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Abstract 

The growing demand for physically motivated continuum theories of plasticity has led to an 

increased effort on dislocation based field descriptions. Only recently rigorous techniques 

have been developed by T. Hochrainer for performing meaningful averages over systems of 

moving, curved dislocations, which can be described by a higher order dislocation density 

tensor. Within this thesis we rewrite this continuum theory of dislocations using exclusively 

standard vector and tensor calculus. This formulation is much more accessible (although 

still defined in a higher order configuration space) than the original formulation which uses 

differential forms and higher order currents. This formulation then serves as the starting 

point for the numerical exploration of the continuum theory where we cover simple bench-

mark problems, which allow for verification with analytical solutions. This already demon-

strates that within this theory it is possible to predict dislocation kinematics, which cannot 

be predicted by classical methods based e.g. on the 'Kroner-Nye tensor'. After this veri-

fication we then apply our numerical implementation to a complex example: bending of a 

thin film in a double slip configuration, which yields most interesting results concerning the 

general concept of 'geometrically necessary' and 'statistically stored' dislocations. Another 

most important outcome is that nearly all important kinematic properties of single dislo-

cation lines are still contained and numerically accessible within this averaged continuum 

description. 

While we were pursuing the numerical exploration of the theory within this thesis, T. Hoch-

rainer further developed his continuum theory towards a formulation which under certain 

simplifying assumptions does not require the higher order configuration space. This is ex-

tremely beneficial from point of view of computational cost and stability. A significant part 

of this thesis is concerned with verifying this simplified variant with the original formula-

tion. The result is that in many physically relevant cases both theories yield very similar if 

not identical results. 

In the third part of the thesis we tackle the problem of dislocation dynamics within the 

continuum description. We propose a suitable method for computing stresses based on 

the fact that a dislocation causes eigenstrain in an elastic continuum and demonstrate its 

versatility and applicability with examples. 
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Chapter 1 

Introduction 

The history of processing metals can be traced back until earlier than 5000 BC. Ever since 

these days man has deepened his understanding how to process metals (by e.g. forging) in 

order to obtain tools or weapons of ever increasing quality. However, the physical mecha-

nisms underlying the empirical procedures could not be understood until the advent of the 

first 'materials scientists' in the 19th century: among them Willard Gibbs, who demon-

strated that mechanical properties of metals are closely related to the thermodynamical 

properties of their atomic structure. This direction was followed in the early 20th cen-

tury by Rutherford, who performed his famous backscattering experiment on a thin gold 

foil and thereby gave birth to a method which is still used for crystallographic imaging. 

Up to then it was assumed that plastic deformation necessarily implies an amorphous struc-

ture, or at least the amorphisation of a material. Comparison of diffraction images of un-

deformed and plastically deformed metals however revealed that plastic deformation leaves 

the crystal lattice structure unchanged. As a consequence one had to discard the idea of 

'plastic amorphisation'. Instead, the observation that the diffraction image is the same be-

fore and after plastic deformation gave rise to the idea that plastic deformation occurs by 

shifting lattice planes by discrete lattice vectors only: crystals deform by crystallographic 

slip. Attempts to explain the discrepancy between the theoretically predicted shear strength 

of a metal and the experimentally observed yield stresses lead to the concept of the 'dis-

location' - a line-like defect inside a perfect crystal - which was proposed in the 1930s 

independently by Orowan (1934), Polanyi (1934) and Taylor (1934). 

Quite simultaneously with Gibbs' discovery of the relationship between thermodynamics 

and mechanical properties of materials and also during the early 19th century, Navier de-

veloped the general theory of elasticity, which was further elaborated by Stokes, Cauchy 

and Poisson. Their theories were formulated in terms of an elastic continuum, which, if 

subjected to applied forces, responds with a continuous stress-strain state. In the very same 

spirit, Tresca, de St. Venant et al., and later in the early 20th century also von Mises (1913) 

extended the elastic continuum by introducing phenomenological relations to account for 
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Introduction 

the observed plastic behavior of metals and described phenomena such as yielding and work 

hardening. 

The two different approaches for predicting plastic deformation of crystalline materials - the 

discrete approach of condensed matter physics and the continuous approach of phenomeno-

logical plasticity theories - developed side-by-side until the 1950s when Kondo (1952), Nye 

(1953), Bilby et al. (1955) and Kröner (1958) independently formulated the classical con-

tinuum theory of dislocations. The fundamental quality of their theory is a second-rank 

dislocation density tensor (in the following denoted as Kroner-Nye tensor). This tensor 

was supposed to serve as a measure for the average plastic deformation state of a crystal 

and thus to link the microscopically discontinuous to a macroscopically continuous defor-

mation state. But already the authors were well aware that the Kroner-Nye tensor only 

captures some aspects of plastic deformation processes (inhomogeneous deformation states 

associated with so-called geometrically necessary dislocations) and does not account for 

others (the accumulation of so-called statistically stored dislocations in homogeneous plas-

ticity). This renders the classical dislocation density measure problematic as a foundation 

for a continuum theory of plasticity; it is however the first attempt to bridge the gap between 

the atomistic discontinuity and the macroscopic continuity of plastic deformation. 

Nonetheless, dislocation-based plasticity theories have been formulated which are explic-

itly or implicitly based upon the classical dislocation density measure. Such theories, as 

for instance formulated by Acharya and co-workers (Acharya, 2001, 2003; Varadhan et al., 

2006) and by Sedláek and co-workers (Sedláek et al., 2003; Sedláèek & Werner, 2004), 

apply to particular situations where all dislocations are 'geometrically necessary'. In more 

general situations, using the classical dislocation density tensor as the basis of a plasticity 

theory leads to non-closed formulations which need to be 'patched up' by phenomenologi-

cal assumptions. These issues are discussed in detail in Section 3.3. 

Phenomenological continuum plasticity theories, on the other hand, have been very suc-

cessful in a wide range of engineering applications. They operate on length scales where 

the properties of materials and systems are scale invariant. It is for example possible to 

measure the mechanical behaviour of a millimeter-sized specimen in order to predict the 

behaviour of a steel bridge with a length of hundred meters. This scale-invariance however 

breaks down at very small dimensions, say e.g. a few microns, which is a scale of growing 

importance due to the increasing miniaturization of medical and electronic devices. The in-

fluence of characteristic length scales of the material micro-structure becomes pronounced 

ru 
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in small systems, giving rise to so-called 'size effects' (e.g., Ashby, 1970; Arzt, 1998), as 

observed in various experiments such as the micro bending of thin beams (Stolken & Evans, 

1998) and thin wires (Fleck et al., 1994). Phenomenological continuum theories incor-

porate internal length scales by introducing strain gradient terms - sometimes based on 

the consideration of 'geometrically necessary' dislocation densities - into their constitutive 

equations (e.g., Fleck et al., 1994; Nix & Gao, 1998; Gurtin, 2002; Gao & Huang, 2003). 

Models which combine the evolution of scalar densities of so-called statistically stored with 

the consideration of geometrically necessary dislocations (e.g., Gao et al., 1999; Ma et al., 

2006, and references therein) are also essentially phenomenological. Such models can be 

regarded as heuristic approaches towards formulating constitutive equations which allude 

to the physical mechanisms of dislocation microstructure evolution. However, the consti-

tutive equations are not related to the evolution of a discrete dislocation system through 

systematic and mathematically meaningful averaging procedures, and the models therefore 

remain on the level of phenomenological expedients. For criticism of such theories, see e.g. 

Kubin & Mortensen (2003) and Zaiser & Aifantis (2003). 

This gives rise to the question if (and how) a continuum theory of dislocations mediated 

plasticity can be based on physically sound assumptions and observations. Recent re-

search in this field produced promising initial results, especially from the late 1990s on, 

when Groma and co-workers developed a statistical approach towards deriving not only the 

kinematic evolution of dislocation systems, but also their internal interactions and stress 

driven dynamics, from systematic averages over ensembles of discrete dislocation systems 

(Groma, 1997; Zaiser et al., 2001; Groma et al., 2003; KratochvIl & Sed1áek, 2008). This 

approach draws heavily on averaging techniques used in the statistical mechanics of in-

teracting particle systems. It is therefore restricted to simplified systems of straight edge 

dislocations, which can be imagined as two-dimensional systems of point particles in the 

intersecting plane. In an average representation, these systems can be described in terms 

of densities of charged particles ('positive' and 'negative' dislocations distinguished by 

the two possible orientations of the line direction with respect to the Burgers vector). It 

is, however, not obvious how to generalise these methods to three-dimensional systems of 

connected dislocation lines, since the line-like nature of the dislocations and the continuous 

distribution of dislocation line directions need to be accounted for. 

Already Kosevich (1979) proposed a description of three-dimensional dislocation systems 

in terms of higher-dimensional density measures by defining dislocation densities in a space 
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which includes as independent variables parameters that characterise the line orientation. 

In the context of dislocation dynamics, a similar approach was used in El-Azab's pioneering 

work (El-Azab, 2000), which extended the methods of statistical mechanics to systems of 

curved dislocation lines by using densities that evolve in a higher dimensional state space. 

However, while taking into account the orientation of line segments, both Kosevich and 

El-Azab did not directly account for the local connectivity of the segments. 

Only recently, the mathematical foundations required for transferring the methods of sta-

tistical mechanics consistently to three-dimensional systems of curved dislocations have 

been formulated by Hochrainer's 'Continuum Dislocation Dynamics Theory' (CDD) (see 

e.g. Hochrainer et al., 2007). This theory relies on a geometrical description of dislocation 

lines and their averages, i.e. line densities, which uses the methods and formalisms of dif-

ferential geometry. The theory is a direct generalisation of Kröner's classical continuum 

theory, which is contained as a special case. Within this theory the common distinction 

between 'geometrical necessary' and 'statistically stored' dislocation becomes dispensable. 

Within the present thesis we reformulate this theory using exclusively standard vector cal-

culus and explore it numerically in order to validate it and estimate the applicability towards 

physically meaningful problems. 

The structure of the thesis is the following: 

. In the first part of this thesis, Chapter 2 is dedicated to an overview over and introduc-

tion into general dislocation theory and crystal plasticity, where we briefly introduce 

fundamental definitions and physical relations which are used throughout this the-

sis. Since Kröner's classical continuum theory (CCT) is the predecessor of CDD 

we introduce his theory to the reader in Chapter 3 in some detail. In particular, we 

rewrite CCT in a form which is suitable for comparison with CDD and subsequently 

elucidate the limitations of CCT. 

The second part of this thesis treats Hochrainer's Continuum Dislocation Dynamics 

theory. In Chapter 4 we rewrite the formulation of CDD using exclusively standard 

vector and tensor calculus - contrary to the original formulation which was strongly 

based on the mathematical tools of differential forms and higher order currents. This 

formulation is much more accessible (although still defined in a higher order config- 

uration space) than the original formulation. This serves as the starting point for the 
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numerical exploration of the continuum theory (Chapter 5) where we cover simple 

benchmark problems, which allow for verification with analytical solutions. These 

examples already demonstrate that within this theory it is possible to predict dislo-

cation kinematics, which cannot be predicted by classical methods based e.g. on the 

'Kroner-Nye tensor'. After this verification we then apply our numerical implemen-

tation in Chapter 6 to a complex example: bending of a thin film in a double slip 

configuration, which yields most interesting results concerning the general concept 

of 'geometrically necessary' and 'statistically stored' dislocations. Another most im-

portant outcome is that nearly all important kinematic properties of single dislocation 

lines are still contained and numerically accessible within this averaged continuum 

description. 

While we were pursuing the numerical exploration of the theory within this thesis, 

Thomas Hochrainer further developed his continuum theory towards a formulation 

which under certain simplifying assumptions - does not require the higher order con-

figuration space. This is extremely beneficial from point of view of computational 

cost and stability. The third part of this thesis is concerned with verifying this sim-

plified variant against the original formulation of CDD. Therefore, in Chapter 7 we 

derive sCDD in terms of quantities that can be compared with those used in CDD. 

We show by an analytical comparison with Radan Sedláek's continuum theory of 

dislocations that a special case of Hochrainer's simplified theory is equivalent to 

Sedláëek's formulation. In Chapter 8 we compare CDD and sCDD using numeri-

cal test cases. The result is that in many physically relevant cases both theories yield 

very similar if not identical results. 

In the fourth part of the thesis we tackle the problem of dislocation dynamics within 

the continuum description. Therefore, we elucidate the problem of dynamical closure 

in a continuum context in Chapter 9. In Chapter 10 we propose a suitable method 

for computing stresses based on the fact that a dislocation causes eigenstrain in an 

elastic continuum and demonstrate its versatility and applicability with examples. In 

particular the 'coarse-graining' of discrete dislocations required to obtain dislocation 

densities is investigated with this method in Chapter 11. 

7 



Chapter 2 
Dislocations and plasticity 

This chapter gives an overview over observations and basic physical properties of dislo-

cations. This is not a complete introduction; such can be found in various text books as 

e.g. Cottrell (1961); Hull & Bacon (2002); Hirth & Lothe (1982); Weertmann & Weertman 

(1982). 

2.1 	The concept of the dislocation 

Many physical and mechanical properties of crystalline materials are strongly influenced 

by defects in the crystal lattice. In general, defects can be of dimension 0 (point defects), 

1 (line defects), 2 (planar defects) and 3 (volume defects). In many cases one of the most 

important class of defects is the dislocation. 

Dislocations in an elastic continuum Even before materials scientists began to ponder 

about dislocations in crystals Volterra (1907) and Love (1927) explored the properties of 

line singularities in a continuous elastic body. To create a line singularity in an elastic 

continuum they used the following construction: Introduce a cut along an arbitrary bounded 

surface into the body, displace the cut planes with respect to each other by a constant vector 

and finally 'glue' them back together. Volterra called this construction a 'dislocation' (cf. 

Fig. 2. 1), where the boundary of the cut becomes (after displacement of the cut surfaces) a 

dislocation line. For the resulting internal stress state he could derive an analytical solution, 

which also holds for the stress field of the line-like defect inside a crystal outside a 'core' 

with size of a few lattice constants around the singular line. The cut line contained within 

the crystal defines the dislocation unit line vector I and the surface displacement defines the 

Burgers vector b which will be discussed later in more detail. 

Dislocations inside a crystal When the dislocation inside a crystal was discovered (or 

rather postulated - it had not been observed until then) this was done to close the gap be- 
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Figure 2.1: Creation of a screw dislocation by a 'Volterra cut' and subsequent displace-
ment of the cut faces 

tween the experimentally observed yield stresses of real crystals and the theoretically pre-

dicted stresses that would be required to slide two planes of atoms over each other in an 

ideal lattice: the latter was firstly calculated by Frenkel in 1926 and turned out to be several 

orders of magnitude higher than the experimentally observed yield stress. Orowan (1934), 

Polanyi (1934) and Taylor (1934) independently explained this discrepancy by the concept 

of the dislocation, in particular the edge dislocation, which is one of two fundamental dis-

location types. It was not before the early 1950s, though, that dislocations were observed 

experimentally. 

Dislocation types There are two fundamental types of dislocations both of which involve 

a characteristic distortion of the originally perfect crystal in particular regions. The 'center' 

of those regions is called the 'dislocation core' and defines the dislocation line. In all other 

places, the perfect crystal structure is preserved. Depending on the deformation state w.r.t. 

to the dislocation line one gets either a screw dislocation - atoms are shifted parallel to the 

line direction - or an edge dislocation - the direction of displacement is perpendicular to 

the line (Fig. 2.2). An additional visualisation of the relative displacement of atoms above 

and below the plane within which the dislocation is contained is shown in Fig. 2.3(a) and 

Fig. 2.3(b). 

For all angles in between parallel and perpendicular to the line direction the dislocation has 

mixed screw and edge character, which is the case when dislocations form closed loops. 

Then there are sequences of pure edge - mixed edge/screw - pure screw dislocations etc 

with smooth transitions in between. Fig. 2.3(c) gives a visualization. 

lEl] 
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Mixed 

gA 

A-s--A 

Edge 
	

Screw 

Figure 2.2: Dislocation line direction for screw and edge dislocation. The dislocation line 
is given by the line A-A (Weertmann & Weertman, 1982) 
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An edge dislocation entered the crystal at the left side and is now 
located at the center. This leaves the upper half of the crystal 'dislo-
cated' w.r.t. to the lower half. 

A screw dislocation entered the crystal and is located in the center 
of the crystal (line A-B). 

A segment of a dislocation loop consisting of mixed edge and screw 
components: C: edge, A: screw, B: mixed. 

Figure 2.3: Dislocation types. The pictures on the left visualise the crystal lattice whereas 
the pictures on the left show the atoms in the plane within which the dislocation 
is contained. 

12 
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2.2 Burgers circuit, Burgers vector and plastic slip 

Burgers circuit/Burgers vector To fully characterise a dislocation it is necessary to in-

troduce the Burgers circuit. The Burgers circuit is a closed path around a dislocation. If the 

same path (i.e. with the same number of inter-atomic steps) is done in a perfect crystal it 

would not become a closed circuit. The Burgers vector b closes the gap and points from the 

end point of the circuit to its beginning. S...... II..... U..-.. U...... 
(a) Burgers circuit around an 	(b) The same Burgers circuit (i.e. with (c) Definition of line 
edge dislocation, 	 the same number of inter atomic steps) tangent vector I fol- 

as in Fig.2.4(a) but in a perfect crystal. lows the convention of 
The vector required to close the circuit Burgers Circuit direc- 
is the Burgers vector b. 	 tion ('left hand rule') 

Figure 2.4: Definition of the Burgers vector and the line direction 

Obviously, the direction of the Burgers vector depends on the direction of the Burgers cir-

cuit. This can be chosen arbitrarily and is a matter of convention'. We will define the 

circuit direction w.r.t. the dislocation line tangent: the positive Burgers circuit direction is 

clockwise if the line tangent vector would come out of the paper plane (left hand rule), Fig. 

2.4(c). 

The above definitions fully define the Burgers vector in direction and magnitude. In partic-

ular for the direction it follows that the Burgers vector of an edge dislocation is necessarily 

perpendicular to the dislocation line direction (b. I = 0), the Burgers vector of a screw 

dislocation is parallel to the dislocation line direction (b . I = ±b, where the sign depends 

on the direction of the screw). In fact, these properties can be used to define screw and edge 

dislocations. 

Although the dislocation line can change its direction and has changing (possibly mixed) 

character it is important to notice that the Burgers vector of a dislocation line is conserved 

along the line. 

'In fact, in the literature both directions can be found. 

13 
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The slip plane and plastic deformation A dislocation can be envisaged as the boundary 

of an area on a lattice plane which has 'slipped' (i.e. been displaced with respect to the 

adjacent lattice plane) by one Burgers vector. As the dislocation moves through the crystal, 

the slipped area expands (or contracts), which implies a shear deformation of the crystal. 

We note that during motion the dislocation needs to break atomic bonds along a line only 

and not within a plane, which is energetically more favorable. 

We only consider dislocation lines that stay within a slip plane during motion (the anal-

ogon is the Volterra cut plane). Other forms of movement (e.g. so-called climb) are not 

considered throughout this thesis. The slip plane is spanned by the Burgers vector and the 

dislocation line direction. If dislocations move by glide only, this plane is a unique plane of 

the crystal lattice. 

If a dislocation traverses the boundary of the crystal a slip step stays behind (Fig. 2.5). The 

surface step caused on entering and exiting has the magnitude of the Burgers vector b = bi. 

 

(a) edge dislocation (b) screw dislocation 

Figure 2.5: Plastic deformation after an edge and screw dislocation moved through the 
crystal. The direction of movement of a edge/screw dislocation is perpendicular 
to the line direction. The direction of movement is indicated by the little arrow. 

These quantities can be used to define the plastic slip -y  as 

(2.1) 

where h is the height of the crystal and b the width of the red area in Fig. 2.5. With this 

definition 'y  can be interpreted as the average plastic shear angle. 

14 
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2.3 Small strain crystal plasticity 

Leaving behind the length scale of discrete dislocations we now consider the continuum 

scale where one cannot distinguish between single dislocations anymore. Hence, we assume 

that the relevant physical quantities are continuous displacement fields, which evolve in a 

smooth manner in space and time. 

Small-strain elasto-plasticity 

The fundamental object of continuum elasto-plasticity is a smooth vector field of displace-

ments u. The gradient Vu is called the distortion tensor and is in the following denoted by 

/3: 

0:= Vu, 	 (2.2) 

which describes the result of a compatible distortion2. The symmetric part of the distortion 

tensor in Eq. (2.2) is called the strain tensor e: 

:= Sym/3 = SymVu. 	 (2.3) 

In small-strain elasto-plasticity the distortion tensor is additively decomposed into a stress-

free or plastic part /3P1  and an elastic part /3el  Accordingly, the strain is additively decom-

posed into 

= 	e1 +6 pl = Sym/3 + Sym3''. 	 (2.4) 

The local stress o is related to the elastic part of the strain tensor by the constitutive law 

o=C: 1  =C:(E—Y1 ), 	 (2.5) 

where C denotes the fourth order tensor of elastic moduli and ':' the doubly contracted 

tensor product, in Cartesian coordinates ojj = CklE. To fully describe the elastic con-

tinuum the last equation is accompanied by balance equations for momentum and angular 

2A deformation is called 'compatible' if the deformed body stays compact. This notion will be discussed in 
more detail in Section 3.1 
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momentum, which in the absence of body and inertial forces read 

divo'=O and 
	

(2.6) 

respectively. 

Crystallographic slip 

As we consider dislocation glide only, plastic displacements occur within glide planes 

spanned by the dislocation line and Burgers vectors. A set of slip planes with common 

unit normal vector n and a Burgers vector b (normal to ii) define a glide system. The 

plastic distortion 130,  if produced by dislocation glide, can be expressed as a sum over 

contributions from all active slip systems: 

	

13P1 = 	 with M* - (n ® b5), 	 (2.7) Sb 
S 

where s denotes the number of the slip system (the summation convention does not apply for 

double indices there), 'y is the plastic slip of the slip system, b is the modulus of the Burgers 

vector and M 5  is the symmetrised projection tensor accounting for the orientation of the 

slip system. Accordingly, the plastic strain er" is the symmetrised result of the accumulated 

plastic slip of each of those glide planes 

ep' = 	 with M5 = 	®n5  + ns ® b5). 	(2.8) 

The (average) plastic slip in a volume AV can be related to the area AF, swept by disloca- 

	

tions of a given slip system: 	= LF5b/Lv, or in differential form: 	= pbv where p is 

the dislocation line length per unit volume and v the (average) dislocation velocity. 

16 



Chapter 3 

The classical continuum theory of 
dislocations 

The purpose of constitutive modelling in plasticity theory is to derive evolution equations 

for the plastic distortion /3P1  based on the current stress state and possibly various internal 

variables of the material. 3P1  has a key role since it serves as the fundamental object char-

acterising the mechanical response on the continuum level. An early attempt to link this 

with the dislocation picture of plasticity is Kröner's 'classical' continuum theory of disloca-

tions (Kröner, 1958), in the following abbreviated by CCT. This theory is the predecessor 

of Hochrainer's Continuum Dislocation Dynamics theory, abbreviated by CDD, which we 

explore and apply within this thesis. To clarify why CDD is needed, we firstly introduce 

Kröner's theory along with some important notions. 

3.1 The classical dislocation density tensor 

The reason why one seeks to formulate a theory of the dynamics of dislocations in terms of 

density-like quantities as a measure of the dislocation state of a crystal is threefold: first, de-

scribing each dislocation inside a crystal separately quickly becomes extremely expensive 

from a computational point of view, while in the case of a density the number of represented 

objects does not have any influence on the computational cost. Second, a continuum the-

ory of plasticity can - unlike discrete models of dislocation systems - be straightforwardly 

connected to a continuum description of the elastic stress and strain states, thus making the 

powerful tool of finite element calculation available for efficient computational modelling. 

Third, by basing such a theory on the actual physical processes of dislocation motion, one 

can hope to escape the arbitrariness of phenomenological guesswork which besets much of 

constitutive modelling in micro-plasticity. Defining such a density-like object requires some 

averaging, which occurs in the classical theory through considering the resulting Burgers 

vector of a set of dislocations: the net Burgers vector. 

17 
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direction of Burgers circuit 

Figure 3.1: Edge dislocations and a Burgers circuit: S denotes the area through which the 
dislocations thread and as is the (closed) boundary. Each dislocation entering 
the volume leaves behind a (signed) surface step LXx2. 

The net Burgers vector From the basic definition of the Burgers circuit the net Burgers 

vector of dislocations threading an area S (as in Fig. 3.1) can be evaluated as the integral of 

the plastic distortion over the boundary as 

	

b=f/31)l ds or b=c/3ds, 	 (3.1) 

as 	 as 

where c is the tangent to the boundary curve with ci the i-th component of C. For the system 

in Fig. 3.1 for instance we then find b = j Axi  = —5Lx + 2x = —3Lx. To describe the 

dislocation state in S one may then introduce a dislocation density tensor c which similarly 

measures the net Burgers vector flux through the area 5: 

	

b=/cndS or bJ =f%ni dS, 	 (3.2) 

with ni the i-th component of the surface normal n of S. From Eq. (3.1) and Eq. (3.2) it 

follows that 

b =/3'ds = f an dS. 	 (3.3) 

as 	s 

Applying Stokes' theorem we immediately get the fundamental equation 

curl /3P!  or 	= 	 (3.4) 

which Kröner (1958) used for defining the dislocation density tensor a. In Eq. (3.4), the 

curl operator acts on the first indices of a tensor in the same way as it acts on a vector, 

e.g o12 = a 2 /3 - a3/322 . A different but equivalent definition - based on the lattice 

curvature - was given by Nye (1953). From the definition of the Kroner-Nye tensor Eq. (3.4) 
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it immediately follows by the Gauss theorem for closed surfaces OS that 

diva = 0, 	 (3.5) 

which reflects the physical fact that dislocations cannot start or end inside a crystal. 

The notion of compatible distortions Alternatively, the Kroner-Nye tensor can be envis-

aged through the notion of 'compatibility' of distortions. Deformations are called 'compati-

ble' if they distort the volume elements of a body in such a way that the body stays compact. 

For instance, imagine the crystal to consist of small volume elements. Then for example 

purely elastic deformations are compatible since they do not introduce internal discontinu-

ities. Each compatible distortion 3 can be written as a gradient of the displacement field, 

Vu. Hence, curl Vu is always vanishing. An example for an incompatible deformation 

is the stress-free deformation state created by inhomogeneous shear along a set of parallel 

planes as shown in Fig. 3.2. Compatible distortions /3 in general are characterized by a 

Figure 3.2: A plastic distortion without elastic distortion may cause incompatible deforma-
tions such that the body is no longer compact. The gaps between the volume 
elements can be closed by introducing dislocations. 

vanishing curl (curl /3 = 0). While every purely elastic distortion is compatible, not every 

plastic distortion is incompatible; more details are given e.g. by Kröner (1958) and Kröner 

(1980). Kröners' definition of the dislocation density tensor Eq. (3.4) can now be consid-

ered from a different point of view: assume an incompatible plastic distortion /3P1  which 

necessitates an elastic distortion 13e1  such that the body remains compact (curl /3 = 0). Then 

it is curl /3P1  0 0 (and also necessarily curl /3e1 	0). The deviation from zero, and thus 

Kröner's dislocation density tensor, measures the plastic incompatibility. 

When analyzing the information about the dislocation system that is contained in the Kröner- 

WE 
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(a) only one 'geometrically nec- 	(b) a so-called dipole: two 'sta- 
essary' dislocation 	 tistically stored' dislocations with 

opposite line direction 

Figure 3.3: Two systems of edge dislocations: Only in case 3.3(a) the Kroner-Nye tensor 
is not vanishing. In case 3.3(b) the two opposite oriented lines cause the net 
Burgers vector (and thus the Kröner-Nye tensor) to vanish. 

Nye tensor, it is important to specify the spatial resolution with which the plastic distortion 

is described. This is not always recognized in the literature, as the very concept of 'spatial 

resolution' seems odd when we are talking about a continuum theory. If in Fig. 3.3(b) the 

spatial resolution of a model is such that each of the two dislocations is resolved separately, 

we can use the Kroner-Nye tensor to describe the system. If the resolution is such that 

only the net Burgers vector is seen then the situation in Fig. 3.3(b) cannot be distinguished 

from an empty crystal. In order to understand the strengths and limitations of the classical 

continuum theory of dislocations it is indispensable to analyse how the information con-

tent expressed by the fundamental dislocation density measure changes as we move across 

scales. We start this analysis on the smallest scale on which a continuum theory can be used, 

i.e., we use continuous fields to describe the distortion of the crystal but assume that these 

fields are known with sufficient resolution such that individual dislocations can be 'seen' as 

singular lines. 

3.2 	Dislocation density tensor for a discrete dislocation system 

If the spatial resolution of the theory is such that all dislocation lines are captured sepa-

rately by the curl operation, the Kroner-Nye tensor completely characterises the dislocation 

system. In this case c can be explicitly related to the configuration of the discrete dislo-

cation lines. We envisage a dislocation line as an oriented curve c(s) which we assume to 

be parametrised by arc length s, i.e. dc/ds is the unit tangent vector to the dislocation line. 

Furthermore we assume that all dislocations share the same Burgers vector b. In situations 

where dislocations of several slip systems are present, the following considerations hold for 

each slip system separately, and the total dislocation density tensor is obtained by summing 
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over all slip systems. 

We formally define a density measure along the dislocation line by 

Lc  

8(r) = fS(c(s) - r)ds, 	 (3.6) 

where L is the total length of curve c and 6(r) is the standard Dirac measure ('delta func-

tion') in three-dimensional space. Using this measure, we may write the discrete (indicated 

by superscript 'd') Kroner-Nye tensor as 

= 	8 
de
— ® b, 	 (3.7) 
ds 

C 

where the sum runs over all dislocation lines in the system. The local rate of plastic distor-

tion is given by Orowan's relation which in tensorial form reads 

	

i3'= —16cvn®b= —v x 
ad 	 (3.8) 

Here, v = vu is the local dislocation velocity, with v being the scalar velocity, and v the 

unit vector in the dislocation glide direction. In writing down (3.8), we used that the glide 

plane normal is given by n = ii x ds 

Defining the discrete dislocation current by 

jd = v x ad 	 (3.9) 

=>vx6c de Øb 	 (3.10) 
ds 

and using the definition of the Kroner-Nye tensor yields a kinematically closed evolution 

equation' for ad:  

	

3tad = _ curl J = curl (V x ad). 	 (3.11) 

We now attempt to use these relations for constructing a coarse-grained theory. In doing 

'We speak of a kinematically closed equation as we assume the dislocation velocity v at this point to be 
a given quantity. In general, v is a function of the local stress, which in turn depends on the dislocation 
arrangement. Hence, a mathematically closed theory requires additional relationships between the dislocation 
state, as expressed by a, and the dislocation velocity v. If v is a function of stress and line direction only, these 
relationships may be derived from Kroner's theory of eigenstresses (Kroner, 1958). The problem of closure 
will be discussed in more detail in Chapter 9. 
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so, we ask whether or not (and under which circumstances) direct coarse graining of the 

classical dislocation density measure leads to a loss of essential information. 

3.3 Statistical averaging 

We denote by ((. . . ))v, := (1/V) f (. . . )d 3r the spatial average over some small volume 
Vr 

V of size V centered at r (for convenience of notation, the subscripts V and r will be 

dropped in the following). A scalar measure of the average dislocation density is given by 

the dislocation line length within Vr, divided by the averaging volume: 

Pt> fids 
C cflV 

Lc  

= 	ffs(c(s) - r')d3r'ds = (SC). 	 (3.12) 

This measure characterises the total dislocation density. Similarly, we define the average 

dislocation density tensor by 

/ 	de 
a = (ad) = 	® b , 	 (3.13) \L_d ds 

/ \c 

The average line direction is given by the unit vector 

I - 	
c Cd3) - 	

dcXII' 	 (3.14) 
cff/j 

and we define the geometrically necessary dislocation density PG  by 

PC
dc\H 

= 	oC_ 'H. 	 (3.15) 
ds/ 

The ratio PG/Pt IS always smaller equal than 1 because of the triangular inequality. The 

average dislocation density tensor can be written in terms of PG  and I as 

Q=PGI®b. 	 (3.16) 
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Here, the averaging volume may contain dislocations of all orientations. Hence, e.g. tangent 

vectors of dislocations with opposite directions will cancel out. In the extreme case of a 

purely statistically isotropic distribution all tangent vectors in an averaging volume cancel 

out. For the same reason, the average dislocation density tensor Eq. (3.16) does not fulfill 

the equation 

= —v x o, 	 (3.17) 

if we interpret v as the point wise vectorial average of the velocities along the dislocation 

lines. 

By use of Eq. (3.8) together with averaging of Eq. (3.11), we can attempt to obtain an 

evolution equation for the averaged tensor. Writing this out, we obtain 

dc 
8vx—®b. 	 (3.18) 

\ 	ds 

The threefold product within the average cannot directly be interpreted is terms of mean-

ingful physical quantities. However, if, and only if, all dislocations within the averaging 

volume share the same tangent vector I = dc/ds and velocity v the average of the product 

can be written as a product of averages. This is possible either if only one dislocation is 

present (the discrete case) or if the dislocations form smooth line bundles. In these cases, 

p = p, ce = p1 0 b, and Eq. (3.11) holds both on the local and on the averaged scale and 

we obtain the identity 

Ota= —curl 	
dc 	/ cv x —0 b = — curl 	(ov) x 	0 b. 	(3.19) 

\ 	ds / 
	 \ds 

de / 

In the general case, however, the averaging volume contains dislocations of different orien-

tations. Thus, averaging leads to a reduced dislocation density PG <p. and the dislocation 

density tensor does not obey Eq. (3.11) with v understood as the average velocity. Instead, 

additional terms appear in the evolution equation. The necessity of accounting for such 

terms, which have the formal structure of correlators between the dislocation density and 

velocity/line direction, has been recognized in the literature (see e.g. Acharya et at. (2005)). 

However, the derivation and closure of a higher-order theory which properly accounts for 

such terms requires a formidable theoretical effort. Until now, published attempts either re-

main at the level of declarations-of-intention, or provide phenomenological patches which 
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do not really resolve the underlying theoretical problems. We therefore pursue a different 

approach which generalises the classical dislocation density tensor such as to simplify the 

closure problem. 
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Continuum Dislocation Dynamics 

CDD) 



Chapter 4 
Theoretical background of CDD 

In Chapter 3 we introduced the classical continuum theory of dislocations which is based 

on the definition of the Kroner-Nye tensor. We concluded that this theory is not com-

plete in the sense that only 'geometrically necessary' dislocations are considered. Fur-

thermore, the notion of an average dislocation velocity turned out to be problematic. Re-

cently, a proposal how to overcome these difficulties was made by Hochrainer, cf. e.g. 

Hochrainer (2006); Hochrainer et al. (2007). In the following we will refer to this theory as 

the 'Continuum Dislocation Dynamics theory', abbreviated CDD. 

4.1 Introductory remarks 

CDD distinguishes dislocation lines in a given spatial point r according to their line direc-

tion 1. As long as we are on the level of a discrete description, this is simply redundant. 

However, the physical rationale for this distinction becomes evident when we average over 

a mesoscopic volume: While it is in general unrealistic to assume that all dislocations con-

tained in a mesoscopic volume have the same direction and move with the same velocity 

in response to an acting stress, it is much more realistic to assume that those dislocations 

which do have the same direction move in a similar manner. 

If dislocations move by glide only, their motion is confined to a fixed glide plane and the 

line direction can be parametrised by a scalar variable, for instance the angle between 

line direction and Burgers vector. A point in configuration space is thus denoted by (r, ), 

where r is a vector in the dislocation glide plane'. With regard to the numerical examples 

treated subsequently, we restrict ourselves to introducing CDD only for this situation. We 

note, however, that the theory is not restricted to this case but can be generalized to include 

out-of-plane dislocation motion and multiple slip systems (cf. Hochrainer et al. (2007)). 

This would however necessitate the use of CDD in its original formulation, which draws 

heavily on the use of differential geometry and especially on differential forms and currents. 

The theory may depend parametrically on the coordinate perpendicular to the glide plane. Such a paramet-
ric dependence does not change the equation of motion and is in the following omitted 
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In the following sections we rewrite Hochrainer's theory for the afore mentioned special 

case of dislocations moving by glide, where it can be formulated using standard vector and 

tensor calculus. 

4.2 	Definition of the second order dislocation density tensor 

To define the dislocation density tensor and its averages in the three-dimensional (recall 

(r, ,p)) configuration space we proceed in close analogy to the classical theory. Unlike in 

the classical case, however, we consider averages over so-called lifts of dislocation lines to 

the configuration space instead of averages over the spatial dislocation lines themselves. In 

order to introduce the concept of lifted curves we define a coordinate system such that the 

1-direction points into the direction of the Burgers vector and the glide plane is spanned by 

the 1- and 2-directions. To each point c(s) = (c'(s), c2(8)) of a dislocation line we assign 

the angle W between the tangent dc/ds and the Burgers vector, that is 

/ dc2
ds 

" 

	

co(s) = arctan 
-dcl----  . 	 (4.1) 

ds 

We define the lift C of a given planar curve c to a three dimensional configuration space as 

C(s) = (Cl (s),C2(s),C3(s)) := (Cl (s),c2(s),ce(s)). 	 (4.2) 

Figure 4.1 gives a visualisation of this concept. We note that the tangent to the lifted curve, 

dC (dc' dc2  dce'\ 	(Le, 
=

k(s)) 	 (4.3) 

contains as third coordinate the curvature k(s) of the curve at c(s). As a consequence of 

this implicit definition of a metric the lifted curves C are not parametrised by arc length in 

the configuration space2. 

By transferring the definition of 8 to the lifted curve C as 

6C (r) 
= f 

S(C(s) - (r, ce))ds, 	 (4.4) 

21t is worth noting that the definition of the second order dislocation density tensor does not necessarily 
require a metric or volume element. However, an invariant definition requires the use of advanced mathematical 
concepts as e.g. differential forms. We refrain from introducing these concepts in this thesis and refer the 
interested reader to Hochrainer et al. (2007) and especially Hochrainer (2006) for a more thorough treatment. 
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we define the averaged dislocation density tensor of second order in complete analogy to 

the classical one (cf. Eq. (3.7)) as 

all 	= 
/E JC 

dC 
(4.5) 

	

\
~P

C 	d  

The sum is again taken over all dislocations in the system, and the averages are taken over 

a volume element in configuration space which is centered at r and ço. 

It is illustrative to express also all as the product of a density function P(r,co) and a gener-

alised tangent which we denote by L(D,W ). The definition of these two objects is not com-

pletely analogous to the classical ones. The density function is defined as 

/ 
P(r,) 	(E 8C 	) 	 (4.6) 

\c 	
ds

/II 

where 	r measures the length of the spatial projection of a vector in the configuration 

space. The tangents to the lifted curves have the property 

	

dCII 	IIdcII 

c1.sMr 	
=1. 	 (4.7) 

In Eq. (4.6), the averaging volume - a volume element in configuration space - contains 

dislocations of one orientation only. Hence, there is no cancellation - e.g. of dislocations 

of opposite directions - during averaging of the spatial tangent vectors. Therefore, the 

norm 	may be interchanged with the averaging. We thus find that P(r,) gives the 

spatial line length per volume (of the configuration space) of dislocations at r with direction 

l(ço) = (cos p, sin p). The generalised tangent is defined as 

	

/ 	dC\ 

	

1'(r,ço) = 	 . 	 (4.8) 
P(r,ço) 

We note that the first two components of L() are just the canonical spatial direction at 

and the third component contains the average curvature k(r,,), that is 

L(r,cQ ) = (cos ço, sin , k(,)) = (l(), k(r,,c,)). 	 (4.9) 
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From the definitions (Eq. (4.5)), (Eq. (4.6)) and (Eq. (4.8)) we easily find 

= P(r,)L(r,) ® b. 	 (4.10) 

The averaged classical dislocation density tensor c can be evaluated from the density func-

tion P(r,) as 

a(r)  =f 	 (4.11) 

and reads - explicitly stating the coefficient matrix: 

2ir 	 27r 
b' f 	cos d p b2 f 	cos w d 

0 	 0 
= 	 (4.12) 2ir 	 27r 	 I. V f P(r,sa) Sfl p dço b2 f p(. )  sin ço dco) 

(4.13) 

The second order dislocation density tensor may be represented by a 3 x 2 matrix which 

reads 

2  k (Vk(r, 

bi COS 	b2  cos

= P(r,) b' sin 	b2  sin 

 ço) 	b (r,) 

(k(r, cp) 

cosço 0

P(r,) Sifl 	0 b, 	 (4.14) 

0) 

where the latter follows from the chosen coordinate system for which we took the 1-

direction parallel to the Burgers vector and hence find b = (b, 0). 

We remark that in analogy to Eq. (3.5) also the generalised divergence of & must vanish 

(cf. Hochrainer et al. (2007)), which likewise reflects the physical fact that dislocation lines 

do not start or end inside a crystal. With Eq. (4.14) this condition reads 

COS(,O xP + Sifl9p + O, (pk) = 0. 	 (4.15) 
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2ir 

it 

Figure 4.1: Continuous lifted curve in the configuration space. The lower, closed loop is 
the spatial loop, the upper line is the 'lifted loop' with additional orientation in-
formation. The arrows attached to the lower loop indicate the spatial velocity, 
the arrows attached to the upper curve indicate the generalised velocity along 
the line. The rotational velocity 9 is the vertical component of the generalised 
velocity. 

Finally, the total dislocation density Pt  can be obtained from the scalar density by integration 

pt(x,y) = jP(,,)  d 	 (4.16) 

4.3 	The generalised dislocation velocity 

In the preceding section we defined the dislocation density tensor all as an average of den-

sity functions characterising discrete lifted curves. In order to obtain the evolution of all, 

we need to consider the velocity of the lifted curves in the configuration space. As may 

be seen in Fig. 4.1 the velocity of a lifted curve contains, besides the spatial (horizontal) 

velocity v orthogonal to the spatial dislocation line, also a component in the direction 

which accounts for the rotation of line segments during dislocation motion. 

It is straightforward to show that the pseudo-scalar rotation velocity 79 of a moving curve 

parametrised by arc length s is determined by the change of velocity along the line. For 
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the pseudo-scalars v, k and ?9 we use the following sign convention: We consider the 

pseudo-scalar velocity of a positively oriented loop as positive if the loop expands (com-

pare Fig. 4.2). The curvature of such a loop is also considered as positive. From this sign 

convention it follows that the pseudo-scalar rotational velocity is 

dy(s) 
79 (8) = 

- ds  

For a derivation of the explicit components of t9 please refer to Appendix A. Using these 

conventions, we define the generalised velocity at a point C(s) of a lifted discrete curve as 

Vd(s) = (v sin (s), —v cos co(s),9(s)). 	 (4.18) 

We note that unlike the spatial velocity, which is orthogonal to the dislocation line, the 

generalised velocity is in general not orthogonal to the lifted curve. 

Figure 4.2: Sign convention for the line orientation , tangent I and normal v on the 
parametrised unit circle 

The evolution of ali  

In analogy with the classical definition, Eq. (3.10), we define the generalised (discrete) 

dislocation current 

jIId = E Vd x S 
dC
— 0 b. 	 (4.19) 

C 	
ds 

The evolution of the averaged dislocation density tensor of second order is obtained in 

analogy to Eq. (3.18): 

0t(r) = -curl KJHd) 	. 	 (4.20) 
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This equation differs from Eq. (3.18) describing the evolution of the classical dislocation 

density tensor because in Eq. (4.20) the average dislocation current Eq. (4.19) can be under-

stood as a product of averages under much weaker assumptions regarding the dislocation 

configuration. The most important assumption in this respect is that nearby dislocations of 

the same line direction have the same curvature, which is reasonable in quasi-static situa-

tions, where the curvature essentially balances the local stress. Under this assumption, the 

average dislocation current can be written as 

J 11  = Vr,ç  X (rp)' 	 (4.21) 

where the average velocity V(r,,) = yd) can be expressed in terms of the average pseudo-

scalar velocity V(r,) = (v) and rotation velocity 9(rp) = () as 

V ( r,ç)  = (V(r,co ) sin p, —V(,,,P)  cos p, t9 0)). 	 (4.22) 

Consequently, the evolution equation for the dislocation density tensor of second order is 

obtained as 

= - curl (V(r,,)  X 	. 	 (4.23) 

4.4 	Evolution equations for the scalar field variables and plastic 

distortion 

As we saw in Eq. (4.14), in the single glide situation under consideration, all  is completely 

defined by the two scalar fields 	and k (,,). Hence, the evolution equation for all  

can be formulated in terms of two coupled evolution equations for these functions. As 

the derivation of these evolution equations involves either abstract methods or simple but 

lengthy calculations we only give the result and refer the reader to Hochrainer et al. (2007) 

for details: 

	

= —(div(pv) + 9(pt9)) + pvk, 	 (4.24) 

atk = —vk 2  - V(v) - V(k). 	 (4.25) 

Here, V, and Vi,' denote the second derivative along the generalised line direction and the 

first derivative along the generalised velocity direction, respectively. To avoid cumbersome 
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notation we dropped the index (r,ç).  In the following if no indices occur we always imply 

that all quantities are evaluated at the point (r, o) in the configuration space R x R x [0, 27r). 

The transport terms in Eq. (4.24) can also be written by use of a 'generalised divergence' 

Div, which consists besides the spatial also of an angular component 

Div(pV) := div(pv) + 9,(p 9). 	 (4.26) 

The evolution equation for the plastic distortion ,3P1  takes a similar form as Eq. (3.8) in the 

classical formulation: 

2ir 

atop,  = 
fp

(,,w)v(,P)dp n ® b. 	 (4.27) 
0 

This quantity provides the link to the material response on the continuum level as introduced 

in Section 2.3. CDD is an example of a theory where the evolution of the plastic distortion 

13P1 is expressed in terms of internal variables which represent statistical averages over the 

discrete dislocation pattern within the crystal. 
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Chapter 5 

Exploration of the CDD Evolution 
Equations 

In this section we explore the components of the evolution equations numerically by demon-

strating the specific role of the different terms for various special cases. Although we do 

not aim to use the evolution equations for simulating the kinematic behaviour of discrete 

objects, it is crucial that discrete objects can be evolved properly: they serve as important 

testing cases to elucidate numerical problems that may occur in simulating arbitrary density 

distributions since they are (i) numerically challenging (the distributions studied are near-

singular) and (ii) often simple analytical solutions can be obtained from directly analysing 

the dynamics of the singular lines. For these purposes only we investigate the evolution of 

quasi-discrete dislocations. We make several simplifying assumption; in particular we as-

sume the dislocation velocity to be prescribed. Furthermore we do not consider interactions 

between dislocations. Thus, these systems should be considered as model systems only 

that serve to explore the kinematic consistency and numerical implementation of the CDD 

equations. 

5.1 Numerical Implementation 

Geometry 

As in the preceding section we assume that all dislocations are moving on a single glide sys-

tem with glide plane normal n = e3  and Burgers vector b be1. The system is assumed 

homogeneous in the e3 direction, i.e., we consider a statistically homogeneous assembly of 

active glide planes. 
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Discretisation of the problem 

We define a discrete time step At 	t' - t1  with i e N+.  A forward Euler scheme is 

used for numerical time integration of the evolution equations. Hence, only values at step t 

are needed to compute the new values at step t'; no additional history variables need to be 

stored. This is beneficial for the required computer memory, which is an issue as the multi-

dimensional structure of the configuration space requires a large amount of information to 

be stored for multiple fields. Furthermore, we use a fixed mesh which demands a relatively 

fine space discretisation with corresponding large storage requirements. 

The forward Euler time integration scheme is an unstable scheme which is only first or-

der accurate and suffers from dispersion. Our main reason for using this scheme is that its 

simple explicit structure allows for an easy identification of the separate effects stemming 

from the different terms in the evolution equations. Implicit time integration schemes, on 

the other hand, require additional linearization steps along with the iterative solution of the 

resulting difference equations. It is then not straightforward to distinguish effects stemming 

e.g. from the discretisation, the initial values, the approximative nature of the Newton lin-

earisation or the partial differential equations themselves. For the explicit Euler scheme 

used together with a compatible choice of numerical derivatives, we could identify a 'work-

ing regime' within which this integration method was numerically reliable and could be 

used to 'test' more fundamental aspects of the numerical implementation'. 

The 3-dimensional configuration space is discretised by a uniform mesh. It turned out that a 

resolution in the angular direction of in between 60 and 120 nodes is sufficient to discretise 

the density objects under consideration. In the case of quasi-discrete lines we use a discrete 

Gaussian distribution to approximate the Dirac delta function. Since we use a fine spatial 

resolution for this representation (e.g. about 60 nodes to discretise the part of the Gauss 

function which is > 0.1% of the peak value), dispersive effects can be neglected. 

Derivatives w.r.t. the configuration space are approximated by finite differences. Derivatives 

which govern transport were approximated by an upwind scheme. This is a numerical 

scheme which uses information about the flow direction (e.g. the direction of propagation 

'In our case, we pragmatically consider a numerical scheme to be well-behaved within the 'working regime' 
if a positive half-wave can be propagated for more than 10000 steps with a velocity v = 1.0, the mesh width 
h = 1.0 and a time step At = 0.1, such that the amplitude of spurious oscillations caused by the numerical 
scheme is negligible by comparison with the peak of the wave (e.g. less than 0.1% of the wave amplitude). 
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of a wave) to determine whether to use a forward or backward difference stencil, such that 

only information from upstream of the flow is used. Similar schemes are widely used to 

solve hyperbolic partial differential equations in computational fluid dynamics and reduce 

oscillations in direction of wave travel (see Harten (e.g. 1987))2. 

The upwind method based on first order forward and backward differences is oscillation-

free but at the cost of a very strong 'smearing-out' effect in direction of wave travel caused 

by a large amount of 'numerical viscosity'. We therefore use a scheme based upon second 

order accurate forward and backward differences, which is of much better quality than the 

first order scheme but slightly oscillatory (Strikwerda, 2004). As a very simple remedy 

against the undershoot effect causing the oscillations, we cut off the (unphysical) negative 

density values and distribute this negative amount over all nodes with positive density. This 

procedure causes a steepening gradient on the downstream side of the wavefront and a 

slight increase of the wave's maximum - both of which are only minor effects in the cases 

we study. 

All derivatives for nonconvective (e.g. diffusion) terms were approximated by central dif-

ference schemes of second order accuracy. 

To determine the time step size we use the Courant-Friedrichs-Lewy condition (Morton, 

1996) 

(5.1) 

which serves as a (necessary) stability criterion for purely advective equations of the form 

Dj9 + V&xP = 0 	 (5.2) 

that are solved by explicit time integration schemes such as the forward Euler scheme. In 

our simulations we accordingly choose At 	O.lAxlb where 1' is the largest occurring 

velocity. 

2Altemative methods exist and have been used for similar problems: e.g. Roy & Acharya (2004) and 
Varadhan et al. (2006) use an explicit least-squares finite element formulation to solve their dislocation density 
transport problem. Schwarz (2007) uses a Lagrangian concept as a robust numerical method. In fluid dynamics 
and electro dynamics discontinuous Galerkin methods are used as conservative schemes. In our case, however, 
it is the coupling between the evolution equations for p and k which makes a straightforward application of the 
aforementioned methods difficult. 
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5.2 Test Cases 

In this section we investigate several examples, all of which are simple enough such that we 

still can easily predict the outcome while exploring the CDD evolution equations. The first 

example treats a homogeneous distribution of circular loops. This case, which can be solved 

analytically, illustrates some basic properties of the theory. The second example treats a 

single quasi-discrete circular dislocation loop. This serves to illustrate and address issues 

related to the numerical discretisation of the system in a higher-dimensional configuration 

space. Thereafter, we elucidate the function and importance of the rotational velocity and 

its special role in the vicinity of impenetrable boundaries. 

Homogeneous distribution of expanding loops 

For a homogeneous distribution of equidistant loops with the same initial radius ro in an 

unbounded glide plane, all derivatives of p, k and v w.r.t. the configuration space vanish. 

Then the system of evolution equations Eq. (4.24) and Eq. (4.25) reduces to 

3tP = p1)/C, 	 (5.3) 

Otk = —v/C2. 	 (5.4) 

Eq. (5.3) only consists of a production term, which yields the change of line length during 

expansion of the loops, while Eq. (5.4) governs the change of curvature k(t) = 1/r(t) due 

to the expansion. Note that here p and v are independent of W. Thus, we can directly obtain 

the evolution of the plastic distortion from Eq. (4.27) as 

= 27rpbv. 	 (5.5) 

We could have obtained the same evolution equation for the curvature by considering the 

change of radius of a loop with initial radius r0  which expands with the velocity v: 

k = 

	

r

1 	/1 	

)' (t) = ( \ ko +vt 
	 (5.6) — — 

GLO 

-2 

	

at k = —v 	+ Vt)vk2. 	 (5.7) 

The evolution equation for the scalar density can then be obtained by considering homoge- 
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neously distributed loops with mean center-to-center spacing d and initial radius ro. The 

density is the line length 27rr(t) per volume, i.e. in terms of k 

27 1 
(5.8) 

We obtain the evolution equation as time derivative of Eq. (5.8): 

c9t  k 
 3tp =() = —p 	= pvk. 	 (5.9) 

T3 k 

Hence, the case of a homogeneous distribution of equidistant, expanding or shrinking loops 

with the same initial radius is correctly represented by the theory. 

This may seem a trivial example. However, an essential shortcoming of previously pro-

posed continuum theories, such as those of Kosevich and El-Azab is manifested precisely 

by the fact that the kinematic behavior of a distribution of straight dislocation lines is not 

distinguished from that of a distribution of loops. CDD on the other hand reproduces the 

correct increase of line length for the evolving system of distributed loops, while for the 

case of the straight line distribution the theory yields pure advection without change in line 

length. 

Quasi-discrete expanding circular loop 

We again assume constant velocity and curvature such that there is no rotational velocity and 

no change of curvature along the line but this time we consider the evolution of a dislocation 

density distribution representing a single expanding loop (cf. Fig. 5.1(a)). As all derivatives 

of v and k are zero the evolution equations now simplify to 

= - div(pv) + pvk, 	 (5.10) 

atk = —vk 2. 	 (5.11) 

The first part of the evolution equation for p governs spatial transport, whereas the second 

part accounts for changes in line length due to expansion or shrinkage of curved dislocation 

segments (here forming a circular loop). The change of curvature which goes along with 

the expansion or shrinkage of segments is determined by the evolution equation for k. 
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Numerical results: The problem of line fragmentation 

PW 

(a) Initial configuration (R = 30 nodes) 
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(b) Expanded loop after 3500 steps with At = 
0.1 and v = 1.0 (R = 3800 nodes) 
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Figure 5.1: Evolution of the (spatial) total dislocation density for an expanding loop as 
obtained from solving Eq. (5.10) and Eq. (5.11). The loop was discretised with 
60 nodes in co-direction: (a) initial configuration, (b) end configuration, (c) 
total amount of density integrated over the plane and analytical prediction, (d) 
evolution of the divergence of cr11. 

As an approximation to a discrete dislocation loop we generate a continuous density func-

tion by replacing the 8-distribution in Eq. (4.4) with a Gaussian distribution. The spa-

tial projection of the initial distribution, that is the total dislocation density, is depicted in 

Fig. 5.1(a). Time integration of the evolution equations Eq. (5.10) and Eq. (5.11) leads to 

a spatial density distribution as shown in Fig. 5.1(b). The growth of the total dislocation 

line length, as expressed by the volume integral of the density function over the configura-

tion space, is described correctly (Fig. 5.1(c)), except for a small deviation which is caused 

!11 
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by discretisation errors. However, the density distribution gets spatially fragmented as the 

loop expands (Sandfeld et al., 2009a). This fragmentation is directly related to a growing 

divergence of all. As the time derivative of all is a curl (compare Eq. (4.23)) the evo-

lution equations themselves conserve the solenoidality of all. However, finite difference 

schemes in general can not guarantee that the discrete curl- and div- operators fulfill the 

relation div curl = 0. This shortcoming manifests itself in an strong increase of the mean 

divergence (1/N1od) E 11 div all  j as shown in Fig. 5.1(d). This increase mirrors the visi-

ble fragmentation of the dislocation density distribution during expansion of the loop. This 

fragmentation is unphysical. Moreover, in the case of inhomogeneous velocity fields the 

temporal evolution depends on derivatives of the density along the generalised line direc-

tion. The numerical evaluation of these derivatives becomes completely inaccurate if loop 

fragmentation becomes pronounced. 

We note that other authors also have considered similar test problems, e.g. Sedláóek and 

co-workers treated in Sedlacek et al. (2007) the problem of expansion of concentric dislo-

cation loops. Additionally, we would like to remark that using polar coordinates would be 

advantageous for us in the sense that this would avoid fragmentation since density is being 

distributed properly due to the discretisation. On the other hand this approach can be used 

only for the special case of loops with the coordinate origin at their center, and not for the 

evolution of general distributions. The remainder of this section deals with generic strate-

gies that avoid fragmentation within the framework of the chosen finite difference scheme. 

Direct relaxation of the dislocation density tensor all 

A straightforward method to maintain solenoidality of the density distribution is to minimize 

the divergence of a1T  by means of a sequence of 'relaxation' steps following each time step. 

This process ensures iteratively that div all as a measure of fragmentation is kept below a 

given tolerance. We minimise the total divergence of all using the iteration formula 

all 
new= a + ) grad div (a"), 	 (5.12) 

where A is a factor controlling the step size, which can be adjusted to achieve efficient re-

laxation while avoiding 'overshoots'. However, this method has clear drawbacks: The op-

erators grad div.(.) introduce second derivatives which have a diffusive effect and suppress 

fragmentation by homogenizing the dislocation density distribution along the dislocation 
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line. However, the diffusive effect also acts in the perpendicular direction and causes a 

broadening of the line. Furthermore, the iteration scheme (Eq. (5.12)) conserves a ll  and 

not p, causing unphysical changes in dislocation density during the relaxation step. An 

improved relaxation scheme which conserves the total density and avoids diffusive 'flatten-

ing' of the dislocation density distribution is obtained by modifying Eq. (5.12) such that p 

is relaxed only along the line: 

Pnew 	Pold + AV 1  2  A 	 (5.13) 

where the relaxation is again carried out to minimize 	div aIl 11. 

Irrespective of the method used, relaxation of the system is computationally expensive. 

Achieving a well-relaxed configuration requires multiple relaxation steps, each of which is 

computationally about as expensive as one time integration step for the evolution equations. 

To obtain a computationally more efficient method for preserving solenoidality we take a 

closer look at the mechanism that leads to the fragmentation and devise a remedy which 

restores the unfragmented state without introducing an additional iterative process. 

Correction of line fragmentation by tangential diffusion 

To better understand loop fragmentation from a geometrical point of view, we consider a 

curved dislocation line in the configuration space (for simplicity we envisage a circular loop 

but the argument extends to any curved line). To obtain a continuous and differentiable den-

sity distribution we need to approximate the Dirac 6-function representing the discrete line 

in terms of continuous and differentiable functions. Doing this on a discrete grid amounts 

to a discrete convolution with an approximation function, i.e., we map (a subset of) R to (a 

subset of) N. For poor resolution in o-direction and a better resolution in x and y direction, 

Fig. 5.2 shows the density distribution obtained with Gaussian functions. It is important to 

realize that due to the mapping, each of the 'blobs' representing segments of the dislocation 

line is located on a particular p-plane. As all points of the blob move into the same direc-

tion v, which is perpendicular to the spatial line direction l(p), the blobs are drifting apart 

during loop expansion and the line becomes fragmented. 

We consider the effect of loop expansion at two successive time steps t and t' and its 

impact on the change of arc length of a line segment s for the case of a continuous lifted 

loop and for a lifted loop with discretised orientations. Fig. 5.3 shows the geometrical 
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Figure 5.2: Discrete density distribution which corresponds to a lifted line for a bad res-
olution in p-direction (12 nodes only) chosen deliberately for demonstration 
purposes. Each of these blobs moves as a whole along the direction indicated 
by the arrows. 

relations between these two cases. To understand how the differences affect dislocation 

density evolution, we may then think of a single lifted line as a bundle of parallel lines with 

partial Burgers vectors and characterize the bundle by a space-dependent density p. 

Let us first consider the expansion of a continuous lifted loop. As the loop expands in the 

spatial plane a circle segment s with cone angle A gets elongated to s' (cf. Fig. 5.3(a)). 

Expressing this relation in terms of the curvature we get 

k— and ki+1 P 
Si 	 (5.14) 

The increment of spatial arc length As from step i to step i + 1 then is defined through 

As := s'— S2 =

(ki+1 	ki - ). 	
(5.15) 

The arc length increase stems from the fact that the line orientation along the circle segment 

varies between po - 	and 'o + 	, cf. Fig. 5.3(a), leading to divergent trajectories and 

a separation of the endpoints of the segment. For a bundle of lines, the local density within 

the bundle remains unchanged while the overall density increases as the bundle occupies 

more space. 
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2ir 

7r 

7r 

(a) line segment during ideal mathematical expansion of a lifted 
loop 

27 

(b) line segment during numerically approximated lifted loop ex-
pansion 

Figure 5.3: Expansion of a continuous loop and the effect due to numerical discretisation: 
A lifted loop with radius rz  expands by Ar affecting the line inclination (the 
curvature) and its length. In the case of the continuous loop expansion the line 
segment gets rotated (by reduction of curvature) and stretched. The numerical 
scheme takes care of the rotation by an evolving curvature (not shown) but 
otherwise can only translate the segment without stretching. 
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(a) Continuous line segment bundle during expan- (b) line segment bundle during expansion of a loop 
sion of a loop with Continuous orientation 	with discretized orientation before correction 

(c) density redistribution to 'stretch' the segments to 	(d) diffusive density redistribution 
the correct length and restore continuity 

Figure 5.4: Diagrams illustrating schematically the density evolution of a bundle of ex-
panding dislocation loops of (a) loops with continuous segment orientation and 
(b)-(c) loops with discretized orientation 
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The numerically discretised loop, on the other hand, consists of 'straight' line segments (the 

orientation is constant within each segment). Hence, each point of the segment translates 

into the same direction and no increase in line length As can take place (thick black lines 

in Fig. 5.3(b)). However, CDD is based on the description of continuous lifted lines and 

therefore its equations are constructed to generate the correct additional amount of den-

sity (which is governed by the production term pvk of Eq. (4.24)). Unfortunately, after 

discretization the transport terms fail to locate this amount in the right place. 

The consequences are illustrated in Fig. 5.4: In case of a bundle of continuous lifted lines, 

Fig. 5.4 (a), additional line length is introduced by stretching the curved segments while 

the number of lines represented by the density remains constant. In case of a bundle with 

discrete orientations, Fig. 5.4(b), on the other hand, the segment length remains constant, 

leading to fragmentation, while the additional line length causes an increase in density, 

= (_

Si

_ 
- i) 
	As 
 p = --p. 	 (5.16) si 

This suggests to remedy the situation by redistributing the additional density along the line. 

The intuitively obvious method to do this is shown in Fig. 5.4(c): We might remove the 

added density /p and distribute it to the left and right of the original segments, such as 

to extend these segments by exactly the amount needed to restore connectivity. Unfortu-

nately, numerical implementation of this idea is not straightforward since we are working 

with a fixed spatial grid where the notation of 'segment length' is not defined. Instead, 

we implement a diffusive spreading scheme: We continue each segment along its direction 

into a sequence of segments of similar orientation and length as shown in Fig. 5.4(d), and 

distribute the excess density on its two nearest neighbors in this sequence. Conversely, if 

these neighbors already carry density (and thus produce additional density /.p during loop 

expansion) half of the newly generated density from both neighbors is distributed back onto 

the original segment. 

Thus, at each time step the density at r is diminished by the newly created density p(r) 
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but increased by the contributions APL(r)  and APR(r)  from the neighbors at r ± szl, 

As 
APL (r) = 	- s'l), 	 (5.17) 

As 
APR (r) = —p(r + s f1). 	 (5.18) 

2s1 

The total density change due to this diffusive re-distribution is then given by 

As pdiff(r) - 	[p(r - s1) + p(r + s'l) - 2p(r)]. 	(5.19) 

Taylor expansion around r of first two density terms on the right-hand side yields 

LS ) V,2&),  p(r - s'l) p(r) - s'VLp(r) + ---Vp(r), 	 (5.20) 

(s  
p(r + s1) p(r) + sVjp(r) + —

)2
---V?p(r), 	 (5.21) 

where V1 and V,2  are the first and second derivatives along the spatial direction of the line. 

Inserting the above two equations into Eq. (5.19) yields 

tpdiff(r) = urn _sV?P(r)) 	 (5.22) 
(Ls1 

At-0 'At _2 

which is the general formulation of the diffusive correction term. 

As fragmentation is related to orientation space discretisation in the presence of curvature, it 

is useful to express the correction in terms of the respective parameters. We use the identity 

L\s 	Lk 	Ok = ------- = —st-- for At - 0 
s 	 k 

(5.23) 

and observe that the segment length s1  is related to the curvature and orientation space 

discretisation parameters by s' = Lio/k. This allows us to rewrite Eq. (5.22) as 

= _ 2 (Ap)'  ak  
-i- Vi p. (5.24) 

In this expression we have introduced p as a shape factor to account for the fact that, while 

our argument is based on considering the lifted line as a sequence of segments of a par-

allel line bundle, a numerical discretization of the line in terms of Gaussian functions is 

more akin to a sequence of rounded 'blobs'. In practice, we determine this factor from 
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(a) Expanded loop without diffusive cor- 	(b) Expanded loop with diffusive correction 
rection term after 3500 steps with 	 term after 3500 steps with At = 0.1 and v = 
At = 0.1 and v = 1.0 (R = 380 nodes) 

	
1.0 (R = 380 nodes) 

Figure 5.5: Expansion of a circular loop with 60 nodes in ca-direction: projection of the 
density P(r,)  into the spatial plane. The initial configuration was the same as 
in Fig. 5.1(a). 

numerical experiments to achieve an optimum balance between the dual requirements that 

(a) fragmentation should be efficiently suppressed and (b) the density profile of the line 

bundle should be preserved, i.e., no additional dispersion in the glide direction should be 

introduced. For the chosen discretisation of 60 nodes in angular direction an optimal value 

for i can be identified as 

/topt  0.3. 	 (5.25) 

For larger values u > /.Lc,t the diffusive effect introduces a significant reduction in peak 

density and smearing out of the line profile, whereas for ,u < lk,t the violation of div & 

0 is still appreciable. In Fig. 5.5(b) one can observe the mending effect of the correction 

term. 

In Fig. 5.6 the temporal evolution of the sum of the mean absolute value of div a11  is shown 

for different correction methods. Ideally, the sum of div 	would be zero for all steps. 

Due to the numerical approximation, however, it is non-zero right from the beginning and 

always increases. A larger amount of diffusion decreases the sum of 11 div all  11 by compar-

ison. The optimum amount of diffusion obtained for ,uopt  is a trade-off between minimizing 

11 diva" 11 and maintaining the correct peak density value. Relaxation of p along the dislo-

cation line proves the most effective method, however, carrying out the relaxation to achieve 
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the shown accuracy requires between 10 and 30 relaxation steps after each time step, which 

causes an increase of the overall computation time by a factor of more than 10. Evaluating 

the diffusive correction, on the other hand, can be done 'on the fly' and does not cause a 

notable increase in computation time. For a geometry factor of p = 0.3, we observe an 

efficient supression of loop fragmentation. 

We finally note that the same considerations as above also hold for the shrinkage of a loop. 

In this case the diffusion coefficient becomes negative which allows the loop to localise. 

0.0008 

0.0007 

0.0006 

- 0.0005 

-u 
= 0.0004 

0.0003 
0 
0 

0.0002 

0.0001 

- -= 0.1 
= 0.3 

li relax a 
- --- ---- relax p along the line 

0 	 I 	 I 1 	 1 I 

0 	500 	1000 	1500 	2000 	2500 	3000 

number of steps (with it = 0.1, v = 1.0) 

Figure 5.6: Temporal evolution of the sum of the absolute values of div a11  for different 
diffusive correction terms. 
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Homogeneous distribution of expanding loops with anisotropic velocity 

In the previous test cases all non-spatial terms (i.e. terms containing derivatives w.r.t. the 

line orientation ) vanished in the evolution equations for the scalar density Eq. (4.24) and 

mean curvature Eq. (4.25). In the following, we will show that these terms play an important 

role when it comes to studying non-trivial density distributions and system geometries. 

Anisotropic dislocation velocity When we assume an anisotropic velocity law, where v 

explicitly depends on ço, the velocity is no longer a constant for a fixed spatial point (x, y) as 

it changes with line orientation . As a consequence, those terms in the evolution equations 

which are related to the angular velocity 79 contribute to the system evolution. One possible 

form for a simple anisotropic velocity law is 

V(r ) = v0/(1 - x) sin' p + (1 + x) cos2 , 	 (5.26) 

where x E [0... I[ is  a factor governing the velocity anisotropy in (p-direction (x = 0 gives 

no anisotropy) and v0 is a constant velocity parameter. This particular mobility law is such 

that it expands a circular loop into elliptical shape (Fig. 5.7). 

2pi 

Pi  

(a) circular dislocation loop 
	

(b) same loop and velocity as in Fig. 5.7(a) in the 
with velocity in the spatial 	configuration space 
plane 

Figure 5.7: Dislocation loop with anisotropic velocity function. The angular velocity shows 
as a vertical component of the velocity along the lifted loop in Fig. 5.7(b). 

Fig. 5.7 schematically shows a sketch of this type of velocity function. The rotational 
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velocity 19 (as defined in Eq. (4.17)) can be written as 

	

19 = —VLV = - cos co5v + sin çov + kv, 	 (5.27) 

which simplifies for the velocity law Eq. (5.26) to 

19 = k5. 	 (5.28) 

Curvature evolution Let us assume as initial condition a homogeneous distribution of 

	

dislocation loops with the same initial radius, and thus k(t = 0, r, ) 	ko. The evolution 

of curvature due to the anisotropic velocity law occurs along the '-direction only and reads 

	

0k = —vk2  - Vv - \7vk = —vk2  - k23'O 	 (5.29) 

as the spatial derivatives vanish. Change of curvature occurs only due to curvature pro-

duction during expansion/shrinkage of loops (the first term of Eq. (5.29)) and rotation of 

adjacent line segments with different rotation velocity. 

Analytical solution for the curvature For the special case of an elliptical loop we can 

write the minimum and maximum curvature (i.e. the curvature at the intersection points of 

the ellipse with its minor and major axes) as 

k(o)  = b and k(o5)  = 
a 	

(5.30) 

where a and b denote the length of minor and major axis respectively. The time evolution 

of a and b can be easily obtained by considering the initial radius 1/ko, expansion velocity 

v and elapsed time t: 

a = 1/k0  + v(o)t and b = 1/ko  + v(05)t. 	 (5.31) 

In Fig. 5.8 the numerical solution of Eq. (5.29) is compared with the analytical solution for 

the evolution of curvature for two points of minimum and maximum curvature as given by 

Eq. (5.30) and Eq. (5.31). 
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Figure 5.8: Ananlytical and numerical curvature evolution for the line orientation = 0 
(upper curves) and = 0.57r (lower curves) for an anisotropy factor a = 0.3, 
v0  = 1, and an initial loop radius r0  = 1/ko = 29 as parameter 

Quasi-discrete expanding loop with anisotropic mobility law 

Now we apply the same elliptical velocity law to the density distribution corresponding to 

a single, quasi-discrete loop. This problem differs from Section 5.2 since the second term 

of Otp in Eq. (4.24), which governs the transport of density in angular direction, now no 

longer vanishes. For the velocity law under consideration, this term is given by O(p79) = 

9(,,(pkDv), and the set of evolution equations then reads 

atp = - (div(pv) + 0,(pk9,v)) + pvk 	 (5.32) 

Otk = —vk2  - k29v. 	 (5.33) 

Density transport in angular direction corresponds to the rotation of line segments. An 

illustration of the coupled spatial and angular transport of a discrete line segment is given 

in Fig. 5.9. 

The prescribed velocity function is such that a circular loop should become elliptical in 

shape. Fig. 5.10 shows the evolution of an initially circular density distribution in the con-

figuration space. The ability to rotate segments is a key feature of the field equations, which 

proves crucial for a correct description of plasticity in constrained systems (cf. Chapter 6). 
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Figure 5.9: A line segment during loop expansion gets rotated because it moves perpendic-
ular to its line direction with an anisotropic velocity law. 
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Initial density distribution: 

1.001" 

0.75 

0.50 

0.25 1 

27 
(a) scalar density p1 (x,y) = 	 at 

0 
t=0 

Evolved density distribution: 

1.001,  

0.75 

0.50 

0.25 

U 	0.25 I, 	0.50 I, 	0.75 1 	1.001. 

x 
(c) scalar density pt  (x, y) at t = 180 

0.0ir0 	
0.25 1, 	0.501, 	0.75 1, 	1.00 1, 

x 
(b) projected density p(x, ') = f P,dY 
at t = 0 

- - 0 	0.25 I, 	0.50 1, 	0.75 1, 	1.00 1, 

x 
(d) projected density p(x, ) at t = 180 

Figure 5.10: Temporal evolution of an initially circular density distribution with 
anisotropic velocity (Eq. (5.26)) with x = 0.3 and velocity v1j = 1. The left 
column shows the projection of the lifted density on the spatial plane, while 
the right column shows the projection on the x - plane. 
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Distribution of loops in a constrained channel geometry 

By assuming a homogeneous distribution of initially circular dislocation loops in a con-

strained channel, we can study a case where all components of the evolution equations 

become relevant. In the following we assume a system that is homogeneous in y direction 

and confined by boundaries that are impenetrable for dislocations at x = 0 and x = l. (cf. 

Fig. 5.2). 

Y 

	

channel width l 	 - 

= 

(a) channel geometry 

© 
W 	 to 

(b) velocity profile 

Figure 5.11: Slip channel geometry with sketch of initial distribution of loops with same 
radius. In our numerical simulation, though, those are represented by the 
dislocation density and mean curvature. The system is homogeneous in y-
direction. The profile below shows schematic a velocity profile: © and © are 
the 'boundary layers' with width w, © is the 'field'. 

Initial values for our numerical simulation are obtained by summing up the density fields 

of quasi-discrete loops (as e.g. in Fig. 5.1(a) where the density was obtained as Gauss 

55 



Exploration of the CDD Evolution Equations 

function representing the line) for all admissible positions such that no loops intersects the 

boundary walls of the channel. 

#Joops 

	

P(w) = I Pr,)* 	 (5.34) 

This has the effect that the density in the configuration space near the boundaries takes a 

wavy shape as shown in Fig. 5.12(a) (if the density had a constant value for all (x, ) this 

would imply that some loops had to penetrate the wall). 

The mean curvature values have to be obtained during this summation as well. For each 

quasi discrete loop we obtain the curvature as the inverse distance from the loop center. We 

first sum up pk 

#loops 

(Pl)(rp) = 
	 (5.35) 

i= 1 

because k is not well defined for regions with vanishing density. If we numerically ensure 

that p is non-zero for all (r, ) by e.g. adding a very small number E we can obtain the 

mean curvature by 

k(r) = (Pk)(r,) 
#100ps 	 (5.36) 

Prp 
i=1 

With this procedure we ensure that the initial values are as close to the 'divergence-free'-

state as possible, thus ensuring the solenoidality of all. The curvature for the loop distribu-

tion shown above takes a very similar form as the density and is shown in Fig. 5.12(b). 

Boundary conditions are modeled by a prescribed velocity function, which smoothly 

decays to zero inside a thin layer - the boundary layer - directly at the walls (cf. Farrell et al. 

(2000) for more mathematical details). For each boundary we use the positive half of a 

sigmoidal function, e.g. 

2 

	

Ax) = _______ - 1 	 (5.37) 
1 + e 
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(a) initial density 	 (b) initial curvature 

Figure 5.12: Initial value distributions corresponding to the sketch in Fig. 5.2. The initial 
loops radius is 0.31. 

for the left boundary layer. p(x) is 0 for x = 0 and approaches 1 for x > 0. Then the 

velocity has the form 

v(x, o) = vop(x) P(1 - 	 (5.38) 

which is independent of the line orientation3. To analyse these boundary conditions we 

study the motion of a segment with initial position x0 and orientation 

X(t) = x0 + 

/ 

vxd = x0 + t cos v 	 (5.39) 

	

(t) = o + / 
	

= o + t (cos 3v + k&v) 	 (5.40) 

= 'o + t cosov. 	 (5.41) 

Here, vX  denotes the velocity component in x direction, 89 is the velocity component in o 

direction. 

Eq. (5.41) shows that it is the spatial velocity gradient which is responsible for the change 

of orientation: with the sign convention from Fig. 4.2 it can be seen that only dislocations 

with orientation = 	r or = ir do not experience any further rotation since then 

the cos term vanishes and o(t) becomes static. All other line segments get rotated, either 

towards 1  it or 1  it, respectively. The gradient of v as well as the deviation from the static 

3v needs not necessarily to be independent of i; in general v is defined on the same space R x R x S as 
also p and k. 
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orientation define the magnitude of change in orientation. 

To visualise this mechanism we track the path of an infinitesimal line segment on its way 

through the boundary layer inside the configuration space, i.e. in mathematical terms we 

construct the integral curves of the vector field v(x, ) = (v', ,d). This is, strongly magni-

fied, shown in Fig. 5.13 for the left boundary layer. 

impenetrable wall 

1. 5ir 

0.57r 

V 
1.00 

0.75 

0.50 

0.25 

0.00 

0 	 - 
x=0 	 x=0.5w 	 x=w 

Figure 5.13: Streamlines of an infinitesimal line segment in the boundary layer i3 is a 
normalised velocity and represents a resulting velocity in the configuration 
space. The underlying velocity function v(x, cc) (not shown in the plot) is 
constant in orientation direction and decays from right ('field area') to left 
(boundary) towards zero. 

In the plot the background colors represent a normed velocity i = IIVIIRxr,,where the norm 

is defined by 

RxS = 
T 	

V  
(- + 	, 	 (5.42) 

X) 2  ( t9) 2  
271- 

with w the width of the boundary layer and T a proportionality factor of unit time such that 

max IV ( ,)  11 = 1. The motivation for this norm is to obtain a measure for a velocity in the 

configuration space by scaling all velocity components to the same orders of magnitude. 
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We observe that all line segments with orientation ir < 	< 27r are moving towards the 

left impenetrable boundary. On their way they get rotated such that when touching the wall 

they are indeed oriented parallel to the wall (W = 1.57r). 

Considering the lower half of Fig. 5.13 , i.e. orientations inbetween 0 and ir one may ask 

whether the 'outfiux' (line 5) can be physically interpreted? Assuming a loop distributions 

as for instance in Fig. 5.2 one would not expect any dislocation density in the lower half 

of the boundary layer. The reason is that generally speaking one assumes the boundary 

layer width to be 'small' such that its width does not have a strong influence on the system. 

'Small' however, can only be defined w.r.t. to the channel geometry and the dislocations, 

i.e. their loop radius. The closest a line segment with orientation 7r/2 gets to the left wall 

is twice its radius. In the following we always will assume that the boundary layer width 

is considerably smaller than this (the lower limit is given by the number of discrete nodes 

required to represent this smoothly differentiable jump function)4. The limit case of straight 

dislocation segments with orientation 	= 0.57r (parallel to the wall) results in horizontal 

streamlines. Hence, either there is no outfiux because there is no density or the outfiux is 

physically reasonable. In both cases also the lower half of Fig. 5.13 is reasonable. 

Temporal evolution: 	The effect of the boundary conditions on the initial distributions 

can be observed in Fig. 5.14. The dislocation loops homogeneously expand in the veloc-

ity field, leading to an increase in overall dislocation density. Once the line segments (or 

oriented density respectively) reach the boundary layer they get rotated towards parallel 

orientation along integral curves similar to those shown in Fig. 5.13. Density of only one 

orientation is accumulating at the impenetrable walls. 

The four smallish dark spots in the S-shaped band of the curvature, Fig. 5.14(d), are curva-

ture maxima representing the kink that a threading dislocation (stemming from an expanded 

loop) would have: at boundary = line parallel to the boundary, outside boundary area = line 

mostly perpendicular to boundary, in between a growing kink. We elucidate this effect in 

Section 5.2 where we treat a single loop in a channel. 

The four large dark curvature areas in regions where no density is present are a numerical 

artefact. One could use the evolution equations for or. 1  instead of those for p and k in order 

4IdeaIly, the boundary layer width tends towards zero width, which leads to extremely steep velocity gra-
dients inside the boundary layer. To minimize discretization error one could use discretizations of different 
coarseness for the boundary layer and field (Farrell et al., 2000). For the benchmarks problems under consider-
ation it is sufficient to employ a fine but uniform mesh. 
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Figure 5.14: Temporal evolution of density and curvature distribution in a constrained 
channel with impenetrable boundaries. 

to avoid having to divide by p. Instead of Ok one would then have to integrate Ot (pk) 

and therefore could avoid the diverging behavior of the curvature in regions with vanishing 

density. However, k (and not pk) is required for the transport term in direction in 0tp. 

Directly at the wall the curvature is zero for orientation parallel to the wall: straight line 

segments get deposited. 
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Quasi-discrete loop in constrained channel geometry 

To comprehend the evolution of the density in the constrained shear channel with continuous 

density distribution one can again look at the behaviour of a discrete dislocation loop by 

prescribing the initial density as in Fig. 5.15(a). 
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:::: . .. 0 
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(a) initial State 

1.00 ly  

0.75 

0.50 IV  

0.25 

0.251. 	0.50 t 	0.75 1. 	1.00 1.  

loop is under influence of the boundary layer and gets partially 
slowed down 

1.00 IV  

0.251YFC 

	

o' 	 I 

	

0 	0.25 1, 	0.50 1 	0.75 l, 	1.00 l 

density parallel to the wall gets disposed, adjacent segments get 
rotated towards horizontal orientation 

Figure 5.15: Evolution of a loop in constrained channel. The lower and upper walls of the 
channel are impenetrable; the prescribed velocity decays to zero. The system 
is not constrained in horizontal direction. 

The evolving system shows accumulation of density at the impenetrable boundaries at y = 0 

and y = l,,. One of the key mechanisms that can be observed here is that the loop is not 

'torn into parts'. The line production term pvk is responsible for this effect. 
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Chapter 6 
Application to Microbending 

To investigate the performance of our CDD simulation scheme in a physically relevant situa-

tion, we consider the problem of micro-bending of a free-standing thin film (Sandfeld et al., 

2009b, 2010). This problem has several interesting features: (i) One is dealing with an in-

trinsically heterogeneous deformation state where the 'composition' of the dislocation ar-

rangement changes over time due to the growing strain gradients; (ii) these strain gradients 

are associated with pronounced size effects that have been studied extensively using various 

dislocation-based models (e.g. Gao et al., 1999; Zaiser & Aifantis, 2003; Sedláèek, 2005b; 

Zaiser etal., 2007; Schwarz et al., 2007); (iii) the presence of an elastic core at the center 

of the specimen leads to the spontaneous emergence of large curvatures in the dislocation 

system, and hence provides an interesting test case for the numerical accuracy of our com-

putations in a situation where all terms in the evolution equations Eq. (4.24) and Eq. (4.25) 

make appreciable contributions to the evolution of the dislocation system. 

6.1 Model Geometry and Stress State 

Figure 6.1: Microbending simulations: Investigated slip geometry. To is the bending stress 
(resolved shear stress in the slip systems) in the absence ofplastic deformation. 

We consider bending of a free standing thin film of thickness h. The normal vector of 

the free surfaces is denoted by 	and we assume without loss of generality that n is 

perpendicular to the y axis of a Cartesian coordinate system. The dimensions of the film in 
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where a 	0.4 is a non-dimensional constant characterising the strength of dislocation- 

forest interactions and Pt  is the total dislocation density as defined in Eq. (4.16). 

In our constitutive model we neglect effects of large-scale dislocation curvature on the dis-

location velocity (line tension as considered by Sedláek (2005a) and Zaiser et al. (2007)). 

We also neglect back stresses resulting from the 'piling up' of dislocations of the same 

sign (Zaiser et al., 2007), which are also implemented in DDD simulations of microbend-

ing (Yefimov et al., 2004; Cleveringa et al., 1999). Consistent with our assumption that 

dislocation motion is controlled by forest interactions, we do not impose specific boundary 

conditions to account for image effects at the free surfaces. Instead, we allow dislocations 

of all orientations to enter or leave freely, simply extrapolating the dynamics inside the film 

across the boundary (similar to the 'natural' outflow boundary conditions in (Yefimov et al., 

2004), where - contrary to our boundary conditions - only outflow and no inflow of dislo-

cations from the surface was allowed). In physical terms our boundary conditions imply 

that we assume that surface sources have no activation stress other than the yield stress that 

controls near-surface dislocation motion inside the sample. 

6.3 Results 

As initial condition for our simulated bending tests, we assume an isotropic dislocation 

distribution with zero mean curvature k = 0 and space-independent total dislocation density 

p = 1013m 2, i.e., initially dislocations of all orientations are present with equal density 

p(x, ) = (1/27i-) x 10'3m 2. This initial condition describes a statistically homogeneous 

and isotropic arrangement of straight dislocation lines threading the film at random points. 

We carry out bending tests for various prescribed bending moments. In physical terms, 

this corresponds to keeping an initially imposed curvature radius on the film. We solve the 

equations of motion during relaxing the system and simultaneously evaluating the increase 

of the plastic strain and the concomitant decrease of local stresses and increase in flow stress. 

Due to these changes in the internal stress state the strain rate gradually decreases towards 

zero. We trace this relaxation until the maximum strain rate has everywhere dropped below 

a prescribed low level and then record the bending moment M and strain profile 'y(x) as 

well as the dislocation and curvature patterns p(x, ) and k(x, ). 

The following examples were computed using finite differences with an equidistant mesh. 

The resolution was about 700 spatial nodes and 100 angular nodes; a fifth-order Runge- 
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Figure 6.3: Dislocation density and curvature patterns in (x, ) configuration space for a 
film thickness of h = 3,um and bending moment (per unit length in y) M = 
2 . 10 13GPam2. The modulus of the Burgers vector was b = 0.256nm, the 
shear modulus C = 48.3GPa. 

Kutta method with adaptive step size control turned out to be an effective time integration 

scheme: the computational cost on a 2.4 GHz quad core work station for each of the fol-

lowing simulations is about 20 minutes. 

Streamlines of the velocity field As we did already in Section 5.2 (Fig. 6.4 and respective 

explanation) we can again investigate the behavior of an infinitesimal line segment in the 

configuration space. The main difference here is, that the velocity is changing in time, i.e. it 

approaches zero in the converged state. In Fig. 6.41  line segments 1-3 are moving towards 

the elastic zone (1 and 2 are surface sources), segment 7 is a dislocation with negative 

edge orientation and exits the film after t = 0.6T 00  while segment 4 and 6 are subject 

to very strong rotations towards positive edge orientation. One can observe that in general 

dislocations with (near) edge orientation (e.g. p = 0.571 and = 1.571) do not get rotated 

and simply translate in spatial direction. The bigger the screw-part of a dislocation the 

stronger the rotational effect on the dislocation. 

Furthermore, the streamlines explain why the density plots in Fig. 6.5 exhibit a somewhat 

roundish shape towards the elastic core: the reason is that some dislocations 'get stuck' 

somewhere inside the film before they could reach the elastic core. 

tor more details on the construction of the integral curves please refer to Fig. 5.13 
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Typical density and curvature patterns are shown in Fig. 6.3. These patterns are charac-

terised by the presence of an elastic core region where the stress r0(x) is less than the yield 

stress corresponding to the initial dislocation density. No deformation activity takes place 

within this region and, hence, the dislocation density and curvature remain at their initial 

values. Curvature spatially localizes near the boundaries of the elastic core region which are 

moving inwards with increasing stress. Ideally the curvature maxima in x-direction would 

be restricted to a point only, which would be located at the border of the elastic core and 

mathematically has singular character. This singularity can not be treated by the numerical 

scheme which smoothes out the high gradients. As a consequence the curvature gets slightly 

smeared out in spatial direction. In physical terms this can be understood as assuming a 

smooth transition in velocity from the elastic core (v = 0) and the plastic regions instead 

of a sharp kink. In physical terms the very localised, sharp kink is not reasonable since it is 

not possible to bend a dislocation line with an arbitrarily high curvature. The smeared-out 

shape in p-direction is correct and can be properly represented by our numerical scheme. In 

terms of the orientation coordinate, curvature is strongest for near-screw orientations while 

edge dislocations are only weakly bent. Density accumulates in the = 37r/2 direction, 

which is the orientation of edge dislocations required to accommodate the bending strain 

gradient. At the same time, the density of dislocations of other orientations decreases. The 

decrease is most pronounced for the = 7r/2 orientation, i.e. for edge dislocations of the 

opposite sign. 

As the strain increases, we observe that the total dislocation density in the plastic regions 

increases strongly, as shown in Fig. 6.5. This increase goes along with an increase of the 

all  component of the Kroner-Nye tensor, i.e. accumulation of 'geometrically necessary' 

dislocations required to accommodate the increasing plastic strain gradients around the nar-

rowing central elastic core. This is illustrated in Fig. 6.6. 

We note in passing that the values for -y are compatible with those of the Kroner-Nye tensor 

Eq. (4.13) in the sense that \7x'y  exactly yields the shown a, which might not be obvi-

ous from Fig. 6.6 where 'y  appears to be piecewise straight. Nonetheless, there is a small 

transition from the range with linearly increasing 'y to the the elastic core within which 'y 

smoothly decays to zero. 

The increase of total dislocation density that comes with the accumulation of geometri-

cally necessary dislocations leads, according to the Taylor relation, to an increase in flow 

stress. As strain gradients are bigger in smaller specimens and therefore the accumulation 
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Figure 6.5: The top diagram shows the total dislocation density pt(x).  The left and right 
diagrams show the densities of edge and screw dislocation for h = 3[tm: 
Pedge = P(0 = 0.571) + p(ço = 1.57r) and Pscrew = p(o = 0) + p(ço = 71). 

of geometrically necessary dislocations is more pronounced, this leads to a size dependent 

hardening. This is illustrated in Fig. 6.7 which shows the scaled bending moment M/h2  as 

a function of the average plastic strain ('y) = (1/h) j42 'y(x) I dx. While the initial flow 

stress is size independent, the hardening rate and the flow stress at finite strain increase with 

decreasing film thickness. 

6.4 Discussion 

An often-repeated argument for analyzing this type of size-dependent behavior (see e.g. 

Gao et al. (1999)) runs as follows: The dislocation density in a material is the sum of a 

geometrically necessary density PG  (up to a geometrical factor 77 equal to the strain gradient 

divided by the Burgers vector modulus) and a so-called 'statistically stored' density ps. (The 

latter is in fact nothing but the total dislocation density minus the geometrically necessary 

one, but the argument treats it like an independent physical variable.) From Taylor's relation 
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for the flow stress one obtains 

= aGb 	= aGbps + p = aCb/ps + jvi. 	(6.6) 

One then makes the crucial assumption that the strain dependence of the 'statistically stored' 

density ps ('y) does not depend on the presence or absence of strain gradients. Estimating 

the characteristic strain gradient as ('y) /L where (-y) is a characteristic strain and L a char-

acteristic dimension of the specimen then leads to a scaling relation for the characteristic 

flow stress r: 

= [T , ] 2  + a2G2b, 	 (6.7) 

where 	= 	 To test this scaling relation we have to translate the notations 

to our problem. The characteristic dimension L corresponds to the film thickness h, and 

the macroscopic flow stress corresponds to the scaled bending moment M/h2. As strain 

measure we use the average plastic strain (y)  as defined above. The infinite-system limit 

is obtained by solving the bending problem for an ideally plastic material with flow stress 

corresponding to the initial dislocation density. The corresponding deformation curve is 

denoted as [M()/h2] 	:= 1imh.00[M(),h/h2]. The total dislocation density (Pt)  in the 

specimen is obtained by averaging p(x, ) over the specimen cross section and integrating 

over all orientations ', and the 'geometrically necessary' density (P0) is obtained as the 

minimum density of dislocations on each of the two slip systems required to accommodate 

the plastic strain gradient: We evaluate the component all  of the dislocation density tensor, 

average this over the specimen cross section, divide by b and multiply with the geometrical 

factor 1/(2 sin 0). 

If the above argument would apply to our simulations, a plot of [M(),h/h2 ] 2  - [M()/h2] 
00 

versus the scaled plastic strain (-y)b/h should yield a straight line passing through the origin. 

The same should be true for a plot of the total dislocation density (Pt)  (reduced by the 

infinite-system value) versus the scaled plastic strain. Our simulations, however, indicate a 

different behavior. Even though the 'geometrically necessary' dislocation density increases 

approximately linearly with scaled plastic strain, the same is not true for the total dislocation 

density: the increase in total density initially lags behind the increase in the 'geometrically 

necessary' density and only catches up at large strains (Fig. 6.8). As a consequence, the 

scaling plot of the reduced bending moment vs. the scaled plastic strain (Fig. 6.9) fails to 
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produce a straight line. 

What are the reasons for the discrepancy between the simulation results and the naive scal-

ing argument? Our investigation of dislocation density evolution indicates that the linear 

increase of the 'geometrically necessary' density with reduced strain is not matched by a 

concomitant increase of the total density, and hence of the flow stress. The reason is that 

we allow dislocations to change their orientation, besides freely entering or leaving through 

the specimen surface. 

As a consequence, part of the increase of the 'geometrically necessary' density is not pro-

duced by additional dislocations entering through the surfaces, but rather by changes in 

orientation of existing dislocations and by the loss of dislocations of the 'wrong' sign. 

Therefore the size effect manifests itself only after an 'incubation strain' during which the 

geometrically necessary density increase is mainly accommodated by the rotation of exist-

ing dislocations. Only after this is exhausted, additional dislocations have to enter from the 

surfaces and we observe a transition towards a linear increase of dislocation density with 

strain/strain gradient and a concomitant size dependent hardening as predicted by standard 

models. As a consequence, the total dislocation density increases, at least for small strain-

s/large system sizes, much less than expected according to the simple scaling argument. 

This indicates that the assumption of a separate 'statistically stored' density that evolves in 

a size-independent manner is not warranted. 
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Figure 6.8: Scaling plot of the total and 'geometrically necessary' dislocation density vs 
reduced strain ('y)b/h. The upper line group is the plot for (p),  the lower line 
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Chapter 7 

Derivation of simplified equations 

7.1 Motivation and introduction 

Whilst exploring CDD in the previous chapters (Chapter 5 and Chapter 6) one could see 

that both simple benchmark problems and physically relevant problems can be tackled with 

this theory. However, when extrapolating the necessary computational effort and required 

memory storage to larger systems (e.g. a truly 3-dimensional polycrystal with multiple 

slip systems) it becomes evident that technical issues might become a limiting factor for 

the straightforward application of CDD: e.g., a two-dimensional glide plane in a three-

dimensional single crystal as used in Chapter 6, Application to Microbending, would be 

discretised by about 1000 nodes in both spatial directions and about 100 nodes in angular 

direction. Each point of the glide plane needs to keep track of at least p, k, t9t o, 3k and 

v (neglecting the fields for plastic strain 'y and stresses which have no angular components 

and thus require only a fraction of the memory needed by the other fields). This amounts to 

5. 108 . 8bytes 	4GB of computer memory for one glide plane, which can only just be 

handled on a workstation computer; increasing the number of glide planes and considering 

that the computational cost increases linearly with the number of glide planes indicates that 

the storage requirements become a true problem and thus gives rise to the question whether 

CDD could be simplified to reduce the number of degrees of freedom. 

Hochrainer showed that this is indeed possible if one makes some simplifying assumptions 

(Hochrainer et al., 2009, 2010) . In the following we start by giving a slightly more detailed 

overview than presented in the afore mentioned publications over the necessary steps for 

the simplification along with comments on the required assumptions. Special emphasis is 

put on the rotational velocity and the consequences from the simplifications. Afterwards, 

we explore the evolution equations of the 'simplified Continuum Dislocation Dynamics' 

(abbreviated by sCDD) numerically and compare them to those of CDD. 

in Hochrainer et al. (2009) these derivations were first attempted and published, the evolution 
equation of mean curvature in this paper was later revised in Hochrainer et al. (2010) 
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7.2 Evolution Equations for the scalar field variables 

Starting point of the derivation is CDD in the form as introduced in Part II. There, the 

evolution equations for density and curvature, Eq. (4.24) and Eq. (4.25), were obtained 

under the assumption that in the same spatial point dislocations of different orientation can 

have different velocity and curvature, while - in the same point - dislocations of the same 

orientation must have the same velocity and mean curvature. With the aim of reducing 

the number of degrees of freedom, this restriction was even enforced in Hochrainer et al. 

(2010) by assuming that all dislocations in a spatial point do have the same scalar velocity v, 

even though the velocity vectors v = vu of course differ. Then the orientation coordinate 

is no longer needed. In sCDD the total dislocation density Pt  and the geometrically 

necessary edge and screw components play an important role. The former can be derived 

from the higher order scalar density by integration (Eq. (4.16)). With the sign convention 

from Fig. 4.2 for the angle p, the usual assumption of a constant Burgers vector b = be1 

	

and Eq. (4.13) we define two scalar densities 	and frt11  as 

2ir 	 2ir 
Cell := 	= fP() cos(y) d 	and 	n := 	= 	sin() d 	(7.1) 

0 	 0 

which represent the averaged GND density of edge and screw dislocations, respectively. 

The Euclidean norm of ice' + i ye2  is exactly PG  from Eq. (3.15) with 

PG 	+ 4 
	

(7.2) 

As a preparation for the next steps we use these quantities to define the average tangent 

vector of GND density I (compare Eq. (3.14)): 

I = ex COS (pG+ey sin (PG 	 (7.3) 

where tan PG = -, COS = - and sin PG = - 
PG 	 PG 

Again, v is the vector perpendicular to the line direction I. 

Evolution of scalar density The evolution of the total dislocation density can be obtained 

by taking the time derivative of Eq. (4.16), interchanging differentiation and integration and 
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inserting the evolution equation for the density Eq. (4.24) 

27r 

3tPt = f 	= f (—  (div (pv) + 8 (pd)) + pvk) d. 	(7.4) 

The above assumption of a line orientation-independent scalar velocity reduces the second 

term of the integral - which governs the angular transport of density - to 

OV (- cos çop3V + Sfl (pp5v). 	 (7.5) 

Here we used 9 in the formulation given in Appendix A, Eq. (A.7). Integration over all 

orientations and substitution by Eq. (7.1) yields 

2-ir 	 27r 

P, (pt) d = 
	

( cos OxV + Sfl pa) d = 0. 	(7.6) 

We would like to point out that the vanishing integral does not imply that also the integrand 

vanishes. As a consequence, density still can change its orientation ('rotate') while the total 

amount of density in each point is conserved w.r.t. this term. This is for instance crucial 

for the conversion of SSD density into GND density and visa versa as was shown to be of 

importance in Chapter 6. Contrary to CDD the rotation/rotational velocity is no longer an 

explicitly visible component of the sCDD's evolution equations. 

Now we can write the evolution equation for the total density Eq. (7.4) as 

27r 

	

8tPt = - div ( 7P(ex sin - e cos ) d) + v jpk d 	(7.7) 

= - (D(vtc) - O(v)) +vfpkd 	 (7.8) 

Integration of the (11)- and (12)-components of Eq. (4.23) yields the evolution equations 

for the GND density components 

= —&,,(pv) and &t/'y = +&x (pv) 	 (7.9) 
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For brevity we will use the following definition 

V,(v) := 	- t9y(vic). 	 (7.10) 

Evolution of mean curvature As a convenient abbreviation we define 

27r 

Tk 	jpk dW 	 (7.11) 
0 

2ir 

- fpkdço 
pk  
Pt - 27r 	' 	 (7.12) 

f p d 
0 

where both quantities do not have any dependency now. Note that p/c is the averaged third 

component of the dislocation density tensor of second order Eq. (4.14). Using pk instead 

of only k as a field is useful even in CDD: there the p/c term can be easily defined even 

for regions with (almost) zero density, while it is not clear how this should be done with k 

alone (what is a reasonable dislocation curvature if there is no dislocation?). 

We would like to point out that the averaging in definition Eq. (7.12) is an additional aver-

aging in the sense that already in CDD k is the mean curvature, i.e. the average curvature 

of line segments with the same orientation. /c now is a further averaged value; it is the 

curvature of all line segments in one point regardless their orientation. 

For obtaining the evolution of the curvature one has to make the additional assumption that 

the curvature (as well as the velocity) does not depend on the line orientation. In quasi-

static situations where the curvature is determined by the requirement that the line tension 

compensates the local stress tantamount to assuming a line tension that does not depend on 

the line orientations. 

5tic can be obtained from Eq. (7.12) by taking the time derivative of the right equation 

and exchanging integration and differentiation in the denominator. In what follows we will 

derive an expression for the terms of at (pk) = pOtk + k0p. Insertion of the evolution 

equations for scalar density and mean curvature, Eq. (4.24) and Eq. (4.25), gives us 

Dt (pk) = —pVv - pVk - kDiv(pV) 	 (7.13) 

where in the last term the definition of the generalised divergence according to Eq. (4.26) 
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was used. The second and third term can be combined to Div(pkv) = pVk + k Div(pv) 

which gives us an expression for fJt (pk) 

= —pVv - Div(pkV) 
	

(7.14) 

All quantities in Eq. (7.14) are quantities defined on the higher order configuration space. To 

obtain an expression for the averaged curvature within the framework of sCDD we integrate 

Eq. (7.14) and split the Div-term in spatial and angular derivatives 

27r 	 27T 	 27r 

0t() = _fpvvd_fV. (pkv) d_f0 	d, 	(7.15) 

where the third integral vanishes upon integration in analogy to Eq. (7.6). The other two 

integrals can be simplified as follows: 

can be obtained by considering that k(r,,) is assumed to have no angular depen-

dency, i.e. k(r, ) = T. Exchanging integration and differentiation and pulling out 

the variables that do not depend of y yields 

27 

f V - (pkv) d = V. (v7Pvd d~o) 	 (7.16) 

where ji is the unit vector perpendicular to the tangent of the GND density. Ex-

plicitly rewriting this with the definition of ji results in th identity 

27r 	 27r 

fV - (pkv) d = V. (v f p(,,,) (_ Sfl , cos ) d) 	(7.17) 

With the abbreviation Eq. (7.10) we obtain 

	

fV - (pkv) d = V,(kv) 	 (7.18) 

©: We split the twofold gradient into a spatial and an angular component and use that 
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v has not angular dependency (i.e. Dv = 0) 

2-7r 	 27r 	 27r 

f
PV.2 vd = f pkO (cos 3v + sin Ov) d + f PV12v cl 	(7.19) 

27r 	 27r 

= kfp (_ Sfl 	+ COS DyV) d + 	dy (7.20) 

Tv, , (V) 

What is missing is a formulation of integral © on the right hand of Eq. (7.20) in terms of 

averaged quantities. To this end we recall that after averaging we only can differentiate 

between homogeneously distributed ('statistically stored') dislocations with a constant den-

sity along orientation direction and a GND density pc  where the only available information 

concerning the distribution arrangement in angular space is the average GND line direction 

Hence, expressing the averaged quantities of sCDD again in terms of the orientation 

space of CDD we have 

PS (A = ---- (Pt PG) 	 (7.21) 
2ir 

f PG if 
PG(Y) PG8ccG = 

), 	
(7.22) 

0 otherwise  

In Eq. (7.22) 6'G  is the Dirac delta function. Now we can proceed to derive an expression 

for integral ©: 

©: With the definition p() = PS (1P) + PG  ((p) and Eq. (7.22) we get the sum of two 

integrals 

2ir 	 2ir 

I 
P(w)'712v dw 

= 
Pt PG 

2 
f712vd+Pov?v 	(7.23) 

0 	 0 

where we used that po(cp) is non-vanishing only for a point pci.  Explicitly writing 

the integrand of Eq. (7.23) and subsequent integration of the resulting terms yields 

27r 	 27r 

f V,2V d = f (cos2 	+ sin2  0v + sin cos Ov) d 

= 7r ((9v + Ov) = 7rV• Vv 	 (7.24) 
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Now we can gather all expressions and insert them into Eq. (7.15) which gives us 

a 	
= Pt PG V  . Vv + kV,v + V, (kv) + PGV/?V. 	(7.25) 

The evolution of average curvature in sCDD is 

atk =  ( 	= -- ( O 	- 	 (7.26) 
\Pt) 	Pt 

where we used /Pt = To. Insertion of Eq. (7.8), Eq. (7.25) and applying the product rule 

to V (kv) yields the evolution of mean curvature 

9k
_V-k

2 
1 

(Pt+PG Pt 
Vj2v+PtP0V2v 

	

Pt 	/ 

- --- (V,v - vVk)). 	 (7.27) 
Pt 

Here, the two successive gradient operators evaluate for instance for the first term as 

= cos2  GOXXV + 2 sin G COS cOGDXV + Sfl 1OG0yyV. 	(7.28) 

- 	av+2''  a + 
- TJ 	-i-;j- 

sy 	1—fr0yyV, 	 (7.29) 

where we used Eq. (7.3) for the substitution of G  by the respective density ratios. Two 

extreme cases are represented by Eq. (7.27): 

Pt = PG: only GND density present, which implies a vanishing second term in the 

large bracketed formula such that 

	

= —v + V?v - (Vv - vV)'), 	 (7.30) 

where we used that 	= V(•) for pt = PG. 

In the following section, Section 7.3, we show that this case is identical to the formu-

lation Sedláèek uses e.g. in Sedláek et al. (2003). 

PG = 0: all dislocations are statistically homogeneous distributed, i.e. 

= 	0. 	 (7.31) 
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We assume that Vv+ V, results in the standard Laplace operator applied on v. Then 

Eq. (7.27) simplifies to 

Otk = —v 2  + 9v + 3v. 	 (7.32) 

Evolution of plastic distortion Here the density and velocity do not have the angular de-

pendency. Thus, the integral in Eq. (4.27) vanishes and the equation for the plastic distortion 

simplifies to 

001  = PtVfl ® b, 	 (7.33) 

which is exactly the Orowan equation in its original form. 

7.3 Recovering Sedláëek's theory from sCDD 

The foundation of Sedláek's theory is a formulation for the evolution of so-called 'single-

valued dislocation fields': those are fields of dislocations which are assumed to have the 

same orientation in an averaging volume (Sedláek et al., 2003; Sedláèek, 2004). This is 

essentially the same as in Kröner's classical continuum theory. 

To circumvent the restriction of single-valued fields Sedláëek introduces a density distribu-

tion function which is defined in a phase-space volume consisting of placement, orientation, 

curvature and time, similar to a function which is also used by El-Azab (2000). Sedláek's 

phase space essentially is a finite composition of single-valued dislocation fields. His the-

ory is able to distinguish between a (geometrically necessary) distribution of loops and a 

distribution of parallel lines, which Kröner's density measure could not distinguish. One 

of the differences of this space with regard to our higher-dimensional configuration space 

is that it is rather a sum of single-valued fields, thus Sedláèek's phase-space is not directly 

differentiable in e.g. ço direction. The main difference in terms of applicability is that in 

Hochrainer's theory - contrary to Sedláek's theory - the notion of 'geometrically necessary 

dislocation' and 'statistically stored dislocation' density becomes dispensable. 

Sedláek's theory is governed by expressions for the GND dislocation density PG  and the 

line orientation W. In this context, the curvature k is a derived quantity. The evolution is 
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defined by the following equations (compare Eqns. (2.75) and (2.77) in Schwarz (2007))2:  

aPG = div(pGv) + p0vk 	 (7.34) 

= vdiv(1) + V1v. 	 (7.35) 

Evolution of density Obviously, Eq. (7.34) is identical to Hochrainer's evolution equation 

Eq. (7.4) under the assumption that in each point only one line orientation prevails - the 

integrals vainshs and the term governing the angular transport as well. 

Evolution of orientation The evolution of orientation is related to a gradient of velocity 

along the line direction (Schwarz, 2007) by 

PGtcO = V1(pGv). 	 (7.36) 

We start the derivation at the equation of continuity (div(pl) = 0) which governs the 

solenoidality and assume that p = PG. Insertion of the definition of line orientation and 

multiplying by v we obtain 

vD (PG COS ço) +vOy (PG  sin ) = 0. 	 (7.37) 

Application of the product rule gives 

0X (PGV COS ) - pG3x (v COS  c) + D(pGvsin(p) - pG3y(v sin co) = 0, 	(7.38) 

which can be rewritten as 

Vt(pv) = div(vfl. 	 (7.39) 

Division by PG  and use of the identity div(aB) = a div(B) + grad(a) B yields 

atV = — V(pv) = vdiv(1) + V, (v), 	 (7.40) 
PG 

which is identical to Eq. (7.35). 

2Sedláëek and Schwarz use slightly different notations and sign conventions; for ease of readability we 
already adjusted those to our conventions. 
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Evolution of curvature To proof that both theories are identical it was sufficient to show 

that the evolution equations for density and orientation are identical since the curvature is a 

dependent variable in Sedláek's concept. For the sake of completeness we give a derivation 

(originally by Hochrainer) and show that also the evolution of curvature is identical in both 

theories3. Point of departure is the relation l3i = v9t go and Eq. (7.40) giving 

Otl = (\71v+v div l)v. 	 (7.41) 

From this we get the evolution of the normal as 

OtU = - (Viv + v div l) 1. 	 (7.42) 

Equation (10) in SedIáek et al. (2003) gives an expression for the curvature 

k = - div v, 	 (7.43) 

where we already used our sign convention. Taking the time derivative of k yields the 

desired evolution equations 

Ok = - div(Otv) 
	

(7.44) 

= —V?v—Vvtjv+Vtv div l+vVi div l—(Vtv—v div l). div l 	(7.45) 

= —\7?v + kVv + v (V1  divl + divl divl). 	 (7.46) 

With the identity div (div 1 . 1) = - div (div i' v) = —Vk - k 2  (where we used that 

Ill = M  = 1) we get 

atk = —V?v + kVv - vVk - vk 2 	 (7.47) 

which is exactly the evolution equation for the curvature in sCDD from Eq. (7.27). Thus, 

both theories are fully identical. 

3Schwarz (2007); Sedláëek (2004) give an (erroneous) expression for the evolution of the mean curvature 
which coincides with Hochrainer's terms - except for the kVv term 
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Chapter 8 

Comparison with CDD 

8.1 Comparison with simple CDD test cases 

It follows a brief comparison of the simplified variant of the CDD equations - in the follow-

ing called sCDD - with the test cases shown in Section 5.2 for CDD. 

Homogeneous distribution of expanding loops: sCDD can handle a homogeneous dis-

tribution of circular loops which expand with constant velocity (CDD test case Section 5.2): 

a homogeneous distribution in terms of sCDD amounts to a constant initial curvature k0. 

Concerning the density, we have to prescribe three density fields: the total density Pt 	0 

and 	= rV  = 0. The evolution equation Eq. (7.27) simplifies to 5k = —vk2  in com- 

plete analogy to CDD. Instead of one evolution equation for the density in the configuration 

space, we now have to consider the evolution equation 0tPt in 2D space, while Otk 	0 

and Dic 	0. This accounts for the fact that this system contains SSD density only. The 

evolution equation for the SSD density takes with Ot pt  = pvk the same form as for CDD. 

Thus, both CDD and sCDD are fully equivalent for this test case. 

Quasi-discrete expanding circular loop sCDD treats the expansion of a circular quasi-

discrete loop correctly; the increase in line length is properly represented. No fragmentation 

as discussed for CDD in Section 5.2 occurs. The reason for this is that in sCDD no discreti-

sation of the orientation space takes place. Again, CDD (with our remedy as introduced 

previously) and sCDD are equivalent. 

Homogeneous distribution of expanding loops with anisotropic velocity A homoge-

neous distribution of e.g. elliptical loops (see Section 5.2) can not be represented by sCDD. 

This is due to one of the major assumptions of sCDD, namely that dislocations in the same 

spatial point must have the same scalar velocity. 
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Quasi-discrete expanding circular loop with anisotropic velocity The same argument 

as in the previous paragraph holds: sCDD in general cannot handle this case. 

Distribution of loops and quasi-discrete loop in a constrained channel geometry As 

will be shown in Section 8.4, both theories yield nearly identical results for a loop distribu-

tion inside a constrained cell, which - as a two dimensional problem - already includes the 

one dimensional channel problem as a special case. The same holds for the quasi-discrete 

loop in a constrained channel, which is a special case of the loop distribution. 

8.2 Comparison with CDD micro-bending 

To see how the simplified model performs by comparison with CDD if applied to mi-

crobending (Chapter 6) we use the same material parameters, numerical setup and ini-

tial values: k = 0 and a density distribution that consists of SSD only, i.e. Pt = const, 

= 	= 0. Again, we assume a system that is homogeneous in y-direction. Therefore, 

the system now becomes truly one-dimensional and ic stays zero. As parameters we again 

use h = 3000nm and a constant bending moment M = 5. 1013  GPa m2  as in Section 6. 

Field values at converged state 

It is striking when comparing CDD to sCDD how good the match of basically all data is 

(Fig. 8.1). Only the curvature (Fig. 8.1(c)) exhibits some deviations. 

To understand the reason for the good match despite the differences in curvature we note the 

fact that the curvature's influence on the evolution of density is basically nil: the curvature 

is non-vanishing only in regions where the velocity is almost zero and therefore does not 

give any contribution to the line production term pvk. Furthermore, for this particular 

bending problem the velocity does not depend on the line orientation. As a consequence 

the evolution equations for p and k (Pt,  r., and ny  for sCDD respectively) are essentially 

decoupled. The velocity used with this model problem fully conforms with the requirements 

for the sCDD, i.e. it has no variations in angular direction, which explains why the results 

are exactly the same. 

Why is there a discrepancy in curvature (Fig. 8.1(c)) at all? The curvature distribution in 

the configuration space as shown in Fig. 6.3 is very inhomogeneous in direction of line 
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orientation. This curvature increase directly at the elastic core is physically sound. It can 

however only be interpreted as the curvature of those screw dislocations which are located at 

the kink between the plastic and elastic regime. The dependency violates the simplifying 

assumption in sCDD that all segments - irrespective of orientation - share the same local 

curvature. This causes a slight discrepancy. 

Resulting evolution equations 

For the bending example the evolution equations can be further simplified: 

For sCDD we have only purely spatial evolution equations, Dtpt  Eq. (7.8), OtK, 3' 

Eq. (7.9). The system under consideration is homogeneous in y-direction and thus all 

derivatives in this direction vanish. For this case the evolution equations become 

= - (3 (i'v) - 5, (ic,v)), 	 (8.1) 

	

— 5(pv) and 0ty = _3(pv) 	 (8.2) 

Here we made the simplification by assuming that (i) the curvature is very small and (ii) the 

curvature is only nonzero in regions where very little dislocation activity takes place, i.e. 

directly at the beginning of the elastic core for density with screw orientation. This justifies 

to neglect the source term for density. 

For CDD the term responsible for the angular transport component (cf. Appendix A for the 

explicit formulation of 9) becomes 

	

(cos çoô p_psinç) Dxv, 	 (8.3) 

where we used that D,v = 0. For the spatially one-dimensional system we then obtain for 

the evolution equation of scalar density Eq. (4.24) 

0tp 	Dx (sin covp) + p cos çoDv, 	 (8.4) 

where the first term governs the spatial transport and the second term the angular transport. 
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Figure 8.1: Density, curvature and plastic strain profiles for CDD and sCDD 

Computational cost 

Fig. 8.2 compares the adaptively chosen step sizes of the time integration schemes, which 

are necessary to achieve a constant prescribed accuracy. CDD's step size, Fig. 8.2, is slightly 

smaller due to the more complex configuration space. For reaching converged state it took 

CDD about 3300 steps and sCDD about 2500 steps. 

The average computational cost per step on a 2.4 GHz quad core work station is about 8.7 

seconds for CDD and 0.2 seconds for sCDD, which is a speedup factor of about 45. The 

memory requirement of sCDD is 1/50-th of CDD. Comparing this to the speedup factor 

shows that the problem scales fairly well within our implementation'. 

'Our main objective, though, was not a highly efficient implementation but rather a versatile toolkit for 
running various numerical experiments 

KE 
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Figure 8.2: Adaptively adjusted step sizes used for the time integration scheme for CDD 
and sCDD. At t = 0.02 ps both systems reached the quasi-static converged 
state where the dislocation velocity is approximately zero. 
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8.3 	Distribution of straight line segments in a constrained quadratic 

cell 

In the following we investigate a two dimensional quadratic geometry with both CDD and 

sCDD. We assume the walls of the cell to be impenetrable for dislocations. This we model 

by a boundary layer within which the velocity drops from a constant value to zero directly 

at the wall as shown in Fig. 8.3(a) and Fig. 8.3(b). The velocity is constant for all ço. 

::::: 

0.501, 

0.251, 

00 	0.251 0.751x  1.0l 

0.560 

0.480 
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U U./LX  U.41x Unix U.Zstx I.Ui, 

(a) sCDD and CDD: scalar velocity v. 	 (b) velocity profile: cut through the middle of 
Fig.8.3(a) at 0.51, 

Figure 8.3: Velocity function for a quadratic cell with impenetrable boundaries. 

The velocity profile has the shape shown in Fig. 8.3 in x and y direction. To represent a 

statistically homogeneous distribution of straight line segments as our initial conditions we 

use a constant Pt = 0.1 and a zero r,, and ic together with k = 0. Thus, initially we only 

have SSD density and no GND density. Evolving this system for a duration of t = 2 we 

obtain distributions as shown in Fig. 8.4 and Fig. 8.5. 

Most striking is the good match of nearly all variables in the 'field area' (the region which 

has constant prescribed velocity). The reason is that in this region only convection of dis-

locations takes place. No change in curvature is expected due to the constant velocity. 

Approaching the boundary density gets hindered and accumulates at the impenetrable wall. 

Since only dislocations with orientation parallel to the wall may exist directly at the wall 

(compare the study of rotational velocity in a constrained channel for CDD in Section 5.2) 

the GND density increases towards the boundary - an effect which is also captured by 

sCDD although with some deviations from the values of CDD, cf. Fig. 8.4(e). Responsible 

for the deviation is the initial condition of the density: also in the boundary layer line seg-

ments of all directions are present which causes them to rotate faster or slower depending 
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on their orientation. This, however, concerns the assumptions one had to make for sCDD: 

the assumption that dislocations of all orientations in one point have the same velocity and 

curvature is violated here. Thus, this example demonstrates the impact of the simplifying 

assumption: we do observe a deviation, which is however not severe. 

The last features to be discussed here are the maxima of curvature in the corners (Fig. 8.5(a) 

and Fig. 8.5(c)): they correspond to line segments that bend when approaching the corner. 

This is quite nicely represented by sCDD. 
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Figure 8.4: Scalar density (left column) and GND density (right column) at t = 2 for a 
quadratic cell with impenetrable boundaries. We compare the values obtained 
from CDD and sCDD. 



Comparison with CDD 

mean curvature k 

	

1.001, 	
1.200 	

1. 

0.751, ...1.000 0. 
0.800 

0.501, ..0.600 0. 
0.400 

	

MWy 	 0.200 	0. 

	

C 	
0.000 

0 	0.251. 	0.501 	0.751 	1.01w 
(a) sCDD 

plastic slip 'y 

0.105 
0.088 
0.070 
0.053 
0.035 
0.018 
0.000 

I 
0 0.251w  0.501, 0.751w  1.01w  

(b) sCDD 

1.uu141 - 	-- i.VVCv 
1.200 

0.75111  V. 	... ...... ..:, .1.000 0.751, 
0.800 

0.501, ..: 0.600 

10.000 

O.5O1, 
0.400 

0 25l 0 200 0 25l, 

0,105 
0.088 
0.070 
0.053 
0.035 
0.018 
0.000 

"0 0.251 0.501w  0.751 I.OI x 	 0 0.251w  0.501w  0.751w  1.01w  

(c) CDD 	 (d) CDD 

1.40 
1.20 
1.00 
0.80 
0.60 
0.40 
0.20 

0 
—0.20 

0 	0.251w 	0.501w 	0.751 	l. 0i 	 0 	0.251 	0.501w 	0.751 	1.0t 

(e) Profile of k at y = 0.0331,, (black lines) and 	 (0 Profile of 'y at y = 0.0331 (black lines) and 
at y = 0.501, (grey lines), 	 at y = 0.501,, (grey lines), 

Figure 8.5: Curvature (left column) and plastic slip (right column) at t = 2 for a quadratic 
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8.4 	Distribution of circular loops in a constrained quadratic cell 

The second example with the same quadratic geometry shows the evolution of a distribution 

of initially circular dislocation loops. The initial values for the density fields were created by 

copying 'smeared out' circular loops. As a result, there is only density of a certain parallel 

orientation directly at the wall (or in the boundary layer). This procedure was explained in 

more detail in Section 5.2. The resulting initial values are shown in Fig. 8.6. Note that the 

density initially already has GND components. From these figures cannot be seen that the 

curvature in CDD is changing in some areas along the orientation axis similar to Fig. 5.114(d) 

(this figure represents about the same situation as found along the middle of the cell). The 

curvature variations in orientation direction cannot be represented by sCDD. The velocity 

function is the same as in the previous example. 

Evolving the systems for t = 3 results in the values shown in Fig. 8.7 and Fig. 8.8. We 

find an excellent match of all data. The match of evolved mean curvature data Fig. 8.8(e) 

again is slightly worse than the other data. This again must be credited to the assumption of 

orientation independant curvature in sCDD, which is slightly violated in some areas right 

from the beginning, as mentioned before. To understand the cause of the two bumps in the 

curvature (Fig. 8.8(e), the line for the cut through the middle) we take a look at the cur-

vature in the configuration space (x, p').  This is shown in Fig. 5.14 where we investigated 

the constrained channel for CDD (the middle of the quadratic cell is almost identical to the 

homogneous channel). The bumbs correspond to the smallish dark spots in Fig. 5.14(d), 

which we identified as corresponding to loops which get partially deposited at the channel 

wall and partially are rotating towards perpendicularly orientation w.r.t. to the wall, such 

that inbetween these two sections a localised kink has to be formed. This situation, however, 

is applicable only for very special situations/loop placements, which shows in the inhomo-

geneity in direction. These information are not being kept within sCDD and hence the 

difference between the two theories. 
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Part IV 

The Dynamics of CDD: Stress Fields 

and Dislocation Interaction 



Chapter 9 
Introduction: The problem of 

dynamic closure 

CDD and sCDD represent systematically derived continuum theories for the kinematic evo-

lution of continuous dislocation systems. A kinematic formulation, however, can only be 

the foundation for a physical continuum theory which in addition needs to describe the 

interactions between dislocations or the corresponding density distributions. 

9.1 Dislocation interactions 

There is a whole manifold of dislocation interactions. Among them are short range interac-

tions, which are governed by atomistic processes in the dislocation cores, such as dislocation 

annihilation, jog formation, or the core interaction during dislocation intersection. Repre-

sentation of those phenomena pose a very particular class of problems for a continuum 

theory, since generally in an efficient implementation (from the point of view of computa-

tional cost) one postulates that the discretisation of e.g. the density field is relatively coarse 

w.r.t. to the inter-dislocation spacing in real materials. Additionally, as opposed to dislo-

cation movement, which is assumed to be continuous, intersections happen only at discrete 

moments of time, which necessitates a concept for temporal averaging. Within this thesis 

we do not consider these issues. 

A different class of dislocation interactions is related to the elastic stress field emanating 

from dislocation lines. Stresses are for instance responsible for the line tension effect (i.e. 

self interaction of a dislocation loop), the dislocation forest hardening (i.e. junction forma-

tion) and formation of dislocation dipoles - both responsible for the yield stress, and the 

back stress due to repulsion of dislocations of the same sign. 

In the following sections we shall discuss the treatment of dislocation interactions which 

can be represented by internal stress fields within our continuum theory. We first introduce 

the stress field of a single dislocation and then consider necessary steps leading to a field 

theory. 
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9.2 	Stress fields of discrete dislocation lines 

A dislocation line as introduced in Chapter 2 is the result of a Volterra cut. The resulting 

distortion causes a stress field inside the crystal which can be computed analytically for 

special cases (e.g. Hirth & Lothe, 1982; de Wit, 1967) or numerically for arbitrary disloca-

tion arrangements (e.g. Ghoniem & Sun, 1999). Paradoxically, dislocation-based plasticity 

is thus strongly linked to elasticity theory as long as the influence of the dislocation core 

is neglected. Approaching the dislocation core one usually defines a cut-off distance in the 

range of few Burgers vectors in order to avoid the diverging behavior of the stress function. 

Below this cut-off distance standard elasticity breaks down and the influence of atomistic 

effects becomes pronounced. When moving further away from the core it is important to 

note that the stress field decays proportionally to 1/r and thus prevents any straightforward 

approximation which would use a cut-off. It is this long-ranged nature of the stress field 

which is responsible for the fact that computation of the elastic stress fields of dislocation 

micro-structures e.g. in discrete dislocation dynamic (DDD) simulation' is numerically 

very expensive (the computational time is proportional to the square of the number of inter-

acting line segments). In fact, the number of interacting dislocations is one of the limiting 

factors which prevents DDD from being applied to specimens larger than a few microns 

with typical dislocation densities as observed in experiments. 

	

9.3 	The problem of dynamic closure 

This gives rise to the question how stress fields of dislocation systems can be represented in 

our continuum theory. Or - in other words - how much and in particular which information 

gets lost through the averaging procedure that was applied in order to obtain a continuous 

density distribution? How can this information be recovered? 

Already in Section 3.1 we pointed out that if the 'spatial resolution' were arbitrarily high 

the Kroner-Nye tensor would be a proper measure for the dislocation state of a crystal 

(since then all dislocations are separately resolved and thus 'geometrically necessary'). This 

'The discrete dislocation dynamics simulation approach allows to describe the plastic flow of crystals based 
on tracking the glide of discrete line segments. Those are represented in simple models by pure screw and edge 
dislocation segments (Kubin & Canova, 1992; Pivel etal., 1997; Verdier et at., 1998), or by pure screw and 
edge segments with one intermediate orientation (Bulatov & Cai, 2006) In more recent models dislocations are 
represented by a decomposition into a sequence of straight and arbitrarily oriented segments (Weygand et at., 
2002; Bulatov & W., 2002; Arsenlis et at., 2007) or by a higher order interpolation scheme such as cubic splines 
(Ghoniem & Sun, 1999). 
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averaging problem of kinematics could be solved by the specific higher-order averaging of 

CDD, which closes our continuum theory kinematically. When it comes to determining the 

stress fields within a continuum theory it is again the spatial resolution that it responsible 

for the averaging problem of dynamics. This problem can be formulated in the following 

way 

Closure Problem of Dynamics 

® CDD is a purely kinematic theory 

© Dislocation velocities depend on stresses 

© Stresses depend on the dislocation configuration (microstructural 

information) and boundary conditions 

closure problem: express the stresses in terms of the same field 

variables that enter the kinematic description without losing rele-

vant information 

In previous chapters we closed the dynamic problem by making constitutive assumptions, 

e.g. for the expanding quasi-discrete loop in Chapter 5 we assumed a constant velocity 

in magnitude, which in fact implies a stress dependency on the kinematic field variables 

in the form 'r-(p, k) = const; similarly in Chapter 6 where we investigated bending of a 

thin film prescribing a more elaborate but nonetheless constitutive kinematic relationship in 

Eq. (6.4). 

In the following we propose a method for obtaining these stress fields, which is suitable for 

a continuum description of general dislocation configurations with arbitrary loading (e.g. 

stress or strain driven) and arbitrary boundary conditions. We start by assuming that the 

spatial resolution is such that we can resolve and distinguish between single dislocations. 

Subsequently, as we proceed to a coarser resolution we analyse which information has been 

lost upon averaging and show how this information can be recovered. 
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Chapter 10 

Numerical method for stress fields of 
systems of dislocations 

10.1 Numerical standard procedure 

A dislocation is a discontinuity of the plastic distortion in form of a step change in the 

plastic shear strain 'y on a certain crystallographic plane. Obtaining the resulting inhomoge-

neous stress and strain fields within the whole body which contains the dislocations poses a 

boundary value problem (BVP) which can in principle be solved by a standard method (e.g. 

Van der Giessen & Needleman, 1995; Weygand et al., 2002). This requires to decompose 

the BVP into three separate problems: We start by considering the body as embedded into 

an infinite reference body and solve the problem of the internal stress state arising from 

the inhomogeneous shear strain field 'y in the infinite body in special cases through ana-

lytical expressions or by evaluating an appropriate Green's function (e.g. Zaiser & Moretti, 

2005). Subsequently, the free-surface boundary conditions have to be restored by apply-

ing the appropriate tractions on the actual surface of the deforming (non-infinite) reference 

body. Finally, one has to account for the stresses arising from these tractions as well as from 

any other displacements that are prescribed on the surface. Although in principle possible 

and well-established, this method in practice is rather difficult to implement for general 

geometries for which the computational cost is high. 

10.2 A method of solving the BVP in a continuum setting 

Alternatively, one can more directly consider the plastic distortion as an eigenstrain (see 

Eshelby (195 1) and Weinberger et al. (2005) for an introduction) of the body: the plastic 

strain caused by the moving dislocation leaves the elastic continuum in a distorted although 

compact state (i.e. the total distortion is compatible as defined in Section 3.1). The solution 

of this elastic eigenstrain problem yields the desired stress state. Similar approaches were 

proposed in Lemarchand (1999); Lemarchand et al. (200 1) for the context of DDD simu- 
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lations. In the context of continuum theories Roy and Acharya proposed a 'Finite element 

approximation of field dislocation mechanics' (Roy & Acharya, 2004). 

As a preparation for the solution of the BVP in a continuum setting we firstly introduce the 

general solution for a plastically deformed sub volume V in an elastic matrix. To evaluate 

the corresponding stress state we follow the steps as outlined in Fig. 10.1. 

D We cut the volume V out of the surrounding matrix such that the 
surfaces DV are free. The volume is now stress free and has total 
deformation /3P1 

© To embed the volume V back into the matrix, we evaluate the sur-
face tractions Jo  that would have acted on DV in order to produce 
the deformations /9P1  in an elastic manner. Conversely, we can re-
store the undeformed shape of V by applying — fo. 

© We can now embed V back into the matrix and restore connectivity. 
The surface forces Jo  which are needed to offset the previously 
applied surface forces —fo  now cause an elastic relaxation of both 
the matrix and the embedded volume. For this elastic BVP the 
resulting stress state can be evaluated by using standard methods. 

@ We add the stresses resulting from steps © and © 

Figure 10.1: General solution for a plastically deformed sub volume 

To elucidate this method for our BVP under consideration we now consider a single edge 

dislocation which is moved from outside the crystal into the center of the crystal (Fig. 10.2). 

The generalisation to many, curved dislocations in three dimensions follows the same idea 

Figure 10.2: Edge dislocation which was moved from the right into the center of a (origi-
nally quadratic) body 

and does not pose any additional conceptual problems. We assume that the elastic problem 

will be solved by means of a standard Galerkin finite element method (e.g. Bathe, 2001) 

which introduces a discretisation of the volume. For the problem under consideration the 

108 



Numerical method for stress fields of systems of dislocations 

edged dislocation causes the eigenstrain b/h in the dark shaded area in Fig. 10.2, where 

h > b is the mesh width of the discretisation of the volume. The eigenstrain of the light 

shaded area is zero. All eigenstrains are prescribed at the respective Gauss points of the 

finite element from which equivalent nodal forces fo  can be obtained (compare Fig. 10.3). 

The subsequent steps are the same as for the general solution. A numerical example where 

T 

Jo 2fo 2fo 2fo fo 

FL--------
-- 

L 
Jo 2fo 2fo 2fo fo 

7- 
	

7- 

(a) prestrained free elements 	 (b) resulting nodal forces 

Figure 10.3: The plastic distortion due to a dislocation, which entered from the right, 
causes eigenstrainsforfree elements (a) which then can be applied as equiv-
alent forces to the full system (b). 

we study a single edge dislocation with our method is shown in Appendix B. 

The advantage of this procedure for obtaining stress fields of dislocations is that it can be 

applied to general strain fields and, due to the use of standard finite element solver, can be 

applied to arbitrary geometries. So far our eigenstrain-based method was used to describe 

stress fields on scales on which also the plastic distortion is resolved. If we resolve /3Pl 

on scale b, we retain complete information about the internal stress field. However, if in 

a density based theory /3P1  is resolved only on the scale of the field variables p and k (i.e. 

on scales well above the spacing of individual dislocations) then information about the 

interactions of individual dislocations is necessarily lost. 

This gives rise to the question how we handle the situation where the resolution of the 

kinematic fields is such that single dislocations can not be resolved separately anymore but 

are represented by smooth density fields. The answer to this question will be given in the 

next chapter. 
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Chapter 11 
Coarse-graining: towards continuous 

systems 

This chapter considers the question which information exactly get lost upon coarse-graining 

and how they can be recovered. 

11.1 Mean field stress 

A very simplistic example elucidates the setting of the problem: imagine a statistically ho-

mogeneous distribution of slip planes in z direction. Each plane contains in the middle 

(x=l/2) a in y direction homogeneous distribution of dislocation sources, all of which 

simultaneously emit dislocations. They move in x direction only, parallel to the Burgers 

vector. Eventually, the dislocations' movement will be hindered by an impenetrable wall 

(possibly a grain boundary) located at each end of the slip planes. Dislocations interact 

elastically and pile up against the boundary. Fig. 11.1 shows the left part of one slip plane 

excluding the source, where dislocations entered from the right and moved towards the im-

penetrable wall at the left. There, the finely meshed areas contain the slip planes which are 

located at random positions. For this system we are not concerned whether an equilibrium 

state was reached or not but simply take the dislocation configuration as given. We are con-

cerned about how the continuous pendant in Fig. 11.1(b) compares to the discrete situation 

shown on top of Fig. 11.1(b). 

For this purpose we use the eigenstrain method from the previous chapter to compute the 

elastic stress fields of both configuration. Note, that both systems contain the same Net-

Burgers vector. This can be achieved by first defining the density, e.g. by an inverse 

exponential function, aie_221  where al and a2 are positive constants and x denotes the 

distance from the left wall. Then, we integrate the density along the x-axis (this gives the 

Net-Burgers vector for this distance), until the Net-Burgers vector becomes exactly lb. This 

determines the ordinate of an edge dislocation of Burgers vector b. We restart integrating at 

this point and repeat the procedure for the whole slip plane width. We assume that all slip 
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3; 	 x 

(a) FE mesh, perpendicular to the xy-slip planes (b) density distribution along one slip plane and position 
(= dark lines) 	 of 17 edge dislocations (on top of the diagram), both re- 

sulting in Net-Burgers vector b = 4.774nm 

Figure 11.1: Dislocation pile-up at impenetrable boundary (at x = 0). The finely meshed 
regions in (a) contain a slip plane each. The discrete system and continuous 
density is shown in (b) (position of edge dislocations symbolised by upside-
down 'T') 

planes have the same dislocation content. Now we choose the finite element mesh resolu-

tion for the discrete system such that individual dislocation can be resolved, i.e. the element 

size should be < b. The continuous system does not benefit from a fine resolution and we 

can use a significantly coarser mesh. The system is loaded by prescribing eigenstrains only, 

no external applied forces or prescribed displacement boundary conditions are present. 

In Fig. 11.2 the resulting stresses for a system based on a distribution of single edge dislo-

cations and the equivalent continuous density are compared. We observe that the level of 

stress of the coarse-grained system is always below the average stress of the discrete sys-

tems and tends to zero. The reason is the scale on which the stress is defined: it is defined 

on the same scale as the dislocation density and the plastic strain, which is much larger 

than the average dislocation spacing. As a result also this mean field stress Tmf,  caused 

by an inhomogeneous plastic strain 'y, is defined on a scale much above the average dis-

location spacing. Therefore, all information below this scale get lost (cf. Nikitas (2008); 

Zaiser & Seeger (2002) and references therein), which can be seen by the almost vanishing 

mean field stress in Fig. 11.2. In particular, fluctuations of the stress field of individually 

resolved dislocations (as shown by the dashed line in Fig. 11.2) get lost upon averaging. 

Besides dislocation pile-ups there is another important test case, which can not be rep-

resented by the mean field stress: imagine a statistically homogeneous distribution of edge 
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(b) continuous system 
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(a) discrete system 
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(c) stress profile along a slip plane (z = 18b): the mean field stress 
is almost zero 

Figure 11.2: Stresses for continuous and discrete system of edge dislocations. The aver-

aged value was obtained from the dashed line by convolution with a gauss 

function. The elastic modulus was E = 72.7GPa, Poisson's ratio was 
'1 = 0.347. 

dislocations of positive and negative orientation which gives the stress field shown in Fig. 11.3. 

We used a number of 850 dislocations of each direction, the Burgers vector was b = 

0.2864nm. Dislocations moving along a (dislocation free) path through the dislocation 

ensemble have to overcome the local stress peak values shown in Fig. 11.3(b) to be able to 

move, which governs the onset of plasticity. In a mean field description the corresponding 

dislocation density is constant and although the system is distorted due to non-zero shear 

strains, the resulting stresses are zero nonetheless. Therefore, dislocations immediately 

begin to move irrespective of the amount of resolved stress, which is quite contrary to ex-

perimental observations or results from DDD simulations where a certain level of stress has 

to be overcome prior to dislocation activity. 
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Figure 11.3: Stress field of statistically homogeneous distribution of edge dislocations 

In a mean field theory - as for instance CDD - the mean field stress -rmf  is the only direct 

(but very incomplete) information available about dislocation interaction. The next chapter 

will show how to complement the mean field stress with missing stress components. 

11.2 Flow stress and back stress 

As we saw, the mean field stress is not sufficient to obtain closure of the problem of disloca-

tion dynamics. In the following we will introduce additional stresses that account for inter-

action phenomena which reside below the mean field resolution. For instance, 'dislocation 

jamming' has been recognised in the literature as being one of the key issues concerning 

stress fluctuations below the resolution of the mean field (e.g. Miguel et al., 2002, 2008, 

2001). The jamming behavior can be observed in dipole or multipole dislocation configu-

rations (interaction through stress field) or junctions (core interaction). Zaiser et al. (2001) 

and Groma (1997); Groma et al. (2003) investigated these interaction effects numerically. 

For two dimensional systems of straight, parallel edge dislocations they could identify an-

alytical approximations which make these interaction effects accessible for the framework 

of continuum dislocation models by means of so-called 'dislocation correlation functions". 

The key point is that all stress contributions which are not contained inside the mean field 

stress are extremely short-ranged (e.g. stresses arising from a dipole can be neglected after 

the distance of a few Burgers vectors). Then, in a continuous description with a resolution 

much coarser than the average dislocation spacing these interactions can be obtained as lo- 

'First steps towards the generalisation to three dimensional systems were done in Zaiser & Hochrainer 
(2006) and Csikor et al. (2007) 

X 

(b) stress profile (along dislocation-free path) and av-
erage stress at y = 25b 
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cal quantities from dislocation density values and their respective gradients: Zaiser et al. 

(2001) and Groma et al. (2003) identified expressions for these missing terms, proportional 

to the square root of the total density and to the gradient of a 'signed density' (the 'geomet-

rically necessary' density). They take the form 

ry=aCbv1  and Yb= DCb t9xPG  
Pt 

where both a 0.3. . 0.5 and D 0.6. . . 1.0 are constants which depend on the geometry 

of the glide system. r is the 'friction stress' or flow stress which is phenomenologically 

described through the Taylor relationship, 'n is a 'back stress' which governs the stress due 

to piling up of dislocations of the same sign e.g. against an impenetrable wall as in Fig. 11.1. 

The yield stress is the stress that has to be overcome in order to move a dislocation in the 

stress field of other dislocations, for instance when dislocations in dipole arrangements only 

move once a local stress greater than a dipole stress is reached. 

If we go back to the simple pile-up example from the beginning of this chapter we now can 

'patch up' the mean field stress with Tb  In this example all dislocations are geometrically 

necessary. The resulting stress is shown in Fig. 11.4(a). The system now has non-zero 
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locations: yield stress (a = 0.4) denoted by the two 
lines 

Figure 11.4: Mean field stresses with the additional local stress components and Tb  in 
comparison with the discrete system 

stresses everywhere, very close to those of the averaged discrete stress values. Similarly, 

we obtain the flow stress from the average dislocation density as used for the system shown 

in Fig. 11.3(a) which amounts to a total dislocation density Pt = 8 10-121/M2  . With a 

factor a = 0.4 this system results in an equivalent flow stress of r = 21.83GPa, which is 

exactly in the range of the maximum peak value of the stress along a (dislocation free) path 
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through the edge distribution. 

11.3 Line tension 

Throughout this thesis we do not consider a line tension. Nonetheless, it can be done in 

a straightforward manner. The line tension accounts for the fact that line segments of a 

dislocation loop interact with each other. It acts such as to minimize the strain energy of 

the dislocation by straightening the line with the line tension force T. In a constant line 

tension approximation orientation effects are neglected. Energetic considerations yield the 

static equilibrium stress 

71t = Tk/b, 	 (11.2) 

where T Gb2  = const is the dislocation line tension, also called 'self-force'. For a curved 

line with curvature k this stress is necessary to maintain its curved state. 

It needs to be noted that the concept of the line tension is intuitive and simple in the discrete 

case. Contrary, in the continuous case again fluctuations of line curvature below the resolu-

tion of the governing kinematic fields cannot be accounted for. Those arise for instance from 

dislocations which bow out between junctions and other obstacles with a spacing smaller 

than the resolution of the density field. In a continuum description those effects are also 

considered in the flow stress approximation. 

11.4 Equation of motion 

In general we obtain the velocity field from the sum of all stresses, 'r, under the assumption 

of a linear-viscous model of over damped dislocation motion by assuming 

(r—) 	if 

V = 	+ r) 	if y < —r,, , 	 (11.3) 

0 	 otherwise. 

with i- 	- m - m where Tmf  contains both contributions from external applied load- 

ing/prescribed displacements and the inhomogeneous strain state. m  is the back stress and 

-qt denotes the stresses from self interaction. The latter two stresses are conservative in 
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nature and may recover upon unloading, while the yield stress as a 'friction stress' is dissi-

pative in nature. B denotes the drag-coefficient for dislocations. 

Now, our dislocation dynamics framework is dynamically closed and we can summarize all 

necessary solution steps in Fig. 11.5, where we assumed that the elastic problem is solved 

by means of a finite element method as outlined before. 
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 Initialize the system at t = to 
1.1 for kinematics P =  p°, k = k°, ly 

	70 

set velocity v according to stresses 
1.2 for dynamics prescribed external loading f 

prescribed external displacement dt 

 Evolve dislocation micro-structure 
2.1 compute evolution of micro-structure 3tP, 3k and a- 
2.2 time integration 

ti+1 
pi+l = pi + f Otp dt, 	k 1  = k + 

ti+1 	 ti+1  
f 0k dt, 	7+1 = 7Z + f 3t7 dt ti ti 	 ti  

 Transfer information from slip plane to body 
3.1 plastic distorsion /3P1 	

bs  

3.2 plastic strains (small strain context) eP' := Sym(/3P1) = 	
(' + 2 	'13 	37, ) 

for each finite element: 
 Solution of the eigenstrain problem 

4.1 strains to be balanced Eo= —& 	where all 	vanish 
4.2 equivalent nodal forces 10 = B : C : eo 
4.3 FE solution yields displacements d 
4.4 Postprocessing of displacements yields stresses for compatible 

deformation state a- 

 Correction of doubly considered elements 
5.1 nodal displacements of a free element d0  = 	: (—B : C : el 
5.2 stress correction La-  = C: Bd0  

 Resolved shear stress 
on s-th slip plane Tmf = M1 (.* — /7) 

 Update velocity v = 
I(_Ty) 	if T>+Ty, 

e.g. with 	= 	- m — Tit v = ' 	-( 	+ 	,) 	if 	r < —fl,, 

1¼  0 	otherwise. 

 New step: goto 2. 

Figure 11.5: Algorithmic overview. Quantities used in a standard finite element context are 
the finite element operator matrix B = L. N (with L the operator matrix of 
spatial derivatives and N the matrix of shape functions) and element stiffness 
matrix Kei. 
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11.5 Applications 

In the following we explore some numerical examples which make use of the flow stress 

and back stress. We show which form the back stress takes in the frame work of CDD. 

Deformation of a constrained channel 

Groma et al. (2003) investigated the deformation of a constrained channel deforming in 

simple shear (Fig. 11.6) by use of Eq. (11.1). 

Figure 11.6: Geometry of the constrained slip channel 

We tackle this simple system with CDD, where the configuration space essentially reduces 

to two points of different orientations: one for the orientation of positive and one for orien-

tation of negative edges. 
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Figure 11.7: Sign dislocation density and strain profile in comparison with data from 
Groma et al. (2003) 

The resulting density distribution and plastic strain profile, Fig. 11.7, are almost identical 

and they should be, since for this example the evolution equations in CDD simplify to those 
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of Groma. We used a different kind of boundary conditions, namely the decaying velocity 

within a boundary layer as outlined before. This is responsible for the difference at the 

channel walls. Note that without a back stress the density layer at the walls would collapse 

into an infinite density peak of vanishing thickness directly at the wall. In this case, the 

mean field stress would be zero. 

Back stress in the higher-order configuration space of CDD 

For two dimensional dislocation systems one can try to generalise these expressions by 

accounting for different line orientations in one point. The back stress then also is not 

restricted to one direction only: the resulting back stress function becomes two dimensional 

and gets contributions from lines with (almost) all line directions.In the configuration space 

of CDD the back stress (Hochrainer, 2006) can be explicitly written as 

	

Tb(X, p 	
DGb

) = —V11 (ec + e&"), 	 (11.4) 
Pt 

where we used the abbreviations 

27r 	 2w 

f pcos ~p dW and all := f p sin ~o dW . 	 (11.5) 

It then follows 

	

27r 	 2?r 

DG 
(x, 	) 

= 	
sin y Vx (cos f p cos d + sin f p sin d

27r 	 27 

 

+ 
DGb 	

( 	f p cos d + sin f p sin d) . 	 (11.6) 

Fig. 11.8 qualitatively shows the influence of the back stress for a one dimensional channel 

problem as outlined in Section 5.2, where we assumed a homogeneous loop distribution in 

y direction and impenetrable walls at x = 0 and x = l. 

In Fig. 11.8(c) the blue area corresponds to the 'forward stress', which can be interpreted 

as the stress which is pressing the dislocation against the wall. The darker red areas are the 

back stress. The back stress is here only very small since most of the density is not yet in 

the influence area of the boundary. 
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Figure 11.8: Influence of back stress on a loop distribution in a slip channel 

Line tension formulation in a simple id system of CDD 

Assuming a homogeneous system in y-direction the evolution equation for the curvature, 

Eq. (4.25), can be explicitly written as 

Otk() = —vk2  - (cos2yav + 2k cos coOxçov + k 2av) +... 

+ sin ço(k(9v - vak) - cos co(3kD,v - 0va2k). 	(11.7) 

Assuming only a constant resolved shear stress r, open boundary conditions, and a line 

tension as outlined in Eq. (11.2) the equation of motion takes the simple form 

V(,) = B-1  (Y(r)b Tk()), 	 (11.8) 

Note, that v also may have a dependency on the line orientation due to the definition of the 

curvature. For brevity we will abbreviate the first term as v0  := B 17-b. With this Eq. (11.7) 
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becomes 

/ 
= - 	vo - Tk\ 2 k -v0  sin 0k + (COS 2 0v + 2k cos 	+ k2Dv) 

(11.9) 

The first term is a production term for curvature, reduced by the line tension influence. The 

second term - which also could be written as div(kv) - can be interpreted as a transport 

term for curvature in spatial direction. 

Micro-bending without and with back stress 

In the case of simple geometrical relations the mean field stress can be analytically deter-

mined - as we did in Section 6. The left column of Fig. 11.9 shows three snapshots in 

time of the stress components for a bending system (h = 2im and M = 180000GPa m2) 

without back stress. 

res denotes the resulting stress (the sum of all contributions of the equation of motion). The 

elastic zone is defined by the yield stress ±'r. The density dependency of r shows in the 

'dip' around x = 0. 

To make the previous system more realistic we now also consider a back stress (D = 1.0) 

while retaining open boundary conditions as we did before. The right column in Fig. 11.9 

shows three snapshots in time of the stress components for a bending system in the afore-

mentioned section. We observe that for the system with back stress no elastic core persists 

anymore (e.g. Fig. 11.9(f)) which is due to the back stress. The reason becomes clearer in 

Fig. 11. 10, when we take a look at the GND density, Fig. 11.10(b). Dislocation must have 

entered the elastic core causing a non-zero density in the center region of the film. Without 

back stress the yield stress level could not be overcome in this region. With back stress, 

however, this level can be reached due to dislocations piling up against the boundary of the 

elastic core and eventually dislocations are forced into the (previously) elastic core. 

Since in this chapter we only wanted to introduce and demonstrate the influence of stresses 

and their specific treatment within CDD we will not further analyse the behavior of for 

instance the bending system with back stress in terms of a size effect. 
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Part V 

Summary and Outlook 



We demonstrated that CDD as a generalisation of the classical Kröner theory can capture 

several fundamental phenomena of the evolution of systems of curved dislocations which 

cannot be recovered from other dislocation based continuum theories. In particular, the 

simple benchmark problem of an ensemble of expanding loops showed that the averag-

ing process underlying CDD conserves important kinematic properties of dislocation loops. 

Studying the expansion of a single quasi-discrete loop served to elucidate certain numer-

ical problems arising from the discretisation of orientation space and to find appropriate 

remedies. 

An important problem in generalised continuum theories (e.g. gradient plasticity theories) 

concerns the definitions of boundary conditions. CDD allows to relate boundary conditions 

to the physical properties of dislocation motion at surfaces and interfaces. For instance, the 

problem of a plastically non-deformable boundary corresponds to zero dislocation velocity 

and thus zero dislocation flux. This is one of the big advantages of CDD by comparison 

with gradient plasticity models, where boundary conditions cannot easily be based on the 

physics of the problem under consideration. Nonetheless, boundary conditions do pose a 

numerical challenge since the accumulation of density of only one orientation (i.e. line seg-

ments parallel to an impenetrable wall) leads to steep gradients. Further work concerning 

the numerical method on a non-uniform grid has to be done in the future. A finite ele-

ment method, in particular a discontinuous Galerkin method might help to ensure non-flux 

conditions at the boundary while conserving density where it is being convected. 

We showed that the evolution of dislocation densities in orientation space may be a key fac-

tor in the description of inhomogeneous deformation processes, as changes in dislocation 

orientation may be an important mechanism for providing the 'geometrically necessary' dis-

locations needed to accommodate strain gradients. Accordingly, simulations of microbend-

ing using a simple Taylor-based flow rule yielded results that differ substantially from the 

predictions of gradient plasticity theories that assume strain gradients to be accommodated 

exclusively by the introduction of additional excess dislocations. 

We explored a new branch of CDD, which can be obtained by making simplifying assump-

tions about the velocity and curvature of dislocations in one point. We derived the govern-

ing equations of sCDD in a notation which is consistent with that of CDD and proved that 

a special case of sCDD is identical with Sedláek's continuum theory. Several benchmark 

problems were simulated and compared to results obtained from CDD. We found in almost 

all cases excellent agreement between the two theories. Therefore, future work concerning 
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the simulation of large systems will heavily make use of this simplified theory since the 

reduced dimensionality saves a lot computational resources. 

In the last part we tackled the problem of stresses, which is necessary for the closure of 

the dynamics. A numerical method based on the eigenstrain concept was proposed which is 

suitable for the continuum settings of CDD and sCDD and can be applied to arbitrary system 

geometries and general boundary conditions. Based upon this method we demonstrated the 

necessity to introduce 'back stress' and 'flow stress' terms into the dynamics framework 

and subsequently studied various systems numerically. Since the main emphasis of this 

thesis is on the kinematics of CDD (and its simplified form) those examples were only very 

simple and at times comprised of special cases where the stresses even could be obtained 

analytically. Hence, a next step towards more realistic systems will be the embedding of the 

dislocation kinematics into a crystal plasticity context. 

An important tool for further development of the theory will be comparative simulation 

work with discrete dislocation dynamics simulations (DDD) and CDD or sCDD calcula-

tions performed in parallel on systems of similar geometry. This is essential for obtaining 

initial data (dislocation micro-structure), judging their statistical content and for gauging 

further developments of CDD and its numerical implementation. For instance, up to now 

sources and their activation have not been treated, as well as dislocation annihilation and 

various other reactions. This requires a deeper understanding of the underlying statistics 

together with a robust implementation. 

In one of Kroner's last publications, 'Benefits and shortcomings of the continuous theory of 

dislocations' (Kröner, 2001) he finished with the open question 

The greatest shortcoming is that the dislocation density tensor a, [...] 
measures the average dislocation density only and therefore, regards the 
internal mechanical state utmost incomplete. In principle, this shortcom-
ing could be overcome by reorientation of dislocation theory towards a 
statistical theory, but only with highest expenditure of computation. Is it 
worthwhile to try that? 

Today, the answer to this question is clear for us: yes, it is worthwhile; all foundations are 

already there. 
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Appendix A 

CDD's directional derivatives VL, 
V, and Vv 

Tangents and velocities As already introduced in Section 4.3 we use the following con-

vention for the spatial line direction and velocity 

1= cos pe+ sin pe 	 (A.1) 

V = v sin e - v cos 9e 	 (A.2) 

L and V denote the "generalized line direction" and "generalized velocity". As introduced 

in Chapter 4 they consist of the components (cf. Eq. (4.8)) 

L()  = (cos , sin , k(r,co)) = (1, k(r ) ) 	 (A.3) 

V(r p)  = (v sin o, —v cos , 79) = (v, 9), 	 (A.4) 

where 0 = —VLv is the rotational velocity. 

Directional derivatives along L and V take the following form 

[(.)l 
VL() = [l( ,)  k(r ) ]. I 

Vr 	
I = cos o5(.) + sin O(.) + 	 (A.5) 

[V (•)j 

and 

Vr [(.)l 
= v sin pa(.) - v Cos çoO(.) + '0 (r,,) D(•). (A.6) 

[V 2  ()j 

CDD's gradients Of particular interest in CDD are the directional derivatives VLV,  Vv 

and Vvk,  since they occur in the evolution equations for scalar density and mean curvature. 
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CDD 's directional derivatives VL, V?, and V 

Explicitely writing down all components gives 

VL(V)(r,cp) = COSaxV(r,ç)  + Sill çO(9V( )  + kOcoV(r,ç)  = 	 (A.7) 

Vv(k)( ,)  = V sill coOX(k(rp)) - V COS cOay(k(r,&p )) + (r, ç 9çc,(k(r,ço) ), 	 (A.8) 

Note that gradient operator as well as its argument are both evaluated at the same point 

(r, o) in the configuration space. Thus, for brevity we only write the point of evaluation 

once. The same also holds for the twofold gradient V(v): 

V(v) == cos 8(coso8v + sin o0v + k3,v) 

+ 	sin y O (cos coDv + sin ço9,v + k(9,,v) 

+ 	k O(cos coDv + sin çov + kav) 	 (A.9) 

= 	COS 2 &9v + COS  sin O9,v + COS ((ak)(Dv) + k5&,v) 

+ 	Sin çô0, COS cL0V + sin  c0y3yV + sin (( 9 k) (v) + kDav) 

+ k(— sin 9v + cos ,00v) 

+ 	k(+ cos çoO,,v + sin 

+ 	k((ak)(av)+kaav) 	 (A. 10) 

= 	 + sin 2 OyDyv + 

+ 	2 sin p cos ç99v + 2k cos cLf99v + 2k sin 

- 	k (sin Dv - cos9yv) 

+ 	(cos 'p0k + sin çoO. + kDk)5v 	 (A.1 1) 

VL(k) 
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Appendix B 
Eigenstrain solution for a single edge 

dislocation 

As demonstration of the procedure for obtaining the mean stress field proposed in Section 10 

we compute the stress field of an edge dislocation. A single edge dislocation brought into 

a volume represents a distorted state, which can be obtained by loading the system by 

prescribed eigenstrains 	for all elements' Gauss points at y = l,/2 and x = l/2. . . 

(Fig. B. 1). The elastic body in this figure was discretised by 100 elements in each direction, 

the total dimensions are l = l, = 10, further material parameters are E = 1.0, ii = 0.3, 

0.05. The difference in horizontal displacements ux  on the right face of Fig. B. 1(b) 

is exactly the modulus of the Burgers vector. No displacement boundary conditions are 

QX2468 

1a02 

aol 

Io 

-0.0) 

-002 

-0.0247 

(a) prescribed strain 	(red=e, 	(b) horizontal displacement u 	(c) vertical displacement u0  
blue=no eigenstrain) 

Figure B.!: Dislocation brought into the center of the body causes an eigenstrain c' for 
each element on the dislocations 'path (a). After solution of the elastic problem 
we obtain the displacements (b) and (c). 

necessary, since there are no external applied forces to be balanced; all stresses and nodal 

displacements are caused by the eigenstrain c' = b/hr, where h is the height of one finite 

element. The plots of the normal stresses in Fig. B.2 and B.3 are in very good agreement 

with the analytical solution (e.g. Hirth & Lothe, 1982) 

C7X Gb y(3x2+y2) 	
(B.1) 

= 	2(1 - v) (x2  + y2)2  

YY + 
Gb y(x2 	

(B.2) = 	2(1 - v) (x2  + y2) 2  
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Eigenstrain solution for a single edge dislocation 

Responsible for the growing deviations towards the boundary are boundary effects: the an-

alytical solution is valid only for an infinite elastic domain. The boundedness of the volume 

causes surface stresses, which are not considered in the analytical solution but are already 

included in our solution. Thus, it is not necessary to include them through 'image forces' 

as e.g. necessary in the 'standard procedure' described in Section 10.1. 

Fig. B.4 shows the shear stress, therein Fig. B.4(a) shows the stresses without adding the 

correction (i.e. after step ® in Fig. 10.1), Fig. B.4(a) shows the stress after adding the 

correction (i.e. after step ® in Fig. 10.1). The numerically obtained stresses match the 

analytical solution 

o_xy = + Gb x(x
2 —y2) 

27(1 - v) (x2  + y2)2 	
(B.3) 

very well. 
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solution. 

Figure B.2: Normal stress o obtained from out method in comparison with the analytical 
solution 

134 



s1g.yy 
5 

0.004 

- 0.002 

I-0.0

02  

o 
--0.004 

.005 

(a) numerical 	(b) analytical (for infinite 
volume)) 

0.06 

0.05 

0.04 

0.03 

0.32 

0.01 

3.47e-18 

0.01 

-0.02 

.0.03 

004 

-0.05 

00 	100 	2,00 	3.00 	000 	5.00 	600 	1,00 	000 	9.00 	10.00 

(c) Line plot along the horizontal line at y = 1/2. The dashed line shows the analytical 
solution. 

Figure B.3: Normal stress u obtained from out method in comparison with the analytical 
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Figure B.4: Shear stress a, for System A. Without taking into account that plastic slip 
does not cause any stresses we obtain the picture at the top left. The top middle 
picture shows the numerical solution with 'post processing' of the stresses, the 
top right picture shows the analytical solution without taking boundaries into 
account. 
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Appendix C 
Comments on the simulation 

program 

For our simulation we chose the use of C++1 . Especially the object oriented features of this 

language are very attractive if one wants to reuse parts of the code. Among others, inheri-

tance offers the possibility to use slightly different implementations for different problems 

(e.g. bending and slip channel), while the core of the simulation code stays the same. There 

is some overhead and the architecture of the program has to be planned more in advance 

and more strictly than in typical structured programming languages but we found that it was 

well worth it. 

The code was parallelised using openMP throughout, although cutting edge performance 

was not our aim. Optimisation of the program structure for use of openMP was e.g. done 

by using a SlipPiane object as container for all field variables such that iteration over 

them can be done simultaneously. 

In the following we briefly list some of the used features which can be seen in the main 

program: 

bendingiD: :SystemParameter spara(argc,argv); 

bendingiD is a namespace which unifies all routines for 1D bending (homogeneous 

in y direction). bendingLo: :SystemParameter spara (argc, argv) is 

derived from SystemParaineter spara (argc, argv) and contains e.g. addi-

tional information concerning the orientation of slip planes, bending moment etc. 

GridiD is a specialisation of the base class Grid2d, which defines the discretisa-

tion. Therefore, in all places where a Grid2D object is expected we can just as well 

pass a Gridid object, automatically implying that the y direction is homogeneous. 

Si ipPiane is an abstract base class and contains the density, curvature, velocity 

and plastic stran fields along with the respective functionality. Some of SlipPiane's 

'More information on C++ for scientific prograrnmic can be found in various text books, e.g. in Yang 
(2001). 
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Comments on the simulation program 

methods are virtual and will be implemented in the derived classes SlipPlaneld, 

SlipPlane2d, SlipPlaneidsimpi etc. This allows for easy extension while 

prescribing the structure of the classes. Slipplane instances instead of separate 

grid, density, curvature and strain objects can easily be passed to other objects. 

All information and functionality concerning boundary conditions is contained in 

the BoundaryConditions class, which e.g. offers functionality for efficient 

extrapolation of 'ghost node values'. Furthermore, this class is closely related to 

SlipPlane's velocity member since e.g. impenetrable boundaries are implemented 

using a smooth function which decays to zero. 

Completely separated from these classes are the output routines. Postprocessing can 

be quite time consuming and thus we provide with the OutputManager and the 

xxxSelection classes a framework for organising and processing the output. 

The EvoEqnSolver does the actual time integration of the evolution equations. By 

using smart pointers we can 'inject' various post- and pre-processors which can be 

defined 'on the fly' and only need to be derived from an abstract base class in order 

to ensure a certain form which can be used from the solver. 

-------------------------------------------------------------------- 
-------SYSTEM'S GEOMETRY ------------------------------------------ 
-------------------------------------------------------------------- 

const mt fn_x = 1001; 	// number of nodes in x direction 
const mt fn-phi = 100; 	// number of nodes in phi direction 
const mt gn 	= 2; 	 // number of ghostnodes 
// -------------------------------------------------------------------- 

-------------------------------------------------------------------- 
-------INITIAL VALUES and other ----------------------------------- 
--------------------------------------------------------------------

bendingiD: : SystemParameter spara(argc, argv); 

spara.theta = M_PI/6.; 	// angle slip plane and vert. axis 
spara.h 	= 3.0e3; 	 // film height in nm 

inclined length of slip plane 

spara.kO = 0.; 	 // initial loop curvature, [kO]-l/nm 
spara.M = 5e5; 	 // bending moment in GPa m2 

BC_TYPE: :val_t bc_type = BC_TYPE::open; // boundary condition type 

const double deltax 	= spara.1/(fn_x-1.); 
const double deltaPHI = 2.*M_PI/double(fn_phi); 
GridlD grid(fn_x, fn_phi, gn, deltaX); 

spara.rho_max = 1.e13; 	 // initial scalar density in 1/(m'2) 
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Comments on the simulation program 

// 	 - 

spara.t_begin = 0.0; // start time 
spara.t_end = 	0.02; 1/ total time in mu s 
spara.dt = 	1.e-6; // initial step size 
spara.dt_min = 	1.e-12; // mm. step size 

NumericalDetajis nuni; 
num.atol = 1.0e-11; // absolute tolerance 
nuxn.rtol = nuxn.atol; // rel. 	tol. 

INIVALS: :val_t rho—shape = INIVALS: :constant; 

const string base_dir = "bending—data ,, ; 
const string work_dir = tmp; 

-------------------------------------------------------------------- 

-------------------------------------------------------------------- 
-------MATERIAL PARAMETER 

-------------------------------------------------------------------- 
MaterialPararneter mpara; 
mpara.bx = 	0.256; // Burgers vector in nm 
mpara.B = 	5.e-8; // Drag coefficient in GPa mu_s 
mpara.E = 	128.4; // Young's Modulus E in GPa 
mpara.nu  = 	0.33; // Poisson's Ratio nu 
mpara.alpha = 	0.4; // factor for yield stress 
mpara.T = 	0.0; // line tension 
mpara.D = 	0.0; // backstress coefficient 
mpara . G = mpara . get_shear_modulus_f rom_E_and nu 	; 
// -------------------------------------------------------------------- 

try 
1/ ____________________________________________________________ 

-------SlipPlane __________________________________________ 
------------------------------------------------------------

SlipPlanelD sp(grid,inpara); 
sp.initCurvatureconst( spara.kO ); 
sp.initDensity 	( rho_shape ); 
// ------------------------------------------------------------ 

------------------------------------------------------------
-------Boundary Conditions ________________________________ 
------------------------------------------------------------

BoundaryConditions bc( grid ); 

bc . set_x_s tart_and_end_open ; 
bc . set_y_direction_periodic ; 

bc.applyBcstoGhostNodes( sp ); 
// ------------------------------------------------------------ 

------------------------------------------------------------
-------Evolution Equations ________________________________ 
------------------------------------------------------------

EvolutionEquationslD derivs( sp, bc ); 
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Comments on the simulation program 

// ------------------------------------------------------------ 

------------------------------------------------------------

-------Stress State of the Slip Plane ---------------------
------------------------------------------------------------

BackStressllj bckst( grid, mpara ); 

LineTension lt( mpara ); 

bendinglD::stressstatelD stressstate ( grid, spara, bckst,lt); 
stressstate.update stress components( sp ); 
// ------------------------------------------------------------ 

------------------------------------------------------------

-------Setup Paths and Directory Tree ---------------------
------------------------------------------------------------

PathNaies paths; 
paths.set_ base _dir( base_dir ); 
paths.set_work_dir( work_dir ); 

FileNames files; 
// ------------------------------------------------------------ 

------------------------------------------------------------

-------Define Outputs and Output Manager ------------------
------------------------------------------------------------

SDplotSelection SDplot_list( grid ); 
GPlotSelection GPlot_list ( grid ); 
SCubeSelection SCube_list ( grid ); 

const mt cutnodeX=O, cutnodeY=O, cutnodePHl=int (3.14. *fn_phi); 
GPlot_list . set_all_cutnodes ( cutnodeX, cutnodeY, cutnodePHl ); 
const mt n_gplots=lO, n_sdplots=n_gplots, n_scubes=n_gplots; 

GPlot_list . enable_all_output ; 
SCube_list . enable_all_output ; 
SDplot_list. enable_only_main_output ; 

paths. setup_directory_structure( SDplot_list); 

bendinglD::outputManager out( n_gplots, n_sdplots, n_scubes, 
SDplot_list, GPlot_list, SCube_list, 
paths, files, 
spara, num 

------------------------------------------------------------ 

------------------------------------------------------------ 
-------Time Integration ----------------------------------- 
------------------------------------------------------------

EvoEqnSolverlD solver( sp, spara, nuxn, out ); 

solver.force_output_every_n_steps ( 1000  ); 
solver. disab1e_adaptive_stepsize; 

// inject post processor 
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PostProc_ptr postp_ptr( new Proc ensuresolenoidaljty() ); 
solver.add_post_processor( postp_ptr ); 

solver.integrate( derivs, stressState ); 
------------------------------------------------------------ 

catch(string e) 

{ cerr << "Caughtanexceptjon:' << string(e) << endi; ) 
catch (out_of_range e) 

{ cerr << Caughtanout of range exception• 	<< e.what() << endi; 

catch (runtime_error e) 
cerr << "Caughtanruntime error exception• 	<< e.what() << endi; 

catch(...) 

C cerr << Caughtanunknown exception. 	<< endi; 
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