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SUMMARY

Several sets of equations which can be used to find the

vertical velocity are examined. A distinction is made between

assumptions that are based on physical considerations and those

based on computational necessity. Since the equations are

solved as boundary value problems it is necessary to impose

boundary conditions. These are discussed.

Investigations are made into the use of the overrelaxation

method for solving partial differential equations with either

Dirichlet or Neumann boundary conditions. Emphasis is placed upon

the determination of the optimum overrelaxation factor. A

simple method of calculating this factor for the W-equation is

tested.

The derivation, meaning and solution of the balance equation

is discussed. New methods of solving this equation are introduced

and are compared with existing methods. The boundary conditions

for the linear balance equation are investigated and this leads

to the derivation of a new boundary condition for the balance

equation.

The geostrophic (0-equation is examined and the elliptic

condition is derived. Appropriate boundary conditions for u)

are discussed and the effects of the form of the static stability

on CO and <t> are investigated. Simple models of the atmosphere

are used from which several inferences are drawn. These are

tested with case studies. The inconsistency of the usual

boundary conditions for CO and 4>, is also examined.
Vy
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INTRODUCTION

It is generally accepted that a realistic description of

the large-scale vertical velocity can be obtained by solving an

0 r 07
co-equation. This equation is derived by eliminating and

between some form of the vorticity equation and thermal equation .

To do this it is necessary to use hydrostatic equation (which

relates T to 0) and some form of the divergence equation (which

relates £ to <£> and perhaps W). The resulting to-equation is such

that if <t> is known there is an equation, or set of equations, from

which to may be computed.

A knowledge of the vertical velocity is of both practical

and theoretical interest. Thus there have been many investigations

involving the solution of an to-equation.

Several people have investigated the relationship between

the large-scale vertical velocity and the "weather" (Smebye (1958),

Haltiner et al.(l963), O'Neill (1966)). They all found that the

distributions of cloud and precipitation were consistent with that of

CO . Danard (196^, 1966) considered a problem that is close3.y related

to this. He investigated the influence of released latent heat

(which depends upon u) ) on cyclone development and found that latent

heat did affect the growth of cyclones.

There are many different forms of the to-equation that may

be used to compute to . The choice of the equation is often based,

upon order of magnitude considerations (e.g. Stuart (196^)). Other

authors have chosen an equation that is consistent with certain

integral properties of the vorticity and energy equations. These

were deduced by Wiin-Nielsen (1959) and Lorenz (I96G) and used, for

example, by O'Neill (1966). However for most diagnostic studies,

these integral constraints do not have to be satisfied.
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Both Stuart (196^) and Haltiner et al.(196.'5) have

investigated the effect of excluding certain terms in the to-equation.

Stuart made the geostrophic approximation and looked at the effect

on the vertical velocity excluding both the differential vertical

advection of vorticity, .and the differential twisting of the vortex

tubes. He found that the combined effect of neglecting these two

terms was small. Haltiner et a.l, investigated the remaining terms

of the to-equation used by Stuart. In particular, they looked at

the effect of making different assumptions about the way in which the

static stability varied. It was found that the form of the static

stability had a marked effect upon to . They also investigated

many other facets of the to-equation and their report contains a

comprehensive discussion of the equation.

Krishnamurti (1968a) and Pedersen et al.(1969) introduced

and discussed diagnostic balanced models which can be used to initialise

a primitive equation model. In both models the wind was split into

two parts which depend upon either a stream function or a velocity

potential. The resulting co-equation is such that a system of three

or four equations must be solved simultaneously in order to compute

co . Pedersen compared his solution of <o with that derived from an

equation similar to a geostrophic to-equation. He found that there

was a difference of about J>Cf}o between these solutions. Alsc, from

Krishnamurti's results (1968b), it can be inferred that when co is

-•large, the corresponding difference is less than about 6<yjo. However,

. when to is small the difference can be about 1000%. These results

show that a simple geostrophic to-equation gives a reasonable

description of the vertical ve3,ocity field. However the more

sophisticated u) -equations can produce results that give valuable

insight into the mechanics of weather systems.

It is possible to derive and solve an to-equation that
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includes terrain effects, frictional contributions at the lower

boundary, sensible heat transfer from water surfaces and latent heat

release. Krishnamurti (1968a) describes a way in which this may be

done. His next paper (1968b) evaluates, amongst other things, the

importance of these processes. He found that the terrain effect

and the transfer of sensible heat are comparatively unimportant,

. whilst the other processes are important.

Before an u) -equation can be solved it is necessary to make

several decisions.

First consider a geostrophic U) -equation. There are

several forms of the static stability that may be used. The effect

of these on the solution has been investigated but the literature

provides no information about how the effects may be predicted for

a given static stability function,or a given meteorological situation.

Thus it is difficult to decide if it is valid to use an approximate

form of the static stability.

Once the precise form of the static stability has been

chosen, it is necessary to specify the boundary conditions for in .

The boundary conditions at the top and bottom of the atmosphere can

be deduced by physical considerations. This is not so for the

lateral boundaries. Usually u) = 0 has been used on these boundaries

and has produced reasonable results. However there is little

information about the effect of using this boundary condition or the

-■possibility of using a different type of boundary condition.

An co-equation is usually solved by the successive over-

relaxation method. This requires the specification of the over-

relaxation factor and it is desirable that the optimum value be used.

There are sets of equations that give this value if the equation

considered has constant coefficients and Dirichlet boundary conditions.

However there is little information about how to choose the optimum
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value when the equation has variable coefficients (as in most w-

equations) or when Neumann boundary conditions are used.

Now consider non-geostrophic models. As well as having

to decide the same things as for the geostrophic u> -equation it is

necessary to choose a method of solving some form of the balance

equation. There are many methods to choose from, but scant

information on the choice of the best.

It can be shown that the balance equation is related to

the gradient wind equation. However the usual boundary condition

used for V is derived from the geostrophic wind. Thus there is

some doubt about the suitability of the boundary condition that is

usually chosen for ^ .

I initially intended to undertake investigations that were

similar to those of Krishnamurti (1968a, 1968b). However before

beginning this work I found that it was essential to investigate

the problems mentioned above. This thesis is a report on the results

of these investigations.



5

CHAPTER I

The Basic Equations

Introduction

In this section the equations of hydrodynamics are trans¬

formed from spherical coordinates to map coordinates. The

equations are then put in terms of an arbitary vertical coordinate,

a , and the vorticity and divergence equations are derived.

The most suitable choice of a is then discussed.

The ways in which the system of eqiiations can be approx¬

imated are investigated. It is shown that the system of
r)D

equations is only solvable if the term in the divergence

is ignored. This is the minimum approximation.

The choice of the finite difference scheme, the boundary

conditions and the numerical techniques are discussed. Then,

the relationship between the boundary conditions for X and

is investigated. Finally, the data used in the case

studies is described.

1*2 The Hydrodynamic Equations

The atmosphere is a fluid. Therefore, the behaviour of

the atmosphere is described by the hydrodynamic equations.

There are six equations which are drived from Newton's second

law, the conservation of mass, the first lav/ of thermodynamics

and the equation of state of the fluid. If the presence of

water vapour is included tnen there is a seventh equation that

represents the conservation of water vapour.

For convenience, it is assumed that the atmospheric motions

are adiabatic and frictionless.

The equation of motion of the atmosphere relative to the

earth is

1, 2 2
dy + 2 Q *U - V (^ Q R) = -IV p - V <t>
dt 3 p 3 3
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The vector U is the three dimensional velocity and Q and R

are respectively the angular velocity vector and the distance
*

from the earth's axis. The parameter <J> is the gravitational

potential.

The continuity equation is

1 d e + v . u = o
p dt 3

For adiabatic motions, the first law of thermodynamics

becomes

dd = 0 £ =T
d t

X

1000] x = R
. P J cp

The equation of state of the atmosphere is taken to be

the perfect gas law

p = pRT

If it is assumed that the earth is a sphere with radius a,

and that the thickness of the atmosphere is very much less than

a, then in spherical coordinates (X , ip , r) the equations of

motion become

du - uv tan(^p) - fv = -1 3b. (l.l)
•dt a pa cos(^pT dX

2
dv + u_ tan(ip) +fu = -1 3b (1.2)
dt a pa 3^

dw = 2]_ 3_g - 30 (1.3)
d t p 3r 3r

2
Here U = (u, V , W) and <J> = <$>- 1 ["fia COS ( ip )] . Also 9$2L J 0r
is the apparent acceleration due to gravity (g).

For motions on the synoptic scale, it is found that the

vertical accelerations are very small compared with those due to

gravity and vertical pressure gradients. Thus it is assumed

that the atmosphere is in hydrostatic equilibrium. Equation

(1.3) then becomes

zL - g = 0 (1.4-)
p 3r
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Since maps are used in meteorological analysis it is

necessary to transform the above equations from spherical

coordinates into map coordinates. In the following work a

polar stereographic projection was used. With this projection,

it can be shown that if the derivatives of the mapping factor

(m = 2 Jare ignored the hydrodynamic equations becomex 1 +Sin(q)y

dy + f k.v = -I vp (1.5)
d t P

•J_ 9_p_ + g = 0 (1.6)
p 9 z

!dj3+V.V+9w = 0 (1.7)
p d t 9 z

dj§ = 0 (i.8)
d t

Here the differentical operators and V are defined by
dt

d_ = 9_+ my. V + w 9
dt 9t 9z

V = m (1 9 + j.3 )s 9x 9y7
The spherical nature of the atmosphere is taken into account

in these equations by allowing f and m to vary with latitude.

Thompson (1961) showed that the above equations imply that

the vertical velocity is
rz r?Pro

w = - V.Y dz' + 1 fdV .Vp - 9p V . VNidz" dz'J0 yJz'8z dz
Thus if u, v and p are known the vertical velocity can, in

theory, be calculated. However, in practice u and v are not

known sufficiently well.

Equations (1.5) to (1.8) are usually called the primitive

equations. They can be used to make a numerical weather

prediction if suitable initial conditions are chosen. The

formulation of these conditions required the computation of the

wind field (u, v, w) from the distribution of cj> at time t = 0.



8

Thus the problem of initialising a primitive equation model

is essentially the same as deriving the necessary fields for

a diagnostic study.

The initialisation can be achieved in two ways. Firstly

there are methods which involve the direct use of the primitive

equations and secondly there are those methods which use

equations derived from the primitive equations. Haltiner

(1971) discussed these methods and concluded that the first

type of method is best. However, in the following diagnostic

studies the second type of method was used because of its

greater flexibility.

When the second type of method is used, it is necessary to

split the horizontal velocity, V, into its rotational and

divergent parts (V and V^)

V = V + V
-1 -2

If 4/ and X are the streamfunction and velocity potential, then

Y1 = kxVW V2 = VX
Therefore the vertical component of vorticity (£) and the

divergence (D) are given by

£ = V V D = V2X
The vorticity and divergence equations are derived by "multiplying"

equation (1.9) by k. Vx and V.

Until now the vertical coordinate has been z, but this is

not essential. Therefore the equations can be transformed to

another coordinate system (x, y, a) and a may be chosen so as

to simplify the equations. Since a most vary monotonically

with z, it must be a function of p, p or •& .

The form of equations (1.5) to (1.8), in (x, y,a)

coordinates, will be described in the next section.
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1.3-1 The Equations In (x, y, g) Coordinates

The transformation of the equations from (x, y, z) to

(x, y, a) coordinates was discussed by Hinkelmann (1969).

In (x, y, a) coordinates Equations (1.5) to (1.8) become

d V + f k * V
d t

-IVp - V<J)
P

= -1 9jd
9 a p d a

9 f9p\ + VY9pV) + d_ fct dg) =dt^daJ W "/ 0a\ 9a '
= 0

9a ^ 9a

dp + V .Vd + ct9& = 0
9 t 0 P

(1.9)

(1.10)

(1.11)

(1.12)

The vorticity equation can then be derived from Equation

(1.9). If the divergence, D, is eliminated between the

vorticity and continuity equations, then the vorticity

and continuity equations, then the vorticity equation becomes

91 + V.Vt) ♦ adS - + + 9_(d92)l/ 0£
91 9 a L 3tl0a/ 9a 9 a* 0 a/J/ 9 a

-k.9v>vd - k.vpxvm = 0 (1.13)
0a YP/

In this new coordinate system, the divergence and adiabatic

equations are

9 D + V.VD+d0D + Vu.9_V + Vv.9Y + Va.9 Y
91 9a 9x 9 y 0a

2 2
-f k.v*y ♦ v.k«vf + Vpwn + iv p ♦ v 0

w p
0

(1.14)

(1.15)9J + V .VT + d 0T = KT
91 * 9a " p
The temperature,!, is derived from the hydrostatic equation

9 p + V.Vp + 9 p a
91 9 a

and the equation of state, and therefore

00
T =.p 9a

R 0p .

9a

Equations (1.13) to (1.15) can be written schematically

as
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9D = f ( u ,v,a,p,p,<t>, £. D)
at 1

91 = F (u1vld,p.p,9^,S)
at 2 at

aj = F(u,v,d,p,a_p,T)
at 3 dt-

Also the diagnostic equations, namely the hydrostatic equation

and the gas law, become

f5(p.t.») = o
f6(p.t,p) = 0

Finally, the continuity equation is

9 ap = F" ( u , v, d, p )
518a 4

If the functions V and X are introduced and if the

equations F^ = 0 and Fg = 0 are used, then these equations
become 2

v 3X = f (V.X.A.p,<D)

v ap = f (v,x.d(p,<t>,ap)
at 2 at

aap = f (v, X ,a, p,<J> ,3g ) u,16)
apat 3 at
9 = FfV.X.d.p)
at a<x 4

If the distribution of p or -5 is known as a function

of a, then Equation (l.l6) represent four equations in seven

unknowns ( 8p , 3X , 3$ , V , X , a. and 3p ) The large
at at at at

number of unknowns is the result of the need to compute the

horizontal velocity components (and hence W and X ) from

the single variable describing the state of the atmosphere.

It is now necessary to choose Ct so that the above set

of equations are comparatively easy to Solve.
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1.3.2 The Choice Of a

If a = p then 3p = 0 and therefore there are only
at

six unknowns in Equatibn (1.16). If cc = 0) , these equations

become

2
V ax = G(VI/.X.0). <t>)

at 1
2

v av = GW.x.w)
ar 2

3_ 30 = G (V,X,O),0) (1.17)
apat 3

o = G4(X ,w)

The choice of ct = p has the important effect of turning the

continuity equation into a diagnostic equation.

For adiabatic motion, the choice of a =-& has the effect

of eliminating one of the unknowns since 0. = •-& = 0. But

atmospheric motions are not adiabatic and when this is taken

into consideration the advantage of -5 coordinates disappears.

Vlhen a = z and a = w, the equations become

2
v ax = H(ty,x,w,p)

at 1
2

v av = h(v.x.w.p.dn)
» 2 3t

(1.18)

9|("fi)= H^
a 3p = H (VJ/.X.w.p)
at az ^

A comparison of Equations (1.17) and (1.18) shows that the

equations in p coordinates are far simpler than those in z

coordinates. The reasons for this are that, for the z

coordinates, the continuity equation is predictive and the

forcing function of the thermal equation contains a time derivative

at
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A further advantage of the pressure coordinate system

is manifested if only the largest terms in the equations are

considered.

p coord. . z coord.

0 =gj(v,<l>) (pi) 0=h'(vi/,p) (Zl)
2 2

V =G'(V|/,u>) (p2) V a^=H(W,w) (z2)
at 2 . ar 2

a = g'(vj/ ,u>(<t>) (p3) g a. ("anj= h'(v.w, p.9p) (z3)3p<9t 3 at \ 52 y 3 ?t
For both sets of coordinates, the first equation can be used

to eliminate the time derivatives on the left-hand side of the

other two equations. The resulting equations are

0 = G'( 03,^,0) (p4) 0 = h'(w,0( P,9fi) (z2f)
at

Therefore, for the p system, once 0 has been found using

Equation (pi), Equation (p4) can be solved for w . Equation

(p4) is usually known as the w-equation. For the z system,

a knowledge of ^ and p is not sufficient to solve Equation (Z4)

for w.

If the term depending upon 9j2 is ignored in the forcing

function of Equation (ZJ>), then the resulting W-equation is

very similar to the w-equation. Houghton et al.(1971) used this

to compute W and found that it gave a reasonable pattern of

vertical velocity. However, they made no attempt to estimate

the effect of neglecting the 2-0. term. In general, it is
at

unwise to ignore a large term in an equation.

When a = p or a = p//pS (where ps is the surface pressure)
is used in Equation (1.16) , the equations become very complicated.

Therefore it was decided that these forms of a were not suitable

for a diagnostic study.

In the following work, the pressure is taken as the

vertical coordinate because of the simple form of the equations.
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However it is realised that the choice of coordinate system

must be determined by the initial data and the ultimate object¬

ive of the analysis.

l.^f The Equations In Pressure Coordinates

In pressure coordinates, Equations (1.13), (l.l'f), (1.15)

and (1.3.1) become

2
3D + V .VD + uj3D + D - 2 J"(u/v) + 3y . Vto
3t dp ap

-f t * k xV.Vf ♦ v2d> =0 (1.19)

iL + v .Vi) + U) 3£. + k.VtOxSy - Y) 3w = 0 (1.20)
3t dp 0p "dp

d_/30N) + V .V d2$ + 010 = 0 (1.21)
dpx)ty dp

2
V X + 3_u) =0 (1.22)

•*' dp

The static stability , 0 , in Equation (1.21) is given by

0 = R (xl _ dj1)p v p 3p J
Some important integral relations can be derived from

the above equations. If these equations are approximated

then, in certain circumstances, it is essential that the

approximate equations satisfy the same integral relations as

the full equations. The integral relations have been discussed

at some length by Haltiner (1971) and the important points

of his analysis will be described below.

If K = 7 V. V and if E is the total potential energy,

the energy equation derived from Equations (1.19), (1.20) and

(1.22) is

_3_ P( K <■ E ) dM = 0
at J

Here M is the mass of the atmosphere. The following sets

of equations satisfy an integral relation similar to the one
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above

(i) the full vorticity eq_uation (Equation (1.20) ) and

the divergence equation minus the term 3D (see Equation

(1.19) ).

9.C. + V.Vt] + w3_£ + k.Vd)x3V. - t] 9oj = 0
3t2 3p dp 3P
fV 0*2(0 V -0 ) + Vf.V0 - V 0 = 0

XX yy xy

These equations, with Equation (1.21) are often called the

balanced system

(iii) 3£ +VVT1 * V .Vf - f 3co = 0
at 1 2 0p

2 2
f V 0 + Vf.V V - V <t> = 0

These are often called the linear balanced system

(iv) the quasi-geostrophic system

3_L+ V.-VT) - f do) = 0
_et2-< aP
f V V - V 0 = 0

With this set of equations the terra V„. V 30 should be omitted~2 3p
from Equation (1.21) and 0 must be treated as a function of

pressure only.

From Equation (1.20) it can be shown that the generation

of vorticity over a complete isobaric surface is zero. The

approximate forms of Equation (1.20) which have this property

correspond to those described in (i) to (iv).

The relative importance of each term in an equation can

be investigated by using scale analysis. A comprehensive

discussion of scale analysis has been given by Haltiner (1971).

However, a less rigorous method gives the same results as

Haltiner's analysis (see Gambo (1957) )• Gambo's method of

analysis was used in the following work.

Let L and U be the characteristic horizontal and velocity

scales of the synoptic scale motions in the atmosphere. If
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f is the characteristic Coriolis parameter, then the Rossby

number, R, is defined by

R = JJ_
foL

For synoptic scale motions in mid-latitudes R~ ) .

Following Gambo, .it can be assumed that

^2-U R Q - 1

^1! foUL
Here 4> is the characteristic geopotential scale. The

second expression represents the condition for geostrophic

equilibrium.

In non-dimensional variables, Equations (1.19) to (1.21)

become

R~

+ R

+ R

R

w6D + D + V .VD + 0V .Vco - 2 J(u ,v)
0 P 0p 2 2

0D+ VrVD+ a^.Vco + k , V2_Vf -2 J(u v ) -2J(u v )0 P

kxVrVf - 2 J(u v ) -f £ + V 4> = 0

k .Vu)*0V„
dp'

* R + V • Vi| - C du> + k . Vco x 0 V.
0 P 0 p 0P J

0I+ V .Vti - f 0(0
0t 1 0p

= 0

R V .V 0$
2 0 P

0 60$^+ y v 0$ + o to
0pV0t/ 1 0 p

= 0

2' 1

(1.23)

(1.24)

(1.25)
/ ^ \

If only the largest terms are considered (those of order R J,

the equations become

- f £ + V 0 = 0 (1.26)

0_X + V . V 7| - f 0 (O = 0
51 1 0 P

+ V .Vi] + ow = 0
0 px) t' 1

2
V = k C = V V

From Equation (1.26) it can be shown that

(1.27)

(1.28)
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Here V is the geostrophic wind. Thus Equation (1.26) to
9

(1.28) define what is essentially a geostrophic system.

If VE, DE and TE represent the vorticity equation, the

divergence equation and the thermal equation, then the

(h-equation is defined as the equation derived from (see

Pedersen et al.(1969) )•

V (TE) - fcUVE) - 0_9_(DE) = 0 (1.29)
dp 3t dp

When Equations (1.26) to (1.28) are used for DE, VE and TE

Equation (1.29) gives

2 2 2 2
V (0 to) + f d w = f d(V . V 7)) - V (V.Vd<t>) .

57 ap"1 "1 9p (1-30>
Equations (1.23) to (1.25) were reduced to Equations

(1.26) to (1.28) by using scale analysis. Therefore the

10-equation should be derived in a consistent manner. Thus

Equations (1.23) to (1.25) should be used in Equation (1.29)

and a scale analysis performed on the resulting equation.

If only terms of order R° are considered, then the resulting

equation is Equation (I.3O).

If ¥ is used in place of V , Equation (l.yO) becomes
y 1

the geostrophic td-equation. The distributions of

calculated from Equation (I.30) using V and V are almost
> y

the same. But, the use of V has several advantages that
y

will become obvious when the solution of this system of

equations is discussed.

Nearly all diagnostic studies have used Equation (I.30)

(or a similar equation) with either V or V_. But this may
~1 ~9

not be suitable if the results are to be used to investigate

energy or vorticity budgets. This is because Equations

(1.26) to (1.28) do not satisfy the integral constraints

described earlier. However, the following work is not



concerned with these budgets and therefore the co-equation

was used in its unaltered form.

The distribution of 0 is known and since there are

*

four unknowns , I, , iiJ and V four sets of boundary

conditions must be specified. Equations (1.26) to (I.50)

can then be solved. Initially,V is computed from

Equation (1.26) and uo is calculated from the (0-equation.

Then either Of or both can be calculated from

Equation (.127) with
2 2

fV V. - V <t> = 0
t t

If the geostrophic approximation is used, there are

only two unknowns CO and <t>^ and thus only two sets of boundary
conditions are required. The reduction of the number of

unknowns to two greatly simplifies the procedure for solving

the system of equations.

When the geostrophic approximation is used, the wind

field is derived from '<!> and thus it is not necessary to

solve Equation (1.26) for V . Once Equation (l.JO) has

been solved for co , <t> is computed from
2 1 2

V <t>. + f V Vk] - f 3w = 019 3p
It is suspected that the errors introduced by using Vg

instead of V will be less than the errors produced by having

to specify a large number of boundary conditions that are

neither accurate nor consistent with one another.

Using Equations (1.2J>) to (1.25) higher-order equations

can be derived and these lead to higher-order oJ-equations.

These higher-order equations are considered in the next section.

Henceforth any dependent variable that involves a time

derivative (e.g.^ ) will be written with t as a subscriptat

(e.g. ^ ).
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1.5 Non-Geostrophic Models

Consider the complete set of hydrodynamic equations

shown schemmatically by Equation (1.17) arid in detail by

Equations (1.23) to (1.25)•

Equation (1.23) clearly shows that the divergence equation

should not be used to calculate 8D (or X, ), but that it can
at 1

be used to compute W . Thus the divergence equation should

be written as

V2V = G*(V.X. u),<t>.X ) (1.31)

Due to the form of the hydrodynamic equations, can always

be eliminated by using Equation (1.29). The resulting in¬

equation has the form

2 2 2
V (ou>) + f = GW.X.w.d) x .K.x ■ > d.32)

0^2 t t tt
Once u) is known, the continuity equation is solved for X

and thus the continuity equation will be written as

2 +

. V X = G,( u)) (1.33)

Equations (1.31), (1.32), (1.33) and the vorticity

equation form a set of four partial differential equations

which can be solved as boundary value problems. Unfortunately

there are still six unknowns f ,X , 10 ( V., X^ , X ^ and only
four equations. The derivation of more equations by

differentiating some of the equations with respect to time

does nothing to alleviate this problem. Thus, to solve the

above set of .equations, some approximations or assumptions

have to be made.

If 9D is ignored in the divergence equation and if the
at

vorticity equation is used in full, the system of equations

becomes that described in (i) of section 1.4. These two

equations conserve energy and also produce a zero genex-ation
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of vorticity. Hence if these equations could be solved for

4^ , W and co these fields would satisfy the energy relation

( k »VVt).(k,VV) dM =
O

ooa dM (1.3*0

When §-5 is ignored Equation (1.31) will not contain X but
o t t

it will still be contained in Equation (1.32). Thus this

approximation is not sufficient to produce a solvable set of

equations.
2

_• _ ^ an at
72

2
If it is assumed that = d D) = 0 then neither the

8t dt2
divergence equation nor tU-equation will contain X^ and hence
it is possible to solve the resulting set of equations.

Pedersen et al.(l969) used this set of equations and the

iteration proceedure is shown schematically in Fig. 1.1.

Due to the fact that these assumptions alter the uj -

equation as well as the divergence equation, the computed

fields of 41 , 4*. and u> will not satisfy Equation (1.3*0.

Pedersen et al.justified their assumptions on the grounds

that they led to a divergence equation that would give a

balanced wind. But the main advantage in using a balanced

wind is that gravity waves may be eliminated. However,

Thompson (1961) showed that gravity waves can only be

eliminated if dD = 0. Thus the wind used by Pedersen will
d t

not be free of gravity waves.

An examination of Eq_uation (I.23) shows that Pedersen's

assumptions cannot be justified by scale considerations

because terms of both equal and smaller magnitude are included.

The above discussion shows that the equations used by

Pedersen do not conserve energy or eliminate gravity waves.

Also the equations cannot be derived by scale analysis.

Thus, it is suspected that his assumptions were based on
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CO=0 X ~ 0 - 0
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I .

'
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4
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dp8-
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X
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%
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FIGURE 1-1

Pedersen etal.(!969)
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FIGURE 1-2

Krishnamurti (196 8)
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computational necessity.

Krishnamurti (1968) used the system of equations

described in (ii) of section 1.4. These equations

conserve energy and produce a zero generation of vorticity.

Also, since no approximations are made to the U)-equation,

the computed fields of W , 44 and UJ should satisfy Equation

(1.34). Further, Equations (1.23), (1.24) and (1.25)

show that Krishnamurti's equations can be derived from the

divergence, vorticity and thermal equations by only

including terms of order E° and R .

This system of equations is solvable because does

not appear in either the divergence equation or w-equation.

The iteration scheme used to solve this system of equations

is shown in Fig. 1.2.

The above discussion shows that Krishnamurti's choice

of equations can be justified and that the system of

equations can be solved. Also, a comparison of Figs. 1.1

and 1.2 shows that in Krishnamurti's scheme the divergence

equation (in this case the balance equation) has to be

solved only once, whereas Pedersen had to solve his form

of the divergence equation for every iteration.

Once the system of equations has been chosen there

are many other problems that have to be overcome.

-1*6 The Solution Of A System of Equations

Before a system of equations can be solved it is

necessary to consider the following problems.

(i) the ellipticity of the equations

(ii) the choice of a finite difference scheme

(iii) the type and nature of the boundary conditions

(iv) the choice of a numerical technique for solving

the equations.



23

Each equation, in a system of equations, can only be

solved as a boundary value problem if it is elliptic.

An equation is elliptic if, and only if, it can be

transformed into an equation of the form
2 2 2

+ a v + + a v =o , ■
r~2 7~2 (1-35)0x„ 3x 9 x1 2 n

For a two dimensional equation

F ( V V V l|i l[/ U/xv) = 0
xx ' yy' xy * x ' y ' ' ' y

this is possible if

4F.Ft-Fs2>0 (i.j6)
Here, r = V , t = V and s and also F = 9F etc.

xx yy xy r gr
(see 'Arnason (19^8) ).

Both the vorticity and continuity equations are used

in the form of a Poisson equation
2

V X = G

For the former equation X = W and for the latter X = X

Equation (I.36) clearly shows that these equations are

always elliptic with respect to V and X respectively.

The divergence equation is usually used in the form
2 2

f V "V + 2( V V - V ) + Vf.W = G'
xx yy xy'

This is a non-linear equation and thus the elliptic condition

derived from Equation (I.36) is a function of ^ . Hence

it is not possible to make a general statement on when this

equation is elliptic. This problem will be pursued further

in section

All (O-equations are similar to Equation (1.32). It

is not easy to transform this into the form of Equation

(1.35), but some insight into the elliptic criterion can

be gained by considering a related problem. If 0 = CJ(p) ,

then it is easy to show that the to-equation is elliptic if
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0(p) >0. It is suspected that the elliptic criterion for

the complete equation is approximately O>0.

If an equation is solved numerically, then the elliptic

criterion is very closely linked to the condition under which

the numerical scheme will converge. Thus the elliptic

criterion is only significant when it is discussed in terms

of the finite difference scheme and the iteration scheme.

This aspect of the elliptic criterion will be discussed later.

Although the meteorological fields, may be arranged so

that each equation in the system yields a convergent solution,

there is no guarantee that the complete system will produce

convergent solutions. However, the experience of others is

that the solutions do converge.

When a diagnostic study is undertaken, it is necessary

to specify boundary conditions for some or all of W , lb , X ,

an d W

The boundary condition for W is usually derived by

assuming that the wind perpendicular to the boundary is

geostrophic. The appropriate boundary conditions for

will be discussed in sections 3,6.1 and

When the u)-equation is solved it is usual to set u) = 0

on all the boundaries. This is a realistic assumption on

the upper and lower boundaries but not on the lateral

boundaries. An alternative condition on the lateral boundary

is = 0. The relative merits of the boundary conditions
an

will be discussed at length in Chapter IV.

It is usually assumed that X , and 0^ are zero on
the lateral boundaries. Therefore, these boundary

conditions are independent of the meteorological situation.

It can be shown that some of these boundary conditions
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are not consistent with one another. For instance, the use

• -1.7

of <t> = 0 and 00 = 0 implies that on the boundary

J(Vf3$) + VX.V0<3> = 0
0p cip

There is no reason why this should be so. This inconsistency

is also illustrated by the fact that if Equations (1.31). to

(1.33) are used to find <l> , X and 00 with = X = W = 0

on the boundary, then the solutions will not satisfy the

thermal equation

0J> + J(V,0J>) + VX.V0Q + OU) = 0
Iff? dp 0 P

It can be shown that the use of 00 = 0 and X = 0 on the

boundary is not inconsistent. This is also true for = 0

and = 0. It is shown above that the boundary conditions

CO = 0 and = 0 are inconsistent. Therefore the boundary

conditions X = 0 and = 0 are also inconsistent.

In the next section a method will be described by which,

in theory, consistent boundary conditions for X and W
t

may be derived.

Some form of overrelaxation was used to solve all partial

differential equations. Chapter II consists of a discussion

of the methods that are used to solve linear equations and

a particular non-linear equation is considered in Chapter

III.

Consistent Boundary Conditions For X And

If a Gambo (1957) type analysis is carried out on

Equation (1.9) (in P coordinates), then the equation becomes

in non-dimensional form

R~ V .V V + 00 0V^
. 2 dp

R

R 0V. f V VV + f k,V9011 1 1

ay, + v, ,v + y^.vv + w ay,

= 0

It2' 1- -2 -2'V ■
f kxV + V<t>

_

_1
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If only terms of order R° and R"*" are considered and if V

and X are introduced,then,
2 2

av' + f ax = dy aj - av a_w + f dw - d$
dx1- dx 0y 0 X2 8x 0X0y dy dy (l.j}8)

2 2
3J+ f 0x = 0v 0_I - 0J 9JV - f cW +9$
8y 0y 0y0x0y 9x 9 y2 dx dx

These equations show that the gradients of X and ^
along the boundary cannot both be zero. Thus using X = ^=0
on the boundary produces an inconsistency.

If X
, V and 4> are known around the boundary then the

gradient of ^ along the boundary may be found. If s is the
coordinate around the boundary then

3J. = F( vy, <D, X )
0 S

Therefore, if A represents the difference between two grid-

points on the boundary, this equation becomes

A W = F d = F+
1 TrT

jfc r- ♦

Clearly the sum around the boundary of F , ) F say, should

be zero. This not so when real data is used and therefore

the above equation must be replaced by

AW = F *- 6 d 6 =

This process ensures that A^ =0.

If X is not known on the boundary, then Equation (I.38)

may be written as

AVt+ f AX = G( U/ ,<t>)
It can be shown that if = 0 and^_AX = 0 the solution

of this equation for A^ and AX are unique. Unfortunately
the author was unable to find these unique solutions.
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1.8.1 The Grids And The Finite Differences

The computations were carried out on the same grid as

that used for the 10- level model (Benwell et al.(197l) )•

This consisted of a square grid, of gridlength d = 108.8^-5^5

km, on a polar stereographic map. The mapping factor, m,

was given by m = 2/ (1 + sin*4> ) where is the latitude.

Three different regions were used and these will be

referred to as areas 11, 51 and 91. They are illustrated in

Fig. 1.5. The dimensions of the areas are 23d by 31^, 15d

by 23d and 15d by lid. In all figures showing the distribution

of a field on.an isobaric surface, one gridlength corresponds

to 0.7 cm.

Unless stated otherwise, the finite differences were

derived from Stirling's Interpolation Formula

y< vqd>= ^ §(q)6 v vy(v
The operators |i and 6 are defined by

5f(x) = f(x + dj _ f(x - d)
2 2

Hf(x) = |f(x + d) 4 f(x -d)' j
The finite differences calculated in this way are often called

centred finite differences. Those used had a truncation

2
error of order d .

Suppose that primed operators refer to the earth, whilst

unprimed operators refer to the map. By the definition of m

9jf = m 8f
0X Qx

It can then be shown that

•2 2 2
V f = m V f +■ m Vm .Vf

However the gradient of m is very small and thus the following

expression was used
.2 2 2

V f = m V f
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It is the unprimed quantities that are put in terms of

finite differences.

The next section contains a description of both the

meteorological situation and the basic data used in this

thesis.

1.8.2 The Data

This thesis is mainly concerned with the equations for

V , u) and and the methods of their solution, rather than

with the significance of the solutions. Therefore the

actual meteorological situation considered is of little

importance. However for completeness the surface chart for

area 11 is exhibited in Fig. 1.4.

All computations were carried out with data for OOOOGMT

15.9*68. This was chosen because analysed data*, which had

been used to test the 10 level model (Benwell et al.(197l) )»

was available. The actual data consisted of height*, fields

which had been vertically smoothed, convectively adjusted

and then horizontally smoothed. The fields for nine isobaric

surfaces between lOOOmb and 200mb, separated by lOOmb, were

used. The heights were used only to the nearest meter

because the line printer output, from which they were copied,

gave the heights to the nearest meter.
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CHAPTER II

The Overrelaxation Method And The Determination

Of The Optimum Overrelaxation Factor

2.1 Introduction

This chapter is concerned with the successive over-

relaxation method (hereafter called SOR), and the symmetric

successive overrelaxation method (SSOR) of solving elliptic

partial differential equations. The Kelmholtz, Poisson

and omega equations are considered, and both Dirichlet and

Neumann boundary conditions are used.

Special emphasis is placed on the determination of

the optimum overrelaxation factor.
)

A list of the experiments carried out is shown in

Table 2.1.

2.2.1 Methods of Solving Linear Elliptic Equations

Consider the linear, elliptic partial differential

equation given by

Tx = f (2.1)

T is a continuous partial differential operator, x is the

dependent variable and f is the forcing function which is

independent of x. An analytic solution of this equation

cannot usually be found, and thus a numerical technique

must be used. For all numerical methods the partial

derivatives are replaced by finite differences, so that

Equation (2.1) becomes a matrix equation

A X = B (2.2)

Here, X and B are matrices of x and f, and A is a matrix

depending upon the form of T and the boundary conditions.

The two types of method that may be used to solve
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The code used in Table 2.1 is as follows

Equ. - Type of equation H - Helmholtz equ.

P - Poisson equ.

W - Ul- equ.

B.C. - Type of boundary condition 1 - Dirichlet

Neumann .

Method - Method of solution SOP -

SSOR -

Data - Type of data R - Real

A - Artificial

Fig. Figures showing n(E)/ 3
or n(E)/a curves
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t

Case Rqu. B.C. Method Data Fig. Comments

la H 1 SOR R 2.1\
2.2/

lb H 1 SOR R 2.2 similar to la but with a

different initial guess.

2a H 1 SOR R 2.3 similar to la but with a

larger area

2b H 1 SOR R 2.3 similar to 2a but with a

variable b

3 H 1 SSOR R 2.1\
2.8/

same data as for case la

4a H • 1 SOR A 2.9 s cc (i-6.5) x (j-4.5)
4b H 1 SSOR A 2.9

5a H 2 SOR R 2.10 scheme A

5b H 2 SOR R 2.10\
2.11J

scheme B

6 H 2 SSOR R 2.11\

2.I5/
same data as for case 5b

7a

7b

H

H

2

2

SOR

SSOR

A

A

2.16

2.16

same data as for cases 4a
and 4b

•

8a P 1 SOR A 2.17 S cc (i-6.5)
8b P 1 SSOR A 2.17

9a P 1 SOR A - s cc (i-6.5) x (j-4.'5)
9b P 1 SSOR A 2.18

10a

10b

P

P

2

2

SOR

SSOR

A

A

2.20

2.20

same data as for cases 8a
and 8b

11a P 2 SOR A 2.22 S cc (j-4.5)
lib P 2 SSOR A 2.22

12a W 1 SOR R 2.23 0 constant

12b W 1 SSOR R 2.23

13a w 1 SOR R 2.24a (q) = l/4q q = 1,1,5

13b w 1 SOR R - (q) = 1/q2 q = 1,1.9
13c Vv

• 1 SOR R - (q) = 1/q q = 1,1,5
-2

4 levels with 0(2).-= 4 x 10
and 0(3) = 40 x 10

13d w 1 SOR R 2.25

14 w- 1 SOR R - different types of to-equation

15 w 1 SOR R 2.25 similar to 13d but with
flagging

l6a W 1 SOR R 2.24b\
2.27 /

similar to 13a but using
Ct -scheme

16b w 1 SOR R 2.26\
2.27/

different o(q) used to
investigate a and Ct

c 0

l6c w 1 SOR R 2.27
■

TA3LS 2.1
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Equation (2.2) are known as direct and iterative methods.

In the direct methods the inverse of A (A ^ ) is

calculated and then the solution is given by X = a'' B.

Since A is usually both large and sparse these methods are

not practical.

The iterative methods are ideal for large sparse

matrices. They require an initial guess of X (X^ ) and

an algorithm by which the value of X after n iterations

(X(n) ) can be computed from X^ ^ . The iteration process

is convergent if X ^ —> X.

There are two classes of iterative methods; point

iterative methods and block iterative methods. In point

iterative methods X^ is altered at each gridpoint

separately, whilst in block iterative methods groups of
(n)

X are changed simultaneously.

The three most commonly used point iterative methods

are the Jacobi, the Gauss-Seidel and the SOR methods.

The SSOR method is basically the same as the SOR method.

The relationship between these four methods is described in

many textbooks (e.g. Ames (19&5) Jacobi method is

the least efficient of these methods and will not be

considered further.

Suppose Equation (2.2) is arranged so that the diagonal

elements of A are unity. If L and U are the lower and

upper diagonal matrices of A, and I is the unit matrix,

then the SOR method is defined by

X(m" = H X(n) , C

M = - ( 0L + I) [pU+(B-l)l] (2.3)
-1 "1

C = ( 3 I + L) B

The parameter 3 is the overrelaxation factor and n is the



A Poisson equation with Dirichlet boundary conditions on a

square mesh size h

Method Number of

steps
Work per
iteration

Jacobi 2/h ~1

Gauss-Seidel 1/h ~1

SOR l/2h 1

SSOR -V/h1 ~2.5

TABLE 2.2 - Ames (1965)

Number of steps - number of steps needed to reduce the

error to a specified factor of its

original value

Work per iteration - work per iteration normalised about

the SOR method
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iteration index. The iteration process continues until

llx(rM) - X(n> II < E.

E will be called the tolerance.

The Gauss-Seidel method uses Equation (2.3) with

3 = 1.

For a two-dimensional region with gridpoints labelled

i and j , the SSOR method uses Equation (2.3) at all

(i + j) odd points, and then at (i + j) even points (i.e.

the only difference between the SOR and SSCR methods is

the order in which the gridpoints are relaxed).

Ames (1963) compared different iterative methods of

solving a Poisson equation with Dirichlet boundary

conditions. A selection of his results is shown in Table

2.2. This shows that the SOR method, using the optimum

value of 3, is far better than the Gauss-Seidel and Jacobi

methods. This is true for all elliptic equations. E:is

results also show that the SSOR method is more efficient

than the SOR method. However it is not clear if this is

true for all elliptic equations.

There are two kinds of block iterative methods known

as single line methods and alternating direction implicit

methods (ADI). For the Poisson equation with Dirichlet

boundary conditions, Ames (1963) has shown that these

methods are superior to point iterative methods.

However, it is difficult to use block iterative'methods

to solve an equation as complicated as the CO-equation.

Therefore the present investigation is limited to point

iterative methods, but it is hoped that the block

iterative methods will be investigated in the future.
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The next four sections will be concerned with the

method by which the optimum overrelaxation factor (30)

may be found or estimated. Two methods will be described.

The first method is based on the Young-Frankel theory of

SOR, and is applicable to all elliptic equations (under

certain conditions). The second method is based on a

detailed analysis of the iteration algorithm.

2.2.2 The Young-Frankel Theory And Carre's Method

If A is a symmetric positive definite matrix with

Young's Property 'A', then the iteration scheme defined

by Equation (2.3) will converge for 0<(3<2. Under these

conditions the rate of convergence of the iterative 'scheme

is dependant upon the spectral radius of matrix M (the

spectral radius, X^ , is defined as the absolute value of
the largest eigenvalue of a matrix). The convergence is <

♦

defined as -In ( X^) , and |30is defined as the value of 3
that minimizes X^ and thus maximises the convergence.

The average number of iterations (N) that are necessary

II (n>ll
to reduce || X — X |j by one tenth is given by

N = £L
log( X )a

m

(2.4)

Engeli (1959) pointed out that the values of N for the

Gauss-Seidel and SOR methods (using 3cP are related by

N(SOR) = 3 /N(G-S)'
4

This indicates that the SOR method is far more efficient

than the Gauss-Seidel method.

Young (1954) showed that if |i^ is the spectral radius
of (A-I) then 30 is given by

*

In and log will refer to logarithms to the base e and

base ten respectively.
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j

P0 = 7=^ ~~t (2.5)
1 + /1 - ii2• v lm

In terms of the spectral radius of M this becomes

2 (2.6)o
1 + 1 - <x ♦ p-i7

—m-*?
rx

m
This holds for all values of 3 such that 1 < 3< 30
It can be shown from Equation (2.6) that when 3 = P© '

the spectral radius ( ^-mo) is

Xmo = eo" 1 (2"7)
Therefore the maximum value of N is given by

N„ = J - (2.8)
i°g(P0-n

If X^can be found for a given 8 , then Equation
(2.6) can be used to find 30. Carre'' (1961) found Xm by

using the fact that the displacement vector
(n) (n) (n-1)

( 6 = X - X ) has the property that

Lim lls(n) H = X__ (2.9)n—■ m

For convenience the use of this equation with Equation

(2.6) will be referred to as Carre''s method, although the

method described by Carre' was more sophisticated.

Carry's method is only effective if 1 < 3<J30and.
therefore an estimate of 3ois required. A good estimate

is advantageous because the rate at which X^ is approached
depends upon ( 3Q- 3 )»

Miyakoda (i960) derived sets of formulae by which

can be calculated for several simple equations with

.Dirichlet boundary conditions. Unlike Carre'1 s method,

this method does not involve the solution of the actual

equation for which 80is required. Thus it is useful to

use Miyakoda's method to derive pg for simple equations.



Also it may be used to estimate $Q for more complicated
equations so that Carre'1 s method can be used.

Experimental evidence that will be described later

shows that Miyakoda's method can be extended to give

accurate values cf (3 for complicated equations.

Miyakoda's Method
I

Let r be the finite difference form of the differen¬

tial operator T in Equation (2.1). Also let x and f
r' '

be the values of x and f at point P. At point P, Equation

(2.10) becomes

r'*p = fp " <2-10>
If is the value of Xp after n iterations, then the
residual at P is

(n) . (n)
P ~ P ~ P

The SOR iteration scheme is defined by

(n+1) (n) (n)
Xp = Xp "-^p (2-1D

P

Here M is the coefficient of x in Equation (2.10). The
(n)

division of Rp by Hp is equivalent to making the diagonal
elements of A unity (see section 2.2).

The iteration scheme defined by Equation (2.11) will

be ref-erred to as the f3-scheme.

Several authors (e.g. Stuart et al.(1967), Asselin

(1967)) have used the iteration scheme defined by

(2.12)
~(n) P (n)

Here Rp is closely related to Rp . The parameter cx
is treated as a constant and will be referred to as the

" a overrelaxation factor". The iteration scheme defined

by Equation (2.12), will be called the a-scheme.

If the equation to be solved has constant coefficients
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then the a-scheme and (3-scherae are equivalent. This

is not so if the coefficients are variable. The latter

situation will be dealt with in section 2.5J+.

Unless stated otherwise, the j3-scheme was used to

solve all partial differential equations.

In both the a-scheme and -scheme the latest values

(n)
of x are used to compute Rp . Therefore only one field
of x has to be stored. When only the values of x from

(n)
the previous iteration are used to compute Rp the
iteration scheme is called simultaneous overrelaxation.

This requires the storing of two fields of x and is less'

efficient than SOR. Therefore it will not be considered

further.

(n)
The error, £p , is defined by .

(n)
Ep = Xp " Xp

In t erms of the error, the iteration process is equivalent

to
(n+1) (n) . (n)

ep = EP "^p (2.13)
p

Miyakoda's method consists of assuming a distribution of
(n)

£p which is then used in conjunction with Equation (2.13)
to find the value of (3 that maximises the convergence.

Let i and j be the labels of the gridpoints in a two-

dimensional region and let nj and nj be the number of grid-
points in the i and j directions. Miyakoda assumed that

(n)
£jj had the form

frO n i+i
£

jj = K A f (i , n.)f( j, nj) (2.14)
Here K is the convergence rate and A is the amplitude.

The function f (i, nj ) is chosen so that the boundary
conditions are satisfied. For Dirichlet boundary conditions

the error is zero on the boundary, and therefore f (i, n(. )
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was chosen to be

f ( i , n.) = sin A tt , j \ (2,15)1 \nj-1 J
Miyakoda (i960) derived a set of formulae to give (B0 for

the Helmholtz equation
2

V IJi - = c b = constant

The formulae are

X = cos /f-QL;) + c o s f-HL_)
,VnrV W1'_

c = Z4±bV/2 - l (2.16)(4-i#
/2

P0= 1 * c

From these equations it can be shown that

P = 2O 1 21

A comparison of this with Equation (2.5) shows that X is

the spectral radius of (A-I). It can also be shown that

K is the spectral radius of M. These facts indicate the

relationship between Miyakoda's method and the Young-Frankel

theory.

Equation (2.16) can be rearranged to give

X =

4 + b
COS ( n ) + COS /_IL_ \v nj-1/ \n.-1/

• c = 2.-1
t2 (2.17)

p0= 1 *c
The reason for this rearrangement will become apparent

later.

When an equation is solved by using an iterative tech¬

nique it is necessary to specify the tolerance E. But the

quantity that is known initially is the acceptable error

(AE). Therefore the relationship between AE and E must

be derived.
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Suppose that the iteration process proceeds until

,(n)
3 R

4 + b
< E

Using the definition of the residual it can be shown that

E ~ p( 1 - At) AE (2.18)
If v = p -1 and if (3 is close to p , then this equation

gives

E ~ (1 - v2 ) AE (2.19)

This shows that E is always less than AE. For example, if

= 1.5 then E = ,75x AE. Also it shows that as Pq-^5- 1
, E -> AE.

. When b = 0, the Helmholtz equation becomes a Poisson

equation. Thus by putting b = 0 the above results can be

used to determine PQ and E for a Poisson equation.
Miyakoda also considered an equation that is similar

to
2 2

A V u) + B D_w + F = 0
Dp2

(2.20)

Here A and 3 are constants. If Dirichlet boundary conditions

are used, then PQ is given by
X = 2

4A+2B

c = 2 - 1

Acosf_TL_U A cosf-JL.) + B cos(—H-)^nj-v ^ rij-V
(2.21)

1 ♦ c - /C2-1
The similarity between Equations (2.1?) and (2.21) will be

discussed in the next section.

The relationship between E and AE for- Equation (2.20)

is the same as that for the Helmholtz equation (see Equations

(2.18 and (2.19).

Miyakoda tried to use his method to find pQ for
equations with Neumann boundary conditions. However he had

little success. The reason for this will be discussed
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later.

So far, only equations with constant coefficients have

been considered. This is because Miyakoda's method can

only be used with this type of equation. Later it will

be shown how his method can be extended to include variable

coefficients.

Although Equation (2.14) gives the correct value of

P0, this equation is not strictly correct. If the optimum
value of (3 is used, then it can be shown that

n i + i n+(i+j)/2
K A J = ( p -1) J '

o

Therefore both and x^ are known and thus the exact
solution of the equation can be found. This result is

ooviously incorrect and the reason is that Equation (2.14)

is not correct. Equation (2.14) should be replaced by
(n) n i+j

= yK A Jf(i , n.)f(j ,n.) " (2.22)

Here y is a constant and is a type of scaling factor.

Miyakoda's method is very similar to the method used

by O'Brien (1968). He calculated the eigenvalues of M by

using matrix methods, where Miyakoda used algebraic methods.

The advantage of O'Brien's method is that it can cope easily

with variable coefficients. But this method requires a

great deal of computation and thus it is preferable to use

Miyakoda's method.

In the next section a set of formulae will be given

from which can be calculated for a general equation

(of a certain type).

2.2.4 A Generalisation of Miyakoda's Equations

Consider a linear partial differential equation with

constant coefficients. Let the dependent variable be x

•and let there be n independent variables H (i = 1, 1, n).
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Suppose that there are Q terms involving x, with coefficients

C_ (q = 1,1,Q) and that f (r. ) is the forcing function.
T. , '

The equation may then be written as

o

Ic r X = f(r ) (2.25)
q -1 4 4

Here T are the .differential operators and in this analysis

a2
they can only be or 1.

9rf
Let M be the coefficient of x at point P once T x

q q
has been discretised using centred finite differences. If

■5 is a function depending upon the form of C, then x is
SL H

given by

O / Q
x = y c M •& y c Mq^j q q q/ q = i 4 q (2.24) ~

The values of and M are given below.

r x m •&
q q q

x 1 o

2
9 x -2 cosf_JL_
9r? 'rij-1

Here nj is the number of gridpoints in the direction of r. .

The value of can now be calculated by using the

appropriate value of X and the following equations
r- 2 ,C = —- |

Xz

3o = 1 + c " J°2- 1"
The above equations with Equation (2.24) will be referred

to jointly as Equation (2.24).

It can easily be shown that Equations (2.17) arid (2.21)

can be derived from Equation (2.24).

2.2.5 The Determination Of 3o For the 55CR Method

The SSOR method was described by Sheldon (1962).

The only difference between this method and the SOR method

is the order in which the points are relaxed
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(see section 2.2.1). Therefore, when the Young-Frankel

theory applies to the SOR method it will also apply to the

SSOR method. This means that Carrey's method can be used

to calculate B for the SSOR method,
o

Sheldon considered the use of the SSOR method,for

solving a Poisson equation with Dirichlet boundary conditions.

He showed that the mimumum spectral radius was the same as

that for the SOR method. This implies that the value of

B is the same for both methods. If this is so then the
o

maximum convergence rates for these methods must be the same

after a sufficient number of iterations. Therefore the

#

relative efficiency of these methods depends upon what

happens during the first few iterations.

Jenssen and Straede (1969) compared the efficiency of

the SOR and SSOR methods of solving different finite

difference forms of a Poisson equation. They found that

with P = p , the SSOR method was faster than the SOR method.

The above results imply that, for a Poisson equation

with 3= p , the SSOR method requires fewer iterations than

the SOR method to reach its maximum convergence rate.

If these deductions are correct then the relative

efficiency of the SOR and SSOR methods will depend upon the

value of E chosen. This must be taken into consideration

in interpreting the results of Jenssen andStraede.
(n)

In terms of the error, £.. , the SSOR iteration scheme
IJ

for the Poisson equation is
(q+n (q-1) (q) (q) (q) (q) (q-1).. (? ?s)e .. = +_S_( £•,•+£•„•+£•• +£.. -4 £ •• ) V.2.29;

IJ IJ 4 I + 1.J l-U I.J+1 IJ -1 IJ

This is used at all (i + j) even and then (i + j) odd.
(q)

An examination of Equation (2.29) indicates that E- will
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have the form

(q) q
Ejj = Y K f (i,np g(j ,n.) (2.26)

Consider the case where Dirichlet boundary conditions are

used. It can be shown that the value of @Q is the same

for the SOR and SSOR methods if g (j, n.) = f (j, n.) and
0 *3

if f is given by Equation (2.15). The validity of these

assumptions will be considered later.

Later the value of 30 for the SSOR method will be

found experimentally and by using Carre/| s method. Also

comparisons will be made between the SOR and SSOR methods

for different types of equation and different kinds of

boundary condition.

2.5 The Overrelaxation Method for Solving A Helmholtz Equation

And The Determination of R

If U) oc sin (lp) and if the derivatives of 0 are

ignored, then the geostrophic co-equation may be written as

2 , 2.
Voo-bco + S= 0 b = (f 1 dy a (2.27)

In the atmosphere both f and 0 are functions of x and y.

The merits of using the SOR and SSOR methods for

solving this equation were investigated. Both types of

boundary conditions were considered and b was treated as

both a constant and a variable.

The variation of the rate of convergence with 3 was

investigated by finding the number of iterations (n(E) )
II (n+1) (n) ||

required before the condition llCO - id IKE was

satisfied with a given 3 • The 3 for which n(E) was a

minimum will be referred to as 3 (E). Also, the values of
o

3o found from Miyakoda's method and Carre's method will be
*

The norm was the modulus of the numerically largest element.
-1

Also, for the Helmholtz equation, E has units of mb S .
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called 30(K) and 0Q(C).
The error distribution was computed for both types

of boundary condition. This was then used to either

verify Miyakoda's method or to extend it. Also, the shape

of the constant E curves was deduced from the error

distribution and the relationship between E and the accept¬

able error was investigated.

For Dirchlet boundary conditions, the equations

derived by Miyakoda (see Equation (2.17) ) were used to

investigate the effect of the number of gridpcints on NQ

and 3C.
The investigations outlined above were divided into

four sections. The first two deal with the SOR and SSOR

methods of solving a Helmholtz equation with Dirichlet

boundary conditions. The other two sections are concerned

with the use of these two methods when Neumann boundary

conditions are employed.

The SOR Method Of Solving A Helmholtz Equation With Dirichlet

Boundary Conditions

Equation (2.27) was solved with S* derived from data

for the 600 mb level for areas 91 and 51. Other

distributions of S* were also used and these will be

described later.

Unless otherwise stated, both the initial guess and

the boundary conditions were u) = 0.

The constant value of b (b) was derived from the

2
The averages were

m

2d 2 -2-2 , , .n"10
average values of f , 0 and

~~S 2
1.226 X 10 s" , 1.97 X 10' m' mb^Sand I.098X 10

-2
thus b = 8.87 x 10

The Helmholtz equation, with b, was solved with real.

m
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Case n.
X

n .

J
3 N

0
3 (c)

O 3 (M)Ko 3 (E)
0

Fig.

la 14 10 1.46 3-1 1.476 1.476 1.48 2.1

2a 14 22 1.49 3.9 1.538 1.558 1.54 2.2

2b 14 22 1.52 3.8 1.546 - 1.53 2.2

TABLE 2.3



FiGURE 2-1
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Case 1a

Case 1b

* t

-11 *

FIGURE 2.-2
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n(E)

Case 2a

©- Case 2b

30
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FIGURE 2-3



(a) 0 0'- --1*" N

f

C) —a

-4 _1
10 rnb s

-6 -1
10 rnb s

-6 -1
10 rnb s

IGURE 2-4

(a) Solution of Equ.(2-27) with (to), = 0b

(b) £;;6)'P * 1-4, case 1a (SOR)
( 1 A )

(c) (i + j) odd , p 1-4, case 3 (SSOR)



data in areas .91 and 51 (cases la and 2a).

The distribution of n(E) with 0 for case la is shown
*

in Fig. 2.1. This shows that the SOR method with 0q was

superior to the Gauss-Seidel method (0 = 1). For example,
-6 ,

with E = 10 , the former method required about the

iterations of the latter. Clearly it is worthwhile

calculating 6 when the SOR method is used,
o

For cases la and 2a, the constant E curves in the

vicinity of 0q are shown in Figs. 2.2 and 2.3* Also
0 (M), 6 (C) and ft (E) are shown in Table 2.3» This table

o ^o ro

shows that 0 (M) and 0(C) are identical and that they
o "0 v .

are very close to 0q(E).
Miyakoda's method predicted the correct 0q and this

implies that the error was given by Equation (2.1^). This
(16)

was confirmed by calculating e„ for case la. This

is shown in Fig. 2.^b. The fact that the distribution of
(n) . .

E.. was independent of the solution of the equation•( shown
Ij

in Fig. 2.^-a) implies that 0Q depends only upon the iteration
scheme and not upon the initial guess, the value of UJ on

the boundary or the distribution of S*.

In both cases la and 2a the optimum va.lue of 0 became

better defined as E decreased. This was because the error

vector becomes dominated by one eigenvector as the number

of iterations increases. Also it is exoected that 0 (E)
o

—^ 0_(M) as E decreases. These results show that when
o

E was large n(E) was not sensitive to 0 , but when E was

small n(E) varied rapidly with 0 . Therefore, more care

needs to be taken over calculating 0Q when E is small than
when E is large.

The results for case la also show that it is better to

*

The curves are labelled with log E. This applies to other

•p n rei
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overestimate 3Q rather than underestimate it. Engeli
(1959) has shown that this is to be expected for all

equations with Dirichlet boundary conditions.

Let (b be the solution of OJ for case la. The effect
a

of the initial guess was investigated by using -00 as the
a

initial guess and the results of this computation (case

lb) are shown in Fig. 2.2 . A comparison of cases la and

lb shows that the initial guess had little influence on the

distribution of n(E) with 3 . Also, 3Q(C) was the same
in both cases and therefore a bad initial guess may increase

the total number of iterations required for a given E, but

will not affect the rate of convergence.

The effect of the distribution of s' on fiQ(C) was

investigated. The distributions of S* were made up of

combinations of sines and cosines and in all cases 3q(D)
was the same . Thus the rate of convergence was not

affected by the distribution of S* . Also different forms

of the Dirichlet boundary condition had no effect upon 3q(C).
Case 2a was repeated using a variable b (b(x,y) say)

and this will be called case 2b. Since b(x,y) depends upon

the distribution of both f and 0, b(x,y) did not vary

rapidly. The average value of b(x,y) was the constant

value of b used in case 2a (that is b).

The results for case 2b are shown in Fig. 2.3. This

shows that 3Q(C) and 3q(E) were almost the same as those
in case 2a (see Table 2.3). Therefore these results imply

that the value of 3Q for an equation with variable co¬

efficients can be estimated by finding 30 for the equation
with the average values of the coefficients.

In the above case, the coefficient b(x,y) varied
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FIGURE 2-5
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slowly. However, it will be shown later that the same

conclusion holds for rapidly varying coefficients.

The validity of Equation (2.19) was tested for case

la. The optimum value PQwas used and AE and E were
computed for a series of n. It was assumed that AE and E

(n+1) (n)
to - toare given by

(n)
eij and respectively.

Fig. 2.5 shows a graph of log E against log AE. The

theoretical results derived from Equation (2.19) are also

shown. Bearing in mind that Equation (2.19) gives only

the approximate relationship between AE and E, it is

concluded that this equation is essentially correct. If
*

this is so, then E ~AE when v is small (n. and n. small).
1 J

However if v is large (n. and n. large), then Equation
1 j

(2.19) should be used to deduce E.
2

Miyakoda (i960) showed that K = A in Equation (2.14).

He also showed that with a given 3= 1 + v, the amplitude

is given by

A = a
2

a - v

a = (1 ±v )T
2

An approximate condition for the termination of the iteration
(n

process is £ •■
IJ

I (nf
is a maximum,

< E. Therefore, if i and j are the'
m

(n)
coordinates of the gridpoints at which | E .j
the iteration process stops when

i + j + 2 n
E = Y A m m f(im'ni)f (Jm'nj)

Here the function f is given by Equation (2.15). For a

given E and v, this equation can be used to compute n since

log
2 n =

YF"

log R(a Ja277)
- (i + j )m Jm

(2.28)

F = f(i ,n-)f(j ,n;)rri' \ Jm J
This was used to compute the distribution of n(E) with 3
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n- n.
i J

FIGURE 2-7
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for case la. The results are illustrated in Fig. 2.6.

A comparison of this figure with Fig. 2.2 shows that

Equation (2.28) gives the correct distribution of n(E)

with 3.

Fig. 2.6 clearly shows that it is better to over¬

estimate (3 leather than underestimate it. Also, since

dn ( E )
the magnitude of ~ increases with E for 3<3D? the
extra number of iterations required when 3Q is under¬
estimated increases as E decreases.

m, ■ I • „ dn(E) with E was investigatedThe variation of G(E) = -r— °
dv

further by differentiating Equation (2.28) with respect to
E

v. It can be shown that when 6<B , G(E) cc log — . Since
o w y

E
Y is such that ™ < 1, this fraction may be written as

10"^". Therefore G(E)CC-k. Hence, for 3<30» the
magnitude of the gradient of the n(E) against 3 curves

increases as E decreases.

Finally the effect of- the number of gridpoints on 3Q (and
hence the convergence rate) was considered. It can be

shown that if Equation (2.27) is solved on a grid with

n. x n. gridpoints, then
11 2

30 «= 2 - 6
ni

This shows that as n. increases 3 —=*■ 2. It also shows
i ro

that 3o, and hence Nq , will vary rapidly when rn is small.
Equations (2.16) were solved for 3 with differen 4-

o

values of n. = n*. Using Equation (2.8), the variation of
J

N with n. was also found. The results are shown in
o i

Fig. 2.7. This shows that N increases with the number

of gridpoints. Thus if the number of gridpoints is

increased from 10 x 10 to 20 x 20 (a four-fold increase)

there will be approximately a six-fold increase in a

computer time.
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These results show that when the number of gridpoints

is increased, there is an increase in the computer time

due to an increase in the number of calculations per

iteration and a decrease in the convergence rate.

2.3*2 The 3SQR Method For Solving A Helmholtz Equation With

Dirichlet Boundary Conditions

A comparison was made between the SSOR and 30R methods

by repeating case la using the SSOR method (case J>).

Carrels method was used to calculate S for the SSORr
o

method. It was found to be the same as for the SOR

method.
*

The distribution of n(E) with 3 , for both cases la

and 3i is shown in Fig. 2.1. This shows that the SSOR

method was more efficient than the SOR method for 1.0

<= 3 <= 1*8 (P >1.8 was not used due to the slow rate of

convergence). This figure also shows that the shapes of

the constant E curves are essentially the same for both

methods.

A more detailed study of the distribution of n(E)

with 3 , in the vicinity of 3C> was undertaken and the
results are shown in Fig. 2.8. The equivalent results for

the SOR method are shown in Fig. 2.2. A comparison of

these two figures shows the SSOR method was always more

efficient than the SOR method in the vicinity of 3 •J
o

-12
For example, with 3= 1.^8 and E = 10 , the SOR method

required iterations whereas the SSOR method required

only 3°. The superiority of the SSOR method was due to

its more rapid convergence during the initial stages of the
6

iteration process. For instance, with 3= 1.^-8, the SOR
-6

method required 17 iterations to reach E = 10 and a
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-12
further 19 to reach E = 10 . The corresponding numbers

~6
for the SSOR method are 12 and l8. Thus, below E = 10 ,

the rate of convergence of both methods was almost the

same. This confirms the deductions made in section 2.2.5*

The distribution of the error for case 3 was

investigated. It was found that it was composed of two

slightly different fields corresponding to (i + j) odd
(•|0)

and (i + j) even. Fig. 2.4c shows £.. . for the (i + j)
-L J

odd points# This distribution suggests that, in Equation

(2.26), g(j,n.) = f (j,n.) and that f is given by Equation
. . v 3

(2.15). Therefore it is not. surprising that (3q was the
same for the SOR and SSOR methods.

The efficiency of the SSOR method is reflected by the

II ^ IIfact that [I £ . . |j for the SOR method was larger than thata 3

for the SSOR method (see Figs. 2.4b and 2.4c).

The relationship between E and AE for case 3 was

investigated in the same way as for case la. The results

are shown in Fig. 2.5. This shows that Equation (2.19)

was applicable to the SSOR method.

For the SOR method it was found that (3 was independent

of S*. However this was not so for the SSOR method.

Suppose that the gridpoints are labelled so that

0 <= i <= 15 and 0 <= j <= 9» and that d= TX /13 and

ip = TL /9 • When 3 had the form S = sin (r-&i) sin (s ^ j ),
(n) »

r and s integers, it was found that £. . 00 S. Also
J

Po (C) could be predicted by using Equation (2.17) with
X given by

x= _2_ [cos(rO) + cos(sip)J
Therefore, it appears that depends upon the wave-

f

length composition of S. For example, if r = s = 1 the®.
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15
S x 10 P0(C)
1 1.476

c(lSi) 1.379

c (2-di) 1.476

c(3di) 1.379

c(l^i) c(lipj) 1.476

c(2^i) c(2tpj) 1.476

c (l£i ) c(2ipj) 1-379

c(-33i) c(2^i) 1.379

c(4-5i) c(2tpj) 1.379

c(4-&i) c(3^Pj) 1.476

(1-6.3) 1.379

(i-6.5)(j-4.5) 1.476

TABLE 2.4

c(2-&i) c(2ipj) = cos ^ 2 JT_ i ^ cos ^ 2 _TT_ j ^
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Po = 1.476, whereas if r = s = 2 then 30 = 1.259*
I

The distributions of S used above were special because

the solution of Equation (2.27) was proportional to S.

Therefore distributions of S were then used where this was

not so. The results are shown in Table 2.4. These

results imply that |3 is linked to the symmetry of

either S*or w . Therefore, some of the computations were

repeated with 10= f (x, y) on the boundary; the symmetry
I

of S then remained while that of co was destroyed. In

these cases p always had a value of 1.476. Thus 3q is
linked to the symmetry of u) . Where there is no symmetry,

(q)
the value of is given by Equation (2.17) and . is

= y sin( rc h sin f _IL_ j)
ij Vn.-l J ^n--lV

If real data is used there will be no symmetry and

therefore 8 will be the same for the SSOR and SOR methods,
o

But, if artificial data is used, it is possible that the

value of 8 will be different for the two methods.
ro

M. *

The effect of the use of artificial data 011 the

constant E curves was also considered. The chosen

*

distribution of 5 was

s = io~15 x (i - 65) (j - 4.5) S = Sfdl2olmj
For this, = 1.476. The distribution of n(E) with

3 for both the SOR and SSOR methods is shown in Fig. 2.9

(cases 4a and 4b). A comparison of this figure with

Fig. 2.1 shows that the artificial data produced an

exaggerated view of the superiority of the SSOR method.

The investigations using artificial data shov; that

great care must be taken in interpreting the results when

this type of data is used.
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2.3*3 The SOR Method For Solving A Helmholtz Equation With

Neumann Boundary Conditions

Equation (2.2?) was solved with Neumann boundary-

conditions using the same data as in case la. Whenever

this type of boundary condition was used, it took the form
0U)

of gpj- = 0 and the initial guess was uj= 0. The solution
of Equation (2.27) under these conditions is shown in

Fig. 2.12a.

The computations were made with the gridpoints ordered

in the two ways illustrated below.
13 14 5 16 13 14 15 16

11
B

3 4 12 9 10 11 12

9 1 2 10 5 6 7 8

5 6 7 8 1 2 3 4

The variation of n(E) with (3 for both schemes A and

B (cases 5a and 5^>) is shown in Fig. 2.10. This shows

that the constant E curves are almost identical for both

schemes. Also the distributions of the error are similar

(see Figs. 2.12b and 2.13a) and the slight differences are

easily explained when the ordering of the gridpoints is

examined.

The above results show that there is little to choose

between schemes A and B. But, it was thought desirable to

have a scheme for which an analytical expression for the

error could be found. Thus scheme B was used in all sub¬

sequent computations. The distribution of the error will

be discussed later.

Fig. 2.11 shows the distribution of n(E) with 3 for

a large range of 3 (this is also case 5h). This indicates

that the SOS method was much more efficient than the Gauss-
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Seidel method. It also shows that it is advantageous to

know 30 accurately (if there is one). For instance,
- 6

when E = 10 the use of 3 = 1.4 instead of (3= 1.8

increases the number of iterations by about 60/o.

Both Figs. 2.10 and 2.11 show that the optimum value

of 3 became better defined as E decreased. For example,

Fig. 2.10 shows that if 3 = 1.77 is used in place of
-10

3 — 1.82 the number of iterations for E = 10 is increased
-6

by ten. For E = 10 the increase is only two. Thus

care must be taken in choosing (3 if E is small.

When 3 (C) was calculated it was found that it
o

oscillated, and that it tended to approach the value of 3

that was being used. Therefore it is not clear how much,

if any, of the Young-Frankel theory applies to equations

with Neumann boundary conditions. However if Pq(E) =

1.82 is used in Equation (2«8) it is found that N = 11.5'

This corresponds well with the experimental value of No
(see Fig. 2.10).

The only difference between cases la and 5b is the

type of boundary condition used. When Dirichlet boundary

conditions were used Nq was about 3« The corresponding-
value for the Neumann boundary conditions was about 11.

Thus in this particular situation, the use of Neumann

boundary conditions involved nearly four times the number

of iterations than when Dirichlet boundary conditions were

used. Therefore Dirichlet boundary conditions should be

used whenever possible.

It has already been shown that it would be useful to

be able to calculate 3 • An ideal method would be one
o

that is similar to that proposed by Miyakoda (I960). He
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suggested that is given by Equation (2.14) with
J

f (i, 11^) = cos TX + 5
n. - 2
i

This was then used to

derive a set of formulae for (3q. He showed that Equation
(2.17) could be used with X given by

X =

4 + b

-2

COS|7 TX ^ + c OS^_JX_^i" nj~
Using b = 8.8? x 10 , n. = 14 and n. = 10, these equations

give Po = 1.46. This is clearly incorrect and the
reason is that Kiyakoda did not use the correct f (i, n^).

The distribution of was calculated and the results

are shown in Fig. 2.13a. This indicates that f (i, n^)
has the form

f( i ,n.) = cosh(£ i) (2.29)

Unfortunately -& is not known. However it is expected that

•& depends upon the number of gridpoints and therefore it

might have the form

xf =
n •- 1

(2.30)

The value of ■& must be found by experiment.

It can be shown that if f is given by Equation (2.29)

with the above •& , then X becomes

2X =

4 + b
cosh/ •&' ^ + cosh/JL.)

Vrij-V Vrij-1/
By experiment Pq(E) = 1.82 and therefore the

(2.31).

/

equations can be used m reverse to give ■& . It was found

that ■& = 1.94,and therefore an approximate expression for

f is

f (i ,n.) = cosh/-JL i)1 Vn--1 J
1

/

It was then necessary to test if -& was equal to 2.0

for all values of n.,
2.

An indirect method was used because

a large number of iterations would be needed to find 3q(F)
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for given values of n. and n..
1 J

For convergence X < 1. Thus if -9 = 2.0 and n. = n.^ J

the condition for convergence is

COSh(rA)<4fi! <2-32>
Therefore there will only be convergence', if n^ > 11. When

n^ < 11 was used it was possible to get a convergent
solution. Thus either -9' = 2.0 or f is not given by

. . (n)
Equation (2.29). The distribution of E . was computed

x j

for each n. and this showed that f was a coshine function,
x

Therefore 9 4 2.0 and, what is more, •& must be a function

of n^. These results show that there is no justification
in supposing that >9 is related to n^ by Equation (2.30).

(n)
The dxstribution of £\ . was computed for different

distributions of S*. In each ca.se f was given by

Equation (2,29).

The above results imply that for the Helmholtz
(n)

equation, the distrxbution of E.. is always given by
x J

Equation (2.1^) with Equation (2.29).

Some insight into why it is difficult to deal with

Neumann boundary conditions may be gained by considering
(n)

the distribution of E . . in the form

(n) ^ j + j+2 n

Ejj = A cosh(-5 i) cosh(vy)
Here 9^ and -9^ are not necessarily the same. Fig. 2.13a
shows that at i = n. - 1 and j = n . - 1, 9 £- de^.. ^ = 0

1 " 9 j 'j 9 j ^
From the first of these it is found that at i = n. - 1

ln(l) = £ sinhftnj-D^jy/cosh [(ri-1)
Thus '9^ is determined by A and hence depends upon 3 .

The same is true for-9^ • Therefore both 9^ and 9^ depend
upon 3 , n^ and n^.. Thus it appears impossible to derive
a set of equations (similar to Equation
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(2.17) ) that will give 3C for Neumann boundary conditions.
Equation (2.28) was used to derive a set of curves

similar to those in Fig. 2.6. These curves are shown in

Fig. 2.1^. Figs. 2.6 and 2.l4 show that it is undesirable

to underestimate (3q for both types of boundary conditions.
For Neumann boundary conditions it is also unwise to over- -

estimate 3Q by very much.
2.3• 4 The SSOR Method For Solving A Helmholt-z Equation With Neumann

Boundary Conditions-

Case 6 is a repetition of case pb but the SSOR method

was used in place of the SOR method. Fig. 2.11 shows the

distribution of n(E) with 3 for both cases. This indicates

that 3 (E) was approximately the same for both methods.

It also shows that for the smallest E considered

-6 .

(E = 10 ) the SSOR method required the smallest number
-5

of iterations. This was not so for E = 10 , but it is

significant that in the region of 3 (E), the SSOR method

was always superior.

A detailed study of the constant E curves in the vicinity

of P (E) was also undertaken for case 6. The results are

exhibited in Fig. 2.15. The corresponding results for the

SOR method are shown in Fig. 2.10. A comparison of these

figures reveals that, in the vicinity of 3 (E) with
-5

E < 10 , the SSOR method required about 10 iterations less
-5

than the SOR method. Also it was found that for E < 10 ,

the experimental value of Nq is almost the same for both
methods. Thus the superiority of the SSOR method is due

to the rapid convergence in its initial stages. This is

also true when Dirichlet boundary conditions are used (see

section 2.5.2).
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The values of B (E) for cases 5b and 6 were 1.82
o

and 1.80 respectively. It is not clear if the difference

betv/een these is significant. But, even if is not

exactly the same for both methods, it appears that the

optimum values of (3 are in the same region.

When was computed for case 6 it was found that
1J

(37) ,it consisted of two fields. Fig. 2.13b shows £.. for
ij

(i + j) odd. A superficial examination of this suggests

that

e? cc 1 + COS/j?]ii\COS(' 2Ttj'\
Ij Uj-1/ ^ rij-V

Since it was not possible to use to find (3 for case1
ij Ko

5b (see section 2.3«3) a further analysis of the exact-
(n)

form of £. . seemed unnecessary,
ij

The effect of using artificial data was also investi-
S

gated. This was difficult because Carre's method could

not be used to calculate (3 . However a qualitative
(n)

assessment was carried out by computing £.. for different
i

forms of S. Once again it was found that the symmetry of

the solution sometimes affected £^? and thus presumably

a (n)
affected p . When there was no symmetry, £. . was always

composed of two fields of the kind illustrated in Fig.

2.13b.

Finally the distribution of n(E) with j3 for the data

used in cases ^a and k-b was computed. The computations

will be referred to as cases 7a and 7b depending upon

whether the SCR or the SSOR method was used.

(n)
The distribution of £.. for cases 7a and 7b were

ij

similar to that derived for real, data (see cases 38 and 6).

The constant E curves for cases 7a and 7b are exhibited

in Fig. 2.16. These have a similar, shape to those found
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in Fig. 2.11. In particular, Figs. 2.11 and 2.16 show

that for both methods, using either type of data, 3q(E)
was in the vicinity of 1.8. Although the resolution of

(3 was not very good, the results for cases 7a and 7b

reinforce the idea that S is almost the same for both the
o

SOR and the SSOR methods.

The Overrelaxatlon Method For Solving A Poisson Equation

And The Determination of 8
o

If X and V, (or ) are to be calculated from the

continuity equation and vorticity equation then it is neces¬

sary to solve Poisson type equations. Also it is often

necessary to solve this type of equation when solving the

balance equation.

In the following sections the determination of Pq for
the SOR and the SSOR methods will be considered. Also both

types of boundary conditions will be used*

When a Poisson equation is solved with Neumann boundary

conditions a consistency condition must be satisfied.

Suppose the Poisson equation is written as

V2X = S (2.33)
8 X

It can be shown that if f (x» y) on the boundary (C),

then the integral of Equation (2.33) over the area (A)

gives
n

(j) f (x, y) ds =
C

S aA

In particular, if f (x, y) = 0 then the integral of S over
S

the area considered must be zero. This is the consistencyA

condition. If this constraint is not satisfied then the

overrelaxation method will not give a convergent solution.

Thus to ensure consistency, artificial data was used for S.
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For convenience, the same distribution of S was used when

the Dirichlet boundary conditions were used.

The continuity equation was used as an example of a

Poisson equation. Thus S in Equation (8.33) corresponds

to the divergence which has an order of magnitude of
-7 -1

10 S In the following four section E has units of
2-1

m s .

2.4.1 The SOR Method For Solving A Poisson Equation with Dirichlet ■

Boundary Conditions

If b = 0 then Equation (2.27) becomes a Poisson equation.

Therefore by using b = 0, Equation (2.17) can be used to

find |3q (M) for a Poisson equation with Dirichlet boundary
conditions.

Equation (2.33) was solved with n^ = 14 and n.. = 10
and with

-7
S = 10 x (i - 6.5) (2.34)

This will be referred to as case 8a. It was found that

3o (M) = 0Q (C) = 1.544 and that |3 (E) = 1.55 (see
Fig. 2.17). This figure also shows that the shapes of

the constant E curves are the same as for case la.

2.4.2 The SSOR Method Of Solving A Poisson Equation With

Dirichlet Boundary Conditions

It was found that the symmetry of the solution of

the equation affected the error, and hence P„, in the same

way as for the Plelmholtz equation. This is illustrated by

the results from the repetition of case 8a with the SSOR

method (case 8b). It was found that |30(G) = 1.420, and
(n)

that the value of f3Q(M) derived from . was the same as

e0<d.
The distribution of n(E) with 3 for cases 8a and 8b
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is shown in Fig. 2.17. This shows that the SSOR method

was the most efficient. However this is to be expected

because case 8b had a smaller value of 3 than did case
o

8a.

The SSOR method was used to solve the Poisson equation

with

s = 10~7 x (i - 6.5) x (j - 45) (2.55)

This will be referred to as case 9b. It was found that

30(C) = 1.544 which was the same as for the SOR method.

The distribution of n (E) with J3 is shown in Fig. 2.18.

This shows that when E is large the value 3q(E) is much
less than 30(^)» However this may be of no special
significance because this type of behaviour (although on a

lesser scale) can be seen in Fig. 2«5«

Since, with this particular S, '3 was the same for

both methods, it was expected that their rates of convergence

would be the same, when 3 = 0Q was used. This was checked
by plotting log E against n for both methods (with

II (n +1) (n) 11.
E = IIX - X l|). The results are shown in Fig. 2.19,

and this illustrates the fact that the SSOR method is more

efficient than the SOR method.

Fig. 2.19 also shows that after a sufficient number

of iterations, the rate of convergence for both methods

is the same. However, the SSOR method achieved this

maximum rate of convergence almost immediately, whilst the

SOR method achieved it after about 12 iterations. Thus,

the SSOR method is superior to the SOR method due to its

rapid rate of convergence during the initial stages of the

iteration proceedure.

Since 3 = 3 was used in the above computations, the
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value of N can be calculated, and it was found to be
o

3.8. The experimental value of Nq can be found by
calculating the number of iterations required to reduce

n (n+1) (n) J.
log || X ~ X j| by one. It also had a value of

3.8.

Finally, when P^^) was calculated for complicated
(i.e. non-symmetric) distributions of S it was found that

B was the same as for the SOR method,
o

2.^.3. The SQR Method For Solving A Poisson Equation With Neumann

Boundary Conditions

Case 8a was repeated using Neumann boundary conditions

(case 10a). The results ai"e shown in Fig. 2.20.

Fig. 2.20 indicates that there may not be an optimum

valxie of 3 that is independent of E. If this "is so, a

possible explanation may be that the consistency condition

was not satisfied. The reason for this supposition-is
(0)

that the normal derivative of £. . on some of the boundaries

0
is not zero (see Fig. 2.21a). This implies that x—0

0 n

everywhere and thus having the average of 3 equal to zero

is not sufficient to fulfill the consistency condition.

The results of cases 10a and 8a (Figs. 2.20 and 2.17)

show that far more iterations were required to solve the

equation with Neumann boundary conditions than with Dirichlet

boundary conditions. Thus the latter boundary condition

should be used where possible.

A further examination of £^. ? (see Fig. 2.21a) shows

that

E.^cc cosCOSh (3j) (2.36)
i

This has a different form to that for the Helmholtz equation.

(n)
The reason is that if £.. was similar to that for the

ij
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Helmholtz equation then x > 1 for all . Therefore

there would not be convergence.

It was unfortunate that in case 10a the distribution

/ TC .v
of S in the i direction was similar to cos ( -r x).

n. -1
x

Therefore the validity of Equation (2.36) was tested by

computing the error for distributions of S where this was

not so. Equation (2.36) was true in all cases.

The constant E curves were also derived for

-7
S = 10 x (j - 4.5) (2.37)

This will be referred to as case 11a and the results are

shown in Fig. 2.2 2. As in case 10a there did not appear

to be a unique value of Pq. Also, a comparison of
Figs. 2.20 and 2.22 shows that the constant E curves have

the same shape for both cases. Thus the results for

cases 10a and 11a are very similar. This implies that

these results are characteristic of the results to be

expected when more complicated distributions of S are vised.

2. The SSOR Method Of Solving A Poisson Equation With Neumann

Boundary Conditions

Cases 10a and 11a were repeated using the SSOR method

(cases 10b and lib). The results are illustrated in Figs.

2.20 and 2.22. These show that the constant E curves

are similar in shape for both the SSOR and SOR methods.

They also show that 8 (E) varies with E for both methods.
o

Fig. 2.20 shows that, for cases 10a and 10b, the

SSOR method was 110 more efficient than the SOR method.

Also, the constant E curves for case 10b were displaced

towards low 3 , and the displacement decreased as E

decreased.

(31)
The distribution of £.. was computed for case 10b

-i-3
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(see Fig. 2.21b). It was found that to a good approx¬

imation

oc ]+ COS ( Tt i ) c o s ( 2rc j)
u Uj-i / vn.-r/

Once again it was not possible to use this to find

P0(M).
When S was given by Equation (2.37) the SSOR method

was appreciably more efficient than the SOR method.

However the constant E curves for the SSOR method were still

displaced towards low P .

It was found that the distribution of the error for

both cases 10b and lib was the same. However this was not

always so because the distribution depended upon the

symmetry of the solution.

The error distributions for cases 11a and lib were not

related to the solution of the equation. Therefore, it is

likely that the results for these cases are characteristic

of those to be expected when real data is used. Thus it

is suspected that, in general, the SSOR method is a more

efficient method of solving a Poisson equation with Neumann

boundary conditions than is the SOR method. Also, it

appears that for neither iterative method is there a single

Po for all E. However, for a given E, the value of
R(E) for the SSOR method is less than that for the SOR

o

method.

2.5 The Overrelaxation Method Of Solving An a)-Equation And

The Determination Of P
— ~o

A comparison was made between the efficiency of using

the SOR and SSOR methods for solving Equation (2.21). The

coefficients were treated as constants and Dirichlet

boundary conditions were used.
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When a real situation is considered the coefficients

of the w-equation would not be constants. This is

especially true for coefficient A (see Equation (2.20) )

because it depends upon o which varies rapidly with

pressure. Therefore it is necessary to have a method of

finding when there are variable coefficients. Carrels
method is still valid, and therefore this was used to find

an empirical extension of Miyakoda's method.

Occasionally flagging has been used in an attempt

to reduce the computation time (Stuart (1967) )• The

effect of this technique on the constant E curves was

considered.

Either an (X -scheme or ^-scheme can be used to solve

an co-equation. The relative merits of these schemes

were investigated. Also the optimum and cut-off values of

the a-overrelaxation factor were examined.

In the following discussion E has units of mb and
2 -2 -2

the static stability has units of m mb s

2.5*1 A Comparison Of The SOS And SSQR Methods Of Solving An

CO-Equation With Constant Coefficients

When certain assumptions are made, the co-equation takes

the fo'rm of Ecuation (2.20), with

12 r f l2A = I ^ 0 and B =■[!]' . Ap

In the following computations (cases 12a and 12b), 0 was

. <

2 2

-2
taken to be a constant with a value of t x 10 .. The

values of and f were the same as those used in case

la. There were five levels (q = 1, 1, 5) separated by

200 mb ( A p).

The SS0R method used previously for two-dimensional

cases, was extended to cover three dimensions. Therefore
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the order in which the gridpoints were relaxed depended

upon whether (i + j + q) was odd or even. In this, and

subsequent computations, Dirichlet boundary conditions

were used.

For both methods @p(C) was 1.513 and this was the
same as the value of Po(M) calculated from Equation
(2.21). Thus it was possible to use liiyakoda's method

to find 6 for both iterative methods,
o

The variation of n(E) with j3 for cases 12a and 12b

is shown in Fig. 2.23. This shows that the constant E

curves have a similar shape to those calculated for the

two-dimensional cases (e.g. see Fig. 2.2). Fig. 2.23

also shows that for a given E and (3 the SSOR method

required fewer iterations than the SOR method. Once again

this was due to the rapid convergence of the SSOR method

during the first few iterations.

The error was computed for both methods and it was

found that the distributions were similar to those for the

Helmholtz equation using the corresponding iterative method

(see Figs. 2.4b and 2.4c).

These results show that the SSOR method can be easily

and usefully extended to three dimensions.

The next section is concerned with the calculation

of B when 0 is variable.
*0

The Commutation of (3 For An CO-Eauation With Variable
* -0 —

Coefficients

In the atmosphere the static stability varies approx¬

imately with the inverse of the square of the pressure and
0

thus in the first computation (case 13a)> 0 (q) = 41 was

used. Apart from this, the data was the same as in case
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Case n. n . n,
i J k

2
Ox 10 3 A

m p (c)r 0 30(fi>

13a 14 10 5 3-53 1.48 0.642 1.511 1.510

13b Ik 10 9 4.14 1.50 0.651 1.528 1.530

13c 14- 10 5 4.8l 1.48 0.665 1.519 1.518

13d Ik 10 k 22.00 1.48 0.700 1.535 1.533

TABLE 2.5

t

Equation 3 (c)
0

2 -2 o
oV u) + f 3 <n

dp2
+ s = 0 1.499

2 -2-2
0oV u) + f d w

dp?
+ s = 1.499

2 2 2
0 1.499oV w + f 9 q) ♦ s =

2 2 2
V Coco) + t a w

3P
+ s ^ 0 1.509

TABLE 2.6 The bar denotes the isobaric average.
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12a. The to-equation was solved by using the SOR method.

This was used in all subsequent computations.

It was found that 3 0(C) = l.^ll for case 13a.

This is shown along with the variation of n (E) with p ,

in Fig. 2.24a. The figure indicates that 3Q(^)
correct. It also shows that the constant E curves are

similar in shape to those found for other equations.

The value of PQ^^ was als° calculated for different
values of n, and Ap and different distributions of 0 .k

In case 13b the same data was used as in case 13a

but with n = 9» Ap = 100 nib and 0(q) = "^q^ (q = 1, 1, 9).ic

The next case (case 13c) was similar to case 13a, but

O(q) = q was used-. Lastly, the n^ = 4 and A p = 200 rub
was used and the values of 0 at the two interior levels

- 2 -2
were 4 x 10 and 40 x 10 . The values of 3q(C) f°r
these cases are shown in Table 2.5.

Although pQ can be calculated by using Carrey's method,
it would be useful if a method similar to that of Miyakoda

could be devised.

The results for cases 2a and 2b showed that, for the

Helmholtz equation, the average value of a coefficient

could be used with Miyakoda1s method to give a good

estimate of 3^. Therefore the average values of 0
(6 say) were used in Equation (2.21) to give p CM)

(see Table 2.5). A comparison of an<^

clearly shows that 3Q(4) gives the correct value of pQ.
If both coefficients in Eo_uation (2.20) are variable,

it is not clear whether the average values that should be

used in Equation (2.21) are "A"
>

"

Ef or ,1 and 3. It

_B_ _ A_
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is suspected that the values of (3 for cases 2a and 2b

were slightly different because the wrong averages were

used. However the difference was only .012 and therefore

the problem was not pursued further.

Many variations of the U)-equation have been used to

calculate oo . Some of these are shown in Table 2.6.

Using the same data as in case 13a, but with the real

distribution of static stability, PQ(C) was calculated
for each of the equations. This group of computations will

be referred to as case 14.
2

The distributions of 0 , f and
"2 2 -2 -2 7.2

2
were such that

"8 -2 _ f m ]2-
_ „ "2 2 -2 -2 7.2 , ' % -o -2 . rral0=2.53 x 10 m mb s ,f =1.23x10 s and —

-10 _2
= 1.09 x 10 m . Substituting the average values in

Equation (2.21) gave Pq (M) = 1.^98. " This confirms the
previous conclusion. The agreement between PQ(C) £°r bhe
first three equations was due to the fact that 0(p) and

-2 2
f were the averages of o and f over the isobaric surfaces.

Since the horizontal variations of 0 were small it was

not surprising that PQ(C) ^or the last equation was similar
to that for the other equations.

The above results show that Miyakoda's method can be

extended to give a very good estimate of for the full

CO -equation.

2.5•3 The Effect Of Flagging

If flagging is used in solving Equation (2.10) then a

• 4. r> • 1 1 ,4 T I (n+1) ^ I r-1point P is only relaxed so long as x - x > E.
P P

When flagging is not used, relaxation continues whilst
(n+1) (n)

II xp - xP II >E-
The effect of the use of the flagging technique was

investigated by introducing it into a repeat of case 13d
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(case 15)• The results are shown in Fig. 2.25. This
-9

figure also shows the results for case 13d with E = 10

These results show that the flagging technique did not

reduce the total number of iterations required for a

given E. However, there was a slight saving in computer

time when flagging was used because fewer points had to be

relaxed.
r

Fig. 2.25 shows that, when E was small, there was a

double minimum in the n(E) versus (B curves. The main

minimum corresponds to the value of 30 that would be found
if flagging was not used, namely = 1«335« The

other minimum is due to the flagging and the large difference

in stability at the two levels.

The level at which the stability was large had small

values of iu since co oc J. (approximately). Therefore
0

the flagging at this level was completed before that at the
-2

other level. Hence, only the level with stability h x 10

was relaxed during the last few iterations. This means

-2
that the secondary minimum corresponds to 0 = 4 x 10

and this gives Pq(M) = 1.^9* This agrees well with the
observed value of 3 at the secondary minimum.

2.5.^ An Introduction To The a Overrelaxation Factor

In the a -scheme is used to solve an equation, then

it is advantageous to know the optimum value of a ( a say).<_> .

D

It would also be of interest to know the largest value of

CC (a say) that will give a convergent solution,
c

First consider a general equation of the form of

Equation (2.23). If the coefficients are constant and

if C is the maximum value of C i then a is given by
qm q o
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ao =
M +

qm I
q*

qm
§q Mq'

qm .

(2.38)

The value of is given by this equation with $0 = 2.
It can easily be shown that, when a and P are^ '

o 0

used with their respective iteration schemes to solve an

equation with constant coefficients, both methods require

the same number of iterations.

With respect to Equation (2.20) it can be shown that

(Xo and a are given by
a

ac =

Po
4 + 2X

0

4 +21
0

X = 1A
rn Ap_

(2.39)

(2.40)

and ac for the 10-equation

When the co-equation has constant coefficients, the

above equations can be used to calculate Ot and a .^
o c

However, if the coefficients are not constant (e.g., if

0 = 0(p) ) then these equations cannot be used directly.

Stuart et al.(1967) made an empirical study of a

They took all the coefficients

to be constant except the static stability which they took

to be a function of pressure only. The variation of n(E)

with a was investigated and from these results the

experimental values of a and CC were found ( a (E) and
o c o

a (E) say ). They did this for several different gridc

sizes. The variation of stability with pressure that was

used is shown in Table 2.7 and a summary of the results is

in Table 2.8.

Stuart et.al also compared Q-0(E) with the value cal-
-2

culated by using 0 = 2 x 10 in Equations (2.21 and (2.39)•

They found good agreement between these values, but they
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Units

Pressure nib 800 600 400 200

Stability
-2 2 -2 -2

10 m nib s 1.178 2.015 4.252 44.664

TABLE 2.7

n. =n .

1 J
a (E)

0

5
0,^ x 10

2
02 X 10

1 2
a a

0 0
a (E)

c

2
0 x 10

c

A 35 0.400 0.94 1.91 0.411 0.399 0.450 1.11

B 23 0.250 0.86 0.59 0.364 0.347 0.300 4.10

C 17 0.300 2.02 1.90 0.320 0.299 0.350 1.12

D 11 0.225 2.82 2.00 0.244 0.218 0.275 1.34

TABLE 2.8
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did not say why this particular value of o was used. Also

no attempt was made to explain the values of a^E).
Thus the work of Stuart et al.does not suggest a method

of calculating either a or a for a given distribution
*»

of 0 .

Whilst only a mathematical analysis of the iteration

scheme will produce a way of calculating aQ and (Xc
exactly, it was decided to use the results of Stuart et al„

to find a way of estimating their values.

To start with,Equations (2.21) and (2.38) were used

to find an equation for 0 such that a = a (E). This
00

was found to be a quadratic equation and the solutions

( 0.j and say) are shown in Table 2.8. The solutions

0^ can be ignored because they are far too small. Also
since it is expected that 0^ depends only upon o(p), the
results for case B are suspect. Yamagishi (1968) has also

drawn attention to the inconsistency of this result. If
-2

case B is ignored, the value of 0 is between 1,90 x 10
-2

and 2.00 x 10

It is not immediately obvious how this value of

stability can be derived from o(p) (see Table 2.7).

However flagging was used and the results in section 2.33

show that this can affect the distribution of n(E).

Therefore it is suspected that the combination of flagging

and the large stability at 200 mb rendered the effect of

this level on a0'-^ negligible. Thus it is necessary to
find how is related to the stability at the other three

levels.

The average value of the stability over the three
-2

lower levels is 2.^8 x 10 . But, if the stability of the
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200 mb level is taken to be effectively zero (because of

the flagging), then the average value of o over the four
-2

levels is 1.86 x 10 . The values of a calculated by
o

using these stabilities in Equations (2.2D.) and (2.39)
1 2 1

are shown in Table 2.8 ( a and a say). Both a and
o oJ o

2 ' , x
a are close to CL (E). However, it is not known

o o '

exactly which value of the static stability should be used

because of the complication of flagging. But, it does

seem likely tha.t aQ can be estimated by using the average
static stability in both Equations (2.21) and (2.39)'

Table 2.8 also shows the value of o ( o say) that
c

made (X = a (E) in Equation (2.4-0). This shows that,
c c

apart from case B, the values of (J are very close to thec

smallest value of the stability.

If 0 and 0 . are the average and minimum values of
mm

0 , then the above results suggest that a, and o. may be
o c

estimated from

a = B0° —

o 24 + 2X
o X = Id

rn Ap_
ac = -—22 (2.42)

4 + 2_X
°min

In the next section these propositions will be tested

for cases that are not complicated by flagging.

2.5.5 The Determination of <x And a
- - -— o— —c

The values of and (X were found experimentally

for two sets of data (cases l6a and l6b). The same data

was used in case l6a as in case 13a. Also case iSb was

the same as case l6a except that the static stability was

halved at each level. For case l6a the values of o and

_2 —2
0 . were 3.53 x 10 and 1.56 x 10 . The corresponding

nun



FIGURE 2-26



bO

n(E)

AO

30

20

10

L
•380

H

Case 16a

Case 16b

Case 1 6c

a

i.

a a

a

• A20
/K

0L

X

a.

• A 60
t
fa

a

FIGURE 2-27



106

values for case l6b were half of these.

The results for case l6a are shown in Fig. 2.24b.

The value of calculated from Equation (2.4l) is also

shown in this figure. These results show that is a

good estimate of a (E).

A comparison of Figs. 2.24a and 2.24b shows that, for
-7 -8

E = 10 and E = 10 , the iteration scheme required
-6

fewer iterations than the a-scheme. However, for E = 10

this was reversed. From these results it is not possible

to decide which scheme is the most efficient, but it is

suspected that the 3-scheme will usually require fewer

iterations. However, the total computer time required for

the a-scheme may be less because it needs fewer computat¬

ions per iteration.

The value of CX^ was computed by finding the value of
a for which the iteration scheme would not converge. In

-3
these computations E = 10 was used. The results, with

a calculated from Equation (2.42.), are exhibited in Fig.
c

2.27. (The last point on the 'curve' shows that when .005

was added to this value of CX , there was no convergence).

The results show that Equation (2.42) gives a good estimate

of ac(E).
The above experiments were repeated for case l6b and

the results are shown in Figs. 2.26 and 2.27. As in case

l6a, Equations (2.4l) and (2.42) give good estimates of

ac(E).
Finally, case l6a was repeated with a stability of

-2
0.6 x 10 at the 800 mb level (case l6c). In this case

only a was investigated. The results are shown in Fig.
0

2.27 and they confirm that Equation (2.42) gives a good
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estimate of a (E).
c

The above results show that Equations (2.^-1) and

(2.^2) estimated a (E) and a (E) to within J>%. There-
o c

fore these equations can be used with some confidence.

Discussion

The first point of importance is that for all the

equations, boundary conditions and iterative schemes

considered, it was advantageous to use P>1. Therefore,

the following discussion will be primarily concerned with

the value of P that should be used. The discussion will

be roughly divided into four parts. These will deal with

Dirichlet boundary conditions, Neumann boundary conditions,

flagging and the a -scheme.

V/hen Dirichlet boundary conditions were used it was

found that the sets of constant E curves had three character

istics in common which are listed below

1. As E decreased, the value of p (E) became better' n o

defined.

2. Y.hen E v/as large, the average value of p for which

n (E) was a minimum tended to be less than PQ.
3. The magnitude of the gradient of the constant E

curves was greater for P<PQ than P>PQ.
These facts indicate that if E is relatively small, it

is worthwhile estimating Pq accurately. Also, if E is
small it is better to slightly underestimate, rather than

overestimate Po» But when E is large the opposite is
true. However, in general, it is probably safer to under¬

estimate P rather than overestimate it.
o

The above conclusions apply to both the 0C and P

schemes.
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In all the cases considered Carrels method gave the

correct value of But to use this method the equation

has to be solved with 1 < |3 < |3 and thus great attention

was paid to Miyakoda's method.

When equations (with constant coefficients and only

second derivatives of x and x itself) were solved using

the SOR method, it was found that Equation (2.2^+) predicted

Po correctly. If there were variable coefficients their
average values could be used Equation (2.2^) to give a

good estimate of 3q.
When the SOR method was used it was found that neither

the distribution of S nor the initial guess affected Pq.
However a.bad initial guess did increase the number of

iterations required for a given E.

The SSOR method always required few iterations than

the SOR method although (provided there was no symmetry)

both methods had the same 3 . This was due to the SSOR
o

methods' rapid convergence during the first few iterations.

If there is no symmetry in the solution of an equation,

then the prece ding discussion of the SOR method also

applies to the SSOR method. Thus, for both methods, an

increase in the number of gridpoints will increase Nq.
This increase will be large when small numbers of gridpoints

are involved.

Equation (2.19) was only tested for the Helmholtz

equation. The results confirmed that Equation (2.19) could

be used to estimate the value of E that should be used to

provide a given AE. It is suspected that Equation (2.19)

can be used for all equations.

The results for the Neumann boundary conditions were
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lees conclusive than those for the other type of boundary

condition.

For both the Helmholtz and Poisson equations the

value of 3q(E) was larger than that for the corresponding
equation with Dirichlet boundary conditions. This was

reflected in the optimum rate of convergence. Thus the

Neumann boundary condition should be used only where

absolutely necessary. This applies to both iterative

methods.

J

The results for the Helmholtz equation showed that, in

the absence of symmetry, was the same for both the

SOR and SSOR methods. Also it was found that the SSOR

method required fewer iterations than the SOR method.

Since Carre'1 s method could not be used to find 3 ,
o

an attempt was made to extend Miyakoda'.s method. Although

analytical expression for the errox* was found for the SOR

method, the set of equations derived from it contained an

unknown. Thus it was not possible to find 3Q. The
distribution of the error was also found for the SSOR method

and was used with a similar lack of success.

When the Poisson equation was solved it appeared that

there was no value of 3C that was independent of E. When
the SOR method was used it was found that, for large E,

the value of 3 (E) was almost 2. As E decreased, 3 (E)
o o

also decreased.

. The values of 3 (E) for the two iterative methods
o

were different. Also, for the most realistic case

considered, the SSCR method was superior to the SOR method.

For both iterative methods, approximate analytical

expressions for the error was found. However, these
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expressions could not be used to predict Pq(E).
Due to the disappointing results from the Helraholtz

and Poisson equations, the valtie of f°r the

0J-equation with Neumann boundary conditions was not

determined.

The above discussion gives rise to two general

conclusions.

1. The solution of an equation with Neumann boundary

conditions takes far longer than when Dirichlet

boundary conditions are used.

2. The SSOR method is more efficient than the SCR method

for both types of boundary conditions.

When flagging was used it was found that both Pq(E)
and Nq(E) were hardly affected. However there was a

slight saving in computer time because fewer points had to

be relaxed. Thus flagging is a useful technique.

Finally, the use of the a-scheme to solve an to -

equation with variable coefficients was considered. The

results indicates that this scheme was less efficient than

the P-scheme. But, the a-scheme required fewer comput¬

ations per iteration and thus it may reduce the computer

time by a small amount.

It was found that a and a could be accurately
o c J

estimated by Equations (2,4l) and (2.A-2). However it is

probably advisable to use the p-scheme, becuase this has a

theoretical foundation.

The investigations into flagging and the a-scheme

indicate that these techniques may produce a marginal

saving in computer time.

It is hoped that the observation and deductions in this
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chapter will provide the starting point for a more theore¬

tical investigation into the overrelaxation method.
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CHAPTER III

The Balance Equation

Introduction

In this chapter the derivation, meaning and solution

of the balance equation are discussed.

A new method of ellipticising the balance equation

is introduced, followed by a discussion of the discret¬

isation of the balance equation.

The different methods of solving the balance equation

are discussed and two variations of existing methods are

introduced. The efficiencies of these methods are

compared and the effect of the formulation on the efficiency

is investigated.

The last part of the chapter is concerned with the

boundary conditions that should be used when solving the

balance equation.

The Origin And Meaning Of The Balance Equation

The divergence equation may be written as

dD + D2 u. 2J"(u(v) + 9V. Vuj
dt 3p

-n + + V20 = o (3.!)

Many reasons have been given for simplifying this

equation, some of which will be discussed below.

1. Thompson (1961) showed that a fluid in hydrostatic

equilibrium was unable to support gravity waves if

dD = 0 (3.2)
dt

This assumption turns Equation (.?•!) into a diagnostic

equation which represents a balance between the wind

field (V, u) ) and the pressure field (represented by $ ).

If V and X are introduced this equation becomes
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r 2
D +2J(u1,v2) + 2J(u2,v1)+ 2 J(u2,v2)+k,,VX.Vf + 3Y.Vu)

dp

xx yy xy
(3.3)

For synoptic scale motions the terms in the first

bracket are at least an order of magnitude less than those

in the second bracket (see Equ. 1.23). Thus if only

the large terms are included, Equ. (3«3) becomes

2 2 2
fV 0 + 2(0 0 -0 )+Vf.V0 -V P=0 (3«Zf)

xx yy xy
Since f and 0 are known this is a two dimensional non¬

linear equation in 0 . It is known as the balance

equation.

If the balance equation is elliptic and if boundary

conditions are specified for 0 , then it can be solved for

0 for each isobaric surface.

If X and O) are also known, then Equ. (3«3) can 06

solved for 0 . This is achieved by treating the terms

in the first bracket as part of the forcing function and

then solving the equation as if it is the balance equation.

The methods that are used to solve the balance equation

will be described later.

The use of Equ. does not ensure that dD = 0

because of the additional assumptions that are made. Thus

there may be gravity waves even if the balance equation

is used.

2, From the continuity equation it can be shown that

dt

dD = - 9_[duj + 3V .Vu) + D
2

dt dp [d tJ dp

•Using this, Equ. (3.1) becomes

3pdt 3p
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If it is assumed that there are no vertical accelerations

(in p co-ordinates), then this reduces to a diagnostic

equation. If X and to are known, then the diagnostic

equation can be solved for f . But, this solution will

not be the same as that for Equ. (3*3)•

If only large terms are included, then Equ. (3*5)

also reduces to the balance equation.

J. Lorenz (i960) considered the forms of the divergence

and vorticity equations that are consistent with some

form of energy conservation law. It was found that the

balance equation was just one variant of the divergence

equation for which this was possible.

4. If only the large terms in the balance equation are

considered (terms of order R° and r' ) then it becomes the

balance equation (Equ. 1.23). Also, if only ™

is neglected, then terms of equal or smaller magnitude

are still included.

The above discussion shows that basically the balance

equation is always derived from the divergence equation

by some form of dimensional argument. Therefore, unless

a diagnostic study is concerned with vorticity or energy

budgets, the use of the balance equation can only be

justified by scale considerations.

Some insight into the meaning of the balance equation

can be gained by integrating Equ. (3.4). Kuo (1936) has

shown that if 4^ is the solution of Equ. (3.4) and if
= k x ^ 4^

k then the integral is (if an arbitary function
is ignored).

V, . V V, + f k x V = -v<t>—b —b — —b
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Rearranging, this gives

Vv - V = k x (V. . V V, ) (3.6)—b —g — —b b
f

Haltiner (1937) showed that, if the local and

vertical contributions to the ageostrophic wind are

neglected, then

V - V ;= k x (V . V V ) (3.7)
f

Further, he showed that the right hand side of this

equation is large when the isobars are curved or if they

are confluent or diffluent. Thus it can be inferred from

Equs. (3«6) and (3«7) that the balance equation takes these

configurations into account.

For circular isobars, Kuo (193&) showed that the

balance equation reduces to the gradient wind equation.

Dixon (1972) has also indicated the relationship between

the balanced and gradient wind.

There are several other equations that can be used to

derive non-divergent balanced winds. Some of these are

discussed below.

If the non-linear term in Equ. is neglected,

the result is the linear balance equation

f V2H> + Vf .V V = V24> (3.8)

The solution of this equation will be denoted by 4^ and
the wind derived from this is 7^ = k x V^, The
integration of Equ. (3*8) gives

V - V = k x ( V x M)
~1 ~S ~ ~

f

The righthand side of this is small and thus is similar

to V . The advantage of using the linear balance
s

equation is that it is easy to solve.
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Wind laws that are a compromise between validity

and computational ease are described by
2 2

fv V t Vf.vw + 2 ~T~ ( a# = V (J)
f2 U ^ 6x 0/

2 2
fv v + vf.vvy + 2j( aw,aiy^ = v du ^ 0X1 ay^

These equations are usually called quasi-linear balance

equations.

Ellsaesser (1968) discussed many wind laws including

the balance equation and linear balance equation. He

concluded that Equ. (3*8) was the best after taking into

account the ellipticisation, reversibility, and computat¬

ional time. He also considered the effect of the wind

laws oh barotropic predictions.

Some wind laws were also investigated by Krishnamurti

(1968b). He found that both Equs. (3«M and (3«9)

produced winds that were very close to the observed winds.

Also, further analysis of his results shov/s that the

behaviour of V, and V, is consistent with them being
-1 -b

similar to the geostrophic and gradient winds respectively.

For instance, the cross-isobaric flow of V, is consistent
-b

with Equ. (3«7)«

Krishnamurti concluded that "a large part of the

upper tropospheric cross-isobaric flow frequently observed

in baroclinic disturbances may be explained from the non-

divergent part of the total wind". It should be added

that this explanation is only valid if V is computed

from an equation that takes the non-linear term into

consideration.

Benwell et al.(1971) found that, in certain synoptic

situations, the use of Equ. (3.^) gives a much better
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prediction than Equ. (3.8).

If the only consideration is the validity of the

wind law, then the above results indicate that nothing

less simple than the quasi-balance equation should be used

to derive the non-divergent wind.

In the following sections only the balance equation

will be considered in detail because quasi-balance

equations are easy to solve and because more complicated

equations are solved in the same way as is a balance

equation.

3.3.I The Elliptic Condition For The Balance Equation

If Equation (3*^) is to be solved as a boundary value

problem, it must be elliptic. 1Arnason (1938) showed that

the elliptic condition is
2

(f + 2V )(f + 2 V ) -4 V >0 (3.10)
xx yy xy

This condition implies that there are two types of solution

for a given boundary condition. In the northern hemis¬

phere the significant solution is such that f + 2^ >0
XX

and f + 2 ^ >0. These conditions imply that
2 " (n)

V ly + f > 0 . Therefore if V is the solution after n
*

iterations, it is required that
2 (n)

v v +f > 0 (3.11)

It can easily be shown from Equs. (3«*0 and (3.10)

that the elliptic condition is
2 2

V + X - Vf.Vl|/ = E(V) >0 (3.12)
2

Therefore at all stages of the iteration procedure the

following condition must be satisfied

E(V(n))>0 (3.13)

Any iteration scheme used to solve the balance
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equation must, in order to ensure convergence, include

the conditions described by Equs. (3«ll) and (3«13)»

When the balance equation is written in terms of

E(W), it becomes

f V2V + 2(Ui U/ -V*>1- E(V) = 0 (3.14)
xx yy xy 2

The methods for solving the balance equation in this

form will be discussed later.

There is another useful form of the balance equation

which will be derived below.

The deformation field is defined by two parameters

A = -2 ^ and B = V - 4* . In terms of these parameters,
xy xx yy

the non-linear term (NLT) in the balance equation becomes
2 2 2

NLT (3#15)

Using this, Equ. (3»4) becomes a quadratic equation in £ .

In terms of E( W), the solution for £ is

I 2~ 2-1
£ = -f i J 2 E(>T) + A + B

This clearly shows the existence of two types of solution.

In the northern hemisphere the positive sign is chosen so

that T) > 0. Thus the balance equation becomes

/ 2 21
I =-f + J 2E(T) ♦ A + B

= £ (3.16)
One of the advantages of using this set of equations

is that the condition shown in Equ. (3*11) is implicit

in them. The elliptic criterion ensures that there is

not a negative quantity under the square root.

Equ. (3.16) also shows that there is another condition

on E( T1 ), namely
, 2 2

E( T ) > --(A + B ) . (3.17)
2

However, if the elliptic criterion holds, then this

condition is also satisfied.
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The meteorological significance of the two conditions

imposed on E( ^ ) has never been fully explained.

Now consider the complete divergence equation.

This is elliptic with respect to W if

> 0 (3.18)

2 2 2
E(iy,Xu))= V 4> + i - Vf.V^+D

2 2

"dD * j(x,f) + vw.ay
,ar ap

In terms of E, the divergence equation becomes

fV2V t 2(U/ U/ - VJ/2 ) + ± - D2 - E(U/,Xfw)
xx yy xy 2 2

+ 2J(u ,y2) +2J(u2<vi ) +2J(u2.v2) = 0 (3.19)
This is analagous to Equ. (3*1^). An equation that is

t

analagous to Equ. (3«l6) can be derived in terms of
I 1

A = U - V and B = V + U . It .can be shown that
x y x y

2 2 2 2
2J(u ,y) = A + B' - C - D

2

Thus the divergence equation may be written as

I 2 21
I = - f + J 2 E( V, X,(h) + A + B' (3.20)

This equation has exactly the same form as Equ. (3«lo)

and thus the conditions on E have the same form in both

cases.

Equs. (3.19) and (3*20) can be solved in the same

way as Equs. (3^1^) and (3.16).

Miyakoda (1936) noted that if the bracketed terms

in Equ. (3.18) are neglected in the divergence equation

then the elliptic criterion becomes
2 2 2

E = V <D +1 - Vf,VV+ D > 0
2 2

If the elliptic criterion is thought of as a condition
2

on V 0 , then this condition is less restrictive than

that shown in Equ. (3-12). Therefore, in this particular

case, the inclusion of extra terms results in a less
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2
restrictive condition on V $ .

When the balance equation is used with real data,

it is found that there are regions where the elliptic

criterion is not satisfied (hyperbolic regions). The

above results suggest that if all, or most, of the terms

could be included in the divergence equation, then the

hyperbolic regions would disappear.

The next section will be concerned with the ways in

which the hyperbolic regions are eliminated when the

balance equation is used.

3.3.2 Methods Of Ellipticising The Geopotential Field

Consider the ellipticisation of $ for the balance

equation. When the elliptic criterion (see Equ. (3.12) )

is not satisfied, 0 must be changed until it is..

Initially V is not known and thus the elliptic

criterion is replaced by

2 2
E( <P ) = V 0 - Vf. V0 + f - £ > 0 ,

f 2 (3.21)
e = max(Vf.V^- Vf.V0)

Benwell et al. (1971) suggested that E = 2 x 3.0 ^ f.

If 0 is altered so that E(0)> 0, then it is unlikely

that the correct elliptic criterion will be violated

during the iteration proce dure. However, if a region

does become hyperbolic then E ( 0^ ^) is set to zero.

2
If E ( 0 ) < 0 then V 0 is large and negative (since

Vf.V^ is always small). Kirk (1970) noted that
2

(V 0) cc (0 - 0 )
o mo

Here 0^ is the average value of 0 in the region of 0Q .

These facts can be used to estimate the change in 0 that

is necessary to reduce a negative E ( 0) to zero.
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For simplicity, let the elliptic criterion be
2 2

E = V ^i>0
2

Suppose that initially the value of E (E^ say) is less
than zero and that $ and $ are arranged as shown below

o m °

0 /

\
A

.<t>

6<J>

) 6<t/4 0_
m

The magnitude of E^ can be decreased by decreasing 0Q
by 60 and increasing 0^ by 60 . If the final value
of E (E^ say) is zero; then

2 2
E = V 0 + 5 60+f = 0

4 2
In terms of E., this becomesi'

E. = - 5J50
4 d2i

2 2 10 2-8
-3 f , d =10 and f = 10 , this

2

equation gives 60/g = 12m.

Using lih

These computations show that the maximum change in

height due to ellipticisation will be about 10m. It can

also be shown that the above proce dure would change the

geostrophic wind by about 10 ms^ .

The above method of changing E is only introduced to

obtain an estimate of 60 . The remainder of this section

will deal with practical methods by which E may be

changed.

The elliptic criterion can be imposed in hyperbolic

regions by altering E ( 0) directly or by altering 0

v/hich will then change E ( 0 ).

Shuman (1957) and Benwell et al-(1971) have suggested

methods by which E ( 0) can be altered directly. Shuman's
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method starts by scanning E( 0 ) until a negative value is

found (E at point 0). The value of E at point 0 is then

put equal to zero, and E/k is added to the value of E at

the surrounding four points. This process is repeated

until E( 0 ) > 0 everywhere. Once E( 0 ) is known,

Equ. (J.21) is solved for the new distribution of $ .

The proceedure adopted by Shuman has the effect of
2

changing V E in the following way

(V2E)' =(?2E) + 5 E
o 00

Here the prime denotes the new value and EQ is a negative

quantity. If Vf.V0 is neglected, then E is given by

e = y 0 ♦ f2
"7 2

Substituting this into the previous equation gives

(V4 0)' =(T40) + 5E d2 (3.22)
OOO

Let 0^ and 0^ be the initial and final geopotentials
and let 0 = 0^ - 0^. If 0 varies sinusoidally, then
Equ. (3.22) implies that 0 00 Eq. Thus this process
results in a local decrease in the height field.

Fig. 3«ba shows the change in height, in meters, when

Shuman's method was applied to the 1000 mb surface in

area 51* The hatched regions indicate the areas in which

E(0 ) was originally negative. As expected there was a .

decrease in 0 in these areas.

One method of altering E by changing 0 , is based on

the fact that the geostrophic vorticity is large and

negative when E(0 )<0 . Thus E( 0) can be made positive

by reducing the magnitude of £ in hyperbolic regions.
S

Dixon (1970) discussed the smoothing function

0'=0+(1-x)(V20) (3* 23)
o o o

4
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FIGURE 3.1

(a) The change in height, in meters, when Shumans'

method was used to ellipticise $ for the 1000 mb surface

of area

(b) The corresponding results for the author's method.

FIGURE 3.2

The finite difference schemes used to discretise

the balance equation.

FIGURE 3.3

(a) ( Wl -W2) - the difference in the streamfuncticns

when NLT1 and NLT2 are used in the balance equation. The
-4 2 -1

units are 10 m s

(b) (ul - u2) - the corresponding results for the
-2 -1

x components of velocity. The units are 10 m s

(c) (vl - v2) - the corresponding results for the
-2 -1

y component of velocity. The units are 10 m s
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FIGURE 3-3



127

The effect of this smoothing on £ is described by
&

= <3.2<0
y y 4 fd2

/ 2 2
Since (V <t> ) oc ( V 4>) - (V 4> ) , it can be shown

o m o

4
that (V $ ) will tend to be positive in regions where

E( <t> ) < 0 . Thus, if Equ. (3.23) is used with K< 1

in regions where E( )<0 > Equ. (3.24) shows that there

will be a decrease in the magnitude of the geostrophic

vorticity. Also it can be shown that 4> will decrease

when E( 4> ) < 0

Equ. (3.23) was applied at all points where E( <p)<0

until the elliptic criterion was satisfied. The corres¬

ponding results to those found for Shuman's method are

shown in Fig. 3.1b. (The straight lines indicate the'

regions beyond which there was no change in $ ). It was

found that as H approached unity there was an increase in

the number of cycles required and a decrease in the change

of <t> .

Figs. 3«la and 3«lb show that in both methods the

geopotential was changed only in the vicinity of hyper¬

bolic regions. Also these figures show that the resulting

change in was similar for both methods. However it

was found that the time taken for the first method was

about three times that for the second, (but this may be

due to inefficient programming). Another advantage of the

second method is that it is not necessary to solve a

partial differential equation in order to recover <t> .

Benwell et al.(l97l) used the new <t> to alter the

geopotential at the other levels so as to maintain the

temperature structure. But if this is not done, there is
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no reason why the new distribution of <t> should be cal¬

culated because the balance equation can be written in

terms of E (see Equs. (3«l4-) and (3«l6) ).

The geostrophic wind was calculated from the initial

and final distributions of 0 . It was found that, for

both methods, the maximum change was about 3 .

In the following computations the second method of

ellipticisation was used.

The Finite Difference Scheme '

Since the balance equation may only be solved by

using numerical techniques, Equ. (3.4-) (or those derived

from it) must be discretised.

First consider the non-linear term (NLT). There are

two common finite difference schemes for this term and

they correspond to Miyakoda's methods A and C (Miyakoda

1962). These will be referred to as NLT1 and NLT2.

Using the notation shown in Fig. 3*2, these expressions

are

NLTU 2(\xV\2y' <3-25)
NLT2= 2(>x>yy-'^y) (3.26)

NLT1 is derived by using centred finite differences

for W W and ^ . The resulting truncation error
xx yy xy °

4
in NLT1 is of the order of d . Bolin (1956) argued

that there is a systematic error in NLT1 because
2

^ . l|/ and V are calculated over different distances,
xx yy xy

If the x and y co-ordinates of the grid are rotated

through 4-5 , then the non-linear term is given by NLT2.
4

This also has a truncation error of order d . Also an

this case the two parts of NLT are computed over the same

distance.
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Miyakoda (1962) solved the balance equation using

NLT1 and NLT2 and obtained solutions and ^2. He

found that W > U^2 everywhere. The computations were

repeated for the 1000 mb surface in area 91* The

results in Fig. 3*3 confirm Miyakoda's findings and show

that the maximum difference between the wind components

derived from U'l and is about 1 ms^ .

Miyakoda speculated that the systematic difference

between 1^1 and ^2 was due to NLT2 satisfying a certain

integral relationship, whereas NLT1 did not. This

assertion was never substantiated.

Some insight into the reason for the systematic

difference can be gained by assuming that ^ is biharmonic

= A sin(a x) sin( j3y)
If this is used in Equ. (3*35) and (3*36), it can be

shown that

22-2 222 2 2
NLT1-NLT2 = A a p ( a + 8 ) d sin (a x)sin (|3 y)

2
Thus NLT1>NLT2 everywhere. Nov; suppose that IJ/1 and U*2

are given by
2 2

V m + NLT1 = V <t>

2 2
V V2+ NLT2 = V 0

2
Also let NLT1 = NLT2 + g (x,y) so that the subtraction

of the above equations
2

x 2
V (w -vi/2) = -g (x.y)

If ( - VJJ2) varies sinusoidally then the left-hand
2

side becomes -X ( - V2) and thus

2,(V1-V2) = g (x,y)
X2

This crude analysis shows that f/1 > ^2 everywhere.

It can also be shown that when ^ is biharmonic, the

truncation error in NLT2 is always less, than that in NLT1.
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Thus it is likely that \\I2. is a better approximation to

the exact solution than is l|/1.

A method of testing the superiority of either NLT1

or NLT2 might be as follows.

(a) Find the solution of the balance equation and fine

grid (m x m gridpoints) using NLT2. Let the solution be

V2 .

(b) Find the solutions of the balance equation using

NLT1 or NLT2 on a coarser grid (n x n). Let the solutions
n n

be IJ/1 and V2 .

(c) The solution in part (b) that is closest to

should indicate the best finite difference form of NLT.

n m
For this method to work, the magnitude of ( ^2 - VP2 )

n n
must be much greater than ( U*2 - ^1 ). In terms of

n m.
NLT, it is required that (NLT2 - NLT2 ) must be much

larger than (NLT2n - NLT1 ). But both of these

expressions vary with x and y and thus, in terms of their

root mean square (EMS) values, m and n should be such that

Y EMS (NLT20 - NLT1°) = EMS (NLT2^ - NLT2™)
Here Y ~ 10.

If V is biharmonic, it can be shown that the above

equation gives

[ft]n I = 1 - 1y
mj 4 'J P + O -2R

2 2
If F and G are defined by sin (ax) sin ( (3 y) and

2 2
cos (ax) cos ( 3 y), then P, Q and B are the integrals

2 2
of F , G and FG over the area considered. If

- i2
P/ (P+Q-2E) is about -J, then nm must satisfy

2
21 = 1 ~X
mj 2

If Y ~10, this relationship cannot be satisfied and thus
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the method described above is of little use.

The affect of the formulation of the non-linear term

on the rate of convergence of different iterative schemes

will be discussed later.

2
If the V V term in the balance equation is replaced

x 2
by V V and if NLT2 is used, then the solution separates

into two fields. Thus in all the following computations
+ 2

V ^ was used.

Miyakoda suggested a finite difference form of

Vf.VW . However, this was not used in these computations

because the finite difference depended upon If which was

thought to be undesirable (see section 3.5)• Thus Vf.VW

was replaced by + Vf.V*f (see Fig.

Suppose that the finite difference form of the balance

equation is
2 2+

V if ++Vf.VV + NLTi = V <D i = 1.2
(3.27)

To derive an equation from this that is analagous to

Equ. (3.16), it is necessary that
2 2 +22

(A + B ). = (V V) - 2 NLTi i = 1.2
1

Using the appropriate value of NLTi, this gives
2 2 2/ 2

(A + B ) = (V - if'- if + W )/4 +(if + If -if - VP') (3.28)
1 5687/ 1 324

22 2
(A + B ) = 2(Vfi + if -if -if.) +4(^-2^^X^-21^+ if4)

-(^-2^+1^(^-2^+1^) (3.29)
When A and B are put in terms of (+) finite differences,

Equ. (3.28) follows directly. But Equ. (3*29) cannot be

derived by using (x) finite differences for A and B.

When this is done the result is Equ. (3«28). This incon-
2 2

sistency disappears if (A + B ) is calculated from
X 2 2 2 2

( V f ) - 2 x NLT2. But this form of (A + B )^ cannot
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be used because it is necessary for V W to be replaced
* 2 „

by V v and this is undesirable.

A comparison of Equs. (3.28) and (3*29) shows that
2 2

the calculation of (A + B requires fewer arithmetic
2 2

operations than does (A + B )^. Also the former is
independent of whereas the latter depends strongly on

The significance of this will be dealt with later.

3.5 Methods Of Solving The Balance Equation

Two slightly different successive overrelaxation

techniques have been used to solve the balance equation.

The first technique is an extension of the SOR

method and is known as non-linear overrelaxation (NLOR).

This will be referred to as a method of the first type.

The main characteristic of this type of method is that the

latest values of W are used in all computations.

The second technique consists of linearising either

Equ. (3.1^-) or (3«l6). When the former equation is used

this will be called a method of the second type. A method

of the third type will refer to the use of the latter

equation. Both these methods usually, but not always,

require the use of two fields of ^ (or something related

to V ),

The method described by Endlich (1970) will not be

discussed here. However it is hoped that in the future

a comparison between his method and those described above

will be undertaken.

The ADI method was not considered because of the

problem of finding the optimum variation of the iteration

of the iteration parameter. Also, there are difficulties
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involved in linearising the equation due to the presence

of the V term.

The NLOR method has been described by Ames (19&5)*

He showed that if g (xo, yQ, ) = 0
is the finite difference form of the non-linear equation

at point 0, then the iteration process is defined by

* ° & <3-30)
{-dvJ

Here the latest values of ^ are used to compute g^ .

Ames also pointed out that the optimum value of 3 depends
(n)

upon W and therefore it will change during the iteration

process. The evaluation of the optimum value of 3 will

be considered later.

If g = 0 is a linear equation, then Equ. (3«30)

defines the SOR method. This illustrates the relation¬

ship between SOR and NLCR.

If g = 0 is the balance equation then the presence of

W in it means that a certain matrix will not have
xy

property A (see Ames (1965) )• Thus convergence will not

necessarily, but will usually, take place.

If = 0 and g^ = 0 are the finite difference form
of the balance equation when NLT1 and NLT2 are used, then

;+"2tl- -

-4 (' x"2-3q1=-4(f*V If) 3g =-4(f»V If)

Thus these expressions depend upon the finite difference

form of the absolute vorticity. Since the absolute vort-

icity may be very small, the NLOR method might involve

divisions by very small numbers. A method that overcomes

this problem will be described later.

The use of the NLOR method to solve the balance
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equation will be called NL0R1 and NL0R2. The subscript

indicates the form of the non-linear term that was used.

When the NLOR method is used with (3 = 1 it becomes

identical with the method used by Bolin (1955» 1956).

Asselin (1967) used an iteration scheme that was

similar to that used for the NLOR method. This scheme

was

..(n+1) „,(n) (n)
= v. * ta- (3.31)

(?)
This has the advantage that the coefficient of g^ is

(n)
independent of V . But, there is the disadvantage that

this iteration scheme has never been investigated theoret¬

ically. Thus, for instance, the limits of a for which

there will be a convergent solution are not known. The

use of the above iteration scheme with g^ or g^ will be
called NLAS1 and NLAS2.

Both the NLOR method and Asselin's method are methods

of the first type.

A method of the second type was used by 'Arnason

(1958). He solved the linearised equation

,(n) 2 (n) (n) (n) (n-1) frvj) 01 (n) (n-1) 2
h = f V W + Vf . V V + 2( ^ W Hi ) - V 0

xx yy xx yy xy xy (5.52)

If h^ and are the finite difference forms of
Equ. (3.52) consistent with the use of NLT1 and HLT2, then

the iteration schemes become

.
. Pi'"'

4 (f + vVn_1))
d2 2

(n+1) (n) n Jn)
If -\U \ RHo _

4 (f +*V2 Y^^)
d2 2

The use of these schemes will be referred to as NLAR1 and
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NLAR2.

The method used by 'Arnason has two disadvantages

when compared with the methods of the first type.

Firstly, several extra computations have to be performed

,.,(n) (n-1)and secondly both v and T have to be stored.

However the advantages of this method are that for a

given n the equation to be solved in linear and that the

denominator in the iteration scheme is never small.

The balance equation is elliptic if
2 (n) (n)

V + NLT + 1 > 0 (3*53)
f 2

Equ. (3.32) is elliutic with respect to V if
2 (n-1) (n-1)

V W 4- NLT + 1 > 0 (3.3*0
f 2f2

2
Fig. 3.4 shows that if Equ. (3*33) holds and if (_V_J£ + 1) >0

f
then Equ. (3*34) is satisfied. Thus if the finite

difference forms of Equs. (3*11) and (3.13) are satisfied,

then Equ. (3.32) is elliptic.

A method that incorporates some of the advantages of

both the NLGR and 'Arnason's methods is described by

(n+1) (n) R (")
^ ^ (3.J5)

)
0 °

? 2

Also a similar iteration scheme can be used to solve

g^ = 0. The use of this method will be referred to as
X X

NL0E1 or NL0R2 depending upon the form of the non-

linear term. The NLOK method is a method of the first

type.

Another method of the second type was discussed by

'Arnason (1958)• He considered the equation
2 (n) (n) (n-D 2

f V V + Vf. VV + NLT - V <J> = 0
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With this form of linearisation a Poisson type equation

is solved at each iteration This can be achieved

very efficiently. However 'Arnason showed that this

method would not produce a convergent solution. The

reason is that the non-linear term is strongly dependent

upon V . This problem may be overcome by solving the

balance equation in the form of Equ. (3.16). The methods

used to solve the equation in this form will be called

methods of the third type.

The general form of the iteration scheme for

methods of the thira type is

Here F (V) is the righthand side of Equ. (3.16).

Many variations of the above iteration scheme have

been used. Firstly different values of 0!. and 3 have

been used and secondly different numbers of scans per

iteration.

A single scan method is defined as a method in which

Equs. (3.36) and (3.37) are used at one gridpoint before

moving to the next. A double scan method is defined as

one in which Equ. C3•3^) is used at all gridpoints before

Equ. (3.37)• Thus in this case each iteration consists

of two scans of the grid.

A summary of the methods of the third type that have

been used is given in Table 3«1« This shows the ranges

of a and 3 that were used. The number of scans is

also indicated. Finally the number of fields that is

(3.36)

(3.37)
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Method Code a (3 Scans Fields

Miyakoda A (1956) NLMA 1 1 1 1

Shuman Slow (1957) NLSS 1 >1 1 1

Suggested Method NLAU <1 >1 1 1

Kiyakoda B (1956)
Shuman Fast (1957)

NLMB 1 >1 2 2

White (1969) NLWH <1 >1 2 2

TABLE 3.1

*

White used the ADI method to solve the Poisson equation during

the second scan of each iteration. In terms of the SOR

method, this is equivalent to using (5 >1.
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needed is shown.

The relative efficiency of all the methods described

was investigated and will be described later.

When methods of the first and second type are used

it is desirable to know the optimum value of (3 . The

next section is concerned with estimating this value for

a linearised version of the balance equation.

The Estimation Of The Optimum Overrelaxation Factor

An analysis, similar to that used by Asselin (1967)

was performed on the following linear version of the

balance equation.

f V2 + A V - BV »CIP -V2<D = 0 (3.38)
xx xy yy

In the analysis the first terra was replaced by
+ 2

f V W and two sets of finite differences were used for

the "non-linear terms".

The use of and + in the "non-linear
xx yy xy

terms" is analagous to using NLT1. Any quantities derived

when these were used will be denoted by a subscript 1.

Similarly the use of V , W and W is analagous toxx' yy xy

using NLT2 and a subscript 2 will be used to denote

quantities relating to this equation.

If Equ. (3«38) is solved using the SOR method, then
(n) „.(n) ...

the iteration formula for £. . = v. . - V. . can be
ij ij id

derived.

(n)
Suppose e.. has the form

= q exp(£i+<pj) (3*39)
ij

When Dirichlet boundary conditions to solve Equ. (3*38)

in an area with n^ x n^ gridpoints, -& and ip will be
given by

i J
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If Equs. (3.39) and (3.40) are used in the iteration
(n)formula for £„, tnen a complex expressxon for q can

be derived. The magnitude of q, |q | say, is

I 9 2~*
I q | =■ 1(1 - 3 * 3v ) + (3w) (3.41)

v (1 - 3v)2+ (3w)2
From this equation it can be shown that |q j is a minimum
with respect to 3 when

3 = 1 y2= 4 (V - W2- V2) (3-42)
1 «■

Let this value- of 3 be denoted by 3 (A). The
o

expressions for w and v depend upon the finite differences

that are used in Equ. (3.38)• These expressions will be

given later.

There will be convergence if |q | < 1. Equ. (3«4l)

shows that this is so for all 3 such that 0 < 3 < 2.

Thus Equ. (3.41) gives the correct range of 3 for which

there is convergence. Also, a comparison of Equs. (3*42)

and (2.3) shows that this method produces an expression

for 3 that has the correct form,
o

The method by which | q | was derived is similar to

Miyakoda's method. The difference between these methods

is associated with the amount of detail that is known

(n) (n)
about £„ . Miyakoda used an expression for £ „ that

fitted the results exactly, whereas the above method uses

(n)
the largest fourier component of £. . . The latter

)
method is used for Equ. (3.38) because £ „ is not known.

Let c1, c2, c3, c4, s1, s2, s3 and s4 be defined

as follows
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FIGURE 3-5



142

c1 = cos ( ■& ) c2 = COS (9) c3 = COS (<p + ■& )

c4 = COS ( ip - -fr )

s 1 = sin ( -& ) s2 = sin ( ip ) s3 = sin ( tp + )

s4 = sin (ip - -3- )

It can be shown that and are given by

v„ = c1 + c2 + A x c1 + C x c2 - B x (c3 - c4) / (k + 2A
-j- —

v_ = c1 + c2 + A x c3 + C x c4 - Bx (c2 - c1) / (4 + A +
2 2 2

The expressions for w^ and w^ are derived from these
equations by replacing c1 and s1 etc.

Equs. (3.4l) and (3.42) were tested with A = B =C = 0

(a Poisson equation). The variation of Iq 1 with (3

for this case is shown by curve I in Fig. 3«5« This

shows that |q | has a minimum in the region of B= 1.6.
In fact, Equ. (3.42) gives = 1.6l. The correspond

•ing value from Miyakoda's method is (3 (M) = 1,62. Also

it was found that as the number of gridpoints increased

Pq(A) rapidly approached (3q(M). For instance, if
there were 10 x 10 gridpoints, PC(A) overestimated

Po(M) by only 3%• These results show that P0(A) is a

very good approximation to |3 (M). The reason for this

is that Equ. (3.42) approaches Equ. (2.3) as n. and n.
J

increase.

Fig. 3.5 shows that at 3o(A), the value of
!q I (q (A) say) was .88. However if q (M) = 0 (M) - 1

o o ' o

then the theoretical value of the minimum of 1q 1 is

qQ(M) = .62. Thus qo(4.) was. not a good approximation
to q (M). However, as the number of gridpoints increased

q (A) slowly approached qQ(M). This is illustrated by
the fact that even for 80 x 80 gridpoints q (A) under-
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estimated qQ(M) by 6%. Therefore, this method is not
a suitable way of estimating the rate of convergence.

The above results indicate that, for a Poisson

equation, Equs. (3.4-1) and (3.4-2) can be used to estimate

(3q, but not qQ. However, - 1 is a good estimate
of qQ. Equ. (3.4-1) was used to compare the two finite
difference schemes used in Equ. (3•3S). A, B and C

were taken to be the average value of V , V and
yy xx

2 ^ . The variation of lq„ 1 and lq„ I with B is shown

by curves I and II of Fig. 3«5« (The results for scheme

I were the same as those for the Poisson equation).

This shows that the optimum values of p were the same

for both finite difference schemes. Also, the optimum

values were the same as that for the Poisson equation.

This is because A, B and C were small.

Fig. 3.5 also shows that qQ(A)^ > q^A)^. This
implies that scheme 2 requires fewer iterations than

scheme 1. But, this result may not be significant due

to the inadequacy of this method in predicting qo>
The results described in this section indicate that,

if A, B and C are small, then the optimum overrelaxation

factor for Equ. (3*38) is almost the same as that for a

Poisson equation. It is suspected that this will also
X

be true when either NLOR or NLOR is used.

A Comparison Of Different Methods Of Solving The Balance

Equation

In the next four sections a comparison is made

between the efficiencies of different methods of solving

the balance equation.

In all the computations (X and P had values of
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n , where n was an integer such that 0 < n < 20.
10

The iterative process will be described as divergent

if the norm of the residual increases in two successive

iterations. Thus if there, is divergence when (3 = 1.5»

it is implied that there is convergence when (3= 1.4

and that it is not known what happens when 1.4 < (3

When the norm of the residual decreased monotonic-

ally, either or & was used to indicate points on a

graph. However, when this did not happen the symbol ©

was plotted. D (•&■) and D («) indicate the values of

the relaxation factor for which there was divergence.

The parts of the computer programmes that were

concerned with the iteration process are shown in

Appendix I. The programmes for the three basic types

of methods are included.

The time taken to solve the balance equation, for

a given E, depends upon the number of iterations required

(rate of convergence) and the number of computations

per iteration. Since a comparison was made between

different methods for a given area, a measure of the

efficiency is product of the number of iterations and

the operational count (the number of multiplications and

divisions at each gridpoint per iteration). This will

be referred to as the total count (this will depend upon

the value of £).

In all computations the geopotential of the 1000 mb

surface for area 91 was used (n. = 16, n. = 12). The
3- J

geopctential was ellipticised by using the second method

described in section 3«3»2. Also, except when stated

otherwise, the initial guess was 4>/f.
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E . 103 0
01—Iitw

Method 3 O.C. N.I. T.C. N.I. • T.C. Fig.

NL0R1 1.0 16 68 1088 - - 5.6a
X

NL0R1 1.0 15 50 750 - - 3.6a
X

NL0R1 1.3 16 27 452 - - 3» 6a

NLGR2 1.0 16 71 1156 - - 3.6b

NL0R2 1.6 17 35 595 - - 3.6b
X

NLOR2 1.0 15 53 795 - - 3.6b
X

NL0R2 1.6 16 17 272 31 496 3- 6b

NLSII2 1.0 15 56 840 - - 3«7a

NLSH2 1.6 16 19 504 32 512 3* 7a
a

NLAS1 0.100 14 107 1498 - • - 3.7b

NLAS2 0.225 14 33 462 - - 3.7b

NLAR1 1.2 26 40 1040 3« 8a

NLAR1 1.6 27 25 6 75 54 1458 3.8a

NLAR2 • 1.6 26 22 572 47 1222 3.8b

TABLE 3.2 O.C. ~ Operational Count

N.I. - Number of Iterations

T.C. - Total Count
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3.7.1 A Comparison Of Methods Of The First Type

A comparison of methods of the first type was made.
X

These were the NLOR, NLOR and NLAS methods. Also, the

ordering of the gridpoints as suggested by Sheldon (see

section 2.2.1) was used in conjunction with the NLOR

method (hereafter called the NLSH method).

The results of using NLOR1 are shown in Fig. 3«6a.

It shows that this method produced convergence for only

3 = 1.0. The number of iterations, operational count

and total count are shown in Table 3*2.

Fig. 3«6a also shows the results for NL0R1 . With
3

3= 1.0 and E = 10 , the number of iterations was 30 and

the total count 730. The corresponding values for

NL0R1 were 68 and 1088. Thus, with 3 = 1.0, NL0R1* was

more efficient than NL0R1.

Unlike NL0R1, NL0R1 gave a convergent solution with

P>1.0. It was also found that as (3 increased the

convergence rate increased until |3 had a value of 1.5«

At this point there was divergence. Table 3*2 shows that,
3

with E = 10 , the number of iterations with |3 = 1.4 was

almost half the number required when |3 = 1.0 was used.

Therefore it is worthwhile finding the optimum value of 3 .

X X
for NL0R1 . These results also show that NL0R1 was more

efficient than NL0R1 for all- values of 3 •

The method (Carrey's method) described in section 2.2.2

for calculating 30 f°r a linear equation, was used with
NL0R1 . It gave Po^0) = 1.36. The significance of
this, if any, is not obvious because with p= 1.36 there

was not a convergent solution.
x

The disadvantage of using NL0R1 is that it has never

*

The curves are labelled with log E. This applies to other

figures.
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been treated theoretically. Therefore the range of

for which there is convergence, and the optimum value of

(3, must be determined experimentally.

Fig. 3»6b shows the results for NL0R2 and NL0R2 .

With (3= 1.0, NL0R2 was more efficient than NL0R2.

This figure also shows that the convergence rates increased

when 0>1.O was used. In both cases Pq(E) was 1.6.
3

With this value of 0 and E = 10 , Fig. 3«6b and Table 3*2

shows that NL0R2 was far more efficient than NL0R2.

This was also true when 1.0 < (3 < pQ('E).
X

The optimum value of |3 for NL0R2 became better

defined as E decreased. Thus the value of 0 must be

chosen carefully when a small value of E is used.

The value of 0^ for a Poisson equation with n^ = 16
and n . = 12 is 1.62. This is a very good estimate of

D

0(E) and supports the suggestion made at the end of
/ X

section J>.6. Also, Carre's method was applied to NL0R2

and it was found that PQ(C) = 1.58. Therefore it is
x- X

possible that Carre's method can be applied to NL0R2 .

However, there is no theoretical support for this assertion.

The effect of the initial guess was tested for

NL0R2 . An "improved" initial guess was used (the

solution of the linear balance equation) and it was found

that it had no appreciable effect on the convergence rate.

The ordering of the gridpoints suggested by Sheldon

was used in conjunction with NL0R2 (hereafter referred

to as NLSH2). The results are shown in Fig. 3«7a« A

comparison of this with Fig. 3•6b shows that NLSH2 was

slightly less efficient than NL0R2 . The explanation of

this may be that when (i + j) even points were relaxed



150
I

the non-linear term involved ^ at other (i + j) even

points.

Finally, Asselin's method was investigated. The

results of NLAS1 and NLAS2 are shown in Fig. 3*75.

each of these cases the optimum value of a was the same

at the maximum value. However this value of a was

different for NLAS1 and NLAS2. Table 3.2 shows that when

the optimum value of a was used, NLAS2 was far more

efficient than NLAS1.

Asselin's method has never been treated theoretically.

Therefore, there is no theory to provide an estimate of

the optimum and maximum values of a ( a and a say).

However Asselin gained some insight into this problem by

analysing a linear version of the balance equation (Equ.

3.38). Using his type of analysis it can be shown that

a and |3 are related by

a . 6^—
4(1 <- 7 W)

The results from sections 2.5.4 and 2.5«5» show that

aQ and a can be estimated by using

ao =
AV(x) 2

X = 4 (1 V)
a =_2 ^ 21

C
MAX(x)

Here AV (x) and MAX (x) refer to the average and maximum

values of x.

In the particular case considered, is approx¬

imately 1.6 and thus approximate values of aq and a
are 0.35 and 0.24. Since ol > a it is expected that

o c

the optimum value of a will, be its maximum value (i.e.

0.24). These predictions agree well with the experimental
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results for NLAS2 (see Fig. 3»7b).

The advantage of using Asselin's method is that it

has a smaller operational count than the other method.

But, Table 3*2 shows that when the optimum values of the

overrelaxation factors were used, NL0R2 had a smaller

total count than NLAS2. Also NLAS1 was the least

efficient of all the methods that used NLT1.

Consider the effect of the formulation of the non¬

linear term on the convergence characteristics of the

methods discussed. When NLT1 was used it was found that

there was always convergence with P = 1.0. Also, when

it was possible to get convergence with a larger 3 , there

was an increase in the rate of convergence. But it is

difficult to estimate the optimum and maximum values of the

overrelaxation factors.

When NLT2 was used, it was found that the convergence

increased as 3 increased from 1.0. Also there tended

to be a distinct optimum value of 3 ( Pq(E) ) which had
a similar value to that for the corresponding Poisson

equation. This value could be used to give an estimate

of a for Asselin's method.
o

The above results indicate that the methods of the

first type were most efficient when NLT2 was used. This

result was predicted in section 3*6. However, due to

the inadequacy of the analysis described in section 3-6,

this may only be a coincidence.

The results in Table 3.2 show that the NL0S2 method

was the most efficient. However the supremacy of this

method is only provisional because it has not been

extensively tested.
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3.7.2 A Comparison Of Methods Of The Second Type

A comparison of methods of the second type was made.

The results are summarised in Table 3*2.

Fig. 3.8a shows the results for NLAR1. As |3

increased from 1.0, the number of iterations required for

a given E decreased until (3= 1.3 was reached. With

(3 >= 1.3 it was found that the solution oscillated.

ii (Q+1) (n)nFor example the variation of log - V with n

is shown in Fig. 3«9»

Miyakoda (1962) noted that the solution of Equ. (3*16)

sometimes oscillated. He remedied this by using

A similar proce dure was used with NLAR1. (hereafter
*

called NLAR1 ). The non-linear term took the form

4NLT=vVn,(vVn-",vVn-2))
- A<n)( A<n"17 A(n"2') - B<n)( BCn-1l B(n"2))

*

The results of NLAR1 are shown in Figs. 3.8a and 3»9»

The use of the above procedure stopped the oscillat¬

ions and increased the optimum value of 3 to 1.6.
*

Table 3*2 shows that NLAR1 was more efficient than NLAR1.
*

Another advantage of using NLAR1 is that the value of

3 can be estimated. However the disadvantage of this
\

method is that three fields of W have to be stored

whereas NLAR1 only requires the storing of two fields.

The results of NLAR2 are shown in Fig. 3»8b. It

shows that once again the optimum value of 3 was 1.6.

With this value of 3 i NLAR2 was the most efficient of

all the methods of the second type (see Table 3*2).

Therefore it is best to use NLT2 with the NLAS method.

A comparison between the methods of the first and

second type (see Table 3*2) shows that NLAR2 had over
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twice the total count of NL0R2 . However, there was

little difference between NLAS2, NL0R2 and NLAR2.

The main disadvantages of methods of the second

type are that they have large operational counts and that

they require the storage of at least two fields of V .

3.7«3 A Comparison Of Methods Of The Third Type

A comparison of methods of the third type was made.

A summary of the results is exhibited in Table 3»3»

When a method of the third type is used it is

necessary to specify two parameters (X and 3 • NLWH1

was first investigated by using p = 1.6 (the optimum

value for the Poisson equation) and varying a . The

results are shown in Fig. J.IOa. This shows that the

convergence rate was not strongly dependent upon a and

that it decreased rapidly when a > 1.0. In fact there

was divergence when a = 1.2. In the following comput¬

ations the optimum a was assumed to be 0.8.

With ex = 1.0, NLWH1 is equivalent to NLMB1. Fig.

3«10a shows that there was little difference between NLWH1

and NLMB1. But, like 3 , the optimum value of a became

better defined as E decreased. Also it is suspected that

a decreases as the number of gridpoints increases. Thus,

it is likely that the difference between NLWH1 and NLMB1

is significant if there is a large area or a small value

of E.

When a solution oscillated, Kiyakoda (1962) used
(n) (n-1) 2 2

( V + ^ ) /2 to compute (A + B ). This tech¬

nique (hereafter called Miyakoda's technique) was used
*

with NLWH1 when there were no oscillations (NLWH1 ).

The results are shown in Fig. A comparison of



156

E :103 w 11 H°o
Method a P O.C. N.I. T.C. N.I. T.C. Fig.

NLWH1 0.8 1.6 12 21 252 4l 492 3.10a

NLWH1* 0.8 1.6 13 22 286 ^3 559 3.10b

NLMB1 1.0 1.6 11 22 242 - - 3.10a

NLAU1 0.8 1.6 12 18 216 30 360 3.11a

NLAU1* 0.8 1.6 13 18 23^ 31 403 3.11b

NLAU1* * 0.8 1.6 12 18 216 30 360 -

NLSS1 1.0 1.6 11 18 191 - - 3.11a

NLMAl 1.0 1.0 10 62 620 - - -

NLWH2 0.3 1.6 18 25 ^50 53 954 3.12a

•NLWH2* 0.8 1.6 19 22 4l8 43 817 3.12b

NLWH2* 1.0 1.6 18 27 484 - - 3.12b

NLWH2* .0.3 1.6 18 23 450 48 864 -

NLAU2 0.8 l. 6 18 34 612 - - 3.13a

NLAU2* 0.8 1.6 19 34 646 75 1425 3.13b

NLAU2* 1.0 1.6 18 34 612 - - 3.13b

NLAU2* * 0.8 1.6 18 34 612 75 1350 -

TABLE 3.3 O.C. - Operational Count

N.I. - Number of Iterations

T.C. - Total Count
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this with Fig. J.10a showed that Miyakoda's technique had

little effect on the rate of convergence. But, Table

3.3 shows that it did increase the total count. Also

it required the retention of an extra field of ^ .

Therefore Miyakoda's technique should only be used where

necessary.

Fig. 3»10c shows how the convergence rate varied with

P, when a =0.8. As expected, the optimum value of 3

was 1.6.

The above computations were repeated for NLAU1 and

the results are shown in Figs. 3• 11a., 3.11b and 3»11c»

A comparison of Figs. 3*10a and 5.11a shows that the

constant E curves had a similar shape for both NLWH1 and

NLAU1. With a =0.8 (taken to be the optimum value)

NLAU1 was more efficient than NLWH1 (see Table 3«3)»

Therefore these results show that the optimum value of a

is similar for both methods and that NLAU1 is the better

method.

2
Fig. 3.11a also indicates that with E > 10 and

a =0.8 there was non-monotonic convergence. Two methods

were used to reduce this oscillation in the convergence

rate. Firstly, Miyakoda's technique was used and the
♦

results are shown in Fig. 3«11b (NLAU1 ). This, in

conjunction with Table 3«3j shows that the convergence

became monotonic and that the total count increased. The

second technique used was that suggested by White ( 19&9 )•

This consisted of reducing a by 0.1 when the convergence

became non-monotonic. The results of using this technique
* *

(NLAU1 ) are shown in Table 3«3» This shows that

NLAU1 is better than NLAU1 . Also, White's technique
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does not require an extra field of ^ , and thus it should

be used rather than Miyakoda's technique.

Fig. 3* 11c shows that with a =0.8, the optimum value

of 3 for NLAU1 was 1.6.

With a = 1.0 and (3= 1.6, NLAU1 is equivalent to

NLSS1 (see Table 3.1). Fig. 3«11a shows that there is

little difference beti^een NLAU1 and NLSS1. But, it is

likely that the difference between these will depend upon

the same factors as the difference between NLWH1 and

NLMB1.

With a = 1.0 and P= 1.0, NLAU1 is equivalent to

NLMA1 (see Table 3»1)» The results of NLMA1, shown in

Table 3*3, indicate that this method is a very inefficient

way of solving the balance equation.

So far, only the NLT1 form of the non-linear term

has been considered. Therefore the results of using

NLT2 will now be discussed.

The results of NLWH2 are shown in Fig. 3«12a. This

shows that there was a sharp decrease in the convergence

rate when a > 0.3 and divergence for a = 0.7. This

behaviour was due to the presence of ^ in F (V) (see
Equ.(3»29))« Also, even with a = 0.5, monotonic conver¬

gence did not occur.

The techniques of both Kiyakoda and White were used

in an attempt to improve the convergence rate (NLWH2
* * *

and NLWH2 ). The results of NLWH2 are shown in Fig. 3*12b.

The optimum a was 0.8. With this value the convergence
*

rate for NLWH2 was greater than that for NLWH2 with

a =0.5. Also this technique produced convergence when
♦

a = 1.0. A summary of the results for NLWB2 and
* *

NLWH2 are shown in Table 3 • 3 • This shows that there was
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little difference between NLWH2, NLWH2 and NLWH2 when

the optimum values of a are used. However a possible
*

advantage of NLWH2 is that if (X q can be found for a

given area ( aq = 0.8, in this case), then this method
ensures convergence with that a . Unfortunately, the

author knows of no way in which aq may be calculated.
The above computations were repeated with NLAU2 and

the results are shown in Fig. J.lJa. Once again there

was divergence when a = 1.0. Also with a =0.8 and
3

E > 10 the convergence was non-monotonic.

The effect of using Miyakoda's technique is shown in
*

Fig. 3.13b (NLAU2 ). This shows that the convergence

3
rate for E > 10 hardly altered, and that it increased for

3
E <10 . It also shows that the optimum value of a was

*

in the vicinity of 0.8. The efficiency of NLAU2 can

be compared with that for White's technique (NLAU2 ) by
* *

referring to Table 3«3« This shows that NLAU2 was
*

superior to NLAU2 .

In all the methods considered it was either better

or essential to use ct < 1.0. Also, whenever there was

monotonic convergence the optimum value of a was in the

vicinity of 0.8. This implies that this value of a is

characteristic of the area used.

The results in Table 3»3 show that it is better to

use NLT1 rather than NLT2. Also, that when NLT2 is used,

it is necessary to use the techniques of either Miyakoda

or White in order to obtain monotonic convergence. The

disadvantages of Miyakoda's technique are that two fields

of V are needed and that the operational count is increased.

However it has an advantage in that it produces convergence
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when a = 0.8.

Table 3»3 also shows that, with (X = 0.8, the NLAU

method is the most efficient (if NLSS1 is excluded).

However the efficiency of the NLWH method could be improved

by using a more efficient method of solving the Poisson

equation. For example, the ADI method could be used

(White (1969 ) ).

3 • 7 • - A Discussion Of The Methods Of Solving The Balance Equation

The most important fact that emerges from the previous

investigation is that it is best to use NLT2 with methods

of the first and second types and NLT1 with those of the

third type. With the converse proce dure, there tends

to be non-monotonic convergence or divergence with un¬

expected values of a or 3 . However this difficulty can

often be overcome by using either Miyakoda's technique

or that of White.

For methods of the first and second types, the

optimum value of p is almost the same as that for a Poisson

equation. When this 3 is used the NLGR method is the

most efficient. However, the NLOR method has never

been studied theoretically or used operationally and thus

there is neither theoretical nor statistical proof that

it will always give a convergent solution.

For methods of the third type there appears to be a

unique optimum value of a , provided that there is mono-

tonic convergence. However, the author does not know how

to calculate this value of a . With the optimum value of

a , the NLAU method is the best method of the third type.

Also a comparison of the results for this method with those

for the NLOR method shows that NLAU is the better method.
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3.8 The Boundary Conditions For The Balance Equation (A)

To solve an elliptic partial differential equation

it is necessary to impose boundary conditions. It is

usually desirable, and often necessary, to choose

boundary conditions which satisfy the integral properties
t

of the equation.

Consider the balance equation in the form
2

V \\) + F(W,<t») = 0 (3-^3)

Suppose that Equ. (3»^3) has to be solved in an area

bounded by curve C and that s and n are the coordinates

parallel and perpendicular to C.

The first integral constraint on W is almost

trivial. Let the quantity I be defined by

I = () 9^ ds
^ 9s
C

The physical meaning of I is that it is the total inflow

of air into the area considered. On both physical hnd

mathematical grounds it is obvious that

1 = 0 (3.W

A second itegral property of V is found by integrat¬

ing Equ. (3.^3) over the area (A) enclosed by C. The

result is

r^p

F(V,4>) dA = 0 (3.^5)
A

09W ds +
9n

Whenever possible, the distribution of ^ on the

boundary should satisfy either Equs. (J.kk) or (3«^5)«

The next few sections will deal with the types of

boundary conditions that can be used with the linear balance

equation and the balance equation.
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3.8.1 The Boundary Conditions For The Linear Balance Equation

This section is concerned with the boundary conditions

which are used with the linear balance equation.

In section 3*2 it was shown that the wind derived

from the linear balance equation i& very similar to the

geostrophic wind. Therefore it is reasonable to assume

that the distribution of 0 on the boundary is such that

the wind there is geostrophic.

If the wind normal to the boundary is geostrophic,

then

9W = 1 30
0s f 3s

However, if this is used in Equ. (3»^)? it is found that

that I ?? 0. This is because f varies around the boundary.

This problem can be overcome by using

ay/ _ i 30 _ 6 (3-^6)
05 f 05 1

Here 6^ is a constant and its value is given by
6 - L 30 ds

1
U f 3s

C
If the gridpoints on the boundary are labelled 0 too n,

then 6_1 is computed from

61 T. (^*1-~ ^(Q)) f = f(q+1) + f(q)S
q=0 • * 2

n

L
q=(

Here S is the length of the perimeter. Once 6^ is
known, the value of 0 on the boundary is computed from

0(0) = 0(_O)
f(°)

( k?)
0(q+1) =0(q) +1 (0(q+1) - 0(q)) -6 d q = 1 ,1,n

f 1
Since it is the gradient of 0 that is significant, the

choice of the zero point and of 0(0) is unimportant.

The above procedure for calculating 0 on the boundary
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was devised by Bolin (1956).

If f is taken to be a constant, f say, then 6^ = 0
(see Equ. (3.46) ). In this case, if it is assumed that

(0) = 0 (0) / f, then the values, of W are given by

0(q) = 0£g_) q =1,1,n (3.48)
f

For a small area f will not vary much and thus these
be

results will^similar to those using a variable f.
Benwell et al .(1971) used a boundary condition that

was similar to that in Equ. (3*48), namely

V = t ~ 5o (3.49)
f 2

The Coriolis parameter, f, was allowed to vary and 6^
*

was calculated so that Equ. (3.44) was satisfied. This

is a surprising choice of boundary condition because the

component of velocity normal to the boundary that lies

approximately east-west is not geostrophic, whereas the

component normal to the other boundaries is geostrophic.

The boundary condition for 0 derived from Equ. (3.46)

is based on the assumption that the wind normal to the

boundary is geostrophic. Alternatively, it can be

assumed that the wind parallel to the boundary is geo¬

strophic. In this case

9V =1 80 - 6 (3.50)
3n f 8n 3

This must satisfy the consistency condition given by

Equ. (3.45). When the linear balance equation i6 used

it is found that the value of 6., depends upon U' .

However, if the Vf.V0 term is approximated by

_1 Vf.V0 , then the value of 0_,, is given by
f ^

S6„ = 1 80 ds
f 8n

C A

2
iv 0 -1 Vf.V0
f f2

dA
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Before discussing the effect of using different

types of boundary conditions, it is worth considering

the difference between the velocity components calculated

from ^ (u and v say) and the geostrophic components

(u and v say). Consider the following form of the
6 S

linear balance equation,
2 2

V V + 1 (3d0 - IV c^=o (3.51)
■p- 3y f

If this is differentiated with respect to y and if the
2

P terms are ignored, then u - u is given by
o

V2(u-ug) = Mxx
f

Similarly, if Equ. (3*51) is differentiated with respect

to x, then
2

V ( v - v ) = (3 <J>
g *2 xy

f

Suppose that 0 = A + B sin (kx) sin (hy). If

u - u cc sin (k x) sin (h y) then it can easily be shown
6

that

, 2
u -u = B $ -A)

9 ? X h'2f k + n

Therefore this simple analysis gives (u-u) cc ( $ - A).
S

There is no such simple relationship between (v - v )
S

and 0 .

3.8.2 A Case Study

The linear balance equation was solved with different

types of boundary condition. The wind field was then

computed and compared with the geostrophic wind. These

computations were carried out for the 1000 mb surface of

area 31• The distribution of 0 , for this area, is

shown in Fig. 3*1^ an3 the two components of the geostro¬

phic wind are shown in Figs. 3«15a and 3«15h.
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FIGURE J.Ik

<J> for the 1000 mb surface of area 51

FIGURE 5.15

(a) u computed from Fig. 3*1^
O

(b) v from the same 4)
£

FIGURE 3.16

(a) (u-u ) when V is computed from the linear
8

balance equation using Equ. (3»^6) on the boundary

(b) (v-v ) from the same V
8

*

FIGURE 3.17

(a) (u-u ) when W is computed from the linear
8

balance equation using Equ. (3»^9) on the boundary

(b) (v-v ) from the same V
8

FIGURE 3.18 -

(a) (u-u ) when V is commuted from the linear
8

balance equation using Equ. (3*50) on the boundary

(b) (v-v ) from the same V
8
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The first boundary condition considered was that

given by Equ. (3.^6). The distributions of (u - u )
g

and (v - v ) are illustrated in Figs. 3*l6a and 3.16b.
g

These show that the maximum geostrophic departure, for

both components, was about 1 ms . For (u - u ), this
g

maximum occurred at the centre of the depression. This

situation came about because (u - u ) was comparatively
g

small round the boundary and $ was large and positive

at the centre of the depression. Fig. 3«l6a also shows

that the distribution of (u - u ) is similar to that of
8

$. This was anticipated in the previous section. The

distribution of (v - v ) is more complicated and, as

expected, there is no obvious relationship between this

and <t> .

The geostrophic departures were also calculated from

the solution of the linear balance equation for the .case

where Equ. (3*^9)i with 6^ = 0, was used to calculate the
boundary conditions. The results are shown in 3«17a and

3.17b. As in the previous case, the distribution of

(u - u ) is closely related to that of . However, in
g

this case the maximum geostrophic departure of 3 is

on the boundary. The reason for this becomes apparent

when the boundary condition is considered in more detail.

It can easily be shown that on the east and west

boundaries the geostrophic departure is

(u - u ) = j_ a 10
9 b f2 9y

In the previous section it was shown that, to a good
2

approximation, V (u - u ) cc 0 . Therefore it is to be
&

expected that (u - u^) cc 0 everywhere. Since <J> has its
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maximum value on the boundary, so has (u - u ). On the
&

north and south boundaries (v - v ), ~ 0 and thus the
g b

geostrophic departure of v tends to be small everywhere.
v

The last boundary condition considered was that

described by Equ. (3»50)« This allows W to be computed

only to within an arbitary constant. However this is

not important since it is only the velocity components

that are significant. The geostrophic departures are

shown in 3»l8a and 3*l8b. Once again the distribution

of (u - u ) is related to that of . It is also worth
g

noting that the boundary conditions implies, and Fig.

4.17a shows, that (u - u ) = 0 on the north and south
&

boundaries. Fig. 3*l8b shows that (v - v ) = 0 on the
s

other two boundaries and that the magnitude of (v - v )
8

tends to be less than that of (u - u )."
g

The above results show that the boundary conditions

described by Equs. (3*46) and (3*50) give more realistic

results than that described by Equ. (3*49) with 6^ = 0.
The reason for this becomes apparent when it is remembered

that it is the gradients of ^ that are used. Thus the

gradients of 4* on the boundary should be given by the

first integral of Equ. (3.8). Therefore, on the boundary,

VV and V4> should be related by

f VV = + VXM
Both Equs. (3«46) and (3«50) satisfy this kind of relation¬

ship.

The boundary conditions described by Equs. (3«46) and

(3*50) are Dirichlet and Neumann boundary conditions

respectively. Thus for the sake of efficiency it is

better to use the former boundary condition (see Chapter
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II).

In the next section the boundary conditions for the

balance equation will be considered.

3.8.3 The Boundary Conditions For The Balance Equation(B)

Kuo (1956) has shown that the first integral of the

balance equation is

(f + V2V) VV = V( <t> + V< ) + vx M
2

Here Vx M is a function of integration and = I k xVlj/1,

If the principle enunciated in the previous section is

invoked then one possible boundary condition for the

balance equation is

3V = 1 3 (»<\i (3-52)
3s (f ♦ E) 3s ~t 5

In this equation s is the coordinate round the boundary

and (V x M) is the component of V x M is the s direction.
— s * —

The wind given by Equ. (3*52) is similar to the component-

of the gradient wind normal to the boundary.

If Equ. (3*52) is to be used in the same way as

Equ. (3.^6)t then the righthand side must be made independ¬

ent of W . This may be achieved by using V*4i= lV<t>
f

on this side of the equation. The result is

ay = 1 / 00 + 1 a
as (f*y\as pais

2 _ 2n

O '(l-y)
\

64 (3.53)

Thus, once 6^ has been calculated by using Equ. (3.^)5
the above equation can be used to derive a boundary

condition for ^ .

The wind derived from Equ. (3»53) by replacing s by x

and y will be referred to as the quasi-gradient wind.

Some insight into the relationship between the
<

geostrophic, quasi-gradient and balanced winds can be

obtained by considering a set of circular isobars. If an
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isobar has radius r, then the balanced wind along the

isobars derived from the balance equation (V say)
gr

is given by
2 .

V = V - V (3-5*0
gr g gr

fr

In this particular case the balanced wind is the gradient
i

wind. If V
^ is the quasi-gradient wind, then

V V* = V - v' (3-55)
g gr g gr
fr

It can easily be shown from Equs. (3«5*0 and (3»55) that

V - V = f.
gr gr 1

V
gr

V
_i£
fr

V - V = f_
_g gr 2

V
gr

V

fr

The functions f^ and f^ are illustrated in Fig. 3»19»
This shows that for both cyclonic and anticyclonic curvat¬

ure V* is a better approximation to V than is V .
gr gr g

Another interesting feature shown in the figure is that

f^ and f^ are of opposite sign when there is cyclonic
i

curvature. Thus for this type of curvature V is an
gr

underestimate V whilst V is an overestimate,
gr g

The above discussion indicates that Equ. (3«53) can

be used to make a good approximation to the gradient wind

without the need to find the radius of curvature.

Consider the characteristics of the gradient wind

equation (Equ. (3»5*0 )• 'It can be shown that

(i) for cyclonic curvature V - V >0
g gr

(ii) V - V is large when r is small,
g gr

If Equ. (3.33) is to be of any use it is necessary

that the quasi-gradient wind should have the same properties

as V . This was tested by comparing the quasi-gradient

wind with the geostrophic wind in a case study.



*
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3.8.^ A Case Study

The data used was the same as that used in section

3.8 .2.

The.quasi-gradient wind, V' , was calculated from
g^-*

equations similar to Equ. (3*53)• This was then compared

with the geostrophic wind, V . Fig. 3*20 shows
S

(V - V* ). This shows that when the radius of curv-
g gr

ature was large, (V - V ) was both large and positive.
g g*"

Thus the behaviour of V is similar to that of V
gr gr

described in (i) and (ii) of the previous section.

However, when the radius of curvature was small (V - V )
g gr

could be either positive or negative and its magnitude

was small. This satisfies condition (ii) but not (i).

This is reasonable because V'^ is only an approximation
to V anyway. These results show that the quasi-

gr

gradient wind has similar properties to those of the

gradient wind.

The balance equation was solved with the boundary

condition described by Equ. (3.^6). The velocity

components computed from the solution will be denoted by

and v^. When Equ. (3»53) is used to calculate the
boundary conditions the corresponding components are

u^ and v^. Figs. 3.21a and 3«21b show (u^ - u^) and

(v^ - v?). The root mean square values of these fields
were also computed and they were found to be 1.2 ms^
and 2.3 ms^ . These results indicate that there is a

significant difference between the velocity components

• when the two different boundary conditions are used.

However no experiments have been carried out to find

whether this difference is meaningful or not. It is

hoped that in the future this problem will be resolved.



183

CHAPTER IV

PROBLEMS ASSOCIATED WITH THE SOLUTION

OF THE 10 -EQUATION

4.1 Introduction

This chapter is mainly concerned with the solution

of a quasi-geostrophic system of equations. In particular

great attention is paid to the UJ-equation and vorticity

equation.

First of all, the relationship between the elliptic

criterion and the condition for convergence of the

iterative scheme is considered. The choice of appropriate

boundary conditions for u) is then studied in some detail.

Next, the effect on co and <t> of some of the common

approximations made to the u) -equation are considered.

Use is made of both simple "analytical" models and a case

study. Also the meaning of partitioning introduced by

Krishnamurti (1968) is discussed and use is made of this

fconcept in the case study. Finally the consistency of

the boundary conditions used for w and ^ is discussed.
4. 2 The Geostrophic u)-Equation

Haltiner (1971) has described a quasi-geostrophic

system of equations which is consistent with the

conservation of energy (see (iv) of section 1.4).

However, as pointed out in the Introduction, the equations

used in diagnostic studies do not necessarily have to

conserve energy. Therefore other quasi-geostrophic

systems of equations may be used.
0 • ,

If only terms of the order R in Equs. (1.23),

(1.24) and (1.25) are considered, and if is replaced
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by the geostrophic wind (V ), then an alternative quasi-
s

geostrophic system of equations is

vn =1 k K V<D (4.1)9 f

2
-f I * V 0 =0 (4.2)

8 £ + Y .Vk] - f cko =0 (4.3)
81 9 0 p

00, + V V 00 + a oo = 0 (4.4)
5? "9 S~p

The value of £ given by Equ. (4.2) is usually called

the geostrophic vorticity. However, it is important to

note that this is derived from the divergence equation

and not Equ. (4.1).

If Equs. (4.2), (4.3) and (4.4) are written as

DE = 0, VE =0 and TE =0 the geostrophic u)-equation
& E E

is derived from

V2(TE ) - taiVEJ - d 3!DEj = 0
9 dp 9 at 8p 9

This comes from the definition of the a) -equation (see

Equ. (1.29) )• Substituting for TE , VE and DE gives
2 2 0 2

V(ow) + f 0 w - f 8(V .Vf] ) + V (V .V00.) = 0
dp7 8p"g 9 3p

The third and fourth terms depend upon the differential

vorticity advection and the laplacian of the thermal

advection respectively. For the geostrophic u)-equation

these terms depend only upon 0 . Due to this they are

often thought of as being the cause of the vertical

velocity. However just because 0 rather than to is

observed, it does not mean that the distributions of

0 and u> represent cause and effect. In fact an

CO-equation simply states the condition which makes the

local vorticity change (—•&-) and the local temperature change
dt
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( 51 ) consistent with one another. In other words an
at

u)-equation links the thermal and vorticity (i.e. wind)

fields.

Although the terms depending upon <J> in the

id-equation do not cause the vertical velocity, there are •

some qualitative relationships between the vertical

velocity and these terms. Let id be divided into two

parts, id^ and ld^, such that
2 2 2

v(on) ) + f aw - f a_( yn .v-ri) = o1 a?1 3p 9
2 2 2 2

v(ogoj + f aw + v(v va$) = o2
dp y 0P

It is found that

(i) (d^ is large and positive (negative) if the advection
of vorticity, V_ .Vt) , increases (decreases) rapidly with&

height.

(ii) id^ is large and positive (negative) if the thermal
advection, -V .V3$ , has a sharp maximum (minimum).

s 3p
The geostrophic id-equation may be written as

2 2 2
V (oid) + f 3 id + S = 0 (4.5) '

3?
Here S depends only upon 0 and therefore 3 is known.

If Equ. (4.5) is elliptic it can be solved as a boundary

value problem. Therefore once id has been specified

on the boundary the equation can be solved. The

vorticity equation, Equ. (4.3), may be written as

2 2
V + J"(4> 7]) — f 3u) = 0 (4.6)1 Sp

Therefore, once (d is known, this equation reduces to

a Poisson equation in This equation is always

elliptic and thus once the boundary conditions have been

specified it can be solved for
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Often approximations to the first term of Equ. (4.5)

are made. The most common is to neglect the derivatives

of 0 so that the equation becomes
2 2 2

o V u) + f 9 ui + S = 0 (4.7)
0p2

Let j^_ j ^ denote that is specified on the
lateral boundaries of the k x 100 mb isobaric surface.

Also let [h)ju and j^ooj ^ denote that u) specified on the
upper and lower boundaries. Using this notation, Fig. 4.1

shows the levels at which was known and those at which

u) and were computed. It also shows the boundaries

on which U) and were specified.

The Elliptic Criteria For The Poisson Equation And The

CO -Equation

Consider the Poisson equation
2

V X = F

Suppose that this is solved by using the SOR method.
v v(n)

Let X. . be the exact solution and X. . the solution after
10

<n> y(n) Y1Jn iterations. If E . . = X..- X.. then
ij ij ij

<n+1> (n)M ON or (n) (n+1) (n) (n+1)^E;; = £;: (1 - B) + 8 ( E •
y y p f i+i.j i-ij i.j+1 i.j-1

\

Here (3 is the overrelaxation factor. Let £ . . have

a major Fourier component of
(n) (n) i-0+j^p
£.. = q

. e

When this is substituted into the above equation it can

be shown that
)

= 4 - 4B + 13 V ♦ j'|3W
cP 4 - BV ♦ i'BW

V = c cs(-&) + cos(ip)

W = s i n (-9) + s i n (q>)

The iteration scheme is convergent if

r=FT

(n+1)
a < i.
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Therefore in this case there will be convergence if

(2 - V)( 2 - 0) > 0

The (2- 3) part of this inequality refers only to the

iteration scheme that was used. From the theory of

SOR it is known that (2- |3) > 0 for convergence. The

(2-V) part of the inequality refers to the form of the

equation that is solved. This may be thought of as the

elliptic condition for the finite difference form of the

original equation. The above considerations show that

the elliptic criterion for the Poisson equation is

(2-V) > 0

This condition is always satisfied and thus the Poisson
2

equation, with V as the finite difference operator, is

always elliptic.

Now consider the CO-equation given by Equ. (k.5)»

If the SOR method is used it can.be shown that a very

good approximation to the condition for convergence is

(1-2V) (2- 3) > 0 C4-.8)

2 V = cos( 3 )+ cos(ip )
2 2 2

2 + V o ♦ f d
o 2 m2 o Ap2

Equ. (k.8) shows that the finite difference form of the

CO -equation is elliptic if (1-2V) > 0. Therefore, if
2

y 0 is small, the elliptic condition is o > 0. This
0

result was anticipated in section 1.6.
2

If the V (oco) term in the (d -equation is replaced by
2

oV co or if 0 is assumed to be a function of pressure

only, the condition for convergence is the same as aoove,

with 2V given by

2 v = cos(O) + cos(ip)
2 2

2 * f d
w

2 I
2 m o Ap
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Therefore the equation is elliptic if 0 > 0.

The above results show that if it is ensured that

0 > 0 it should be possible to compute the solution

of an U)-equation.

. The next step in solving the u)-equation is to

impose suitable boundary conditions at both the lateral

boundaries and the upper and lower boundaries. This will

be discussed in the following sections.

4.4 The Upper and Lower Boundary Condition For CO

The kinematic boundary condition at p = 0 is u) = 0.

However it is convenient to replace this by OJ = 0 at the

tropopause and to assume that the tropopause is at a

fixed level. In the past this level has been taken to

be at 200 mb (e.g. Danard (1964) ) or at 100 mb (e.g.

Haltiner et al.(l963) and Krishnamurti- (1968a) ). In

the present investigation the 200 mb level was chosen as

the upper boundary.

Now consider the lower boundary. If there is no

topography then the kinematic boundary condition is

w = 0 at z = 0

When pressure coordinates are used this is usually

replaced by

OJ = 0 at p = 1000 mb

These are only equivalent if

(a) p = 1000 mb at z = 0

(b) OJ = 0 when w = 0

The surface pressure is not usually 1000 mb but the

maximum error involved in assuming this value is 5%.

Therefore it is reasonable to assume that (a) holds.

However it is worth noting that it is possible to use
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U) = 0 at the surface pressure (p^) instead of at 1000 mb.
To do this it is first necessary to compute p (e.g. by

G

using the altimeter equation). Then the pressure

derivatives in the to-equation can be derived from non-

centre finite differences. This proce dure was carried

out by Haltiner et al .(1963) but it is impossible to

deduce from their results the effect of using pg as the
lower boundary instead of 1000 mb. For the situation

studied in this thesis it was found that the effect was

negligible. However this result will not hold when

at the lower boundary is large or when (p^ - 1000) is

large.

Now consider (b). The relationship between w and

• to is

gw = 4>, + V.V<i> + to 9$ • (4.9)
3P

It is usually argued that ^ and V.VO are small sb
that to a good approximation

CO = - p gw

This implies that w = 0 when U) = 0. However this

argument obscures an important point. If w = 0 at the

lower boundary and if the wind is geostrophic then Equ.

(4.9) gives

w = P 4>t (4.10)
Similarly, if V = k xW +VX and only the largest

terms are considered

(0 = p<t>t + p J( V, <t>) (4.11)
*

Thus at the lower boundary the values of to and <t> ^

are closely linked. However a typical value of at
-1 2-2

1000 mb is 10 m s Therefore Equ. (4.10) implies
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that the error involved by using Cd = 0 in place of
- 4

CO = p 0 , at the lower boundary is of the order of 10T/

mb s ^ , which is small. Berkofsky (1964) investigated

the fall-off with height of terrain-induced vertical

motions. .His results imply that if 0 ccl/p^ the error

( e(p) ) induced by an incorrect lower boundary condition

( £(1000) ) is approximately
,2-3

£(p) = £(1000) x p
1000

Therefore the small boundary errors fall-off rapidly.

The above results indicate that when there is no

terrain or frictionally induced vertical velocities it is

reasonable to use CO = 0 at p = 1000 mb in place of w = 0

at z = 0 provided that (p - 1000) and $ are small.S ir

In the following computations Cd = 0 was used as the

boundary condition for both the upper (200 mb) and lower

(1000 mb) boundaries.

It is worth noting that when Equ. (4.6) is solved

for on the 1000 mb surface, ^ = 0 is usually
specified on the lateral boundaries. Therefore away from

the lateral boundaries neither Equ. (4.10) or (4.11) is

satisfied and thus the values of Cd and on the lower

boundary are not consistent.

The boundary conditions for Cd on the lateral

boundaries are considered next.

The Lateral Boundary Conditions For The Cd -Equation

Nearly all previous investigations of the vertical

velocity field have used the lateral boundary condition,

co = 0, in conjunction with an Cd-equation. For example,

this procedure was used by Haltiner et al .(1963) and
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Pedersen et al.(l969). O'Neill also computed 00 in

this way and he briefly investigated the effect of the

boundary condition on the solution. He concluded that

the main effect of using the "incorrect" boundary

condition lb = 0 was to change the vertical boundary

near the boundary. Harwood (1969) also investigated the

effect of using this boundary condition and he found that

its use tended to underestimate the "correct" value of

(0 near the boundary. Because of this, Harwood decided

to use the less restrictive condition = 0 on the
9n

boundary. However,-' he did not investigate the effect

on the solution of using this boundary condition.

Krishnamurti (1968a) used a combination of a rather

strange cyclic boundary condition on two of the lateral

boundaries, and Dirichlet boundary conditions on the

others. It was decided that it was not worthwhile

pursuing this sytem of boundary conditions.

In the light of the lack of information on the

effect of using a particular kind of boundary condition,

it was decided that it would be worthwhile making a

detailed study of the different types of boundary condition

that are used with an CO-equation. One, two-, and

three- dimensional CO-equations are used with both real

and artificial data. An examination is made of rates

at which the boundary errors decrease away from the

boundary. Also, the qualitative effect of using different

types of boundary conditions is considered.

k.5.1 The One-Dimensional Error Equation

If CO = f (x) sin (lp) then Equ. (^.7) becomes

2 2. 2 2 2,
d co - X 00 + S = 0 X = f_l 5=5 (^.12)
dx? 0. a
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Here 1 = 2Ti/L where L is the wavelength in the p
P P

direction. Let F and G be the correct values of U) at

x = 0 and x = L and let e(x) be the error in the

vertical velocity produced by using the incorrect boundary

conditions U) = 0 at x = 0 and x = L. Since Equ. (^f.12)

is linear, £(x) is given by

2 2
d E - X E = 0 £(0) = F E (L) = G

dX2 <*•«>
This is the one-dimensional error equation and has a

solution

E (x) = £ (0) f (x, L,X ) + e(L) f2 (x, L, X ) (^f.l^)
~\x -XL

f (x,L X) = e - e sinh (Xx) f?(x,L, X ) = sinh ( X x)
sinh (XL) sinh (XL)

If L is large the distributions of E(x) near the

x = 0 and x = L boundaries are

/ x -x , . / \ -X(L-x)e(x) = E (0) e e(x) = £ (L) e

These clearly show that in the vicinity of the boundaries,

the boundary error decays exponentially. It can also

be shown from Equ. (4.1^-) that, if F and G are finite,
-Xx

E (x) —> £(0) e as L —> co.

The distribution of e(x) was found using-the

following parameters
-2 p o o -4 _i

0 = 4- x 10 m mb s L = 1600 mb f = 10 s

5 P -6 _1
d = 10 m X = 1.96 x 10 m

In units of mb s^ , the two sets are boundary conditions

used are

-4 - 4
(a) E(C) = 30 x 10 (b) E(0) = JO x 10

-4 - 4
£ (L) = JO x 10 £(L) =-30 x 10

Also two values of L were used , namely L = 13d and

L = 21d. The results of these computations, presented

in Fig. k.2, shows that the boundary error near the
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p

mb

2
0 x 10
2 -2 -2

m mb s

6
A x io

-1
m

dio

400 4.16 1.9 12.0

600 2.15 2.7 8.5

800 1.18 3.6 6.4

4.1

P A x 106
-1

m

(1 x 106
-1

m

d10
mb

400 1.9 2.8 8.2

600 2.7 3.4 6.8

800 3.6 4.2 5-5

I 2 T
TABLE 4.2 n = J A + h h = 2u I 30d

-4 -1
Units of 10 mb s

-6 -1
Units of 10 m

value at a = 0 from decay rate at a = 0 from

Equ. (4.21)
or Equ. (4.22) Fig. 4.4

Equ. (4.21)
or Equ. (4.22) Fig. 4.4

dav(a)

rmse(a)

9.8

12.1

10.8

13.8

1.95

2.42

1.91

2.32

TABLE 4.3
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x = 0 boundary decreased at the same rate for all

combinations of L and boundary error. However, the

value of E(x) after a few gridlengths depended upon

£ (0), e(L) and L.

Now consider the error at a distance 4d from the

x = 0 boundary, E(4d). Fig. 4.2 shows that, for a

given value of L, £(4-d) decreased as £ (L) / E (0)

decreased. Also, for given value of £(0) and E(L),

e(4-d) either increased or decreased according as

E (L) / e(o) was less than or greater than zero. Thus,

in this simple case, an increase in the distance between

the boundaries does not necessarily imply that the error

at a given distance from the boundary will decrease.

The decay rate of the boundary error depends upon 0

which is a function of pressure. The variation of X

with pressure, for a standard atmosphere is shown in

Table 4-.1. Also, the number of gridlengths (d )

required for the error to decay to 1/10 of its boundary

value is shown. These results show that when the

pressure increases from 4-00 mb to 800 mb, the value of

d-^Q is halved. However, it is important to bear in mind
that the boundary error at the 4-00 mb level is usually

less than that at the other two levels.

So far only a one-dimensional case has been

considered. The results from this are not directly

applicable to the two-dimensional case because in two

dimensions the rate at which the boundary error decays

must depend upon the distribution of the boundary error

along the boundary. In the next section an error

equation that is closely related to the two-dimensional
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error equation is considered.

4.5.2 The ly-Dimensional Error Equation

Consider a two-dimensional problem where

UJ = f (x) g (y) sin (lp). Equ. (4.7) then becomes

d2ui * 82u - \ u> ♦ S' = 0 Ct.15)

Suppose that the actual distribution of CO on the

boundary is

CO^ = A sin (kx + a ) sin (hy + 3 )
The error produced by using co^ = 0 instead of the
correct distribution is given by

2 2 2
9 e + 9 e - X e = 0 e = Asin(kx+a)sin(hy+3),if ^0X2 dy2 b

Let two of the boundaries of a rectangular region be at

x = 0 and x = and let the y = constant boundaries be

distant from the region under consideration. Equ. (4.16)

now reduces to the 1-J-dimensional error equation
2 2- v

9 e - u, e = 0 e = Asin(kx+a)sin(hy + B)
^ b

p."2 = X + h h = 2 n/ L y (4.17)
Here L is the wavelength of £, in the y direction.

y

The solution of Equ. (4.17) is

e(x,y) = £ (0,y) f1 (x, L1, |JL ) + e (L1,y) f2 (x,L1,|l )
e(0,y) = A sin(a ) sin (hy + 3 ) (4.l8)
E(L1,y) = A sin (kL^ + a) sin (hy + 3)

As L —> co (i.e. the boundary error becomes constant
y

along the x = constant boundaries)-, £(x,y) becomes

identical to £(x) (see Equ. (4.14) ). Also, as

L —> 0, £(x,y) becomes zero everywhere.
y

Near the x = 0 boundary

£(x,y) = £ (0,y) e
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Therefore the boundary error decays exponentially away

from the boundary. (This is also true near the x =

boundary). As ly increases, [1 deceases and d^ increases.
Thus the boundary error decays rapidly or slowly

depending upon if the boundary error changes sign rapidly

or slowly. Fig. 4. 3 shows e(x,y) for various values

of L and L... The boundary conditions were the same as
y u

that denoted by (a) in the previous section. Fig. 4.3

clearly illustrates the dependance of p. and e(x,y) upon

Ln and L .1 y

A reasonable value for L is 3000 km (i.e. 30d).
y

With this value of L , = 21d, and the static stability

for a standard atmosphere, the values of ^ and d^^ were
calculated (see Table 4.2). A comparison of these

results with those in Table 4.1 shows that the one-

dimensional model overestimates d^. Further it is
expected that the values of d-.^ for the 1-J-dimensional
model are greater than (those for a 2-dimensional model

(i.e. where the variation of the boundary error along the

x = constant boundaries is taken into consideration).

Let dav and rmse be the difference in average and the

root mean square error between the correct solution and

that using to = 0 on the boundary. The variation of

these quantities as a function of the distance from the

boundary (a) can be investigated in terms of

dav(a) =

L-a i-a
'2

'a c(x,y)dxdy (4.19)

rmse(a) =

A =

J-„-a J_„-a
2 1

a vJ e(x,y)dxdy (if<20)
A

r\ Lr a« L- a
2

d x dy
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Here and are the dimensions of the original area

in the x and y directions.

If Equ. (. 18) is substituted into Equs. (4.19)

and (4.20) and if it is assume'd that a « and

a << L-,, and that L„ ~ L , then2. 2 y'
-a ( (1 - 2 )

dav (a) = ( E (0) + £(L) ) e L1 (4.21)

^L1
"I -a ( \i - 1 )

J 2 2e(q) + e(L) e "^1 (4.22)

2 p. Li
Here e(0) and e(L) are defined by

e(0,y) = e(0) sin (hy +3) E(L1>y) = £(1^) sin (hy
Equs. (4.21) and (4.22) show that both dav (a) and

rinse (a) decay exponentially with a.

The decay rates depend upon both |l and the

dimensions of the region and that they are different for

e(x,y), dav (a) and rmse (a). Equs. (4.21) and (4.22)

also show that as p. increases (i.e. L decreases), both

dav (0) and rmse (0) decrease and the rates of decay of

dav (a) and rmse (a) increase.

The value of dav (0) can also be computed by

integrating Equ. (4.17) w.r.t. x between 0 and L^. This
gives

dE d E

dav(O) = —8Lidx i d x
— (<k2J)

If Equ. (4.17) is multiplied by £ and a similar integrat¬

ion performed then
ed e

rmse(0) =

_ e d_E
l_ dx 0 _

'Li. .2

0

d e '
dxl dx

h2l, n2L,
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FIGURE 4-4
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It is found that, provided |iL^ > 3i "the values of
dav (0) and rmse (0) derived from Equs. (4.21) and

(4.22) agree to within 10% with those derived from the

above equations. It is worth noting that there are

similar equations to those above for the two-dimensional

case.

From the distribution of e(x,y) with L = 30d an<i
7 1

= 21d (see Fig. 4.3) dav (a) and rmse (a) were

calculated.

These are shown,along with e(x,y), in Fig. 4.4-.

Clearly they all vary exponentially. Table 4.3 shows

the values of dav (a) and rmse (a) at a =0 and their

decay rates. The corresponding approximates values

calculated from Equs. (4.21 and (4.22) are also shown.

A comparison shows that both Equs. (4.21) and (4.22)

give good estimates of the values at a = 0 and the decay

rates.

So far only the difference between the "correct"

solution and that using u) = 0 on the boundary has been

considered. In the next section the difference between

solutions using Dirichlet and Neumann boundary conditions

is described.

4.5.3 A Comparison Between Dirichlet And Neumann Boundary

Conditions For The Cne-Diaensional 00 -Equation

Suppose that W is given by Equ. (4.12) with

S' = F sin (kx + 5 )
2 2 2 2 2

d U) - X 0) = F sin (kx + 5 ) X - f 1 (4.25)
, 2 -o
dx

The general solution of this is

10 = A e + Be ^ x _ f sin (kx + 6 )
~2
v
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2 2 2
Here V = k + A. and the arbitary constants A and B

must be determined from the boundary conditions,

(i) When U)(0) = 0 and w(L) = 0 (Dirichlet)

UJ (x) = F
1 ~2

V

(ii) When

£ 2 a. sinh ( Ax) + e X X sin ( 6 ) - sin (kx -!• 6
dOJ
dx

= 0 and

'0

dOO
dx

= 0 (Neumann)

r "* x.x ~|
co^ (x) = F 2 (3 cosh ( X x) - k e sin ( 5 ) - sin (kx +5)1

v"2 X

2 ex. = [ sin (kL + 6 ) - sin ( 6 )
-XL

2 J3 =

sinh (X L)

sin (kL + 6 ) - cos (5 )
sinh ( X L)

-XL
k

X

If e(x) = - a)y anc* Y = k cos (5 ) + sin ( 5 ), then
e (x) = ^ [ e~XX (a + p -y ) - eXX (a - 3 )]

From this equation it can be shown that if XL » J, then

e(0) -

E(L) =

- F

F
F
~2
v

k cos ( 6 ) + sin ( 5 )
L X

sin (kL + 5 ) ^ k - 1^
These values of e(0) and e(L) can be used in Equs.

(4.21) and (4.22) to find the values of dav (a) and

rmse (a) at a = 0 and their rates of decay. Further, due

to the form of the boundary conditions, it is possible to

put dav (a) and rmse (a) in terms of The boundary

conditions for and U)^ are such that

E (0) = UJ2 (0) d£
dx '0

= duj-j
dx~ 0

e(L) = w2 (L) d £

dx
L

= dux
dx

Thus Equs. (4.21) and (4.22) can be put in terms of

W2 (0) and 0) (L). At a =0, these equations
give

dav (0) = 00 (0) + id (L)
_



 



205

rrase (0) = / (O) +" (b^ (L)
J 2 XL

Using Equ. (4.23) dav (0) can also be put in terms of

u)^. However the value of rinse (0) derived from
Equ. (4.24) cannot be put solely in terms of u)

It is reasonable to assume that the vertical velocity

is zero when the forcing function is zero. Therefore

the 'correct' solution of Equ. (4.25) ( lb ) is given byc

lb = - F sin (kx + 5 )
c — —

( r + kM

This, along with lb^ (x) and (b^ (x), was computed using
the following parameters.

-6-1 5
X = 1.96 x 10 m d S 10 m L = 3Gd

-14 -2 -1
F = 2.5 x 10 mb m s k = 2TE/L 6 = TJ/4

The results shown in Fig. 4.5a indicate that both

lb and lb^ have the same basic distribution (e.g.* they
have the same number of maxima and minima). However,

there is a systematic difference between the solutions

(i.e. ib > (b^ everywhere). The reason for this become
apparent when Equ. (4.21) is written as

- a (H - 2)
dav (a) = dav (0) e L

This indicates that the sign of dav (a) (and that of

e(x) ) is determined by that of dav (0) which depends

upon e(0) + £(L). Therefore, if both e(0) and £(L)

have the same sign or if one of these is much larger

than the other, it is possible to determine the sign of

e(x). In the case considered £(L) = 0 (because

X — k) and thus the sign of both dav (0) and £(x) is

determined by that of e(O) (i.e. lb ^ (0) ). Since

(b^ (0) < 0, it follows that both dav (0) and e(x) are
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negative and therefore 0J^ > 0) This means that at
a positive maximum the magnitude of is less than

that of The reverse is true at a negative minimum.

However, if dav (0) > 0 the opposite is true.

Consider the distributions of U), , U) _ and W near12 c

the x = 0 boundary (see Fig. k.$a). There is a negative

minimum of W at about kd from the boundary. The

effect of using the Neumann boundary condition is to

increase the magnitude of the minimum and to shift it to

the boundary. The corresponding effect of using the

Dirichlet boundary condition is to shift the minimum

slightly away from the boundary and to reduce its

magnitude. The net effect is to produce a large

difference between u) and near this boundary. Near

the same boundary it is found that | td^ | < | 10^ | and
that 1 3 W > 0. Also tb is such that 3 u) 1 > 0.

— -—-1 2 c ——

W| on 3n ( w2_ to )
By manipulating the equations for Od^ and U) 2 it is found
that these results will always apply near a boundary if

S* is large.

Fig. shows the gradients of and It

is worth noting that, unlike U) and 0dp, dux and dw
dx dx

have opposite signs over a region of ^>d near the x = 0

boundary.

It will be shown later than in more realistic

situations the differences between solutions using

Dirichlet and Neumann boundary conditions resemble those

between u)^ and ui^.
^•5*^ Two-Dimensional Error Equations

In previous sections the properties of one-and

l-jr-dimensional error equations were investigated. Now
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the two-dimensional error equations derived from a

Poisson equation and a Helmholtz equation are considered.

First consider the Poisson equation
2

VX-F X = X on the boundary
5

Knighting (1962) derived an expression for the average

error, £ (a), in a circular region of radius a, where

X = 0 is used in place of X = X on the boundary.

He showed that

2TC

a> = 1
211 u

X d£
s

0

I

Here is the coordinate around the boundary. Knighting

argued that for large areas X and ■& are uncorrelated
s

and therefore e(a) is almost zero. However his

analysis gives no information about E(a) when the area

is small or about how the boundary error changes away

from the boundary.

The above problems are investigated for a Helmholtz

equation derived from Equ. (4.7) by supposing that

to = f (x,y) sin (lp). If co on the boundary ( co^) varies
sinusoidally with x and y, then the equation for 00 is

2 2.
V CO — X CO + S = 0 W = A sin (kx +a ) sin (hy + 3 )

The equation for the error, E , introduced by using

W. = 0 is

2 2
V e - A. £ = 0 E = A sin (kx + a ) sin (hy + 3 )

(4.26)
It is difficult, if not impossible to find an analytical

solution of this equation. However it is possible to

derive simple approximate expressions for rmse (a) and

dav (a) (defined by Equs. (4.19) and (4.20) ). The

following analysis can also be applied to a Poisson
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equation.

Suppose that Equ. (4.26) applies is a rectangular

region with dimensions 2L^ and 2L^ (see Fig. 4.6).
Let A and C be the area and circumference of this

region. Near the y = boundary, an approximate

expression for is
- H (L - y)

E = E e ^
b

Here fi is related to both X and k . There are

similar expressions for £ near the other boundaries.

Using these it can be shown that, when k = h, approximate

expressions for dav (a) and rinse (a) are

- p. a
dav (a) = d e

(l A (1 - Ca)
A

rmse (a) =| d S0 ' -M-a2 e

2 |1 A (1 - Ca)
A

Here d is the gridlength and 3^ is the sum of the errors
at the gridpoints around the boundary. Similar iy s2
is the sum of the square of the errors. When a is small,

the above equations become

-a(H - C)
dav (a) = dS., A1 e

\lA (4.2?)
- a ( \i - C )

rmse (a) " = [11^ e 2"J 2[i A

Before these equations can be used it is necessary

to find |i . An examination of Equ. (4.26) suggests
2 2

that |1 = k + A when k = h. However, the situation
2

is much more complicated when k £h. If |i = Ik + A
rr-r

and [l = J h + A , and if S^ is divided into the sum of
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the errors along the y = constant boundaries (Sx^) and
along the x = constant boundaries (Sy^), then an
approximate expression for dav (a) is

- [1^ a - |1 r a -j G_ a
d e ASx x Sy y1 e + J1 e

LL |irx y

A

A similar expression can be derived for rmse (a).

However it will be shown later that it is not necessary

to use these complicated expressions because Equs. (4.27)

and (4.28) can be used with p. = |_t such that

M-^ < |i < V- 2_ (°r v^-ce versa).
The validity of Equs. (4.27) and (4.28) was tested

for both Poisson and Helmholtz equations. In particular
* *

the values of dav (a) and rmse (a) at a = 0 and the

decay rates were computed and compared with the* actual

values. These computations are described in the

following section.

4.5.5 Computations Of dav (a) And rmse (a)

Equ. (4.26) was solved several times with different

values of k and h. Different values of X were also

used and the computations were carried out for two areas.

From the solution (e) the values of dav (a) and rmse (a)

were calculated for several values of a. The results

were then compared with those derived from Equs. (4.27)

and (4.28).

The two regions used had areas 13 x 21d and
5

29 x 21d with u = 10 m. Within these regions

. Equ. (4.26) was solved with X = 2 x 10 ^ m^ (a Helmholtz

equation) and X = 0 (to avoid confusion this will be

referred to as a Poisson equation). The values of

k and h which were used corresponded to wavelengths of
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lOd (h = 6.28 x I06m1 ), 30d (h = 2.09 x 106 m1 )

and infinity (h = 0).

Once dav(a) and rmse(a) were known, their decay

rates ( Y and Y ) were computed. The values of
a r

u and Ll were then calculated from
a r

= Ya + c \l = y + c
A r r 2A

* *

These were then used to give dav(O) and rmse(O) For

/ 2 2'the cases where k = h, p. = J A. + k was also used to

compute these quantities. The results for the small

and large areas are shown in Tables 4.4 and 4.5

respectively.

-17:
Table 4.4 shows that when k = h, [i. is similar to

T
k . It also shows that the use of both [J.

and in Equ. (4.28) gives good estimates of rmse(O).

They can also be used effectively to give estimates of

dav(O).

The value of u for case SH_ is missing because
a 2

dav(a) changed sign between a = 0 and a = d. The

results for case SH^ (with those for LH^) are shown in
Fig. 4.7. This shows that although rmse(a) decreased

exponentially, dav(a) increased and then decreased.

This behaviour is due to the fact that the corners, which

were ignored in the derivation of Equ. (4.27), sometimes

have a large effect on dav(a). Therefore the use of (J.
3.

* *

to give dav(O) and rmse(O) sometimes produces inaccurate

estimates of dav(O) and rmse(O) (e.g. see cases 3H and

SP^). However it is worth' noting that in all cases
*

dav(O) has the same sign as dav(O). Thus Equ. (4.27)

always predicted correctly if there would be an over-
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estimation, or underestimation, of the vertical velocity.

The cases denoted by subscript 3 have k£h.

Fig. 4.8 shows the results for case SH-, (with case LH__).
3 3

These results, with those in Table 4.4 indicate that the

behaviour of rmse(a) can be described by Equ. (4.28) even

when |f is not the same on all boundaries. Unfortunately

there does not appear to be an easy way of estimating

the appropriate value of (i. .

The cases marked with subscript 4 used a constant

value of boundary error. For the Helmholtz equation,
* *

dav(a) and rmse(a) produced good estimates of dav(O)

and rmse(O). However for the Poisson equation both

X and [J. are zero and thus Equs. (4.27) and (4.28) cannot

be used.

The results for the large area are summarised in

Table 4.5« An examination of this reveals that the

above comments and conclusions also apply to the results

for the large area.

The above results show that if the error on the

boundary is known, and if p can be estimated, then the

behaviour of rmse(a) can be easily described. This

also applies to a lesser extent to dav(a). For example,

if a Helmholtz equation is solved with 3 to = 0 on
3 n

the boundary then it is easy to estimate the effect of

using 0) = 0 on the boundary.

4.6 The Boundary Conditions For The Two-Dimensional

10-Equation

To evaluate the usefulness of a particular type of

boundary condition, it would be necessary to solve the

CO-equation with the boundary condition and to compare it
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with the actual distribution of co . Unfortunately the

latter is not known. However, in the previous section

it has been shown that the boundary error tends to

decrease exponentially away from the boundary. Thus,

if the CO -equation is solved in a large area (denoted by

L), the values of CO near the centre should be almost

independent of the boundary condition. If this is so,

then the solution in a central area (denoted by S) is a

good approximation to the actual vertical velocity.

Thus the suitability of a boundary condition can be tested

by using it to solve the co-equation in area S. This

solution may then be compared with the solution in area

L.

Before the above procedure can be carried out, it is

necessary to choose the boundary condition to be used in

area L. In the past two types have been used. These are

(i) ( co )b = 0 (ii) CON = 0^b
Since the distributions of CO , derived by using these,

have given meaningful results in the past, it is reasonable

to use one of them in area L. Since it is not known which

one is best, computations were carried out for both.

The two-dimensional co -equation used was
2 2, 2 2 2

Vco-Xco+S=0 X = f 1 (*f.29)
o

S' was ca.lculated from for the 600 mb level. The

areas L and S corresponded to regions 11 and 51 with two

gridpoints missing normal to their boundaries. In terms

of the gridlength d, these regions had dimensions of 2?d

by 19d and 19d by lid. The parameters used were

2 , -8-p -2 2 -2 - 2 > "6-1
f = 1.226 x 10 s 0= 1.97 X 10 m mb s X = 3.1 x 10 m



 



FIGURE4-10



220



221

The solutions of the two-dimensional Id-equation in area

L with boundary conditions (i) and (ii) will be called

CO (L) and (L).

The root mean square difference (rmsd) and the

difference in averages (dav) were computed for <d_^ (L)
and (L) as a function of a. The results are shown

in Fig. 4.9. Since area S is the same as area L with

a = 4d, this figure shows that in area S,
"4-1 -4 -1

rmsd = 2 x 10 mb s and dav = .8 x 10 mb s

These are far from negligible. Figs. 4.10a and 4.10b

show id (L) and (d^ (L) in area S. An examination of
these figures shows that this area, the distributions of

(L) and u)^ (L) are similar. This implies that the
"correct" distribution of id in area S is similar to that

exhibited in either Figs. 4.10a or 4.10b. Thus the

quality of a boundary condition can be tested by using

it to solve Equ. (4.29) in area S and comparing the

solution with either the- distribution of id (L) or

Cd2 (L).
The results in Figs. 4.10a and 4.10b can also be

used to test Equs. (4.27) and (4.28). The values of

|l and [J. were calculated from the figures and they
* *

were then used to compute dav (0) and rmsd (0) . It

was found that these estimates of dav (0) and rmsd (0)

were within about lp/o of the correct values.

From the definition of dav (a), dav (0) = id 2(L) - k'.
Further, Fig. 4.9 shows that dav (a) -> 0 for all a.

Thus the magnitude of to 2 (L) is greater than that of

<d^ (L) over most of the area. This fact is illustrated
by the profiles of ld^ (L) and (d (L) across AB (see
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Figs. 4.10a and 4.10b) which are illustrated in Fig. 4.11.

This behaviour was anticipated in section 4.5«3«

In the next two sections the characteristics of

both Dirichlet and Neumann boundary conditions are

considered. This work is based on the assumption that

the "correct" distribution of to in area S is similar

to that of to (L) or w^CL).
4.6.1 Dirichlet Boundary Conditions

A boundary condition of this type has the form

( u> )b = f (x, y)
The solution of Equ. (4.29) with this boundary

*

condition can be split into two parts, <-0 and to , which

are given by
2 2

V to-Ato+S' = 0 (to) = 0
2.2* »^

V u) - A to = 0 ^t°^b=
*

The solutions to and to can be thought of as the vertical

velocity due to S* and that due to the boundary condition
* *

(to ) = f (x, y). In section 4.5-4 it was shown that to

decreases away from the boundary, and that the rate of

decrease depends upon both A and the variation of

f (x, y) along the boundary. This implies that to is more
♦

important than to near the centre of the region

considered.

If Equ. (4.29) is solved with two different boundary

conditions (f^ (x, y) and f^ (x, y) ) then the difference
between the solutions ( £ ) is given by

2 2
V £ - A e = 0 (e) =^(x,y) -f2(x,y)

Therefore the difference between the solutions decreases

away from the boundary at a rate which depends upon A and

the variation of ( £) .



FIGURE4-12
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So far, only one Dirichlet boundary condition has

been used, namely ( cu ) = 0. However, others can be

imposed. For instance, if it is assumed that 0) varies

sinusoidally with x and y along the boundary, Equ. (4.29)

gives ■

, s 2 , . . 2(u)),. = v (S ),. Y = 1
D ' b —ry j

" ( X + li + TsT )

V^en this was used in area S, the solution was called

to^ (S). The corresponding solution using ( oj = 0 was
00^ (S). These two solutions are illustrated in Figs. 4.12a

and 4.12b. A comparison of these with Figs. 4.10a and

4.10b reveals that go
^ (s) and go^ (S) are similar to

both go^(L) and go^(L). However there are some
important differences which will be discussed later. The

value of rmsd between go^ (S) and U)^ (S) was computed
for various values of a. It was found that rrnsd decreased

very rapidly. The reason is that S* varies very rapidly

along the boundary and therefore the decay ofEaway from

the boundary depends only upon the value of \ .

a comparison of go^(s) and co^ (l) (see Figs. 4.12a
and 4.10a) shows that the use of ( go )^ = 0 produces
isolated maxima and minima near the boundaries. Also,

in these regions the magnitude of go tends to be under¬

estimated. Another consequence of using this boundary

condition is that there tends to be a relationship between

the sign of the gradient of go normal to the boundary ar.d

u) itself, in the vicinity of the boundary. This relation¬

ship is

l 9 co >o
GO 9 n
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Now compare u) (S) and id (L) (see Figs. 4.12b
P 1

and 4.10a). Since 0) is usually large when S is
v 2 i

large, the use of ( u) )^ = y (S )^ ensures that areas
of large id on the boundary are located correctly.

However, another effect of using this boundary condition

is that it produces spurious results on parts of the

boundary. These two effects are illustrated by the results

on and near the eastern boundary. The overall effect

of using this boundary condition is to make both -co , and

its gradients, very irregular in the vicinity of the

boundaries.

In the next section the effect of using a Neumann

boundary condition is considered.

.2 Neumann Boundary Conditions

When this is used with Equ. (4.29) it is not possible to

split 0) into id and id (as was done for Dirichlet boundary

conditions) because (d is a function of both f (x, y) and

to .

Unfortunately the value of f (x, y) cannot be derived

and thus f (x, y) = 0 is usually used. The solution of

Neumann boundary conditions have the form

Equ. (4.29) with denoted by id^tS)
and is illustrated in Fig. 11c. A comparison of this

with ld^(S) and ld^(S) (Figs. 4.12a and 4.12b) indicates
that all three solutions are similar. However, (d^ (S)
has certain characteristics which differ from those of

solutions that employ Dirichlet boundary conditions.

The gradient of ld^(o) normal to the boundary is zero
and so the contours of ld^(S) must meet the boundaries at
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right-angles. Thus the maxima and minima of uJ^Cs) near
the boundary are extended towards the boundary. This is

especially noticeable on the eastern boundary.

A comparison of oo^S) with CO^(L) also illustrates
the elongation of the maxima and minima near the boundary

(see Figs. ^.12c and ^.10a). Further examination of these

figures reveals that, near the boundaries, OO^S) some¬
times overestimates and sometimes underestimates the

vertical velocity. In general it is found that if

> 0 near the boundary of ara S, then uj^(S) tends
to be greater than co^(L). The behaviour was anticipated
in section 4.5»3*

It is worth noting that neither co^(S), or

U)^(S) produced the correct distribution of U) in the
vicinity of the south-west corner. However elsewhere

these solutions were reasonable.

^■•6.3 A Discussion Of The Results Of Using Different Boundary

Condition With The Two-dimensional 00-Equation

From the results in the previous three sections, the

characteristics of the different boundary conditions can

be deduced. Let CO be the "correct" solution of Equ.

Cf.29) and let CO.. be the solution when ( 00 ), = 0 is used.
1 b

It is found that, near the boundaries, there tends to be

(a) maxima and minima of 00^
(b) j^1 | < ] co |
(c) gradients of oon such that J. 9 d) > q

oj1 0 n1
The corresponding results when/9co\ = 0 is used (with

solution CO are

(a) a displacement of the maxima and minima of CO onto

the boundary
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(b) a change in magnitude of the vertical velocity so

that d a) 1 > 0
a n oj2- to1 #

(c) a zero gradient of normal to the boundary.
2 #

If CO_ is the solution when ( (0 ) = y (S ), is used,
3 b 1 b

then it is found that, near the boundary,

(a) U) is often very similar to (0 when CO is large.

(b) CO often has a different sign from that of CO
3

when CO is small.

(c) both CO and its gradients are very irregular along
J?

the boundary.

It is not easy to choose the best boundary condition.

Both CO^ and 10^ are systematic distortions of the
"correct" solution. Further, the distortions are such

that the differences ( CO - CO ) and (CO - h)^) tend to be
less than the difference between CO and CO^. The

2
distortions caused by using ( co = y (S are not

systematic. Thus co approaches CO very rapidly away

from the boundary. This means that this boundary condition

is useful provided the solution at the first few grid-

points can be ignored. If this is not possible then one

of the other two boundary conditions must be used. Due

to the amount of computer time required to solve a Neumann
*

problem it would be preferable to use (CO ) = 0.

In the next section a three-dimensional co -equation

is considered.

4.6.k The Boundary Conditions For The Three-Dimensional

CO -Equation

Equ. (^.7) 'was used in an investigation of the

effect of both Dirichlet and Neumann boundary conditions

on the solution of a three-dimensional (0 -equation. The
* In retrospect, it is clear that it can never be possible

to draw general conclusions regarding the relative accuracy
of d) , and CO.. since this must depend on the particular
form of the forcing function.
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FIGURE 4-14
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horizontal boundary conditions were in = 0 on the 200 mb .

and 1000 mb surfaces and the lateral boundary conditions

were

(i) ( CO = 0 ; giving a solution (L).

(ii) (x-^| = 0 ? g'iving a solution U) (L)
o n'b d

The computations were carried out in a region with

horizontal dimensions 21d by 29d (using data from area 11).

The region contained five isobaric surfaces with

Ap = 200 mb.

The distributions of 10^(L) and (L) at the
600 mb level are illustrated in Figs. 4.13 and 4.14.

An examination of these figures reveals that the character¬

istics of 10^ (L) and U)^ (L) near the boundary are the
same as those found for the two-dimensional equation. .

Now consider the central region corresponding to

a = 4d. In this region U) ^ (L) and (L) have similar
distributions, but differences are still discernible.

An estimation of this difference can be made by referring

to Fig. 4.15. This shows the root mean square difference

(rmsd) and the difference in averages (dav) between

<0X (L) and U)^ (L) at the three interior levels. As in
previous cases, both rmsd and dav vary exponentially with

"4 -1
a. At the 600 mb level, with a = 4d, rmsd = 3«5 x 10 mb s

"4-1
and dav = 1.3 x 10 mb 3 . Even with a = 8d,

~4 -1 ~4 -1
rmsd = 1.1 x 10 mb s and dav = .9 x 10 mb s

These results imply that, even near the centre of the

region considered, the error due to the boundary condition
-4 -1

is at least of the order of 10 mb s This is also

true for the other two levels. Therefore, for this

particular case, it is not worth computing CO to an accuracy
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-4 -1
greater than 10 rnb s

As in sections 4.6l and 4.62, boundary conditions (i)and (ii)

were used to compute the vertical velocity in central

region (corresponding to a = 4d). The solutions will

be referred to as W^(S) and co^Cs). A comparison of
these with the "correct" solution (either w^(L) or (^(L) )
was made. It was found that the characteristics of the

solutions using (i) and (ii) were the same as those for the

two-dimensional case (see section 4.63).

As a by-product of these investigations, it is worth

noting the similarity between Fig. 4.10a and the central

portion of Fig. 4.13; and also between Fig. 4.10b and

Fig. 4.14. Therefore, if only the general features of

the vertical velocity field are required, it is sufficient

to use the two dimensional W-equation (Equ. (4.29) )•

4.7 Previous Investigations Into The Relationship Between The

Static Stability And The Vertical Velocity

The most comprehensive investigation into the effect

of the static stability on the vertical velocity, was

carried out by Haltiner et al.(1963). They defined the
*

static stability (0 ) as

0* = RT 8T

pGp 9p
This is related to the static stability used in this thesis

♦

by 0 =: H 0 . But, despite the difference between
P*

0 and 0 , the general conclusions of Haltiner et al.

are applicable to the use of 0 . They used three

different static stability parameters.
— *

1. constant static stability, 0 .

_*
2. pressure variable static stability,o .
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3. point variable static stability, 0 .

The geostrophic to -equation (without the terms depending

upon the gradients of the stability) was solved with

the above stabilities and the solutions will be referred to

as tb , CO and to .

They concluded that

(a) the greatest differences between to , (0 and to

occurred when the vertical velocity was greatest.

(b) l(0l<l(0lat maximum values of vertical velocity

on the 700 mb and 500 mb surfaces. But, on the 300 mb

surface at maximum values the opposite was found and the

difference between u) and tb was as high as 50%, compared

with about 10% at the lower levels.

(c) the difference between CO and 00 was small.

From their results it can also be shown that at the

maxima for a given isobaric surface, the ratio of to to W

was almost a constant.

These conclusions are limited because it is not obvious

if they apply to all situations or just this particular one.

Also no indication was given of the effect of the choice

of the constant static stability on the results. Thus

the conclusions cannot be used to estimate the difference

— = — * — *
between to and to for given O and O . Also no method

was suggested for estimating the difference between to

and to . Some of these outstanding problems will be

considered later.

Danard (196^) solved the to-equation using a point

variable static stability, Cf(x, y, p), and a static

stability derived from the average values of 0 over each

isobaric surface, 0 (p). He found that "one effect of
o
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letting 0 vary is to shift the maxima of upward and downward

motions towards regions of lower stability and to increase

their magnitudes. This amplification is due to the

circumstance that 0/ 0q< 1 in these regions".
Harwood (1969) considered the effect of replacing

O(p) by a constant value given by CT(8^0) ► ' It was

found that at. J00 mb this prodiced a 100% change in u) .

Harwood argued that because Cf(300) ~ 7 x a(850), the

effect of replacing 0(p) by o(8j0) should be a 600%

change in id at J00 mb. This argument is based on the

assumption that if id and Id^ are the solutions using
0(p) and 0(850), then

Harwood was unable to resolve the discrepancy between the

100% change found experimentally and the 600% change

deduced from the above equation. It will be shown later

that the discrepancy was due to the inaccuracy of Equ.

(4.30). It will also be explained why the change at the

300 mb level found by Haltiner et al.was different from

that found by Harwood.

4.7.1 The Vertical And Horizontal Variations Of 0

0(p) W]L = 0(850) id2 (4.30)

In terms of 0 , 0 is given by
2

0 = 9 + (1 - x) d x. = R
dp2 P dp Cp

For an atmosphere with a constant lapse rate T and

a surface temperature and pressure of Tq and p , Equ.
(4.31) gives

0 = p
2 y Y-2

Y = RT
gc

p
For a standard atmosphere Y ~ 0*2 and thus to a good

approximation
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0(P) = (4.32)
2

P

This is a simple and accurate analytical expression

for the usual variation of static stability with

pressure. Since 0(p) az 1/p2, the static stability

varies rapidly with pressure and therefore it is far

from being a constant.

If Tq and p^ vary horizontally, then to a good
approximation

2 Y Y-2
do ~ R_p_p_ 3J
3x C° ax

Thus the horizontal variations of 0 will tend to be

large when the horizontal gradients of T are large.

Suppose that the static stability is given by

°(x, y, p) = S (x, y) (4.33)
p2

It can then be shown that Equ. (4.31) gives

^ = s (x, y) In (PD/P) PQ = PQ (x, y) (4.34)
X

If S (x, y) is eliminated between Equs. (4.33) anh (4.34)

then it is found that to a good approximation

dj3 ~ x 1 3
3x p2 In ( pQ/p ) 3x

Therefore the horizontal variations of 0 will tend to

be large when the gradients of <t> are large.

4.7.2 A Simple Model Of The Atmosphere

Following the work of Nita (1967), ^ was separated

into its zonal mean and the deviation from this mean.

Thus

$ = (y, p) + (x, p)

It was also assumed that
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u = U (p)
g

0) = w (x, p)

f (y) = fQ + [3 y

= \ (x' p)
It can then be shown that the co-equation and vorticity

equation become

2
v 2 2

9(o oo) ♦ f09w = fQ
0 X 0 P

au d\ * p av . u aY
0p 0? dp 0X 0p-

03vn _ 0U 0lvn
0~x20p 0^ dx2

(4.

H ="fo
0x21

U 0 v + j3 v
^2-9 9

* fQ 00)
0p

(4.36)

In Equ. (4.35)» "the two forcing functions enclosed by

square brackets represent the differential vorticity advec-

tion and the laplacian of the thermal advection. The

righthand side of Equ. (4.35) will be denoted by FF, so

that

2
FF = fj2 3U3 v tp 0v

0 P 0x2"9 0 P 9
The term enclosed by square brackets in Equ. (4.36) is the

vorticity advection, and this will be denoted by VA.

It is assumed that the flow consists of a small

perturbation in a uniform zonal flow. Therefore $ is

given by

<{> = • - f U (p) y + A (p) f cos (kx + y ) (4.37)

If y = y(p) is used then the distribution of 0 would be

similar to that used by Wiin-Nielsen (1961) and Sanders

(1971)• But, due to the general objectives of this

analysis, it was decided that the use of a constant

would not detract from the conclusions. Similarly, it

was decided that it was not necessary to include the tropo-

pause, although it could have been included in a manner

similar to that used by Sanders (1971)•
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Using the above distribution of <t> it can be shown

that

FF = fQ I 2 aU Ak - p k 9A \sin(k x + y)
\ 3p dp I

= FF sin ( k x + y)

VA = Ak(k^U-p) s i n (k x + y )

= VA sin(k x + y )
2 9

0 =-foV f (1 - x.)3 U | + f0cos(k x+y)/ 9A+ (l - u) d A\ap^ P dpi \ 'dp2 P 3p
Also, the thermal equation becomes

3$ + TA + o U) = 0 (A.38)
3 P

TA = f (A 3U - U3A | s i n ( k x + y )
\ 3p Bp /

Suitable distributions of U (p) and A (p) must be

chosen. Since <t> varies with In (po/p), the zonal wind
must be given by

U (p) = Q In (pQ/p)
Both Wiin-Nielsen (I96i) and Sanders (1971) used distribut¬

ions of A (p) that increased as p decreased. Therefore

the following distributions of A (p) were considered

A (p) = a' In (pQ/p) a" (p) = a"/p
The use of these produced the forcing functions FF ' and

FF . -Unfortunately, it was found that when the vertical

variation of the static stability was considered, neither

of these forcing functions gave simple analytical solutions

for both Equs. (4.35) and (4.36). Thus the following

distribution of A (p) was used

A (p) = ap

With this, it was found that

FF = f ka [ - 2Qk - 0
VA

. (4.39)
= kap £ Qk In (pQ/p) - PJ
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When the horizontal variations of 0 were considered,

it was found that it was advantageous to use A (p).

In this case

FF = fQ ka' £ -2Qk In (pQ/p) + pj
VA = ka'In (pQ/p) j^k In (pQ/p) - pj

When A (p) and A (p) are used, the static stabilities

become

0 = S + f (1 - x) a cos (kx + V ) (k.hl)
o o 1

P2 P

0* = S + f x a' cos (kx + Y ) (4.^-2)
o o '

2 2
P P

So = -foy>tQ
In the following analysis it is assumed that w = 0

at p = 0 and p = pQ (surface pressure). Also it is
assumed that w and <t>

^ are zero when the forcing functions
are zero.

k.7• 3 The Effect Of The Vertical Variation Of 0 On uj and ^ ^

The effect of the vertical variation of a on U) and

was investigated by solving Equs. (^.33) and (4-. 36)

with both a pressure variable and constant static stabilit¬

ies. Since analytical solutions of these equations were

required it was necessary to use the FF and VA given by

Squ. (^.39).

The pressure variable static stability is denoted by

0^(p) and is given by the isobaric average of Equ. (^.4l)
in the region 0<x<2TC/k. Thus 0^ (p) is given by
Equ. (4.32) with Sq = f 5 X Q. The constant value of
the stability was defined by 0^ = $3^.

If = u) sin (kx + Y ) and sin (kx + Y )
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are the solutions of the to -equation using 0^ (p) and O^,
then

2 2„ 2 _ ~ 2
pdo)1 - A u> = FF p

dP f|
2„ 2 „ ~

£Lw2 " ^ u2 = 4F
dP fo

The solutions of these equations are

q-2 .

2 2/2
x =Sok/f0
2 2

p. = -5 A

to = - FF X 1 1

o^P) I k2 .

E_
Po •2

I = V

(4.43)

(4.44)

= 1*7l * 4 X2 (4.45)

w
2~ ~ — 12

o2
( 1 - e~PP) - (1 e PPo) sinh (\x p )

inh(|ip0) _

(4.46)

The divergence sin (kx + y ) is calculated from

toi by using
D. = -dt^

dp

i = 1, 2

With sin (kx +y), Equ. (4.38) give;ti

* 2 -<t> = f VA + f D.
tx o ox

i = 1, 2 (4.47)

Let R (to ) and R ( <t)^) be the percentage errors in to and
4* when 0 is used instead of 0 (p). Therefore

v d. JL

R ^ W ^ =f ^2 ~ ^l\ x 100

There is a similar expression for R ( 4> ). Using Equs.

(4.45) and (4.46) it is found that when p is small, R ( CO )

is approximately

/ v 2/ _J_ I ~ 1 * 1°0 I = X - 2
\ ptf / *

If the equivalent pressure level (p0) is defined as
the pressure where 0_ = 0 (p ), then jl? = 1/p and the2 1 e e

approximate expression for R ( to ) is
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*

R ( U)) = (^)
- 1 x 100 I - 1 (4.48)

P

It is difficult to find simple expressions for R (D) and

R ( <t>^_) but it can be shown that and ^2.
vary with Pe/p when p is small.

In the following discussion the conclusions that

refer to co
^ will also apply to CO

The distributions of CO and co_ for p = 600 mb1 2 e
— 0

(-& = 2.78 x 10 ) are shown in Fig. 4.l6a. The other

parameters used were

-4 1 6 3 0 _o
f =10 s1 L = 3 x 10 m k = 2 TT /L S = 6.9x10 m s

o 'o

a = 3 x 10 mb^ s ^ Q = 40 m s"^ X = 2.7

Fig. 4.l6a shows that co^ has an almost parabolic profile
that is symmetric about 500 mb. However there would be

asymmetry if FF was a function of pressure. A comparison

of co^ and 00 ^ indicates that the main effect of using eg,
in place of 0^ (p) is to increase the vertical velocity
for small values of p. In the smaller values of pg this
may not be so at large pressures.

I

*

Fig. 4.17a shows that R ( CO ) is a good approximation

to R (to). Therefore Equ. (4.48) describes the dependence

of R (CO ) upon p and p. As p decreases ( O increases)
6 6c

*

R ( to ) decreases. For example, if 0^ = (700) then
R ( CO ) = 230% at 200 mb whereas when 0^ = 0-^ (500),
R ( CO ) = 146%. Equ. (4.48) also shows that R (CO ) changes

rapidly when p is small. For example, when 0^ = 0^ (600)
it is found that R ( co ) ~ 50% at 500 mb and that it is

about 200% at 200 mb.

It was found that with p = 600 mb there was a 24%
e

difference between OJ. and CO at the p level. As p1 2 re e
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increased the difference increased. Therefore it is not
*

valid to estimate the value of U) at level p with

0 = 0 (p) by finding the value of U) for a constant
*

stability of value o(p ).

Fig. 4.17b shows that 0^ to is not equal to
°2 ^ 2 an<^ ^at difference between them is large for

small values of p. This explains the discrepancy between

Harwood's (1969) theoretical and experimental results.

Further, in terms of p , Harwood computed R ( co ) from
2

R ( W \ ~ [ ^ £e^ " 1 x 100 (4.49)

P

A qualitative examination of Equs. (4.43) and (4.44)

indicates that the above results remain essentially

unaltered if the upper boundary is at a higher pressure

or if FF is a function of pressure.

These considerations show that the values of R ( h) )

computed by Haltiner et al.(1963) and Harwood 0969)would

only be the same if they both chose the same p . There

is no indication that this is the case.

In the simple model considered so far both R ( 0) )

and w2 are functi°ns pressure only. Therefore
the largest changes in u) will occur when 1 u)^l or lw^ 1
have their maximum values. Also a

constant on an isobaric surface. These conclusions are

essentially the same as those deduced by Haltiner et al.

(1963) with reference to an actual case study.

Fig. 4,l6b shows the profiles of D^, and VA.
Since (0) is large whilst (0) = 0, the difference

between and is large for small values of p, The

profiles of 0 and <t> were computed (see Equ. (4.47) )
V _L Xr d
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and these are depicted in Fig. 4.l6c. For small values

of p the difference between 0 ^ and is large
and the, solutions have opposite signs. These facts are

illustrated by the variation of B ( 0^.) shown in Fig.
4.17a. The behaviour of these solutions appears to remain

unaltered if the upper boundary is at a different

pressure.

4.7.4 The Effect Of The Horizontal Variation Of O On CO

And 4>

The effect of the horizontal variation of a was

investigated by splitting the static stability into two

partsj namely 0(p) and o'(p, x). The vertical velocity

was then divided into CO (which depends only upon 0(p) )

and E (which depends upon a(p) and a'(p, x).

Equ. (4.35) may be written as

2 2 2
3 Ro + o'Xo) + e.)l+f0 9_[w + el = FF ^+-50)0X21 "~2L

.2 _ 2 r

3p2
Since the static stability varies much less in the

horizontal than in the vertical o» o' and thus u>» e

Therefore the above equation can be separated into two

separate equations for U) and E . Define r(co)as
2 2 2

r(oo) = a 9 to t f 3 co

^ aF
In terms of this the equations are

l~( u> ) = FF (4.51)

T( E ) = FF (o', co ) (4.52)
^ 2

FF ( oco ) = - 3 (o *co)
a 2O X

Once Equ. (4.51) has been solved for CO , Equ. (4.52) can

be solved for E .

If the terms that contain the derivatives of the
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stability are ignored then Equ. (4.50) becomes
2 2 2

(o * o) 9 [u> + TJ] + f09 p4tl] = F"F (4.53)9x2 dp2
This can then be split into two equations for U) and

4 and it is found that 10 is given by Equ. (4.51) and

4 by
2

r(4 ) = FF (a',u)) = -o'0_co (4.54)
2

8x

For this investigation a logarithmic variation of

A (p) was chosen. Therefore FF and VA are given by

Equ. (4.40) and 0 is given by Equ. (4.42). This means

that 0 and o' are given by

o (p) = f 6 x Q
o

o'(p, x) = f x a cos (kx + V )
o 1

P P

The above distribution of A (p) was chosen because both

YJiin-Nielsen (l9ol) and Sanders et al.(19?l) had considerable

success when they used it.
—

. *
Using (0 = U) S i n (kx +y) and p = p/pQ» Equ. (4.51)

gives

10=G_ p In (p ) + G

3
7

* Q~1
1 - (p ) (4.55)

G = -2Qk a q .1 J 1 + 4X

Here X is the same as in the previous section (see Equ.

(4.43)').
If E = E sin (2kx + 2y), then Equ. (4.52) becomes

2 2_ 2 „ 2 „

pde - 4 X e = 2xak to

dp'
Therefore

9
e = 2 xak [ - to - Gp

4 x2f0 \ 12 X4

r-t \
3 - 4 (p ) + (p )

r = 1 +Ju 15 X

It can be shown that to a good approximation
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e =-£ to (4.57)
o

Similarly it can be shown that

1) =-0.' u> (4.58)
40

Let be the geopotential tendency when 0) is used

in Equ. (4.4?). Also let <t> + v(E ) and ^ + V ( T) )
be the tendencies when co + £ and CO + 7) are used. It can

be shown that from Equs. (4.47), (4.57) and (4.58) that

both v( £ ) and V ( 7| ) are proportional to the divergence.

Since this changes sign in mid-troposphere it is expected

that V ( £ ) and V ( 7] ) will also change sign.

Rearranging Equ. (4.57) gives

(o+o')(co + e) = coo + e a' (4.59)

Since o'e is small, the product of the vertical velocity

and the stability for the solutions of Equs. (4.50) and

(4.51) is almost a constant. Further from Equs. (4.59)

and (4.38) it can be shown that

9_v(e) = - co o' - £ 0
9 P

Therefore v(£ ) is small. Also a qualitative analysis

of the equations suggests that V ( T) ) > v(E).

Both co and £ were computed using the following parameters

(see Fig. 4.18)

p = 500 mb p^ = 1000 mb y = 0 0<x < L/2
72-1 -1

a=-5xl0m s Q = 5 ® s

Other parameters were the same as those described in the

previous section.

Figs. 4.l8a and 4.l8b show the distributions of

$ and co . As expected there is upward motion ( co<0) in

front of the depression and downward motion (co>0) behind
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it (i.e. uj and 0 are 90° out of phase). Both ( 6 + o )

and 6 are illustrated in Fig. 4.l8c and it is clear that

( 5 + 0* ) and co are also 90° out of phase. This

difference in phase results in a distribution of e that

has a wavelength of L/2. Fig. 4.l8d depicts e . These

results show that e is zero when CO = 0 and when icol is

a maximum. Thus co underestimates the magnitude of the

correct vertical velocity ( co + £ ) both in front of and

behind the depression. For a high pressure region CO is an

overestimate of the correct vertical velocity. These

conclusions also apply to the use of CO in place of

( co + 1) ).

4.8 A Case Study

A case study was carried out using the data described

in section 1.8.2. The vertical velocity and geopotential

tendency were calculated from the following equations

_ 2 2 2
STABxV u) + fQ 3 co + S = 0 (4.6c)

2 ^P2
V + foVVll ~ fo ^ = 0 (4.61)y dp

The calculation were performed on a 22 x JO horizontal

grid (area 11), with a vertical grid spacing of 200 mb.

In all the computations it was assumed that co = 0 and

0 = 0 on the boundary.

All the figures referred to in this section illustrate

the central portion of the computation area which is

composed of 14 x 22 gridpoints.

The above equations were solved using three different

forms of the stability, STAB.

(1) a point variable static stability (0 ) given by

Equ. (4.31).



24 9

(2) a pressure variable static stability ( o ) given

by the average value of o on each isobaric surface.

The values of o were

-2 -2
o(4oo) = 4.35 x 10 o(6oo) = 2.09 x 10

-2
0(800) = 1.42 x 10

2 -2 -2
The units are m rab s

"2
(3) a constant static stability O = 2.62 x 10 which

is the average value of 0 .

The solutions of Equs. (4.60) and (4.6l) using the

three different forms of STAB will be denoted by

(1) to and <i> ^

(2) to and <t>

(3) W and

The distributions of to and to at the 400 mb level are

shown in Figs. 4.19a and 4.19b. These show that the
w

areas of uoward and downard motion are the same for both
A

10 and to . They also- show that the maxima of both | to |

and | to | (marked by ) are in the same position. An

examination of the difference between to and to clearly

shows that at this level J (01 > | to j nearly everwhere. A
close examination shows that to ~ f (p)u) with f (400) — 1.3*

At the 800 mb level f (800) = 0.7* These results imply

that | to | tends to be greater than I to I when 0 < 0 and

vice versa when 0>0

At the 400 mb and 800 mb levels the percentage errors

produced by replacing 0 by a are approximately 3O/0 and

-30)o. Using p^ = 550 mb and 1, Equ. (4.48) gives
*

corresponding values of J>7% and -31/o. Thus R ( CO )

(see Equ. (4.48) ) produces a good estimate of the

percentage errors. It is worth noting that the correspond-
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RMS values in units
-4

of 10 mb s ^

p d) U) (JL) UJ L> - d) e £* u) - d) L) - W

400 13.2 10.1 9.5 9.9 3-2 1.1 1.8 1.1 1.0

600 7.4 7.8 7.9 8.5 1.0 1.4 1.3 1.6 1.3

8oo 4.4 6.5 8.2 8.9 2.3 2.8 2.1 3.6 1.9

TABLE 4.6
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-3
RMS values in units of 10 ra

2 -3
s

p \ 0
t

0
t

(J)
t

0-0
t t

0-0
t t

0-0
t t

200 24.4 23.5 23.3 23.3 10.0 7.1 2.3

400 17.3 17.3 17.3 17.3 0.4 1.7 1.0

6oo 3.9 4.2 4.3 4.3 3.5 1.9 1.4

8oo 4.5 4.5 4.5 4.5 0.4 1.5 1.0

1000 8.9 9.0 8.7 9.0 3.2 3.6 3.6

TABLE 4.7
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ing value derived from R( U) ) (Equ. (4.49) ) 90%

and 53%' This estimate is clearly inaccurate and this

is because o U) is not equal to oil . The root mean

square (RKS) values of U) , u) and OJ -co are shown in

Table 4.6.

The distributions of , at the 200 mb level, is

shown in Fig. 4.20a and ( - 0^) is depicted in Fig.
4.20b. These figures show that at this level |^J ■> I ^1 ♦

This result was anticipated in section 4.7«5« The RMS

values of 0 , 0 amd ( 0 - 0 ) are shown in Table 4.7
V v b b

This shows that ( 0^_ - 0^) is largest at the 200 rnb level
although the largest percentage difference is at 600 mb.

Equ. (4.60) was solved with STAB = 0 to give to (see

Fig. 4.21a). This solution is very similar to to and to

which are illustrated in Figs. 4.19a and 4.19b. In

particular, their maxima and minima (denoted by ©) are in

the same position. This was found to be true at all

levels. Therefore these results contradict those of

Danard described in section 4.7« It is suspected that

this is due to the large gridlength and small number of

gridpoints used by Danard.

The quantities of 0/0 and to / (0 were compared and

it was found that regions where 0<0 tended to coincide

with regions where J to ] < | to | . This confirms the
conclusions of Danard (1964) and is consistent with the

relationship between vertical velocity and the static

stability found for the simple model (see Equ. (4.99) )•

Fig. 4.22a shows the difference between to and to .

It would be useful if this difference could be estimated

from a knowledge of 0 ,6and to . An equation that is
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similar to Equ. (4.58) is

e = -(0 - 0 ) co
0

*
__

Here e is an estimate of ( 00 - U) ) and its value at

400 mb is shown in Fig. 4.22b. A comparison of this

with ( CO - CO) (see Fig. 4.22a) indicates that £ is
*

large when ( co - co) is large but £ overestimates the

magnitudes. For the 800 mb level J co - u) | is under¬

estimated. These results indicate that the dependence

of ( co - ci) ) upon 0 , o and co is similar to that described

by E*.
*

_

The reason why £ does not describe ( co - co ) exactly

becomes apparent if the CO -equations for CO and CO are

subtracted to give
2 2 2 ,2

0 V e + fQ 8 £ = - o'V co
8p^

,2
Here £ = co - to , 0 = 0-0 and 0 Ve is neglected. Assuming that

coccsin (rx) sin (sy)

£ oc sin (kx) sin (hy) sin (lp)
2 2

then e = 0 ( r + S ) co (4.62)
2 2 2 2

(k ♦ h )o + iQl
If r = k, s = h and 1=0 then this equation reduces to

*

that for £ . However, if h = 2s and k = 2r there is a

factor of 4 in the denominator and the expression is

identical to Equ. (4.58). 'The above considerations

clearly show that (co-co ) depends upon the wavelengths

of CO and CO as well as the magnitudes of U) , a' and 0 .

A comparison of 0 and ^ shows that at the 200 mb

and 400 mb levels > 0, nearly everywhere. The reverse

was true at the 800 mb and 1000 mb levels. This behaviour

is due to the divergence tending to have opposite signs in
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the upper and lower troposphere and it was exhibited in

the model described in section 4.7.4. Table 4.7 shows

the EMS values of ( 4> - $, ) and these indicate that the
t t

value are largest at the top and bottom of the atmosphere.

However ( ^ - j.)/ is largest in the lower part of
the atmosphere.

The last part of this case study is concerned with a

comparison of oo and W with CO where
2 _. 2 2

V (oo) + fA 3 w + S = 00 IF7
Fig. 4.21b shows 55 at the 400 mb level. A comparison

of this with co (Fig. 4.21a) and 5) (Fig. 4l9a) indicates

that both CO and 0) give a good representation of the

'correct' vertical velocity 55 . Further, a comparison of

( co - co ) and ( u) - 53) (see Figs. 4.23a and 4.22a) shows

th.at the difference between 53 and CO tends to be greater

than that between d) and co (see also Table 4.6). It is

also worth noting that the distribution of (53 — co ) is very
*

similar to that of £ .

Fig. 4.23b shows the distribution of (55 -co) and

Table 4.6 exhibits the RMS values. These values show

that the difference between 53 and co tends to be less than'

that between 5) and U) , co and CO , and CO and co . Thus

the best approximation to d)' is found by using Equ. (4.60)

with STAB = 0 . However the difference between co and 53

is by no means insignificant.

The geopotential tendency found by using 53 will be

referred to as <0^.. Table 4.7 shows the RMS values of

<t). and ( <{) - $,). These results'indicate that the
t t t

difference between and $ was small and that the
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largest difference was at the 1000 rab level.

4.8.1 The Concept Of Partitioning

The concept of partitioning was discussed and used

in two papers by Krishnamurti (1968). He considered

the solution of the equation
I J"

2 2 2 V" V"
V (o to) + f 9 co = Z_L.(co) + Z_M. • (4.64)

dp^ i=^ 1 J=1 ^
He interpreted the forcing functions on the righthand

side as the causes of the vertical velocity. An attempt

was then made to evaluate the contribution of each of these

causes (i.e. forcing function) to the total vertical

velocity, CO . He computed CO and then calculated the

vertical velocities

co . (i = 1,1, I) and go', (j = 1, 1, J).
-C 3 «

2 2 2 '
V (o co.) + f = L.(co) i =1,1,1 (4.65)

I 721 13 P

V^(o to'.) + f2 0_co': = M- j=1,1,J (4.66)
J dp2J J

This method of partitioning co has the essential property

that

I J
CO = ) CO. + ) co'; ,, , .

, I J (4.67)1=1 J=i
It is worth noting that there are numerous other ways of

partitioning CO that will satisfy the above equation.

The contribution co'. is the same as the error in the
J

vertical velocity that would be introduced if the forcing

function K. is neglected in Equ. (4.64). Unfortunately
3

the relationship between co and L_^ ( CO ) is not a simple
one. Let co . be the error introduced into the vertical

x

velocity when the term ( CO ) is not included in Equ.

(4.64). It can be shown that UK is given by
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2 2 2
V (ou>.) + f a 03. = L.(a)) + > L,(co.) (4.68)1 ap2' ' k = 1 k 1

k* i
A comparison of Equs. (4.68) and (4.65) shows that

co
. * Co ..

It can be shown that, under the following circum- •

stances, co. is almost the same as Co . . If one of the'
i l

forcing function M. ( j = 1, 1, J) is an order of magnitude
J

greater than all of the forcing functions ( CO )

(i = 1, 1, I), then co'. (and thus CO ) will be an order of
0

magnitude greater than UK and CO^. Thus ( CO ) will
be an order of magnitude greater than ^ (Co^)
(see Equ. (4.68) ). Hence UK will be^alfmjst the same

as Co . .

l

The circumstances described above prevail in all

forms of the co-equation. Thus UK is approximately the

'error introduced into the vertical velocity when the

forcing function ( CO ) is neglected in Equ. (4.64).

4.8.2 The Partitioning Of The ^uasi-Geostrophic CO -Equation

Partitioning was employed to investigate the effect

of the use of certain approximations in the geostrophic

CO -equa.tion (Equ. (4.5) ). Let f be the differential

operator such that

T(co) = o( p) V2p + f2 82co
O 9

9p
The parameters 0(p) and f are the average values over

an isobaric surface of 0 and f.

The vertical velocity was divided into five parts

UK (i = 1, 1, 5) given by
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AV
- 4

and RMS in units of 10 mb s

4oo mb 6oo mb Co O O mb

AV RMS AV RMS AV RMS

U)
1 0.7 8.1 o.8 6A 1.0 3.8

W2 -0.1 0.5 0.1 o. 8 -0.1 0.7

0)
3

0.3 0.7 -0.0 0.8 0.2 1.0

"V -0.5 0.9 -0.5 l.l -0.4 2.4

(0
5

-0.0 0.5 0.1 0.3 0.2 0.5

o.4 8A 0.7 6.8 0.9 0.7

TABLE 4.8
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r(w,) + S = 01
2

l~(co ) + coV o = 0
2

r(0) ) + 2Vo .Voo = 0
2

r(co ) + (o - o(p)) V CO = 0
4

2 2 2
r(oo)+(f-f )3oo =0

5 o —~2
3p

Since S is the largest forcing function in the above

equations, 00 and CO ^ will tend to be greater than CO ^

(i = 2, 1, 5)» Thus the oo^'s represent approximately
the effect on the vertical velocity of the omission of

the relevant forcing function.

Using the above interpretation of the co^'s it is
obvious that 00^ is a measure of the difference between
the solutions of Equ. (4.60) using STAB = CJ(x, y, p) and

STAB = o(p). Also ( co^ + 00.^) is closely related to
the difference between the solutions of Equ. (4.6j)and of

Equ. (4.60) (with STAB = a (x, y, p)). The effect o*f

replacing the variable Coriolis parameter (f) by a constant

(fo), is represented by co^_.
The solution of the geostrophic CO-equation is shown

in Fig. 4.24a and the contributions Uh (i = 1, 1, 5) at

the 600 mb level are illustrated in Figs. 4.24b, 4.25a,

4.25b, 4.26a and 4.26b respectively.

A comparison of CO and CO shows that CO. has the
1 A

same areas of upward and downward motion as CO . Also the

maximum magnitudes of CO and (0^ (marked by © ) almost
coincide. The similarity of CO and GO indicates that

CO^ is much larger than the other contributions. This
is also shown by a comparison of the RMS values of these

vertical velocities (see Table 4.8 which also shows the

average (AV) values).
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An examination of the distributions of to 0 and CO.,^ 5

(Figs. 4.25a and 4.25b) shows that they tend to have

opposite signs. Thus the effects of omitting the terms
2

ti)V a and 2 Vo.Vu) tend to cancel. This implies that

both of these terms should be neither omitted or included.

Also, Table 4.8 shows that tends to be larger than

C02. Further, a comparison of U)^ with C02 and shows
that tends to be significantly larger than the other.

Thus, even if the horizontal variations of 0 are ignored
2

in the coV 0 and 2 Vo.Vu) terms, it is important to
2

include them in the oV co term.

The distribution of CO is illustrated in Fig. 4.26b.
5

This, with Table A.8, shows that the effect of replacing

f by f tends to be small. However the table indicates
o

that the effect may be comparable with that due to ignoring
2

the 0 V co and 2Vo.Vcu terms.

Inconsistent Boundary Conditions

Suppose that CO and z are related by

f-^CO + g^ z = (4.69)
f2(0 + g2 z = a2 (4.70)

Here f.^, f2, g^ and g2 are differential operators and

A^ and "A2 are known forcing functions. In order to solve
this system of equations it is first necessary to eliminate

one of the unknowns; z say, between the two equations.

This gives

(g2 ^ - S1 = Ai " A2 (4.71)
If this is elliptic it can be solved as a boundary value

problem using (0 = CO on the boundary. The solution is

then substituted into either Squ. (4.69) or (4.70) (in this

case Equ. (4.69) ) and this is then solved for z, by using
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z = z^ on the boundary. The boundary conditions
u), and Z, will be said to be inconsistent if they dob b

not satisfy Equ. (if-. 70) . It is suspected that the

boundary conditions are inconsistent if the minimum

number of boundary conditions are not used.

The inconsistency of boundary conditions can be

illustrated by a simple example. Suppose the U) and z

satisfy
2

d U) ' + z = A (4.72)
dx2

z + 0) = B (4.73)

Here A and B are constants. It can easily be shown that
2

CO satisfies the equation d CO - w = A-B and that if
dx^~

U)(0) = 0 and w(L) = 0, then the solution

U)(x) = (A-B) (1 - e^J) sinh (x) - (A-B) (1 - eX)
sinh (L)

The solution for z can then be found from Equ. (4.73) and

will be called z^. An alt ernative method of finding z
is to solve the equation

d z - z = -A

If the boundary conditions z (0) = 0 and z (L) = 0 are

chosen, then this equation can be solved for z and let

the solution be z , It is found that

z.. - zn = 3 (1 - eL) sinh (x) + 3eX
sinh (L)

The reason that z]_ ~ z2 * 0 is that the boundary conditions
for z and w are inconsistent. That is they do not

satisfy Equ. (4.73)* An alternative approach is to

say that z^ and z^ are not the same because too many

boundary conditions were used in solving the equations for

z^. In the simple case considered, (z^ - z^) decreases
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exponentially away from the boundary.

4.9.1 The inconsistency Of The Usual Boundary Conditions For

u) And 0
T/

Suppose that the atmosphere is in geostrophic

equilibrium and that its motions are governed by the

following simplified forms of the vorticity and thermal

equations.
2 2

V <t> + J ($ ,-f]) - f 9w = 01 9p

9 0. + 1J (0,90) + a oo = 0
9px f 9p

These correspond to Equs. (4.69) and (4.70) in the previous

section. If 0 is known then the unknowns are u> and 0^..
The elimination of 0 between these two equations results

in the U)-equation given by Equ. (4.5). This is then

solved for W and it is usually assumed that (jJ= 0 on the

boundary. If b denoted the lateral boundaries then the

boundary condition becomes ( W ) = 0 with U) = 0 on the

upper and lower boundaries. Once CO is known the vorticity

equation is solved for 0^. This requires the specifi¬
cation of 0 on the boundary, b, and usually ( 0 ), = 0

o t 0

is used. If the boundary conditions for U) and 0 ^ do not
satisfy the thermal equation then they are inconsistent.

Since 0^ = 0 on the lateral boundary of each isobaric
surface, /d0,\ = 0. Therefore ( 0,), and ( GO ), do nott to 0

\0P \
satisfy the thermal equation unless the thermal advection

is zero on the boundary. This is not usually so and

therefore the boundary conditions are inconsistent.

The effect of using these inconsistent boundary

conditions was investigated. Initially 00 and 0 were

computed in the above manner using the same grid and data

as were used in section 4.8. The solution 0^ was then
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*

used to compute co , where

*

0) = -1 90 + J_ J~(0 , 9jJ> )
.bp f bp.o

If the boundary conditions for CO and 0 were consistent,
*

then co would be almost the same as uj .

*

Fig. 4.27 shows the central portion of co as the
*

600 mb level. The complete distribution of ( co -co)

at this level is illustrated in Fig. 4.28. A comparison
*

of co and CO (see Figs. 4.27 and 4.24a) indicates that
*

CO has the same sort of distribution as CO (e.g. the areas

of upward and downard motions are almost the same).
*

However CO is consistently larger than CO . This is
*

illustrated by the fact that ( CO -co) tends to be positive
*

in the same areas in which co > 0 and CO > 0. Fig. 4.28
* *

also shows that ( CO -co) does not decrease towards the

centre of the region (this was also true at other levels).

Therefore if co and $ are to be used in further computat¬

ions it is desirable to find more consistent boundary

conditions.

It can easily be shown that the above procedure for

finding CO and $ uses an excessive number of boundary

conditions for . If n., n. and n. are the numbert i J k
of gridpoints in the x, y and p directions, then the above

proceedure requires the specification of <t> at

n, = n, x (n. - 1) (n. - 1) + 1 gridpoints.Ik i j

Two alternative methods of solving the system of

equations both start by solving the CO-equation. The

'solution is then used to find h* .. at the upper and lower
z

boundaries. So far ^ has been specified at

n^ = 2 x (n^ - 1) (n^ - 1) + 1 gridpoints. Two ways
of proceeding from here are as follows.



273

(a) The thermal equation is solved as a two-point

boundary value problem for ^ for all values of
i and j.

(b) The procedure described in (a) is carried out only

at the lateral boundary. The vorticity equation is then

solved for at all the interior gridpoints.

Neither (a) or (b) require the specification of

$ at any more gridpoints and therefore, for both methods,

<t> has to be known at n gridpoints. For a given

n^ and n ^ , n^ is constant. However depends upon
n, and when n, = 5 the usual method requires 4k to bek k 1 t

specified at 2-g- times the number of gridpoints as is

required by either of the alternative methods. It is

suspected that the overspecification of $ in the usual
X/

method is responsible for the inconsistencies.

The two alternative methods described above have not

yet been tested. However it is likely that they will

lead to an improvement in the consistency of the boundary

conditions.
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APPENDIX

The Computer Programs For Solving The Balance Equation

The computer programs were written in the IMP language

(see Whitfield (1969) )•

Fig's. A1 and A2 illustrate the basic programs

which were used to solve the balance equation. These differ

from those actually used in that the real programs did not

use the functions DX1 (SF) etc. All the programs used a

maximum of five arrays that depended upon the map parameters

(mapping factor, coriolis parameter and gridlength). These

arrays were the same for each isobaric surface of a given area.

The array Z (I, J) depended upon the geopotential and was there¬

fore different for each isobaric surface. In all the programs

it was necessary to store the streamfunction SF (I, J)., Also

some programs required the storage of extra fields (e.g. a

streamfunction field SFX (I, J) or a vorticity field V (I, J)).

Fig. A1 shows the basic program which was used for

methods of the first tyoe. (The parts of the prgrara enclosed
A

by brackets were common to all the programs used in solving the

balance equation). This program ensures that the ellipiticity

condition is satisfied (see Equ. (3«13) ) and that the absolute

vorticity is greater than zero (see Equ. (3-11) )• The lower

limit of the vorticity was determined by the parameter y (GAM

in the program). The program ensures that

(n)
£ > - yf

(n)
It was found that the condition ( + f > 0 was seldom violated

and therefore the value of y was not critical. In the

computations GAM =0.9 was used.

The program illustrated in Fig. A2a was slightly

modified when the NLAS and NLSH methods were used.
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GPCI,J) - GEOPQTENTIAL AT POINT CI,J)
SFCI,J) - STREAM FUNCTION
CP(I,J) - CORIOLIS PARAMETER
MCI,J) - CHAPPING FACTOR/GRID LENTH)**2

BET - OVERRELAXATION FACTOR E - TOLERANCE
GAM - A NUMBER <=1 SO THAT ABSOLUTE VQRTICITY >=0
IN,IX,JN AND JX DEFINE THE AREA
FCI,J)=CPCI,J)/M(I,J) EYCI,JJcFCI,J)/8 CCI,J)=1/C2*FCI,J))
ZCI,J)aCDXlCGP)+DYlCGP))/C4*CPCI,J))+EYCI,J)
A(I,J)=CCPCI+1,J)-CPCI-1,J)/C16*CPCI,J))
B(i,j) = ccpci,j+n-cpci,j-i)/ci6*cpci,j))

SFCI,JJaGPCI,J3/CPCI,J) - INITIAL GUESS
DXlCX)aXCI+i,J)-2*XCI,J)+XCI-l,J)
DY1CX)=XCI,J+1)-2*XCI,JJtXCI,J-l)
DX2CX)=CXCI+1,J+1)-2*XCI,J)+XCI-1,J-1D)/2
DY2CX)=CXCI+1,J-1)-2*XCI,J)+XCI-1,J+l))/2
DXYl(XJaCXCI+l,J+l)+XCI-i,J-l)-XCI+l,J-l)-XCI-l,J+l))/4

s-(DY2(X)-DX2CX) )/2
DXY2CX)a(XCI, J+D+XCI, J-n-XCI + l, JJ-XCI-l, J))/2

=CDY1(X)-DXlCX))/2

fI:DET = 0 } MAXADDB0
l%c YCLE IalN + l,l,lX-l ; XCYCLE Ja JN+1, 1, JX- 1
UAPXaDXlCSFJ+DYICSF)
ELL=ZCI,J3-ACI,J)*CSFCI+1,J3-SFCI-1,J)J-BCIfJ)*(SFCI,J+15-SFCI,J-l)
XIF ELL<0 XTHEN ELL=0
XIF LAPX<-F(I,J) '/.THEN LAPX = -G AM*F CI, J)
LAPY = LAPX ; 1 NLOR1X
LAPY=2*LAPX M NLOR1
ADDXaDXlCSF)*DYlCSF)-CCDX2CSF)-DY2-CSF))**2)/16 } I NLOR1 ORNLOR1X
LAPY=DX2CSF)+DY2CSF) M NL0R2X
LAPY=2* CDX2(SF5+DY2 (SF)) M NL0R2
ADDXa(DX2CSF)*0Y2CSF)-CDXiCSF)-DYlCSF))**2)/4 ?J NL0R2 OR NLOR2X
ADD=BET*CADDX*C(I,J)+LAPX/4+EYU,J)-ELL)/C1+EX(I,J)*LAPY)
SFCI,J)=SFCI,J5+ADD
MA[)P = MOO (ADD)
XIF MADO>MAXADD XTHEN MAXADDaMADD
/.IF MAD0>E '/.THEN DET = 1
/.REPEAT ; '/.REPEAT
NOSsNOS + 1 ? WRITE CNOS,2) ; SPACES(4) J PR I NT(HAXADD/E,6,6)
NEWI.INE
MACNOS)=mAXADD
XIF N0S>2 XAND MACNOS)>MACNOS-1) XAND MACNOS-1)>MACNOS-2) XTHEN »>2
'/.IF N0S>MAXN0S XTHEN ->2
XIF DET£0 XTHEN »>1
2:NEWLINE

FIGURE A1



(a)

SFCI,J)=SFXCI/J5=GPC1#J)/CPCI,J)-INITIALGUESS
}1NLAR1 flNLAR2 MNLAR1 MNLAR2

LXY=DXY1CSFX)?DLX=DX1CSFX))DLY=DY1CSFX) LXY=PXY2CSFX)?DLX=DX2CSFX)fDLY=DY2C3FX) DD=1/C1+CDLX+DLY)*CCI/J))?XX=C(I,J)/2 AA=DLX*XX;36=DLY*XX/CC=~LXY*CCI/J) LXY=DXY1CSF)fDLX~DX1CSF)DLY=DY1CSF) LXY=DXY2CSF))PLX=DX2CSF)?DLY=PY2CSF) LAPX=DX1(SF)+DY1CSF) ELL=Z(I/J)-A(I/J)*(5F(I+1/J3-SFCI-1/J53-BCX/J)*CSFCI,J+13-SFCIrJ-l))%IFELL<23%THENELL=3 %IFLAPX<"*F(I/J)XTHENLAPX=~GAM*FCI/J) ADD=BET*(DLX*BB+DLY*AA+LXY*CC+LAPX/4+EY(I,J)-ELL)*DD SFCI»J)=SF(I#J)+ADD?SFXCI/J)=SFCI/J)
(b)

A(I,J)a(CPCI+l»J)-CP(I-l,J)/C2*M(I,J)) BCI,J)s(CPCI,J+l)-CPC'I,J-l)/C2*M(I,J))ZCI#J)=CCPCI/J)**2/MCI/J)+2*CDX1CGP3+DY1CGP3)/MCI/J)SFCI/J)=GPCI»J)/CP(I,J)-INITIALGUESS VCIfJ)=DMCSF)+DY1CSF)-INITIALGUESS
ALF-UNOERRELAXATIONFACTORBET-0VERREALXATIONFACTOR

to -o

CT>

ELL=ZCI/J)-ACI/J)*CSFCI+lrJ)-SFCI-l,J))-BCI/J)*CSFCIfJ+l)-SFCI,J-l))•/.IFELL<0'/.THENELL=0 H=C0Y1CSF)-DX1(SF))**2tCDY2CSF)-0X2CSF))**2MNLAU1H=2*(C0Y1(SF)-DXlCSF))**2)+4*0XlCSF)*DY1CSF)+4*DX2CSF)*DY2CSF);JNLAU2FF=-FCI/J)+SQRTCELL+H) VCIfJ)=CJ-ALF)*VCI,J)+ALF*FF ADD=BET*CC0X1CSF)+0YUSF))/4-VCI,J)/4) SFCI/J)aSFCl»J)+ADD

FIGUREA2
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The program illustrated in Fig. A2a was slightly

modified when the NLAS and.NLSH methods were used.

The basic program for methods of the second type is

shown in Fig. A2a. This program uses an extra array

SFX (I, J). Also, when the coefficients of the linear
(n-1) (n-2)

equation were computed from ^ a further
2

array was required.

Fig. A2b shows the basic program for a method of the

third type with a single scan.



278

Ames, W.F. 1965

'Arnason, G. 1958

Asselin, R. 1967

Benwell, G.R.R.,
Gadd, A.J.,
Keers, J.F.,
Timpson Margaret S.
and White, P.W. 1971

Berkofsky, L. 196*f

Bolin, B. 1955

Bolin, B. 1956

Carre'', B.A. 1961

Danard, M.B. 196^+

Danard, M.B.■ 1966

Dixon, R. 1970

Dixon, R. 1972

Ellsaesser, H,W. 1968

Endlich, R.M. 1970

REFERENCES

'Nonlinear partial differential equations
in engineering', Academic Press,
pp. 365-^11.

'A convergent method for solving the
balance equation*, J. Met., 15, pp. 220-
225.

'The operational solution of the balance
equation', Tellus, _9, pp. 2^-31.
'The Bushby-Timpson 10-level model on
a fine mesh', Meteorological Office,
Scientific Paper No. 52.

'The fall-off with height of terrain-
induced vertical motion', J. Appl. Met.,

pp. klO-klk. • 1^.

'Numerical forecasting with the baro-
tropic model', Tellus, 7., 27-^9«
'A improved barotropic model and some
aspects of using the balance equational
for three-dimensional flow',
Tellus, 8, 61-73.

'The determination of the optimum
accelerating factor for successive over-
relaxation', Computer Journal, ^f,
pp. 73-78.

'On the influence of released latent
heat on cyclone development', J. Appl.
Met., 2, pp. 27-37.

'A quasi-geostrophic numerical model
incorporating effects of release of
latent heat', J. Appl. Met., 5»
PP. 85-93.

'An algorithm depending on the physical
interpretation of the Laplacian',
Met. Mag. , London, 9j?, pp. 29^-299.

'The equation of a wind satisfying the
balance equation', ^uart. J.R. Met.
Soc., 9j8, pp. 229-230.

'Comparative test of wind laws for
numerical weather prediction',
Mon. Weath. Rev. , _96, pp. 277-285.
'A method for solving the balance equation
using vector alterations of the geo-
strophic wind' , Tellus, _22, pp. 621-626.



279

REFERENCES (contd.)

Engeli, M. 1959 'Over-relaxation and related methods',
Refined iterative methods for

computation of the solutions and the
eigenvalues of self-adjoint boundary
value problems, by Engeli, M.,
Ginsburg, T.H. , Rutishauser, H.- and
Stiefel, E., Birkhauser Verlag,
Basel/Stuttgart, pp. 79-91«

Gambo, K. 1957

Haltiner, G.J.,
Clarke, L.C. and
Lawniczak, G.E. 1963

Haltiner, G.J. 1971

Harwood, R. 1969

Hinkelmann, K.H. 1965

Jenssen, D. and
Straede, J. 1968

Kirk, T.H.

Knighting, E.

1970

1962

Krishnamurti, T.N. 1968a

Krishnamurti, T.N. 1968b.

Kuo, H.L. 1956

'The scale of atmospheric motions and
the effect of topography are numerical
weather prediction in the lower atmos¬
phere', Papers in Meteorology and
Geophysics, _8.

'Computations of large scale vertical
velocity', J. Appl. Met., 2,
pp. 2^2-259.

'Numerical weather prediction',
John Wiley and Sons, Inc, New York.

'Vorticity patterns in extra-tropical
cyclones', Ph. D. Thesis, Univ. of
London.

'Lectures on numerical shortrange
weather prediction', WHO Regional
Training Seminar, Moscow. "

'The accuracy of finite difference
analogues of simple differential
operators', Proceedings of the WMO/
I.U.G.G. symposium on numerical weather
prediction in Tokyo November 26 -

December 4, VII-59-VII-76.

'The laplacian and its relevance for
analysis', Met. Mag., _99, pp. 131-152.

'Numerical weather prediction',
Numerical solution of ordinary and
partial differential equations, Ed.
L. Fox, Pergamon Press, pp. ^78-^93•

'A diagnostic balance model for
studies of weather systems of low and
high latitudes, Rossby number less than
1,' Mon. Weath. Rev., 96, pp. 197-2C7.

'A study of a developing wave cyclone*,
Mon. Weath Rev., 9,6, pp. 208-217.

'Quasi-nondivergent prognostic equations',
Tellus, 8, pp. 373-383.



280

REFERENCES (contd.)

Lorenz, E.N.

Miyakoda, K.

Miyakoda, K.

Miyakoda, K.

Nitta, T.

O'Brien, J.J.

O'Neill, T.H.R.

Pedersen, K. and
Gronskei, K.

Sheldon, J.W.

Shuman, F.G.

Smebye, S.J.

Stuart, D.W. and
O'Neill, T.H.R.

Stuart, D.W.

i960 'Energy and numerical weather
prediction', Tellus, 12, pp. 36^-373*

1936 'On a method of solving the balance
equation', J. Met. Soc. Japan,
^f, pp. 68-71.

i960 'Test of convergence speed of
iterative methods for solving 2 and
3 dimensional elliptic-type diff¬
erential equations', J. Met. Soc.
Japan, JJ8, pp. 107-12^-.

1962 'Contributions to the numerical
weather prediction - computations
with finite difference', Japanese
J. Geophysics, J5, pp. 76-190.'

1967 'Dynamic interaction between the
lower stratosphere and the tropo¬
sphere', Mon. 'Neath. Rev., 93>
PP. 319-339.

1968 Correspondence. Mon. Weath Rev.,
96, pp. 99-103.

1966 'Vertical motion and precipitation
computations', J. Appl. Met., J?
pp. 393-603.

'A method of initialization for

1969 dynamic weather forecasting, and a
balanced model', Geofus. Publikasjoner,
27, No. 7.

1972 'Iterative methods for the solution
of elliptic partial differential
equations', Mathematical methods
for digital computers, John Wiley
and Sons, New York.

1957 'Numerical methods in weather
prediction: I. the balance equation',
Mon. Weath. Rev., 83, pp. 329-332.

1958 'Computations of preciptation from
large-scale vertical motion',
J. Met., 15, pp. 5^7-560.

'The overrelaxation factor in the

1967 numerical solution of the omega
equation', Mon. Weath. Rev., 93>
PP. 303-307.

196^ 'A diagnostic case study of the
synoptic scale vertical motion and
its contribution to mid-tropospheric
development', J. Appl. Met.,
pp. 669-68^. •



281

Thomson, P.D.

White, P.W.

Yamagishi, Y.

Young, D.

REFERENCES (Contd).

1961 'Numerical weather analysis and
prediction', The Macmillan Company,
New York.

1969 Unpublished Met. Office Papers.

1968. Correspondence. Mon. Weath, Rev.,
9, PP. 323-32*f.

193^ 'Iterative methods for solving
partial difference equations of
elliptic type', Trans. American Math.
Soc., 76, pp. 92-111.



282

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. D.H. Mcintosh,

without whose patient help and encouragement I would neither

have finished this work, nor improved my squash.

I would like to express my gratitude to Mr. J. Patoa. for

allowing me to work in his department; to Mrs. M. Hallisey,

Dr. A.S. Thorn and my fellow research students for assorted help,

advice and discussion; to Mr. F. Bushby and the Meteorological

Office for allowing me to use data prepared for the 10-level

model; to Mrs. M. Crowther for typing this thesis and to the

Natural Environment Research Council for financial support

during part of this work.

Finally, I would like to thank my wife who has both inspired,

and distracted me. She also corrected my English, although

any mistakes are my own.


