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SUMMARY

Sevéral sets of equations which can be used to find the
vertical.velocity are examined. A distinction is made between
assumptions that are.based on physical considerations and those
based on computational pecessity. Since the eguations are
solved as boundary value problems it is necessary to impose}
boundary conditions. These are discussed.

Investigations are made into the use of the overrelaxation
method for solving partial differential equations with either
Dirichlet or Neumann boundary conditions. ' Emphasis is placed upon
the determination of.the'optimum overrelaxation factor. A
simple method of calculating this factor for the W-equation is
tested.

The derivation, meaning and solution of the balance equation
is discussed. New methods of solving this equation are introduced
and are compared with existing methods. The boundary conditions
for the linear balance equation are investigated and this leads
to the derivation of a new boundary condition for the balance
equation.

The geostrophic W-equation is examined and the elliptic
condition is derived. Appropriate boundary conditions for w
are discussed -and the effects of the form of the static stability
on w and ¢t are investigated. Simple models of the atmosphere
are used from which several inferences are drawn. These are
tested with case studies. The inconsistency of the usual

boundary conditions for W and QE is also examined.
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INTRODUCTTION

It is generally accepted that a realistic description of
the large-scale vertical velocity can be obtained by solving an
w=-equation. This equation is derived by eliminating %%‘and %%
between some form of the vorticity equation and thermal equation .
To do this it is necessary to use hydrostatic equation (which
relates T to ®) and some form of the divergence eguation (which
relates [ to ® and perhaps V). The resulting w-equation is such
that if ® is known there is an equation, or set of equations, from
which W may be computed.

A knowledge of the vertical velocity is of both practical
and theore@ical interest. Thus there have been many investigations
involving the solution of an w-equation.

Several people have investigated the relationship between
the large-scale vertical velocity and the ”we;ther" (Smebye (1958),
Haltiner et al.(1963), O'Neill (1966)). They all found that the
distributions of cloud and precipitation were consistent with that of
W . Danard (1964, 1966) considered a problem that is closely related
to this. He investigated the influence of released iatent heat
(which depends upon w ) on cyclone development and found that latent
heat did affect the growth of cyclones.

There are many different forms of the w-egquation that may
be used to compute w . The choice of the eguation is often based
upon order of magnitude considerations (e.g. Stuart (1964)). Other
authors have chosen an equation that is consistent with certain
integral'prOperties of the vorticity and energy equations. These
vwere deduced by Wiin-Nielsen (1959) and Lorenz (1960) and used, for
example, by O'Neill (1966). However for most diagnostic studies,

these integral constraints do not have to be satisfied.



Both Stuart (1964) and Haltiner et al.(1963) have
investigated the effect of excluding certain terms in the w-equation.
Stuart made the geostrophic approximation and looked at the effect
on the vertical velocity excluding both the differential vertical
advection of vorticity .and the differential twisting of the vortex
tubes. He found that the combined effect of neglecting these two
terms was small. Haltiner et al,investigated the remaining terms
of the w-equation used by Stuart. In particular, they looked at
the effect-of making different assumptions about the way in which the
static stability varied. It was found that the form of the static
stability had a marked effect upon w . They alsc investigated
many other facets of the w-equation and their report contains a
comprehensive discussion of the equation.

Krishnamurti (1968a) and Pedersen et al.(1969) introduced
and discussed diagnostic balanced models which can be used to initialise
a primitive equation model. In both models the wind was split into
two parts which depend upon‘either a stream function or a velocity
potential. The resulting w-equation is such that a system of three
or four equations must be solved simultaneously in order to compute
W e Pedersen compared his solution of w with that derived from an
equation similar to a geostrophic w-equation. He found that there
was a difference of about 30% between these solutions. Alsc, from
Krishnamurti's resuits (1968b), it can be inferred that when w is
-large, the corresponding difference is less than about 60%. However,
when w is small the difference can be about 1C0C00%. These results
show that a simple geostrophic w-cgquation gives a reasonable
description of the vertical velocity field. However the more
sophisticated w-equations can produce results that give valuable
insight into the mechanics of weather systems.

It is possible to derive and solve an W-equation that



includes terrain effects, frictional contributions at the lower
boundary, sensible heat transfer from water surfaces and latent heat
release. Krishnamurti (1968a) describes a way in which this may be
done. His next paper (1968b) evaluates, amongst other things, the
importance of these processes. He found that the terrain effect
and the transfer of sensible heat are comparatively unimportant,

. whilst the other processes are important.

Before an w-equation can be solved it is necessary to make
several decisions.

First consider a geostrophic UJ—ejuation. There are
several forms of the static stability that may be used. The effect
of these on the solution has.been investigated but the literature
provides no igformation about how the effects may be predicted for
a given static stability function,or a given meteorological situation.
Thus it is difficult to decide if it is valid to use an approximate
form of the static stability.

Once the precise fﬁrm of the static stability has been
chosen, it is necessary to specify the boundary conditions for .
The boundary conditions at the top and bottom of the atmosphere can
be deduced by physical considerations. This is not so for the
lateral boundaries. Usually w= 0 has been used on these boundaries
and has produced reasonable results. However there is little
information about tge effect of using this boundary condition or the
--possibility of using a different type of boundary condition.

An w=-equation is usually solved by the successive over-
relaxation method. This requires the specification of the over-
relaxation factor and it is desirable that the optimum value be used.
There are sets of equations that give this value if the eguation
considered has constant coefficients and Dirichlet boundary conditions.

However there is little information about how to choose the optimum



value when the equation has variable coefficients (as in most w-
equations) or when Neumann boundary conditions are used.

Now consider non-geostrophic models. As well as having
to decide the same things as for the geostrophic w=~-equation it is
necessary to choose a method of solving some form of the balance
equation. There are many methods to choose from; but scant
information on the choice of the best.

It can be shown that the balance equation is related to
the gradient wind equation. However the usual boundary condition
used for V is derived from the geostrophic wind. Thus there is
some doubt about the suitability of the boundary condition that is
usually chosen for V .

I initially intended to underteke investigations that were
similar to those of Krishnamurti (1968a, 1968b). However before
beginning this work I found that it was essential to investigate
the problems mentioned above. This thesis is a report on the results

of these investigations.



CHAPTER L

The Basic Eguations

Introduction

In this section the equations of hydrodynamics are trans~

formed from spherical coordinates to map coordinates. The

equations are then put in terms of an arbitary vertical coordinate,

o 5 and the vorticity and divergence equations are derived.
The most suitable choice of o is then discussed.

The ways in which the system of equations can be approx-
imated are investigated. It is shown that the system of
equations is only solvable if the —g% term in the divergence
is ignored. This is the minimum approximation.

The choice of the finite difference scheme, ﬁhe boundary
conditions and the numerical technigues are discussed. Then,
the relationship betﬁeen the boundary conditions for X and

t

studies is described.

W, is investigated.  Finally, the data used in the case

The Hydrodynamic Eguations

The atmosphere is a fluid. Therefore, the behaviour of
the atmosphere is described by the hydrodynamic equations.
There are six equations which are drived from Newton's second
law, the conse?vation of mass, the first law of thermodynamics
and the equation of state of the fluid. If the presence of
water vapour is included then there is a seventh equation that

represents the conservation of water vapour.

For convenience, it is assumed that the atmospheric motions

are adiabatic and frictionless.
The equation of motion of the atmosphere relative to the

earth is

(o)

Us20:U -%.(% °R) = -17p - V0
veuay Ty = L3P T Yy

t P



The vector U is the three dimenéionél velocity and  and R

are respectively the angular velocity vector and the distance
from the earth's axis. The parameter ¢‘ is the gravitational
~ potential.

The continuity equation is

1dp+V . U=0
pd 3
For adiabatic motions, the first law of thermodynamics

becomes

"
dd = 0 3 =T[‘!OOO] n =R

% las
P Cp

The equation of state of the atmosphere is taken to be
the perfect gas law
P = PRT
If it is assumed that the earth is a sphere with radius a,
and that the thickness of the atmosphere is very much less than
a, then in spherical coordinates (A ,y9, r) the equations of

motion become

du - uv tan(yp) - fv = ~1 ap (1.1
e i a pacos(y) aﬁ

2
dv + u tan(y)+fu = -1 ap (1.2)
dt a a ay
dw = -19p - 3¢ (1.3)
d paor ar .

Here ]_J_ = (U, v, w) and ¢=¢t_12|:QaCOS(tp}]2 . Also g_%’
is the apparent acceleration due to gravity (g).

For motions on the synoptic scale, it is found that the
vertical accelerations are very small compared with those due to
gravity and vertical pressure gradients. Thus it ié assuned

that the atmosphere is in hydrostatic equilibrium. Equation

(1.3) then becomes

p_ = g =0 ‘ (1.4)
r



Since maps are used in meteorological analysis it is
necessary to transform the above egquations from spherical
coordinates into map coordinates. In the following work a
. polar stereographic projection was used.- With this projection,

it can be shown that if the derivatives of the mapping factor

(nw =,_,2__Qare ignored the hydrodynamic equations become
T+sin(y

dy +fk«V = -1Vp (1.5)
dt p
ia_g + g = O (106)
paoz
1dp+V.V+ow = 0 (1:7)
pdt Jz
d% = D (1.8)
dt

Here the differentical operators gf and V are defined by

d =3 + mV.V +wgd
dt ot oz
V =

m{ig_ =jid.

The spherical nature of the atmosphere is taken into account

in these equations by allowing f and m to vary with latitude.
Thompson (1961) showed that the above equations imply that

the vertical velocity is
Z a0

w=-|V.yVdz+1 (EL_/.Vp-_QQV_\_/)dz"dz'
Y 102" 9z
: ) 0 Z
Thus if u, v and p are known the vertical velocity can, in
theory, be calculated. However, in practice u and v are not
known sufficiently well.

_Equations (1.5) to (1.8) are usually called the primitive
equations. They can be used to make a numerical weather
prediction if suitable initial conditions are chosen. The
formulation of these conditions required the computation of the

wind field (u, v, w) from the distribution of ¢ at time t = o.



Thus the problem of initialising a primitive equation model
is essentially the same as deriving the necessary fields for
a diagnostic studye.

The initialisation can be achieved in two ways. Firstly
there are methods which involve the direct use of the primitive
equations and secondly there are those methods which use
equations derived from the primitive equations. Haltiner
(1971) discussed these methods and concluded that the first
type of method is best. However, in the following diagnostic
studies the second type of method was used because of its
greater flexibility.

When the second type of method is used, it is necessary to
split the horigzontal velocity, V, into its rotational and

divergent parts (E1 and y_z)

Vo= ¥ o+
If Yand X are the streamfunction and velocity potential, then
M1=va‘~!1 M2=VX

Therefore the vertical component of vorticity (L) and the

divergence (D) are given by

2
C =V D= v2X

The vorticity and divergence equations are derived by "multiplying"
eéuation (1.5) by ke Vx anda V., -

Until now the vertical coordinate has been z, but this is
not essential. Therefore the equations can be transformed to
another coordinate system (x, y, 0) and @ may be chosen so as
to simplify the equations. Since Q most vary monotonically
with z, it must be a function of p, p orv.

The form of equations (1.5) to (1.8), in (x, y,a)

coordinates, will be described in the next section.



1.3.1 The Equations In (x, y, 0.) Coordinates

The transformation of the equations from (x, y, z) to
(xy y, ®) coordinates was discussed by Hinkelmann (1969).

In (x, y, @) coordinates Equations (1.5) to (1.8) become

dV + fk«V = -1Vp - VO -
dt p (15
9% = -130p (1.10)
da paoa
( ) « V. V + (CL = (1.13)
CL
@_’& + y + (.18_%' - 0 (1!12)
ot ap

The vorticity equation can then be derived from Equation
_ £1.9). If the divergence, D, is eliminated between the
vorticity and continuity equations, then the vorticity
and continuity equations, then the vorticity equation becomes
QL . VVn+aJ —n[ (Qp) « L.VID + Q_(da_e)] ap
da otiga da dal dall/ du
~L<Q_Y «Va - E.Vpr(l) = 0 (1.13)
oa 7
In this new coordinate system, the divergence and adiabatic

equations are

VYD + &dD + VudV + Vv.OV « Vad

8_ oV Y
ot oa d X dy - Ja
2
-tk ViV + V. kxVf +VpV(1)+1V p+V¢ =0 (1.14)
9T + VVT +a 3T = wT|3p+VY.Vp+3pa (1.15)
5t Fa  p [é“t 5o } P

The temperature,T, is derived from the hydrostatic equation

and the equation of state, and therefore

ad
T =-p foled
R

1

oa
Equations (1.13) to (1.15) can be written schematically

as
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F1(u.v,a.p.p,¢,g.D)

e
1l

2
n o

F. (uVv,dp.p.3p.C)
2 p.52

i
1]

£ _(u,v,ap.opT)
3 ot

Also the diagnostic equations, namely the hydrostatic eguation

and the gas law, become

F = 0
| S(p.T.0) |
F (p.T = 0
6P p)
Finally, the continuity equation is
a9dp = F (u,v,&p)
dtda 4
If the functions W and X are introduced and if the
equations F5 = 0 and F6 = O are used, then these eguations
b-ecome 2 )
V 83X = F(V¥,X.,&.,p,0)
50t 1
VoV = F(V,X,&,p.9.9p)

- ; gt (1.16)
93¢ = F(V,X,ap,¢,0p) )
opat 3 ot
@ .B_E = F (W ,X ,fl. p)
ot o 4

If the distribution of P ,® Or ¥ is known as a function
of &, then Equation (1.16) represent four eqguations in seven

e

g

unknowns(‘ﬂ’..a_x.@,w.x.aand QQ) % The lar
ot ot ot at

number of ynknowns 1s the result of the need to compute the

horizontal velocity components (and hence W and X ) from

the single variable describing the state of the atmosphere.

It is now necessary to choose 0 so that the above set

of equations are conparatively easy to solve.
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1.3.2 The Choice Of o

If a = p then §;1 = O and therefore there are only
t

six unknowns in Equation (1.16). If a=w , these equations

become _
5
V 2X = G(V,X,w,9)
ot 1
2
vV 9V = G(V,X,w)
5 )
3 3 = G (VX ,w,9) (1.17)
op ot 3
0 = C%(X ,w)

The choice of O = p has the important effect of turning the
.continuity equation into a diagnostic équation.

For adiabatic motion, the choice of @ =V has the effect
of eliminating one of the unknowns since & =9 = 0. But
atmospheric motions are not adiabatic and when this is taken
into consideration the advantage of V¥ coordinates disappears.

When o = z and & = w, the equations become

2
V aX = H(V,X . w,p)
ot 1
2
VoVv = H(V,X,w, p,3aR)
ot 2 ot
: (1.18)
= H(V, ,dD)
g o = (@D é X,w,p 5t

1]

d d H (V,X,w,p)
Gz |

A comparison of Equations (1.17) and (1.18) shows that the
equations in p coordinates are far simpler than those in z
‘coordinates. The reasons for‘this are that, for the =z

coordinates, the continuity equation is predictive and the

forcing function of the thermal equation contains a time derivative

ap
-9t
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A further advantage of the pressure coordinate systenm

is manifested if only the largest terms in the equations are

considered.
P coord. .z coord.
0 =G(V,0) (p1) 0 ;H;(w.pa (z1)
2 ; 2 .
V oV =G (V,w) (p2) V oV = H(V,w) (z2)
Jt 2 ; a;f 2
330 =GV, o) (p3) g3 (3p | H(V,w, p,dp) (23)
apdt 3 p)ggg(gg} 3 R SR

For both sets of coordinates, the first equation can be used
to eliminate the time derivatives on the left-hand side of the

other two equafions. The resulting equations are
0 =G(wWw,0)  (p4) 0 =H'(w,w,p,%%> (Zl)

Therefore, for the p system, once WV has been foﬁnd using
Equation (pl), Equation (p4) can be solved for w. Equation
(p4) is usually known as the w-equation. For the z system,

a knowledge of W and p is not sufficient to solve Equation (Z4)
for w. |

9D is ignored in the forcing

at

function of Equation (Z3), then the resulting w-equation is

If the term depending upon

very similar to the w-equation. Houghton et al.(1971) used this
to compute W and found that it gave a reasonable pattern of
vertical velocity. However, they made no attempt to estimate
the effect of neglecting the g%.term. In general, it is
unwise to ignore a large term in an equation.

When a = p Or a=p/ps (where ps is the surface pressure)
is used in Equation (1.16), the equations become very complicated.
Therefore it was decided that these forms of G were not suitable
for a diagnostic study.

In the following work, the pressure is taken as the

vertical coordinate because of the simple form of the eguations.
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However it is realised that the choice of coordinate systenm
must be determined by the initial data and the ultimate object-

ive of the analysis.

The Equations In Pressure Coordinates

In pressure coordinates, Equations (1.13), (1.14), (1.15)

and (1.11) become

2
3D + V.VD + wdD + D - 2J(uyv) + 3V Vuw
ot ap ap

fL e KeV.Vf+ V2020 (1.19)

9L + V.Vn + wdl + kK.VwxdV - 13w =0 (1.20)
ot op ap ap
_a_(@_@) +V.Vgd «+ ow = O (1.21)
op it op
5 .
VX+3dw =0 (1.22)
- ap

The static stability , o0 , in Equation (1.21) is given by

=F\" T « QL
TR0 5

- P
Some important integral relations can be derived from
the above equations. If these equations are approximated
then, in certain circumstances, it is essential that the
approximate equations satisfy the same integral relations as
the full equations. The integral relations have been discussed
at somé length by Haltiner (1971) and the importaﬁt points
of his analysis will be described below.
If K= 2 V. V and if £ is the total potential energy,
the energy equation derived from Equations (1.19), (1.20) and

(1.22) is

9 |(K+E)dM =0
ot

Here M is the mass of the atmosphere. The following sets

of equations satisfy an integral relation similar to the one
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above
(i) the full vorticity equation (Equation (1.20) ) and

the divergence equation minus the term BE? (see Equation

(1.19) ).
(31) 3r+ v.Vn + w3l + KVwsdV, - 13w = O
6t2 ap 5 ap ap2
tVY s YV Y]« VIRY -V = 0

These equations, with Equation (1.21) are often called the

balanced systen

€
1
o

|

iii Al + % YE = I
(iii) 5%" YTVH &5. f-fa

Q
o ©

2 2
fV VU +VIVY -V ¢

These are often called the linear balanced system
(iv) the quasi-geostrophic system

=0

€

Ar+V.Vvy - f 2
ot !

e 2 2
fVy-v o =

Qy
o T

‘ﬂith this set of equat?ons the term 12.? %% should be omitted
from Equation (1.21) and O must be treated as a function of
pressure only.

From Equation (1.20) it can be shown that the generation
of vorticity over a complete isobaric surface is zero. The
approximate forms of Eduation (1.20) which have this property
corresﬁond to those described in (i) to (iv).

fhe relative importance of each term in an equation can
be investigated by using scale analysis. A comprehensive
discussion of scale znalysis has been given by Haltiner (1971).
However, a less rigorous method gives the same results as
Haltiner's analysis (see Gambo (1957) ). Gambo's.method of
analysis was used in the following work.

Let L and U be the characteristic horizontal and velocity

scales of the synoptic scale motions in the atmosphere. If
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fo is the characteristic Coriolis parameter, then the Rossby

number, R, is defined by

R=_U

Tl

For synoptic scale motions in mid-latitudes R==ﬁ5.

Following Gambo, .it can be assumed that
llz!,: R ¢ ~ 1

|V fuL
Here ¢ is the characteristic geopotential scale. The

second expression represents the condition for geostrophic
equilibrium.

In non-dimensional variables, Equations (1.19) to (1.21)

becone
3 2
R [wa_g>+o+\_f.vo+ V. Vw -2T(u_v.)
+R @+YVD+8 A% %V - -
[at ’ 5{5)(1 w+ K ..2.Vf ZJ(U‘I'VZ) 23‘({_{2\/1)]
R [ k.v Vf - . 271 .
[- 4 2ot )} . [ fL+v tb} = 0 (1.23)
2
R [g.vwxggz}m uid +\_/_'.V11-§Q_@+5.Vm;;@\_/_{|
ap p 2 ap 3
+[Q£+_\_/.V11—fa_g -0 (1.24)
ot | op
R[v vael+[a oo+« Vv vao- = B
["2 ‘a"‘"f)]+l:ap(§f * 4 ap Um] (1.25)

If only the largest terms are considered (those of order R%),

the equations become

2
-fL+7 0 =0 (1.26)
3L +V .Vy -fdw =0 (1.27)
ot 1 p
d (3% + V., . Vn+ ow = 0 _ (1.28)
ap(at) 1 ,
\_/1=ng111 =V VY
From Equation (1.26) it can be shown that
V.- V.= 1kxV0
_-] _g __f_,_
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Here V_ is the geostrophic wind. Thus Equation (1.26) to

g
(1.28) define what is essentially a geostrophic system.

If VE, DE and TE represent the vorticity equation, the
divergence eguation and the thermal equation, then the
w-equation is defined as the equation derived from (see
Pedersen et 2l1.(1969) ).

2
V(TE) - f3(VE) - 9 9(DE) = 0 (1.29)
op otap
When Equations (1.26) to (1.28) are used for DE, VE and TE

Equation (1.29) gives

2 2.2 2
V(ow)+ fow = fa(V..vy) - V(V.V3d)
ap?2 9P T 9p

Equations (1.23) to (1.25) were reduced to Equations

(1.30)

(1.26) to (1.28) by using scale analysis. Therefore the
w-eguation should be derived in a consistent manner. Thus
Equations (1.23) to (1.25) should be used in Equation (1.29)
and a scale anélysis performed on the resulting equation.

If only terms of order R® are considered, then the resulting
equation is Eguation (1.30).

If V_is used in place of V., Equation (1.30) becomes

g 1

the geostrophic w-eguation. The distributions of

~calculated from Eguation (1.30) ﬁsing V, and V_ are almost

1 g

the same. But, the use of V_ has several advantages that

g
will become obvious when the solution of this system of
equations is discussed.

Nearly all diagnostic studies have used Equation (1.3C)
(or a similar equation) with either 11 or Eg. But this may
not be suitable if the results are to be used to investigate
energy or vorticity budgets. This is because Equations

(1.26) to (1.28) do not satisfy the integral constraints

described earlier. However, the following work is not
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concerned with these budgets and therefore the w-equation
was used in its unaltered form.

The distribution of ¢ is known and since there are
four unknowns ¢:. u&.(u and Y four sets of boundary
conditions must be specified. Equations (1.26) to (1.30)
can then be solved. Initially,V is computed from
Equation (1.26) and w is calculated from the w-equation.
Then either Uﬁ or &, or both can be calculated from

t

Equation (.127) with

fVQLU 'v% 0
t £

If the geostrophic approximation is used, there are
only two ungnowns w and ¢t and thus only two sets of boundary
conditions are required. The reduction of the number of
unknowns to two greatly simplifies the procedure for solving
the system of equations.

When the geostrophic approximation is used, the wind
field is derived from ¢ and thus it is not necessary to
solve Equation (1.26) for V . Once Equation (1.30) has

been solved for w, ¢, is computed from

t

2 2
Voo, + f\_/g.vn-fgy = 0

It is suspected that the errors introduced by using Eg

instead of V., will be less than the errors produced by having

1
to specify a large number of boundary conditions that are
neither accurate nor consistent with one another.

Using Equations (1.23) to (1.25) higher-order equations
can be derived and these lead to higher-order w-eguations.

These higher-order eguations are considered in the next section.

rendent variable that involves a time

¥

®

derivative (e.g.2* ) will be written with t as a subscript

ot

*
Henceforth any de

(e.g. ¢H )
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Non-Geostrophic Models

Consider the complete set of hydrodynamic equations
shown schemmatically by Equation (1l.17) and in detail by
Equations (1.23) to (1.25).

Equation (1323) clearly shows that the divergence equation
should not be used to calculate g% (orXt ), but that it can
be used to compute V . Thus the divergence equation should

be written as

2 _
v w:e‘;(w,x,w,cb.xt) (1.31)

Due to the form of the hydrodynamic equations, ¢, can always

t
be eliminated by using Equation (1.29). The resulting w-

equation has the form

2 2 5 ' | :
v . .
(ow)+f aﬁzpw G, X, 0,0,V X, X,) (1.32)

Once W is known, the continuity equation is solved for X

and thus the continuity equation will be written as

2 .
a8 G;(w) (1.33)

Equations (1.31), (1.32), (1.33) and the vorticity
equation form a set of four partial differential equations
which can be solved as boundary value problems. Unfortunately

there are still six unknowns V ,X , W, QE, Xt, X and only

tt
four equations. The derivation of nmore equations by
differentiating come of the equations with respect to time
does nothing to alleviate this problem. Thus, to solve the
above set of equations, some approximations or assumptions
have to be made.

1f 9D is ignored in the divergence equation and if the
vorticity ecuation is used in full, the system of equations

becomes that described in (i) of section 1l.k4. These two

equations conserve energy and also produce a zero generation
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of vorticity. Hence if these equations could be seclved for

Y ,¥ and w these fields would satisfy the energy relation

t
\,r(h avllit).(lgx\?W) dM =—jwa dM (1.34)

When 5%?15 ignored Equation (1.31) will not contain Xt but
it will still be contained in Egquation (1.32). Thus this
approximation is not sufficient to produce a solvable set of
equations.

If it is assumed that 90 =90, = 0 then neither the

ot odt
divergence egquation nor w-equation will contain Xt and hence
it is possible to solve the resulting set of equations.
Pedersen et al.(1969) used this set of equations and the
iteration proceedure is shown schematically in Fig. 1l.1l.

Due to thé fact that these assumptions alter the w -
equation as well as the divergence equation, the computed
fields of VU , U& and W will not satisfy Equation (1.34).

Pedersen et al. justified their assumptions on the grounds
that they led to a divergence equation that would give a
balanced wind. But the main advantage in using a balanced
wind is that gravity waves may beée eliminated. However,
Thompson (1961) showed that gravity waves can only be
eliminated if Sj_EC) = 0. Thus the wind used by Pedersen ﬁill
not be free of gravity waves.

An examination of E@u;tion (1.23) shows that Pedersen's
assumptions cannot be justified by scale considerations
because terms of both egual and smaller magnitude are included.

The above discussion shows that the equations used by
Pedersen do not conserve energy or eliminate gravity waves.

Also the equations cannot be derived by scale analysis.

Thus, it is suspected that his assumptions were based on
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Pedersen et al. (1969)
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Krishnamurti (196 8)
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computationai necessity.

Krishnamurti (1968) used the system of equations
described in (ii) of section 1l.4. These equations
conserve energy and produce a zero generation of vorticity.
Also, since no approximations are made to the W-equation,
the computed fields of V¥, Wtand W should satisfy Equation
(1.34). Further, Equations (1.23), (1.24) and (1.25)
show that Krishnamurti's equations can be derived from the
divergence, vorticity and thermal equations by only
including terms of order R® and Rl.

This system of equations is solvable because Xt does
not appear in either the divergence equation or (»—équation.
The iteration scheme used to solve this system of equations

is shown in Fig. l.2.

The above discussion shows that Krishnamurti's choice

of equations can be justified and that the system of

equations can be solved. Also, a comparison of Figs. l.1
and 1.2 shows that in Krishnamurti's scheme the divergence
equation (in this case the balance equation) has to be
solved only once, whereas Pedersen had to solve his form
of the divergence equation for every iteration.

Once the system of eguations has been chosen there
are many othe; problems that have to be overcome.

- o, R . S
tem of Louations

The Sclution Cf A Sy

1]

Before a system of equations can be solved it is
necessary to consider the following problems.
(i) the ellipticity of the eguations
(ii) the choice of a finite difference scheme
(iii) the type and nature of the boundary conditions
(iv) the choice of a numerical technigue for solving

the eguations.
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Each equation, in a system of equations, can only be
solved as a boundary value problem if it is elliptic.
An equation is elliptic if, and only if, it can be

transformed into an equation of the form

2 2 2
Q_% v+ Q¥ e Q_% = 0 (1.35)
ax 3x? Ix )
For a two &imensional eguation
F( wxx,wyy,wxy,wx ,wy Vo, x ,y )=0
this is possible if
2
- =
4F.F - F_ 0 (1.36)
Here, r =wxx y: 7B :lﬂyy and s =\ny and also F = gg etc.

(see Arnason (1958) ).
Both the vorticity and continuity equations are used
in the form of a Poisson equation
sz =G
For the former equation X =WV and for the latter X = X
-Equation (1.36) clearly shows that these equations are
always elliptic with ;espect to UV and X respectively.

‘The divergence equation is usually used in the form

2 2 :
fV Y+ 2(wxxwyy-wxy) + VfVV = G

'This is a non-linear equation and thus the ellintic condition
derived from Equation (1.36) is a function of W . Hence
it is not posgible to make a generallstatement on when this
equafion is elliptic., This problem will be pursued further
in section 3.3l.

All w-equations are similar to Equation (1.32). It
is not easy to transform this into the form of Zguation
(1.35), but some insight into the elliptic criterioﬁ can
be gained by considering a related problem. If 0 =0(P),

then it is easy to show that the w-equation is elliptic if
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o(p)>0. It is suspected that the elliptic criterion for
the complete equation is approximately 0>0.

If an equation is solved numerically, then the elliptib
criterion is very closely linked to the condition under which
the numerical scheme will converge. Thus the elliptic
.criterion is only significant when it is discussed in ternms
of the finite difference scheme and the iteration scheme.
This aspect of the elliptic criterion will be discussed later.

Although the meteorologicgl fields may be arranged so
that each equation in the system yields é convergent solution,
there is no guarantee that the complete system will produce
convergent solutions. However, the experience of others is
that the solutions do converge.

When a diagnostic study is undertaken, it is necessary
to specify boundary conditions for some or all of ¥V, K6 w,k X, ¢t
“and u& .

The boundary condition for VWV is usually derived by
assuming that the wind perpendicular to the boundary is
geostrophic. The appropriate boundary conditions for
will be discussed in sections 3.6.1 and 3.6.3.

When the w-equation is solved it is usual to set w= 0
on all the boundaries. This is a realistic assumption on

the upper and lower boundaries but not on the lateral

boundaries. An alternative condition on the lateral boundary
is 9w = 0. The relative merits of the boundary conditions
n

will be discussed at length in Chapter IV.

It is usually assumed that X ,U% and Qt are zero on
the lateral boundaries. Therefore, these boundary
conditions are independent of the meteorological situation.

It can be shown that some of these boundary conditions
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are not consistent with one another. For instance, the use

of ¢% = 0 and W = O implies that on the boundary

J(V,3¢) + YXV3® = O
ap ap

There is no reason why this should be éo. This inconsistency
is also illustrated by the fact that if Equations (1.31) to
(1.33) are used to find ¢>t , X and w with ¢t= X==0
on the boundary, then the solutions will not satisfy the
thermal equation

3¢ + J(W,09) « VX.VI® + ow = O

ap P Ip

It can be shown that the use of w= 0 and X = O on the
boundary is not inconsistent. This is also true for ¢ =0
and U& = 0. It is shown above that the boundary conditions

w= 0 and ¢t = 0 are inconsistent. Therefore the boundary
conditions X = O and.WUt= O are also inconsistent.

In the next section a method will be described by which,
in theory, consistent boundary conditions for X and Wt
may be derived.

Some form of overrelaxation was used to solve all partial
differential equations. Chapter II consists of a discussion
of the methods that are used to solve linear equations and
a particular non-linear equation is considered in Chapter
III.

2 = - . ¥
Consistent Boundary Conditions For X And W,

=

If a Gambo (1957) type analysis is carried out on

Equation (1.9) (in p coordinates), then the equation becomes

in non-dimensional form
2

R |V V\/+tu8\/} [BV + V. VV. +\V Y + W @y]

Ty |+ R |2+ 7Y ¢ YT w2y

+R BV + V..VV +f Kx Vb fR«Y +Vd| =0
at ] -1 1
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If only terms of order R® and Rl are considered and if Y

and X are introduced, then,

@.ﬂ’t+f§_x _SEQ_‘” 3_‘“___3‘”_ fow -9¢

X dX Jdy d X2 9x ox Xdy Qy 9y (1.38)
2 2

BV, + 13X =0V JV - 3y g - 13V +30

dy dy Jdydxdy oX dy2 9x X

These equations show that the gradients of X and Wt
along the boundary cannot both be zero. Thus using x:u%=0
on the boundary produces an inconsistency.

If X ,V and ¢ are known around the boundary then the
gradient oflﬂt along the boundary may be found. If s is the

coordinate around the boundary then

Bllit F(Y,o,X)
ds

Therefore, if A represents the difference between two g'rid—

points on the boundary, this equation becomes

AY =Fd = F
t m

* *
Clearly the sum around the boundary of F , E:F say, should
be zero. This not so when real data is used and therefore

the above equation must be replaced by
. *
AY, = F ™ 8d 5= F
t ™m

28

If X is not known on the boundary, then Equation (1.38)

This process ensures that Zﬁwt -

may be written as

:lwt+ f AX

It can be shown that if ZMJ,[ =0 andZﬁ'ﬁX = 0 the solution

GV 0)

of this equation for AV, and AX are unigque. Unfortunately

t

the author was unable to find these unique solutions.
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1.8.1 The Grids And The Finite Differences

The computations were carried out on the same grid as
that used for the 10- level model (Benwell et al.(1971) ).
This consisted of a square grid, of gridlength d = 108.844545
km, on a polar stereographic map. The mapping faétor, m, |
was given by m = 2/ (1 + siny ) where ¢ is the latitude.

Three different regions were used and these will be
referred to as areas 11, 51 and 91. They are iilustrated in
Fige 1.3, The dimensions of the areas are 23d by 31d, 15d
by 23d and 15d by 1lld. In all figures showing the diétribution
of a field on_an isobaric surface, one gridlength corresponds
to 0.7 cn.

Unless stated otherwise, the finite differeﬁces were

derived from Stirling's Interpolation Formula
5 .
g el = gy +(1PRYs 9(9)° %o* - ¥, = ¥(x,)

The operators P and 0 are defined by

6 f(x)

¢d) - f(x-d
f(x 2) (x 7J

[fx+ )+ 1x -] /2

pf(x)

The finite differences calculated in this way are often called
centred finite differences. Those used had a truncation
erfor of order_dz.
Sﬁppose that primed opa;ators refer to the earth, whilst
unprimed operators refer to the map. By the definition of m
9t = maf
oX ox

It can then be shown that

2 2
vV = m2V f+ mVmVf

However the gradient of m is very small and thus the following

expression was used

_ 2
%F = MUt
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It is the unpriﬁed quantities that are put in terms of
finite differences.

The next section contains a description of both the
meteorological situvation and the basic data used in this

thesis.

The Data

This thesis is mainly concerned with the equations for
Y, w and ¢t and the methods of their solution, rather than
with the significance of the solutions. Therefore the

actual meteorological situation considered is of little

importance. However for completeness the surface chart for

area 11 is exhibited in Fig. 1l.k.

Ali computations were carried out with data for OCOOCGMT
15.9.68. This was chosen because analysed datas, which had
been used to test the 10 level model (Benwell et al.(1971) )
was available. The actual data consisted of height- fields
which had been vertically smoothed, convectively adjusted
and then horizontally smocthed. The.fields for nine isobaric
surfaces between 1000mb and 200mb, separated by 100mb, were
used. The heights were used only to the nearest meter
because the line printer output, from which they were copied,

géve the heights to the nearest meter.
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CHAPTER IT

The Overrelaxation Method And The Determination

O0f The Optimum Overrelaxation Factor

Introduction

This chapter is concerned with the sucqessive over-
relaxation method (hereaftef called SOR), and the éymmetric
successive overrelaxation method (SSOR) of solving elliptic
partial differential equations. The Helmholtz, Poisson
and omega equations are considered, and both Dirichlet and
Neumann boundary conditions are used.

Special emphasis is placed on the dgtermination of
the optimum overrelafation factor.

A list of the experiments carried out is shown in

Table 2.1.

Methods of Solving Linear Elliptie Equations
| Consider the linear, elliptic partial differeqtial
equation given by
Fx=12 - (2.1)
Mis a continuous partial differential operator, x is the
dependent variable and f is the forcing function which is

independent of x. An analytic solution of this equation

‘cannot usually be found, and thus a numerical technique

must be used. For all numerical methods the partial

derivatives are replaced by finite differences, so that
Equation (2.1) becomes a matrix equation

AX=8B (2.2)
Here, X and B are matrices of x and f, and A is a matrix
depending upon the form of [ and the boundary conditions.

The two types of method that may be used to solve
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The code used in Table 2.1 is as

Type of equation

Type of boundary condition

Method of solution

Type of data

_ Figures showing n(E)/ B

or n(E)/a curves

- G
P -
W -
TR
-
SOR =

SSCR -

-

A =

follows

Helmholtz equ.
Poisson equ.
W.- equ.
Dirichlet

Neumann .

Real

Artificial
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Case| Lgu.| B.C. | Method | Data Fig. Comments
la H 1 SOR R 2l
2'
1b H 1. SOR R 2.2 similar to la but with a
different initial guess.
2a H 1 SOR R 2.3 similar to la but with a
larger area
2b H i SOR R 2.3 similar to 2a but with a
variable b
5 H 1 SSOR R 2.1 same data as for case la
2
La H 1 SOR A 2.9 $ < (1-6.5) x (j=4.5)
Lo H 1 SSOR A 2.9
S5a H 2 SCR R 2.10 scheme A
5b H 2 SOR R 2.10 scheme B
2.1 :
6 H 2 SSOR R 2,11\ | same data as for case 5b
) 2415
7a H 2 SOR 236 same data as for cases lLa
7b H 2 SSOR 2,36, | [22e b .
8a P 1 SOR A 2,17 | IS < (i-6.5)
8b P 1 SSOR A 2.17
9a. P 1 SOR A - Sa (i~6.5) x (j=4.5)
9b P 3 SSOR A 2.8
10a P 2 SOR A 2.20 ||same data as for cases 8a
10b P 2 ssoR | 4 | 2.20 |[pnd &b
1lla P 2 SOR A 2.22 |5 « (j=4.5)
1lb P 2 SSOR A 2.22
l2a W 1 SOR R 2.23 0 constant
12b W X SSCOR R 2.23
13a W 1 soR | R | 2.28a| (q) = 1/4¢° q = 1,1,5
13b W 1 SOR R - (q) = l/q2 q = 1,1,9
134 W 1 SUR R 2+25 L levels with U(2L2: L ox 1L72
and 0(3) = 4C x 10
14 W SCOR R - different types of wWw-eguation
15 W SOR R 2.25 similar to 13d but with
flagging
16a W 1 SOR R 2.24b\ similar to 13a but using
227 O -scheme
16b Vi 1 SOR R 2.26) different 0(q) used to
2+27 investigate a, and GO
1l6¢ W 1 SOR R 2.27

TABLE 2,1
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Equation (2.2) are known as direct and iterative methods.
1

In the direct methods the inverse of 4 (4 ') is
calculated and then the sclution is given by X = 51 B.
Since A is usually both large and sparse these methods are
not practical.

| The iterative methods are ideal for large sparse
matrices. They require an initial guess of X (X&» ) and
an algorithm by which the value of X after n iterations

(X (nJ (ﬂ"n

) can be computed from X . The iteration process

(n)

is convergent if X —= X,
There are two classes of iterative methods; point
iterative methods and block iterative methods. In point

(n)

iterative methods X is altered at each gridpoint

separately, whilst in block iterative methode groups of
X(n) are changed simultaneously. -
The three most commonly used point iterative methods
are the Jacobi, ;he Gauss-Seidel and the SOR methods.
The SSOR method is basically the same as the SOR method.
The relationship between these four methods is described in
many textbooks (e.g. Ames (1965) ). The Jacobi method ig
the least efficient of these methods and will not be
considered further.

Suppose Eguation (2.2) is arranged so that the diagonal
elements of A are unity. If L and U are the lower and

upper diagonal matrices of A, and I is the unit matrix,

then the SCR method is defined by

D x® ¢

-1
M=-(BL+1I) [ BU+ (B=-1)1] (2.3
cC= Bh1I+L)_1 B

The parameter [ is the overrelaxation factor and n is the
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Method Number of Work per
steps iteration
Jacobi 2/h ~1
Gauss-Seidel 1/h ],
SOR . 1/2h 1
SSOR ~1/[n ~2.5

TABLE 2.2 - Ames (1965)

Number of steps - number of steps needed to feduce the
er;or to a specified factor of its
original value

Work per iteration - work per iteration normalised about

the SOR method
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iteration index. The iteration process continues until

(n=+1) _ 0| - E.

Il x
E will be called the tolerance.

The Gauss-Seidel method uses Equation (2.3) with
B=1.

For a two-dimensional region with gridpoints labelled
i and j, thé SSOR method uses Equation (2.3) at all
(i + j) odd points, and then at (i + j) even points (i.e.
the only difference bétween the SOR and SSOR methods is
the order in which the gridpoints are relaxed).

Ames (1965) compared different iterative methods of
solving a Poisson equation with Dirichiet boundary
conditions. A éelecéion of his results is shown in Table
el This shows that the SOR method, using the optimum
value of B, is far better than the Gauss-Seidel and Jacobi
‘methods. This is true for all-elliptic equations. His
results also show that the SSOR method is more efficient
than the SOR method. However it is not clear if this is
true for all elliptic eguations.

There are two kinds of block iterative methods known

as single line methods and alternating direction implicit
methods (ADI). For the Poisson equation with Dirichlet
boundary conditions, 4imes (1965) has shéwﬁ that these
methods are superior to point iterative metheods.
However, it is difficult to use block iterative methods
to solve an equation as complicated as the w-equation.
Therefore the present investigation is limited to point
iterative methods, but it is hoped that the block

iterative methods will be investigated in the future.
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The next four sections will be concerned with the
method by which the optimum overrelaxation factor (Bg)
may be found or estimat;d. Two methods will be described.
The first method is based on the Young-Frankel theory of
SOR, and is applicable to all elliptic equations (uqder
certain conditions). The second methed is based on a
detailed analysis of the iteration algorithm.

2.2.2 The Young-Frankel Theory And Carre's Method

If A is a symmetric positive definite matrix with
Young's Property 'A', then the iteration scheme defined
by Equation (2.3) will converge for O<[P<2. Under these
conditions the rate of convergénce of the iterative ‘scheme
is dependant upon the spectral radius of matrix M (tﬂe
spectral radius,-hn1, is defined as the absolute value of
the largest eigenvalue of a matrix). \ The convergence is
defined as -1n ( Rnw)" and f,is defined as the value of f
that minimizes Rnwand‘thus maximiées the convergence.

The average number of iterations (N) that are necessary
to reduce IIX - X(n)l| by one tenth is given by )

N = W ‘ (2.4)

Engeli (1959) pointed out that the values of N for the

Gauss-Seidel and SOR methods (using B,) are related by

N(SOR) = ;’N(G-S)

4

This indicates that the SUR nmethod is Tar more efricient
than the Gauss-3eidel method.
Young (1954) showed that if pn}is the s»ectral radius

of (A-I) then B, is given by

*
I1n and log will refer to logarithms to the base e and

base ten respectively.
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. 2

By = (2:5)
s fi2

In terms of the spectral radius of M this becomes

By = 2 (2.6)

1+j1-glm+g-1f'
B2

This holds for all values of [ such that l<:ﬂ<:Bo

It can be shown from Equation (2.6) that when B::Bo i

the spectral radius ( Krno) is

Mives ® Bs™ 1 (2.7)
Therefore the maximum value of N is given by
Ng = = ¥ $2.8)
Iog(ﬁo-1)

If hn1can be found for a given B , then Equation
(2.6) can be used to find Bo.  Carre” (1961) found A, by
using the fact that the displacement vector

n) n n-1
( 6( = X( ) - z( )) has the property that

Lim ||6(n) ” = X (' )
. 5 2.9
n>e || 5"V " ,

For convenience the use of this equation with Equation
(2.6) will be referred to as Carre’s method, although the
method described by Carre was more sophisticated.

Carré's method is only effective if 1< B<fjand
therefore an estimate of Bgis required. A good estimate
is advantageous because the rate at which lnjis approached
depends upon ( By-B ).

Miyakoda (196C) derived sets of formulae by which
can be calculated for several simple eguations with
Dirichlet boundary conditions. Unlike Carre®s method,
this method does not involve the solution of the actual
equation for which Bgis required. Thus it is useful to

use Miyakoda's method to derive BO for simple equations.



oot 39

Also it may be used to estimate BO for more complicated

equations so that Carré's method can be used.
Experimental evidence that will be described later

shows that Miyakoda's method can be extended to give

accurate values of BO for complicated equations.

2.2+3 Miyakoda's lMethod

Let I be the finite difference form of the differen-

tial operator [ in Equation (2.1). Also let xp and fp

be the values of x and f at point P. At point P, Equation

(2.10) becomes

M = f “ £2,10) .
(n)p b | ( )
If xp is the value of xp after n iterations, then the
residual at P is
(n) . (n)
R = [ - T
p *p p

The SOR iteration scheme is defined by
n+1 n n
>§ )= (n) (n)

X Bk ' ;
p P M P (2.12)
p
Here Mp is the coefficient of xp in Equation (2.10). The
division of Rgﬂ by Np is equivalent to making the diagonal

elements of A unity (see section 2.2).

The iteration scheme defined by Equation (2.11) will
be referred to as the B-schenme.

‘Several éuthors (e.g. Stuart et al.(1967), Asselin

(1967)) have used the iteration scheme defined by
(n+«) (n) ~(n)

X = X + R
P D p

(n) . )
O is closely related to Rp . The parameter Q

is treated as a constant and will be referred to as the

(2.12)

Here R

" o overrelaxation factor". The iteration scheme defined
by Equation (2.12), will be called the a=-scheme.

If the equation to be solved has constant coefficients
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then the oa-scheme and [-scheme are equivalent. This
is not so if the coefficients are variable. The latter
situation will be dealt.with in section 2.5%4%.

Unless stated otherwise, the B-schemé was used to
solve all partial differential equations.

In both the @ ~-scheme and P-scheme the latest values
of x are used to compute R;1 ¢ Therefore only one field
of x has to be stored. When only the values of x from
the previous iteration are used to compute ég) the
iteration écheme is called simultaneous overrelaxation,
-This requires the storing of two fields of~x and is less
efficient than SOR. Therefore it will not bé considered

further.

n
The error, EL) y is defined by .

()
€. = X_ =-X
p P P
-In terms of the error, the iteration process is equivalent
w° (e ()
n+ n (n)
€ =€ - Ble
P p ,\% P (2.13)
p
Miyakoda's method consistis of assuming a distribution of

(n)

Ep which is then used in conjunction with Equation (2.13)
to find the value of f3 that maximises the convergence.
Let 1 and j be the labels of the gridpoints in a two=-

dimensional region and let n; and nj be the number of grid-

proints in the i and j directions. Miyakoda assumed that
mn ...
EU had the form
) VLIS P . |
€5 K A f(l,ni)f(J,an (2.14)

Here K is the convergence rate and A is the amplitude.
The function f (i, ni) is chosen so that the boundary
conditions are satisfied. For Dirichlet boundary conditions

the error is zero on the boundary, and therefore f (i, ni)
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was chosen to be

ffi;ng = ir __TL___ . .15
(i, IJ sm(ni_1| (2415)

Miyakoda (1960) derived a set of formulae to give B, for
the Helmholtz equation

2
VUY-u¥ =c¢ b = constant

The formulae are

% ’:cos(rﬁ) . cos(h%)]/a

C = (4+ b/al & 1 ) (2,16)
2T

B,= 1+cC - c2-1

From these equations it can be shown that

B, = 2

1+/T-t2

A comparison of this with Equation (é.5) shows that T is
the spectral radius of (A-I). It can élso be shown £hat
K is the spectral rad;us of M. These facts indicate the
relationship between Miyakoda's method and the Young-Frankel
theory.

Equation (2.16) can be rearranged to give

T = 4§b [cos( n?—‘l) + cos(ﬁ}tﬁ)}

I_g . (2.12)

1]
—
+
(@)

I
o]

I

sk

B
The reason for this rearrangement will become apparent
later.

When an equation is solved by using an iterative tech-
nique it is necessary to specify the tolerance E. But the
quantity that is known initially is the acceptable error
(AE). Therefore the relationship between AE and E must

be derived.
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Suppose that the iteration pfocess proceeds until

(n)
BR “ < E
4+D

Using the definition of the residual it can be shown that
E = g(1-A1)AE ' (2.18)
If v=f -1 and if B is close to Qj, then this equation
gives |
CE = (1-vH)AE (2.19)
This shows that E is always less than AE. For example, if
Q}: 1.5 then E =.75x AE. Also it shows that as ﬁdébi
s E=>AE.
l When b = O, the Helmholtz equation bedomes a Poisson
equation. Thus'By putting b = O the above results can be

used to determine Bo and E for a Poisson equation.

Miyakoda also considered an equation that is similar

to
2 2
AW w + B D w + F = 0 (2.20)
: D p?
Here A and B are constants. If Dirichlet boundary conditions

are used, then B, is given by

T =_2 [ACOS(hﬂ_)+ACOS(TTQi-BCOS.JLJ]

4A+2B ﬂi—1 nj" nk'1
C = _2_ - 1 2.21
3 ( )
2

Bo= 1.+C- C_‘i
The similarity between Equations (2.17) and (2.21) will be

discussed in the next section.

The relationship between E and AE for- Zquation (2.20)
is the same as that for the Helmholtz equation (see Equations
(2.18 and (2.19).

Miyakoda tried to use his method to find Q) for

eguations wilth Neumann boundary conditions. However he had

little success. The reason for this will be discussed
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later.

So far, only equations with constant coefficients have
been considered. This.is because Miyakoda's method can
only be used with this type of equation. Later it will
be shown how his method can be extended to include variabie
coefficients.

Although Equation (2.14) gives the correct value of

ﬁo, this equation is not strictly correct. If the 0ptiﬁum

value of  is used, then it can be shown that

ni+j - n+(i+j)
KA™=(p-1) e
n) _ (n) :
Therefore both EU and xij are known and %hus the exact

solution of the equation can bte found. 'This result is

obviously incorrect and the reason is that Egquation (2.14)

is not correct. Equation (2.14) should be rep}aced by
&M
1

Here vy is a constant and is a type of scaling factor.

" - _
=y K Afjf(i,ngffj,nj) (2.22)

Miyakoda's method is very similar to the method used
by O'Brien (1968). He calculated the eigenvalues of M by
using matrix methoecds, where Miyakoda used algebraic methods.
The advantage 6f O'Brien's method is that it can cope easily
with variable coefficients. But this method requires a
great deal of computation and thus it is preferable to use
Miyakoda's method.

In the next section a set of formulae will be given
from which Bo can be calculated for a general eguatiocn

(of a certain type).

A Generalisation of Miyakoda's Equations

Consider a linear partial differential equation with

constant coefficients. Let the dependent variable be x

.and let there be n independeﬂt variables ﬁ fd = 15 15 n)s



44

Suppose that there are Q terms involving x, with coefficients

Cq (q = 1,1,Q) and that f (ri) is the forcing function.
The equation may then be written as
i% B
GC.L.x = £(r) ' (2.23)
q= qq [ '
Here [ are the differential operators and in this analysis

q 82
they can only be or 1.
or2

|
Let Mq be the coefficient of x at point P once I_qx

has been discretised using centred finite differences. If

v _.is a function depending upon the form of then T is

q
given by

-
q’

Sems /o N
LT 2 9 a7q q;Cqu

q (2.24)

The values of ﬁq'and Mq are given below.

ﬁqx I%q 0@

X 1 0
ﬁﬁ 23 cos(_I_|
or; n;-1

|

Here n; is the number of gridpoints in the direction of ri.
The value of Bo can now be calculated by using the

appropriate value of T and the following equations

C = j%;—1

Bo =1+ C-‘Cz— 1
The above equaéicns with Equation (2.24) will be referred
to jointly as Equation (2.24).
It can easily be shown that Equations (2.17) and (2.21)
can be derived from Equation (2.24).

The Determination Cf By For the 330R Method

The SSOR method was described by Sheldon (1962).
The only difference between this method and the SOR method

is the order in which the points are relaxed
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(see section 2.2.1). Therefore, when the Young-~Frankel
theory applies to the SOR method it will also apply to the
SSOR method. This means that Carre's method can be used
to calculate Bo for the SSCR method.

Sheldon considered the use of the SSOR method. for
solving a Poisson equation with Dirichlet boundary conditions.
He showed that the mimumum spectral radius was the same as
that for the SOR method. This implies that the value of
Bo is the same for both methods. If this is so then the
maximum convergence rates for these methods must be the same
after a sufficient number of iterations. _Therefore the
relative efficiedcy of these methods depénﬁs upon what
happens during the first few iterations.

Jenssen and Straede (1969) compared the efficiency of
the SOR and SSOR methods of solving different finite
‘difference forms of a Poisson equation. They found that
with B = Qy the SSOR method was faster than the SOR method.

The above results imply that, for a Poisson equation
with B::Bo, the SSOR method requires fewer iterations than
the SOR method to reach its maximum convergence rate.

If these deductions are correct then the relative
efficiency of the SCR and SSCR methods will depend upon the
value of E chgsen. This must be taken into consideration
in interporeting the resultis cf Jenssen andStraede.

In terms of the error, Egﬂ, the SSOR iteration scheme

for the Poisson equation is

@1 _ @D @ @ @ (@ _, @ .,
€ % CEler St R R Ry | R

This is used at all (i + j) even and then (i + j) odd.

1

An examination of Equation (2.25) indicates that €.. will

1)
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have the form

q
€. = yvK f(f‘,ni)g(j,nj) (2.26)

Consider the case where Dirichlet boundary conditions are

used. It can be shown that the value of B,is the same

for the SOR and SSOR methods if g (j, nj) = f (3, nj) and

if f is given by Equation (2.15). The validity of these

assumptions will be considered later.

Later the value of [, for the SSOR method will be

found experimentally and by using Carre's method. Also

comparisons will be made between the SOR and SSOR methods

for different types of equation and diffcrént kinds of

boundary condition.

The Overrelaxation Method For Solving A Helmholtz Eguation

And The Determination of BO

If w «sin (1p) and if the derivatives of O are

ignored, then the geostrophic w-egquation may be written as

. , 2
Vo-bw+S =0 b=(%)/0(2.2?)

In the atmosphere both f and 0 are functions of x and y.

The merits of using the SCR and SSOR methods for

solving this equation were investigated. Both types of

boundary conditions were considered and b was treated as

both a constant and a variable.

The variation of the rate of converzence with  was
(=]

investigated by finding the number of iterations (n(E) )

required before the condition ”w

s

L 7

was

atisfied with a given fB. The B for which n(E) was a

minimum will be referred to as Bo(ﬁ). Also, the values of

*

Bo found from Miyakoda's method and Carreé's method will be

The norm was the modulus of the numerically largest element.

Also, for the Helmholtz equation, E has units of mb S .
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called Bq(11) and Bo(C).

The error distribution was computed for both types
of boundary condition. | This was then used to either
verify Miyakoda's method or to extend it. Also, the shape
of the constant E curves was deduced from the error
distribution and the relationship between E and the accept-
able error was investigated.

For Dirchlet boundary conditions, the equations
derived by Miyakoda (see Equation (2.17) ) were used to
investigate the effect of the number of gridpcints on N,
and B,.

The investigations outlined above were divided into
four sections. The first two deal with the SOR and SSOR
methods of solving a Helmholtz equation with Diqichlet
boundary conditions. The other two sections aré concerned
with the use of these two methods when Neumann boundary

conditions are employed.

The SOR Method Of Solving A Helmholtz Ecuation With Dirichlet

Boundary Conditions

Equation (2.27) was solved with S' derived from data
for the 600 mb level for areas 91 and 51. Other
distributions of S were also used and these will be
described later.

Unless otherwise stated, both the initial guess and
the boundary conditions were w= 0.

The constant value of b (5) was derived from the

2 1
m ;
average values cf £ , © and[g . The averages were

-2 -

; « 2 5 - =
1226 % 30 & 5 197 x 10 m mbzs 2 and 1.098x 10

-2
thus b = 8.87 x 10 .

The Helmholtz equation, with b, was solved with real

n

-2

)
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Case ni ng B N, | BCC) [ B0 | B (E Fig.
la 14 10 | 1.46 %.1 | 1.476 | 1.476 | 1.48 2l
2a 14 22 | 1.49 3¢9 | 1558 | 1.558 | 1.54 2.2
2b 14 22 | 1.52 3.8 | 1.546 - 1.53 2.2

TABLE 2.3
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data in areas 91 and 51 (cases la and 2a).

The distribution of n(E) with B for case la is shown
in Fig. 2.1: This shows that the SOR method with Bo was'
superior to the Gauss-Seidel method (= 1). For example,
with E = 10 , the former method required about % the
iterations of the latter. Clearly it.is wortthile
calculating Bo when the SOR method is used.

For cases la and 2a, the constant E curﬁes in the
vicinity of ﬁ: are shown in Figs. 2.2 and 2.3. Also
BO(M), BO(C) and BO(E) are shown in Table 2.3. This table
shows that (%(M) and BO(C) are identical and that they ‘
are very close to BO(E).

Miyakoda's method predicted the correct Bo and.this
implies that the error was given by Equation (2.14). This
was confirmed by calculating Eﬁ; for case la.” This |
is shown in Fig. 2.4b. The fact that the distribution of
é;)was independent of the éolution of the equation- (shown
in Fig. 2.4a) implies that Bo depends only upon the iteration
scheme and not upon the initial guess, the value of w on
the boundary or the distribution of S\

In both cases la and 2a the optimum value of 3 became
better defined as E decreased. This was because the error
fector becomes dominated by one eigenvector asbthe number
of iterations increases. Also it is expected that BD(E)
— Q;PU as E decreases. These results show that when
E was large n(E) was not sensitive to B , but when E was
sﬁall n(E) varied rapidly with B . Tﬁerefore, more care
. needs to be taken over calculating Bo when E is small than
when E is large.

The results for case la also show that it is better to

- :
The curves are labelled with log E. This applies to other

B . i R )
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overestimate Bo rather than underestimate it. Engeli
(1959) has shown that this is to be expected for all
equations with Dirichle£ boundary conditions.

Let wa be the solutioﬁ of w for case lg. The effect
of the initial guess was investigated by using -u%las the
initial guess and the results of this computation (case
1lb) are shown in Fig. 2.2 . A comparison of cases la and
1b shows that the initial guess had little influence on the
-distribution of n(E) with B . Also, BéC) was the same
in both cases and therefore a bad initial guess may increase
the total number of iterations required for a given E, but
will not affect the rate of convergence.

The effect of the distribution of S’ on Bc;c) was’
investigated. The distributions of S were made up ofl
combinations of sines and cosines and in all cases BO(C)
was the same . Thus the rate of convergence was not
affected by the distribution of 8 Also different forms
of the Dirichlet boundary condition had no effect upon BO(C}.

Case 2a was repeated using a variable b (b(x,y) say)
and this will be called case 2b.  Since b(x,y) depends upon
the distribution of both f and 0, b(x,y) did not vary
rapidly. The average value of b(x,y) was the constant
value of b used in case 2a (that is b).

The results for case 2b are shown in Fig. 2.3. This

M

shows that BOUJ) and BO(E} were almost the same as those
in case 2a (see Table 2.3). Therefore these results imply
that the value of Bofor an equation with variable coc-

efficients can be estimated by finding B, for the equation

o

with the average values of the coefficients.

In the above case, the coefficient b(x,y) varied



Case 1a.
Case 3

FIGURE 2-5
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slowly. However, it will be shoﬁn later that the same
conclusion holds for rapidly varying coefficients.

The validity of Equation (2.19) was tested for case
la. The optimum value Bowas used and AE and E were
‘computed for a series of n. It was assumed that AE and E

I( ) ]I (N+1) uJ(n)l

respectively.

are given by
Fig. 2.5 shows a graph of log E against log AE. The
theoretical results derived from Equation (2.19) are also
shown. Bearing in mind that Equation (2.19) gives only
the approximate relationship between AE and E, it is

concluded that this equation is essentially correct. b5 2

*
o

this is so, then E =AE when v is small (ni and ng small).
However if v is large (ni and nj large), then EQuaticn
(2.19) should be used to deduce E.
; 2 ; :
Miyakoda (1960) showed that K = A in Equation (2.1%).

He also showed that with a given = 1 + v, the amplitude

is given by

i
Y
I+
W
I
<

A
a =(1+vit

An approximate condition for the termination of the iteration

’ |'< E. Therefore, if i

procese is and Jm are the

I[l.

coordinates of the gridpoints at which IEJ I is a maximum,

the iteration process stops when

£ A}TrhTrgnf(' ) f (] )
= n e
m’ ‘e j
Here the function f is given by ”%uation (2615 ) For a

given E and v, this eguation can be used to compute n since

log {_&;J .
2n - 'YF: '-(i +j ) (20(—8)

- m ‘m
IOQ[R(a + }a2- Vv ):| sz(im'n;‘)f(jm'nj)

This was used to compute the distribution of n(E) with @
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for case la. The results are iliustrated in Fig. 2.6.
A comparison of this flgu¢e with Fig. 2.2 shows that
Equation (2.28) gives the correct distribution of n(B)
with B.

Fig. 2.6 clearly shows that it is better to over-
estimate Bo rather than underestimate it. Also, since

an(E)
av

the magnitude of increases with E for B<:BO, the

extra number of iter;tions required when Bo ié under-
estimated increases as E decreases.

The variation of G(E) = %%(E) with E was investigated
further by differentiating Equation (2.28) with respect to
Ve It can be sliown that when G‘:ﬁo' G(E) o« log $~. Since
Y is such that % < 1, this fraction may be written as
10™*, Therefors G(E)« -k. Hence, for ﬁ<'[30, the
magnitude of the gradient of the n(E) against B curves

.increases as E decreases.
Finally the effect of the number of gridpoints on BO (and
hence the convergence rate) was considered. It can be

shown that if Equation (2.27) is solved on a grid with

n; x ng gridpoints, then

* 2
o« 2 -
Bo 2 j5
i
This shows that as n, increases Bd—€> 2. It also shows

that ﬁo, and hence No’ will vary rapidly when ng is small.
quations (2.16) were solved for Bo with different

values of n, = B3 Using Equation (2.8), the variation of

NO with n, was alsc found. The results are shown in

Fig. 2.7, This shows that No increases with the number

of gridpoints. Thus if the number of gridpoints is

increased from 10 x 10 to 20 x 20 (a four-fold increase)

there will be aporox1m3tely a six-fold increase in a

computer time.
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These results show that when the number of gridpeints
is increased, there is an increase in the computer time
due to_an incréase in the number of calculations per
iteration and a decrease in the convergence rate.

The SSOR Method For Solving A Helmholtz Equation With

Dirichlet Boundary Conditions

A comparison was made between the SSOR and SOR methods
by repeating case la using the SSCR method (case 3).

Carres method was used to calculate Bo for the SSOR
mnethod. It was found to be the same as for the SOR
method. - ,

The distribufion of n(E) with B, for both cases la
and 3, is shown in Fig. 2.1. This shows that the SSOR

method was more efficient than the SOR method for 1.0

<= B <= 1.8 (B >1.8 was not used due to the slow rate of

convergence). This figure also shows that the shapes of

the constant E curves are essentially the same for both

" methods.

A more detailed study of the distribution of n(E)
with B , in the vicinity of Bo,-was undertaken and the
results are shown in Fig. 2.8. The equivalent results for
the SOR method are shown in Fig. 2.2. A comparison of
these two figures shows the SSOR method was always more
efficient than the SOR method in the vicinity of BO.
For example, with B= 1.48 and E = 16-2 , the SCOR method
required 36 iterations whereas the SSOR method required
only 30. The superiority of the SSOR method was due to
its more rapid convergence during the initial stages of the
iteration process. For instance, with B = 1.48? the SOR

method reguired 17 iterations to reach E = 10 and a
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further 19 to reach E = 16 . The corresponding numbers
for the SSOR method are 12 and 18. Thus, below E = 10 ,
the rate of convergence.of both methods was almost the

same. This confirms the deductions made in section 2.2.5.

The distribution of the error for case 3 was
investigated. It was found thét it was composed of two
slightly different fields corresponding to (i + j) odd |
and (i.+ j) even. Fig. 2.4c shows ES?) for the (i + j)
-odd points. This distribution suggests that, in Equation
(2.26), g(j,nj) = f (j,nj) and that f is given.by Equation
(2:.15)s Th?refore it is not surprising that B _ was the
same for the SOR énd SSOR méthods.

The efficiency of the SSOR method is reflected by the
fact that ” éi?" for the SOR method was larger thanlthét
for the SSOR method (see Figs. 2.4b and 2.4c¢). |

The relationship between E and AE for case % was
investigated in the same way as for case la. The results
are shown in Fig. 2.5. This shows that Eguation (2.19)
was applicable to the SSOR method.

For the SOR method it was found that Bo'was independent
of S. However this was not so for the S5SCR method.

Suppose that the gridpoints %re labelled so that
0 <=i<=1l3and 0 <= j <= 9, and that 9= 1T /13 and

=T /9. When 3 had the form 3 = sin (r91i) sin (s¢¥j),
; ; (n) K
r and s integers, it was found that Eij < S. Also

B (C) could be predicted by using Equation (2.17) with

1 given by

1= zﬁb [cos(raJ+CO§(SnP)]

Therefore, it appears that Bo depends upon the wave=

length composition of S. For example, if r = s = 1 thes.
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S x 1015 BO(C)

1 1.476
c(194) 1.379
c(291) 1.476
c(19i) c(1¢j) 1.476
c(29i) c(29j) 1.476
c(13i) c(2¢j) 1.379
c(391i) c(2¢]) 1.379
c(49i) c(29j) 1.379
c(4di) c(3¥j) 1.476
(i-6.5) 1.379
(i-6.5)(j-4.5) 1.476

TABLE 2.4
c(29i) c(2¢9j) = 005(2 1 i)cos(2
13

ALY

9

7)
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Bo = 1.476, whereas if r = s = 2 then Bo = 1.259. .
The distributions of S'used above were special because
the solution of Equatién (2.27) was proportional to S.
Therefore distributions of S were then used where this was
not so. The results are shown in Table 2.k4. These
results imply that Bo is linked to the symmetrj of
either S'or w . Therefore, some nf the computations were
fepeated Qith w= f (x, y) on the boundary; the symmetry
of S then remained while that of w was destroyed. In
these cases Bo always had a value of 1.476. Thus Bo is
linked to the symmetry of w. Where there is no symmetry,
L)

the value of B _ is given by Equation (2.17) and is

(@ q . s :
EU =y K _sm(%l)sm(ﬁ%o

If real data is used there will be no symmetry and
therefore .Bo will be the same for the SSOR and SOR methods.
But, if artificial data is used, it is possible that the
value of Bo will be different for the two methods.

Th; effect of the use of artificial data on the
constant E curves was also considered. The chosen
distribution of S was

) 2
S =10 x (i - 65) (j - 4.5) S:é[g]
: alm
For this, BO(C) = 1.476. The distribution of n(E) with
B for both the SCR and SSCR methods is shown in Fig. 2.9
(cases 4a and 4b). A comparison of this figure with
Fig. 2.1 shows that the artificial data produced an
exaggerated view of the superiority of the S50R method.
The investigations using artificial data show that

great care must be taken in interpreting the results when

this type of data is used.



66

2+.3¢3 The SOR Method For Solving A Helmholtz Equation With

Neumann Boundary Zonditions

Equation (2.27) was solved with Neumann boundary
conditions using the same data as in case la. Whenever
this type of boundary condition was used, it took the form
of %%‘: O and the initial guess was w= 0. The solution
of Equation (2.27) under these conditions is shown in
Fig. 2.12a,

The computations were made with the gridpoints ordered

in the twe ways illustrated below.

B 4 15 B 14 B_16
SO T ol ol e
b h b o s b b7l
5 b 7 s kB4

The variation of n(E) with B for both schemes A and
B (cases 5a and 5b) is shown in Fig. 2.10. This shows
that the constant E curves are almost identical for both
schenes. Also the distributions of the error are similar
(see Figs. 2.12b and 2.13a) and the slight differences are
easily explained when the orderiﬁg of the gridpoints is
examined.

The above results show that there is little to choose
between schemes A and B, _But, it was thought desirable to
have a scheme for which an analytical expression for the
error could be found. Thus scheme B was used in all sub-
sequent computations. The distribution of the error will
be discussed later.

Fige. 2.11 shows the distribution of n(E) with [ for
a large range of B (this is also case 5b). This indicates

that the SCR method was much more efficient than the Gauss-
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Seidel method. It also shows that it is advantageous to
know [ accurately (if there is one). For instance,
Glist B = Z0° %he e oF B= l.4 instead of Q= 1.8
increases the number of iterations by about 60%.

Both Figse. 2.10 and 2.11 show that the optimum value
of B became better defined as E decreased. For example,
Figs 2.10 shows that if B = 1.77 is used in place of

B= 1.82 the number of iterations for E = ld'o is increased
“by ten. For & = 10  the increase is only twoe. Thus
care must be taken in choosing B if E is small.

When @ (C) was calculated it was found that it
oscillated, and that it tended to approach the value of JB
that was being.used. Therefore it is not clear how much,
if any, of the Young»Frankel theory applies to equations
with Neumann boundary conditions. However if BO(E) =
1.82 is used in Equation (2.8) it is found that N, = 11.5.
This corresponds well with the experimental value of No
(see Fig. 2.10).

The only difference between cases la and 5b is the
type of boundary condition used.  When Dirichlet boundary
conditions were used N0 was about 3. The corresponding
value for the Neumann boundary conditions was about 11l.
Thus in this particular situation, the use of Neumann
boundary conditions invclv;d nearly four times the number
of iterations than when Dirichlet boundary conditicns were
used. Therefore Dirichlet boundary conditions should be
used whenever possible.

It ﬁas already been shown that it would be useful to
be able to calculate Bo' An ideai method would be one

that is similar to that proposed by Miyakoda (1960). He



72

(n)

suggested that €5 5 is given by Equation (2.1h) with

n, = 2
i

derive a set of formulae for Bo' He showed that Equation

£ (i, ni) = CcOs [ T +6]. This was then used to

(2.17) could be used with T given by

T =43b [cos(niffz)Jecos(_jTE_z ]

-2
Using b = 8.87 x 10 , n, = 14 and n; = 10, these equations

give BO = l.46. This is clearly incorrect and the
"reason is that Miyakoda did not use the correct f (i, ni).
The distribution of Eg% was calculated and the results
are shown in Fig. 2.13a. This indicates that f (i, ni)
has the form

f(i ,ni) = cosh(¥i) (2.29)
Unfortunately ¥ is not known. However it is expected'that
Jdepends upon the number of gridpoints and therefore it

might have the form

A = J (2.30)

The value of ¥ must be found by experiment.
It can be shown that if f is given by Equation (2.29)
with the above ¥ , then T becomes

T = 43b [cosh{%) + cosh(n.%)] (2.31)

By experiment BOCE) = 1.82 and therefore the

4 = /
equations can be used in reverse to give ¥ . It was found
’ .
that ¥ = 1.94.and therefore an approxiniate expression for
f is

in)= h/_2 |
f(i,n)=cos = )

It was then necessary to test if Y was equal to 2.0
for all values of n. . An indirect method was used because

a large number of iterations would beneeded to find BO(E)
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for given values of n, and nj.

For convergence T < 1. Thus if ¥ = 2.0 and n, = nj

the condition for convergerlce is

COSh(ﬁ.i.z:_i) <{L2;—b (2.32)

Therefore there will only be convergence.if n > 11 When
ni-< 11 was used it was possible to get a convergent

solution. Thus either ¥ = 2.0 or f is not given by

(n)

Equation (2.29). The distribution of Eij was computed
for each n. and this showed that f was a coshine function.
Therefore ¥# 2.0 and, what is more, ¥ must be a function
of n, . These results show that there is no Jjustification
in supposing that ¥ is related to n; by Equation (2.30).
The distribution of Eg})was computed fer different
distributions of S\ In each case f was given by
Equation (2.29).

The above results imply that for the Helmholtsz

(n

equation, the distributicn of Eij)is always given by
Equation (2.14) with Equation (2.29).
Some insight into why it is difficult to deal with

Neumann boundary conditions may be gained by considering
n
the distribution of é.? in the form
(n) i+j+2n . .
=l A ” cosi1(~5“1|)cosh(&2j)

Here %1 and'ﬁ2 are not necessarily the same. Fig. 2:13%a

shows that at i = n, - 1 and j = n, - 1, &, = -
i S, ’ ¥ ;!

From the first of these it is found that at i = ni - 1

In(%) - &1sinh[(ni-1)31]/cosh[(n]-I){’r]]

Thus 9, is determined by A and hence ¥, depends upon B .

1 1
The same is true for-ﬁ2. Therefore both 31 and_ﬁé depend

upon B, n. and nj.' Thus it appears impossible to derive

a set of equations (similar to Equation
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(2.17) ) that will give Bo for Neumann boundary conditions.

Equation (2.28) was used to derive a set of curves
similar to those in Fig. 2.6. These curves are shown in
Fige. 2.14. Figs. 2.6 and 2.1% show that it is undesirable
to underestimate BO for both types of boundary conditionss.
For Neumann boundary conditions it is also unwise to over=- .
estimate Bo by very much.

2.3.4 The SSOR lMethod For Solving A Helmholtz Egquation With Neumann

Boundary Conditions:

Case 6 is a repetition of case 5b but the SSOR method
was used inlplace of the SCR method. Fig. 2.11 shows the
distribution of n(E) with B for both cases. This indicates
that BO(E) was approximately the same for both methods.

It also shows that for the smallest E considered
(E = 10° ) the SSOR method required the smallest number
ool Sbemadionns:  Didn wem wnd bo Bow Bw0° , but it is
significant that in the region of BO(E), the SSOR method
was always superior.

A detailed study of the constant E curves in the vicinity
of ﬁo(E) was also undertaken for case 6. The results are
exhibited in Fig. 2.15. The corresponding results for the
SCR method are shown in Fig., 2,10. A comparison of these
figures reveals that, in the vicinity of BO(E) with
E <:1£;5, the SSOR method required about 1C iterations less
than the SOR method. Also it was found that for E < 10
the experiﬁental value of NO is almost the same for both
methods. Thus the superiority of the SSOR method is due
to the rapid convergence in its initial stages. This is

also true when Dirichlet boundary conditions are used (see

section 2.3.2).
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The values of [%(E) for cases 5b and 6 were 1.82
and 1.80 respectively. It is not clear if the difference
between these is significant. But, even if Q}iﬁ not
exactly the same for both methods, it appears that the
optimum values of B are in the same region.

When Eg? was computed for case 6 it was found that

37)
it consisted of two fields. Fig. 2.13b shows ef.Lj’ fo

r
(1 + j) odd. A superficial examination of this suggests

that

(n) : ;
EU o 1 +COS(%%%)COS(%%%)

(n)

Since it was not possible to use Eij to find Bo for case
5b (see sectioh 2.3.3) a further analysis of the exact
form of Eg; seemed unnecessary.

The effect of using artificial data was also investi-
gated. This was difficult because Carre's method could
not be used to calculate Bo' However a qualitative
assessment was carried out by computing Eg? for different
forms of S. Once again it was found that the symmetry of
the solution sometimes affected EE})and thus presumably
affected Go' When there was no symmetry, Eg} was always
composed of two fields of the kind illustrated in Fig.
2.13b.

Finally the distribution of n(E) with B for the data
used in cases 4a and 4b was computed. The computations
will be referred to as cases 7a and 7b depending upon
whether the SCOR or the SSCR method was used.

The distribution of ES} for cases ?7a and 7b were
similar to that derived for real data (see cases 5b and 6).

The constant E curves for cases 7a and 7b are exhibited

in Figs 2.16. These have a similar. shape to those found
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in Fig. 2.11. " In particular, Figs. 2.11 and 2.16 show
that for both methods, using either type of data, BO(E)
was in the vicinity of .1.8. Although the resolution of
B was not very good, the results for cases 7a and 7b
reinforce the idea that Bo is almost the same for both the
SOR and the SSOR methods. '

The Overrelaxation Method For Solving A Poisson Eguation

And The Determination of Bo

If X and U% (or ¢E) are to be calculated from the
continuity equation and vorticity equation then it is neces-
sary to solve Poisson type equations. Also it is often
necessary to solve this type of equation when solving the
balance egquation.

In the following sections the determination of BO for
the SOR and the SSOR methods will be cgnsidered. Also both
types of boundary conditions will be uéed-. <

When a Poisson equation is solved with Neumann boundary
conditions a consistency condition must be satisfied.

Suppose the Poisson equation is written as

2
vV X=5 (2.33)

It can be shown that if %%: f (x, y) on the boundary (C),

then the integral of Equation (2.33) over the area (A)

§ f (x, y) ds =JI 3 dA
C A

In particular, if f (x, y) = O then the integral of S over

gives

S
the area considered nust be zero. This is the cons%$ency
" condition. If this constraint is not satisfied then the

overrelaxation method will not give a convergent solution.

Thus to ensure consistency, artificial data was used for S.
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For conveniencé, the same distribution of S was used when
the Dirichlet boundary conditions were used.

The continuity equation was used as an example of a
Poisson equation. Thus S in Equation (2.33) cofresponds.“
to the divergence which‘has an order of magnitude of
10 S . In the following four section E has unifs of

mSs.,

The SOR Method For Solving A Poisson Eguation with Dirichlet

Boundary Conditions

If b = O then Equation (2.27) becomes a Poisson equation.
Therefore by using b = 0, Equation (2.17) can be used to
find BO (M) for a Poisson equation with Dirichlet boundary
conditions.

Equation (2.33) was éolved with n, = 14 and nj = 10

and with
$=10 x (i = 6.5) (2.34)
This will be referred to as case 8a. It was found that
;30 M) = Bo (C) = 1.544 and that |30 (E) = 1.55 (see
Fig. 2.17). This figure also shows that the shapes of

the constant E curves are the same as for case la.

The SSOR Method Of Solving A Poisson Eguation With

Dirichlet Boundary Conditions

It was found that the symmetry of the solution of
the eguation affected the error, and hence Bo' in the sane
way as for the Helmholtz equation. This is illustrated by

the results from the repétition of case 8a with the SSCR

method (case 8b). It was found that B,(C) = 1.420, and

. n
that the value of Boﬁi) derived from Eij vas the same as

BO(C).

The distribution of n(E) with B for cases 8a and &b
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is shown in Fig. 2.17. This shows that the SSOR method
was the most efficient. However this is to be expected
because case 8b had a smaller value of Bo than did case
8a.

The SSOR method was used to solve the Poisson equation
with |

Sl w E shd xddeld (2.35)

This will be referred to as case 9b. It was found that

Bo(C) = 1.54k4 which was the same as for the SOR method.
The distribution of n (E) with B is shown in Fig. 2.18.
This shows that when E is large the value BO(E) is much
less than BO(C). However this may be of no special
significance because this type of behaviour (although on a
lesser scale) can be seen in Fig. 2.3.

Since, with this particular S, 'Bo vwas the same for
both methods, it was expected that their rates of convergence
would be the same, when B = Bo was used. This was checked
by plotting log E against n for both methods (with

g ™ ),

The results are shown in Fig. 2.19,
and this illustrates the fact that the SSQR method is more
efficient than the SOR method.

Fig. 2.19 also shows that after a sufficient number
of iterations, the rate of convergence for both methods
is the same. However, the 33CR methcd achieved this
maximum rate of convergence almost immnediately, whilst the
SOR method achieved it after about 12 iterations. Thus,
the SSCR method is superior to the SCR method due to its
rapid rate of convergence during the initial stages of the
iteration proceedure.

Since B = q)vms used in the above computations, the
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value of No can be calculated, and it was found to be
3.8. The experimental value of No can be found by
calculating the number of iterations required to reduce

(n+1) (n)
™

log by one. It also had a value of
3.8.
Finally, when BO(C) was calculated for complicated

(ie. non-symmetric) distributions of S it was found that

Bo was the same as for the SOR method.

The SCR Method For Solving A Poisson Eguation With Neumann

Boundary Conditions

Case 8a was repeated using Neumann boundary éonditions
(case 10a). The results are shown in Fig. 2.20.

Fig. 2.20 indicates that thgre may not be an coptimum
value of B that is independent of E. _If this 'is so, a
possible explanation may be that the consistency condition
was not satisfied. The reascn for this éuppositioﬂ‘is
that the normal derivative of Egg on some of the boundaries
is not zero (see Fig. 2.2la). This implies that g%%# 0
everywheré and thus having the average of S equal to zero
is not sufficient to fulfill the consistency condition.

The results of cases 10a and 8a (Figs. 2.2C and 2.17)
show that far more iterations were required to solve the
equation with Neumann boundary conditions than with Dirichlet
boundary conditions. Thus the latter boundary condition
should be used where possible.

’ n J
A further examination of 823 (see Fig. 2.21a) shows

that

(n) : »
EU @ cos(?ﬁﬁJ)cosh(ﬁj) (2.36)

This has a different form to that for the Helmholtz equaticn.

n
The reason is that if E&j was similar to that for the
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Helmholtz equation then 1T > 1 for all v . Therefore
there would not be convergence.

It was unfortunate that in case 10a the distribution
11
ng -1
Therefore the validity of Equation (2.36) was tested by

of S in the i direction was similar to cos ( i)
computing the error for distributions of S where this was
not so. Equation (2.36) was true in all cases.

The constant E curves were also derived for

$=10 x (j - 4.5) (2.37)

This will be feferred to as case ila and the results are
shown in Fig. 2.2 2. As in case lda there did not appear
to be a unique value of Bo' Also, a comparison of
Figs. 2.20 and 2.22 shows that the constant E curves have
the same shape for both cases. Thus the results for
cases 10a and lla are very similar. This implies that

these results are characteristic of the results to be

expected when more complicated distributions of S are used.

The SSOR Method Of Solving A Poisson Egquation With Neumann

Boundary Conditions

Cases 10a and lla were repeated using the SSOR method
(cases 10b and 11b). The results are illustrated in Figs.
2.20 and 2.22. These show that the constant E curves
are similar in shape for both the SSOR and SOR methodse.
They also show that Bo(ﬁ) varies with E for both methods.

Fig. 2.20 shows that, for cases 1l0a and 10b, the

SSCR method was no more efficient than the SCOR method.

Also, the constant E curves for case 10b were displaced

towards low B, and the displacement decreased as E
decreased.

1)
The distribution of éfj was computed for case 10b
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(see Fig. 2.21b), It was found that to a good approx-
imation |
e o 1*-cos(_E_i)c05( 2R‘0
1) ni-1 ﬁ]?“{
Once again it was not possible to use this to find
BL11) .
When S was given by Equation (2.37) the SSOR method
was appreciably more efficient than the SOR method.
However the constant E curves for the SSOR method were still
displaced towards low B.

It was found that the distribution of the error for
both cases 10b and 11lb was the same. However this was not
always so because the distribution depended upon the
symmetry of the solution. |

The error distributions for cases lla and 1lb were not
related to the solution of the equation. Therefore, it is
likely that the results for these cases are characteristic
6f those to be expec£ed when real data is used. Thus it
is suspected that, in general, the SSOR method is a more
efficient method of solving a Poisson equation with Neumann
boundary conditions than is the SOR method. Also, it
appears that for neither iterative method is there a single

Bo for all E. However, for a given E, the value of

BLE) for the SSOR method is less than that for the SOR

method.

2.5 The Overrelaxation Method Of Solving An w-Zguation And

The Determination Cf Bo

A comparison was made between the efficiency of using
the SOR and SSOR methods for solving Equation (2.21). The
coefficients were treated as constants and Dirichlet

boundary conditions were used.
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When a real situation is considered the coefficients
of the w-equation would not be constants. This is
especially true for coefficient A (see Equation (2.20) )
because it depends upon 0 which varies rapidly with
pressure. Therefore it is necessary to have a method of
finding Bo when there are variable coefficients. Carre's
method is still valid, and therefore this was used to find
an empirical extension of Miyakoda's method.

Occasionally flagging has been used in an attempt
to reduce the computation time (Stuart (1967) ). The
effect of this technique on the constant E curves was
considered.

Either an « -scheme or [-scheme can be used to solve
an w-equation. The relative merits of these schemes

were investigated. Also the optimum and cut-off values of

‘the @ -overrelaxation factor were examined.

In the following discussicn E has units ofrﬂ:gi and

the static stability has units of m2 mﬁg 52 .

A Comparison Of The SOR And SSOR Methods Of Solving An

W -Eguation With Constant Coefficients

When certain assumptions are made, the w-equation takes

the form of HZcuation (2.20), with
2
5

oo weoe [

In the following computations (cases 1l2a and 12b), 0 was
taken to be a constant with a value of & x 162 +. The
values of [%]Qand f were the same as those used in case
la. There were five levels (q = 1, 1, 5) separated by
200 mb (Ap).

The SSCOR method used previously for two-dimensional

cases, was extended to cover three dimensions. Therefore



: .

demmg Case 12a

’ i s w0 Case 12b

AN

4 A e e - §

o : _ Q"t.""'"='m="l'-l-=l-»I-,"

b ; 1 4 e fr o -7
\#'w‘l' 5 + L '
- L =14 AR L. )
LY
L - -8
.b@‘h Qaowo”
T T R 4 -5
'!"m"i' ATy = awmy o -
S
Tw -0 o -7 .
‘”--'ucﬂeun.‘

i cunmn WY e -5
ot e e

.0””0‘5 'oune -'6

Der Do ader oo wdbe o oDoead —.5
1 l L

Pl
183}

1-;7 B

1-49 . 1.53 “
; T B(C)

FIGURE 2.23



2.5.2

93

the order in which the gridpoihts were relaxed depended
upon whethef (i + j + q) was odd or even. - In this, and
subsequent computations, Dirichlet boundafy‘conditions
were used.

For both methods BO(C) was 1.513 and this was the

same as the value of BOG%) calculated from Equation

(2.21). Thus it was possible to use liyakoda's method
to find f% for both iterative methods.

The variation of n(E) with @ for cases 1l2a and 12b
is shown in Fig. 2.23. This shows that the constant E
curves have a similar share to those calculated for the
twotdimensional cases (e.g. see Fig. o B I Fig. 2.23
also shows that for a given E and 3 the SSOR méthod
required fewer itérations than the SOR method. Once again
this was due to the rapid convergence of the SSOR method
during the first few iterations.

The error was cgmputed for both metheds and it was
found that the distributions were similar to those for the
Helmholtz eqﬁation using the corresponding iterative method
(see Figs. 2.4b and 2.hc).

These results show that the SSOR method can be easily
and usefully extended to three dimensionms.

The next section is concerned with the calculation
of Bo when 0 is variable.

-

The Computation of B For An w-Eouation With Variable
W

Coefficients

In the atmosphere the static stability varies approx-

imately with the inverse of the square of the pressure and
1

/
thus in the first computation (case 13%a), 0(gq) = 4q? was

used. Apart from this, the data was the same as in case
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. 2 ' i
Case n, nj n, ox 1C B lm BO(C) Bo(h)
13a 14 10 5 3.53 1.48 0.642 1.511 1510
13b 14 10 9 4,14 1.50 0.651 1.528 1.530
13c 14 10 5 4,81 1.48 0.665 1.519 1.518
13d 14 10 4 22.00 1.48 0.700 1.535 1.533
TABLE 2.5
Equation BDCC)
<D
av2w + f 82% +S =0 1.499
9p
2 2
ovw+f@i§_+8:0 1.499
. ap
2
U-Vzw + fza ri! +S =0 1.499
op
2 2 4
Viow) + f 3 «+5 =0 1.5C9
apz

TABLE 2.6 The bar denotes the isobaric average.
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12a. The w-eguation was solved by using the SOR method.
This was used in all subsequent computations.

It was found that B ,(C) = 1.511 for case 13a.
This is.shown_along with the variation of n (E) with B,
in Fig. 2.2ka. The figure indicates that B (C) is
correct. It also shows that the constant E curves are
similar in shape to those found for other equations.

The value of B (C) was also calculated for different
values of n, and Ap and different distributions of 0 .

In case 13b the same data was used as in case l3a
but with n_ = 9, Ap = 1C0 mb and 0(q) = l/gz (g =1, 1, 9.
The next case (case 13c¢c) was similar to case l3%a, but

6(q) = l/q was used. Lastly, the n, = 4 and Ap = 200 mb

k

was used and the values of 0 at the two interior levels
were 4 x lOHz'and 4o x 162 . The values of B_(C) for
these cases are shown in Table 2.5.

Although Bo can be calculated by using Carre's method,
it would be useful if a method similar to that of Miyakoda
could be devised.

The results for cases 2a and 2b showed that, for the
Helmﬁoltz egquation, the average value of a coefficient
could be used with Miyakoda's method to give a good
estimate of Bo. Therefo;e the average values of O
(0 say) were used in Equation (2.21) to give Bo(ﬁ)

(see Table 2.5). A comparison of B (C) and Bo(i)
clearly shous that Bo(ﬁ) gives the correct value of f_.

If both coefficients in Eguation (2.20) are variable,

it is not clear whether the average'values that should be

used in Equation (2.21) are [é] . [_B_»] or I and 3. It
B A
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is suspected that the values of Bo for cases 2a and 2b
were slightly different because the wrong averages were
used. However the difference was only .Cl2 and therefore
the problem was not pursued further.

Many variations of the (u—eQuation have been used to
calculate W . Some of these are shown in Table 2.6.
Using the same data as in case 1l%a, but with the real

distribution of static stability, BO(C) was calculated

for each of the equations. This group of computations will

be referred to as case 1k4.

2
: 2
The distributions of 0 , £ and [-"5 were gueh Yhat
N -3 2 =5 w9 5 4l 8 m 12
0= 2:53 x 10 m mb s 4, I = 1l.23 x 10 s and [E]

= 1.09 x 10 ﬂf2 . Substituting the average values in

Equation (2.21) gave Bo () = 1,498, ~ This confirms the
previous conclusion., The agreement between Bo(C) for the
first three equations was due to the fact that 0(p) and

2

¢ were the averages of 0 and f2 over the isobaric surfaces.
Since the horizontal variations of 0 were small it was
not surprising that BO(C) for the last equation was similar
to that for the other equations. |

The above results show that Miyakoda's method can be
extended to give a very good estimate of Bo for the full

w-equation.

The Effect Of Flagging

br

If flagging is used in solving Equation (2.10) then a

n+ n
point P is only relaxed so long as |g; N - x; )|'>

When flagging is not used, relaxation continues whilst

x}gnﬂ) ) XIE’n) ” .

E.

The effect of the use of the flagging technique was

investigated by introducing it into a repeat of case 134
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tcase 15)s The results are shown in JI'ig. 2.25. This
figure also shows the results for case 13d with E = 16 .
These results show that the flagging technique did not
reduce the total number of iteratians required for a

given E. However, there was a slight saving in computer
time when flagging was used because fewer points had to be
relaxed.

Fig. 2.25 shows that, when E was small, there was a
double minimum in the 'N(E) versus Bcurves. The main
minimum corresponds to the value of Bo that would be found
if flagging was not used, namely Bg(i) = 1.535. The
other minimum is due to the flagging and the large difference
in stability at the two levels.

The level at which the stability was large had small
values of W since u)a:% (approximately). Therefore
the flagging at this level was completed before that at the
other level. Hence, only the level with stability & x ld-
was relaxed during the last few iterations. This means
that the secondary minimum corresponds to 0= 4 x 10“2
and this gives B, (M) = 1.49. This agrees well with the
observed value of B at the secondary minimum.

An Introduction To The & COverrelaxation Factor

In the a ~scheme is used to solve an equation, then
it is advantageous to know‘éhe cptimum value of @ ( o, say).
It would alsc be of interest to know the largest wvalue of
a (Cl.c say) that will give a convergent solution.

First consider a general equation of the form of
Equation (2.23). If the coefficients are constant and

if Cﬁm is the maximum value of Cq’ then a. is given by
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= —Bo

=] C _I
Mot 2 [2aMg (2.38)
gz Ccim
agm
The value of @, is given by this equation with Bo = 2.

It can easily be shown that, when a. and Bo are
used with their respective iteration schemes to solve an
equation with constant coefficients, both methods require
the same number of iterations.

With respect to Equation (2.20) it can be shown that-

a and a, are given by

C('o = ._BQ_ " ) (2.39)
4+ 2)° = 2 2
3 R[Lg]
m ap;
% ® o ' (2.40
4 +2A? )
5]

When the w-equation has constant coefficignts, the
above equations can be used to calculafe ao and o, e
However, if the coefficients are not constant (e.g..if

0 = 0(p) ) then these equations cannot be used directly.

Stuart et al.(1967) made an empirical study of a
and O for the w-equation. They took all the coefficients
to be constant except the static stability which they took
to be a function of pressure only. The variation éf n(E)
.with o was investigated and from these results the
experimental values of o _ and @ were found ( GO(E) and
ac(E) say ). They did this for several different grid
sizes. The variation of stability with pressure that was
used is shown in Table 2.7 and a summary of the results is
in Table 2.8.

Stuart et.al also compared a_ (E) with the value cal-
culated by using 0= 2 x ldﬂz in Equations (2.21 and (2.39).

They found good agreement between these values, but they
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Units
Pressure mb 800 600 4O 200
. - -2 2 "2 _2 ) - -~
Stability 10 mmb s 1.178 2.015 4,252 L, 664
TABLE 2.7
5 2 1 2
o ) B b]

n,=n a (E) 0l x 10 02 x 10 ao a a (E) Oc x 10
A 35 0.400 0.94 1.91 O.411 0.399| 0.450 y £ i
B 23 0.250 C.86 0.59 C.364 0.347| 0.300C 4,10
¢ 17 0.300 2.02 1.90 0.320 0.299] 0.350 e P
D 11 0.225 2.82 2.00 O.24h 0,218 0.275 1.34

TABLE 2.8
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did not say why this particular value of 0 was used. Also
no attempt was made to explain the values of ac(E).

" Thus the work of Stuart et al.does not suggest a method

of calculating either o, ora, for a given_distribution

of 0 .

Whilst only a mathematical analysis of the iteration
scheme will produce a way of calculating @ and a,
exactly, it was decided to use the results of Stuart et al.
- to find a way of estimating their values.

To start with,Equations (2.21) and (2.38) were used
to find an equation for ¢ such that a = ao(E). This
was found to be a quadratic equation and the solutions

(01 and 0. say) are shown in Table 2.8. The solutions

2
% can be ignored because they are far too small. Also
since it is expected thatcb depends only upon 0(p), the
results for case B are suspect. Yamagishi (1968) has also
drawn attention to the inconsistency of this result. If
case B is ignored,; the value of 02 is between 1.90 x 162
and 2,00 x 16° .

It is not immediately obvious how this ﬁalue of
stability can be derived from 0(p) (see Table 2.7).
.However flagging was used and the results in section 2.53
show that this can affect the distribution of n(E).
Therefore it is suspected ;hat the combination of flagging
and the large stability at 200 mb rendered the effect of
this level on ao(E) negligible. Thus it is necessary to
find how 02 is related to the stability at the other three
levelse.

The average value of the stability over the three

=2
lower levels is 2.48 x 10 . But, if the stability of the
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200 mb level is taken to be effectively zero (because of
the flagging), then the average value of 0 over the four
levels is 1.86 x 162 . The values of a  calculated by
using these stabilities in Equations (2.21) and (2.39)
are shown in Ta?le 2.8 (cxi and ai say). Both al and
o are close to aO(E). However, it is not known
exactly which value of the static stability should be used
because of the complication of flagging. But, it does
seem likely that Iao can be estimated by using the average
static stability in both Equations (2.21).and (2.39).

Table 2.8 also shows the value of 0 ( 0, say) that
made & = ac(E) in Equation (2.40). This shows that,
apart from case B, the values of Gc are very close to the
smallest value of the stability.

If 0 and Omin are the average and minimum values of
0, then the above results suggest that ao and ac may be

estimated from

Clo-.:

4 +
5 ?a=[f_d]
m Ap
o = 2
iy B ety (2.42)
4 +2X
Omin
In the next section these propositions will be tested

for cases that are not complicated by flagging.

The Determination of & _ And Q@

-~
W L&

The values of a and a_ were found experimentally
for two sets of data (cases l6a and 16b). The same data
was used in case lba as in case l3a. Also case 16b was
the same as case l6a except that the static stability was
halved at each level. For case 16a the values of 0 and

-2 5 '
O in Were 3.53 x 10 and 156 % 10 s The corresponding
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values for case 16b were half of these.

The results for case 16a are shown in Fig. 2.2i4b.
The value of @ calculated from Equation (2.41) is also
shown in this figure. These results show that ao is a

good estimate of a, (E).

(o]
A comparison of Figs. 2.2hka and 2.24b shows that, for

E = 10 and E = 10 , the iteration scheme required
fewer iterations than the o -schemne. However, for E = 166
this.was reversed. From these results it is not possible
to decide which scheme is the most efficient, but it is
suspected that the B -scheme will usually require fewer
iterations. However, the total computer time required for
the @ -scheme may be less because it needs fewer computat-
ions per iteration.

The value of ac was computed by finding the value of
"o for which the iteration scheme would not converge. In
these computations B = 10 wWes Useds The Fesultsy With
o calculated from Eguation (2.42), are exhibited in Fig.
227« (The last point on the 'curve' shows that when .005
was added to this value of A , there was no convergence).
The results show that Equation (2.42) gives a good estimate
of  a (E).

The abo;e experiments were repeated for case 16b and
the results are shown in Figs. 2.2%5 and 2.27. As in case
l6a, Equations (2.41) and (2.42) give good estimates of

a(E).

Finally, case l6a was repeated with a stability of
0.6 % 10-2 at the 800 mb level (case 1l6c). In this case
only ac was investigated. The results are shown in Fig.

2.27 and they confirm that Equation (2.42) gives a good
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estimate of ac(E).
The above results show that Eguations (2.41) and
(2.42) estimated aO(E) and ac(E) to within 3%.  There=-

fore these eguations can be used with some confidence.

Discussion

The first point of importance is that for all the
equations, boundary conditions and iterative schemes
considered, it was advantasgeous to use B>1. Therefore,
the following discussion will be primariiy concerned with
the value of [ that should be used; The discussion will
be roughly divided into four parts. These will deal with
Dirichlet boundary conditions, Neumann boundary conditions,
flagging and the @ -scheme.

When Dirichlet boundary conditions were used it was

found that the sets of constant E curves had three character-

istics in common which are listed below
l. As E decreased, the value of BO(E) became better
defined.
2. When E was large, the average value of $ for which
n(E) was a minimum tended to be less than Bo.
3. The magnitude of the gradient of the constant E
curves-was greater for < Bo than B>Bo'

These facts indicate that if E is relatively small, it
is worthwhile estimating Bo accurately. Also, if E is
small it is better to slightly underestimate, rather than
overestimate ﬁo. But when E is large the opposite is
true. However, in general, it is probably safer to under-
estimate Bo rather than overestimate it.

The above conclusions apply to both the o and f

schemnes.
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In all the cases considered Carre's metﬁod gave the
correct value of 'Bo. But. to use this method the equation
has to be solved with 1 < < Bo and thus great attention
was paid to Miyakoda's method.

When equatiqns (with constant coefficients and only
second derivatives of x and x itself) were solved using
the SOR method, it was found that Equation (2.24) predicted

Bo correctly. If there were variable coefficients their
average values could be used Equation (2.24) to give a
good estimate of Bo.

When the SOR method was used it was found that neither
the distribution of S nor the initial guess affected Bo'
However a.bad initial guess did increase the number of
iterations required for a given E.

The SSOR method alweys required few iterations than
ghe SOR method although (provided there was no symmetry)
both methods had the same Bo' This was due to the SSOR
methods’ rapid convergence during the first few iterations.

If there is no symmetry in the solution of an equation,
then the prece ding discussion of the SOR method also
applies to the SSOR method. Thus, for both methods, an
increase in the number of gridpeints will increase No'

This increase‘will be large when small numbers of gridpoints
are involved. 5

Equation (2.19) was only tested for the Helmholtz
equation. The results confirmed that Equation (2.19) could
be used tc estimate the value of E that should be used to
provide a given AE. It is suspected that Equation (2.19)
can be used for all equations.

The results for the Neﬁmann boundary conditions were
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less conclusive than those for the other type of.houndary
condition.

For both the Helmholtz and Poisson equations the
value of BO(E) was larger than that for the corresponding
equation with Dirichlet boundary conditions. This was
reflected in the optimum rate of convergence, Thus the
Neumann boundary condition should be used only where
absolutely necessary. This applies to both iterative
methods.

The results for the Helmholtz equation showed that, in
the absence of symmetry, BO(C) was the same for both the
. SOR and SSOR methods. Also it was found that the SSOR
method required fewer iterations than the SOR method.

Since Carres method could not be‘used to find Bo’
an attempt was made to extend ldiyakoda's method. Although
analytical expression for the error was found for the SOR
method, the set of equations derived from it contaiﬁbd an
unknown. Thus it was not possible to find Bo' The
distribution of the error was also found for the SSOR method
and was used with a similar lack of success.

When'the Poisson eguation was solvgd it appeared that
there was no value of Bo that was independent of E. When
the SOR method was used it was found that, for large E,
the value of BO(E) was almost 2. As E decreased, BO(E)
also decreased.

The values of BO(E) for the two iterative methods
were different. Also, for the most realistic case
" considered, the SSCR method was superiocr to the SOR method.
For both iterative methods, approximate analytical

expressions for the error was found. However, these
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expressions could not be used to predict BOCE).

Due to the disappointing results from the Helmholfz

and Poisson equations, the value of BO(E) for the
w -~equation with Neumann boundary conditions was not
determined.

The above discussion gives rise to two general
" conclusions.

l. The solution of an equation with Neumann boundary
conditions takes far longef than when Dirichlet
boundary conditions are used.

2. The SSOR methecd is more efficient than the SCR methed
for both types of boundary conditions.

When flagging was used it was found that both BO(E)
and No(E) were hardly affected. However there was a
slight saving in computer time because fewer points had to
‘be relaxed. Thus flagging is a useful technique.

Finally, the use of the a -scheme to solve an W~
equation with variable coefficients was considéred. The
results indicates that this scheme was less efficient than
the p-schene. But, the Q=~-scheme required fewer comput-
ations per iteration and thus it may reduce the computer
time by a small amount.

"It was found that (10 and ac could be accurately
estimated by Equations (2.41) and (2.42). However it is
probably advisable to use the f -scheme becuase this has a
theoretical foundation.

The investigations into flagging and the a -schene
indicate that these technigues may produce a marginal
saving in computer time.

It is hoped that the observation and deductions in this
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chapter will provide the starting point for a more theore-

tical investigation into the overrelaxation method.
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CHAPTZER LT

The Balance Eguation

Introduction

In this chapter the derivation, meaning and solution
of the balance equation are discussed.

A new method of ellipticising the balance equation
is introduced, followed by a discussion of the discret;
isation of the balance equation.

The differegt methods of solving the balance eguation
are discussed and two variations of existing methods are

introduced. The efficiencies of these methods are

compared and the effect of the formulation on the efficiency

is investigated.
The last part of the chapter is concerned with the
boundary conditions that should be used when solving the

balance equation.

The Origin And Meaning Of The Balance Equation

The divergence equation may be written as
5 .
dD + D « 2CT(U,V) + gg.Vw
2
-f{ +kxV.Vf+V 0 =0 . £3%)
Many reasons have been given for simplifying this
equation, some of which will be discussed below.
1. Thompson (1961) showed that a fluid in hydrostatic
equilibrium was unable to support gravity waves if

dD = O (3.2)

"This assumption turns Equation (3.1) into a diagnostic

equation which represents a balance between the wind
field (V, w) and the pressure field (represented by @ ).

If VY and X are introduced this equation becomes
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5 :
D +2

[ *23Cupv)) + 2T Uy ) + 2TV, ) +k (XS *g_\_;.vw]

P
—fV2W+2(w Y wg} V.Y v2o] = 0 (3.3)
0y wy R ]'
For synoptic scale motions the terms in the first
bracket are at least an order of magnitude less than those

in the second bracket (see Equ. 1.23). Thus if only

the large terms are included, Equ. (3.3) becomes

2 2 2
fV Ua+2( y -y VfVy -V ¢ =0 (3.4)
Yaxyy ¥xy’*
Since f and ¢ are known this is a two dimensional non-
‘linear equation in V . It is known as the balance
equation.

If the balance equation is elliptic and if boundary

conditions are specified for V , then it can be solved for
U for each isobaric surface. .

If X and W are also known, then-Equ. (3.3) can be
solved for V . This is achieved by treating the terms
in the first bracket as part of the forcing function and
then solving the equation as if it is the balance equaticne.
'fhe methods that are used to solve the balance equation
will be described later.

The use of Equ. (3.4) does not ensure that dD = 0
because of the additional assumptions that are mgze. Thus
there may be gravity waves even if the balance eguation
is used.

2. From the continuity equation it can be shown that

dD - -a_[gg] + Y Vw + D2
dt opidt] dp

-Using this, Equ. (3.)) becomes

2
[dw] % 2(02+ oY Vw) «2J(uv)-fr+KkN.Vi+V ¢=0 (3.5)

pldt Jp
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If it is assuméd that there are no vertical accelerations
(in p co-ordinates), then this reduces to a diagnostic
equation. If X and w are known, then the diagnostic
equation can be solved for VU . But, this solution will
not be the same as that for Equ. (B.Bj. |

If only large terms are included, then Equ. (3.5)
also reduces to the balance equation.

3. Lorenz (1960) considered the forms of the divergence
and vorticity equations that are consistent with some
form of energy conservation law. It was found that the
balance eguation was just one variant of the di%ergence
equation for which this was possitle.

4, If only the large terms in the balance equation are
considered (terms of order R and R1) then it becomes the
balance equation (Equ. 1.23). Also, if only {%% ox %%
is neglected, then terms of equal or smaller magnitude
are still included.

The above discussion shows that basically the balance
equation is always derived from the divergence equation
by some fqrm of dimensional argument. Therefore, unless
a diagnostié study is concerned with vorticity or energy
budgéts, the use of the balance equation can only be
justified by scale considerations.

Some insight.into the meaning of the balance equation
can be gained by integrating Equ. (3.4). Kuo (1956) has
shown that if wb is the solution of Equ. (3.4) and if
Kb =k x VlUb then the integral is (if an arbitary functicn

is ignored).
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Rearranging, this gives

o ¥ ¥V.) (3.6)

Haltiner (1957) showed that, if the local and
vertical contributions to the ageostrophic wind are
neglected, then

¥-Y. = 12::(1%,.?_\_{) (3.7)

Further, he showed that the right hand side of this
equation is large when the isobars are curved or if they
are confluent or diffluent. Thus it can be inferred from
Equs. (3.6) and (3.7) that the balance equation takes these
configurations into account.

For circular isobars, Kuo (1956) showed that the
balance equation reduces to the gradient wind ejuation.
Dixon (1972) has also indicated the relationship between
the balanced and gradient wind. i

There are several other eguations that can be used to
derive non-divergent balanced winds. Some of these are
discussed below. |

If the non-linear term in Equ. (3.4) is neglected,
the result is the linear balance equation

fV2W1-Vf.VUJ= V2¢ (3.8)

The solution of this equation will be denoted by wl and

the wind derived from this is V

integration of Equ. (3.8) gives

=1_~:.x(5'xﬂ)
:

v. -V
=K -

The righthand side of this is small and thus 11 is similar
to Eg' The advantage of using the linear balance

equation is that it is easy to solve.
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Wind laws that are a compromise between validity

and computational ease are.described by

£920 4 VE YU 2 J(22,29) - v20
£2 ox dy

QY Qv =v2¢ (3.9)
oxLd

These equations are usually called quasi-linear balance

fV2W1-VﬂVW+ 2;T(

equations.

Ellsaesser (1968) discussed many wind laws including
the balance equation and linear balance equation. He
concluded that Equ. (3.8) was the best after taking into
account the ellipticisation, reversibility, and computat-
ional time. He also considered the effect of-the wind
laws on barotropic preéictions.

Some wind laws were also investigated by Krishnamurti
(1968b). He found that both Equs. (3.4) end (3.9)
‘produced winds that were very close to the observed winds.
Also, further analysis of his fesults shows that the

bebhaviour of V. is consistent with them being

1 b

similar to the geostrophic and gradient winds respectively.

and V

For instance, the cross-isebaric flow of Eb is consistent
with Equ. (3.7).

Krishnamurti concluded that "a large part of the
upper tropospheric cross-igobaric flow frequently obgerved
in baroclinic disturbances may be explained from the non-
divergent part of the total wind". It should be added
that this explanation is only valid if V is computed
from an equation that takes the non-linear term into
consideration.

Benwell et al.(1971) found that, in certain synoptic

situations, the use of Equ. (3.4) gives a much better
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prediction than Equ. (3.8).
If the only consideration is the validity of the

wind law, then the above results indicate that nothing
less simple than the quasi-balance eguation should be used
to derive the non-divergent wind.

| In the following sections only the balance equation
will be considered in detail because quasi-balance
equations are easy to solve and because more complicated
equations are solved in the same way as is a balance
equation.

The Elliptic Condition For The Balance Eguation

If Equation (3.4) is to be solved as a boundary value
problem, it must be elliptic. tArnason (1958).showed that
the elliptic condition is

2
(f+2wxx)(f+2wyy) 'ny > 0 (3.10)

‘This condition implies that there are two types of solution

for a given boundary condition. In the northern hemis-
phere the significant solution is such that f + 2 wxx3*0
and £ + 2 Wyy:’o. These conditions imply that

2 (n)
V Y £0 Therefore if ¥V "is the solution after n

iterations, it is required that
2 (n)
V U +f>0 (3.11)

It can easily be shown from Equs. (3.4) and (3.10)
that the elliptic condition is

2
V26 15-VE.9U = E(W) > 0 (3.12)
2

Therefore at all stages of the iteration procedure the

following condition must be satisfied

E(w(m)> 0 (3.13)

Any iteration scheme used to solve the balance
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equation must, in order to ensure convergence, include
the conditions described by Equs. (3.11) and (3.13).

When the balance equation is written in terms of
E(VY), it becomes

2
fV U+2(V

vl yes
xx Yy xy %

-E(¥) =0 (3.14)
The methods for solving the balance equation in this
form.wili be discussed later.

There is another useful form of the balance equation
Iwhich will be derived below.

The deformation field is defined by two parameters

A= =2V and B =V -y In terms of these parameters,
XYy KX Yy

the non-linear term (NLT) in the balance equation becomes

L]

2
NLT=t-4-8B (3.15)
- 2 .
Using this, Equ. (3.4) becomes a quadratic equation in [ .

In terms of E( V), the solution for [ is

C=-f :/21—:(w)+A2 i

This clearly shows the existence of two types of solution.
In the northern hemisphere the positive sign is chosen so

that 71>0. Thus the balance equation becomes

C =—f+‘/2E(W)+.d?+ B2
v - (3.16)
One of the advantages of using this set of equations
is that the condition shown in Equ. (3.11) is implicit
in them. The elliptic criterion ensures that there is
not a negative quantity under the square root.
Equ. (3.16) also shows that there is another condition

on E(V), namely
2

2
E(y)>-~(A +B) . (3.17)
2

However, if the elliptic criterion holds, then this

condition is also satisfied.
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The meteofolbgical significance of the two conditions
imposed on E( V) has never been fully explained.

Now consider the complete divergence equation.
This is elliptic with respect tc Y if

2
E(UX,w =V ¢+ VI. YV + D

g~

2

[ (X, f) «Vw. ay] >0 (3.18)
ap

In terms of E, the dlvergence equation becomes

2 2 2
fv y+ 2(Wxxwyy xy) _;_ = _%) - E(V,X,w)

+2J(u ,v.)+2J(u_,v,)+2JT(u_,v.) = 0
This is analagous to Equ. (3.14). An equation that is
analagous to Equ. (3.16) can be derived in terms of

A' =U =~V and B' =V _ +U_. It can be shown that
x y X ¥
2 Z 9 2
2J(uv)=A +B - -D .
2 . .

Thus the divergence eguation may be written as

2 ;
§=-f+J2E(lU.X,w)+AC +B €3.20)

This equation has exactly the same form as Equ. (3.16)
and thus the conditions on E have the same form in both
cases.

Equs. (3.19) and (3.20) can be solved in the sanme
way as Equs. (3.14) and (3.16).

Miyakoda (1956) noted that if the bracketed terms
in Equ. (3.18) are neglected in the di*ergence equation

then the elliptic criterion becomes
2 2 2
E=V®+i—VﬂVW+Q = {)
2
If the elliptic criterion is th01 ght of as a condition
- on V ¢ s, then this condition is less restrictive than

that shown in Equ. (3.12). Therefore, in this particular

case, the inclusion of extra terms results in a less
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restrictive condition on V%ﬁ.

When the balance equation is used with real data,
it is found that there are regions where the elliptic
criterion is not satisfied (hyperbolic regions). The
above results suggest that if all, or most,; of the terms
could be included in the divergence equation, then the
hyperbolic regions would disappear.

The next section will be concerned with the ways in
which the hyperbolic regions are eliminated when the
balance equation is used.

3.3%.2 Methods Of Ellipticising The Geopotential Field

Consider the ellipticisation of ¢ for the balance
equation. When the elliptic criterion (see Equ. (3.12) )
is not satisfied, ® must be changed until it is..

Initially ¥ is not known and thus the elliptic

criterion is replaced by .
2 2
= - Vf. Vo -e>0
E(®)=V"0 ff +_f2_ T
€ = max(Vf. V¥ - Vf.Vo)
f
-6

Benwell et al.(1971) suggested that E = 2 x 10 f.
If ¢-is altered so that E(®) > 0, then it is unlikely
that the correct elliptic criterion will be violated

during the iteration proce dure. However, if a region
. )
does become hyperbolic then E (W °) is set to zero.
2
If E(®) < O then V9 is large and negative (since
VEVVU is always small). Kirk (1970) noted that
2
(Vo) e (¢ -9)
% (tﬂ (@]
‘Here ®m is the average value of ® in the region of @, .

These facts can be used to estimate the change in ¢ that

is necessary to reduce a negative E ( ®) to zero.
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For simplicity, let the elliptic criterion be
2 2
E=Veé+f >0
2
Suppose that initially the value of E (Ei say) is less
than zero and that ¢0 and ¢m are arranged as shown below

A : ; LS

¢
oo
VG

—— - —— % — -
50/4
y .CDm

The magnitude of Ei can be decreased by decreasing ¢°
by 0 and increasing ¢ by 069 . If the final value
m 7

of E (Ef say) is zero; then
2 2
E}==V o+ 58 +f =0
4% 2

In terms of Ei, this becomes

E_:-5_%§

4

Using B, = =3 2, &&= ap sHd 25 = 260 , this
equation gives 25¢/g =. 12m.

These computations show that the maximum change in
height due to ellipticisation will be about 1Om. It can
also be shown that the above proce dure would change the
geostrophic wind by about 10 mél .

The above method of changing E is only introduced to
obtain an estimate of 6¢ . The remainder of this section
will deal with practical methods by which E may be
changed.

The elliptic criterion can be imposed in hyperbolic
regions by altering E ( ®) directly or by altering 0
which will then change E (¢ ).

Shuman (1957) and Benwell et al.(1971) have suggested

methods by which E ( ®) can be altered directly. Shuman's
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0

method starts by scanning E( ® ) until a negative value is
found (E at point 0). The value of E at point O is then
put equal to zero, and E/4 is added to the value of E at
the surrounding four points. This process is repeated
until E( ¢ )>0 everywhere. Once E( ¢) -is known,
Equ. (3.21) is solved for the new distribution of ¢ .\

The proceedure adopted by Shuman has the effect of
changing VzE in the following way

(v2Ey =(v2E) » 5E,

Here the prime denotes the new value and Ej is a negative
quantity. If Vf.V® is neglected, then E is given by

E =‘i72¢+ f2

. P
Substituting this into the previous equation gives
(4 oy =7 o) + 5E.d° (3.22)
Let ¢i and ¢f be the initial and final geopotentials
‘-':md let ¢ = ‘Df - d)i' If & varies sinuscidally, then
Equ. (3%.22) implies that [ OSEO. Thus this process
results in a local decrease in the height field.

Fig. 3%.la shows the change in height, in meters, when
Shuman's method was applied to the 1000 mb surface in
area 51. The hatched regions indicate the areas in which
E(%) \:uas originally negative. As expected there was a .
decre-ase in ® in these areas.

One method of altering E by changing ¢ , is based on
the fact that the geostrophic vorticity is large and
negative when E(¢ ) <O, Thus E( ®) can be made positive
by reducing the magnitude of Qg in hyperbolic regions.

Dixon (1970) discussed the smoothing function

¢I

0..

o +(1-%) (V70), (3.23)
4
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FIGURE 3.1

(a) The change in height, in meters, when Shumans'
method was used to ellipticise ¢ for the 1000 mb surface
of area 5l.

(b) The corresponding results for the authorié méthod..
FIGURE 3.2

The finite difference schemes used to discretise

the balance equation.
FIGURE 3.3

(a) (W1 -Y2) - the difference in the streamfuncticas

when NLT1 and NLT2 are used in the balance equation.  The

-4 2-1
units are 10 m s .

(b) (ul - u2) - the corresponding results for the
-2 -1

x components of velocity. The units are 10 m s .

(¢) (vl - v2) - the corresponding results for the

2 =1

Yy component of velocity. The units are 10 m s .
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The effect of this smoothing on Eg is described by

4
‘o= +(1-w)(V ¢ .
(Qg)o (Zg)o (“3. ), (3.24)

Since (V4¢ )0 o« (V2¢)m - (W2¢)0 , it can be shown
that (V4¢)o will tend to be positive in regions where
EC($)<O . Thus if Equ. (3.23) is used with wu<1
in regions where E(9® )<0 , Equ. (3.24) shows that there
will be a decrease in the magnitude of the geostrophic
vorticity. Also it can be shown that ¢ will decrease
when E($)<0 .,

Equ. (3.23) was applied at all points where E( ¢ )<O
until the elliptic criterion was satisfied. The corres=-
ponding results to those found for Shuman's method are
shown in Fig. 3.1b. (The straight lines indicate the -
regions beyond which there was no change in ¢ ). It was
found that as W approached unity there was an increase in
the number of cycles required and a decrease in the change
of ¢ .

Figs. 3.la and 3%.1b show that in both methods the
geopotential was changed only in the vicinity of hyper=-
bolic regions. Also these figures show that the resulting
change in ¢ was similar for both methods. However it
was found that the time taken for the first method wvas
about three times that for the second, (but this may be
due to inefficient programming). Another advantage of the
second method is that it is not necessary to solve a
partial differential equation in order to recover ¢ .

Benwell et al,(1971) used the new ® to alter the
geopotential at the other levels so as to maintain the

temperature structure. But if this is not done, there is
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no reason why the new distribution of ¢ should be cal-
culated because the balance equation can be written in
terms of E (see Equs. (3.14) and (3.16) ).

The geostrophic wind was calculated from the initial
and final distributions of ¢ . It was found that, for
both methods, the maximum change was about 3 mfs"1 .

In the following computations the second method of

ellipticisation was used.

The Finite Difference Scheme °

Since the balance equation may only be  solved by
using numerical techniques, Equ. (3.4) (or those derived
from it) must be discretised.

First consider the non-linear term (NLT). There are

two common finite difference schemes for this term and

they correspond to Miyakoda's methods A and C (Miyakoda

1962). These will be referred to as NLT1 and NLTZ2.

Using the notation shown in Fig. 3.2, these expressions

are
NLT1 = ( W2 )
=2 xx yy ey (3.25)
2
NLET 2= 2 2
¢~ L.J yy wxy) (3.26)

NLT1 is derived by using centred finite differences
for W‘ < wyy and W v The resulting truncation error
in NLT1 is of the order of d4. Bolin (1956) argued
that there is a systematic error in NLT1 because
y_ ..y and WY_  are calculated over different distances.

bdd Yy Xy

If the x and y co-ordinates of the grid are rotated
through 45 , then the non-linear term is given by NLT2.

4 :
This also has a truncation error of order d . Also in

this case the two parts of NLT are computed over the same

. distance.
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Miyakoda (1962) solved the balancé equation using
NLT1 and NLTE and obtained solutions W1 and W2. He
found that W1 > Y2 everywhere. The computations were
repeated for the 1000 mb surface in area 91. The
results in Fig. 3.3 confirm Miyakoda's findings and show
that the maximum difference between the wind component;
© derived from W1 and V2 is about 1 ms! .

Miyakoda speculated that the systematic difference
between W1 and Y2 was due to NLT2 satisfying a certain
integral relationship, whereas NLT1 did not. This
assertion was never substantiated.

Some insight into the reason for the systematic
difference can be gained by assuming that V¥ is Biharmonic

Y = Asin(ax)sin(ﬁy)
If this is used in Equ. (3.35) and (3.36), it can be
shown that
222 2 2 2 2 2

NLT1-NLT2 =A"a B (o +8 )d sin (a x)sin (8y)

Thus NLT1>NLT2 everywhere.:Z Now suppose that Y1 and Y2

are given by

'\72¢

2
Vo

2
V Yl + NLT1

2
V Y2+ NLT2

n

Also let NLT1 = NLTZ2 + g2 (x,y) so that the subtraction
of the above equations

2 2

V (y1-y2) =-g (x,y)
If ( Y1 - VY2) varies sinusoidally then the left-hand

2
side becomes -A ( Y1 - Y2) and thus
2

(Y1-y2) = g (x,y)

X

This crude analysis shows that Y1> Y2 everywhere,
It can also be shown that when WV is biharmonic, the

truncation error in NLT2 is always less than that in NLT1.
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Thus it is likely that Y2 is a better approximation to
the exact solution than is 1.

A method of testing the superiority of either NLT1
or NLT2 might be as follows.

(a) Find the solution of the balance equation and fine
grid (m x m gridpoints) using NLT2. Let the solution be
w2 .

(b) Find the solutions of the balance equation using
NLT1 or NLT2 on a coarser grid (n x n). Let the solutions
be Lu‘ln and lli2n.

(¢) The solution in part (b) that is closest to
should indicate the best finite difference form of NLT.

For this method to work, the magnitude of ( waﬂ - iv_zm )
must be much greater than ( WZn - Wln j In terms of
NLT, it is required that (I'IL’J'.‘2rl - NLTEm) must be much
larger than (NLTZrt - NLT’In)'. But both of these
.expressions vary with x and y and thus, in terms of their
r;Jot mean square (RMS) values, m and n should be such that
Y RMS (NLTan - NLT‘In) = RMS (NLTan - NLTZm)

Here Y = 10.

If V is biharmonic, it can be shown that the above

n =1-_3_v.f_E.____
m 4 JP+Q-2R

If F and G are defined by sin2 (a %) sin2 (By) and

cos 2 (o x) c052 (By), then P, @ and R are the integrals

equation gives

of F , G and FG over the area considered. If

2
P/ (P+Q-2R) is about %, then [%] must satisfy

)
[ﬂ] = 1-X
m 2

If v =10, this relationship cannot be satisfied and thus
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the method described above is of little use.

The affect of the formulation of the non-linear term
on the rate of convergence of different iterative schemes
. will be discussed later.

If the V2W term in the balance equation is replaced
by xV'2W and if NLT2 is used, then the solution separates
into two fields. Thus in all the following computations
_+V2W was used.

Miyakoda suggested a finite difference form of

vy . However, this was not used in these computations
because the finite difference depended upon lUO which was
thought to be undesirable (see section 3.5). Thus V£.VV
was replaced by fo\VW (see Fig. 3.2).

Suppose that the finite'hifference form of the balance
equation is

2
YU +TVE.VVU + NLTI =v2¢ LedB
(3.27)

To derive an equation from this that is analagous to

Equ. (3.16), it is necessary that

2 2 2 2
(A" +B), = ("'VW) - 2NLT| i s 3.2
Using the appropriate value of NLTi, this gives
A? 82) (V. -V -V + VY E 4+ (VY + VY -UY ‘UJ2 (3.28)
= - - + + - - %
(ArB g =% " 7/+ 17372 4 *
2 2 2
A =2 -y - 4(Y -2 v -
( +B£ Uﬂﬂ% 5 %J+Uﬂ %+3M52%+%)
AW 22U + WY -2U e ) (3.29)
( 5 2%6-+L7KU% 2&6*&%}

When A and B are put in terms of (+) finite differences,
Equ. (3.28) follows directly. But Zqu. (3.29) cannot be
derived by using (x) finite differences for A and B.

When this is done the result is Equ. (3.28). This incon-

5 .
sistency disappears if (A2 + B )2 is calculated from

PR 2 2 2
('V V¥ ) -2 x NLT2. But this form of (A + B )2 cannot
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2
be used because it is necessary for V ¥ to be replaced
. '
by V VU and this is undesirable.
A comparison of Equs. (3.28) and (3.29) shows that

2
the calculation of (4" + B2) requires fewer arithmetic

1
2

operations than does (A? + B )2. Also the former is

independent of wo whereas the latter depends strongly on

W . The significance of this will be dealt with later.

Methods Of Solving The Balance.Equation

Two slightly different successive overrelaxation
techniques have been used to solve the balance equation.

The first technique is an extension of the éOR
method and is known as non-linear overrelaxation (NLOR).
This will be referred to as a method of the first type.
The main characteristic of this type of method is that the
latest values of V¥ are used in all computationé.

The second technique consists of linearising either
Equ. (3;14) or (3.16). When the former equation is used
this will be called a method of the second type. A method
of the third type will refer to the use of the latter
equation. Both these methods usually, but not always,
require the use of two fields of V (or something related-
to V),

The method described by Endlich (1970) will not be
discussed here. However it is hoped that in the future
a comparison between his method and those described above
will be undertaken.

The ADI method was not considered because of the
problem of finding the optimum variation of the iteration

of the iteration parameter. Also, there are difficulties
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involved in linearising the equation due to the presence
of the V__ term.
Xy
The NLOR method has been described by Ames (1965).
He Showed that if g (xo' yo, wo, w,l, wz‘ .o.caoot) = 0
is the finite difference form of the non-linear equation

at point O, then the iteration process is defined by
n+1 n '
YDy g 0
° ° a (n) (3-30)
..g)
oWy
Here the latest values of V¥ are used to compute g(n).
Ames also pointed out that the optimum value of [ depends
n
upon VY and therefore it will change during the iteration
process. The evaluation of the optimum value of 8 will
be considered later.

If g = 0 is a linear equation, then Equ. (3.30)
defines the SOR method. This illustrates the relation=-
ship between SOR and NLCR.

If g = O is the balance equation then the presence of
ny in it means that a certain matrix will not have
property A (see Ames (1965) ). Thus convergence will not
necessarily, but will usually, take place.

If g4 = 0 and g, = O are the finite difference form
of the balance equation when NLT1 and NLT2 are used, then

.-|- 2 x 2

_8_9_1:"4(f+v W) %Q2z_i}i(f+v W)

oV, Ve g«

Thus these expressions depend upon the finite difference
form of the absolute vorticity. Since the absolute vort-
icity may be very small, the NLOR method might involve
divisions by very small numbers. A method that overcomes
this problem will be described later.

The use of the NLUR method to solve the balance
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equation will be called NLOR1 and NLOR2., The subscript
indicates the form of the non-linear term that was used.
| When the NLOR method is used with fB= 1 it becomes
identical with the method used by Bolin (1955, 1956).
Asselin (1967) used an iteration-scheme that was
similar to that used for the NLOR method. This scheme

was

(n+«1) _ (n) (n)
wo = ‘Uo + a_fg_ (3.31)
@)
This has the advantage that the coefficient of g

(n)

independent of Y . But, there is the disadvantage that

(n)

is

this iteration _scheme has never been investigated theoret-
ically. Thus, for instance, the limits qf a for which
there will be a convergent solution are not known. The
use of the above iteration scheme with g4 OT 85 will be
called NLAS1 and NLASZ2.

Both the NLéR mnethod and Asselin's method are methods
of the first type.

A method of the second type was used by 'Arnason

(1958). He solved the linearised equation

(n) 2 () N (n- ;m)(n) QEGED 2
h =fV V¥ VTVW *2( -V o
_ w Jyy XX yy % ywxy} (3.32)
(n) (n) .. .
h*l' and h2 are the finite difference forms of

Equ. (3.32) consistent with the use of NLT1 and NLT2, then

the iteration schemes become

oL o0, . h(n)
° % 44 v%ﬂ“ )
) &
(n+1) (n) h
T Bl 2
4(f 47 Vo)
@ 2

The use of these schemes will be referred to as NLAR1 and
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NLAR2.

The method used by 'Arnason has two disadvantages
when compared with the methods of the first type.
" Firstly, several extra computations have to be performed

(n) (n-1)

and secondly both V' and V have to be stored.
However the advantages of this method are that for a
given n the equation to be solved in linear and that the

denominator in the iteration scheme is never small.

The balance equation is elliptic if

n n
Yf_\_q( )+ NLT( )-z- 1 >0 (3.33)
f 2 2
Equ. (3.32) is elliptic with respect to w(n)if
2 (n-1) (n-1)
V¥ +NJ +1>0 o (3.3)

f 2f2

Fig. 3.4 shows that if Equ. (3.33) holds and if (_12_5!!_ + 1)=>0
then Equ. (3.34) is satisfied. Thus if the i‘initef
difference forms of Equs. (3.11) and (3.13) are satisfied,
then Equ. (3.32) is elliptic.

A method that incorporates some of the advantages of

both the NLCR and 'Arnason's methods is described by
' (n)

(n+1)  (n)
vy *__E%n)) _ (3.35)

4(f+V
12 2
Also a similar iteration scheme can be used to solve
g, = 0. The use of this method will be referred to as
NLOR1X or NLORZX depending upon the form of the non-
linear tern. The NL(JHx method is a method of the first
type.

Another method of the second type was discussed by
'Arnason (1958). He considered the eguation

2 (n n) (ﬂ-n 2
fv lU( )+ Vf.Vllf( + NLT -V$=0
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With this form of linearisation a Poisson type equation
is solved at each iteration. This can be achieved
very efficiently. ﬁowever 'Arnason showed that this
method would not produce a convergent solution. The
reason is that the non-linear term is strongly dependént
upon WO. This problem may be AVercome by solving the
balance equation in the form of Equ. (3.16). The methods
used to solve the equation in this form will be called
methods of the third type.

The general form of the iteration schéme for

methods of the -thira type is

A e ad e w R (3.36)

{n+1) (n) 2 (n) (n) :
v =V +« (VWY -C ) (3.37)

(2)

Here F (VW) is the righthand side of Equ. (3.16).

Many variations of the above_iteration scheme have
been used. Firstly different values of @ and [ have
been used and séccndly different numbers of scans per
iteration.

A single scan method is defined as a method in which
Equs. (3.36) and (3.327) are used at one gridpoint before
moving to the next. A double scan method is defined as
one in which Equ. (3.36€) is used at all gridpoints before
Eqtie (Z.37) Thus in this case each iteration consists
of two scans of the grid.

A summary of the methods of the third type that have
been used is given in Table 3.1. This shows the ranges
of ® and B that were used. The number of scans is

also indicated. Finally the number of fields that is
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lMethod Code a B Scans Fields
Miyakoda 4 (1956) NLMA 1 1 1 1
Shuman Slow (1957) NLSS 1 >1 1 3
Suggested Method NLAU |<1 >1 1 1
Miyakoda B (1956) | . | NLMB 1 > 2 2
-Shuman Fast (1957)
*

White  (1969) NLWH |<1 >1 2 2
TABLE 3.1

*
White used the ADI method to solve the Poisson eguation during
the second scan of each iteration. In terms of the SOR

method, this is equivalent to using 38 >1.
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needed is showvn.

The relative efficiency of all the methods described
was iﬁvestigated and will be described later.

When methods of thé first and sécond type are used
it is desirable to know the optimum value of . The
next section is goncérned with estimating this value for

a linearised version of the balance equation.

The Estimation Of The Optimum Overrelaxation Factor

An analysis, similar to that used by Asselin (1967)
was performed on the following linear version of the
balance equation.

2 2
fv U+ wax_ way+c Wyy—‘? ¢=0 (3.38)

In the analysis the first term was replaced by
f*VZUJ and two sets of finite differences were used for
the "non-linear terms'".

+

The use of v, Ty and ‘*W in the "non-linear
XX ¥y Xy

~ terms" is analagous to using NLT1. Any quantities derived

when these were used will be denoted by a subscript 1.
] * x
Similarly the use of VY__, W and V__ is analagous to
xx vy xy

using NLT2 and a subscript 2 will be used to denote
quantities relating to this equation.

If Equ. (3.38) is solved using the SOR method, then
: n
Ny

the iteration formula for E{ .. = V.. can be
1] 1] 1)

derived.

(n)
Suppose €iA has the form

(n)
€..
1)

When Dirichlet boundary conditions to solve Egu. (3.38)

= q exp(3i+0j) (3.39)

in an area with ngox nj gridpoints, ¥ and @ will be

given by

v = _T 1) 1P |
n,-1 n. -1 (3400
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If Equs. (3.39) and (3.40) are used in the iteration
(n)

formula for Eij’ then a complex expression for g can

be derived. The magnitude.of q, |qa | say, is
‘.

~ 1

lal = [a=8epv)s (ow” (3.40)
(1-Bv) +(Bw)

From this equation it can be shown that Iq | is a minimum

with respect to [ when

2. v2) (3.42)

B = 2 v2z4 (v -w

Let this value. of @ be denoted by B_(4).  The
expressions for w and v depend upon the finite differences
that are used in Equ. (3.38). These expressions will be
given later.

There will be convergence if |q | < 1. Equ. (3.41)
showé that this is so for all B such that 0 < B < 2.
Thus Equ. (3.41) gives the correct range of f for which
there is convergence. Also, a comparison of Equs. (3.42)
and (2.5) shows that this method produces an expression
for Bo that has the correct form.

The method by which [q | was derived is similar to
ﬁiyakpéa's method. The difference between these methods
is associated with the amount of detail that is known
(.”?. ")
3J

about € Miyalktoda used an expression for Eij that

fitted the results exactly, whereas the above method uses

n
the largest fourier component of Eij). The latter
method is used for Equ. (3.38) because Egg is not known.

Let ¢1, ¢2, ¢3, c4, s1, s2, s3 and s4 be defined

as follows
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cos (P+3)

¢c1 = cos (9) c2 =cos (P) . ¢c3 =
ch = cos (P=9)
s1 = sin (9) s2 = sin (¢ ) §3 = sin (P +9 )

5}+= sin (&P-{})

1 2
cl1+c2+Axcl1+Cxc2-Bx(c3 -ch) /(b + 204+ 2C)
7

It can be shown that v, and v, are given by

<
n

c1+c2+ Axc3+Cxclh ~Bx(c2=-c1)/ 4+ A+C)
2 2 2

v

2

The expressions for W, and W, are derived from these

equations by replacing c¢1 and s1 etc.

1}
o

Equs. (3.41) and (3.42) were tested with A = B =C

(a Poisson equation). . The variation of lg ! with B
for this case is shown by curve I in Fig. 3.5. This
shows that |q | has a minimum in the region of- B= 1.6.

In fact, Equ. (3.42) gives BO(A) = 1.61. The correspond-
ing value from Miyakoda's method is BO(M) = 1.62. Also
it was found that as the number of gridpoints increased

BO(A) rapidly approached' BO(M). For instance, if
there were 10 x 10 gridpoints, BO(A) overestimated

BO(M) by only 3%. These results show that BO(A) is a
very good approximation to BO(M). The reason for this

is that Equ. (3.42) approaches Equ. (2.5) as n; and B
increase.

| Fig. 3.5 shows that at BO(A), the value of

lq | (qo(A) say) was .88, However if qo(m) = B (1) - 1
then the theoretical value of the minimum of 1q 1 is

qO(M) = .62. Thus qo(A) was not a good approximation

to qo(M). However, as the number of gridpoints iﬁcreased,
qo(A) slowly approached qo(ﬁ). This is illustrated by

the fact that even for 80 x 80 gridpoints qo(A) under-
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estimated qo(M) by 6%. Therefore, this method is not

a suitable way of estimating the rate of convergence.

The above results indicate that, for a Poisson
equation, Equs. (3.41) and (3.42) can be used to estimate
B,» but notq .  However, BO(A) - 1 is a good estimate
of q,e Equ. (3.41) was used to compare the two finite

difference schemes used in Equ. (3.38). A, B and C

s V. and

were taken to be the average value of Wy -~

y
2 ny. The variation of Iq ! and lq, | with B is shown
by curves I and II of Fig. 3.5. (The results for scheme
I were the same-as those for the Poisson equation).
This shows that the optimum values of 3 were the same
for both finite difference schemes. Also, the optimum
values were the same as that for the Poisson equation.
This is because A; B and C were small.

~ Fig. 3.5 also shows that qo(A)1 >-q0(A)2. This
implies that scheme 2 requires fewer iterations than
scheme 1 . But, this result may not be significant due
to the inadequacy of this method in predicting Ap

The results described in this section indicate that,

if A, B and C are small, then the optimum overrelaxation
factor for Equ. (3.38) is almost the same as that for a -

Poisson equation. It is suspected that this will also

" X .
be true when either NLOR or NLOR is used.

1

A Comparison Of Different Methods Cf Sclving The Balance

Equation
In the next four sections a comparison is made
between the efficiencies of different methods of solving
the balance equation.

In all the computations @ and [ had values of
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n_, where n was an integer such that 0 < n < 20.

10 The iterative process will be described as divergent
if the norm of the residual increases in two successive
iterations. Thus if there is divergence when [ = 1.5,
it is implied that there is convergence when f = 1.4
and that it is not known Qhat happens when 1.4 < B<1.5.

When the norm of the residual decreased monotonic-
ally, either # or # was used to indicate points on a
_ graph. However, when this did not happen the symbol @
was plotted. D (#) and D (#) indicate the values of
the relaxation factor for which there was divergence.

The parts of the computer programmes that were
concerned with the iteration process are shown in
Appendix I. The programmes for the three basic types.
of methods are included.

The time taken to solve the balance equation, for
a given E, depends upon the number of iterations required
(rate of convergencé) and the number of computations
‘per iteration. Since a comparison was made between
different methods for a given area, a measure of the
efficiency is product of the number of iterations and
the operational count (the number of multiplications and
divisions at each gridpoint per iteration). This will
be referred to as the totai count (this will depend upon
the value of E).

In all computations the geopotential of the 10CO mb
surface for area 91 was used {ni = 16, nj = 12). The
geopoctential was ellipticised by using the secénd method
described in section 3.3.2. Also,:except when stated

otherwise, the initial guess was ¢ /f.
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B = 10 3 = 1 UO

Method B UeCe NoI. W N. Pule Fig.
NLORL 40 16 68 1088 - - 3.6a
NLORlx 1.0 15 50 750 - - 3.6a

X .
NLOR1 1.3 16 27 Lzp - - 3.6a
NLOR2 140 16 71 1136 - - 3.6b
NLOR2 16 17 35 595 - - 3.6b

X
NLOR2 1.0 15 53 795 - - 3%.6b
NLOsz 1.6 16 17 272 2] Lg6 %.6Db
NLSH2 1.0 15 56 840 - - 3. 73
NLSH2 1.6 16 19 204 %2 512 372

a

NLASL 0.100 14 107 1498 - - 3.7b
NLAS2 0.225 14 33 Le2 - - 3.7b
NLAR1 2 U 26 4o 1040 - - 3.8a

*
NLAR1 1.6 27 25 675 5k 1458 3.8a
NLAR2 .| 1.6 26 22 572 L7 ygpp 3.8b
TABLE 3.2 0.C. - Cperational Count

NeJI. = Number of Iterations

T.c.

~ Total Count
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el A'Comparison Of Methods Of The First Type

A comparison of methods of the first type was made.
These were the NLOR, NLOR® and NLAS methods. Also, the
ordering of the gridpoints as suggested by Sheldon (see |
 section 2.2.1) was used in conjunction with the NLOR
method (hereafter called the NLSH method).
The results of using NLOR1 are shown in Fig. 3.6&4‘
It shows that this method produced convergence for only
B= 1.0. The number of iterations, operational count
and totél count are shown in Table 3.2.
Fig. 3.6a also shows the results for NLORT® . w:i.lth.
B= 1.0 and E = 103, the number of iterations was 50 and
the total count 750. The corresponding values for
NLOR1 were 68 and 1088. Thus, with B= 1.0, NLOR‘IX was
more efficient than NLOR1.

Unlike NLOR1, NLOR1X gave a convergent solution with
B>1.0. It was also found that as [ increased the
convergence rate increased until B had a value of 1.5.

At this point there was divergence. Table 3.2 shows that,
with E = 103, the number of iterations with B= 1.4 was
almost half the number required when = 1.0 was used.
Thgrefore it is worthwhile finding the optimum value of B .
for ﬁLOR1x. These results also show that NLORTX was more
efficient than NLOR1 for all values of B .

The method (Carre's method) described in section 2.2.2
for calculating Bo for a linear equation, was used with
NLOR1X. It gave BO(C) = 1.56. The significance of
this, if any, is not obvious because with = 1.56 there
was not a convergent solution.

. X . .
The disadvantage of using NLOR1 is that it has never

®
The curves are labelled with log E. This applies to other

figures.
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been treated theoretically. Thereforé the range of
for which there is convergence, and the optimuﬁ value of
By must be determined experimentally.

Fig. 3.6b shows the results for NLOR2 and NLORZX.
With = 1.0, NLORZx was more efficient than NLORZ2.

This figure also shows that the convergence rates increased
when B>1.0 was used. In both cases BO(E) was 1.6.

With this value of f and E = 103 , Fig. 3.6b and Table 3.2
shows that NLORZ>< was far more efficient than NLOR2.

This was also true when 1.0< B < BOGE).

The optimum value of [ for NLORZJ>< became better
Idefined as E decreased. Thus the value of B must be
chosen carefully when a small value of E is used.

The value of [ for a Poisson equation with n; = 16
and ny = 12 is 1.62. This is a very good estimate of.

BO(E) and supports the suggestion made at the end of
section 3.6. Also; Carre's method was applied to NLOREx
and it was found that BO(C) = 1.58. Therefore it is
pbssible that Carre’s method can be applied to NLORZK.
However, there is no theoretical éupport for this assertion.

The effect of the initial guess was tested for
NLORZS.  An "improved" initial guess was used (the
solution of the linear balaqce equation) and it was found
that it had no appreciable effect on the convergence rate.

The ordering of the gridpoints suggested by Sheldon
was used in conjunction with NLOR2 (hereafter referred
to as NLSH2). The results are shown in Fig. 3.7a. A
comparison of this with Fig. 3.6b shows that NLSH2 was
slightly less efficient than NLOREX. The explanation of

this may be that when (i + j) even points were relaxed
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the non-linear term involved Y at other (i + j) even
points.

Finally, Asselin's method was investigated. The
results of NLAS1 and NLAS2 are shown in Fig. 3.7b. In
each of these cases the optimum.value of o was the same
at the maximum value. However this value of a was
different for NLAST1 and NLASZ2. Table 3.2 shows that when
the optimum value of O was used, NLASZ2 was far more
efficient than NLAS1.

Asselin's method has never been treated theoretically.
Therefore, there is no theory to provide an estimate of

the optimum and maximum values of a ( <10 and O _ say).

C
However Asselin gained some insight into this problem by
analysing a linear version of the balance equation (Equ.

3.38). Using his type of analysis it can be shown that

0 and P are related by

@ —EB,

4(1+9
(%)
The results from sections 2.5.4 and 2.5.5, show that

ao and tzc can be estimated by using

a, = B
AV(x) 2
X =¢3(1?2_y)
@ =_ 2 2f
€ MAX(x)

Here AV (x) and MAX (x) refer to the average and maximum
values of x.

In the particular case considered, Bo is approx-
imately 1.6 and thus approximate values of ao and a,
are 0,35 and 0.24. Since Ro > ac it is expected that
the optimum value of O will be its maximum value (i.e.

0.24). These predictions agree well with the experimental
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résults for NLAS2 (see Fig. 3.7b).

The advantage of using Asselin's method is that it
has a smaller operational count than the other method.
But, Table 3.2 shows that when the optimum values of the
overrelaxation factors were used, NLOR2x had a smaller
total count than NLAS2. Also NLAS1T was the least
efficient of all the methods that used NLT1.

Consider the effect of the formulation of the non-
linear term on the convergence characteristics of the
methods discussed. When NLT1 was used it was found that
there was always convergence with = 1.0. Also, when
it was possible to get convergence with a larger (3 , there -
was an increase in the rate of convergence. But it is
difficult to estimate the optimum and maximum values of the
overrelaxation factors.

When NLT2 was used, it was found that the convergence
increased as [ increased from 1.0. Also there tended
to be a distinct optimum value of B ( BO(E) ) which had
a similar value to that for the corresponding Poisson
equation. This value could be used to give an estimate
. of aofor Asselin's method.

The above results indicate that the methods of the
first type were most efficient when NLT2 was used. This
result was predicted in section 3.6. However, due to
the inadequacy of the analysis described in section 3.6,
this may only be a coincidence.

The results in Table 3.2 show that the NLORZx method
was the most efficient. However the supremacy of this
method is only provisional because it has not been

extensiveiy tested.
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3.7.2 A Comparison Of Methods Of The Second Type

A comparison of methods of the second type was made.
The results are summarised in Téble B2
Fig. 3.8a shows the results for NLAR1. As J
increased from 1.0, the number of iterations required for
a given E decreased until f = 1.3 was reached. With
B >= 1.3 it was found that the solution oscillated.

¥ (n)
(ni)_wﬂ

For example the variation of log IPP ” with n
_is shown in Fig. 3.9.
Miyakoda (1962) noted that the solution of Equ. (3.16)
sometimes oscillated. He remedied this by using
(n)  (n-1) 2 2 (n)
(Vv + v )//2 in the computation of (A + B) .
A similar proce-dure was used with NLAR1. (hereafter
called NLAR1‘). The non-linear term took the form
s va(n)( v2w(n—l)'rv2w(n-2))
—A(n)( An-1)+ Afn-2)) _B(n) I_:)’(m—l))r B(n—z))
The results of NLAR1* are shown in Figs. 3.8a and 3.9.
The use of the above procedure stopped the oscillat-
ions and increased the optimum value of B to 1.6.
Table 3.2 shows that NLARﬂ‘ was more efficient than NLAR1.
Another advantage of using NLAR1' is that the value of
Bo can be estimated. However the disadvantage of this-
method is that three fields of Y have to be stored‘
whereas NLAR1 only requireé the storing of two fields.,
The results of NLAR2 are shown in Fig. 3.8b. It
shows that once again the optimum value of 8 was 1.6,
With this value of B , NLAR2 was the most efficient of
all the methods of the second type (see Table 3.2).
Therefore it is best to use NLT2 with the NLAS method.

A comparison between the methods of the first and

second type (see Table 3.2) shows that NLAR2 had over
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twice the total count of NLOREX. However, there was
little difference between NLAS2, NLOR2 and NLARZ2.

The main disadvantages of methods of the second
type are that they have large operational counts and that
they require the storage of at least two fields of V .

A Comparison Of Methods Of The Third Tyve

A comparison of methods of the third type was made.
A summary of the results is exhibited in Table Ze3e

When a method of the third type is used it is
necessary to specify two parameters & and 8 . NLWH1
was first investigated by using B = 1.6 (the optimum
value for the Poisson equation) and varying o . The
results are shown in Fig. 3.10a. This shows that the
convergence rate was not strongly dependent upon @ and
that it decreased rapidly when o > 1,0, In fact there
was divergence when @ = 1,2. In the following comput-
ations the optimum 0O was assumed to be 0.8.

With & = 1,0, NIWH1 is equivalent to NLMB1. Fig.
3.10a shows that there was little difference between NLWH1
and NLMB1. But, like B , the optimum value of a became
better defined as E decreased. Also it is suspected that
o decreases as the number of gridpoints increases. Thus,
it is likely that the difference between NLWH1 and NLMB1
is significant if fhere is é large area or a small value
of E.

When a solution oscillated, Miyakoda (1962) used

(n) (n-1) 2 2
y + ¥ ) /2 to compute (A + B ). This tech=-

(
nique (hereafter called Miyakoda's technique) was used

with NLWH1 when there were no oscillations (NIWH1 ).

The results are shown in Fig. 3.710b, A comparison of
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T‘cl

- Total Count

E = 10° E = 100

Method o B (5 | = T4 C N.I P<Cl Fig.
NLWH1 0.8 1.6 12 21 252 41 Lo2 3.10a
NIWHL | 0.8 1.6 13 2 286 43 559 3.10b
NLMB1 1.0 1.6 1 22 2k2 - - 3.10a
NLAUL 0.8 1.6 12 18 216 30 260 3.11la
NLAUl* 0.8 1.6 13 18 234 31 403 3.11b
NLAUl** 0.8 1.6 12 18 216 30 260 -
NLSS1 1.0 1.6 11 18 191 - - 3.11a
NLMAL 1.0 1.0 10 62 620 - - -
NLWH2 0.5 1.6 18 25 450 53 954 3.12a
:NLNHZ* 0.8 1.6 19 22 418 L3 817 3.12b
NLWH2 1.0 146 18 27 L8L | - - 3.12b
NLWHZ*‘ 05 1.6 18 25 450 L8 864 -
NLAU2 0.8 1.6 18 zhL 612 - - 3.13a
NLav2 | 0.8 1.6 19 3l 646 75 | 1425 3,13b
NLAU2 1.0 1.6 18 34 612 - - 2.13b
NLAUZ2 | 0.8 1.6 18 34 612 75 | 1350 5
TABLE 3.3 0.C. = Operational Count

N.I. - Number of Iterations
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this with Fig.-3.10a showed that Miyakoda's technique had
1ittle effect on the rate of convergence. But, Table
2+3 shows that it did increase the total count. Also

it required the retention of an extra field of Y .
Therefore Miyakoda's technique should only be used where
necessary.

Fig. 3.10c shows how the convergence rate varied with

B, when @=0.8. As expected, the optimum value of B
was 1.6. '

The above computations were repeated fﬁr NLAU1 and
the results are shown in Figs. 3.11a, 3.11b and 3.11c.

A comparison of Figs. 3.10a and 3%.11a shows that the
constant E curves had a similar shape for both NLWH1 and
NLAU1. With o =0.8 (taken to be the optimum Yglue)

NLAU1 was more efficient than NLWH1 (see Table 3.3).
Therefore these results show that the optimum value of @
is similar for both methods and that NLAU1 is the be%ter
method.

Fig. 3.17a also indicates that with E >-102 and

o =0,8 there was non-monotonic convergence. Two methods
were used to reduce this oscillation in the convergence
rate. Firstly, Miyakoda's technique was used and the
results are shown in Fig. 3.11b (NLAU1‘). This, in
conjunction with Table 3.3, shows that the convergence
becanie monotonic and that the total count increased. The
second technique used was that suggested by White ( 1969 ).
‘This consisted of reducing o by 0.1 when the convergence
Ibecame non-monotonic. The results of using this technigue

¥ %

(NLAU1 ) are shown in Table 3.3. This shows that

¥

NLAUM is better than NLAU1 . Also, White's technique
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does nof require an extra field of Y , and thus it should
be used rather than Miyakoda's technique.

Fig. 3.11c shows that with o =0.8, the optimum value
of B for NLAU1 was 1.6.

With o = 1.0 and = 1.6, NLAU1 is equivalent to
NLSS1 (see Table 3.1). Fig. 3.11a shows that there is
‘little difference between NLAU1 and NLSS1. But, it is
likely that the difference between these will depend upon
the same factors as the difference between NLWH1 and
NLMB1. |

With a = 1.0 and B= 1.0, NLAU1 is equivalent to
NLMA1 (see Table 3.1). The results of NLMA1, shown in
Table 3.3, indicate that this method is a very inefficient
way of solving the balancé equatidn.

So far, only the NLT1 form of the non-linear term
has been considered. Therefore the results of using
NLT2 will now be discussed.

The results of NLWHZ2 are shown in Fig, 3.12a; This
shows that there was a sharp decrease in the convergence

rate when a > 0.5 and divergence for o Oe7e This

behaviour was due to the presence of WO in F (V) (see
- Equ.(3.29)). Also, even with a= 0.5, monotonic conver-
gence did not occur.
The techniques of bothnﬁiyakoda and White were used

in an attempt to improve the convergence rate (NLwH2
and NLHH2‘¥). The results of NLHH2*are shown in Fig. 3.12b.
The optimum & was 0.8. With this value the convergence
rate for NLHHE‘ was greater than that for NLWH2 with

A =065 Also this technique produéed convergence when

&€= 1.0, A summary of the results for NLwH2" and

*®

NLWH2 are shown in Table 3.3. This shows that there was
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*

little difference between NLWH2, NLWH2 and NLHH2** when
the optimum values of @ are used. However a possible
advantage of I\IL‘N‘HZI‘= is that if a’o can be found for a
given area ( ao = 0.8, in this case), then this method
ensures convergence with that o . Unfortunately, the
author knows of no way in which o, may be calculated.

The above computations were repeated with NLAU2 and
the results are shown in Fig. 3.13a. Once again there
was divergence when a = 1.0. Also with a=0.8 and‘

E > 10 the convergence was non-monotonic.

The effect of using Miyakoda's technique is shown in
Fig. 3.13b (NLAU2*). This shows that the convergence
rate for E 3’103 hardly altered, and that it increased for
E< 10 . It also shows that the optimum vélue of A was
in the vicinity of 0.8. The efficiency of NLAU2 can
be compared with that for White's technique (NLAUZ‘*) by
referring to Table 3.3. This shows that NLAUZ‘* was
superior to NLAU2¥.

In all the methods considered it was either better
or essential to use a4 < 1.0. Also, whenever there was
monotonic convergence the optimum value of A was in the
vicinity of 0.8. This implies that this value of a is
characteristic of the area used.

The results in Table 3;3 show that it is better to
use NLT1 rather than NLTZ2. Also, that when NLT2 is used,
it is necessary to use the techniques of either Miyakoda
or White in order to obtain monotonic convergence. The
disadvantages of Miyakoda's technique are that two fields
of Y are needed and that the operational count is increased.

However it has an advantage in that it produces convergence
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when o = 0,8.

Table 3.3 also shows that, with a = 0.8, the NLAU
method is the most efficient (if NLSS1 is excluded).
However the efficiency of the NLWH method could be improved
by using a more efficient method of solving the Poisson
equation. For example, the ADI method could be used

(White (1969 ) ).

3.7.4. A Discussion Of The Methods Of Solving The Balance Egquation

The most important fact that emerges from the previous
investigation is that it is best to use NLT2 with methods
of the first and second types and NLT1 with those of the

" third type. With the converse proce dure, there tends
to be non-monotonic convergence or divergence with un-
expected values of o or f . However this difficulty can
often be overcome by using'either Miyakbda's technique
or th%t of White. ;

For methods of the first and second types, the
optimum value of P is almost the same as that for a Poisson
équation. When this f is used the NLOR® method is the
most efficient. However, the NLORX method has never
been studied théoretically or used operationally and thus
there is neither theoretical nor statistical proof that
it will always give a convergent solution.

For methods of the third type there appears to be a
unique optimum value of A , provided that there is mono=-
tonic convergence. However, the author does not know how
"to calculate this value of a . With the optimum value of
.a y the NLAU method is the best method of the third type.
Also a comparison of the results for this method with those

X
for the NLOR method shows that NLAU is the better method.
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The Boundary Conditions For The Balance Equation (A)

To solve an elliptic partial differential equation
it is necessary to impose boundary conditions. It is
usuall& désirable, and offen neceséary, to chhose
boundary conditions which satisfy thé integral properties
6f the equation. .

Consider the balance equation in the form

Vzw-rFiW,¢)= 0 (3.43)
Suppose that Equ. (3.43) has to be solved in an area
bounded by curve C and that s and n are the coordinates
parallel and perpendicular to C.

The first integral constraint on W is almost

trivial. Let the quantity I be defined by
I =j:§y ds
ds 4
: c :
The physical meaning of I is that it is the total inflow
of air into the area considered. On both physical and
mathematical grounds it is obvious that
I1=0 (3.44)
A second itegral property of W is found by integrat-

ing Equ. (3.43) over the area (A) enclosed by C. The

;Fg_w ds +HF(¢,¢) dA = 0 (3.45)
n .

C A

result is

Whenever possible, the distribution of W on the
boundary should satisfy either Equs. (3.44) or (3.45).

The next few sections will deal with the types of
boundary conditions that can be used with the linear balance

equation and the balance equation.
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3.8.1 The Boundary Conditions For The Linear Balance Equation

This section is concerned with the boundary conditions
wﬁich are used with the linear balance.equation..

In section 3.2 it was shown that the wind derivgd
from the iinear balance equation is very similar to the
geostrophic wind. Therefore it is reasonable to assume
that the distribution of V¥ on the boundary is such that
the wind there is geostrophic.

If the wind normal to the boundary is geostrophic,

then

QJ‘Q)
0ie
!
—_—
Q)lQJ
wie

However, if this is used in Equ. (3.44), it is found that
that I # O. This is because f varies around the boundary.

This problem can be overcome by using

Y - 139 _ 6 (3.46)
0s f 9s 1

Here 61 is a constant and its value is given by

5, - $109 ds
1 f 9s
C
If the gridpoints on the boundary are labelled O too n,

then 0, is computed from

1
n -
6 =1 Z(¢(g+1)-¢(g)) f = flg+)+f(q)
1 S =
Here S is the length of the perimeter. Once O, is

1

known, the value of W on the boundary is computed from

W(0)=9(0)
f(0
5% (3.47)
W(a+1) =W(@) +1 (6(g+1) - 8(q)) -5 g=1.0n
f

Since it is the gradient of WV that is significant, the
choice of the zero point and of W(C) is unimportant.

The above procedure for calculating Y on the boundary
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was devised by Bolin (1956).

i
o

If f is taken to be a constant, f say, then 51

(see Equ. (3.46) ). In this case, if it is assumed that

Y() = ¢(0) / F, then the values,of W are given by
lU(q)=¢>_(_gL) g=1,1n (3.48)
f
For a small area f will not vary much and thus these
be

results willAsimilar to those using a variable f.

Benwell et al .(1971) used a boundary condition that
was similar to that in Equ. (3.48), namely

V= g - 52 . (3-49)
f

The Coriolis parameter, f, was allowed.to vary and 52
was calculated so that Eéé. (3.44) was satisfied. This
is a surprising choice of boundary condition becausé the
component of velocity normal to the boundary that lies
approximately east-west is not geostrophic, whereas the
component normal to the other boundaries is geostrophic.

The boundary condition for W derived from ﬁqu. (3.46)
is based on the assumption that the wind normal to the
boundary is geostrophic. Alternatively, it can be
assumed that the wind parallel to the boundary is geo-

strophic. In this case

3% -6 (3.50)
n 3

This must satisfy the consistency condition given by
Equ. (3.45). ‘When the linear balance equation is used
it is found that the value of 53 depends upon ¥ .

However, if the Vf.VY term is approximated by

1l V£V® |, then the value of 53, is given by

f
S =§_‘I_@ds -jf[lv2¢-l2Vf.v¢] dA
3 J fan f f
¢ A
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Before discussing the effect of using different
types of boundary conditions, it is worth considering
the difference between the velocity components calculated
from ¥ (u and v say) and the geostrophic components
(ﬁg and L1 say). Consider the following form of the

linear balance equation,

2
720 .1 830 _19% =0 (3.51)
dy f

If this is differentiated with respect to y and if the
B terms are ignored, then u - ug is given by
2
V(u-u)= Bo
g 2

f
Similarly, if Equ. (3.51) is differentiated with respect

XX

to x, then

2
v (v-vg) = f%¢xy

Suppose that ® = A + B sin (kx) sin (hy). If
u - ug o« sin (k x) sin (h' y) then it can easily be shown
that
2
u ~ug= B Kk _(0-A)
Therefore this simple analysis gives (u - ug) e (9 - 14).
There is no such simple relationship between (v - vg)

and ¢ .

A Case Study

The linear balance equation was solved with different
types of boundary condition. The wind field was then
computed and compared with the geostrophic wind. These
computations were carried out for the 1000 mb surface of
area 51. The distribution of ¢ , for this area, is
shown in Fig. 3.14 and the two components of the geostro-

phic wind are shown in Figs. 3.15a and 3.15b.



FIGURE 3.14

¢ for the 1000 mb
FIGURE 3.15

(a) u computed

(b) vg from the
FIGURE 3.16

(a) (u-ug) when
balance equation using

(b) (v-vg) from
FIGURE 3.17

a) (u-u_) when
¢ g
balance equation using

(b) (v-vg) from
FIGURE 3.18 -

(a) (u-ug) when
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surface of area 51

from Fig. 3.14

same ¢

U is computed from the linear
Equ. (3.46) on the boundary

the same V¥

VY is computed from the linear
Equ. (3.49) on the boundary

the sameV

V' is computed from the linear

balance equation using Equ. (3.50) on the boundary

(b) (v-v ) from
g

the same V
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The first-boundary condition considered was that
given by Equ. (3.46). The distributions of (u =- ug)
and (v - vg) are illustrated in Figs. 3.16a and 3.16b.
These show that the maximum geostrophic departure, for
both components, was about 1 méJ . For (u - ug), this
maximum occurred at the centre of the depression. This
situation came about because (u = u_ ) was comparatively
small round the boundary and ¢xx was large and positive
at the centre of the depression. Fig. 3.16a also shows
that the distribution of (u =~ ug) is similar to that of
¢, This was anticipated in the previous section. The
distribution of (v = vg) is more conmplicated and, as
expected, there is no obvious relationsﬁip between this
and ¢ . .

The geostrophic departures were aiso calculated from
the solution of the linear balance equation for the case
where Equ. (3.49), with 62 = 0, was used to calculate the
boundary conditicns. The results are shown in 3.17a and
3.1?b. As in the previous case, the distfibution of
(u - ug) is closely related to that of ¢ . However, in
this case the maximum geostrophic departure of 3 mél is
on the boundary. The reason for this becomes apparent
when the boundary condition is considered in more detail.

It can easily be shown that on the east and west

boundaries the geostrophic departure is

(u-u)=1209f¢
Ib 2 3y

In the previous section it was shown that, to a good
2
approximation, V (u = ug)a:¢ . Therefore it is to be

expected that (u - um}¢:¢ everywhere. Since ® has its

L=}
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maximum value on the boundary, so has (u - ug). On the
north and south boundaries (v - vg)b =~ 0 and thus the
geostrophic departure of v tends to be small everywhere.

The last‘boundary condition considered was that
described by Equ. (3.50). This allows V¥ to be computed
only to witﬁin an arbitary constant. Howevér this is
not important since itlis only the velocity components
that are significant. The geostrophic departures are
shown in 3.18a and 3.18b. Once again the distribution
of (u - ug) is related to that of ¢ . It is also worth
noting that the boundary conditions implies, and Fig.
4.17a shows, that (u - ug) = O on the north and south
boundaries. Fig. 3.18b shows th;t (v - vg) = O on the
other two boundaries and that the magnitude of (v - vg)
tends to be less than that of (u - ug).‘

The above results show that the boundary cénditions
described by Equs. (3.46) and (3.50) give more realiétic
resulﬁs than that described by Equ. (3.49) with 52 = 0.
The reason for this becomes apparent when it is remembered
that it is the gradients of VW that are used. Thus the
gradients of W on the boundary should be given by the
first integral of Equ. (3.8). Therefore, on the boundary,
Vuj.and Vo should be related by

fVY=Vd+V M
Both Equs. (3.46) and (3.50) satisfy this kind of relation=-
ship.

The boundary conditions described by Equs. (3.46) and
(3.50) are Dirichlet and Neumann toundary conditions
respectively. Thus for the sake of efficiency it is

better to use the former boundary condition (see Chapter
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II)s
In the next section the boundary conditions for the

balance equation will be considered.

The Boundary Conditions For The Balance.Eguation(B)

Kuo (1956) has shown that the first integral of the

balance equatlon is
(f +V U‘)VW V(b + V?) + VM

Here Vx M is a function of integration and V1 = 1 E‘xVUJL
If the principle enunciated in the previous section is
invoked then one possible boundary condition for the
balance equation is

2
W = 1 3 (0+M)+(VxM) (3.52)
3s (f+10)3s 2 S

In this equation s is the coordinate round the boundary
and (Vx -Ii)s is the component of Vx M is the s direction.

The wind given by Equ. (3.52) is similar to the component.

of the gradient wind normal to the boundary.

If Equ. (3.52) is to be used in the same way as
Equ. (2.46), then the righthand side must be made independ-
ent of W. This may be achieved by using VY= 1V®

£
on this side of the equation. The result is

Q)

V=

o (T + gg)(gd;" %—5[() (& ]) s (3.53)

Thus, once 64 has been calculated by using Equ. (3.44),

the above equaticn can be used to derive a boundary
condition for V .

The wind derived from Equ. (3.53) by replacing s by x
and y will be referred to as the quasi-gradient wind.

Some insight into the relationship between the
geostrophic, quasi-gradient and balanced winds can be

obtained by considering a set of circular isobars. If an
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isobar has radius r, then the balanced wind along the
isobars derived from the balance equation (Vgr say)
is given by

= V -V (3.54)

In this particular case the balanced wind is the gradient
wind. If Vér is the quasi-gradient wind, then

v Vv =V =V -.
g =V Vo (3.55)

fr
- It can easily be shown from Equs. (3.54) and (3.55) that
V. -V = f v V -V =1_ |V
gr gr 1 _8 g gr 2 | &
\' fr v fr
gr gr

The functions f1 and f2 are illustrated in Fig. 3.19.
This shows that for both cyclonic and anticyclonic curvat-
ure V__ is a better approximation to V than is V .

er : gr g
Another interesting feature shown in the figure is that
f1 and fz are of opposite sign when there is cyclonic
curvature. Thus for this type of curvature Vér is an
underestimate ng whilst Vg is an overestimate.

The above discussion indicates that Equ. (3.53) can
be used to make a good approximation to the gradient wind
without the need to find the radius of curvature.

Consider the characteristics of the gradient wind
equation (Equ. (3.54) ). It can be shown that

(i) for cyclonic curvature V_-V__ > 0

g gr
(ii) V. - V__ is large when r is small.
g ar

If Equ. (3.53) is to be c¢f any use it is necessary
that the quasi-gradient wind should have the same properties
as V__. This was tested by comparing the quasi-gradient

gr
wind with the geostrophic wind in a case study.
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3.8.4 A Case Study

The data used was the same as that used in section
3.8.24

The guasi-gradient wind, U:r, was calculatgd from
equations similar to Equ. (3.53). This was then compared
with the gebstrophic wind, Vg. Fig. 3.20 shows
(ng_ Vér). This shows that when the radius of curv-
ature was large, (Vg - Vér) was both large and positive.
Thus the behaviour of Vér is similaf to that of vgr
described in (i) and (ii) of the ﬁrevious section.
However,-when the radius of curvatgre was small (Vg - Vér)
could be either positive or negative and its magnitude
ﬁas small. This satisfies condition (iij but not (i).
This is reasonable because Vér is only an approximation
to Vgr anyway. These results show that the quasi-
gradient wind has similar properties to those of the
gradient wind. E

The balance equation was solved with the-bopndary
condition described by.Equ} (3.46). The velocity
components computed from the solution will be denoted by
u1-and v1; When Equ. (3.53) is used to calculate the
boundary conditions the carrespénding components are
u, and Ve Figs. 3.21a and 3.2ib show (u1 ~ u2) and
(v

4. % va). The root mean sauare values of these fields

viere also computed and they were found to be 1.2 m§1
and 2.3 m§1 3 These results indicate that there is a
significant difference between the velocity components
-when the two different boundary conditions are used.

However no experiments have been carried out to find

whether this difference is meaningful or not. It is

hoped that in the future this problem will be resolved.
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CHAPTER IV

PROBLEMS ASSOCIATED WITH THE SOLUTION

OF THE Ww-EQUATICON

Introduction

This chapter is mainly concerned with the solution
of a guasi-geostrophic system of equations. In particular
great attention is paid to the w-equation and vorticity
equation.

First of all, the relationship between the elliptic
criterion and the condition for convergence of the
iterative scheme is considered. The choice of appropriate
boundary conditions for w is then studied in some detail.
Next, the effect en w and ¢t of some of the common
approximations made to the W -equation are considered.

Use is made of both simple "analytical' models and a case
study. Also the meaning of partitioning introduced by
Krishnamurti (1968) is discussed and use is made of this
toncept in the case study. Finally the consistency of
the boundary conditions used for w and ¢t‘is discussed.

The Geostrophic W-=Equation

Haltiner (1971) has described a quasi-geostrophic
system of equations which is consistent with the
conservation of energy (see (iv) of section l.4).

However, as pointed out in the Introduction, the eguatiocns
used in diagnostic studies de¢ not necessarily have to
conserve energy. Therefore ovther quasi-geostrophic
systems of equations may be used.

If only terms of the order RO in Equs. (1.23),

(1.24) and (1.25) are considered, and if V. is replaced

1
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by the geostrophic wind (Eg), then an alternative quasi-

geostrophic system of equations is

V. =1 k«Vo (4.1)
9 %
2 :

-fL+V 0 =0 (4.2)
9L + V.V -fodw =0 (4.3)
ot g ap
09, +V Vdd+ gw =0 (i by
ap. 9 ap

The value of [ given by Equ. (4.2) is usually called
the geostrophic vorticity. However, it is important to
note that this is derived from the divergence equation
and not Equ. (4.1).

If Equs. (4.2), (4.3%) and (4.4) are wfitten as

-8
is derived from

DE = 0, VEg = 0 and TEg = 0O the geostrophic w =-equation

V(TE ) -f3(VE ) - d A(DE_) =
ap g ot dp 9

This comes from the definition of the w-equation (see

Equ. (1.29) ). Substituting for 15, VE and DE_ gives

vlow) + § Bw - o) VAV vae) = O
ap _ 9" 9p

The third'and fourth terms depend upon the differential
vorticity advection and the laplacian of the thermal
advection respectively. For the geostrophic w-equation
these terms depend only upon ¢ ., Due to this they are
often thought of as being the cause of the vertical
velocity. However just because ® rather than w is
observed, it does not mean that the distributions of

® and w represent cause and effect. In fact an
w ~equation simply states the condition which makes the

local vorticity change(%%) and the local temperature change
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(g% ) consistent with one énother. In other words an
w~-equation links the thermal and vorticity (i.e. wind)
fields.

Although the terms depending upon ¢ in the
tu-equatiog do not cause the vertical velocity, there are

some qualitative relationships between the vertical

velocity and these terms. Let w be divided into two

parts,lul and w2, such that
V%ow) + fa - fa(vV Vn) =0
) 1 "521 apg
V(owz) + fam2 + (\_f Vad) = 0
e op

It is found that
(i) w, is large and positive (negatives if the advection
of vorticity, Eg,?n , increases (decreases) rapidly with
height.
(ii) w, is large and positive (negative) if the thermal

advection, —Eg.VQQ , has a sharp maximum (minimum).

The geostrophic w-equation may be written as
Ttow) & 8w B = 0 (4.5)
dp?
Here S depends only upon ¢ and therefore S is known.
If Equ. (4.5) is elliptic it can be solved as a boundary.
value problemn. Therefore once W has been specified
on the boundary the equatien can be solved. The

vorticity eguation, Equ. (4.3), may be written as

2 2
Vo,+ J(o,m)-fdw=0 (4.6)
ap

Therefore, once W is known, this equation reduces to
a Poisson eguation in ¢t' This equation is always

elliptic and thus once the boundary conditions have been

specified it can be solved for ¢t.
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Often approximations to the first term of Equ. (4.5)
are made. The most common is to neglect the derivatives

of 0 so that the eguation becomes

2
@ 7w % 1° B s B =0 (4.7)
.o
Let F%]-k denote that ¢t is specified on the

lateral boundaries of the k x 100 mb isobaric surface.

Also let [w]u and [w]l denote that w specified on the

upper and lower boundaries. Using this notation, Fig. 4.1

shows the levels at which ¢ was known and those at which
w and ¢t were computed. It also shows the boundaries

on which W and ¢t were specified.

The Elliptic Criteria For The Poisson Equation And The

W ~Equation
Consider the Poisson eqguation
2
Vix=F
Suppose that this is solved by using the SOR method.
(n)

n
Let xij be the exact solution and X., the solution after

n)
n iterations. If é?? = X{, - X.,. then
ij ij ij
() () M () @ (neD)
&y~ Spr - R Jj—( SOTHE TR TR TER

(n)

Here B is the overrelaxation factor. Let Eij have

a major Fourier component of
(n) _ (n) i¥+j¢

When this is substituted into the above equation it zan

=

be shown that

+]
_(n ) = 4 - 4B + BV +i'BW i'={—1’
n o
4 - BV+ iBW

V =ces(d) +cos(y)

W =sin(d)+sin(y)
(n+1)

Al

The iteration scheme is convergent if <1l.
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Therefore in this case there will be convergence if

(2 -v)(2-8)>0
The (2-f) part of this inequality refers only to the
iteration scheme that was used. From the theory of
SOR it is known that (2- B) > O for convergence. The
(2-V) part of the inequality refers to the form of the
equation that is solved. This may be thought of as the
elliptic condition for the finite difference form of the
original equation. The above considerations show that
the elliptic criterion for the Poisson equation is

(2-v) >0
This condition is always satisfied and thus the Poisson
equation, with V2 as the finite difference operator, is
always elliptic. ; .

Now consider the W=-equation giveﬁ by Equ. (4.5).

If the SOR method is used it can.be shown that a very
good approximation to the condition for convergence is

(1-2v) (2-B)> o0 (4.8)

oy = _cos(¥)+cos(y)

2 +.EEQ+ 12d2

o 2m20 Ap2
Equ. (4.8) shows that the finite difference form of the

W ~equation is elliptic if (1-2V) > 0. Therefore, if
YBS?. is small, the elliotic condition is 0>0. This
result was anticipated in section 1.6.
2
If the V (0w) term in the w -equation is replaced by
0V w or if 0 is assumed to be a function of pressure
- only, the condition for convergence is the same as apove,
with 2V given by
2y = €0S(9)+cos(P)
2 2
2 + . T d
2
2m o Ap
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Therefore the equation is elliptic if ¢ > O,
The above results show that if it is ensured that

0 > 0 it should be possible to compute the solution

of an Ww-equation.

. The next step in solving the w-equation is to
impose sui;able boundary conditions at both the lateral
boundaries and the upper.and lower boundaries. This will
be discussed in the following sections.

The Upper and Lower Boundary Condition For w

The kinematic boundary condition at p = 0 is w = O.
However it is convenient to replace this by W= 0 at the
tropopause and to assume that the tropopause is at a
fixed level. In the past this level has been taken to
be at 200 mb (e.g. Danard (1964) ) or at 100 mb (e.g.
Haltiner et al.(1963%) and Krishnamurti- (1968a) 3. In
the present investigation the.EOO mb level was chosen as
the upper boundary.

Now consider the lower boundary. If there is no
topography then the kinematic boundary condition is

w=0atz=0
When pregsure coordinates are used this is usually
feplaced by

w=0at p = 1000 mb
These are only eguivalent if

1000 mb at z = O

n

(a) p

O when w = O

1

(b)) w

The surface pressure is not usually 1000 mb but the

maximum error involved in assuming this value is 5%.

Therefore it is reasonable to assume that (a) holds.

However it is worth noting that it is possible to use
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w = 0 at the surface pre%sure (ps) instead of at 1000 mp.'
To do this it is first necessary to compute Py (e.g. by'
using the altimeter equation). Then the pressure
derivatives in the w-equation can be derived from non-
centre finite differences. This proce dure was carried
out by Haltiner et al .(1963) but it is impossible to
deduce from their results the effect of using p, as the
lower boundary instead of 1000 mb. For the situation
studied in this thesis it was found that the efféct was
negligible. However this result will not hold when

at the lower boundary is large or when (ps - 1000) is

large.
Now consider (b). The relationship between w and
W is
gw = 0, « V.V6 + wg_cg- TS

It is usually argued that ¢t and V.V are small sd

that to a good approximation

W= =-pgv
This implies that w = O when w = O. However this
argument obscures an important point. If w = O at the
lower boundary and if the wind is geostrophic then Equ.
(4.9) gives

w = p¢t (4.10)
Similarly, if V = k xVV¥ +VX and only the largest
terms are considered

w = pfbt + pJ(V,9) (4.11)

_ Thus at the lower boundary the values of W and ¢t

are closely linked. However a typical value of ¢t at

-1 o
1000 mb is 10 m2:32. Therefore Equ. (4.10) implies
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that the error involved by using w = 0 in place of
W= p‘bt at the lower boundary is of the order of 10
mb 54 , which is small. Berkofsky (1964) investigated
the fall-off with height of terrain-induced vertical
motions. .His results imply that if O a:l/p2 the error
( €(p) ) induced by an incorrect lower boundary condition
( €(1000) ) is approximately >

€(p) = €(1000) x [__iL__]

1000

Therefore the small boundary errors fall-off rapidly.

The above results indicate that when there is no
terrain or frictignally induced vertical velocities it is
reasonable to use w= 0 at p = 1000 mb in place of w = 0
at z = O provided that (ps - 1C00) and ¢t are small.

In the following computations UJ=-0 was used as the
bouﬁdary condition for both the upper (200 mb) and lower
(1000 mb) boundaries.

It is worth noting that when Equ. (4.6) is solved

for ¢t on the 1000 mb surface, @, = 0 is usually

t
specified on the lateral boundaries. Therefore away from
the lateral boundaries neither Equ. (4.10) or (4.11) is
satisfied and thus the values of W and ®t on the lower:
boundary are not consistent.

The boundary conditions for W on the lateral

boundaries are considered next.

The Lateral Boundary Conditions For The W -Eguation

\

Nearly all previous investigations of the vertical
velocity field have used the lateral boundary condition,
W= 0, in conjunction with an Ww-equation. For example,

this procedure was used by Haltiner et al .(1963) and
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Pedersen et al.(1969). O'Neill also computed W in
this way and he briefly investigated the effect of the
boundary condition on the solution. He concluded that
the main effgct of 'using the "incorrect" boundary
condition W = O was to change the vertical boundary
near the boundary. Harwood (1969) also investigated the
effect of using this boundary condition and he found that
its use tended to underestimate the ”correét" value of

- W near the boundary. Because of this, Harwood decided
to use the less restrictive condition g_(ll’lj = O on the
boundary. However, he did not investigate the effect
on the solution of using this boundary condition.

Krishnamurti (1968a) used a combination of a rather
strange cyclic boundary condition on two of the lateral
boundaries, and Dirichlet boundary conditiogs on the
others. It was decided that it was not worthwhile
pursuing this sytem ﬁf boundary conditions.

;P the light of the lack of information on the
effect of using a particular kind of boundary condition,
it was decided that it would be worthwhile making a
detailed study of the different types of boundary condition
that are used with an w-equation. One, two-, and
three- dimensidnal Ww-equations are used with both real
and artificial data. An ;xamination is made of rates
at which the boundary errors decrease away from the
boundary. Also,‘the qualitative effect of using different
types of boundary conditions is considered.

4,5,1 The Une-Dimensional Error Eguation
q

= f (x) sin (1lp) then Equ. (4.7) becomes

If w
i 22 2
2&)-}\2va = 0 7?:‘?_1 S=5 (4he12)
dx a. (7]
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Here 1 = ZTE/LP where LP is the wavelength in the p
direction. Let F and G be the correct values of w at
X = 0 and x = L and let €(x) be the error in the

vertical velocity produced by using the incorrect boundary

conditions w= 0 at x = 0 and x = L.  Since Equ. (4.12)

is linear, €(x) is given by
2 2
dE - Ae =0 € (0) e(L) = G
i (4.13)

This is the one-dimensional error equation and has a

n
b

solution
e(x) = €(0). £, (x, LA )= (L) £, (x, L, A:) (4.14)
fl(x,L A) = ;lx - QKL' sinh (Ax) fa(x,L,l.) = sinh (A x)

sinh (AL) sinh (AL)

If L is large the distributioné of € (x) near fhe
x = 0 and x = L boundaries are

e(x) = €(0) e el = e fuh 6 T
These clearly show that in the ;icinity of the boundaries,
the boundary error décays exponentially. It can also
be shown from Equ. (4.14%) that, if F and G are finite,
elsy —= elo) & an LS,

The distribution of €(x) was found using - the

following parameters

2 a2 §2

~2 4 _
0=4x10 m 1

Lp = 1600 mb f = 10 s

&= 100 i x=1.96x156 i

; >~ g §
In units of mb s , the two sets are boundary conditions

used are
-4 -4
(a) €(0) = 30 x 10 (b) €(0) = 30 x 10
€(L) = 3C x 10 €(L) =-30 x 10
Also two values of L were used , namely L = 13d and
L = 21d. The results of these computations, presented

in Fig. 4.2, shows that the boundary error near the
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P ox 10 A x 106 d
2 ~D =D -1 10
mb m“mb “s m
4Loo 4,16 1.9 12.0
600 2.15 2.7 8.5
800 1.18 3.6 6.4
TABLE 4.1
P A x 106 B x 106 s
mb m-1 m-‘I
Loo 1.9 2.8 8.2
600 247 3.4 6.8
800 2,6 L,2 5.5
2 2
ABLE 4,2 u:‘h+h h =2n/3mj
. -4 - , -6 -1
Units of 10 mb s Units of 10 m
value at a = O from decay rate at a = 0 fron
Equ. (4.21) Equ. (4.21)
or Equ. (4.22)|Fig. 4.4 | or Equ. (4.22) | Fig. L.
dav(a) 9.8 10.8 1.95 1.91
rnise(a) 12:1 13.8 2.42 2.32

TABLE 4.3
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% = 0 boundary-decreased at the same rate for all
combinations of L and boundary error. However, the
value of € (x) after a few gridlengthé depended upon
€ (0), € (L) and L.

Now consider the error at a distance hd.from the
x = O boundary, € (4d). Fig. 4.2 shows that, for a
given value of L, €(4d) decreased as € (L) / €(0)
decreased. Also, for given value of €(0) and €(L),
€ (4d) either increased or decreased according as
€ (L) / €(0) was less than or greater than zero. Thus,
in this simple case, an increase in the.distance between
the boundaries does not necessarily imply that the error
at a given distance from the boundary will decrease.

The decay“rate of the bouﬁdary error defen@s upon O
which is a function of pressure; The'variation of A
with pressure, for a standard atmosphere is shown in

0

required for the error to decay to 1/10 of its boundary

Table 4.1. Also, the number of gridlengths (d1 )

value is shown. These results show that when the
pressure increases from 400 mb to 800 mb, the value of -
le is halved. However, it is important to bear in mind
that the boundary error at the 400 mb level is usually
less than that at the other two levels.

So far only a one-dimensional case has been
considered. The results from this zare not directly
epplicable to the two-dimensional case because in two
dimensions the rate at which the boundary error decays
must depend upon the distribution of the boundary erreor

along the boundary. In the next section an error

equation that is closely related to the two-dimensional
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error equation is considered.

The 1#4-Dimensional Error Equation

Consider a two-dimensional problem where

w= f (x) g (y) sin (1p). Equ. (4.7) then becomes

"2 2 2 y
d w + 0w - XNw+S5S=0 (4.15)
axz' ayz

Suppose that the actual distribution of w on the
boundary is

w, = A sin (kx + @) sin (hy + B)

The error produced by using W

b = O instead of the
correct distribution is given by .
2" g A 0 Asin(kx+a)sin(hy+B)
£ + £ - E = € =ASIN a/sin
852 E;;Q b S Y*R (4,16)

Let two of the boundaries of a rectangular region be at

x = 0 and x = L, and let the y = constant boundaries be

1

distant from the region under consideration. Equ. (4.16)

-now reduces to the ll-dimensional error eguation

2 , ' :
d g - |J.2€ = 0 € = Asin(kx+a)sin(hy+B)
- b
™" 5 2 2
W =X+h h =211:/Ly (4.17)

Here Ly is the wavelength of €. in the y direction.

b
The solution of Equ. (4.17) is

Elry) = €00,y) £ (x, Ly p) + €(Ly,y) £, GoyLy,p)

E(U,.’)’) = A Sil’l(CL) sin (hy +B) (4018)

E(Ll,y) = A sin (kL, +a ) sin (hy +8)

1
As Ly-—€><3 (i.e. the boundary error becomes constant
along the x = constant boundaries), €(x,y) becomes
identical to €(x) (see Equ. (&4.14) ). Also, as
Ly-—é-o, € (x,y) becomes zero everywhere.

Near the x = O boundary

efies) s =iy 8P
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Therefore the boundary error decays exponentially away
from the boundary. (This is also true near the x = Ll

boundary). As Ly increases, |L deceases and d increases.

_ , 10
Thus the boundary error decays rapidly or slowly
depending upon if the boundary error changes sign rapidly
or slowly. Fig. 4.3 shows €(x,y) for various values
of Ly and Ll. The boundary conditions were the same as
that denoted by (a) in the previous section. Fige 4.3
- clearly illustrates the dependance of | and e€(x,y) upon
L1 and Ly. .

A reasonable value for Ly is 3000 km (i.e. 30d).

With this value of Ly‘ Ll = 21d, and the static stability

for a standard atmosphere, the values of L and d were

10
calculated (see Table 4.2). A comparison of these
results with those in Table 4.1 shows that the one-
dimensional model overestimates le' Further it is
expected that the values of le for the l}-dimensional
model are greater than (those for a 2-dimensional model
(i.e. where the variation of the boundary error along the
x = constant boundaries is taken into consideration).

Let dav and rmse be the difference in average and the
root mean sguare error between the correct solutionland'
that using w = 0 on the boun&ary. The variation of
these quantities as a func}ion of the distance from the

boundary (a) can be investigated in terms of

fL1— sza
dav(a) = a Ya E&(x,y)dxdy (4.19)
X :
I_1—a L2-a ‘
rmse(a)-—-L L e(x,y%dxdy (k.20)
A
a

. J"_LfirLz‘
A = . dx.-dy
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Here Ll and L2 are the dimensions of the original area

in the x and y directions.

If Equ. (4.18) is substituted into Equs. (4.19)
and (4.20) and if it is assumed that a <<1L, and
a<< L2, and that L2 = Ly’ then

: -a (KL=-2)

dav () = (€(0) + £(L) ) e Ly (4.21)

(Y

2 1 -3 ( p’ = ‘!—_ )
rnse (a) = £(0) + (L) e Ll (4.,22)

24 L)

Here €(0) and €(L) are defined by

€(0,y) = €(0) sin (hy + B) E(Ll,y) = E(Ll}'sin (hy +B8)

Equs. (4.21) and (4.22) show that both dav (a) and
rmse (a) decay exponentially with a. |

The decay rates depend upon both | and the
dimensions of the region and that they are different for
€ (x,y), dav (a) and rmse (a). Equs. (4.21) and (4.22)
also show that as | increases (i.e. Ly'decreases), both
~dav (0) and rmse (0) decrease and the rates of decay of
dav (a) and rmse (a) increase.

The value of dav (0) can also be computed by

integrating Equ. (4.17) w.r.t. x between O and L.. This

1
gives
. C.if;’ " cs‘
dx
dav(0) = yl—: 2 #o (4.23)
H L}

If Equ. (4.17) is multiplied by € and a similar integrat-

ion performed then L 2
ege| _ede) | faey,
i X
rmse(0) = d§1—1 dxlg _ o M e (4.24)

LL2L1 W2 L,
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ogle(d] an
log{rmse(a)] - ‘
Iog;‘[dﬁv(a)]l

2.6k

FIGURE 4.4
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It is found that, provided 11L1 > 3%, the values of

dav (0) and rmse (0) derived from Equs. (4.21) and
(4.22) agree to within 10% with éhose derived from the
above equations. It is worth noting that there are
similar equatioﬁs to those above for fhe two-dimensional
case.

From the distribution of €(x,y) with Ly = 30d and
L = 21d (see Fig. 4.3) dav (a) and rmse (a) were
calculated.

These are shown,along with €(x,y), in Fig. 4.4,
Clearly they all vary exponentially. Table 4.3 shows
the values of dav (a) and rmse (a) at a = O and their
decay rates. The corresponding approximates values
calculated from Equs. (4.21 and (4.22) are also shown.

A comparison shows that both Equs. (4.21) and (4.22)
"give good estimates of the values at a = O and the decay
rates.

So far only the difference between the '"correct!
solution and that using W= O on the boundary has been
considered. In the next section the difference between
solutions using Dirichlet and Neumann boundary conditions
is described.

4,5.3 A Comparison Between Dirichlet And Neumann Boundary

Fay

he Cne-~DJimensional W -Egquation

]

Conditions For

Suppose that Wis given by Equ., (4.12) with

S = Fsin (kx +90)

2 2 2 2 2
W -ANw=Fesin (kx +6) X = £ 1 (4.25)
dx2 I

The general solution of this is

w:Ae)‘x-rBe_}\x-F sin (kx +0 )

;2
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2 2 2 )
Here V =k + A and the arbitary constants A and B
must be determined from the boundary conditions.
(i) When w(0) = O and W(L) = O (Dirichlet)

w, (x)..—. F [2(& sinh ( Ax) + e-lx sin (0 ) - sin (kx +5)]
e

(ii) When %EL = 0 and gw. = 0 (Neumann)
x 1y x g
w, (x) = F [2 Bcosh (Ax) - k e-kxsin (6) = sin (kx +b& ):I
v2 A
20'.:[sin (KL +6) - sin (5 ) e"‘L]
sinh (A L)
XL
2[3:[5:1:1 (kL. + 8 ) -~ cos (b6 ) e k
sinh ( A L) A
If €(x) =w, -w, and Y= k cos (8 ) + sin (0 ), then

x X N
- X
[e?\x(a-rﬁ—v)-e (CL--B):]

.From this equation it can be shown that if AL>> 3, then

e(x) =

‘CI\J:N

€(0) = ~F I:gc_cos(ﬁ)+sin_(5)]
v2 Lo -

e(L) = F sin (kL +6) (k -7
= x)

These values of €(0) and €(L) can be used in Equs.
(4.21) and (4.22) to find the values of daf (a) and
rmse (a) at a = O and their rates of decay. Further, due
to the form of the boundary cond.itions, it is possible to

put dav (a) and rmse (a) in terms of wz; The boundary

conditions for - and W, are such that
e(0) = w, (c) . c}a = dw,
e(L) = w, (L) d€ = duul
ax ax
L L

Thus Equs. (%.21) and (4.22) can be put in terms of

w5 (0) and w, (L). At a = 0, these equations

2
give

dav (0) = w, (0) + w, (L)
AL




3 &
mb s

-

10

S

4
]
o~

-

10 mbm
(o]

o

NI
[
N

4 n ! ! ;
, L
l ¢ 10 ' BXQ
§ ./(j
7
,du}‘] - s

FIGURE 4.5



205

rmse (0) = w, (0) + w, (L)

2 AL
Using Equ. (4.23) dav (0O) can also be put in terms of

w However the value of rmse (0) derived from

1.
Equ. (4.24) cannot be put solely in terms of(ua.
It.is reasonable to assume that the vertical velocity

is zero when the forcing function is zero. Therefore

the 'correct' solution of Equ. (4.25) (tuc) is given by

W == F sin (kx + 0)
© 2. e
(X %% )
This, along with w, (x) and w, (x); was computed using

the following parameters.

-0 5
A= 1.96 x 16° ! d =10 m L = 304
-14 -2 -
F=2.5x10 mb m“ s k=2T/L 6 = T /h
The results shown in Fig. 4k.5a indicate that both
Wy and W, have the same basic distribution (e.ge they

" have the same number of maxima and minima). However,
there is a systematic difference between the solutions

(i.e. W, > Ww

1 > everywhere). The reason for this become

apparent when Equ. (4.21) is written as
-a (p-2)
dav (a) = dav (0) e L
This indicates that the sign of dav (a) (and that of
€(x) ) is determined by that of dav (0) which depends
upon €(0) + €(L). Therefore, if both E(G).and e (L)
have the same sign or if one of these is much larger
than the other, it is possible to determine the sign of
€ (x). In the case considered € (L) = O (because
A = k) and thus the sign of both dav (0) and €(x) is

determined by that of €(0) (i.e.l.o2 (0) ). Since

w, (0)< 0, it follows that both dav (0) and €(x) are
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negative and therefore w, > Ww . This means that at

1 &
a positive maximum the magnitude of w5 is less than
that of UJl. The reverse is true at a negative minimum.

However, if dav (0) > O the opposite is true.

Consider tbe distributions of nul, {u2 and wc near
the x = 0 boundary (see Fig. 4.5a). There is a negative
minimum of wc at about 4d from the boundary. The '
effect of using the Neumann boundary condition is to
increase the magnitude of the minimum and to shift it to
the boundary. The corresponding effect of using the
Dirichlet boundary condition is to shift the minimum
slightly away from the boundary and to reduce its
magnitude. The net effect is to produce a large

1 2
the same boundary it is found that I W, |'< , w, ! and

difference between W, and W_ near this boundary. Near

‘that 1 9w, > 0. Also W, is such that Juw 1. =9

W 'é"-' 2 C
1 9n an ¢ W,- W)
By manipulating the equations for lul and Luz it is found

that these results will always apply near a boundary if
S' is large.

Fig. 4.5b shows the gradients of W. and W.,. It

- 2
is worth potlng that, unlike w4 and Ws, %ﬁ&land %ﬁb

have obposite_signs over a region of 5d near the x = O
boundary.

It will be shown later than in more realistic
situations the differences between solutions using
Dirichlet and Neumann boundary conditions resemble those
between W, and W..

i b

Two-Dimensional Zrror Eouations

In previous sections the properties of one-and

1}-dimensional error equations were investigated. Now
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the two-dimensional error equations derived from a .
Poisson equation and a Helmholtz equation are considered.
First consider the Poisson equation
2
V X =P X = Xs on the boundary
Knighting (1962) derived an'expression for the average

error, € (a), in a circular region of radius a, where

X = 0 is used in place of X = XS on the boundary.
He showed that
21
€(a) = 1 Jﬁ X a¥ .
2T S
0

Here ¥ is the coordinate around the boundary. Knighting
argued that for large areas XS and 9 are uncorrelated
and therefore €(a) is almost zero. However his
analysis gives no infermation about €(a) when the area
is small or about how the boundary error changes away
from the boundary.

The above problems are investigated for a Helmholtz
equation derived from Equ. (4.7) by supposing that
w= f (x,y) sin (1p). If w on the boundary (tub) varies
sinusoidally with x and y, then the equation for w is_

2 2

Vw -2 w +S=0 w, = A sin (kx +a) sin (hy +B)
The equation for the error, € , introduced by using

wb=015

V2E—)L€=O €, = A sin (kx +a) sin (hy + B)

b
(4.26)

It is difficult, if not impossible to find an analyticzal
solution of this equation. However it is possible to
derive simple ap.roximate expressions for rmse (a) and
dav (a) (defined by Zqus. (4.19) and (4.20) ). The

following analysis can also be applied to a Poisson
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equation.
Suppose that Equ. (4.26) applies is a rectangular

region with dimensions 2L, and 2L, (see Fig. 4.6).

1

Let A and C be the afea and circumference of this

region. Near the y = L, boundary, an approximate

2

expression for is
- B (L - ¥)
E = E e

Here [ is related to both A and K . There are
similar expressions for € near the other boundaries.
Using these it can be shown that, when k = h, approximate

expressions for dav (a) and rmse (a) are

* -Ha
dav (a) = d Sl e :
LA (1 - Ca)
A -
rmse (a) ¥ = d S, o a % Fea
2paA (1 - ca) ~

A
Here d is the gridlength and Sl is the sum of the errors
at the gridpoints around the boundary. Similarly 32

is the sum of the square of the errors. When a is small,

the above equations become

« -a(y - C)
dav (a) = EEE = A
LA (4.27)
-a(p=-C)
. 2A
rmse (a) = EEE : (4.28)
ZHA

Before these equations can be used it is necessary

to find H . An examination of Equ. (4.26) suggests

2
"that 0. = k + A when k = h., However, the situation
2 2
is much more complicated when k #h. If p_= [k + A

x
’ 2 2
and Lly = Jh +A , and if 54 is divided into the sum of
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the errors along the y = constant boundaries (le) and
along the x = constant boundaries (Syl), then an

approximate expression for dav (a) is

el @ ~H.a C a
X y =
le & i Syl & %_ e A
Mg Hy

A similar expression can be derived for rmse (a).
However it will be shown later that it is not necessary
to use these complicated expressions because Equs. (4.27)
and (4.28) can be used with p =} such that

lll < B < ko, (or vice versa).

The validity of Equs. (4.27) and (4.28) was tested
for both Poisson and Helmholtz equations. In particular
thé values of dav (a) : and rmse (a) i at a = O and the
decay rates were computed and compared with the actual
values. These computations are described in the
following section.

Computations Of dav (a) And rmse (a)

Equ. (4.26) was solved several times with different
values of k and h. Different values of A were also
used and the computations were carried out for two areas.
From the solution (E) the values of dav (a) and rmse (a)
were calculated for several values of a. The results
were then compared with those derived from Egus. (4.27)
and (4.,28).

The two regions used had areas 13 x 21d and

' 5
29 x 21d with d = 10 =a. Within these regions
1

. Equ. (4.26) was solved with A= 2 x ld-s m' (a Helmholtz

equation) and A = O (to avoid confusion this will be
referred to as a Poisson equation). The values of

k and h which were used corresponded to wavelengths of
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A e .
10d (h = 6.28 x 10 m ), 304 (h = 2.09 x 106 al )

and infinity (h = 0).
Once dav(a) and rmse(a) were known, their decay
rates ('Ya and yr) were computed. The values of

ua and ur were then calculated from

p- = Y +

a a

TS

* %*
These were then used to give dav(0) and rmse(0) . For

the cases where k = h, J = .’hz + gzwas also used to
compute these guantities. The results for the small
and large areas are shown in Tables 4.4 and 4.5
respectively.
Table 4.4 shows that when k = h, k. is similar to

L= ’l2~+13 : It also shows that the use of both L
and b in Equ. (4.28) gives good estimates of rmse(0).
They can also be used effectively to give estimates of
dav(0).

The value of ua for case SH, is missing because

2

dav(a) changed sign between a = O and a = d. The

results for case SH. (with those for LH2) are shown in

2
Fig. k4.7. This shows that although rmse(a) decreased
exponentially, dav(a) increased and then decreased.
This behaviour is due to the fact that the corners, which
were ignored in the derivation of Equ. (4.27), sometimes
have a large effect on dav(a). Therefore the use of W
* *

to give dav(0) and rmse(0) sometimes produces inaccurate
estimates of dav(0) and rmse(9) (e.g. see cases SH, and

f =
SP2). However it is worth noting that in all cases

Py
dav(0) has the same sign as dav(0).  Thus Equ. (4.27)

always predicted correctly if there would be an over-
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estﬁmation, or underestimation, of the vertical velocity.

The cases denoted by subscript 3 have k+# h.

Fig. 4.8 shows the results for case SHB (with case LH3).
These results, with those in Table 4.4 indicate that the
behaviour of rmse(a) can be described by Equ. (4.28) even
when [ is not the same on all boundaries. Unfortunately
there does not appéar to be an easy way of estimating

the appropriate value of M .

The cases marked with subscript 4 used a constant
value of boundary error. For the Helmholtz eguation,
dav(a)* and rmse(a)* produced good estimates of dav(0)
and rmse(0). However for the Poisson equation both
A and p are zero and thus Equs. (4.27) and (4.28) cannot
be used.

The results for the large area are summarised in
Table 4.5. An examination of this reveals that the
above comments and.conclusions also apply to the results
for the large area. |

The above results show that if the error on the
boundary is known, and if | can be estimated, then the
behaviour of rmse(a) can be easily described. This
also applies to a lesser extent to dav(a). For example;
if a Helmholtz equation is solved with g&% = 0 on
the boundary then it is ea;y to estimate the effect of
using W= 0 on the boundary.

The Boundary Conditions For The Two~Dimensional

W-Equation

To evaluate the usefulness of a pafticular type of
boundary condition, it would be necéssary to solve the

w-equation with the boundary condition and to compare it
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with the actuél distribution of w . Unfortunately the
latter is not known. However, in the previous section
it has been shown that the boundary error tends to
decrease exponentially away from the boundary. Thus,
if the w -equation is solved in a large area (denoted by
L), the values of W near the centre should be almost
independent of the boundary condition. If this is so,
then the solution in a central area (denoted by 8) is a
" good approximation to the actual vertical velocity.

Thus the suitability of a boundary condition can be tested
by using it to solve the W-equation in area S. This
solution may then be compared with the solution in area
L.

Before the above procedure can be carried out, it is
necessary to choose the boundary condition to be used in
area L. In the past two types have been used. These are

(1) (UJ)b =0 (ii) C%%%}b =0
Since the distributions of W , derived by using these,
have given meaningful results in the past, it is reasonable
to use one of them in area L. Since it is not known which
one is best, computations were ca?ried out for both.

The two-dimensional W -equation used was

2 2 ‘ 2 22
Yw-Aw+S =0 AN=f1 (4.29)
a

S' was calculated from @ for the 6CC mb level. The

-

areas L.and S corresponded to regions 11 and 51 with two

gridpoints missing normal to their boundaries. In terms
of the gridlength d, these regions had dimensions of 27d

by 19d and 194 by 11d. The parameters used were

2 -2 2 =2 =D
s

-8 =5 ”
f =1.226 x 10 s 0= 1.97 x 10 m“ mb A= 3.1 x 10

m
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The solutions of the two-dimensional w-equation in ared
L with boundary conditions (i) and (ii) will be called
W, (L) and w, (L).

The root mean square difference (rmsd) and the

(L)

difference in averages (dav) were computed for w4

and wa (L) as.a function of a. The results are shown
in.Fig. k.9, Since area S is the same as area L with
a = b4d, this figure shows that in area S,

A & B0 WS end GwF ¥ .0 K207 B S
These are far from negligible. Figs. 4.10a and 4.10b

show tUl (L) and w,_ (L) in area S. An examination of

2
these figures shows that this area, the distributions of

w, (L) and w, (L) are similar. This implies that the

2
"correct" distribution of W in area S is similar to that
exhibited in either Figs. 4.10a of 4,10b. Thus the

quality of a boundary condition can be tested by using

it to solve Equ. (4.29) in area S and comparing the

solution with either the: distribution of w, (L) or

w, (L).

The results in Figs. 4.10a and 4.10b can also be

used to test Equs. (4.27) and (4.28). The values of

ua and Flr vere calculated from the figures and they
were then used to compute dav (O)* and rmsd (0)*. It
was found that these estimates of dav (0) and rmsd (O)
were within about 15% of the correct values.

- From the definition of dav (a), dav (0) = GJ2(L) - &l(L).
Further, Fig. 4.9 shows that dav (a) = 0 for all a.

Thus the magnitude of W, (L) is greater than that of

w, (L) over most of the area. This fact is illustrated

2
by the profiles of w, (L) and w, (L) across AB (see
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Figs. 4.10a and 4.10b) which are illustrated in Fig. 4.11.
This behaviour was anticipated in section 4.5.3.

In the next two sections the characteristics of
both Dirichlet and Neumann boundary conditions are
considered. This work is based on the assumption that
the "correct" distribution of W in area S is similar
to that of (ul(L) or (nZ(L).

Dirichlet Boundary Conditions

A boundary condition of this type has the form

(l.U) = f(x, y')

b
The solution of Equ. (4.29) with this boundary

e *
condition can be split into two parts, W and W , which

are.given by

2. 2.
V'o-Ao+S =0 ('Gj)b=0

2 * 2 *
oW s 0 )= fx,y)

#

The solutions W and W can be thought of as the vertical

velocity due to S' and that due to the boundary condition
(u;)b 2 £ {x, ). In section 4.54 it was shown that W
decreases away from the boundary, and that the rate of
decrease depends upon both A and the variation of

£ (x, y) along the boundary. This implies that W is more
important than w‘ near the centre of the region
considered.

If Equ. (4.29) is solved with two different boundary
conditions (£ (xy y) and £, (x, ¥) ) then the difference
between the ;olutions (g) is ziven by

v -2 - 0 (&), =1 00y) -1 (x¥)
Therefore the difference between the solutions decreases

away from the boundary at a rate which depends upon A and

the variation of ( E)b.
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So far, only one Dirichlet boundary condition has
been used, namely (‘“)S = 0. However, others can be
imposed. For instance, if it is aqsumed that w varies
sinusoidally with x and y along the boundary, Equ. (4.29)

gives

(m)b =y (s)b Yo o= ’ 12 .
) (A + h™ + X))
When this was used in area S, the solution was called
w, (8). The corresponding solution using (w) = O was

3
wl (s). These two solutions are illustrated in Figs. 4.l2a
and 4.12b. A comparison of these wifh Figs. 4.10a and
4.lQb reveals that w, (S) and w3 (8) are similar to
both tul(L) and wa(L). However there are some
important differences which will be discussed later. The

value of rmsd between W, (8) and w, (S) was computed

3
for various values of a. It was found that rmsd decrgased
very rapidly. The reason is that §' varies very rapidly
along the boundary and therefore the decay ofeaway fronm

the boundary deﬁends only upon the value of A .

A comparison of tnl(s) and (ul (L) (see Figs. 4.12a
and 4.10a) shows that the use of (UJ)b = O produces
isolated maxima and minima near the boundaries. Also,
in these regions the magnitude of w tends to be under-
estimated. Another consequence of using this boundary
condition is that there tends to be a relationship between
the sign of the gradient of W normal to the boundary and

W itself, in the vicinity of the boundary. This relation-

ship is

El-
@
= E
\%
o
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Now compare w} (8) and w, (L) (see Figs. 4.12b
and 4.10a). Since W is usually large when s is
la;‘ge, the use of (w)b = Y2(S')b ensures that areas
of large W on the boundary are located correctly.
However, another effect of using this boundary condition
is that it produces spurious results on parts of the
boundary. These two effects are illustrated by the results
on and near the eastern boundary. The overall effect
of usihg this boundary'condition is to make both -wW , and
its gradients, very irregular in the vicinity of the -
boundaries.

In the next section the effect of using a Neumann
boundary condition is considered.

Neumann Boundary Conditions

Neumann boundary conditions have the form

= f (x, y)

(aw

o .

When this is used with Egqu. (4.29) it is notbpossible to
split w into ® and w* (as was done for Dirichlet boundary
conditions) because w‘ is a function of both f (x, y) and
w .

Unfortunately the value of.f (x, y) cannot be derived
and.thus f (x, y) = O is usually used. The solution of
Equ. (4.29) with (gﬁ%l): O in area S is denoted by wa(s)
and is illustrated in Fig. llc. A comparison of this
with wl(S} and wB(s) (Figs. 4.12a and 4.12b) indicates
that all three solutions are similar. However, w, (s)
has certain characteristics which differ from those of
solutions that employ Dirichlet boundary conditions.

The gradient of w2(5) normal to the boundary is zero

and so the contours of wais) must meet the boundaries at
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" right-angles. Thus the maxima and minima of (02(5) near
the boundary are extended towards the boundary. This is
especially noticeable on the eastern boundary.

A comparison of wz(s) with (ul(L)-also illustrates
the elongation of the maxima and minima near the boundary
(see Figs. 4.12c¢c and 4,10a). Further examination of these
figures reveals that, near the boundaries, wE(S) some-

_ times overestimates and sometimes underestimates the

vertical velocity. In general it is found that if
%ﬁ%j(L)3> O near the boundary of ara S, then tua(s) tends

to be greater than wl(L}. The behaviour was anticipated-
in section 4.5.3. |

It is worth noting that neither (ﬂl(S), tﬂz(S) or
uJB(ﬁ) produced the correct distribution of W in the
vicinity of the south-west corner. However elsewhere

these solutions were reasonable.

A Discussion Of The Results Of Using Different Boundary

Condition With The Two-dimensional w-Egquation

From the results in the previous three sections, the
characteristics of the different boundary conditions éan
be deduced. Let w be the '"correct'" solution of Equ.
be the solution when ((ﬂ)b = 0 is used.

1

It is found that, near the boundaries, there tends to be

(4.29) and let W

(a) maxima and minima of wl
) o] <]ul

(¢) gradients of w, such that% dw.>0 |
The corresponding results when(ai) = 0 is used (with
solution (ﬂa)are

(a) a displacement of the maxima and minima of w onto

the boundary



227

(b) a change in magnitude of the vertical velocity so

that 9w _ 1 >0
gn wz—tu

(c) a zero gradient of W, normal to the boundary.

2 (s")

2

If w3 is the solution when (tn)b = Y

then it is found that, near the boundary,

is used
'b ]

(a) wW_ is often very similar to w when W is large.

3
(b) w_ often has a different sign from that of W

3
when W is small.
(c) both u13 and its gradients are very irregular along
the boundary. |
It is not easy to choose the best boundary condition.
Both wl and wz are systematic distortions of the
"corfect" solution. Further, the distortions are such

that the differences (w - UJl) and (W = tua) tend to be

less than the difference between W._. and W .. The

1 2
. 2 ,
distortions caused by using (tﬂ)b =y (8 )b are not
systematic. Thus W , approaches W very rapidly away

3

from the boundary. This means that this boundary condition
is useful provided the solution at the first few grid-
points can be ignored. If this is not possible_then one
of the other two boundary conditions must be used. Due
to the amount of cémputer time required to solve a Neumann
problem it would be preferable to use (u,)b = Of

In the next section a ;hree—dimensional W -egquation
is considered.

4L,6.4 The Boundary Conditions For The Three-Dimensional

W -Eguation

Equ. (4.7) was used in an investigation of the
effect of both Dirichlet and Neumann boundary conditions

on the solution of a three-dimensional W -equation. The

* In retrospect, it is clear that it can never be possible
to draw general conclusions regarding the relative accuracy
of W, and W, since this must depend on the particular
form of the forcing function.
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horizontal bounéary conditions were Q}f O on the 200 mb
and 1000 mb surfaces and the lateral boundary conditions
were

(i) (tU)b = 0 ; giving a solution w, (L)

(ii)(%%ﬂb = 0 ; giving a solution W, (L)
The computations were carried out in a region with
horizontal dimensions 21d by 294 (using data from area 11).
The region contained five iscobaric surfaces with
Ap = 200 mb.

The distributions of w, (L) and w, (L) at the

600 mb level are illustrated in Figs. 4.13 and 4.14.
‘An examination of these figures reveals that the character-

istics of w, (L) and w. (L) near the boundary are the

2

same as those found for the two-dimensional equafion. .
Now consider the central region corresponding to

a = hd. In this region w, (L) and w., (L) have similar

2
distributions, but differences are still discernible.

An estimation of this difference can be made by referring
to Fig. 4.15. This shows the root mean square difference
(rmsd) and the difference in averages (dav) between

Wy (L) and w, (L) at the three interior levels. As in
previous cases, both rmsd and dav vary exponentially with

-4 18
2. At the 600 mb level, with a = 4d, rmsd = 3.5 x 10 mb 31

_4 -’1

and dav =1l.3 x 10" mb s° . Even with a = &4,

-4 oA -4 -1
rmsd = 1.1 x 10 mb s and dav = .9 x 10 mb 8 .
These results imply that, even near the centre of the
region considered, the error due to the boundary condition
. i ;
is at least of the order of 10 mb 51 . This is also

true for the other two levels. Therefore, for this

particular case, it is not worth computing W to an accuracy
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greater than 164ﬁnb 5

As in sections 4.61 and 4.62, boundary conditions (i)and (ii)

were used to compute the vertical velocity in central
region (corresponding to a = 4d). The solutions will

be referred to as wl(S) and wg(s). A comparison.of

these with the "correct'" solution (either wl(L) or wz(L) )
was made. It was found that the characteristics of the
solutions using (i) and (ii) were the same as those for the
two-dimensional case (see section L,63).

As a by-product of these investigations, it is worth
noting the similarity between Fig. 4.10a and the central
portion of Fig. 4.13; and also between Fig. 4.10b and
Fig. 4.1k, Therefo;e,'if only the general features of
the vertical velocity field are required, it is sufficient
to use the two dimensional wWw-eguation (Equ. (4.29) ).

Previous Investigations Into The Relationship Between The

Static Stability And The Vertical Velocity

The most comprehensive investigation into the effect
of the static stability on the vertical velocity, was
carried out by Haltiner et al.(1963). They defined the

*
static stability (o0 ) as

*

o= Rr - QT
)
pe, dp

This is related to the static stability used in this thesis

*
by =R 0 . But, despite the difference between

0 and gt, the general conclusions of Haltiner et al.
are applicable to the use of 0. They used three
different static stabpility parameters.

1. constant static stability, 0 .

_*
2. pressure variable static stability, o .
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*
%. point variable static stability, O .

The geostrophic w -equation (without the terws depending
upon the gradients of the stability) was solved with

the above stabilities and the solutions will be referred to
as W " W and W . |

They concluded that

(as the greatest differences between ﬁi, W and W
occurred when the vertical velocity was greatest.

(b) 1 1< 1®1 at maximum values of vertical velocity
on the 700 mb and 500 mb surfaces. But, on the 300 mb
surface at maximum values the opposite was found and the
difference bétween & and W was as high as 50%, compa}ed
with about 10% at the.lower levels.

(c) the difference between W and W was small.

From their results it can also be shown that at the
maxima for a given isobaric surface, the ratio of W to w
was almost a constant.

These conclusions are limited because it is not obvious
if they apply to all situations or just this particular one.
Also no indication was given of the effect of the choice
of the constant static stability on the results. Thus
the conclusions cannot be used to estimate the difference

- = = S
between W and W for given O and O , Also no method

was sugcested for estimating the difference between W
and W . Some of these outstanding problems will be
considered later.

Danard (1964) solved the w-equation using a point
variable static stability, o(x, y, p), and a static

stability derived from the average values of O over each

isobaric surface, Oo(p). He found that "one effect of
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letting O vary is to shift the maxima of upward and downward
motions towards regions of lower stability and to increase
their magnitudes. This amplification is due to the
circumstance that o/ 00'< X2 éhese regions'.
Harwood (1969) considered the effect of replacing
d(p) by a constant value given by 0(850). ' It was
found that at 300 mb this prodiced a 100% change in w .
Harwood argued that because 0(300) = 7 x &(850), the
effect of replacing 0(p) by 0(850) should be a 600%
change in w at 300 mb. This argument is based on the
assumption that if W, and W, are the solutions using
o(p) and 0(850)', then
a(p) w, = a(850) w,

Harwood was unable to resolve the discrepancy between the’

(4.30)

100% éhange found experimentally and thé 600% change
deduced from the above equation. It will be shown lgter
that the discrepancy was due to the inaccuracy of Equ.

(4.30), It will also be explained why the change af the
300 mb level found by Haltiner et al.was different from
that found by Harwood.

The Vertical And Horizontal Variations Of O

In terms of ® , 0 is given by

2
0=8¢’+(1"K)Q}2 w=R

2
ap p adp cp

For an atmosphere with a constant lapse rate I and

a surface temperature and pressure of T0 and Py Equ.

(4.31) gives

2_ Y y-2
o =RT P, P Y =%{
C

For a standard atmosphere Y = 0.2 and thus to a good

approximation
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olp) = B, | (4. 32)
- |

alo

This is a simple and accurate anal&tical expression
for the usual variation of static stability with
pressure. Since O(p) o 1/p2, the static stability
varies rapidly with pressure and therefore it is far
from being a constant.

If To and p, vary horizontally, then to a good

approximation
2 v y-2
90 = Rp _p 2T,
aXx Cp X

Thus the horizontal variations of O will tend to be
large when the horizontal gradients of T0 are large.

Suppose that the static stability is given by

- 0(x, ¥y, p) = S (x, y) (4.33)

p2

It can then be shown that Equ. (4.31) gives

=35 (x, y) 1n (po/p) Py = P, (x, ¥) (4.34)
"

If S (x, y) is eliminated between Equs. (4.33) and (4.34)

then it is found that to a good approximation

8 = ¥ el B9
X BQIn(po/p)ax

Therefore the horizontal variations of 0 will tend to
be large when the gradients of ¢ are large.

L.7.2 A Simple Model Of The Atmosvhere

Following the work of Nita (1967), ¢ was separated
into its zonal mean and éhe deviation from this mean.
Thus

¢ = 5(y, p) + Q'(x, p)

It was also assumed that
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u
g

U (p) £ (y)=f£ + By

w= w(x, p) ¢, =9 (x, p)
It can then be shown that the wWw-equation and vorticity

equation become

2 2 ' 2 3
Slow) « fooow = f [.a_ua_\é . Bav_+ U Dy

o g
ax ap> p ox api 8x*ap]
-Uav_wav](q.ﬁ)
[ dx agp op 3~x29
58, =1 g%y B 23 (4.36)
= - + + w .
axet O[ ax2d ] ° 3

In Equ. (4.35), the two forcing functions enclosed by
square brackets represent the differential vorticity advec-
tion and the laplacian of the thermal advection.  The
righthand side of Egqu. (4.35) will be denoted By FF, so
that

2
FE = f (23Ud v +Bav
°( ap ax29 apg)

The term enclosed by square brackets in Equ. (4.36) is the
vorticity advection, and this will be denoted by VA.

It is assumed that the flow consists of a small

perturbation in a uniform zonal flow. Therefore ¢ is
given by
¢=--f U (p) vy + A (p) £ cos (kx +v) (4.37)

if Y =Y (p) is‘used then the distribution of ¢ would be
similar to that used by Wiin-Nielsen (1961) and 3anders
(1971). But, due to the general objectives of this
analysis, it was decided that the use of a constant

would not detract from the conclusions. Similarly, it

was decided that it was not necessary to include the tropo-
pause, although it could have been included in a manner

similar to that used by Sanders (1971).
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Using the above distribution of ¢ it can be shown

that

FF sin(kx+y)

]

.
f0(2 3UAK - Bk
FF Sin(l<x-py)

9A
op

n

VA Ak(k2U-B) sin(kx+y)

1

VA sin(kx+y)
2 2

o =-f,y (a Us (1 - u)a_g) " focos(kx+y)(g_£-\z+(1 - %)
ap P ap 3 p

p
Also, the thermal eguation becomes

Q
>

|

@
©

g@t+TA+om=o (4.38)
ap

TA .—.fo(Aa_U— UJA )5in(kx+Y)
ap ap

Suitable distributions of U (p) and A (p) must be
chosen. Since ® varies with ln (pa/p), the zonal wind
must Be given by

U (p) = Q 1n (p_/p)
Both Wiin-Nielsen (1961) and Sanders (1971) used distribut-
ions of A (p) that increased as p decreased. Therefore
the following distributions of A (p) were considered
A" (p) = a' 1n (p_/p) A" (p) = a"/p
The use of these produced the forcing functions FF' and
FF". ‘Unfortunately, it was found that when the vertical
variation of the static stability was considered, neither
of these forcing functions gave simple analytical solutions
for both Equs. (4.35) and (4.36). Thus the following
distribution of A (p) was used

A (p) = ap

With this, it was found that

2
£ ka [-2@{ -B]

rxy
bxy
n

5 (4.39)
cap [ @ 1n (p,/p) - B

<t
=
1
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When the horizontal variations of O were considered,
it was found that it was advantageous to use A  (p).

In this case

: 2 '
FF' = f_ ka [-2Qk 1n (p /p) + B]

VA = ka'ln (p,/p) [ka in (p/p) - B] (4.40)
When A (p) and A  (p) are used, the static stabilities
become '

o= 5+ £,(L-%)a cos (kx+y) (4.41)

p’ »
o'= 8§+ f w a' cos (kx+V) (4.42)
p? p?

SO — —foy}{.Q
In the following analysis it is assumed that w= 0

at p = 0 and p = P, (surface pressure). Also it is

assumed that w and ¢t are zero when the forcing functions

are zero.

The Effect Of The Vertical Variation Cf 0 On w and Qt

The effect of the vertical variation of 0 on w and
¢t was investigated by solving Equs. (4.35) and (4.36)

with both a pressure variable and constant static stabilit-
ies. _Since analytical solutions of these equations were
required it was necessary to use the FF and VA given by
Equ. (4.39).

The pressure variable static stability is denoted by
01(p) and is given by the isobaric average of Equ. (4.41)
in the region 0<x< 2T /k. Thus Oll(p) is given by
Equ. (4.32) with S, = foﬁ 1 Q. The constant value of
the stability was defined by O, =-&So.

If W, = W sin (kx +Y) and w, = W, sin (kx +Y)
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are the solutions of the w-equation using 0; (p) and ©

2’
then

5 9. 2 i D 2 : Q2
pdD, - X G, =FFp - N =SK/fy  (h.h3)
‘—2"[ 1 (o] 0
dp ;2 :
A pz” = FF p.z—::r?\z (4. hlL)
._.._,-._.24.2 2" - -
dp ;g

The solutions of these equations are

» q-2 :
61 = =~ FF %l I:‘] -(p ) ] g=1+ T+4?\2 (4.45)

Po 2
€

2
X

. _ = -pLp ~KPoy _.

w=-FF1. [(1-e ") -(1-e ")sinh(pp) T

g CSinntepy | 4

X - 2
The divergence Di = 5i sin (kx +y ) is calculated from

u

mi by using

Di = -dwl p ] 1, 2
dp
With ¢ti = ¢ti sin (kx +7Y), Equ. (4.38) gives
— — 2 —
Qti = £, VA + £ D, i=1,2 (4.47)
k2

Let R (w) and R ( ®t) be the percentage errors in w and

¢t when 0, is used instead of 0, (p). Therefore

R (w) =( Wy = wl) x 100

b |

There is a similar expression for R ( ¢t). Using Equs.
(4olt5) and (4.46) it is found that when p is small, R (W)

is approximately

(__1__§~1),100 £=2-2

ple A

If the eguivalent pressure level (pe) is defined as

the pressure where 02 = Ol (pe), then fS‘: l/pe and the

approximate expression for R (w) is
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R (tﬂ)* = [( pe) E -1 ] x 100. B =1 (4.48)

p ,
It is difficult to find simple expressions for R (D) and

R ( @t) but it can be shown that DE/Dl and ¢t2/ $tl
vary with pe/p when p is small.

In the following discussion the conclusions that
refer to Eji will also apply to uli.

—

The distributions of (ﬂl and '52

-6
(V= 2,78 x 10 ) are shown in Fig. 4.16a. The other

for P, = 600 mb

parameters used were

fo = 10ﬂ4 s“] L=3x 106 m k=2m1n/L So = 6.9 x 103m25—2

2 = g? 1

3 r
a=5x10 m" mb Q = 40 m s AE 2.7

Fig. 4.16a shows that W_ has an almost parabolic profile

2
that is symmetric about 500 mb. However there would bé

asymmetry if FF was a function of pressure. A comparison
of Lul and w2

in place of 0

indicates that the main effect of using Ué

i (p) is to increase the vertical velocity

for small values of p. In the smaller valués of Pe this
may not be so a? large pressures.

Fig. 4.17a shows that‘R (UJ)f is a goodlapproximation
to R (w), Therefore Equ. (4.48) deécribes the dependence
of R (w) upon p, and p. As p_ decreases ( o, increases)

*
R (w) decreases. For example, if 0_ = o, (700) then

2

230% at 200 mb whereas when g, = 0, (500),

146%. Equ. (4.48) also shows that R (W ) changes

R(w)

R(w)

rapidly when p is small. For example, when 02 = Ul (6005
it is found that R (w) = 50% at 500 mb and that it is
about 200% at 20C mb.

It was found that with p_ = 600.mb there was a 24%

difference between W. and . at the Pe level. As p

1 2 e
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increased the difference increased. Therefore it is not
valid to estimate the value of w at level ﬁ‘ with
G = 0(p) by finding the value of w for a constant
stability of value O(p*).
Fig. 4.17b shows that 0. W, is not equal to

1 L
02 532 and that the difference between them is large for
small values of p. This explains the discrepancy between
Harwood's (1969) theoretical and experimental results.

Further, in terms of Py Harwood computed R (w ) from

R ({u)h = [( 32)2 - 1] x 100 (4.49)
p

A qualitative examination of Equs. (4.43) and (4.44)
indicates that the above results remain essentially
unaltered if the uﬁper boundary is at a higher pressure
or if FF is a function of pressure.

These considerations show that the values of R (W)
computed by Haltiner et al.(1963) and Harwood (1969)would
only be the same if they both chose the same P There
is no indication that this is the case.

In the simple model considered so far both R\(UJ)

and fﬂl/ W _ are functions of pressure only. Therefore

2
the largest changes in W will occur when 1 wll or luJ2 1

have their maximum values. Also (nl/ w, will be a
constant on an isobaric surface. These conclusions are
essentially the same as those deduced by Haltiner et al.
(1963) with reference to an actual case study.

Fig. 4.16b shows the profiles of 51, 52 and VA.
Since 52 (0) is large whilst 51 (0) = 0, the difference

between 51 and 52 is large for small ‘values of p. The

profiles of Qtl and ¢t2 were computed (see Equ. (4.47) )
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and these are depicted in Fig. 4.16c. For small values

— —

of p the difference between ¢tl and ¢t2 is large

and thq solutions have opposite signs. These facts are
illustrated by the variation of R ( ¢t) shown in Fig.
k.17a. The behaviour of these solutions appears to remain
unaltéred if the upper boundary is at a different

pressure.

L,7.4 The Effect Cf The Horizontal Variation Of © On w

Ang @, |
The effect of the horizontal variation of O was
investigated by splitting the static stability into two
parts, namely O0(p) and ©'(p, x). The vertical velocity
was.then divided into w (which depends only upon 0 (p) )
and € (which depends upon G(p) and 0 (p, x).
Equ. (4.35) may be written as

%;[(a+o')(m+g)]+fig__§2[m+e]=F_F ' (4.50)

Since the static stability varies much less in the
horizontal than in the vertical 0>>0' and thus wW>>¢& .
Therefore the above equation can be separated into two

separate equations for w and € . Define lN(w)as

2 2 .2
Mw) =5 Jws+ fodw
ax2  ap?
In terms of this the equations are

Mw) = FF (4.51)
F(e) =FFl(o',u:) (k.52)

FF, (o0,w) = - @ (0'w)

% s
0
X

Once Equ. (4.51) has been solved for w , Equ. (4.52) can
be solved for E .

If the terms that contain the derivatives of the
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stability are ignored then Equ.. (4'50) becomes

(G a [w+n]+f 3 [unn] (4.53)
ax

This can then be split into two equatlons for w and
. M and it is found that w is given by Equ. (4.51) and

N by

, 2
() = Ftho,w) = _U%ﬁ (4.54)

For this investigation a logarithmic variation of
A (p) was chosen. Therefore FF and VA are given by
Equ. (4.40) and 0 is given by Equ. (4.42). This means

that 0 and 0' are given by

o(p) = £,0%Q o'(p, x) = f,n a cos (kx +Y )
5 - '
p : P

The above distribution of A (p) was chosen because both
Wiin-Nielsen (1961) and Sanders et a8l.(1971) had considerable
success when they used it.

- . *
Using W = wsin(kx +y) and p = p/p_, Equ. (4.51)

gives 1
* « 4°
w=G In (p ) + G {1-( ) ] (4.55)
;? P P + E? p -
G = -2%k3a q =1 +J 12+ 41?
o

Here N is the same as in the previous section (see Equ.

(4o43) ).
If € = € sin (2kx + 2y ), then Equ. (4.52) becomes
2 2
FdE ThNE Tk
dp® f
Therefore
_ 5 kz( (JCH )H]
€E = 2na G_Q[ =4{p )
4%t 12X

16J1 +163?

It can be shown that to a good approximation

-
1
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g =0 W | (4.57)
i

Similarly it can be shown that

" =;gaw _® (4.58)

Let ¢t be the geopotential tendency when W is used
in Equ. (4.47). Also let ¢t + v(€ ) and ¢t + v(m)
be the tendencies when W +€ and W +7 are used. It can
be shown that from Equs. (4.47), (4.57) and (4.58) that
both Vv(E€) and v(7) are proportional to the divergence.
Since this changes sign in mid-troposphere it is expected
that v(€ ) and Vv (1) will also change sign.

Rearranging Equ. (4.57) gives

(6+0)(w+e) = wd +e0 C (4.59)

Since G'€ is small, the product of the vertical velocity
and the stability for the solutions of Equs. (4.50) and

(4.51) is almost a constant. Further from Equs. (4.59)

and (4.38) it can be shown that

dv(e) = -wo' -€d
.ap

Therefore v (€ ) is small. Also a qualitative analysis
of the equations suggests that Vv(m) > v(E).
Both W and € were computed using the following parameters
(see Fig. 4.18)
p = 500 mb P, = 1000 mb Yy=0 O<x< L/2
a=-5%10 n2 5 RE5ms
Other parameters were the same as those described in the
previous section.

Figs. 4.18a and 4.18b show the distributions of

¢ and w. As expected there is upward motion (wW<0) in

front of the depression and downward motion (W >0C) behind
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i£ (i.e. w and ¢ are 90° out of phase) . Both (0 4+ 0 )
and O are illustrated in Fig. 4.18c and it is clear that
(0 +0 ) and w are also 90° out of phase. This
difference in phase results in a distribution of € that
has a wavelength of L/2. Fig. 4.184 depicts € . These
results show that € is zero when W = O and when 1W1l is

a maximum. Thus W underestimates the magnitude of the
correct vertical velocity (W+ €) both in front of and
behind the depression. For a high pressure region w is an
overestimate of the correct vertical velocity. These
conclusions also apply to the use of w in place of

(w+ ). '

A Case Study

A case study was carried out using the data described
in section 1.8.2. The vertical velocity and geopotential

tendency were calculated from the following equations

2 2.2
STAB:V w + fO a w + S = O (4.60)
ap?
2 B 2
Vop + fo Vg Un -1 36% - (4.61)

The calculation were performed on a 22 x 30 horizontal
grid (area 11), with a vertical grid spacing of 200 mb,
In all the computations it was assumed that w= 0 and
¢t = 0 on the boundary.

All the figures referred to in tnis section illustrate
the central portion of the computation area which is
composed of 14 x 22 gridpoints.

The above equations were solved using three different
forms of the stability, STAB.

(1) a point variable static stability (0 ) given by

Equ. (4.31).
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(2) a pressure variable static stability (0 ) given
by the average value of 0 on each isobaric surface.
The values of O were

9(400) = 4.35 x 162 B(600) = 2.09 x 16

5(800) = 1.42 x 10°
The wnits are m2mb2g 2.

(3) a constant static stability 0 = 2.62 x 16 % i
is the average value of O .

The solutions of Equs. (4.60) and (4.61) using the
three different forms of STAB will be denoted by

(1) w and Q)t

(2) W and &>t

(3)

En
<

and t
The distributions of w and w at the 400 mb level are
shown in Figs. 4.19a and 4.19b. These show that the

w
areas of upward and downAard motion are the same for both

. They also show that the maxima of both |GJI

En

® and
and | @| (marked by ) are in the same position. An
examination of the difference between Lf) and W clearly
shows that at this level Iti)l > |GJI nearly everwhere. A
close examination shows that @ =f (p)w with £ (400) = 1.3.
At the 800 mb level f (80C) = 0.7. These results imply
that | ﬁ)] tends to be greater than|®| when 0<0 and
vice versa when a>a .

At the 400 mb and 800 mb levels the percentage errors
produced by replacing 0 by T are approximately 30% and
-30%. Using P, = 550 mb and E= 1, Equ. (4.48) gives
corresponding values of 37% and -31%. Thus R (w )*
(see Equ. (4.48) ) produces a good estimate of the

percentage errors. It is worth noting that the correspond-
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o -4 -
RIMS values in units of 10 mb s

p ) 1) w ) ®- @ € e* |D-0 |B-w
400 [ 13.2 | 101 | 9.5 9.9 | 3.2 | 1.2 |21.8 | 1.2 | 1.0
600 7.4 7.8 | 7.9 | 8.5 1.0 1.4 | 1.3 1.6 143
800 | 4.4 | 6.5 8.2 8.9 | 2.3 | 2.8 | 2.2 | 3.6 | 1.9

TABLE 4.6
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B VTS B N 5T 10 e
5 c?:t 3, 0 ® $t -8 |9, - s -0
200 2L 4 23.5 | 23.3 | 23.3 | 10.0 - 243
400 17.3 1203 )} 393 1 193 0.k 1.7 150
600 3.9 b,2 4.3 4,3 5¢5 1.9 1.4
800 4.5 4.5 4,5 4.5 0.k I 1.0
1000 8.9 5.0 g 9.0 3.2 5.6 346

TABLE 4.7
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ing value derived from R(u;)h (Equ. (4.49) ) are 90%
and 53%. This estimate is clearly inaccurate and this
is because OW is not equal to 3&) . The root mean
square (RMS) values of W , é and a-aiare shown in

Table 4.6.

The distributions of @t, at the 200 mb level, is
shown in Fig. 4.20a and ( $t - 6t) is depicted in Fig.
4,20b. These figures show that at this level |5t|:>,$tl :
This result was anticipated in section 4.73%. The RMS
values of 6t’ $t amd ( $t - $tj are shown in Table 4.7
This shows that ( $t - 6t} is largest at the 200 mb level
although the largest percentagehdifference is at 600 mb.

h Equ. (4.60) was solved with STAB = 0 to give w (sece
Fig. 4.21a). This solution is very similar to O and
which are illustrated in Figs. 4.19a and 4.19b. In
particular, their maxima and minima (denoted by e) are in
fhe same position. This was found to be true at all
levels. Therefore these results contradict those of
Danard described in section 4.7. It is suspected that
this is due to the large gridlength and small number of
gridpoints used by Danard.

The quantities of 0/0 and W/W were compared and
it was found‘that regions where 0<O0 tended to coincide
with regions where |&|<:[w| . This confirms the
conclusions of Danard (1964) and is consistent with the
relationship between verticzl velocity and the static
stability found for the simple model (see Equ. (4.59) ).

Fig. 4.22a shows the difference between w and @ .

It would be useful if this difference could be estimated

from a knowledge of 0 ,0and W . An equation that is
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similar to Equ. (4.58) is

€ =-(0

*
Here € is an estimate of (w - W ) and its value at

400 mb is shown in Fig. 4.22b. A comparison of this
with (W - @) (see Fig. 4.22a) indicates that € is
large when ( w ~@) is large but E* overestimates the
magnitudes. For the 800 mb level lw -w [is under-
estimated. These results indicate that the dependence
of (w -@) upon 0, aland W is similar to that described
by €.

The reason why E* does not describe ( W -W) exactly

becomes apparent if the w-equations for W and W are

subtracted to give

_ 2 2.2 o2
oVes+«f,0€=-0Va
Here € = W=-® , 0 =0 -0 and 0 VE is neglected. Assuming that

wosin (rx) sin (sy)
€ cwsin (kx) sin (hy) sin (1p)
L 2 2 p—
then € = _0 (r; +5 )512 (4.62)
(e K)o« fo1

If r = ky 8= h and 1 = O then this equation reduces to

*
that for €. However, if h = 25 and k = 2r there is a

factor of 4 in the denominator and the expression is
identical to Equ. (4.58). 'The above considerations
clearly show that ( W -®) depends upon the wavelengths
of Wand W as well as the magnitudes of W, 0 ' and T .

A comparison of ¢t and 5t shows that at the 200 mb
and 400 mb levels 6t >'¢t nearly everywhere. The reverse
was true at the 800 mb and 10C0 mb levels. This behaviour

is due to the divergence tending to have opposite signs in
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the upper and lower troposphere and it was exhibited in
the model described in section 4.7khk. Table 4.7 shows
the RMS values of ( ¢t - $t) and these indicate that the
value are largest at the top and bottom of ﬁhe atmosphere.
However ( ¢t - 6t)/ ¢t is largest in the lower part of
the atmosphere.

The last part of this case study is concerned with a

comparison of W and W with @ where
2

2 2
V (0@) + foa w + S =0
. ap2
Fig. 4.21b shows @ at the 400 mb level. A comparison

of this with w (Fig. 4.21a) and ® (Fig. 419a) indicates
that both W and W give a good representation of the
‘correct' vertical velocity O . Further, a comparison of
(D-w) and (W -W) (see Figs. 4.23a and 4.22a) shows

that the difference between @ and W tends to be greater
than that between W and ® (see also Table 4.6). It is
also worth noting that the distribution of (¥ ~w) is very
similar to that of € .

Fig. 4.23b shows the distribution of (@ -w) and
Table 4.6 exhibits the RIS values. These values show
ihat the difference between W and W tends to be less than
that between @ and W , W and W, and W and @ . Thus
the best approximation to W is found by using Equ. (4.60C)
with STAB =0 , However the difference between W and W
is by no means insignificant.

The geopotential tendency found by using © will be

referred to as Qt. Table 4.7 shows the RIS values of

¢t and ( $t - ¢

difference between ¢t and ¢t was small and that the

t). These results ‘indicate that the
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largest difference was at the 1000 mb level.

The Concept Of Partitioning

The concept of partitioning was discussed and used
in two papers by Krishnamurti (1968). He considered
the solution of the equation

2 2 2 : i '
V(ow}+f8w=ZL.(w)+ /M.
apz i=1 I J:.'] J

He interpreted the forcing functions on the righthand

(4.64)

side as the causes of the vertical velocity. An attempt
was then made to evaluate the contribution of each of these

causes (i.e. forcing function) to the total vertical

~velocity,w . He computed W and then calculated the

vertical velocities

2 2.2 ) 5
V(o wi) + f 5——% = Ll.(w) 2 [ C(4.65)
ap .
v2( %) f22' M '-1-1J
ULUJ + s%_j = J J = r (4.66)

This method of partitioning w has the essential property

that
I T
W= .Z“" ' Z“’J (4.67)

It is worth noting that there are numerous other ways of
partitioning W that will satisfy the above egquation.

The contribution w} is the same as the error in the
vertical velocity that would be introduced if the forcing

function Mj is neglected in Equ. (4.64), Unfortunately

‘the relationship between w4 and Li (w) is not a simple

one. Let Gi'be the error introduced into the vertical
velocity when the term Li (w) is not included in Equ.

(4.64). It can be shown that W, is given by
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| I
2
VI0E) + 280G = Lilw) + 9 L.(3.) (4.68)
[ 5l [ -1 K i
p {:-!
2

A comparison of Equs. (4.68) and (4.65) shows that
w, # O,.
i i _

It can be shown that, under the following circum- -
stances, W, is almost the same as Eﬁi. If one of the
forcing function Mj (j=1, 1, J) is an order of magnitude
greater than all of the forcing functions L, (w)

(i =1, 1, I), then mh (and thus w ) will be an order of

magnitude greater than w; and Ei. Thgé Ly (w) will
ke 1 I (8)

(see Equ. (4.68) ). Hence w; will bekafﬁ%st the same

be an order of'magnitude greater than

as ..
i

The circumstances described above prevail in all

forms of the w=-equation. Thus W, is approximately the

‘error introduced into the vertical velocity when the

forcing function L, (w) is neglected in Equ. (4.64).

The Partitioning Of The Quasi-Geostrophic w ~Eguatiocn
Partitioning was employed to investigate the effect

of the use of certain apprgximations in the geostrophic

w-equation (Equ. (4.5) ). Let ' be the differential

operator such that

) 2
Mw) = 6{DJU?u+ % a2w

ap’

The parameters 0(p) and fo are the average values over
an isobaric surface of 0 and f.
The vertical velocity was divided inte five parts

W, (i =1, 1, 5) given by
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XY & NS T5 Wiss 62 10 " @b 5

400 mb 600 mb 800 mb

AV RUS AV RMS AV RMS
Wy 0.7 8.1 0.8 6.4 1.0 5.8
w, -0.1 0.5 0.1 0.8 0.1 0.7
wB 0.3 0.7 | -0.0 0.8 0.2 1.0
{”4 -0.5 0.9 | ~0.3 1.1 0.4 3.4
w, -0,0 0.5 0.1 0.3 0.2 0.5
w O.4 8.4 .7 6.8 0.9 0.7

TABLE 4.8




I"(_wi) + S =0
2
F(wg) + wV o =0

I'(w3) + 2% Vw = 0
2

Mw) + (0-3(p)V°w = 0
> B 9
Mo + (=178 = 0

ap

Since S is the largest forcing function in the above

equations, w and w., will tend to be greater than w

1 A
(=2, 1y 9)s Thus the tui's represent approximately
the effect on the vertical velocity of the omission of
the relevant forcing functién.

Using the above interpretafiun of the lui‘s it is
obvious that w4 is a measure of the difference bhetween
the solutions of Equ. (4.60) using STAB = 0(x, y, p) and
STAB = o(p). Also (w2 + w3) is closely related to
the difference between the solutions of Equ. (4.63)and of
Equ. (4.60) (with STAB = o (x, ¥y, p)s The effect of
replacing the variable Coriolis parameter (f) by a constant
(fo), is represented by w5'

The solution of the geostrophic W -equation is shown
in Fig. 4.24a and the contributions Wy (i = 1y 14 5) at
the 600 mb level are illustrated in Figs. 4.24b, 4.25a,
L.25b, 4.26a and 4.26b respectively.

A comparison of W and {ﬂl shows that lul has the

same areas of upward and downward motion as W . Also the

maximum magnitudes of W and W, (marked bye ) almost

1
coincide. The similarity of W and wl indicates that

. wl is much larger than the other contributions. This
is also shown by a comparison of the RMS values of these

vertical velocities (see Table 4.8 which also shows the

average (AV) values).



1‘!‘.9

267

An examination of the distributions of W, and w3
(Figs. 4k.25a and 4.25b) shows that they tend to have
opposite signs. Thus the effects of omitting the terms
wV2U and 2V0.Vw tend to cancel. Th’is.implies that
both of these terms should be neither omitted or included.

Also, Table 4.8 shows that W, tends to be larger than

5
w2' Further, a comparison of tﬂ# with w2 and w3 shows
that w4 tends to be significantly larger than the other.
Thus, even if the horizontal variations of 0 are ignored
in the wV2U and 2VoVw terms, it is important to
include them in the GV2u3term.

- The distribution of W_ is illustrated in Fig. L4.26b.

5
This, with Table 4.8, shows that the effect of replacing
f by fo tends to be small. However the table indicates
that the effect may be comparable with that due to ignoring

: 2
the oV w anada 2Vo.Vw terms.

Inconsistent Boundary Conditions

Suppose that w and z are related by

f,0 + gy 2= 4 (4.69)
fow + g, 2= A, (4.70)
Here fl, fa, 8y and g, are differential operators and
Al and'A2 are known forcing functions. In erder to solve

this System of equations it is first necessary to eliminate
one of the unknowns; 2z say, between the two eguations.
This gives

(g, £, - & f)uw = g, 4 - & 4 (4.71)
If this is elliptic it can be so;ved as a boundary ﬁalue
problem using w= uJb cn the bcocundary. The solution is
then substituted into either Equ. (4.69) or (4.70) (in this

case Equ. (4.69) ) and this is then solved for z, by using
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2 = 2z, on the boundary. The boundary conditions

wy and Zb will be said to be inconsistent if they do
not satisfy Equ. (4.70). It is suspected that the
boundary conditions are inconsistent if the minimum
number of boundary conditions are not used.

The inconsistency of boundary conditions can be

illustrated by a simple example. Suppose the w and z

satisfy
2
d W 4+ 2z =A (4.72)
dx2
z + W = B (4.73)
Here A and B are constants. It can easily be shown that
W satisfies the equation d W - W = A-B and that if

dx
w(0) = 0 and wW(L) = 0, then the solution

W) = CA=BY (1 = o2) sink (5) = (B8 €1 = &™)
sinh ZLj

The solution for z can then be found from Equ. (4.73) and

will be called z.. An alt ernative method of finding z

i
is to solve the equation
d2z. -z = -A
dx

If the boundary conditions z (0) = O and z (L) = O are
chosen, then this equaticn can be solved for z and let

the solution be Z5e It is found that

T
2, - 2, = 3 (1l - ¢7) sinh (x) + Be
sinh (L)

The reason tnat z, - ¢ O is that the boundary conditions

i =%
for z and w are inconsistent. That is they do not

satisfy Equ. (L4.73). An alternative approach is to

say that 2 and z, are not the same because too many

boundary conditions were used in solving the equations for

Z e In the simple case considered, (zl - 22) decreases
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exponentially away from the boundary.

The Inconsistency Of The Usual Boundary Conditions For

w And cbt

Suppose that the atmosphere is in geostrophic
equilibrium and that its motions are governed by the

following simplified forms of the vorticity and thermal

equations.
2 2
Vo + J(,y) -fdw = 0
t ap
Qgt + 1J(®,09) + ow = O
P f op

These correspond to Equs. (4.69) and (4.70) in the previous
section. If ¢ is known then the unknowns are W and ¢t.
The elimination of ¢t between these two equations results
in the w-equation given by Equ. (4.5). This is then
solved for w and it is usually assumed that w= 0 on the
boundary. If b denoted the lateral boundaries then the
boundar& condition becomes (UJ)b = 0 with ﬁ): O on the
upper and lower boundaries. Once W is known the vorticity
equation is solved for ¢t. This requires the specifi-
cation of ¢t on the boundary, b, and usually ( ¢t)b =0

is used. If the boundary conditions for w and (Dt do not

satisfy the thermal equation then they are inconsistent.

Since ¢t = O on the lateral boundary of each isobaric
surface, (aQL) = Q. Therefore ( ¢t)b and (Lu)b do not
op

satisfy the thermal equation unless the thermal advection
is zero on the boundary. This is not usually so and
therefore the boundary conditions are inconsistent.

The effect of using these inconsistent boundary
conditions was investigated. Initially w and Qt were
computed in the above manner using the same grid and data

as were used in section 4.8. The solution ¢t was then
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*
used to compute W , where

W = i[@?t*ljtq’-@)J
o |Lop f ap

If the boundary conditions for w and ¢t were consistént,
then w* would be almost the same as @

Fig. 4.27 shows the central portion of w as the
600 mb level. The complete distribution of ( w‘ -w)
at this level is illustrated in Fig. 4.28. A comparison
of w* and W (see Figs. 4.27 and 4.24a) indicates that
w* has the same sort of distribution as w (e.g. the areas
of upward and downard motions are almost the same).
However w‘ is consistently larger than w. This is
illustrated by the fact that (UJ* -~ W) tends to be positive
in the same areas in which w > 0 and W>0, Fig. 4,28
also shows that ( w - W) does not decrease towa}ds the
centre of the region (this was also true at other levels).
Theréfore if w and ¢t are to be used in further combutat-
ions it is desirable to find more consistent boundary
conditions.

It can easily be shown that the above procedure for
findiﬁg w and ¢t uses an excessive number of boundary
conditions for ¢t' If Ly nj and n, are the number
of gridpoints in the x, y and p directions, then the above
proceedure requires the specification of ¢t a£
n, = n,_ x (ni -‘l) (n‘_j - 1) + 1 gridpoints.

Two alternative methods of solving the system of
equations both start by solving the W -eguation. The
"solution is then used to find ¢t at the upper and lower
boundaries. So far ¢t has been specified at
n, = 2 x (ni - 1) (nj - 1) + 1 gridpoints. Two ways

of proceeding from here are as follows.
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(a) The thermal equation is solved as a two-point
boundary value problem for ¢t for all values of
i and Je

(b) The procedure described in (a) is carried out only
at the lateral boundary. The vorticity equation is then
‘solved for ¢t at all the interior gridpoints.
Neither (a) or (b) require the specification of
¢t at any more gridpoints ané therefore, for both methods,

'¢t has to be known at n, gridpoints. For a given

2

n. and nj, n, is constant. However n, depends upon
n, and when n, = 5 the usual method requires ¢t to be
specified at 2% times the number of gridpoints as is
required by either of the alternative methods. It is-
suspected that the overspecification of ¢t in the usual
method is responsible for the inconsistencies.

The two alternative methods described above have not
yet been tested. However it is likely that they will

lead to an improvement in the consistency of the boundary

conditions.
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APPENDTIX

The Computer Prqgfams For Solving The Balance Equation

The computer programs were written in the IMP language
(see Whitfield (1969) ).

Figs. Al and A2 illustrate the basic programs
which were used to solve the balance equation. These differ
from those actually used in that the real programs did not
use the functions DX1 (SF) etc. All the programs used a
maximun of five arrays that depended upon the map parameters
(mapping factor, cori;lis parameter and gridlength). These
arrays were the same for each isobaric surface of a given area.
The array Zz (I, J) depended upon the geopotential and was there-
‘fore different for each isobaric surface. In ali the programs
it was necessary to store the streamfunction SF (I, J).. Also
some programs required the storage of extra fields (fe.g. a
streamfunction field SFX (I, J) or a vorticity field V (I, J)h

Fig. A1 shows the basic progrém which was used for
methods of the first type. (The parts of the pé?ram enclosed
by brackets were common to all the programs used in solving the
balance equation). This program ensures that the ellipiticity
condition'is satisfied (see Equ. (3.13%) ) and that the absolute
vorticity is greater than zero (see Equ. (3.11) ).  The lower

limit of the vorticity was determined by the parameter y (GAM

in the program). The program ensures that
(n)
C >-vyf

It was foﬁnd that the condition éﬂ)+ £f > 0O was seldom violated
and therefore the value of V¥ was not critical. In the
computations GAM = 0.9 was used.

The program illustrated in Fig. A2a was slightly

modified when the NLAS and NLSH methods were used.
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5PCI,J) = GEOPOTENTIAL AT POINT (I,J)

SF(I,J) = STREAM FUNCTION
CP(I,J) = CORIOLIS PARAMETER
M(I,Jd) = (MAPPING FACTOR/GRID LENTH)*w%2

EET ~ OVERRELAXATION FACTOR E =~ TOLERANCE
GAM =« A NUMBER <=1 S0 THAT ABSOLUTE VORTICITY »>=2
IN,IX,JN AND JX DEFINE THE AREA :
FCI,J)=CP(I,J)/M(I,Jd) EY(I,J)®F(I,J)/8 C(I,J)=1/(2%F(I,J))
Z(1,J)=(DX1(GP)+DYL1(GPR))/(4*CP(I,J))+EY(I,J)
ACI,J)=(CP(I+1,J)=CP(I=1,J)/(16%xCP(I,J))
BCI,J)=(CP(I,J+1)=CP(I,J=1)/(16%CP(I,J))
SF(I,J)=GP(I,J)/CP(I,J) = INITIAL GUESS
CXLOX)=X(I4l,J)=2%X(1,J)+X(I=1,J)
DYL(X)=X(I,J+l)=2xX(I,J)+X(I,J=1)
DX2(X)=(X(I+1,Jt1)=2*X(I,J)4X(Imy,J=1))/2
DY2(X)=(X(I+l,d=1)=2%X (I, Jd)+X(Im{,J*1))/2
PXYLCX)=(X(I4lpdl) X (1=l ,Jm1)mX(I4l, J=])=X(Im],J41))/4
== (DY2(X)=DX2(X))/2
DXY2(X)=(X(I,J+i)+X(I1,J=1)m=X(I+],J)=X(I=1,J))/2
=(DY1(X)=DX1(X))/2

[1:0ET=0 ; MAXADD=@

%CYCLE I=IN#®1,1,IX=1 } %CYCLE J=JN#i,1,JIX=1

LAPX=DX1 (SF)+DY1 (SF)

ELLSZ (I, J)=ACT,J)*(SFCI+1,J)=SF(I=1,J))=BCI,JI*(SF(I,J+1)=SF(I,J=1)
%IF ELL<@ %THEN ELL=2

%IF LAPX<=F(I,J) %THEN LAPX==GAM*F(I,J)

LAPY=LAPX il NLOREX
LAPY=2%xLAPX )1 NLORY

ADDX=DX1 (SF)I*DY1 (SF)=((DX2(SF)=DY2(SF))**2)/16 }1 NLORYL OR NLORIX
LAPY=DX2(SF)+DY2(SF) } 1 NLOR2X

LAPY=2% (DX2(SF)+DY2(SF)) 11 NLOR2
ADDX=(DX2(SF)*DY2(SF)=(DX1 (SF)=DYL (SF))*%2)/4 1 NLOR2 OR NLOR2X

ADD=BET* (ADDX*C (I JITLAPX/Z4+EY (L, I)=ELLY/ZCL+EX(IJIXLAPY)
SF(1,J)=8F(I,J)+ADD

MADD=MOD(ADD)

4#1F MADD>MAXADD %THEN MAXADD=MADD

#IF MADD>E %THEN DET=1

N4REPEAT 7 %REPEAT

NOS=NOS8+1 ; WRITE(NOS,2) 3 SPACES(4) } PRINT(MAXADD/E,6,6)
NEWLINE :
MA(NOS)=MAXADD ,

#IF NOS»2 %AHD MA(NOS)>MA(NOS={) %AND MA(NOS=1)>MA(NOS=2) XTHEN =>2
A#IF NOS>MAXNGOS ZTHEN =>2

“IF DETEZ %THEN =>|

gsNEwLINE

FIGURE A1
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¢V 3d4Nolid

QAY+(L?I)4S=(P’1) 48
(P/7CLYI)A=p/((4S)TAC+(48) IXQ) )= L3E=0QY
4% 4N+ (PIIIA (V=) =(L/1)A

(H+T7713) LY0S+(N?T) dm=d4

CNYIN T (d4S)2AQ%(4S)eXAxp+ (48D TAQX(4S) IXO¥p+(2¥%((4S) IXQw(4S) TAQ) ) x2=H

INVIN 1¢ C¥*¥((48)2X0=(4S)2AQ)+2xx((468) TXA=(4S8) TAQ) =H
=713 N3IHLZ%Z 9>773 41%
(CT=P )48 (T4LT)dS) % (LI)EuC (L Tel)dSm= (L T+I)48) ¥ (L I)V=(L?T)Z=13

4OLOVd4 NOILYXAVIHY3IA0 = L3y 4O01JVvd4d NOILVXAVI34830NN = 47V
883NY TIVILINI = (4S)TAQ+(dS)IXO=(L’I)A

~ , SS3N3 TIVILINI = (£’I)d3/(r?I)do=(r’1)4¢
. (! Huz\nnmwuﬂ>o+nmwudxauxm+hﬁkmUZ\mxrnﬁ.HumuulnaxHuN
C(CP/IIW*2) /(1w 1) d0=(T+0*1)d2)=(P'1)R
CCLYIDWxZ) /(L 9T=1)do=(P4T1+1)dd)=(L'1)Y

(PII)AS=(LIIX4S ¢ aQv+(r’I)4S=(r’1)4s

QA% (3= (L /I)A3+P/XdVTI+2I%AXI+VYxANQ+8E%X10) » 1 38=0QY
(CII)AXUYOmaXdY Tl NIHLY (L/I)d=5XdYT 4I%

. =7113 N3IHLZ 2>773 41%
nnﬁ|ﬁ~mummrnﬂ+ﬁ.uummuanﬁ;mumlnnw;ﬂnHumm:nh~ﬂ+Humwu«nw.Huqsﬁﬁ.HuNNJJM
(48) TAQ4(4S) IXA=X4vT

2HVIN 1 ¢ (4S)2A0=A70 ¢ (49)2Xa=x"1a { (48)2AxA=AX"

TUVIN 1! (48) TAQ=ATQ ¢ (4S)IX0=X1a § (4S)TAXd=AXA

. (LYI)IxAXT==0 ¢ XX*xA1Q=9€8 ¢ XXxX7g=Vy
S/(0?I)3=XX ¢ CCr'I)ax(A0+X0)+1)/1=Qq

SHvViIN 1! (X48)2A0=ATQ ¢ (X4S)eXad=X1a ¢ (X48)2AXA=AX"

TAdVIN 14 (X4S)TAQ=ATQ { (X49)IXA=X1Q { (X4S)TAXQ=AXT

[s83N9 VILINI = (f‘I)d3/(r*1)d9=(L’T)XAS=(r'1) 49]

(9)

(e)
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The program illustrated in Fig. A2a was slightly
modified when the NLAS and NLSH methods were used.

The basic program for methods of the second ‘type is
shown in Fig. A2a., This program usés an extra array

SFX (1, J). Also, when the coefficients of the linear
' (n-1)  (n-2)
+ Y

2

equation were computed from Y a further

array was required.
Fig. A2b shows the basic progrém for a method of the

third type with a single scan.,
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