasm provided much inspiration.

My second supervisor, Stephen Gilmore, gave helpful comments on earlier drafts
of this thesis. | am particularly grateful to him for encouraging me to attend IFL '04,
despite the fact that my thesis deadline was fast approaching. The change of scene
helped clarify my thoughts.

I would like to thank Hayo Thielecke and Phil Wadler for agreeing to be my exam-
iners.

I would like to thank Olivier Danvy for hosting me at BRICS for three months. My
visit was funded by a Marie Curie Fellowship. In this time | learnt a great deal about
normalisation by evaluation, and had many fruitful discussions with Olivier and his
students.

| would like to thank Nick Benton for hosting me as a postgraduate intern at Mi-
crosoft Research Cambridge for three months. Nick Benton, Andrew Kennedy and
Claudio Russo helped me understand the workings of SML.NET, making my imple-
mentation work much easier.

I would like to thank Jon Cook for many lunchtime conversations, walks up Black-
ford Hill, and reading an earlier draft of this thesis.

Last, but not least, | would like to thank my father, Richard Lindley, for reading
through this thesis, despite not understanding any of the technical content.

The first three years of my PhD were funded by EPSRC. My visit to Microsoft
Research Cambridge helped fund the fourth year of my PhD.

Declaration

| declare that this thesis was composed by myself, that the work contained herein is
my own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

Chaptef B is based on joint work in collaboration with lan Stark. A peper [LS05]
will be presented at TLCA "05. Much of the work for Chagiter 7 was conducted whilst
visiting Microsoft Research Cambridge from November 2003 to February 2004. A
paper [BKLRO5], in collaboration with Nick Benton, Andrew Kennedy and Claudio
Russo, was presented at IFL '04.

(Sam Lindley

For Shabana

Table of Contents

(1__Introduction| 19
................................ 20
(1.2 MIL and the computational metalanguagge 22
(1.3 Normalisation by evaluation 22

[I.3.1 Residualising semantics versus runtime semantics 23
M4 Confribufions 23
1.5 [Literatureovervieiw 24
@51 Tambdacalculis 24
[I.5.2 Strong normalisation and reducibility 25
[I.5.3 The computational metalanguage and mgnads 25
[1.5.4 Normalisation by evaluatipn 26
[1.5.5 Type-directed partial evaluatjion 27
[1.5.6 Controloperators 28
[1.5.7 Typed intermediate languages 30
[1.5.8 Shrinkingreductions 31
1.6 Structure ofthisthesis 31

[2 Background 35

[2.1 The metalanguage and notation 35
211 Relationsandcalculi 37
[2.1.2 Equationalcalculi. 38
213 Reductioncalcdlli, 38

................................. 39

[2.2.1 Theuntyped-calculusQu)| 40

[2.2.2 The simply-typed-calculus ™) 41
223 Productsandsums 42
[2.2.4 The computational metalanguaggy 45
23 ML . . .o e e 48
24 Normalisation 53
[2.4.1 Reduction-based normalisation. 56
[2.4.2 Equational normalisatipn 57
2.4. The str re ofnormalforms 59
2.4.4 Normal forms from reductions 60
2.5 Normalisation by evaluation 61
[25.1 Example:thefreemonéid 61
[2.5.2 Typed calculiand environments 63
[2.5.3 Example: simply-typedFcalculus and long normalforlns . . 63
254 Reflection 65
[2.5.5 Example: untypedrcalculus angg-normalformy 66
[2.6 Parameterised semantics and compositiopality 67
[2.6.1 Example: thefreemonoid 68
[2.6.2 Example: the (untypgdimply-typed)i-calculug 69
[2.7 Proof techniques for normalisation by evalugtion 70
[2.7.1 Directprodf. 71
[2.7.2 Using the existence of normaltofms 12
[2.7.3 Other prooftechniques 74
[2.8 Corollaries of normalisation by evaluation 75
[3 Normalisation for the computational metalanguage 77
3.1 Strong normalisationandY'"'| 78
[3.2 Strong normalisation by translaton 80
[3.3 Reducibility with continuatiopns 83
331 Continuations 84
[5.3.2 Reducibilityand activity 85

[3.3.3 Reducibilitytheorem 89

[3.4 Variations on reducibility with continuatigns 93
[.4.1 Reducibllity forSums 93
[3.4.2 Reducibility for Exceptions 97
[3.4.3 Reducibility for the computationatcalculus 99

[3.5 Reducibility withframe stacks 100

3.6 RelatedWoidk 105

{4 Normalisation by evaluation 107

4.1 The computational metalanguage usingmgnads 108

4.2 Characterising the residualisingmonad 111

4.3 The computational metalanguage using sidlee&s 113
4.3.1 State and delimited continuatibns 113
[4.3.2 Normalisation by evaluation with siaéexts 116
4.3.3 RestrictiontQly, . - . -o 125

4.4 Alternatives toj-expansion e e e 126
[4.4.1 Suppressing-expansion 128
[4.4.2 Performingy-contraction 132

4.5 SUMB e e e e e 135
[4.5.1 Greedy eliminationofsums 135
[4.5.2 Sums using delimited continuatibns 139

4.6 Sumsusingglobalstate 139
[4.6.1 Bindingtregs 140
[4.6.2 Thezipperstructuyre 141
463 Thecursor 142
4.6.4 Thebindandcollectfunctions 143
465 Discussidn 145

4./ Polymorphism and recursivetypes 146

4.8 Embedding typesinthesemantics 147

4.9 Implementing normalisation by evaluationinSML 148

5 Tmplementation 155

0.1 Full versus simplitied MILAMILY. 156

[0.1.1 Arnty-raising 156

0.1.2 Source information 156
5.2 MILversusAMIL]. 156
0.3 Absorbing values forunknowns 158
©.3.1 Normalisation. 160
[.3.2 Implementationissues 161
5.4 Fixed constants forunknowns L. 162
.41 Normalisation. 164
[>.4.2 Implementationissues 167
b.5 Sumsandrecursivetypeso 168
B£51 Normalisation. 169
[0.9.2 Implementationissyes 170
0.6 EXxceptions. 170
./ TargetindMIL | 172
[.7.1 StraighttoMIL |. 172
B.72 Timitations 174
0.8 Implementations L. 175
[6 Performance and analysis 179
6.1 Relatedwork 180
0.2 A spectrum of normalisation algorithms 181
6.3 Obtainingtheresults, 187
[6.3.1 Benchmarkprograms 187
[6.3.2 Interfacing with SML.NE[T 188
[6.3.3 Intensional versus extensional normalisation by evaluation . . 188
6.4 Absorbing values forunknowns, 189
6.5 Fixed constants for UNKNOWNS o v v i v e 191
[6.9.1 Choosing an interpretation for computatjons 191

[6.5.2 Comparing normalisation by evaluation against other algorithms 193

6.5.3 Sumis 195
654 Sizeofterms 196

6.6 Obstacles 197

6.7 Summany
[6.8 Normalisation by evaluation by program transformation

[/ Shrinking reductions

[/.5.2 Complexity with Commuting Conversions

[7.5.3 Shrinking reductions as normalisation by evaluation

77 SUMMANY . v oo oeoee e e e e e e

8__Conclusion

[.4.1 Strong normalisation, confluence and sums

[6.4.2 Revisiting Normalisation by evaluatjon

[8.4.3 Extending normalisation by evaluation further
[6.4.4 Shrinking reductions

List of Figures

[I.1 The phases of the SML.NET compjler 21
[2.1 Relationships betweencalculf 40
2.2 Syntaxof*Y 43
2.3 lypingrulestod, xand+ 43
[2.4 Call-by-value embedding @™ into Ay 47
[2.5 Predicates for negative and positive occurrences of type variables . . . 50
26 Pre-termsofMIL 51
27 PretermsofMIL] 53
2.8 TypingrulestodMIL| 54
[2.9 p-andn-rulestforAMIL|. o o000 55
210 CC-rulesfoldMIL] o 55
2.11 Parameteri manti NaA™”]o 69
[3.1 Reductions for the computational metalanguage 78
[B:2 Translatiomd from Ay t0 dassod - « - -« « v v v v e e e 81
[3.3 Reducibilityfordpm| oo 85
[3.4 ActivitytforAdm| 86
[3.5 Reductions for an extension & with sums and produdts 102
4.1 NBE ford™ with defunctionalised reflection 129
4.2 NBE forA™ with explicitp-expansion 130
4.3 The standar@-NBE algorithm for untypedi-calculus 131
4.4 Glueds-NBE for untypedt-calculugs 133
4.5 Defunctionalise@-NBE for untypedi-calculus 134

15

.1 Parameteri manti Iy ..o 159
0.2 Semantics with absorbing valuesadlL|. 161
0.3 Semantic parameters with absorbing valuesliviL_|. 162
0.4 Extensional NBE with absorbing values 163

mantics with fix nstan il .o 165

[0.6 Semantic parameters with fixed constantsiidiL| 166
./ Intensional NBE with fixed constants 167
0.8 Call-by-value embedding ?&iMIL into MIL| 173
.9 Semantics with fixed constantsfor MIL 175
.10 Semantic parameters with fixed constantsfor|MIL 176
£.11 Intensional NBEforMIlL 177
6.1 A nave normalisation algorithm 181
6.2 Normalisation with an environment 182
6.3 Normalisation with weak normal forms and no environment 183
0.4 Normalisation with weak normal forms and closures 184
[6.5 Intensional NBE with a higher-order semantics for neutral terms . . . 185
6.6 Normalisation times using absorbingvalues 190
6.7 Normalisation times using fixed constants 194
0.8 Normalisationtimesforsums 195
[/.1 Pictorial representation @t X < app(f,a) in val(pair(x,X)) 206
[/.2 Graphreductions 207
[/.3 Triggering non-localreductions 209

[/.4 Comparingontractwith simplity 222

List of Tables

[6.1 Normalisation times using absorbing values under S\ML. 190

[6.2 Normalisation times using absorbing values under MLton 190
[6.3 Normalisation times for @erent interpretations of computations . . . 192
[6.4 Normalisation times using fixed constantsunder 8WL. 194

[6.5 Normalisation times using fixed constants under MLton 194
6.6 Normalisationtimesforsums 195
[6.7 Size of terms before and after normalisdtion 197
[/.1 Totalcompiletime 221
[7.2 Shrinking reductiontimeunderSWNLJ 222
[7.3 Shrinking reduction time underMLton 222

17

Chapter 1
Introduction

In this thesis we investigateormalisation by evaluatio(NBE) and assess its use as

a technique for speeding up the compilation of typed functional programming lan-
guages. Focusing on the SML.NET compiler, we implement normalisation by eval-
uation for SML.NET and compare its performance with that of other normalisation
algorithms. Following a dierent path, closer to that of the existing compiler, we also
implement and assess the performance of a graph-isaseting reductionalgorithm

for SML.NET.

With the development of increasingly powerful hardware, the speed of compilation
Is constantly improving. However, as hardware becomes more powerful compilers
take advantage of this extra power. Increasingly, compilers for typed functional pro-
gramming languages us$gped intermediate languagefhese ffer many advantages
over untyped intermediate languages, but typically lead to longer compile times. Some
compilers also usehole program compilationThis enables more aggressive optimi-
sations to be performed, but means the program must be recompiled entirely every
time a change is made, even if this chanffeas only a single module.

Typed intermediate languages have recently become popular [Mor95;"964C
Sha97a, SLM98, Sha97b, JIM97, PCHSO0O0, BKOO]. The main idea of this line of work
is to preserve type information throughout compilation. THiers a number of ad-
vantages over untyped compilation. In particular, the type information allows new
type-directed program transformations to be performed. As a further benefit, the type
information can be used to validate code. For instance, type information has been used

19

20 Chapter 1. Introduction

to direct the generation of provably secure mobile code [Nec00]. Being able to type-
check intermediate code is also useful for debugging the compiler itself. There are,
of course, disadvantages of keeping type information available. If one is not careful
about how types are implemented, then concrete representations of types can become
very large, and this can be expensive, both in terms of time and space.

The main advantage of whole program compilation is that it allows more optimisa-
tion to be performed than separate compilation does. In particular, more optimisations
can take place across module boundaries, and certain optimisations such as monomor-
phisation become more feasible than with separate compilation. The disadvantage is
the length of time taken to recompile the program when a small change has been made
to a single module. A separate compiler would just recompile the relevant module, but
a whole program compiler has to recompile the entire program.

The technique ohormalisation by evaluatiorhas been studied in many settings.

In particular, it has been suggested that normalisation by evaluation fE@eard way

of performing normalisation [BS91, BES98, BES03], but until now it has not been
applied to compilation. The SML.NET compiler, which compiles Standard ML source
code to .NET bytecode, spends a significant proportion of time normalising terms in its
typed intermediate language MIL. Motivated by this, we investigate the hypothesis that
normalisation by evaluation is both fast (compared with rewriting-based normalisation
algorithms), and viable as a technique for the implementation of compilers for typed
functional programming languages.

1.1 SML.NET

SML.NET [smla, BKR, BKRO04] is a compiler for the strict functional programming
language Standard ML [MTHM97, GRO4]. It is based on MLj [ml], BKR98, BK99]
which is an ML to Java bytecode compiler. It takes a Standard ML program and pro-
duces .NET bytecode as output. The important features of SML.NET are:

e atyped intermediate language MIL

¢ whole program compilation

1.1. SML.NET 21

ML

simplify
Frontend ,
rans,
[simplify
MIL :
Optimised MIL H
I simplify
Backend frans,
I simplify

NET bytecode

Figure 1.1: The phases of the SML.NET compiler

¢ interoperability with other .NET programs and libraries

The interoperability extensions are a key part of SML.NET, but they are not rele-
vant to the concerns of this thesis. Typically they form only a small part of a program
and SML.NET does not try to optimise them, so they have little impact on compilation
time.

The structure of SML.NET is illustrated in Figure [L.1. The frontend takes a Stan-
dard ML program as input and outputs a MIL term representing the whole program.
The rewriting phase performs rewrite operations on the MIL term, outputting another
MIL term. Finally, the backend converts this MIL term into .NET bytecode.

Most of the compile time is accounted for by the rewriting phase. The rewrit-
ing phase is divided into a series of transformations on the MIL term. One of these,
simplify, is invoked many times. In fact, the majority of the time in the rewriting
phase is spent in theimplify transformation. Thesimplify transformation applies
rewrite rules similar to those of thécalculus [Bar84] and the computational meta-
language|[Mog91, HD94]. It has been identified as a bottleneck in the SML.NET
compilation process.

22 Chapter 1. Introduction

1.2 MIL and the computational metalanguage

The computational metalanguage arose out of Moggi's seminal work on nngingds

to model notions of computation [Mog91, Mog89]. It can be characterised as an exten-
sion of simply-typedi-calculus with computation types. The type system is extended,
such that side{féecting computations which return a value of typare assigned the
computation typd A. The computational metalanguage captures the essence of com-
putation without committing to any particular monad. Mangalculus techniques can
easily be adapted to the computational metalanguage. Some typical examples of mon-
ads are: the lifting monad (which captures patrtiality), the state monad, the exceptions
monad and the continuation monad [Mog91].

MIL is based on Moggi’s computational metalanguage. It incorporates a type and
effect system, which supportstect-based optimisations in addition to the generic
ones [BKOO]. The monad used models partiality, exceptions and operations on ML
references.

1.3 Normalisation by evaluation

There are a number offierent ways in whiclmormalisationcan be defined. However,
the essence of normalisation is that it defines a procedure for obtairdagaaical
version of a term or program which we call nermal form We call a function from
terms to normal forms aormalisation function Given an appropriate definition of
normal form, optimising a program, or performing transformations sucsiraglify
can be seen as an instance of normalisation.

The motivation behind normalisation by evaluation is the idea $keatanticds
crucial to the characterisation of normal forms. One would like programs with the
same meaning to have the same normal form. If this is the case, and we have a function
for computing the meaning of a program, @raluation functiorf -]|, then all we need
Is a suitablaeification function|, whichreifiesa semantic object to its corresponding
normal form. We then obtain a normalisation function:

norm(e) =| [e]l (1.1)

1.4. Contributions 23

Equation [(I.]l) captures the essence of normalisation by evaluation. Of course, we
have to be careful about how we define the semantics. The semantics needs to con-
tain enough syntactic information in order to be able to reconstruct a term (using an
appropriate reification function).

Conventional rewriting-based normalisation is defined syntactically via a collection
of reduction rules. These are applied repeatedly until no more rules are applicable.
The resulting term is said to be in normal form. Normalisation by evaluatikansoan
alternative approach to normalisation, with a greater emphasis on semantics.

1.3.1 Residualising semantics versus runtime semantics

We distinguish between two kinds of denotational semantics. résidualising se-
manticsis the semantics used for normalisation by evaluation. In the context of com-
pilation, the residualising semantics identifies terms which compile to the same target
code. In contrast, theintime semanticsaptures the run-time behaviour of a program.
Two programs have the same runtime semantics if they are behaviourally equivalent.
In any programming language which supports general recursion it is not possible to de-
cide whether two arbitrary programs have the same runtime semantics, or even whether
a given program terminates (the halting problem).

Ideally, the residualising semantics should agree with the runtime semantics, in the
sense that all terms identified in the residualising semantics are also identified in the
runtime semantics. In this case we say that any normalisation by evaluation algorithm
arising from the residualising semanticssesmantics-preservingror the purpose of
defining normalisation by evaluation algorithms it is unnecessary to consider the run-
time semantics. Thus, we shall usually omit it.

1.4 Contributions

The key contributions of this thesis are the following:

e Application of normalisation by evaluation to compiler optimisation.

24 Chapter 1. Introduction

¢ Evaluation of the performance of normalisation by evaluation algorithms in com-
parison with rewriting-based normalisation algorithms. The results show that the
performance of normalisation by evaluation is competitive with with that of the
most optimised rewriting-based normalisation algorithms.

¢ A variant of the reducibility method for proving strong normalisation using con-
tinuations, or more generally frame stacks. These methods were applied to the
computational metalanguage with extensions including sums and exceptions.

¢ Variants of normalisation by evaluation:

— for the computational metalanguage
— with n-contraction
— with sums using state instead of first-class continuations

— for a compiler intermediate language MIL
¢ Obtaining normalisation by evaluation algorithms by program transformation.

¢ Evaluation of the performance of a shrinking reductions algorithm for a produc-
tion compiler using a ‘one-pass’ imperative algorithm.

1.5 Literature overview

In this section we give a brief overview of existing work that is relevant to the thesis.

1.5.1 Lambda calculus

The A-calculus [Chu4l] lays the foundation for functional programming languages.
Barendregt gives a comprehensive account of the untypeadculus in[[Bar84]. Han-
kin's book [Han94] provides a lighter introduction fiecalculi including some typed
variants. Barendregt [BarD2] gives a more comprehensive introduction to fifped
calculi. He emphasises thefiirence between Curry-style and Church-style typing,
and introduces higher order typgetalculi via pure type systems and theube.

1.5. Literature overview 25

Girard [Gir72] and Reynolds [Rey74] independently discovered the second order
A-calculus.

De Bruijn [dB70] and Howard [How&0] independently clarified the relationship
between logic and typettcalculi— the so-calle€urry-Howard isomorphismGirard
et al.’s book [[GLT89] explains the correspondence and gives an account of typed
calculi from a proof-theoretic perspective.

1.5.2 Strong normalisation and reducibility

Strong normalisation for the simply-typeticalculus (or rather its proof-theoretic
counterpart) using a reducibility argument was first proved by Tait [Tai67]. Prawitz
adapted the proof to include sums [Pra71]. Making “splendid use of impredicativ-
ity” [Gal90] the reducibility method was extended by Girdrd [Gir72] to System F and
Fw. Subsequently Girard’s proof has been adapted to other higher-order calculi such as
the Calculus of Constructions [Cod90]. The impredicative reducibility techniques can
also be adapted to calculi with positive inductive types. Abel and Altenkirch [AAQO]
give a predicative strong normalisation proof for the simply-typexzlculus extended

with strictly positive recursive types. Gallier [Gal90] gives an overview of reducibility
proofs, with an emphasis on strong normalisation for higher-otesiculi.

1.5.3 The computational metalanguage and monads

Moggi introduced the computational metalanguage [Mog91, Mog89] as the inter-
nal language of a cartesian closed category wilirang monad First Hatcltf and
Danvy [HD94], and then Sabry and Wadler [SW97] explored the relationship between
the computational metalanguage and continuation-passing style (CPS).
Wadler [Wad90] identified a connection between monads and list comprehensions,
and showed showed how monads can be used to captureffedérg computations in
pure functional programming languages. Peyton Jones and Wadler [PW93] extended
this work in order to perfornyO in non-strict functional programming languages. The
Haskell [PJOB] programming language uses monads to manageffades-e this way.
Wadler and Thiemanin [WT03] showed that monads can be used to dedteitte e

26 Chapter 1. Introduction

typing systems. Independently, Tolmach [Tol98] and Benton and Kenhedy [BK0O] im-
plemented typed-intermediate languages for ML compilers based on the computational
metalanguage, and monaditezts.

Filinski [Fil94], [Fil96,[Fil99a] showed that the continuation monad can be used to
simulate all otherdefinablemonads. Furthermore he used this result to implement
monadic reflectioroperations, in the SMINJ [smIb] compiler, for arbitrary definable
monads. The monadic reflection operations allow one to convert back and forth be-
tween representations offects as behaviour and as data. Benion [Ben04] applied
Filinski’s technique in order to define monadic embedded interpreters in ML. Filinski
used monadic reflection to obtain an extensional CPS transform [Fil01a].

Benton, Hughes and Moggi give a survey of monads from a variety of perspec-
tives [BHMOZ].

1.5.4 Normalisation by evaluation

Although, the phrase “normalisation by evaluation” was not coined until much later,
Martin-Lof [ML75] used normalisation by evaluation in his work on intuitionistic type-
theory, as a way of proving normalisation.

Berger and Schwichtenberg [BS91] defined an “inverse of the evaluation func-
tional” (a reification function) for simply-typed-calculus. This gave the standard
normalisation by evaluation algorithm for simply-typggatalculus.

Berger [Ber93] showed how to extract a normalisation by evaluation algorithm
from a proof of strong normalisation.

Berger et al.[[BES98, BES03] used normalisation by evaluation to speed up the
MinLoG theorem prover. They give a domain theoretic semantics for normalisation
by evaluation for the simply-typed-calculus extended with constants and a class of
rewrite rules involving those constants.

Meanwhile Altenkirch et al. [AHSS5] gave a categorical account of normalisation
by evaluation for simply-typed-calculus using a “twisted gluing” construct. Cubric
et al. [CDS98] investigated normalisation by evaluation for simply-typelculus
using the Yoneda embedding. Subsequently Fiore [FFio02] analysed normalisation by
evaluation for simply-typed-calculus via “extensional normalisation” using the stan-

1.5. Literature overview 27

dard (not twisted) categorical gluing construct.

Mogensen|[Mog99] gave a normalisation by evaluation algorithm for untylped
calculus, and an implementation in Scheme [KCE98]. Aehlig and Joachimskil[AJO4]
studied normalisation by evaluation for untypedalculus using term-rewriting tech-
niques. Filinski and Rohdé [FRD4] gave a semantic account of normalisation by eval-
uation for untypedi-calculus using minimal invariants.

Filinski [Fil01b] introduced normalisation by evaluation for the computational
calculus, using layered monads [Fil99a] for formalising hame generation and for col-
lecting bindings. He extended his algorithm to handle products and sums, and outlined
how to prove correctness using a Kripke logical relation.

Altenkirch et al. [ADHSO01] described normalisation by evaluation for the simply-
typedA-calculus extended with unit, products and sums. They used normalisation by
evaluation to obtain a completeness result for almost bicartesian closed categories.

Coquand and Dybjer [CD97] investigated normalisation by evaluation in intuition-
istic model theory. They gave a normalisation by evaluation algorithm for combinatory
logic.

Altenkirch et al. [AHS96] gave a normalisation by evaluation algorithm for a poly-
morphic version of combinatory logic. They extracted the algorithm from a categorical
model. Subsequently they extended this work to System F [AHS97].

Vestergaard [Ves] used a syntactic approach to investigate normalisation by evalu-
ation for System F.

Beylin and Dybjer([BD95] constructed a normalisation by evaluation algorithm for
the free monoid using a free monoidal category.

1.5.5 Type-directed partial evaluation

Type-directed partial evaluatioffDPE) arises as a special case of normalisation by
evaluation in which the residualising semantics coincides with the runtime semantics
of a programming language. The native evaluator for the programming language can
be used to implement the semantics. The reification function acts as a decompiler.
Furthermore, because the residualising semantics coincides with the runtime seman-
tics, arbitrary code can be run before calling reify, which is where the partial evaluation

28 Chapter 1. Introduction

arises. One advantage of TDPE over other variants of normalisation by evaluation is
the fact that it can use a native evaluator. Thus, if the evaluator is already optimised
then it gives rise to ficient normalisation algorithms. We do not use TDPE, as we
shall need to use non-standard semantics. Also, our primary concern is normalisation
rather than partial evaluation. However, much of the normalisation by evaluation and
TDPE literature overlaps.

Danvy [Dan96] discovered type-directed partial evaluation (TDPE) independently
of normalisation by evaluation. Filinski gave a semantic analysis and correctness
proof for call-by-namel[Fil99b] and for call-by-value [Fil01b, DF02] TDPE. Filin-
ski and Yang/[Yan99] implemented TDPE in ML using the native ML evaluator and
a clever encoding of types. Rose [Ros] implemented TDPE in Haskell using the na-
tive evaluator and type classes. Danvy’s lecture notes provide a good introduction to
TDPE [Dan98].

Balat et al. [BCF04] gave a categorical treatment of normalisation by evaluation
for the simply-typedi-calculus extended with unit, products and sums. Their notion
of normalisation closely follows that of Altenkirch et al. [ADHSO01], but the analy-
sis follows that of Fiore[[Fio02]. They also gave an implementation of TDPE for
the simply-typedi-calculus extended with unit, products and sums, using th¢ set
cupto [GRR98] control operators.

The book by Jones et al. [JGS93] provides an introduction to more conventional
syntax-directed partial evaluation.

1.5.6 Control operators

Delimited continuations in the form of shift and reset control operators have been used
in implementations of type-direct partial evaluation since its inception [Dan96]. They
prove to be useful in the implementation of normalisation by evaluation algorithms,
often giving a more concise direct-style alternative to continuation-passing style.
Continuation-passing stylé [Plo75] provides a declarative way of analysing and
manipulating control flow. Each function is augmented with an extra continuation
parameter representing the rest of the computation. In contrast, first-class control op-
erators such as cail, allow control flow to be manipulated dhirect-style that is,

1.5. Literature overview 29

without every function having a continuation parameter.

The untyped caltc operator was added to Scheme [CFW86] as a means of captur-
ing the current continuation. It is closely related to Landin’s J [Thi98], and Reynolds
escape [Rey98].

Duba et al.[DHM91] showed how to assign a typing to/alin ML. The callcc
operator is now supported by ML compilers such as @NlLand MLton [mit].

Felleisen and others [Fel88, FWFD88] introduced the coritpsbmpt operators
for handling delimited continuations. Rather than capturing the continuation from the
start of the program to a given point in a program (as withyoal] control and prompt
allows one to capture the continuation betwegmamnptand a given point.

Danvy and Filinski[[DF90, DFS2] introduced the shifteset operators for manip-
ulating delimited continuations. The contyobrompt operators were obtained oper-
ationally. In contrast, Danvy and Filinski derived shifteset by iterating the CPS
transform twice, thus obtaining a denotational continuation semantics for delimited
continuations. Danvy and Filinski also generalised ghiéiset further by iterating the
CPS transform repeatedly to obtain @8BS hierarchy This gives rise to a hierarchy
of delimited continuation operators allowing one to capture continuations from any of
a number of prompts up to a given point.

Wadler [Wad94] used monads to model, and as a basis for typing, delimited contin-
uations. In his work on monadic reflection Filinski [Fil94, Fil96] showed that shift and
reset can be used to model atgfinablemonad. Furthermore, he gave an implementa-
tion of shift and reset in SMINJ using cajlcc and a single reference cell. Gasbichler
and Sperber [GS02] gave a direct implementation of ghhé@set in a modified version
of Scheme.

Kameyama and Hasegawa gave a sound and complete axiomatisation of delimited
continuations[[KHOB]. The axioms support equational reasoning in direct-style. Sub-
sequently Kameyama [Kam(4a, Kam04b] extended the axiomatisation to the higher
level delimited continuations operators arising from the CPS hierarchy.

Gunter et al.[[GRRS8] gave a generalisation of shiftset using the sétcupto
construction. This allows a hierarchy of delimited continuations to be invoked by
naming the start of each delimited continuation. The set operator is much like the reset

30 Chapter 1. Introduction

operator, except a name is associated with a prompt. The cupto operator is much like
the shift operator, but rather than capturing the continuation up to the closest enclosing
prompt, it captures the continuation up to an arbitrary named prompt.

Recently Shan [cS04] gave an overview of the various control operators for delim-
ited continuations, and showed that “dynamic” operators such as Felleisen’s control
can be given a continuation-passing semantics using recursive continuations.

1.5.7 Typed intermediate languages

Recently, the use of typed-intermediate languages in compilers for typed functional
programming languages has become increasingly widespread.

Shao and Appel [SA95] obtained improvements both in heap usage and in the speed
of compiled code, by performing various type-based optimisations on intermediate
representations for the SIVINJ compiler.

The goal of FLINT [Sha97k, Sha97a] is to create a common typed intermediate
language for compiling typed functional programming languages. The current “work-
ing version” (110.48) of the SMINJ compiler [smib] uses FLINT as an intermediate
language.

Peyton Jones and Meijer [JM97] proposed a typed intermediate language based on
Barendregt’st cube |[Bar92].

TAL [MWCG99] (Typed Assembly Language) is a typed low-level language, for
performing well-typed optimisation in the backend of a compiler.

The TIL (Typed Intermediate Language) and TILT (TIL Two) compilérs [Mor95,
TMC™96,[PCHSO0D] were specifically designed with compilation using typed interme-
diate representations in mind.

The MLton [mlt,[CJWOQ0O0] compiler takes advantage of typed intermediate lan-
guages.

Type and &ect systems [NNH99] are used for inferring sidéeets. If we know
that a section of code can have only a certain class of stéetahen this enables all
kinds of optimisations to be performed. For example:

¢ If a computation has no sidefects, then it is safe to duplicate it.

1.6. Structure of this thesis 31

¢ If a computation has no siddfects, and its result is never used, then it is safe to
eliminate it completely.

e Consecutive computations whose only sidkees are reading the store can be
reordered.

¢ If a computation can throw only a certain class of exception, then there is no
need for a handler to check for other kinds of exception.

Jouvelot and Glord [JG89] used a continuation semantics to handfects.
Thielecke [Thi03] extended this line of work to the typed setting, making use of a
polymorphic answer type for controllingfects.

A refinement of typed intermediate languages is to combine typesfigadse The
ML-Kit compiler uses a type andffect system for memory management using re-
gions [TT97, TBE 01]. MIL uses the type system to keep track fieet information.

MIL was first used as the typed intermediate language for the MLj compilet [ml],
BKR98,[BK99]. Subsequently MLj became SML.NET [smla, BKR, BKIR04].

1.5.8 Shrinking reductions

Shrinking reduction is a restricted form of reduction in which terms can only decrease
in size. Shrinking reduction is used in the SMLI compiler[smlb, App92] as a restric-

tion of usualBn-reduction. Appel and Jim [AJ97] improved the shrinking reduction
algorithm used by the SMNJ compiler. However, the worst case time complexity

of the improved algorithm is quadratic. They also described a linear-time imperative
algorithm, which they did not implement. Other ML compilers [mit, rnlj, Smla] also
make use of shrinking reduction phases, which use variants of the quadratic algorithm.

1.6 Structure of this thesis

In Chaptef 2 we introduce the concepts and notation required for the rest of the the-
sis. We present our treatment.sfcalculi, the computational metalanguage and MIL.
We then formalise normalisation and normalisation by evaluation, and outline some
techniques for proving correctness of normalisation by evaluation algorithms.

32 Chapter 1. Introduction

In Chaptef B we present three proofs of strong-normalisation for the computational
metalanguage. The first proof uses a translation into simply-typesdculus extended
with an additional reduction rule, followed by a combinatorial argument. The second
proof extends Girard-Tait reducibility witbontinuationsfor handling computations.
The same technique is then applied to extensions and variations of the computational
metalanguage. The final proof extends reducibility with frame stacks — a general-
isation of continuations. Reducibility over terms is defined uniformly for all term
constructors as a function of reducibility over frame stacks. This technique is the most
general, and we demonstrate how it can be used to prove strong normalisation for an
extension of the computational metalanguage with sums.

In Chapteff # we return to our discussion of normalisation by evaluation. Norm-
alisation by evaluation for simply-typettcalculus is extended to the computational
metalanguage, first using a monadic semantics, and then using explicitfadis-e
Starting from the normalisation by evaluation algorithm for simply-typezhlculus,
we show how to eliminatg-expansion, and also how to incorporgteeduction us-
ing program transformations. A normalisation by evaluation algorithmifgr — a
restriction of the computational metalanguage — is extended to handle sums, using
first-class control operators. We then present an alternative algorithm using state and
a zipperstructure. Finally we discuss practical issues and outline how to implement
normalisation by evaluation in ML, taking advantage of the ML module system.

In Chaptef b we extend and adapt the normalisation by evaluation algorithms for
the computational metalanguage to a version of MIL which we generate using the
SML.NET frontend. This provides a platform for benchmarking normalisation by eval-
uation on realistic examples. Twofi#irent modular approaches, which allow features
to be added incrementally, are introduced. Then we describe how to implement some
of the additional features of MIL.

In Chapteff § we present performance results for the normalisation by evaluation
algorithms of Chapter]|5. The normalisation by evaluation algorithms are compared
with a spectrum of (increasingly optimised) rewriting-based normalisation algorithms.
The MIL terms are generated from actual ML programs by the SML.NET frontend. In
deriving the spectrum of normalisation algorithms, we discover an alternative view of

1.6. Structure of this thesis 33

normalisation by evaluation— by program transformation.

In Chapterl 7 we describe affirent approach to normalisation using shrinking
reductions A one-pass imperative algorithm using a graph-based representation for
terms is presented. We discuss our implementation of the algorithm for SML.NET,
as a replacement for the existing algorithm. We present benchmarks, which show a
significant improvement over the original version.

In Chaptef B we conclude and discuss future work.

Chapter 2
Background

In this chapter we set the scene for the rest of the thesis. We introduce some nota-
tion and terminology for the metalanguage and object languages. Then we present the
untypedai-calculus. Simple types are added, followed by products, sums and compu-
tations. We describe the intermediate language MIL and a useful vahéht Then

we define normalisation and introduce normalisation by evaluation as a method for
performing normalisation.

2.1 The metalanguage and notation

Functional programming languages such as ML are based ai+¢akulus. In this
thesis the object languages we are interested in are primarily variantsbttieulus.

Itis also convenient to uskstyle notation as part of our metalanguage for defining and
reasoning about algorithms which manipulate object language terms. To distinguish
between the object language and the metalanguage, we use conveitiaiation

for the metalanguage adns-serif type for object language syntax constructors.

In the metalanguagéx.s denotes an anonymous function abstraction, and juxta-
position fa denotes the application of the functidrto the argumena. For example,
(Ax.x+1)2 denotes the number 3.

Ultimately we shall use ML to implement the algorithms specified in our meta-
language. An object language can then be defined using ML datatypes. This is dis-

35

36 Chapter 2. Background

cussed further ig4.9.

We assume the usual set theoretic, logical and arithmetic operations are available
in the metalanguage. In the metalanguage we identify types with sets. WeswAte
to indicate that the metalanguage tesimas typeA or equivalently thasis a member
of the setA. The set-theoretic function space between seandB is written A — B.

The product of setd\,..., Ay is written A; X --- X Ax. We also define a singleton set
(nullary product)l with a single element (). The disjoint union (or disjoint sum) of sets
A,...,Acis writtenAg +...+ A¢ or ¥S whereS = {A;}. Tuples are written using round
brackets. In the metalanguage we elide sum injections and use syntax to distinguish
the diferent branches of a sum. For instance, consider the set of metalanguage terms
of typeS = E+ (A — B). We can leerange ovelg, andf range ovelA — B. Then a
metalanguage termof typeS is in the left branch and a metalanguage tdrof type

S is in the right branch. Of course, this would not work if two branches were of the
same type, but in this thesis the branches of the sum always have distinct types, so this
is not a problem.

We shall overload type constructors for use both in the metalanguage and the object
languages. This does not lead to ambiguity as it is clear from context whether a type
refers to the metalanguage or the object language. We assume an infinite set of object
variablesV ranged over by,y,z.... An objectlanguageis defined as a set aérms
given by a grammar along with a set of typing constraints. In the case of untyped
languages, this set is empty. Upper case letters denote types, and lower case letters
denote terms. For a term, we distinguish between the bound varialidegn) and the
free variablegv(m) of m. For each language, the usual capture-avoiding substitution
m[X:=n] is defined as the termm in which n is substituted for all free occurrences of
X, with bound variables renamed appropriately in order to prevent variable capture.

List notation We find it convenient to make use of lists in the metalanguage. We use
the following notation:

¢ () denotes the empty list.

e (X1,...,X%n) denotes the list of lengthwith elementsxg, ..., X,.

2.1. The metalanguage and notation 37

e Xs++Yysdenotes the concatenation of the istonto the end of the lists
e X::Xsdenotes the listx) ++ Xs

e A list denotes the set of lists whose elements are taken from thie set

We also define some basic functions on lists. Throughout the thesis we shall define
functions by pattern matching.

rev() =<

rev (X:: X9 = rey(Xs) ++ (X)

map(A — B) — A list — B list

map f() =0
map f(x::x9 =(f x)::(map f x3

unzip(A x B) list — (A list x B list)

unzip() = (<))
unzip((x,y):: ps = (x:: xs,y::ys)
where ks,ys) = unzip ps

e rev xsreverses the lisks Of course, in actual implementations this is imple-
mented moref@ciently using an accumulator.

e map f xsappliesf to each element ofsto give a new list.

e unzip pgakes a list of pairs and returns the corresponding pair of lists.

2.1.1 Relations and calculi

A binary relationon a setS is a subset 06 x S. A subrelationR’ of R is a subset of
R. We often use infix notatioaR € for binary relation membershig(€) € R.

38 Chapter 2. Background

Equivalence relation An equivalence relation is a binary relati®that is reflexive:
(e,e) e Rfor allm, symmetric: € €) e Riff (¢,€) e R, and transitive: whenevee,€) €
R and ¢,€’) e R we have thatd €’) e R.

Calculus We define acalculusas an object language along with an equivalence rela-
tion R on terms. We calR theconvertibility relation We are particularly interested in
two flavours of calculi, each with aflierent set of restrictions placed &1 equational
calculi and reduction calculi.

2.1.2 Equational calculi

We wish to defineequational calculias systems for performing equational reasoning.
We would like the convertibility relatioe: to satisfy the following properties:

¢ It should includea-conversion. In other words, if two termsfidir only in the
names of their bound variables then they are convertible. We writg nY if m
IS a-convertible ton.

e It should be acongruence whenevemy = mj,...,m, = N, andC is ann-ary
syntax constructor then we ha@my,...,m,) = C(n,...,nT,).

e It should include a collection afonversion rulesWhereas the rules and the
congruence property are fixed by syntactic properties of the language, the con-
version rules are arbitrary, and embody the core of the convertibility relation.

We define arequational calculuss a calculus induced by an object langudpe
and a collection of conversion rules, wherebis the least equivalence relation which
containse-conversion, is a congruence and contains the conversion rules.

2.1.3 Reduction calculi

We define aeduction calculusas an object languagé and areduction relation—.
The convertibility relation is given as—. the reflexive, symmetric, transitive closure

of —.

2.2. A-calculi 39

We specify the reduction relation via a collectionrefluction rules These play
a similar role to the conversion rules of equational calculi, but can only be applied
left-to-right. Often reduction relations will also have a congruence property, although
for calculi with p-expansions this must be weakened. The congruence property for
reduction calculi is:

For each syntax construct@ (with arity n), and 1< i < n, whenever
m, — m we have thaC(my,...,m,...,my) — C(my,...,NM,...,My).

The only constraints we impose on the reduction relation are that:
e Itincludes the reduction rules.

e It respectsy-conversion: ifm— n andm=, nY then there existg’ such that
m —n andn=,n'.

e It is a subrelation of the congruence closure of the reduction rules (that is, the
relation given by closing the reduction rules under the congruence property).

Some reduction rules always decrease the size of a term, and similarly others al-
ways increase the size of a term. We call a reduction rule which always decreases the
size of a term aontraction and a reduction rule which always increases the size of
a term anexpansion We call a term which matches the left-hand side of a reduction
rule aredex We call€ thereductof the reductiore — €. We write «— for the
symmetric closure of— and—., for the transitive reflexive closure ef-.

Each reduction calculus has an underlying equational calculus, whose convertibil-
ity relation = is the least equivalence relation which containsonversion, is a con-
gruence and contains the reduction rules. Notethatt «—, C =.

2.2 A-calculi

Each object language gives rise to both equational and reduction calculi. We have
already noted that each reduction calculus has an underlying equational calculus given
by closing the convertibility relation under- and congruence rules. One can also
obtain a reduction calculus from an equational calculuslipgcting the conversion

40 Chapter 2. Background

A A
1><,+l \
A+t Aml — Amk —> Ac
AMIL —— MIL

Figure 2.1: Relationships betwegscalculi

rules, that is, applying them in only one direction. Sometimes there is a choice. For
instancey-rules can either be instantiated as contractions or as expansions.

In the remainder of this chapter we present equational variants of the calculi of
interest. Subsequently, where necessary, corresponding reduction calculi will be ob-
tained by directing conversion rules appropriately.

In general we shall use the convention that lowercase laml{dath appropriate
annotations) denotes a calculus, and uppercase lamhk@ath appropriate annota-
tions) denotes the underlying language.

Figure[2.] illustrates the relationships between thEedéntA-calculi covered in
this chapter. Arrows with a vertical component indicate extensions. Horizontal arrows
indicate variations.

2.2.1 The untypedi-calculus (tu)

The syntax oft-terms is as follows:

m,n ::= X | lam(x,m) | app(m, n)

Terms are variables, abstractions or applications. denotes the set of untypetd
terms. The conversion rules are:

(—.8) app(lam(x,m),n) = m[x:=n]
(—.m) lam(x,app(m, X)) = m, if X ¢ fv(m)

2.2. A-calculi 41

2.2.2 The simply-typeda-calculus (17)

We present our typed calculi by first specifying the syntax of typegasdermsthen
giving typing rules which act as constraints on pre-terms to give the set of terms. We
further constrain the convertibility relation such that terms are convertible only if they
have the same type. We assume a global assignment from variable names 16 types
such thaf'(x) is uniquely defined for each variale= V.

The syntax of types and pre-terms is as follows:

types AB:=0O|A—-B
pre-terms m,n::= x* [lam(x*, m) | app(m, n)

We assume a single base tyfe and the usual function type-constructor. The pre-
terms are the same as the terms of the untypedlculus, but with type annotations

on the variables. Type annotation are often omitted when they are not necessary. The
typing rules are:

X:A m:B m:A—-B n:A
lam(xA,m): A— B app(m,n) : B

I'x)=A
xA:A()

lam is theintroductionsyntax constructor for functions — it introduces a term of func-
tion type.app is theeliminationsyntax constructor for functions —etiminatesa term

of function type. In general each type constructor gives rise to an introduction syntax
constructor and an elimination syntax constructor. Each elimination syntax construc-
tor gives rise tcelimination contextsvith a hole for the term to be eliminated to be
plugged in. Thus function elimination contexts are one-holed contexts of the form:

EA~P[] = app((].n)

In general we shall IeE”[] range over elimination contexts with holes of type
EA[m] is the term obtained by plugging in EA[]. A~ denotes the set of simply-
typedAa-terms.

Church versus Curry We have chosen a Church-style [Bar92] presentation because
it meshes well with our ML implementations, and the MIL language has Church-style

42 Chapter 2. Background

type annotations. Most of our development would work equally well in a Curry-
style [Bar92]. In the Curry-style one works with untyped, but typeable, terms. Types
are assigned via typing contexts. In the Church-style one works with explicitly typed
terms.

The conversion rules are the same as for the untyped case (modulo type annota-
tions):

(—.8) app(lam(x,m),n) = m[x:=n|
(—.n) lam(x, app(m, X)) = m, if x ¢ fv(m)

Notice that the left-hand-side 6b.8 contains a—-introduction term inside a--
elimination term — in other words an elimination context with an introduction term
plugged in the hole. In generglrules follow this patterny-rules are not quite so easy
to characterise. In general they capture some noti@xi@nsionality In this case—.n
ensures that idpp(f,m) = app(f’,m) for all m, then it must be the case that f’.

2.2.3 Products and sums

It is natural to extend typed-calculi with products and sums. The introduction for
products is a pair, and the elimination is a projection. The introduction for sums is
an injection, and the elimination is a case split. Generally we use binary products
and sums, and sometimes a nullary product — the unit — as well. The syntax of the
simply-typedA-calculus with unit, binary products and sums appears in Figuie 2.2.
Elimination contexts for products and sums are given by:

EMP] = projy([]) | proja([])
EAB[]::=case[] of (x1= N1 | X2 = ny)

Note that there is no elimination for unit as the nullary tupleas no projections.

The typing rules are those af” plus the additional rules for unit, products and
sums shown in Figure 2.3.

A*! denotes the set of terms of this languagé€. denotes the subset af*! with
unit type removed A* denotes the subset with sum and unit type removed Agttd
the subset with sum type removed.

2.2. A-calculi 43

types AB:=O|A—>B|1|AxB|A+B
pre-terms mn:i= x|«
| lam(x*, m) | app(m. n)
| pair(m, n) | projy(m) | proj,(m)
| inj (M) | injx(m) | case mof (X' = ny | X5 = ny)

Figure 2.2: Syntax of*!

Unit

%11
Products

m:A n:B

pair(m,n) : Ax B

m: AL x Ay m: AL x Ay

proj;(m) : Ag proj,(m) : Az
Sums

m: A m:B
injs(m : A+B inj>(m): A+ B

X1:A1 X: A mAI+A> m:B m:B

case mof(x1A1:>n1|x§2:>n2) B

Figure 2.3: Typing rules fot, x and+

44 Chapter 2. Background

There are additional conversion rules for the new constructions. The conversion
rules for products are straightforward:

(x.81) projy (pair(myg, mp)) = my
(x.52) projy(pair(my, mp)) = My
(x.17) pair(proj; (M), proj,(m)) =m

These rules can easily be generalisedtary products. Then we can use the fact
that unit is a nullary product to obtain the rules for unit. Thary counterpart of a pair
is a tupletuple(my, ..., my), and then-ary counterpart of a binary projection is asary
projectionproj;(m)(1 <i < n). The generalised-rule is:

proj;(tuple(my,...,m;,...my)) = m (2.1)
Whenn = 0 this is vacuous. Thus there is fgule for unit. The generalisegrule is:
tuple(proj;(m), ..., proj,(m)) = m (2.2)

Settingn = 0 gives:

(1.m) x=m

If reading this from left-to-right, we may be concerned as to the origimoin
principle m could be any term of type unit. However, we only ever apply it from
right-to-left. Following others [JG95] we call the right-to-left applicationlof an
n-expansion, even though the size of the term does not increase. We justify this by
noting thatl.ny is a special case of Equatidn (2.2), where 0. Forn > 0 applying
Equation [(2.R) right-to-left does increase the size of the term. One can also derive
1.n-expansion from categorical consideratidns [JG95].

Remark In general we call the left-to-right application of afrule contraction and

the right-to-left applicatiorexpansion Note that, if in doubt, the left hand side of an
n-rule (orB-rule) can always be identified as such, as it must contain an introduction
term for the relevant type-constructor.

2.2. A-calculi 45

The conversion rules for sums are as follows:

(+.81) case injy(m) of (xy = N1 | X2 = ny) = N1[X1:=mM|
(+.82) case injo(m) of (X1 = N1 | X2 = Np) = Ny[X2:=m|
(+.7) case mof (X1 =inj1(X1) | X2 = injo(X2)) =m
(+.-.CC) E”[case mof (x; = n1 | X = ny)] = case m of x; = EA[m]
| xe=EAny

whereA = B-C and- is one of—, x,+. The+.-.CC rules ar&eommuting conversions
Applying a commuting conversion does not change the essential structure of a term,
although, as in this case, it may duplicate or share contexts. In general commuting
conversions arise when the form of elimination terms for a given type constructor in-
cludes a subterm whose type is independent of the term being eliminated — in other
words, the elimination includes an auxiliary term. For instance, eliminations for sums
have the form:case m of (xf1 =>n | x§2 = ny). The term being eliminatedh has
type A1 + Ap, butng, ny have typeB, whereB is any type, so they are auxiliary to the
elimination. The commuting conversions allow contexts to be moved in or out of the
auxiliary terms.

Note that replacing the-rule +.n and the commuting conversion rules.CC with
the generaliseg-rule:

case mof (xg = n[z:=inj;(x1)] | X2 = n[z:=injy(X2)]) = n[z:=m] (2.3)

leaves the convertibility relation unchanged. However, we usually find it more conve-
nient to use the former rules.

Binary sums can be generalisedtary sums in a similar way to the way in which
binary products can be generaliseahtary products. Ir§2.2.4 we discuss unary sums.

2.2.4 The computational metalanguagei)

The computational metalanguage extends the simply-typeslculus with computa-
tion types and corresponding syntax constructors. The syntax of types and pre-terms
is as follows:

46 Chapter 2. Background

types AB:=0|A-B|TA
pre-terms m,n:= x| lam(x*,m) | app(m,n) | val(m) | let x* <min n

The T type constructor is for computation types. The typA is the type of a
computation which returns a value of type The introductiorval(m) is just the trivial
computation which returnm, and the eliminatioriet x < m in n is the composite
computation which first performs the computatimmand then binds the result to the
variablex in the computatiom. The typing rules are as follows:

m: B m:A—-B n:A
r'x)=A
XA A lam(xA,m):A— B app(m,n): B
m: A m: TA n:TB
val(m) : TA letxA<=minn:TB

A term of the computational metalanguage is a pre-term which is typeable by the
above rulesAml denotes the set of computational metalanguage termsnfputation
Is a term of computation type. ¥alueis a term of non-computation type.

We have three additional conversion rules in addition to those for the simply-typed

A-calculus:
(T.8) let Xxe=val(m) in n=n[x:=m|
(T.p) let X< minval(X) =m

(T.T.CC) lety=(letxeminn)in p=letxeminlety<ninp, if x¢ fv(p)

Note that adding unit, products and sums does not cause any complications. We
can easily add them in the same manner as we did for the simply-fiypaltulus.

Unary sums Syntactically the computational metalanguage can be seen as a restric-
tion of the simply-typedi-calculus with unary sums.

let X&<min n=case mof (x=n)
val(m) = inj(m)

2.2. A-calculi 47

E(0)=0
EYA— B) = (EY(A) — &Ev(B))

E(A) =T(EYA)
Ev(X) = val(x)
Ev(lam(x, m)) = val(lam(x, Ey(M)))

Ev(app(m n)) = let x&<=Ey(M) in let y < Ey(n) in app(X,y)
wherex,y are fresh

Figure 2.4: Call-by-value embedding &f into Am,

The restriction is thatet x < m in n must have computation type, whereas the
unary sum constructionase m of (x= n) can have any type. This in turn restricts
the commuting conversions, such that the computational metalanguage has only one
commuting conversioil. T.CC, whereas the unanase gives rise to one commuting
conversion for each type constructor. Filinski [Fil96] has considered a generiglised
which has similar properties to unacgse.

Related calculi It is common to work with a restricted form ofy, in which all
functions must take values and return computations, thus havingAypel B, and
the computation constructor can be applied only to values. Following Sabry and
Wadler [SW97] we call this calculugy,.. We write Amlx for the set of allly,.-terms.
Unlike Sabry and Wadler, we regard both values and computations — rather than just
computations — as terms.

Amix contains the call-by-value embedding [HD94] of simply-typedalculus into
the computational metalanguage. The restriction of function arguments to value types
embodies the call-by-value nature of functions. Note phaefunctions of typeA — B
(whereB is of value type)call-by-nameunctions of typel A— T B, andmetacompu-
tationsof typeT (T A) are all disallowed byy.. The call-by-value embedding function
&y is defined on simply-typed-calculus types and terms. It appears in Figure 2.4. The

48 Chapter 2. Background

embedding functio&, maps simple types tdy,. computation types, antl” terms to
Ami= cOmputation terms. The auxiliary functidj, maps simple types tdp. value
types.

It turns out that the terms oty are so restricted that we can dispense with
the val syntax constructor and computation types, replacing them by simple syntac-
tic separation of values from termsm. This leaves us with a variant &£~ ex-
tended with thdet-construction, and we have a subggt of Moggi’s computational
A-calculusa: [Mog88]. Sabry and Wadler discuss in detail the correspondences be-
tweenAm), Amk, A andAc [SWI7].

2.3 MIL

MIL is the monadic intermediate languagesed by the SML.NET compiler. It is es-
sentially an extension ofyy. restricted so that non-atomic values must be named. We
also consider an unrestricted variant which we adliL. We distinguish between
concrete implementations of MIL antiMIL, and simplified versions we use for expo-
sition. MIL as implemented in the SML.NET compiler contains various features which
are not relevant to most of this thesis. We now present simplified MIL and simplified
AMIL. Value types are defined by:

AB:=X|Int|Aref|1|A— T(B)| AxB|A+B|uXA

Unit, functions, products and sums are covere§drf]. The integer typént is a base
type. Areference celhas typeA ref, whereA is the type of the contents of the ceX.
ranges over type variables for recursive typesaisthe type constructor for recursive
types.uX.Ais the recursive type in whicK is bound tquX.AinsideA. Recursive types
allow datatypes such as lists to be defined. For instance:

uX1+Intx X

Is the type of lists of integers.
We will assume that type variables do not occur free. The distinction between
negativeandpositiveoccurrences of type variables will be important when we come to

2.3. MIL 49

consider normalisation with recursive types in Chapier 5. One way of characterising
negative and positive occurrences is as follows:

e A free occurrence of a type variable is said todussitivein a typeA iff it is on
the left hand side of an even number of function types.

e A free occurrence of a type variable is said torsgativein a typeAiff it is on
the right hand side of an odd number of function types.

Thus a typeA can include both positive and negative occurrences of the free type
variableX. More concretely recursive predicaisblegativeandisPositiveare defined
in Figure[2.5. The predicaisNegativéX, A) holds if the type variabl occurs nega-
tively in the typeA. The predicatésPositivéX, A) holds if the type variabl& occurs
positively inA.

A computation typeT.(A) is parameterised by a finite set dfectse and a value
typeA, the return type. Eects range over subsets{af,r,w,a}wE, whereE is the set of
exceptions. Theféects are divergence], reading from a reference cetl)(writing to
a reference cellMp), allocating a new reference cedl)(and raising an exceptida € E.
Inclusion on sets offéects induces a subtyping relation:

ece A<A A<A
A<A T(A) <To(A) UX A< uXA

A<A B<P A<A BxgPH AN<A CC
AXB<A xXPB A+B<A +B A->C<A->C

whereA, B range over value types alover computation types.

The pre-terms oftMIL appear in Figurg 2J6. The introduction and elimination
constructors for recursive types are, respectivelg,andunfold. Elimination contexts
for recursive types are given by:

E,uX.A[] ::=unfold([])

Rather than the usuakndle construct, MIL uses Benton and Kennedgscep-
tional syntax{BKO1]. The introduction termraise(E) raises the exceptioB, as nor-
mal. However, thery construct is a generalisation tdt. The elimination term

50

Chapter 2. Background

isNegativéX,Y) = false
isNegativéX, Int) = false

isNegativéX, A ref) = isNegativéX, A)

isNegativéX, 1) = false

isNegativéX, A — T.(B)) = isPositivéX, A) v isNegativéX, B)

IsSNegativéX, Ax B) = isNegativéX, A) v isNegativéX, B)
isNegativéX, A+ B) = isNegativéX, A) v isNegativéX, B)
isNegativéX, uY.A) = false
isNegativéX, uY.A) = isNegativgA),

isPositivéX,Y) = true,
isPositivégX,Y) = false
isPositivé X, Int) = false

isPositivé X, A ref) = isPositivé X, A)

isPositivgX, 1) = false

isPositivéX, A — T.(B)) = isNegativéX, A) v isPositivé X, B)

isPositivé X, Ax B) = isPositivéX, A) Vv isPositivé X, B)
isPositivéX, A+ B) = isPositivgX, A) Vv isPositivé X, B)
isPositivé X, uY.A) = false
isPositivé X, uY.A) = isPositivgA),

Figure 2.5: Predicates for negative and positive occurrences of type variabl

if X=Y
otherwise

if X=Y
otherwise

if X=Y
otherwise

2.3. MIL 51

Atoms abi=xA x|
Values V,W:=a
| lam(x*, m)

| pair(a, b) | proj;(a) | proj(b)
|inj1(a) | injy(a)
| fold,x a(a) | unfold(a)

Computations m,n ::= app(a,b)
| val(v) | raise(E) | try X< min nunless H
| case aof (X1 =n1| X2 = Ny)
| read(a@) | write(a, b) | new

Figure 2.6: Pre-terms of MIL

try Xx<min nunless H first performs the computatian. If an exception is not thrown
then the result is bound tq and the computationis performed. If an exceptioB is
thrown then it is passed to the handiér Elimination contexts for computations are
now given by:

ETW[]::=try xe[] in munless H

A handler H is a list of pairs E, m) associating exceptions with computations of
type A. We write H(E) for the first computation irH which is associated with the
exceptionE. Any subsequent pairs associatiBgo a computation are redundant Bf
IS not associated with any computationHn thenH(E) denotegaise(E). A handler
H handles an exceptida by performing the computatiod (E).

Handlers can be composed as follows:

H;H’ = (map(A(E, m).try x<min val(x) unless H") H) ++ H’ (2.4)

wheremapis the usual map function as defined§ia 1.
If an exceptiorE is passed to the handldd(H’), then it is first passed td. If H
catche< thenH(E) is invoked, but this may raise a further exception which is passed

52 Chapter 2. Background

ontoH’. If H does not catclk then it is passed on tid’.
The other constructs we have not yet discussed are for managing references.

¢ new allocates a new reference cell
e read(a) returns the contents of reference cell

o write(a, b) writes the valué into the reference ced.

We shall not attempt to perform conversions involving references. Thus, the above
syntax constructors carffectively be treated as constants.
We introduce some syntactic sugar:

let X&minn=try X&min nunless ()
letval x<vin n=let x<val(v) in n
letfun f(X) =min n=letval f <lam(x,m)inn

Notice that the only place where non-atomic values can occuni(w. The only
way to use a value insidewal(Vv) is to bind it to a variable usingy. Thus, in MIL, all
non-atomic values must be named before being used. The idea is that atoms are small,
so can be safely duplicated, whereas non-atomic values are potentially large, so they
should be named in case they need to be used more than once.

It is sometimes useful to relax the distinction between atoms and non-atoms. We
call the resulting languag&MIL. AMIL is a strict extension ofly.. We useAMIL
to define the typing rules and convertibility relation for MIL. The pre-termaMiL
appear in Figurg 27.

The typing rules forlMIL appear in Figur¢ 2]8. MIL has the same typing rules
(with appropriate restrictions on valuesAMIL denotes the set of terms ofMIL
terms, andMIL denotes the set of terms of MIL.

Now we present the conversion rules fivlIL. The B- andn-conversion rules
appear in Figurg 2|9. Because of the restriction ¢thaé terms must have computation
type, there are only two commuting conversions. These appear in Figufe 2.10. The first
(T.T.CC) is for atry inside atry. The second«.T.CC) is for acase inside atry. The
convertibility relation for MIL is simply the restriction of the convertibility relation for
AMIL to MIL terms.

2.4. Normalisation 53

Values v,wi= X x| A
| lam(x*, m)
| pair(v,w) | projy (V) | projy(v)
|inj1(V) | inj(V)
| fold, x a(V) | unfold(v)

Computations m,n ::= app(v,w)
| val(V) | raise(E) | try x<min nunless H
| case vof (Xg=n1 | X2 = ny)
| read(V) | write(v,w) | new

Figure 2.7: Pre-terms ofMIL

For the remainder of the thesis MIL anIL will be used to refer to their simpli-
fied versions, except where specified otherwise.

2.4 Normalisation

Normalisation is a process which takes a terand returns an equivalent tehin a
special form called aormal form We define normalisation with respect to a calculus
with object languagel and convertibility relatiors, and a subset of’, the set of

normal formsZ-nf.

¢ Normalisationis the process of taking a tereand obtaining another tere (if
such a term exists) such thelte £-nf ande=¢.

e A functionnormL — £-nf is anormalisation functionf for all e€ £ we have
that if norm(e) terminates, thenorm(e) = e.

e A normalisation functiomormis soundif whenevere = € then eithemorm(e)
andnorm(¢’) are both undefined (diverge) norm(e) = norm(e’).

54 Chapter 2. Background
Atoms
xA:AF(X):A w01 cA:A
Functions
X:A m:T.B) V:A->T,(B) w:A
lam(xA,m) : A — T,(B) app(v,w) : T(B)
Products
v:A w:B v: A1 XA v: A1 XA
pair(v,w) : Ax B proj;(v) : Aq projo(v) : Az
Computations
V:A
val(v) : To(A) raise(E) : Tgy(A)
X:A m:T(A) n:T,B) H:T.B)
try xA<min nunless H : T.(B)
Sums

Recursive types

References

Subtyping

VA v:B
inj1(v) : A+B inj>(v) : A+B
X1:A1 X2:A2 ViAL+A2 ni:iT(B) n2:T.(B)

case v of (x’f1 =ny | szz = ny) : T(B)

Vi A[X:=uXAl
f0|d#x_A(V) t XA

vV uXA
unfold(Vv) : A[X:=uX.A]

v:Aref w:A
write(V,w) : Ty (1)

v:Aref
read(v) : Ty (A)

new : T{a}(A ref)

Figure 2.8: Typing rules fotMIL

2.4. Normalisation

55

(—p) app(lam(x,m),v) = m[x:=V]
(—.n) lam(x,app(v,X)) = v, if x¢ fv(V)
(1.n) x=V
(x.81) proj(pair(vi, v2)) = v1
(x.82) projy(pair(vy, v2)) = V2
(x.17) pair(projy (V). projo(v)) = v
(T.8) try x<val(v) in munless H = m[x:=V]
(T.p) try Xe<min val(x) unless () =m
(Texnf) try x<raise(E) in nunless H = H(E)
(+.81) case inj (V) of (xy=n1 | X2 = np) = N1[X1:=V]
(+.82) case injy(V) of (X1 = N1 | X2 = ny) = Np[X2:=V]
(+.m) case Vv of x3=val(inj;(x1)) =val(v)
| x2=val(injy(x2))
(u.B) unfold(fold,x a(v)) = v
(u.n) fold,x a(unfold(v)) = v
Figure 2.9:8- andn-rules forAMIL
(T.T.CC)

try y< (try x&min nunless H) in punless H’ =
try X< min (try y&<nin punless H’) unless H; H’,

(+.T.CC)

if x ¢ fv(p) andx ¢ fv(H'(E)) for anyE € E

try y&(case vof (Xgy=n1 | X2 = ny)) in munless H =

caseVv of Xg=tryy<nginmunless H
| Xo=>tryy&ngin munless H

Figure 2.10: CC-rules fatMIL

56 Chapter 2. Background

e The set of normal forms isanonicalif whenevere € £-nf ande= € then either
€¢L-nfore=¢.

We shall distinguish between twoftérent approaches to normalisatie@duction-
basedand equational For normalisation by evaluation we will mainly work with
equational normalisation. However, in many cases there is a correspondence between
the two notions and it can be useful to move back and forth between them.

Normal forms and a-equivalence In defining canonical normal forms and sound
normalisation functions we will find it convenient to identify terms up to
a-equivalence. For instance, we shall assert dra(x, X) = lam(y,y). Note that tech-
nically this is not necessary, but it simplifies the presentation. The alternative would be
to define a function for providing a canonical renaming of bound variables. By virtue
of the fact that we always generate fresh names (deterministically) for bound variables
our ML implementations of normalisation functions do give unique normal forms with
respect tax-conversion. In the sequel we identify terms umtoonversion.

2.4.1 Reduction-based normalisation

Reduction-basedormalisation applies to a reduction calculus {—), and is prob-

ably the more familiar notion of normalisation. The convertibility relatior—ss...
Normal forms are obtained by repeatedly applying directed reduction rules to a term
until no more rules are applicable. The set of normal forms is the set of all irreducible
terms.

Typically we will obtain a reduction calculus from an equational calculus, and the
reduction rules (and a corresponding reduction relation) from a convertibility relation
by directing the conversion rules. In the casetafalculi we always read the-rules
and commuting conversions from left-to-right. Theules can either be read left-to-
right, as contractions, or (with extra side-conditions) from right-to-left, as expansions.

For example, the reduction rules for the simply-typledalculus withs-reduction
andn-contraction are given by reading both the conversion rules from left-to-right:

2.4. Normalisation 57

(—.B) app(lam(x,m),n) — m[x:=n]
(—.n) lam(x,app(m, X)) — m, if X ¢ fv(m)
Definition 2.1.

e Aterm isweakly normalisingf it has a normal form.

¢ Areduction sequencstarting from a term mis a (possibly infinite) sequence of
terms m, my, ... such that for all i we have thatim— mj,1.

e A term isstrongly normalisingf all reduction sequences starting from that term
are finite. In other words, every term has a normal form.

e A term m isconfluentif whenever m—, nm’ and m —., n’ there exists Y
suchthatmh —, m”” and nf’ —, m'”’.

It is natural to extend the notions of normalisation and confluence to entire calculi.
A reduction calculus is weakly normalisirigstrongly normalising confluent if all
terms are weakly normalisingtrongly normalising confluent. If a reduction calculus
is weakly normalising then normal forms always exist, and hence it gives rise to a total
normalisation function. If a reduction calculus is confluent then normal forms are
unique, and hence it gives rise to a sound normalisation function.

In Chaptef B we shall give some general techniques for proving strong normalis-
ation. As we shall see later, strong normalisation turns out to be a useful stepping stone
to proving correctness of normalisation by evaluation algorithms.

2.4.2 Equational normalisation

Equational normalisations simply our general notion of normalisation applied to an
equational calculus. There are many possible choices of normal form. Usually we seek
a canonical set of normal forms, and correspondingly a sound normalisation function.
Normal forms are typically defined syntactically.

Often normal forms correspond with those of a related reduction calculus. Some-
times, however, additional reduction rules must be introduced in addition to those aris-
ing directly from the conversion rules.

58 Chapter 2. Background

Remark For some calculi (such as the untypedalculus) it is not possible to com-

pute a normal form for all terms. However, for most of the calculi we are interested in
all terms do have well-defined normal forms. Indeed, it would seem a desirable prop-
erty of a compiler that every source program compiles to a well-defined executable,
and consequently one would hope that every intermediate language term is optimised
(normalised) to a well-defined target term.

Remark If areduction calculus is weakly normalising and confluent then it gives rise
to an equational calculus with canonical normal forms. Weak normalisation guarantees
that normal forms exist, and confluence guarantees that normal forms are unique up to
a-conversion. The normal forms of the equational calculus are defined as the normal
forms of the reduction calculus (recall that we identify terms up-tmnversion).

Remark Existence and uniqueness of normal forms are important properties for
equational calculi. Notice that there is no counterpart to strong normalisation in equa-
tional calculi.

Example: consider the simply-typaecalculus with3-reduction and-contraction.
This calculus is strongly (and hence weakly) normalising [GLT89] and also conflu-
ent [Bar84]. Thus we can define the canonical normal forms of the equational calculus
to be the same as those of the reduction calculus.

Example: consider the simply-typedcalculus with products and sums where the
reduction rules are obtained by reading the conversion rules from left-to-right. This
calculus is not confluent:

app(case y of (xy = injy(X1) | X2 = injz(X2)),2)

+.
1 +.CC

app(y.2) casey of (xy = app(inj;(x1).2) | X2 = app(injz(x2).2))

Hence the reduction-based notion of normal form does not coincide with a canonical
equational normal form.

Semantic normalisatiofFil01b] is an instance of canonical equational normalis-
ation in which rather than defining the convertibility relation directly it is induced by

2.4. Normalisation 59

a denotational semantics. In other words a normal farnfor a termm is defined
as a canonical representative of the equivalence class of terms which have the same
denotation asn.

2.4.3 The structure of normal forms

It is often useful to describe the structure of normal forms. One way of doing so is by
giving a syntax for normal forms. For instance, a standard example of normal forms
for the simply-typedi-calculus with3- andn-conversion is as follows:

Normal forms m::=n® | lam(x*, m)
A .. B—A m)

Neutral terms n® = x| app(n
wheremranges over normal forms, ané overneutral termsof type A. Here, normal
forms arelong normal formgJG95, Hue76]. In generalpng normal formsare ob-
tained by generating a reduction relation by reagingndCC-rules from left-to-right,
but n-rules from right-to-left g-expansion).

(—.8) app(lam(x,m),n) — m[x:=n]
(—.n) m — lam(x,app(m, X)), wherex ¢ fv(m)

Then-rule also has to be further restricted in order to prevent infinite expangion.
expansion is only applicable taif the resulting term contains no ngswedexes. The
reduction relation is restricted such that it always satisfies the congruence property,
except where doing so violates the side-condition on creatingdaeexes. For in-
stance:

f920 — lam(x°,app(f, x))

but we do not have:

0-0

app(f°~°,m) — app(lam(x°,app(f,x)),m)

becausapp(lam(x®, app(f, x)),m) is aB-redex.

60 Chapter 2. Background

2.4.4 Normal forms from reductions

If one starts with a reduction calculus, then it is often possible to construct a syntax
for normal forms by starting with the syntax for terms and gradually restricting this
according to the reduction rules. For example, consider untypealculus withgs-
reduction, but ng-rule. The syntax of terms is:

m,n ::= x| app(n,m) | lam(x, m)

Now, a normal form cannot containfaredex, so we must somehow restrict the
form of applications. Specifically, an abstraction cannot be applied. We introduce a
new syntactic category afeutral termsfor terms which can be applied. Again these
cannot contaiB-redexes:

Normal forms m::= X | app(n,m) | lam(x, M)
Neutral terms n:= x|app(n,m)

wheren ranges over normal forms amdranges over neutral terms. We can simplify
this, as neutral terms coincide with a subset of normal forms, to give:

Normal forms m::=n|lam(x,m)
Neutral terms n::= x| app(n,m)

Naturally this technique can be used for equational calculi too, by directing the
conversion rules.

Unfortunately, it is not always possible to give a neat syntactic characterisation of
normal forms. For instance, if we agecontraction then this results in a restriction on
the form of normal forms occurring inside abstractions. Specifidaliy(x, m) is only
a valid normal form ifmis not of the formapp(n, X) wherex ¢ fv(n). We can explicitly
state this as a restriction on the syntax, but it is not possible to express directly in
the BNF. Similarly it is not entirely straightforward to construct a normalisation by
evaluation algorithm which performscontraction. Nevertheless, this technique does
provide a general way to obtain the structure of normal forms from a reduction relation.

2.5. Normalisation by evaluation 61

2.5 Normalisation by evaluation

We present normalisation by evaluation as a method for performing canonical equa-
tional normalisation. However, the normal forms produced by canonical equational
normalisation will often coincide with those produced by reduction-based normalis-
ation, so we shall sometimes use reduction-based techniques in order to reason about
normalisation by evaluation.

Normalisation by evaluation gives a sound normalisation funatimnmn for a lan-
guage/ with convertibility relation= and normal forms.-nf:

normJ/. — L-nf
norm(e) =| [e]l

[-1 is called theresidualising semantics[£] denotes aemantic domaim which

terms are interpreted, arfiet] the meaning of the termg where[[e]:[L]. Thereifi-

cation function| :[L] — £-nf (‘reify’) takes semantic objects to normal forms.
We require that the following properties hold:

(soundness) e=€ = [e]=[€1 (2.5)
(consistency) e= norm(e) (2.6)

Given the typing constraint fororm consistency ensures tharmis a normalisation
function. The soundness property stated here, is soundness of the residualising seman-
tics. Note that soundness of the residualising semantics implies soundnessrof
Hence,[(2.p) and (2.6) guarantee thatmis a sound normalisation function.

2.5.1 Example: the free monoid

Our first example of normalisation by evaluation, the free monoid, is rather simple.
It does not relate directly to the main body of this thesis, but it does provide a basic
illustration of normalisation by evaluation.

Source language
(Exp mn:=1|x|mxn

62 Chapter 2. Background

Terms are built up from a distinguished unit, variables and multiplication, which rep-
resent the monoid operations

Conversion rules

(associativity) adxb)xc=ax(bxc)
(right identity) axl=a
(left identity) lxa=a

The conversion rules are simply the monoid laws.

Normal form
(Expnf) m:i=1|xxm

Normal forms result from eliminating units and associating brackets to the right.
An alternative perspective is to view terms as binary trees, and normalisation as the
process of flattening these to lists. Indeed, a basic list semantics gives rise to a norm-
alisation by evaluation algorithm.

Residualising semantics

[Expl =V list
[11=<
[x] =)

[mxn]l=Im]+1In]

Reification

L:IExp] — Exp-nf
10=1
L(X::x9 = xx (| x9

Normalisation
norm(m) = [m]
Unit is interpreted as the empty list, a variable is interpreted as a singleton list,

and multiplication is interpreted as list concatenation. The reification function simply
witnesses the isomorphism between normal forms and lists.

2.5. Normalisation by evaluation 63

2.5.2 Typed calculi and environments

For typed calculi itis convenient to take the usual approach of partitioning the semantic
domain according to typelLa denotes the subset ¢f consisting of terms of typ&
(similarly £-nf , denotes the normal form terms of typg [La], or more concisely

[A], denotes the semantic domain used to interpret terms ofAy@mrrespondingly

we define a type-indexed version of the reification functién[A] — £-nf,. The
normalisation function becomes:

normL — L-nf

norm(e") =" [e]

In the case oft-calculi we shall use an environment semantics in which the se-
mantics is parameterised by an environmegniapping variable names to semantic
objects (with an appropriate type restriction in the case of typed calculi). Theeterm
in environmenp is interpreted age],. For the typed case this gives a normalisation
function of the form:

norm/t — L-nf
norm(e”) =1 [el

where? is the initial environment] might be the empty environmeaj which makes

sense if we want only to normalise closed terms. If we want to handle open terms as
well, then we can defing to map each variable to a corresponding semantic object
which somehow encapsulates the name and type of the variable. This is the approach
we shall usually take.

2.5.3 Example: simply-typedi-calculus and long normal forms

Our second example of normalisation by evaluation is the one which has been
most studied in the literaturé [BS91, BES98, BES03, Ber93, Fio02, AHS95]. This
normalisation by evaluation algorithm forms the basis for most of the normalisation by

64 Chapter 2. Background

evaluation algorithms explored in this thesis. It illustrates normalisation by evaluation
for typed-calculi using an environment semantics.
Recall from§2.4.3 that long normal forms are given by:

Normal forms m::=n® | lam(x*, m)
Neutral terms n® = XA | app(n®A, m)

We write A7 -nf for the set of normal forms and™-nefor the set of neutral terms. In
general we shall use thefsix -nf for the set of normal forms of a language, ane -
for the set of neutral terms.

We choose a set-theoretic semantics in which the base type is interpreted by the set
of normal forms of base type and functions are interpreted by the set-theoretic function
space:

[[O]] = A_)‘nfo
[A—Bl=[Al—-[B]
The semantics of terms is standard:
[[X]]p Zp(X)

[lam(x,m) 1, = AS[Mly[x-g
[app(m.n) 1, = [m],([n1,)

The type-indexed is defined mutually recursively with another type-indexed function
T (‘reflect’) whichreflectsa neutral term in the semantics.

VATAT = A™-nfy
TM:A”-nes — [A]

1%e=e
1A7B f=lam(x LB (f(1" X)), xfresh

1Ce=e
1B e=21s1° (app(e (1" 9))

2.5. Normalisation by evaluation 65

To normalise a terne” we have:

norme®) =1 [el

where? denotes the environment mappirjto T4 x.

2.5.4 Reflection

Perhaps the easiest way to motivate the role of reflection is to begin by considering the
function 7 restricted to variables. In order to define the semantics on open terms we
need a suitable initial environmeft which maps a variablg” to a semantic object

T x of typeA. For the purposes of normalisation by evaluationtheust be somehow
encoded it x in such a way that it is possible to extract— in particular reifying it
should return the normal form of the variaBle.

A1 x = norm(x?) (2.7)

It turns out that reflection is also necessary in the definitiop &h particular, in order

to reify a function it must be applied to the semantic representation of a fresh variable.
Furthermore, in the definition df it is necessary to obtain a semantic representation
of other neutral terms apart from variables. THus defined over all neutral terms,
and for any neutral term”:

A1 n=norm(n®) (2.8)

This property follows from the characteristic property of reflection:

[Ty =1"n (2.9)

Reflecting a neutral term is the same as interpreting it in the initial environment.

INotice that in general the long normal form of a neutral term can be obtained justpeipgnsion.
This is because a neutral term containgnor CC-redexes, ang-expansion is not allowed to introduce
newp- or CC-redexes.

66 Chapter 2. Background

Remark A common mistake is to ask the question of whether normalisation can be
performed as reify composed with reflect. Clearly this could not work in general, as
reflect is only defined on neutral terms.

Remark A standard normalisation by evaluation method for dealing with constants
in A-calculi, which we will use later, is to interpret constants by reflecting them in the
semantics, calling at the appropriate type. Inffect this amounts to treating such
constants as if they are neutralwrinterpreted

2.5.5 Example: untypedi-calculus andg-normal form

We consider the untypeticalculus with just thg-rule. Normal forms are given by:

(Au-nf) m:=n|lam(x,m)
(Au-ne n::=x]|app(n,m)

Terms are interpreted in a domain given by a recursive domain equation. Infor-
mally, a term is either interpreted as raw syntactic material, or as a function from
semantic objects to semantic objects.

[Au] = Au-ne+ ([Au] — [Aul)

[x1, = p(x)
[lam(x,) I, = As.[ellp[x—g
[app(es, &)1, = f([e21,). if f=1[e1l, isa function
=app(m.| ([e21,)). if m=[ey]],is aterm

L:[Au] = Au-nf
le=¢ if eis aterm
L f=lam(x | f(x)), (xfresh) if f is a function

norm(e) =| ([elly)

whereT X = X.

2.6. Parameterised semantics and compositionality 67

We do not give a formal account of recursive domain equatiens read as “is
iIsomorphic to”. S Au] is isomorphic toAu-nf + ([Au] — [Au]). If we were to
give a formal semantics we could takau] to be a CPO[Win93], and assume that
S — S’ denotes the continuous function space between CPOs. In ML programs we
simulate recursive domains using datatypes.

datatype term = Var of string
Lam of string * term | App of term * term

datatype sem = Neutral of term | Fun of sem -> sem

The datatypeerm representg\u, andsem represent§ Au].

2.6 Parameterised semantics and compositionality

Generally we want to give eompositionasemantics for our equational calculi, in that

the semantics of a term is defined in terms of the semantics of its component parts.
Observe that any termcan be expressed as afary term constructo€ applied ton
subterms; ... en.

Definition 2.2. A function f on terms of a language t®mpositionalif f can be
defined such that for any term=eC(ey,...,e,) we have that e) is a function of

f(ew)..... f(en).

At the very least, compositionality of semanticeensures that it is sound with
respect to the congruence rules.

Lemma 2.3.If [-] is compositional,C is an n-ary term constructor, anfle;]| =
[€1,....[en] = [€1 then[C(ey,....en)] = [C(€,....en) 1.

Proof.

[C(es,....,en)] = f([er].....[en]), forsome functionf
= f([€1.....[eT)
=[C(&.....en)]

68 Chapter 2. Background

We capture compositionality explicitly using the notion gdarameterised seman-
tics. A parameterised semantics is specified in terms of a set of parameters: one for
each term constructor. Instantiating all of these parameters gives a concrete semantics.
Different instantiations give fierent concrete semantics.

Sometimes certain parameters are lefinterpreted The semantics of an-ary
uninterpreted parametgris given by definingp(sy,...,S)) as ann-tuple (si,...,S)
tagged with the paramet@r which we simply write ap(sy, ..., Sh).

2.6.1 Example: the free monoid

We give a parameterised semantics for the free monoid, with paransgigrsit and
prod:

[1] = unit
[x] = elt(x)
[erxex] =prod([er].[e21)

In §2.5.1 this was instantiated with the monoid of lists:

[Exp] =V list
unit = ()
elt(x) = (x)

pI’Od(|1,|2) = |;|_ ++ |2
Another alternative is to use the monoid of functions from terms to terms:
[Exp]l = Exp— EXp
unit= Aee
elt(x) = le.xxe

prod(f1, f2) = flo f2

L f=1(Q)

2.6. Parameterised semantics and compositionality 69

[xI, = p(X)
[lam(x,€) 1, = lam(As.[el y[x—g)
[app(es. €2) I, = app(ler . [e21,)

Figure 2.11: Parameterised semanticsAarandA™

Beylin and Dybjer [[BD95] constructed this algorithm from a free monoidal cat-
egory. It can also be seen as a version of the list-based algorithm in which lists are
encoded as patrtially applied concatenation functions [Hug86, DNO1]. The motivation
for representing lists as partially applied concatenation functions, is that concatenation
becomes a constant time operation, whereas concatenation on linked lists is linear.

2.6.2 Example: the (untyped simply-typed) A-calculus

A parameterised semantics for bath andA ™, with parametertamandapp, is given

in Figure[2.1]. Note how the abstraction is interpretethasapplied to a function.

As well as covering the congruence rules, this also captures-thkes — the name of

the bound variable is irrelevant. In general bound variables give rise to functions in a
parameterised semantics. For instance the parame¢tsan be used to interprédt in

the computational metalanguage, whiglet X < min n], = let([m],, As.[n1ly[x-g)-

Remark By leaving all the parametemsninterpreted we obtainhigher-order ab-
stract syntafPES88].
The semantics of2.5.5 can be easily obtained:

lam: [Au] — [Au]
app: (TAu x [Aul) — [Au]

lam(f) = f
app(f,s) = f(9), if fisafunction
=app(f,l), if fisaterm

70 Chapter 2. Background

Given that the residualising semantics of the simply-typeaxlculus from§2.5.3
does not use the type annotations on bound variables, the parameters can also be in-
stantiated to give the semantics§&.5.3:

lam: ([A] — [BI) - (LAl — [BI)
app: (LAl — [BI)x[Al) — [BI]

lam(f) = f
app(f,s) = f(9)

In Chaptef # we will consider other normalisation by evaluation algorithms using
the same parameterised semantics§4rg we introduce an alternative parameterised
semantics folA~, which does make use of the type annotations on bound variables.
This allows us to dispense with the type-index/on

Remark Inthe above examples we have explicitly specified the types of the instan-
tiated parameters. Usually we shall omit the types, as they are easy to infer.

2.7 Proof technigues for normalisation by evaluation

The focus of this thesis is the application of normalisation by evaluation, rather than
providing completely formal correctness proofs. However, it can be illuminating to
have some appreciation of the proof techniques one might use. We recall the two
properties which are needed for correctness of normalisation by evaluation:

(soundness) e=€ = [e] =[€1]
(consistency) e=norm(e)

Usually soundness is easy to prove by induction on the proofabkat’. The
difficult part tends to be proving consistency.

2.7. Proof techniques for normalisation by evaluation 71

2.7.1 Direct proof

Sometimes we can prove soundness of the semantics and consistencyndirectly
without using any special techniques. We illustrate this approach with the free monoid
using the list semantics.

Soundness of the semantics is straightforward to prove by induction on the proof
thata=b. The associative law follows from associativity of concatenation and the
identity laws follow from the property that the empty list is the identity for list con-
catenation. In other words, lists satisfy the monoid laws. Consistency is slightly more
difficult to prove. Itis proved by induction on the structure of terms using the following
lemma:

Lemma2.4.| ([a]+[bl) = [al)=([bl)

Proof. Observe thafa] and[b] are justlistgas,...,a,) and(bs,...,bn) respectively.
Then:

L([al++1b]) =l <a1,...,an,b1,...,bm) (expanding out lists)
=(ap*---*(@y*(by*---*(bm=1)))) (definition of])
=(ag*---x(@p*x1))*(by=---x(bm=1)) (conversion rules)
= (ag,...,an)) *(l (b1,...,bm)) (definition of |)
= [al = [bD) (contracting lists)

Lemma 2.5 (consistency)e = norm(e)

Proof. The only interesting case is multiplication:

normaxb) =] ([axb]) (definition ofnorm)
=l ([all+[b]) (definition of [- 1)
= (I [al)*(l [b1) (LemmaZ2)
= norm(a) = norm(b) (definition ofnorm)
=axb (induction hypothesis)

72 Chapter 2. Background

2.7.2 Using the existence of normal forms

A direct proof of consistency is often non-trivial. However, if we already know that
normal forms exist, then the task becomes much easier. After proving soundness of
the semantics, we just need to show that normal forms are preservexray

Proposition 2.6. Suppose nor(e) =| [e]. If:
1. Forallee e L, ife=¢€ then[e] =[€].

2. For all ee £ there exists’ec £-nf such that es €.

3. For all ee £-nf we have e norm(e).
then norm is a normalisation by evaluation function.

Proof. [1 is soundness. Now we show consistency| By 2, givenegthgre exist® €
L-nfwithe=¢€. By[3,€& =norm(€), and hence= norm(¢’). But by soundnespe] =
[€ 1, and hencaorm(e) = norm(€¢’) by definition ofnorm Thuse = norm(e). m]

We illustrate this technique with simply-typaedcalculus and the normalisation by
evaluation algorithm o0§2.5.3. Soundness follows by straightforward induction on the
proof thate = € using the following substitution lemma:

Lemma 2.7. [m]y[x+— [n],] = [mMx:=n] 1,
Proof. Induction on the structure oh. O

It is standard that every term is convertible to a long normal form [JG95, Hue76].
Hence we just need to show fef in normal form thae® = norm(e?). The proof is by
induction on the structure of terms. There are two cases.

A-abstractions

norm(lam(x, m))"~B)

=178 [lam(x,m)]; (definition ofnorm)

= lam(x, LB ((AsImlix-g)(1" X)), xfresh (definition of| and] -)
=lam(x, |B LM Tpxerax) (meta-levejs-reduction)
=lam(x, 1B [m1;) (definition of1)

= lam(x, norm(m®)) (definition ofnorm)

= lam(x,m) (induction hypothesis)

2.7. Proof techniques for normalisation by evaluation 73

Note that it is safe to assume thas chosen as the fresh variable in the definition
of reify, as this is the only place we generate bound variables and this variable
will never be used elsewhere.

We could be completely formal about fresh-name generation using a method
such as: FreshMIlL FM set theory[[SPG03, GP01], term familiegle Bruijn
levels/ de Bruijn indices[[BES98, dB72], or a name generation monad [Fil01b].
However, we chose not to because this would significantly complicate the expo-
sition with boring details.

Neutral terms We write app(my,...,mx) for app(...app(m,my),...,my). Neutral
terms of typeO have the formapp(x,m,...,my), wherem:Aq,...,mg:Ax are
normal:

norm((app(x, my, ..., my))°)

=1° [(app(x,my,...,my)) Iy (definition ofnorm)
= [(app(X, My, ..., M) Iir (definition of |)

= [xXIhlmely ... [medly (definition of [- 1)
= (1A 0 Ty Ty Tkl (definition of [x;)

=19 app(x, 1A [my Iy,..., 1 [mkTq) (definition of 1A~
appliedk times)

=19 (app(x, My, ..., My)) (definition ofnormand
induction hypothesis
applied to eacim)

= app(X, M, ..., M) (definition of 1°)

Hencenormis a normalisation by evaluation function for simply-typedalculus with
long normal forms.

Propositiorj 2.6 gives not only thabrmis a normalisation by evaluation function,
but also that it is total. One would expect that if normal forms exist for all terms, then a
normalisation by evaluation algorithm should terminate on all inputs. However, prov-
ing termination directly is often non-trivial. Typically we prove existence of normal
forms in an equational calculus by appealing to a nhormalisation proof in a reduction

74 Chapter 2. Background

calculus. In &ect we lift a termination proof in a reduction calculus up to a proof of
termination and correctness of a normalisation by evaluation algorithm. We discuss
approaches to normalisation in Chagter 3.

Berger et al.[[BS91, BES98, BES03] use the existence of normal forms in order
to prove correctness of normalisation by evaluation. Our proof of consistency is es-
sentially the same as theirs. Fiore [Fib02] uses the same idea, but works entirely in a
categorical framework.

2.7.3 Other proof techniques

The standard normalisation by evaluation algorithm for obtaining long normal
forms for the simply-typed-calculus has been proved correct using a variety of dif-
ferent techniques including the following:

e Berger|[Ber93] starts with a constructive strong normalisation proof, from which
he extracts a normalisation by evaluation algorithm.

¢ Hofmann [Hof99] uses a logical relation between semantic objects and terms.

e Filinski [Fil99b] uses semantic normalisation and a Kripke logical relation to
prove correctness of TDPE — a stronger property than correctness of normalis-
ation by evaluation.

¢ \estergaard[[Ves01] takes a rewriting-theoretic approach using a two-level
calculus[NN92].

¢ A range of categorical techniques [AHS95, CDS98, Fio02].

Berger and Hofmann’s techniques are both connected to the methgiZl oR.

First, strong normalisation implies the existence of normal forms. Second, strong
normalisation for simply-typedA-calculus can be proved using a logical
relation [GLT89]. We believe that one can view Hofmann’s proof as a transforma-
tion of the proof of§2.7.2 in which a logical relations proof that normal forms exist
has been inlined.

2.8. Corollaries of normalisation by evaluation 75

We shall not rigorously prove our algorithms correct, but we shall use Proposi-
tion[2.§ to justify the algorithms in Chapi{efr 4 and Chapier 5.

2.8 Corollaries of normalisation by evaluation

Uniqueness of normal forms By definition a normalisation functionormwhich is
sound and consistent defines a uniqgue normal form for an equational calculus.

Confluence If in proving correctness afiorm the conversion rules are applied only
in one direction then this gives rise to a reduction-calculus with unique normal forms,
that is, a confluent reduction-calculus. Hence normalisation by evaluation can be used
for proving confluence. Coquand and Dybjer [CD97], and Dybjer and Filinski [DF02]
use this idea to prove confluence of a combinatory calculus.

Another way of proving confluence is from strong normalisation, correctness of
normalisation by evaluation and preservation of normal forms.

Theorem 2.8. Let(L,—) be a reduction calculus. If:

1. (£,—) is strongly normalising with normal form&-nf.

2. norm£L — £L-nf is a normalisation by evaluation function fof, «—.)

3. For all ee £L-nf we have e norm(e).
then(L,—) is confluent.
Proof. Supposee —. mande —, n. By[l, m—., m’ andn —., n" wherent,n’ €
£L-nf. By[2, m’ = norm(m') andn’ = norm(n’). Butm' «—, ', and by soundness of
normwe have thahorm(m’) = norm(n’). Hencem' =n'. m|
Completeness A semantics is complete if for arg/e’:

fel=[€] = e=¢

This follows from soundness and consistency as:

[el=1€1 = norme) =norme) — e=¢

76 Chapter 2. Background

Altenkirch et al. JADHSO01] used normalisation by evaluation in this way to obtain a
completeness proof for a categorical modelof.

Decidability One of the primary uses of normalisation is for deciding whether two
terms are convertible — just compare their normal forms for syntactic equalitgrf
Is total, that ispnorm(e) is defined for alle € £, then= is clearly decidable.

Complexity Decidability of 8- andgn-equality for the simply-typed-calculus has
worst case time complexity [Vor97, Vor04] given by the non-elementary function:

22"'2}‘3“

wheren is the size of the term, antlis some constant. Decidability is trivially re-
ducible to normalisation. Hence normalisation is at least as complex. Consequently
we do not try to reason about the asymptotic complexity of our normalisation by eval-
uation algorithms, but instead take an empirical approach to evaluatingfittierecy

of normalisation by evaluation as compared with other normalisation algorithms.

Chapter 3

Normalisation for the computational
metalanguage

In subsequent chapters we investigate normalisation by evaluation for the compu-
tational metalanguage and related calculi. In this chapter we consider reduction-based
normalisation for the computational metalanguage. This is interesting in its own right,
but also allows us to apply Proposition]2.6. We concentrate on showing that the comp-
utational metalanguage is strongly normalising, although in order to apply Propo-
sition[2.6 it is actually sflicient to prove weak normalisation (existence of normal
forms).

Another property of reduction calculi one is often interested in is confluence. As
illustrated in§2.8, confluence can be obtained as a corollary of normalisation by evalu-
ation, so we do not pursue it further. Other proofs of confluence for the computational
metalanguage appear in the literature [BBdP98, BHT97].

Remark Although it can be useful to know that reductions can be applied in any
order, confluence (or uniqueness of normal forms) is not essential in compiler imple-
mentations. Providing that the target code is semantically equivalent to the source, it
does not matter that there may be other possible normal forms.

This chapter is concerned with reduction calculi. For the remainder of the chapter
read reduction calculus for calculus. We obtain reduction rules for the computational
metalanguage by directingy, CC- andp-rules from left-to-right. The rules appear in

1

78 Chapter 3. Normalisation for the computational metalanguage

(—.5) app(lam(x,m),n) — m[x:=n]

(—.n) lam(x,app(m,x)) — m, if x ¢ fv(m)
(TB) let x<val(m) inn — n[x:=m]

(T.p) let X<minval(x) — m

(TT.CC) lety=(letxeminn)inp — letxeminlety<ninp, if x¢fv(p)

Figure 3.1: Reductions for the computational metalanguage

Figure[3.1.

In our reducibility proofs we will need aubstitutivityresult.
Proposition 3.1 (Substitutivity). If m — m' then nix:=n] — n’[x:=n].
Proof. Induction on the derivation ah — . O

The rest of this chapter is structured as follows. §fhl we give an overview
of our approach to proving strong normalisation for the computational metalanguage.
In §3.3 we outline an alternative proof of strong normalisation for the computational
metalanguage by translation into a simpler calculus§dr§ we give a strong norm-
alisation proof using reducibility and continuations. §8.4 we give some variations
and extensions of reducibility for continuations. we generalise reducibility
over continuations to reducibility over frame stacks. Finally§3§ we discuss some
related work.

3.1 Strong normalisation and(-)""

We shall prove that the computational metalanguage is strongly normalisigg.4n

we outline a combinatorial proof using a translation into the simply-typediculus
extended with a commuting conversion corresponding@.ioCC. Similar proofs by
translation appear in the literature [BBdP98, BHT97]. This successfully establishes
termination, but only by relating, to some other system for which we happen to
have a result to hand.

3.1. Strong normalisation an@)™" 79

A direct proof of strong normalisation is problematic for the same reason that it
is for the simply-typedi-calculus: one of the reductions for computations performs
substitution of one term within another. Thus a reduction step may make a term grow
larger, and create subterms not present before. The consequence is that straightfor-
ward induction over the structure of terms or types is not enough to prove termination.
In §3.3 we present a semantic proof of strong normalisatiomfigr by adapting a
standard technique from thiecalculus. We define an auxiliary notion @ducibility
at every type, that is linked to strong normalisation, but amenable to induction over
the structure of types. Roughly, reducibility is the logical predicate induced by strong
normalisation at ground types. We can show that all reducible terms are strongly nor-
malising, and then the fundamental theorem of logical relations ensures that in fact all
terms are reducible.

Our presentation of reducibility follows the style in Chapter 6 of Girard et al.’s
book [GLT89]. Our addition is to find a suitable definition for reducibility at compu-
tation types. A first informal attempt might be to echo the definition for functions:

(Bad 1) Termm of type T Aiis reducible if for all reducible of type T B, the term

let X<=min nis reducible.
This is not inductive over types, as the definition of reducibility at tfpedepends on

reducibility at typeT B, which may be more complex. We can try to patch this:

(Bad 2) Termm of type TA is reducible if for all strongly normalisingn of

typeT B, the termlet x&<min nis strongly normalising.
This is now inductive, but in practice too weak to handle substitution. We need to look

more closely at the contexts in which computation terms tikean be used. These
continuationsare nestings ofet x<[] in n, and give us our successful definition of
reducibility:

(Good 1) Termm of type T Aiis reducible if for all reducible continuatiorts, the
applicationK @ mis strongly normalising.

Here application means plugging tenmminto the hole [] withinK. Of course, we now

have to define reducibility for continuations:

(Good 2) ContinuatiolK accepting terms of typ€Ais reducible if for all reducible
v of type A, the applicatiorK @val(v) is strongly normalising.

80 Chapter 3. Normalisation for the computational metalanguage

This termval(v) is the trivial computation returning value By moving to the sim-
pler value typeA we avoid a potential circularity, and so get a notion of reducibility
defined by induction on types. What is more, the characterisation by continuations
Is strong enough that the remainder of the strong normalisation proof goes through
without undue diiculty.

Looking beyond reducibility, this jump over continuation§eos a quite general
method to leap-frog concepts from value typeip to computation typd& A, whether
or not we know the nature of. If we write K + mwhenK applied tom strongly
normalises, then for any predicate A we define in turn:

¢ ={K|K Tval(V) forall ve ¢}
¢"T={M|KTrmforallKeg¢"}CTA

This is our operation of r-lifting: to take a predicate on value typeA and return
another ™™ on the computation typ€ A, by a “leap-frog” ovew ' on continuations.

We believe that the use afr-lifting in the metalanguag@a,, is original. It was
inspired by similar constructions applied to specific notions of computation; it is also
related to Pitts’st-closure, and that in turn has analogues in earlier work on reducibil-
ity. §3.6 discusses this further.

3.2 Strong normalisation by translation

Ouir first proof of strong normalisation fag, is by translation into a simpler calculus.

In general we can prove strong normalisation for a calcijusy translation to another
calculusA; if the translation preserves reductions and the target calculus is already
known to be strongly normalising.

We use the translatio® in Figure[3.2 which strips out all computation types and
terms; essentially by instantiating the type construdtas the identity. The target
calculusiassochas exactly the types and terms of the simply-typezhlculus together
with one extra reduction rule:

(assog app(lam(y,n),app(lam(x,m),l)) —
app(lam(x, app(lam(y, n), m)),) if x ¢ fv(n)

3.2. Strong normalisation by translation 81

Types
®(0)=0
O(TA) =D(A)
®(A— B) = D(A) - O(B)
Terms

d(X) = X
®(lam(x,m)) = lam(x, ®(m))
®(app(m,n)) = app(P(m), (n))
®(val(m)) = ®(m)
®(let x<=min n) = app(lam(x, ®(n)), ®(M))

Figure 3.2: Translatio® from A t0 Aassoe

These two terms agginterconvertible, sassoereduction is admissible within the the-
ory of theA-calculus, but seems not very widely used. It is, for example, an instance
of Sabry and Felleisen’s reducti@i, that captures one kind of “administrative” re-
duction for code written in continuation-passing style [SF93, Definition 7].

The following result confirms that translation properly respects the structure and
behaviour ofi, terms.

Lemma 3.2. The translationd preserves types, substitution and reduction steps.
(i) Ifm: Athen®(m): ®(A).
(i) d(M[x:=n]) = d(M)[x:=D(N)].

@ii) Ifm—- ' in Ay then®(m) —» &(NY) in Aassoe

Proof. Parts((i) and[(ji) follow by induction on the derivation wf: A and the structure
of mrespectively. For parf (i) we observe that each reductioa.gimaps to a single
reduction oflassoé

e ®(—.B) and®d(—.n) are exacthyd andn;

82 Chapter 3. Normalisation for the computational metalanguage

e O(T.B)Iis alsog;

e ®O(T.n) is a special case ¢, and

e O(T.T.CC) isassoc

The proof forT.3 andT.n uses resul{ (i) on substitution. m|

Because of the addition @fssoereduction, it is not immediate that the calculus
AassociS strongly normalising. However, it is close enough to base a combinatorial
proof on the knowrB-normalisation, counting reduction steps offeient kinds. We
define three measures on lambda-ters{s) is an asymmetrically weighted measure
of term sizep(m) countsB-reductions; and (m) combines the two.

s(x)=1
s(lam(x, m)) = s(m)
s(app(m,n)) = s(m) + 2s(n)

b(m) = length of longesB-reduction sequence from
f(n) = (b(m), s(m)) lexicographically ordered.

Both andassocdecrease measusgm), which shows that they are strongly normal-
ising on their own. Measurlg(m) is well-defined, as we know thgtis strongly nor-
malising, and naturally decreaseb(m). The measurd (m) is then enough to prove
that AassociS strongly normalising provided we can show thaindassoereductions
do not increas®(m).

Forn this is straightforward, as it introduces no ngwedexes. The case afsoe
reduction requires more sophistication. What we must show is that fanasyssed™,
if m’ has g8-reduction sequengg to normal form, them has a matching sequence
that is at least as long. The following reduction diagram illustrates the need to consider

3.3. Reducibility with continuations 83

complete sequences.

assoc

app(lam(y, n),app(lam(x, m), 1)) == app(lam(x, app(lam(y, n), m)), 1)
/| Jo
n app(lam(x,n),1)
’i? app(lami(x, n),l")
wherex,y ¢ fv(m) U fv(n).
Given a reduction sequenpéon the right we attempt to construct anothem the
left, when it happens that variabkaloes not appear im. Applying functionlam(y, n)
on both sides seems a natural match, but the resulting right-handpeiiam(x, n),1)
may have reductions ihnot available on the left. The solution is to postpone the left-
hand reduction as long as possible, which we do by annotating terms to keep track of
what reductions are pending. We omit the details of the proof — the final result is
that for every complete sequenceon the right, there is a matchingon the left, but
individual reductions may be reordered.

Theorem 3.3. Both A3ssocand Ay are strongly normalising.

Proof. By Lemmd 3.4(iii) any infinite reduction sequenceli translates to an infinite
reduction sequencéyssoe But there are no such sequences as exgsypcreduction
decreases the well-founded meastf). Thus every term iNlassocand Ay strongly
normalises. O

3.3 Reducibility with continuations

Our second strong normalisation proof extends Tait's type-directed reducibility ap-
proach [Tai67], making use ofr-lifting. We follow closely the style of Girard et
al. [GLT8¢, Chapter 6].

As explained earlier, the key step is to find an appropriate definition of reducibil-
ity for computation types, which we do by introducing a mechanism for managing
continuations.

84

Chapter 3. Normalisation for the computational metalanguage

3.3.1 Continuations

Informally, a continuation should capture how the result of a computation might be

used in a larger program. Our formal definition is structured to support inductive proof

about these uses.

e A term abstractionx)n of type TA — T Bis a computation term of type T B

with a distinguished free variableof type A.

A continuation Kis a finite list of term abstractions, with lengt.

[Id| =0

K =1 K
d [Ke(on K o ()n| = K| +1

Continuations have types assigned using the following rules:

(n:TA—-TB K:TB—TC

ld: TA—-TA
Ko(Xn: TA—-TC

We apply a continuation of typEA — T Bto a computation terrm of type T A
by wrappingmin let-statements that use it:

[d@m=m
(Koe(Xn)@m=K @ (let x&<min n)

Notice that whenK| > 1 this is a genuine nested stack of computations, not just
simple sequencing: i.e.

let X1 & (let Xo < (... (let Xo =minny))...inNp) inng
rather than

letxi=minletXo<=nmpin...inlet x,&emyinn.

We define a notion of reduction on continuations:

def
KoK e VmK@m-oK@m e K@x—K @x

3.3. Reducibility with continuations 85

me redo if m: Ois strongly normalising

f eredap if app(f,m) eredg for all me reda

peredaxg If proji(p) € reda andproj,(p) € redp

meredra if K@mis strongly normalising for aK € red{ ,

Kered{, if K@val(v)is strongly normalising for al € reda.

Figure 3.3: Reducibility fory,

where the right-hand equivalence follows from Propositiof 3.1. A continuation
K is strongly normalisingf all reduction sequences starting frafhare finite;
and in this case we writmaxK) for the length of the longest.

Lemma 3.4. If K — K’, for continuations K and K then|K’| < |K].

Proof. SupposeK = Id o (x1)nyo---o (X)Nk. Then its applicatiorK @ x = let x; &
(...(let xx <= xin ng)...) in n; and there are only two reductions that might change the
length ofK.

e T.n wheren; = val(x;) for somei. ThenK — K’ whereK’ =ldo(Xg)njo---o
(Xi—1)Ni—1 0 (Xir1)Nirp 0+ o (X)nk and|K’| = |K| - 1.

e T.T.CC may occur at positionfor 1 <i <nto giveK’ = (xg)nzo---o(X_1)njo
(Xi+1)(let X < nizg in i) o (Xiy2)Niz20 -+ o (X)nk. Again|K'| = [K|-1.

HencelK’| < [K]| as required. O

3.3.2 Reducibility and activity

Figure[3.B defines two sets by induction on the structure of types: reducible terms
reda of type A, and reducible continuationsd{ , of type TA— T Bfor someB. As
described in the introduction, for computations we tesir o =red, .

86 Chapter 3. Normalisation for the computational metalanguage

Reduction Rewrite context Active term
-8 app(-,n) lam(x, m)
—.7 - lam(x, app(m, X))
X proji(-) pair(m, n)
X.n - pair(proj; (M), proj,(m))
T8 let X —inm val(n)
Ty let X< min — val(x)

T.T.CC lety<=—inn let x<linm
Figure 3.4: Activity forim,

We also need to classify some terménm:tiv@; we do this by decomposing every
reduction into a rewrite context with a hole that must be plugged with a term of a
particular form (see Figufe 3.4).

From this we define:

e Termmis activeif Rim] is a redex for at least one of the rewrite contexts.
e Termmisinactiveif R[m] is not a redex for any of the rewrite contexts.

The inactive terms are those of the foxrapp(m,n), proj;(m) andproj,(m); i.e. com-
putation types add no new inactive terms.
The basic properties of reducibility now follolR 1)—(CR 4) of [GLT89].

Theorem 3.5. For every term m of type A, the following hold.
() If mereda, then mis strongly normalising.
(i) If meredaand m— nY, then m € reda.

(i) If mis inactive, and whenever s nt then i € reda, then me reda.

1 Girard et al [GLT89] (and the paper on which this chapter is b&sed [LS05]) use thenawotcl
But we have already usettutralfor a stronger notiop 2.4.3, so we use the wini@ttiveinstead. In the
terminology of this thesis, we have that the temis neutral ff it is inactive and all active subterms of
mare in normal form.

3.3. Reducibility with continuations 87
(iv) If misinactive and normal then mreda.

Proof. Part [iV) is a trivial consequence of [iii), so we need only préoje[(i}—(iii), which
we do by induction over types. The proof for ground, function and product types
proceeds as normal [GLT89].

Ground type
() Saymeredo. Thenmis SN by definition.
(i) Supposeme redpo andm— m'. Thenn' is SN and hence reducible.

(i} Take m: O inactive withnm' € redo whenevemm — Y. Thenn is SN whenever
m— . Thusmis SN andme redo.

Function types

() Sayme reda_g. By the induction hypothesi$ (ivj € reda and by definition

app(m, x) e redg. Now by the induction hypothesis @pp(m, x) is SN and hence
mis SN.

(i) Supposemereda_,g andm— nm'. Wheneven € reda we haveapp(m,n) € redg.
By the induction hypothesi§ (iBpp(m',n) € redg. ThusnY € redas.

(i) Take m: A — Binactive withm' € reda_,g whenevem — . Suppose € reda.

We prove by induction omaxn) thatapp(m,n) € redg. app(m,n) may reduce
as follows:

— app(n’,n), wherem — nv, which is reducible asY € reda_g.

— app(m,n’), wheren — n’, which is reducible by the induction hypothesis.

There are no other possibilities as inactive. Hencenis reducible.

88 Chapter 3. Normalisation for the computational metalanguage

Product types

() Say me redaxg. Then proj;(m) € reda and by the induction hypothesig (i)
proj;(m) is SN. Hencenis SN.

(i) Supposem € reda,xa, andm — nY. Thenproj(m) € redp,, fori=1,2. By the
induction hypothesig (iiproj;(nY) € reda,. HencenY € reda,xa,-

(i} Take m: A; x Ay inactive withnY € reda, xa, Wheneverm — . We prove by
induction onmax(m) thatproji(m) € reda, for i = 1,2. Asmis inactive,proj;(m)
can only reduce tproj;(n7), wherem — nY, which is reducible asY e reda, xa,.
Hencemis reducible.

Computation types

() Sayme redta. By the induction hypothesi§| (i), everye reda hasn and hence
val(n) SN. Thusld: T A— T Ais reducible ananis SN as required.

(i) Supposeme redtpandm— . For allK € red{A, applicationK @m s SN,
andK @m— K@m', soK @' is SN too and hencey is reducible.

(i) Take m: T A inactive withm' € redta wheneverm — nY. We have to show
thatK @m is SN for eachK e red{,. First, we have thaK @val(x) is SN as
X € reda by the induction hypothesis (iv). Hengeitself is SN, and we can work
by induction onrmaxK). ApplicationK @m may reduce as follows:

— K@m', wherem— nY, which is SN by reducibility oK andn.

— K’ @m, whereK — K’. Now, given anyn € reda, we have thakK @val(n)
is SN asK is reducible; andK @val(n) —» K’ @val(n), soK @val(n) is
also SN. Thus’ is reducible withmaxK’) < maxK), so by the induction
hypothesiK’ @mis SN.

There are no other possibilities asis inactive. Henc&k @m is SN, andmis
reducible.

3.3. Reducibility with continuations 89

3.3.3 Reducibility theorem

We show that all terms are reducible, and hence strongly normalising, by induction on
their syntactic structure. This requires an appropriate lemma for each term constructor.

Functions
Lemma 3.6.1f m: A— B and n: A are reducible, then so epp(m,n).
Proof. By definition of reducibility on functions.]

Lemma 3.7.If m[x:=n] : B is reducible for all reducible nA thenlam(x,m): A— B
is reducible.

Proof. Supposen € reda. We show by induction omaxm) + maxn) that the term
app(lam(x, m),n) is reducible.app(lam(x, m),n) may reduce as follows:

e app(lam(x,n7),n), wherem— nv, which is reducible by Theorem 35(ii) and the
induction hypothesis.

e app(lam(x,m),n’), wheren — r’, which is reducible by Theorem 3[5(ii) and the
induction hypothesis.

e m[x:=n], which is reducible by hypothesis.

By Theorenj 3.5(i]i) app(lam(x,m),n) is reducible. Hencé&am(x,m) is reducible.

m|
Products

Lemma 3.8. If m: A; X Az is reducible, themproj;(m) is reducible.

Proof. By definition of reducibility on products. O

Lemma 3.9.1f m1 : A; and mp : A are reducible, then so igair(my, myp).

Proof. We show by induction ommax(my) + max(mp) that proj; (pair(mg, mp)) is re-
ducible. proj;(pair(mg, mp)) may reduce as follows:

90 Chapter 3. Normalisation for the computational metalanguage

e proji(pair(my’,mp)), wheremy — my’, which is reducible by Theorem 3{5(ii) and
the induction hypothesis.

e projj(pair(my, my’)), wheremp — my’, which is reducible by Theorem 3[5(ii) and
the induction hypothesis.

e m;, which is reducible by hypothesis.

By Theorem 3.J(i]i), proj(pair(my, mp)) is reducible. Henceair(mg,mp) is re-
ducible. O

Computations
Lemma 3.10.1f n: Ais reducible, then so ial(n).

Proof. Let K be a reducible continuation. By definitidh@val(n) is SN asn is re-
ducible. Henceal(n) is reducible. O

We now wish to show that formation tgt-terms preserves reducibility. That will
be Lemma 3.72, but we first need a result on the strong normalisatiet-tefms in
context. This is the key component of our overall proof, and is where our attention
to the stack-like structure of continuations pays the challenging case is the com-
muting conversio.T.CC, which does not change its component terms; but does alter
the continuation stack length, and this gives enough traction to maintain the induction
proof.

Lemma 3.11. Let x: A be a variable, m A\n: TB be terms and KTB—- TC a
continuation, such that m and & n[x:=m| are strongly normalising. Then, the term
K @ (let X< val(m) in n) is strongly normalising.

Proof. We show by induction ofK| + maxK @ n) + maxm) that the reducts oKk @
(let x<val(m) in n) are all SN. The interesting reductions are as follows:

e T3 giving K@n[x:=m], which is SN by hypothesis.

e T.pwhenN = val(x), giving K @val(m). ButK @val(m) = K @n[x:=m]|, which
Is again SN by hypothesis.

3.3. Reducibility with continuations 91

e T.T.CC in the case wherk = K’ o (y)p with x ¢ fv(p); giving the reducK’ @
(let xe=val(m) in (lety<nin p)). We aim to apply the induction hypothesis
with K” and (et y<nin p) for K andn. Now

K'@(ety<nin p)[x:=m] =K' @ (ety<=n[x:=m] in p)
=K@ (n[x:=mj)
which is SN by hypothesis. Also
IK'| +maxK’ @ (et y<nin p)) + maxm) < |[K|+maxK @n) + maxm)

as|K’| < |[K|and K’ @ (lety<=nin p)) = (K @n). Applying the induction hy-
pothesis gives thd’ @ (let x < val(m) in (let y<=min p)) is SN as required.

Other reductions are confined E0@n or m, and can be treated by the induction
hypothesis, decreasimgaXK @n) or maxm) respectively. |

We are now in a position to state and prove a lemma on reducibilitefderms.

Lemma 3.12.1f m: TA is reducible and N T B with rx:= p] reducible for all re-
ducible p: A, then(let x<min n) is reducible.

Proof. Let K : TB — TC be a reducible continuation. We need to show tka®

(let x&<min n) is SN. Now for anyp : Areducible K @n[x:= p] is SN by reducibility

of K andn[x:=p]. But pis also SN, by Theorefn 3[5(i), and so Lemima B.11 shows
that K @ (let x<val(p) in n) is SN too. ThusK o (X)n is reducible and applying to
reduciblem gives thatk @ (et x<min n) is SN. O

We finally move towards the desired result via a stronger result on substitutions
into open terms.

Theorem 3.13.Let m be any term, with free variableg xAq,..., % : Ax. If p1:
A1,..., P« : A are reducible then iy := p1,..., Xk := pk] is reducible.

Proof. By induction on the structure of terms:

o X: X[X:=p] =

92 Chapter 3. Normalisation for the computational metalanguage

— X, if x# x for 1 <i <k, which is reducible by Theorém3.5{iv).

— pi, if x=x for somei, which is reducible by hypothesis.

e app(m,n): By the induction hypothesis| X:= p] andn[X:= p] are reducible, and
by Lemmd 3.5 so iapp(m, n)[X:= f].

e lam(x,m): By the induction hypothesis|X:= p, Xx:=n] is reducible for all re-
duciblen, and by Lemma 3|7 so lam(x, m)[X:= f].

e proj;(m): By the induction hypothesis[x:=] is reducible, and by Lemnja 3.8
S0 isproji(m)[X:=).

e pair(m,n): By the induction hypothesis| X:= p] andn[X:= p] are reducible, and
by Lemmd 3. so ipair(m,n)[X:= d].

e val(m): By the induction hypothesis[X:= f] is reducible, and by Lemnja 310
so isval(m)[X:= g] = val(m[X:= f]).

e let X&min n: By the induction hypothesig[X:=] is reducible anch[X:=
p,x:=1] is reducible for all reduciblé. Lemma] 3.1 then gives that the term
(let x=min n)[X:=f] = let x&m[X:=] in N[X:= p] is reducible too.

i
Theorem 3.14.Each term m ofl,y is reducible, and hence strongly normalising.

Proof. Apply Theorem[3.13 withp; = X, where thex; are all reducible by Theo-
rem[3.5{(iV). This gives us thah is reducible, and by Theorem §J5(i) also strongly
normalising. m)

Remark Notice the diference between reducibility lemmas for functions and prod-
ucts versus those for computations. In the case of functions and products, the reducibil-
ity lemma for the elimination follows immediately from the definition of reducibility,
whereas the reducibility lemma for the introduction is non-trivial. Conversely in the
case of computations, the reducibility lemma for the introduction follows immediately
from the definition of reducibility, whereas the reducibility lemma for the elimination

IS non-trivial.

3.4. Variations on reducibility with continuations 93

Adding n-expansion The strong normalisation proofs in this chapter are for calculi
in which then-rule is oriented as a contraction. The standard extensional normalisation
by evaluation algorithms give long normal forms, which arise fipexpansion. Stan-
dard techniques can be used to trg&ixpansion orthogonally & and CC-reduction

(for example, see [AJ04]).

3.4 Variations on reducibility with continuations

In this section we apply-lifting to some extensions of,: with sum types, with ex-
ceptions; and in the computational lambda-calculudoth sums and exceptions have
existing normalisation results in the standard lambda-calculus (for example,|[dG02]
and [LiI99, Theorem 6.1]); we know of no prior proofs for themig,. More impor-

tant, though, is to see howr-lifting adapts to these features. The key step is to extend
our formalised continuations with new kinds of observation. Once this is done, we can
use these to lift predicates to computation types. The case of reducibility, and hence a
proof of strong normalisation, then goes through as usual.

3.4.1 Reducibility for Sums

Prawitz showed how to extend the reducibility metﬂmﬂ sums|[Pra71]. He worked

in the context of proof theory, but the Curry-Howard isomorphism transfers this across
to the simply-typedi-calculus with sums. The method is quite intricate: for a temm

of sum type to be reducible, not only must the immediate subtermsba reducible,

but also a certain class of subterms@fmust be reducible wheneverreduces tar.

This significantly complicates a general proof with sums.

In the computational metalanguage, we have an opportunity to simplify things by
restricting attention to sums with @se construct in which each branch must be a
computation. In fact, this is just thease construct of MIL. The reductions for sums
are:

2Prawitz'sstrong validitycorresponds to Girard’s notion of reducibility.

94 Chapter 3. Normalisation for the computational metalanguage

(+.81) case inj(m) of x1=n; — ni[x:=m]
| Xe=n2
(+.n) casem of X;=injj(X1) — m
| Xe=injy(x2)
(+.CC) lety<|casel of x1=m inn —
| Xe=nmp
casel of xy=letye=minn if X1, %2 ¢ fu(n)

| Xo=letye=mpinn

To record possible uses of sum terms, we introdiwra continuations

e A sum abstractior(x;)nz, (X2)nz) of type A+ B — TC s a pair of term abstrac-
tions (x1)n1 of type A — TC and (x2)n, of typeB — TC.

e A sum continuation $s a sum abstraction inside a continuation.

S 1= Ko ((Xx)Nng, (X)ny)

e Sum continuations are typed as follows:

((Xl)nl,(Xz)nz) A+B—-oTC K:TC—-TD
Ko ((xl)nl, (x2)n2) :A+B—oTD

e We apply a sum continuation of typge+ B — TC to a sum terrm of type A+ B
as follows:

(Ko ((x1)ng, (x2)n2)) @m= K @ (case mof (X1 =Ny | Xo = Nny))

e \We extend reduction on continuations to reduction on sum continuations:
def
S5Y = YMSOM-5@m & S@x—-S @x

A sum continuatiors is strongly normalisingf all reduction sequences starting
from S are finite.

3.4. Variations on reducibility with continuations 95

Lemma 3.15.1f S — &/, for continuations S and’Sthen|S’| < |S].

As with computations, we extend reducibility to sums via a leap-frog over re-
ducibility for their continuations:

e Sum continuatiors : A+ B — TC s reducible if:

— S @ (inj;(m)) is strongly normalising for all reducibl@: A and

— S @ (inj,(n)) is strongly normalising for all reducibie: B.

e Sumtermm: A+ Bis reducible ifS@mis strongly normalising for all reducible
sum continuation$ of type A+ B) — TC.

This reducibility is stficient to prove strong normalisation fax, with sums in the
manner of§3.3.3. First we need to extend the proof of Theofem 3.5 to sum types:

Proof.

() Sayme reda,s. Supposen;:A, ny:B are reducible. By the induction hypothesis
(@i n1,n2 are SN. By induction omaxn;):

case inj;(n1) of x3=val(inj;(x1))
| xo=val(injy(x2))
iIs SN and by induction omaxny):
case injy(nz) of x3=val(inj;(x1))
| xo=val(injy(X2))

is SN. Thusld o (x1)val(inj; (x1)), (x2)val(inj; (x2))) is reducible and:

case m of x5 = val(inj;(x1))

| X2 = val(injx(x2))

and hencenis SN as required.

(i) Supposeme redag andm— nY. For all reducibleS : A+ B — T B, application
S@mis SN, andS@m— S@m’, soS@nt is SN too and henc®’ is reducible.

96 Chapter 3. Normalisation for the computational metalanguage

(i} Take m: A1 + Az inactive withm' € reda,+a, Wheneverm — nY. We have to
show thatS @m s SN for each reducibl8 : A; + Ao — T B. First, we have that
S @inj;(x) is SN asx; € reda, by the induction hypothesig {iv). Hen&sitself is
SN, and we can work by induction anaxS). ApplicationS @ m may reduce
as follows:

- S@m’, wherem— m, which is SN by reducibility oS andn.

— S’ @m, whereS — K’. Now given anylj e reda,, S @inji(li) = S’ @injj(l)
which is SN by reducibility ofS. ThusS’ is reducible withmaxS’) <
maxS), and by the induction hypothests @mis SN.

There are no other possibilities asis inactive. Hencé&S @m is SN, andm is
reducible.

Now we just need to prove appropriate reducibility lemmas for sums.
Lemma 3.16.If m; : A is reducible, then so isj; (m).
Proof. Straightforward from the definition of reducibility for sum continuationso

Just like for computations, the fiicult part is the elimination term constructor,
namelycase. This time we need a suitably-crafted closure property for strong norm-
alisation under-.gi-expansion.

Lemma 3.17. Let %, X2 : A1, A2 be variables, m Aj,n;,no : TB be terms and K
TB—o TC a continuation, such that m and@n;[x; :=m] are strongly normalising.
Then K@ (case injj(m) of (x1 = N1 | X2 = ny)) is strongly normalising.

The proof is similar to that of Lemma 311, except that one proves by induction on
IK|+maxK @n1) + maxXK @ny) + maxm) that the reducts of

K @ (case injj(m) of (xg = N1 | X2 = ny))

are all SN.
We can then state and prove the reducibility lemmacéme-terms.

3.4. Variations on reducibility with continuations 97

Lemma 3.18.1f m: A; + A2 is reducible and pny : T B with n[x; :=1] reducible for
all reducible I: A;, fori = {1,2} thencase mof (xy = n1 | X2 = ny) is reducible.

Proof. Let K : TB — TC be a reducible continuation. We need to show tka®
(case mof (xy=n1 | X2 = ny)) is SN. Now for anyl; : A; reducible,K @ nj[x; :=1j]
is SN by reducibility ofK and nj[x; :=1]. But [; is also SN, by Theorerp 3[5(i),
and so Lemma 3.17 shows thisit@ (case inji(li) of (x1=n1 | X2 = ny)) is SN too.
Thus K o ((x1)n1,(X2)n2) is reducible and applying to reducibla gives thatKk @
(case mof (X1 =Ny | X2 = ny)) is SN. O

The strong normalisation result now follows from a straightforward extension of
Theoren 3.113 with sums.

To apply this to a more generehse construction, we can move foame stacks
nested collections of elimination contexts for any type constructor [Pit00]. Frame
stacks generalise continuations, and§$g we use them to give a leap-frog defini-
tion of reducibility not just for computations, but also for sums, products and function
types. This in turn gives a proof of strong normalisationfgrwith full sums, as well
as the simply-typed lambda-calculus with sums.

One special case of this brings us full circlgy trivially embeds into the simply-
typedA-calculus withunarysums.

val(m) — inj(m) let X<minn — case mof (x=n)

As discussed i§2.2.4, the two languages are essentially the same, excepithat
has tighter typing rules and admits fewer reductions. Frame stacksrarsdiucibility
then provide strong normalisation for both calculi.

3.4.2 Reducibility for Exceptions

Extending the computational metalanguage with the exceptional syntax of§I8)(
and directing the conversion rules we obtain the new reduction rules:

98 Chapter 3. Normalisation for the computational metalanguage

(TB) try x<val(v) in munless H — m[x:=V]
(Texnf) try X <raise(E) in munless H — H(E)
(T.p) try x&min val(x) unlessH — m
(T.T.CC) try y< (try x&min nunless H) in punless H' —

try X< min (try y&nin punless H) unless H; H’,
if x¢ fv(p) andx ¢ fv(H'(E)) foranyE € E

Recall thatet is a special case afy, with the empty handlef):
let X< min n=try X< min nunless ()

For rr-lifting in this calculus, we generalise continuations to cover the observable be-
haviour of exception raising, by associating a handler to every step of the continuation.

K:=Id | Ko((X)n,H)
(Ko((X)n,H)@m = K@ (try X< min nunless H)

Computation types are extended to include exception annotations as in MIL. We now
say that continuatioK : T.(A) — T,/ (B) is reducible if:

e K@ (val(m)) is strongly normalising for all reducibla: A, and in addition
e K@ (raise(E)) is strongly normalising for all exceptiorse

Building Tr-reducibility on this is enough to give strong normalisation Agy with
exceptions, with a proof in the manner§#.3.3.

The proof for exceptions igkectively a combination of the original proof for com-
putations, and that for sums. We concentrate on the key lemma. In fact it makes sense
to divide this into two parts: one fdr.3-closure, and the other fdiex,8-closure. The

first part is very similar to Lemnia 3.]L1.

Lemma 3.19.Let x: Abe avariable, mA,no,...,ng: T (B) be terms and KT,/ (B) —
T.+(C) a continuation. Let H= ((E1,m),...(Ex,nk)) be a handler for exceptions
E1...Ex. Suppose thatm;,...,nx and K@ng[x:=m] are strongly normalising. Then,
the term K@ (try x < val(m) in ng unless H) is also strongly normalising.

3.4. Variations on reducibility with continuations 99

The only diference is the presence of the exception annotations and the handler.
The proof is a straightforward extension of that of Lenjma|3.11. The second part is
slightly more involved, because th&ect annotations become important.

Lemma 3.20.Let x: A be avariable, mA,no,...,nk: T (B) be terms and KT,/ (B) —
T.~(C) a continuation. Let H= ((E1,n1),...(Ex,nk)) be a handler for exceptions
E1...Ek. Lete be afinite set of exceptions. Suppose that:

e M, Np,N,...,Nk are strongly normalising,
e for 1 <i <k we have that K@ n; is strongly normalising, and

e for all exceptions E= (¢ — {Ej1,...Ex}), we have that K@ raise(E) is strongly
normalising.

Then, for all exceptions E g, the term K@ (try X< raise(E) in ng unless H) is also
strongly normalising.

Here the proof is by induction ofK| + maxm) + maxng) + maxK @ny) +--- +
maxK @nk) + X ee(e—(E,...E) (MaXK @raise(E))). Note the restriction of the univer-
sal quantifier to a finite set of exceptions. This is not a problem, as the type system
only supports a finite number of exceptions for a given term.

The rest of the strong normalisation proof is straightforward. Note that strong
normalisation does not hold if, as in ML (and the full version of MIL), exceptions are
allowed to carry values [Lil99].

3.4.3 Reducibility for the computational A-calculus

Strong normalisation fory, implies strong normalisation for the subcalculyg..
However, despite the close correspondence betwggnand A [SW97], we do not
immediately get strong normalisation f@¢. The reason is the existence of two addi-
tional reduction rules ing:

let.1 app(p,m) — let x& pinapp(x,m) if x¢ fvy(m)
let.2 app(v,q) — lety<qginapp(v,y) if y¢ fv(v)

100 Chapter 3. Normalisation for the computational metalanguage

wherep, q range over non-values, andanges over values. We can adapt our proof,
again using continuations in a leap-frog definition of reducibility:

Ground value veredo if vis strongly normalising
Functionvalue veredag if, forall meredaUred,", app(v,m) € redg "’
Continuation K eredy if, for all vereda, K@V is strongly normalising

Non-value pered,’ if, for all K e red;, K @ p is strongly normalising

The distinction between values and non-values is crucial. There is no explicit com-
putation type constructor in¢, but non-values are always computations. Thady

is reducible values of typ@, andred, " is reducible non-values of typ&, playing

the role ofredta. ThisTr-reducibility leads to a proof of strong normalisation fy
accounting for both additional reductions.

3.5 Reducibility with frame stacks

We can view continuations as a mechanism for absorbiigCC-reductions. In the

key lemma, Lemmpa 3.1T..T.CC-reduction does not change the main premises of the
hypothesisihandK @n[x:=m] are strongly normalising), but simply reduces the size

of the continuation. Frame stacks provide a more general mechanism for absorbing
commuting conversions. We illustrate the use of frame stacks using an extension of
Ami With sums in which instead of the MIL typing rules we use the more general typing

rules of Figuré 23.

3.5. Reducibility with frame stacks 101

Definition 3.21 (frame stacks).

(frame$ F:=app([].n) | proji([])
|letx<[]inn
|case [] of (X1 =Ny | X2 = ny)
(frame stackp S:=1d|SoF
(stack length IId| =0
ISoF|=1|S]+1
(plugging [d[m] =m

(SoF)[m| = S[(F[m])]

Frames are just elimination contexts — which when plugged with a corresponding
introduction term result i-redexes. A frame stack is a collection of nested elimina-
tion contexts. Note that our notation has changed from the last section. Instead of term
abstractions we now have frames. Instead of continuation application we have frame
stack plugging. The change of notation highlights the syntactic aspects of the frame
stack approach.

The reduction rules appear in Figlire|3.5. By considering a teptugged into an
arbitrary frame stack we are able to reason by induction. Performing a CC-reduction
on S always reduces the size & In effect frame stacks allow us to capture the
essence oB-reduction whilst absorbing CC-reductions in the frame stack. The key
step in proving strong normalisation is to obtain strong normalisation closure prop-
erties with respect to eaghexpansion over all possible frame stacks. The closure
properties capture the interactions betwgerductions and CC-reductions. Once we
have proved these closure properties, it is relatively straightforward to prove that all
terms are reducible, and hence strongly normalising, using the usual logical relations
pattern.

Analogously to continuations we define reduction on frame stacks.

Definition 3.22 (frame stack reduction).

sos & vmsmoS[m e S[X-S[x

102 Chapter 3. Normalisation for the computational metalanguage

(—.8) app(lam(x,m),n) — m[x:=n]
(—.n) lam(x,app(m,x)) — m, if x ¢ fv(m)
(x.51) proj; (pair(mg, nmg)) — my
(x.2) projy(pair(mg, mp)) — My
(+.81) case inji(m) of (x1=n1 | X2 = Np) — Ng[Xg:=m
(+.82) case inj(m) of (X =Ny | X2 = N2) — Np[X2:=m|
(+.7) case mof (xy=inj;(X1) | X2 = injo(Xx2)) — m
(+.-.CC) F[case mof (xy=n1| X2 = np)] — casem of X;= F[n]
| 2= F[ng]
(T.B) let xe<val(m) inn — n[x:=m|
(T.p) let x&minval(X) — m
(T.T.CC) lety<=(let x&eminn)in p=letx&minlety<ninp,
if x¢ fv(p)
Figure 3.5: Reductions for an extensiongfi with sums and products

where the right-hand equivalence follows from Proposifion 3.1. A frame s3aisk
strongly normalisingf all reduction sequences starting frdrare finite.

Lemma 3.23.1f S — &/, for frame stacks &', then|S’| <|S|.

The proof of this lemma is similar to that of Lemina]3.4.
Reducibility is defined on terms and stack frames.

Definition 3.24 (reducibility).
e Id is reducible.
e Soapp([],n): (A— B) - Cisreducible if S and n are reducible.
e Soproji([]) : (AxB) — C is reducible if S is reducible.

e S:TA— C is reducible if $val(m)] is strongly normalising for all reducible
m:A.

3.5. Reducibility with frame stacks 103

e S:(A+B)— Cisreducible if $inj;(m)] is strongly normalising for all reducible
m: A, and inj,(n)] is strongly normalising for all reducible nB.

e mAis reducible if $m] is strongly normalising for all reducible SA — C.
Lemma 3.25.1f m: A is reducible then m is strongly normalising.

Proof. Follows immediately from reducibility ofd and the definition of reducibility
on terms. mi

Lemma 3.26. x: A'is reducible.
Proof. By induction onA.
O: The only frame stack with a hole of base type is the identity. CleaitySN.

A — B: Supposes : (A — B) —o Cis reducible. Then eithé® = Id, or S = S’ on where
S’ : B - C andn: Aare reducible. The first case is trivial. For the second case
we need to show th&’ o n[X] = S’[app(x, n)] is SN. By the induction hypothesis
and the definition of reducibilit$’[x'] is SN, and thu$’ is SN. By Lemma 3.25
nis SN. Now, by inspectiorgpp(x,n) cannot interact witls’. Hence by induc-
tion onmaxS’) + maxn), S’[app(x,n)] is SN.

AXx B: SupposesS : (Ax B) — C is reducible. Then eithe8 = 1d, S = S’ o proj;([])
whereS’ : A— C, or S = S’ oproj,([]) where S’ : B — C. The first case is
trivial. For the second case we need to show 8iatproj,([])[X] = S’[proj;(X)]
is SN. By the induction hypothesis and the definition of reducib®ityx’] is SN,
and thusS’ is SN. Now, by inspectiorproj;(x) cannot interact witls’. Hence
by induction onmaxS’), S’[proj;(X)] is SN. The third case is symmetric to the
second.

TA: By the induction hypothesig’ : A is reducible. Thus given any reducibfe:
TA— TB, S[val(x')] is SN. Hence by substitutivit$[x] is SN.

A+ B: By the induction hypothesig’ : A is reducible. Thus given any reducilfe:
(A+B) — C, SJinj;(x")] is SN. Hence by substitutivit$[x] is SN.

104 Chapter 3. Normalisation for the computational metalanguage

m]
Lemma 3.27.1f S : A— C is reducible then S is strongly normalising.
Proof. Immediate corollary of Lemmnia 3.R6. o

Each type constructor has an associgtedle. Eachs-rule gives rise to an SN-
closure property, which we use in the corresponding part of the proof of our main
theorem. These closure properties generalise Lemma 3.11.

Lemma 3.28 (SN-closure).

— If S[m[x:=n]] and n are strongly normalising then[&p(lam(x,m),n)] is
strongly normalising.

x.1 If S[m] and n are strongly normalising then & oj,(pair(m,n))] is strongly nor-
malising.

x.2 If S[n] and m are strongly normalising ther{|8oj,(pair(m,n))] is strongly nor-
malising.

T If S[n[x:=m]] and m are strongly normalising then[IBt x <val(m) in n] is
strongly normalising.

+.1 If S[n1[x1:=m]], S[n2] and m are strongly normalising then
S[case inj;(m) of (X1 = n1 | X2 = ny)] is strongly normalising.

+.2 If S[nz[x2:=m]], S[n1] and m are strongly normalising then
S[case inj,(M) of (X1 = n1 | X2 = ny)] is strongly normalising.

Proof.
—,%.1,x.2: By induction onrmaxS) + maxm) + maxn).
T: By induction on|S|+ maxS[n[x:=m]]) + maxm).
+.1: By induction onS|+ maxS[ny[x1 :=m]]) + maxS[nz]) + maxm).

+.2: By induction onS|+ maxS[nz[x2:=m]]) + maxS[ny]) + maxm).

3.6. Related Work 105

mi
Now we can obtain similar reducibility-closure properties for each type constructor.
Lemma 3.29 (reducibility-closure).
— If m[x:=n] is reducible for all reducible n, thelam(x, m) is reducible.
x If m,n are reducible, thepair(m,n) is reducible.

T If misreducible, and[ix:= p] is reducible for all reducible p, thelet x<minn
is reducible.

+ If m is reducible, a[x; :=1] is reducible for all reducible |, and 4jx2 := p] is
reducible for all reducible p, theoase mof (x; = np | X2 = ny) is reducible.

Proof. Each property follows from the corresponding part of Lemima|3.28 using Lem-
mad 3.28-3.27. m]

Theorem 3.30.Let m be any term. Suppose XAy, ..., Xk : A includes all the free
variables of m. If p: Aq,...,pk : Ay are reducible then fxy:= p1,..., X := pk] isS
reducible.

Proof. By induction on the structure of terms using Lenima [3.29. O
Theorem 3.31 (strong normalisation).All terms are strongly normalising.

Proof. Let m be a term with free variablesy,...,x. By Lemm&3.26x1,..., % are
reducible. Hence, by Theorgm 3] 30js strongly normalising. o

3.6 Related Work

Existing proofs of strong normalisation fak, are based on translations into other
calculi, which are already known to be strongly normalising. Benton et al., working
from a logical perspective, translatg, into a A-calculus with sums, and then invoke
the result of Prawitz [BBdP98]. In a report amonadic type systems a generalisation

of pure type systems and the computational metalanguage — Barthelet al. [BHT97]

106 Chapter 3. Normalisation for the computational metalanguage

prove strong normalisation by translation intd-galculus with an extra reductigsi.

They then usdiniteness of developmeriBar84] to show that this target calculus is
strongly normalising. Hatdili and Danvy[[HD94] state that-reductions are strongly
normalising, although they do not indicate a specific proof method. These approaches
do not use reducibility, although Benton et al. mention a draft adaptation of Prawitz’s
reducibility for sums to handle computation types.

In [Pit0Q], Pitts employsrt-closureto define an operational form of relational para-
metricity for a polymorphic PCF. Here the computation@et is nontermination, and
(-)"T leads to an operational analogue of the semantic concept of “admissible” rela-
tions. Abadi in [AbaQ0] investigates further the connection betweewlosure and
admissibility.
The notion ofrr-closed is diferent from our lifting: it expresses a property of a
set of terms at a single type, whereas we lift a predigade terms of typeAto ¢™"
on terms of a dferent typeT A. However, the concept is clearly related, and the clo-
sure operation makes some appearance in the literature on reducibility, in connection
with saturationand saturatedsets of terms. Loosely, saturation is the property one
wishes candidates for reducibility to satisfy; and this can sometimes be expressed as
TtT-closure. Examples include Girard’s reducibility candidates for linear logic [Gir87,
pp. 72—73] and Parigot’s work oti and classical natural deduction [Par97, pp. 1469—
1471]. For Girard the relevant continuations are the linear ditajsvhile for Parigot
they are applicative contexts, lists of arguments in normal fM7Y. We conjecture
that in their style ourrr-lifting could be presented as an insertidn] | v: reda} fol-
lowed by saturation (although we then lose the notion of reducible continuations).
Mellies and Vouillon uséiorthogonalityin their work on ideal models for types;
this is a closure operation based on an orthogonality relation matching our
K + m [VMO4a, VM04L]. They make a case for the importance of orthogonality,
highlighting the connection to reducibility. They also deconstruct contexts into frame
stacks for finer analysis: elsewhere, Vouillon notes the correspondence bet#een di
ent forms of continuation and possible observations [Vou04].

Chapter 4
Normalisation by evaluation

In this chapter we describe techniques for working with normalisation by evalua-
tion. We have already seen, §?.64, how a parameterised semantics allows us to
neatly encapsulate filerent variants of a semantics. It is natural to implement pa-
rameterised semantics in SML using the module system [DF02], or in Haskell using
type classes [AUQ4].

We use a parameterised semantics as the basis for investigating a number of vari-
ants of normalisation by evaluation for the computational metalanguage. In doing so
we highlight some general techniques which are useful for applying normalisation by
evaluation.

The first two sections of this chapter focus on the the computational aspect of the
computational metalanguage. we begin with a standard monadic semantics.
The monadic parameters are instantiated with appropeatdualising monadwhich
contain enough syntactic information to retrieve a normal form: a continuation monad
and a state-based accumulation monad. These monads are used to encapsulate com-
putation bindings. If4.2 we characterise residualising monads, using the proof tech-
nique of§2.7.2 to derive equations which residualising monads must satisfy.

In §4.3 we observe thgiure residualising monads can actually be viewed as arte-
facts of normalisation by evaluation, and it is in facffszient to use the internal monad
of a suficiently expressive metalanguage. Specifically, the metalanguage should either
include support for delimited continuations (corresponding to the continuation monad)
or state (corresponding to the accumulation monad). The sidetiag operations ap-

107

108 Chapter 4. Normalisation by evaluation

pear in the definition of the reification and reflection functions but not in the semantics
itself. The ability to move syntactic information, and also computation, back and forth
between the semantics and the reification function, proves to be a powerful tool in the
application of normalisation by evaluation.

The rest of this chapter explores other aspects of normalisation by evaluation. In
§4.4 we consider how to restrict normalisation by evaluation in order to prepent
expansion, and how to performcontraction instead. 1§4.5 we discuss sums. The
usual TDPE approach of greedily eliminating sums as soon as they are introduced
is taken, and an implementation using delimited continuations is giver§4.khwe
present a new algorithm which uses binding trees, a zipper structure, and a single
reference cell. I§{4.7 we outline how to handle polymorphism and recursive types. In
§4.8 we show how types can be embedded in the semantics. This allows the type index
on the reify function to be dispensed with. Finally§#.9 we discuss the practicalities
of implementing normalisation by evaluation in ML.

4.1 The computational metalanguage using monads

We begin with a straightforward parameterised semantics for the computational meta-
language (with parametersim, app val, let):

[xT, = p(X)
[lam(x,€) 1, = lam(As™.[el [xg)
[app(e1.e2) l, = app(leil,, [€e21,)
[val(e)1, = val([el,)
[let X* ey in €1, = let([1Ty, AS™ [&I [x-9)

We restrict ourselves to a monadic residualising semantics:

[[O]] = Am|o
[A—-Bl=TAl—-1[BI]
[TA] =Comg[Al)

Compis a further parameter corresponding to the particular choice of monad we use.
We callComp val andlet the monadic parameters.

4.1. The computational metalanguage using monads 109

The monad laws The residualising semantics must satisfy the monad laws:

let(val(v), f)=f v 4.1)
let(s, Av.val(v)) = s (4.2)
let(let(s, Av.S),AV.S”) = let(s, Av.let(s, AV'.S")) (4.3)

The monad laws are just the semantic counterparts of the monadic conversion rules,
or in other words the monadic conversion rules expressed in higher order abstract syn-
tax. These laws ensure that the residualising semantics is sound.

Remark The parameter€omp val, andlet correspond to the standard categorical
notion of a Kleisli triple (T, _*) where:

Comp=T
val(v) = n(v)
let(s, f)=f*s

Normal forms for the computational metalanguage are given by:

Normal forms m:=n°| |am(XA, m) | val(m) | let yA<: AL m
Neutral terms M = xA | app(nB=A, m)

The non-computational part of the algorithm is standard:

lam(f) = f
app(f,s)="fs
1e=e
B =1am(xA, L (F(1A X)), xfresh
1Te=...
1Ce=e

1~Be=1s 18 (app(e, (1" 9))
TAe= ...

110 Chapter 4. Normalisation by evaluation

The monad needs to contain enough syntactic information in order to be able to
store the bindings associated with teeconstruct. Th&.T.CC rule allows us to view
the bindings associated with a computation as a list. In essence, the monad should
encapsulate a stack of bindings.

One option is to use the continuation monad with answer domain the set of normal
form terms:

Comg[[Al) = (IA] — Ami-nf) - Aml-nf
val(s) = Ak.x s
let(t, f) = Ak.t(As.f sk)

LTAt=t(asval(l* 9)
1TAe= Aklet xX*<=ein k(1" X), xfresh

The semantics is a standard continuation semantics. The reification function just passes
the identity continuation. The reflection function uses the continuation to gather to-
getherlet-bindings. The important aspect of this monad is that the answer domain is
syntactic. It is this property which allows the list of bindings to be represented.

Another alternative, with a more explicit representation for the stack of bindings,
Is a state-based monad such as the accumulation monatf eveml lists:

Comd[[A]) =(VxAmhx[A]
val(s) = (),)
let((bs), f) = (bs++bs,s), where ps,s)="fs

LA 0,9 =val(l? 9)
LTB((*,) ::bss) =let x*<=ein |TB (bs s)

1The= (X" e),1™ x), xfresh

4.2. Characterising the residualising monad 111

Here a computation is a pair consisting of a list of computation bindings and a semantic
value. Lifting a value to a computation just gives a trivial computation with no bind-
ings, whereas sequencing uses the value of the first computation to generate another
computation, then concatenates the lists of bindings. Reifying a computation simply
wraps the reified value inside its bindings. Reflecting a computation term creates a new
binding. Another possibility is to accumulate bindings using higher order functions.

Remark It should be noted that there is not a singégonicalchoice of residualising
monad. Accumulation monads and continuation monads are both equally valid.

4.2 Characterising the residualising monad

The choice of continuation monad versus accumulation monad in the residualising
semantics raises the question of what constraints the residualising monad should sat-
isfy. Filinski [FilO1b] gives one possible answer in the setting of the computational
A-calculus. We arrive at a slightly flierent answer motivated by the proof technique

of §2.7.2. We know from Chapté¢r 3 that normal forms exist. Assuming soundness
of the residualising semantics, in order to prove correctnes®wh all that remains

is to prove thanorm(e) = e for all normal formse. Extending the inductive proof of
§2.7.2 to the computational metalanguage we have two new cases corresponding to the
computational syntax constructors:

norm(val(m)™) = val(m) (4.4)
norm(let x*=n™ inm) = let x*<=n""inm (4.5)

These equations can be rewritten in terms of the monadic parameters. Expanding
the left-hand side of the first equation gives:

LTAval([m1y) = val(m)
Using the induction hypothesis the right-hand side expands to:

LTAval(fmliy) = val(l* [m1l;)

112 Chapter 4. Normalisation by evaluation

Moving to the second equation, and expanding the left-hand side:
LTBlet(In" AT, ASIMltxeg) = let x* <=n"Ain m
By the reflection equatiof (2.9) this can be rewritten as:
LTBlet(tTAn, As[mlxog) = let X* <n"Ainm
Expanding the right-hand side using the induction hypothesis:
LTBlet(tTAn, AsImlixog) = let XA <n"in | T8 [m];

Hence it is a necessary andfstient condition that the residualising monad sup-
ports extensions of the reification and reflection functions such that the following equa-
tions hold:

LA val(Tm]y) = val((* [m14) (4.6)
LTBlet(1TAn, As[Mlxog) = let XA <=n"in | TB [m]; 4.7

These equations play a similar role to Filinskisid andcollect[Fil01b]. Itis straight-
forward to verify that these equations are satisfied by the normalisation by evaluation
algorithms using either the continuation monad or the accumulation monad. We say
that a residualising monadvalid if it satisfies [4.6) and (4]7).

Proposition 4.1. The continuation monad @§.] is valid.

Proof.
(4.6):
LTAval([mlly) =L ™ akx([mly)
= (Akk([M) (Asval(l” 9))
=val(l* [m]4)
@.7):

LB let(tTAn, as I myxog) =175 Ak 1A NS I Mjpx-g4)
=1TB Aklet X =nin k[m];
= let xX* <nin (Asval(l* 9))(val(T m]1))
=let x*<n"in iTB [Ml

4.3. The computational metalanguage using siflects 113

Proposition 4.2. The accumulation monad is valid.

Proof.
(4.9):
L"Aval(fmly) =L (O, [m1y)
=val({* [m1y)
()R

LTBlet(TA N, AS T Mjpxsg) =L B Iet((OA 1), 1 X), AS T M)
=1"8(("n)bs,s), where ps,s) = [m]}x

=let x*<n"in iTB [M4

4.3 The computational metalanguage using sideffiects

It is apparent, just by inspecting actual TDPE implementations [Dan98,'DF02], that if
our metalanguage is ‘fliciently expressive’ then we can in fact use its internal monad.
Extra expressive power is required in the form of sifleaing operations used in the
definition of |. For instance, if the metalanguage supports state, then rather than using
an accumulation monad, it is possible to construct a global list of bindings.

4.3.1 State and delimited continuations

It is necessary to modify our notion of metalanguage. Up to this point it has been
reasonable to view the metalanguage gmige mathematical language. Apart from
name generation, and occasionally non-termination, our algorithms have not allowed
side-dfects. We now wish to incorporate state and contfi@ats in the metalanguage.
Given that our implementation language is going to be Standard ML extended with
first-class control, this is what we shall base our metalanguage on. Thus, we shall now
assume our metalanguage is call-by-value and supports state and first-class control.

State is handled in the metalanguage using reference cells. Following ML, refer-
ence cells can be:

114 Chapter 4. Normalisation by evaluation

e createdref(v) returns a fresh reference cell initialised with the value
e assigned tox := v assigns the valueto the cellx.
o dereferenced:¥gives the contents of reference cell

State provides a sideffecting alternative to the accumulation monad. Similarly we
can construct a sideffecting alternative to the continuation monaddelimited con-
tinuations Delimited continuations are manipulated using the shift and reset control
operators/[DF90, DF92]. The reset operates delimits the start of a continuation.

We call the continuation up to the reset mitial continuation The shift operator
S takes at-abstraction as an argument, and delimits the end of a continuation. The
operationS(1«.e) behaves as follows:

¢ First, the continuation delimited by the nearest enclosing reset (initial continua-
tion) and the shift is bound ta

e Second, the expressi@(which may depend o) is evaluated.
e Third, the resulting value is passed to the initial continuation.
For example, consider:

100+ <1+ S(Ak.«(2)+ «(3))> = 107

The reset operator sets the initial continuation to£DQ Inside the second argument
to the shift operator the variabids bound to & []. Thenk(2)+«(3)=(1+[2]) + (1 +
[3]) = 7 is passed to the initial continuation 1.807] = 107.

Here is another example:

100+ <if (S(Ak.k(true)+ «(false))) then 1 elsex2= 103

The initial continuation is 108 []. The delimited continuation is then bound to
if []then 1 else 2. Finallyk(true)+ k(false)= 1+ 2 = 3 is passed to the initial contin-
uation to give 10@-[3] = 103.

In fact the argument to shift need not betabstraction, although it must be a
function. The argument can always heexpanded to give a abstraction:Sm =
S(Ak.mk).

4.3. The computational metalanguage using siflects 115

Formally, shift and reset are defined by their denotational semantics, which is given
by their CPS transforms [DF90, DE92]. We want to be able to use equational reason-
ing (in direct-style) on expressions involving shift and reset. We take advantage of
Kameyama and Hasegawa’s axiomatisation of delimited continuations |[KHO3]. The
axioms for shift and reset are as follows:

(Bv) (AX.m)v=m[x:=V]

() AXVX =V, if xis not free inv
Ba) (AX.P[X])m=P[m], if Xis not free inP
(reset-value) <> =V

(reset-lift) <(AX.m)<n>> = (AX.<m>)<n>

(S-elim) S(Ak.k M) =m, if xis not free inm
(resetS) <P[SM]> = <m(Ax.<P[X]>)>, if Xis not free inP
(S-reset) S(Ak.<m>) = S(Ax.m)

wherex ranges over variables (in the metalanguageanges over values (in the meta-
language)m, n range over terms (in the metalanguage), &mdnges ovepure evalu-
ation contextgin the metalanguage).

Implicitly we are assuming the metalanguage is an extension of the call-by-value
A-calculus. Values in the metalanguage are variables, constantg-aipstractions.
Pure evaluation contexts are given by the grammar:

P:=[]IPm|vP

To avoid confusion when considering metalanguage terms which contain object
language terms, in the sequel we restrat, m,n to range only over object language
entities and not over metalanguage entities.

Call-by-value via thunks Filinski [Eil94] implements shift and reset as functions in
SML/NJ using calicc and a single reference cell. Note tkat cannot be defined di-
rectly as a call-by-value function, as the operatia» would then be ill-defined. The

116 Chapter 4. Normalisation by evaluation

arguments must not be evaluated until the start of the delimited continuation associ-
ated with the reset has been registered. Filinski’s solution is to delay the evaluation of
the argument to reset by passing it athank— a function from unit to some other
type [HD97]. As we use ML as our implementation language, we take the same ap-
proach and define the call-by-value function- as follows:

<t> = <t()>

wheret is a thunk. We us&A().s> in place of<s>. For instance, the last example
becomes:

100+ <A().if (S(Ak.«(true)+ «(false))) then 1 elsex2= 103

4.3.2 Normalisation by evaluation with side-fects

We assume that the metalanguage supports both delimited continuations and state.
This is not an unreasonable assumption for an implementation language. For instance,
SML/NJ supports state and qalt, and delimited continuations are implementable in
terms of state and catic [Fil94].

Using the internal monad of the metalanguage (in other words the identity monad
with side-dfects), the monadic parameters are:

Com[[A]) = [Al
val(s)=s
let(val(s),f)=f s

Notice that this looks very much like the identity monad. Indeed, this definition
of the semantics does make sense in a pure metalanguage, and can be used to “run”
programs in such a setting. However, in order to use this definition for normalisation by
evaluation it is crucial that the metalanguage has sitkets. We use th¥(-) operator
to introduce the possibility of sideffects.

Reification and reflection are defined abstractly in terms of siffeting parame-
tersbind andcollect

4.3. The computational metalanguage using siflects 117

VATA] - Amknf
M Aml-nes — [A]

1%e=e
2B =1am(xA, 1B (f(1" X)), xfresh
LT s=collecival(}* 9))

e=e
1478 6= 15 1° (app(e (11 5)
1TAe=bind"A(e)

norm(e®) =1 ([elly)

Informally, bind registers aléet-binding’ (using side-fects) andcollect extracts
all of the registered bindings (using sidffeets). We have two concrete implemen-
tations ofbind andcollectin mind: one using delimited continuations, and the other
using state. Inspired by TDPE implementations and Filinski’'s monadic reflection op-
erations|[Fil96] we try the following definitions using delimited continuations:

collect(e) = <A().e>
bind" A(e) = S(k.let XA = ein <1().k(1" X)>), x fresh

This cannot work because shift may be called outside of any enclosing reset. For
instance, consider normalisitgm(x' ©,x). This is interpreted as a function and then
reified at function type:

LTO2TOf —lam(X"C, L TO (f(17° X)), xfresh

The argument is reflected at computation type and shift is invoked. The reset which
was supposed to delimit the start of the continuation captured by the shift operator
occurs inside the call to reify at ty@eO. In order to solve the problem, the callli;nd
(which contains the shift operator) needs to be delayed until reify is called. This can

118 Chapter 4. Normalisation by evaluation

be achieved using thunks as we did with the reset operator. The monadic parameters
are changed as follows:

Comg[[A]) =1- °[A]
val(s) = A().s
let(s, f) = 2(). (s0)
This is reminiscent of &trhmann and Thielecke’s delaying transform [FT04, Section 6],

in that we delay the evaluation of the body of a function, rather than the argument
passed to it. Normalisation by evaluation is given by:

IATAT - Amknf,
A Aml-nes — [A]

1Pe=e
1A=Bf = lam(x®, 1B (f(1* X)), xfresh
LT s=collect(A().val(}* ()))

1Ce=¢e
1"~Be=1s" 18 (app(e. (1" 9))
1TAe=2().bind"(e)
norm(e®) =1 ([ell)

Now we derive counterparts tp (4.6) afnd (4.7) in termbiofd andcollect The
left-hand-side of Equatiof (4.6) can be rewritten as:

L"Aval(tmiy) =L 20.Iml;

= collect(a().val(}* [m]1))
= collect(1().val(m))

and by the induction hypothesis, the right-hand-side can be rewritten as:

val({A [m]4) = val(m)

4.3. The computational metalanguage using siflects 119

Similarly the left-hand-side of Equation (4.7) can be rewritten as:

LB let(1TA n, As[Mlyjxog) = colleca().val(L® (AT MIypeg) (T4 1) 0)) 0))
= collect2().val(1 B (As.[MItxog) (bind"A(n))) ()))

Thusbind andcollectmust satisfy the following equations:

collect(A().val(m)) = val(m) (4.8)
collect(().val(}® (2SI MItxg) (bind™A(N))))) = let x* <=n"Ain | TB [m];
(4.9)

Remark As well as these equations being satisfied it is also necessary that the side-
effects are suitably constrained. For example, the overall behaviour of the program
should not leave any “dangling” sidéfects. We shall not dwell on precisely what the
constraints on sideffects should be, but claim that our sidéeets are well-behaved.
Any side-dfects we introduce are always consumed and none of our fieletseare
externally visible (unlike/O operations, for instance).

Thebind andcollectparameters can be instantiated (rather concisely) using delim-
ited continuations, or alternatively using global state.

Using delimited continuations to manage the bindings:

collec(f) = <f>
bind"A(e) = S(Ak.let X* =ein <1().«(1" X)>), xfresh

Using state we can implement the bindings directly as an updatealidlithgs

collect(f) =
letbs = (binding9
bindings:= ()
lete= f()
let ¢ = wrap(re\(!binding9, €)
bindings:=bg
returne

bind" A(e) =

bindings:= (x*,€) :: ('bindingg

120 Chapter 4. Normalisation by evaluation

returnt® x, wherexis fresh

wrap({),e) = e
wrap((x*,m) ::bs €) = let xX* =min wrap(bs €)

e The auxiliary functiorwrap(bs €) outputs the bindingbsand the terng, as a
nested sequence afts.

e colleci(f) saves the bindings and resets them to be empty. T(eis invoked
and the result bound tg which may have the sidefect of creating new bind-
ings. Any new bindings are wrapped aroundRecall from§2.] thatrev simply
reverses a list.) Before exiting, the bindings are restored to their initial value.

e bind"A(e) creates a new bindingd®, e).

Remark Because of the saverestore pattern ircollect, the initial value (before
running the algorithm) obindingsis unimportant. In our implementations it is the
empty list.

We now outline how to verify that both the continuations-based and state-based
versions ofbind andcollectsatisfy [4.8) and (4]9).

Continuations We make use of Kameyama and Hasegawa’s axiomatisation of shift
and reset as described §4.3.1. Recall that values in the metalanguagf®e3.]) are

given by variables, constants and lambda abstractions. In particular, observe that object
language terms can be regarded as constants. Similarly object language contexts can
be regarded as lambda abstractions. For instance:

e app(x,y) is an object language term, and a metalanguage constant.

e val([]) is an object language context, and a metalanguage lambda abstraction:
Aswval(s).

This observation enables us to apply Kameyama and Hasegawa’s axioms to meta-
language terms which contain object language terms (and contexts).

4.3. The computational metalanguage using siflects 121

@.8):

collect(A().val(m))

= <A().val(m)>

= val(m)
(reset-value)

@.9):

collect(2().val(1® (1S MIypxsg) (bind"A(n)) ()))

= <A().val(l® (As.I Mlxg) (bind™A(n)) ())>

= <A().val(® (AsIMIxeg) (S(klet XA =nin k(1* X)) 0))>

= <A().(Axlet XA = nin k(14 X)) (Ar.<2().val(1® (ASIMIxeg) T 0))>)>

(resets, using thawal(|® (As.[ml1x-g) [10))
IS a pure evaluation context of the forngv ((v[]) m)))

= <A().let x* =nin (ar.<A().val(lB (AsImIxog) F O)>) (17 X)>
= <A().let x* =nin <A().val(1® (AT Mlixsg) (1 %) 0))>>
(v, using thatt x is always a value)
= <A().let x* =nin <A().val(|B (Tm]; 0))>>
(v, again using that” x is always a value)
= <A().let x* <=nin | TB [m];>

Unfortunately, we are left with the outer enclosing reset. We claim that, although
it uses side-fects internally, the functionormhas no externally visible sidefects
(including non-termination). We leave the formalisation and proof of this claim as
future work. Assuming our claim holds, then the contents of the reset evaluates to a
value; hence by (reset-value) the reset can be removed and (4.9) follows.

Global state Here, the equational rules are more complex. We omit the details,
because they are somewhat involved, but in principle this could be formalised.

@.9):
collect(A().val(m))

122 Chapter 4. Normalisation by evaluation

letbs = (‘b9

bs:= ()

let e = val(m)

let & = wrap(reV(!bs),e)
bs:=bg

returne/

letbs = (b9

bs:= ()

let e = val(m)

let & = wrap(rev((),e)
bs:=bg

returne

letbsg = (b9
bs:= ()
let e = val(m)
lete = e
bs:=bg
returne/

let e = val(m)
lete =e
returne

val(m)

@.9):
collect2().val(1® (As.[Mlsxog) (ind"AN)) ()))

letbsg = (Ib9

bs:= ()

lete=val(|® (1S [Mljx-g) (bind"A(m) ()
let & = wrap(reV(!bs),e)

bs:=bg

returne

letbs = (‘b9

4.3.

The computational metalanguage using sigleets

bs:= ()

let s= bind" A(n)
lete=val(l® (IMIx-g ()
let & = wrap(reV(!bs),e)
bs:=bg

returne/

letbsg = (b9

bs:=()

bs:= (xA,n)::(!by

let s=12 x

lete=val(l® (IMIx-g ()
lete = wrap(reV(('b9),e)
bs:=bg

returne/

letbs = (‘b9

bs:= ((x*,n))
lete=val(|® (ImI; ()))
let & = wrap(reV(!bs),e)
bs:=bg

returne/

let bsy = (1b9)
bs:=()

lete=val(|® (LmI ()))

let e’ = wrap((x*,n) ::rev(!bs), €)
bs:=bsg

returne

letbsg = (b9

bs:= ()

lete=val(|® (ImI ()))

lete = let XA < nin wrap(re\(!bs), e)
bs:=bg

returne’

letbs = (‘b9

bs:= ()

lete=val(|® (ImI; ()))
let & = wrap(reV('bs),e)
bs:=bg

123

124 Chapter 4. Normalisation by evaluation

returnlet x* <nin €
let XA < nin collect(A().val({B (Im1; ())))

let x*<nin [TB[m];

It is interesting to note how much longer the derivations are here (even without all
the details), than in the case of delimited continuations or in the case of monads. This
highlights the gap between reasoning about functional programs and reasoning about
imperative programs.

Relation to monadic reflection The algorithm with delimited continuations is di-
rectly justified by Filinski's monadic reflection operations. The idea is that monadic
values can beeflected(u) as side-&ecting computations, and conversely (delayed)
side-dfecting computations can beified ([-]) as monadic values. In particular for the
continuation monad, these operations are defined as:

u(c) = S(c)
[t] = Ak.<A0).&(t0)>

We have essentially usadto reflect a computation (in"#), and then used]
to reify the computation (in"™#). p introduces sideféects and-] consumes them.

It is sound to use this technique to transform a pure program using monads into a
side-dfecting program providing that whenever sidéeets are introduced they are
also consumed. Using a thunk to encapsulate the computation, allows us to force
the evaluation of the computation once we know that the sitésts are going to be
consumed.

Note that the thunks are necessary even if the sffietds not delimited continua-
tions. For instance, consider the telam(x' 4, ct), wherec is a constant. Calling reify
attypeT A— 1calls reflect at typd A. Now, this is where the sideffect must register
a binding. But there is no call to collect, so this sidéeet cannot be consumed. It is
unsound to leave sidefects dangling like this. If, on the other hand, the computation
had been delayed, then it would never be evaluated (as this could happen only if collect
were called).

4.3. The computational metalanguage using siflects 125

Turning things on their head, we can view the use of monadic operations in the
definition of the semantics as a technique for transferring (dideteng) functionality
from | into the residualising semant[ﬂ:slt is not particularly surprising that side-
effects and suitable (pure) monads are interchangeable: Moggi’s original motivation
for using monads was to model computatiorfééets. What is remarkable is that if we
use side-fects then they need only be introduced in the definitiof. of

Our monadic normalisation by evaluation algorithms for the computational meta-
language are similar to Filinski’s normalisation by evaluation algorithms for the comp-
utational A-calculus [Fil01b]. The shift and reset operators have long been used to
implement partial evaluation [LD94]. Sumii and Kobayashi showed how to use state
instead[[SKO1]. Danvy [Dan98] presents TDPE using delimited continuations, then us-
ing state. These algorithms are similar to ofieet-based normalisation by evaluation
algorithms for the computational metalanguage.

4.3.3 Restriction toAm)

If we restrict ourselves tdn,., then the typing restriction ensures that each compu-
tation will be used, and by a judicious repositioning of ttedlect operation we can
remove the need for computations to be delayed. The monadic parameters then be-
come:

Comg[[Al) ="[Al
val(s) =s
let(val(s), f)=f s

and the normalisation by evaluation algorithm becomes:

This pattern of transferring functionality betwe¢rand the residualising semantics works both
ways, and is a useful tool in the application of normalisation by evaluation.

126 Chapter 4. Normalisation by evaluation

ATA] - Amknf,
M Aml-nes — [A]

Pe=e
1A2B £ =1lam(xA, collec2(). 1B (f(1" %)))), xfresh
L™ s=val(1* &)

1Ce=e
1~Be=25" 18 (app(e. (1" 9)))
1TAe = bind"A(e)
norm(e) = collec(A(). | ([el1))

The only place a computation can be introduced is through a top-level function
application or when applying the function insi¢le~B. In both cases the sidefects
are consumed bgollect

4.4 Alternatives ton-expansion

Reduction calculi which includg-expansions but noj-reductions have a number of
desirable properties. In particular they are usually confluent, whilst corresponding
calculi with some;-contractions in place of expansion are not. For instance, consider
At with the reduction rules:

(—.8) app(lam(x,m),n) — m[x:=n|

(—.n) lam(x,app(m,x)) — m, if X ¢ fv(m)
(%.Bi) proj; (pair(mg, mp)) — m

(.17 pair(projy (m), projp(m) — m

(1.n) m — x

Now:

4.4. Alternatives tg-expansion 127

lam(x,app(fA~21, X)) — lam(x, =)

which is irreducible, and hence normal, but:

fA—)l

lam(x, app(X)) — f

which is also irreducible, and hence normal. Thus this calculus is not cofffluent

Recall from§2.2.3 thatl.;; is an expansion. It might seem natural to have a calculus
with only n-contractions. But this does not appear to be possible in the caséeb.n
andx.n are read as expansions instead of reductions then this does lead to a confluent
calculus.

Directingn-rules asp-expansions generally gives rise to simple syntactic charac-
terisations of normal forms. In turn, this gives rise to rather natural normalisation by
evaluation algorithms. In contrast, directingules as;-contractions, leads to some-
what unnatural side-conditions on the structural rules for normal forms. In turn these
manifest themselves as more complicated normalisation by evaluation algorithms. To
illustrate the diference in normal forms consider normal forms for simply-tyged
calculus. Recall fron§2.4.3 that long normal forms (which arise fropexpansions)
are given by:

Normal forms m::= n® | lam(x*, m)
Neutral terms n? = XA app(n®~A, m)

Normal forms for the calculus with ng-rules are the same except a neutral term of
any type (not jusO) is also a normal form:

Normal forms m::=n?|lam(x*, m)

Neutral terms n? = x| app(n®>A, m)

Normal forms for the calculus with-contraction in place ofi-expansion are not so
easily characterised. They are the same as for the calculus wifrolgs, but with

2Curien and Di Cosmd [CD91] show how to make this calculus confluent by adding a family of
rewrite rules arising from type-isomorphisms involvihg

128 Chapter 4. Normalisation by evaluation

a side-condition on the body of lambda abstractions — namely subterms of the form
lam(x®, app(n, X)) such thatx ¢ fv(n) are not admitted.

Despite the advantages gfexpansion, there are also disadvantages. The obvi-
ous disadvantage is the blow-up in the size of normal forms — the bigger the types,
the bigger the normal form. This can be particularly problematic for sums, as it can
lead to an exponential increase in the size of t@nﬁsecursive types are even more
problematicz-expansion does not terminate for recursive types {des).

One option is to perform-contraction instead. An easier alternative is to suppress
n-expansion, and not perform apycontraction. This has the advantage of simplicity
and reducing blow-up in the size of terms, but the disadvantage of not identifying as
many terms as in the presencerpfules. For more complicated calculi (involving
sums, for instance), it is sometimes necessary to apjiyes in both directions in
order to obtain canonical normal forms.

In Chaptef R we have already seen examples of normalisation by evaluation which
do not perforrm-expansion. We illustrate how such an algorithm can be derived from
the standard normalisation by evaluation algorithm for simply-typedlculus using
simple program transformations. We then show how through further program transfor-
mation it is possible to incorporatecontractions.

Terminology We refer to normalisation by evaluation algorithms which perform
normalisation with respect to all conversion rulgs: and CC) asextensionabr r-
NBE algorithms. We refer to normalisation by evaluation algorithms which perform
normalisation with respect to just and CC-rules asmtensionalor 8-NBE or SCC-
NBE algorithms.

4.4.1 Suppressing-expansion

We begin with the normalisation by evaluation algorithn§@f5.3 using the parame-
terised semantics of Figure 2]11. The first step iddfunctionalis§Rey98DNO1] the
reflection function. Defunctionalisation is a program transformation which converts

3In fact sums are problematic for other reasons. Evenvigpansion and the usual reduction rules,
we do not obtain a confluent reduction calculus.

4.4. Alternatives tg-expansion 129

[Ol=Ag
[A— BI=([A]— [BI)+Ax.g

app(f,s)=fs
app(e, s) = app(e, |)

WATA] — A™-nfy
MA”-nes - [A]

1%e=¢e
1A2Bf =1am(A, LB (app(f, 14 X)), x* fresh

TO e= eO
TA—»B e= eA—)B

norm(e®) =l* ([el)

Figure 4.1: NBE for1™ with defunctionalised reflection

higher order programs into first-order programs. Typically one defunctionalises the
whole program. Banerjee et dl. [BHRO1] give a correctness proof for whole-program
defunctionalisation. In our case we only defunctionalisetfabstraction introduced

by the reflection function at function type:

1"~Be=1s 18 (app(e (1" 9))

The free (meta)variables in thisabstraction are, A,B. Thus, this abstraction
can be encoded by the terei~B. Wherever this function is applied, in the original
program, the application is replaced, in the transformed program, by the body of the
abstraction with appropriate values substituted in for the free and bound variables:

130 Chapter 4. Normalisation by evaluation

[Ol=Ag
[A— Bl =([A]— [BI)+Ax,g

app(f,9)="fs
app(e, s) = app(e, | 9)

VALA] - A™-nfy
M:A”-nes — [A]

1%e=e
A7B £ =1lam(A, 1B (f X&), XA fresh

1ABe=1am(®, LB (app(e, |A 7)), x*fresh

TO e= eO
TA—>B e= eA—)B

norm(e”) =|* ([eli)

Figure 4.2: NBE for1™ with explicit n-expansion

18 (app(e, (1* 9)))

The definition of[A — B] is modified to contain terms of typ& — B (arising
from calling the reflect function at typ& — B) in addition to functions fronf A] to
[B]. Correspondingly thappparameter is extended to handle application of terms as
well as functions. The algorithm appears in Figure 4.1. We distinguish between terms
and functions in the semantics by lettiagange over terms anflover functions.
Defunctionalising reflect has thefect of delaying the reflection operation until
the resulting value is used. Inlining reflection and application gives the algorithm of
Figure[4.2. It now becomes apparent exactly wheexpansion takes place. Reifying

4.4. Alternatives tg-expansion 131

[Au] = Au-ne+ ([Au] — [Aul)

app(f,s)=fs
app(e,s) = app(e, | 9)

L:[Au] = Au-nf
T:Au-ne— [Au]

le=e
L f=lam(x,| (f X)), xfresh

Te=e

norm(e) =| ([el1)

Figure 4.3: The standa@NBE algorithm for untyped-calculus

a term at function typ@-expands it.

Note that the semantics after defunctionalisation is no longer sound with respect
to Bn-conversion (extensional), but is sound with respect togusbnversion (inten-
sional). We can reintroduce extensionality by defining the following equation on se-
mantic objects:

e =1"e (4.10)
wheret is defined as in the original algorithm:

M A”-nes — [A]

1Ce=¢e
1"~Be=1s 18 (app(e (1" 9))

Alternatively thep-expansion clauses can be stripped out of the reification function:

132 Chapter 4. Normalisation by evaluation

Pe=e
ABf =1am(xA, 1B (f X)), xfresh

norm(e*) =1* ([ely)

This gives aB-NBE algorithm for simply-typedi-calculus. Observe that the type
parameters are redundant and we can coalesce the semantics into a single untyped
domainS:

S=A"+(S—>9)

Then by simply erasing the type annotations we obtain the gsN&E algorithm for
untypedai-calculus. This algorithm is part of normalisation by evaluation folklore but
has only recently been studied formally. Aehlig and Joachiniski [AJO4] use rewriting
theory. Filinski and Rohde [FR04] give a domain theoretic account. The algorithm
appears in Figurie 4.3.

The transformation into the form of Figyre .2 can easily be extended to other type
constructors. The general method is:

e Extend the semantics of each type to include terms of that type.
e Modify each elimination parameter to handle syntax.
¢ Define reflection as the identity.

¢ Introduce am-expansion clause for each type constructor in the reification func-
tion.

An intensional NBE algorithm is then obtained by dropping all ofjhexpansion
clauses.

4.4.2 Performingn-contraction

One way of modifying a normalisation by evaluation algorithm to perfoym
contraction is simply to check whenever amedex is created in the output and re-
duce it. The only redexes thegsecontractions can create are mareedexes. There

4.4. Alternatives tg-expansion 133

[Au] = (Au+(V = Auw) X ([Au] — [Aul)

lam(f) = (Ax.lam(x, | (f(T X))), f)
app((-, f),s)=fs

lef)=e
l(g,f)=gx xfresh

Te=(eAv. T app(eV))

norm(e) = ([ely)

Figure 4.4: Glue@-NBE for untypedi-calculus

are two problems with this approach. The first is thatontraction takes place i

and outside of the semantics, and hence the semantics is not sound with regpect to
contraction. From a practical perspective this is not a problem, but one might hope that
it would be possible to ‘move thg-contraction back into the semantics’. The second
problem is that the rige way of detecting-.n-redexes is potentially rather ifieient.

It involves traversing the entire body of the relevant lambda in order to establish that
the bound variable only occurs once.

We solve the first problem by moving to a semantics in which every semantic com-
ponent always has a syntactic representagiioied to it. This is reminiscent of Co-
quand and Dybjer’s take on normalisation by evaluation for simply-typed combinatory
logic [CD97]. The algorithm appears in Figure|4.4.

An easy way of showing that the glued algorithm is equivalent to the standard one
is to defunctionalise both versions and observe that the resulting algorithm is the same
in each case (Figufe 4.5).

We can adjust the algorithm of Figyre 4.4 to perfoproontraction simply by mod-
ifying the abstraction parameter as follows:

134 Chapter 4. Normalisation by evaluation

[Au] = Au+(VxAux(V — [Au]))

le=e
lc=lam(x, | app(c,x)), xfresh

[x1, =p X
[lam(x,m) I, = (x,m,p)
[app(m,n) 1, = app(l M. [nl,)

app(e, s) = app(.| s)
apF((Xa e’p)’ S) = [[e]]p[Xl—)S]

Figure 4.5: DefunctionalisegtNBE for untypedi-calculus

lam(f) = (Ax.etareducdlam(x, | (f(T X)))), f)

etareducdlam(x,app(m, x))) = m, if x ¢ fv(m)
etareducdlam(x,app(m, x))) = lam(x, app(m, X)), otherwise

The second problem can be solved by augmenting the semantics with variable
count information. We omit the details, but we have implemented such an algorithm
in ML. A simpler approach, which may be moréieient in practice would be to rely
on the invariant that bound variables are unique, and maintain a global variable count.

Itis straightforward to extend our approachjtoontraction in order to handle other
type constructors such as computations and products. In fact, functions are harder to
deal with than other constructors, as then-rule depends on counting occurrences,
whereas othen-rules do not. In practice, it may be easier simply to performsthe
reduction as part of the reify function, rather than using the gluing construction (though
technically this is not normalisation by evaluation).

4.5. Sums 135

4.5 Sums

Adding sums to normalisation by evaluation algorithms is an interesting non-trivial
problem. The primary diiculty is in defining a suitable normal form. If we forget
aboutn-conversion then this solves the problem. However,firale allows us to
perform some rather useful optimisations such as:

In the presence of thgrule we cannot obtain unique normal forms for all convert-
ible terms simply by applying all the rules in one direction. This is a good example
of a situation in which the ‘reduction-free’ nature of normalisation by evaluation is
important. In other words it makes more sense to think about equational normal forms
rather than reduction-based normal forms (although we believe it is possible to extend
the reduction calculus in such a way that the two notions can be made to coincide).

4.5.1 Greedy elimination of sums

Perhaps the simplest solution to the problem of sums is the one adopted by the TDPE
community. This approach is motivated by ease of implementation using theesstt
control operators. It relies on sum terms always being bound to a variable. This rules
out the simply-typed-calculus extended with sums, as here we have terms such as:

lam(fA~®*C) lam(x*, app(f, X))

where the application is of sum type. However the restricted version of the comp-
utational metalanguaggy,. and the computational-calculus can easily be made to
satisfy this property. Also this approach does not handle sum constants or open terms
(although both of these features can easily be simulated by an extra abstraction). The
idea is that a case split is introduced immediately inside each context in which a sum
variable is bound. The resulting normal forms are relatively easy to define (compared
to the alternatives). Filinski formalises the idea in the setting of the computational
A-calculus[[FilO1b].

The approach has the distinct disadvantage of producing normal forms which are
exponentially large in the number of nested sum variables, and potentially contain a
large amount of redundancy. It is not dissimilar to representing a boolean formula as a

136 Chapter 4. Normalisation by evaluation

truth table. Balat and Danvy |[BD02] show how to eliminate some of the redundancy
by using memoisation to prevent nested case splits on the same guard.

In his thesis Ghani used categorical techniques to study normalisation properties of
the simply-typedi-calculus extended with sumis [Gha95].

Altenkirch et al. JADHSO1] give a characterisation of normal forms for simply-
typed A-calculus with sums using an extended calculus supporting multiple simul-
taneous case spl[ﬂs.A key advantage of these normal forms is that they remove a
certain amount of redundancy. Altenkirch et al. define and prove correct a normalis-
ation algorithm for obtaining their normal forms. Unfortunately it is not immediately
clear how to implement their algorithm as it depends on abstract categorical concepts.
Nevertheless we have implemented it using a modified version of the standard TDPE
approach. We have also implemented variations which do not depend on first-class
control operators.

Balat, Di Cosmo and Fiore [BCFD4] have recently given an alternative treatment
of Altenkirch et al.’s approach in which rather than extending the calculus they simply
guotient out the order in which case splits occur. They also provide an implementation
which takes advantage of the more genergtsgto [GRR98] control operators instead
of shift/reset.

We now give details of how to incorporate sums into normalisation by evaluation
algorithms. We shall concentrate on the basic approach of Filinski, but indicate how
it can be adapted to remove redundancy. We also present a version in which we use
global state and an appropriate data structure in place of control operators.

We call the languaga ml« extended with sums and productsnl=*. We call the
corresponding equational calculus (with all the ugtjaj and CC rules); . There
are several choices as to how to add sums and productaimka In particular we can
choose whether the associated elimination terms must be computations or not. The ad-
vantage of asserting that eliminations must be of computation type, is that this ensures
intermediate subterms are named. We insist tageterms must have computation
type. It would seem natural to do the same for projections, but as projections do not
involve any auxiliary subterms this would require changing rather than restricting our

4Ghani hinted in his thesis [Gha95] that multiple simultaneous case splits might be useful.

45. Sums 137

[xT, = p(X)
[lam(x*,€) 1, = lam(As™.[el [xg)
[app(er,e2) 1, = app(l el [€21,)
[val(e)1, = val([el,)
[let X* <ey in ez, = let([e1 Iy, AVA. [€2 Tofx])
Linj1(e) 1, = injy(Lell,)
Linjz(€) 1, = inj (L ell,)

[[m]]p9
[case mof (xy =Ny | X2 = np) ||, = casg AV1.[N1 lp[xqiovi]s
Ava.[n2]]p[X2»—>V2]

Figure 4.6: Parameterised semanticsAonl:«*

existing typing rules. Also note that MIL treats projections as values. Thus the typing
rules forAml«* are the same as those il plus those of Figurg.3 with the added
restriction thatase terms must have computation type:
X1:A1 X: A Mm:Ai+A> ni:TB n:TB
A
case mof (X' =m | x2A2 =>m):TB

A parameterised semantics faml«* appears in Figure 4.6.

Filinski defines normal forms usingguarantined contexfiFil01b]. This ensures
that case splits are performed on sum variables as soon as they are introduced. We
achieve the same goal faf, using a grammar annotated with types and bound vari-

ables:
Normal values v,w = W0 | lam(x®, m[xA]) | pair(v,w) | inj; (V) | injo(v)
Neutral values u? = XA | proj (u™B) | proj(uB*A)
Split computations m[x**®] ::= case x of (x{* = m[x}] | x5 = M[x3])

Al

Plain computations m[x B]

= val(v) | let y® < app(u,v) in m[y
The set of normal formaml«*-nf is the union of the normal values, the split compu-
tations and the plain computations. The set of neutral té&embk*-neis just the set of

neutral values.

138 Chapter 4. Normalisation by evaluation
The residualising semantics is standard:

[O] =Amlo
[A—-Bl=1Al—-108BI]
[AxB]=[Alx[BI]
[A+B]=[Al+[BI

[TAL = Comd[[Al)

We use the internal monad of the metalanguage:

Comg[[Al) =°[Al
val(s) =s
let(val(s), f)=f s

and the method o§4.3.3 in order to avoid the need for thunks:

e=e
A2TB £ = lam(XA, collect(2(). LTB (F(12 X)), X fresh
1B (s,9) = pair(l* 5, |° §)
VA2 inji(9) = inji(1N 9)
LT s=val(|*s)

e=e
1°TBe=1s" 178 (app(e (1" 9))
1B e= (1% proj,(e), 1° projy(e))
A4 e = hind+2(e)
1TAe=bind™(e)

norm(e’?) = collect(2(). | ™ ([el))

Thebind andcollectfunctions must satisfy the additional equation:

collect(A().
val(|B (1s.cases of 51 = [My iixesy | 2 = [Me lipxesy)) (DINA742(W))))
= case U of (x’f‘l = T8 [m 11| X'2AZ = "B Imly) (4.11)

4.6. Sums using global state 139

4.5.2 Sums using delimited continuations

Assuming the metalanguage supports delimited continuations we can defthen
computations, andollectas before, and exteridind to sums:

colleci(f) = <f>
bind"A(e) = S(Ax.let X = ein <1().k(1" X)>),
x fresh
bind**A2(e) = S(Ax.case e of (x1 = <A().k(T™ x1)> | Xo = <A().k(172 X2)>)),
X1, Xo fresh

In bind®1*A2(e), the shift operation inserts a case split at the start of the current context
and then follows both branches of the sum. As usual the reset operator marks the start
of a new context in which a variable has been bound.

4.6 Sums using global state

As shown in§4.5.2, sums can be dealt with using a straightforward modification of the
normalisation by evaluation algorithm for the computational metalanguage, providing
we use delimited continuations. However, it is not immediately clear how to do the
same thing in the state-based setting. The challenge is to d@fideat sum types.
We want to return both the left injection and the right injection of a sum. This is easy
to do using shift and reset, as the same continuation can be invoked twice, but in the
state-based setting we do not have access to first class continuations.

Other authors have also considered using global state (or an accumulation monad)
in place of delimited continuations (or a continuation monad).

Filinski [Fil0O1b] wrote:

Products could be added to an accumulation-based interpretations without
too much trouble, but sums apparently require the full power of applying
a single continuation multiple times.

Sumii and Kobayashi [SK01] wrote:

140 Chapter 4. Normalisation by evaluation

Note that state-based let-insertion does not subsume continuation-based
PE [[LD94]], whose goal is not only context propagation in let-expressions
but also contextluplicationin conditional expressions.[footnote]

and then in the footnote:

It is possible as well to treat conditional expressions by using state instead
of continuations (Zhe Yang, personal communication, January 2000), but
it remains to see whether this “state-based if-insertion” is correct and ef-

ficient, because it is more complex than state-based let-insertion and be-
cause it duplicates some static computation.

Our solution is to first return the left injection, but to record (using global state)
that we still need to visit the right injection. Rather than a binding list we require a
binding tree. Which branch we are currently in is recorded in the binding tree along
with the bindings. The binding tree is reset every tioodlectis called. The thunk
passed taollectis invoked repeatedly. Each invocation builds another path through
the binding tree, and returns the computation to be plugged in the hole at the end of that
path. Eventually the entire binding tree is assembled, along with a collection of com-
putation terms. The binding tree is output, with each hole plugged by the appropriate
computation term.

4.6.1 Binding trees

We describe binding trees using the datatype:
8B = hole | comp (", x*, B) | sum (vA1+A2,xfl,Bl, xéz,Bz,bool)

and the plugging operation, which plugs a binding treentainingk holes, using a list
esof k computation terms:

tfed = let (¢,) = plugTredt,e9
iné€

4.6. Sums using global state 141

whereplugTreeis defined as:

plugTredhole,e::e9 = (e,e9
plugTredcomp (e x,1),e9 = let (¢/,es) = plugTredt,e9
in (let x<ein €,es)
plugTredsum (v, Xy, t1, Xo,t2,),e9 = let (e1,eS8) = plugTredt;,e9
(e2,e98’) = plugTredt,, es)
in (case vof (x1=>e1| X = &),es’)

Binding trees are constructed from holes, computation bindings and sum bindings.
The plugging operatiotjeq is used to obtain the term representedtlwith all the
holes plugged with terms froms

It is sometimes useful to grow a tree by plugging the holes with other trees. We
overload the plugging operation as follows:

t[ts] = let (t’,) = plugTredt,ts)
int’

whereplugTreeis defined as:

plugTredhole,t::ts) = (t,ts)
plugTredcomp (e x,1),ts) = let (t',ts") = plugTredt, ts)
in (comp (e, x,t'),ts)
plugTregsum (v, Xy, 11, X, t2,b), ts) = let (t],ts) = plugTredts, ts)
(t5,1S”) = plugTredty, ts')
in (sum (v, 1,17, X2, t5,b), ts”)

4.6.2 The zipper structure

We will need to be able to construct the binding tree incrementally by moving up and
down the tree structure and modifying nodes. One way to achieve this is to use a
mutable data structure. A much cleaner approach, particularly for an implementation
in a functional programming language, is to use Huet’s ‘zipper’ structure [Hue97].

A locationin the tree is represented by a pair of the current subtree path&rom
the root of the tree to the root of the current subtree. A path has to contain enough

142 Chapter 4. Normalisation by evaluation

information to be able to move anywhere in the tree above the current subtree. Paths
are given by the datatype:

P =top
| down ((e" A, x), P)
| left (V92,1 X0%), B,P)
| right (V142,01 X52), B, P)

This is essentially thelerivative that is the type of one-holed contexts, of the
binding tree datatype [McB(ﬁ]r] This is not quite the derivative, because the boolean
flag has disappeared. The reason why the flag is no longer present is that it is now
redundant. Théeft andright constructors encode which branch a path is in.

The type of locations i x P. The zipper functions allow movement around the

tree, and the current subtree to be changed.

go_.downcomp (e, x,t), p) = return ¢,down ((e, X), p))
go-dowr(sum (v, X1, t1, X2, t2, true), p) = return ¢, left ((v, x1, X2), t2, p))
go_down(sum (v, X1,t1, X2, t2,false), p) = return {2, right ((v, X1, X2),t1, p))

go.up(t,down ((e,x), p)) = return comp (e, x,t), p)
go.up(ty, left ((v, 1, X2), t2, p)) = return gum (v, X1, 11, X2, t2, true), p)
go_up(tz, right ((v, X1, X2),t1, p)) = return 6um (v, X1, t1, X, t2, false, p)

go_right(ty, left (v, X1, X2),t2, p)) = return €1, right ((v, X1, X2),t2, p))
go.left(tz, right ((v, X1, X2), t1, p)) = return €2, left ((v, X1, X2), t1, p))

changé(_, p),t) = return ¢, p)

4.6.3 The cursor

We use a single reference cellrsoras a cursor to indicate the current position in the

tree.
initialiseCursox) = cursor:= (hole,top)

down() = cursor:= go_.dowr(!cursor

SMcBride’s notion of diferentiating datatypes is also related to Joyal's theory of spécies [Joy81,
Joy87/BLL98].

4.6. Sums using global state 143

up() = cursor:= go_up(!curson
left() = cursor:= go_left(cursor)
right() = cursor:= go_right(!cursor)

inseri(t) = cursor:= changé!cursor,t)

The functioninitialiseCursorsetscursorto point to the root of an empty tree. The
other functions simply specialise the zipper functions to the cursor. Itis easy to see that
each of the specialised zipper functions can be implemented in constant time, using the
fact that tursoris always overwritten.

We define a functiomesetCursorfor resetting the cursor to the root of the tree.

If its argument is true, then this also flips the branch flags on the way up, in order to
indicate that on the next pass we want to move onto the next branch of the tree. It

returns true if the whole tree has been explored, and false otherwise.

resetCursoftop, b) = returnb
resetCursofleft(_),true) =

right()

up()

returnresetCursof! cursor, false
resetCursofright(_),true) =

left()

up()
returnresetCursof! cursor, true)
resetCursof_,b) =

up()

returnresetCursof! cursor, b)

Sum bindings are flipped by moving left or right before moving up. It is only
necessary to flip branches if the whole of the current subtree has been explored.

4.6.4 Thebindand collectfunctions

The bind function creates a new binding if necessary, moves down the binding tree,
and reflects the appropriate binder.

bind™Ae) =
let x = getCompBindgtcursor,e)
down()
return? x

144 Chapter 4.

bind**42(e) =
let (X1, X2,b) = getSumBind€e)
if inLeftBrancl{b) then
down()
return1? x;
else ifinRightBranciib) then
down()
return1?2 x,

inLeftBranclib) = b
inRightBranclib) = notb

getCompBindégihole, p),€) =
insercomp (e, x,hole)), x fresh
returnx

getCompBinddcomp (_,X,),),)=
returnx

getSumBindé(hole,),v) =
let b = true
insertsum (v, X1, hole, X2, hole, b)),
return g, x2,b)

getSumBinddtsum (_,x1, ,%2, ,b),),)=

return &y, x2,b)

Normalisation by evaluation

X1, X2 fresh

The auxiliary functionggetCompBindeand getSumBindeare used to create a new

binding if one does not already exist, then return the binder pointed to by the cursor.
The collect function resets the binding tree and generates a list of computation
terms and a new binding tree. Then it outputs the term corresponding to the binding

tree with the list of terms plugged in the holes.

collect(f) =
let cursory =!cursor
initialiseCursox)
let es= splurgg f)
lete= ('curson[eq
CUrsor:= Cursolp
returne
splurggf) =
lete= f()
let done= resetCursof! cursor,true)
if not donethen returre:: splurgg f)
else returne)

4.6. Sums using global state 145

The auxiliary functiorsplurgeinvokes its argument, then resets the cursor, and recurses
until the binding tree has been completely explored.

4.6.5 Discussion

We have described an algorithm for performing normalisation by evaluatioty pn

using global state as a sidéfext. Furthermore, by using the zipper structure we need
only to use a single state cell. It is straightforward to translate our implementation to
Filinski’'s setting of 1. extended with sums, and given that we are using the standard
semantics, the same technique can be used for TDPE. In fact we have implemented
a TDPE algorithm in ML which uses this technique. We believe that our method can
be adapted in order to replace the use of/ ®efpto with global state, in Balat et al.’s
algorithm for performing TDPE on*.

Addressing Sumii and Kobayashi’'s quotation from the beginning of this section, we
claim that ours is a correct algorithm for “state-based case-insertion” (a generalisation
of “state-based if-insertion”). We leave the question fiifceency to Chapter]6. It is
true that our state-based implementationfie@ively simulating the application of a
continuation twice, and that it duplicates some static computation (which need not be
duplicated if first-class continuations are available). It seems unlikely that it would be
possible to use state and a native evaluator without duplicating some computation, but
it may be possible to improvefteciency by performing some kind of memoisation.

Filinski uses a monadic counterpart of the algorithm§di5.2, which uses the
continuation monad. In order to store the binding data for sums in the monad it is
necessary that sums are treated as computations. It is most natural to work with an
extension ofi; rather thaniy., asAc has a monadic semantics for all terms, as all
terms are computations.

It is also possible to construct a monadic counterpart for the state-based algorithm.
The relevant monad combines an accumulation monad over binding trees with the list
(non-determinism) monad. The list contains the semantic values of the terms which are
to be plugged in the tree. Thus, with regard to Filinski’'s quotation at the beginning of
this section, we claim that i possible to extend an accumulation-based interpretation
to sums.

146 Chapter 4. Normalisation by evaluation

The non-deterministic accumulation monad is defined as follows:

TA = BxA list
val(s) = (hole,(s))
let((t,v9), f) = let (ts',vs) = unzigdmap f v$
in (tts'],vs)

We omit the details of the normalisation by evaluation algorithm, but note that
it is straightforward to construct from the definition of the residualising monad. We
expect that threading a monad through values as well as computations is likely to be
less dficient than using an appropriate sidéeet, but that it is also likely to be easier
to reason about. However, with the non-deterministic accumulation monad there is no
unnecessary duplication of computation because non-determinism allows all branches
to be returned at once. Note that the branch flag in the binding tree datatype becomes
redundant for the same reason.

Our use of state and the zipper structure can be seen as an instance of a more general
technique. The same approach can be used to simulate a wide-range of useg of shift
reset, using state but no first-class control operators. The main idea is to partition the
body of a shift operation into a component which can be computed before the captured
continuation is invoked and a collection of other components which depend on the
captured continuation. The first component is stored in global state (possibly using a
zipper for convenience). The subsequent components are obtained by repeated calling
a function (simulating the replication of a continuation). It would be interesting to
investigate how far this approach can be taken, and how general it is. It might even
be possible to use something similar to obtain a state-based alternative to Filinski’s
generic monadic reflection operations [Fil94, Fil96, Fil99a].

4.7 Polymorphism and recursive types

It is not difficult to add polymorphism to normalisation by evaluation algorithms. Es-
sentially one just adds a second environment — a type environment. Then the reifi-
cation and reflection functions defined on polymorphic types follow a similar pat-
tern to those defined on function types. Vestergaard’s unpublished manuscript [Ves]

4.8. Embedding types in the semantics 147

gives a syntactic account of normalisation by evaluation for System F. Altenkirch et
al. JAHS96, AHS97] give a categorical treatment.

In principle recursive types are easy to add to normalisation by evaluation algo-
rithms. However, the resulting algorithms may not terminate. AdmitpHexpansion
leads to non-terminating reduction sequences, and gveduction can lead to non-
termination, if we are not careful. We discuss these issues further, and show how to
implement normalisation by evaluation with recursive typegarsg.

4.8 Embedding types in the semantics

Most presentations of normalisation by evaluation adopt a Curry-style typing disci-
pline. For many purposes it does not make arfedence whether the Church-style or
the Curry-style is used. However, it turns out that the Church-style does allow for a
useful modification of normalisation by evaluation algorithms, which is not so easily
expressed in the Curry-style. Instead of indexing the reification function with a type
it is suficient to use an unindexed reification function and fold the types of bound
variables into the semantics. We illustrate the technique avith

Parameters which take abstractions as arguments have to be annotated with the
types of bound variables:

[xI, = p(X)
[lam(x*,€)1, = lam*(As[ellyx-q)
[app(e1,e2) I, = app(ller], [€21,)

We can still define the semantic domains separately for each type, but later it will also
be necessary to consider a universal domain:

148 Chapter 4. Normalisation by evaluation

[O=A"-nep
[A— Bl =([Al— [BI)x7"
[A”] = U[[A]], whereA ranges over all types

lam’\() = (f,A)
app((f,A),s) = f(s)
7" is a singleton domain consisting only of the tyfse

The reification function is defined by pattern matching. Semantic objects are either
terms ranged over bg, or a (function, type) pair ranged over by (f, A).

ALA™ T — A™-nfy
M A”-nes — [A”]

lE=e
LA =lam(xA, | (F(1A X)), x*fresh

e=e
1"~Be=(1s. 1% (app(e | 5)).A— B)

Because is not type-indexed, it is not necessary to know the type of a term in order
to normalise it:

norm(e) =1 (Al el

Sheard[[She97] used the idea of embedding types in the semantics for a variant of
TDPE. In the next section we discuss how embedding types in the semantics can be
useful in actual implementations.

4.9 Implementing normalisation by evaluation in SML

In this section we describe how we implement normalisation by evaluation algorithms
in SML. First we define some auxiliary structures. Fresh variable names are generated
using a global counter.

4.9. Implementing normalisation by evaluation in SML 149

structure Supply =
struct
val count = ref 0

fun init O =
count := 0
fun new s =
let val this = !count
in
count := this + 1;
s © (Int.toString this)
end
end

Many data structures are suitable for implementing environments, including func-
tions, lists, binary trees and hash tables. In many applications the number of variables
is likely to be limited such that it might well be reasonable just to use an array of
fixed length. If memory is cheap, then this is likely to be qufiéceent. Here we use
SML/NJ’s map data structure, which is implemented using red-black trees. We use
strings for variable names (and hence for indexing the lﬁap).

(* string as a key *)
structure StringKey : ORD_KEY =
struct

type ord_key = string

val compare = String.compare
end

(* map from string to ’a *)
structure StringMap = BinaryMapFn(StringKey)

structure Env =
struct
type ’a env = ’a StringMap.map

8In our implementation of normalisation by evaluation for MIL we use the 8Lmap data struc-
ture in conjunction with integer variable names.

150 Chapter 4. Normalisation by evaluation

StringMap.insert
StringMap.find

val extend
val lookup

fun init () = StringMap.empty
end

extend(env, x, v) extends the environmephv with the bindingx +— v.
lookup(env, x) returnsthe semantic value to whighs bound inenv.

We now define simple types and syntax for Church-stybalculus terms in which
bound variables have type annotations.

structure Typing =
struct

datatype Type = B | F of Type * Type
end

B represents the base tyfe
F(A,B) represents a function of type— B.

structure Syntax =
struct
type ide = string
datatype exp = VAR of ide
| LAM of (ide * Typing.Type) * exp
| APP of exp * exp
end

VAR, LAM, andAPP represent respectively variables, abstractions and applications.

The type annotations on bound variables allow us to perform normalisation by eval-
uation on closed terms without explicitly passing a type parameter to the normalisation
function.

In order to stay within the limits of the ML type system we assume a single se-
mantic domain for interpreting all terms. The types of the parameters are given by the
following signature:

signature SEMANTIC_PARMS =
sig

4.9. Implementing normalisation by evaluation in SML 151

type sem
val lam : ((sem -> sem) * Typing.Type) -> sem
val app : (sem * sem) -> sem

end

We define a functor for the parameterised semantics.

functor Semantics (I : SEMANTIC_PARMS)
sig
val eval : Syntax.exp * I.sem Env.env -> I.sem
end =
struct
open Syntax I
fun eval (VAR x, env) =
Env.lookup(env, x)
| eval (LAM ((x, t), m), env) =
lam (fn s = eval (m, Env.extend (env, x, s)), t)
| eval (APP (m, n), env) =
let val f = eval (m, env)
val s = eval (n, env)
in
app (f, s)
end
end

We find it convenient to instantiate the semantic parameters, and define the reification
function at the same time usingesidualiseﬂ. This is particularly useful for norm-
alisation by evaluation algorithms in which the semantic parameters call the reification
function, such as i§4.4.

signature RES =
sig

include SEMANTIC_PARMS

val reify : sem -> Syntax.exp
end

TheNorm functor takes a residualiser and gives a normalisation function.

"This idea, and the following implementation of parameterised semantics using ML functors, is
essentially due to Filinski[Fil02].

152 Chapter 4. Normalisation by evaluation

functor Norm(I : RES)
sig
val norm : Syntax.exp -> Syntax.exp
end =
struct
structure ResidualisingSemantics = Semantics (I)

fun norm e =
(Supply.init Q;
I.reify (ResidualisingSemantics.eval (e, Env.init ())))
end

Now we define a residualiser for performing normalisation with respecB-to
reduction andj-expansion.

structure Residualiserl : RES =
struct
open Syntax Typing

datatype sem = REFLECT of exp
| FUN of ((sem -> sem) * Type)

fun reify (REFLECT m) = m
| reify (FUN (£, t)) =
let val x = Supply.new "x"
in
LAM ((x, t), reify (f (reflect t (VAR x))))
end

and reflect B m = REFLECT m
| reflect (F(tl, t2)) £ =
FUN (fn s => reflect t2 (APP (f, reify tl s)))

val lam = FUN
fun app (FUN (£,), s) = £ s

| app _ = raise Fail "Not.a_function"
end

Passing the residualiser to therm1 structure.

structure Norml = Norm(Residualiserl)

4.9. Implementing normalisation by evaluation in SML 153

gives rise to the normalisation by evaluation functimrml . norm.
Here is an alternative residualiser in which the reflect function has been defunc-
tionalised and the apply function inlined in order to makexpansion explicit.

structure Residualiser2 : RES =
struct
open Syntax Typing

datatype sem = REFLECT of exp * Type
| FUN of ((sem -> sem) * Type)

fun reify (REFLECT (m, B)) = m
| reify (REFLECT (m, F(tl, t2)) =
let val x = Supply.new "x"
in
LAM ((x, 1),
reify (APP (m, reify (REFLECT (VAR x, t)))))
end
| reify (FUN (f, t)) =
let val x = Supply.new "x"
in
LAM ((x, t), reify (f (REFLECT (VAR x, t))))
end

val lam = FUN
fun app (FUN (£,), s) = £ s
| app (REFLECT (m, F(tl, t2)), s) =
REFLECT (APP (m, reify s), t2)
end

structure Norm2 = Norm(Residualiser?2)

Now we remove thg-expansion to obtain a normalisation by evaluation algorithm for
performing jusp-reduction.

structure Residualiser3 : RES =
struct
open Syntax Typing

datatype sem = REFLECT of exp

154 Chapter 4. Normalisation by evaluation

| FUN of ((sem -> sem) * Type)

fun reify (REFLECT m) = m
| reify (FUN (f, t)) =
let val x = Supply.new "x"
in
LAM ((x, t), reify (f (REFLECT (VAR x, t))))
end

val lam = FUN
fun app (FUN (£,), s)
| app (REFLECT (m, s)

fs
REFLECT (APP (m, reify s))

end

structure Norm3 = Norm(Residualiser3)

Sums can be simulated in ML using datatypes.
datatype (’a,’b) Sum = Injl of ’a | Inj2 of 'b

The constructorgnj1 andInj2 give the first and second injections into a binary sum.
case s ok; = 51 | X2 = S is translated to:

case s of Injl x1 => sl
| Inj2 x2 => s2

Shift and reset are implemented using falland a single reference cell, as de-
scribed by Filinski[[Fil94].

An alternative approach to implementing normalisation by evaluation, proposed
by Filinski and Yangl[Yan99], uses a clever technique to encode types in such a way
that the type includes the corresponding reify and reflect functions at that type. This
approach allows the native ML evaluator to be used, and can be used for TDPE or
decompilation of existing code. However, we would like to be able to change the
semantics in ways which are not possible using this technique. Thus we use a universal
semantic datatype and a custom evaluator instead.

Danvy et al.[DRRO1] usphantom typeto statically constrain the output of TDPE
to be in normal form.

Chapter 5
Implementation

We have implemented a variety of normalisation by evaluation algorithms which incor-
porate features of MIL. Initially these began as standalone prototype implementations
on ‘toy languages’. Subsequently they were developed into full-blown normalisation
by evaluation algorithms which operate on actual MIL generated by the SML.NET
compiler from ML source code.

In this chapter we describe the incremental process we used for moving from a
basic normalisation by evaluation algorithm for the computational metalanguage to
normalisation by evaluation algorithms for MIL. Normalisation by evaluation for the
computational metalanguage can be adapted naturally to include many of the features
of MIL. We begin by adapting both the normalisation by evaluation algorithm for the
computational metalanguage, and MIL, as little as possible in order to allow them to
work together. The idea is that this provides a platform for assessing normalisation by
evaluation and incrementally adding new features. After establishing a framework for
studying normalisation by evaluation on MIL, we extend it.

The rest of this chapter is structured as follows. §1] we discuss dierences
between the simplified and full versions of MIL anIL. In §5.2 we discuss the
relationship between MIL andMIL. In §5.3 we introduce our first normalisation
by evaluation algorithm forMIL. This algorithm is not semantics-preserving. In
§5.4 we give an improved algorithm which is semantics-preservingf5I§ we add
sums and recursive types. we add exceptions. we give a normalisation
by evaluation algorithm which targets MIL rather thanlIL. Finally, in §5.8 we

155

156 Chapter 5. Implementation

summarise our range of normalisation by evaluation implementations.

5.1 Full versus simplifiedMIL /AMIL

In the first four chapters of this thesis we have worked exclusively with simplified
versions of MIL andiMIL. Mostly, the implementation details are not important, so
we shall continue to use the simplified calculi. However, in this chapter, and the next,
we shall indicate where the concrete implementation requires special attention.

5.1.1 Arity-raising

In concrete MIL andAMIL, terms arearity-raised functions, computations, sums

and products are-ary rather than binary or unary. In contrast, simplified MIL and
AMIL have unary functions and computations, whilst products and sums are binary,
and there is also a unary produkct Arity-raising is not dfficult to handle, though

it does introduce a few subtleties, and the semantics has to be augmented with arity
information in certain places.

5.1.2 Source information

For debugging purposes, all bound variables in the implementation are annotated with
a string. This string is the name of the corresponding source variable, if any, and the
empty string otherwise. We embed the source information in the semantics using the
same technique that we used to embed the type annotations on bound varigBIgs in

Each parameter that takes an abstraction as an argument is augmented with an extra
parameter for the source information.

5.2 MIL versusAMIL

MIL is rather unlike the othen-calculi to which we have applied normalisation by
evaluation. There is a syntactic distinction betwe¢omic and non-atomicvalues.
The syntax ensures that all non-atomic values are named. This is a desirable property

5.2. MIL versusiMIL 157

for a compiler intermediate language to have, as it exposes the control flow and enables
all kinds of program transformations to be naturally expressed [App92].

Recall from Chaptdr]|2 that MIL is just a restriction A¥1IL, and the convertibil-
ity relation of MIL is correspondingly defined as the restriction of the convertibility
relation of AMIL to MIL. Now, AMIL is just an extension ofiy. and, as is shown
in the rest of this chapter, one can define normalisation by evaluatiotMtir as an
extension of normalisation by evaluation fof..

A natural question to ask is whether one can obtain a normalisation by evaluation
algorithm for MIL simply by restricting the normalisation by evaluation algorithm for
AMIL. Unfortunately, this does not work, as the normal forms often lie outside of MIL.
For instanceletval x < pair(a, b) in app(f, xX) normalises t@pp(f, pair(a, b)) in AMIL,
but this term is not a valid MIL term gsair(a, b) is not an atom.

It is not entirely clear what canonical normal forms should be for MIL. For in-
stance:

e The order in which independent values are bound is not important:

letfun f(X) =min letval z& projy(y) in fz

= letval z& proj(y) in letfun f(X) &min fz

(5.1)
e The same non-atomic value may be bound more than once:
letfun f(X) &min letfun g(X) =min val(pair(f,g))
= letfun f(X) &=min val(pair(f, f))
(5.2)

Recall that the set of MIL termBIIL is a strict subset of the set aMIL terms
AMIL. One way of defining normal forms is to define a functiomlify from AMIL
to MIL such thamilify(e) = e. If such a function exists then it can be composed with
a normalisation function forMIL to give a normalisation function for MIL. In fact
no such function can exist, as there aMIL terms which are not convertible to any
MIL terms. For instance, the value terpair(pair(a, b),c) cannot be converted to a

158 Chapter 5. Implementation

value term in MIL, as the only way of namirmir(a, b) is inside a computation term.
However, the MIL term output by the frontend is always a computation term, and it is
possible to define versions ofilify restricted to computation terms. We shall discuss
how to do this in section 5.7. For now we concentrate on normalisation by evaluation
for AMIL. Note that we can still use the frontend to gener#@téiL terms, and obtain
useful performance data, without having to consider normalisation by evaluation for
MIL.

Parameterised semantics As usual we give a parameterised semanticsAfbiL
(Figure[5.1). Type annotations are attached to the parameters which interpret terms
with bound variables.

Unknown terms and types AMIL has many new constructs on top &f,. for fea-

tures such as sums, recursive types, exceptions and references. There are a number of
possible ways of dealing with these. We take an incremental approach, in which we
begin by eliding the constructs that we do not wish to handle (essentially pretending
they have no semantic content at all), then subsequently deal with them one-by-one.
We call the terms we wish to elidenknown termsand the types we wish to elide
unknown types

5.3 Absorbing values for unknowns

As a first attempt, we introduce a speadisorbingvalue-term constructarnknown

to which unknown values will be normalised. Unknown computation terms will be
normalised toval(unknown). Unknown values could potentially be of any type, so we
add the typing rule:

unknown:A
Values of unknown type will be normaliseddaknown and computations of unknown
type toval(unknown). The idea is that new term constructors be incrementally added to
the algorithm. The value teromknown is absorbingn that placing it in an elimination

5.3. Absorbing values for unknowns 159

[T, = p(X)
[=1, = star
[c*1, = constanf(c)
[lam(x®,m) 1, = lan?™(As.[MI[x-q)
[pair(v,w) 1, = pair([vl,. [wl,)
[proji(v) 1, = proji(L V1))
Linji(v) Tl = inji (L v1,)
[foldux a(v) 1, = fold,x a(L V1)
[unfold(v) 1, = unfold([v1,)

Lapp(f. V)1, = app(l f 1, [VI,)
[[V8.|(V)]]p = V8.|([[V]]p)
[let x* =min n], = let™([M, AV.[NT[x-v])

[vip,
[case vof (X}t =g | %% = m) 1, = caséAl’AZ)[As. [[pnl Tp[xioss]
AS.[n2llp[xo9
[raise(E) I, = rais&(E)
[try X* < min nunless H1, = try ([m1l,, AS[Ny, HIHI,)
[read(V)], = read([VI,)
[write(v,w) I, = write([v, [wW1,)
[new], = new

HIH 1, = map(A(E,n).(E,20-[nl,)) H

Figure 5.1: Parameterised semanticsAdIL

160 Chapter 5. Implementation

context gives anothamknown. For instance, for sums and products, this property is
captured by the absorbing conversion rules:

(— .ABS) app(unknown, V) = unknown
(x.ABS(i)) proj; (unknown) = unknown

This approach has the advantage of being easy to implement, and the resulting
term containing only the parts of the source term which are relevant to the normalis-
ation algorithm. Assuming a significant proportion of the source term is not unknown,
it should provide us with an indication of the behaviour of normalisation by evaluation
algorithms on realistically sized terms. It has the obvious disadvantage that the result-
ing code has large chunks missing, so it cannot be used to compile code. However, this
is not so important for the purposes of benchmarking normalisation algorithms.

5.3.1 Normalisation

We consider extensional normalisation fivlIL restricted to the conversion rules for

unit, functions, products and computations, where sums, recursive types, exceptions
and references, and their associate terms are unknown. Thus, the conversion rules are:
1n, -8, ».n, xpi, xn T8 T T.T.CC, - .ABS andx.ABS(i). We obtain long

normal forms, corresponding tpexpansion. They are given by the grammar:

Normal values v,w = U0« | lam(x®, m) | pair(v,w) | unknown
Neutral values u = x| A | projy (W™B) | proj,(uB*#)
Normal computations m::=val(V) | let X* < app(uB,v) in m

v,W ranges over normal values? over neutral values of typ8, andm over normal
computations. The set of normal formsMIL- nf is the union of the set of normal
values and the set of normal computations.

We shall now present a normalisation by evaluation algorithm. A residualising
semantics using the continuation monad appears in Figure 5.2. The semantic domain
for each value type is augmented withknown the interpretation of unknown values.
Unknown types are simply interpreted @sknown Note that the paramet&ompis

5.3. Absorbing values for unknowns 161

[Int] = AMIL- nf,; + unknown
[A ref] = unknown
[1] = star+unknown
[A—T:(B)]= (Al — [T(B)I)+unknown
[AxB] = ([Al X [B])+unknown
[A+ B] = unknown
[uX.A] = unknown

[T(A) T =Comp(LAl)

Figure 5.2: Semantics with absorbing valuesfibtiL

annotated with a set offects. In our implementations we just pass tffeas through
unchanged, but potentially one could do something more sophisticated with them. The
semantic parameters appear in Figuré 5.3. Parameters which eliminate values, namely
appandproj, returnunknownif the elimination argument isnknown Unknown values
are interpreted asnknownand unknown computations gal(unknown).

The reification and reflection functions appear in Fiduré 5.4. They are standard,
except:

e unknown at any type, is reified amknown; and

e any value, at an unknown type, is reflecteduaknown

5.3.2 Implementation issues

A number of implementation issues arise:

e Concrete MIL includes some support for polymorphism. We conveniently ig-
nore polymorphism (without just normalising every polymorphic function to
unknown), by applying SML.NET’s monomorphisation transformation as a pre-
processing stage.

162 Chapter 5. Implementation

staris uninterpreted
constanf(c) =1" ¢
lam(f) = f
app(f,9)=fs
app(unknowns) = unknown
pair(s, s2) = (s1, %)
proji(st. s2) = s
proj;(unknown = unknown
val(s) = Ak.k S
let(t, f) = Ak.t(As.f sk)

fold,x A(S) = unknown

unfold(s) = unknown

inj;(s) = unknown
cas€p, f1, f2) = val(lunknown)
raise(E) = val(unknown)
try(s, f1, H) = val(unknown
read(s) = val(unknown
write(s, ') = val(unknown
new= val(unknown

Comp([Al) = (LAl = AMIL-nfr,(x) — AMIL-nfy (s

Figure 5.3: Semantic parameters with absorbing valuegNoL

e We do not take advantage of MIL’'stect annotations, but we do preserve them.

e The implementation includes support for .NET interoperability via various addi-
tions to MIL. We just treat these as unknown terms in the normal way.

5.4 Fixed constants for unknowns

At first sight, one might ask why it is not just as straightforward simply to leave un-
known terms as is, rather than normalising themrknown (or val(unknown)). One
problem is how to define the semantics. The hope is to preserve the term, so it would
seem reasonable simply to interpret unknown terms as themselves.

It then becomes necessary to extend the definitions of the semantic parameters. Our
discussion focuses app, but the same principles apply to other elimination parame-
ters as well. We need to defia@p(u, s) for u the interpretation of an unknown value.

In the absorbing semantics, ufwere unknownthen we would just returmnknown
Now, uis a term, so analogously we would like to return another term. This should be

5.4. Fixed constants for unknowns 163

VAIAT - AMIL-nf,
T AMIL-ney — [A]

1A unknown= unknown
J/Int e=¢e
|t star=
1A~B £ —lam(xA, 1B (F(12 %)), XA fresh
|AxB (s.5) = pair(lA s, B)
1@ t = t(asval(|” 9))

Tlnt e=e
tle=star
1P e=1s1"(app(e (1" 9))
1B e= (1% projy(e), 1° projz(e))
1Te® o= Ak let P =ein k(1A x), XA fresh

1" e = unknown

norm(e") =) [el;

Figure 5.4: Extensional NBE with absorbing values

164 Chapter 5. Implementation

u applied to a term whicls denotes. The obvious way to obtain a syntactic represen-
tation ofsis to reify it. But, we have define¢las a type-indexed function, so we need
to know the type ofs. One possibility is to embed a type-inference algorithm in the
semantics. A simpler solution is to use the technique explained in Chapter 4 to embed
the types of bound variables in the semantics. Thean be defined without a type
parameter.

Note, however, that the resulting semantics is not sound with respgettes. It
Is sound with respect to thegandCC rules, though. In fact, it is just the usual seman-
tics for intensional normalisation by evaluation in the computational metalanguage,
where unknown terms are interpreted as fixed constants. One can obtain a pseudo
normalisation by evaluation algorithm from this semantics which performs some but
not all n-expansion. Specifically, known terms are expanded and unknown ones are
not. However, this ad hag-expansion seems somewhat unnatural. A more natural ap-
proach is just to take the usual semantics for extensional normalisation by evaluation
where unknown terms are interpreted as fixed constants. But then type inference be-
comes necessary again, as in extensional normalisation by evaluation a fixed constant
cAis interpreted as:

e

Of course, for intensional normalisation by evaluation, this issue does not arise because
reflection is just the identity. Given that we would be unlikely to want to perfgrm
expansion in a compiler anyway, we shall avoid type-inference in the semantics, and
implement intensional normalisation by evaluation instead.

As a further improvement over absorbing normalisation we shall normalise known
subterms which appear inside unknown terms. This is expressed by treating unknown
syntax constructorgather than unknown terms, as fixed constants.

5.4.1 Normalisation

We consider intensional normalisation faviIL restricted to the conversion rules for

unit, functions, products and computations, where sums, recursive types, exceptions
and references, and their associate terms are unknown. Thus, the conversion rules are:
—.B, x.pi, T.8, T.T.CC. Normal forms are given by the grammar:

5.4. Fixed constants for unknowns 165

[Int] = AMIL- ngnt
[Aref] = AMIL-nen ref
[1] = star
[A—TB)I=({[A]— [T(B)1)x7a)+AMIL-nEA_T,(B)
[AxB] = (IAl1xIB1)+AMIL- neaxs
[A+B] = AMIL-neass

[Te(A) T =Comp (LAl

Figure 5.5: Semantics with fixed constants AMIL

Normal values v,w = u| lam(x,m) | pair(v, w)
Neutral values u:=X|x*|c|proj(u) | injj(v) | fold,x a(u) | unfold(u)
Normal computations m,n::=val(v) | p|let X< pinm
Neutral computations p::=app(u,v)
| case mof (Xy=n1 | X2 = Nny)
| raise(E) | try X< min nunless H
| read(V) | write(v,w) | new

v,w ranges over normal valueg,over neutral valuesn,n over normal computations

and p over neutral computations. The set of normal forAaddIL- nf is the union of

the set of normal values and the set of normal computations. The set of neutral terms
AMIL- neis the union of the set of neutral values and the set of neutral computations.

We now present our intensional normalisation by evaluation algorithm with un-
known syntax constructors interpreted as fixed constants.

The parameterised semantics of Figure 5.1 still applies, but this time the extra
type annotations on the parameters are needed. A residualising semantics, using the
metalanguage’s internal monad and making use of the shift and reset control operators,
appears in Figure 5.5. The semantics is the standard one for intensional normalisation
by evaluation, except unknown types are interpreted as the set of neutral terms of the

166 Chapter 5. Implementation

staris uninterpreted
constanf(c) = c*
lan?(f) = (f,A)
app((f,A),s)=fs
app(e. ") = app(e, | 9)
pair(sy, s) = (s1, %)
proji(st. s2) = s
proj;(e) = proji(€)
inji(s) =inji(! 9)
foIdNX'A(s) = fold,xA(l 9)
unfold(s) = unfold(] 9)
casép, fi, f2) =case | pof (x1= 1 f1(x1) | X2 = | f2(x2))
val(v) is uninterpreted
letM(val(v), f) = f v
let’(e, f) = bindCmg*® (e, f)
raisg(E) = raise(E)
try”(s, f,H) =try | sex?in | f(X) unless | H
read(s) = read(] S)
write(s, §') = write(| s,|)
new= new

Comp([AT) = val(T AT) + AMIL- ner, a)
colleci(t) = <t>

bindCmp*®(e, f) = S(1k.let x* =ein collect1().«(f X)), X" fresh

Figure 5.6: Semantic parameters with fixed constanta ¥t

5.4. Fixed constants for unknowns 167

L:TAMIL]| — AMIL- nf

le=e
L (f,A) = lam(x*, collec2(). | (f X))), x*fresh
| star=x
L(s1.%) = pair(1* 51, 1°)
lval(s) =val(| 9

norm(e) =| [ell;
where eranges over terms

sranges over all semantic objects
f ranges over functions

Figure 5.7: Intensional NBE with fixed constants

corresponding type. The semantic parameters appear in Figlre 5.6. Each unknown
parameter is instantiated by reifying all of its arguments.

Reification is defined in Figufe §.7. Itis the usual non-type-indexed flavoy#.gf

5.4.2 Implementation issues

This time we treat both polymorphic terms and .NET interoperability terms as fixed
constants. Because we are using fixed constants merely for syntax constructors, fur-
ther reductions are not blocked. We could have used SML.NET’s monomorphisation
phase as before, but the monomorphisation phase has thef&deeéperforming fur-
ther reductions. We prefer to perform those reductions through our normalisation by
evaluation algorithm.

For future work we suggest adding polymorphism to the normalisation by evalua-
tion algorithm. As indicated i§4.7 this should be reasonably straightforward to do by
adding a type environment to the semantics.

168 Chapter 5. Implementation

5.5 Sums and recursive types

We have already seen one algorithm implementing normalisation by evaluatigf for
using delimited continuations §4.5.2. We now adapt this technique to the setting in
which we have fixed constants for unknowns, and we do not perfeexpansion. We
also add recursive types.

Recursive types are problematic for two reasons:

e First, if we admit negative recursive types then we can embed the unfirped
calculus, giving rise to non-terminating terms (ung@eeduction). For example,

app(lam(x*, app(unfold(x), X)), folda(lam(x*, app(unfold(x), x))))
whereA = uX.(X - X)

B-reduces to itself.

e Second, it is evident thatexpansion does not terminate — even for positive re-
cursive types. For instance, a variable of list type can-bg&panded as follows:

XuX.(1+ (Int« X)) =
fold, x (1+(nt«x)) (case unfold(x) of (X1 = () | X2 = pair(proj;(X2), proja(X2))))

But, proj,(x2) is another neutral term of typeX.(1+ (Int = X)), so this expansion
can be applied ad infinitum.

We have already decided not to perforaexpansion, so that solves the second
problem. One approach to the first problem, is simply to ignore it! Many programs
do not use negative recursive types in a way which could lead to non-termination, so
this is suficient for obtaining benchmarks. We have validated this assertion empiri-
cally. However, this approach would not be very satisfactory for an actual compiler.
A compiler should terminate on all inputs. Our solution is to add a side-condition to
the u.B-rule such that it can be applied only when the recursive type has no negative
occurrences of the bound variable:

(1) unfold(fold,x a(V)) = v, if not isNegativéX, A)

5.5. Sums and recursive types 169

5.5.1 Normalisation

Extending the normalisation problem[of 5]4.1 to include sums and recursive types, we
add the rules#+.gi, +.T.CC andu.8’. Normal forms are now given by the grammar:

Normal values v,w = u| lam(x,m) | pair(v,w)
|inj;(v) | foldx a(v)
Neutral values u::=X|x*|c|proj(u) | unfold(u)
Normal computations mn:=val(v)| plletxepinm
| case mof (Xy=n1 | X2 = Nny)
Neutral computations p ::=app(u,v)

| raise(E) | try X&<min nunless H
| read(V) | write(v,w) | new

The interpretation of sums and recursive types is:

[AL+ ATl = (Inj (T AT +injo([A2 1)) + AMIL- neag 1A
[uX.Al =fold, x A(LA[X:=uX Al) + AMIL- ng;x A

The parameters for sums and recursive types are:

inj is uninterpreted
case&(inj;(v), f1, f2) = fiv
casé1 (e, fy, f,) = bindSumit**2(e, f1, fo)
fold is uninterpreted
unfold(fold,x A(5)) = s, if X does not occur negatively iy
unfold(fold,x A(s)) = unfold(foldx a(l)), if X does occur negatively iA
unfold(e) = unfold(e)

of X% = collect(A().«(f1(x1)))

: 1+A2 = K
bindSun! (e,fl,fz)—S(/l case e | x%\Z:collec(A().K(fz(Xz))) ’

X1, X2 fresh

The reification function is extended as follows:

170 Chapter 5. Implementation

Linji(s) = inji(l s)
L fold,,x a(S) = foldx a(l 5)

5.5.2 Implementation issues

In concrete MIL the case statement is arity raised and also has an optional default case.
The algorithm we have described is easily generalised to this setting. ML itself has
a built-in boolean type, which SML.NET translates to a sum type in MIL. ML does
not allow user-defined sum types, although they can be simulated using datatypes.
Recursive sum types arising from ML datatypes (such as lists) are very common in
MIL code. Hence, adding recursive types to our normalisation by evaluation algorithm
enables significantly more conversions than just adding sum types.

There is a practical problem with performirgT.CC-conversion: each time it is
applied, a term is duplicated. This can easily lead to an exponential blow-up in the
size of terms, and is known to be a problem in practice [BD02]. There are a number
of ways of alleviating the problem. We return to this issue in Chapter 6, once we have
some concrete data.

5.6 Exceptions

Exceptions do not really add anything new. Essentially they can be seen as a combina-
tion of computations and sums (the exception monad is given by a sum). Extending the
normalisation problem df 5.5.1 to exceptions, we addTihgs rule, and generalise
T.T.CC and+.T.CC to the versions of Figufe 2]10. Normal forms are now given by
the grammar:

5.6. Exceptions 171

Normal values v,w = u| lam(x,m) | pair(v, w)
| inj;(V) | foldx a(V)
Neutral values u:= x| x*|c|proj(u) | unfold(u)

Normal computationsm,n ::= val(Vv) | raise(E) | p

| try X< pin munless H | case mof (X1 = N1 | X2 = Ny)
Neutral computations p::=app(u,V)

| read(V) | write(v,w) | new

whereH(E) is normal for all exceptionk.
The interpretation of computations is extended to account for exceptions:

Comp.(A) = raisge NE) +val([Al) + AMIL- ner_(a)

Analogously to the case of sums, the shift operator is used to follow each branch
of atry. First, the default branch (for the case in which no exception is raised) is taken,
then each of the branches of the handler are taken.

raiseis uninterpreted
try(val(v), f,H) = f v
try*(raise(E), f, H) = H(E)
try”(e, f,H) = bindExrf\(e, f,H)

bindExri\(e, f,H) = S(Ax.try X* = ein collec{A().«(f X)) unless H’),
where

x? is fresh
H’ = map(A(E. t).(E, collect{1().«(t())))) H

Reifying the semantic representation of an exception just gives the syntactic repre-
sentation of the exception:

| raisg(E) = raise(E)

172 Chapter 5. Implementation

5.7 Targeting MIL

One way of translatingMIL terms into MIL is to use a call-by-value embedding. The
call-by-value embedding ofMIL into itself simply names every non-atomic value. It
appears in Figurg 5.8. The embedding is very similar to Moggi’s call-by-value em-
bedding of simply-typedi-calculus into the computational metalanguage. Various
authors [[Dan92, HD94, SW97] have noted the similarity between the call-by-value
embedding and call-by-value CPS transformations. In particular, the call-by-value em-
bedding introduceadministrative redexedn other words, it introduces more names
than are necessary. For instance, some atoms are renamed.

Just like for CPS transformations, one can perform the embedding and reduce the
administrative redexes in one pass — this gives a one-pass monadic transformation.
We shall use the same machinery to combine normalisation by evaluation with the
call-by-value embedding and administrative reductions.

5.7.1 Straight to MIL

Using delimited continuations a one-pass transformation ffantaely be folded into

the normalisation by evaluation algorithm. We consider intensional normalisation for
MIL restricted to the conversion rules for unit, functions, products and computations,
where sums, recursive types, exceptions and references, and their associate terms are
unknown. In other words this is the MIL version of the normalisation problem dis-
cussed i 5.4]1. The conversion rules areB, x.8i, T.5, T.T.CC. Normal forms are

given by the grammar:

Normal values V,W::=Uu|lam(x,m) | pair(a,b)

Atoms abi=x|*|c

Neutral values u::=ajl proj(a) | injj(a) | foldx a(a) | unfold(a)
Normal computations mn:=val(v)|p|letx&pinm

Neutral computations p::=app(a,b)

| case mof (Xg =Ny | X2 = Nny)
| raise(E) | try X< min nunless H
| read(a) | write(a, b) | new

5.7. TargetingViL 173

Values
EAMIL o — MIL 1,n)
E(X) = val(x)
E(x) = val(x)
&(c) = val(c)
& (lam(x,m)) = val(lam(x, Ey(M)))
E(pair(v,w)) = let x = E(V) in let y = E(w) in val(pair(v, w))
&,(proji(v)) = let x &= &,(v) in val(proj(x))
& (inj;(v)) = let x = E{(v) in val(inj;(x))
& (foldx a(V)) = let x = &E(V) in val(folda(X))
& (unfold(Vv)) = let x = &;(V) in val(unfold(x))
Computations

SVZAM|LT8(A) — MIL Te(A)
Ev(app(v,w)) = let x =&/ (V) in let y <= E((w) in app(Xx,y)
Ev(val(Vv)) = let x = &E(V) in val(x)
&Ev(raise(E)) = raise(E)
Ev(try X&min nunless H) = try x< Ey(m) in Ey(n) unless SU(H)

&Ev(case vof (xg=n1 | X2 = Nnp)) = lety<=E{(V)
in case y of (x1 = &y(M) | X2 = Ev(ny))

&Ev(new) = new
Ev(read(V)) = let x = &E;(V) in read(x)
Ev(write(v,w)) = let x = E{(V) in let y = & (W) in write(X,Y)
where x,y are fresh

Handlers

ENEX AMIL list - ExMIL list
&/(H) = map(A(E,n).(E,&(n)) H

Figure 5.8: Call-by-value embedding aMIL into MIL

174 Chapter 5. Implementation

Analogously tdoindCmp we find it useful to define a parametendValfor naming
values. CallingpindValVv) ensures that is bound to a variable if it is non-atomic.

bindVala) = a
bindValv) = S(A«.tail(letval x<=Vvin <k x>))

tail : MIL — MIL
tail(letval x<=vin val(x)) = v
tail(m) =m

The functiontail performstail-call elimination It ensures that values are not
named when they appear in tail position. We wijjtefor (bindValo |). The seman-
tics is the same as that of Figure]5.5 but restricteMlb . It appears in Figurg 5.9.
The semantic parameters appear in Figure]5.10. Whenever awlueified, and an
atom is expected, an atomicity check is performed.i#f atomic then it is not named,
and if vis non-atomic then it is named. Reification is defined in Figure|5.11. Again,
non-atomic values are named.

Remark The astute reader may have noticed the fact that uhikdCmp the pa-
rameterbindVal does not take a type argument. TechnicdligdVal should take a
type, because we need to know the type of the value. In order to output a term of
the formletval xX* < v in n, we need to know the typ&. In general, we do not have
this type. Fortunately, in the implementation we can cheat. In concrete MIL, the term
letval X< vVvin nis a real term — not just syntactic sugar fet x < val(v) in n. Fur-
thermore, it does not requireto have a type annotation.

5.7.2 Limitations

The normalisation by evaluation algorithm we have just described can introduce a sig-
nificant amount of redundancy. One of the reasons for naming non-atomic values is so
that they can be used many times without significantly increasing the size of the term.
This is particularly true of functions. One might wish that any sharing of values in the
source term be preserved in the normal form. But inevitably, this information must

5.8. Implementations 175

[Int] = MIL -ngpt
[Aref] = MIL -nea ref
[1] = star
[A—-T.(B)1=(I[AT—=[T«(B)1)x7a)+MIL -Nea-T,(B)
[AxB] = (IAlxIB1)+AMIL-neaxs
[A+B] =MIL -nea; B

[T:(A)T = Comp([Al)

Figure 5.9: Semantics with fixed constants for MIL

be lost, as the semantics modelsga#quivalent terms, some of which may be highly
redundant.

It should be possible to rediscover some amount of sharing using some form of
common-subexpression elimination. We have written a prototype implementation, in
which we remove a certain amount of redundancy using a generalisation of the tech-
niques of Altenkirch et al. [ADHS01] and Balat et al. [BCF04], for performing norm-
alisation by evaluation with sums.

5.8 Implementations

This chapter has outlined our approach to implementing normalisation by evaluation
algorithms for SML.NET. We have implemented all of the algorithms described, to-
gether with a number of variations.

e We have implemented versions of the algorithms{6i3 and§5.4 using: the
continuation monad, the accumulation monad, state and delimited continuations.

e We have implemented extensional and intensional variants of the absorbing al-
gorithm.

¢ We have extended the algorithms§.3 and§5.4 with sums and exceptions. In

176 Chapter 5. Implementation

staris uninterpreted
constanf(c) = c*
lam?(f) = (f, A)
app((f,A),s)=fs
app(e, s*) = app(bindVale), | s)
pair(sy, s2) = (s1, %)
proji(s1, &) = s
proj;(e) = proj;(bindVale))
inji(s) =inji(ln 9)
f0|d/JX.A(S) = f0|d,uX.A(ln S)
unfold(s) = unfold(|n S)
casdy, f1, fz) = case |nvof (xp =] fi(x1) | X2 = | f2(x2))
val(v) is uninterpreted
let*(val(v), f) = f v
let’(e, f) = bindCmp\(e, f)
raisg(E) = raise(E)
try”(s, f,H) =try | sex?in | f(x) unless | H
read(s) = read(] S)
write(s, S') = write({n S, In)
new= new

Comp([A]) = val(L AT) +MIL -ner,(a)
colleci(t) = <t>

bindCmp\(e, f) = S(Ak.let X* = ein collec{1().«(f X))), X" fresh

Figure 5.10: Semantic parameters with fixed constants for MIL

5.8. Implementations 177

L:TAMIL]| — AMIL- nf

le=e
L (f,A) = lam(x*, collec2(). | (f X))), x*fresh
| star=x
1 (s1,82) = pair(ln s1, In S2)
lval(s) = <val(| 9)>
norm(e) =] [ell;

Figure 5.11: Intensional NBE for MIL

the first instance this was using shift and reset. Subsequently we have also imple-
mented a version with fixed constants which uses state and the zipper structure
as described i§4.4.

¢ We have implemented the straight to MIL algorithm using delimited continua-
tions.

In the next chapter we assess the performance of these algorithms and compare them
with rewriting-based normalisation algorithms.

Chapter 6
Performance and analysis

In this chapter we assess th&@ency of normalisation by evaluation algorithms on
MIL terms corresponding to actual ML programs. We do this by benchmarking against
a range of rewriting-based normalisation algorithms. We consider the normalisation
problems of the previous chapter: unknown terms as absorbing values or as fixed con-
stants, with and withouj-expansion, with sums, etc.

For each normalisation problem we begin with deaalgorithm which just per-
forms a depth-first traversal of the term structure contracting redexes recursively, using
an auxiliary substitution function. Straightforward optimisations, such as using an en-
vironment and not reducing inside abstractions that are never applied, are then added.
For each normalisation problem this process gives risesfmeatrunof normalisation
algorithms ranging from the iige algorithm up to normalisation by evaluation.

The benchmarks range from a basic quicksort program, which just sorts a list of
integers, through to a full bootstrap of the SML.NET compiler. The release version
of SML.NET is compiled under the SMNJ [smIb] compiler. We have also ported
SML.NET to the MLton [mlt] compiler. We compare algorithms compiled under
SML/NJ against algorithms compiled under MLton. All tests were performed on a
PC with an AMD Athlon 1.4Ghz CPU and 512MB of RAM.

If we take a closer look at the optimisations made to the mdstnaormalisation
algorithm, it becomes apparent that each optimisation moves the algorithm closer to
normalisation by evaluation. In fact the normalisation by evaluation algorithm can
be obtained by a series of straightforward program transformations. This provides yet

179

180 Chapter 6. Performance and analysis

another angle on normalisation by evaluation. This perspective is closely related to that
of Ager et al. [ABDMO3] in their work on obtaining abstract machines from evaluation
functions and vice-versa. Program transformations give a way to move neatly back
and forth between algorithms. This could be especially useful if a particular extension
IS most easily expressed in one algorithm, but also of use in another. For instance,
there are various normalisation by evaluation algorithms which handle sums, but it
Is not entirely clear what their more ive counterparts would look like. Program
transformation provides a means to find out.

The rest of this chapter is structured as follows §&n we mention some related
work. In §6.2 we introduce a spectrum of normalisation algorithmgfelid we discuss
our framework for obtaining results. §6.4 we present results for normalisation using
absorbing values for unknowns. §6.5 we present results for normalisation using
fixed constants for unknowns. K6.6 we outline some of the practicalfiiulties
we encountered in trying to obtain meaningful results. §&q we summarise our
main results. Finally, ir§6.8 we discuss how to obtain normalisation by evaluation
algorithms by program transformation.

6.1 Related work

Berger et al.[[BES98] measure the speed of normalisation by evaluation for simply-
typed A-calculus using a Scheme implementation. They compare: normalisation by
evaluation with the native Scheme evaluator; normalisation by evaluation with a hand-
coded evaluator; and aive recursive normalisation algorithm. Their benchmarks
are 1-encodings of iterated functions that were deliberately chosen because they take
many B-reductions to normalise, but always reduce to the identity. Their normalis-
ation by evaluation algorithms are extensional (giving long normal forms), whereas
their ndve algorithm only performﬁ-reductioﬁ]. The algorithms give the same nor-
mal forms because the benchmarks do not contaimeameyglexes. Their normalisation

by evaluation algorithms are much faster than thvaalgorithm. Interestingly, the
normalisation by evaluation algorithm which uses the native evaluator is faster than the

Lin fact their néve algorithm is just a Scheme implementation of the algorithm of Fe 6.1

6.2. A spectrum of normalisation algorithms 181

norm-naive Au — Au-nf
norm-naiveéx) = x
norm-naivélam(x, m)) = lam(x, norm-naivém))
norm-naivéapp(m, n)) = app(norm-naivém), norm-naiven))

app(lam(x, m),n) = norm-naivém[x:=n])
app(m,n) = app(m,n)

Figure 6.1: A n&e normalisation algorithm

one which uses a hand-coded evaluator.

Our tests are much more comprehensive: we use non-trivial benchmarks compiled
from actual ML programs; our object languag®/IL, is considerably more complex
than simply-typedi-calculus; and we cover a wide range offdrent normalisation
algorithms.

6.2 A spectrum of normalisation algorithms

To simplify the presentation we illustrate a spectrum of algorithms, from mogt ha
normalisation by evaluation, using the untypedalculus with jusp-conversion. The
same optimisations are easily adaptedMiL.

The starting point is the five applicative-order normalisation algorithm defined
in Figure[6.1. The functiomorm-naivetraverses the term structure depth-first. The
only interesting case is an applicatiapp(m, n). Firstmandn are normalised, then if
the normal form oimis a lambda, @-reduction is performed. It is easy to see that if
norm-naivée) terminates then it will return the normal form ef Of course, the un-
typeda-calculus is not strongly normalising with respecptoeduction ssmorm-naive
may not terminate.

A simple optimisation is to pass an environment around instead of explicitly per-
forming substitution (Figurie 6.2). Whergaredex is encountered (the first-lineagp),

182 Chapter 6. Performance and analysis

p:V — Au-nf
norm, : Au— Au-nf
norm,(x) = p X
norm,(lam(x, m)) = lam(x, normy,(m))

normy,(app(m, n)) = app(normy,(m), norm,(n), p)

apalam(xa m)’ n’p) = nom’}a[x»—m] (m)
app(m.n,p) = app(m,n)

TX=X
norm-enym) = normy(m)

Figure 6.2: Normalisation with an environment

the argument is bound in the environment. Whenever the bound variable is encoun-
tered its value is looked up in the environment. The initial environmesisimply the
identity.

Note that it is unnecessary to normalise inside lambdas which are applied. The
B-reduction step will perform the normalisation anyway. We observe that the normal-
isation function can be decomposed into two functions:

e The first functionwnf reduces taveak normal forn{Au-wnf), reducing every-
where except inside unapplied lambdas.

e The second functionf reduces inside the remaining lambdas to give a normal
form.

Figure[6.3 shows a versiarorm-wnfOwithout environments.

Reintroducing environments is a bit subtle. The problem is that we need to record
the fact that variables must eventually be substituted for inside a lambda, without ac-
tually performing the substitution. The solution is to wéesuresLan64], which are

6.2. A spectrum of normalisation algorithms 183

wnf : Au— Au-wnf
wnf(x) = X
wnf(lam(x,m)) = lam(x, m)
wnf(app(m, n)) = app(wnf(m), wnf(n))

app(lam(x, m),n) = wnf(m[x:=n])
app(m,n) = app(m,n)

nf : Au-wnf — Au-nf
nf(x) = X
nf(app(m,n)) = app(nf(m), nf(n))
nf(lam(x,m)) = lam(x, nf(wnfm))

norm-wnfO= nf o wnf

Figure 6.3: Normalisation with weak normal forms and no environment

lambda abstractions augmented with an environment:

(Au) m,n::= x| app(m,n) | lam(x, m)
(AUclos) P.q::= x| app(p,q) | closure,(x, m)

Using closures we obtain the normalisation algorithm of Figurg 6.4. Closures are
produced whemvnf is applied to al-abstraction. Tha-abstraction is augmented with
the current environment. Closures are consumetf by he environment of the closure
is used to obtain the weak normal form of the body.

We observe thahorm-wnf looks rather like a normalisation by evaluation algo-
rithm; wnf plays a similar role to the evaluation function, amfiplays a similar role
to |. Bearing in mind that: (i) closures encode higher-order functions, and (ii) our pa-
rameterised semantics fowu uses higher-order functions to interpretibstractions,
we transform the closures into higher-order functions. This transformation is the in-
verse of closure conversion [App92]. The resulting algorithm appears in Figure 6.5.

184 Chapter 6. Performance and analysis

PV = Acios

anp:Au — AUglos
wnf,(X) = p x
wnf,(lam(x,m)) = closure, (X, m)
wnf,(app(m, n)) = app(wnf,(m), wnf,(n))

app(closure,(x,m), p) = wnf ., 5 (M)
app(p,d) = app(p.q)

nf : AUgjos — Au-nf
nf(x) = x
nf(app(p,q)) = app(nf(p),nf(a))

nf(closure,(x,m)) = lam(x, nf(wnf,m))

TX=X

norm-wnf(m) = nf(wnf,(m))

Figure 6.4: Normalisation with weak normal forms and closures

ranges ovef Au-ne] and f ranges over functions.

We have renamedinf(:) as[-], andnf as|. Note that, unlike closures, higher
order functions do not include the name of the bound variable — hence the introduction
of the fresh variable< in |. We could embed the name in the semantics, but then it
would not modek-conversion.

norm-nbé is indeed a normalisation by evaluation algorithm. Expressed using the
parameterised semantics of Fighre 2.11 it becomes:

6.2. A spectrum of normalisation algorithms 185

[Au] =~ [Au-ne] + ([Au] — [Aul)
[Au-ne] =V + ([Au-ne]l x [AuT)

p:V —>[Au]

[-1,:A—[Au]

[[X]]p =pX
[lam(x,m) 1, = AV.[M]ly[x-v]
[app(m n) I, = app(l M, [n1l,)

app(f,s)="fs
app(u, s) = (u,s)

l:[Au] — A-nf
I X=X
L(us)=app(lu,ls)

L f=lam(x,| f X), xfresh

TX=X

norm-nbé&(m) =| (I m]+)

Figure 6.5: Intensional NBE with a higher-order semantics for neutral terms

D

186 Chapter 6. Performance and analysis

[Au] =~ [Au-ne] + ([Au] — [Aul)
[Au-ne] =V + ([Au-ne]l x [Aul)

lam(f) = f

app(f,9)=fs
appu,s) = (u,s)

l:T[Au] — A-nf
I X=X
L) =app(luls
L f=lam(x,| f x) (xfresh)

TX=X

norm-nbé&(m) =| (I m]4)

whereu ranges ovef Au-ne] and f ranges over functions.

This is rather close to the normalisation by evaluation algorithms in the rest of this

thesis. The main élierence is that neutral terms have a higher-order semantics, rather

than being interpreted as themselves. We now change the interpretation of neutral

terms to be:

[Au-ne] =~V + ([Au-ne] x Au)

and move the call sinsideapp Note that| has become the identity on neutral terms.
Also note thafl Au-ne]l is now isomorphic ta\u-ne, so we can simply interpret neutral

terms as themselves. This gives the standard normalisation by evaluation algorithm of

Figure[4.3:

6.3. Obtaining the results 187

[Au] = Au-ne+ ([Au] — [Aul)
lam(f) = f

app(f,9)=f s
app(u, s) = app(u, |)

l:[Au] — Au-nf
lu=u
Lf=lam(x,] f X) (xfresh)

TX=X

norm-nbém) =| (Lml;)

whereu ranges oveAu-ne and f ranges over functions. We now have a spectrum
of normalisation algorithms fg8-reduction onAu-terms ranging frormorm-naiveto
norm-nbe

6.3 Obtaining the results

6.3.1 Benchmark programs

We use several ML source programs for benchmarking. The first five benchmarks are
demos distributed with SML.NET.

e sort simply sorts a list of integers using quickso#t 70 lines of ML code).

e xq is an interpreter for an XQuery-like language for querying XML documents
(~ 1,300 lines of ML code).

e mllex is a port of SMINJ’s ML-Lex utility (~ 1,400 lines of ML code).

e raytrace is a port to SML of the winning entry from the Third Annual ICFP
Programming Contest(2,500 lines of ML code).

188 Chapter 6. Performance and analysis

e mlyacc is a port of SMI/NJ’s ML-Yacc utility (~ 6,200 lines of ML code).
The remaining benchmarks are much larger.

e hamlet is Andreas Rossberg’s SML interpreterZ0,000 lines of ML code).

e bootstrap is SML.NET compiling itself ¢ 80,000 lines of ML code).

We shall give the times (in milliseconds) for normalising tkiglIL term for each
ML program, where the normalisation algorithms have been compiled under both
SML/NJ and under MLton.

6.3.2 Interfacing with SML.NET

SML.NET has an extensible interactive environment for coordinating the compilation
of programs. It includes amakecommand which compiles an ML program. We
have adapted thmakecommand to create a nemakemilcommand. Themakemil
command uses the frontend to generate MIL code which is then normalised. The
choice of which normalisation algorithms to perform and the value of various other
parameters is configurable through the interactive environment. One of the parameters
makemil.factoispecifies a repeat factor for normalisation. For some of the smaller ex-
amples it is necessary to set this to a value higher than one in order for the timing to
be long enough to be measured accurately. The timing is performed using SML.NET’s
built-in timing mechanism, which is normally used for reporting compile times.

6.3.3 Intensional versus extensional normalisation by evaluation

It would have been interesting to collect and analyse comprehensive results for both

intensional and extensional variants of normalisation by evaluation. However, due to

time constraints this was not possible; instead, we have chosen to focus on intensional
variants of normalisation by evaluation. Some of the reasons for choosing intensional

over extensional normalisation by evaluation are:

e p-expansion does not terminate for recursive types.

¢ Itis not generally desirable to perforpaexpansion in a compiler.

6.4. Absorbing values for unknowns 189

e If desired,p-reduction can be easily added to intensional normalisation by eval-
uation algorithms.

e Extensional normalisation by evaluation with fixed constants for unknowns de-
pends on building type-inference into the semantics. This is fidtwat to do in
principle, but we have not implemented such an algorithm.

6.4 Absorbing values for unknowns

Following Chapte[b we begin by recording results for normalisation with absorbing
values for unknowns. The normalisation problem is an intensional version of the one
described ir§5.3. In order to try to reduce the amount of the term which is designated
unknown it is monomorphised before being normalised. We record only the time
taken for normalisation. Unfortunately the compiler's monomorphisation phase also
performs some reductions which could be performed by the normalisation algorithms.
Because of this, and the fact that absorbing normalisation is not semantics-preserving,
we shall treat the results of this section with some calfion.

The normalisation algorithms correspond to thosg@® extended taMIL.

e naive is a basic applicative-order normalisation algorithm.

e env uses environments.

e wnf* uses closures.

e nb€ uses normalisation by evaluation with the continuation monad.

Table[6.1 and Table §.2 show the normalisation times using absorbing values for
unknowns under SMINJ and MLton. A chart of the results appears in Figure 6.6.

These results show that simply using an environment invariably leads to an order
of magnitude speed-up over theivaalgorithm. Normalising via weak normal form,

2 The primary reason for doing the tests with absorbing values at all is that ffeyacquick (and
somewhat dirty) way of checking that normalisation by evaluation is competitive with other algorithms.
If normalisation by evaluation were not as fast as &@algorithm, in this relatively simple case, then
it would probably not have been worth pursuing further.

190 Chapter 6. Performance and analysis

Table 6.1: Normalisation times using absorbing values under/SINIL

| (ms) | naiveé env wnf* nbe" |
sort 111 1.13 0.44 0.90
Xq 452 292 1.63 3.29
mllex 371 290 140 240
raytrace 779 4.46 197 3.77
mlyacc 2223 10.61 5.50 11.81
hamlet 5056 13.92 6.81 11.71
bootstrap || 88846 85.13 68.12 142.93

Table 6.2: Normalisation times using absorbing values under MLton

| (ms) | naiveé env wnf* | nbée |
sort 54 1.17 0.30 0.33
Xxq 176 2.65 0.78§ 1.15
mllex 195 247 0.59 0.76
raytrace 310 3.44 0.69 0.98
mlyacc 906 6.57 245 4.05
hamlet 1792 9.71 2.10 3.30
bootstrap || 14360 27.23 11.6121.23

14

12

10

= d env* (SML/NJ)

— B wnf* (SML/NJ)
® I

k3 8 O nbe* (SML/NJ)
.°§’ 6 O env* (MLton)
e mwnf *(MLton)

4 o || @nbe*(MLton)
o I e ‘ ‘ ‘ ‘

sort xgq mllex raytrace mlyacc hamlet

Figure 6.6: Normalisation times using absorbing values

6.5. Fixed constants for unknowns 191

with environments and closures, is also of some benefit, but not as much as we might
expect. Thenbe' algorithm is actually slightly slower thamnf*, and even sometimes
slower tharenv'. We conjecture that the results are biased towards because the
pre-processing phase removes a large amount of redundant code, and this is one of the
problemswvnf* (andnbe’) address.

6.5 Fixed constants for unknowns

For the rest of our tests we use fixed constants for unknowns. This preserves the
semantics, and allows for many more reductions than absorbing normalisation. No
preprocessing is performed, but the raw MIL term generated by the frontend is fed into
the normalisation algorithm.

6.5.1 Choosing an interpretation for computations

We now compare the performance of normalisation by evaluation algorithms using
different interpretations for computations. The normalisation problem is essentially
that of §5.4. It is extended slightly in that.gi-reduction is performed. This is an easy
extension. However, adding T.CC-reduction as well is considerably more complex.
We do this in§6.5.3. We compare the normalisation by evaluation algorithms with a
normalisation algorithmvnf which uses closures.

nbe. uses delimited continuations.

e nbe; uses a state cell to store a list of bindings.

e nbe uses a state cell to store a functional representation of a list of bindings.
e nbeancuses the continuation monad with answer type computation terms.

¢ nbapsuses an accumulation monad over a list of bindings.

e nbey uses an accumulation monad over a functional representation of a list of
bindings.

192 Chapter 6. Performance and analysis

Table 6.3: Normalisation times forfterent interpretations of computations

| (ms) [SML/NJ MLton |

wnf 2993 350
nbe 2913 143186
nbe; 2980 391
nbes 2749 370

nbenc 2980 370
nbens 2809 400
nbeans 2950 391
nbe 2783 390

e nbeg uses higher-order rewriting to performT.CC-reduction. This is the algo-
rithm one obtains by ‘refunctionalisinginf.

For this test we use tHeamlet benchmark. The results appear in Tdblg 6.3. With
one exception, the results are strikingly similar. Excluding delimited continuations
under MLton, the choice of interpretation for computations does not significatiigta
the normalisation time. Furthermore, the normalisation by evaluation algorithms take
about the same time af.

It is not particularly surprising that delimited continuations are so slow under
MLton, as it was not designed with first-class continuations in mind. In contrast, the
design of SMINJ was strongly influenced by work on continuations [App92], and
call/cc was a natural extension.

Grobauer and Yang [GY99] describe a slight modification of TDPE in which one
can remove some calls to reset. They use this modification to obtain monomorphically-
typed instances of shift and reset, which enables them to perform the Second Futamura
transformation on their TDPE algorithm. We tried applying their techniqudég, but
it had no discernibleféect on the performance.

6.5. Fixed constants for unknowns 193

6.5.2 Comparing normalisation by evaluation against other algo-

rithms

Now we compare the performance of normalisation by evaluation with other normal-
isation algorithms across all of our benchmarks. We cimie, as it performs well
under both SMINJ and MLton. We could just as well have chosen any of the other
normalisation by evaluation algorithms apart frope.. In addition townf we have
applicative-order normalisation algorithmsaive which does not use environments;
andeny, which does.

The algorithmnaive is so slow that we omit results for it. Even on thert
benchmark it did not terminate after our threshold df filliseconds. The results for
SML/NJ appear in Table §.4 and those for MLton appear in Table 6.5bddrestrap
benchmark takes longer than®l@illiseconds, even with the more sophisticated norm-
alisation algorithms. Figuie 6.7 shows a chart of the results.

The algorithmenvis typically several times slower thamnf andnber. The al-
gorithmswnf andnbes are roughly the same speed on all the benchmarks. This is
encouraging because it indicates that normalisation by evaluation is indeed fast com-
pared with other normalisation algorithms. It performs roughly the same as an opti-
mised normalisation algorithm. It also indicates that both the compilers are doing a
good job of compiling higher-order representations.

We believe that the long normalisation timesBobtstrap are due to the blow-up
in code size caused by unrestricted inlining. Even the smiadei et example gives
an order of magnitude increase in the size of the target MIL as compared with the
source. This might be partially alleviated by removing some redundancy as suggested
in §5.7.2. Alternatively, the blow-up can be eliminated by using shrinking reductions
as described in Chaptg} 7, but this gives a veffedent flavour of algorithm to the
normalisation by evaluation algorithms discussed so far.

Remark Because SML.NET is a whole program compiler, it always includes the ba-
sis library in the source MIL term; so even small ML programs translate to a relatively
large MIL term. The vast majority of our simplest benchmasirt, is just the basis
library. However, most of the basis is not used. The hope would be that most of the

194 Chapter 6. Performance and analysis

Table 6.4: Normalisation times using fixed constants under SNL

| (ms) | env wnf| nbe |
sort 131 95| 115
xq 932 206 197
mllex 8212 861 860
raytrace 874 497 463
mlyacc 4137 802 991
hamlet 17335 2993 2749
bootstrap | >10° >10° | >10P

Table 6.5: Normalisation times using fixed constants under MLton

| (ms) | env wnf| nbe |
sort 39 15 19
xq 133 44 44
mllex 805 121 125
raytrace 101 118, 121
mlyacc 501 135| 133
hamlet 2453 350 370
bootstrap || >10°F >10f | > 1(F

@ env (SML/NJ)
B wnf (SML/NJ)
O nbe, (SML/NJ)
O env (MLton)
W wnf (MLton)
@ nbe, (MLton)

Figure 6.7: Normalisation times using fixed constants

6.5. Fixed constants for unknowns 195

Table 6.6: Normalisation times for sums

| (ms) | wnf* | nbel nbel nbe' |
sort (SML/NJ) || 779| 725 1953 648
xq (SML/NJ) 1292| 1152 4938 1051
sort (MLton) | 143|3055 781 104
xq (MLton) 230| 5398 1953 167

6000

5000 —

4000

o waf*
B nbel
O nbe!
O nbe,”

time (ms)
w
o
o
o

2000

1000 r T
N el

sort (SMLU/NJ) xq (SML/NJ) sort (MLton) xq (MLton)

Figure 6.8: Normalisation times for sums

source term is immediately discarded (there is no point in optimising dead code). In-
deed, not reducing inside lambdas (as in the closure-based normalisation algorithms,
and the normalisation by evaluation algorithms) achieves this aim. This is reflected in
the benchmarks that use fixed constants.

6.5.3 Sums

We have extended some of the algorithms of the previous section to perfdr@C-
reduction as described §#.5 and§5.5.

e wnf* is an extension ofvnf which performs+.T.CC-reduction.
e nbe; uses delimited continuations as describe§4rb.2.

« nbel uses a single reference cell and a zipper as describgtn

196 Chapter 6. Performance and analysis

e nbe" uses higher-order rewriting to perfornT.CC- and+.T.CC-reduction. It
is a ‘refunctionalised’ version ofinf*.

As remarked in§5.5, +.T.CC-reduction does, in practice, lead to exponential
growth in the size of terms. Thus, we were only able to obtain results for two of
the benchmarkssort andxq. The results appear in Takjle 5.6. Figlire] 6.8 shows a
chart of the results.

Under SMI/NJ the timings fownf*, nbel andnbe™ are roughly the same. Under
MLton the same is true ofinf* andnbe’. Under both SMINJ and MLtonnbe! is
slower than the fastest algorithms. This is not surprising given that it does duplicate
some computation. Under MLtombe! is actually faster thambel due to MLton’s
slow implementation of caltc.

Remark Under both compilers thebe™ function appears to be slightly faster than
wnf*. This is rather curious given thanf* is a defunctionalised variant afbe’.
However, there is not really enough data, and tlkecénce is not large enough, to be

sure.

6.5.4 Size of terms

In theory unrestricte@-reduction could lead to a non-elementary blow-up in the size
of terms. Adding sums and.T.CC-reduction makes matters even worse, and seems
to be a bigger problem in practice. SML.NET includes a metric for the size of MIL
termg? We use this metric to compare the size of terms before and after normalisation.
Roughly, the metric gives one for the size of syntax constructors, one for constants and
zero for variables.

The sizes are shown in Tallle 6.7 where:

e source is the size of the source term.

e source* is the size of the source term after monomorphisation, where unknown
terms are given size 0.

3This is used internally to decide when to perform certain optimisations such as inlining.

6.6. Obstacles 197

Table 6.7: Size of terms before and after normalisation

| (ms) | source sourcet norm norm* norm |
sort 9885 1007 8407 3 243069
xq 13967 2820 17822 55 290007
mllex 14494 3720 125519 18 ?
raytrace 18145 6627 35583 26 ?
mlyacc 24239 6397, 96123 194 ?
hamlet 56321 28757 846266 143 7
bootstrap | 152853 140329 ? 866 ?

e norm is the size of the normal form where fixed constants are used for unknowns.

e norm* is the size of the normal form where absorbing values are used for un-
knowns.

e nornk is the size of the normal form in the presence-of.CC.

The entries marked ? indicate where a result was not obtained because the algorithm
did not terminate within the fomillisecond threshold.

The blow-up due to unrestrictegireduction can be significant. In the case of
hamlet the normalised term is over 15 times larger than the source. As expected,
+.T.CC-reduction has an even more dramatie@. In the case afort the normalised
term is almost 25 times larger than the source term.

As well as showing large increases in size for normalisation with fixed constants for
unknowns, Tablg 6]7 also illustrates how much information is lost by using absorbing
values for unknowns. In the casegdrt, for instance, the normal form is over 3,000
times smaller than original source term.

6.6 Obstacles

We encountered a number offikulties in trying to collect accurate results. The first
problem was that the numbers were being recorded under Windows XP. It is not possi-
ble to guarantee that the operating system will not interrupt a process under Windows.
By assigning a high priority to the ML processes, and minimising the number of other

198 Chapter 6. Performance and analysis

programs running in the background we were able to reduce interruptions significantly.
We do not believe that, after having taken these precautions, the operating system had
a significant impact on the accuracy of our results.

The second problem was with memory management and, in particular, garbage col-
lection. It is dfficult to predict or influence when garbage collection takes place, and
it can have a significantfiect on running time. Both SMNJ and MLton include a
function to force garbage collection to take place. By forcing garbage collection imme-
diately before timing each of our algorithms we were able to improve the consistency
of the timings.

However, we did observe some unusual patterns. To begin with we configured
SML.NET to perform each normalisation algorithm in turn automatically, without re-
quiring any user interaction. Under SYNLJ running each normalisation by evaluation
algorithm in turn leads to each successive algorithm being slightly slower than the
previous one. When the order is changed the same thing happened. Usually MLton
seems to be more predictable, and the times |&sstad by the order in which the
algorithms are run, or how many times they are run. We did observe one anomaly,
though. We noticed thaiber was taking about half the time of the other normalisation
by evaluation algorithms. Further investigation revealed that this was only the case if
nber was run immediately aftanbe;. Another factor which can make benchmarking
difficult is the complexity of modern hardware. Long pipelines, caches, high memory
latencies and concurrency alfect the predictability of performance. In order to get
more meaningful results from both SWYNLJ and MLton we restarted SML.NET for
each timing.

6.7 Summary

We summarise our key results:

¢ naivetypically performs orders of magnitude slower than algorithms which use
an environment.

e envis typically several times slower thamf.

6.8. Normalisation by evaluation by program transformation 199

e For normalisation by evaluation, the choice of interpretation for computations
has little éfect on performance — with one notable exception:

e Under MLtonnbe; is orders of magnitude slower than the other normalisation
by evaluation algorithms.

e Apart fromnbe. under MLton, the normalisation by evaluation algorithms are
about the same speed\wasf.

e Under both SMINJ and MLtonnbe' is an order of magnitude faster thabe.
e Under SMI/NJnbe is about the same speedrasg’.

e Under MLtonnbe! is several times slower thambe, (presumably because of
MLton'’s inefficient implementation of calic).

Our main conclusion is that normalisation by evaluation is indéécient — com-
paring favourably to optimised rewriting-based normalisation algorithms.

6.8 Normalisation by evaluation by program transfor-

mation

The development of6.9 suggests that we might derive normalisation by evaluation
algorithms by program transformation. We have actually found this to be a rather use-
ful tool. The idea applies to all of the normalisation problems we have benchmarked
in this chapter. The general pattern is to start with an existing algorithm, which is typ-
ically operationally inspired, and then to apply a few simple program transformations
to obtain a normalisation by evaluation algorithm, with a denotational component.
The key steps, in the case of thecalculus and extensions, are: splitting the norm-
alisation function into two stages, introducing environments, and “refunctionalisation”.
As our results show, the final stage is not necessarily an optimisation, so may not al-
ways be of practical interest. However, normalisation by evaluation does provide a
rather powerful framework for reasoning about normalisation and semantics, so the fi-
nal stage is interesting in its own right. As an example, one might start with an existing

200 Chapter 6. Performance and analysis

normalisation algorithm which is known to be correct, and then derive a corresponding

normalisation by evaluation algorithm, which is correct by correctness of the program

transformations, from which other semantic (e.g. completeness) and syntactic (e.g.
confluence) properties can then be extracted.

Chapter 7
Shrinking reductions

Thep-normalisation algorithms we have considered so far have reducgdediexes

in a term. Performing-reduction corresponds to inlining. It is well-known that un-
restricted inlining can lead to a large blow-up in the size of terms. Our testing has
shown that this is an issue in practice. For instance the output term from the second
hamlet benchmark of the previous chapter is more than fifteen times the size of the
input. What is more, the worst case time complexity of normalisation in simply-typed
A-calculus is known to be bad (s§€.8). The failure to obtain results at all for the
seconthootstrap benchmark can be attributed to this.

To solve the problem of normalised terms getting too big, functional language com-
pilers such as SMINJ and SML.NET perform a restricted form gfreduction in
which terms are guaranteed to decrease in size.sithplify transformation performs
suchshrinking reductions In particular,—.3-redexes are reduced only if the bound
variable has at most one use.

Appel and Jim[[AJ97] describe three algorithms for shrinking reductions. The
first ‘naive’ and second ‘improved’ algorithms both have quadratic worst-case time
complexity, and the third ‘imperative’ algorithm is linear, but requires a mutable rep-
resentation of terms. Appel and Jim did not implement the third algorithm, which does
not integrate easily in a mainly-functional compiler. Both M0 and SML.NET
use the ‘improved’ algorithm, which is reasonablfi@ent in practice. Neverthe-
less, SML.NET spends a significant amount of time performing shrinking reductions.
We have now implemented a variant of the imperative algorithm in SML.NET, and

201

202 Chapter 7. Shrinking reductions

achieved significant speedups.

The rest of the chapter is structured as follows§Til] we formalise shrinking re-
ductions for a variant of MIL, and give some normalisation result§{7l@ we outline
Appel and Jim’s shrinking reduction algorithms. we introduce a graph-based
representation of MIL terms. This supports movement around the term, both through
traversing the underlying tree structure and via connections between variable occur-
rences. Ir§[7.4 we describe in detail our one-pass imperative algorithm for performing
shrinking reductions on MIL terms. Following Appel and Jim this uses an abstract
variant of our graph-based representation§{4rfj we state and informally justify some
correctness properties for our algorithm. §A§ we compare our one-pass algorithm
with the existing shrinking reductions algorithm used in SML.NET. Finallgdry we
summarise.

7.1 Normalisation for shrinking reductions

For the rest of this chapter we use a slightly modified version of simplified MIL. The
syntax is as follows:

Atoms ab:=x|*]|c
Values v,w = a| pair(a,b) | projy(a) | projx(a) | injy(a) | inj>(a)
Computations m,n,p::=app(a,b) | letfun f(X) =minn

|val(Vv) | let x<minn|case aof (X1 =Ny | X2 = np)

where variables are ranged over byg, x,y,z, and constants are ranged over &y

The only significant change change is that ktéun construct is now more than just
syntactic sugar for binding a lambda. This allows us to bind recursive as well as non-
recursive functions. Note that exceptions, references and recursive types have been
removed, but the analysis and implementation extends straightforwardly to include
them. Indeed, we have implemented the algorithms described in this chapter in the
actualy SML.NET compiler for the full version of MIL.

We define thesizeof MIL terms|-| as:

7.1. Normalisation for shrinking reductions 203

laj=1 lletfun f(X) =minn| = |m+|n+1
lproji(a)| = |injij(a)| = 2 let xeminn =|m+n+1
lapp(a, b)| = |pair(a, b)| = 3 val(v)| = v+ 1

lcase aof (Xy = Ny | Xo = Np)| = |Ny|+|Ng| +2

We say that a reduction is a shrinking reduction if it always reduces the size of terms.
The most important reductions are given by the shrinlgngles:

(— Bo) letfun f(X)<=ninm — m, f ¢ fv(im)
(— B1) letfun f(X) =min Cl[app(f,a)] — C[m[x:=a]], f ¢ v(C[],m,a)
(T.Bo) letval x&vinm — m, x ¢ fu(m)

(T.Ba) letval x<=ainm — m[x:=4a]
(x.8) letval y < pair(ay, a2) in C[proji(y)]
—> letval y < pair(a,az) in C[a]
(+.8) letval y < inj;(a)
in C[case y of (xgy=n1 | X2 = ny)]

— letval y <inj;(a) in C[nj[x :=a]]

We write Rg for the one-step reduction relation defined by ghrules. Thesimplify
transformation also performs commuting conversions. These ensure that bindings are
explicitly sequenced, which enables further rewriting.

(T.CC) letye=(letxeminn)inp
— letx&eminlety<ninp
(—.CC) lety<(letfun f(X) &=minn)inp
—> letfun f(X) &minlety<=nin p
(+.CC) lety<(caseaof (xy=n1| X2 =ng))inm
—> letfun f(y) &mincase a of x;=lety;<nyginapp(f,y1)
| xe=lety, =nyinapp(f,y?)
We write Rcc for the reduction relation defined by the CC-rules, &ir Rz U Rcc.
Unlike thep rules, the commuting conversions are not actually shrinking reductions.
However, T.CC and—.CC do not change the size, whilstCC gives only a constant
increase in the size.

204 Chapter 7. Shrinking reductions
An alternative to the-.CCrule is:

(+.CC) lety<case aof (xy=ny| X2 = ny)inm
— caseaof (xy=letyr=niinm | X2 = lety, &nzin np)

whereyy, Yy, are freshm, = mly:=vy;]. This rule duplicates the termand can exponen-
tially increase the term’s size. TheCC rule instead creates a single new abstraction,
shared across both branches of thse, though this inhibits some further rewriting.
We write R for the reduction relation defined by the CC-rules whet€C) is re-
placed by ¢.CC’), andR for RsUR ..

Proposition 7.1. R is strongly-normalising.

Proof. First, note thaRg is strongly-normalising aBs-reduction strictly decreases the
size of terms. We define the measurgdor g-reduction:

lalg =1 letfun f(X) =minnjg=|mlz+|njg+1
Iproj; (@)l = linji(@)lg = 2 llet x<=minnlg=|mig+[njg+1
lapp(a, b)|s = |pair(a,b)|s = 3 val(V)|s = Vg +1

|case a of (X = Ny | X2 = Np)|g = max|nals, In2lg) + 2

and|-|cc for CC-reduction:

lacc=1 lletfun f(X) =min nicc = IMicc+Inlcc+1
Iproji(@)lcc = linji(@)lcc = 2 llet x=min nlcc = [M2 +nicc + 1
lapp(a, b)lcc = Ipair(a, b)lcc = 3 val(V)lcc = Mcc +1

|case a of (Xy = Ny | X2 = Ny)lcc = maxX|nilcc, Inzlcc) +2

The lexicographic orderind-fs,|-lcc) is a measure foR’-reduction. Each shrinking
B-reduction decreasgz, whilst each CC-reduction decreas¢sc and leaves$|z un-
changed. m|

Proposition 7.2. R is strongly-normalising.

The proof use® -reduction to simulat®-reduction. The full details are omitted,
but the idea is that for anR-reduction a corresponding non-empty sequenck of
reductions can be performed. Thus, given thaRalteduction sequences are finite,

7.2. Previous Work 205

all R-reduction sequences must also be finite. The proof is slightly complicated by the
fact that no non-empty sequenceRfreductions corresponds with tBereduction of

a function introduced by the.CC rule. A simple way of dealing with this is to count
a+.CC’-reduction as two reductions.

Note thatR-reductions are not confluent. The failure of confluence is due to the
(+.CC) rule. Replacing£.CC) with (+.CC’) does give a confluent system. Confluence
can make reasoning about reductions easier, but we do not regard failure of confluence
as a problem. In our case, preventing exponential growth in the size of terms is far
more important.

7.2 Previous Work

Appel and Jim[[AJ97] considered a calculus which is essentially a sub-calculus of
our simplified MILH In our setting the reductions that their algorithms perform are
equivalent to:— .81-, x.8-, T.80-, and a restriction of» .8p-reduction. Appel and

Jim show that their calculus is confluent in the presence of these reductions, and other
‘o-rules’ satisfying certain criteria.

The reductions rely on knowing the number of occurrences of a particular variable.
The quadratic algorithms store this information in a taBleunt mapping variable
names to their number of occurrences. Appel and Jinigenalgorithm repeatedly (i)
zeros the usage counts, (ii) performsemsugass over the whole term to update the
usage counts and then (iii) traverses the term performing reductions on the basis of the
information inCount until there are no redexes remaining.

The improved algorithm, used in SYMJ and SML.NET, dynamically updates the
usage counts as reductions are performed. This allows more reductions to be performed
on each pass, and requires a full census to be performed only once. The improved
algorithm is better in practice, but both algorithms have worst-case time complexity
O(n?) wheren is the size of the input term.

Appel and Jim’s restricted version eb .3p-reduction is given by the two dead-
function elimination rules:

Ln fact their calculus is-ary, like the full version of MIL.

206 Chapter 7. Shrinking reductions

let ¢ be ¢ in
—]

val appy s
pair »

/
BIEE

[10]

Figure 7.1: Pictorial representationlef x < app(f,a) in val(pair(x, X))

letfun f(X) =ninm — m, f ¢ fv(m,n)
letfun f(X) =Clapp(f,@)]inm — m, f ¢ fv(C[-],m)

The fact that reductions are triggered only when titt@al number of occurrences of

a variable is 0 or 1 explains the rather strange form of the dead-function elimination
rules. In SML.NET, separate names are used for recursive and non-recursive occur-
rences of functions, so the unrestrictedgp-rule is used.

7.3 A Graph-based Representation

Our imperative algorithm works with a mutable graph representation comprising a
doubly-linked expression tree and a list of pairs of circular doubly-linked lists collect-
ing all the recursive (respectively non-recursive) uses of each variable. Such graphs
can naturally be presented pictorially as shown by the example in Fjg. 7.1.

Figure[7.2 shows thg-reductions for functions in this pictorial form. We find the
pictorial representation intuitively very useful, but awkward to reason with or use in
presenting algorithms. Hence, like Appel and Jim, we will work with a more abstract
structure comprising an expression tree and a collection of maps which capture the
additional graphical structure between nodes of the tree.

The structure of expression trees is determined by the abstract syntax of simplified
MIL. In order to capture mutability we use ML-style references. Each node of the
expression tree is a reference cell. We call the entities which reference cells contain

7.3. A Graph-based Representation 207

letfun p¢ be ¢ in (=.8)

Figure 7.2: Graph reductions

objects Given a reference cel] we write 1 to denote the contents dfandl := u to
denote the assignment of the objaco I.

Atoms a'b:=r|*|c
Values V,lw = a| pair(a,b) | proj;(a) | proj,(a) | inj1(a) | inj>(a)
Computations m,In,!p::=app(a,b)|letfun f(X) =minn
|val(V) | let x<=minn|case aof (X1=n1| X2 = Ny)
e:=v|im di=e|Xx|r

wheref, g, x,y,z range over defining occurrences, andt over uses. For the parent
of the nodee, we write parente). A distinguished sentinel nodegot, marks the top
of the expression tree. The objeletad (omitted from the grammar) is used to indicate
adeadnode. If a node is dead then it has no parent. Mo node is the parent of
the proper expression tree and is always dead. We defitdren(e) of an expression
node to be the set of nodes appearingain !

Initially both parentand children are entirely determined by the expression tree.
However, in our algorithm we take advantage of gaentmap in order to classify

expression nodes as active or inactive. We ensure that the following invariant is main-

tained: for all expression nodeseither

e eis active:paren{(d) = e, for all d € children(e);

208 Chapter 7. Shrinking reductions

e eisinactive: !paren{d)) = dead for all d € children(e); or
e eis dead: &=dead.

We definesplicingas the operation which takes one subtreand substitutes it in
place of another subtree The subtreenis removed from the expression tree and then
reintroduced in place af. The parent map is adjusted accordingly for the children of
m. We definesplicing a copyas the corresponding operation which leaves the original
copy ofmin place. The operatiofq] returns a new node containirgg with parent
root. When embedded in an enclosing nafleq]], the parent ofq] is e. In patterns,

[-1 matches against the contents of a node.
Thedef-usemaps abstract the structures used for representing occurrences:

o def(r) gives the defining occurrence of the use
e nonrec-usegx) is the set of non-recursive uses of the defining occurrence
e rec-uses$x) is the set of recursive uses of the defining occurreqce

In the real implementation occurrences are held in a pair of doubly-linked circular lists,
such that each pair of lists intersects at a defining occurrence. We find it convenient to
overload the maps to be defined over all occurrences and also define some additional
maps:

nonrec-useg¢r) = nonrec-usesgdef(r))
rec-usegr) = recusegdef(r)) def(x) = x
occurrencef) = useg¢r) U {def(r)} usegr) = nonrec-usesr)uUrec-usesgr)

None of these additional definitionffects the implementation.

The graph structure allows constant time movement up and down the expression
tree in the normal way, but also allows constant time non-local movement via the
occurrence lists. For example, consider the dead-function eliminations:

letfun f(x) =min C[letfun g(y) =app(f,y) in n]
— (58 letiun f(X) =minC[n] —) CIn]

7.4. A One-pass Algorithm 209

letfun¢ ¢ be ¢y in

letfun 9 ¢ be ¢ in

Figure 7.3: Triggering non-local reductions

where f,g ¢ fv(C,n), illustrated in Fig[7.3. After one reductiog,is dead, so its
definition can be deleted, removing the usefofBut this use was connected to its
defining occurrence, anflis now dead. The defining occurrence is connected to its
parent, so the new dead-function redex can be reduced.

7.4 A One-pass Algorithm

In contrast to Appel and Jim’s imperative algorithm, the algorithm we have imple-
mented operates in one-pass. Essentially, the one-pass algorithm performs a depth-
first traversal of the expression tree, reducing redexes on the way back up the tree. Of
course, these reductions may trigger further reductions elsewhere in the tree. By care-
fully deactivating parts of the tree, we are able to control the reduction order and limit
the testing required for new redexes. Here is an outline of our one-pass imperative

algorithm:
contrac{e) = reduceCC&)
deactivatée)
applycontractto children ofe
reactivatge)
reducée)

reducde) = if eis aredex then
reduceein place
perform further reductions triggered by reducing

The operatiorreduceCCg) performs commuting conversions on the way down
the tree. The order of commuting conversions can have a signifiti@tt ®@n code

210 Chapter 7. Shrinking reductions

guality, a poor choice leading to many jumps to jumps. We have found that the ap-
proach of doing them on the way down works well in practice (although the contract
algorithm would still be valid without the call teduceCCx

reduceCCg) = case & of
(lety<€inp) =
if reduceCdQe,t, €, p) # 0 thenreduceCCg) else skip
(L) = skip
reduceCe,y, €, p) = casee’ of

(letfun f(X) =minn) =
splice[lety<nin p]in place ofe/
splicefletfun f(x) =min €7 in place ofe
return{e’}

(let X=minn) =
spliceflety<nin p] in place ofe/
splice[let x<min €1 in place ofe
return{e’}

(caseaof (x1=n1 | X2 = Np)) =
splice[let y1 <ny in [app(f,y1)1] in place ofny
spliceflet yo <ny in Tapp(f,y2)11 in place ofn,
splicefletfun f(y) < pin[case aof (xy=n1 | X2 = M)]]
in place ofe
return{ny, np}

(L) = return®

Note that commuting conversions can also be triggered by other reductions. The return
value forreduceCGQwill be used in the definition aleducein order to catch reductions
which are triggered by applying commuting conversions.

deactivat¢e) deactivate®: paren(d) is set todead for everyd € children(e).

reactivatge) reactivate®: paren{d) is set toe for everyd e children(e).

Deactivating nodes on the way down prevents reductions from being triggered
above the current node in the tree. On the way back up the nodes are reactivated, al-
lowing any new redexes to be reduced. Because subterms are known to be normalised,
fewer tests are needed for new redexes. Consider, for example:

lety<=(let x&=minn)in p —71cc let x&eminlety<ninp

7.4. A One-pass Algorithm 211

Because we know thdét x<m in nis in normal form,m cannot be of the form
let(...),letfun(...),case(...) orval(...). Hence, it is not necessary to check whether
let Xx&minlety<nin pis a redex. (Of coursdet y<nin p may still be a redex,
and indeed exposing such redexes is one of the main purposes of performing CC-
reduction.)

Rather than placing them in a redex set, as in Appel and Jim’s imperative algorithm,
reducde) reduces any new redexes created ingqbut none that are created above
e in the expression tree). feducde) is invoked on an expression node which is not
a redex, then no action is performed. Tieelucefunction also returns a boolean to
indicate whether a reduction took place. As we shall see, this is necessary in order to
detect the triggering of new reductions. We now expand the definitiosdofce

reducde) = case & of
(letfun f(X) =minn) =
if nonrec-use¢f) =0 then
splicenin place ofe
reduceOccgleanExgm))
return true
else ifrecuse¢f) = 0 andnonrec-useg¢f) = {f’} then
let focus= paren{paren(f’))
case focusof
(app(f’,a) =
splicen in place ofe
splicemin place offocus
let (occsredexe¥= substAtor(x, a)
reduceOccccsU cleanEx|fa))
reduceRedex@sdexe}
return true
(L) = return false
else return false
(let x<[val(v)]inn) =
if usegx) =0 then
splicen in place ofe
reduceOccleanExgparentV)))
return true
else ifvis an atoma then
splicenin place ofe
let (occsredexe¥ = substAtor(x, a)
reduceOccccsU cleanExgparen(a)))

212 Chapter 7. Shrinking reductions

reduceRedexésdexe}
return true
else caseV of
(pair(a, b)) =
if eis fresh then
let redexes-= reduceProjection@®, x, a, b, use$x))
if redexes= 0 then return false
else
reduceRedexésdexe}
reducde)
return true
else return false
(inji(a)) =
if eis fresh then
let (occsredexe¥=reduceCas€s, x,i,a, usegx))
if redexes= 0 then return false
else
reduceOccccy
reduceRedexé@sdexe}
reducde)
return true
else return false
() = return false
(lety=€inp) =
let redexes-= reduceCQe,y, €, p)
for € € redexesloreducde”)
return true
(L) = return false

The first case coveysreductions on functions, with two sub-cases:

e (— .Bo) If the function is dead, its definition is removed, the continuation spliced
in place ofe, and any uses within the dead body deleted, possibly triggering new
reductions.

e (— .1) If the function has one occurrence, which is non-recursive, it is inlined.
The continuation oéis spliced in place og, the function body is inlined with the
argument substituted for the parameter, and the argument deleted. Substitution
may trigger further reductions.

7.4. A One-pass Algorithm 213

The second case covegsreductions on computations as well as some instances of
B-reduction on products and sums. It is divided into four sub-cases.

e (T.Bo) If a value is dead, then its definition can be removed. The continuation is
spliced in place ot. Then the uses inside the dead function body are deleted,
possibly triggering new reductions.

e (T.B9) If a value is atomic, then it can be inlined. First the continuatioe &f
spliced in place oé. Then the atom is substituted for the bound variable. Finally
the atom is deleted.

e (x.p) Ifapairis bound to a variabbe and this is the first time has been visited,
then any projections of are reduced. If this is the first timehas been visited,
then we say tha is fresh In practice freshness is indicated by setting a global
flag. For dficiency, new projections will subsequently be reduced as and when
they are created.

¢ (+.8) This follows exactly the same patternsag-reduction. The only dierence
Is that the reduction itself is more complex, so can trigger new reductions in
different ways.

The third case deals with commuting conversions.
The algorithm ensures that the current reduction is complete before any new reduc-
tions are triggered. Potential new redexes created by the current reduction are encoded

and executed after the current reduction has completed.
reduceUje) reduces above as far as possible:

reduceUfge) = if reducde) thenreduceUgparenie)) else skip

reduceRedexagduces a set of expression redexes, whaldticeOccseduces a set of
occurrence redexes:

reduceRedexésdexe} = for eache € redexeslo reduceU\fe)
reduceOccs) = for eachr € xsdo

if isSmal(r) thenreduceUgparen{def(r))) else skip
isSmal(r) = r ¢ rec-usegr) andnonrec-useg¢r)| < 1

cleanExyfe) removes all occurrences and subexpressions iresedel returns a set of
occurrence redexes.

214 Chapter 7. Shrinking reductions

cleanExge) = case & of
(dead) = return(
(c)=
e:=dead
return®
(x) =
e:=dead
return(
S
e:=dead
returndeleteUsg)
(letfun f(X) =minn) =
e f,x:=dead
returncleanExgm) U cleanExgn)
(app(a,b)) =
e:=dead
returncleanExia) U cleanExgb)
... (similar for the other MIL constructs)

Remark Marking nodes as dead ensures that unnecessary work is not done on dead
redexes. A crucial dierence between the imperative algorithms and the improved
quadratic one is that reduction in the former immediately detects new redexes, whereas
the improved quadratic algorithm only detects new (non-local) redexes on a subsequent
traversal.

deleteUsé&) removes and returns a set of O or 1 occurrence redexes:

deleteUsé) =
if r is already dead then retuén
let s= nextOc¢r)
usess) ;= usess) —{r}
return{s}

nextOc¢r) =
let x = def(r)
if r is non-recursive then retuse (nonrec-use$x) U {x}) —{r}
else ifr is recursive then returac (rec-use$x) U {x}) — {r}

reduceProjection®, X, ai, a, X9 reduces projections indexed Rg. eis an expression
node of the formetval x < pair(az,az) in m, andxsis a subset of the uses »f

7.4. A One-pass Algorithm 215

reduceProjection®, x,az, ag, X9) =
let redexes=0
for eachse xsdo
let focus= paren{parent(s))
case focusof
(proji(s)) =
splice a copy o#; in place offocus
redexes= redexes {paren{focug}
(L) = skip
returnredexes

All the projections in which a member ofs participates are reduced, and a set of
expression redexes is constructed. Each projection can trigger the creation of a new
T.Ba-redex. For instance, consider:

letval x < pair(a,b) in letval y < proj;(X) in m
—xp letval X< pair(a,b) in letval y<ainm
— T, letval X< pair(a,b) inm

reduceCasdg, x,i,a, X9 reduces case-splits indexed kg eis an expression node of
the formletval X <inj;(a) in m, andxsis a subset of the uses rf

reduceCasds, x,i,a, X9) =
letoccs:= 0
let redexes= 0
for eachse xsdo
let focus= paren{paren(s))
case tocusof
(case sof (xy=n1 | X = np)) =
occs:= occsJ cleanExins-;)
deleteUsés)
splicen; in place offocus
let (occs, redexe§ = substAtor(x;, a)
0CCs:= occsJ occs
redexes= redexes redexesU {paren{focug}
X1, X2 := dead
(L) = skip
return ccsredexe$

The structure ofeduceCasess similar to that ofreduceProjections However, it is
slightly more complex because a singlgs-reduction inlines multiple atoms, splices

216 Chapter 7. Shrinking reductions

one branch of @ase and discards the other. Discarding the branch which is not taken
gives a set of occurrence redexes as well as the expression redexes.

substAtor{x, a) substitutes the atomfor all the uses of the defining occurrencelt
returns a pair of a set of occurrence redexes and a set of expression redexes.

substAtor(x, a) = case (&) of
(r) = substUséx, r)
=
for eachr € useg$x) do
splice a copy o& in place ofr
X :=dead
return (,0)

This is straightforward for non-variable atoms, as it cannot generate new redexes. In
contrast, substituting a variable can trigges- and+.8-reductions.

substUsgx, r) substitutes for all the uses of the defining occurrence

substUséx,r) =

let xs= use$x)

if r e rec-usegr) then
rec-usegr) ;= rec-usegr) U xs

else ifr e nonrec-usegr)
nornrrec-usegr) ;= nonrec-usegr) U xs

X = dead

let e = paren{def(r))

case & of

(letval y =[pair(az,a2)] in m) =
for eachs e xsdo def(s) := def(r)
let redexes= reduceProjection®,y, a;, ap, X9
return (,redexe}

(letval y <Tinji(a)1in m) =
for eachs e xsdo def(s) := def(r)
let (occsredexe¥ = reduceCasds,y,i,a;j, X9
return pccsredexey

(L) = return @,0)

Substitution is implemented by merging two sets together. Concretely, this
amounts to the constant-time operation of inserting one doubly-linked circular list in-
side another. In addition, ¥ is bound to a pair, then projections are reduced, &nsf
bound to an injection, then case-splits are reduced.

7.5. Analysis 217

7.5 Analysis

There are two obvious operations mapping terms from the functional to the imperative
representations, which we catiutify and demutify respectively. We have a semi-
formal argument for the following:

Proposition 7.3. Let e be a term and’e= (demutifye contracto mutify)(e). Then éis
a normal form for e.

The argument uses the invariants§f.3, plus the invariant that the children of
the current node are in normal form. When new redexes are created, this invariant is
modified such that subterms may contain redexes, but only those stored in appropriate
expression redex sets or occurrence redex sets. It is reasonably straightforward to
verify that the operations which update the graph structure do in fact correspond to
MIL reductions. Whercontractterminates, all the redex sets are empty and the term
is in normal form.

7.5.1 Complexity without Commuting Conversions

Although our approach of performing CCs on the way down the tree works well in
practice, the worst case time complexity is still quadratic in the size of the term. We
define a version of our algorithwontracg which does not perform commuting con-
versions. This is obtained simply by removing the calteduceCCdrom contract

and the test for commuting conversions freeduce

Proposition 7.4. contrack(e) is linear in the size of e.

The argument is very similar to that of Appel and Jim [AJ97] for their imperative
algorithm. Most of the operations take constant time and shrink the size of the term; the
exception is substitution. In the case where a non-variable is substituted for a variable
X, the operation is linear in the number of usexoBut it is only possible to subsitute
a non-variable for a variable once, therefore the total time spent substituting atoms is
linear. In the case where a varialyleés substituted for a variablg, the operation is
constant, providing is not bound to a pair or an injection.yis bound to a pair or an

218 Chapter 7. Shrinking reductions

injection, then the operation is linear in the number of uses @éfgain, once bound to
a pair or an injection, a variable cannot be rebound, so the time remains linear.

Crucially, this argument relies on the fact that back pointers from uses back to
defining occurrences are maintained only for pairs and injections. In our SML.NET
implementation we found that maintaining back pointers fedhuses back to defining
occurrences does not incur any significant cost in practice. Even when bootstrapping
the compiler £ 80,000 lines of code) there was no discerniblgedence in compile
time. Maintaining back pointers also allows us to perform various other rewrites in-
cludingn-reductions. In the presence of all backpointers, optimising the union opera-
tion to always add the smaller list to the larger one guarar@®edog n) behaviour.

Using an dicientunion-find[CLR90, GI91] algorithm would restore essentially linear
complexity.

7.5.2 Complexity with Commuting Conversions

Naively reducing commuting conversions can give quadratic behaviour. For instance,
consider the following (innermost first) reductions:

let xx =(let X1 <...letxy=minnpin...my)inn
—* (S(k-1) T.CC-reductions)

let xx = (let Xy =myin...let k.1 <M1 inMy) inn
—* (k—1T.CC-reductions)

letxye=min...let xc&=minn

The total number of reductions is given by the recurrer®@) = 0, S(k) = S(k—
1)+ k-1. This has solutiors(k) = k(k—1)/2. Assuming each of theys andn have
constant size, thekis linear in the size of the term. Hence the number of reductions
Is quadratic in the size of the term. If tlwentractfunction directly performed these
reductions, then it would also be quadratic.

Another problem is that.CC-reductions can introduce ‘useless functions’:

7.5. Analysis 219

let z& (lety<(case aof (X1 =n1 | X2 =) inm)inp

*

—* letfun f(y)&=m
in letzecasea of x3=lety;<nginapp(f,y1)
| Xe=lety, <nyinapp(f,y)
inp
—* letfun f(y)=m
in letfung(2) = p
incasea of xy=lety;<nyinletz <app(f,y1)inapp(g,z1)
| Xxe=lety, =mnpinlet z <app(f,y2) in app(g, 22)

The functiong is useless in the sense that it is always applied to the result of
applying f to an argument. One might hope tlgabe composed witlti. If we change
the reduction order, such that the commuting conversions are performed outermost
first, then itis:

let z& (lety<(case aof (xy=n1 | X = ng))inm)inp
—* lety<(caseaof (xy=n1| X2 = m))inletz&minn
—* letfun f(y) =letz&min p
incasea of x;=lety;<nyinapp(f,y1)
| x2=lety, <nyinapp(f,y2)

Fortunately, given the limited ways in which commuting conversions can trigger
other reductions, the full imperative algorithm can get away with performing commut-
ing conversions outermost first, with an initial callreluceCCg&) before recursively
contractinge’s children. The operatioreduceCCg) repeatedly checksto see if it
is a CC-redex. If itis, then it performs the commuting conversion, and iterates. If not,
then it returns.

The previous example of quadratic behaviour due to commuting conversions be-
comes linear with this reduction strategy. However, quadratic behaviour can still arise
through inlining functions that trigger further commuting conversions:

letfun fk(x) < let yk =app(g, X«) in app(g, Yk)
fie1(Xk-1) < let yk—1 <= app(fk, Xk-1) in app(, Yk-1)

f1(x1) < lety, <app(f2, x1) in app(g,y1)
in app(fy,a)

220 Chapter 7. Shrinking reductions

contracttakes quadratic time to reduce this term. In order to get a linear number
of reductions, one would have to inline all the functions first, before performing any
commuting conversions.

It is unfortunate that CCs and inlining conspire to produce quadratic complexity.
Sabry and Wadler’s study of CPS translatioers an interesting insight [SW97].
In their variant of Moggi’'s computational lambda calculis., terms are in CC-
normal form by definition, an@-reduction of an application is combined with CC-
normalisation of its enclosing let-expression: adopting this more refined notion of re-
dex may allow us to achieve linear complexity.

7.5.3 Shrinking reductions as normalisation by evaluation

We can view our imperative algorithm as an instance of normalisation by evaluation.
If, as in Propositior) 7]3, we state the problem as performing normalisation on the
functional representation, then we obtain the normalisation funotomn

norm= demutifyo contracto mutify

It turns out thatcontractand mutify can be quite naturally composed. Then we can
define:

[- 1 = contracto mutify
| = demutify

to give the usual characterisation of normalisation by evaluation. The object language
is the functional representation and the residualising semantics is given by the nor-
malised imperative representation. This is not entirely satisfactory as an instance of
normalisation by evaluation, as the semantics does not seem very natural — it is rather
close to being a term model. However, it seems unlikely that there is a more natural

denotational semantics for shrinking reductions. The process of normalisation in such
a system is inherently rather syntactic in nature.

7.6. Performance 221

Table 7.1: Total compile time

(seconds) SML/NJ MLton
simplify mcd| simplify mcd
sort 2.11 3.47 0.46 0.52
Xq 13.13 14.36 2.46 1.76
mllex 11.64 15.97 2.39 2.03
raytrace 18.14 23.95 4.30 3.03
mlyacc 57.25 43.77, 10.05 6.04
hamlet 218.71 155.82 43.70 26.22
bootstrap || 1311.01 1189.60 289.24 221.18

7.6 Performance

We have extended our one-pass imperative algoritbntractto the whole of MIL

and compared its performance with the current implementatisimgilify. Replacing
simplify with contractis not entirely straightforward, as all the other phases in the
pipeline are written to work on a straightforward immutable tree datatype for terms,
which is incompatible with the representation usedamtract We therefore make

use ofmutify anddemutifyto change representation before and aftantract Since
bothmutifyanddemutifycompletely rebuild the term, they are very expensive — calling
mutify anddemutifygenerally takes longer tharontractitself. Ideally, of course, all

the phases would use the same representation. However, using two representations
allowed us to compare the running timessohplifyandcontracton real programs.

We use the benchmark programs of Chapiter 6. Table 7.1 compares the total compile
times of the benchmark programs for the existing compiler, usiimglify, and for the
modified one, usinglemutifyo contracto mutify. Each benchmark was run under two
different versions of SML.NET. One was compiled under $NlLand the other under
MLton. Benchmarks were run on a 1.4Ghz AMD Athlon PC equipped with 512MB of
RAM and Microsoft Windows XP SP1.

On small benchmarks, the current compiler is faster. But for medium and large
benchmarks, we were surprised to discover tehutifyo contracto mutifyis faster
thansimplify, even though much of the time is spent in useless representation changes.

Table[7.2 and Table 7.3 give the total time spent performing shrinking-reductions

222 Chapter 7. Shrinking reductions

Table 7.2: Shrinking reduction time under SNiLJ

(seconds) Total Breakdown oimcd
simplify mcd| contract mutify demutify
sort 1.00 2.00 0.70 0.87 0.43
Xxq 5.86 5.98 3.61 1.90 0.47
mllex 6.09 7.49 3.16 3.31 1.02
raytrace 9.32 11.76 5.44 5.16 1.17
mlyacc 33.16 19.96 8.60 9.42 1.94
hamlet 84.49 56.36 2153 26.24 8.59
bootstrap | 439.16 282.38 100.11 129.60 52.6Y

Table 7.3: Shrinking reduction time under MLton

(seconds) Total Breakdown oimcd
simplify mcd| contract mutify demutify
sort 0.22 0.11 0.07 0.02 0.02
Xxq 1.46 0.54 0.13 0.35 0.06
mllex 1.21 0.57 0.23 0.27 0.07
raytrace 2.13 0.65 0.19 0.37 0.09
mlyacc 5.63 1.26 0.37 0.68 0.21
hamlet 23.27 5.54 277 1.85 0.92
bootstrap | 107.17 36.60 18.41 11.82 6.38

2.00

1.80 1
1.60

1.40 o M B tcontract / tsimplify (SMLINJ)
1.20 4 M O med / simplify (SML/NJ)
O contract / simplify (SML/NJ)

1.00

- M rcon / tsimplify (MLton)
0.80 W mcd / simplify (MLton)

0.60 O contract / simplify (MLton)
0.40

0.20 14

0.00 +-+ T T T

sort xq mllex raytrace mlyacc hamlet bootstrap

Figure 7.4: Comparingontractwith simplify

7.7. Summary 223

in the current compilersimplify), in the modified compilerncd), and a breakdown
of medinto the total time spent imutify, contractanddemutify Figure[7.4 gives a
graphical comparisoricontractis the total compile time using the modified compiler,
andtsimplify is the total compile time using the existing compiler. Under $N1,
a decrease of nearly 30% in the total compile time is seen in some cases. Under
MLton, there is a decrease of up to 40% in total compile time. This is a significant
improvement, given that in the existing compiler only around 50% of compile time
is spent performing shrinking reductions. Comparing the actual shrinking reduction
time, contractis up to four times faster thasimplify under SMI/NJ, and up to 15
times faster under MLton. The level of improvement under MLton is striking. Our
results suggest that MLton is considerably better than SMlat compiling ML code
which makes heavy use of references.

As an exercise, one of the other transformatidesnit which removes redundant
units was translated to use the new representation.cdh&actfunction is called be-
fore and aftedeunit so this enabled us to eliminate one callieamutifyand one call to
mutify. This translation was easy to do and did not change the performarieeioit
We believe that it should be reasonably straightforward, if somewhat tedious, to trans-
late the rest of the transformations to work directly with the mutable representation.

7.7 Summary

We have implemented and extended Appel and Jim’s imperative algorithm for shrink-
ing reductions and shown that it can yield significant reductions in compile times rel-
ative to the algorithm currently used in SKNJ and SML.NET. The improvements

are such that, for large programs, it is even worth completely changing representations
before and after theimplify phase, but this is clearly suboptimal. The results of this
experiment indicate that it would be worth thfcet of rewriting some of the other
phases of the compiler to use the graph-based representation.

Chapter 8

Conclusion

8.1 Summary

We have successfully applied normalisation by evaluation for normalising non-trivial
terms in a non-trivial language MIL. The benchmarks confirm that normalisation by
evaluation is faster than hee normalisation algorithms, and is competitive with care-
fully optimised algorithms.

We have implemented a spectrum of normalisation algorithms for MIL ranging
from a simple recursion over the structure of terms to normalisation by evaluation.
These are related by straightforward program transformations. New features can be
added to one algorithm and propagated to others by taking advantage of program trans-
formations.

The computational metalanguage is at the core of MIL. We have described a gen-
eral technique based on Girard-Tait reducibility for proving strong normalisation for
the computational metalanguage and related calculi. Introducing frame stacks gives
a uniform and #ective way to handle normalisation with commuting conversions, as
from computation types, sum types, and similar.

We have explored the space of normalisation by evaluation algorithms for a range
of A-calculus variants. In doing so we have exposed normalisation by evaluation as a
practical implementation tool for normalisation and, in particular, compiler optimisa-
tion. We suggest that even if an implementation does not directly use normalisation

225

226 Chapter 8. Conclusion

by evaluation, it can be a useful tool in the design and analysis of normalisation algo-
rithms. Normalisation by evaluation provides a direct connection between normalis-
ation and denotational semantics.

Following a ditferent path, we have implemented a much improved shrinking re-
ductions algorithm in SML.NET. This significantly reduces compilation time, and
takes advantage of a graph-based representation for terms. As far as we are aware
this is the first implementation of a graph-based shrinking reductions algorithm in a
production compiler.

8.2 Conclusions

Our main conclusions are as follows:

Normalisation by evaluation is competitive with optimised rewriting-based
normalisation algorithms, and is a practical tool for performing normalisation.

e Even though the worst case time-complexity3edecidability, and hence norm-
alisation, is given by a non-elementary function, unrestrigteelduction is sur-
prisingly tractable on medium sized examples suchaad et.

e Normalisation by evaluation is not necessarily ideal for use in a compiler, be-
cause it is best suited to performing unrestrigga@duction, whereas compilers
usually restricB-reduction to some degree.

¢ Despite some doubts expressed in the literature, either a single state cell, or a
non-deterministic accumulation monad can be used to implement normalisation
by evaluation for sums, without the need for continuations or first-class control
operators.

e The graph-based shrinking reductions algorithm is both feasible and desirable
for implementation in a full compiler. Itféers a significant speed-up and a more
direct representation than census-based algorithms.

8.3. General observations 227

8.3 General observations
We now make some more general observations:

e Derivation by program transformation is a useful technique. Recent work by
Danvy and his students has promoted the idea of relating operational and deno-
tational worlds by way of a series of elementary program transformations such
as defunctionalisation and CPS transformations. Our use of program transforma-
tions, in order to derive the spectrum of normalisation algorithms in Chipter 6,
follows a similar pattern. We suspect that this approach migier ¢he most
perspicuous explanation of normalisation by evaluation to those unfamiliar with
the area.

e Delimited continuations are useful. It seems that many of our normalisation
by evaluation programs are most naturally expressed using the shift and reset
control operators — particularly when sums are involved. We have shown that
it is also possible to use state instead, though then the code becomes harder to
understand and harder to analyse. The number of existing applications which
use delimited continuations is somewhat limited, but they seem to fit well with
normalisation by evaluation (and TDPE). Balat et/al. [BCF04] even make use of
a generalisation of shift and reset in the context of TDPE for sums.

e Typically the MLton compiler produces significantly faster code than SWIL
There is likely to be a number of factors involved. The most obviotiedi
ence between the compilers is that MLton is a whole-program compiler, whilst
SML/NJ is a separate compiler. We believe that thi¥ediénce is an important
factor. It is interesting to note that tle®ntractalgorithm performs particularly
well when compiled under MLton — often an order of magnitude faster than
when compiled under SMINJ. This suggests that MLton is better than ML
at optimising code which uses ML references.

e Sometimes imperative techniques are preferable to declarative approaches. For
instance, the use of mutable graph-based data structures allowed us to obtain
a significant speed-up in the SML.NET compiler. We believe that graph-based

228 Chapter 8. Conclusion

data structures can also be used to open up new optimisation opportunities in
SML.NET.

8.4 Future work

The three main strands of this thesisr-lifting, normalisation by evaluation and
shrinking reductions; fber many avenues for future research. Here we outline a few.

8.4.1 Strong normalisation, confluence and sums

Pitts [Pit00] used frame stacks and-closure for reasoning about termination in a
polymorphic language. It would be interesting to investigate the feasibility of extend-
ing our strong normalisation proofs to include System F style polymorphism.

As has been illustrated throughout this thesis, the addition of sumscadculi
makes their analysis considerably more involved. Altenkirch et al. [ADHSO01] and
Balat et al. [BCF04] have defined equational normal formsAfok. However, the
usual presentation of simply-typedcalculus with sums, as a reduction calculus, is
not confluent. We conjecture that by defining appropriate reduction rules in addition to
the usual ones, it is possible to obtain a strongly normalising and confluent reduction
calculus which agrees with the equational calculus. It would be interesting to try to
adapt frame stack reducibility to this setting in order to prove strong normalisation.
Confluence would then follow from correctness of normalisation by evaluation.

In the equational setting it is possible to define alternative normal forms which are
slightly smaller than those of Altenkirch et al. and Balat et al. First, it would seem
desirable sometimes to apply the; rule as a reduction. For instance, one might hope
that the normal form olam(x%*?, x) be itself rather than:

0+0

lam(x"", case X of (X1 = inj1(X1) | X2 = injy(X2)))

It seems feasible to adapt normalisation by evaluation to do this, but it requires further
work. Second, the scope of case splits can sometimes be pushed further into a term.
The normal forms described so far lift case splits up as far as possible. For example:

lam(x, case X of (x¢ = lam(y,my) | X2 = lam(y,mp)))

8.4. Future work 229

can be rewritten as:
lam(x,lam(y, case X of (x; = m | Xo = My)))

The reason why the case split is lifted up as far as possible is to ensure that case splits
on the same guard are unified into a single case split. However, this case split can often
be pushed back down whilst still remaining unified, as in the example above.

The algorithms of Altenkirch et al. [ADHS01] and Balat et al. [BCF04] are not
directly applicable totMIL, although they can be adapted. We have a prototype im-
plementation in SML.NET. In fact the algorithm faMIL (or Ay is rather simpler
than the one fon*. Roughly, this is because of the fact that functions always return
computations. Thus, if a function returns a sum, it must be a sum computation, which
must be bound to a variable before being used. Unfortunately, ilve approach re-
names each such application, even it has no dfiets. This immediately removes
one of the main benefits of the normalisation by evaluation algorithma*fathat is,
in removing redundancy. It would be interesting to try to recover the elimination of
redundancy. One, rather radical, approach would be to extbfil to allow pure
functions.

8.4.2 Reuvisiting Normalisation by evaluation

Normalisation by evaluation by program transformation We have seen that
normalisation by evaluation algorithms can be obtained by a series of program trans-
formations. We believe that this approadfess a particularly intuitive insight into the
nature of normalisation by evaluation. We claim that it is possible to use program trans-
formations to derive each of our normalisation by evaluation algorithms. Formalising
this process would give an alternative method for proving correctness of normalisation
by evaluation.

Normalisation by evaluation from normal forms There is a striking correspon-

dence between the structure of normal forms and the structure of normalisation by
evaluation algorithms. If one already knows the structure of normal forms then this
makes the task of finding a suitable normalisation by evaluation algorithm considerably

230 Chapter 8. Conclusion

easier. If we restrict ourselves to a compositional semantics, expressed as a parame-
terised semantics, and take advantage of the convertibility relation, then this constrains
the possible semantics. We suspect that in general it should be possible to generate a
suitable model and normalisation by evaluation algorithm from normal forms in this
way.

The semantics can be seen as an encoding of normal forms. For instance, in the
standard normalisation by evaluation algorithm for simply-typezhlculus with long
normal forms, neutral terms are simply encoded as themselves, and lambda abstrac-
tions are encoded as functions between semantic objects.

Formal proofs The main focus of this thesis has been practical applications of norm-
alisation by evaluation, but it should be possible to prove formally that our normalis-
ation by evaluation algorithms are correct. Perhaps the most important omissions are
a formal treatment of fresh names and correctness proofs for the ML implementations.
Fresh names can be handled using either FM-set theory [GP01], term families [BES98]
or a name generation monad [Fil01b]. As far as correctness of the ML implementations
goes, the first problem is that although the methogfb7.2 shows that a normalisation

by evaluation algorithm is correct, it does not show that following a call-by-value eval-
uation strategy will lead to termination. The second problem is that if one wants to
be completely formal then it is necessary to show that the semantics of ML actually
corresponds with that of the metalanguage. Filinski and Dybjer [DF02] and Filinski
and Rohde [FR04] do this using realisability interpretations.

Partial normalisation by evaluation Although a few of our calculi are partial, in

the sense that not all terms have normal forms, we have mainly focused on total calculi
— which makes sense for a compiler. It would be interesting to apply the techniques
of Filinski and Rohde [FR04] in order formally to analyse normalisation by evaluation
with recursive types and the alternative untyped normalisation by evaluation algorithm.

8.4. Future work 231

8.4.3 Extending normalisation by evaluation further

Type isomorphisms Type isomorphisms give rise to a number of useful optimisa-
tions in functional compilers. For instance, SML.NET has an arity-raising transforma-
tion which takes advantage of the isomorphism:

Al > A>Bx(A1—>---—>A)—>B

If a functionf:A; — --- — A, — Boccurs only fully applied, then it can be transformed
into a functionf’:(A; — --- — A,) — B. Correspondingly an applicatidia; ...a, can
be transformed intd’(ay, ..., an).

Another example is the deunit transformation, which takes advantage of type iso-
morphisms involving the unit type, such as:

Ax1=A

Curien and Di Cosma [CD91] show how a second order typedlculus with prod-
ucts and unit can be made confluent in the presengecohtraction on products and
functions, and thé.p-expansion rule:

by adding a family of reductions derived from unit type isomorphisms.

It should be possible to implement a normalisation by evaluation algorithm for
such a system. Essentially isomorphic types would become identified in the semantics.
In this context thel.p-expansion rule should be viewed as one of the family of type
isomorphism rules, rather than as sexpansion. The semantics of the absorbing
value termunknown appears to be strikingly similar to that efn this setting.

Incorporating the unit type isomorphisms in the normalisation by evaluation algo-
rithm for MIL would allow us to merge the deunit transformation into the simplify
transformation. As well as cutting out a stage of compilation this would also have the
advantage of ensuring that terms were normal with respect to unit isomorphism rules
after eachsimplify stage.

232 Chapter 8. Conclusion

Normalisation by evaluation for algebraic structures The free monoid is a simple
structure. Correspondingly it gives rise to a simple normalisation by evaluation algo-
rithm. In collaboration with Danvy, we have implemented similar normalisation by
evaluation algorithms for a variety of more complex algebraic structures, such as: a
hierarchy of free monoids each distributing over those lower in the hierarchy, groups,
rings and boolean algebras.

Perhaps the most complex algebraic structures we have looked at arose from the
equational theory given by Tarksi's High School Maths problem [BY01]. The equa-
tional theory is interesting because it agrees with the theory of type isomorphisms in
a categorical model of simply-typeticalculus with sums [FCB02]. What makes the
problem more interesting is that the equational theory is not complete either for the
standard model of arithmetic or the categorical model. Furthermore, it has been shown
that there is no finite axiomatisation of either model. However, equality of terms in
both models is decidable. We have implemented a normalisation by evaluation al-
gorithm which performs normalisation by evaluation with respect to the equational
theory. It would be interesting to try to define a notion of semantic normal form, and a
corresponding normalisation by evaluation algorithm for each of the models.

Effects One of the primary strengths of MIL is itgfect-typing system. This makes

it easy to express a variety offect-based optimisations. One example, which appears
quite straightforward to incorporate in normalisation by evaluation, is the uséect e
information to simplify exception handlers. We believe it should be possible to incor-
porate other #ect-based optimisations as well. An obvious one which would be likely
to be useful is dead-code elimination fdfext-free computations:

let x&eminn=n

wherem has no side{gects andk ¢ fv(n).

Common value elimination Unrestricted3-reduction tends to produce very large
normal forms. This is nicely illustrated by the order of magnitude increase in the
size of the term output by theamlet benchmark, against the size of the input term.
One solution is to perform restrictggdreductions such as shrinking reductions. But

8.4. Future work 233

this changes the residualising semantics, and does not seem to fit so well with the
normalisation by evaluation framework.

Balat and Danvy/[[BD02] describe how to perform some common value elimina-
tion, using memoisation, in an ML implementation of TDPE. This covers conversions
such as:

letval X< vin Clletval y<vin m] = letval X< vin C[m[y:=X]]

However, their approach does not produce canonical normal forms with respect to
the semantics, and does not detect the same value appearing in separate branches of
a term. Essentially the problem is the same as the one of extensional normalisation
for simply-typeda-calculus with sums [ADHS01, BCFO4]. We believe that a similar
solution can be adopted. In particular, it should be possible to make use of/thgpset

control operators in order to implement a normalisation by evaluation algorithm which
performs common value elimination.

8.4.4 Shrinking reductions

Graph-based representations Making more extensive use of the graph-based repre-
sentation would allow many transformations to be written infiedent style, for exam-

ple replacing explicit environments with extra information on binding nodes, though
this does not interact well with the hash-consing currently used for types [SLM98].

More speculatively, we would like to investigate more principled mutable graph-
based intermediate representations. There has been much theoretical work on graph-
based representations of proofs and programs, yet these do not seem to have been
exploited in compilers for higher-order languages (though of course, compilers for im-
perative languages have used a mutable flow-graph representations for decades). With
a careful choice of representation, some of our transformations (such as the commut-
ing conversion foret) could simply be isomorphisms, and we believe that a better
treatment of shared continuations in the other commuting conversions would also be
possible.

234 Chapter 8. Conclusion

Types It should be possible to use a graphical representation for types, and def-use
structures for type variables. However, we have not done this with MIL as SML.NET
uses a special hash-consed representation for types [SLM98]. This allows for a great
deal of sharing, which is necessary because types can get very big. Unfortunately this
sharing is incompatible with the in-place updates one would like to do on the graphical
representation. The tension between sharing and mutability seems to be a critical issue
in the choice of intermediate representations. An alternative approach which might
work is to add let bindings at the level of types as in the TILT compiler [PCHSO0O].
This allows one to make sharing explicit.

Keeping the immutable representation It has been suggested [Gon04] that it may

in fact be possible to implement the linear algorithm using an immutable term repre-
sentation with def-use information on the side. This would be particularly useful for

incorporating into existing compilers which use an immutable representation. It is not
clear how feasible this would be, or how well it would scale, but it would be interesting

to investigate.

Eliminating the immutable representation Using the graphical representation all
the way through would allow us to get rid of the expensive callmatifyanddemutify

This should give a large improvement in compilation time — potentially speeding up
contraction by a factor of two to three. The experience of translaleugitsuggests
that the speed of other transformations should not be adverS§ebted by using the
graphical representation.

Bibliography

[AAQQ] Andreas Abel and Thorsten Altenkirch. A predicative strong normalis-
ation proof for at-calculus with interleaving inductive types. Types
for Proof and Programs, International Workshop, TYPES '99, Selected
Papers volume 1956 ot_ecture Notes in Computer Scien@®00.

[Aba00] Marin Abadi. TT-closed relations and admissibilityMathematical
Structures in Computer Sciendd(3):313-320, June 2000.

[ABDMO3] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract machines.
In Proceedings of the 5th ACM SIGPLAN international conference on
Principles and practice of declaritive programmingages 8-19. ACM
Press, 2003.

[ADHSO01] Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip Scott.
Normalization by evaluation for typed lambda calculus with coproducts.
In 16th Annual IEEE Symposium on Logic in Computer Sciepages
303-310, Boston, Massachusetts, June 2001.

[AHS95] Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher. Categori-
cal reconstruction of a reduction free normalization proof. In David Pitt,
David E. Rydeheard, and Peter Johnstone, edi@agegory Theory and
Computer Sciengevolume 953 ofLecture Notes in Computer Science
pages 182-199, 1995.

235

236

[AHS96]

[AHS97]

[AJO7]

[AJO4]

[App92]

[AUO04]

[Bar84]

[Bar92]

[BBAP98]

[BCFO4]

Bibliography

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher.
Reduction-free normalisation for a polymorphic systeml1lth Annual
IEEE Symposium on Logic in Computer Sciernpzges 98-106, 1996.

Thorsten Altenkirch, Martin Hofmann, and Thomas Streicher.
Reduction-free normalisation for systerk. Available from
http://www.cs.nott.ac.uk/ " txa/publ/£f97.pdf, 1997.

Andrew W. Appel and Trevor Jim. Shrinking lambda expressions in lin-
ear time.Journal of Functional Programming (5):515-540, 1997.

Klaus Aehlig and Felix Joachimski. Operational aspects of untyped nor-
malization by evaluationMathematical Structures in Computer Science
14(4):587-611, August 2004.

Andrew W. Appel Compiling with ContinuationsCambridge University
Press, 1992.

Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation
for 772, In Functional and Logic Programmingolume 2998 of ecture
Notes in Computer Scienggages 260-275, 2004.

H. P. Barendregihe Lambda Calculus: Its Syntax and Semantian-
ber 103 in Studies in Logics and the Foundations of Mathmatics. North
Holland, 1984.

H. P. Barendregt. Lambda calculi with types.Handbook of Logic in
Computer Sciengevolume I, pages 118-309. OUP, January 1992.

P. N. Benton, Gavin Bierman, and Valeria de Paiva. Computational
types from a logical perspectivelournal of Functional Programming
8(2):177-193, 1998.

Vincent Balat, Roberto Di Cosmo, and Marcelo Fiore. Extensional norm-
alisation and type-directed partial evaluation for typed lambda calculus
with sums. In31st Symposium on Principles of Programming Languages
(POPL 2004) pages 64—-76. ACM Press, January 2004.

Bibliography 237

[BDY5]

[BDO2]

[Ben04]

[Ber93]

[BES98]

[BES03]

[BHMO2]

[BHRO1]

llya Beylin and Peter Dybjer. Extracting a proof of coherence for
monoidal categories from a proof of normalization for monoidsPio-
ceedings of TYPES'9%50lume 1158 ol ecture Notes in Computer Sci-
ence pages 47-61, 1995.

Vincent Balat and Olivier Danvy. Memoization in type-directed par-
tial evaluation. InGenerative Programming and Component Engineer-
ing, volume 2487 ofLecture Notes in Computer Sciengages 78-92.
Springer-Verlag, Pittsburgh, USA, January 2002.

Nick Benton. Embedded interpreters. To appear, 2004.

Ulrich Berger. Program extraction from normalization proofs. In
M. Bezem and J. F. Groote, edito8roceedings of TLCA '93. Inter-
national Conference on Typed Lambda Calculi and Applicaticms-
ume 664 ofLecture Notes in Computer Scienpages 91-106. Springer-
Verlag, Utrecht, The Netherlands, March 1993.

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Normaliza-
tion by evaluation. IfProspects for Hardware Foundations (NADA®DI-
ume 1546 ol ecture Notes in Computer Scienpages 117-137, 1998.

Ulrich Berger, Matthias Eberl, and Helmut Schwichtenberg. Term rewrit-
ing for normalization by evaluation. Imternational Workshop on Im-
plicit Computational Complexity (ICC'99)\olume 183(1) ofinforma-

tion and Computationpages 19-42. Academic Press, May 2003.

P Nicholas Benton, John Hughes, and Eugenio Moggi. Monads and ef-
fects. InApplied Semantics; Advanced Lectyreslume 2395 ot ecture
Notes in Computer Sciengeages 42—-122. Springer-Verlag, 2002.

Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. Design and cor-
rectness of program transformations based on control-flow analysis. In
Proceedings of the 4th International Symposium on Theoretical Aspects
of Computer Softwargages 420-447. Springer-Verlag, 2001.

238

[BHT97]

[BK99]

[BKOO]

[BKO1]

[BKLRO5]

[BKR]

[BKROS]

[BKRO4]

Bibliography

Gilles Barthe, John Hatdli and Peter Thiemann. Monadic type systems:
Pure type systems for impure settingsH@OTS Il: Proc. 2nd Workshop
on Higher-Order Operational Techniques in SemantiESITCS 10. El-
sevier, 1997.

Nick Benton and Andrew Kennedy. Interlanguage working without tears:
blending sml with java. IrfProceedings of the fourth ACM SIGPLAN
international conference on Functional programmingages 126-137.
ACM Press, 1999.

Nick Benton and Andrew Kennedy. Monad#exts and transformations.
In Andrew Gordon and Andrew Pitts, editoEslectronic Notes in Theo-
retical Computer Scieng@olume 26. Elsevier, 2000.

P Nicholas Benton and Andrew J Kennedy. Exceptional syntaxrnal
of Functional Programmingl1(4):395-410, July 2001.

Nick Benton, Andrew Kennedy, Sam Lindley, and Claudio Russo.
Shrinking reductions in SML.NET. IRroceedings of IFL '0O4Lecture
Notes in Computer Science, 2005. A preliminary version appeared in
[ifl04].

Nick Benton, Andrew Kennedy, and Claudio Russo. The SML.NET 1.1
user guide. http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
smlnet.pdf|

Nick Benton, Andrew Kennedy, and George Russell. Compiling Stan-
dard ML to Java bytecodes. Proceedings of the third ACM SIGPLAN
international conference on functional programmjngages 129-140.
ACM Press, 1998.

Nick Benton, Andrew Kennedy, and Claudio V. Russo. Adventures in
interoperability: The SML.NET experience. &th International Con-
ference on Principles and Practice of Declarative Programming (PPDP
2004) ACM Press, 2004.

http://www.cl.cam.ac.uk/Research/TSG/SMLNET/smlnet.pdf
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/smlnet.pdf

Bibliography 239

[BLLOS]

[BS91]

[BYO1]

[CD91]

[CD97]

[CDS98]

[CFW86]

[Chu41]

[CIWO0]

F. Bergeron, G. Labelle, and P. Lerouombinatorial Species and Tree-
like Structures Cambridge University Press, 1998.

Ulrich Berger and Helmut Schwichtenberg. An inverse of the evaluation
functional for typedi—calculus. In R. Vemuri, editoRroceedings of
the Sixth Annual IEEE Symposium on Logic in Computer Scjgagges
203-211, Los Alamitos, 1991. IEEE Computer Society Press.

Stanley Burris and Karen Yeats. The saga of the high-school identities.
Preprint, July 2001.

Pierre-Louis Curien and Roberto Di Cosmo. A confluent reduction for
the A-calculus with surjective pairing and terminal object. Rroceed-
ings of the 18th international colloquium on Automata, languages and
programming pages 291-302. Springer-Verlag New York, Inc., 1991.

Thierry Coquand and Peter Dybjer. Intuitionistic model constructions
and normalization proofdviathematical Structures in Computer Science
7(1):75-94, 1997.

Djordje Cubric, Peter Dybjer, and Philip Scott. Normalization and the
Yoneda embedding. Mathematical Structures in Computer Science
8(2):153-192, 1998.

W Clinger, D P Friedman, and M Wand. A scheme for a higher-level
semantic algebra. pages 237-250, 1986.

Alonzo Church.The Calculi of Lambda ConversiofPrinceton Univer-
sity Press, Princeton, 1941.

Henry Cejtin, Suresh Jagannathan, and Stephen Weeks. Flow-directed
closure conversion for typed languages Phoceedings of the 9th Euro-
pean Symposium on Programming Languages and Sy,gtagess 56—71.
Springer-Verlag, 2000.

240

[CLR9O]

[Coq90]

[cS04]

[Dan92]

[Dan96]

[Dan98]

[dB70]

[dB72]

[DD98]

Bibliography

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
troduction to Algorithmschapter 22, pages 440-464. The MIT Press,
1990.

Thierry Coquand. Metamathematical investigations of a calculus of con-
structions. InLogic and Computer Sciencpages 91-122. Academic
Press, 1990.

Chung chieh Shan. Shift to control. In Olin Shivers and Oscar Wad-
dell, editorsProceedings of the ACM SIGPLAN 2004 Scheme Workshop
pages 99-107, September 2004.

Olivier Danvy. Back to direct style. 18ymposium proceedings on 4th
European symposium on programmipgges 130-150. Springer-Verlag,
1992.

O. Danvy. Type-directed partial evaluation. ROPL'96: The 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guagespages 242-257, St. Petersburg, Florida, January 1996.

Olivier Danvy. Type-directed partial evaluation. Technical Report LS-
98-3, BRICS, December 1998.

N. de Bruijn. The mathematical language AUTOMATH, its usage, and
some of its extensions. Bymposium on Automatic Demonstratioam-

ber 125 in Lecture Notes in Mathematics, pages 29-61. Springer-Verlag,
1970.

N. G. de Bruijn. Lambda calculus notation with nameless dummies, a
tool for automatic formula manipulation, with application to the Church-
Rosser theorenindagationes Math.34:381-392, 1972.

Olivier Danvy and Peter Dybjer, editors.Proceedings of the 1998
APPSEM Workshop on Normalization by Evaluation, NBE '98 Proceed-
ings, (Gothenburg, Sweden, May 8-9, 1998), number NS-98-8 in Notes

Bibliography 241

[DF90]

[DF92]

[DF02]

[dG02]

[DHMO1]

[DNO1]

[DRRO1]

[FCBO2]

Series, Department of Computer Science, University of Aarhus, Decem-
ber 1998. BRICS.

Olivier Danvy and Andrzej Filinski. Abstracting control. Rroceedings
of the 1990 ACM conference on LISP and functional programnuages
151-160. ACM Press, 1990.

Olivier Danvy and Andrzej Filinski. Representing control: A study of
the CPS transformatiorMathematical Structures in Computer Science
2(4):361-391, 1992.

Peter Dybjer and Andrzej Filinski. Normalization and partial evaluation.
In Applied Semantics: Advanced Lectyresiume 2395 of_ecture Notes
in Computer Sciencépringer-Verlag, 2002.

Philippe de Groote. On the strong normalisation of intuitionistic natural
deduction with permutation-conversionsf. & Comp, 178(2):441-464,
2002.

Bruce Duba, Robert Harper, and David MacQueen. Typing first-class
continuations in ML. InProceedings of the 18th ACM SIGPLAN-
SIGACT symposium on Principles of programming languagesges
163-173. ACM Press, 1991.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Harald Sgndergaard, editétroceedings of the Third International Con-
ference on Principles and Practice of Declarative Programmip@ges
162-174, Firenze, Italy, September 2001. ACM Press. Extended version
available as the technical report BRICS RS-01-23.

Olivier Danvy, Morten Rhiger, and Kridfier H. Rose. Functional pearl:
Normalization by evaluation with typed abstract syntdournal of Func-
tional Programming11(6):673—680, November 2001.

Marcelo P. Fiore, Roberto Di Cosmo, and Vincent Balat. Remarks on
Isomorphisms in typed lambda calculi with empty and sum types. In

242

[Felgs]

[Fil94]

[Fil96]

[Fil9o9a]

[Fil9gb]

[Filola]

[Filo1b]

[Fil02]

Bibliography

Proceedings of the 17th IEEE Symposium22-25 July 2002 on Logic in
Computer Scienggage 147. IEEE Computer Society, 2002.

M. Felleisen. The theory and practice of first-class promptsPrin
ceedings of the 15th ACM SIGPLAN-SIGACT symposium on Principles
of programming languagepages 180-190. ACM Press, 1988.

Andrzej Filinski. Representing monads. CGonference Record of the
21st ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL’94, Portland, OR, USA, 17-21 Jan. 1p84ges 446—
457. ACM Press, New York, 1994.

Andrzej Filinski. Controlling Effects PhD thesis, Carnegie Mellon Uni-
versity, Pittsburgh, Pennsylvania, May 1996.

Andrzej Filinski. Representing layered monadsCbnference Record of
POPL 99: The 26th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, San Antonio, Texzsyes 175-188, New
York, NY, 1999.

Andrzej Filinski. A semantic account of type-directed partial evaluation.
In Principles and Practice of Declarative Programmingages 378—-395,
1999.

Andrzej Filinski. An extensional CPS transform (preliminary report).
Technical Report 545, Computer Science Department, Indiana Univer-
sity, 2001.

Andrzej Filinski. Normalization by evaluation for the computational
lambda-calculus. IMyped Lambda Calculi and Applications : 5th In-
ternational Conference, TLCA 200%olume 2044 ofLecture Notes in
Computer Sciengepages 151-165. Springer-Verlag, Krakow, Poland,
May 2001.

Andrzej Filinski. Personal communication, May 2002.

Bibliography 243

[Fio02]

[FROA4]

[FTO4]

[FWFD88]

[Gal9o]

[Ghags]

[G191]

[Gir72]

[Gir87]

Marcelo Fiore. Semantic analysis of normalisation by evaluation for
typed lambda calculus. I4th International Conference on Principles
and Practice of Declarative Programming (PPDP 2002CM Press,
2002.

Andrzej Filinski and Henning Korsholm Rohde. A denotational account
of untyped normalization by evaluation. In Igor Walukiewicz, editor,

Foundations of Software Science and Computation Structures, 7th Inter
national Conferencevolume 2987 ofLecture Notes in Computer Sci-
ence pages 167-181. Springer-Verlag, March 2004.

Carsten Bhrmann and Hayo Thielecke. On the call-by-value CPS trans-
form and its semanticdnformation and Computatiqri88(2):241-283,
2004.

Matthias Felleisen, Mitch Wand, Daniel Friedman, and Bruce Duba. Ab-
stract continuations: a mathematical semantics for handling full jumps.
In Proceedings of the 1988 ACM conference on LISP and functional pro-
gramming pages 52—-62. ACM Press, 1988.

Jean Gallier. On girard’s “candidats de reducti&ilit pages 123—-203.
Academic Press, 1990.

N Ghani. Adjoint Rewriting PhD thesis, University of Edinburgh,
November 1995.

Zvi Galil and Giuseppe F. Italiano. Data structures and algorithms for dis-
joint set union problemsACM Computing Surveys (CSURB(3):319—
344, 1991.

Jean-Yves Girard. Interprétation fonctionnelle et élimination de
coupures dans l'arithméticque d’ordre supérieurThese de doctorat
d’etat, U. Paris VII, 1972.

Jean-Yves Girard. Linear logid.heoretical Computer Science0(1):1—
102, 1987.

244

[GLT89]

[Gon04]

[GPO1]

[GRO4]

[GRR95]

[GRR98]

[GS02]

[GY99]

[Han94]

[HD94]

Bibliography

Jean-Yves Girard, Yves Lafont, and Paul TayRnoofs and TypesCam-
bridge University Press, 1989.

George Gonthier, January 2004. Personal communication.

M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with
variable binding.Formal Aspects of Computing3:341-363, 2001.

Emden R. Gansner and John H. Reppy, editdhe Standard ML Basis
Library. Cambridge University Press, 2004. Online version available at:
http://www.standardml.org/Basis/.

Carl A. Gunter, Didier Bmy, and Jon G. Riecke. A generalization of
exceptions and control in ML. IRroceedings of the ACM Conference
on Functional Programming and Computer Architectulane 1995.

Carl A. Gunter, Didier Bmy, and Jon G. Riecke. Return types for func-
tional continuations. A preliminary version appeared as [GRR95], 1998.

Martin Gasbichler and Michael Sperber. Final shift for/calldirect im-
plementation of shift and reset. IBFP '02: Proceedings of the seventh
ACM SIGPLAN international conference on Functional programming
pages 271-282. ACM Press, 2002.

Bernd Grobauer and Zhe Yang. The second futamura projection for type-
directed partial evaluation. IRroceedings of the 2000 ACM SIGPLAN
workshop on Partial evaluation and semantics-based program manipu-
lation, pages 22—-32. ACM Press, 1999.

Chris Hankin. Lambda calculi - A guide for computer scientjst®I-
ume 3 ofGraduate texts in computer scienc®xford University Press,
1994.

John Hatclif and Olivier Danvy. A generic account of continuation-
passing styles. I&€onference Record POPL '9f¢ages 458-471. ACM
Press, 1994.

http://www.standardml.org/Basis/

Bibliography 245

[HD97]

[Hof99]

[How80]

[Hue76]

[Hue97]

[Hug86]

[ifl04]

[JG89]

[JG95]

[JGS93]

John Hatclif and Olivier Danvy. Thunks and the lambda-calculisur-
nal of Functional Programing7(3):303-319, 1997.

Martin Hofmann. Nbe with a logical relation. Unpublished, October
1999.

W.A. Howard. The formulae-as-types notion of construction. In J.R.
Seldin and R.J. Hindley, editor$p H.B. Curry: essays on combinatory
logic, lambda calculus and formalismages 479-490. Academic Press,
London, New York, 1980.

Gerard Huet. Reésolution d’équations dans les langages d’ordre
1,2,...,w. These détat, Universig Paris 7, Paris, France, 1976.

Gerard Huet. Functional Pearl: The Zippéwurnal of Functional Pro-
gramming 7(5):549-554, September 1997.

R J M Hughes. A novel representation of lists and its application to
the function "reverse”.Information Processing Letter22(3):141-144,
1986.

16th international workshop on implementationa and application of func-
tional languages, (IFL'04). Technical Report 0408, Institute of Computer
Science and Applied Mathematics, University of Kiel, September 2004.

P. Jouvelot and D. K. Gord. Reasoning about continuations with con-
trol effects. InProceedings of the ACM SIGPLAN 1989 Conference
on Programming language design and implementatmages 218-226.
ACM Press, 1989.

C.B. Jay and N Ghani. The virtues of eta-expansitmurnal of Func-
tional Programming5(2):135-154, 1995.

Neil D. Jones, Carsten K. Gomard, and Peter Sefaftial evaluation
and automatic program generatioRrentice-Hall, Inc., 1993.

246

[IM97]

[Joy81]

[Joy87]

[KamO04a]

[KamO04b]

[KCE98]

[KHO3]

[Lan64]

[LD94]

Bibliography

Simon Peyton Jones and Erik Meijer. Henk: a typed intermediate lan-
guage. IPACM SIGPLAN Workshop on Types in Compilafid@97.

A. Joyal. Une tlorie combinatoire desses formelles. Advances in
Mathematics42:1-82, 1981.

A. Joyal. Foncteurs analytiques et@sgs de structures. @ombinatoire
énumerativevolume 1234 ot.ecture Notes in Mathematicgages 126—
159. Springer-Verlag, 1987.

Yukiyoshi Kameyama. Axiomatizing higher level delimited continua-
tion. In Proceedings of the Fourth ACM-SIGPLAN Continuation Work-
shop (CW’04) pages 49-53, January 2004.

Yukiyoshi Kameyama. Axioms for delimited continuations in the CPS
hierarchy. InProceedings of the Annual Conference of the European As-
sociation for Computer Science Logic (CSL'0dages 442—-457, Septem-
ber 2004.

Richard Kelsey, William Clinger, and Jonathan Rees (Editors). Revised
report on the algorithmic language Schem&CM SIGPLAN Notices
33(9):26—76, 1998.

Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete
axiomatization of delimited continuations. Rroceedings of the eighth
ACM SIGPLAN international conference on Functional programming
pages 177-188. ACM Press, 2003.

P.J. Landin. The Mechanical Evaluation of Expressi@wmnputer Jour-
nal, 6(4):308-320, 1964.

Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Proceedings of the 1994 ACM conference on LISP and functional pro-
gramming pages 227-238. ACM Press, 1994.

Bibliography 247

[Lil99]

[LSO05]

[McBO1]

[ML75]

[mij]

[mit]

[Mog89]

[Mog91]

[Mog99]

[Mor95]

[MTHMO7]

Mark Lillibridge. Unchecked exceptions can be strictly more power-
ful than callcc. Higher-Order& Symbolic Computatiqrii2(1):75-104,
1999.

Sam Lindley and lan Stark. Reducibility amd -lifting for computation
types. InProceedings of TLCA 'Q3_ecture Notes in Computer Science,
April 2005.

Connor McBride. The derivative of a regular type is its type of one-hole
contexts. Unpublished manuscript, 2001.

P. Martin-Lof. An intuitionisitc theory of types, predicative part.llngic
Colloquium 1973pages 73-118, 1975.

MLj compiler:
http://www.dcs.ed.ac.uk/home/mlj/.

MLton SML benchmarks:
http://www.mlton.org/performance.html.

Eugenio Moggi. Computational lambda-calculus and monad$2rdn
ceedings of the Fourth Annual Symposium on Logic in computer sgience
pages 14-23. IEEE Press, 1989.

Eugenio Moggi. Notions of computation and monabigormation and
Computation93(1):55-92, July 1991.

Torben A. Mogensen. d@elisation in the untyped lambda calculus. In
Olivier Danvy, editor,Proceedings of PEPMSan Antonio, Texas, Jan-
uary 1999.

G. Morrisett. Compiling with TypesPhD thesis, Carnegie Mellon Uni-
versity, 1995.

R. Milner, M. Tofte, R. Harper, and D. MacQueenhe Definition of
Standard ML: Revised 1997The MIT Press, 1997.

http://www.dcs.ed.ac.uk/home/mlj/
http://www.mlton.org/performance.html

248

Bibliography

[MWCG99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From Sys-

[Nec00]

[NN92]

[NNH99]

[Par97]

[PCHS00]

[PESS]

[Pit00]

[PJO3]

[Plo75]

tem F to typed assembly languag®&CM Transactions on Programming
Languages and Systems (TOPLAX)3):527-568, 1999.

George C. Necula. Proof-carrying code (abstract): design, implementa-
tion and applications. IiProceedings of the 2nd ACM SIGPLAN inter-
national conference on Principles and practice of declarative program-
ming, pages 175-177. ACM Press, 2000.

Flemming Nielson and Hanne Riis Nielsomwo-level functional lan-
guages Cambridge University Press, 1992.

Flemming Nielson, Hanne Riis Nielson, and Chris Hanlninciples of
Program Analysis Springer-Verlag New York, Inc., 1999.

Michel Parigot. Proofs of strong normalisation for second order classi-
cal natural deductionThe Journal of Symbolic Logié2(4):1461-1479,
December 1997.

Leaf Petersen, Perry Cheng, Robert Harper, and Chris Stone. Imple-
menting the TILT internal language. Technical Report CMU-CS-00-180,
School of Computer Science, Carnegie Mellon University, December
2000.

F. Pfenning and C. Elliot. Higher-order abstract syntafrateedings of
the ACM SIGPLAN 1988 conference on Programming Language design
and Implementatiarpages 199-208. ACM Press, 1988.

Andrew M. Pitts. Parametric polymorphism and operational equivalence.
Mathematical Structures in Computer Scient@:321-359, 2000.

Simon Peyton Jones, editddaskell 98 Language and Libraries: The
Revised ReportCUP, April 2003.

G. D. Plotkin. Call-by-name, call-by-value and the lambda-calcilus-
oretical Computer Scien¢é(2):125-159, December 1975.

Bibliography 249

[Pra71]

[PWO3]

[Rey74]

[Rey98]

[Ros]

[SAQ5]

[SF93]

[Sha97a]

[Sha97b]

Dag Prawitz. Ideas and results in proof theoryroceedings of the 2nd
Scandinavian Logic Symposiunmumber 63 in Studies in Logics and the
Foundations of Mathmatics, pages 235-307. North Holland, 1971.

Simon L. Peyton Jones and Philip Wadler. Imperative functional pro-
gramming. InProceedings of the 20th ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languagpages 71-84. ACM Press,
1993.

John C. Reynolds. Towards a theory of type structuré&rdgramming
Symposium, Proceedings Colloque sur la Programmatpages 408—
423. Springer-Verlag, 1974.

John C. Reynolds. Definitional interpreters for higher-order program-
ming languagesHigher-Order and Symbolic Computatiohl(4):363—
397, 1998.

Kristoffer Hagsbro Rose. Type-directed partial evaluation in Haskell.
Presented at [DD98].

Zhong Shao and Andrew W. Appel. A type-based compiler for Standard
ML. In Proceedings of the ACM SIGPLAN 1995 conference on Program-
ming language design and implementatipages 116-129. ACM Press,
1995.

Amr Sabry and Matthias Felleisen. Reasoning about programs
in continuation-passing style. LISP and Symbolic Computatipn
6(3/4):287-358, 1993.

Zhong Shao. An overview of the FLINML compiler. In ACM SIG-
PLAN Workshop on Types in Compilation (TIC’'9Amsterdam, The
Netherlands, June 1997.

Zhong Shao. Typed common intermediate forméat9g8y USENIX Con-
ference on Domain-Specific Languageages 89-102, Santa Barbara,
CA, Oct 1997.

250

[She97]

[SKO1]

[SLM98]

[smla]

[smib]

[SPGO3]

[SW97]

[Tai67]

[TBE*01]

Bibliography

Tim Sheard. A type-directed, on-line, partial evaluator for a polymor-
phic language. IfProceedings of the 1997 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulapages
22-35. ACM Press, 1997.

Eijiro Sumii and Naoki Kobayashi. A hybrid approach to online and of-
fline partial evaluationHigher-Order and Symbolic Computatioi4(2-
3):101-142, 2001.

Zhong Shao, Christopher League, and Stefan Monnier. Implementing
typed intermediate languages.Rroceedings of the third ACM SIGPLAN
international conference on Functional programmimages 313-323.
ACM Press, 1998.

SML.NET compiler:
http://www.cl.cam.ac.uk/Research/TSG/SMLNET/.

Standard ML of New Jersey (SVINJ) compiler:
http://cm.bell-1abs.com/cm/cs/what/smlnj/.

M. R. Shinwell, A. M. Pitts, and M. J. Gabbay. FreshML: Program-
ming with binders made simple. Eighth ACM SIGPLAN International
Conference on Functional Programming (ICFP 2003), Uppsala, Sweden
pages 263-274. ACM Press, August 2003.

Amr Sabry and Philip Wadler. A reflection on call-by-val&&€M Trans-
actions on Programming Languages and Systems (TORU1ARS):916—
941, November 1997.

W. W. Tait. Intensional interpretations of functionals of finite type I.
Journal of Symbolic Logi32(2):198-212, June 1967.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Hgijfeld Olesen, and Peter Sestoft. Programming with regions
in the ML Kit (for version 4). Technical report, IT University of Copen-
hagen, October 2001.

http://www.cl.cam.ac.uk/Research/TSG/SMLNET/
http://cm.bell-labs.com/cm/cs/what/smlnj/

Bibliography 251

[Thiog]

[Thi03]

[TMC*96]

[Tol98]

[TT97]

[Ves]

[VesO1]

[VMO4a]

[VMO4b]

Hayo Thielecke. An introduction to Landin’s “a generalization of jumps
and labels”. Higher Order and Symbolic Computatiohl(2):117-123,
1998.

Hayo Thielecke. From controlfiects to typed continuation passing. In
30th SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL'03)pages 139-149. ACM, 2003.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL:
A type-directed optimizing compiler for ML. I®roc. ACM SIGPLAN

'96 Conference on Programming Language Design and Implementation
pages 181-192, 1996.

Andrew P. Tolmach. Optimizing ML using a hierarchy of monadic types.
In Proceedings of the Second International Workshop on Types in Com-
pilation, volume 1473 ot ecture Notes in Computer Scienpages 97—
115. Springer-Verlag, 1998.

Mads Tofte and Jean-Pierre Talpin. Region-based memory management.
Information and Computatiqri997.

Rere Vestergaard. The polymorphic type theory of normalisation by eval-
uation. (Preliminary version).

Re® Vestergaard. The simple type theory of normalisation by evaluation.
Electronic Notes in Theoretical Computer Scien6&, 2001. Prelim-
inary proceedings are available as technical report number 2001.2359,
Departamento de Sistemas Infdticos y Computaéin, Universidad
Politecnica de Valencia.

Jerdome Vouillon and Paul-Andr Mellies. Recursive polymorphic types
and parametricity in an operational framework. Submitted for publica-
tion, 2004.

Jerdbme Vouillon and Paul-Andr Mellies. Semantic types: a fresh look
at the ideal model for types. [B1lst Symposium on Principles of Pro-

252 Bibliography

gramming Languages (POPL 2004ages 52—63. ACM Press, January
2004.

[Vor97] Sergei Vorobyov. The “hardest” natural decidable theoryprirceedings
of the 12th Symposium on Logic in Computer Science (LICS [@de
294. IEEE Computer Society, 1997.

[Vor04] Sergei Vorobyov. The most nonelementary thebriormation and Com-
putation 190(2):196-219, 2004.

[Vou04] Jrome Vouillon. Subtyping union types. IRroceedings of CSL 'Q4
number 3210 in Lecture Notes in Computer Science, pages 415-429.
Springer-Verlag, 2004.

[Wad90] Philip Wadler. Comprehending monadsPhoceedings of the 1990 ACM
conference on LISP and functional programmimpgges 61-78. ACM
Press, 1990.

[Wad94] Philip Wadler. Monads and composable continuatidrisp and Sym-
bolic Computation7(1):39-56, 1994.

[Wad99] Philip Wadler. The marriage oftects and monads. FProceedings of the
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’98), volume 34(1), pages 63—74, 1999.

[Win93] Glynn Winskel. The formal semantics of programming languages: an
introduction MIT Press, 1993.

[WTO3] Philip Wadler and Peter Thiemann. The marriageftéats and monads.
ACM Transactions on Computational Logic (TOCH)1):1-32, 2003.
An earlier version appeared as [Wad99].

[Yan99] Zhe Yang. Encoding types in ML-like languageSCM SIGPLAN No-
tices 34(1):289-300, 1999.

