
 
 
 
 
 
 
 
 
 
 
 

 
 

This thesis has been submitted in fulfilment of the requirements for a postgraduate degree 

(e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following 

terms and conditions of use: 

 

This work is protected by copyright and other intellectual property rights, which are 

retained by the thesis author, unless otherwise stated. 

A copy can be downloaded for personal non-commercial research or study, without 

prior permission or charge. 

This thesis cannot be reproduced or quoted extensively from without first obtaining 

permission in writing from the author. 

The content must not be changed in any way or sold commercially in any format or 

medium without the formal permission of the author. 

When referring to this work, full bibliographic details including the author, title, 

awarding institution and date of the thesis must be given. 

 



 

Characterising the roles of the members of the 

nuclear-encoded Rubisco small subunit family in 

Arabidopsis thaliana 

 

 

 

Panupon Khumsupan 

 

Doctor of Philosophy 

Institute of Molecular Plant Sciences 

The University of Edinburgh 

2019 



 

 

 

Supervisor: 

Dr Alistair J. McCormick 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

  



i 

 

Declaration 

 I hereby declare that this thesis is an original piece of work that embodies the 

results of my own research. All work presented in here has not been submitted for any 

other degree or professional qualification. I acknowledge the nature and extend of work 

carried out in collaboration with others below: 

Chapter 4 – The gRNAs that target homologous regions in the 1B-3B locus was 

designed by Billy Aldridge, Oleg Raitskin and Nicola Patron, Earlham Institute. The 

Rubisco content assay was performed by Douglas Orr and Elizabete Carmo-Silva, 

Lancaster University.  

          

                    
  

           Panupon Khumsupan  

     

 

         

 

 

 

 

 



ii 

 

Acknowledgements 

 I would like to take this opportunity to thank everyone who has supported me 

through my PhD career. First of all, I would like to thank Alistair for taking a risk on and 

offering me the PhD position. Your guidance has fostered many of my skills and was 

absolutely vital to my scientific and personal growth. I will continue to model after you. I 

would like to thank Andrew for chatting with me about my work despite the busy 

schedule. I would also like to also thank Naomi; without you I would have been lost in 

my first two years. 

 This PhD would have been nearly impossible if I had not met Sophie. A PhD is a 

unique and challenging experience but I am glad that I had someone who was going 

through the exact same thing and could understand and sympathise the ups and downs. I 

will remember our Friday night movies, Bene’s fish and chips and many random deep 

conversations. We made the right decision moving in together, and I have made another 

sister. 

 I am grateful for the members of the McCormick lab. Thank you Nicky and Livia 

for taking a role of (fun) mothers when mine own is far and be the voice of reason. I wish 

there were more people like you.  Thank you Grant, Ale, Alex, Anton and Liat for being 

the coolest office neighbours. You guys have made us the best lab in IMPS! 

 During my time in Edinburgh, I have also made friends outside of the lab. I would 

like to thank my friend Bartosz for always inviting me for the 50% off dinner and cinema 

combo, and JR for many gym sessions and countless things we do together. You both have 

qualities that I admire and aspire to develop as I grow. 



iii 

 

 I would like to extend my gratitude to members of IMPS and their contribution to 

my research as well as free cake and alcohol. I would like to give a special thanks to 

Muriel. In a sorrow time, we found great friendship. Thank you for all the traveling 

memories and pictures that you took for me. 

 This PhD would not have been possible without the funding from the Darwin Trust 

of Edinburgh and the University of Edinburgh Innovation Initiative Grant who have 

funded my research and my stay in the UK. 

 Lastly, I would like to pay the deepest gratitude to my parents and sister. I could 

not have asked for a better family. Thank you for the support, patience, dedication, 

acceptance and, most importantly, love. This thesis is for you - ดว้ยรกัและเคารพ 

 

 

 

 

 

 

 

 

 



iv 

 

 

 

 

 

 

 

 

Love is love 

ความรักคือความรัก 

 

 

 

 

 

 

 

 



v 

 

List of abbreviations 

Rubisco Ribulose-1,5-bisphosphate carboxylase/oxygenase 

RuBP  Ribulose-1,5-bisphosphate 

CO2  Carbon dioxide 

O2  Oxygen 

3PGA  3-phosphoglycerate  

2PGA  2-phosphoglycolate 

CCM  Carbon concentrating mechanism 

LSU  Large subunits 

RbcL  Rubisco large subunit gene 

RbcS  Rubisco small subunit gene 

SSU  Small subunits 

NT  N-terminus 

CT  C-terminus 

PDB  Protein Data Bank 

Sc/o  CO2/O2 specificity 

Vc,max  Maximum rate of Rubisco carboxylation 

kcat,c  Turnover rate of carbon 



vi 

 

CRISPR Clustered regularly interspaced short palindromic repeats  

Cas9  CRISPR associated protein 

gRNA  guide RNA 

PAM  Protospacer adjacent motif  

DSB  Double strand break 

NHEJ  Non-homologous end joining 

HDR  Homology-directed repair 

ZFN  Zinc finger nucleases 

TALEN TAL effector nuclease 

CaMV35S Cauliflower mosaic virus 

T-DNA Transfer-DNA 

UTR  Untranslated region 

PCR  Polymerase chain reaction 

RT-qPCR Reverse transcription-quantitative PCR  

LB  Left border 

DAG  Days after germination 

FW  Fresh weight 

DW  Dry weight 



vii 

 

SLA  Specific leaf area 

PSII  Photosystem II 

Fv/Fm  Maximum quantum efficiency of PSII 

SEM  Standard error of mean 

KO  Knock-out 

WT  Wild-type 

PM  Point mutation 

BB  BigBoi, rbcs1a2b3b KO mutant based on the rbcs1a2b T-DNA line 

BG  BigGurl, rbcs1a2b3b KO mutant based on the rbcs1a3b T-DNA line 

CC  CRISPR/Cas9 KO mutant 

PAR  Photosynthetically active radiation 

A  CO2 Assimilation 

Ci  Sub-stomatal CO2 concentrations 

Jmax  Maximum photosynthetic electron transport rate 

Rd  Mitochondrial respiration in the light 

gs  Stomatal conductance 

ZT  Zeitgeber time 

DC  Dark control 



viii 

 

BL  Blue light 

RL  Red light 

FRL   Far-red light 

HL  High light (white light at 1000 µmol photon m-2 s-1) 

ML  Medium light (white light at 200 µmol photon m-2 s-1) 

LL  Low light (white light at 50 µmol photon m-2 s-1) 

HT  High temperature (30oC) 

LT  Low temperature (10oC) 

 

 

 

 

 

 

 

 

 

 



ix 

 

Lay summary 

 Photosynthesis is a process where plants use carbon dioxide (CO2), water and light 

to produce food (in a form of sugars) for themselves. The enzyme that is responsible for 

fixing CO2 during photosynthesis is called Rubisco. Most plants produce an abundance of 

Rubisco, as much as 40% of total protein in leaves, in order to cope with the changing 

environment including light, temperature and CO2 level. Despite being an important 

enzyme, Rubisco is inefficient in that it is a relatively slow enzyme and cannot 

differentiate between CO2 and oxygen O2. The reaction with O2 produces a toxic 

byproduct that needs to be recycled, which expends energy. Due to these inefficiencies, 

Rubisco has been a target to improve photosynthesis and crop productivity. 

 Rubisco is an enzyme composing of large subunits (LSU) and small subunits 

(SSU). The LSUs are where the reaction with CO2 and O2 occurs. The roles of SSUs are 

still somewhat elusive but we know that they can influence the catalytic activities of 

Rubisco. The production of SSUs in some plant species varies in different tissues, organs, 

developmental stages, and/or fluctuates with environmental conditions.  

 In this study, the model plant Arabidopsis thaliana (Arabidopsis) was used to 

decipher the functional roles of SSUs. Arabidopsis has four SSU genes (1A, 1B, 2B and 

3B) that are produced differentially. 1A is responsible for about 50% of total SSU pool, 

followed by 3B (35%), 2B (10%) and 1B (5%). In order to assess if these individual SSUs 

are important to growth and survival, we generated knockout mutants for each and a 

combination of SSU genes using a gene editing method called CRISPR/Cas9. A suite of 

mutants was generated and grown under different environmental conditions. Firstly, we 
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found that knocking down SSU production down to 40% had no adverse effects on plant 

growth under standard growth condition of Arabidopsis (200 µmol m-2 s-1, 21oC). 

However, when grown under highlight (1000 µmol m-2 s-1, i.e. higher demand for 

Rubisco), at least 60% of SSUs was needed so that growth is not affected. Secondly, the 

production of 2B and 3B increased under high temperature (30oC) and decreased under 

low temperature (10oC). These two genes are the main temperature mediators in 

Arabidopsis and may play important roles when plants are grown at elevated temperature. 

Lastly, triple mutant lacking 1A, 2B and 3B (given the name “BigBoi”) generated in this 

study could be exploited to test the activity of Rubisco. This mutant is ideal because it has 

only one SSU supporting photosynthetic growth and grows very slowly. As a proof of 

concept, an SSU gene from green algae Chlamydomonas reinhardtii was put in BigBoi 

and a 40% increase in growth was observed compared to BigBoi. A hybrid Rubisco 

between the native LSU and other foreign SSUs could be made and re-engineered to 

improve the catalytic properties of Rubisco. 
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Abstract 

Rubisco is the enzyme responsible for the net photosynthetic carbon fixation in 

plants. The enzyme consists of chloroplast-encoded large subunits and a family of nuclear-

encoded small subunits (SSUs). SSUs are essential for the assembly of the Rubisco 

enzyme in higher plants and have been shown to influence catalytic activities of Rubisco 

(Atkinson et al., 2017; Laterre et al., 2017). This study aims to characterise the roles of 

SSUs in the model plant Arabidopsis thaliana (Arabidopsis). Arabidopsis contains four 

SSU (RbcS) genes, RbcS1A (1A hereafter) on chromosome 1, and RbcS1B, RbcS2B and 

RbcS3B (1B, 2B, 3B, respectively hereafter) located in tandem on chromosome 5. To 

characterise the roles of SSU, I have i) generated SSU knock-out mutants using 

CRISPR/Cas9 editing and analyse the impact of single and multiple SSU knock-outs on 

plant growth and fitness; ii) measured RbcS expression under different light qualities, 

quantities and temperatures; iii) performed growth analyses under different environmental 

conditions using CRISPR/Cas9 rbcs mutants; and iv) complemented the triple mutant 

1a2b3b (BigBoi) with SSU from Chlamydomonas reinhardtii (Chlamydomonas) and 

performed growth analyses on the complemented lines. 

To generate SSU knock-out mutants via CRISPR/Cas9, two pairs of gRNAs were 

designed to target each RbcS gene. The efficiency of the gRNAs pairs was evaluated in 

mesophyll protoplasts and it was found that at least one pair for each gene was able to 

induce large deletions of 96-180 bp in RbcS. Constructs containing Cas9 nuclease  and 

gRNAs were stably transformed in Arabidopsis by floral dipping. The T1 progeny 

containing the transgene were screened for large deletions by PCR and small 
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insertions/deletions (indels) by Sanger sequencing. PCR screening showed that large 

deletions were induced in planta, but they were chimeric deletions and not transmittable 

to the T2 progeny. On the other hand, indels of 1-7 bp occurred at a higher rate (12% and 

7%, respectively) and were heritable. Analyses of the T2 progeny revealed that 

heterozygous mutation was the most common type of mutation in 1B and 2B but chimeric 

mutation was the most common in 1A and 3B. The heritability rates for 1a, 1b, 2b and 3b 

were 4%, 20%, 8% and 6%, respectively.  

To measure the RbcS expression under different environmental conditions, the 

arrhythmic clock mutant prr5/7/9 mutant was grown under constant light for 14 d. The 

mutant was kept in darkness for 24 h before exposing to white light for 12 h. Transcript 

analysis was performed and the result showed that i) all RbcS genes were induced by light 

and the total transcript abundance increased when light was turned on and decreased after 

light was turned off; and ii) each RbcS had different induction and degradation rates. 1A 

was induced the most quickly and degraded most rapidly while 1B was induced the most 

slowly and 2B was the most stable transcript after light was turned off. The experiment 

was repeated but with different light qualities (blue, red, and far-red), light quantities (high 

(1000 µmol photon m-2 s-1), medium (200 µmol photon m-2 s-1) and low (50 µmol m-2 s-

1) light), and temperatures (high (30oC) and low (10oC), white light at 200 µmol m-2 s-1). 

Transcript analyses showed that blue light induced the highest level of increase among 

light qualities followed by red light and far-red light. High light induced the highest level 

of transcript abundance followed by medium light and low light. Under high temperature, 

the expression of 2B and 3B increased significantly and 3B was the major isoform. On 
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the other hand, the expression of 2B and 3B were suppressed under low temperature and 

1A was the major isoform. This suggested that 2B and 3B were the most sensitive 

temperature mediators of the RbcS gene family.  

Based on the transcript analyses, the high light, high temperature and low 

temperature conditions were chosen for growth experiments. WT, T-DNA and 

CRISPR/Cas9 mutants were used to test the following hypotheses: i) under the light 

saturating condition (high light), Rubisco becomes limiting and plants with reduced 

Rubisco content (1a, 3b, 2b3b and 1a2b) would grow more slowly than WT; ii) under 

high temperature where 3B is the major isoform, plants lacking 3B (3b, 2b3b) would suffer 

a reduced growth rate relative to WT; iii) under low temperature where 1A is the major 

isoform, plants lacking 1A (1a, 1a2b) would  suffer a reduced growth rate relative to WT. 

Growth under high light was able to differentiate the areas of 1a, 2b3b and 1a2b mutant 

in comparison to WT, but not 3b mutant. However, the weight of 3b mutant was 

significantly lower than that of WT, suggesting the leaves of 3b were thinner. Under high 

temperature, 3b and 2b3b mutants were not significantly different from WT. This was due 

to 3B accounting for ca 50% of the transcript abundance under high temperature and 

growth was found to be unaffected at this level of RbcS decrease. Under low temperature, 

the areas of 1a and 1a2b were not significantly different from that of WT, but weights 

were significantly lower. This was similar to 3b under high light and suggested that leaves 

of plants with significant Rubisco reduction become thinner first and further decrease in 

Rubisco resulted in the loss of leaf area. Altogether, this study showed that RbcS genes 
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collectively contribute to the overall transcript abundance and 2B and 3B genes are most 

susceptible to the changes in temperature.  

The triple mutant 1a2b3b generated in this study was used as a model to study the 

effects of heterologous SSUs to growth. After complementation with Chlamydomonas 

SSU, seven independent complemented lines were identified and the slow-growing 

phenotype was rescued in all lines. The area of complemented plants ranged from 8-34% 

of WT compared to 1% of the triple mutant on day 28. This study showed that the triple 

mutant could be used as an Arabidopsis platform to study the effects of heterologous SSUs 

to Rubisco catalytic activities. 
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Chapter 1 - Literature review 

Introduction 

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is the enzyme 

complex responsible for photosynthetic carbon uptake in plants. Rubisco fixes carbon 

dioxide (CO2) through carboxylation of ribulose-1,5-bisphosphate (RuBP) to produce two 

molecules of 3-phosphoglycerate (3PGA), which is subsequently converted in to sugars 

and starch. Rubisco is a relatively slow catalyst for carboxylation with a turnover rate 

(kcat
c) of ~1-15 s-1 (Badger et al., 1998; Dodd et al., 2002; Von Caemmerer and Furbank, 

2003; Flamholz et al., 2019). Carboxylation efficiency is further compromised by a 

competing side reaction with oxygen (O2). Instead of producing two molecules of 3PGA, 

the oxygenic reaction produces a single 3PGA and 2-phosphoglycolate (2PGA), a toxic 

compound that needs to be recycled via photorespiration. Photorespiration expends ATP 

and results in a loss of previously fixed carbon and nitrogen that must be recaptured 

through the photorespiratory salvage pathway. Competitive oxygenation can reduce the 

efficiency of photosynthetic carbon assimilation by 25% in C3 plants  and thus limits the 

productivity of C3 crops (Smith et al., 2010). Increasing the yield of C3 crops through 

improving photosynthetic efficiencies is a key approach to ameliorate food security 

(Ingram and Porter, 2015; Long et al., 2015). Various strategies, including the 

introduction of a carbon concentrating mechanism (CCM) into C3 plants, photorespiratory 

bypass mechanisms and directed mutation of the Rubisco complex are currently being 

explored (Whitney et al., 1999; Dalal et al., 2015; Atkinson et al., 2016; South et al., 

2019). 
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Rubisco biogenesis and activation  

Rubisco in plants and algae is an L8S8 complex composed of eight large subunits 

(LSUs), encoded by an RbcL gene on the chloroplastic genome, and eight small subunits 

(SSUs) encoded by a family of RbcS genes in the nuclear genome. Biogenesis of plant 

Rubisco requires coordination between chloroplastic and cytosolic translation because the 

LSUs are synthesised in the chloroplast stroma while SSUs are synthesised in the cytosol. 

Furthermore, assembly of Rubisco requires a suite of proteins needed for folding and 

assembly (chaperones), all of which are nuclear-encoded (Onizuka et al., 2004; Emlyn-

Jones et al., 2006; Aigner et al., 2017). After the translation on the ribosome, the 

chaperones and SSUs are transported to the chloroplast in the unfolded state and the 

chloroplast signal peptide is cleaved. The chaperones (currently eight are known) and 

SSUs are then folded into a functional state in the stroma where the folding and assembly 

of Rubisco occurs (Aigner et al., 2017; Bracher et al., 2017). Chaperonin cpn60α, cpn60β, 

cpn 10 and cpn 20 facilitate appropriate folding of LSUs, which subsequently dimerise 

into L2 complex with the assistance of Raf1 and RbcX. Four dimers of L2 are then 

oligomerised into the L8 conformation, which is believed to be mediated by Raf2 and 

BSD2. The L8 assembly is held together by eight BSD2 proteins, which are then displaced 

by eight SSUs to form a functional L8S8 Rubisco enzyme (Aigner et al., 2017; Wilson 

and Hayer-Hartl, 2018).  

Activation of RuBP-bound Rubisco (inactive form) is essential to switch Rubisco 

to an active form (i.e. a form that is capable of CO2 fixation). Activation is facilitated by 

the enzyme Rubisco activase, which physically interacts with and changes the 
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conformation of Rubisco to release the bound inhibitor RuBP (Lorimer et al., 1976; 

Perchorowicz et al., 1981; Portis, 1995). Disassociation of RuBP from the active site 

allows for carbamylation (covalent modification of the amino group) of the active site by 

an activator CO2 and subsequent binding of Mg2+ (Stec 2012). The active form of Rubisco, 

denoted by the bound activator CO2 and Mg2+, is capable of catalysis using the substrates 

RuBP and CO2. Activation of Rubisco by Rubisco activase is an ATP-dependent process 

and therefore depends on the amount of ATP produced from the light reactions of 

photosynthesis (Portis 1995). The activity of Rubisco activase is also influenced by 

external environmental factors, such as light, temperature and CO2 levels (Crafts-

Brandner and Salvucci 2000; Salvucci and Crafts-Brandner 2004). Therefore, the pool of 

active Rubisco at a given time can vary depending on the activity of Rubisco activase.  

 

Structure and functions of Rubisco  

Rubisco evolved ca. 2.4 billion years ago from a symbiotic event (Nisbet et al., 

2007; Robinson et al., 2012). The ancestral form of Rubisco has since diverged into four 

forms categorised based on differences in sequences of the ~50-55 kDa LSU (Tabita, 

1999; Tabita et al., 2008). Form I is the most abundant and found in all plants, algae and 

cyanobacteria while Form II are found in proteobacteria. Form I is further classified into 

Form IA found in some marine cyanobacteria and proteobacteria, and IB found in plants 

(Shih et al., 2015). Forms III and IV (also known as Rubisco-like protein) are found in 

anaerobic prokaryotes (Tabita et al., 2008). For the purpose of and relevance to this study, 

only Form I will be reviewed.  
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The functional unit of Rubisco is comprised of a dimer of LSUs which is repeated 

four times to form the L8 core of the LSU (Andersson et al., 1989; Andersson and 

Backlund, 2008). The distinctive feature of Form I Rubisco is the presence of the eight 

~12-18 kDa SSU capping both ends of the L8 core, forming the ~530-550 kDa L8S8 

Rubisco enzyme (Figure 1.1 A, B) (Knight et al., 1990; Andersson, 1996). The sequences 

of Form I LSU are more conserved while those of SSUs are are more diverse (Spreitzer, 

2003; Pottier et al., 2018). Crystal structure studies of LSU revealed the shorter N-

terminus (NT) domain is composed of five strands of β-sheets and α-helices and the larger 

C-terminus (CT) domain contains eight α/β-units arranged as α/β barrel structure (Figure 

1.1 C, D). The active site is located at β-strand of the CT end and the adjoining residues 

of the NT domain of the adjacent LSU of the dimer (Figure 1.1 C, D). Therefore, a 

catalytically active LSU dimer contains two active sites (Andersson and Taylor 2003). 

The common core structure of the SSU consists of four β-sheets and two helices. Two 

distinct regions of the SSU are the loop between the βA and βB strands (the βA-βB loop) 

and the CT, which differ in length depending on lineage (Figure 1.1 C, D). The βA-βB 

loop of higher plants and green algae contains 22 and 28 residues, respectively, and a 

shorter CT. In contrast, prokaryotes and non-green algae have a CT extension (βE-βF 

loop) that displaces the space that is occupied by the longer βA-βB loop in higher plants 

and green algae. Prokaryotes and non-green algae also have a shorter 10-residue βA-βB 

loop (Spreitzer 2003; Andersson 2008). 
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A      B 

 
    

 

 

C      D 

 

Figure 1.1. Crystal structure of Spinach Rubisco L8S8 unit and L2 dimer with two SSUs. 

A) Side view and B) top view of Rubisco enzyme. C) Side view and D) top view of the 

L2 dimer with two SSUs. SSUs are shown in red and dimers of LSU are in black and grey. 

The C-Terminus (CT) of the LSU CT is highlighted in magenta, the active sites are in 



 

6 

 

yellow and loop 6 is in cyan. SSU CT’s are highlighted in green and βA-βB loops in blue. 

Crystal structure of Rubisco was obtained from Protein Data Bank (PDB) with the PBD 

code 1AUS. 

 Regions both close and distal to the active sites have been investigated and shown 

to influence the catalysis of Rubisco. The CT of the LSU forms a part of the catalytic site 

and is also responsible for the open and closed conformation of Rubisco active site 

(Schneider et al. 1990; Taylor and Andersson 1996). The crystal structure of tobacco LSU 

revealed that the CT may serve as a “latch” to hold and pack against loop 6 in the closed 

state, which in turn, stabilizes the active site by its polar interaction with the side chain of 

Asp473 (Figure 1.1 C) (Duff et al., 2000). Directed mutagenesis of Asp473 disrupted the 

polar interaction between CT and loop 6 and destabilized the closed state (Karkehabadi et 

al., 2007), which resulted in an 87% decrease in carboxylation catalytic efficiency and 

16% decrease in CO2/O2 specificity (Sc/o) (Satagopan and Spreitzer 2004). Removal of the 

last α-helix of the CT caused a significant shift in quaternary structure of Rubisco, 

resulting in formation of an LSU octomer instead of a dimer, resulting in an enzyme that 

was inactive (Ranty et al., 1990).  

 Interacting with the CT is loop 6 (residues 331 – 338) of the LSU, which connects 

the β-strand 6 with the α-helix 6 in the CT α/β-barrel. Loop 6 is responsible for the open 

(active site unbounded to ligands) or the closed (bounded to substrate or inhibitor) states 

of the Rubisco active site (Duff et al., 2000). The sequence of this loop is well conserved 

in higher plants and it has been shown to influence Sc/o, as it forms a part of the catalytic 

mechanism (Karkehabadi et al., 2007). Loop 6 constitutes a “flexible hinge” that contains 
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the two highly conserve residues Val331 and Lys334 (part of the active site) in plants and 

green algae. A replacement of Val331 by Ala decreased Sc/o by 37% due to the altered 

flexibility of the loop. Lys334 has been shown to interact with CO2 and O2 and amino acid 

residues in the adjacent NT during catalysis. Site-directed mutagenesis of Lys334 

abolished the carboxylation capacity or caused a significantly decreased the maximum 

rate of Rubisco carboxylation (Vc,max). These amino acids were found to affect the 

interaction with the RuBP and assist in stabilizing the intermediates following the reaction 

with CO2 or O2 (Gutteridge et al., 1993). 

 Amino acid residues in the LSU that are distant from the active site can influence 

the catalysis and Sc/o of Rubisco. In Chlamydomonas, a mutant strain with substitution of 

Leu290, which is located at the bottom of the α/β -barrel, by Phe resulted in a 13% 

decrease in Sc/o. The mutation also had an negative effect on the enzyme assembly and 

thermal stability as Rubisco was non-functional at 35oC (Chen et al., 1988).  Subsequent 

structural analysis indicated that the conserved Leu290 residue forms a van der Waal 

interaction at the interface between the LSUs that influence temperature sensitivity 

(Karkehabadi et al., 2005). This suggests that long-range interactions between or within 

subunits influence protein dynamics and catalysis. 

 The longer βA-βB loop of land plant and green algae extends to the bottom side 

of the α/β barrel of the LSU and also interacts with the LSU helices 2 and 8 and the βA-

βB loops of the adjacent SSUs (Wasmann et al., 1989). Transformation of βA-βB loops 

from a spinach SSU (22 residues) or a Synechococcus (Aspergillus nidulans) SSU (10 

residues) into Chlamydomonas reinhardtii (Chlamydomonas hereafter) resulted in an 
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enzyme with a decrease in Vc,max (50%) when containing a spinach βA-βB loop, and both 

Vc,max (46%) and Sc/o (11%) for that of Synecchoccus loop (Karkehabadi et al., 2005). 

However, the mutant Rubisco was still photosynthetically competent, implying that 

altering the βA-βB loop length was not absolutely essential for the assembly of the enzyme 

but could potentially be a target to modify the catalytic activity.  

The CT is another site of the SSU that is divergent. Truncation of the last nine 

residues in the CT of Chlamydomonas did not perturb Sc/o, but Vc,max was reduced by 68%  

(Genkov and Spreitzer 2009). Furthermore, the enzyme was no longer active at 55oC as 

compared to WT. This suggests that although these residues on the CT are not essential 

for Rubisco catalysis and assembly, it is required for thermal stability. 

 

The small subunit of Rubisco 

Members of the RbcS gene family vary in number in different eukaryotic species, 

ranging from two in the green alga Chlamydomonas (Goldschmidt-Clermont and Rahire 

1986) to as many as 22 in wheat (Galili et al., 1992). RbcS genes in higher plants are 

divided into subfamilies depending on their sequence similarity and arrangement. The 

number of genes within each SSU subfamily varies and those that are arranged in clusters 

within the genome are usually the product of gene duplication and conversion (Meagher 

et al., 1989; Derocher et al., 1993; Schwarte and Tiedemann, 2011). Genes within the 

same subfamily are usually identical or nearly identical, while sequence similarity 

decreases between different subfamilies. For instance, SSUs in petunia are encoded by 
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eight RbcS genes that are divided into three subfamilies (51, 71, 117) (Dean et al., 1987). 

Subfamily 51 contains six genes, five of which are arranged in tandem within a 25 kb 

region. Within this subfamily, the nucleotide similarity (excluding introns) is between 97-

100%. The other two subfamilies are located on different chromosomes and contain one 

gene each. The sequence of the other two subfamilies are more divergent and the similarity 

of mature mRNA among these three subfamilies is 89.8% (Dean et al., 1989) . In 

Arabidopsis, the four RbcS isoforms are divided into two subfamilies – A and B. The A 

subfamily contains one gene called RbcS1A (1A hereafter) located on chromosome 1 

while the B subfamily contains three genes – RbcS1B, RbcS2B and RbcS3B (1B, 2B and 

3B hereafter) located on chromosome 5 (Krebbers et al., 1988). The B subfamily genes 

are more than 97% similar in nucleotide sequence (excluding introns). The mature protein 

sequences of 2B and 3B are identical while that of 1B differs by 2 amino acid residues. 

However, the amino acid sequence of 1A is more divergent and is 180 amino acid residues 

in length as opposed to 181 amino acid residues of the B-subfamily mature protein (Figure 

1.2).  
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     1A      MASSMLSSATMVASPAQATMVAPFNGLKSSAAFPATRKANNDITSITSNG    50 

     1B      MASSMLSSAAVVTSPAQATMVAPFTGLKSSASFPVTRKANNDITSITSNG    50 

     2B      MASSMFSSTAVVTSPAQATMVAPFTGLKSSASFPVTRKANNDITSITSNG    50 

     3B      MASSMLSSAAVVTSPAQATMVAPFTGLKSSAAFPVTRKTNKDITSIASNG    50 

             *****:**:::*:***********.******:**.***:*:*****:*** 

 

     1A      GRVNCMQVWPPIGKKKFETLSYLPDLTDSELAKEVDYLIRNKWIPCVEFE   100 

     1B      GRVSCMKVWPPIGKKKFETLSYLPDLTDVELAKEVDYLLRNKWIPCVEFE   100 

     2B      GRVSCMKVWPPIGKKKFETLSYLPDLSDVELAKEVDYLLRNKWIPCVEFE   100 

     3B      GRVSCMKVWPPIGKKKFETLSYLPDLSDVELAKEVDYLLRNKWIPCVEFE   100 

             ***.**:*******************:* *********:*********** 

 

     1A      LEHGFVYREHGNSPGYYDGRYWTMWKLPLFGCTDSAQVLKEVEECKKEYP   150 

     1B      LEHGFVYREHGNTPGYYDGRYWTMWKLPLFGCTDSAQVLKEVEECKKEYP   150 

     2B      LEHGFVYREHGNTPGYYDGRYWTMWKLPLFGCTDSAQVLKEVEECKKEYP   150 

     3B      LEHGFVYREHGNTPGYYDGRYWTMWKLPLFGCTDSAQVLKEVEECKKEYP   150 

             ************:************************************* 

 

     1A      NAFIRIIGFDNTRQVQCISFIAYKPPSFTG-  180 

     1B      GAFIRIIGFDNTRQVQCISFIAYKPPSFTDA  181 

     2B      GAFIRIIGFDNTRQVQCISFIAYKPPSFTEA  181 

     3B      GAFIRIIGFDNTRQVQCISFIAYKPPSFTEA  181 

             .**************************** 

 

Figure 1.2: Amino acid sequence alignment of Arabidopsis SSUs. The first 55 amino 

acids (italicised) constitute the chloroplast signal peptide which is cleaved out once the 

transcript is transported into the chloroplast. The mature mRNA starts with a methionine 

residue (M, bold). Amino acids in red represent α-helices and those in blue represent β-

sheets. Asterisk (*) indicates identical amino acid among the four SSUs, colon (:) indicates 

conserved substitution between groups of strongly similar properties, full-stop (.) 

indicates conserved substitution between groups of weakly similar properties, and space  

( ) indicates that the substitution is not conserved.  
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Functional roles of the small subunit 

Although the SSU is distant to the active sites of Rubisco, several lines of evidence 

suggest that the sequence of the SSU may contribute to phylogenetic differences in the 

catalytic activity of Rubisco, including turnover rate (kcat,c) and Sc/o (Andrews and 

Lorimer, 1985; Read and Tabita, 1992; Kostov et al., 1997; Kanevski, 1999; Du et al., 

2003; Karkehabadi et al., 2005). Moreover, the presence of SSU in higher plants indicates 

that SSU may assist in binding and concentrating LSU. Sequence analysis of SSU shows 

that the βC-βD loop (Figure 1.3) is highly similar to that of the CcmM protein which 

mediates carboxysome formation and CO2 concentrating mechanism in the 

cyanobacterium Synechococcus (Price et al., 1993; Kaplan and Reinhold, 1999). This 

evidence suggests that SSU may have evolved from the carboxysomal protein that was 

eventually incorporated with the LSU. Binding of the SSU also allows for a more compact 

form of Rubisco, which increases the enzyme concentration in a cell, and thereby 

increases the net CO2 fixation (Spreitzer 2003).  
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Figure 1.3. Structure of spinach Rubisco SSU. Four β-sheets (orange) are lined by two 

α-helices (purple). The CT is shown in green, βA-βB loop is blue and βC-βD is yellow. 

Crystal structure of Rubisco was obtained from Protein Data Bank (PDB) with the PBD 

code 1AUS. 

 

SSU significantly affects the activity of Form I Rubisco enzyme (Morell et al., 

1997). A truncation study in cyanobacterium Synechococcus sp. PCC 6310 demonstrates 

the importance of the first 20 residues in the NT of SSU and their influence over Rubisco 

assembly and catalytic properties (Paul et al., 1991). The deletion of the first 13 and 14 

residues significantly decreased kcat,c to 2.7 s-1 and 5.2 s-1, respectively, from 12.1 s-1 for 

WT. Deletion of the first 20 residues completely abolished the activity of the enzyme   

In rice, a single native SSU isoform has been shown to have a significant impact 

on that catalytic characteristics of Rubisco (Morita et al., 2014). Of the five RbcS genes 
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in the rice SSU family, OsRbcS1 is more genetically distant from other four. Furthermore, 

OsRbcS1 is expressed in the developing leaf sheath, culm, anther and root, but not in the 

photosynthetic leaf blade. Transgenic lines over expressing OsRbcS1 in the leaf blade 

showed that OsRbcS1 was able assemble into a functional Rubisco that exhibited an 

increased kcat,c  (by up to 1.46-fold), a 3-fold higher Kc and a slight decrease in Sc/o 

compared to WT plants. Expression of tobacco trichome-specific RbcS-T isoform in 

Chlamydomonas conferred higher Vc,max and Km values than the isoform expressed in 

leaves (Laterre et al., 2017). The observed changes following expression of RbcS-T both 

in rice and Chlamydomonas demonstrated that the SSU can influence the catalytic 

properties of Rubisco. 

RbcS genes are also differently expressed in different organs in plants as SSUs 

regulate the abundance of Rubisco in specific tissues and in some cases, might impart a 

different catalytic activity in special organs. For example, tomato (Solanum lycopersicum 

L.) has five RbcS genes (i.e. RbcS1, RbcS2, RbcS3A, RbcS3B, RbcS3C) that are expressed 

in leaves. However, only RbcS1 and RbcS2 are expressed in unripe fruits, although 

expression declines during fruit maturation (Wanner and Gruissem 1991). In maize (Zea 

mays L.), ZmRbcS1 transcripts are relatively more abundant in the husks than the other 

four isoforms, while both ZmRbcS1 and ZmRbcS2 accumulate to high levels in the bundle 

sheath cells (Ewing et al., 1998). Recently, a phylogenetically distinct SSU isoform has 

been identified in several monocot and dicot species that contain glandular trichomes 

(Laterre et al., 2017). In tobacco, the isoform was called NtRbcS-T and was found to be 

exclusively expressed in trichomes. It was postulated that SSU expression in specific 
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organs, such as OsRbcS1 in rice and NtRbcS-T in tobacco, may play a specialised role in 

recycling of CO2 generated by the metabolism in organs that are less permeable to gas 

exchange. In Arabidopsis leaves, 1A and 3B genes are uniformly expressed throughout 

the leaf while 2B is predominantly expressed on the base of the leaf and 1B on the abaxial 

side of the leaf (Sawchuk et al., 2008). Since the upper side of the leaf is specialized in 

photosynthesis while the lower side is involved in gas exchange, Sawchuk et al., (2008) 

suggested the differences in expression may contribute to an effect on the catalytic 

properties of Rubisco in these regions. However, this is unlikely as 1B differs by only 2 

amino acid from 2B and 3B. Together with evidence of the role of SSUs in Rubisco 

catalysis, these studies suggest that the RbcS gene family may play an important function 

during organ development.  

RbcS gene expression is also affected by temperature. When WT Arabidopsis 

(Col-0 ecotype) plants were grown under 14 h light/10 h dark with 100 µmol m2 s-1 at 

three different temperatures, differential expression of RbcS genes was observed (Yoon et 

al., 2001). At 10oC and 20oC, 1A contributed to the majority of the RbcS mRNA pool, and 

was especially dominant at 10oC (ca. 68%). The expression of 3B was relatively low at 

10oC (ca. 15%) but increases to 40% at 30oC. The combined expression of 1A and 3B 

were dominant at all three temperatures and always made up more than 70% of the total 

RbcS mRNA pool. At 10oC the expression of 1B and 2B made up about 12% and 5%, 

respectively, while at 30oC both 1B and 2B were 10% (Yoon et al., 2001). 2B and 3B 

responded similarly to the change in temperature.  
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A large number of plant genes related to photosynthesis and photomorphogenesis 

are regulated by light (Petrillo et al., 2014; Ido et al., 2016). Members of the Arabidopsis 

RbcS family also respond differently to light conditions. The expression 1A, 2B, and 3B 

have been shown to be regulated by light of differing quality and quantity (Dedonder et 

al., 1993). 1A expression was less sensitive to blue light compared to 3B but very 

receptive to white, red and, to a lesser extent, far red light. 1A was also found to be more 

strongly induced than 2B and 3B under higher fluence of white light (Ido et al., 2016). In 

contrast, 1B essentially showed no response to light (Dedonder et al., 1993). Thus, the 

expression of each RbcS gene in Arabidopsis responds differently to light of different 

quality and quantity.  

 

CRISPR/Cas9 editing 

The clustered regularly interspaced short palindromic repeats (CRISPR) and 

CRISPR associated protein (Cas9) system (CRISPR/Cas9) is a relatively new tool that can 

induce DNA mutation after a double strand break at specific locations in the genome 

(Cong et al., 2013; Jiang et al., 2013a). CRISPR/Cas9 is comprised of two major 

components: a guide RNA (gRNA) and the Cas9 endonuclease. The gRNA is a short 

sequence of nucleotide of 19-22 bp that complements a gene of interest. The gRNA 

recognises the gene of interest through a binding of the protospacer adjacent motif (PAM) 

sequence, which is NGG if using the Cas9 from Streptococcus pyogenes (SpCas9, the Cas 

protein still most commonly used) (Jiang and Doudna 2017). The binding of the gRNA-

Cas9 complex to the PAM sequence initiates a double strand break (DSB) three bp 
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upstream of the PAM sequence. DSBs are repaired by either non-homologous end joining 

(NHEJ) or homology-directed repair (HDR) mechanisms. NHEJ repairs DSBs through an 

error-prone mechanism, which causes small deletions or insertions (Figure 1.4) (Li et al., 

2013; Knoll et al., 2014). HDR integrates an exogenously supplied DNA template at the 

DSB site and can be utilised to induce gene insertion (Barrangou and Marraffini, 2014; 

Miki et al., 2018; Wolter et al., 2018). Due to the relative ease of use compared to other 

targeted DNA editing methods, such as zinc finger nucleases (ZFNs) and TAL effector 

nucleases (TALENs), the CRISPR/Cas9 system has been utilised widely in both animals 

and plants. 
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Figure 1.4: Mechanism of CRISPR/Cas9 editing. Cas9-gRNA complex unwinds the 

double helix, binds to the matching genomic sequence and Cas9 induces a double stranded 

break 3-bp upstream of the PAM sequence. The error-prone NHEJ repairs the break and 

often results in base-pair deletions and/or insertions (indels). Small indels lead to a frame-

shift mutation which effectively knocks out the target gene.  
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 The CRISPR/Cas9 system has been exploited to induce targeted mutagenesis in 

several plant species, including Arabidopsis, maize, barley and wild tomato (Xing et al., 

2014; Lawrenson et al., 2015; Zsögön et al., 2018; Ordon et al., 2019). CRISPR/Cas9 is 

versatile as it enables simultaneous editing of multiple genes (multiplex editing). For 

example, three genes were simultaneously edited by two gRNAs in hexaploid wheat with 

an efficiency of ~5% and edited heterozygous progeny was recovered in the T2 generation 

(Howells et al., 2018). Large genomic deletions of up to 100 kb can also be induced at a 

rate of 0.1% by using two gRNAs in Arabidopsis (Ordon et al., 2017). The versatility of 

CRISPR/Cas9 system has now extended beyond gene editing as further engineering of 

Cas9 and/or discovering of new Cas orthologs has introduced novel functions to the 

CRISPR/Cas approach, including RNA editing by Cas13b, modulation of transcript levels 

by dCas9, and precise nucleotide base-pair editing and gene targeting (Tan et al.,; Wolter 

and Puchta, 2018; Wolter et al., 2018; Papikian et al., 2019) 

 

CRISPR/Cas9 editing in Arabidopsis 

 Arabidopsis was one of the first plants that served as a platform for CRISPR/Cas9 

editing (Feng et al., 2013; Li et al., 2013). studies in Arabidopsis protoplasts showed that 

CRISPR/Cas9 was able to induce mutations with high specificity (Jiang et al., 2013b; 

Fauser et al., 2014). Unlike other model species, such as tobacco and rice, initial 

applications of CRISPR/Cas9 in Arabidopsis was focused to protoplast studies as initial 

reports had shown low transformation efficiencies and heritability (Feng et al., 2014; Mao 

et al., 2016). Generating stable mutations in Arabidopsis required a localised expression 
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of Cas9 in germ-cells or during an early embryonic stage. However, the Cauliflower 

mosaic virus (CaMV35S)  promoter was often used and has been shown to have low 

activity during such stages resulting in a low rate of heritable mutations in planta in the 

T1 generation (Hyun et al., 2015; Wang et al., 2015). Therefore, the majority of mutations 

induced by Cas9 driven by CaMV35S promoter was chimeric mutations in somatic cells 

(Feng et al., 2014). 

 Localised expression of Cas9 to improve the heritability rate was achieved by 

using germ-line-specific promoters or constitutive promoters that display higher activity 

during embryogenesis. To date, 13 germ-line specific promoters have been reported and 

successfully applied to increase the rate of heritable mutations in the T1 generation in 

Arabidopsis (Hyun et al., 2015; Wang et al., 2015; Yan et al., 2015; Eid et al., 2016; Mao 

et al., 2016; Osakabe et al., 2016). One outstanding example of these promoters is the 

fused EC1.1/EC1.2 promoter that yielded a 17% rate of heritable mutation compared to 

0% by CaMV35S in the T1 generation (Wang et al., 2015). Since the activity of Cas9 is 

localised, using germ-line specific promoter reduces the requirement for multi-

generational analyses and number of sample size needed for screening as chimeric 

mutation was less frequent. 

 The editing efficiency of CRISPR/Cas9 could be further enhanced by optimising 

the CRISPR/Cas9 construct and the architecture. Ordon et al., (2019) tested combinations 

of promoter-terminator pairs and identified the RPS5a promoter and RbcSE9 terminator 

as most effective to induce mutations. Cas9 driven by the promoter-terminator pair, 

combining with the paired gRNAs, was able to generate a 70 kb deletion at a 30% rate 
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(Ordon et al., 2019). Editing efficiency can also be enhanced by optimising the T-DNA 

architecture, for example, by expression Cas9 and gRNA in a head-to-head divergent 

orientation to enhance the transcription of the gRNA (Castel et al., 2019). This suggested 

that the CRISPR/Cas9 components in addition to their arrangement contribute to the 

editing activity.  

 Periodic heat stress of Arabidopsis also has been shown to increase the editing 

efficiency of SpCas9. LeBlanc et al., (2018) subjected Arabidopsis to four heat stress 

treatments at 37oC for 30 h before the transition to the reproductive stage and found that 

there was a higher level of Cas9 expression in germ-cells. Exposure to heat stress led to a 

42% homozygous editing rate compared to 8% in the untreated plants (LeBlanc et al., 

2017). This study suggested that the optimal temperature for Cas9 activity is higher than 

the Arabidopsis standard growth temperature, since SpCas9 is derived from bacteria that 

typically grow at 37oC. However, reproductive development of Arabidopsis is adversely 

affected at 37oC and therefore it is important to limit the heat stress exposure to the 

vegetative stage (Warner and Erwin 2005).  

 Cas9 derived from different bacterial system have been successfully applied in 

Arabidopsis gene editing. Cas9 from Streptococcus thermophiles and Staphylococcus 

aureus have been reported to have similar editing efficiency as SpCas9 (Steinert et al., 

2015). Moreover, SaCas9 was shown to be more efficient for in planta gene targeting than 

SpCas9 (Wolter et al., 2018). Other Cas orthologs, including Cas12a derived from 

Acidaminococcus sp. BV3L6 and Lachnospiraceae bacterium ND2006, have also been 

used in Arabidopsis (Tang et al., 2017). The main advantage of Cas12a over Cas9 is its 
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ability to process multiple gRNAs, which enables simpler CRISPR/Cas9 construct with a 

single promoter driving multiple gRNAs (Hu et al., 2017; Wang et al., 2017). Since these 

Cas orthologs require different PAM sequences, they offer different avenues to targeting 

regions that are limited by the requirements of SpCas9.  

 

Aims of this study 

This study aimed to elucidate the functions of RbcS gene family in Arabidopsis. 

To characterise the functions of RbcS genes, I have i) characterised the available rbcs T-

DNA mutants and cleaned up second-site mutations in one of the mutant lines; ii) 

generated single and novel double and triple SSU KO mutants using CRISPR/Cas9 editing 

and performed molecular and physiological characterisations of new mutants against the 

T-DNA lines; iii) performed transcript analysis of RbcS genes under different 

environmental conditions including different light qualities, quantities and temperature, 

as well as growth experiments under different environmental conditions to study the 

effects on growth; iv) complemented a triple SSU KO mutant with a Chlamydomonas 

SSU to generate hybrid Rubisco and study the effects of heterologous SSUs on 

Arabidopsis.  
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Chapter 2 - Materials and methods 

Chapter 3 

Plant material and growth conditions 

Arabidopsis (Arabidopsis thaliana (L.) Heyn. Col-0) seeds were sown on soil and 

stratified for 3d at 4oC and grown at 21oC, ambient CO2, 70% relative humidity and 200 

µmol photons m-2 s-1 in 12 h of light/dark cycle (standard conditions) unless otherwise 

specified. Arabidopsis T-DNA insertion lines 1a (GABI_608F01), 1b (SAIL_755_D09), 

2b (GABI_324A03), 3b (SALK_117835) were used. Double mutant 1a2b was generated 

in our laboratory by crossing T-DNA insertion lines GABI_608F01 and GABI_324A03, 

and was previously described (Atkinson et al., 2017). Crossing 1a2b back to WT was 

performed to clean up background mutations and the “new 1a2b” was recovered in F2 

generation. The 1a3b mutant was generated by crossing GABI_608F01 with 

SALK_117835, and was provided by Hiroyuki Ishida, Department of Applied Plant 

Science, Tohoku University, Japan. The crossing between 1a (GABI_608F01) and 1b 

(SAIL_755_D09) was performed and F2 and F3 plants were screened to in an attempt to 

find homozygous 1a1b.  

 

DNA extraction 

 DNA was extracted from a mature leaf as described in  Li and Chory (1998). Plants 

were screened using specific primers for each RbcS gene and T-DNA insertion.  
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Chlorophyll quantification 

Leaf discs (c. 20 mm2) were frozen in liquid nitrogen, powdered and then mixed with 1 

mil of ice-cold 80% (v/v) acetone, 10 mM Tris-HCl. The extract was centrifuged at 17,200 

g for 10 min and chlorophyll was quantified according to Porra et al. (1989).  

 

Construction of RT-qPCR standard 

 A DNA fragment containing regions matching the target loci for the RbcS for RT-

qPCR primers were synthesised with overhangs compatible with the Golden Gate Level 

0 acceptor vector (pAGM9121) (Gblock, IDT) (Supplemental Figure 3.1). The 

synthesised DNA fragment was cloned into the acceptor vector as described in Engler et 

al. (2014). In the Golden Gate one pot digestion/ligation reaction, 100 ng of the 

synthesised DNA fragment and 100 ng of Level 0 acceptor vector were added to a reaction 

containing 10 units of BpiI (ThermoFisher) 2 µl of Buffer G (ThermoFisher), 400 units of 

T4 DNA ligase (ThermoFisher) and 2 µl of 10 mM ATP. The reaction was placed in a 

thermocycler and the “Golden Gate” program was applied: 3 cycles of [10 min at 37oC, 

10 min at 16oC], 10 min 37oC at and 20 min at 65oC. 

 

RT-qPCR analysis 

 Total RNA was isolated from leaves using the RNeasy plant mini kit (Qiagen, 

USA). Isolated RNA was treated with DNase (Qiagen, USA) and reverse transcribed with 

random primers (Promega, USA). Gene-specific primers amplifying the unique 3’ region 

of the transcript were used for RT-qPCR (Izumi et al., 2012). Calibration curves were 

constructed with synthesized serially diluted standard plasmid (0.976–125 picograms) for 
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quantifications of each RbcS mRNA levels. For quantitative analysis, an aliquot of cDNA 

derived from 4 ng of RNA was used (total volume 10 µl) with SYBR Green Master Mix 

(Eurogentec, Belgium). 

 

Chapter 4 

Construction of CRISPR/Cas9 constructs 

The vectors were assembled using the Golden Gate modular cloning method 

(Engler et al., 2014). To construct Level 1 Cas9 expression cassette, UBI10 promoter, 

SpCas9 coding sequence and heat shock protein (HSP) terminator were used. In the 

Golden Gate one pot digestion/ligation reaction, 100 ng of each part and Level 1 Position 

2 acceptor plasmid (pICH47742) were added to the reaction containing 10 units of BsaI 

(ThermoFisher), 2 ul of Buffer G (ThermoFisher), and 400 units of T4 DNA ligase 

(ThermoFisher) and 2ul of 10 mM ATP. The reaction was placed in a thermocycler and 

the “Golden Gate” program was applied: 3 cycles of [10 minutes at 37oC, 10 minutes at 

16oC], and 10 min at 37 oC and 20 min at 65 oC.  

 The gRNA expression cassettes were constructed by amplifying the synthesized 

gRNA flanked with BsaI restriction site with the U6 terminator. The amplicon was 

assembled with the U6 promoter in Level 1 positions 3 or 4 (pICH47751 or pICH47761) 

acceptor vectors using the Golden Gate protocol and BsaI enzyme (ThermoFisher). The 

Level 2 expression cassettes (pICSL4723) were assembled by combining Level 1 vector 

containing pFAST selectable marker (pICH11015), a Cas9 expression cassette, and two 

gRNA expression cassettes using BpiI enzyme and the Golden Gate protocol. All plasmids 
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were prepared using ThermoFisher GeneJet miniprep kit on Escherichia coli Top10 cells 

selected on antibiotic and X-gal.  

 

Expression of Cas9 and gRNA and Chlamydomonas SSU in Arabidopsis  

 Binary vectors were transformed into Agrobacterium tumefaciens (AGL1) for 

stable insertion in Arabidopsis by floral dipping (Clough and Bent, 1998). For the 

CRISPR/Cas9 work,  T1 plants were screened for the presence of a transgene by the FAST 

marker and for the presence of mutations by Sanger sequencing (Shimada et al. 2010). 

Stable mutations in transgene-free T2 plants were identified by Sanger sequencing. For 

the Chlamydomonas SSU work, BASTA was sprayed on 10-d-old plants on days 10, 12, 

14 and 17. Plants that survived the selection were checked for the presence of the 

transgene insertion by PCR using primers specific to Chlamydomonas SSU. 

 

SDS-PAGE  

Arabidopsis leaf tissue (39.3 mm2) collected from fully expanded seventh or eighth 

leaf of 35-d-old plants were snap frozen in liquid nitrogen.  The tissues were extracted 

with the 5 times weight/volume of leaf tissue using the extraction buffer (100 mM Tris-

HCl [pH 7.5], 10 mM DTT, 2 mM sodium iodoacetate, 5% [v/v] glycerol in H2O). Triton 

X-100 (10% [v/v]) was added to a final concentration of 0.1% (v/v) and the samples were 

vortexed for 30 s and centrifuged at 5,000 g for 5 min at 4ºC. The supernatant was 

transferred to a new tube where LDS and β-mercaptoethanol were added to a final 
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concentration of 1% (w/v) and 1% (v/v), respectively. Samples were then briefly vortexed, 

heated to 100ºC for 1 min, and used for SDS PAGE.  

 Prior to SDS PAGE, protein extracts (10 µl) were treated 0.6 µl of  DTT (500 mM) 

and 5 µL Native Tris-Glycine Sample Buffer (2X), then heated to 85ºC for 2 min. Protein 

extracts (13 µL) were run on 12% (w/v) NuPAGE Bis-Tris polyacrylamide gels (Thermo 

Fisher Scientific) in Tricine SDS Running Buffer (Life Technologies) at 125 V. Gels were 

either stained with Coomassie Brilliant Blue R-250 Staining Solution (Bio-Rad) for 30 

min, and destained with a destaining solution (10% glacial acetic acid, 40% MeOH, 50% 

H2O [v/v]) or used to perform Western blot. 

 

Western blot 

 Samples that were subjected to SDS-PAGE were transferred onto polyvinylidene 

fluoride (PVDF) membrane using the wet transfer method. The transfer was performed in 

Mini Trans-Blot Electrophoretic Transfer Cell (Bio-Rad) at 100 V for 1 h at 4ºC in ice-

cold transfer buffer (25 mM Tris, pH 8.3, 192 mM glycine, 0.1% [w/v] SDS, 20% [v/v] 

methanol). Membranes were blocked in 5% (v/v) milk in TBST for 1 h then probed with 

rabbit-raised anti-Rubisco primary antibody at 1:10,000 dilution (Howe et al. 1982) 

followed by LI-COR IRDye 800CW goat anti-rabbit IgG also at a 1:10,000 dilution (Li-

Cor Inc.). The membranes were imaged with LI-COR Odyssey CLx imager and processed 

with ImageStudioLite (Li-Cor Inc.).  
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Total soluble protein and Rubisco content analysis 

Leaf samples of 59 mm2 were collected, snap frozen and stored at -80 °C prior to 

extraction. The extraction buffer contained 50 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 

1 mM EDTA, 2 mM benzamidine, 5 mM ε-aminocaproic acid, 50 mM 2-mercaptoethanol, 

10 mM dithiothriotol, 1% (v/v) protease inhibitor cocktail (Sigma-Aldrich, Mo, USA), 

and 1 mM phenylmethylsulphonyl fluoride. Samples were ground rapidly in an ice-cold 

mortar and pestle in 200 µL of extraction buffer for ca. 1 min followed by 1 min 

centrifugation at 4 °C, 14700 g. 90 µL of the supernatant was then mixed with 100 µL of 

CABP binding buffer which contained 100 mM Bicine-NaOH pH 8.2, 20 mM MgCl2, 20 

mM NaHCO3, 1.2 mM (37 kBq/µmol) [14C]CABP (carboxyarabintol-1,5-bisphosphate), 

incubated at RT for 25 min, and Rubisco content determined via [14C]CABP binding 

(Sharwood et al., 2016). Bradford assay (Bradford, 1976) was used to determine total 

soluble protein in the same supernatant as prepared for Rubisco content analysis. 

 

Measurements of photosynthetic parameters 

 Gas exchange was determined using a Li-Cor LI-6400 portable infra-red gas 

analyser with a 6400-40 leaf chamber. The measurements were performed on either fully 

expanded sixth or seventh leaf of non-flowering 37- to 47-d old rosettes of WT and 

mutants and 80-d-old nonflowering rosette for BigBoi. For all gas exchange 

measurements, leaf temperature was kept at 25oC and chamber relative humidity was at c. 

65%. The light response curve (0-1800 µmol photon m-2 s-1) for net photosynthetic CO2 
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assimilation (A) was generated at ambient CO2 (400 µmol mol-1). The response of A to 

varying sub-stomatal CO2 concentration (Ci) was measured at 1800 µmol photon m-2 s-1). 

Maximum rate of Rubisco carboxylation (Vc,max), maximum photosynthetic electron 

transport rate (Jmax), respiration in the dark (Rd) were calculated using the A/Ci data fitted 

to the C3 photosynthesis model as in Ethier & Livingston (2004).  

 

Chapter 5 

Growth conditions under different environmental conditions 

Arabidopsis (Arabidopsis thaliana (L.) Heyn. Col-0) seeds were sown on soil and 

stratified for 3d at 4oC and grown under the high light (1,000 µmol m-2 s-1, 21oC), high 

temperature (200 µmol m-2 s-1, 30oC) and low temperature (200 µmol m-2 s-1, 10oC) 

conditions. The photoperiod was 12 h light/12 h dark. For the high light growth 

experiment, WT and all of the available TDNA and CRISPR/Cas9 rbcs mutants were used 

and grown in the Percival cabinet (AR-41L3). For the high temperature and low 

temperature growth experiments, WT and TDNA and CRISPR/Cas9 1a, 3b, 2b3b, 1a2b, 

1a3b and BigBoi mutants were used and grown in the Percival cabinet (AR-36L3).  

 

Growth conditions of circadian-dampened WT plants and prr5/7/9 mutant 

 Arabidopsis (Arabidopsis thaliana (L.) Heyn. Col-0) seeds were sown on soil and 

stratified for 3d at 4oC and grown under the 200 µmol m-2 S-1, 21oC, 12 h light/12 h dark 

photoperiod for 7 d. The seedlings were transferred to a constant light photoperiod for 7 

d (200 µmol m-2 s-1, 21oC, 25 h light). The prr5/7/9 mutant seeds were sown on soil and 
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stratified for 3d at 4oC and grown under the 200 µmol m-2 s-1 and constant light for 14 d. 

On day 15, both WT and prr5/7/9 mutant seedlings were transferred to a dark cabinet and 

the trays were covered with aluminium foil. For the time course experiment, plants were 

exposed to white light at 200 µmol m-2 s-1 for 12 h and harvested at ZT -2, 4, 8, 14, and 

16. For other environmental conditions, seedlings were exposed to different 

environmental condition including blue light (80 µmol m-2 s-1), red light (µmol m-2 s-1), far 

red light (50 µmol m-2 s-1); white light at 1000, 200 and 50 µmol m-2 s-1 all of which the 

temperature was kept at 21oC; 30oC and 10oC both of which the light level was kept at 

200 µmol m-2 s-1 for 8h. Samples were collected in the dark for dark time points and snap 

frozen in liquid N2. Three biological replicates were presented for each data point and 

each biological replicate consisted of 25-30 seedlings. 

 

Chapter 6 

Construction of Chlamydomonas RbcS2 for BigBoi complementation plasmid 

The vectors were assembled using the Golden Gate modular cloning method 

(Engler et al., 2014). To construct Level 1 RbcS2 expression cassette, either 1A promoter 

or 1B promoter, RbcS2 coding sequence and heat shock protein (HSP) terminator were 

used. In the Golden Gate one pot digestion/ligation reaction, 100 ng of each part and Level 

1 Position 2 acceptor plasmid (pICH47742) (for 1A promoter) or Level 1 positions 3 

(pICH47751) (for 1B promoter) were added to the reaction containing 10 units of BsaI 

(ThermoFisher), 2 ul of Buffer G (ThermoFisher), and 400 units of T4 DNA ligase 

(ThermoFisher) and 2ul of 10 mM ATP. The reaction was placed in a thermocycler and 
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the “Golden Gate” program was applied: 3 cycles of [10 minutes at 37oC, 10 minutes at 

16oC], and 10 min at 37 oC and 20 min at 65 oC.  

 The Level 2 expression cassettes (pICSL4723) were assembled by combining 

Level 1 vector containing BASTA selectable marker (pICH11017) and both L1 cassettes 

of RbcS2 driven by 1A or 1B promoters using BpiI enzyme and the Golden Gate protocol. 

All plasmids were prepared using ThermoFisher GeneJet miniprep kit on Escherichia coli 

Top10 cells selected on antibiotic and X-gal.  
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Chapter 3 - Characterisation of rbcs T-DNA insertion mutants and their effects on 

growth 

Introduction 

 Arabidopsis transfer-DNA (T-DNA) insertion mutants have been key to 

understanding gene functions. The process involves random insertion of T-DNA through 

transformation mediated by Agrobacterium tumefaciens after which the T-DNA is 

mapped to identify a gene (or genes if more than one insertions occurred) that has been 

disrupted (Qu and Qin, 2014). The availability of  large libraries of gene knockout mutants 

in addition to complete genome sequences of Arabidopsis have fuelled opportunities to 

pursue reverse genetics in an exhaustive manner (Krysan et al., 1999; Alonso et al., 2003).  

 We initially screened for on T-DNA express database (http://signal.salk.edu/cgi-

bin/tdnaexpress) to identify T-DNA insertion lines for each of the RbcS gene. Based on 

the availability of homozygous and exon or near-exon insertions, two alleles were selected 

for 1A (GABI_083C04 and GABI_608F01) and one allele for 1B (SAIL_755D09), 2B 

(GABI_324A03) and 3B (SALK_117835) (Figure 3.1). While the insertion sites for 1A 

and 2B are located in exons, the insertion site for 1B and 3B is in the 5’UTR. Previous 

work has shown that the expression levels of 3B in SALK_117835 is reduced to ca. 5% 

of WT (Izumi et al., 2012; Atkinson et al., 2017). In addition to single mutants, previous 

studies have generated double mutants 1a2b and 1a3b by crossing the single T-DNA 

insertion lines (Izumi et al., 2012; Atkinson et al., 2017).  

http://signal.salk.edu/cgi-bin/tdnaexpress
http://signal.salk.edu/cgi-bin/tdnaexpress
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 This chapter outlines a characterisation of the rbcs T-DNA insertion lines by PCR 

for homozygous insertions and examination of the absolute abundance of each RbcS 

transcript in each mutant line by RT-qPCR. The growth of these mutants was also 

characterised to assess their impact on growth. In addition, crossing between the 1a and 

1b T-DNA insertion lines was attempted and challenges to generate the 1a1b double 

mutant were described.  

 

 

Figure 3.1. Diagram representing single and homozygous T-DNA insertion sites for the 

four RbcS genes available from the SALK library. For this study, 1a (GABI_608F01), 1b 

(SAIL_755_D09), 2b (GABI_324A03), 3b (SALK_117835) were used. Specific primers 

(indicated by arrows) were used to amplify each RbcS gene and T-DNA insertion 

(Supplemental Table 3.1). 
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Results 

Characterisation of the T-DNA insertion mutants by PCR 

 Initial characterisation of rbcs T-DNA insertion lines was performed using PCR 

to confirm the zygosity and sites of T-DNA inserts in the RbcS genes. Primers specific to 

each of the RbcS gene were used to amplify the WT band. The forward left border (LB) 

primer specific to the T-DNA insertion and the specific RbcS reverse primer were used to 

amplify the insertion (Figure 3.1 and Supplemental table 3.1). PCR images of WT and 

T-DNA insertion for each gene are shown in Figure 3.2. 

The PCR results showed that the primers used were specific to the RbcS genes. In 

addition, the absence of the WT band in the T-DNA insertion lines suggested that the 

insertion was homozygous for all rbcs T-DNA insertion lines. This confirms that the T-

DNA insertion was homozygous and in the RbcS genes. RT-qPCR was performed to 

confirm the reduction in transcript levels of RbcS genes. 
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   A      B       C   D 

 

Figure 3.2. PCR confirmation of T-DNA insertion in the four RbcS genes. Amplicons of 

A) 1a T-DNA insertion line (GABI_608F01), B) 1b T-DNA insertion line 

(SAIL_755_D09), C) 2b T-DNA insertion line (GABI_324A03), D) 3b T-DNA insertion 

line (SALK_117835) are shown in comparison to WT control. The first two lanes are 

DNA extract of WT control and the last two are that of T-DNA insertion line. Specific 

forward (Fw) and reverse (Rv) primers were used to amplify the WT band (lanes 1 and 

3), and the T-DNA insertion left border (LB) primer and reverse primer specific to each 

RbcS gene were used to amplify the T-DNA insertion band (lane 2 and 4) (Supplemental 

table 3.1).  

 

Transcript expression of RbcS genes in rbcs mutants 

 Two set of primers were sourced for RT-qPCR analysis of RbcS gene expression. 

The first primer set (“Iz” hereafter) was sourced from Izumi et al., (2012) and the second 

set from Cavanagh (2016) (“Ca” hereafter) (Supplemental table 3.2). Both sets target the 

3’UTR regions of each RbcS gene as designing RT-qPCR primers that target exon-exon 

junctions was not possible due to high sequence homology among the RbcS genes. The 
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difference between the two sets of primer is both forward (Fw) and reverse (Rv) primers 

of the Iz set bind to specific region within each RbcS 5’UTR. The Ca primer set utilises a 

common Fw primer that binds to a homologous region in exon 3 of all four RbcS genes 

and Rv primers that bind to unique sequences of individual RbcS 5’UTR. These two sets 

of primers were tested on cDNA reverse-transcribed from total RNA pool from an 

Arabidopsis leaf to ensure their specificity to the target (Figure 3.3A, B).  

 
A      B 

     

C

 

Figure 3.3. Comparison of the Iz and Ca RT-qPCR primer sets for specificity to the RbcS 

cDNA and the standard plasmid. A) PCR amplicons (69 bp, 83 bp, 80 bp, 99 bp for 1A, 

1B, 2B and 3B respectively) of the Iz primer sets using cDNA as template. B) PCR 

amplicons (217 bp, 205 bp, 329 bp, 196 bp for 1A, 1B, 2B and 3B respectively) of Ca 
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primer sets using cDNA as template. C) PCR amplicons of the two primer sets using the 

internal standard plasmid as template (Supplemental Figure 3.1).  

 

 PCR results of the two primer sets showed that all primers were specific to their 

respective RbcS when using cDNA as template (Figure 3.3A, B). The lower intensity of 

the 1A and 1B bands in the Ca primer set was possibly due to lower primer efficiencies. 

To determine the absolute abundances of individual RbcS and RbcL transcripts, a plasmid 

containing sequences of the RbcS and RbcL genes matching the target loci for both sets of 

RT-qPCR primers was constructed and used as an internal standard (hereafter called the 

“standard plasmid” (Figure 3.4). PCR amplification of the standard plasmid using both 

sets of primers were performed again to ensure specificity to the cloned fragments (Figure 

3.3C). The PCR results showed that the 1A fragment was not cloned properly as 1A bands 

were not present for both Iz and Ca primers. Sequencing of the plasmid revealed that two 

fragments that in the regions of both Fw primers were missing. In addition, multiple bands 

were present in 1B, 2B and 3B for Ca primers. The presence of these bands was due to 

the use of the Fw primer that targets homologous sequence in the RbcS genes. Multiple 

bands that appeared on the PCR resulted from the Fw primer that was bound to different 

Fw sequences on the plasmid and the specific Rv primer for each gene. For example, the 

expected amplicon size for 2B at 329 bp (the lower band) was the correct size for the 2B 

primer pair. The non-specific 550 bp band for 2B was likely the product of the primers 

binding to the common forward sequence in the 1B fragment and the specific 2B sequence 

in the 2B fragment. Due to the latter specificity issue, the Ca primers were deemed 
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unsuitable for absolute quantification with the standard plasmid and the Iz primers were 

used for the remainder of this study. A plasmid containing RT-qPCR amplicons of each 

RbcS and RbcL genes were synthesised because of the difficulty in construction by cloning 

(Supplementary Figure 3.1). The Iz primer pairs were used to amplify the standard 

plasmids and the band sizes similar to those in Figure 3.3A were produced. The 

synthesised standard plasmid is used for the remainder of this study. 
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Figure 3.4. Standard plasmid containing target fragments for Iz and Ca primer sets. The Fw and Rv primers for both sets of primers 

are labelled on the map. The two blue regions denoted “missing 1” and “missing 2” are the sequences that were not clone properly 

into the plasmid. 
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To construct a standard curve for quantification of the expression of the RbcS and 

RbcL genes, the standard plasmid was serially diluted and amplified to match Ct values 

with the concentration of each amplicon (Figure 3.5 A-E). The melting curve showed a 

single peak for each of the RT-qPCR amplicon, indicating that the primer pairs were 

specific to their respective RbcS gene targets on the standard plasmid (Figure 3.5F). The 

most efficiency primer pair was that of the RbcL (94.8%) followed by 2B (94.1%), 1B 

(89.3%, 1A (87.6%) and 3B (81.6%).  
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A 
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F 

 

Figure 3.5. Construction of standard curves for absolute quantification of RbcS and RbcL 

gene expression using Iz primers and the standard plasmid. A) The linear regression 

equation and R2 value is show for A) 1A, 1B, 2B, 3B and RbcL. The synthesised standard 

plasmid was serially diluted to the concentrations ranging from 0.976–125 picograms 

(presented as log ng). F) Representative melt curves of RbcS and RbcL amplicons 

performed after 35 cycles of RT-qPCR. Ct is cycle threshold. 
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 The transcript abundances of RbcS and RbcL genes was initially determined from 

20 days after germination (DAG) WT plants grown under standard growth conditions (200 

µmol photons m-2 s-1 white light, 22oC, 12 hr light : 12 hr dark cycle). Consistent with 

previous studies (Izumi et al., 2012; Atkinson et al., 2017), the major isoform 1A 

accounted for 54.0 pmol/g total mRNA (57.2 ± 4.4% of the total RbcS transcript pool), 

followed by 3B (34.8 pmol/g total mRNA, 36.8 ± 3.3%), 2B (3.5 pmol/g total mRNA, 3.7 

± 0.70%) and 1B (2.1 pmol/g total mRNA, 2.3 ± 0.4%) (Figure 3.6A). The three rbcs T-

DNA insertion mutants for 1A, 1B and 2B showed a reduction in transcript abundance 

below detectable levels, consistent with a knockout of the relevant transcript. As expected, 

the T-DNA insertion mutants for 3B was reduced but still detectable (ca. 3% of WT 

levels). A reduction of an individual RbcS transcript did not lead to a change of other 

transcripts. A reduction in RbcL transcript was observed for each mutant line, but the 

reduction was smaller relative to the observed RbcS transcript decrease (Figure 3.6B).  
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A 

 
B 

 

Figure 3.6. Transcript measurements of WT and rbcs T-DNA insertion lines. A) RbcS 

transcript abundance and B) Relative RbcL transcript abundance. Quantification was 

performed and transcript abundance was calculated using the standard curves obtained 

from the plasmid (Figure 3.5A). The values are means ± SE of measurements made on 

three individual 20 DAG rosettes. 
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Growth analysis of T-DNA insertion mutants under standard conditions 

 The growth analysis under standard conditions was performed to monitor the 

effect of RbcS gene knockout (or knockdown for 3b) on growth. WT plants and rbcs T-

DNA insertion mutants were grown and imaged daily for 32 days. The results showed that 

the disruption of a single RbcS gene did not significantly affect growth. However, 

significantly slower growth rate was observed in double mutants 1a2b and 1b3b where 

the RbcS content was reduced to 30% and 6% of WT, respectively (Figure 3.7A, B). As 

a result of decreased growth rate, the double mutants also had significantly lower weight 

and higher specific leaf area (SLA) (Figure 3.8A, B). The chlorophyll content and 

maximum quantum efficiency of PSII (Fv/Fm) of the 1a2b mutant were not significantly 

different from WT and single mutants. However, the 1a3b mutant exhibited a pale leaf 

phenotype, had significantly less chlorophyll per area and a lower Fv/Fm value (Figure 

3.8C, D).  
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A 

 
B 

 
 
Figure 3.7. Growth analysis of rbcs T-DNA insertion mutants. A) Rosette expansion of 

T-DNA single and double mutants in comparison to WT monitored from 12-32 days after 

germination (DAG). The values are means ± SE of measurements made on 8-15 individual 

rosettes. One (*) and two (**) asterisks denote significant difference between groups. 

Significant difference (P < 0.05) was determined by ANOVA followed by Tukey’s HSD 

tests. B) Representative images of 25-d-old rosettes of WT and rbcs T-DNA insertion 

mutants. 
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A 

 
B 

 
 
 
 
 
 
 
 

 
 
 
 



 

48 

 

C 

 
D 

 
Figure 3.8. Phenotype of rbcs T-DNA insertion mutant plants. A) Fresh and dry weight, 

B) specific leaf area, C) maximum potential quantum efficiency of PSII (Fv/Fm) and D) 

chlorophyll content per area. The values represent mean ± SEM of measurements made 

on 8-15 samples for fresh weight, dry weight and specific leaf area and four samples for 

chlorophyll content and Fv/Fm. Different letters above the bars indicate significant 

difference (P < 0.05) as determined by ANOVA followed by Tukey’s HSD tests.  
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Second site mutation in 1a2b mutant caused the silique phenotype 

Based on the growth measurements and observation during reproduction, the 

double mutant 1a2b exhibited unique phenotypes including shorter silique length and 

lower seed yield (Figure 3.9A, B). Further investigation was conducted to measure other 

phenotypes during different developmental stages (Table 3.1). Phenotypes that were 

significantly different include days until bolting and days until first flower open, which 

were five days later than WT in both 1a2b and 1a3b. These phenotypes were likely 

attributed to lower Rubisco content and therefore more time was required to accumulate 

biomass to enter the reproductive stage. However, silique size and seed yield issues were 

more severe in 1a2b than 1a3b despite having more biomass (Figure 3.8A). The fresh 

silique length of 1a2b (10.7 ± 0.3 mm) was shorter than that of WT (18.0 ± 0.1 mm) and 

1a3b (16.9 ± 0.1 mm) and seed count per silique of 1a2b (9.9 ± 1.3) was significantly 

lower than 1a3b (26.6 ± 0.8) or WT (29.8 ± 0.4). Two hypotheses were proposed from 

this observation: i) 1A and 2B genes in conjunction play a role in silique and seed 

development and knocking out these genes caused detrimental effects on the reproductive 

ability; or ii) the observed phenotype was caused by second-site mutations that were not 

reported. To ensure that the phenotype was not linked to second-site mutations, the 1a2b 

mutant was backcrossed to WT and the “new 1a2b” was selected in the F2 generation 

(note that the new 1a2b was used for transcript measurement in the previous section). The 

growth analysis was performed to characterise the new 1a2b in comparison to two lines 

of WT segregant and the original 1a2b (Figure 3.10). 
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A 

 
 

  B 

 

Figure 3.9. Representative images of Arabidopsis seeds and siliques in fully grown green 

siliques of WT and rbcs mutants. A) Seed count of WT, 1a, 2b, 1a2b and 1a3b T-DNA 

insertion mutants under 10x magnification. B) Representative images of siliques of WT, 

1a, 2b, 1a2b and 1a3b T-DNA insertion mutants. 
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Table 3.1. Measurements performed during phenotypic analysis of Arabidopsis WT and 

1a, 2b, 1a2b and 1a3b mutants to investigate the short silique and low seed yield 

phenotypes of 1a2b. The numbers represent mean ± SEM of 15 plants. For distance across 

face of open flowers and fresh silique length, five flowers and siliques were measured per 

plants. For seed count per silique, seeds of 15 siliques were counted from five randomly 

chosen plants. Different letters indicate significant difference (P < 0.05) as determined by 

ANOVA followed by Tukey’s HSD tests.  

Phenotypes/Genotypes WT 1a 2b 1a2b 1a3b 

Days until bolting 30.3 ± 0.1 
a
 31.0 ± 0.1 

a
 30.8 ± 0.2 

a
 35.6 ± 1.0 

b
 34.9 ± 0.8

 b
 

Days until first flower open 33.5 ± 0.3 
a
 34.7 ± 0.4 

a
 34.4 ± 0.3 

a
 39.5 ± 0.3 

b
 38.8 ± 0.3

 b
 

Leaf number at bolting time 10 ± 0.3 
a
 10.4 ± 0.3 

a
 10.3 ± 0.2 

a
 10.7 ± 0.3 

a
 10.6 ± 0.3 

a
 

Number of stem branches  

on main bolt  3.0 ± 0.7 
a
 2.7 ± 0.6 

a
 2.5 ± 0.5 

a
 2.9 ± 0.5 

a
 2.8 ± 0.7 

a
 

Number of side bolts 5.3 ± 0.2 
a
 5.2 ± 0.2 

a
 4.9 ± 0.1 

a
 5.9 ± 0.1 

a
 6.1 ± 0.2 

a
 

Distance across face of  

open flower (mm) 3.5 ± 0.3 
a
 3.5  ± 0.4 

a
 3.2 ± 0.2 

a
 3.6 ± 0.3 

a
 3.1 ± 0.2 

a
 

Fresh silique length (mm)  18.0 ± 0.1 
a
 17.5  ± 0.1 

a,b
 17.8 ± 0.1 

a
 10.7 ± 0.3 

c
 16.9 ± 0.1 

b
 

Seed count per silique 29.8 ± 0.4 
b
 33.0 ± 0.7 

a
 33.2 ± 1.0 

a
 9.9 ± 1.3 

c
 26.6 ± 0.8

 b
 

Seed length (mm) 0.51 ±0.01 
a
 0.50 ±0.01 

a
 0.50±0.01

a
 0.51 ±0.01

a
 0.50 ±0.01

a
 

 

 

 

 

 

 

 



 

52 

 

 

A 

 
B 

 

Figure 3.10. Growth analysis of T3 generation of new 1a2b mutant and a WT segregant 

with the small-rosette phenotype. A line of WT segregant and original 1a2b were used as 

controls (300 µmol photon m-2 s-1, 12 h light : 12 h dark cycle, 21oC)). A) Rosette 

expansion of WT, mutants and segregants over a 28-day period. Each value represents 

means ± SE of measurements made on 8-12 rosettes. Asterisk (*) denotes significant 

difference between groups. Significant difference (P < 0.05) was determined by ANOVA 

followed by Tukey’s HSD tests. B) Representative examples of 25-d-old rosettes.  
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The growth analysis revealed that the growth rates and weights of the new 1a2b 

and WT were not significantly different (Figure 3.10 and Figure 3.11A). In addition, the 

new 1a2b no longer exhibited the short silique phenotype and the seed yield was 

comparable to that of WT. (Figure 3.11E, F). There was also no significant difference in 

chlorophyll content, Fv/Fm, and specific leaf area between the new 1a2b and WT (Figures 

3.11B, C, D). However, the WT segregant 2 exhibited the small rosette phenotype 

observed in the original 1a2b although it had comparable silique length and seed count to 

that of WT. This suggests that at least two second-site mutations were responsible for the 

phenotypes of the original 1a2b.  
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E 

 
F 

 
Figure 3.11: Phenotypic measurements of the new 1a2b mutant in comparison to the 

original 1a2b and a WT segregant with the small-rosette phenotype. A) Fresh and dry 

weight, B) specific leaf area, C) maximum potential quantum efficiency of PSII (Fv/Fm), 
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D) chlorophyll content per area E) Silique length and F) seed count per silique. The values 

represent mean ± SEM of measurements made on 8-15 samples for fresh weight, dry 

weight and specific leaf area, four samples for chlorophyll content and Fv/Fm. For silique 

length and seed count per silique, 15 siliques were measured and their seeds were counted 

from five randomly chosen plants. Different letters above the bars indicate significant 

difference (P < 0.05) as determined by ANOVA followed by Tukey’s HSD tests.  

 

Challenges in generating the 1a1b double mutant 

 T-DNA insertions that are located on different chromosomes like those 1A and the 

B-subfamily genes can be crossed to generate double mutants. Previous works have 

crossed 1a and 2b lines to produce the 1a2b mutant (Atkinson et al., 2017), and 1a and 3b 

lines to produce 1a3b mutant (Izumi et al., 2012), but the 1a1b mutant was still lacking. 

This study also aimed to generate the 1a1b double mutant for further functional studies of 

the RbcS genes.  

The F0 single mutants 1a and 1b were crossed to generate the heterozygous F1 

(Figure 3.12B), which was selfed to identify the homozygous 1a1b mutant in the F2 

generation. Screening of 125 F2 plants showed that the segregation ratio was non-

Mendelian. Out of 125 plants, only one plant was homozygous for 1a with a 1B WT. No 

1a homozygous with 1b homozygous (1a1b) was recovered (Figure 3.12A). Further 

attempt to obtain the 1a1b homozygous was made by selfing the heterozygous 1a and 

homozygous 1b plant (1A1a1b1b) and screen the F3 generation. Screening of 15 plants 
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did not identify any homozygous 1a1b as the segregation ratio was 1:1:0 instead of the 

Mendelian 1:2:1.  
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A 

 
B  

 

Figure 3.12. Crossing of the 1a and 1b T-DNA insertion mutants A) Workflow of the 

screening process. Single mutants 1a and 1b were crossed to obtain the heterozygous F1 

generation. 125 F2 and 15 F3 plants were screened to find the homozygous 1a1b. 

Specific primers were used to for the screening (Supplemental table 3.1). B) PCR 

example of heterozygous F1 1A1a1B1b plant.  
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Discussion 

T-DNA insertion mutants have been used to characterise the functions of the RbcS 

genes in Arabidopsis (Izumi et al., 2012; Atkinson et al., 2017). This study confirmed that 

the T-DNA was inserted in the RbcS genes which effectively knocked out 1A, 1B, 2B and 

reduced the expression of 3B to ca. 3% of WT (Figure 3.6A). The reduction of the RbcL 

transcript was observed in these mutants compared to WT but not to the same extent as 

the decrease in RbcS level, as Arabidopsis RbcL transcript is controlled post-

transcriptionally at the translation initiation process (Rodermel et al., 1996). The smaller 

decrease of RbcL transcript relative to RbcS transcript was observed in other studies in 

Arabidopsis and tobacco, which showed that RbcL was partially independent of the RbcS 

transcript level and LSU production was subject to assembly state-dependent regulation 

that operated at the translational level (Wostrikoff and Stern, 2007; Izumi et al., 2012). In 

contrast, a study in rice showed a greater decrease in RbcL relative to decreasing RbcS in 

senescent leaves (Suzuki and Makino, 2013). Although rice RbcL is also regulated at the 

level of translation, other factors such as RbcL mRNA stability may contribute to the 

decrease of RbcL. 

 Under the standard growth condition for Arabidopsis, the decrease in RbcS level 

to 30% (in 1a2b) caused no detrimental effects to growth. Slow-growth and pale-leaf 

phenotypes were observed in 1a3b upon further reduction of RbcS level to ca 6%. A 

significant reduction of Rubisco was needed to elicit the growth phenotype and affect 

photosynthesis because Rubisco in C3 plants is usually produced in excess while a fraction 

is activated at a time (Quick et al., 1991; Andrews, 1996). The over-investment of Rubisco 
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underlines how plants respond to changing environment and the buffering system of 

Rubisco is important to modulate photosynthesis (Krapp et al., 1993; Lauerer et al., 1993).  

 The observation that the homozygous 1a1b was not recovered in both F2 and F3 

generations was unexpected as both the double mutants 1a2b and 1a3b have been 

generated and both 1a and 1b single mutants can survive and propagate. Therefore, 

generating 1a1b should theoretically be possible especially when 1B is the minor isoform 

and contributes ca. 3% to the RbcS pool. However, generating 1a1b homozygous from 

crossing the currently available T-DNA lines proved challenging. The absence of 1a1b 

homozygote may be due to background mutations in the 1a and/or 1b T-DNA lines that 

may have prevented successful generation of the 1a1b double KO mutant. Confirming 

this hypothesis could be achieved by crossing other 1a and 1b lines generated via other 

gene-editing methods and comparing the segregation ratios between the two crossing 

events. Alternatively, the absence of 1a1b homozygote may allude to specialised functions 

of 1A and 1B and knocking out both genes may be lethal. Localised expression of RbcS 

has been reported in many species including tomato, maize and Arabidopsis (Wanner and 

Gruissem, 1991; Ewing et al., 1998; Sawchuk et al., 2008). In Arabidopsis, 1B was 

reported to be expressed exclusively on the abaxial side while 1A were expressed 

ubiquitously in leaves and the only isoform that is expressed in roots (Sawchuk et al., 

2008). Tissue- or organ-specific expression may suggest other important specialised 

functions of 1A and 1B genes like that of the RbcS-T which is expressed only in tobacco 

trichomes (Laterre et al., 2017). Therefore, knocking out 1B in conjunction with 1A may 

pose survival or reproductive difficulty in Arabidopsis.  
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 Although T-DNA insertion mutants have been used to characterised the functions 

of SSUs, these mutants also carry some shortcomings. Firstly, second-site mutations may 

be present and not annotated. These mutations are sometimes not characterised and may 

contribute to a phenotype that is not caused by the knock-out of the gene of interest 

(Yoshida et al., 2018). In this study, the 1a2b mutant was originally found to exhibit 

phenotypes that were assumed to be caused by T-DNA insertions of the RbcS genes. 

However, after crossing back with WT, those phenotypes disappeared, suggesting that the 

observed phenotypes were linked to the disruption of other genes. Another limitation of 

T-DNA insertion mutants is that knocking out closely-linked genes is not easily achieved 

by simply crossing two mutant lines, hence posing challenges for generating double or 

triple mutants within the B-subfamily genes. Overcoming this inherent difficulty may be 

achieved by a gene editing method such as CRISPR/Cas editing as the method allows for 

specific sites to be targeted regardless of the location (Raitskin and Patron, 2016). Double 

and triple mutants generated via gene editing would serve as useful models for further 

characterisation of RbcS genes and provide a platform for the study for Rubisco. 
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Chapter 4 - Generating rbcs mutants with CRISPR/Cas9 and characterisation 

Introduction 

 Arabidopsis T-DNA insertion mutants have served as tools to characterise the 

function of the RbcS genes (Izumi et al., 2012; Atkinson et al., 2017). However, T-DNA 

insertion lines have intrinsic limitations, for example, generating double or multiple 

knockout mutants by crossing is typically unfeasible for closely-linked genes (e.g. the 1B, 

2B and 3B genes). In addition, the availability of T-DNA insertion lines for specific genes 

can be limited (See chapter 3). The background of T-DNA lines may also contain 

additional unknown mutations. For example, a second-site mutation was found in a 

previously generated 1a2b mutant (Atkinson et al., 2017) that elicited a significant 

phenotypic impact (see chapter 3). Due to limited alleles and types of multiple mutants of 

the rbcs T-DNA insertion lines, the availability of more mutant alleles, ideally lacking in 

background mutations, would assist in the studies of RbcS genes.   

 The advent of CRISPR/Cas9 has allowed for a relatively simpler and faster avenue 

to generate knock-out (KO) lines (Belhaj et al., 2015). Moreover, the method is able to 

overcome limitations of the T-DNA lines as single and multiple genes can be targeted at 

higher specificity irrespective of proximity (Nekrasov et al., 2013). This chapter aimed to 

generate single and novel multiple SSU KO mutants using CRISPR/Cas9 editing. 

Molecular and physiological characterisations was performed to determine the effects of 

SSU knockout to plant growth.   
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Results 

Generating rbcs single mutants using CRISPR/Cas9 

To generate CRISPR/Cas9 KO mutants, constructs containing Cas9 endonuclease 

and a two gRNAs specific to each RbcS gene were assembled (Supplemental table 4.1). 

Two pairs of gRNAs were designed for each gene (Figure 4.1A). Some gRNA pairs target 

introns to ensure high target specificity. Using two gRNAs (paired gRNA method) that 

target introns adjacent to the exon (for example, 2B Pair 1) could potentially remove the 

exon if a large deletion between two gRNAs occurred. The method has been successfully 

utilised to knock out genes in rice (Xie et al., 2015). 
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A 

 

B 

 

Figure 4.1. Target sites of gRNAs that target regions of RbcS genes. A) gRNA target sites 

for pairs designed to knock out each of the four RbcS genes. B) gRNA target sites of 

homologous regions within the 1B-3B locus.  
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To assess the effectiveness of the CRISPR/Cas9 constructs to induce mutations, a 

transient expression in Arabidopsis protoplasts was performed. After 24 h of protoplast 

transfection with CRISPR/Cas9 constructs, DNA was extracted for PCR (Figure 4.2A). 

Amplification of the WT locus for each SSU produced smaller “deletion bands” indicative 

of a deletion between the gRNA pair. Deletion bands were observed for both gRNA pairs 

for 1A and 1B, but only one pair each for 2B and 3B. Sanger sequencing indicated that 

deletions occurred 3-4 bp upstream of the PAM sequence, which is consistent with the 

cleavage site for Cas9 (Figure 4.2B). For gRNA pairs that produced deletion bands, the 

deletion efficiency, indicated by the ratio of deletion to WT, was calculated by comparing 

the intensity of the deletion band to the respective WT band (Figure 4.2A). The deletion 

efficiency in protoplasts was used as a proxy to guide the focus on the mutation screening 

in planta. 
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Figure 4.2. PCR amplification of protoplasts transfected with CRISPR/Cas9 constructs 

targeting individual RbcS genes and sequencing of the deletion bands. A) CRISPR/Cas9 

  

1A pair 1 

TGTATCCTAGACCCTCCGATCACTCCAA [130 bp] TATGCTCTCTTCCGCTACTATGGTTGCCT 

TGTATCCTAGA-----------------------------------------------------CTATGGTTGCCT  

1A pair 2 

TCTTACCTTCCTGACCTTACCGATTCCG [126 bp] ATATAAACTAGCTAGATCTTAGGAAAATT 

TCTTACCTTCC----------------------------------------------------TCTTAGGAAAATT 

1B pair 1 

GCTCTCCTCTGCCGCTGTGGTTACCTCC [119 bp] TTACTTCCATCACAAGCAATGGGGGAAG 

GCTCTCCTCTG-----------------------------------------------------AATGGGGGAAG 

1B pair 2 

TTTTGCCTCTTACGGTTCTCACTATATA [96 bp] CCTCTGCCGCTGTGGTTACCTCCCCGGC 

TTTTGCCTCTTA-----------------------------------------CCGCTGTGGTTACCTCCCCGGC 

2B pair 2 

CAATATATATATCAATTGTATTGAATGG [168 bp] CCCTGGCGCCTTCATTAGGATCATCGGA 

CAATATATATATCAATTGTATT-------------------------------CGCCTTCATTAGGATCATCGGA 

3B pair 1 

ATTATATAAAGATGACAACACCAGTAGG [180 bp] GGTCACCCGCAAGACCAACAAGGACATC 

ATTATATAAAGATGACAACACC-----------------------------------------AACAAGGACATC 
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editing was able to induce large deletions in protoplasts. Specific primers were used to 

amplify each RbcS (Supplemental table 4.2). The top bands represent the WT bands. The 

lower bands were the results of a deletion induced by gRNA pairs (i.e. “deletion bands”). 

The ratio of deletion to WT was quantify by comparing the intensity of the deletion band 

to the respective WT band. Ratios are the means ±SE of three separate protoplast 

transfections. B) Sequence alignment of deletion bands (bottom sequence) in comparison 

to WT bands (top sequence) showed SpCas9-induced deletion events at predicted 

locations 3-4 bp upstream of the PAM sequence (underlined). The gRNAs are shown in 

bold. The paired gRNAs approach produced deletions of 96 bp to 180 bp in size. 

 

Stable transformation in Arabidopsis was performed by floral dipping. T1 seeds 

containing CRISPR/Cas9 construct were visually selected using the red fluorescent seed 

coat marker (pFAST selection). Mutation screening of T1 plants was performed initially 

by PCR to identify large deletions. Almost all gRNA pairs (with the exception of 1B pairs) 

that produced deletions detectable by PCR in protoplasts were able to induce such 

deletions in planta (Table 4.1). For gRNAs pairs that did not produce deletions in 

protoplasts, deletions were also not detected by PCR in planta (2B pair 1 and 3B pair 2). 

For those that produced deletions in plants, the deletion efficiency ranged from 1-14%. 

(Table 4.1). However, for all deletions that were detected, the WT bands were always 

present. This indicated that the deletions were not homozygous and likely chimeric 

because the intensity of the deletion bands were significantly less than that of the WT band 

(Figure 4.3A).  
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Table 4.1. Mutation frequency of gRNA pairs that targeted specific RbcS genes in the T1 

and T2 generations. Red T1 seeds (i.e. transformants carrying the pFAST cassette, Cas9 

and a gRNA pair) were screened for large deletions by PCR using RbcS specific primers 

(Supplemental table 4.2). Indels and point mutations (PMs) were detected by Sanger 

sequencing. Transgene-free T2 plants were screened as for T1 plants. 

  
gRNA 

 pair 

T1 (with transgene) T2 (Transgene-free) 

Target Large deletion Indels/PM Large deletion Indels/PM 

1A 1 1/70 (1 %) 8/53 (15%) 0/1 (0%) 1/9 (11%) 

  2 8/92 (9%) 26/106 (25%) 0/8 (0%) 4/26 (15%) 

1B 1 0/31 (0%) N/A N/A  N/A 

  2 0/112 (0%) 11/35 (31%) N/A 7/11 (63%) 

2B 1 0/21 (0%) N/A N/A  N/A 

  2 1/69 (1%) 12/63 (19%) 0/1 (0%) 5/12 (41 %) 

3B 1 10/70 (14%) 1/32 (3%) 0/11 (0%) 4/11 (36%) 

  2 0/33 (0%) 0/24 (0%) N/A  N/A 
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B 

 

 

 

 

 

Figure 4.3. PCR screening of deletion bands and Sanger sequencing screening of indels 

T1 generation A) Large deletions gRNA pairs in 1A, 2B and 3B in representative T1 

transformants (indicated by red arrows). The top bands are WT bands. No large deletions 

were detected for 1B. B). Plants with no large deletions were sequenced to find indels or 

PMs (indicated by the black arrow). Representative sequence alignment of the 3B gene 

showing an indel induced by two gRNAs. The top sequence is WT and bottom is 

sequencing of a plant containing 1-bp deletion (red) in the 3B genes. Bold nucleotides 

indicate gRNAs and unlined are PAM sequence. 
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The occurrence of large deletions depends on both gRNAs inducing a DBS. Thus, 

screening for large deletions by PCR alone overlooks potential indels induced by a single 

gRNA. Sanger sequencing was performed to detect indels, and showed that indels 

occurred at a higher frequency than large deletions with gRNA 1B pair 2 induced 

mutations at the highest rate (31%) (Table 4.1, Figure 4.4A).  3B pair 1 is the only pair 

that produced more deletions (14%) than indels/PMs as the frequency of indels/PMs were 

3%.   
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Figure 4.4. Mutation characterisations in the T1 and T2 generations. A) Frequency of 

different types of mutations and non-mutated plants (WT) in T1. B) Frequency of different 

types of zygosity in the T1 generation. All heritable mutations were indels and/or PMs. 

The number of T1 plants screened were 106 for 1A, 35 for 2B, 63 for 2B and 102 for 3B. 

C) Frequency of different types of heritable mutation in T2 plants. The number of T2 

plants screened were 352 for 1A, 88 for 1B, 96 for 2B and 88 or 3B.   

 

Plants showing Cas9-induced mutations (both large deletions and indels/PMs) 

were taken to the T2 generation to screen for heritable mutations. For those plants that 

contained large deletions in the T1 (9 plants for 1A, 1 for 2B and 11 for 3B), eight 

transgene-free T2 progeny per line were screened by PCR. No large deletions were 

detected in the T2 generation for any gRNA pair, indicating that large deletions were 
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chimeric mutations. T2 plants that showed evidence of indels and large deletions in T1 

were screened by sequencing. A total of 352 (1A), 88 (1B), 96 (2B) and 88 (3B) T2 plants 

(eight plants per T1 line that showed evidence of mutations) were sequenced to find 

indels/PMs. Stable mutations in forms of homozygous or heterozygous indels were 

identified in all RbcS genes (Figure 4.4 B, C and 4.5). These indels led to an emergence 

of frame-shift mutation which gave rise to an early stop codon. In addition, two larger 

deletions of 23 and 45 bp induced by the first gRNA of 1A pair 2 were found in the 1A 

gene. Since most heritable mutations in the T1 generation were heterozygous, a 1:2:1 

segregation occurred in T2 and homozygous KO mutants were identified in the T2 

generation. Plants containing homozygous mutations were taken to T3 generation and 

three plants from each line (4 lines of 1A, 7 lines of 1B, 5 lines of 2B and 4 lines of 3B) 

were sequenced to confirm the mutations. A library of stable mutant rbcs lines are listed 

in Figure 4.5. Note the same mutation was counted as one line although they arose from 

independent mutation events and therefore 5 lines of 1B and 4 lines of 2B are shown. 
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1a mutants 

WT GAAGTTTGAGACTCTCTTCTTACCTTCCTGACCTTACCGATTCCGAAT 

1aCC1 GAAGTTTGAGACTCTCTTCTTACCTTCCTTGACCTTACCGATTCCGAAT    +1 

1aCC2 GAAGTTTGAGACTCTCTTCTTACC-----GACCTTACCGATTCCGAAT    -5 

1aCC3 GAAGTGAGAGACTCTCTT-TTTCC---------- 22bp --------    -23, S 

1aCC4 GAAGTTTGAGACTCTCTTCTTACCTTC------- 45bp --------    -45  

 

1b mutants 

WT    CTTCTTACGGTTCTCACTATATAAAG--97bp–-CCTCTGCCGCTGTGGTTACCTCCCCG 

1bCC1 CTTCTTACGGTTCTCACTATATAAAG--97bp--CCTCTGCCCGCTGTGGTTACCTCCCCG  +1 

1bCC2 CTTCTTACGGTTCTCACTATATAAAG--97bp--CCTCTGACCGCTGTGGTTACCTCCCCG  +1 

1bCC3 CTTCTTAACGGTTCTCACTATATAAAG-97bp--CCTCTGACCGCTGTGGTTACCTCCCCG  +1, +1 

1bCC4 CTTCTTACGGTTCTCACTATATAAAG--97bp--------CCGCTGTGGTTACCTCCCCG   -6 

1bCC5 CTTCTTACGGTTCTCACTATATAAAG--97bp--CCTCTGCCGCTGTGGGTACCTCCCCG    S 

 

 
2b mutants 

WT AAGTTGAAGAATGCAAGAAGGAGTACCCTGGCGCCTTCATTAGGATCATCGG 

2bCC1 AAGTTGAAGAATGCAAGAAGGAGTACCCTGGGCGCCTTCATTAGGATCATCGG     +1 

2bCC2 AAGTTGAAGAATGCAAGAAGGAGTACCCTGGGCGCCTTCATTAGGATCATCGG     +1 

2bCC3 AAGTTGAAGAATGCAAGAAGGAGTACCCTGGGGATCGACTTCATTAGGATCATCGG    +4, S 

2bCC4 AACGAAGAAGAATGCAA----GTGTTC---GGATGCCTTCATTAGGATCATCGG    +2, -7, S 

 
3b mutants 

WT TATATAAAGATGACAACACCAGTAGG--154bp--CCCGGTCACCCGCAAGACCAACAAGG  

3bCC1 TATATAAAGATGACAACACCAGTAGG--154bp--CCCGGTCACCCGCAAGACC-ACAAGG  -1 

3bCC2 TATATAAAGATGACAACACCCAGTAGG-154bp--CCCGGTCACCCGCAAGACC-ACAAGG  +1, -1 

3bCC3 TATATAAAGATGACAACACCAGTAGG--154bp--CCCGGTCACCCGC-------ACAAGG  -7 

3bCC4 TATATAAAGATGACAACACC-GTAGG--154bp--CCCGGTCACCCGCAAGACC-ACAAGG  -1, -1 

 

 

Figure 4.5. The CRISPR/Cas9 approach produced a library of single rbcs KO mutants. 

Mutations were confirmed by Sanger sequencing of the T2 and T3 generations. The PAM 

sequences are underlined, gRNA sequences are in bold and nucleotides in red denote 

mutations (+ is insertion, - is deletion and s is substitution).  
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Generating rbcs CRISPR/Cas9 triple KO mutants based on T-DNA lines 

CRISPR/Cas9 editing can be utilised to edit closely-linked genes, which allowed 

for the possibility to edit multiple RbcS genes of the B-subfamily. Generating double or 

triple mutants within the 1B-3B locus was attempted by i) using promiscuous gRNAs or 

ii) targeting B-subfamily gene(s) in available T-DNA double knockout mutants 1a2b 

(generated in chapter 3) and 1a3b (Izumi et al., 2012). In the 1a2b mutant, triple mutants 

1a1b2b or 1a2b3b could be obtained by targeting 1B or 3B, respectively. Similarly in the 

1a3b mutant, 1B or 2B could be targeted to generate 1a1b3b or 1a2b3b, respectively. 

After transformation of 1a2b with gRNAs 3B pair 1 and 1a3b with gRNAs 2B pair 2, T1 

generations were screened for mutations. For the 1a2b T-DNA line targeted with 3B 

gRNAs, 30 T1 transformants were grown. Three putative triple 1a2b3b KO mutants were 

identified in the T1 generation due to a distinctive slow-growing and pale phenotype 

(Figure 4.6). Sanger sequencing showed small indels in 3B, thus three 1a2b3b triple 

knockout lines were confirmed. For the 1a3b T-DNA line targeted with 2B gRNAs, 45 

T1 transformants were grown. Similarly to the 1a2b-based triple mutant, slow-growing 

and pale phenotype was observed in two T1 plants. Sanger sequencing confirmed that 

CRISPR/Cas9 editing induced indels in 2B, thus generating 1a2b3b KO mutant. The five 

triple mutant plants were taken to the T2 generation to confirm mutations. Altogether, 

three alleles of 1a2b-based and two alleles of 1a3b-based triple mutant were obtained 

(hereafter BigBoi or BB and BigGurl or BG, respectively (Figure 4.7). Since 1a2b mutant 

shows complete absence of 1A and 2B, the interruption of 3B in BigBoi indicates that 

only a single SSU gene (1B) was involved in Rubisco production in this line. In contrast 
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to targeting 2B or 3B, targeting the 1B gene in either 1a2b or 1a3b T-DNA line did not 

result in a growth phenotype. This was not unexpected as 1B is a minor isoform. 

Therefore, Sanger sequencing was performed to identify mutations in 1B. Out of 78 plants, 

only a single and silent substitution mutation was identified (Table 4.2).  

 

 

Figure 4.6. Comparison of 7-weeks old rosettes of WT (left) and BigBoi (1a2b3b, right). 

Plants were grown under 200 µmol photon m-2 s-1 of white light, under 12 hr (light) /12 hr 

(dark) cycles at 21oC.  
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1a2b3b mutant or BB  

WT   CCCGGTCACCCGCAAGACCAACAAGG  

BB1 (Biallelic) CCCGGTCACCCGCAAGACC--CAAGG  -2 

BB1 (Biallelic) CCCGGTCACCCGCAAGACCA-CAAGG  -1 

BB2   CCCGGTCACCCGCAAGACCAAACAAGG +1 

BB3   CCCGGTCACCCGCAAGACCA-CAAGG  -1 

1a2b3b mutant or BG  

WT   CCCTGGCGCCTTCATTAGGATCATCGG 

BG1   CCCTGG-GCCTTCATTAGGATCATCGG -1 

BG2   CCCTGGTCGCCTTCATTAGGATCATCGG +1 

 

Figure 4.7. The CRISPR/Cas9 approach produced 1a2b3b triple KO mutants. Mutations 

were confirmed by Sanger sequencing of the T2 generation. The PAM sequences are 

underlined, gRNA sequences are in bold and nucleotides in red denote mutations (+ is 

insertion and - is deletion).  

 

Table 4.2. Mutation frequency of gene targeting using specific gRNAs to edit 1a2b or 

1a3b T-DNA lines to generate triple mutants. The analysis was performed in the T1 

generation.  

Target 

Mutant Background 

Target 

gene T1 editing rate 

Type of mutations observed 

in transgene-free T2 

1a2b3b 1a2b 3B 3/30 (10%) Indels 

1a2b3b 1a3b 2B 2/45 (4%) Indels 

1a1b2b 1a2b 1B 8/33 (24%) Substitution  

1a1b3b 1a3b 1B 1/45 (2%) Substitution  

     

 

Targeting B-subfamily using promiscuous gRNAs 

One of the main strengths of CRISPR/Cas9 editing is the ability to edit multiple 

genes simultaneously by targeting homologous regions. Taking advantage of high 
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sequence homology among the RbcS genes, a pair of promiscuous gRNAs were designed 

to target the B-subfamily genes as shown in Figure 4.1B. After floral dipping, seeds were 

screened using the pFAST selection and 76 T1 plants were grown. Plants were screened 

by PCR and two showed a ca. 800 bp deletion band induced by gRNA 1 in 1B and gRNA 

2 in 3B (Lines 15 and 20). Six showed a ca. 1.4 kb deletion band induced by gRNA 1 in 

1B and 3B (one plants, Line L1) or gRNA 2 in 1B and 3B (five plants, Lines 4, 5, 8, 12, 

and 23) (Table 4.3, Figure 4.8A and 4.9). The presence of smaller bands at 800 bp in 

four of the plants in the latter group indicated that these plants contained the deletion 

induced by gRNA 1 in 1B and gRNA 2 in 3B, and were likely chimeric (Figure 4.8B). 

Bands for each deletion event were gel purified and sequenced. The sequencing result 

confirmed the deletion regions (Figure 4.9).  

 

Table 4.3: Editing efficiency of promiscuous gRNAs targeting the 1B3B locus. Plants 

were screened for deletions by PCR using specific primers to amplify the 1B-3B locus. 

Indels were screened by Sanger sequencing. Seventy-six T1 plants were screened for large 

deletions. In the T2 generation, eight plants from each T1 that showed large deletions were 

grown (64 plants in total) and screened for deletions by PCR and four plants were screened 

by Sanger sequencing. 

  T1 T2 (transgene-free) 

Target Deletion Deletion Indels 

1B3B locus 8/76 (11%) 0/64(0%) 2/36 (6%) 
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A 

 

B     

 

 

Figure 4.8. CRISPR/Cas9 editing induced large deletions in the B-subfamily genes. A) 

Graphic representation of deletion induced by a paired gRNA targeting strategy. A PCR 

amplification from 1B Fw primer and 3B Rv primer produces an 8.2 kb WT amplicon. 

Depending on the deletion location, two different band sizes of 800 bp and 1.4 kb can be 

produced from PCR. A deletion between gRNA1 in 1B and gRNA2 in 3B induces a 7.4 

kb deletion, which results in a 800 bp band in PCR. A deletion between gRNA1 pairs or 

gRNA2 pairs in 1B and 3B induces a 6.8 kb deletion, which results in a 1.4 kb band in 

PCR.  B) PCR products using specific primers to amplify the 1B-3B locus (Supplemental 
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table 4.2). The representative deletion bands from two biological samples are 

approximately 1.4 kb and 800 bp. 

 
gRNA 1 on 1B and gRNA 2 on 3B 

WT AATGGGGGAAGAGTTAGCTGCATGAAGGTAATG----- 8kb -----TGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L15 AATGGGGGAAGAGTTAGCTGCATGAAGGTAATG----- 8kb -----TGGAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L20 AATGGGGGAAGAGTTGGCTGCATCAAGGTAATG----- 8kb -----TGGAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

  

gRNA 2 on 1B and gRNA 2 on 3B 

WT TTGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC----- 6kb -----TTGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L4 TTGAAGGAAGTTGAAGAATGCAAGAATGG--------- 6kb -----------------GAAGAATGCA—AAGGAGTAC 

L5 TAGAA--------------------------------- 6kb -----TTGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L8 TTGAAGGAAGTTGAAGAATGCAGAAAGGAG-------- 6kb -----TGGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L12 TTGAAGGAAGTTGAAGAATGCAAGAAGGA--------- 6kb -----------------GAAGAATGCAAGAAGGAGTAC 

L23 TTGAAGGAAGTTGAA—ATGCAAGAGAGA---------- 6kb -----TTGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

 

gRNA 1 on 1B and sRNA 1 on 3B 

WT AATGGGGGAAGAGTTAGCTGCATGAAGGTAATG----- 6kb -----TTGAAGGAAGTTGAAGAATGCAAGAAGGAGTAC 

L1 AATGGGGGAAGAGTTAGCTGC----------------- 6kb -----------------------------------TAC 

Figure 4.9: Sequence alignment of the deletion bands induced by gRNAs that targeted 

the 1B-3B locus. The PAM sequences are underlined, gRNA sequences are in bold and 

sequences in red denote mutations. L stands for Line.  

 

 In the T2 generation, eight transgene-free progenies from each line that showed 

evidence of large deletions were screened by PCR. No large deletion was detected in 64 

plants (Table 4.3). However, pale-rosette and slow-growing phenotypes were observed in 

24% of the population of a single line (Line 4) (Figure 4.10A). A 1:3 phenotypic 

segregation ratio suggested that the T1 generation was heterozygous for mutation that 
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could be small indels at each gRNA site. Individual RbcS genes from plants with the 

phenotype were sequenced, but no indels were detected. The presence of a phenotype with 

no detected mutations in any RbcS genes suggested off-target mutations had occurred and 

that further investigation would be required to identify the cause of the phenotype. This 

was not pursued here.  

 
A 

 
B 

 

Figure 4.10. Phenotype of the T2 progeny of Line 4 targeted by CRISPR/Cas9 editing 

that target homologous regions in the 1B-3B locus. A) image of T2 seedlings from line 4 

after seven days of sowing. 100 plants were counted and 24 seedlings appeared paler green 
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and grew much more slowly than green seedlings. B) Images of 6-week old rosettes of 

WT (left) and a pale plant (right). 

 As previous results suggested that small indels occurred more frequently and were 

more likely to be heritable, individual genes in the T2 generation were then screened for 

small mutations. Amplification of individual genes showed a shift of ~150 bp that was 

detected in the 3B gene in one transgene-free progeny of Line 5 (Figure 4.11A). 

Sequencing result showed that this plant contained a deletion of 147-bp induced by 

gRNA2 in exon 3 of 3B and a 4-bp deletion in exon 3 of 2B induced by the gRNA2, 

resulting in a 2b3b KO mutant (Figure 4.11B). A total of four plants were sequenced from 

this line and two plants showed a 4-bp deletion in 3B and one other had no mutation, 

suggesting that the parental T1 was multi-allelic. No mutation was detected in 1B in all 

four transgene-free T2 lines.  

 Identifying the triple mutant required multi-generational screening as multiple 

sites were targeted simultaneously. Further screening of Line 5 was performed by growing 

40 red T2 seeds that still contained Cas9 and gRNAs. Some of the T2 plants showed 

spotted pale leaves and slower-growing phenotypes, indicating chimerism (Figure 4.11C, 

D). Eight plants with strong spotted leaves were selfed and taken to the T3 generation. 

Transgene-free T3 seeds were grown. Unlike the T2 parental line, T3 progeny lacked the 

phenotypes that were previously observed and grew similarly to WT plants. Sequencing 

of four plants per line showed that two plants in one line had a 4-bp deletion in 3B similar 

to the one in T2. Seven other lines (four plants per line) showed no mutations in 1B, 2B 
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or 3B. The lack of mutations in the transgene-free T3 plants may infer chimeric off-

targeting effect in the T2 as seen in line 4 (Figure 4.10).   

          
A 

 
 
B 
2b3b mutants 
WT   GAAGGAAGTTGAAGAATGCAAGAAGG----- 147bp -----CATTT 

2b3b (2B)  GAAGGAAGTTGAAGA----AAGAAGG----- 147bp -----CATTT -4 

2b3b (3B)  GAAGGAAGTTGAAGAATGCA----------- 147bp -----CATTT -147 

 
     C            D 
 

   

 

Figure 4.11: Phenotype of T2 (Line 5) generations of plants targeted by CRISPR/Cas9 

editing of homologous regions in the 1B-3B locus. A) PCR products using specific 

primers to amplify 3B of plants lacking CRISPR/Cas9 transgene. The WT band is 1326 

bp (Supplemental table 4.2) and sample indicated by the red arrow showed a 147 bp 

deletion induced by gRNA 2 in 3B. B) Sequence alignment of 2B and 3B genes of the 

2b3b KO mutant. The PAM sequences are underlined, gRNA sequences are in bold and 

sequences in red denote mutations. C) Representative image of Cas9-containing T2 plants 
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from Line 5. Plants with strong spotted leaves and slow growing phenotype were grown 

next to plants that grew similarly to WT. D) Images of green WT-like leaves in 

comparison to leaves with pale spots.  

 

Molecular characterisation of CRISPR/Cas9 mutant 

 Molecular characterisation to confirm gene knockouts was performed at the 

transcript level by RT-qPCR (as described in Chapter 3). The RT-qPCR results indicated 

that there was a reduction of transcript of genes that were targeted by both T-DNA 

insertion and CRISPR/Cas9 editing (Figure 4.12A). The knockout of genes led to a 

decrease in the total RbcS transcript abundance in 1a, 3b, double mutants and BigBoi. 

Consequently, a decrease in Rubisco content was observed as 53% of Rubisco remained 

for 1a, 85% for 3b, 62% for 2b3b, 79% for 1a2b, 45% for 1a3b, and 15% for BigBoi 

relative to Rubisco content of WT (Figure 4.12D). However, RbcL transcript and soluble 

protein content did not decrease to the same extent as that of RbcS (Figure 4.12B, C).  

SDS-PAGE and Western blot were performed to confirm the absence of the SSU 

proteins in rbcs KO mutants. Since the B subfamily genes are 100 Da bigger in size than 

1A, 12% Bis-Tris gel and Coomasi staining was able to separate the two subfamilies 

(Figure 4.12E). SDS-PAGE and Western blot showed that 1a KO mutants did not express 

1A protein as indicated by the absence of the lower molecular weight band (Figure 12E, 

F). A decrease in the B-subfamily protein was observed in 3b KO mutants, but the 

decrease in the B-subfamily protein band was not obvious in the 1b and 2b KO mutants 
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as they are minor isoforms. The decrease in the LSU levels was distinct in double mutants 

and BigBoi (Figure 12F).  
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Figure 4.12. Molecular characterisation of rbcs KO mutants. A) Absolute RbcS transcript 

abundance and B) relative RbcL transcript abundance in WT and CRISPR/Cas9 (CC) 

mutants generated in this study compared to those of T-DNA lines. Plants of 35 days of 

age were used (n = 3; BB indicates BigBoi) C) Total soluble protein content for WT, 

CRISPR/Cas9 and T-DNA mutants were determined using leaf tissue of 35-day old 

rosettes by the Bradford assay (n = 4). D) Percent Rubisco content per soluble protein (n 

= 5). The values are mean ± SEM of measurements. E) Coomasi staining of 12% bis-tris 

SDS-PAGE showing the separation between the B-subfamily SSU (top band) from the A-

subfamily SSU (bottom band). F) Immunoblots for WT and rbcs KO mutants probed with 

polyclonal antibodies against Rubisco. The LSU (55 kDa) and SSU (14 kDa) are shown. 
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Physiological characterisation of CRISPR/Cas9 mutants 

 An initial set of growth experiments were performed under standard conditions 

(200 µmol photon m-2 s-1, 12 h light : 12 h dark cycle, 21oC) to characterise the growth of 

the rbcs KO mutants (Figure 4.13). The rosette expansion rates of CRISPR/Cas9 KO 

mutants for individual RbcS genes (1a, 1b, 2b and 3b) and their respective T-DNA KO 

mutants were not significantly different from WT plants (Figure 4.13A, C). Similarly, no 

difference was observed for fresh weight (FW), dry weight (DW), specific leaf area 

(SLA), chlorophyll content and maximum potential quantum efficiency of PSII (Fv/Fm) 

harvested at 28 days after germination (DAG) (Figure 4.14 A-D). The rosette expansion 

rates, FW and DW of double mutants 2b3b and 1a2b were slightly lower than but not 

significantly different from that of WT (Figure 4.13 B, C and Figure 4.14 A-D). 

However, the rosette expansion rates, FW and DW of 1a3b and BB were significantly 

reduced. 1a3b and BigBoi also had a significantly increased SLA compared to WT, with 

BigBoi 4-fold greater than and 1a3b 2-fold greater than WT (Figure 4.13 B, C and Figure 

4.14 A-D). Furthermore, a significant decrease in chlorophyll content and Fv/Fm were 

observed for 1a3b and BigBoi (Figure 4.14E, F).  The latter results are consistent with 

Izumi et al., (2012) and suggest that reducing Rubisco content below 45% in Arabidopsis 

leads a reduction in chlorophyll investment and a corresponding decrease in the efficiency 

of PSII.  
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Figure 4.13. Growth analysis of rbcs KO mutants. A) Rosette expansion of T-DNA and 

CRISPR/Cas9 (CC) single KO mutants (CC1 for 1a and CC1-3 for 1b, 2b and 3b). B) 

Rosette expansion of double mutants and the triple mutant BigBoi (BB). The values are 

means ± SE of measurements made on 8-15 individual rosettes. No significant difference 

in area compared to WT was observed for any single rbcs KO mutant, 2b3b or 1a2b. DAG 

is days after germination. Asterisks denotes significant difference from WT for 1a3b and 

BB. One (*) and two (**) asterisks denote significant difference between groups. 

Significant difference (P < 0.05) was determined by ANOVA followed by Tukey’s HSD 

tests. C) Representative images of 23-d-old rosettes of WT and rbcs KO mutants. 
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Figure 4.14. Phenotype of rbcs KO mutant plants. A) Fresh and dry weight, B) specific 

leaf area, C) maximum potential quantum efficiency of PSII (Fv/Fm) and D) chlorophyll 

content per area. The values represent mean ± SEM of measurements made on 8-15 

samples for fresh weight, dry weight and specific leaf area and four samples for 

chlorophyll content and Fv/Fm. Different letters above the bars indicate significant 

difference (P < 0.05) as determined by ANOVA followed by Tukey’s HSD tests.  
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 A light response curve test (A/ photosynthetically active radiation (PAR) curve, 

ambient CO2 and varying light levels) was performed on WT plants to determine the 

saturating light level for Arabidopsis grown under standard conditions. The rate of CO2 

assimilation (A) increased rapidly from 0-400 µmol photon m-2 s-1 and started to plateau 

afterwards (Figure 4.15A). Assimilation rates rose by less than 10% from 400-1,800 µmol 

photon m-2 s-1, but showed no indication of photoinhibition. Thus, 1,800 µmol photon m-

2 s-1 was chosen to as the light saturating condition for subsequent measurements.  

The response of A and sub-stomatal CO2 concentrations (Ci) to changing ambient 

CO2 concentration (Ca) under saturating light (A/Ci curves) was measured for all KO 

mutant lines grown under standard conditions (Figure 4.15 B-F) as well as key 

photosynthetic variables (Table 4.4) and their correlation to RbcS content (Figure 4.16) 

were derived from these curves. Single rbcs KO mutants for 1A and 3B showed a 

significant reduction in the maximum rate of Rubisco carboxylation (Vc,max) and the 

maximum photosynthetic electron transport rate (Jmax) compared to WT plants. In 

contrast, 1b mutants were similar to WT. Interestingly, 2b CC lines had lower Jmax than 

WT but not for the T-DNA line. Double mutants 1a2b and 2b3b showed similar levels for 

Vc,max compared to 1a mutants, and similar levels for Jmax compared to 1a and 3b mutants. 

The double mutant 1a3b showed the greatest reductions among double mutants. However, 

BigBoi was significantly lower than all other plant lines, with Vc,max and Jmax at ca. 10% 

and 5% of WT values, respectively, indicating less Rubisco activity in BigBoi. The values 

for mitochondrial respiration in the light (Rd) and stomatal conductance (gs) were not 

significantly between WT and mutants.  
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Figure 4.15. Photosynthesis response curves for WT and rbcs KO mutants. Measurements 

were made on fully expanded sixth or seventh leaf of 37- to 47 DAG non-flowering 

rosettes for WT and mutants and 80-d-old nonflowering rosette for BigBoi. Relative 

humidity was maintained at 65 ± 3% and 25oC. A) A/PAR curve showing the response of 

CO2 assimilation rate to different light levels at ambient CO2 level of 400 µmol mol-1 of 

WT plants. A/Ci curves showing the response of net CO2 assimilation to different sub-

stomatal concentration of CO2 (Ci) under saturating light (1800 µmol photon m-2 s-1, 

indicated by the dash line) for B) 1a KO mutants, C) 1b KO mutants, D) 2b KO mutants, 

E) 3b KO mutants and F) double KO mutants and BigBoi. Each value represents mean ± 

SE of measurements made on individual leaves from three to four different rosettes.  
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Table 4.4. Variables derived from photosynthetic response curves, based on gas exchange 

analysis of 37- to 47-d-old plants. Values are mean ± SE of measurements made on three 

or four leaves from different plants (as shown in Figure 4.15). Values followed by the 

same letters in the same column are not significantly different (P < 0.05) as determined 

by Tukey’s test. Vc,max, maximum rate of Rubisco carboxylation; Jmax, maximum electron 

transport rate; Rd, mitochondrial respiration in the light. Gs, Stomatal conductance at 400 

ppm CO2.  

 
Vc,max 

(mmol e- m-2 s-1) 
Jmax 

 (mmol CO2 m-2  s-1) 
Rd  

(mmol CO2 m-2 s-1) 
gs 

(mmol CO2 m-2 s-1) 

WT 53.27 ± 1.20 a 100.40 ± 5.66 a 1.08 ± 0.38 a 0.25 ± 0.03 a 

1a TDNA 31.01 ± 1.96 c,d 66.85 ± 2.78 c 1.38 ± 0.19 a 0.21 ± 0.01 a 

1a CC1 33.82 ± 1.05 c,d 73.06 ± 2.99 b,c 0.93 ± 0.03 a 0.24 ± 0.03 a 

1b TDNA 44.15 ± 1.49 a,b 89.29 ± 4.70 a,b 1.29 ± 0.13 a 0.24 ± 0.01 a 

1b CC1 45.75 ± 1.56 a,b 89.45 ± 4.52 a,b 0.91 ± 0.06 a 0.29 ± 0.01 a 

1b CC2 51.37 ± 2.80 a 92.26 ± 3.13 a,b 1.07 ± 0.14 a 0.30 ± 0.02 a 

1b CC3 49.07 ± 3.35 a 95.00 ± 3.00 a,b 0.72 ± 0.09 a 0.24 ± 0.02 a 

2b TDNA 49.96 ± 1.76 a 99.71 ± 2.85 a 1.22 ±0.13 a 0.23 ± 0.07 a 

2b CC1 47.71 ± 3.21 a 85.62 ± 3.64 b,c 0.99 ± 0.14 a 0.24 ± 0.04 a 

2b CC2 49.52 ± 1.25 a 89.45 ± 3.66 b,c 0.79 ± 0.08 a 0.30 ± 0.01 a 

2b CC3 49.17 ± 2.10 a 89.74 ± 3.09 b,c 0.69 ± 0.07 a 0.30 ± 0.04 a 

3b TDNA 38.21 ± 3.09 b,c 77.96 ± 2.45 b,c 0.65 ± 0.07 a 0.26 ± 0.01 a 

3b CC1 37.47 ± 3.53 b,c 76.38 ± 6.97 b,c 0.66 ± 0.06 a 0.25 ± 0.03 a 

3b CC2 39.09 ± 1.35 b,c 78.62 ± 1.64 b,c 0.73 ± 0.01 a 0.27 ± 0.01 a 

3b CC3 38.46 ± 2.63 b,c 79.61 ± 4.24 b,c 0.89 ± 0.10 a 0.26 ± 0.01 a 

2b3b 29.09 ± 1.76 d 69.25 ± 4.37 b,c 0.88 ± 0.07 a 0.25 ± 0.02 a 

1a2b 29.09 ± 1.31 d 69.25 ± 2.71 b,c 0.88 ± 0.11 a 0.26 ± 0.01 a 

1a3b 21.33 ± 1.15 e 52.43 ± 2.58 c 0.71 ± 0.08 a 0.25 ± 0.01 a 

BB 4.92  0.42 f 12.51 ± 0.98 d 1.33 ± 0.09 a 0.22 ± 0.04 a 
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Figure 4.16.Correlations between RbcS transcript abundance and derived photosynthetic 

parameters.  A) A correlation between RbcS transcript level and Vc,max and B) a correlation 

between RbcS transcript level and  Jmax. A parabolic curve was fit to data points and R2 

values were calculated. 
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 Further analyses were performed to determine if each SSU has different effects on 

Rubisco catalytic properties (Figure 4.17). This was done by dividing A by Rubisco 

content for each WT and rbcs line. The results showed that A per Rubisco content was ca 

35 µmol CO2 m
2 S-1 per g m-2 for WT, 1b, 2b, 3b and 2b3b, but higher in 1a, 1a2b, 1a3b 

and especially BB. The higher A per Rubisco content suggested that 1A and 1B may have 

different effects on Rubisco catalytic properties than 2B and 3B. 
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Figure 4.17. Photosynthetic response curves for WT and rbcs KO mutants per Rubisco 

content. The data were derived from the A/Ci curve divided by Rubisco content for A) 1a 

KO mutants, B) 1b KO mutants, C) 2b KO mutants, D) 3b KO mutants, E) double KO 

mutants and F) BigBoi. 

 

Discussion 

 CRISPR/Cas9 is a versatile tool that has been successfully used for genetic editing 

in a wide variety of plant species (reviewed in Khumsupan et al., 2019). Although the 

uptake of CRISPR/Cas9 in plant biology has increased dramatically in recent years, many 

aspects concerning efficiency are still unclear, especially as established guidelines for 

CRISRP/Cas9 for mammalian cells are not necessarily applicable to plants (Liang et al., 
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2016; Hahn and Nekrasov 2019). For instance, 60-80% G/C content of gRNAs confers 

the higher rate of editing in mammalian cells but 20-80% G/C content was found to be the 

effective range in plants (Liang et al., 2016). Since stable transformation in plants can be  

relatively more time-consuming, a transient system to test the gRNA efficiency would be 

useful to select the most effective gRNA (Li et al., 2013; Durr et al., 2018).  

 Protoplasts transient expression systems have been robust models to test the 

efficiency of CRISPR/Cas9 approaches (Li et al., 2013; Durr et al., 2018). In this study, 

protoplasts were used to test the efficiency of gRNA pairs and the results mostly reflected 

what was observed in planta. For most gRNA pairs that produced deletion bands except 

1B pairs, deletions were observed in planta (Figure 4.2). In addition, for pairs that did not 

produce deletion bands in protoplasts, namely 2B pair 1 and 3B pair 2, deletion bands 

were not detected in planta and nor were indels in T1 plants (Figure 4.2 and Table 4.1). 

Although large deletions were found in T1 progeny, they were all chimeric and were not 

detected in T2 plants that were screened. Since a cluster of edited chimeric cells can give 

rise to germ cells and therefore can be heritable, a large number of transgene-free plants 

needs to be screened. For example, Durr et al. (2018) reported a low rate heritability for a 

chimeric T1 parental line as only two edited plants were found out of 396 transgene-free 

T2 progeny.  

 Using two gRNAs to induce a large deletion has been used successfully in various 

plant species including rice, Arabidopsis, tobacco, tomato and wheat (Xie et al., 2015; 

Ordon et al., 2016; Cermak et al., 2017). The main advantage of the method is the ease of 

detection as a large DNA region is deleted and readily detectable by PCR. However, the 
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efficiency of large deletions in Arabidopsis was found to be lower than 1% when the 

deletion size was  more than 5 kb and deletion sizes of below 100 bp was found more 

frequently and likely to be heritable (Ordon et al., 2016). Recently, Ordon et al., (2019) 

improved the rate of heritability for large deletions in Arabidopsis by 25-fold through the 

use of germ-line specific promoters RPS5a and DD45. The use of these promoters to drive 

Cas9 may be a useful modification for the current work to improve the frequency of 

mutagenesis and heritability for large deletions.  

This study has shown that CRISPR/Cas9 editing was able to induce stable 

mutations in the RbcS genes and a library of rbcs KO mutants have been generated. 

Moreover, the editing method was able to overcome the inherent limitations of T-DNA 

insertion lines as closely linked genes were successfully edited. As a result, novel mutants 

including 2b3b and BigBoi were generated. In addition, the CRISPR/Cas9 KO mutants 

are less likely to contain background mutations or chromosomal rearrangement as found 

in T-DNA insertion lines (Nacry et al. 1998; Clark and Krysan 2010; Hahn and Nekrasov 

2019). As outlined in Chapter 3, the 1a2b T-DNA line contained background mutations 

that were rid of after back-crossing with WT. As the 1a2b line was generated from 

crossing 1a and 2b T-DNA lines, background mutations could be present in 1a and/or 2b. 

The presence of the background mutations attributed to the previously observed 

phenotype of the old 1a2b line including smaller rosette and silique size, and could be 

responsible for differences in measurements between the rbcs T-DNA lines and their 

respective CC lines such as the difference seen in Jmax in the 2b KO mutant lines. 
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 The difficulty in knocking out 1B in the 1a2b and 1a3b T-DNA lines adds to a line 

of evidence in Chapter 3 that knocking out 1A and 1B in conjunction may be lethal. As 

knocking out other genes in the B-subfamily together with 1A was possible, knocking out 

1B should pose no challenge especially when it is the least expressed isoform. However, 

the inability to knock out 1B with 1A suggests that both genes do not only contribute to 

the SSU pool but may also play specialised roles in development. Organ and tissue-

specific RbcS expression has been reported in other plant species including tomato and 

maize although knock-out studies have yet to be performed to assess the contribution of 

these RbcS genes to survivability (Wanner and Gruissem 1991; Ewing et al. 1998). Further 

research in Arabidopsis may explore how the lack of 1A and 1B impacts fertility by 

performing a germination test to see if the 1a1b homozygote was produced as seeds and 

if the seeds were viable. 

 The NHEJ event that follows the DBS induced by Cas9 could result in mutations 

in the form of PMs and/or indels. In this study, most indels were small, ranging from up 

to 4 bp insertions to 7 bp deletions. Small indels are prominent products of the canonical 

NHEJ pathway, which involves the degradation of 5’ and 3’ regions to generate 4-

nucleotide overhangs for relegation (Chang et al., 2017).  The less frequent NHEJ 

pathway, called alternative-NHEJ, involves a larger degradation of DBS ends (>20 

nucleotides) and results in a larger deletion (Pannunzio et al., 2014). The larger deletions 

of 45 bp in the 1A gene or 147 bp in the 3B gene could be attributed to the alternative-

NHEJ pathway. The higher frequency of small indels than larger deletions was due to the 

canonical NHEJ pathway being more active (Kozak et al., 2009). Improving the rate of 
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alternative-NHEJ pathway, which resulted in higher frequency of larger deletions, was 

achieved by knocking out genes involved in the canonical NHEJ pathway such as KU70 

and LIG4 (Qi et al., 2013) 

 The resulting small and pale plants generated by the gRNA pairs that target 1B-

3B locus with no apparent mutation in the RbcS genes implies that off-target mutagenesis 

had occurred. Off-target effects have been reported in mouse and human cell lines (Fu et 

al., 2013; Hsu et al., 2013; Kempton and Qi 2019), but are considered rare in plants (Hahn 

and Nekrasov 2019). Numerous studies in different plant species where whole genome 

sequencing and sequencing of potential target sites were performed have shown no 

occurrence of off-target activity given that gRNAs were completely specific to the target 

site (Xie and Yang 2013; Hahn et al., 2017; Li et al., 2019; Young et al., 2019). The 

evidence of off-target activity suggests that the 1B-3B gRNA pairs may have disrupted 

other genes despite their specificity to that locus. Further investigation such as Sanger 

sequencing of highly homologous target sequences or whole genome sequencing could be 

performed to pinpoint the mutations.  

 Gene editing via CRISPR/Cas9 resulted in a decrease in mRNA abundance of the 

target gene (Figure 4.12A). For major isoforms such as 1A and 3B, the reduction in the 

mRNA also led to an overall decrease in the RbcS transcript, Vc,max and Jmax. The reduction 

of mRNA was likely due to the presence of an early stop codon  emerged from frame-shift 

mutations, which consequently led to the degradation of mRNA through the nonsense-

mediated decay process (Hug et al., 2015). However, the reduction in RbcS transcript did 

not lead to the same reduction in the RbcL transcript. This is because Arabidopsis RbcL 



 

109 

 

transcript is controlled post-transcriptionally at the translation initiation process 

(Rodermel et al., 1996). Similar to Arabidopsis, RbcL synthesis in tobacco was 

independent of the RbcS transcript level as LSU production was subject to assembly state-

dependent regulation that operates at the translational level (Wostrikoff and Stern, 2007). 

 The mutants generated from this study were subject to a growth assay to 

characterise the phenotype under the standard conditions for Arabidopsis. Growth 

parameters, chlorophyll content and Fv/Fm of single mutants and 1a2b and 2b3b were not 

significantly different from WT, which is in agreement with previous reports (Izumi et al., 

2012; Atkinson et al., 2017). A previously study in tobacco have suggested that the 

reduction of SSUs to 60% did not result in a growth defect because Rubisco is produced 

in excess in C3, but reduced growth and photoinhibition was observed when SSU was 

reduced to below 50% (Quick et al., 1991). In that study, the reduction of Rubisco in 1a, 

3b, 1a2b and 2b3b resulted in a higher activation state of the remaining Rubisco pool and 

growth was unaffected. Therefore, a growth analysis under a higher light under Rubisco-

limiting condition would likely elicit differences in phenotypes in these KO mutants 

(Lauerer et al., 1993).   

 The photosynthetic parameters Vc,max and Jmax for the rbcs KO mutants were 

strongly correlated with RbcS transcript abundance (R2 = 0.82 and 0.71, respectively) 

(Figure 4.16). This suggests that the four RbcS genes cumulatively contribute to 

photosynthetic capacity in Arabidopsis. It was previously suggested that the change in 

composition of native Arabidopsis SSUs would result in the change of catalytic properties 

as previous studies in Arabidopsis and tobacco have shown that there was no significant 
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difference in photosynthetic characteristics among rbcs mutants (Izumi et al., 2012; 

Atkinson et al., 2017). However, upon examining localised expression of SSUs, 

Sawchuck et al. (2008) hypothesised that 1B may be able to shift the catalytic properties 

of Rubisco. This study provided an evidence that supported the proposed hypothesis as 

the A per Rubisco content of BigBoi is higher than that of WT. In addition, it was also 

found that 1A may also affect Rubisco catalytic properties differently than 2B and 3B. As 

1A and 1B contain 8 and 2 substitutions, respectively, relative to 2B and 3B, this 

observation was not unexpected. Confirming this finding could be done by directly 

measuring the catalytic properties of Rubisco of BigBoi. Previous studies have shown that 

native SSUs can modify catalytic properties of Rubisco. For example, in rice leaf blades, 

an increase in the  kcat,c and a decrease in the Sc/o of the Rubisco pool was observed when 

OsRbcS1 (RbcS found only in rice roots) were expressed (Ishikawa et al., 2011; Morita et 

al., 2014). These evidence suggested that SSUs contribute to the catalytic properties of 

Rubisco and improving Rubisco activity could be achieved through the modification of 

SSUs.  
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Chapter 5 - Effects of environmental conditions to the RbcS genes differential 

expression 

Introduction 

Multiple lines of evidence suggest that the SSUs not only  regulate the translation 

initiation of the LSU and consequently the level of Rubisco, but also influence the 

catalytic activity of Rubisco (Khrebtukova and Spreitzer, 1996; Rodermel et al., 1996; 

Wostrikoff and Stern, 2007; Genkov and Spreitzer, 2009; Suzuki and Makino, 2012; 

Laterre et al., 2017). The regulation of LSU translation by SSU may be one of the key 

means for plants to modulate Rubisco content under changing environmental conditions 

as RbcS expression varies under different  light wavelengths, temperature, sugar levels 

and CO2 concentration, and is under the control of circadian rhythm (Dedonder et al., 

1993; Pilgrim and McClung, 1993; Cheng et al., 1998; Gesch et al., 1998; Nielsen et al., 

1998; Yoon et al., 2001; Song et al., 2014). In Arabidopsis, the transcript abundance of 

1A dominates at low temperatures (10oC) while 3B is reduced. However, at high 

temperature (30oC), the 3B is the most abundant isoform. The expression pattern of 1B 

and 2B are similar to that of 3B under different temperatures (Yoon et al., 2001). In terms 

of light responses, 1A and 3B are the most responsive red and blue light, followed by 2B 

and 1B is the least responsive to light stimulus (Dedonder et al., 1993). 3B saw the greatest 

reduction in expression under high CO2 concentration (1000 µL L-1 CO2) in comparison 

to ambient CO2 concentration (400 µL L-1 CO2), followed by 1A, 2B and 1B  (Cheng et 

al., 1998). In addition, RbcS expression indirectly correlates with the leaf sugar levels 

(Nielsen et al., 1998). Altogether, the dynamic transcriptional responses of the SSU family 



 

112 

 

to various environmental condition results in changes in Rubisco content, which can 

ultimately affect plant growth.  

 This chapter aimed to determine the expression of Arabidopsis RbcS genes under 

different environmental conditions and characterise the impact on their absence on growth 

using rbcs KO mutants isolated in Chapter 4. In addition to external environmental 

conditions, circadian clock was also found to be a major contributor that affects RbcS 

expression (Pilgrim and McClung, 1993). Circadian rhythm anticipates light/dark 

oscillation within the 24 h period and adjusts the RbcS expression to optimise Rubisco 

production. As the circadian-controlled expression of RbcS genes persists through 

changing environments, we first aimed to abolish the the expression influenced by 

circadian clock in order to accurately quantify the transcriptional responses of RbcS genes 

under different environmental conditions. This chapter also explored the effects of 

different environments, namely high light, high temperature and low temperature 

conditions, on Arabidopsis growth. 

 

Results 

Differential expression of RbcS gene family under different environmental conditions 

Apart from environmental and metabolic factors, the expression of RbcS genes is 

also controlled by an internal circadian clock (Pilgrim and McClung, 1993). RbcS genes 

oscillates during the 24 h period independent of other factors. To disable the clock and 

remove circadian rhythm, plants were grown in constant light for seven days to induce 
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arrhythmicity. After dark adaption for 24 h, plants were exposed to light for 12 h and the 

changes in expression were quantified (Figure 5.1). 
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Figure 5.1. Total RbcS transcript abundance and fold change in Arabidopsis plants grown 

under different conditions. Transcript abundance was measured using the synthesised 

standard plasmid as described in Chapter 3. A) RbcS transcript abundance and B) 

transcript fold change relative to ZT -2 of plants grown under 12 h light : 12 h dark cycle 

for 15 days (light control). C) RbcS transcript abundance and D) transcript fold change 

relative to ZT -2 of plants grown under 12 h light : 12 h dark cycle for seven days and 

constant light for additional seven days. Plants were kept in the dark for 24 h before light 

exposure (experimental group). E) RbcS transcript abundance and F) transcript fold 

change relative to ZT -2 of plants that grown under 12 h light : 12 h dark cycle for seven 

days and constant light for additional seven days, but were kept in the dark through the 

experimental period (dark control). Plants in A, B, C and D were exposed to white light 

at 200 µmol photon m-2 s-1 and 21oC for 12 h on day 16 and collected at five time points 
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shown in zeitgeber time (ZT). Each data point consisted of three biological replicates and 

each biological replicate contained 25-30 seedlings.  

In the control group (i.e. plants with normal circadian oscillation grown under a 

12 h light : 12 h dark cycle), the total expression of RbcS genes increased to 90 pmol/g 

after 4 h of light exposure (Figure 5.1A). Expression levels appeared to remain relatively 

constant during the light period and 2 h into the dark period, but showed a decrease after 

6 h of darkness. The latter decrease was primarily attributed able to 3B that decreased by 

75% followed by 1A, which decreased by 13% relative to the expression at 14 h (Figure 

5.1B). In contrast to the control group, the increase in expression of RbcS genes in the 

experimental group (i.e. plants grown under constant light) was slower and more linear 

over time (Figure 5.1C). Moreover, the overall levels of expression continued to increase 

even during the dark period. The observed expression levels were due in part to the 

continued increase of 1A, 1B and 2B. In contrast, the expression levels of 3B decreased 

after 6 h of darkness (Figure 5.1D). RbcS gene 1B showed the largest relative increases 

in expression in response to white light in both groups (1B had a 66-fold increase at 16 h 

in the control group and 28-fold increase at 14 h in the experimental group) (Figure 5.1B, 

D) The levels of RbcS gene expression in the dark control group (i.e. plants grown under 

constant light then kept in dark) were significantly lower than in the other two groups 

(Figure 5.1E, F). However, the basal levels of expression observed suggested that 

circadian rhythm could still be active. To validate that circadian rhythm has been removed 

in the experimental group, circadian genes (CCA1, PRR7 and TOC1) were probed at 4 h, 

8 h and 14 h (Figure 5.2).  
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Figure 5.2. Expression profiles of clock genes CCA1, PRR7 and TOC1. Transcript 

abundance was measured using gene-specific primers and relative abundance to the lowest 

time point (14 h for CCA1 and PRR7, and 4h for TOC1) was calculated. Control plants 

with normal circadian oscillation were grown under 12 h light : 12 h dark cycle for 15 d. 

Experimental plants (Expt) were grown under 12 h light : 12 h dark cycle for seven days 

and constant light for additional seven days. Control and Expt plants were exposed to 

white light at 200 µmol photon m-2 s-1 and 21oC for 12 h. Dark control (DC) plants were 

grown under 12 h light : 12 h dark cycle for seven days and constant light for additional 

seven days, but were kept in the dark through the experimental period. Results are shown 

in over zeitgeber time (ZT). Each data point consisted of three biological replicates and 

each biological replicate contained 25-30 seedlings.  
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 Quantification of the three clock genes suggested that circadian rhythm in the 

experimental and dark control groups was significantly dampened, but not completely 

abolished (Figure 5.2). The expressions of CCA1 (peak expression at dawn), PRR7 (peak 

expression in the afternoon) and TOC1 (peak expression in the late afternoon) were 190-, 

32- and 12-fold higher, respectively, in the control group than the experimental group 

(Figure 5.2 A, B, C). Nevertheless, an oscillation of these genes still occurred in both the 

experimental and dark control groups despite being significantly lower. The continued 

rhythmicity of these circadian genes suggested that the 7 d light adaption was not 

sufficient to get rid of circadian rhythm and that RbcS expression in the experimental 

group could still be influenced by circadian clock. Therefore, the arrhythmic clock mutant 

prr5/7/9 (Nakamichi et al., 2005) was used to quantify the expression level of RbcS genes 

in response to light (Figure 5.3).  
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Figure 5.3. Expression of RbcS genes in the prr5/7/9 mutant. Transcript abundance was 

measured using the synthesised standard plasmid as described in Chapter 3. The mutant 

was grown under constant light for 14 days, kept in the dark for 24 h and exposed to white 

light at 200 µmol photon m-2 s-1 and 21oC for 12 h. Results are shown in zeitgeber time 

(ZT). A) Total transcript abundance for RbcS genes. B) Transcript fold changes relative 

to ZT -2 for RbcS genes. C) Transcript abundance of individual RbcS genes. Each data 

point consisted of three biological replicates and each biological replicate contained 25-

30 seedlings.  

 

 In the prr5/7/9 mutant, the expression of the RbcS genes showed a gradual increase 

over time followed by a decrease in expression at 16 h (Figure 5.3A). The latter data trend 

was similar to the experimental group (plants with dampened circadian rhythm) in the 
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previous experiment (Figure 5.2B), with the exception of the decline at the last time point. 

The total expression of RbcS genes in the dark at time point -2 was only 2.8 pmol/g total 

mRNA (2 fold lower than the experimental group) and gradually increased through the 

period of light exposure. The expression of the minor isoforms 1B and 2B reached 

maximum levels at 4 h of light exposure, whereas 1A and 3B continued to increase until 

14 h (Figure 5.3C). All four RbcS genes were sensitive to white light. 3B showed the 

highest relative increase in expression (29-fold increase), followed by 1A (17-fold 

increase) and 1B (9-fold increase) and finally 2B (8-fold) at 14 h. (Figure 5.3B). The gene 

that was most rapidly induced was 1A and 3B and 1A reached the highest maximum 

expression at 14 h. 1B was the slowest to induce. 1A was also the quickest to degrade 

(Figure 5.3C). The most stable transcript was 2B as it showed the least changed over the 

measured period (Figure 5.3C). The observed decline in RbcS transcript abundances at 

16 h contrasted that of the control group in Figure 5.1A, where 1A decreased more slowly 

than 3B after light was turned off. We hypothesise that the latter effect was due to the 

influence of circadian rhythm still present in the control group.  

Based on these time course experiments, 8 ZT was chosen as the best time point 

to measure the impact of different environmental treatments on RbcS transcript 

abundances. Plants with dampened circadian rhythm and prr5/7/9 mutant were used to 

measure the effects of environmental treatment to transcript abundance to compare and 

contrast the outcome. Both prr5/7/9 and circadian-dampened WT were grown and 

exposed to different light qualities (blue, red and far-red, temperature was kept at 21oC), 

quantities (1000, 200 and 50 µmol photon m-2 s-1, temperature was kept at 21oC) and 
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temperatures (30oC and 10oC, white light 200 µmol photon m-2 s-1) for 8 h and transcript 

abundance was quantified (Figure 5.4). Overall, the trends between the two groups were 

similar – blue light induced the highest expression among the light quality group, followed 

by red light and far-red light (Figure 5.4 A, D). In the light quantity group, high light 

induced the highest level of expression, followed by medium light and low light (Figure 

5.4 C, F). For the temperature group, exposing plants to high temperature resulted in an 

increase in expression, while low temperature reduced the RbcS gene expression relative 

to the expression at 20oC. The change in temperature also dramatically altered differential 

expression of RbcS gene as the expression of 2B and 3B increased significantly and 3B 

became the dominant isoform under high temperature. On the other hand, low temperature 

suppressed the expression of 2B and 3B and the overall transcript abundance was 

decreased. Under low temperature, the 1A isoform became the major contributor to the 

total mRNA pool and accounted for 70% of the transcript abundance in both groups 

(Figure 5.4 B, E). Comparing the total expression level between the prr5/7/9 mutant and 

the circadian-dampened plants, the total transcript abundance under all environmental 

treatments was higher in the latter group.  
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Figure 5.4. Expression of RbcS genes of circadian-dampened plants and prr5/7/9 mutant 

exposed to different environmental conditions. Transcript abundance was measured using 

the synthesised standard plasmid as described in Chapter 3. A) total transcript abundance; 

B) transcript fold change relative to dark control (DC); and C) relative transcript 

abundance of circadian-dampened plants to -2 ZT. Expression of RbcS genes of prr5/7/9 

mutant represented as D) total transcript abundance; E) transcript fold change relative to 

DC; and F) relative transcript abundance -2 ZT. Both groups of plants were exposed to 

blue light (BL) at 80 µmol photon m-2 s-1, red light (RL) at 80 µmol photon m-2 s-1, far-

red light (FRL) at 50 µmol photon m-2 s-1, white light at 1000 µmol photon m-2 s-1 (HL), 

200 µmol photon m-2 s-1 (ML) or 50 µmol photon m-2 s-1 (LL). Temperature was kept at 

21oC for different light conditions. White light at 200 µmol photon m-2 s-1 was used for 

the 30oC high temperature (HT) and 10oC low temperature (LT) exposures. Plants were 

exposed to each condition for 8 h. Each data point consisted of three biological replicates 

and each biological replicate contained 25-30 seedlings. 

 

Physiological analysis of plants grown under high light 

Based on the results obtained from the RT-qPCR screening experiments, three 

environmental conditions - high light, high temperature and low temperature were selected 

to analyse the potential impact of SSU knockout on growth. We aimed to test the following 

hypotheses: i) under the light saturating condition (high light), Rubisco becomes limiting 

and plants with significantly reduced Rubisco content (i.e. 1a, 3b, 2b3b and 1a2b) would 
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grow more slowly than WT; ii) under high temperature where 3B is the major isoform, 

plants lacking 3B (3b, 2b3b) would suffer a reduced growth rate relative to WT and other 

mutants; iii) under low temperature where 1A is the major isoform, plants lacking 1A (1a, 

1a2b) would  suffer a reduced growth rate relative to WT and other mutants.  

 A high light growth experiment (1000 µmol photon m-2 s-1, 21oC) was performed 

to examine the impact of Rubisco-limiting conditions on the growth phenotype of rbcs 

mutants generated by CRISPR/Cas9 or T-DNA insertions in Chapter 4. Under high light, 

both WT plants and almost all mutants grew at a faster rate than those in standard 

conditions, with the exception of BigBoi which suffered severe bleaching and did not 

survive past 15 DAG. All plant lines showed increased leaf area at 28 DAG compared to 

those in standard conditions (200 µmol photon m-2 s-1, 21oC) (Figure 4.13C, 5.5 and 5.6).  

The area and weight (FW and DW) of WT rosettes under high light was approximately 

three-fold and 11-fold higher, respectively, than those under standard conditions at 28 

DAG (Figure 5.6 and 5.7A). Notably, high light elicited a significant difference between 

the area and weight (FW and DW) between WT plants and 1a, 1a2b and 2b3b (Figure 

5.6A, D, and 5.7A). This difference was not observed under standard conditions (Figure 

4.14A). No significant differences were seen for 1b and 2b mutants (Figure 5.6B, C). A 

slight decrease in rosette area relative to WT was noted for 3b mutants, but this was not 

significant. However, the FW and DW of 3b mutants were significantly lower than that of 

WT and therefore resulted in a significantly higher SLA (Figure 5.7A, B). The area, FW 

and DW of 1a3b were significantly lower than those of WT, although they were higher 

than 1a3b grown in standard conditions.  
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Figure 5.5. Representative images of 23-d-old rosettes of WT, T-DNA and CRISPR/Cas9 

(CC) rbcs KO mutants grown under high light (1000 µmol photon m-2 s-1, 21oC). 
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Figure 5.6. Growth analysis of rbcs KO mutants under high light (1000 µmol photon m-2 

s-1, 21oC). A) Rosette expansion of T-DNA and CRISPR/Cas9 (CC) 1a single KO 

mutants. B) Rosette expansion of T-DNA and CRISPR/Cas9 (CC) 1b and 2b single KO 

mutants. C) Rosette expansion of T-DNA 3b knockdown mutant and CRISPR/Cas9 (CC) 

3b single KO mutants. D) Rosette expansion of double mutants 2b3b, 1a2b and 1a3b. 

Values are mean ± SE of measurements made on 8-15 rosettes. DAG is days after 

germination. Asterisks denotes significant difference from WT for 1a3b and BB. One (*) 

and two (**) asterisks denote significant difference between groups. Significant difference 

(P < 0.05) was determined by ANOVA followed by Tukey’s HSD tests. 
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Figure 5.7. Growth analysis of WT, T-DNA and CRISPR/Cas9 (CC) rbcs KO mutants 

grown under high light (1000 µmol photon m-2 s-1, 21oC). A) Fresh and dry weights of 28-

d old plants; B) Specific leaf area; C) Fv/Fm; D) chlorophyll content; E) Chlorophyll a/b 

ratio. Values are mean ± SE of measurements made on 8-15 rosettes. Values followed by 

the same letters are not significantly different (P < 0.05) as determined by Tukey’s HSD 

test. 

 

 No significant differences in Fv/Fm were observed between plant lines grown 

under high light. However, a decrease in chlorophyll content relative to WT was observed 

in a subset of mutants, specifically 1a, 2b3b, 1a2b and 1a3b (Figure 5.7D). Additionally, 
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the pale-leaf phenotype of 1a3b observed under standard conditions was less obvious 

under high light.  

 

Physiological analysis of plants grown under high temperature 

 Previous RT-qPCR results showed that plants exposed to high temperature had 

increased expression levels for 2B and 3B, and 3B was the major isoform at 30oC (Figure 

5.4B, E). To test whether mutants lacking 3B would result in a reduced growth rate, WT, 

1a, 3b, 2b3b, 1a2b, 1a3b and BigBoi were grown and monitor for 28 days under 30oC and 

200 µmol photon m-2 s-1 of white light.  

 Plants grown under high temperature grew more quickly than those under standard 

conditions (Figure 4.13 and 5.9). In addition, all plants had a higher ratio of petiole to 

leaf blades and higher leaf insertion angle (hyponasty, from a qualitative assessment) 

(Figure 5.8). No significant difference in area, FW, DW or SLA were observed between 

WT and 1a, 1b, 2b3b or 1a2b mutants. However, the area, FW and DW of 1a3b and 

BigBoi were significantly reduced (Figure 5.9, 5.10A, B). Chlorophyll content, 

chlorophyll a/b ratio and Fv/Fm value of the 1a3b mutant were slightly but not significantly 

lower than that of WT. On the other hand, chlorophyll content, chlorophyll a/b ratio and 

Fv/Fm of BigBoi were significantly reduced relative to WT (Figure 5.10 C, D, E).  
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Figure 5.8. Representative images of 23-d-old rosettes of WT, T-DNA and CRISPR/Cas9 

(CC) rbcs KO mutants grown under high temperature (200 µmol photon m-2 s-1, 30oC). 

BB is BigBoi. 
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Figure 5.9. Growth analysis of rbcs T-DNA and CRISPR/Cas9 (CC) KO mutants under 

high temperature (200 µmol photon m-2 s-1, 30oC). A) Rosette expansion of 1a and 3b 

single KO mutants (3b T-DNA is a knockdown). B) Rosette expansion of double mutants 

2b3b, 1a2b and 1a3b and the triple mutant BigBoi (BB). Values are mean ± SE of 

measurements made on 8-15 rosettes. DAG is days after germination. One (*) and two 

(**) asterisks denote significant difference between groups. Significant difference (P < 

0.05) was determined by ANOVA followed by Tukey’s HSD tests. 
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Figure 5.10. Growth analysis of WT, T-DNA and CRISPR/Cas9 (CC) rbcs KO mutants 

grown under high temperature (200 µmol photon m-2 s-1, 30oC). A) Fresh and dry weights 

of 28-d old plants; B) Specific leaf area; C) Fv/Fm; D) chlorophyll content; E) Chlorophyll 

a/b ratio. Values are mean ± SE of measurements made on 8-15 rosettes. Values followed 

by the same letters are not significantly different (P < 0.05) as determined by Tukey’s 

HSD test. 

 

Physiological analysis of plants grown under low temperature 

 Previous transcript abundance data showed that plants exposed to low temperature 

had reduced transcript abundance and suppressed 3B expression (Figure 5.4B, E). The 

major isoform under low temperature was 1A. To test whether plants lacking 1A would 
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suffer reduced growth, WT, 1a, 3b, 2b3b, 1a2b, 1a3b and BigBoi were grown and 

monitored for 28 days under 10oC and 200 µmol photon m-2 s-1 of white light. 

 Growing plants under low temperature inhibited rosette expansion, resulting in 

plants that were smaller than those grown under standard conditions (Figure 5.11). No 

significant differences were observed between the area of WT, 1a, 3b, 2b3b and 1a2b. 

However, 1a3b and BigBoi was significantly smaller than WT and other mutants (Figure 

5.12A, B). Although the area of 1a and 1a2b mutants was not significantly different to 

WT, the FW and DW were significantly reduced, resulting in a small but significantly 

increased SLA (Figure 5.13A, B). Chlorophyll content of 1a and 1a2b was also 

significantly lower than that of WT although the chlorophyll a/b ratio was not significantly 

different (Figure 5.13D, E). The Fv/Fm values of 1a and 1a2b were not significantly 

different from that of WT. For 1a3b and BigBoi, the chlorophyll content, chlorophyll a/b 

ratio and Fv/Fm values were significantly lower than all other plant lines (Figure 5.13C, 

D, E).  
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Figure 5.11. Representative images of 23-d-old rosettes of WT, T-DNA and 

CRISPR/Cas9 (CC) rbcs KO mutants grown under low temperature (200 µmol photon m-

2 s-1, 10oC). BB is BigBoi. 
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Figure 5.12. Growth analysis of rbcs T-DNA and CRISPR/Cas9 (CC) KO mutants under 

low temperature (200 µmol photon m-2 s-1, 10oC). A) Rosette expansion of 1a and 3b 

single KO mutants (3b T-DNA is a knockdown). B) Rosette expansion of double mutants 

2b3b, 1a2b and 1a3b and the triple mutant BigBoi (BB). Values are mean ± SE of 

measurements made on 8-15 rosettes. DAG is days after germination. One (*) and two 

(**) asterisks denote significant difference between groups. Significant difference (P < 

0.05) was determined by ANOVA followed by Tukey’s HSD tests. 
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  Figure 5.13. Growth analysis of WT, T-DNA and CRISPR/Cas9 (CC) rbcs KO mutants 

grown under low temperature (200 µmol photon m-2 s-1, 10oC). A) Fresh and dry weights 

of 28-d old plants; B) Specific leaf area; C) Fv/Fm; D) chlorophyll content; E) Chlorophyll 

a/b ratio. Values are mean ± SE of measurements made on 8-15 rosettes. Values followed 

by the same letters are not significantly different (P < 0.05) as determined by Tukey’s 

HSD test. 

 

 

Compound analysis of the four growth experiments under different growth conditions 

 The previously described growth experiments were presented as a comparison 

against plants grown under standard conditions, which was useful to describe the impact 

of a given growth environment on the SSU mutants. Here, the data from all four growth 
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experiments has been plotted against each other for a more direct comparison (Figure 

5.14). 

 Growing plants under high light or high temperature generally promoted rosette 

expansion resulting in an increased area at 28 DAG compared to standard conditions 

(Figure 5.14A). WT plants grown under high light or high temperature had a four-fold 

and three-fold enhancement in rosette area, respectively. However, mutants with more 

than 40% decrease in RbcS transcript (1a, 3b, 2b3b, 1a2b, 1a3b and BigBoi) grew more 

slowly under high light but not in high temperature. In contrast to faster growth under high 

light and high temperature, growth was significantly slower under low temperature. The 

rosette sizes of WT was three times less than those grown under standard conditions 

(Figure 5.14A).  

 Growing plants under high light or high temperature also resulted in higher FW 

and DW. WT plants grown in high light or high temperature weighed eleven and four 

times more than WT grown under standard conditions, respectively (Figure 5.14B, C). 

Unlike for the area data, where 1a, 3b, 2b3b, 1a2b, 1a3b and BigBoi were comparable 

under high light and high temperature, the FW and DW of mutants grown under high light 

were always higher than those grown under high temperature (Figure 5.14B, C). This 

resulted in a lower SLA for plants grown under high light, suggesting that their leaves 

were thicker (Figure 5.14D).  
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Figure 5.14: Comparison of growth of WT, TDNA and CRISPR/Cas9 (CC) rbcs mutants 

grown under standard conditions (Std, 200 µmol photon m-2 s-1, 21oC), high light 

condition (HL, 1000 µmol photon m-2 s-1, 10oC), high temperature condition (HT, 200 

µmol photon m-2 s-1, 30oC) and low temperature condition (LT, 200 µmol photon m-2 s-1, 

10oC). A) Area; B) FW; C) DW; D) Specific leaf area; E) Fv/Fm; F) chlorophyll content; 

G) Chlorophyll a/b ratio. BB is BigBoi mutant. Values are mean ± SE of measurements 

made on 8-15 rosettes. 

 

 The values for Fv/Fm remained unchanged in WT, 1a, 3b, 2b3b and 1a2b under 

the standard, high light and high temperature conditions but were increased under low 

temperature (Figure 5.14E). Unlike WT and other mutants, Fv/Fm values for 1a3b was 

low under standard conditions but enhanced to near WT level under other conditions. 
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Measurements of Fv/Fm could not be taken for BigBoi at high light as the plants did not 

survive. However, BigBoi was dissimilar to other mutants in that high temperature yielded 

reduced Fv/Fm values, while low temperature increased the Fv/Fm values relative to 

standard conditions.  

 High light condition increased the chlorophyll content of WT, 1b, and 1a3b 

compared to standard conditions, but not for other mutants (Figure 5.14F). High 

temperature did not change chlorophyll content significantly except for 1a3b where 

chlorophyll content was the highest among the growth conditions. Lowering the 

temperature resulted in reduced chlorophyll content compared to standard conditions in 

all mutants except for 1a3b and BigBoi. This likely represented the minimum amount of 

chlorophyll required for photosynthesis. Unlike other mutants, chlorophyll content in 

BigBoi was unaffected by different growth environments. The chlorophyll a/b ratio 

followed the same trend as chlorophyll content in that standard conditions and high light 

promoted the highest chlorophyll a/b ratio and decreased under high and low temperature. 

In contrast, the chlorophyll a/b ratio for BigBoi was highest under standard conditions and 

low temperature and lowest under high temperature.  

 

Discussion 

 Photoregulation of RbcS transcript has been shown in different plant species 

including pea, lemna, soybean, rye and Arabidopsis (Tobin and Silverthorne, 1985; Fluhr 

and Chua, 1986; Sasaki et al., 1987; Ido et al., 2016). In Arabidopsis, a study in dark-
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grown seedlings suggested that the four RbcS genes responded differently to different light 

qualities and quantities (Dedonder et al., 1993). For example, exposing dark-grown 

seedlings to continuous white light of 10 µmol photon m-2 s-1 for 24 h induced the increase 

in relative expression of the 1A, 1B, 2B and 3B genes by 8-, 13-, 12, and 14-fold, 

respectively. Higher fluence rate of 1000 µmol photon m-2 red light was needed to increase 

the expression of 2B suggesting that 2B was less responsive to red light. Dedonder et al. 

(1993) also reported that 2B was the most stable transcript. The result from this study 

agreed with Dedonder et al. (1993) in that 1A and 3B were highly expressed after light 

exposure while 2B and 1B expressions were significantly lower. Moreover, the RT-qPCR 

method used in this study was able to give quantitative data in regards to individual RbcS 

gene expression and total transcript abundance under different environmental conditions.  

 The quantitative transcript abundance data was useful in interpreting dynamic 

expressions of RbcS genes. For instance, Yoon et al. (2001) reported that the expression 

of 2B and 3B increased and 3B became the major isoform at 30oC, while 1A was the major 

isoform at 10oC. Consistent with Yoon et al. (2001), the present study found Arabidopsis 

exposed to high temperature had elevated expression levels of 2B and 3B, and 3B was the 

major isoform. However, 1A was the major isoform under 10oC not because the 

expression of 1A was increased under low temperature, but the expression of 2B and 3B 

were more suppressed than that of 1A, which resulted in 1A accounting for 70% of to the 

total transcript (Figure 5.4B, E). Moreover, the total transcript abundance was six times 

lower under low temperature, which correlated with slower growth at 10oC and faster 

growth and increased rosette areas for plants grown at 30oC.  



 

155 

 

 The regulation of RbcS genes can be exercised at the level of transcript stability 

(Ernst et al., 1987; Wanner and Gruissem, 1991) or at the translational level (Rodermel et 

al., 1996). The four RbcS genes in Arabidopsis were shown to have different induction 

and degradation rates – 1A had the highest level of induction after light exposure followed 

by 3B, 2B and 1B (Figure 5.3C). The transcript degradation of 1A was the most rapid, 

followed by 3B, 1B and 2B. The result is in agreement with the previous study of transcript 

stability of dark-grown seedlings (Dedonder et al., 1993). However, the degradation rate 

was different in plants with circadian rhythm as 3B was the fastest to degrade after dark. 

While Dedonder et al. (1993) did not take circadian control into account, this study has 

compared the RbcS expression under circadian control and when circadian control was 

effectively separated out. The results from this study inferred that the difference in the rate 

of degradation between the two groups was attribute to circadian rhythm and further 

highlighted the influence of circadian rhythm over RbcS transcript abundance (Figure 

5.1A and 5.3A). This complex pattern of expression also adds to many lines of evidence 

that the RbcS gene family exists not only to amplify the RbcS transcript abundance but is 

also differentially regulated with respect to various parameters including light, darkness 

and temperature (Coruzzi et al., 1984; Dedonder et al., 1993; Yoon et al., 2001; Cen and 

Sage 2005).  

 The changes in the RbcS transcript abundance directly correlates with the changes 

in Rubisco level (Izumi et al., 2010; Atkinson et al., 2017). Although we were not able to 

quantify Rubisco content for all the different lines under the different growth experiments, 

exposing plants to high light led to an elevated level of RbcS transcript and likely an 
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increased active state of the Rubisco pool, thus resulting in the observed increases in area 

and biomass. Plants grown under high light also had thicker leaves (lower SLA) due to 

the increased size of mesophyll cells (Terashima et al., 2011). The observed increase in 

photosynthetic capacity under high light was accompanied by increase in chlorophyll 

content in WT, 1b, 2b, 3b and 1a3b while chlorophyll content remained unchanged in 1a, 

2b3b and 1a2b mutants relative to those in standard conditions. The increase in 

chlorophyll content of the former group suggests that those plants were able to invest more 

in light harvesting components.  

 Decreasing the RbcS content down to 30% such that in the 1a2b KO mutant did 

not result in the difference in size and weight relative to WT under standard conditions 

(Figure 4.12A). The lack of apparent difference was likely due to a higher activation level 

of the Rubisco pool in the mutants (Quick et al., 1991). However, a significant reduction 

in area and weight was observed in 1a, 2b3b and 1a2b and in weight for 3b under the high 

light condition as hypothesised. Thus under high light, the available Rubisco pool likely 

was limiting in the latter mutants. It was expected that these mutants would have reduced 

growth rates compared to WT under high light as they have reduced Vc,max and Jmax under 

saturating light (Table 4.4). A reduction in rosette area was not observed in 3b mutants 

under high light even though they also had lower Vc,max and Jmax. However, 3b mutants 

weighed significantly less than WT, suggesting that the leaves were thinner (higher SLA) 

and this is in line with mutants (1a, 2b3b, 1a2b and 1a3b) that had lower photosynthetic 

capacity. A reallocation of resources to expand leaf area and reduce thickness when 
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photosynthetic capacity is limiting has been observed previously in Arabidopsis antisense 

lines with reduced Rubisco activase grown under high light (Eckardt et al., 1997). 

 The decrease in RbcS expression under low growth temperatures correlated with 

the decrease in Arabidopsis growth. The decrease in biomass correlates with the RbcS 

content which likely resulted in lower Rubisco content and photosynthetic rate as found 

in rose grown at 10oC (Ushio et al., 2008). However, the decrease in growth was not 

observed in the 1a and 1a2b KO mutants as hypothesised. Despite having no significant 

difference in rosette area compared to WT, 1a and 1a2b KO mutants had lower weight 

despite no significant decrease in rosette area, which was similar to 3b mutants grown 

under high light. As the plants grown at 10oC were still small at the end of 28 days relative 

plants grown under standard conditions, a longer experimental period may be able to 

discern the differences in rosette areas of 1a and 1a2b. 

Studies have shown that a higher growth temperature increased the growth rate of 

Arabidopsis which was mediated by faster cell elongation (Gray et al., 1998; Ghannoum 

et al., 2010). However, growth under high temperature is also accompanied lower 

photosynthetic rate due to reduced activation of Rubisco by Rubisco activase (Crafts-

Brandner and Salvucci, 2000; Salvucci and Crafts-Brandner, 2004). Growing Arabidopsis 

under high temperature did not result in differences in weights and area between WT and 

3b mutants as hypothesised. This was surprising, and could be due to the experimental 

design. For example, the RT-qPCR data showed that 3B accounted for ca. 50% of total 

transcript abundance in high temperature and under 200 µmol photons m-2 s-1 white light 

(with 1A, 1B, and 2B accounting for the remaining 50%). Similar light conditions were 
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used for the standard conditions growth experiment. Thus in the absence of 3B where 50% 

of RbcS transcripts were still available, the light conditions used were unlikely to result in 

an observable reduction in growth. This was evident in 1a2b where 53% reduction in RbcS 

transcript did not result in reduction in growth (Figure 5.4 and 5.9). Previous work in in 

tobacco has shown that Rubisco content can be reduced to ca. 50% before a growth 

phenotype is observed under standard growth conditions (Quick et al., 1991). Tobacco 

also reportedly adjusts to high temperature by increasing stomatal conductance to enhance 

the internal CO2 concentration, which consequently compensated for the decrease in 

Rubisco (Krapp et al., 1993). Future work could improve the experimental design to 

measure growth under higher light (Rubisco limiting conditions) and higher temperatures.  

 

 

 

 

 

 

 

 

 



 

159 

 

Chapter 6 - BigBoi as a platform to study the impact of heterologous SSUs in 

Arabidopsis: complementation of a triple rbcs mutant with a Chlamydomonas SSU  

Introduction 

 Rubisco SSUs have been shown to influence catalytic activities of Rubisco 

enzyme (Fukayama et al., 2019; Lin et al., 2019). Modification of Rubisco performance 

was achieved by expressing a phylogenetically distinct native isoform of SSU or 

heterologous SSU in leaves (Morita et al., 2014; Atkinson et al., 2017). However, in a 

plant system where heterologous SSU was expressed, native SSUs have always been 

present and a confounding factor because it has been challenging to knockout all native 

SSUs in plants. A more common method to generate hybrid Rubisco was to switching out 

the single LSU gene in the chloroplast (Sharwood et al., 2008; Whitney and Sharwood, 

2008; Genkov et al., 2010; Zhang et al., 2011). Nevertheless, robust and well-established 

protocols for chloroplast transformation are limited to tobacco and model algae such as 

Chlamydomonas (Bock 2015). 

 In chapter 4, the generated triple rbcs mutant BigBoi was characterised. BigBoi is 

the first reported Arabidopsis mutant with only one native SSU isoform supporting 

photosynthetic growth. This novel mutant has two main advantages as a platform for the 

study of heterologous SSUs. Firstly, BigBoi can be used to generate a fully hybrid Rubisco 

(heterologous SSU, native LSU) in two steps: i) complementation with heterologous SSUs 

and ii) removal of 1B via an established CRISPR/Cas9 editing approach (Chapter 4 - 

Generating rbcs single mutants using CRISPR/Cas9). Secondly, identifying a 

complemented BigBoi T1 line is straightforward, as any improvement in growth 
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phenotype is easily visible.  Therefore, BigBoi could be exploited as a model plant 

platform to re-engineer Rubisco and study the impact on Rubisco activity. This chapter 

outlines a preliminary ‘proof of principle’ study to complement BigBoi with a 

heterologous SSU from the green algae Chlamydomonas. Due to time constraints, 

subsequent knockout of the remaining 1B isoform was not done. Nevertheless, growth 

analysis showed that BigBoi was transformable and complemented by an algal SSU.   

 

Results 

 Following transformation of BigBoi with a Chlamydomonas RbcS2 expression 

cassette (Supplemental Figure 6.2), successfully transformed T1 plants were selected 

visually based on their greener colour and enhanced growth rates (Figure 6.1A) In total, 

seven T1 complemented lines were identified. PCR screening confirmed the presence of 

the Chlamydomonas SSU insert (Figure 6.1B). Protein extraction followed by SDS-

PAGE and Coomasie staining showed a band of similar size to Chlamydomonas SSU 

expressed in the complemented plants (Figure 6.2C). Notably, the band was also of 

similar size to the RbcS2 band in an Arabidopsis 1a3b mutant previously complemented 

with the Chlamydomonas SSU (R2) (Atkinson et al., 2017). Western blot was performed 

following SDS-PAGE but Chlamydomonas SSU was not detected possibly due to the low 

expression level. In addition, the levels of expression were much reduced compared to R2 

in complemented BigBoi lines. The lower levels of Chlamydomonas SSU observed may 

be due to heterozygosity in the T1 generation.  
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 In the T2 generation, segregation ratio of 1:2:1 were visibly evident for four of the 

seven complemented lines. For lines 1-4, putative T2 homozygous plants were more green 

and grew faster while putative T2 heterozygous plants were almost as pale as but bigger 

than the segregated BigBoi (Figure 6.1D). Lines 5-7 showed no differences in hypocotyl 

colour compared to BigBoi. Although complemented plants were bigger in size, putative 

homozygous and heterozygous could not be distinguished based on size. A growth 

analysis of T2 plants was performed (300 µmol m-2 s-1 photon, 12 h light : 12 h dark cycle, 

21oC) to assess the impact of Chlamydomonas SSU complementation on growth (Figure 

6.2). 
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A 

 
 
B      C 

  
 

D 

 

Figure 6.1A. Characteristics of Chlamydomonas SSU complemented BigBoi. A) Images 

of 8 weeks old biggest (Line 1) and smallest (Line 5) T1 BigBoi complemented with 

Chlamydomonas SSU. B) Representative image of PCR confirmation of the 

Chlamydomonas SSU insertion of Lines 1-3 using Chlamydomonas SSU-specific primers 

(Supplemental table 6.1). C) Representative image of Coomasi staining of 12% bis-tris 

SDS-PAGE showing the presence of a band of similar size to the Chlamydomonas SSU. 
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R2 line (Atkinson et al.,  2017) was used as positive control. D) Representative image of 

T2 segregation of Line 1 in comparison to WT. 

 All seven complemented lines showed improved growth phenotype compared to 

BigBoi (Figure 6.2). Putative homozygous plants in Lines 1-4 showed greener and bigger 

cotyledons than the segregated BigBoi while putative heterozygous was less green and 

smaller than putative homozygous but bigger than segregated BigBoi. In Lines 5-7, 

putative homozygous and heterozygous were distinguished based on the difference in 

sizes as there was obvious difference in colour. Putative homozygous plants for all lines 

had increased rosette area and biomass compared to putative heterozygous plants (Figure 

6.2 and 6.3A, D). Line 1 grew the fastest, while Line 5 grew the slowest.  The rosette area 

of putative homozygous plants on 28 DAG for Lines 1 and 5 were 34% and 9% of WT 

plants, respectively, while FW was 18% and 4% of WT, respectively (Figure 6.3 D, E). 

In contrast, the area of BigBoi was 1.4% and FW was 0.3% of WT. The SLA values of all 

seven complemented lines were significantly higher than that of WT but were all lower 

than that of BigBoi (Figure 6.3B) Furthermore, Fv/Fm was restored to WT levels for all 

complemented lines (Figure 6.3C).  
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Figure 6.2. Growth of Chlamydomonas SSU complemented BigBoi lines. A) Rosette 

expansion of complemented lines in comparison to WT and BigBoi (BB) monitored from 

12-28 days after germination (DAG). The values are means ± SE of measurements made 

on 6-8 individual rosettes. B) Representative images of 20-d-old rosettes of putative 

heterozygous and homozygous Chlamydomonas SSU complemented BigBoi lines. 
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Figure 6.3. Growth analysis of BigBoi lines complemented with Chlamydomonas SSU 

in the T2 generation. A) Fresh and dry weight, B) specific leaf area, C) maximum potential 

quantum efficiency of PSII (Fv/Fm), D) Percent weight relative to WT. The values 

represent mean ± SEM of measurements made on 6-8 samples for fresh weight, dry weight 

and specific leaf area and four samples for Fv/Fm. Different letters above the bars indicate 

significant difference (P < 0.05) as determined by ANOVA followed by Tukey’s HSD 

tests.  

 

Discussion 

 In this chapter, preliminary data was presented to demonstrate that a 

Chlamydomonas SSU was successfully expressed in the triple KO mutant BigBoi and that 

a heterologous SSU was able to rescue the slow-growing phenotype. The transformation 

efficiency of BigBoi was comparable to that of WT (ca. 0.5%). However, more BigBoi 

plants were needed for floral-dipping to obtain an equal number of transformants because 

of lower flower and seed yields. The seven independent complemented lines displayed a 

range of growth rates, likely due differences in level of the heterologous SSU expression. 

These differences could arise from difference in location of chromosomal integration, 

spatial and temporal regulation of the transgene promoter activity relative to the 

chromosomal insert, (Hobbs et al., 1990; Matzke and Matzke, 1998; Day et al., 2000; Van 

Leeuwen et al., 2001). Further characterisation of the insert should be performed on these 

lines to locate the insertion site (i.e. TAIL-PCR) and compare to the associated expression 

level.  
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 BigBoi is a significant improvement over 1a3b as a platform to test the effects of 

heterologous SSUs in Arabidopsis (Atkinson et al., 2017). The only remaining native SSU 

isoform in BigBoi (1B) represents ca. 3% of the total SSU pool, which means that 

confounding factors attributed to native SSUs are more subdued. Moreover, 1B expression 

could be removed by CRISPR/Cas9 editing (as outlined in Chapter 4) following 

complementation with a heterologous SSU, which would result in a completely hybrid 

heterologous SSU: native LSU Rubisco. Future work should focus on removing 1B in 

homozygous T3 lines of the Chlamydomonas SSU complemented BigBoi lines, 

whereupon Rubisco content and Rubisco catalytic activities could be measured. The 

recently published protocols for chloroplast transformation in Arabidopsis (Yu et al.,  

2017; Ruf et al., 2019) add to the possibility of generating hybrid Rubisco where the native 

Arabidopsis LSU can also be modified, thus bolstering Arabidopsis as a powerful platform 

for the study of Rubisco catalysis in planta. 

 BigBoi may prove to have other useful applications and can be used as a model to 

answer questions about Rubisco. For example, it was previously hypothesised by 

Sawchuck et al. (2008) that 1B may modify Rubisco kinetics. BigBoi could be used to 

substantiate the hypothesis by measuring the Rubisco enzyme kinetics in comparison to 

that of WT and 1b KO mutants generated in Chapter 4. In addition, as the contribution of 

the individual SSU to the Rubisco enzyme is still unclear, the triple mutant could be 

exploited as a model to knock in native SSUs tagged with different fluorescence probes 

(Ishida et al. 2010). This method would allow for the visualisation of composition of each 

SSU in the Rubisco enzyme. 



 

172 

 

Conclusive remarks 

 Rubisco has been a subject of scientific scrutiny for decades due to its central role 

in photosynthesis. Despite the importance, the enzyme is catalytically inefficient and 

modification through mutagenesis or re-engineering of subunits has observed marginal 

improvement on the catalytic activities. This difficulty not only highlights the complexity 

of Rubisco but also how much we can still learn about the functional roles of the subunits.  

 This thesis is a stepping stone to understanding the roles of Rubisco SSUs in 

Arabidopsis. To understand the functions of an enzyme, we first investigated the T-DNA 

insertion mutants in Arabidopsis. Due to the inherent limitations of T-DNA insertion 

mutants (outlined in Chapter 3), we improved on the system by using CRISPR/Cas9 

editing to generate a suite of rbcs KO mutants, which includes novel mutants (2b3b and 

1a2b3b) that would not have been possible by T-DNA insertion method. These new KO 

knockout lines were characterised through molecular tools including RT-qPCR and 

Western blot to ensure gene and protein knockouts. In addition, we performed 

physiological characterisation of mutants and found that knocking out single SSU isoform 

did not affect growth of plants in standard conditions. The adverse effects to growth was 

observed in the 1a3b mutant where Rubisco was ca. 45% of WT level. Growth was further 

stunted when Rubisco was decreased to ca. 15% in the triple mutant 1a2b3b (BigBoi) as 

only the minor isoform 1B was the only remaining SSU responsible for photosynthetic 

growth.  

 Using CRISPR/Cas9 KO mutants as models, we explored the expression of the 

RbcS genes under different environmental conditions. We found that under high light 
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conditions, there was more demand for Rubisco and therefore knocking out major 

isoforms like 1A and 3B had negative effects on rosette area and/or weight (both fresh 

weight and dry weight). The expression of 2B and 3B varied more than that of 1A under 

changing temperatures as 2B and 3B were more highly expressed under high temperature 

and suppressed under low temperature. This evidence suggests the importance of 2B and 

3B as temperature mediators of the RbcS gene family in Arabidopsis. 

 Lastly, we have established a platform for the study of SSU complementation 

using BigBoi as a model. BigBoi was complemented with SSU from Chlamydomonas and 

a rescue in growth of up to 40% of WT was observed. As there are structural differences 

between plant and algae SSUs, a WT-level of complementation was not expected. 

However, this platform could be used to further probe for regions of Rubisco that could 

be modified or test other heterologous SSUs to improve the catalytic properties.  

BigBoi seeds and other KO mutants generated via CRISPR/Cas9 in this study will 

be available for the public through Nottingham Arabidopsis Seed Center (NASC) once 

the accompanying manuscript is published. 
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Supplemental information 

Chapter 3 

Supplemental table 3.1. Primers used PCR screening of T-DNA insertion mutants in 

chapter 3 

Primer ID Forward Reverse 

Amplicon 

(bp) 

1A  
CCATAAGGAAAGGGCCAAGT CATTGTCCAGTACCGTCCATC 

980 

1B 
ATAAAATTTTGTCTCGCGGTG TACCGTCCATCGTAGTATCCG 

1025 

2B 
TGGGTTCCTCTTGTTCATCAG CACTTGTTGCGGAGAAGGTAG 

1066 

3B 
TGCCTGAAAAATCTTAACAATTG CACTTGTTGCGGAGAAGGTAG 

1160 

1A (1a1b) GACCAAAGCACTAGACCAAACC GATGGGGGATAAAGTTTTGAGG 879 

1B (1a1b) 
CAATCACTCATTTCCTCACAAA TTGGGTTCCGGATAGTCAAC 

1045 

GABI T-DNA 

(left border) 

ATATTGACCATCATACTCATTGC - 

- 

SAIL T-DNA 
(left border) 

GCCTTTTCAGAAATGGATAAATAGCCTTGCTTCC - 
- 

SALK T-DNA 

(left border) 

ATTTTGCCGATTTCGGAAC - 

- 

 

 

Supplemental table 3.2. qPCR primers used for quantification of transcript abundance 

Primer ID Forward Reverse 

Amplicon 

(bp) 

1A (Iz) AATTTCCGGACTTAACGTTTGTTT TCTATCGGATTCTCAACTGTCTGATG 69 

1B (Iz) GCCAAAGTGAAAAAACTGAAGGTT TCTATTCATATCACTTCATTTCTGCTCTT 83 

2B (Iz) ACCCATTTCTATGTGGTCAATGC GTTGAGGAACTATTGTTTGAAAGTGAA 80 

3B (Iz) CCTATTGTCTGTGTTCTTTTTCTCTTTATG TGTAATTTATATATCCGTGCGTCTTGA 99 

LSU (Iz) GATGGGCTTACCAGCCTTGA ACATCGAGCCCGTTCCAG 61 

1A (Ca) GGATCATCGGATTCGACAAC TCCGGTTTGCGAGACATATT 217 

1B (Ca) GGATCATCGGATTCGACAAC AGGTTTGTTTTTCTATCGTTTCCTC 205 

2B (Ca) GGATCATCGGATTCGACAAC ATTGTGGCTCCTTTAAATTATCCTC 329 

3B (Ca) GGATCATCGGATTCGACAAC TCGGATTGTCAAATGTCTGATTTA 196 

LSU (Ca) GTGTTGGGTTCAAAGCTGGT GACAACTGTGTGGACCGATG 189 
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Supplemental figure 3.1. Standard plasmid used for RT-qPCR to construct the standard 

curve for RbcS and RbcL genes using specific primers. Regions in the 5’UTR for RbcS 

genes and a region spanning the exon-exon junction for the RbcL gene were synthesized 

and cloned into an L0 acceptor vector (pAGM9121) using Golden Gate assembly.  
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Chapter 4 

Supplemental Table 4.1. gRNAs used in CRISPR/Cas9 editing 

No.  Target Name Sequence Location Direction 

1 1A 1AP11 TTGGAGTGATCGGAGGGTCT AGG 5'UTR - 

2 1A 1AP12 TATGCTCTCTTCCGCTACTA TGG Exon 1 + 

3 1A 1AP21 CGGAATCGGTAAGGTCAGGA AGG Exon 2 - 

4 1A 1AP22 ATATAAACTAGCTAGATCTT AGG Intron 2 + 

5 1B 1BP11 TATATAGTGAGAACCGTAAG AGG 5'UTR - 

6 1B 1BP12 GGAGGTAACCACAGCGGCAG AGG Exon 1 - 

7 1B 1BP21 TTACTTCCATCACAAGCAAT GGG Exon 1 + 

8 2B 2BP11 GGAATTCGAATTTATAGGTG TGG Intron 1  + 

9 2B 2BP12 TAAAGGATGCTTAGAGACAA AGG Intron 2 - 

10 2B 2BP21 TATATATCAATTGTATTGAA TGG Intron 2 + 

11 2B 2BP22 TGATCCTAATGAAGGCGCCA GGG Exon 3 - 

12 3B 3BP11 ATAAAGATGACAACACCAGT AGG 5'UTR + 

13 3B 3BP12 GGTCACCCGCAAGACCAACA AGG Exon 1 + 

14 3B 3BP21 TTAATTTGGAATTGGATTTG GGG Intron 1 + 

15 3B 3BP22 TTGTGTTGAATTCGAGTTAG AGG Exon 2 + 

16 1B, 3B 1B3B1 GGGAAGAGTTAGCTGCATGA AGG Exon1 + 

17 

1B, 2B, 

3B 1B3B2 GGAAGTTGAAGAATGCAAGA AGG Exon 3 + 

 

 

Supplemental Table 4.2. Primers used to amplify regions of RbcS genes for the screening 

of mutations 

Primer ID Forward Reverse 
Amplicon 

(bp) Description 

1A  TCCACACTCAAAATCCAACG CCACATGTTACAAACCACTCAG 701  

1B CAATCACTCATTTCCTCACAAA TGGTGGCCACACCTATAATTC 469  

2B GCTTCCTCTATGTTCTCCTCCA TGCATTGACCACATAGAAATGG 834  

3B AGTGGTGCGTACCGATAAGG TCGGTTCTACAAAATCCGGTTA 696  

1A(1B3B) GACCAAAGCACTAGACCAAACC GATGGGGGATAAAGTTTTGAGG 879 Screening 1B3B lines 

1B(1B3B) CAATCACTCATTTCCTCACAAA TTGGGTTCCGGATAGTCAAC 1045 Screening 1B3B lines 

2B(1B3B) GCTTCCTCTATGTTCTCCTCCA TGGGTTCCAGAATAATCAACG 815 Screening 1B3B lines 

3B(1B3B) GCCTTTAGGGGGTTCTCATT TCCTTTCAAGTGGACCATCC 1326 Screening 1B3B lines 
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Chapter 6 

Supplemental table 6.1. Primer used to amplify the transgene in the Chlamydomonas 

SSU complemented BigBoi Lines 

Primer ID Forward Reverse 

Amplicon 

(bp) 

CrSSU GCCGAGAGCGATAAAGCCTA CGGCCTCTGTACAAGGAACC 246 
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Supplemental Figure 6.2. Level 2 expression plasmid containing Chlamydomonas 

RbcS2 driven by Arabidopsis 1A and 1B promoters and Arabidopsis heat shock protein 

(HSP) terminator. BASTA was used as a selection marker. SP is signal peptide. 
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Appendix 

Published reviewed article “CRISPR/Cas in Arabidopsis: overcoming challenges to 

accelerate improvements in crop photosynthetic efficiencies” in Physiologia Plantarum 
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