
IMPLEMENTATIONS OF PROCESS SYNCHRONISATION,

AND THEIR ANALYSIS

by

Kevin Mitchell

Doctor of Philosophy

University of Edinburgh

1985

Abstract

The implementation problems associated with the synchronised

handshaking form of process communication are analysed within a

formal setting. Miler's Calculus of Communicating Systems (CCS) is

used as the vehicle for these investigations.

A single processor implementation of CCS is described and its

adequacy as a programming language discussed. For the more general

case of a distributed implementation, a subset of CCS is identified that

admits a simple synchronisation scheme. The subset consists of those

programs that possess a synchronising annotation. A method for

constructing these annotations is developed- and an implementation

based on this approach is then proved correct.

A technique for synchronising arbitrary (static) CCS programs is

developed involving program transformations. In order to prove the

validity of these transformations, a new equivalence relation is proposed

based- on the testing approach of DeNicola and Hennessy: The new

equivalence incorporates the notion of strong fairness while preserving

the natural connections between parallelism and non-determinism as

expressed by the expansion theorem in CCS. The meaning of

transformational correctness within the CCS framework is also

investigated. These developments are used to prove that an

implementation scheme based. on program transformations is indeed

correct. The results are then extended to the case where the

transformation is only partially applied to the source program, leading

to an efficient implementation strategy.

Acknowledgements

I would like to thank first of all my supervisor, Robin Milner, for his

help and encouragement in the development of this thesis. His concern

for clarity and mathematical elegance has greatly influenced my work. I

would also like to thank my. colleagues at Edinburgh, especially Matthew

Hennessy, Rocco DeNicola and Nikias Traub, for many helpful discussions.

Finally, I would like to thank my wife Shirin whose support and patience

played a major part in making this thesis possible.

This work was partially supported by a research studentship from

the UK Science and Engineering Research Council.

Declaration

The research presented in this thesis is all my own, and previously

unpublished, with minor exceptions as indicated in the text.

.

Table of Contents

Table of Contents

Introduction 1
1. Preliminary Definitions 8

§1.1 Introduction 8
§1.2 CCS 8
§1.3 Strong and observational equivalences 13
§1.4 Bisimulations 15
§1.5 Testing equivalences 16

2. Implementing CCS on a Single Processor 19
§2.1 Introduction 19
§2.2 A short introduction to ML 21
§2.3 PFL, an embedding of CCS in ML 24
§2.4 Some PFL examples 26
§2.5 The implementation of PFL 30
§2.6 Extensions and restrictions 34
§2.7 Conclusions 	 - 39

3. Implementing Static CCS on a Distributed System 40
§3.1 Introduction 40
§3.2 Synchronising processes in a distributed environment 42
§3.3 Synchronisation graphs for some simple examples 48
§3.4 Synchronising annotations 54
§3.5 Generating synchronising annotations 57
§3.6 A review, of synchronisation schemes for Static CCS 64
§3.7 Synchronisation 	schemes 	considered 	as 	program 70

transformations
§3.8 Schwarz' synchronisation scheme 70
§3.9 A transformation version of Schwarz' scheme 72
§3.10 A synchronising annotation for Schwarz' transformation 79
§3.11. Transformation correctness 80

4. A Mathematical Framework for the Notion of "Implementation" 83
§4.1 Introduction 83
§4.2 Implementations 86
§4.3 The introduction of non-termination and fairness 89
§4.4 The weak-must form of testing 94
§4.5 Some properties of z 	and 98
§4.6 Kennaway's preorder 	

k 105
§4.7 An analysis of the differences between 	and 112
p4.8 Controllable processes 115
§4.9 L_ -determinacy 118
§4.10 	he > preorder 122

14.11 The > 	preorder 127
§4.12 A simple example 131

4.12.1 Decomposing problems with global dependencies 133
§4.13 Implementation and translation transformations 134

4.13.1 The weak-must form of implementation 134
4.13.2 Transformations 136

5. A Rigorous Validation of an Implementation 143
§5.1 Introduction 143

5.1.1 Structuring the proof 145
§5.2 Simple synchro'nisers 	 '." 	 " 148
§5.3 Process state representations 154
§5.4 The relationship between individual pollers 155

Table of Contents 	 11

§5.5 The relationship between pollers and simple synchronisers 	160
5.5.1 A proof that SSys > PSys 	 161

§5.6 A proof thatSSys > PSys' 	 170
§5.7 A proof that Tr 	is an implementation transformation 	176
§5.8 A proof that Tr'is an implementation transformation 	183
§5.9 Partial appiicati8n of synchronisation transformations 	183

6. Conclusion and further work 	 186
References 	 191
Appendix A. The Original "Kennaway" Equivalence 	 196

List-of Figures

List of Figures

Figure 2-1: A Bounded Prime Number Program 27
Figure 2-2: An Unbounded Prime Number Program 28
Figure 2-3: A Weavesort Program 31
Figure 3-1: Synchronisation schemes for Static CCS 65
Figure 3-2: The Schwarz Poller Algorithm 73
Figure 3-3: A Poller Component 77
Figure 3-4: The Schwarz Poller in Static CCS 79
Figure 4-1: The relationship between various equivalences 85
Figure 4-2: The relationship between various preorders 86
Figure 5-1: The Schwarz Poller and Buffer in Static CCS 146
Figure 5-2: The Modified Schwarz Poller 153
Figure 5-3: A modified version of the Buffer process 173

Introduction 	 1

Introduction

The last decade has seen a great increase in the demand for

concurrent programming languages. In part, this has been due to the

continual requirement for faster machines. By exploiting the parallelism

inherent in many problems, multiprocessor systems may provide a cost

effective solution to the performance problem. One approach is to

detect this potential for parallel execution automatically, using

sophisticated compilers. While there have been some notable successes,

mainly in the area of numerical computations, the work has been

hampered by the continued use of imperative, sequential programming

languages. The presence of side-effects in these languages greatly

increases the problems associated with the automatic detection of

parallelism. This has led to a greater interest being shown in the purely

functional programming languages.

An alternative to the functional approach is to allow the

programmer to explicitly indicate the parallelism inherent in the

problem by using a concurrent programming language. This has a

number of advantages. For instance, the parallelism specified by the

programmer may be of a more useful form than that derived

automatically. Many parallel machines consist of a comparatively small

number of powerful processors, and for these machines the detection of

parallelism present in the evaluation of an arithmetic expression may be

unusable, due to the overhead of the process mechanism. In such

cases, a more global and higher-level form of parallelism must be

• exploited, and this is the level at which concurrent programming

languages operate. If we wish to execute a program on a dataflow

machine, then the parallelism present in arithmetic expressions will

assume a much greater importance. This illustrates why the choice of

programming language may be influenced by the underlying target

Introduction 	 2
	

- hardware. By adding concurrent features to a functional language, we 	-

may achieve the advantages • of both approaches. The level at which

parallelism is then -exploited is left to the compiler for the target

machine. -

An important benefit of concurrency is that it provides a useful

structuring tool, and may greatly aid the program design process in a

way similar to functional abstraction. This fact has been appreciated by

real-time programmers for many years, but the lack of convenient and

commonly available concurrent languages has inhibited its use by the

wider programming community. This situation is gradually improving as

languages such as Ada [DoD 80], Edison [Brinch 81], Modula [Wirth 77],

and Occam [INMOS 84a] become more widely available.

It is a sad fact that nearly all sequential programs are never proved

correct in any formal sense. This is in part due to the difficulty of the

task, but also because, by careful construction, it is possible to build

programs that are remarkably free of errors. The need for formal

verification of concurrent programs is far more acute. Even simple

concurrent programs of only a few lines may contain subtle errors and

there have been some notable cases where numerous versions of an

algorithm have been published before the correct version was

obtained [Gries 77]. When this occurs for very small programs, the

seriousness of the problem should be immediately apparent.

These problems have strongly influenced the language designers,

resulting, for the most part, in languages with far cleaner and elegant

features than are present in their sequential counterparts. Along with

the. development of these languages have come the associated proof

methpdologies and semantic techniques necessary to form the basis of

theorem provers and other verification aids. These trends are most

apparent in those languages developed from a mathematical, or

theoretical, background such as CSP [bare 78], CCS [Milner 80] and

Petri Nets [Peterson 77]. These languages are not judged purely on

their syntactic convenience, or even on the simplicity of the underlying

semantics. Their mathematical tractability, and the ease of performing

Introduction 	 3

proofs, are perhaps the most crucial factors influencing the success or

failure of these languages.

We have identified the need for concurrent' languages, and also why

they must be designed to aid the proofs of the resulting programs. The

question still remains as to , what concurrent primitives to provide.

Perhaps the simplest approach would be to introduce processes

communicating through shared variables. Unfortunately, as a program

structuring device, this approach leaves much to be desired. It is also

extremely difficult to perform correctness proofs in such a framework.

Such deficiencies led to the introduction of more structured forms of

concurrency control such as semaphores [Dijkstra 65], [Habermann 72]

and monitors [Brinch 73]. 'These enhancements, while successful as a

conceptual aid to programming, did little to aid the verification of the

resulting programs, although there has been some success in applying

the axiomatic approach to program correctness [Owicki 75].

Petri nets [Peterson 771 were proposed as a way of studying

concurrency at its most, primitive levels. The formalism was inadequate

as a programming language, at least in its original form, but it did

'illustrate how various properties could be checked for in a program,

such as the presence of deadlocks. There now exists a large body of

work concerning net theory, and numerous extensions of the original

proposal have been developed, such as the various forms of stochastic

Petri nets [Marsan 841. -

Hoare and Milner have both developed concurrent languages based

on the handshake model of communication. If two processes wish to

communicate, then the sending of the message and its reception form a

single indivisible action. The Hoare version, known as Communicating

Sequential Processes (CSP) [Hoare 78], is based on an imperative view of

the world, whereas Miler's version, Calculus of Communicating Systems

(CCS) [Milner 80], is more applicative in nature. Both of these

languages have developed a considerable body of associated semantic

descriptions,, proof techniques, axiomatisations, equivalence relations,

and the like, that make them eminently suitable as a vehicle for the

Introduction 	 4

study of concurrency. Although, superficially, the two languages appear

very different, at the level of the process synchronisation mechanism

they have much in common. This thesis addresses itself to the

problems of implementing the handshaking view of process

communication as embodied in these languages. As such, the results

are of relevance to the implementation of both CCS and CSP. Ada [DoD

80] and Occam [INMOS 84a] have based their concurrent primitives on

CSP, and so the work is indirectly applicable t.o these languages as well.

The examples and proofs presented in the thesis are based on CCS, as

this language has developed furthest at the theoretical level.

Concurrency may be used as a method for decomposing and

structuring solutions to problems. It is therefore important to develop

implementations of concurrent. languages on single processor machines,

even though this will not result in any performance gain, and may result

in a performance loss over the sequential version. The thesis starts

with a discussion of the problems of implementing CCS on a single

processor. The difficulties associated with the implementation of the

concurrent primitives form only part of the problem. The need to

provide a user interface to the system, and the extensions required to

the calculus if it is to form a complete programming environment, also

raise interesting questions. An example of a programming language

based on CCS is used to illustrate these problems.

Sequential implementations of concurrent languages are adequate if

the languages are used purely as program structuring aids. The second

aim of concurrent languages, namely the potential for performance

improvements, requires the development of distributed implementations.

Unfortunately, mathematical elegance does not necessarily imply ease of

implementation. In particular, the implementation of the handshaking

view of process synchronisation is a non-trivial problem on truly

distributed systems (those that possess no shared memory). This thesis

illustrates the implementation difficulties and reviews the previous

algorithms aimed at solving this problem.

An alternative method of implementing languages such as CCS and

Introduction 	 5

CSP is proposed. 	It relies on the development of program

transformations that produce, as results, programs that are easier to

implement in some sense. A subset of CCS is exhibited that admits a

very simple implementation strategy, and an existing implementation

scheme is presented in the form of a transformation• that produces

programs contained within this subset. By partially applying the

transformation, an efficient implementation of CCS programs may be

derived in many cases. A correctness proof of the transformation is

complicated because, under certain circumstances, the transformed

program may not terminate, even though the original program always

does so. Existing definitions of process equivalence are inadequate in

this respect, and so new notions of implementation and transformation

equivalence must be introduced. Developing these ideas and performing

the associated correctness proofs constitutes the main body of this

thesis.

The remainder of the introduction is devoted to a summary 'of the

work presented in this thesis.

In Chapter 1 the basic concepts and notations concerning CCS are

introduced. The concurrent' operators of CCS are defined, along with an

operational semantics. The definitions of strong and observational

equivalence in terms of recurrence relations are then described. An

alternative to these definitions, in terms of maximal fixed points, is

introduced leading to the notion of bisimulation and its use as a proof

technique. Deficiencies in these equivalences are then highlighted and

the testing view of process equivalence, as proposed by DeNicola and

Hennessy, is introduced. No new work is presented in this chapter and

those readers already familiar with the literature surrounding CCS may ,

safely proceed directly to Chapter 2.

Chapter 2 deals with the problems associated with implementing 'CCS

on a single processor. A particular example of a CCS implementation,

the Chalmers PFL system, is 'described and some examples of concurrent

programs written in PFL presented. This system ' consists of an

embedding of CCS in the functional, language ML, and so the chapter

Introduction

includes a brief introduction to those features of ML used in the PFL

examples. Finally, some extensions and deficiencies of the current

implementation are discussed.

Chapter 3 deals with the more general case of implementing CCS on

a distributed system. The analysis is restricted to Static CCS, the

subset of CCS with no dynamic process creation, as even in this case

there are considerable difficulties involved in an implementation. The

problems of synchronising CCS processes are discussed, and a subset of

the language exhibited that can be implemented efficiently. This subset

consists of those programs for which a synchronising annotation can be

found. We show how a number of previously proposed implementation

schemes are particular instances of this approach. An algorithm is

developed for determining these annotations under certain simplifying

assumptions. We then discuss the approaches that may be followed

when a \ synchronising annotation cannot be found for the program under

investigation. The algorithms previously proposed as solutions to this

problem are first reviewed, and then an alternative approach is

described involving the transformation of CCS programs. We show how

the resulting transformed terms may be easier to synchronise than the

original program. In particular. we present the synchronisation scheme

due to Schwarz in the form of a transformation, and show how

synchronising annotations may always be constructed for the resulting

terms. The advantages of the transformational approach to process

synchronisation are outlined, such as the possibility of partial

application. 	Finally, we discuss the problems involved in proving

transformations correct. 	The Schwarz transformation introduces the

possibility of non-termination, for example, and so requires some

fairness assumptions in order-to grove its correctness

The problems of transformational correctness in CCS lead naturally

to the theoretical investigations of Chapter 4. The notion of

implementation is first investigated, and the inadequacy of this

definition in the presence of diverging processes discussed. The need

for some form of fairness analysis is explained, followed by a brief

review of the relevant work in this area. We argue that existing notions

Introduction 	 7

of fairness for CCS are inadequate because they do not preserve the

expansion theorem that relates the parallel composition and non-

determinism operators of CCS. An alternative approach, based on

DeNicola and Hennessy's testing preorders, is proposed that captures the

desired fairness properties. Various algebraic properties are exhibited.

for the new preorder in order to show that it is well behaved in some

sense. Use of the weak testing preorder is hampered by the necessity

to deal explicitly with tests, and so an investigation is carried out into

the possibility of an alternative characterisation that admits a simple

proof technique. The equivalence proposed by Kennaway is investigated

and rejected, although a connection is shown between the two

approaches under certain restrictive conditions. Two further preorders

are proposed that imply the weak testing preorder, and may be proved

using bisimulation techniques. Finally, the problems of transformational

correctness are investigated, and a new definition presented based on

the weak testing preorder.

Chapter 5 makes use of these new definitions to prove that the

Schwarz synchronisation scheme is correct..when presented in the form

of a transformation. The structure of the problem rules out the

possibility of an inductive proof, and so notation is developed to allow

the bisimulation proof to be carried out on the whole program. The

chapter concludes with a discussion of how the transformation may be

partially applied to a program so as to minimise the synchronisation

overhead.

Preliminary Definitions

CHAPTER 1

Preliminary Definitions

§1.1 Introduction

This. chapter aims to provide a brief overview of CCS, and the

theoretical work based on the language, where it is of relevance to the

work that follows. CCS (Calculus of Communicating Systems) is a

mathematical calculus designed to aid the specification of concurrent

systems and their subsequent analysis. This desire to not only specify,

but also to reason about concurrent systems has lead to a large

emphasis being placed on the mathematical tractability of CCS. In

particular, a number of equivalence relations have been proposed for

the language, each attempting to highlight some particular aspects of

the concurrent programs under investigation. The chapter starts by

describing the language and a particular method for generating

equivalences known as Bisimulation [Park 81]. This method is used to

define strong(-.) and weak () equivalences for the language. Some

deficiencies of these equivalences are identified, leading on naturally to

a discussion of DeNicola and Hennessy's testing view of process

equivalence (c .).

§1.2 CCS

We start by reviewing the definition of CCS and its operational

semantics. CCS deals with systems of computing agents communicating

via named ports that are connected by channels. The communication

channels have no buffering capacity, and are unidirectional.

Communication takes the form of a value-passing act, requiring the

simultaneous co-operation of both the sender and the receiver.

Preliminary Definitions 	 9

The simplest agent, denoted by NIL, can perform no actions

whatsoever. This agent, along with recursion, forms the basis from

which all other agents are constructed. Given an arbitrary agent p, a.p

represents the agent that may first communicate with another process

through the a port,. and if successful will then evolve to the agent p.

Agents may be composed through the bar operator, , and in the

resulting agent, pq, p and q may proceed independently. However, they

may also communicate with each other via matching ports, where the

exact form of this matching will be explained shortly. To allow some

degree of choice and non-determinism, the language also includes the +

• operator, where p+q represents either the process p or the process q.

Depending on the actions offered by p and q, this choice may or may

not be resolvable, externally. The names of the ports used by each

process are significant in that they affect the communication potential

• of the process (i.e. the names can be viewed as forming the channel

linkage mechanism). Thus, to be able to define a generic agent, and

then use it in different contexts, we need to be able to relabel the

agent's ports to form the desired connections with its context. This is

achieved by the postfixed renaming operator, [S], where S is a port

renaming function. Finally, to prevent channels from forming when not

.required, the language has a hiding, or scoping mechanism known as

restriction. Thus, p\a hides the label a so that the resulting agent

cannot communicate to its external environment through the a port.

We now express 'these ideas more formally. 	Let us assume the

• 	existence of a fixed set of names, i, ranged over by a, The

set of co-names, & disjoint from A, is constructed using the bijection -,

where

aEJE 	 •

We refer to a as the complement of a. We also use 	for the inverse

bijection and hence = a.

	

• 	
We define 4€4, the set of - visible actions or labels, to be Aul We' also

	

• 	introduce the label T, where -r is a distinguished action not occurring in

44. We will allow ji to range over AdUJTJ and X to range over 4L

Preliminary D ef inL tions 	 10

- 	We define a function, S, over AcdUITJ to be a relabelling if

S(r)7

S is a bijection -

S respects complements,

i.e. S(X) = S(X) for A,X€4t

We may now introduce the operator set for CCS. Let

Flo. = NIL

= L. I /.LE4c.1UT 	u [S] I S is a relabelling U 	AEAC4

E 2 = +

E = , n>3

where E denotes UE I k>O

Let X be a set of variables,, ranged over by x. The set of recursive

terms over E, ranged over by t, is defined by the following BNF-like

notation:

t ::= x I op(t1.....tk), OPEEk 	fix x.t

The operator fix x._ binds occurrences of x in the subterm t of fix x.t,

and, introduces the usual notions of free and bound variables in a term.

A term is said to be closed if it contains no free variables. We call such

terms agents and will use P to stand for the class of agents. The terms

behaviour and process will be used as alternatives for agent throughout

the rest of the thesis. The operational semantics for CCS is given in

terms of labelled rewrite rules over these agents([Milner 80], [DeNicola

82]). For each jiEAiUi- , we define a binary relation ---' over P. We

interpret p >q as "agent p performs the action , and in doing so

evolves to agent q".
S

Let --- be the least relation over 5) that satisfies 	 .

,i.p---)p 	, 	 S

p-1 —)p' implies p + q 	3 p'

q + p —'— p'

p I q 	p' I
q 	qip'

Preliminary Definitions 	 ... 	 ii

p- --- p' implies p[S] 	p'[S]

p—
A

p
,
 A XOj -Y,--/j implies p\y—A >p\

.p----p', q -->q' implies p I q 	p' I q'

t[fl x.t/x] 	p implies fix x.t---p.

We extend this relation to sequences of actions in the obvious way.

It will often prove convenient to ignore the r actions in a sequence

of transitions. We define the 	relation by

p 	q iff there exists p', q' such that

p(_!_>)p' 11>q(_I_)'q

We extend this relation to sequences of actions in the obvious way and

define e to be the empty sequence. A question arises as to whether
T 	 e

p — p is always true. Certainly pp is always possible, but, by the

preceding definition, is a sequence with at least one r transition

and so p == p will not be true in general. This is the approach taken

by Milner [Milner 80]. Unfortunately, Hennessy and DeNicola treat i - as a
C

special case and equate 	and 	, as this simplifies their

proofs [DeNicola 82]. We will also adopt this convention for the same

• 	reason. This subtle but important difference in convention has created

• 	some confusion in the past, and the reader should be aware of this

point when reviewing the current CCS literature. We use p - 4-. to

indicate that p cannot perfprm a X as its first action, and p to

indicate that no sequence of silent moves will enable p to reach a state

where it can perform a A action.

We define the set of derivatives of p to be

I Bs. p==pi

and the set of initial moves to be

Init(p) = JaEAci I

• 	A sort of an agent is a set of labels which contains all labels

through which communication can possibly (but may not) occur. If an

agent p has the sort L (written p:L) then it will prove convenient to

Preliminary Definitions 	 - 	 12

allow p to possess all larger sorts containing L as well. The minimal

sort for an arbitrary agent can be computed using an iterative closure

algorithm, and it is simple to show that finitely expressible agents have

finite sorts.

The version of CCS presented so far deals with pure synchronisation

signals; no values are passed between the agents. It is simple to extend

the calculus to the general case. We adopt the convention that ax.p

and av.p denote agents that input and output values on the cx port

respectively, where in the first case the resulting input value is bound

to x throughout the agent p. Let tju/xj denote the term which results

from substituting u for every free occurrence of x in t. We extend the

binary relation > to allow values and variables and write it as

For the most part the definition of > is a simple extension of the

> definition except for the following cases.

ax.p -- pv/x

E.p --' p where the expression E evaluates to v

T.p 	p

We shall refer to a label, together with a variable or value expression,

as a guard. We will sometimes use the CSP notation for value passing

when this is convenient. Thus, a!3.p and ?x.q are alternative ways of

writing Zi3.p and flx.q respectively.

When mapping CCS onto finite resources, such as real processors, it

may not be possible to support dynamic process creation. Furthermore,

certain, transformations on CCS terms may require all processes to be

transformed simultaneously, thus precluding the use of dynamic process

creation. Such cases are sufficiently frequent that we define a

subcalculus of CCS, known as Static CCS, that only allows the use of I in

a restricted form.

Let Fj . 	p. s denote the CCS term p 1 I p2 I . 	. 	I 	p. . Furthermore,

we extend the restriction notation to allow sets of actions, as in p\L for

any Lc4d.

Preliminary Definitions 	 13

Definition

An agent pE:5 is static if the parallel composition operator.

I, is not used in its construction.

An agent p€5) is a member of Static CCS if it is

syntactically of the form (fl 	for some set of static
iCN

processes jpIiEN and Lç4..1.

Note that if we only required bounded parallelism, then this could be

ensured by not allowing the I operator inside the body of a recursion,

which is a slightly weaker.. requirement than a process being a member

of Static CCS.

§ 1.3 Strong and observational equivalences

There have been many equivalences proposed for CCS, each one

accentuating some different aspects of the processes under examination.

Furthermore, some of these are also congruences (i.e. equivalences that

are preserved by the substitution of equivalent programs), while for

others we must explicitly derive the congruence from the equivalence.

We start by defining the original two equivalences for CCS, known as the

strong and observational equivalences. Milner [Milner 80] describes

strong equivalence, '-", in terms of a decreasing sequence

of equivalence relations as follows.

- q is always true.

p k+1
 q iff for all [L, v

if 	ILV>:p then for some q', q---> q' and p' 	q' 	 -

if q -->q' then for some p', p -- p' and ' - q'

p - q iff Vk>0. 	
k q

This equivalence has a number of desirable properties, such as pNIL
- 	p 	p+NIL - 	p, that ease program proofs. 	Using - 	we may derive what

Preliminary Definitions 	 14

Milner describes as the Expansion Theorem [Milner 80]. This theorem

provides •a connection between the parallel composition and the -

summation operators. Summarising briefly, if B = (B 1 1 . . . IBm)\A where

each B. is a choice of guards, then -

B - 	v.((BI . . . 	 IB)\A)

where /Lv.B is a summand of B. and

± 	r.((B 1 j . . . IB;/'n . . . IBI . . . IB m)\A)

where ax—. B'is a summand of B.,

is a summand of B., ipj

provided that in the first term no free variable in B(ki) is

bound by 'iv.

Unfortunately, for many problems - is too i'estrictive an equivalence.

For example, a.p and a.T.p are not equated by strong equivalence. The

problem is caused by the silent T actions, as we frequently wish to

ignore them. This prompted the development of the observational

equivalence, '', so called because the r actions are not observable by

an external agent. Milner defines the equivalence as follows.

p 	q is always true. 	- 	 -

k+1
q iff for all sE(4d x V)

if p=p' then for some q', q='q' and p' k q

if qq' then for some p' , p==p' and p' k q'

p 	q iff Vk>0. 	
k

q

.

It 	is simple to show that a.p a.T.p. 	Furthermore -'c. Unfortunately,

is not a congruence under the + operator. 	To see why, we note that

NIL 	i- .NIL

but

- 	 NIL + a.NIL 96 T.NIL ± a.NIL

Preliminary Definitions 	 - 	 15

Milner defines ;:C to be the weakest congruence stronger than (smaller

than) 	and shows that 	and 	are identical, where 	 -

q iff Vr p+r 	q+r

§1.4 Bisimulations.

We may redefine the latter half of the 	definition to be of the form

= E

where

E(R) = <p,q> I p 4 p' D-3 q'. (q=q' A <p',q'>E:R) A

qq' D Jp'. (===' A <p',q>€R)

for s€44

One anomaly of the 	equivalence is that it is not a fixed point of E. No

simple example exists of two behaviours, p and q, such that pq but

<p,q>gE(). However, Milner has exhibited such a pair [Sanderson 82],

although the example is rather unnatural. Park [Park 81] has suggested

an alternative definition of observational equivalence by considering the

maximal fixed-point of E using the partial ordering of set inclusion. We

can show that the function E is monotonic and so this is

sufficient [Tarski 55] to deduce that a maximal fixed point for E exists

given by

UR I RcE(R)

This leads to the following, alternative, definition of observational

equivalence.

= UR I RcE(R)
. 	 .

In fact, for practical purposes, these two definitions of 	appear to be

identical. However, we shall show that the fixed-point • version of the

equivalence admits a simple yet powerful proof technique. The same

fixed-point can in fact be obtained by a simpler version of E where only

single actions are considered rather than arbitrary strings, i.e. we-can

replace the definition of E by

Preliminary Definitions
	

16

E(R) = <xy> I x=x' D 3y'. (y'y' A <x',y'>€R) A

y:4=:'y' D Jx'. (xx' A <x',y'>ER)

for /.LE:4ClUi-

Defining observational equivalence (and also strong equivalence)

using the fixed-point approach leads to a very powerful and elegant

proof technique known as bisirnulation. To prove that p--q, it is

sufficient 	to 	construct 	a 	relation 	R 	such that 	<p,q>€R and 	RcE(R).

Following Park [Park 81], we refer to such a relation R as a bisimulation

between p and q. 	This technique forms one of the main proof methods

for CCS as the examples in [Sanderson 82], [Backhouse 83] and [Prasad

841 illustrate. Furthermore, Sanderson [Sanderson 82] has proposed an

algorithm that allows the construction of bisimulation relations to be

carried out mechanically in some cases.

§1.5 Testing equivalences

For many examples the 	equivalence is too particular about when

non-deterministic choices are made. Consider the two behaviours

r' r2

Then p 6q and pq. However, it is not clear why we should distinguish

between these two processes. In either case an a followed by a j6 move

is possible followed by either process r 1 or r 2 . In neither case can the

external environment force the choice of whether r 1 or r 2 is executed.

In order to remedy this deficiency of the equivalence,

Kennaway [Kennaway 81] developed an alternative definition of

observational equivalence involving sets of processes. We discuss this

approach more thoroughly in Chapter 4.

DeNicola and Hennessy [DeNicola 82] have also proposed an

Preliminary Definitions 	 17

equivalence that equates these two processes. However, in their case,

this property was merely a byproduct of their more general view of what

process equivalence should mean for languages such as CCS. Their basic

premise is that two processes are equivalent if they are

indistinguishable when tested by another agent. A process is tested by

placing it in 'parallel with an observer process, where the observer agent

has a distinguished action 'I in its sort (written w in [DeNicola 82]). A

test succeeds if the combined processes reach a state where the '.1 move

is possible through a sequence of silent actions.

We formalise these intuitions as follows. We denote by 0 the set of

agents that may be constructed from the CCS operator set augmented

with the action J (i.e. 5cO). A term p is successful if it may perform a

.J action, i.e. 3p'. p -- p'.

A computation is any finite or infinite sequence of terms pIn>O

such that p. -!-->p.+,, whenever p
71+1

is defined, and if p 	is not
n+1

defined, then p. --!--->p" for no

A computation is successful if one of its states is successful, and the

set of successful computations is denoted by

For any p€3), oE, we define .in(po) to be the set of computations

whose initial element is the term (p'o).

We can distinguish two classes of tests on the process p; those that

may succeed (indicated by at least one successful computation in

and those that must succeed (where all computations in

omji(p,o) are successful). This leads to the following three preorders.

We first define

p maw satisfy o iff (plo) (-1-->) * q for some q such that q

p must satisfy o iff whenever plo = p0 jo 0 _!_plo_!__> . . .

is a computation from plo then 3n>O such that o - -

or equivalently,

1) p may satisfy o iff.3c€w(p,o) s.t. cE

Preliminary Definitions 	 l8

ii) P must satisfy o iff o.niji.(p,o)cYwc.c.

Then

p 	q if VoEt p may satisfy o implies q may satisfy 0

2 q if VoEO p must satisfy o implies q must satisfy 0

P r., q 	q A P 	q

Note that a.NILIi- ' must satisfi,j&- /.NIL is false (written a.NJLIT'

must -/satisfy .v'.NIL), because o.ny.(a.NILIi - .'./.NIL) has TW as one of its

computations.

The preorders may be extended to equivalences in the obvious way, i.e.

j q if q A q 	JD

2 q if p F02 q A q 22 P

p 1 q if p 21 qAq 	1 p

The definitions of F i presented in [DeNicola 82] are complicated by

the explicit- treatment of unguarded recursion and divergence. However,

the simplified definitions presented above are sufficient to give some

indication of the general approach taken by DeNicola and Hennessy. It

has been shown that lkl coincides with 	and 	lies between 	and

This indicates that the observational equivalence distinguishes between

more terms than the testing equivalence.

The main work of this thesis now begins, starting with an

investigation of how to implement CCS on a centralised machine.

Implementing CCS on a Single Processor 	 19

-: 	 CHAPTER 2

Implementing CCS on a Single Processor

§2.1 Introduction

The primary aim of this thesis is to analyse the various approaches

to Implementing Static CCS on a distributed system. 	However, for

completeness, we 	start 	by discussing 	the 	difficulties 	associated with

providing an implemention of CCS on a single processor. 	Part of this

work will be relevant to the more general case, as we show how CCS may

be embedded in a functional language to form a complete programming

system.

In its intended role as a simple concurrent calculus, CCS is very

successful. Each user of the calculus extends it with features

appropriate to the problem domain undr investigation. However, in

order to implement the calculus as a .programming language, we must be

a lot more specific about areas such as the syntax, that tend to be

neglected when the only manipulations performed on the programs are

by hand. CCS is inadequate as a programming language for a number of

reasons. Firstly, the syntax is very restricted. There is no facility for

local declarations, for example, which may greatly improve the clarity of

a program. Secondly, the calculus does not deal with the introduction

and use. of new data types. In fact it is not even specified what data

types are provided as primitives of the language. There is no mention

of how to connect a process to the external environment of printers,

keyboards etc. 	One desirable, but not essential, facility that is omitted

from 	the calculus is 	some form 	of 	static 	typechecking 	that 	would

prevent one process from sending a value of type t 1 and the receiver

expecting a value of type t 2 . All of these omissions are understandable

Implementing CCS on a Single Processor 	 20

as CCS was originally designed as a minimal calculus for reasoning

about concurrent systems. These points illustrate why we must extend

the calculus if we wish to produce an acceptable programming language.

There are two ways to tackle this task. The first would be to

develop an implementation of CCS from scratch, adding extensions as

required, until an acceptable programming environment was constructed.

The problem with this approach is that the sequential part of the

language would almost certainly end up forming a programming

language in its own right. The resulting implementation effort would

therefore be considerable. The second approach would be to take an

existing language as the sequential part of CCS, and embed the

concurrent operators within this system. This approach has the

advantage that the difficulties in implementing the concurrent operators

are not obscured by decisions involving the sequential subset of the

language.

Holmstrom [Holmstrom 83] tackled this problem by embedding CCS

in the applicative language ML [Gordon 79]. Although the input and

output primitives of CCS are imperative, the rest of the calculus has an

applicative flavour due to the similarity of value binding in CCS and the

Lambda Calculus. Thus a functional language was a natural choice as

the embedding language. Furthermore, ML is a strongly typed language

with sophisticated data abstraction facilities which make it an ideal

candidate for this role. The Holmstrom system, known as PFL (Parallel

Functional Language), was built on top of an existing ML system which

constrained the implementation in a number of ways. Firstly, the new

syntax to handle the CCS constructs was cumbersome, as the primitives

were encoded in the existing ML syntax. This encoding made extensive

use of the continuation style of programming to simulate call-by-name

value passing in a call-by-value environment. Secondly, the processes

were rescheduled only when a data transfer took place between two

components. Therefore, in the worst case, the system would hang if a

process entered a non-terminating computation that performed no

communications.

Implementing CCS on a Single Processor 	 21

To resolve these difficulties, the author reimplemented PFL on top of

an ML-in-ML compiler [Mitchell 85]. In this implementation, the

concurrent operators were built into the underlying compiler resulting

in a more faithful expression of the original CCS primitives: It is this

version of PFL, described in [Mitchell 84], that we use as an example of

a CCS implementation in this chapter. Many of the underlying ideas are

based on the original Holmstrom implementation of PFL to which we are

indebted.

§2.2 A short introduction to ML

This section briefly introduces the functional language ML. It is not

intended to provide a complete description of the language; for this the

reader is directed to [Gordon 79], [Cardelli 82], [Milner 84]. However we

hope to give some flavour of the language and sufficient detail to enable

the reader to understand the PFL examples.

ML was originally intended as a metalanguage for the LCF theorem

prover [Gordon 79]. 'However it quickly established itself as a

programming language in its own right. This was in part due to certain

features in the language, while originally designed to aid the LCF.system,

gaining wider popularity in the programming community. These included

the sophisticated static typechecking, the data abstraction facilities, and

the failure, or exception, mechanism.

At this point it was a natural progression to reimplement ML as a

stand-alone programming language. This work was performed by'

Cardelli [Cardelli 82] and he took the opportunity to extend the. syntax

of the language, particularly in the area of environment constructors.

He also introduced two new primitive data types, the labelled record and

variant.

Recently there has been an attempt to rationalise the existing ML

systems and the Hope language [Burstall 80] resulting in a new version

of ML. known as Standard ML [Milner 84]. We shall describe the Cardellj

version of ML simply because this is what the ML-in-ML compiler

Imp ternent.ing CCS on a Single Processor 	 22

implements, and it is this system that has served as a test bed for - our

PFL experiments.

First and foremost. ML is an interactive, strongly'-typed language.

However, unlike the typing systems in languages such as Pascal and Ada,

the ML system does not require that the user specify any type

• information for most expressions. It is the responsibility of the type

checking phase of the compiler to infer this information from the user's

program. For example, consider the expression

- [1+2; 3];

The ML system on receiving this expression would perform the following

analysis. Firstly, + is a binary operator requiring two integers as

arguments and producing an integer as a result. 1 and 2 are both

integers and so 1+2 must represent an integer. Given a list of elements

e 1e of type t. [e 1 ; . . . ; e] constructs a list of these elements

of type t list. In this case the first element of the list is an inte g er

and so the t ype checker examines the remainin g elements (in this case

just the element '3') to ensure that the y all have the same t ype. This is

indeed the case and so the t ype of the whole expression must be an

integ er list. It passes this information back to the user, alon g with the

evaluated result.

> [3;3] : mt list

The description given above is a simplification of the truth, as, in

practice, the type checker unifies types rather than performing exact

matching of types. Such details do not aid the understanding of the

PFL examples that follow,' and, therefore, the description of ML

presented in this chapter ignores such matters.

Values and fuictions can be defined, and functions applied, as

follows.

- let a = 3;

> a = 3 : int;

- let rec f(x) = if x = 0 then 1 else x *f(z_1) ;

>f=\:int->int 	 '

Imp leritenting CCS on a Single Processor 	 23

-

> 6 : mt

Unnamed functions can be introduced by the \ construct (where \ is

meant to represent A). The function suc that increments its argument

by 1 could be defined in either of the following two equivalent ways.

- let S7.LC 2: = x + 1;

> suc = \ : mt -> mt

- let suc = \x.x + 1;

> suc = \ : mt -> mt

Consider the function definition

- let add(x.y) = x + y;

We can view this definition as stating that add takes two arguments, x

and 	y, 	and 	returns 	their 	sum. 	Alternatively, we might view add 	as

taking a single argument that is a pair. 	This is the view taken by ML.

The 	comma 	infix 	operator constructs 	pairs or 	tuples, 	and 	the

corresponding type constructor is denoted by #. Thus the system would

respond with

> add = \ : mt # mt -> mt

Sometimes it is desirable to specify a function that takes an

argument but subsequently ignores it. This is achieved by the -

construct, as in the following function that returns the first of a pair of

arguments.

- let fst(x,j =

To provide a complete description of ML would take a chapter in its

own right. However, the features described above should be sufficient

for an understanding of the PFL programs that follow.

I

Implementing CCS on a. Single Processor 	 24

§2.3 .PFL, an embedding of CCS in ML

CCS consists of a parallel composition operator, 1 , a summation

operator. +, an action operator. . a restriction operator, \, and a

renaming operator, []. We ignore recursion as it does not affect this

discussion. One approach to merging CCS and ML would be to simply

take their union in some sense. However, this would involve duplication

of some of the underlying concepts, as we shall now show.

The primary aim of the restriction operator is to limit the scope or

visibility of an action. However, ML already has a static scoping

mechanism, and so it would be unwise to incorporate two similar

concepts in a single language. The renaming operator allows the

interface to a behaviour to be relabelled. But again this is similar to a

concept already existing in ML, namely functional, or lambda

abstraction. Instead of constructing a behaviour and then relabelling

the interface, we can construct a function that, when applied to a

collection of ports, returns the appropriate behaviour. To do this we

require two new types, one for ports and one for behaviours. We extend

ML with the primitive data types k&h and * chan, where we assume that

every port is of type * chan for some type '. For example, a port of

type mt chan can only pass values of type int(eger).

CCS uses the . operator for action prefixing and employs the

overbar notation - to indicate that a value is to be output. Thus a3 .NIL

and a.NIL denote the processes that output a value and receive a value

on the a port respectively. The operator would be impractical in a

programming language, and so some alternative must be sought. The

CSP convention of ? for input and ! for output are attractive, but

unfortunately clash with existing uses of ? and ! in ML. This illustrates

one of the difficulties of embedding CCS in an existing language. The

syntax eventually chosen in the Edinburgh PFL system was as follows.

a inp x. p 	to input a value and bind it to x

a out v. q 	to output a value v.

Implementing CCS on a Single Processor
	

25

where p and q are of type bth. 	-

At first glance, the binding of a value to x may look as if we have

introduced a new form of value binding into ML. However a inp x. p and

a out v. q are expanded by the implementation into the expressions

read(a, .\z.p) and write(a. v, _.q). respectively, where read and write

have types

read: * chan #(' -> k.th) -> k.h

and 	write: * chan // * # (. -> kh) ->beh

The function write requires some explanation. Firstly, () denotes the

single element of type .. The reason we expand -a out v. q into

write(a,v,_.q) rather than write(a.v.q) is because we-wish to inhibit the

evaluation of q until the value v has been output. By packaging up q in

a trivial function, we can delay its execution until we evaluate (\x.q)Q.

• This technique is a standard way of simulating call-by-name in a

language such as ML with a call-by-value evaluation order. Using these

expansions, it becomes immediately apparent that no new variable

binding mechanism has been introduced to the language.

ML has no equivalent concepts to the parallel composition or

- summation - operators and so we must introduce these. Unfortunately,

again we cannot -use the CCS syntax as +- and I are already used in ML.

Therefore we introduce the operators ++ and H . We also add the

constant NIL of type beh. Thus, for example,

- let rec n(x,c) = c out x. n(x-i-1,c);

• defines a function that takes as parameters an integer, x, and a

channel, c, and returns a behaviour that outputs an infinite ascending

sequence of integers on channel c starting at the value x. The ML type

checker would thus determine the type of n to be

> n = : mt # mt chan -> beh

Note that the function requires an mt chan as an argument to ensure

type consistency between behaviours.

Although we have shown how to construct functions that take

Implementing CCS on a Single Processor 	 . 	26

channels as arguments, returning behaviours as a result, we have not

shown how to construct new channels. The expression

chancinB

binds free occurrences of c in B to a new unique port. 	In fact "chan c

in B" is expanded by the implementation into the expression "ch(\c.B)"

where ch is a built-in function with type (* chan -> 	ii) -> beh. 	We

extend this notation to allow

chan c
1

• C 2 , 	 . . 	. 	, c 	in B

in the obvious way.

We can now construct behaviours but have no way of evaluating

them. The function exec: beh -> . performs this function. Given a

behaviour, b, exec(b) executes b and only terminates when all the

constituent processes have either terminated, or are deadlocked.

This completes our description of PFL. The next section gives a

number of PFL examples. We then discuss the problems associated with

implementing a system such as PFL.

§2.4 Some PFL examples

Consider the problem of computing prime numbers using the method

• • of Eratosthenes' sieve. Imagine constructing a process that first

receives an integer, prints it out, and then passes on any further

integers it receives that were not multiples of the original number. By

pipelining n of these processes together and using as input a behaviour

that generates the sequence 2,3,4,5,6,... we can print out the first n

prime numbers.

S 	 - 	 - 	 - 	 •

P -= ax. <output x>. P1(x)

Implementing CCS on a Single Processor 	 27

P1(v)

if (x mod v) 	0 then P1(v)

else ax'. P1(v)

PN(n) = if n = 1 then P

else (P[7/] I PN(n-1)[7/a])\y

FROM(n) = an. FROM(n+1)

To compute the first 10 primes we would use

PN(10) I FROM(2)

The equivalent PFL program is presented in Figure 2-1.

let rec pl(i,o,x)

i inp x'.

	

if Cx' mod x) 	0 then pl(i,o,x)

else o out x'.pl(i,o,x)

ins p(i,o)

I lnp x.

(<output the value of x>; pl(i,o,x));

let rec duplicate(p,n,ic,oc) =

If n = 0 then fail

else If n = 1 then p(ic,oc)

else chan c in (p(ic,c) 11 11 duplicate(p,n-1,c,oc));

let flrstNprimes(n, lc,oc) = duplicate(p,n,lc,oc);

	

let rec from(n,oc) 	oc out n.from(n+i,oc);

let firstiOprimes

chan c, c' in (from(2,c) 1 flrstNprimesC10,c,c'));

exec(flrstl0prlmes);

Figure 2-1: A Bounded Prime Number Program

Implementing CCS on a Single Processor 	 0 	 28

We can modify the program to dynamically create new versions of

the process p instead. of having a fixed number of them. The new PFL

code is illustrated in Figure 2-2.

let rec pl(I,o,x)

i lnp x'.

If (x' mod x) - 0 then pl(l,o,x)

else o out x'.pl(l,o,x)

ins rec pCl,o)

I lnp x.

((output the value of x>; chan c in (pl(l,c,x) H p(c,o)));

let lnflniteprlmes

chan c c' In (from(2,c) ii

exec(lnfiniteprimes);

Figure 2-2: An Unbounded Prime Number Program

As an example of a larger PFL program we show how to implement

an asynchronous weavesort. The program consists of a pipeline of

identical cells

each of the form

Lval

Small Big

Rval

Lerapty Rempty
.4

The ports Lval and Rval send and receive, values between neighbouring

processes. The Lempty and Rempty ports allow a process to interrogate

the status of a neighbouring process. Each cell has the following

behaviour characteristics.

S

Implementing CCS on a Single Processor 	 29

• if the cell is empty then it may offer the Lempty action to

its neighbour on the left.

• it may accept a value from the neighbour on the left, and if

the cell is already full it must then wait to pass the big

element to the process on its right.

• the value in small must always be kept less than or equal to

the value in big.

a non-empty process may transmit the small value to the

process on its left. It must then wait for a value from the

neighbour on the right unless that process is empty.

It is left to the reader to convince himself that this description

constitutes a valid sorting algorithm. Further details may be found

in [Hennessy 84a], where a proof of the resulting CCS program is also

presented. We can implement this algorithm in CCS by the following

definitions, where the ? and ' notation is used for readability.

AWC 0 = Lval?x.AWC 1 (x) + Lempty! .AWC 0

AWC 1 (x) 	= Lval?y.ASWAP(x,y) + Lval!x.AWC 0

AWC 2(x,y) = Lval?z.Rval!y.ASWAP(x,z) +

Lval!x.(Rval?z.ASWAP(y,z) + Rempty? .AWC 1 (y))

ASWAP(xy) = if x > y then AWC 2(y,x) else AWC 2 (x,y)

SRW = AWC Q 00 SRW

where oo is defined by

P 00 Q = (P[SR] Q[SL])\I

where SR(Rx) = Ix, SL(Lx) = Ix

and I restricts anything of the form Ix.

Implementing CCS on a Single Processor 	 1.7

The process SRW will sort integer lists of arbitrary length. Figure 2-3

contains the equivalent PFL program (including some output routines).

The behaviour screen(inval,outval) prints out values sent to the port

outval on the terminal, and passes user, input from the terminal to the

rest of the program through the channel inval. These examples should

convince the reader that CCS algorithms when translated into the PFL

framework lead to reasonably intelligible programs.

§2.5 The implementation of PFL

Implementing PFL on a single processor, while straightforward when

compared to the distributed case, still presents some interesting

problems. For example, consider the PFL expression

A++(BIIC)

where A, B and C are PFL behaviours. 	In order to determine the

possible initial moves of BIIC we must evaluate B and C in parallel.

Coping with such expressions is prohibitively expensive, because every

time we evaluate a summation such as this we will have to create two

new processes B and , C, that are then discarded if an action in A was

performed. One possibility would be to restrict the language to Static

CCS where such examples cannot occur. We take this approach in the

rest of the thesis as it aids in the analysis of distributed

':implementations by removing one extra level of complexity. It is also

possible in many cases to compute the initial actions of BIIC at

compilation time, using the expansion theorem. However, a simpler

approach for the centralised case is to prohibit the parallel composition

operator at the top' level of a summation, (i.e. all processes in a

summation must be guarded by an action). This case can be detected

- at compile time and an error generated. Holmstrom introduces two

• additional versions of the read and write primitives, and an extra

behaviour type, cbeh, in order to catch this case as a type-checking

error. This approach is taken to avoid performing any major changes to

the underlying ML system. At the present time, the Edinburgh PFL

implementation performs this check at run-time to avoid the complexity

and confusion introduced by the extra types and functions, while again

Implementing CCS on a Single Processor 	 31

let rec 4CCLert9,Lval,Remptj,Rval)

AWC2(true)

where rec (

A4CØ(last) -

(Lenty out 0. AW(last))

++(Lval hip x. AWCI(x, last))

and

FI4C1 (x, last)

(Lal Inp y. A9AP(x,9,last))

4+(Lal out x. AWø(last))

and

R9C2(x, , last)

(Lal inp z. Rval out U . ASWAP(x,z,last))

++(Lval out x. 	(Rval lnp z. ASIFP(g,z,last))

++ (Rerty lnp -. 4C1(9,last)))

and

ASWAPCx,9, last) =

if last

then chan newRempt9, newRval in

(ASW(x,9,false) H AWC(Rempty,Rval,newRempt9,newRval))

else If x > y then AWC2(y,x, last) else AWC2(x,y,last));

let rec C

master(inval,Lval,Lempty,outval) =

Inval lnp t.

let val - lntofstring(t) in

if val < 0 then outresults(lnva1,Lval,Lerty,outva1)

else Lval out val.

master (inval , Lval,Lempty, outval)

and

outresults(inval,Lval,Lempty,outval) -

(Lval lnp x. outval out (stringoflnt(x)).

outresults(Inval, Lval,Lempty,outval))

++(Lempty lnp

master(lnval,Lval,Lempt9,outval)));

let prog C)

chan Inval, outval, Lerrt9, RerrFty, Lval, Rval In

(screen(inval,outval) 11

master(lnval,Lval,Lempty,outval) :1

AWC(Lempt9,Lval,Rempty,Rval));

Figure 2-3: A Weavesort Program

Implementing CCS on a. Single Processor 	 32

minimising the changes to the underlying system. It is hoped that the

required check for this case can be included in the compiler shortly.

One of the major problems encountered when implementing PFL

arises 'from the need to create an acceptable impression of fairness in

the system. By this we mean that every communication that is

theoretically possible in a program must be possible in the

implementation of the program as well. A very simple implementation

might use a round-robin scheduling strategy for the processes, and the

elements of a summation might be tested in a fixed order. Such an

approach to the implementation of CCS would lead to an unfair system,

since there. may be communications between processes that could

theoretically occur, but would be prevented from doing so indefinitely.

As the user can only perform a finite number of tests on the system,

each of a finite duration, the implementor could justify his claim that

the implementation was correct. If the system was treated as a closed

box, then the user would have no way of proving that some valid

sequences of actions were impossible due to an unfair implementation

strategy without testing the system for an infinite amount of time.

Having said this, it must be appreciated that the theoretical

requirements of an implementation, and the user's expectation of its

behaviour, are not always in agreement. For a system to be acceptable

to a user, it must be seen to be fair, preferably without having to

perform prohibitively lengthy tests.

Consider the following PFL example.

let p(x) = x out 0. p(x) ++ x out 1. p(x) in 	p(outchan)

where outchan displays any values sent to it on the terminal. An

infinite sequence of zeros would be a perfectly acceptable computation

of this behaviour if we only took into consideration the semantics of

CCS. We might add some form of fairness constraints to the language,

so that in any infinite computation of this example an infinite sequence

of zeros and ones must be printed. Unfortunately, a computation that

Implementing CCS on a Single Processor 	 33

printed zeros for a year followed by alternating ones and zeros would

still be an acceptable fair computation, although it would not be very

acceptable to a user of the system. The user expects to see zeros and

ones appearing on the screen within a short space of time, and this can

only be achieved with some form of random guard selection.

We also need to schedule the processes randomly, which is not such

an obvious requirement at first sight. Consider the following example.

A process requires exclusive access to both a card reader and a line

printer in order to accomplish its task. It may request access to both

of them in either order, and once allocated to the process they remain

in that state until explicitly released. We would like to run two of these

processes concurrently, leading to the following PFL program.

let rec cdr (sr,er) = sr out C). er inp x. cdr (sr,er) ,

let rec lpt (sw,ew) 	sw out 0. ew inp x. ipt (sw, ew) ;

let rec p (id, Sr, er, sw, ew)

((Sw lnp 1. sr inp C.

(<output Id to terminal>

(er out 0. ew out 0. NIL)))

4-F

(sr inp c. sw inp 1.

(<output Id to terminal>

(er out 0. ew out 0. NIL))));

let ss C) 	chan sr, er, sw, ew in

(cdr (sr,er) 11 ipt (sw,ew) 11

p(1,sr,er,sw,ew) H p(2,sr,er,sw,ew))

While not being a particularly good example of a concurrent program, as

it contains an obvious deadlock, it does illustrate why we require

random scheduling in order to satisfy the user's expectations. Let us

assume that we execute this program on a PFL implementation with

round-robin scheduling. The currently executing process has exclusive

use of the processor until it wishes to perform a communication. If

there is a matching communication request in some waiting process

Implementing .CCS on aS'ingle Processor 	 . 	 34.

then the appropriate value bindings are performed and the processes

placed at the back of the scheduler queue. If no matching request is

available, the process is suspended. In either case the next process in

the scheduler queue is then executed. Consider how this strategy.

effects the above example. Process p 1 starts executing and requests

exclusive access to the card reader or the line printer. Let us assume

that it is granted access to the card reader. The process is then

rescheduled and p 2 starts executing. It also requests access to the card

reader and the line printer, but in this case only the line printer is still

available. At this point the system deadlocks as both p 1 and p 2 are

waiting for a resource held by the other process, and neither will

release the resource it holds before it has finished its task. While this

behaviour of the system is to be expected some of the time, there is

another possibility that should also occasionally occur. Process p 1

might obtain access to both the card reader and the line printer before

p 2 . in which case it may perform its task and then release both

resources. The round-robin scheduling strategy tends to inhibit this

second possibility. Even if we introduce real time-slicing of the

processes, the granularity of the time-slicing is typically much greater

than the rate at which interprocess communications are performed, and

so the problem still remains. The solution is to adopt random

scheduling .of the processes. However, we must also ensure that no

process that can run is prohibited from doing so indefinitely. For

larger examples, the deficiencies of the round-robin approach may not

be so apparent, and so there is a case for providing two versions of the

PFL system; a random version for demonstration purposes, and a more

efficient version for larger programs.

§2.6 Extensions and restritions

In this section we discuss extensions to PFL that would improve the

language. 	We also propose restrictions that may be necessary in order

to implement PFL on a distributed system. Our preliminary experiences

with PFL lead us to believe 	that 	it 	could form a very powerful and

useful 	extension to ML, 	as 	well 	as 	a 	practical teaching 	tool 	for

Implementing CCS on a Single Processor 	 35

concurrent programming. 	For these reasons we believe that the

language should be developed further, and the following points

investigated.

Firstly. PFL can be regarded as a superset of CCS. To see why, we

note that channels and behaviours can be passed between processes as

values in PFL, which is not allowed inCCS (strictly speaking, CCS allows

them to be passed as values but not used). This possibility greatly

increases the difficulty of reasoning about the resulting programs, which

is why CCS excluded it. Restricting PFL so that structures containing

channels and behaviours are not valid arguments to an output

communication would result in a less elegant language due to the

resulting loss of orthogonality. The view we take here is to propose the

definition of a number of subsets of CCS for specific uses. These

subsets could be optionally checked for in the compiler. For example, a

program that is to be verified may be written in a subset that permits

no channel or behaviour value-passing so as to aid the eventual proof, -

and the compiler can check that this was indeed the case. It might also

be desirable to inhibit the passing of updatable objects between

processes. Without such a restriction, we allow processes to bypass the

normal CCS communication primitives by using shared variables and

thus introducing all the problems of shared variable access that CCS

was designed to avoid.

Another subset that is useful (and checkable) results from the'

observation that in a distributed implementation • of PFL without any

shared memory, the passing of large data structures between processes

may be difficult. There is a case for only allowing primitive data types

such as integers, reals, strings etc., to be passed between processes.

This would allow the underlying process synchronisation mechanism to

be kept as simple as possible, which is especially important when this

mechanism may be implemented in hardware. The restriction may be

circumvented, to some extent, if we allow channels to be passed as

values between behaviours. For example,. consider the problem of

passing a tree between two processes. When the tree is viewed as a

static (passive) data structure, this may cause. problems as the

Implementing CCS on a Single Processor 	 36

components of the tree have to be passed between the processes as

separate messages, the tree reassembled at the other end, and only

then can the destination process continue its execution. The underlying

message-passing mechanism may therefore be quite complex. However,

we can assemble a tree of processes that models the original data

structure, and access the elements by sending the structure requests,

rather than manipulating the structure directly as in the original case.

To pass this active data structure to another process, we only have to

pass the channels that act as communication links to the structure.

Furthermore, viewing the data structure as a collection of processes

allows us to define parallel replication and maintenance functions for

the structure. Of course, on a real distributed implementation , of PFL

this raises the question of how to manage very large numbers of

processes arising from replacing some of the data objects by processes.

In particular, on a distributed machine, how do we ensure that the data

structures required by a process are not spread throughout • the entire

processor network? There have been preliminary attempts at

architectures that allow processes to spread smoothly through the

processor network that may be of relevance to this problem [Hewitt 801.

However, solving such problems is very difficult and is not investigated

further in the thesis. This view of data as active structures in terms of

processes is similar to the actor model of Hewitt [Hewitt 77] and also

the object-based programming languages such as SmaliTalk [Goldberg

83].

The current PFL implementations allow the user to interact with the

system via an input and output channel to the terminal. Once the exec

function has been applied to a behaviour, the input and output channels

provide the only means of interaction with . the system until the

• behaviour has terminated or deadlocked. This style of interaction has a

number of deficiencies. Firstly, the need to explicitly apply the function

exec to the behaviour in order to evaluate it appears inelegant; it would

be better if this function could be implicitly applied in some way. A

• 	more serious criticism of the system -becomes apparent when the

- 	program is to be tested. In order to test a behaviour, a testing process

Implementing CCS on a Single Processor 	 37

must be constructed that takes commands from the terminal - and

converts them into the required communication requests. The

construction of such testing processes may become very tedious.

An alternative implementation strategy is to enter an interactive

question and answer mode when the exec function is applied. The

system would indicate the possible actions at each point, and the user

would select the required choice. Such an interface is similar to that

• provided in proof checkers for CCS. By allowing the system to proceed

automatically for a controlled number of steps, or until. specified

actions are possible, complicated systems may be debugged more easily

than with the current implementation.

If we imagine the system under test to be composed of a tree of

processes (where the tree structure is derived from the restrictions and

renamings) then we can view the first approach as placing the user

within, or interacting with, a special process with a limited set of

communication possibilities with the rest of the system (namely just an

input and output channel of strings). The second approach can be

viewed - as placing the user outside the system, viewing what is going on

from a distance, and controlling it at the metalevel. A third approach

again, places the user within the system. However, in this case we allow

• the user complete freedom to perform any communications he desires.

In practice this would mean that the evaluation of a behaviour would

return control back to the user immediately, running the behaviour

asynchronously in the background. The user would then be able to type

simple actions, , summations etc., that would communicate with the

behaviour. This type of interaction emphasises the need to implicitly

perform execs when required so as to provide a natural , and convenient

interface to the background tasks. Such an approach is similar to the

use of the & operator in the Unix operating system. Using such an

interface has many advantages. Behaviours may be evaluated

asynchronously while the user continues with some other task.

Furthermore, at any point in time the user may communicate with the

behaviour through any ports that are accessible to both the user and

the background behaviour. We hope to develop such an interface for

the Edinburgh PFL system in the near future.

Implementing CCS on a Single Processor 	 IN

There are a number of concurrent calculi that have been influenced

by CCS. The synchronous version of CCS, SCCS [Mimer 83], a similar

calculus developed by Austry and Boudol called MEIJE [Austry 84], and a

calculus developed by Mime for hardware description and verification

called CIRCAL [Mime 85], are good examples of such languages. This

raises the question of whether to incorporate any of the novel features

of these languages into PFL, in order to extend its power and

applicability as a concurrent programming language. One extension to

the language that could be considered is the ability to perform more

than one communication simultaneously. 	This allows the notion of

clocked systems to be conveniently specified for example. 	The

extensions to the syntax necessary to accommodate this feature would

be simple. However, even a centralised implementation of this feature

would be quite a complex task.

One extension that is explicitly present in CIRCAL, and can be

treated as a derived operator in SCCS, is the ability to broadcast a

message on a channel to all processes with access to the channel. In

fact, this is the only form of communication present in CIRCAL. This

extension would be simple to add to PFL in the centralised case. The

difficulty of implementation in the distributed case would depend on the

underlying computer architecture. An Ethernet based implementation

might support broadcasting very efficiently, whereas a message-passing

network between the processes might make broadcasting impractical.

The asynchronous nature of the current PFL implementation makes

debugging of behaviours difficult.. One possibility would be to create a

pseudo-random version of PFL that takes a seed as a parameter to exec.

Such an approach would be useful when testing systems, although

genuinely asynchronous behaviours, such as interrupt handlers, would

still cause problems.

Implementing CCSon a Single Processor 	
0 	

39

§2.7 Conclusions

In this chapter we have presented a version of CCS called PFL that

transforms the calculus into a usable programming language. We have

given some illustrative examples of its use, and discussed a few of the

implementation problems associated with the language. Finally, we have

pointed out some areas in which the system is still deficient and some

areas for future work and development.

We believe the embedding of CCS in a functional language is the

most desirable way of constructing a usable CCS programming

environment. There are obviously difficulties associated with such an

approach, such as syntax constraints and the possible need to constrain

the types of values used in value passing. However, experience with the

system has lead us to conclude that there are no obvious features of a

language such as ML that are a hindrance to CCS. Furthermore,

although we could construct a system with restriction and relabelling

operations, we believe that the features of a general purpose functional

language would still be required leading to the redundancy described at

0 the start of this chapter. Therefore, we believe that even if an

implementation of CCS was carried out directly, the resulting system

would be very similar to PFL. .

The next step is to consider the implementation of CCS in a

distributed environment, a much more difficult task.

Implementing Static CCS on a Distributed System 	 1 	 40

CHAPTER 3

Implementing Static CCS on a Distributed System

§3.1 Introduction

The previous chapter described how we might implement a

concurrent language such as CCS on a single processor. There are no

-. problems in synchronising such a system, because all the information

pertaining to each of the processes is readily available, and can be used

by a centralised scheduler. However, it is difficult to impose a degree

of randomness on the system without an associated loss in performance.

Without some form of randomisation, the user's expectations of the

likely behaviour of a system will differ from the actual behaviour, even

though the implementation may be technically correct. We now wish to

examine the case where CCS is implemented on a distributed network of

processors. Such implementations require the development of protocols,

or interaction strategies, for synchronising CCS agents efficiently in a

distributed environment. One possibility would be to implement a

centralised scheduler, as for the single processor case. However, such a

scheduler is undesirable because the overhead in keeping a ,centralised

record of the state of each of the processes may be significant. This

.:.Contrasts with the single processor approach where the scheduler can

ascertain the global state merely by examining shared memory

locations. Furtherthore, the centralised scheduler creates a bottleneck

on the performance of the system, as all synchronisations in the system

are managed by a single process. For these reasons, we do not consider

the centralised approach any further. The problems encountered when

implementing CCS on a distributed system, with a distributed scheduler,

are opposite to those of a single processor system. The fluctuations in

the relative speeds of processes on different processors creates a degree

Imptementng Static CCS on a Distributed System 	 41

of randomisation without any additional overhead. However, the task of

synchronising communications is not trivial in the distributed case.

The goal of this chapter is to present a number of different

protocols, or interaction strategies, for synchronising processes in a

distributed framework. We start by examining the problems encountered

when synchronising Static CCS processes on a distributed system. We

show that for certain programs, those where a synchronising annotation

can be constructed, there is a simple algorithm for synchronising the

processes. The algorithm requires a minimum of unidirectional control

messages to be exchanged between processes for the establishment of

each bidirectional handshake. We then show how various restrictions

that have been proposed for CSP can be viewed as methods for

guaranteeing the existence of synchronising annotations. On' e of these

schemes has been used as the basis for a derivative of CSP, called

Occam [INMOS 84a], designed to run on a special purpose processor

called a Transputer [INMOS 84b]. We argue that by using synchronising

annotations explicitly, rather than just one particular scheme for

constructing them, we would obtain a more flexible language.

The second part of the chapter deals with those situations where we

wish to implement a program that does not possess a synchronising

annotation. Such situations are common, especially as we may not wish

to force an unnatural structure on a program purely to aid its efficient

execution. One approach in these situations would be to use a more

complicated synchronisation scheme, that placed fewer or no constraints

on the program. Section 3.6 briefly reviews the work in this area.

Some of these schemes rely on an underlying synchronous message-

passing mechanism, or can be modified to do so. Such algorithms can

often be expressed within Static CCS, and in these cases we can view the

schemes as program transformations, rather than an implementation of

Static CCS on top of some lower-level protocol. By using such

transformations, it is possible to replace a program that uses the full

power of Static CCS by an equivalent one that only requires a subset of

the language. Implementation schemes may then be developed for these

subsets that are more efficient than implementations of the full

Implementing Static CCS on.a Distributed System 	 42

language. We illustrate this technique by describing an algorithm due to

Schwarz [Schwarz 78] in the form of a transformation. We show that by

using this scheme it is possible to construct a synchronising annotation

for the transformed version of any Static CCS program. We also discuss

why a transformational approach may be preferable to using the more

traditional implementation techniques. Finally, we illustrate the

difficulties involved in reasoning about the correctness of such

transformations. For example, we must show that our transformations

do not change the overall visible behaviour of the system. This last

section illustrates the inadequacies of the existing equivalences for CCS

when applied to these problems and leads us into the theoretical

investigations of Chapter 4.

§3.2 Synchronising processes in a distributed
environment

A discussion of the problems of implementing CCS in a distributed

environment can only take place once the exact nature of the

environment has been specified. Furthermore, some method of

describing the possible process synchronisations in a program, in a form

amenable to analysing the complexity of the communication requests,

must also be developed.

A collection of processes communicating via shared memory may be

referred to as a distributed system. The term may also be used to

describe a collection of machines spread across a continent,

communicating via a satellite network. The diversity of systems covered

by the term is sufficiently vast that any general discussion of the

problems involved in the distributed implerientation of CCS would be of

little practical use. We therefore restrict our attention to a particular

class of distributed systems, namely those where processes communicate

via asynchronous, unidirectional, point-to-point messages. Such systems

are important for a number of reasons. They are relatively easy to

implement, and therefore form one of the more common classes of

distributed system. The message-passing model may also allow us to

Implementing Static CCS on .a Distributed System 	 43

view systems employing a variety of inter-processor communications

methods in a uniform framework. For example, processors may, be

connected to their nearest neighbours using shared memory. A

broadcasting method, such as an Ethernet, may be used for medium

distance communications, while a satellite link may be used for long

distance traffic. The type of interaction possible between any group of

processors may therefore depend on the communications link(s) between

them. The use of a message-passing protocol for inter-process

communications may allow us to reason about the system uniformly, at

the expense of not using the full communications capabilities of some of

the interconnections.

• Informally, we may view . a CCS agent as evolving by packaging up the

actions it may potentially perform in its current state into a request

that is then passed to an underlying subsystem whose task it is to find

matching requests. The agent is then suspended until the subsystem

finds a request containing a complementary label, at which point it

performs the corresponding action, possibly involving an exchange of

values with the matching agent. It then evolves to the continuation

agent associated with this action, and the cycle repeats. A non-

deterministic choice may be required in this last step, as in the agent

P = a.p1 + 0(.P 2* The mapping of CCS onto a distributed system must

therefore, describe how agents are mapped onto the processes provided

by the underlying system, the form of a communication request, and the

mechanism by which matching requests are found.

There are undoubtedly many ways of implementing CCS on a

distributed system' of the form described above. CCS agents

communicate with each other by exchanging messages through

complementary labels, and so one possibility would be to assign a

process to each CCS agent, and also to each pair of complementary

• labels in the program. We refer to these label processes as ports.

Agents may then express their desire to communicate using any one of

a set of labels. by sending messages to the corresponding port processes.

Using such an approach, an agent-need not be aware of the identities of

the processes that may synchronise with it by issuing a complementary

Implementing Static. .CCS on a Distributed System 	 44

request. This property may be especially important when processes are

created dynamically, and so the number of communicating partners

cannot be determined in advance. If CCS possessed no choice operator,

then a very simple synchronisation protocol would suffice. In the

general case, however, the request sent to a port must contain the

identities of the other ports the agent is also willing to communicate

with. The ports may then communicate amongst themselves in order to

establish a synchronisation.

If we restrict our attention to Static CCS, then the synchronisation

task becomes simpler. In this ease, the possible recipients for each

action can be statically enumerated, or at least an upper bound

established, and so the label mechanism can be viewed as a convenient

notation for naming an explicit set of processes. In such cases, we may

be able to map each agent into one or more processes communicating

directly with the processes representing the other agents. The

implementation of Static CCS in such a framework raises many

interesting issues, and so the rest of the thesis will limit itself to this

case. However, while the specific protocols developed for synchronising

agents in such a framework may not be directly applicable to the

general case of CCS, the techniques developed in the thesis for analysing

these protocols may also be of use in the analysis of implementation

strategies for the full language.

If we wish to map a Static CCS program onto a system where the

processes representing agents communicate directly, rather than

through ports, then a request will have the form of a set of explicitly

named processes, as well as the corresponding labels. In Static CCS,

each program is syntactically of the form (fJ
EN '

p.)\L, and so each
-

constituent agent, p., may be assigned a unique number i, its process

index, corresponding to its syntactic position in the product

representing the program. We can therefore represent a request by a

set of pairs of the form <process index, label>, called a request set. To

construct a request set, we - must replace a set of labels, formed by the

• guards in a summation, with the process indices of all the processes

that may potentially offer a complementary action.

Implementing Static CCS. on a Distributed System 	 45

The use of request sets is similar to the original development of

CSP, where all communication •requests had to explicitly name the

destination process. However, in this case, the translation from labels

to process indices is quite subtle. In general, it will depend on the

current state of all the agents in the system. It is technically sufficient

to map a label to the set of all process indices, as requesting to

communicate with an agent, using a label whose complement is not

contained in the sort of that agent, cannot result in any unwanted

synchronisations. However, it is reasonable to assume that the

complexity of synchronising a system is in some way related to the

number of simultaneous requests issued by an agent, and so increasing

the number of requests unnecessarily may lead to implementation

difficulties.

At any point in a computation there will be a minimum request set.

Consider a state P = H i. , where the implementation of process p
i EN 	

.

has translated a set of labels L to a set of process indices P1. This

translation is safe if the identities of all potential communicating

partners for the summation corresponding to the actions in L are

contained in the set P1. More formally, the translation is safe if for all

derivatives of P that require no participation from p. in their derivation

from P. if the ith component, p.' (i 7/-j), in the resulting derivative can

synchronise with an action in L, then j€PI.

For a process to produce an optimal safe request set from a given

set of labels, the global state of the system must normally be

accessible. This is because the ability of an agent to respond to an

action will typically depend on its current state, and hence to determine

an optimal safe request set, the current state of the other processes

must be known. Even if the global state is accessible by each process,

the analysis may still be computationally infeasible in most cases. In

practise, the situation is further complicated because only local state

information will be accessible to a distributed process. A careful

analysis of the state information that is available may reveal some

indications as to the current state of the other processes, and hence

potentially reduce the size of the request set. For example, in a

Implementing Static CCS on a Distributed System 	 46

network of processes communicating by message-passing, the local state

information might consist of the values of the local state variables and

the history of previous communications performed by this process (and

possibly the identities of the recipients). Using this information, the

possible states of the other processes may be deduced, or at least

partially constrained.

A simple mapping between labels and process indices may be

constructed using the sorts of the processes in . a program. Its

simplicity makes it a suitable candidate for practical implementations.

For a given program P = fl iN p.t
 , where each process p. * has sort S., we

define the function

RS(L) = j I XEL A IXcS
I 3

where LcAct.

For any derivative of F, say F' = fl 	p.', the request set offered by p.
iCN

may be generated by RS(Init(p.')). 	It is simple to show that such

request sets are safe.

Other methods for mapping between labels and process indices may

require additional arguments to the mapping function, containing local

state information. A discussion based on the general notion of a

request set mapping is complicated because of this flexibility in the

definition of the mapping. We will therefore assume that RS is used as

the mapping function throughout the rest of this thesis. Generalising to

other, more elaborate, functions is not difficult, but notationally

cumbersome.

Given a pro'ram F, and a request set mapping, RS, we can associate

with each derivative of P a labelled directed graph, called a request

graph, that describes the currently outstanding communication requests

in the network. The complexity of synchronising the communication

requests of a program is reflected in the complexity of the

corresponding request graphs.

Implementing Static CCS on a Distributed System 	 47

Definition

For a given program P. request set mapping RS, and derivative of P.

P' = fl p' the labelled directed graph GR =(X , eR) is the request ieN

graph of P iff the set.X corresponds to the process indices of P.

and <i,X,j> is an element of 60 if A€Init(p.') and jERS(A), where

i?j.

One approach to analysing the complexity of synchronising a

program, P. would be to examine the request graphs generated by all

the derivatives of P. A process will pass a request to the synchronising

subsystem asynchronously from the rest of the processes, and will

receive its replies asynchronously as well. Checking the request graphs

corresponding to each derivative of the program assumes that all of the

requests are synchronised. For example, if processes p. and p
i

synchronise, then the only request graphs that are examined after this

transaction assume that both p. and p. have issued their next requests

immediately after the synchronisation. We do not examine a rennef

graph where p, has issued its request, but p. is still computing its

request set. Such a distinction does not affect the analysis if delaying

a request does not alter the value of the request set. This is obviously

true for the function RS, but would not be true if a process had access,

to fragments of communications histories involving other processes,

such as could be obtained by eavesdroping on an Ethernet. In such

cases, - ,delaying a request may mean that the eventual request set is

smaller. Indeed, we could imagine constructing protocols that

deliberately waited until other communications had taken place, in order

to minimise the size of some request sets. The analysis of 'such an

approach, and its consequences, are outside the scope of this thesis.

Corresponding to each request graph there is a synchronisation

graph, where <i,j> is an edge in the graph if it is possible for p i'and p.'

to synchronise.

Definition

The synchronisation graph corresponding to. the 	request graph

C
R 	R

=(Jv',c), 	for a derivative 1D' = FT. tEN p' , is defined to be 	the

Implementing Static CCS on a Distributed System 	 48

undirected graph G3=(X,e8), where <i,j> is an element o f & if there

exists a label A such that <i,A,j> and <j,X,i> are both elements of

The synchronisation graph summarises the possible communications

that can take place in the current state. The complexity of these

communications is reflected in the complexity of the graph.

§3.3 Synchronisation graphs for some simple

examples

This section informally examines the request graphs and

synchronisation graphs for some simple examples, in order to

characterise which programs are simple to synchronise. A method for

synchronising programs with simple synchronisation graphs will then be

presented in the next section. The problem of synchronising more

complex Static CCS programs will be treated later in the chapter.

Consider . a network of processes p 1 , p2, . .. , p statically connected

as follows.

KIIIIII 	aKIIIII 	. a:IIEIIii 	-- -KIIiEII:I 2 	 3

The behaviours represented by p......p are unimportant, except that

we assume that p 1 can lways output a value and p can always input a

value. Furthermore, any process p., 1 <i<n, can either input a value

from p1 or output a value to p cannot offer both possibilities

simultaneously. All synchronisation graphs resulting from such a system

have the property that the maximum path length in the graph is one.

To see that this is the case, suppose there existed a graph such that for

some process p.

Implementing Static CCS on a Distributed System 	 49

Then the corresponding request graph must be of the form

which, is impossible from the definition of the behaviours. Such systems

are simple to synchronise because whenever a process p. can potentially

communicate with another process p. then this is the only process it

can communicate with. Suppose we impose some arbitrary ordering on

.the processes. For example we might chose p<p. if i<j. Then to

synchronise p, and 	in our simple example it is sufficient to always

make p. wait for a request from 	or in general to make the smaller

of the two processes, with respect to the ordering, wait for the larger.

Let us now consider ' a slightly more complicated example. 	We

construct a tree of processes that can be viewed statically as shown

below.

Implementing Static CCS on a Distributed System 	 50

11

p

Each process can input values from either of its sons (if any) or

transmit a value to its father (except p 0). However it cannot attempt

both simultaneously. If no path exists between two nodes, p. and p, in

a synchronisation graph, G, then at that point in the computation the

synchronisation of p, is independent of the synchronisation of p.

Therefore the network of processes containing p. may be synchronised

separately from the network containing p. Of course, p, may

communicate with some other process, and then evolve to a state where

it can communicate with p.. This case will manifest itself as a more

complicated network in some other synchronisation graph corresponding

to a different derivative of the prograrñ. We may therefore analyse the

complexity of the synchronisation graphs by analysing each connected

component of each graph separately. The most complicated connected

component that can occur in a synchronisation graph resulting from our

- example is of the form -

implementing Static CCS on a Distributed System 	. 	 51

We can exploit this property of the synchronisation graphs by allowing

one process in any potential synchronisation to wait for the other

process. However, whereas in our first example the process that waited

could be chosen arbitrarily, in this case we must force the process that

contains the sum (p.) to wait for either Of the other processes (p . 0,p. 1)

to send a request.

The synchronisation of processes was simplified in these two

examples due to the restricted forms of the possible synchronisation

graphs. In both cases, one partner in every potential communication

had no other partners. We could therefore choose a rule whereby this

process would send a message to its partner and the partner would wait

for the first matching request. Unfortunately, it is not always natural

to express an algorithm in such a way that the resulting

synchronisation graphs always have this property. As an example of

such a case, consider our first example where each process p. is now

allowed to simultaneously attempt to communicate with p. 1 and

The resulting synchronisation graphs may now have connected

components with path lengths greater than two, as is illustrated in the

following example.

Implementing Static CCS on a Distributed System 	 . 	 52

If a network of processes can produce such graphs, then the approach

we used for the first two examples is obviously not applicable, as there

is no process that can safely wait for a request without the possibility

of deadlock being introduced. Any scheme for synchronising such a

network must take care to avoid the introduction of deadlock or

livelock. As an example of these possibilities, consider the four

processes

P, = a.p 1 + .p1 	q 1 = ZR.q 1 + y.q 1

P2 = 7.p2 + 6.p2 q2 = . q2 + Ô.q 2

Synchronising such a network is difficult because one of the resulting

synchronisation graphs may be of the form 	 -

S

If we try to synchronise this system in a distributed environment, the

following two scenarios might take place.

Implementing Static CCS on a Distributed System 	 53

Lazy or timid behaviour.

In this scenario a process will attempt to communicate with

each of its partners in turn and will reject all requests

from other processes until it has received a reply. We call

the process lazy or timid because it only attempts one

possibility at a time. This scenario may lead to a livelock.

Suppose p 1 sends a message to q sends a message to p2 .

P2 to q2 and q2 to p 1 . When the target processes receive

their requests they will reject them because each process

will have an outstanding query. These rejections will

eventually arrive back at the source processes and each

process will then try one of the other possibilities.

However,the new set of requests may also be rejected for

the same reason and this sequence of events may continue

indefinitely. If the relative speeds of the processes can

fluctuate then we might use probabilistic arguments to show

that a successful communication will eventually occur.

However,there will be no upper bound on the number of

messages that may have to be exchanged before a

successful synchronisation is achieved.

Eager behaviour.

We might try the opposite approach where a process hoards

requests while waiting for a reply from its own query in the

hope that, if its query is rejected, then it can positively

acknowledge one of the waiting requests. This scenario may

introduce a deadlock as the following sequence of messages

illustrates. Suppose p 1 sends a request to q 1 . While waiting

for an acknowledgement it receives a request from q2 which

it queues. p2 now sends a request to q2 which q2 queues as

it is waiting for a reply from p 1 . q 1 sends a message to p 2

and this message is also queued. This completes our

deadlock as

p 1 is waiting for q 1

q 1 is waiting for p2

Implementing Static CCS on a Distributed System 	 54

P2 is waiting for q2

q2 is waiting for p 1

§3.4 Synchronising annotations

We have seen that for some Static CCS programs a very simple

synchronisation strategy will suffice, whereas in the general case, a

much more sophisticated protocol is necessary. We now consider the

simple case in more detail. The second part of this chapter will then

deal with how to synchronise arbitrary Static CCS programs.

A simple synchronisation mechanism was possible for the first two

examples because in both cases there was an asymmetry that could, be

imposed on the system. Each request issued by a process could either

be flagged as passive, in which case the process was suspended until a

•

	

	matching request was received, or else active, in which case the process

transmitted its request to the only process that could synchronise with

• this request. We call the process that waits the slave, and the process

that issues the request the master. If we wish to use such a protocol,

then, in addition to translating each summation into a set of process

indices, we must also indicate whether the process is to perform an

active (master) or passive (stave) role in any potential communication

If all requests are annotated with either a slave or master flag, then

a request graph G 	(X,eR) may
Et= also be annotated by constructing the

corresponding function MS from the set .J(of process indices to the set

jmaster,slavej 	of 	annotations. The 	resulting annotated 	graph is

represented by the pair <GR ,MS>. 	Synchronisation graphs may also be

annotated in a similar way.

Definition

The master/stave function used to produce these annotations is

safe if for every annotated synchronisation graph <(X, 5),MS>

corresponding to a derivative of P

1. <i,j>E40 D MS(i) 	MS(j) 	 •

Implementing Static CCS on a Distributed System 	 . 55

2. <j,i>E A <i,k>€e5 , jLk D MS(i) = slave

The intuition behind the definition is that if two processes can

potentially communicate, then one will be the master and the other the

slave, and if a process wishes to communicate with more than one

partner, then it must play a passive role in this communication:

Consider the program

(1I 	p.)\a,

where

P, = a.p 1 , 	p2 	.p2 , 	p3 = .p 3

There is only one synchronisation graph for this program, namely

A safe annotation function for this example would be

= slave

= MS(3) = master'

A program will have an efficient implementation if it is possible to

construct a safe annotation function MS for the program. In such cases

we say that the function MS safely annotates the program.' If this

function is static, i.e. it remains constant as the program evolves, then

this is equivalent to annotating each summation in the program with

either the master or slave flag.

There will be many cases where it is impossible to construct a safe

master/slave annotation function for a given Static CCS program. This

will obviously be the case when the program contains patterns of

communications that cannot be synchronised using the master/slave

approach. However, even when all communications are amenable to this

Implementing Static CCS on a Distributed System 	 56

approach, the restricted local state information available to each

process -may make it impossible to construct a master/slave function

that only bases its decision on this restricted knowledge.

• 	 If it is not possible to construct a function that safely annotates a

program with the limited state information available, then it may still

• be useful to know which communications can use this approach. The

simple communications could still be synchronised using this method,

while a more sophisticated scheme could be used to synchronise the

remaining communications. Chapter 5 takes this approach further by

transforming those communications that are difficult to synchronise into

'equivalent' sequences of communications that can use the master/slave

method.

To allow the partial annotation of a program, we extend the possible

values of an annotation to include the unknown flag. An annotation

function is then safe if the communications that use the master/slave

approach are disjoint from the communications where the requests are

flagged with unknown, and the master/slave communications are safe in

the sense defined earlier.

Definition

An annotation 	function is safe if 'for every annotated graph

<(X,),MS> corresponding to a derivative' of P.

<,i>€& A MS(i) = unknown D MS(j) = unknown

<ij>eç D'MS(i) 	MS(j) v MS(i) = unknown

<>s A <i,k>Eê5 , jk D MS(i) 	master

Every program has a trivial sate annotation function that flags each

• request with the unknown value. If there exists a safe annotation

function, MS, for a program P that produces no unknown flags, then we

say that MS is a synchronising annotation for P. Similarly, we may say

that P possesses a synchronising annotation under specified constraints

on the local state information.

Implementing Static CCS on a Distributed System 	 57

§3.5 Generating synchronising annotations

One simple technique that can be used to automatically generate

synchronising annotations is to place some restrictions on the source

language. For instance, Hoare's original proposal for CSP [Hoare 78] did

not allow output guards within summations. If we adopt this restriction,

we could then annotate every input summation as a slave and every

output action as a master and this would produce a simple

synchronising annotation. The same restriction was used in the Occam

language [INMOS 84a], and in both cases a very efficient synchronisation

scheme is possible, but at the expense of imposing an asymmetry on the

source language. This approach has the advantage that each process

can be annotated independently of the rest of the system, whereas in

the more general case the context influences the annotation of a

process.

There are many cases where a problem cannot be naturally

expressed in the asymmetric subsets of CSP or Static CCS. We would

like to be able to automatically annotate all Static CCS programs, while

keeping the number of unknown requests to a minimum. The function

RS may be used as the basis of a simple annotation function. It is

certainly not optimal, as it avoids examining the state space of a

• program by assuming that all combinations of process states are

possible. • The advantage of this approach is that it is computationally

efficient, whereas a more detailed analysis would probably be too

expensive for a practical implementation. The main disadvantage is that

we may have to synchronise some of the communications using a more

• 	complicated protocol than is theoretically necessary.

-- 	 .

An algorithm for automatically annotating Static CCS programs is

presented below. It avoids examining the state space of the system by

using function RS to map between labels and process indices. For this

reason it is far from optimal, although a more detailed analysis of the

program is probably not feasible if the algorithm is to form part of a

compiler. We show that under this simplifying assumption, the problem

of annotating the program is equivalent to constructing an acyclic

Implementing Static CCS on a Distributed System 	 58

dominance relation between the processes with certain properties. We.

present an algorithm for constructing this dominance relation based on

computing the connected components of graphs.

• The first step in the algorithm is to construct for each process p., in

a program P = fl p1 , a set PC. containing all request sets that may
iEN

be issued by this process. • We define PC. by

PC. = 	RS(Init(p.')) I p.'Ederivatives(p.)

Note that some of the derivatives of p. may not be reachable when

pi is placed in the program P. A more careful analysis might detect this,

and the definition of PC. could be modified accordingly.

As an example of the construction of the PC. sets, consider the

following network of processes.

where p 1 = a.p 1 p 2 = .ã.p2 p 3 = P.P.3 and p4 =

Then PC1 = PC 	PC = 	and PC2 =

In order to construct an annotation, we must assign to each element of

every set PC. either the master, stave or unknown flag. We adopt the

convention that the annotation assigned to an element s of PC. refers to

the role that process i will assume when communicating with the

processes in the summation represented by s. 	Because of our

Implementing Static CCS on a Distributed System 	 59

underlying assumption about the accessibility of process states,

annotating the sets can be shown to be equivalent to imposing an

acyclic -dominance relation < on the processes. In any communication

between p. and p1. if p1<p1 then p, is the slave and p1 the master, and if

they are incomparable, then this is equivalent to annotating both terms

with the unknown flag. For example, consider the annotated set PC..

Let us suppose that Jj. . . . is an element of the set and has been

annotated with the slave flag. Then it is simple to show that every

other possible communication between p. and pj
 must also be annotated

so that p. is the slave. Suppose that this were not the case, i.e. there

was an element of PC. of the form ji. . . . that was annotated as a

slave. Our simplifying assumption would then imply that process p, and

process p
j
 may reach a state where they wish to communicate with each

other and both of them are slaves in the communication, which is not

possible if the sets have been annotated correctly. Similarly, if an

element of PC. mentions j and is flagged as a master then in all

communications involving p. and p, p1 will always be the master.

Finally, if a communication of p. involving p. is flagged as unknown then

all communications of p i involving pj will be flagged as unknown.

The previous analysis implies that the task of annotating the

elements of the sets PC. is equivalent to constructing an acyclic

dominance relation < between processes such that

- 	i) if s€PC. and jEs then p. < p. or p. < p i

or they are incomparable (written p. # p)

ii) if s€PC. A IsI>1
then either VjEs p. < p.

orVjEsp.//p

Note that the relation will not be a partial order in general as p.<p. and

p<p does not necessarily imply P1<Pk i.e. < is antisymmetric but not

transitive. It is simple to show that such an ordering generates safe

annotations.

synchronisation graph.

M

P.

Pk

P.
'7

Implementing Static CCS on a Distributed System 	 . 	60

Silberschatz [Silberschatz 79] proposed a scheme whereby a

dominance relation was provided by the user along with his program. If

two processes P (and p5 . could communicate then either p,< pi or p.<p..

Furthermore, the relation was constrained so that if p. has a summation

where p and p are communicands, for example, then p.<p5 and p.<p

This scheme can therefore be considered as a method of producing a

synchronising annotation, and implicitly uses our simplifying assumption.

Silberschatz extended this work by intrndurir

ports [Silberschatz 81]. 	These can be viewed as a mechanism for

implicitly generating the process dominance relation. 	Processes

communicate via ports but in this proposal each port is owned by one,

and only one, process. However, there may be several users of the port'.

Silberschatz imposes the restriction that summations can only involve

ports owned by the process. This restriction provides the asymmetry

necessary to construct a dominance relation automatically and hence a

synchronising annotation can be determined for any program using

communication ports. In both of these schemes, the onus is on the

user to provide the dominance relation, either explicitly in the first

case, or implicitly in the second. We now show how to eenerate these

orderings mechanically, although in many cases we will not achieve a

synchronising annotation as there may be incomparable processes.

We wish to detect all pairs of sets of the form

€ PC. , 	i,m, . . . 	€ PC.

as these may lead to the following connected component in the

If we encounter such a case then we must make p. and p. incomparable

(# 1). 	This means that in any communication between p, and p. the

Implementing Static CCS on a Distributed System 	 61

waiting strategy is inapplicable. 	As p is also involved in this

communication, we must set .p#p so that p does not use the waiting

strategy when communicating with p. Similarly p#p Suppose that

jk,nj was also an element of PC.. Now p//p so we must make p.1/p. In

other words, the incomparability may propagate.

We start by grouping together all those processes in PC. that are

affected by setting p. incomparable to one of them. For each set PC.,

we define an undirected graph G 1 = <N.,E>, where N. is the set of

communicating partners of p. and <j,k>EE. ill jj,k j cs for some s€PC.. If

we compute the cohnected components of G.. CC., then it is simple to

show that if p.1/p. then for all processes p ,
,

that are in the same

connected component as p
i and these are the only processes that are

affected by setting p
i incomparable to p. Thus we have a convenient

way of propagating 1/ to other processes. Furthermore, we may use the

CC. sets as substitutes for the original PC. sets, as any clashes between

the PC t sets will also occur between the CC. sets, and these sets will not

introduce any additional clashes.

For example, consider the network

P9 P4

M. P,

with the following PC. sets 	 S

PC 	1 	2 	3 	4
	

5 	6

j1
	

HM 	jj2jj

J3,5 ~ 	161

Implementing Static CC'S on a Distributed System 	 9-1

This leads to the following CC. sets

CC 	1 	2 	3 	.4 	. 	5 	6

2,3.51 J . 11,41 	jjljj 	jj2jj 	HM 	jj2jj

The next step in determining a safe annotation is to look for

synchronisation clashes in the CC. sets. One approach is to construct a

graph where i is a node if c is a connected component of p. and <i,j,>

is an edge of the graph if i€c' and jEc. Returning to the previous

example, this would produce the following graph.

12,35 	 2 14 	 2 6

N
31 	5M 	4121 62

If we now examine all of the connected components in the resulting

graph, then any component containing a path of length greater than two

is a potential cause of a clash. Therefore if <i,j,> is an edge in this

component then we set i/fl. These are the only instances of

incomparable pairs and any other connected components are either of

the form

1c 	

k.

in which case we set i<j, i<k etc, or the component is of the form

C

	

Jc ,

in which case we can set i<j or j<i. Thus we may deduce p 1 //p 2 , p2#p4 ,
p 1 #p3 1 p 1 #p5 and p2<p8 from our previous example.

	
Implementing Static CCS on a Distributed System 	 63

For a slightly more encouraging example, one where there are more

• comparable pairs, consider the following example..

P.

	

Ep 	 P

P4 	

P

p6. 	

p 1

where the PC sets (and the CC sets) are

PC 1 	2 	3 	4 	5 	6 	7 	8 	9 	10

	

IM 	1 7,8

1 63 	 9fl

1~ 1 .o i

• 	This leads to the following graph

4 17.8

5101 	 6
151

6 IV

7

from which we can deduce

p 1 < p 	
• p2 # P7 P9 < P 7

p3 < p4 	p4 # p7 p9 < p8

• 	 p5 < p6 	p4 # p8 p9 < p10

P6 # p8

Given a graph G = <NE> it takes O(MAX(N,E)) time to compute the

connected components, and so this algorithm should be of practical use

in constructing safe annotations.

Implementing Static CCS on a Distributed System 	 64

This concludes our analysis of synchronising annotations. We have

shown that by annotating a Static CCS program we may obtain an

efficient implementation scheme in some cases. This can be done

automatically if we make some simplifying assumptions, although the

algorithm may produce an annotated program involving unknown flags.

In such cases, we cannot use the simple synchronisation scheme

directly, and the techniques of Chapter 5 must be employed. These

involve transforming the program to simplify those communications that

are annotated with the unknown flag.

§3.6 A review of synchronisation schemes for Static
ccS

We now consider the case where the synchronising annotation

approach is not applicable. We start by reviewing some of the

synchronisation schemes that have been proposed for Static CCS. In

fact they were all originally proposed as solutions to the synchronisation

problems of CSP, but the two languages are sufficiently similar at the

process synchronisation level for the algorithms to be applicable to

Static CCS as well. This section is not meant to provide an exhaustive

review of the literature in this area although it does cover the major

published papers. The aim of the section is to give some idea of the

types of implementation strategy that are possible when a synchronising

annotation cannot be found for a program. We postpone the discussion

of one synchronisation scheme, the polling algorithm due to-

Schwarz [Schwarz 78], until later in this chapter.

There are a number of ways of classifying process synchronisation

schemes. For example, some are designed for real-time applications

while others are designed to work on broadcasting networks such as an

Ethernet. Some use the natural hierarchies present in the source

program to aid synchronisation while others attempt a probabilistic

approach where it is possible for two processes to wait indefinitely to

synchronise although this can only happen with a vanishingly small

probability. Figure 3-1 summarises the synchronisation algorithms that

are discussed in this chapter.

Implementing Static CCS on a Distributed System 	 65
	

Language 	 Language

	

asymmetric / 	 Symmetric

No output
guards /

IMa\

--,owned

Ther/

Z/

slave
[Hoare 78] 	 [Martin 80] Asymmetric Symc

/[Süberschal 79] 	implementation implementation

[Snepscheut 81] B

.

roadZcasting

Intermittent 	Continuous
polling 	 polling

[Bernstein 80] 	 [Schwarz 78] 	
Probabilistic

[Buckley 83]

[Schneider 82] 	 [Reif 84]
[Ron 84] 	 [Francez 80]

Figure 3-1: Synchronisation schemes for Static CCS

Implementing Static CCS on a Distributed System 	 66

One approach to synchronising Static CCS is to break the symmetry

of the system in some way. This can be done either at the source level

([Hoare 78] [Silberschatz 79]), or at the implementation level. We have

already seen some examples of the first possibility earlier in this

chapter. One other scheme, due to Snepseheut [Snepscheut 81], also

falls into this category. Snepscheut argues that it is natural to restrict

oneself to hierarchically composed systems. In such a framework, a

process p. may either communicate with its parent p., its siblings

(children of p.). or its children. It is the task of process P. to

synchronise all communication requests of p. naming either p
i
 or a

sibling of p. pi synchronises all communication requests naming one of

its children and it is also responsible for synchronising pairs of children

with matching requests. Although there are no technical limitations on

the programs that may be synchronised using this approach because a.

suitable communication tree may , always be constructed, there are

practical limitations. For example, if a particular program requires a

communication tree of height two, then the algorithm degenerates to a

global scheduler synchronising all communications, which is obviously

undesirable. This is why we classify this scheme as one requiring a

restriction, of the source language.

We now discuss those schemes that place no constraints on the

source language and will start by describing some algorithms that

produce asymmetric implementations. An implementation is asymmetric

if the code executed by process p. depends in some way on its syntactic

position in the program. The purpose of the following descriptions is to

illustrate the scope of the possible strategies for implementing a

process synchronisation mechanism. For more detailed descriptions of

these algorithms, the reader is referred to the relevant references.

The first scheme we consider is the one due to Bernstein [Bernstein

80]. A process may be in one of three states, called active, query and

wait. When a process P(does not wish to perform a communication it

is in the active state. Eventually p.'will reach a point where it needs to

communicate with some other processes and at that point it enters the

query state. In this state it queries each of its possible communicands

Implementing Static CCS on a Distributed System 	 67

to ascertain if they are waiting to communicate with -p 1 . 	A

communicand p may respond positively with the message YES, in which

case the connection is established. It may also respond negatively with

the message NO, in which case this indicates that process p, is not

interested in a communication with p. at the current time. Process p
i

may also respond with the message BUSY in which case p. may try to

query it again at some later point. 	If all communicands respond

negatively then the process enters the wait state where it will agree to

the first matching request that is presented to it. If process p. sends a

query to p, and while waiting for a reply a matching query from

arrives, then two things may happen. If k > i then p. sends a BUSY

message back to p and otherwise it delays responding to p until it has

received its reply from p.

Buckley and Silberschatz [Buckley 83] show that with certain

schedulers there may be no bound on the amount of time or number of

messages needed to establish a communication between two processes

using Berstein's algorithm. They remedy this defect by proposing a

more sophisticated retry' mechanism. The first part of the algorithm is

identical to the Bernstein proposal. However, if p. receives a BUSY

response from p3 then it attempts no further communications with that

process until p, has finished its initial queries. At' this oint p, sends a

RES message to all processes it had sent a BUSY reply to earlier.

Process p, may then resolve the noncommittal answer it received from

p5 by sending one RETRY message. Process p, will either respond with

NO in the case where it has returned to the active state since the BUSY

message was sent, or YES if it has unsuccessfully queried all of its

communicands. Process p
i may also be currently resolving a BUSY

communication with some other process p k and in this case it delays

replying to the RETRY message (or any new QUERY messages). This

delay does not introduce a potential deadlock as the chain of RETRY

messages is acyclic. The algorithm has the desirable property that if

two processes can communicate, and one of them does not establish a

communication with a third process, then they will communicate with

each other within a time bounded statically by the program text.

Implementing Static CCS on a Distributed System 	 68

It is possible to construct synchronisation schemes that have a

symmetric implementation. The ones we shall describe either require a

broadcasting network as their-.. underlying communication mechanism, or

they rely on probabilistic arguments to justify their correctness. Ron,

Rosemberg and Pnueli [Ron 84] present a synchronisation scheme which

relies on the ability of processes in a carrier-sense based network, such

as an Ethernet, to "eavesdrop" on messages not directly addressed to

them. A process p. starts by sending communication requests to all of

its communicands. If a matching request is sent back from one of the

processes then the other communicands recognise this event by

eavesdropping on the line and discard the request from p. as it is no

longer valid. This obviates the need to send retraction messages to the

other partners when a successful communication has been established.

The synchronisation scheme due to Schneider [Schneider 82] makes

use of a buffered communications network with broadcasting facilities.

Each message is tagged with a timestamp obtained from a distributed

clock. 	Lamport [Lamport 78] shows how such clocks may be

implemented without using a centralised control mechanism. 	This

timestamp is used to order the requests received by each process. The

queue represents the complete state of the system as far as process

synchronisation is concerned and so to ensure that process selection

operates on a consistent queue, every process broadcasts an

acknowledgement to all other processes when it receives a request.

Schneider's algorithm deals with fault-tolerant issues not addressed in

the other synchronisation schemes but this advantage has to be weighed

against the large number of control messages that may have to be

transferred before a synchronisation is achieved. Banino, Kaiser and

Zimmerman [Banino 79] have • also developed a synchronisation scheme

based on the use of a shared broadcast channel.

Another approach to obtaining symmetrical implementations where a

broadcasting mechanism is hot possible, or would be prohibitively

expensive to implement, is to make use of probabilistic methods. This

approach does not guarantee that two processes will communicate within

a finite time but the probability of them not doing so can be made

Implementing Static CCS on a Distributed System 	 69

vanishingly small. Francez and Rodeh [Francez 80] have developed such

a scheme. We assume that each pair of processes that potentially may

wish to communicate has access to a. private shared variable. For

simplicity, we will also assume that for each pair of processes there is a

unique label that is used for their communication. Suppose process p.

wishes to communicate with process p1 . It indicates its willingness to do

so by setting the shared variable between them. We assume that this

flag is initially cleared. If after a certain 'timeout' period the flag is

still set then the process assumes that p is not interested in

performing a communication. In this case p i clears the flag shared with

p
i and sets the flag connecting it to one of the other communicands.

This action is known as a retraction. Process p. will continue this

polling until it finds that the flag has been cleared when it is examined

after a timeout. Process p. takes this as an indication that the process

that shares the variable wishes to communicate and so the connection

is established. Similarly if pf wishes to communicate with p, and finds

that the shared variable has already been set, it clears the variable and

waits for the connection to be established. The algorithm assumes that

there is some form of mutual exclusion mechanism that prevents p. and

p. from setting their shared variable simultaneously.

The probabilistic scheme introduces the possibility that a pair of

processes may repeatedly set the shared variable but, due to an

unfortunate scheduling strategy, may continually miss each other.

Francez and Rodeh therefore assume that the underlying implementation

uses a fair random scheduler. With such a scheduler they argue that

• although an infinite time may elapse while two processes try to establish

a successful connection, this can only happen with zero probability.

S

Reif and Spirakis [Reif 84] also present a probabilistic solution to

the synchronisation problem. Their approach can be viewed as a real-

time solution in the sense that they can place a limit on the time taken

to establish a communication, and the chance that this bound is

exceeded can be made vanishingly small.

While our review of these synchronisation schemes covers the major

Implementing Static CCS on a Distributed System 	 70

work in this area, there are other algorithms which, although not

specifically addressed to the problems of process synchronisation, -can

be applied to such a case. The research published on resource

synchronisation problems is a good example of such work ([Lynch 80]).

§3.7 Synchronisation schemes considered as program
transformations

Some synchronisation schemes for Static CCS are based on a

synchronous message-passing mechanism, and so may be expressible in

Static CCS. Other schemes may be placed in such a framework even

though they may be initially presented in terms of shared variables for

example. We might argue that to transform a program using a

particular synchronisation scheme is no better than implementing the

program directly using the scheme. We counter this remark in the

following ways. Firstly, we may not be able to use, a particular scheme

directly because we have no control over the underlying implementation.

More importantly, it is very wasteful to synchronise an entire network of

processes using a complicated synchronisation scheme when only a small

number of the communications may require its generality. The

transformational approach has the advantage that it can be applied only

to those parts of the system where a synchronising annotation cannot

be found. While it would obviously be possible to mix strategies at the

implementation level, this would be more difficult and because of this

we argue that the transformational approach is more flexible. The

algorithm we use may depend on our particular problem; -we may want a

transformation with real-time properties for example. It would be

unreasonable to expect the underlying implementation to present us

with such a wide range bf choices.

§3.8 Schwarz' synchronisation scheme

This section describes the synchronisation scheme due to

Schwarz [Schwarz 78]. The next section will then show how it may be

expressed as a program transformation. Furthermore, it is shown that

Implementing Static CCS on a Distributed System 	 71

a synchronising annotation may always be constructed for the

- transformed program.

• Many• of the schemes for synchronising Static CCS employ the

technique of imposing some form of asymmetry on the system either at

the source or implementation level. The scheme due to Schwarz also

follows this approach. We assume that an acyclic dominance relation

> has been imposed on the processes. The choice of whether p

dominates q or vice versa is independent of the direction of any

possible communication between these two processes and can be chosen

arbitrarily. Schwarz has shown that the choice of dominance relation

can affect the performance of the algorithm but not its correctness.

In order for process p. to establish communication with p., Schwarz

proposes that they perform a "question and answer exchange". One

process is permanently designated the asker and the other the answerer.

If p.>p1 then p. is the asker and let us assume that this is the case.

These two processes synchronise through the two variables Q.. and A..
We will allow Q to be set by p. and be read by p.. Similarly we will

11

allow p. to set A and it can be read by p.. We assume that both

variables are initially set to A. If p, wishes to communicate with p. it

starts by setting Q.. to the value "R". This is sensed by p. and the

process responds by setting A either "Y" if it wishes to communicate

with p., or "N" otherwise. When p. senses the setting of A.. it resets Q..

and after this action p. clears A ... In order for a connection to be. J 	 2'

successfully established between p. and p., p. must ask if p wishes to

communicate and p. must reply positively. Process P. is suspended until

it receives an answer from p. which implies that p. must be monitoring

Q.. even when it has no desire to communicate with p. Because p must

respond to questions even when no communication is to take place,

Schwarz assumes that each process contains a "poller" subprocess which

is responsible for asking and answering questions. Each process must

have a means of communicating with its subprocess, or poller, and so

Schwarz provides a set of variables C.. for process p1 such that setting
C.. to true implies that the main process p. is willing to communicate

with p1. How the poller indicates the successful establishment of a

communication is left undefined.

Implementing Static CCS on a Distributed System 	 72

Schwarz shows that to avoid deadlocks it is necessary to choose the

> relationship between processes such that there are no infinite

sequences

p 1 > p > P
k >

This is why we stated that the dominance relation should be acyclic.

If we assume that the processes are indexed by positive integers in

some arbitrary way, we may take > to be "greater than" (>). In order

for a poller to check for communication requests from other pollers, it

must ascertain which processes can potentially communicate with it. We

assume that the i
th process p. can potentially communicate with the N.

processes connect [0], connect.[l]..... connect .[N.-l].

We give an outline of the algorithm executed by the ith poller in

Figure 3-2.

The commands "lock x" and "unlock x" respectively freeze and

unfreeze the variable x to prevent the variable changing while in a

critical section. We assume that these primitives can only be used on

variables that are shared by local processes. This is true in the poller

definition as C shared by the poller and its controlling process and

these are local to each other. "await C" is an abbreviation for the

busy-waiting loop

"while -C do od"

§3.9 A transformation version of Schwarz' scheme

In an experimental implementation of CSP, Shrira and Francez [Shrira]

have transformedl Schwarz' synchronisation scheme into a version that uses'

message-passing rather than shared variables to communicate between

processes. The approach is quite general, and could be applied to other

algorithms that use shared variables. Instead of a variable being set by

one process and read by another, we modify the algorithm so that a

message is sent by one and received by the other. We must also modify

the poller algorithm so that it continually offers the message "I do not

Implementing Static CCS on a Distributed System 	 73

Potter '1:

begin n,j,a.q; n:=O;

while true do

n:=(n±1) mod N.; j:=connect[n];

lock C..;
'3

if i>j A C..

- then 	 await A..A;
ii

• 	Q..:A; 	await A..=A;
2) 	 2'

if a = "Y" then "establish channel i j"

• 	 0 a = "N" then joffer rejected 	fi

o i > j A -C..
23

then Jdo nothing

0 	> i

then q:=Q..;

ii qA A C

then A.:="Y"; await Q.=A; A..:-A;
23 32 	 23

"establish channel i j"

• qA A

then A ..:="N"; await Q=A; A ..:=A;
23 32 	 23

EJq=A

then Jdo nothing

fi

fi

unlock C..;
23

od;

end;

Figure 3-2: The Schwarz Poller Algorithm

Implementing Static CCS on a Distributed System 	 74

want to communicate" rather than doing nothing and letting the other

process deduce this fact by looking at the shared variable.

The substitution of message-passing for the shared variables allows

us to express Schwarz' scheme in Static CCS, and hence to view it as a

program transformation. However, if this approach is to be meaningful,

we must avoid introducing any additional communication possibilities

that are difficult to synchronise as otherwise we would be reintroducing

the problem that the transformation was designed to solve.

We introduce the transformation as a function over syntactic terms

representing Static CCS expressions. Because of the syntactic nature of

the transformation function we would not necessarily expect the

transformation of plq to be identical to the transformation of qp

• 	although the two resulting terms would hopefully behave in an identical

fashion to an external observer. The syntactic treatment of the

arguments to the mapping function, coupled with the fact that all Static

CCS arguments will consist of a parallel composition of one or more

simple processes, allows us to associate a natural ordering I on the

source processes based on their relative positions in the parallel

composition.

In order to transform a Static CCS program, we must translate each

summation into an explicit request set. We use a variant of the request

set function, RS, to perform this task. We define

C(X) = j 	for any XE41,

and will assume that the source programs are such that the

corresponding function C also satisfies the following restriction

s -- 	 C(X) n C(X') 	X = X' whenever X,A'€S. for any i

This condition guarantees that if process p. wishes to communicate

with process p then there is no -confusion over which label they wish to

use in the communication. The restriction simplifies the presentation of

the algorithm, although the analysis can be extended to cover the

general case without difficulty.

Implementing Static CCS on a Distributed System 	 75

Our first step in the conversion of Schwarz' scheme to a CCS version

is to decide how a master process interacts with its poller. In the

original algorithm the two processes interacted via the C.. variables.

The poller prevented its master changing a variable when it was

examining it, and at all other times the master was free to change the

variable. We must replace this mechanism by one which involves

message-passing. There are a number of possibilities open to us at this

point. For example, the poller may refuse to communicate with any

other process until it has received a request from its master, after

which it ignores the master until a communication has been established.

Another alternative would be for the poller process to be always

willing to accept a request from its master. We might choose to poll

the master process along with all the other pollers. Allowing the poller

to always be able to accept a message from the master process creates

a synchronisation problem because when two pollers wish to

communicate there will be a many-to-many communication request at

this point. We therefore reject this alternative.

Allowing a poller to poll its master means that a translation of a

process must continually be willing to offer its request until a

successful communication has been established. This approach does

allow a master process to retract a request at any point which may be

an advantage if we wish 'to allow T moves in our source program. Such

an extension does not provide, any extra insight into the problem and

adds an extra degree of complexity. For this reason we will choose the

first alternative which does not allow refractions but allows a simple

presentation of the algorithm.'

It is not sufficient to leave the NIL process unchanged in the

transformation using this, approach because the 'poller 'will interrogate

its master when it has no outstanding requests, and this will deadlock

the poller and possibly lead to a total deadlock of the system. However,

if process p. reaches a state where it is equivalent to NIL, then the

transformed version can send a message to the poller requesting to

communicate with itself. Such a request can never be satisfied and so

Imp lern.enting Static CCS on a Distributed System 	 76

the poller does not require any additional communications with its

master. 	At this point the master can safely evolve to the NIL process.

• 	To 	avoid 	similar problems when a process wishes to 	synchronise 	on

- 	communications that can never occur, due to the inverse 	labels 	not

appearing in the sorts of any other processes, we add i to all request

sets of process p..

We assume that each poller, Potter. say, receives requests from its

master in the form of a set of process identifiers via the port offer..

Poller, indicates a successful synchronisation by passing back the

identity of the communicating partner using the port select.: Given a

Static CCS term of the form fl tEN *p., we translate each process p using

the function tr, as follows. -

Each process p. can syntactically be viewed as the process F, 	 a..p..
jem J V

with a suitable choice of variables. Then

trij[a,.pi2] = let. partners = u C(aj) in
jEm 	 jEm

fofferi(partnersui). 	
\

((setect2(A).ak.tri[{pik}] where C(ak)
iportncrs 	

/

We should really treat the label a as being composed of two parts; a

label and an optional -value or variable if we are using value passing.

The function C should then be defined so as to ignore the value part, or

alternatively we should supply a projection function from a • to the label

of a. However, as there is no scope for confusion if this coercion is

performed implicitly, we will use the variable a for both purposes.

S

Instead of using an indexed family of transformation functions, we

could equally well have used a single transformation function and then

applied an indexed family of renamings to the transformed processes to

achieve the same result. Each master process has its own local poller

process. 	We introduce a second local process, Buffer., to 	obtain the

effect 	of the Q 	shared variables. 	The process could be incorporated

Implementing Static CCS on a Distributed System 	 77

into the poller definition but this would unduly complicate matters. The

setting of the Q.. variable by Polter is achieved by sending a set.(j)

message to Buffer.. Poller5 can interrogate the status of this variable

by using the Q.. port. This port returns YES if Poller, currently wishes

to query Poller5 and NO otherwise. A typical transformed component is

illustrated in Figure 3-3.

Host.

select 	 offer
IL

set
1.

Poller. 	Buffer

Q..

A
k 	 Q

A.. 	
i.

1.)

Buff er. Poller. 	Poller 	Poller
3 	 k 	 m

Figure 3-3: A Poller Component
IL

We define PC. to be U C(A) - 	Then Buffer, can be defined by
AES

2

Implementing Static CCS on a Distributed System 	 78

Buff en = 	f 	j(NO). Buff en
jEPC I

+ sett(j). Buffer(j)

Buff er'i(k) = ((No). Buff er'i(k))
j4EPCi-jkj

 (YES). Buff en

All that remains to complete the transformation is a description of

• the poller subprocesses. In order for Poller, to perform its task it must

know the identities of all the remote pollers that may wish to

communicate with it. The set. PC. contains the identities of all such
I

• 	processes. To allow Poller, to interrogate the members of this set fairly

we assume that some arbitrary ordering has been imposed on the set

• 	such that PC.[n] denotes the n th element.

A description of Poller, is presented in Figure 3-4.

We assume that addition is (modulo IPC.I)+1 so that n ranges over 1

to IPC.I.

To transform a Static CCS program fl p , we first determine the
lEN

sorts S. and then apply the transformation function Tr where

TrEE fl 	.]1 =]J (tr.i[p.ill I Poller.(l,cb) I Buffer.)
iEN 	 iEN

In fact this definition illustrates one of the problems that arises

whendealing with transformations in CCS. It would be natural to expect

that some restrictions should appear in the above expression. However,

if we added the relevant restrictions we would find that all the actions

of the system would be affected by the restrictions. There would be no

• • externally visible actions, and this raises the question of how to prove

that the transformation is correct. We deal with such problems in the

next chapter.

Implementing Static CCS on a Distributed System 	 79

Poller(n,k) = let j = PC[n] in

offer 4(k')-. PoIler.(n,k') 	if k =

+. 	 if l>j A j€k

A..(r).

if r = YES

then select (j). Poller.(n+ 1,

else Poller.(n+1,k)

+ T. Potter(n+1,k) 	 if l>j A jk A

+ Q..(r). 	 f i<j A jEk

if r = YES

then i..(YES). select.(j). Poller(n+ 1,)

else Poller .(n+1,k)

+ Q..(r). 	 if 1<J A j'k A k 740

if r = YES

then A..(NO). Poller .(n+1,k)

else Poller.(n+1,k)

Figure 3-4: The Schwarz Poller in Static CCS

§3.10 A synchronising annotation for Schwarz'
transformation

In order to justify the transformation, at this point we must ask

ourselves - two questions. Firstly, are the transformed terms any easier 	-

to implement than the original program, and secondly, does the

transformed program behave identically to the original program, i.e. is

the transformation correct in some sense? A third question, how does 	- -

the transformation affect the performance of the program, will be left

until later when we . describe how the transformation may be partially

applied. This section deals with the first question. We show how a

Implementing Static CCS on a Distributed System 	 80

synchronising annotation can be constructed for any transformed

program, even when the original program does not possess one. The

first part of this chapter has already described how we can efficiently

implement programs that have a synchronising annotation, and so we

may deduce that the transformation does indeed aid the implementation

process.

• The first property we observe about the transformation is that all

the conditional cases in the poller definition are mutually exclusive..

The offer, message between Potter, and its master is a one-to-one

communication and so either may be the "master". The t.(j) message

matches with a sum in Buffer, so Potter. must be the "master" and

Buffer the "slave" for this communication. A(r) is a one-to-oneji
communication between Potter. and Potter so either can be the

%2

"master". The select ,(j) message interacts with a sum in the master

process so Potter, must be the "master" in this case. Q.(r) interacts

with a sum in Buffer so Potter, must be the "master" in this case as

well. Finally, the messages that are exchanged between masters are of

the one-to-one form so any "master/slave" relationship is adequate.

This completes our analysis and shows how a synchronising annotation

may be constructed for this transformation.

Both the pollers and buffer processes contain input and output

actions within a summation, and so the Hoare restriction' of forbidding

output guards in summations, to obtain an efficient implementation,

would be inapplicable in this case.

§3.11 Transformation correctness
S

If the same observer process examined both the program and its

transformation, then it would obviously notice a difference. This is

because the interfaces to the environment are different in the two

programs. Therefore, if we tried to apply the testing equivalence e to

these programs we would deduce that they were not equal. In order to

compare the programs -the observer must interact with the transformed

system like all the.- other processes, via a poller. Suppose we are

Implementing Static CCS on a Distributed System 	
. 	81

presented with an observer fl o and a source program fl p. Then
*EM i 	 tEN i

we must translate both components simultaneously, i.e. we first
- .
	construct a new term

fl q where o = q. ViEM and p = 	ViEN.
2EM+N

We can then determine the sorts and apply the Tr function to obtain a

transformed version of both the observer and the observed. Such an

approach to transformational correctness is dealt with in more detail in

the next chapter. At this point it is sufficient to note that some

modification of our notion of equivalence is necessary when a

transformation changes the externally visible interface to a system.

Another perhaps more serious problem that confronts us when trying

to reason about the correctness of the transformation is 	due to the

introduction of non-termination caused by the transformation even when

the original processes terminate. For example, consider the process

Poller1 . If the master process reaches a NIL state then Potter1 will have

the variable .k set to j1J. The poller will continually check all other

pollers in PC 1 , and if none of them wish to communicate with Poller1 ,

then there can be an infinite sequence of communications between

Poller1 and remote Buffer processes with no other processes progressing.

To avoid such problems in the Schwarz transformation, we could try

to modify the polling algorithm, or restrict the class of programs that

were transformed, in an attempt to eliminate all infinite T sequences

that may be introduced by an unfair implementation. If we view the

collection of PC. sets as specifying a connection graph for the system,

then there may be more than one connected component in the graph,

and the lowest element of every connected component may perform an

infinite sequence of polling communications leading to a diverging

computation. We might argue that it only makes sense to have one

connected component in any connection graph, because either the

observer must exist in only one of the connected components, in which

case the other connected components cannot influence the success of

Implementing Static CCS on a Distributed System 	 82

its testing, or else the observer is part of a number of connected

components, in which case this is equivalent to running several tests on

several separate components simultaneously, and this could equally well

be done separately. Even if we restrict ourselves to connection graphs

with only one connected component, there is still the possibility of non-

termination. To try to remove the possibility of non-termination from

the process with the lowest index, we might force this process to be

part of the observer and assume that the system is always willing to

communicate with the observer. However, this is unrealistic as in

general the observed system will need to evolve internally between each

communication with the observer. There appear to be no other

reasonable changes or restrictions we might make to the system so that

it will function correctly on an unfair implementation.

• 	 Before we can prove the correctness of Schwarz' transformation

scheme, we must examine in more detail those preorders and

equivalences that treat the introduction of some forms of non-

termination as being benign. We must also describe how to perform

transformation correctness proofs when the visible interface to the

system is altered by the transformation. This work forms the core of

the next chapter.

S

A Mathematical Framework
for the Notion of"Implementation" 	 83

• CHAPTER 4

A Mathematical Framework

for the Notion of . "Implementation"

§4.1 Introduction

An agent defining the intended behaviour of a component is usually

called a specification in CCS. There is no formal distinction between

specifications and other agents, although a specification will typically

define the desired behaviour in as clear a way as possible, with little

regard for efficiency. An implementation of the specification then

consists of a behaviour that is equivalent to it, but that also satisfies

other constraints, such as being more efficient, or containing a fixed

number of processes. There is some flexibility in these informal

definitions, as the equivalence used may depend on the particular agents

under investigation, but the specification/implementation relationship is

symmetric. The first part of the chapter argues that there is a case for

• making the relationship asymmetric. The aim is to develop an ordering

that places less constraints on what constitutes an implementation,

while retaining the ability to be observably indistinguishable from the

• 	specification. 	We do not deal with context-dependent proofs in this

thesis, and so any proposed definition of implementation should

• 	preserved the ordering under all CCS contexts. These constraints limit

• 	the degree to which an implementation can differ from being- simply

equivalent to its specification. A candidate for this ordering is proposed

that corresponds to the intersection of and the converse of 23-

Proving that a behaviour implements a specification using the new - -

definition is not only simpler than proving an equivalence, but is also

sufficient for many applications, including the proof of the Schwarz

transformation. -

A Mathematical Framework 	 .
for the Notion of "Implementation" 	 84

The second part of the chapter develops a fair equivalence for CCS.

The starting point for this analysis is the testing equivalence approach

of DeNiôola and Hennessy [DeNicola 82]. We argue that their approach

agrees with our intuitions concerning process equivalence, except whe-e

fairness arguments influence these intuitions. In particular, we argue

that for any behaviour p, pr" should be a valid implementation of p, if

we are only interested in fair versions of CCS. Previous attempts at

applying fairness arguments to CCS have been too restrictive, and do

not interact properly with the expansion theorem. A new preorder,

known as the weak-must testing preorder, 	, is developed as a fair

replacement for the must testing preorder, 	A weak-must equivalence,

-w , is also. defined. 	We show that the new definition behaves in a

similar way to the 2 2 preorder, except for certain infinite computations

where we argue that the new treatment of the behaviours is more

natural when reasoning in a fair framework.

Proofs that deal explicitly with observers are difficult in general,

and so it is desirable to find an alternative characterisation of the

weak-must preorder that does not involve observers.

Kennaway [Kennaway 81] defines an equivalence,
k' whose treatment of

certain infinite terms is identical to that required by 	, and so

provides a suitable starting point for this search. 	We define the

corresponding preorder,
k' and prove that Z W is contained within

although the converse is not true 	We argue that the treatment of

behaviours when the two preorders differ is more natural using the weak

must preorder. We show that a sufficient, but not necessary, condition

for the two preorders to agree is when the class of processes is

restricted to those that are determinate in some sense. The Kennaway

preorder involves sets of processes and so, while proofs may be simpler

than • with the weak must preorder, they are by no means

straightforward. 	A preorder whose definition is amenable to

bisimulation style proof techniques [Park 81] is obviously more

desirable, and this leads to the definition of the > preorder. The new

preorder directly implies
Ek ' but not 2w . It is also more particular about

when non-deterministic choices are made in the two processes. Finally,

A Mathematical Framework
for the Notion of "Implementation" 	 85

to obtain a preorder that does directly imply the FuW preorder, and also

has a bisimulation proof technique, the > preorder is proposed. This

preorder is even more particular about when non-deterministic choices

are made. There is therefore a trade-off between ease of proof, and the

class of programs to which these techniques are applicable. This last

point will become important when we prove the correctness of the

Schwarz transformation. Figures 4-1 and 4-2 summarise the

relationships between the preorders and equivalences presented in this

chapter.

The final part of the chapter discusses how a CCS transformation

function can be proved correct. A definition of transformation

correctness, due to Millington [Millington 82], is first presented. This

definition is then generalised to cover the type of functions typified by

the Schwarz transformation.

<(a I T ') , (a I Tw) + T>

<p , p+q>

<a.(.6 + n.y) , afi.ô + afi.y>

<a ,

<a aIrw>

<a.(.6 +) , (afl.6 + a.f3.7)

<p , (p+q)j.rW>

S

where p = a.p ± a..NIL and q = a.q

Figure 4-1: The relationship between various equivalences

<p , q>

<a.(.â + fl. 7) , afi.ó +

<afi + a.(+ y) , a.(+ y)>

+ 	a.(f3.ô + p.y)>

<y.a.p + y.a.ö , 7.(a.q + a.6)>

A Mathematical Framework
for the Notion of "Implementation"

where p = cx.p + cx.fl.NIL 	and 	q = a.q

Figure 4-2: The relationship between various preorders

§4.2 Implementations

Let us consider a specification process s and another process i that

is supposed to "implement" s in all contexts (see Larsen [Larsen 85] for

a discussion on context-dependent proofs). Following the testing

approach of Hennessy and DeNicola, what relations would we expect to

hold between processes s and i? Suppose s must satisfz, o, or in other

words, when observing s with observer o, the combined system always

succeeds. Process s therefore always performs in such a way that o can

eventually signal .J, success. What would we expect to happen if i was

placed in parallel with o? If there was a computation of ilo where

success could not be reported we would be rather unhappy. We might

argue that part of the specification of s demanded that it must always

satisfy o, and so any process that claims to implement the specification

must also satisfy o. This requirement is equivalent to stating that

A Mathematical Framework
for the Notion of "Implementation" 	 87'

s must satisfy o D i must satisfy 0

Suppose that i may satisfy o. It would seem reasonable to demand

that an implementation has no more possible actions than its

specification. If we did not demand this then placing i in a context

previously occupied by s might result in totally unforseen behaviour,

due to the implementation communicating with the environment through

labels that were not used in the specification. We must also ensure that

the implementation does not contain sequences of actions that are not

present in the specification for the same reason. Thus we will demand

that

i mat, satisfy o D s mat, satisft, o

What about the other two possibilities? Suppose s may satisfy o. If

s always satisfied o then we would have s must satisfy o and hence i

must satisfy o. If this is not the case then it may be that the

implementation has chosen to implement a different non-deterministic

branch of the specification, and so may never satisfy o.

Suppose that i must satisfy o. Then we do not want to demand that

s must satisft, o because s may specify a' choice of actions of which the

implementation only choses one, of them. As i must satisfy o implies i

may satisfy o, we know that it is possible for the specification to

satisfy o some of the time. To illustrate these points, let us take a

simple example. A change making machine might be specified and

implemented as

CD = pound?.

(T.pence'(lOO).CD + T. shilling! (20).CD + T.fiftypence(2).CD)

lCD = pound?.(pence!(100),ICD)

where CD is the specification and lCD a possible implementation.

CD must be able to accept a pound note and then deliver some

change. There is no way of forcing a particular form of change as this

A Mathematical Framework
for the Notion of "Implementation" 	 mm

depends on what resources are left in the machine. Therefore the only

tests that must succeed are those which are prepared to accept any

form of change. But then lCD is always willing to give back one

acceptable form of change, and hence lCD is a reasonable

implementation of CD. Similarly, we had better check that any change

given back by our implementation of the cash dispenser was mentioned

in the specification. For example, a cash dispenser that returned

dollars and cents would not be an acceptable implementation of CD.

What of the other two cases? CD may return shillings but as we

cannot demand that it does, we have no way of checking whether our

implementation has this capability, and so we do not demand it.

Similarly, our implementation must return pence but again any observer

would be happy with our implementation as it would always be

performing an acceptable part of the specification; it is not necessary

that the specification must return pence and so we do not demand it.

To summarise, we define the notion of implementation as follows.

i implements s or i is an implementation of s iff

V o€. i mwii satisft o J s may satisfy o

s must satisfy o D i must satisfy o

It might be argued that even this notion of implementation is too

restrictive. For example consider the hardware device known as a flip-

flop. The specification of this device is normally very naive in that it

only specifies what happens if the device is used sensibly. By this we

mean that it is possible to drive the flip-flop in a way that is not

covered by the specification. In these cases, the behaviour of the

hardware may be non-deterministic and so we have a situation where

the implementation has more possibilities than the specification. We

might argue that the specification should be strengthened to cover these

cases but this would complicate the specification, especially as the

component is not supposed to be used in such an environment. The

more elegant solution would be to prove that the implementation and

the specification, when placed in a certain context, or - within a certain

environment restriction, behaved correctly. This type of context-

A Mathematical Framework
for the Notion of "Implementation" 	 89

dependent proof in CCS is currently under investigation [Larsen 85].

However the simplest approach would be to allow the implementation to

have more capabilities than the specification. We might desire

something of the form

i implements s 	s after s must L D i after s must L

for all visible sequences of actions s, and sets -of visible actions L (the

- definitions of after and must are presented on page 106). However,

although this definition may be easier to use and prove, the

implementation may be able to perform all kinds of actions not

mentioned in the specification. We would therefore have to be very

-

	

	careful about the contexts in which we placed the implementation. In

general, the behaviour of 16Rij would be very different from L[sJ1 for an

• 	- arbitrary context '. 	Placing constraints on the sorts, such as

- 	Sort(i)cSort(s), would not help, as i may still possess sequences of
- 	 - 	

-

actions not present in s. We might add further, constraints to cover this

case as well, but as we strengthen the constraints, we are inescapably

drawn to the stage where we demand that i and s are observably

indistinguishable. This is what our previous definition of implementation

- 	was intended to formalise. To prove the flip-flop example correct in

- - 	CCS, some form of context-dependent proof therefore seems unavoidable.

§4.3 The introduction of non-termination and
- - 	- 	fairness

Let -us imagine that we have been presented with a CCS expression

that represents the specification of some problem. Our task is to write

an implementation in CCS that in some sense agrees with this

'specification. Assuming that s is the specification and i the resulting

implementation, then by our previous analysis this amounts to showing

that i implements s. Part of this task involves demonstrating that for

any observer o,- if s must satisfy o then so must i. This would appear

to be a reasonable requirement of any implementation, and in many

problems this is indeed the case. 	However, suppose that our

implementation introduces auxiliary behaviours that may 'chatter'

A Mathematical Framework
for the Notion of "Implementation" 	 90

amongst themselves indefinitely. As an implementor we may find this

addition perfectly acceptable. We might appeal to fairness arguments,

for example, to justify the correctness of the implementation. Although

we are introducing the possibility of divergence, it is of a restricted

form in that at any point in a computation it is always possible to

- " continue with the desired execution sequence. This contrasts with the

introduction of an infinite T chain with no other possibilities along its

length, which.is obviously harmful.

Perhaps the simplest example of the sort of process we have in mind

is where we wish to view pIr' as an implementation of p. If we :assumed

that both p and r' were scheduled fairly, i.e. neither behaviour was

allowed to monopolise the processor indefinitely, then pIr would appear

to be a reasonable implementation of p (although' we would expect it to

be slower). , Unfortunately, CCS does not have any fairness assumptions

built into it and so, for example, the must testing equivalence for CCS,

differentiates between these terms. The reason for this is clear;

pr' must satisfy o only when o may report success immediately. This

follows from the definition of must satisfy, where we demand that every

computation passes through a state where a 'I move is possible. This

includes the infinite r' computation, and so v must form one of the

initial actions of o. - p must satisfy o, on the other hand, may be true

because of cooperation between p and o. Therefore

p must satisfy o 	plr' must satisfy

If our view of the world is such that we wish to treat pI T U as a valid

• implementation of p, how can we modify the system to permit this? We

need to introduce some form of fairness assumption into the system.

Apt and Olderog [Olderog 84] define, four different notions of fairness;

impattiality, justice, weak fairness and strong fairness. Their definitions

assume a static language with a fixed number of processes so that there

- is no ambiguity about what is meant by component i, for example. We

introduce the different notions of fairness in this framework, and then

discuss what needs to be altered for a language with dynamic -process

creation such as CCS. -

A Mathematical Framework
for the Notion of "Implementation" 	- 	 91

A computation is impartial if it is either finite or else every

concurrent component in the system participates in an infinite number

of communications. Extending this idea to CCS requires some care in

the definition of what constitutes a component when processes -may be

created; and terminate, dynamically [Hennessy 84b]. 	However, this

• 	simple notion of fairness leads to many undesirable anomalies. For

example, pNIL has no infinite impartial computations as the second

component cannot participate in any communications. The second

notion of fairness, justice, attempts to remedy this deficiency by

distinguishing between terminated and running components of a parallel

program. Even this notion of fairness is not adequate for languages

such as Static CCS because a component may not have terminated but

may still be unable to proceed because of no matching requests. This

leads to the definition of weak fairness where the concept of an enabled

component is introduced. A component is enabled if it can potentially

communicate with another process. Then a computation is weakly fair if

it is either finite or else the following holds for each component: if for

all but a finite number of steps component i is enabled then the

component participates in an infinite number of communications. Thus

a weakly fair computation of

(a.NIL I (fix X. a.NIL + .X))\a

is guaranteed to terminate whereas 	 -

(a.-NIL I (fix X. a.NIL +

is not, since an infinite computation of the second example may have an

infinite number of steps where the first component is not enabled.

Weak fairness guarantees that components which are continuously

- enabled are not indefinitely prevented from progressing. Such a

condition may not be sufficient in mutual exclusion algorithms,_ for

example, where a component is waiting to enter a critical section. In

such a case there may be an infinite number of steps where the critical

section is occupied by some other component, and therefore weak

• fairness will not be sufficient to guarantee eventual entry to the section.

Such problems prompted the development of strong fairness. A

computation is strongly fair if it is either finite or the following holds

A Mathematical Framework
for the Notion of "Implementation"

for each component i: if for infinitely many steps component i is

enabled then this, component participates in an infinite number of

communications. Returning to our previous example,

(a.NIL I (fix X. a.NIL + .7.X))\a

has no infinite strongly fair computations.

The strong form of fairness', while being a desirable attribute of a

system, 	places 	some additional constraints on 	the 	implementation

techniques that may be employed in addition to those required for weak

fairness. 	For example, some forms of round robin schedulers are

inapplicable if a strongly fair implementation is required. Chapter 2 has

already shown how such schedulers do not provide an acceptable

implementation of Static CCS even though they technically agree with

the 'semantics of the language. Therefore the techniques required to

implement a strongly fair system may be required to give an acceptable

view of non-determinism anyway.

The application of these definitions to CCS presents special problems

due to the dynamic nature of the language. In such a framework, the

notion of • concurrent component is inadequate because new processes

may be created and old processes may terminate within the span of a

computation. Costa and Stirling [Costa 84] develop techniques that deal

with this problem and give a set of finite rules for generating all and

only the admissible execution sequences when fairness is assumed.

A possible objection to the concurrent component view of fairness

• 	arises because the expansion theorem can no longer be used. To see

why, consider the following two systems.

- 	 • 	p = (fix X. a.X) 	(fix - X. .X) 	q = (fix X. a.X + fl. X)

• We would traditionally treat q to be equivalent to p as they are

observably indistinguishable, which is why q can be derived from p by

applying the expansion theorem. • A strong or weak fair computation of

•p will contain an infinite number of a and j6 actions as it is composed

of two separate concurrent components. However, an infinite a

• sequence is a valid fair computation of q as it consists of only one

A Mathematical Framework
for the Notior. of "Implementation" 	 93

concurrent compoflent, and the forms of fairness treated so far do not

concern themselves with the choice operator. This leads us to conclude

that the expansion theorem is no longer appropriate when dealing with

these notions of fairness.

The stand we take in this thesis is to argue that it is not the

expansion theorem that is at fault when reasoning about fairness, but

rather the decision to consider the fairness of the I operator (I fairness)

and to exclude considering the fairness of the + operator (+ fairness).

We believe that both operators must have fair implementations to

provide an acceptable system. This point has already been touched on

in Chapter 2 where we argued for the necessity of random guard"

selection in an implementation. ' If the fairness of both operators is

considered then the expansion theorem still holds, which is important as

we consider it to aid considerably the understanding and usefulness of

CCS. If we wish to take such a decision then definitions of fairness

based on the concurrent component view . of the world are no longer

sufficient.

Parrow and Gustavsson [Parrow 84] consider' a version of CCS where

agents may be tagged with temporal logic expressions that filter out the

unfair sequences of actions. Such an approach allows the implementor

to specify exactly what fairness constraints are required by a particular

algorithm. Furthermore, because these constraints are expressed at the

level of sequences of actions, the distinction between fairness and +

fairness is not relevant. ' While this scheme is appropriate for particular

algorithms, we would also like to be able to express the fairness

properties guaranteed by a particular implementation. It would be an

advantage if the fairness assumptions could be built into an existing

equivalence so as to retain a familiar environment when reasoning about

the equivalence of processes. The testing principle of DeNicola and

Hennessy for the most part agrees very well with our intuitions of

process equivalence, except for its handling of certain infinite

computations where fairness assumptions play a part in influencing

these intuitions.

A Mathematical Framework
for the Notion of "Implementation"

	
94

One possibility would be to develop a weaker notion of must satisft

that ignores certain infinite computations. However, we must be careful

to distinguish between p1r. and p + rnr". Both processes have the

possibility of an infinite T sequence but the first process always has the

option of continuing normally. This gives us a hint as to how to define

a new, weak, form of the must satisfy predicate. The original definition.

of must satisfy specified that every computation of plo must be

successful. If we only demand that at any point in a computation it is

always possible to continue successfully, i.e. every finite prefix of a

computation forms the initial part of a successful computation, then we

have the basis of a weak form of must satisfy.

§4.4 The weak-must form of testing

• 	 Chapter 1 defined the set of computations obtained from plo as

,in(p,o). Let us extend this notation to represent the set of prefixes

of o.m(p,o) by 5om(p,o). We may then give an alternative definition

of the must satisfy predicate as follows.

Definition VpE, oEcV.

p must satisfy o <=> Vpc€5o.m(p,o).

c€.(p,o) s.t. 	 A pC<c

We use the notation pc<pc' to indicate that pc is a prefix of pc'.

To see that this is equivalent to the original definition of must satisfy

we only have to note that

If p must satisfy o then every path through the derivation tree of

plo , including the infinite ones, must pass through a node where a

move s is possible as is illustrated below.

A Mathematical Framework
f or the Notion of 'implementation"

	
95

N
N

N

We now alter the definition subtly to produce what we shall call the

weak form of must satisfy.

Definition VpE3, o€t.

p w-must satisfy o 	V finite pc€o(p,o).

3c€m(p,o) s.t. CEc.. 	A pc<c

The only change we have made is the addition of a constraint that

the only prefixes we are interested in are finite. We can view the

statement that p w-must satisfy o as an assertion that at any point in

the derivation tree of po it is possible to pick a path down the tree

that passes through a successful state.

Consider the derivation trees of (aT") and a + T o when observed by

T,J.NIL

S

T

T

1
V

1

1

T

A Mathematical Framework
for the Notion of "Implementation" 	 96

(aIr'IJ)r/ 	 ((o+rw)t'!)NJ

In the first case, wherever we get to in the derivation tree it is always

possible to find a continuation of the path that forms part of a

successful computation. Therefore

cxT w-'rnust satisfy a.sJ.NIL

However there is an infinite computation that is not successful. This

corresponds to always taking the leftmost branch in our tree. Therefore

arU must/satisfy a.'J.NIL

In our second example, there is also an infinite r computation: However

this computation is harmful in that once we have started down this path

all other possibilities are lost. Therefore

a + To w-must/satisfz, ã.-.,/.NIL

The first example illustrates why our intuitions are not always in

agreement with the original definition of must satisfy. When we look at

the derivation tree of we might argue that if we ran the

definition on any 'reasonable' implementation of CCS, one of the r

branches leading to a / possibility would eventually be taken. However,

CCS has no such fairness constraints built into its definition and so one

might counter this. argument by exhibiting an extremely malicious

scheduler that carefully picked a path through the derivation tree so as

to avoid reaching a state that may perform a move. In our particular

example this would correspond to taking the leftmost path of the tree.

A Mathematical Framework
for the Notion of "Implementation" 	 97

One obvious question we might ask at this point concerns the

relationship between the new form of testing and the notions of fairness

previously discussed.. Consider the process -,

p = (a..NiL I (rec X. &NIL + r.T.X))\a

T -

T

-

.-

Then under strong fairness assumptions the first process will eventually

perform the a action and hence a 9 action will eventually be offered to

the environment. Note that no such guarantee could be made only

assuming weak fairness of the system. Consider now what would happen

if we observed the system with the observer o = P.-,I.NIL. Then

p w-must satisfy o

because at any point in a computation of po it is always possible to

extend the prefix to a successful state. Thus the new notion of weak

testing captures the flavour of strong fairness. Because it is defined in

terms of derivation trees, the new definition makes. no distinction

between I fairness and -+ fairness and so the expansion theorem is still

applicable.

Proposition 4.1 If all the elements of 	iii(p,o) are finite then

p must satisfy o 	p w--must satisfy o

Proof:

Trivial, as all elements of 	oen(p,o) are finite in ±his case. 	0

-S

Proposition 4.2 p w-must satisfy o D p may satisfy 0

Proof:

If p w-must satisfy o then there must exist at least one successful

computation in om1 (p,o) and hence p mazj satisfy o. 	0

We define the weak equivalents of- 2 and 	as follows.

A Mathematical Framework
for the Notion of "Implementation"

Definition

P z,. q <==> VoEtV. p w-must satisfy o D q w-must satisfy o

Pq 4=, pJqAqP

- Our motivation for introducing the weak form of must satisfy was to

allow an implementor some freedom of choice. Thus we could have

defined an asymmetric version of ç where we assumed that the

specification was not divergent, for example. We might define an

alternative version of w , w ' , as follows.

VoE. p must satisfy o D q w-must satisfy o

However, such a definition does not lead to a transitive relation. For

example,

P 	pIr F.W '

-

but

P V' T.

Therefore this possibility was rejected.

§4.5 Some properties of and cc

We will be primarily interested in properties of the preorder 2 w as

this is what we will use in the final definition of implementation;

However, for completeness, the equivalence is also investigated.

One of the most important properties of Z w is its ability to be

preserved by most of the CCS operators. Before showing this, two

auxiliary lemmas are first proved.

Lemma 4.3

If p w—must satisfy o and

pjo = p0Io0 --p1 fo 1 --1-- . . . _2.pI0

A Mathematical Framework
for the Notion of "Implementation" - -- 	 99

for some n s.t. Xm, O<m<n. o> then p w-rnust satisfy - on

Proof:

Suppose false. Then there exists a prefix 71 of a computation c

from plo which cannot be extended to a successful computation.

But the computation obtained by prefixing

<p01o0>.<p 1 1o 1>.....<p 1 1o 1 > to c is a computation of plo and so

<p01o0>,<p 1 1o 1>.....<p,1 lo,1> prefixed to it can therefore be

extended to a successful computation. The only way that

p w-must satisfy o can be true is if for some m<n. o--. But
Tn

this is impossible due to our assumptions. 0

Lemma 4.4

If a.p w-must satisfz , othen 3n s.t.

either o 	o' -- for some o'
• 	 n 	-
• 	 or o _!_, o' -- for some o'

Proof:

Follows from the definition of a successful computation. 0

Theorem 4.5 If p ç q then V.LE4C.1UT, VA€41, Vrc5' and relabeling S,

A. p gw ,u.q

plr 2, qr

p\X ZW q\X

p[S] zw q[S]

Proof:

1. Assume jip w-must satisftj o.

Take a computation of p.qlo, and any finite prefix of

• 	-• the computation

A.qlo = q0lo0 -1---q 1 jo 1 --1-- 	. . . 	 q. 1 o

If there exists an i'(n such that o. 	> then the
IL

computation is successful so we will assume that there

is no such i. If there exists an i<n such that q=q

then we have j.L.qIo-1-qo and so 	 But

A Mathematicat Framework
for the Notion of "Implementation"

	
100

P u-must satisfy o and so q w-must satisfy o which

implies that the prefix can be extended successfully.

Otherwise ..plo-'-plo and by Lemma 4.3,

,i.p w--must satisfy 0. Then by Lemma 4.4, either

	

M
V
	

m
o -!-> 0 , - in which case q jo '-)q jo' —, or

M 	 - 	 m+f'
 , 	IL 	 7 o -1---> o -- o ,, so u.pio —> plo where

m+1
p u-must satisfq o". But then qo !_> qj o" and

q u-must satisfy o" so again the prefix can be

extended successfully.

Assume pIr u-must satisfy o.

Then p w--must satisfy rio which implies that

q w-must satisfy rio and hence qir w-must satisfy o.

p\X w-must satisfij o <=> p w-must satisfy o\X

and so the result follows trivially.

Assume p[S] u-must satisfy o.

We first extend S to deal with the label 1, i.e. S(v')v'.

We then define a complement renaming by (X) = X if

S(X) =

Then p[S] u-must satisfy o <=> p w-must satisfi, o[S]

and so the result follows trivially.

[!

The behaviour of 2W under the fixpoint operator remains an open

question. Milner [Milner 83] shows that' his equivalence is preserved

by fix using a bisimulation. Hennessy and DeNicola [DeNicola 82] do not

prove that their, equivalence
2 is preserved by fix directly, but rely on

their induction results to deduce this fact. Neither of these approaches

are open to us for but fortunately we do not require the preservation

of tw by fix for the work in this thesis. We therefore postpone this

investigation for the time. being.

Unfortunately, 	is not preserved by + as this simple example

illustrates.

A Mathematical Framework
for the Notion of "Implementation" . 	 101

a.NIL 	T.a.NIL but X.NIL + a.NIL 	A.NIL + T.a.NIL

because if o = X..J.NIL then

X.NIL + a.NIL w-must satisfy X.J.NIL

whereas

.NIL + 'r.a.NIL w-'rnust/satisfz , Y.J.NIL

as we cannot prevent the 7 branch from being taken leading to an

unsuccessful computation. This result is not too surprising as is not

preserved by + either. Furthermore, we have the following theorem

which is applicable in many cases.

Theorem 4.6 If p FW q then VE4UT, '1rE. /L.p + r Qw /.L.q + r

Proof:

Suppose this is false. Then there is a computation of (.q + r)Io

such that a prefix of it cannot be successfully extended, i.e.

(.q + r)lo = q0 Io0 -1-- q1 I0 1 --'---i . . .

and Vj<n. o.-~-?". Let q. be the first point in the sequence where

ji.q ± r participates in the computation either by moving silently by

itself or by synchronising with the observer. If no such i exists in

the prefix we can always extend the prefix until it does as

otherwise this, would imply that the observer must be able to reach

a successful state by itself which would cause a contradiction.

Suppose the move at ci is due to r, i.e. r--'r'=q 1 .

Then 	+ r)Io --->pJo--'--r'Io. and so r' w-must satisfy o •

which leads to a contradiction.

• 	

' suppose instead that the p. move takes place.

Then we have (p..q + r)Io1 -'—qo 1 . But then p..po1 -1—po. 1 and

p w—must satisfi,, o 1 so q w-must satisfy o., leading to a

contradiction.

Although we have shown that ç 	2' this does not necessarily'rnp1y

that 	 If we only consider finite processes, then all

A Mathematical Framework
for the Notion of "Implementation"

	
102

computations are finite, and so trivially 2 = 	However, in the more

general case, 	and 	differ in subtle but significant' ways as the

following examples illustrate.

Let 	p1 = a.NILITW q. = (a.NILIT') + -r.NIL

P2 = a.NIL 	q2 = a 	&J .NILI T

Proposition 4.7

p 1 	q but p 1 y4 w q

p2 342 q2 but p2
Liw

q2

Proof:

1. We first show that p12q 1 .

Let F=T.F, S 1 (x) = a.NILIx and S 2(x) = (a.NILIx) + T.NIL. We

must show that S1(F)
2 S2 (F)and we prove this by Scott

Induction whose use is justified for 	in [DeNicola 82].

Inductive base, S1(Q) 2

a.NILIC) 	a.D + 1)

by the expansion theorem

2 a.O+O+T.NIL

asl)cX

(a.NILQ) + T.NIL

by the expansion theorem

i.e. S(0) 2 S20)

a.D + r(Q+NIL)

by the expansion theorem

and X + 'r.Y E T.(X + Y)

a. f] + T . 1)
S

as X + NIL = X

2

as X + T.Y i T. (X + Y)

22 a.0 + 0

asT.XLX

2 a.NILIO

1. e. S 2 (D) 	S 1 (0)

A Mathematical Framework
for the Notion of "Implementation"

	
f03

Hence S 1 (fl) e S2(Q).

Induction step Assume that S1(F) 2 S 2(F) and show

that S1(r.F) 2 S2(T.F)

a.NILIT.F 	a.F + r.(a.NILIF)

by the expansion theorem

a.F + T.(a.NILJF + T. NIL)

by the inductive hypothesis

a.F + T(T(a.NILIF) + T.NIL)

as 	+ r.Y = T. (X +Y) + T.Y

and X + NIL = X

2 T(a.F + T(a.NILIF) + T.NIL)

as X + T.Y i T. (X + Y)

a.F + T(a.NILIF) + T.NIL

asT.XEX

a.NILft.F + T.NIL

i.e. S1(T.F) Z2 S2(T.F)

2 a.F + -r('r(a.NILF) + T.NIL)

by the expansion theorem

and jX + /L.Y = / L.(T.X + -r.Y)

ccF + T(a.NILIF) +'T.NIL)

as X + NIL = X

and 	+ r.Y= r.(X + Y) + T;Y

22 a.F + T(a.NILJF)

by the inductive hypothesis

= a.NILji- .F

i.e. S2(T.F) Z2 S1(-r.F)
S 	 -

Hence S1(T.F) 2 S 2(r.F) and so p 1 	q 1 .

To see that p 1 Ø q 1 , consider the test &.J.NIL

Then

p 1 w-must satisfij a.'J.NIL

whereas

A Mathematical Framework
for the Notion of "Implementation"

	
104

q 1 w-inust/satisfv &4WIL

2. p2 must satisfy a.J.NIL whereas q 2 must/satisfi, a..J.NIL

Therefore q & 2q2 .

Suppose p w-must satisfy o but pftW
w-must/sat'isf'q o for

some process p and observer o. Then there is a prefix of a

computation of pIT"Io that cannot be successfully extended.

PIT 1° 	pir
U

 lo =$=>.

where o has passed through no successful states enroute to

0'.

-SI
Then pJo=='p'Io' and as p w-must satisfii o, p'Io'=' and

SO p'lT'Io' 	which is a contradiction. Hence ppIr

Suppose 	w-must satisfy o but p w-must/sat'isf'q o.

Then plo==p'jo'=$ for some p', W.

But plr''o ==- p'I -r'Io' 	and therefore p' and & must be

able to communicate in such a way that eventually the

observer may perform a J action. Therefore p'o' 	which

leads to a contradiction.

Hence PIT' z ,, p and so p 	P I T U. 	0

This last proof illustrates another important difference between

and 	(and also between 	and). To prove that PWq is difficult in

general because we have to work with tests. Although 22 is also defined

in terms of tests there exists an alternative characterisation of2 2 that

avoids the use of these tests. 	Furthermore, DeNicola and

Hennessy [DeNicola 82] have shown that for F 2 it is only necessary to

consider finite tests. If pq then there will always be a finite observer

• that s can distinguish between them. 	This is not true for 	as the

following example shows.

Let p = a..NIL + a.p and q = a.q

i.e.

A Mathematical Framework
for the Notion of "Implementation"

	
105

cx

LX

cx

cx

cx

a

Then we can construct an infinite observer o = a. .'J.NIL + o) that can

differentiate between them, i.e.

p w-must satisfy o but q w-must/satisf-y o.

However, there is no finite observer that can differentiate between these

processes.

We would like an alternative characterisation of
£ w that avoids the

use of tests. It would also be highly desirable if it allowed us to

perform bisimulation style proofs. At the very least we would like an

alternative, simpler preorder that treats divergent terms in a similar

way to and also implies zw . In [Kennaway . 81], Kennaway develops an

equivalence that is very similar to the 'weak-must' equivalence in that it

treats some of the diverging terms we are concerned about in a similar

• 	way. Furthermore, Kennaway's equivalence can be expressed in a form

• 	that is amenable to proofs using the bisimulation technique. It would

therefore seem prudent to investigate the relationship between Z w and

the preorder version of Kennaway's equivalence.

- §4.6 Kennaway's preorder z
k

The version of Kennaway's preorder we shall use is in fact based on

the definition given in [DeNicola 82] by DeNicola and Hennessy. It

differs from the original in a number of subtle but important ways.

Appendix. A describes the original version of Kennaway's equivalence and

shows why that version is undesirable because it is not an observational

equivalence.

A Mathematical Framework
for the Notion of "Implementation"

	
106

We start with some definitions that will be used frequently in the

restof this chapter.

Definition

We use p, q to range over 5) and P, Q to range over subsets of Y. 	-

Let

- Init(p) 	= aEAc4 I
Traces(p) = s€4ci j p='

For any sequence sEAi, p after s and P after s are defined by

pafter e = p

p after a =

p after a.s = (p after a) after s

P after s = U p after sIpP

For any set Lç4 c& p must L and P must L are defined by

p must L <==> Vp' 	s. t.
C

pp'. 3XeL.
x

p'

P must L 4=> Vp€P. p must L

Hennessy and DeNicola presented their version of Kennaways

equivalence directly. However, as we are trying to find an alternative

characterisation of , it is necessary to present it in the form of a

preorder.

We define a set of approximations to the desired relation 	The

preorder is then obtained by taking the limit of this series.

P 20 Q is always true.

P 	Q <=> i) Vfinite LcAd. P must L D Q must L

ii) VXEAOI. P after X c Q after X

Vn>0.PQ.

A Mathematical Framework
for the Notion of "Implementation" 	 107

We extend this definition to single processes and the equivalence in

the obvious way.

P rzk q 	 jpj F., jqj -

A

Pq <==> 	 Aqp

We can give an alternative characterisation of 	which does not

involve a recurrence. This will be useful when reasoning about the

preorder. The proof is based on an equivalent proof for k presented

in [DeNicola 82].

Theorem 4.8 PZkQ <==>Vs€Act, Vfinite LC4C4.

(P after s) must L D (Q after s) must L

Proof:

We prove that 	implies 3sEAc/, Lç40€ s.t.

(P after s) must L and (Q after s) midst L

If P'kQ then Jn s.t. PQ. We use induction on n.

Inductive basis, n = 1

PQ implies 3L s.t. P must L and Q midst L.

Therefore (P after) must L and (Q after) m idst L.

Inductive step

PC Q iff either i) PZQ

or ii) 3XE4t s.t. P after A e Q after A.

In case i) the claim follows from the base case.

In case ii) the inductive hypothesis states that for some
S

sE.4c4, LC4cI,

((P after A) after s) must L and

((Q after A) after s) midst L-

But then we may deduce

(P after A.$) must L and (Q after X.$) mist L

2.(z)

• A Mathematical Framework
for the Notion of "Implementation" 	 108

Suppose 3sE4ct and finite Lç4d such that

(P after s) must L and (Q after s) m idst L.

We show that P
'k by induction on s.

Inductive basis, s =

P after c = P so PZ'Q, i.e. PVk Q

Inductive step, s = as'

Then ((P after a) after s') must L whereas

((Q after a) after s') mi dst L

By induction P after a
'k 	after a and so P 'k Q

0•

Corollary 4.9 For all finitely expressible agents p. q

P 2k q D Traces(q) ç Traces(p)

Proof:

Suppose 3s s.t. sETraces(q) and sTraces(p). Let a be such that

sa

a exists because q is finitely expressible and hence has a finite

sort. Then (q after s) midst Jai whereas trivially

	

(p after s) mus jaj. Therefore p 	q. 0

We can prove a similar result for 2 W ,
i.e.

Proposition 4.10 	p 	q D Traces(q) ç Traces(p)

Proof: -

Suppose 35 s.t. s€Traces(q) and sTraces(p). If s denotes

a 1 a
2

. . . a n , then we construct an observer o as follows,

o = T. 	+ 1 (r1 + (. . . T. 	+ zi.)

Then p w-must satisfj o because at any point in a computation

from p'o, the observer can get to a position where it may-perform a

move by itself. However q w-must/sat-isf'q o because

A Mathematical Framework
for the Notion of "Implethentation" 	 1 09

qo-> 	----q'INIL

which cannot be extended successfully. Therefore p 	q. 0

These two results are useful because they allow us to deduce q 	p

from p Frw q or p z k q because Hennessy has .shown in [DeNicola 82] that

Traces(p) ç Traces(q) <=> p 23 q

What is the relationship between 2,, and 	The following theorem

answers part of this question.

Theorem 4.11 p 	q D 	k q

Proof:

We prove that p 'k q implies p 	q.

q then 3s,L s.t.

(p after s) must L and (q after s) mist L,
S

i.e. p=p' implies JA€L s.t. p' 	while
S

Bq', q=q and q' 	for no XEL.

If s = a
1 2

- a . . . a then we define an observer o as follows
n

0 = T. -'/ + 	1.(T./ + 	(. . . 	n-i(T./ ± 	 . .)
aEL

Then p w-must satisfy o whereas q w-must/satisfzi o and so

pVq. 	 o

Unfortunately, p k q 	q as the following example shows.

-Consider the processes p = a..NIL + ap and q = a.q.

S

A Mathematical Framework
for the Notion of "Implementation"

	
110

p=
cx

cx

a

cx

cx

cx

Then p k q because (p after s) must L J (q after s) must L Vs,L.

To see this we perform a case analysis on s.

s = a, so (p after s) = p, p.N114.

If (p after s) must L then Jot, flj C L.

But q after s = q and q must Jot, jej.

s = a n# so p after s = NII4 which must L for no L.

s = something else, in which case p after s = ft
q after s = 	and both of these must L for any L.

However the observer o = a.o + fi'J can distinguish between p and q

as p w-'must satisfii o but q w-must/sat-isf, o, i.e. p'q.

We can trivially show that p 	q 	k q but again the converse is

not true, i.e. p k q q. As an example of why this is not the

case, consider p and o as defined previously and q' = q + p. Then

i k q, i.e.

(p after s) must L <=> (q' after s) must L Vs,L.

To see this we again perform a . case analysis on 5.

i) 	s = a.

Then (p after s) = p, fl.NIL

and (q' after s) = 	q, p, P.NILJ

Both sets must L only for any L where ja,j6jCL.

A Mathematical Framework
for the Notion of "Implementation"

	
111

s = n.

Then (p after s) = NIL = (q after s)

iii) s = something else.

Then (p after s) = 	= (q' after s)

However p w-'rnust satisfy o but q' w-'rnust/satisft, o so p 	q' and

hence p 3A W q'.

This is an example where 	and 2 agree as we can show that

P 2 q'. Let S1(p,q) = p and S 2(p,q) = p + q. Then we will show that

S1(p,q) 	2 S2(p,q)

Inductive basis, S1(Q,Q) 2 S2 (0,D) trivially.

Inductive step,

Assuming S1(p,q) 2 S2(p,q),

show. S 1 (a.p + c.j9, cx.q) 	2 S 2(a.p + a., a.q).

S 1 (a.p ± a., a.q) 2 a.p + 0(. P

2 a.(p + q) + cx.p by inductive hypothesis

a.(a.p + afi + a.q) + a.fl by expansion

2 a.(a.p + a.) + a.a.q + a.

+ afi + a.q

2 S 2(a.p + a.j3, a.. q).

Before summarising our results we show how these equivalences

relate to Milner's observational equivalence [Milner 80]. None of the

equivlences imply as we can show that

aa

f3

It is simple to show that 	impliesand
w 	 k

A Mathematical Framework 	 .
for the Notion of "Implementation" 	 112

Proposition 4.12

pq D i) P W q

.Pq

- Proof: 	-

i) Suppose w.l.g. that p w-rnust satisfy obut q w-inust/sat'isft, o.

Then 	 i.e. q==q', o==o'.

But pq so 3p'--q' s.t. p=p'.
'I

As p w-must sakj2fU o then p'Io'
5 . V .

i.e. p'-p", o'o"—.
'I

This implies q
S.

' and so q'Io' 	, a contradiction.

If 	k q then w.l.g. assume that

(p after s) must L but (q after s) midst L.

Then q=q' and for all AeL. q'==.

But 3p' s. t. pp' and p'--q'.

Furthermore 3A€L s.t. p'

and this implies q' 	, a contradiction. 0

It is simple to show that pq does not imply p 2q as aaIT" but

a 2 aIi- '.

§4.7 An analysis of the differences between 2,. and

Consider the processes p 1 and q 1 defined by

q1= TI

Both orderings agree, i.e. p1 ç q1 	P 1 2k

q'p1 .

Similarly, if we define p2 and q2 by

A Mathematical Framework
for, the Notion of "Implementation" 	 113

• p2 =

then again they both agree, i.e. p 2 ç q2 	'2 k q2

q24p2

Let us now extend p 1 and q 1 to the infinite case, i.e. we define

q11= :1
Then both orderings take the view that because it is possible for

• to reach a state that can perform a fl, and because it will always have

this option, then it will eventually be allowed to take place. A j6 move

can never happen in q 1 ' and so p 1' q1 ' and p1' Vk q 1 '. Unfortunately,

the two orderings disagree on what should happen when p2 and q2 are

extended to the infinite case. Let p2' and q 2'be defined by

A Mathematical Framework
for the Notion of "Implementation"

	
114

q 2 =

Then following the argument for p1' and q 1 ', the weak preorder

distinguishes between these two terms because it assumes that a p

action will eventually be allowed to happen in p2' whereas it cannot in

q2', i.e. p2 ' 4 q2'.

However p2 ' 	q2' which is unfortunate as it implies that 	is not

preserved by the bar operator. To see this we note that

p 1 ' = (p2'I)\a and q 1 ' = (q2'I)\a

To summarise, these results imply that Kennaway's preorder does not

form the basis of a characterisation of ç, and furthermore, it would be

very difficult to use the Fk preorder in its own right as it is not

preserved by the parallel composition operator.

In order to precede from this point there appear to be a number of

choices. We could try to find another characterisation of zw . The

Kennaway preorder encounters difficulties because the definition of must

captures our intuitions where i - moves are involved but when we replace

the 7 actions by visible actions then the preorder cannot 'see through'

these actions. We have experimented with some alternative definitions

of must that try to remedy this problem. For example, we might define

S'a
p must L i f f Vp' s. t. p=

S
='p', p' 	> for some aEL

where ; s'E At*

A Mathematical Framework 	.
for the Notion of "Implementation" 	 115

This would allow us to differentiate between p2' and q2 ' in our previous

example as

p' .mus tk 	whereas q2' mistfl.

Unfortunately, all attempts to build such definitions into the Kennaway

preorder have so far proved unsuccessful in faithfully characterising ç.

Another possibility is to find some additional constraints on

processes p and q such that pzq does imply Pçq• The next section

investigates such a constraint called Controllability. Demanding that a

process is controllable is rather a strong requirement and hence the

work, while providing a connection between Fw and k' is of limited

applicability. Section 4.9 extends this work by relating the notion of

controllability to Determinacy [Milner 80, Engeifriet 841. Section 4.10

introduces a simple preorder that implies the Kennaway preorder. We

use this preorder in Chapter 5 to reason about the Schwarz

synchronisation scheme. However it does not directly imply 	and so

suffers from the same deficiency as 	in that it currently relies on

determinacy to establish a connection with the weak testing preorder.

Because of the limited applicability of these results (although an

example of their use appears later in the chapter and also in Chapter

5), the next three sections may be viewed as a digression from the main

results of this chapter which continue in Section 4.11.

§4.8 Controllable processes

Let us start by considering again the example where Zkand

disagreed.

One constraint that might allow us to deduce pçq from PFzk q would be to

A Mathematical Framework
for the Notion of "Implementation" 	 , 	116

filter out uncontrollable processes such as p -in the above example.

Informally, a process is controllable if its evolution can-be controlled by

means of the actions offered to it by the environment. Process p in the

example 'above' is uncontrollable because there is no way for the

external environment to guide the process to a state 'where a P action is

possible.

The formal definition of controllability uses sets of agents. A set P

is controllable if, whenever one of the processes in the set can perform

an action, then this action must be an unavoidable choice for all the

agents (i.e. a T transition cannot remove this possibility). Furthermore,

the set of processes obtained by performing this action must also be

controllable. A process p is controllable if the singleton set containing

p is controllable. The use of sets of processes in the definition of

controllability allows non-deterministic choices to be present in an

agent, but ensures that such choices do not affect the externally visible

behaviour of the process.

Definition

P is controllable iff

(3peP, XE4. 'p==)D P must JXJ, and (P after A) is controllable

p is controllable iff 	is controllable.

Proposition 4.13 P controllable D (P after s) controllable for any sE4t

Proof:

By induction on s.

Induction Basis, s =

P after c = P so the proposition follows immediately.

Inductive step, s = as' - 	-

P after s = (P after a) after s'

Then if P after a = jj then P after s = 	and

is trivially controllable. Otherwise P after a is controllable

A Mathematical Framework
for the Notion of "implementation" 	 117

by definition and so by the inductive hypothesis,

(P after a) after s' is therefore controllable. 	0

Corollary 4.14 If p' € p after s: and p' 	p" then (p after s) must

Proof: Immediate. 0

We now show that controllability of p is sufficient to deduce pçq

from

Theorem 4.15 p 	q A p controllable D p ç q

Proof:

Suppose pq so that there exists an observer o where

p w—must satisfy o and q w-must/satisf-q o. In other words there

exists a computation

qo = q0Io0 --> q1lo 1 --1-- . . . —1--qo-1-- .

and a prefix q0Jo0.....qo that cannot be extended to a

successful computation. Let s be the sequence of actions

performed by q between q0 and q. Either the computation is finite

or infinite; we treat the two cases separately.

1. The finite case

We take qo to be the final state of the computation.

q=q and Pq so p'p for some p. Now if a

computation from po is to be successful then either the

computation has passed through a successful state before

reaching plo, in which case the computation from q 01o 0
would also have been successful, or

S . 	 I ,
o

n 	n
o '
	

>
'

p
Ti 	p Ti '
	for some

0."
p Ti' 	 •

and so p must Lnit(o) (with rather loose notation).

This is true of any such p. i.e.

(p after s) must Init(o)

whereas

A Mathematical Framework
	

for the Notion of "Implementation" 	 118

(q after s) must Init(o)

and so we have derived a contradiction.

2. The infinite case.

If q=q, then 	 for some.p. Furthermore, there

exists an s = s 1 .a.s 2 such that

	

il 	'I
0

M

	

1 	a 	'2
P"' = p '=z p 	p and

qq'z. "

Now p'Ep after s.s 1 and p 	so (p after 	must 	as

p is controllable. However (q after s.s 1) midst jai which leads

to a contradiction. 	 o

Corollary 4.16 If p and q are finite and Pq then p wq

Proof:

For finite processes we only need to use finite observers and so all

computations are finite. The first part of the last proof will

therefore hold which makes no assumptions about controllability. 0

§4.9 — k determinacy

Suppose we have a process p with the property that if p can

perform an a action to become the process p 1 then any other process

P2 that is also reachable from p via an a move is related to p 1 in some

way. If p-..p2 then Milner [Milner 80] calls this property of a process

strong determinacy, i.e.

Definition

p is strongly determinate iff VXE44

i) p 	> p 1 and p 	> p 2 D pp

n) p-1-->p' D p is strongly determinate.

The intuition behind this definition is that if a process is strongly

determinate, and contains a non-deterministic choice involving visible

A Mathematical Framework
for the Notion of "Implementation"

	
119

actions, then this choice has no observable significance, i.e. the

behaviour appears deterministic. Unfortunately, the definition does not

constrain non-determinism due to the -r action, and so this aim is only

partially successful. The requirement that members of the set of agents

reachable from a visible non-deterministic choice must be strongly

congruent to each other is also an unnecessarily strict requirement in

many cases.

Engelfriet [Engelfriet 84] extends this idea by defining -determinacy

for any equivalence relation . His definition is observational, or weak,

in the sense that he deals with sequences of actions =L=> rather than

the single actions of strong determinacy.

• Definition Let 	be an equivalence relation over processes.

Then a process p is -determinate iff for any s€Ac/

p==p1 and p 4=p2 ' pp2

Engeifriet goes on to prove that -determiñacy and 37determinacy

are the same and calls this property determinacy. He then shows that

for determinate processes and ctt coincide. We may obviously extend

this result to our weak equivalence as

CwC
3

k

Therefore, if we are working with equivalences rather than preorders,

showing that the processes are determinate is sufficient to deduce pq

from

The situation for the preorders is more complicated. If we define a

reorder version of ,

S 	 -
p q iff Vs€41. p

S
p' D sq'. q=q' A p' q'

-then p q p 	q,for example, as

A Mathematical Framework
for the Notion of "Implementation"

	
120

A result for the other preorders along the lines of [Engelfriet 84] may

be possible but it is outwith the scope of this thesis. However, we will

show that k-determinacy is equivalent to controllability for a process

and so either constraint on p will allow us to deduce pq from

We start by presenting some lemmas about controllable processes.

Lemma 4.17

If P controllable then P' controllable for all P'CP.

Proof:

Suppose false. There must exist a sequence s such that for

p'EP' after s, p' 	p" but (I" after s) m idst JXJ. But p'EP after s

and so (P after s) must JXJ which leads to a contradiction. 0

Lemma 4.18

If P controllable and P must L then 3X€Ls.t. P must JXJ

Proof:

If P must L then either P is empty in which case trivially

P must 	for any A, or P has at least one element p.

Furthermore, as P must L, 3XEL s.t. 	 But then P must JXJ as

P is controllable. 0

S

Lemma 4.19

If P is controllable then for any P'CP,

if (P' after s) must L for some s, L where (F after s) . çb,

then (P after s) must L.

Proof:

P' after s is controllable as it is a subset of P after s by Lemma

A Mathematical Framework 	 -
for the Notion of "Implementation' 	 121

4.17. Therefore 3XEL s.t. (P after s) must 	by Lemma 4.18. As

P' after s is non-empty. Jp'EP' after s s.t. p 	pp". But

p'€P after s and so (P after s) must 	and hence

(P after s) must L. o

Lemma 4.20

If P is controllable and PxPck then (P after s)x(P after s)c k

for any sequence seAl

Proof:

Suppose it is false, i.e. Rs s.t 	for some p 1 ,p2E P after s.

Then let s' be such that for any s" where Is"I < Is'l
(p 1 after s") must L' <=> (p 2 after s") must L' for any L'

and w.l.g.

(p 1 after s') must L but (p 2 after s') midst L for some L.

There are two cases to consider.

p1 after s' is non-empty.

In this case (P after s) after s' must L by Lemma 4.19

as jp 1 cP after . s. But p2 after s' C (P after s) after s'

so we have a contradiction.

p1 after s' = . Now s' cannot equal c so 3a,s" such

that s' = s"a. Furthermore, p2 after s' 	and so

s'• 	a
p2 p 2' =p2" for some p ', 2

Now p2 after s" is controllable and so

(p 2 after s") must jai but (p 1 after s") m idst jai. But

then by Lemma 4.19, ((P after s) after s") must jai and

(p 1 after s") C ((P after s) after s") so we have

obtained a contradiction again. 0

Lemma 4.21

If p==' and p is k-determinate, then p must JXJ

Proof: 	 -

Suppose false, i.e. p= 	pi 	P, and p==p2 ==. Now because

of 	-determinacy, I
L kp2 Let y be such that p 1 '

44. Then

A Mathematical Framework
for the Notion of "Implementation" 	 122

(p2 after A) must 'y whereas (p 1 after A) m idst 	and hence

10k2'
a contradiction. 0

Corollary 4.22 If p= and p is k-determinate

then (p after c) must

We are now in a position to establish a connection between

-.-determinacy and controllability.

Theorem 4.23 p controllable <=> p k-determinate

Proof:

1.(=)

Suppose false, i.e. p'p', p='p',
'k"• But p' and

p' are members of 	after s and so by Lemma 4.20,

a contradiction.

2.

Suppose false, i.e. :Rs and p 1 Ep after s s.t. p 1 ==p' but

(p after s) midst 	In other words 3p 2€ p after s s.t.

4 P2 	P2 1 	. Now p 1 p 2 and so by the previous lemma,

p 1 must JXJ. But this leads to a contradiction as

after c) must 	but (p2 after c) mfst 	0

§4.10 The > preorder

Although Kennaway's preorder is easy to work with because it does

not involve observers, it does require the manipulation of sets of

processes. Motivated by. what we require of an implementation, we now

develop a very simple preorder that will imply the Kennaway preorder.

It involves no sets of processes or tests, but the relation will be quite

restrictive. However, we will argue that it is applicable to many real

situations.

Let us suppose that i was designed to be an implementation of the

specification 	s. 	What relationship 	would we expect between i and s?

r
S

r

A Mathematical Framework
for the Notion of "Implementation" 	 123

One reasonable requirement would be that if the implementation i can

perform a visible action A to become the process 1' then the

specification s must also allow this to happen, and i' must be an

implementation of the resulting process s'. Furthermore, if the

specification cannot avoid performing a particular action then the

implementation must also be unable to avoid it. Formally we can

express these requirements as follows.

Definition

i is a refinement of s or i refines s (written s > i) iff

i=='j' D 3s' s.t. S==S' A s'>i' for all AE4CI

s must L D i must L VLc.At

Hennessy has investigated a similar preorder in [Hennessy 84c]

called the must-testing preorder. His definition differs slightly from the

one presented here because in his framework all divergence is

considered harmful and so it is explicitly dealt with in the definition.

What is the relationship between the refinement preorder and

Kennaway's preorder? The definition of > does not involve sets of

processes and so we would expect that the refinement ordering is more

particular about when non-deterministic choices are made. However, the

situation is a little more subtle than this. Consider the processes

p= cxfi.r + a..r' 	q = 	a.(.r + 13 .r')

Kennaway's ordering equates these terms, i.e. Pçq and qçP. Although

we can show that q>p, which we can view as saying that p is a valid

implementation of the specification q, we cannot show that p>q. In

other words, our definition allows p to be an implementation of q if,

A Mathematical Framework
for the Notion of "Implementation" 	 124

amongst other things, p makes non-deterministic choices no later than

q. This may not be too restrictive in practise as a specification will

typically keep its options open for as long as possible. whereas an

implementation may commit itself to a particular non-deterministic

choice (because of silent internal communications) much earlier on in

the execution sequence.

Before showing that p>q implies PZkq we will need to prove the

following lemma.

Lemma 4.24 If p>q and q=q', sç4c/ then p s.t. 	 A p'>q'

Proof:

If s = c then we show that p>q'.
A 	 A

	

Suppose q' 	q". Then q 	q" and so p 	p' for some p' where

p'>q". If p must L then q must L and so q' must L. Therefore p>q'.

If systhen

a 	a 	 a

	

1 	2 	 n
q=q0 q 1 ==q2 . . .

where s=a 1 a 2 . . . a. Therefore 3p 1 s.t. p 	P. and p 1 >q 1 , and

similarly - for the other i processes so 3p s.t.

a 	a 	 a

	

1 	2 	 n
p=p0 p 1 p2 	p and p>q. 	0

Theorem 4.25

p>q D

Proof:

Suppose pq. then Bs,L s.t. (p after s) must L and

(q after s) m idst L, i.e. Vp' s.t. pp'. p' must L and q' s.t.

q==q' and q' midst L. If q=q' then p' s.t. p=p' and p'> q'

which leads to a contradiction as p' must L and q' m idst L. 0

It is not true that p>q D pq as the following example illustrates.

A Mathematical Framework
for the Notion of "Implementation"

	
125

This result is not surprising as > uses must in its definition which is

what caused the problems for Kennaway's preorder.

Can we simplify > even further? Suppose we used the version of

must defined in [Milner - 80]. What would be the consequences? Consider

the processes

USA

DO

• With process p we can choose between performing an a or a fi action,

but we don't always get a chance and may have to perform a 	action.

With q we always have a chance to perform an a or a fl, but only one of

them will be offered, the choice being non-deterministic. 	Neither

process can really be viewed as an implementation of the other.

(p after c) must 	whereas (q after e) must ja, 61 so P'q and

Furthermore, pq and qp.

Let us use >8 to denote the refinement ordering using the single

action must, defined in [Milner 80] as

1 	 X
P must A iff Vp' s.t. p'p'. p'

Then pq but q> 8p which is undesirable.

A Mathematical Framework
for the Notion of "Implementation" 	 126.

The other simplification we might make would be to replace p==p'

in the definition of > by p --- p' or even p--p' (where UEAcdUJTJ and

AE:4). This would simplify bisimulation style proofs as we would only

have to examine the immediate actions that can be performed by p

rather than examining all sequences that p might perform. In fact we

could define four variants of > as follows.

q> 1 p 	ill 	1) pp' D qq' A q'> 1p' and ii) q must L D p must L

q >2 p 	iff 	i) p==p' D qq' A q'> 2p' and ii) q must L D p must L

q >p 	iff 	i) p 	p' D q=q' A q'> 3p' and ii) q must L D p must L

q >4 p 	iff 	i) p--p' D q=q' A q'> 4p' and ii) q must L D p must L

What is the relationship between this family of orderings. 	> 	is the

most 	difficult 	to 	use 	and 	> 4 	the 	simplest. However, 	the 	following

example forces us to rule out > 4 • 	Consider

P = T.a.p' + a. q' 	q = a.q'

Then q> 4p but q1,2,3 p. 	Moreover p is not a very reasonable realisation

of q intuitively and so we will reject > 4 as a possible candidate.

We can trivially show that >c>2 and > 1 ç> 3 . We will show that > 2ç> 1

and > 3 C< 1 , which will be sufficient to show that all three orderings are

equivalent.

Let Ot be the defining relation for > when presented in its

simulation form (where a simulation is one half of a bisimulation).

Let . = >2• Consider any pair <q, p>E5.
Ii 	 t

If pp' then either ji=i - , in which case q 	and q> 2p', or jz=A in

which case trivially qq' where q'>p'.

If q must L then p must L as q> 2p.

This shows that .clR 1 (.) and hence q,> 2p D q> 1 p.

Let R = >. Consider any pair <q, p>€5.

If pp' then 3p 1 , ,p s. t.

P=P o -I-- p 1 	. . . p__p 	. . .

But q> 3p so 3 q1.....q, s.t.

A Mathematical Framework
for the Notion of "Implementation' 	 127

T 	 JA 	 71 1
q=q0 	 - q 	 - q,1 	 - 	 : q, =q

where qj >pj , O<j!~ n. Therefore q=q' where q' >3p"

If q must L then p must. L as q> 3p.

In other words, X c Ot 1 (5) and so q> 3p D q> 1p.

This proves that > 1 = >2 = > 3 	As > 3 is the simplest of the

definitions to use, we will assume that we are referring to > 3 when we

write q>p.

§4.11 The >; preorder

So far, our only connection between F
uk (and hence >) and z w is if

the processes under investigation are controllable or k-determinate.

This is quite a strong condition to demand of a system, and in

particular, we will see that it is not true for the Schwarz

transformation. As the final result of this part of the chapter we will

develop a preorder along the lines of > that does imply
.

Although it

is more restrictive than >, we will show in Chapter 5 how to express

Schwarz' scheme in a way that makes the new preorder applicable.

Definition

r > q Lff i) q----*q' D 3'. P==P' A

ii) Traces(p) ç Traces(q)

.7- 	 t

where p 	p 	-

If P>
t q then we know that if q =!==> then 	 and so

Traces(p) = Traces(s).

Proposition 4.26 If p>q then VLC4c4. p must L D q must L

Proof:

Assume false. Then q==q' S. t. A€L. q'==. But p' s.t.

p=p' A p'>q' and p' 	for some AEL. Therefore q== as

Traces (p')cTraces(q') and so we have a contradiction. 0

A Mathematical Framework
	

for the Notion of "Implementation" 	 128

This implies that >c> as whenever p>q it satisfies the conditions

for p>q. They are not equal, however, as our favorite example shows.

P..

Here p>q but pX,q. This example illustrates why' > did not imply the

weak must preorder. We now show that > does imply .

Theorem 4.27 p > q implies p Zw q

Proof:

Suppose p>q but pVq i.e. there exists an observer oEO such that

p w-must satisfy o and q w-'must/satisft, o. In other words there

exists a computation

qo = 	

with a prefix q0 o0.....qo that cannot be extended to a

successful computation. Let s be the sequence of visible actions

performed by q between q0 and q. Then p=='p where p>q.
1•

Furthermore p
S.
 p and o 	 o— for some s' as all

computations of po have successfully extendable prefixes. But if
S • 	 5'

PnPm then]q such that q. 	q and so

which is a contradiction. 0

Theorem 4.28 If p > q then V/2E4C1UT, VXE4J, VrE, S a relabelling,

pjr >qir

p') >

p[S]> t q[S]

Proof:

A Mathematical Framework
	

for the Notion of "Implementation"
	

129

1. If ji.q---q then 	 and p>q.

If sETraces(ji.p) then either 1L=-r, in which case

s€Traces(q), or else s=.s' and so s'€Traces(p) which

implies s'ETraces(q) and hence 	s'E:Traces(ji. q).

2. Let RZ be the defining relation for > when presented in

its simulation form.

Let X = j <pr, qjr> I p, > q. If qIr -- q'jr' then there

are three possibilities.

r---r', q=q'. Then pIr---.pJr' where

<pir' , qr'>Ei

q----q', r=r'. Then p >, q so p==p' where

p'>q' and hence <p'Jr, qr>e

q --- q', r -1-->r', 	T.

Then p=='p' and hence pIr=p'r' where

<p'r', q'r'>E

Suppose sETraces(pr), i.e. pIr=='p'Ir'. Then there

exists s 1 , s 2 such that p 	2 p', r 	r', where s 1 and

s 2 can be merged to form s (possibly with some actions

cancelling to form Tmoves). But then s 1 ETraces(q) as..

> q and hence qq' for some q' which implies

qIr==q'Ir', i.e. s€Traces(qr). This proves that

cR(.) and hence pir > qir.

3. Let R = <p\X, q\X> I p > q

If q\X--q'\X then q---'q', p===p' and hence

p\X=p\X where <pX, q'\X>ER.

If sETraces(p\X) then sETraces(p), sETraces(q) and

hence scTraces(q\X).

Thus .ç(5) and hence p\A > t q\X.

4. Let . = kp[S], q[S]> I p > qI

If q[S] --- 'q'[S] then q---q' for some ii such that

S(v)=. But then P' P' where p' > q' and hence

p[S]==p[S] where <p'[S], q'[S]>e.

A Mathematical Framework
for the Notion of "Implementation" 	 130'

If s€Traces(p[S]) then 3s':such that s'ETraces(p) and

S(s')=s where the morphism S is extended to sequences

•

	

	 in the obvious way. But s'€Traces(q) and hence

sETraces(q[S]).

Thus CZ() and hence p[S] >, q[S].

0

> is not preserved by + as the normal example for this case

illustrates, i.e.

a.p
> t

T.a.p

but a.p ± r X t T.a:p + r in general.

Trying to prove that pçq by using > removes some of the freedom

of the implementer. For example,

However, some freedom of •choice is left as the following example shows.

>t

A Mathematical Framework
for the Notion of "Implementation" 	 . 	 131

§4.12 A simple example

Consider the simple synchronisation problem involving processes p

and q defined by

p=.p+.p q=a.q+.q+.NIL

CX

In an implementation of this program we might try to replace the

summations in p and q by simpler ones involving a timeout agent. Each

process would offer one or other of its actions for a while but would

then timeout and try the other one if unsuccessful.

Timer 	 Timer

If, we assume that the timers are not, synchronised, we may model the

timeout processes implicitly using T actions, i.e.

P , 	P 1 and q' 	q

where

P, = ip 2 + r.p2 q 1 = a.q 2 + T.q 2

P2 .= fJ.p 1 + r.p 1 q 2 = . q 2 + .. q 3

q 1 7. NIL +

It is simple to show that p 2p' as p' introduces the possibility of an

infinite T sequence that was not present in p. The observer cc'J.NIL can

• 	differentiate between the two processes as •

p must satisfy a.'J.NIL whereas p I rnust/sat'isfz, a.J.NIL

The derivation trees for p and p make this clearer.

A Mathematical Framework
for the Notion of "Implementation" - - 	 132

'=pl 	p 2

Zi

P2 T

I 	p1

In this particular case we can apply either of our. approaches to show

that pp'. Of course with such a simple example it would be easy to

prove the equivalence directly but on larger examples this would be

much more difficult.

We start by showing that p>p and p'>p. Rather than performing two

separate simulation proofs, we combine them as follows.

Let X = zp 1 ,p>, <p 2'p>' <p,p 1 >, <p,p2>

<p 1 ,p>. 	if p 1 	->p2 then pp, <p2 ,p>E

if p1:>p2 then p==p, <p2 ,p>Ei

<p2,p>. 	if p2---p1 then p 4 p, <p 1 ,p>E5

if p2 -->p 1 then p <P1 P>E

<pp>. 	if p 	then p 1 =p2 , <pp2>E

if p -- p then p 1 ==p, <pp 1 >ES

<p,p2>. 	if p--p then P2 P2' <p,p2>E

if then p =P==> p I <p,p>E

It is easy to show that VLcAa, p must L implies ja,flJ9L. This is true

for p 1 and p2 as well and so the second part of the conditions for > are

satisfied. We have therefore shown that p>p 1 and p 1 >p (similarly for

p2). We may therefore deduce that Both p and p 1 are trivially

controllable and hence we may deduce that p p
Wi

In this particular example we may prove that pp1 more directly by

using >. Using the same relation 51 as before we must show that for

A Mathematical Framework
for the Notion of "Implementation" 	 . 	 133

each pair <p,p1> in R , Traces(p)Traces(p1). This follows immediately

from the fact that 	 -

Traces(p) 	= Traces(p 1) 	= Traces(p2)

Therefore we can prove that p> p 1 and p 1>p. This allows us to deduce

that pp1.

4.12.1 Decomposing problems with global dependencies

Our assumption that the timers for each process were unconnected

allowed us to replace them by internal T moves. The interfaces to the

original process p and its replacement p' were therefore identical; they

both just had , flJ in their sort. This allowed us to reason about the

transformation applied to p separately from the rest of the system.

Suppose we wished to model a variant of the above system where

there was a global clock that generated the timeout signals, e.g.

Global
Clock

p1

We might generalise the problem further and assume that all the

original communications took place via this transformation, i.e.

The new variant suffers from two complications not present in the

A Mathematical Framework
for the Notion .f "Implementation" 	 134

original problem. Firstly, we cannot prove anything about the individual

processes as they no longer have an identical. interface to the original

proces.s they represent. This is because they will have timeout actions

appearing in their sort. We therefore have to reason about the system

as a whole. However, this introduces our second problem. If all of the

communications in the original system are transformed so that they

take place via the new mechanism, then either there will be no

externally visible actions in either system, or the visible actions will be

different because of the different protocols involved in the two systems.

This raises the question of how to tell that we have constructed a valid

transformation. These problems form the motivation behind the rest of

this chapter.

§4.13 Implementation and translation
transformations

In this section we develop further the notion of implementation and

then present a definition of transformation correctness for CCS

processes.

4.13.1 The weak-must form of implementation

While the definition of implementation presented in the first part of

this chapter characterises most of our intuitions about what constitutes

an implementation, there are some deficiencies that are now discussed.

Firstly, consider an arbitrary process p. If we placed it in parallel

with a process that idled continuously, would we view the resulting

system as a valid implementation of p? Certainly the current definition

would not view pITa as a valid implementation • of p. This is because for

all observers o, ptT" must satisfy o is false due to an infinite r path in

the derivation tree of However with anything other than the

most malicious of schedulers, we would view PITU as an implementation

of P. It might run (a lot) slower than the original but it would still

behave eventually in a similar fashion to p.

A Mathematical Framework
for the Notion of "Implementation" . 	 135

Suppose that we have a process pjrG. Would we - expect (PIT') + -r.NIL

to ..be an implementation of this process? Our current definition of

implementation says -that this is the. case, but our intuitions might say

that P I T ' is a slower version of p whereas (PIT') + T.NIL might stop

completely. At this point it should be pointed out that if we make no

assumptions about the scheduler used to implement these examples

then the existing definition of an implementation may be adequate. The

reason our intuitions may differ from this definition is because we

would like to assume that a fair scheduler is used to run these

processes, or at the very least a scheduler that is not designed to select

the worst possible path through a derivation tree. The development of

the .weak form of-must satisfy was prompted by these intuitions and so

the definition of implementation is changed accordingly to

i implements s or i is an implementation of s iff

V oE. i may satisfz' o D s maz' satisfi 0

s w-rnust satisfi o D i w-must satisfz , o

This definition may be simplified by noting that PWq D q 3p, and

hence proving that i implements s is equivalent to showing that si, i.e.

i implements s or i is an implementation of s iff s ç '

• Incorporating the 	weak 	must 	preorder into 	the 	definition of

implementation results 	in a 	simpler 	definition. Unfortunately, 	it also

means that lCD is no longer an implementation of CD in the change

machine 	example presented 	at 	the 	beginning of 	this 	chapter. The

original definition allows an implementation to provide only part of the

non-deterministic choices offered by the specification. 	The new

definition requires, in addition, that if a particular action will be

eventually offered by the specification, due to fairness arguments ,, then

it will also be eventually offered by the implementation as well. By

- . fairness arguments, CD must eventually offer shillings as change,

whereas lCD never has this possibilty. It is, however, possible to define.. -

an unfair version of CD such that lCD is a valid implementation.

A Mathematical Framework
for the Notion of "Implementation"

	
136

The development of the original definition of implementation, and

the weak must preorder, are essentially independent. For the proof of

the Schwarz scheme At will be convenient to merge these ideas into the

new, simplified, definition of implementation. However, 'for other

purposes, it may be more convenient to work with the original definition

of implementation.

With our new definition of implementation, it is easy to show that

pIT rj implements p whereas (PIT') + T.NIL does not implement (PIT ').

Proposition 4.29 Implementation is a transitive relation

Proof:

Let us suppose that p implements q and q implements r.

Then for all observers o € t,

if r w-must satisfy o then q w-must satisfy o and so

p w-must satisfz, o. Therefore p implements r. 0

4.13.2 Transformations

In general, when p 22 q or p implements q, the syntactic structure of

p is not, related to the syntactic structure of q. However, sometimes we

wish to exhibit a transformation function tr such that the expression

produced by tr(p) is related to the expression p in some way. Often the

relationship is independent of a particular process p. These

transformations are purely syntactic; they take as arguments

expressions representing CCS terms and syntactically manipulate them

to produce new expressions representing CCS terms. The

transformations do not depend on the semantic meaning of their

arguments; thus, for example, the transformation of pjq is not

necessarily the same as the transformation of qip. This point will

become important ' later when we introduce functions that apply a

different transformation to each process in a product depending on its

relative position.

The synchronisation scheme presented in Chapter 3 	is an obvious

example of 	such 	a transformation. These purely syntactic

A Mathematical Framework
for the Notion of "Implementation" 	 137

transformations also occur when reasoning about different variants of

CCS. 	For example, rather than using a single message to synchronise

between two process?s, we may wish to model the synchronisation by a

start message and a finish message. 	This allows a communication to

take 	a finite 	amount of time rather than being instantaneous. 	This

variant 	of 	CCS 	may be 	expressed 	as 	a 	syntactic 	transformation.

Motivated 	by 	this example 	and 	other 	similar 	problems,

Millington [Millington 82] 	developed 	a 	notion 	of 	transformation

correctness 	for 	CCS based 	on 	the 	testing 	approach 	to 	process

equivalence of DeNicola and Hennessy. 	The key observation was to point

out that if we replace a process p by the transformed process tr(p) then

it will not usually be valid to examine both processes with the same

observer. 	This is due to the fact that a transformation may introduce

observable differences. If we take a process p and transform it into its

'start 	finish' 	form, 	then there 	would 	obviously 	be 	an 	observable

difference between the original and the transformed system. 	However, if

we introduce a pair of transformations, one for the process p and one

for the observer o, then Millington showed that we can develop a notion

of correctness for such transformations.

Prompted by the sort of reasoning that influenced our definition of

implementation, 	Millington 	developed 	a 	similar 	notion 	for

transformations. 	Furthermore, he introduced the concept of a

translation which can be viewed as the transformation equivalent.-of the

equivalence.

We start by presenting Millington's original definitions of these

concepts and then develop them further based on our previous

discussions of the weak must and also motivated by our intended usage.
. 	-

Millington views a transformation as being composed of a pair of

transformation functions. One of these functions is applied to the

system under investigation, p, and the other to the observer of the

system, o. -

Definition A transformation tr = <tr ,tr > is implementation correct
- 	 proc 	obs

A Mathematical Framework
for the Notion of "Implementation"

	
138

iff Vp€5. Vo€O.

p must satisfij o implies tr(P) must satisfy trObS(o)

tr roc (p.) may satisfi trobs (o) implies p ma satisfi o. p 	 -

A transformatio - 	 procn tr. = <tr 	,trobs > is translation correct

iff the reverse implications also hold, i.e. VpE:5'. Vo€O.

p maw satisfy o iff tr proc (p) may satisfy obs tr (o)

p must satisfi.i o iff tTproc(P) must satisfy trObS(o).

In Millington's paper, a transformation was called a translation which

led to the possibility of a translation being translation correct, for

example. We prefer to keep the notion of transformation distinct from

that of a particular form of transformation called a translation.

We 	may view 	the 	concept of 	implementation correctness 	as the

transformation equivalent of our original notion of implementation, and

similarly, translation correctness may be viewed as corresponding to the

equivalence.

When we introduced the notion of implementation earlier in this

chapter, it was eventually defined using the weak form of must satisfy.

It therefore seems natural to apply the same sort of reasoning to the

- transformation case. A more serious limitation of the previous

definitions involves the choice of two separate transformation functions.

This is adequate when the transformation applied to the observer is

independent of that applied to the observed process. However this is

not always the case. For example, the transformation applied to the

observer may depend on the number of processes in the observed

component. Apt and Olderog [Olderog 84] define the adjective

11-preserving for transformations that preserve the parallel structure of

programs. In such a case, the only information the transformation

function applied to each component may use about the structure of the

A Mathematical Framework
for the Notion of "Implementation" 	 139

system, S. is the total number of components in S and the index of the

currently transformed component.

For 11-preserving transformations, the transformations applied to the.

observer and the observed processes must be linked in some way. One

approach to the problem would be to treat the transformation as a

function that accepted a pair of processes (i.e. a process and an

observer) and returned, a pair of transformed processes. However, this

is more general than we need as the definitions of w-must satisfy and

maii satisfy immediately place the resulting pair in parallel again. The

only difference between the pair of processes is that the translated

observer process may have V in its sort. Therefore we take the view

that the transformation need only return a single expression which can

be viewed as the parallel composition of the transformed process p and.

the transformed observer process o. Frequently, the same

transformation is applied to both the observer and the observed

processes. As this simplifies the presentation, we will assume that this

will always be the case, although it is not essential to our work. In

other words, we will assume that a transformation also takes a single

expression as its argument, formed from the parallel composition of p

and o.

In order to express these ideas in practice, we must modify our

definition of 'w-must satisfy, because the current definition is in the

form of an infix binary predicate. We introduce an equivalent postfixed

predicate as follows.

Definition

- 	(pjo) w-must succeed 	p w-must satisfij o

It will also prove convenient to be able to reason about the

correctness of a transformation relative to a second transformation.

The simpler case then follows by taking the second transformation to be

the identity function. Finally, as pq D q 3p,. we may omit the

maw satisfj case as it is implied by the w-must satisfy case.

Summarising all of these developments, we might define

A Mathematical Framework
for the Notion of "Implementation" 	 140

Definition

:tr1 2 tr2 (read "tr 1 implements tr2 1) iff Vp€. Vo€J.

tr2(plo) w-rnust succeed implies tr1(plo) w--must succeed

By merging the observer and the observed processes, we see that the

• distinction between p and o in the definition has become irrelevant. In

• Millington's case, thé distinction may be useful because different

transformations may be applied to the two processes. Because there is

no longer a need for this distinction, we define implementation and

• 	translation transformations as follows.

Definition tr 1 ç tr2 (read "tr 1 implements tr2") iff VqEO.

tr2(q) w-must succeed D tr 1(q) w-must succeed

cni tr
1 W 	2

tr 	(read "ti- 1 translates ti-2") iff VqEO.

tr 1 (q) w-must succeed 4=' tr2(q) w-'must succeed

If we take tr2 to be the identity function then we say that t r1 is an

implementation transform, or tr 1 is a translation transform. We may

also omit the word transform and talk about tr 1 being an

implementation if the context makes it clear that we are referring to a

transformation function.

Proposition 4.30 If the pair <tr,tr> is translation correct by Millington's

V 	 definition and tr(plo) 	tr(p)Itr(o) then tr is 	a translation
- • • - 	transform. 	 V 	 V

V 	Proof: Follows from the definitions. 	 V

Proposition 4.31 	and 	are transitive for transformations,

i.e. for any tr 1 , tr2 , tr3 , V V

1. if tr 1 £
w 2 	 2

tr and tr c
W 3

tr then tr
w

tr
1 	3

A Mathematical Framework
for the Notion of "Implementation'

	
141

2. if trtr and tr 	tr then tr .. tr
1 W 2 	 2 W 3 	 1 w 3

Proof: Follows immediately from the definitions.

We may also compose the transformation functions tr 1 and tr2 to

form tr 1otr2. This composed transformation preserves Fw and in the

following sense.

Proposition 4.32

if tr 1 is an implementation and tr2 is an implementation

then tr 1otr2 is an implementation

1
if tr 1 is an translation and tr 2 is a translation then tr 1otr

is a translation

Proof:

If q w-must succeed then tr2(q) w-must succeed and so

tr 1 (tr2(q)) w--must succeed.

The proof is similar to the implementation. case. 	0

Li [Li 83] has also investigated the concept . of the correctness of a

translation in an operational framework. The task of finding sufficient

conditions for proving translation correctness is called the adequacy

problem. Li presents an adequate set of conditions for his notion of

correctness. However, we prefer to work with the testing view of

translation correctness as it is incorporated more naturally with the

Weak-must testing preorder.
. 	 . 	 .

Note that, as with the definition of implementation, it is not

essential for the defintion of transformation to be based on the weak-

must preorder. However, if this is not desirable for a particular

application, then we must ensure that the may succeed case is retained

in the definitions.

A Mathematical Framework
for the Notion of "Implementation" 	 142

This completes our discussion of transformations and also concludes

this chapter. To summarise, we have introduced the notion of

implementation which led to a discussion about fairness. This prompted

the development of the weak-must testing preorder ç. In an attempt to

develop a proof technique for this preorder, we introduced Kennaway's

preorder Ek and the > preorder. A connection was established between

ZW and k using the notion of controllability or k-determinacy. A

simpler preorder, >, was then introduced that directly implied the

weak-must preorder. We then turned our attention again to the

definition of implementation where it was redefined to reflect the work

on - Finally, Millington's work on transformations was introduced and

extended to prepare the ground for Chapter 5 which now follows.

A Rigorous Validation of an Implementation 	. 	 . S 	 143

CHAPTER 5

A Rigorous. Validation of an Implementation

§5.1 Introduction

Chapter 3 developed a transformation that may be applied to

arbitrary Static CCS expressions in order to facilitate their efficient

•execution. However, as we saw in. the latter part of that chapter, it was

not clear in what sense the transformed system was equivalent to the

original program. This prompted the developments outlined in Chapter

4. We are now in a position to use these more precise notions of

implementation and transformation to show that our transformation is

indeed a valid implementation of the original system.

The proof of the Schwarz transformation is split into two parts. We

first show that the subnetwork consisting of the pollers is an

implementation of a simpler •network of processes called synchronisers.

We then show that a simple transformation 'involving the synchronisers

is correct, from which the correctness of the Schwarz transformation

follows almost immediately. The proofs are complicated by the

unstructured nature of the program which prevents an inductive style of

proof from being used. We therefore develop some notation to

conveniently represent the states of the systems.

hI order, to prove that the poller network P is an implementation of

the network of simple synchronisers, S. we first use the refinement

ordering, which is sufficient to prove that S kP. Unfortunately, S is not

-_ k determinate, and so we cannot prove that SP using this approach

This prevents us from completing the proof that P implements S.

although we believe this to be the case, and illustrates the need for a

less restrictive property that allows us to deduce pçq from Pq•

A Rigorous Validation of an Implementation 	 . 	 144.

The only other indirect technique for proving SP is to use the >

ordering. Unfortunately, we can show that S X F, although a simple

modification of the poller algorithm does allow this ordering to be used,

and hence produces a proof that the modified poller network is an

implementation of the synchroniser network. We motivate why the

modification to the algorithm is reasonable, and the proof that S > P

may be adapted to this case; involving only a small amount of additional

work.

The final part of the chapter discusses how to partially apply the

Schwarz transformation, and the consequences of this on the

correctness proof.

We start by briefly summarising the transformation described in

Chapter 3. Given a Static CCS term of the form fl
EN

p, we syntactically

translate the processes using the function Tr
Pon defined by

Trp u l[U p]J =]J (1r.E[p 111 I Poller.(1,) I Buffer.)
iEN 	 iEN

where the transformation function applied to each process, tr., is

defined by

tr4 	aj.pij]j = let partners = 	C(a5) in
jEm

off eri(partnersui).

/ 	(selecti(X).ak.triE[pikll where C(ak) =Zr

(vTEpartners 	 .

+ J.NIL if 3aj='J

This definition is identical to the one presented in Chapter 3 except

that we now deal with the case where -'I may appear in the sort of the

processes. There is no partner for such an action and so it is left

unchanged.

A Rigorous Validation of an Implementation 	 145

Each translated process is placed in parallel with a poller and buffer

process, the definitions of which are presented in Figure 5-1.

Our problem then is to show that Tr
PoUL[.

fl
iEN

pdi is a valid

implementation of fl
 t4EN pt.

5.1.1 Structuring the proof

The transformed processes in Tr LIfJ p.11 communicate with each
Poll 	%EN ' 	 -

other via pollers, and so the observable behaviour will be different from

• 	 fl tEN
p. Therefore the conventional equivalence relations and preorders

cannot be used to prove the correctness of Tr 	The approach we take
POU

here is to show that Tr 11 is an implementation transformation in the

sense of the previous chapter. Tr
Po lIfi 	' tEN

p. I is a rather complicated

• 	object to work with as it involves both a change of interface and also

reduced behaviour potential when compared with fl p.. The interface
tEN %

is changed because of the use of pollers to synchronise the inter-

process communications. The behaviour potential is reduced because

the sequencing of the pollers may mean that certain non-deterministic

branches of the computation are not always possible. One way of

reasoning about the translated system would be to analyse it

inductively. We can view a translated system pictorially as

A Rigorous Validation of an Implementation 	 146

Poller.(n,k) = let j = PC[nJ in

off er.(k). Polter(nk') 	if k =

.+ 	 i>j A jEk

A..(r).

ifr= YES

then select.(j). Poller .(n+1.çb)

else Poller.(n+1,k)

± T. Poller 2 (n+ 1,k) 	 if >i A j'k A k

+ Q.(r). 	 if i<j A jCk

if r = YES

then A(YES). select(j). PoIler(n+1)

else Poller (n+ 1,k)

± Q..(r). 	 if i<j A j'k A

if r = YES

then A.,(NO). Poller (n±1,k)

else Poller .(n±l,k)

• Buffer. = 	((NO). Buffer.) E
.i€Pci

+ set (j). Buff er'(j)

fluff er'.(k) = (.(NO). Buffer' i (k)
3EPC-k

+ Q (YES). Buffer.ik

Figure 5-1: 	The Schwarz Poller and Buffer in Static CCS

A Rigorous Validation of an Implementation 	 147

There is a link between PB. and PB. if at some point in a computation

of the program, P. may request to communicate with P., or vice versa.

We could attempt to prove something about the subnetwork of PB.

nodes by showing inductively that a single PB. node was equivalent to

some simpler expression and then showing that n+1 nodes were

equivalent to the expression assuming that n •were. However, the

inductive approach is not really applicable in this case. The reason

becomes clear if. we analyse the connection pattern between the PB.

cells. The connections depend on the particular program under

investigation, and so there is no general structure that we can exploit

inductively. In contrast, consider the case where we have a pipeline of

processes

.

If we extract p 2 and p3, and hide away their internal inthrfaes, then we

A Rigorous Validation of an Implementation 	 148

can often replace them by some simpler definition that has the same

interface as one of the constituent parts. Thus, by repeatedly applying

this technique, we gradually reduce the number of processes without

increasing the complexity of the overall term.

• 	- - 	 /c\J - -

--_ _--

If the same technique was applied to the poller subnetwork, we would

find that although the number of processes decreased, their complexity

increased. • It is only when the internal details are hidden from the

complete poller subnetwork that a simpler definition can be found. It is

because all the network needs to be present before it can be simplified

that prevents us from using the inductive approach.

Another way of simplifying the system inductively would be to show,

loosely speaking, that

Tr11 III II I Tr11 FE q]I 	Tx-11 FE P1 q]j

Such an approach would allow us to reduce the number of processes but

unfortunately, 	Tr 11E[pTI I 	Tr 11E{qJ1 and 	TrL[pIq1J 	have 	different

behaviours, and so this technique is not directly applicable either.

§5.2 Simple synchronisers

Our analysis of the problem seems to imply that we must reason

about the network without using an inductive approach. We start by

showing the the complete poller subnetwork is equivalent to a simpler

network composed of simple processes called synchronisers.

A Rigorous Validation of an Implementation 	 149

The transformation function tr, that we apply to process p is quite

general. It converts a communication that would normally take place

implicitly into one where -a. request is passed to some synchronising

agent whose task it is to find a partner for one of the offered

communications. The synchronising agent may be composed of a set of

pollers, but there will be many other possible definitions of processes

that perform this task. We would be one step nearer to our goal if we

could show that the complicated synchronising agent in terms of pollers

was equivalent to some simpler agent. The simplest agent we might

consider would be a single centralised process that took requests from

all over the network and selected matching requests. However, the

definition of such a process would be very cumbersome, and a more

structured approach is to define a network of simple synchronising

agents, one for each host process, that perform this task.

The simple synchronising agent is defined as follows.

SSynci = off eri(k).

if k=çb then SSynci

else (E mj. selecti(j). SSynci
5 £k,.j <i

+ E m-tj. selecti(j). SSync)
jEkbj>i

A simple synchronising agent accepts offers from its host until it

receives a non-empty request set. The synchroniser then attempts to

communicate with the synchronisers mentioned in the request set, using

the m • actions. To ensure that these actions complement each other
22

correctly, the processes are ordered, and the convention adopted that

SSyn'c. offers an m.. to any SSync. such that j < i, and an m.k to any

other synchroniser, SSyrtc.k. When one of the m requests succeeds,
ii

this fact is reported back to the host via the select action. The m •

communications reflect the communications that would have happened

in the original system except that no values are passed, and the

'direction' of the message may be switched.

A Rigorous Validation of an Implementation 	 150

Let us suppose that we can show that

JJ (Potter(1,ct) I Buffer 4)
tEN

is an implementation of

1J (sync)
tEN

when both collections of processes are surrounded by a restriction so

that the only visible actions are offers and selects. Then we can define

a simple transformation function Tr Sync that treats the host processes as

in Tr but places them in parallel with simple synchronisers ratherPon

than pollers. 	If we can show that Tr 	is an implementation
Sync

transformation in the sense of Chapter 4, then we can also deduce that

Tr P.,
is an implementation transformation. There is the additional

benefit that if we wished to analyse a different synchronising agent then

we would only need to show that it was an implementation of our simple

synchronising agent.

Unfortunately, with our current definitions,

JJ (Polzer.(1,0) I Buffer.)
tEN

is not a valid implementation of

F1 (s'sync.).
tEN

To see why, consider what happens when Poller, and Poller, can

potertialiy communicate, and Poller, has no other summands.

Furthermore, assume that no other process wishes to communicate with

Poller.. Eventually we would expect the system to output a select ,(j)

message to the external environment. Further let us suppose that there

exists another poller, Pollerk . that is in a position where it wishes to

output a select message. The system may be in a state where i>k and k

is a possible communjcand of Poller.. Under these circumstances,

A Rigorous Validation of an Implementation 	 151

Poller may have to check for a communication with Pollerk before it

reaches a state where it can communicate with Poller5 . In this case,

Poller, will have to wait until the environment accepts the select

message from Pollerk which then frees Pollerk to reply negatively to

Poller.. With an arbitrary environment this causes problems because the

environment may wish to accept a message from Poller, before accepting

one from Pollerk and so this part of the system will deadlock. No such

problems exist with the simple synchroniser network.

The difficulty arises only when we consider environments which may

• perform arbitrary interactions with the system. In a closed system, one

where all environment and source program communications take place

via the' translation, such problems cannot arise. Thus we are only

requiring the two subnetworks to be equivalent in a limited class of

environments. There are two courses of action open to us at this point.

One would be to conduct some form of context-dependent proof [Larsen

85] assuming that all of the original communications take place via the

transformation. The second approach would be to modify the poller

algorithm so as to remove the potential deadlock when placed in an

arbitrary environment. One of the eventual aims of this work is to

enable the transformation to be used selectively on those

communications that are difficult to synchronise. Therefore there may

be communications that take place without the aid of the

transformation. To avoid potential problems at' a later stage, and also

to avoid performing a context-dependent proof, it would be desirable to

develop a version of the poller 'network that matched our simple

synchroniser specification more exactly. -

One way of , solving the problem is to allow the poller to satisfy its.

commitments to other pollers while waiting to output a select message

or input an offer message But in order for the transformation to be

meaningful, we must take steps to avoid introducing any new

communications that may be difficult to synchronise. If we did not do

this, we would be reintroducing the problem that the pollers were

designed to solve. As an example of this potential pitfall, suppose we

• removed the constraint that k 	in the definition of the' poller when

A Rigorous Validation of an Implementation 	 152

jfk. 	This would allow the poller either to accept an offer from its

master or to accept a Q.. message from a remote poller. Unfortunately,

the remote process offering this message is also offering similar

messages to other processes and so we have unwittingly constructed a

communication net which is difficult to synchronise.

The approach we take here is to introduce an extra r move before

the Q., message when i<j and jfk. In this case, when we are in a

situation where i<j and jk for some non-empty set k, then although we

still have a choice of actions, the sources of these choices do not

themselves have other possible communications. 	This removes the

synchronisation difficulty. 	In practice, it is easy to implement

summands with -r moves as follows. When we encounter a summation,

some of whose summands are T moves, we first check to see if any

matching communication requests are waiting and if so we pick one of

these; otherwise we randomly choose one of the T branches. What this

would imply for our particular example is that if the master process

was currently waiting to send a request then the poller would accept it,

and if the master was busy then the poller would carry on polling the

rest of the system.

In order to avoid a similar deadlock problem with the select

message, we treat it in: the same way as the offer message. This allows

the poller to process other messages while waiting f or : the master to

respond. The modified version of: the poller process is presented in

Figure 5-2. It will prove convenient to be able to specify which part of

the definition a process is currently executing. We therefore label the

different locations in the algorithm by means of integers enclosed in

braces.

- 	 In order that we may compare the states a poller can reach with

- those of the simple synchroniser, we label the SSync processes with

numeric labels as well.

A Rigorous , Validation of an Implementation 	 153

Poller.(n,k,$) = Ili let j = PC[nJ in

off er(k').. Poller(nk's)

+ select (s). Poller((n+1,rp.)

if =

11

+ 	set .(j).

A..(r).

if r = YES

then Poller.(n,k,j)

else Poller.(n-4-1,k,$)

A jEk A s=L

• Q.(r). 	 jf 1<J A jEk A SJ

if r= YES

then j31 A..(YES). Poller(n,k,j)

else Poller.(n+1k,$)

• r. Poller.(n+1,k,$)
	

ii i>j A (j'k V sy)

• T. i4Q..(r). 	 If i<j A (jk v s Li)

if r = YES

then J 51A ..(NO). Potler(n+1,k,s

else Poller.(n+1;k,$)

We assume that each poller starts with n=1, k=0 and s=-L.

Figure 5-2: The Modified Schwarz Poller

.-

SSynci = 1offert(k).

if k=0 then SSynci

else 12j(E mji. 3selecti(j). SSymci
j Ek4 <i

+ 	mi2. 3se1ecti(j). SSync)
j€k,j>i

A Rigorous Validation of an Implementation 	 154

Note that we have two labels with the value 3 as they are effectively

the same state. :

§5.3 Process state representations

In order to reason about the relationships between the states of the

individual pollers, a convenient representation for a poller's state must

be developed. A similar representation for a simple synchroniser's state

is also needed to ease the expression of the simulation relation which

we develop shortly. The no developed so far only allows us to

denote a poller in its initial state. We would like to be able to write an

expression denoting a poller in any of its possible states. We could have

made the locations explicit by breaking the poller definition into a

number of small parts and then either giving them all unique names or,

more conveniently, introducing an extra variable to distinguish between

the states. However, such approaches would obscure the structure of

the algorithm, and so we will define a new behaviour, p., that denotes a

poller and its associated buffer, and will include the state information

as part of its definition.

Definition 	p.(n,,k.,s.,l,t.)

denotes the derivative of (Poller.(1,)IBuffer)\set where the

current value of n, k"and s in Poller
2 	 1 1

are n., k and s., Poller is at
i 	 2

V 	location 1. and t. is either equal to i, in which case the buffer is

in state Buffer., or else t. is equal to some j in which case the
V 	buffer is in state Buffer.'(j).

Thus p. allows us to denote any possible derivative of the component

(Poller.(1,0) I Buffer.)\set..

We extend this notation to allow us to denote any derivative of the

complete system as follows. 	 V

Definition 	V P Sys (,1',1't) I p.(n.,k,s.,l,,t.)

A Rigorous Validation of an Implementation . 	 155

The state of each component of the network will be dependent on

the states of one or more of the other components in the system. We

- will express these constraints by means of predicates on the component

states. Given a state of the system, PSys(i,I$11), we can define a

predicate P 1 (n,k,s,l,t) on the ith component as follows.

Definition 	PSys(,11t) 1= P 1 (n,k,s,l,t)

holds for any i iff n = n 1 , k = k 1 , s = s, 1 = 1 and t =

Note that if PSys(iT,1'jET) 1= P 1 (n,k,s,l,t) holds then the ith component of

the system must be p.(n,k,s,l,t).

Often we shall write P 1 (n,k,s,l,t) in place of PSys(J,,1't) 	P,(n,k,s,l,t)

when the parameters of the intended system are clear from the context.

We introduce a similar set of definitions for the simple synchroniser

system, i.e.

Definition 	s.(k.,l 1 ,j.)

denotes the derivative of SSync. where the current value of k in

SSync. is k., SSync. is at location 1. and j. is either equal to 4

when the synchroniser is not at location 3, or else j. is equal to

the value currently bound to j.

SSys(I,1 	. . . 	s.(k,l.,j.) j

SSys(1',1'j 	S.(k,l,j) holds iff k = k., 1 = 1. and j =

§5.4 The relationship between individual pollers

Before exploring the relationship between the poller network and the

simple synchroniser network, a closer look at how the individual pollers

interact with each other would be advisable. We study this interaction

by means of the following two theorems.

Definition PSys(,I',1t) is an accessible state

iff it is a derivative of the initial state PSys(1,l,r,I)

A Rigorous Validation of an Implementation 	 156

Theorem 5.1

Every accessible state PSys(i,,1t)

satisfies the following implications,

i.e. they are invariant properties of the system.

i) 	P 1(n,k,s,1,t) D t= A Vj.-partner.(i) A 	k=A5j4-L)

.'iia) P 1(n.k,s,2,PC.[nJ) D S=-L A Yj.-partner.(i)

jib) P(n.ks.2.L) D S=-L A Vjm.-,partner1 (i) A PC [n']=i A

(P(fl',k,.L,3..L) v P(n',k',s',5,i))

where m=PC.[n]

P.(n,k.s,3,t) D t=L A 5=-I- A Vjym.-partner.(i) A

A 	 m=PC.[n]

P(n,k,s,4,t) D t=-i.. A Vj.-partner.(i)

V) 	P(n,k,s,5,t) D t= A vjLm.-,partner.(i) A

A PC [n']=i where m=PC.[n]

where partner.(j) 	 P 1(n,k,s,l,t) A (1=3v1=5)) D PC.[n]=j

Proof:

To prove the theorem we need to show that the initial state

satisfies the invariants and every transition preserves the

invariants.

Initially every component is of the form 	 and therefore

is true. The consequences of i) are trivially true and

none of the other invariants are applicable so this satisfies the

first part of the proof.

For every possible transition of one of the pollers we must check

that in the new state the "relevant consequences will be true and

additionally, we must make sure that none of the other

consequences have been falsified without their antecedents also

being falsified.

We consider all the transitions of an arbitrary component

p.(n,k,s,l,t). 	 -

A Rigorous Validation of an Implementation 	 157

Case 1, P 1(n,k,s,1,t) is true.

We know that t=-L. Suppose k=. Then the system may

perform an offér.(k') action and evolve to a state where

P(n.k's1...L) is true. The consequences of i) remain unchanged

for component i and the transition does not effect any of the

other processes and hence the invariants still hold in the new

state.

Suppose s/-L. Then we may output a select .(s) message which

results in a state satisfying P.(n+1,,i1,i). Again it is easy to

verify that the invariants hold in the new state.

If kLA5z=AjEk then there are two possibilities, depending on

whether i>j or i<j. If i>j then we may perform a T move which

internally sends a set .(j) to Buffer, resulting in a state

satisfying P.(n,k,.L,2,PC.[n]). The consequences of iia) are true

and the transition effects nothing else:

If i<j then we may receive a Q.. message with either the value

YES or the value NO. If NO is received the system evolves to a

state satisfying P.(n+1,k,..L,1,J.) which still preserves the

invariants. If we receive a reply with the value YES, the

system evolves to a state satisfying P.(n,k,i,3,i). For this last

transition to occur, P.(n',k'.i,2,PC.[n']) must have been true

before the transition where PC[n']=i. Therefore, after the

transition,' P,(n',k',J..,2,L) will hold and it is easy to verify that

the invariants jib) and iii) hold for j and i respectively.

If j'kor s;i then there are two more possibilities depending on

the relative values of i and j. If i>j then we may perform a T

move to a state, satisfying P.(n-i-1,k,s,1,.) and. if i<j then we

may perform a r move to a state satisfying P.(n,k,s,4,L) which

satisfies the consequences of iv). 	-

Finally, as t=.i-, we may always issue a Q message with the

value NO to any poller that requests it. This transition leaves

the process unchanged. However, the remote poller may either

request it from a state satisfying P.(n',k',..L,l,J.) which has

already been dealt with, or it may 'request it from a state

A Rigorous Validation of an Implementation 	 . 	 158

satisfying 	 In this case the remote process

evolves to a state satisfying P(n'±i.k'.s1..) which preserves

the invariants.

This exhaustively deals with all transitions that involve the

component of the system when P(n,k.s.1,t) holds for some n,k,s

and t.

Case 2a, P(n.ks.2.PC[nJ) is true.

'We know that s=-L. A component that satisfies this predicate

cannot receive an A.. message as this would imply that p.

(where j=PC.[nJ) satisfied P.(n',k',s,3,t) or P(n'.k'.s5t) where

PC.[n']z=i. However, these possibilities are ruled out by the

invariance conditions. Therefore the only possible transition.

that involves this component is a response to a Q query.

If jj4PC.[n] then we respond with the value NO and the situation

is identical to the analysis in Case 1. In fact, in every state

there may be the possibility of sending a negative response to

a Q.. query. In each case the analysis is identical, and so when

examining the rest of the states we will ignore this possibility.

If j=PC.[n] then we respond with YES and progress to a state

satisfying.P.(n,k,i,2,i). p. may have previously been in a state

satisfying either P.(n',k',..-1,L), in which case the new state will

satisfy P.(n',k',..L,3,), or P.(n',k',s',4,..), in which case the new

state will satisfy P.(n',k',s',5,.). In either case, i=PC.[n'] and so

the invariants are preserved.

Case 2b, P(nk,s,24) is true.

We can deduce from the invariants that s=.i.. and p. satisfies

either 	 or P(n'k'.s'.5i) where jPC.[n] and

PC.[n']=i. In the first case, the two pollers may communicate

evolving to states satisfying P.(n,k,PC.[n], 1 ,L) and

P(n'.k'.PC5[n'}1J..). In the second case, the two processes

evolve to states satisfying 	.(n+ 1,k,-i-,1,..i-) and P.(n'+1,k',,1,..).

In both cases it is simple to verify that i) holds for i and j and

that no other invariants have been effected

A Rigorous Valictq.tion of an Implementation 	 159

Case 3, P(n.k.s.3.t) is true.

We may deduce from the invariants that t=i, s=i and p5 is in

a state satisfying P(n'k'.L.2..L) where j=PC.[n] and i=PC, {n'].

This possibility was analysed in 2b). -

Case 4, P 1 (n,k,s,4,t) is true.

We may deduce that t= from the invariants. The case where

we receive a Q.. message with the value NO has already been

dealt with. If we receive a YES response then p must have

been in a state satisfying P(n'k'.L..2.i) where j=PC.[n] and this

possibility was analysed in 2a).

Case 5, P(n,k,s,5,t) is true.

From the invariants we may deduce that t=-i.. and p. is in a

state satisfying P.(n',k',,2,j) where j=PC.[n] and i=PC.[n'].

This possibility was analysed in Zb).

This completes. our case analysis and proves that the invariants are

preserved by all transitions. 0

The next theorem formalises our intuitions that a poller will always

be able to cycle around its communication partners without becoming

deadlocked waiting for a response from the environment. This theorem

was not true for our original presentation of the system as a poller may

have been prevented from interacting with its partners because it was

waiting to output a select message.

Theorem 5.2 	 :

Let PSys(,',,fT) represent a possible derivative of the

• 	ystem where PSys(i,11t) 1= P.(n,k,s,l,t) holds.

Then for all 1<m<IPC.t,

PSys(,1t) C 	PSys('J'j',r,t)

such that PSys(f',1',,r,t) = P 1 (rn,k,s',l,i) holds for some s'.

A Rigorous Validation of_ an Implementation 	 160

Proof:

By inspection of the text of a poller in conjunction with Theorem

5: 1, we see that the only communication that can stop a poller

progressing from a state satisfying P 1 (n,k.s,l,t) to one satisfying

P(n+1ks'1,.i) is when it is waiting for an A.. message that never31
arrives. All the other communications are either optional (the

offer and select messages), or involve synchronising with processes

that are guaranteed to be able to reply.

We prove the theorem by using induction on the index i.

Induction basis, i=1

In this case, there exists no j such that i>j and so Poller, never

waits for an A.. message to be output from another poller.

Therefore the theorem holds.

Inductive step, we assume the theorem is true for all j, lj<i.

The only case that might cause problems is when Poller, is waiting

at position J2J for an A., message from Poller., where i>j. But then,

by the inductive hypothesis, Poller, can eventually move to a state

satisfying P.(n',k',s',l,L) where PC.[n']=i. At this point, the two

processes have the opportunity of communicating, thus freeing

Poller, to move onto the next state. 0
I

§5.5 The relationship between pollers and simple
synchronisers

We are now in a position where we can attempt to show that the

poller network is an implementation of the simple synchroniser network.

We could approach this task in a number of ways. The most direct

scheme would be to prove that SSysPSys using the definition of

However, this task is made difficult by the need to quantify over all

tests. We could try to show that SSyskPSys, which is perhaps an easier

task as some form of simulation could be used. Finally, we could try to

show that SSys>PSys or SSys>PSys. Unfortunately, for reasons that will

become clearer later in the chapter, it is not true that SSys>PSys. If

A Rigoràus Validation of an Implementation 	 161

• 	we try to use > or Fck we risk the possibility of not being able to relate

the, result to ç. The technique that we have currently proposed to -

• relate 2W and k' namely controllability or k-determinacy, is too strong a

requirement for our example, although as controllability is a sufficient,

but not essential condition for establishing a connection, there may be

other ways of completing the proof. Fortunately, a small alteration to

the transformation function is sufficient to allow > to be successfully

applied and this result will directly imply the result for Cw . This proof

is contained in Section 5.6. Although it appears highly probable that

the current version of the poller algorithm is a valid implementation of

the simple synchroniser network, this cannot be proved until a less

restrictive condition than controllability is found that still allows us to

deduce pq form pq. However, we start by proving that SSys>PSys,

and hence SSysPSys, in the hope that such a connection will eventually

be established.

5.5.1 A proof that SSys > PSys

The first step is to show that the prooler network is a refinement of

the simple synchroniser network.

Theorem 5.3 SSys(,r,2) > PSys(r,,,1)

Proof:

We construct a set . and then show that it forms a valid simulation

relation for >

=

(cia) 	Vi.[A S(.i.))

(cib) 	v 	 A kjq! A S.(k,2,4.))

(dc) 	 v (P(n,k,s,1,) A S-L A S 1 (rc,3,$))

(c2a) 	v (P.(n,k,i,2,t) A ((ti) v P.(n',k',s',S,i) where frPC[n]) A

S.(k,2,.i)) 	-

(c2b) 	v (P.(n,k,i,2,i) A P(n'k'L3.L) A S(k3,j) where j=PC.[n])

(c3a) • 	v (P.(n,k,,3,) A S 1(k,3,PC.[n]))

(c4a) 	v (P(n,k,,4,) A k/95 A S 1 (k,2,.L))

(c4b) 	v (P.(n,k,s,4,) A S 	A S1(k,3,$))

A-.' -Rigorous Validation of an Implementation 	 162

(c4c) 	v (P 1(n,,i,4,i) A SL(,1.i))

(c5a) 	v (P(n , k , i ,5 .i) A k1 A S(k2..L))

(c5b) 	v (P 1(n,k,s,5,i) A S1i A S 1(k,3,$))

(c5c) 	v 	 A S1(,1,.))]

We factor the proof into two parts. We first show that for any pair

<SSys,PSys> in X, if PSys----PSys' then SSysSSys', where

<SSys',PSys'> is also an element of X. We then show that for each

pair <SSys,PSys> in R, if SSys must L for some L then PSys must L

as well. This allows us to concentrate on one aspect of the

preorder at a time, and. in addition, it will allow us to use the first

part of the proof as the basis of a proof that SSys>PSys'. where

PSys' is the modified version of .PSys mentioned at the beginning of

this section.

Initially, we must check that for any pair <SSys,PSys> in 5, if

PSys&PSys ' then SSysSSys' where <SSys',PSys'>€.. To

simplify the analysis of internal transitions, we need only look at

those transitions that alter the state of a process. For example, if

a Buffer process outputs a NO value, the state of the associated

component does not change. 	We therefore rely on the change of

state at the destination process to trigger any analysis we may

have to perform. If the state of the destination process remains

unaltered as well then this is still acceptable as SSys =L= SSys

trivially and the resulting pair is obviously in R. To reduce the

case analysis further, for the internal T moves we need only check

one side of the communication since at that point we examine all

the possible configurations of the remote process. We start by

performing a case analysis on each possible transition of an

arbitrary component that involves a change in its state.

la) P(n4,i,1,1-) A S 1(,1,0
offer(k)

Suppose

There are two possibilities.
offer.(k)

If k= then 	 >.s()
2 	

offer.(f)

and if k 	then s.(,1,i) 	
%

A Rigorous Validation of an Implementation 	 163.

In either case, the resulting pairs are in X.

We may also perform a T move to

or to

In either of these cases component s1 can remain unchanged.

ib) P(nk..L.1,L) A kj40 A S(k.2.i)

There are four possible moves we are interested in depending

on whether i<j and jEk.

i>j A jEk

p.(n,k,i,1,i) — 1---> p (n,k,-L,2,PC JnD

which satisfies (c2a)

1<) A j€k

There are two possibilities;

either p.(n,k,i.1.i) I p.(n'k',s,V.t) 	>

p.(n+ 1 ,k,1 ,) p.(n',k',s,l,t) where jPC.[n]Atpi

or 	p.(n,k,.i_, 1 ,_) I p.(n',k',s',l,i) ---->

I p.(nh,k',s'j',.) where again j=PC.[n]

In the first case., the state effectively remains unchanged.

In the second case, Theorem 5.1 implies

that 1=2 and s=i.

We can therefore deduce from . that S.(k',2i) was true,

where ick. But

s.(k,2,..) I s.(k'2,) 	s.(k,3,j) I s(k',3i)

and the resulting pair satisfies the requirements for

membership of X.

C) j>J A jgk

p.(n,k,-i-,1,-i-)—>p(n+1,k,.4,-) and so

the state effectively remains unchanged.

d) i<j A jk

A Rigorous Validation of an Implementation 	 164

p(n.k,1 	_1-p . (n .k,.L,4,i) which satisfies (c4a).

ic) P 1(n.k,s,1,) A s&L A S 1(k,3,$)

From Theorem 5.1, we know that k.

There are three possibilities

select .(s)

a)p.(n,k,s,1,i) 	>p.(n+14,.L,1,i)

select(s)

But s.(k,3,$)

p.(n,k,s,1,) _L_.p . (n+1,k, s ,1,i) if i>j

p.(n,k,s,1,) —1--.p.(n,k,s,4,.) if j<j.

2a) P(n,k,.L,2,t) A ((t&i) v 	 where j:=PC[n}) A S.(k,2,i)

Suppose ti. Then by Theorem 5.1, the only transition that

we are interested in is if p. reads the Q message

where j = PC .[n].

There are two possibilities depending on which branch of Poller

requests the communication.

j<i, P.(n',k',i,l ,i) A iEk'

This case has been dealt with in ib) part b).

j<i, P.(n',k',s',4,L) A ik'
• 	

Then p.(n,k,i,2,j) I p.(n',k',s,4,) --

p .(n,k,,2,i) I p.(n',k',s',5,).

But before the transition S.(k',3,s'), S(k',,2) or

S.(,l,J) must have been true depending on the value of

s' and k, and therefore after the transition the states will

still match with P.(n',k',s',5,i)

Let us now assume that t=i so P.(n',k',s',S,i) is true where

A Rigorous Validation of an Implementation 	 165

j=PC[n].

Then 	 p1 (n',k',s',5,i)

1 ,k,.i.,1 ,i) I p1 (n'+ 1, W, s', 1 ,i)

2b) P 1(n,k,.L,2,) A P(n'.k'L.3.J..) A S.(k,3,j) where j=PC[n]

Then we can use Theorem 5.1 and . to deduce that

S(k'3.PC.[n']) and PC.[n']=i must be true.

p.(n,k,i,2,i)Ip(n',k',.1.,3,i) _Z__.p.(n,k,j, 1 -)1p1 (n,k,i, 1 ,i)

and the resulting pairs are in .

3a) P.(n,k,i,3,..L) A S 1 (k,3,PC.[n])

Then by Theorem 5.1, 	 and PC.[n]=i

must be true. This case has been covered in 2b)

P.(n,k,,4,..L) A k 	A S 1(k,2,4.)

There are two possibilities depending on the value received with

the Q.. communication.
32

If the value received is NO then the following transition must

have taken place

p.(n,k,.i_,4,.i.) I p5(n,k',s,l,t') —1--p.(n+1 ,k,-L,1 ,4_)

where j=PC.[n] A t'i.

If a YES value is received then by Theorem 5.1, P.(n',k',i,2,i)

must be true. This case has been covered in 2a).

P 1 (n,k.s,4,.i) A 	A S 1(k,3,$)

Again there are two possible transitions and the analysis

is similar to 4a).

A S 1(,1,..t.)

This case is essentially the same as 4a)

A Rigorous Validation of an Implementation 	 166

P(n , k , .L. 5, ..L) A k/O A S 1 (k,2,i)

Then by Theorem 5.1, P(n'.k'.L.2.i) A S 1 (k',2,i) A k';40

must be true where j=PC.[n].

This case has been dealt with in 2a).

P 1 (n,k,s,5,..L) A sfr&L A S(k.3s)

and

P(n,,i.5,.L) A S(.1i)

can be treated as in 5a).

This completes our case analysis and hence the first stage of the

proof.

We must now check all the pairs in R to make sure that if

<SSys,PSys> ER and SSys must L for some L then PSys must L also.

W.l.g. we may assume that L is a minimal set, i.e. 	L'CL s.t.

SSys must L'. 	We perform an induction based on the cardinality of

L. If L is empty then SSys must 0 is not possible and this forms our

base case. 	For each A in L we show that if PSys==PSys' then
A

either PSys'=, or else SSysSSys' such that <SSys',PSys'>c5

and SSys' 	In this case SSys' must L' for some L'cL where XL.

We assume inductively that PSys' must L' and so 37€L' s.t.

PSys' == and 'y€L. The induction relies on the fact that each T

derivative must eventually be able to perform one of the actions in

L as otherwise we would reach the base case which is not possible.

If L is a. minimal set it can only be composed of offer and select

actions. Furthermore, SSys must be in a state where it can

otentially perform these actions. We treat each possibility in turn,

and for each action consider the possible states the synchroniser

components, and hence the poller components, may be in.

1. off er.(j)EL for some i,j.

Then for this action to be possible, S 1(,1,) must be true.

Using the relation R , there are three cases where this is

A Rigorous Validation of . an Implementation 	 167

possible; when P 1 (n4,..L,1,..L), P 1(n.,.L,4,J..) or P 1(n4,.L,5,i) is true.

Using Theorem 5.2 and the fact that k remains empty until an

offer is selected, we know that all 'r sequences starting from

PSys can be extended to .a PSys' such that PSys' 1= P 1(n',,.L,1,.L).

off er.(j)

But p(n',,..L,1,i)')p.(n',j,.L,l,..L).

2. select .(j)€L for some i,j.

Then S 1(k,2,-.) or S(k,3,j) is true where j€k.

We treat the two cases separately starting with the simpler case.

a. S 1 (k,3,j) is true

Let us. enumerate the possible states of p..

1. P.(n,k,j,1,.i)

P.(n,k,.L,2,.L) A P1 (n',k',,3,.i) where j=PC[n]

P.(n,k,i,3,i) A jPC[n]

P.(n,k,j,4,.L)

P.(n,k,j,5,.i-)

We know that irrespective of what the rest of the system

does, if ii) or iii) is true then p. can progress to a state

where P.(n,k,j,1,.L), i.e. i) is true. If iv),v.) or i) is true then

by Theorem 5.2 and the fact thatthe s field is only cleared

after a select message, we know that eventually we can get

to a state where i) is true. Finally, it is immediately

apparent that

select .(J)
p.(n,k,j,1,..i.)

b. S.(k,2,..L) is true where jEk

This is the case where the induction is required beca'use at

the point where S.(k,2,) is true, SSys is not committed to

the select action. It must be possible for the action to

occur but the system may also non-deterministically choose

another alternative if one is available. Let us start by

enumerating the possible states of p..

A Rigorous Validation of an Implementation 	 168

L P(n.kL.1.i)

P 1(n,k,i,2,t) A ((ti) v (P (n',k',s',5,i)) where m=PC[n]

P 1 (n f k,J..,4,J.)

By Theorem 5.2 we know that after any sequence of r moves

it will always be possible to get-to a state where

P 1(n',k',s',l,i) is true where PC[n']=j.

Furthermore, we know that k cannot change until we have

output a select, message and so k'=k. Suppose s'. If s'=j

then we are able to output a select .(j) message. What if s'yj

Then at some point in our sequence of T either p. was in a

state satisfying P 1(m,k,..L,2,i) and p was in a state satisfying

F,(m',k",L,3,.L), or vice versa, where i=PC,[m'] and s'=PC.[m].

In either case this implies that S(k",2,) must have been

true in SSys. But then

s.(k,2,J) I s,(k",2,i) -!-> s.(k,3,s') I s,(k",3,i)

and the resulting SSys' cannot output a select .(j) action.

Furthermore, p must now be in a state satisfying

P,(m",k",i,l,i) where 1=1, 4 or 5, and in all of these cases

the resulting pairs of new states are in R. Therefore our
•

	

	 inductive hypothesis allows us to deduce that this case is

correct.

If s' 	then there are two cases to be considered depending

on whether i is less than or greater than j.

Case i<j

In this case the system can wait until it, receives a Q.,

message. If the value YES is returned then the system will

eventually reach a state which satisfies P.(n",k,j,l,.L) which

will then be able to output a select .(j) message. If a NO

message is received then it may be because Potter. has not

yet reached a state where it wishes to communicate with

Potter.. In this case, the poller can continue until either a

YES answer is returned to the Q. i query, or a NO. value is
• 	• 	 returned due to p. being in a state suchthat the system

satisfies P(m.k".s'.l.i) where s'L. In the second case we

A Rigorous Validation of an Implementation 	 169

may reason that p5 must have arranged this communication

during the sequence of r moves as otherwise the select.(j)

message would not have been possible right from the start.

By a similar analysis to the case where s'4.L., we may reason

that s • also had the potential to communicate with s, and so

we may employ the inductive hypothesis.

Case i>j

The analysis is similar to the previous case. Either the

poller receives a positive A 5i reply, in which case it may then

output a select .(j) message, or else a negative response is

received which implies that Poller, has negotiated a

communication with some other process in which case we can

show that this is also a possibility in SSys.

This completes our proof and shows that . is a valid simulation

relation and hence that SSys(,r,2) > PSys(r,,2,r,).

From the previous result, and Theorem 4.25, we may deduce that

SSys(,t,2) k PSys(r,,,T,2)

We must now show how to extend this result to the Z W preorder.

Unfortunately, our efforts in this direction have so far proved to be

unsuccessful. Chapter 4 showed one way of deducing pq from
PZk if p

is k-determinate. In our particular example, this would be equivalent

to showing that the system SSys(,I,I) is k-determinate. However a

simple example illustrates that it-is not. Suppose we have the following

situation.

Si

/\ S2 	S3

where we assume that we have already issued the messages

off er2 (1) and offer 3(1).

A Rigorous Validation of an Implementation 	 170

If we now output an offer 1 (2.3) message then the system may arrange

a communication between either s 1 and s2 or between s 1 and s3 . In the

first case, the system will then be willing to output a select 1 (2) message

and in the second case, a select 1 (3) message will be offered. These two

possible states are therefore not related by k and so the system is not

kd eterminate.

and 2W for the most part treat processes identically. Therefore it

is reasonable to hope that there may be other constraints that we may

impose on processes p and q that let us deduce pq from P2k q, but our

searches in that direction have so far proved to be unproductive. An

alternative approach might be to restrict the class of observers that

is defined over in an attempt to bring the two preorders even closer.

However, given that 2 W is preserved by I whereas 	is not, it seems that

restricting the observer class would only provide part of the answer if

we wanted to preserve the properties of

§5.6 A proof that SSys > PSys'

Chapter 4 introduced one other way of proving pq indirectly. This

approach used the preorder >. If we could show that

SSys(X,) >t PSys(1,,T,I)

then we could directly infer the required result. However, there is a

problem that occurs when trying to use 	This is due to the fact that

S 	 -

it

N
P 	p1

if Traces(p 1)=Traces(p2)

(t)

/
p1 10,

A Rigorous Validation of an Implementation 	 171

PS

To see why, consider what happens when q performs an a move. Let us

assume that it takes the left-hand branch. Then process p after an a

move reaches a state

fi

P 1 	p2

and

'A# :it 	I
P 1 	p2 	 p1

as the possible traces are different.

Note that with the relation > the following is true

a A a 	a Aa 	1
()

a)

A> 	
but b) (

The proof for SSys > PSys exploited this fact in the following way. When

a process is in a state satisfying P 1 (nk,L,2,PC,[n]), then at that point it

may be committed to a certain action even though we have equated it

A Rigorous Validation of an Implementation 	 - 	172

to 	S 1 (k,2,.i). The communication we are committed to depends on the

states 	of 	the communicating partners and their relative orders. The

reason we were successful 	in proving 	that SSys 	> 	PSys was 	because,

although the s.(k,2,i) 	term was 	uncommitted, 	it 'had no control over

what communication would 	eventually -occur and 	so the situation was

similar to 	(1). However '(t) shows that this technique will not work for

>.
t

In order to use the > preorder, two alternatives are open to us.

The first approach would be to equate a term satisfying P1(n,k,i,2,PC.[n])

to a term satisfying. S.(k,3,j) for some j, if a global analysis of the state

indicated that Poller, was committed to establishing a communication

with Poller, due to the order in which Poller, polled its partners. If we

did this, the commitment point in the simple synchronisers and the

pollers would then be identical as far as the relation 9 was concerned.

Unfortunately, this approach would greatly complicate what is already a

lengthy proof.

The first approach can be viewed as moving the point of

commitment of the simple synchronisers so as to coincide with that of

the pollers. The other approach is in some sense the opposite. We can

modify the algorithm so that the commitment point of the pollers

• coincides with the commitment point of the simple synchronisers. If we

allow the component p., when in the state (n,k,,2,PC.[n]), to

spontaneously "give up" and revert back to a state satisfying

• 	P.(n±l,k,J,l,), then it allows the p. component complete freedom of

choice until it reaches the state (n,k,j,l,i) or where in

either case the equivalent state of s, is also committed.

Obviously, by taking such an approach, we accept the criticism that

we are changing the problem to suit the proof. However, in this case we

believe the approach is justified for the following reasons. In the first

place, there appears to be no other way of completing the proof using

the > preorder without a great deal of additional complexity. We feel

that this cannot. be justified while there is a ' possibility that some

relation between 2kand E w can be found that allows us to complete the

A Rigorous Validation of an Implementation 	 173

original and simpler proof. 	Secondly, the modification gives a very

similar effect to a variant of the original algorithm where, instead of

incrementing the index into PC. each time, we choose the next index at

random. As long as -we have a random number generator that

guarantees that each process will eventually be polled, then this random

version of the scheme effectively performs identically to the original

version. Furthermore, the random version and our proposed

modification have very similar behaviours. For these reasons we choose

the second approach.

One way of implementing our proposed change is by replacing

Buffer, by the definition in Figure 5-3.

N.Buff er, = 	((NO). NBuff er,)
jEPC.

+ set.(j). NBuffer'.(j)

NBuffer'(k) = ((No). NBuffer'(k))
jEPC.-k

• Q.k (YES) . NBuffer.

• A,C (NO). NBuffer 2

Figure 5-3: A modified version of the Buffer process

It is easy to check that the new modification has not created any

additional synchronisation problems. Furthermore, the additional

transition we have introduced does not effect Theorem 5.1, or perhaps

more accurately, the extra check for this transition can be added to the

proof. of Theorem 5.1 without changing the rest of the proof.

In order to prove that

SSys(',r,2) >t PSys'(1,2,t',2),

where PSys' represents the modified poller network, we use the same

A Rigorous Validation of an Implementation 	 174

simulation relation X as before. Because Theorem 5.1 still holds, and

the first part of the definition -of > i s identical to that for >, we may

use the first part of. the previous proof without change, except to verify

that the additional transition causes no problems. We are then left with

the problem of checking that for each pair <SSYS,PSyS>EX that

Traces (SSys)cTraces(PSys).

We first prove the following theorem.

Theorem 5.4

Let PSys represent a derivative of PSys(r,,2,1).

Then if PSys

P 1 (n,k,..L,1,.i.)

v P(n,k.,2,t) A ((tL) v P(fl',k',S',5,J))

where m=PC.[n] 	V

v P.(n,k,J..,4,i)

v P.(n,k,.L,5,i)

holds then Yn' s.t. jPC.[n'] A jEk A PSys 	P.(n",k',s,l,t)

FSys' such that PSysPSys' and 	
V

PSys' 1= P.(n',k,..L,l,.i) A P.(n",k',s,l,t)

Proof:

We assume that for any process, m, in PC. where m/-j, if it reaches

a state 	 then it immediately performs a

transition to a state p(n'+l,k',i,l,i). 	
V

Then if iii) or iv) is true, we may perform a sequence of -r moves to 	
V

- • 	a state satisfying P.(n+1,k,.t,1,). If ii) is true we may again

Perform a transition to P 1(n+1,k,,1,). If i) is true then we can

always progress to the next index, either by timing out or by

relying on the fact that any partners other than Poller, will have

timed out and so will return NO to a Q, query. Ther"efore we will 	V

eventually get to a state P 1(n',k,..L,l,i) and this sequence of moves

does not require any participation by Poller, and so its state will
V 	 V 	 V

 have remained unchanged. 0 	 V 	
V

A Rigorous Validation of an Implementation 	 175

We can now show that SSys(,r,t) > PSys'(r,,,r,).

Theorem 5.5 SSys(,T,2) > PSys'(r,,.1)

Proof: 	 -

The first part of the proof has already been discussed. All that

remains is to check that for all pairs <SSys,PSys> in R,

Traces (SSys)cTraces(PSys). We do this by showing that for all

sequences s inTraces(SSys), s also. exists in Traces(PSys). We use

induction on the length of s.

Inductive base, s=s

Then trivially e€Traces(PSys)

Inductive step, s=as'

What possible values can a have? It must either be an offer or

a select message and we treat these two cases separately.

a = offer i (k)

In order for this action to form part of a trace of SSys, the

action must be possible which implies that 	 holds.

This is possible when 	 v

P.(n,,i,5,j.) holds. We may use Theorem 5.2 to deduce that

eventually we may progress to a state P 1(n',,i,1,i) where

the transition

off er.(k)

>p.(n',k,,1,) is possible.

If k=0 then
offer (k)

and otherwise
offer.(k)

In either case the resulting pairs are in X so we may use

the inductive hypothesis to show that s'ETraces(PSys') where

PSys' represents the state after the transition.

a = select .(j)

In order for this action to be possible we know that either

S.(k,3,j) or S(k2.) is true. In the first case, we may

perform the same analysis as for > to deduce that

A Rigorous Valic1ation of an Implementation 	 176

PSys 	>PSys and SSys 	>SSys'

where <SSys,PSys'>€ and so again we may use the

inductive hypothesis on s'.

If S(k,2,i)is true then there are two possibilities.

a. i>j

In this case, by Theorem 5.4, we may eventually reach a

state P 1(n',k,i,l,i) where jEk and j=PC.[n'].

Furthermore, this sequence of transitions doesn't effect

Poller 	Poller, then outputs a set .(j) action and waits

for a reply from Poller.. We can apply Theorem 5.4 to

deduce that P.(n",k',,1,) will eventually hold, where

iEk' and i=PC.[n']. At this point it can receive a positive

Q response which means that the system will eventually

be able to output a select.(j) message. Furthermore, the

resulting pairs are in . and so we may apply the

inductive hypothesis to s'.

b.i<j

The analysis is similar to the previous case except that

Poller, waits for Poller,.
J

This completes our proof that Traces (S Sys) cTraces(PSys) and hence

we may deduce that SSys(,r,2) > PSys'(r,',,r,I) o

§5.7 A proof that Tr5 ' is an implementation
transformation

Before proving that Tr 11 is an irnplementat!on transformation we
Po

first show this property for Tr
Sync*

We can then extend the result to

Trr 11 in a simple way.

To show that Tr 	is an implementation we must show that

A Rigorous Validation of an Implementation 	 177

]J p w--'must succeed D Tr
SyIL nc }] pj w-must succeed

EN (EN

We have previously represented the state of a simple. synchroniser by

s.(k,l,j), where k is the set of processes we are trying to synchronise

with, j is the identity of a process we have successfully established a

communication with (or ..L), and 1 represents the current position in the

algorithm. When we place the simple synchroniser in parallel with its

host, we need to extend the state to keep track of the' process from

which this transformation was derived. This extension will be described

by means of the following example.

Suppose we have a process p and we translate it to obtain the

component s.(q,1,L,p), where we have added an extra field, p., to

indicate the source of the . transformed term. Then a communication

performed by the original process with process p
k is translated into the

following sequence of actions.

p11 = 	a..p.. and p
;En

s(,1,i,p.) T >

S (U C(a)ui, 2.-'-P11) m(i,k) > i
jEn

2.

s.(U C(a)ui, 3,k,p.)
jEn.

s.(,4,,a.p m) m >

s.(,1,.i,p.) 	.

where C(a)=k

and m(i,k) = mki if k<i and mk if k>i.

This sequence is matched by a similar one in the translation of 	We

A Rigorous Validation of an.Jrnplementation 	 178

extend the possible locations from 3 to 4 where 4 indicates that the

master has not yet performed the synchronised action.

It would be useful if we 	could extend each process into a known

state. Furthermore, we would like this known state to be equivalent to

some transformation of a process. A transformation currently starts in

a state where all the processes are at location Ili. However, we cannot

always extend a computation so that all processes are in this state

because a process may already be at location 121 with no possibility of

communicating with another process. We will show that it is always

possible to extend a computation so that all processes are at location

23. When a process is at location JI . J then it can progress silently to

location J2J, so that case presents no problems. If it is at location J3J

then this implies that it has just performed an m(k,i) transition which

in turn means that s has just performed an m(k,i) transition. They

may both independently proceed to location J4J, and due to the

definition of C, they are guaranteed to be able to communicate with

each other again in order to reach location Ili which silently brings the

component back to location J2J.

The discussion in the previous paragraph leads us to assume that

the transformation function results in a state where the initial

communication between the host and the simple synchroniser has

already taken place. This is equivalent to performing the initial move at

compile time instead of at run time, and doesn't alter any of our

previous results concerning the transformation. -.

Altering the starting point of the transformation allows us to prove

the following proposition.

Propsition 5.6

Tr 	fl p]='tp. 3 " s.t. tp==Tr 	L[U p.' ii Sync Sync
i€N 	 iEN

Proof:

A Rigorous Validation of an Implementation 	 179

Immediate as the transformation function starts with each process

s in a state satisfying S 1 (k,2,..L.p() and we have shown that every

state can be extended to this form in a computation, so in

particular, all the processes in tp may be extended so that they are

equivalent to the transformation of some fl tEN p' I
. 0

However, we will need a stronger result than this, namely that the

fl
tEN pI 	 tEN

' processes can be obtained from fl p by a sequence of silent

moves. In other words, we wish to prove the following proposition.

Proposition 5.7

Tr 	lip ll'tp 	" s.t. tp==Tr 	Iii JJ p.']] Sync Sync
iEN 	 iEN

and furthermore, JJ p== fl p'
iEN 	 tEN

Proof:

Suppose

Tr
Sync Ill II p 11]i v 	Tr5 L[1I 	Th

tEN 	 iEN

Let o be the sequence of actions contributed by component i. In

other words, the set ju.IiEN can be merged in some way to form an

e sequence. Each sequence a • consists of a number of subsequences

each of the form

m(Lk) 	 _!!.

The situation may be viewed as follows

I

A Rigorous Validation of an Implementation 	 180

m3)

1 	
T 	m(2,n) 	 T

p
2

T 	 : 	T

-
m(3,1) 	 am

7 T 1

m(n,2) 	 E111.2

We define the function f on sequences such as these as follows

f(T.m(i,k).T.a.$) = a.f(s)

f(NIL) = NIL

Let us denote by Tr Sync. the transformation applied to the i'

component. If 	
Synci
 I[pJJ 	Tr

Sync
 E[p.'J then

Furthermore, by examining the effect of f on our previous diagram,

we may conclude that the set of sequences f(a djiE:Nj can also be

merged to form an t sequence. Therefore we may deduce that

I-I p==4> 1J p'
iEN 	 iEN

By examination of the transformation function, we may deduce that

Trj 1J P]l _L><=> 11 p _L
iEN 	 'LEN

We may also extend this to our last proposition. If the transformation

passes through a state where a move is possible on its way from

Tr 	III JJ pJJ to Tr 	II fT p'J] Sync Sync
lEN 	 iEN

then the path from

A Rigorous Validation of an Implementation 	 181

ri p to J[p'
iEN 	 iEN

also has this possibility, and vice versa.

We now have to show that every communication that was possible in

the original system may be mirrored in the transformed system. This is

the purpose of the next proposition.

Proposition 5.8

fl p --> FT p.' J Tr 	o: 11 p.1] => Tr ynft Fl p,'] Sync 	 Sc
iEN 	 lEN 	 lEN 	 lEN

Proof:

If Fl . p -L--> 11 	p.' then there exists a pair p., p. such that
2EN 	 tEN t 	 ' 	.2

	

pj --- 'p i ' , P 	>p' and

i[iI p 	= p 1 1 	. 	. 	IPI 	. 	lp,I 	. . . 	p and
lEN

Ill Pi' =p 1 1 	Ip'I 	... 	1p1 'I 	... 	P.
iEN

Consider 	
iEN
	Then S(k.2i.p1) and S(k.2.Lp,) hold

where iEk and jck.. Therefore these two processes may evolve to

s(k.,3,j,p1) and s,(k.,3,i,p.). These may then separately evolve to

s.(,4,i,a.p.') and 	 because, due to our assumptions

about C, there is a unique port between s and s.. These two
.2

processes may then communicate to produce s.(,1,i,p.') and

Finally, both of these processes may move

independently to s.(k.',2,,p.') and s.(k.',2,,p') where k. and k'

äontain, the set of processes that p.' and p' wish to communicate

with. The rest of the components have remained unchanged and so

the resulting system is equivalent to Tr 	fffJ 	r.'lI• 0
Sync 	tEN '

A Rigorous Validation of an Implementation 	 182

We are now able to show that Tr Sync is an implementation

: 	transformation.

Theorem 5.9

fl p w-must succeed D Tr fl p ,] w-'rnust succeed
tEN 	

Syn 	
(EN

Proof :

Suppose that this is not the case. Then there is a prefix of a

computation of Tr
Sync E[fJ tEN P.] which cannot be extended to a

successful state, i.e.

Tr
sync Eli U p.tp SA. 'tp'. tp==.tp'--'

iEN

By Proposition 5.7 we know that there exists a fl p' such that
tEN i

Tr
Sync IT PII 	tp 	Tr5yn)[11 11

(EN 	 (EN

where fl pi LI P' 	 -
(EN 	 (EN

But then there are two possibilities. Either
"(EN

P. passed through

a successful state on the way to fl 	p.', and therefore

Tr5 fffl 	pi]I must have also pass7 through a successful state, or
iEN

II P1 	lip
tEN 	 (EN

But then by the last proposition,

Trsync E[I[I PI'JJ ==' Trsync ElI Ill P% -_' 1--
tEN 	 tEN

In other words, we have achieved a contradiction. 0

We have therefore proved that Tr
Sync is an implementation

transformation.

A Rigorous Validation of an Implementation 	 183

§5.8 A proof that Tr is an implementation
transformation

	

The end is in sight. 	We show that Tr 11 is an -implementation

transformation by showing that it is an implementation of Tr
Sync

and

then appealing to transitivity.

The transformation function Tr Sync consists of two parts. The first

translates the processes into their offer/select form, and the second

part consists of the simple synchronisers. Tr 11 may be broken down in

a similar way and, loosely speaking, we may view the two translations as

follows.

Tr
Sync [[fl p1] 	(i'r 111 LI P11 I Tr

B7 i LI piI)
iEN 	 iEN 	 i€N

TrI[LI pji 	(Tr11[j[j[P)l I TrI[LI pIi)
tEN 	 iEN 	 tEN

Suppose that Tr
Sync fJ p.TJ w-must succeed.

EN 	 -

Then (Tr.[[LI pJ] I Tr T LI p1]) w-must succeed
iEN 	 iEN 	-

and so (Tr 1 [[LI p1] I Tr
P0

E LI p.11]) w-must succeed
iEN 	 iEN

which implies that Tr
POUT LI p.11 w-must succeed.

iEN

which is sufficient to show . that Tr 	is an implementation of Tr 	and

	

- 	- 	 Poll 	- 	-- 	 Sync

hence is an implementation transformation.

§54 Partial application of synchronisation
transformations

One of the advantages of treating - synchronisation schemes as

program transformations lies in their ability to be partially applied to a

system. We now investigate this possibility in more detail.

A Rigorous Validation of an Implementation 184

Let us consider again the example presented in Chapter 3, page 63.

P3 	

p1.0

p5 	 p6

PC 	1 	2 3 	4 	5 6 7 8 9 	/ 	10

li io~

The algorithm for determining synchronising annotations produced

the following dominance relation for this system.

p 1 <p2 	p2 #p7 	p9 <p7

p3<p4 	p4_ #p7 	p9 <p8

P5 < p6 	p4 # p8 	p9 < p 10

P6 # p8

A fundamental property of the algorithm involved its treatment of

the propagation of incomparable processes. If two processes p and q

are -attempting to communicate and p/fq then these processes cannot be

affected by any other communications between pairs of comparable

processes. For example, suppose q could also simultaneously attempt to

communicate with r and r with s where r<s. This might potentially

influence the communication between p and q because one of the

summands of q (with r) may be withdrawn due to r communicating with

S. However, this situation is not possible because p//q and q can

simultaneously attempt to communicate with r which implies qr and

hence r#s. As a result, all communications that take place between

comparable processes are in some sense disjoint from those between the

incomparable - processes. This allows us to partially apply a

transformation only to those processes that are incomparable to some

other process. In the case of Schwarz' scheme, for example, even the

transformed processes only need to communicate via a poller when

P,

3 	 p4

p8

A Rigorous Validation of an Implementation 	 185 -

synchronising with a set of incomparable processes. For the comparable

cases ihey may communicate directly with the other processes. Thus-in

the example above, p 1 could always communicate directly with its

partners (in this case
p 2) whereas p 4 must communicate with p., and. p 8

via a poller although it can communicate directly with p3 .

The correctness proof for Schwarz scheme still holds in the partial

application case because the direct communications between comparable

terms manifest themselves as silent moves among the hosts. If

communications between comparable terms could influence the other

communications then this would not be the case as a successful direct

communication would potentially require the ability to send retraction

messages to the pollers which we have not considered.

Partial application of the transformation has obvious advantages.

Implementing pollers, even when done in hardware, is an expensive

process. It is therefore desirable to omit unnecessary uses of them.

Furthermore, this approach has more general applicability. Other

synchronisation schemes may also be expressed as transformations and

partially applied. The success of this approach relies on natural limits

Jo the propagation of incomparable processes in the dominance relation.

One reason for expecting this to be the case is that many programs

satisfy the restrictions imposed by the asymmetric version of CSP, for

example. For these programs no incomparable processes will be

• necessary, although some may be generated due to the simplifications

assumed by the current algorithm. We expect in the more general case

that programs will contain a sizable subset that will have no

incomparable processes. These subsets will be connected together by

more elaborate synchronisation nets containing incomparable processes

at the interfaces.

Conclusion and further work
	

186

CHAPTER 6

Conclusion and further work

The aim of this thesis has been to study the problems associated

with the implementation of concurrent languages based on the

synchronous handshaking view of process communication. These

problems arise not only in the design of the implementation algorithms

themselves, but also in the associated proofs of these algorithms. The

language chosen as the basis of these investigations was Miler's

Calculus of Communicating Systems. CCS was an appropriate vehicle for

this research due to the well developed body of proof techniques and

equivalences that already existed for the language. Because of the

unusual nature of the proofs conducted in this thesis, however, the

previous work on CCS has had to be extended to accommodate fairness

and transformational correctness in an intuitive fashion.

The theoretical problems tackled in this thesis have been problem-

driven to a great extent. The development of the weak-must preorder,

and the definitions of implementation and transformation, were

prompted by the desire to perform a correctness proof for a ccs
implementation. Such a problem-driven approach has the advantage

that the theoretical investigations are well motivated. Furthermore, the

particular problems under consideration may drive the investigations in

directions that may not otherwise be contemplated. The problem-driven

apprOach also has its drawbacks. There is a danger that the theoretical

work is incomplete and the results may also be of relevance to only a

small class of problems. The quest for intuitively appealing definitions

may also lead to equivalences that are mathematically intractable.

While we do not believe that these potential drawbacks of the problem-

driven approach are applicable in this case, the implications of the work

Conclusion and further work 	 . 	 187

presented in the thesis need to be - examined in more detail from a

theoretical standpoint. Even if the definitions themselves do not gain

wide acceptance, it is hoped that the motivation behind the choice of

the definitions will influence future work in this area.

We stated in the introduction that an important use of concurrent

programming constructs was as a structuring tool in program design.

This prompted the work in Chapter 2 where the Edinburgh version of the

language PFL was described. It was argued that this was a natural way

of extending CCS to a complete programming language, and preliminary

feedback from the teaching of this language, both in Edinburgh and

Goteborg, reinforces this view. The chapter also pointed out the scope

for future enhancements, including the need for a more sophisticated

user interface, and the possibility of extending the language with

features from other languages such as Synchronous CCS, MEIJE and

CIRCAL. Care must be taken in PFL to create an acceptable impression

of non-determinism to the user. The additional manipulations required

to achieve this complicate the implementation of the concurrent

primitives. To what extent these measures are necessary in a large PFL

program needs to be investigated. The preliminary work on PFL has

been encouraging and we believe that further work on single processor

implementations of CCS, not necessarily based on PFL, should be

encouraged.

Chapter 3 demonstrated the problems involved in providing a

distributed implementation of Static CCS. A subset of Static CCS based

on synchronising annotations was identified, and an efficient

implementation strategy based on this subset outlined. A method was

proposed for computing these annotations automatically under certain,

simpifying, assumptions. The results are limited to Static CCS (and

CSF). 	The more general case of CCS has not been considered for

simplicity. 	The effect, of these results in the presence of dynamic

process creation therefore needs to be investigated.

A new approach to the implementation of process 	synchronisation,

based on program transformations, 	was 	also proposed 	in 	Chapter 	3.

Conclusion and further work 	 188

Some of the existing synchronisation schemes may be reformulated as

program transformations, and by applying these transformations

selectively to parts of the source program, an efficient implementation

strategy may be achieved. The problems associated with proving these

transformations correct led to the theoretical investigations of Chapter

4. The weak-must testing equivalence was proposed as a way of

incorporating fairness constraints into the must testing equivalence,

while retaining the validity of the expansion theorem. The most obvious

weakness of the new equivalence is the lack of an alternative

characterisation that admits some form of bisimulation style proof

technique. This omission is important as there currently does not exist

a, proof technique that is directly applicable to the weak-must testing

equivalence. We hope that the motivation behind the introduction of

this equivalence will be sufficiently appealing that others will also

attempt to find such a characterisation, or propose alternative

equivalences of a similar nature to 	. A connection was established

between 	and the 2k and < preorders, under certain conditions, and

perhaps these may form the basis of future searches in this direction.

An important area for future research involves the development ' of

transformations that produce, as output, programs that have no output

guards in summations. This would allow the resulting programs to be

run on, existing implementations of languages such as CSP and OCCAM.

Partial application of such transformations would allow the asymmetric

nature of these languages to be hidden, although a performance penalty

would obviously have to be paid. Program transformations could be

developed that produced programs with bounds on their interconnection

patterns. Such transformations would be useful for processors, such as

the Transputer [INMOS 84b], where there are physical constraints on the

interconnectivity of the processors which jould otherwise create

diffic'ulties when mapping processes onto processors. , The techniques

presented in Chapter 4 may help in proving these transformations

correct. The work presented in Chapters 3 and 4, especially the

proposal to use program transformations as an aid to process

synchronisation, and the development of the weak-must testing

preorder, forms the major achievement of this thesis.

Conclusion and further work 	 189

A new definition of implementation was presented, based on the

weak-must testing preorder. Although this definition, along with the

definition of transformation correctness, was motivated by the need to -

prove the Schwarz transformation scheme correct, these definitions are

of far wider applicability. The areas to which these techniques may be

applied will increase as larger proofs become more feasible, and the

problems tackled become more complex.

There have been other approaches to the treatment of weak and

strong fairness that have been introduced since the weak-must testing

equivalence was defined. While these approaches do not currently

respect the expansion theorem, they may form the basis of techniques

that do, and these should then be compared with our approach. While

we strongly, believe that the expansion theorem should still, hold when

fairness
I
constraints are taken into consideration, this is open to debate

and further, more convincing, arguments should perhaps be developed to

resolve this matter one way or the other.

Chapter 5 presented a comparatively large proof of the Schwarz

transformation scheme. The problem raised a number of interesting

issues concerning the proof methods that had to be employed. We

believe these problems, and the techniques developed to treat them, are

of a general significance. In particular, the need to conduct the proof

without appealing to inductive arguments, and the notation developed to

keep the proof manageable, may aid in the analysis of similar problems.

Another beneficial aim of exhibiting such proofs is perhaps less obvious.

In order to develop theorem provers for languages such as CCS, it is

necessary to be able to identify the types of, operations that need to be

performed in a verification, and the detailed presentation of proofs is

one way of helping this process. .

In conclusion, the problems associated with implementing a language

such as CCS have been analysed within a formal framework.

Furthermore, new techniques have been developed to aid the

implementation 	process 	and 	also . to 	analyse 	the 	resulting

synchronisation algorithms. Implementations of languages such as CCS

Conclusion and further work
	

190

are still in their infancy, as is their associated theoretical support. It

is hoped that the work presented in this thesis will contribute in some

small way to the growing process.

.

References 	 191

References•

[Austry 84]
	

Austry, D., and Boudol, G.
Algèbre de Processus et Synchronisation.
Theoretical Computer Science (30):91-131, 1984.

[Backhouse 83] Backhouse, R.
Specification and Proof of a Regular Language

Re c ogniser in Synchronous CCS.
Technical Report CSR-130--83, Computer Science

Department, Edinburgh University, 1983.

[Banino 79] Banino, J.S., Kaiser, C., and Zimmermann, H.
Synchronization for Distributed Systems using a Single

Broadcast Channel.
In Proceedings of First International Conference on

Distributed Computing Systems, pages 330-338. 	Oct,
1979.

[Bernstein 80] Bernstein, A.J.
Output Guards and Nondeterminism in "Communicating

Sequential Processes".
ACM Transactions on Programming Languages and

Systems 2(2), 1980.

[Brinch 73] Brinch hansen, P.
Operating System Principles.
Prentice-Hall, 1973.

[Brinch 81] Brinch Hansen, P.
Edison - a multiprocessor language.
Software-Practice and Experience 11, 1981.

[Buckley 83] Buckley, G.N., and Silberschatz, A.
An Effective Implementation for the Generalized

Input-Output Construct of CSP.
ACM Transactions on Programming Languages and

Systems 5(2), 1983.

[Burstall 80] Burstall, R.M., MacQueen, D.B., and Sannella, D.T.
HOPE: An Experimental Applicative Language.
Technical Report CSR-62-80, Computer Science

Department, Edinburgh University, 1980.

[Cardelli 82] Cardelli, L.
ML under Unix.
Technical Report, Bell Laboratories, Murray Hill, New

Jersey, 	1982.

[Costa 84] Costa, G., and Stirling, C.
A Fair Calculus of Communicating Systems.
Acta Informatica 21:417-441, 1984.

References 	 192

[DeNicola 82] De Nicola, H. and Hennessy, M.C.B.
Testing Equivalences for Processes.
Technical Report CSR-123-62, Computer Science

Department, Edinburgh University, 1982.

[Dijkstra 65] Dijkstra, E.W.
Cooperating Sequential Processes.
Technical Report, Technological University, Eindhoven,

The Netherlands, 1965.

[DoD 80] Reference Manual for the Ada programming Language
United States Department of Defence, 1980.

[Engeifriet 84] Engelfriet, J.
Determinacy —> (Observation Equivalence = Trace

Equivalence).
Technical Report, Twente University of Technology,

January, 1984.

[Francez 80] Francez, N., and Rodeh, M.
A distributed data type implemented by a probabilistic

communication scheme.
In Proceedings of 21st Annual Symposium on

Foundations of Computer Science, pages 373-379.
Syracuse, N.Y., Oct, 	1980.

[Goldberg 83] Goldberg, A. and Robson, D.
Smalltalk-80: The Language and its Implementation.
Addison-Wesley, 1983.

[Gordon 79] Gordon, M.J., Milner 	A.J. and Wadsworth, C.P.
• Lecture Notes in Computer Science. 	Volume

78.Edinburgh LCF.
Springer-Verlag, 1979, Chapter 2.

[Gries 771 Gries, D.
An exercise in Proving Parallel Programs Correct.
CACM 20(12), 1977.

[Habermann 72] Habermann, A.N.
Synchronization of Communicating Processes.
CACM 15(3), 1972.

[Hennessy 84a] Hennessy, M.
Proving Systolic Systems Correct.
Technical Report CSR-162-84, Computer Science

Department, Edinburgh University, 1984.

[Hennessy 84b] Hennessy, M.
An Algebraic Theory of Fair Asynchronous

Communicating Processes. 	 -
Technical Report CSR-171-54, Computer Science

Department, Edinburgh University, 1984.

[Hennessy 84c] Hennessy, M.
A Proof Technique for MUST-Testing PreOrder.
1984.
Unpublished notes.

[Hewitt 77] Hewitt, C.
Viewing Controls Structures as Patterns of Passing

• Messages.
Artificial Intelligence 8(3), 1977.

References 	 193

[Hewitt 80] Hewitt, C.
The Apiary Network Architecture for Knowledgeable

Systems.
In Conference Record of the 1980 LISP Conference.

Stanford University, 1980.

[Hoare 78] Hoare, C.A.R.
Communicating Sequential Processes.
CACM 21(8), 1978.

[Holmstrom 83] Holmstrom, S.
PFL: A Functional Language for Parallel Programming.
In Declarative Programming Workshop. Programming

Methodology Group, Chalmers University of
Technology, University of Goteborg, Sweden, 1983.

[INMOS 84a] INMOS.
Computer Science: 	OCCAM Programming Manual.
Prentice-Hall, 1984.

[INMOS 84b] INMOS. 	-
IMS T424 Transputer Reference Manual.
Technical Report, INMOS Limited, 1984.

[Kennaway 81] Kennaway, J.R.
Formal Semantics of Nondeterminism and Parallelism.
PhD thesis, St. John's College, Oxford University, 1981.

[Lamport 78] Lamport, L.
Time, Clocks, and the Ordering of Events in a

Distributed System.
CACM 21(7), 1978.

[Larsen 85] Larsen, K.G.
A Context Dependent Equivalence between Processes.
In To appear in the proceedings of ICALP'85. 	1985.

[Li 83] Li, W.
An Operational Approach to Semantics and Translation

for Concurrent Programming Languages.
PhD thesis, Computer Science Department, Edinburgh

University, 1983.

[Lynch 80] Lynch, N.A.
Fast Allocation of Nearby Resources in a Distributed

System.
In Proceedings of 12th Annual Symposium on Theory of

Computing. 	ACM, Los Angeles, Calif, 1980.

[Marsan 84] Marsan, M.A., Conte, G., and Balbo, G.
A Class of Generalised Stochastic Petri Nets for the

- Performance Evaluation of Multiprocessor Systems.
ACM Transactions on Computer Systems 2(2), 1984.

[Martin 80] Martin, 	A.J. 	 - -
A Distributed Implementation Method-for Parallel

Programming.
In S.H. Lavington (editor), Information Processing 80.

1980.

References 	 194

[Millington 82] .Millington, M., and Hennessy, M.C.D.
Towards a Theory of Translation.
1982.
Unpublished Paper, Computer Science Department,.

Edinburgh University.

[Mime 85] Mu, 	G.J.
CIRCAL and the Representation of Communication,

Concurrency, and Time.
ACM Transactions on Programming Languages and

Systems 7(2), 1985.

[Milner 801 Milner, R.
Lecture Notes in Computer Science. 	Volume 92: 	A

Calculus of Communicating Systems.
Spring er-Verlag, 1980.

[Milner 83] Milner. R.
Calculi for Synchrony and Asynchrony.
Theoretical Computer Science (25):267-310, 1983.

[Milner 84] Milner, R.
The Standard ML Core Language.
Technical Report CSR-168-84, Computer Science

Department, Edinburgh University, 1984.

[Mitchell 84] Mitchell, K.
A User's Guide to PFL.
1984.
Edinburgh Computer Science Department Lecture Notes.

[Mitchell 85] 	Mitchell, K. and Mycroft, A.
The Edinburgh Standard ML Compiler.
1985.
In preparation.

[Olderog 84] 	Olderog, E. and Apt, K.R.
Fairness in Parallel Programs: The. Transformational

Approach.
Technical Report 8402, Christian-Albrechts-Unjversjtat,

Kiel, July, 	1984.

[Owicki 75] Owicki, S.
Axiomatic proof techniques for parallel programs.
PhD thesis, Department of Computer Science, Cornell

University, 1975.

[Park 81] Park, D.J.
Concurrency and Automata on Infinite Sequences.
In Lecture Notes in Computer Science 104.

Springer-Verlag, 1981.

[ParrDw 84] Parrow, J., and Gustavsson, R.
Modelling Distributed Systems in an Extension of CCS

with Infinite Experiments and Temporal Logic.
In Fourth International Workshop on Protocol

Specification, Testing, and Verification. 	IFIP W66.1,
June, 1984.

[Peterson 77] Peterson, J.L.
Petri Nets.
ACM Computing Surveys 3(9), 1977.

References 	 195

[Prasad 84] 	Prasad, K.V.S.
Specification and Proof of a Simple Fault Tolerant

System in CCS.
Technical Report CSR-178-84, Computer Science

Department, Edinburgh University, 1984.

[Reif 84] 	Reif. J.H., and Spirakis, P.G.
Real-time Synchronization of Interprocess

Communications.
ACM Transactions on Programming Languages and

Systems 6(2), 1984.

[Ron 84] 	Ron, D., Rosemberg, F. and Pnueli, A.
A Hardware Implementation of the CSP Primitives and

its Verification.
In ICALP 84. Springer-Verlag, Lecture Notes in

Computer Science 172, 1984.

[Sanderson 82] Sanderson, M.T.
Proof Techniques for CCS.
PhD thesis. Computer Science Department, Edinburgh

University, 1982.

[Schneider 82] 	Schneider, F.B. • 	 Synchronization in Distributed Programs.
ACM Transactions on Programming Languages and

Systems 4(2), 1982.

[Schwarz 78] 	Schwarz, J.S.
• 	 Distributed Synchronisation of Communicating

- 	 Sequential Processes.
Technical Report DAI TR 56, Artificial Intelligence

Department, Edinburgh University, 1978.

[Shrira 81] 	Shrira, L., and Francez,N.
An Experimental Implementation of CSP.
In Proceedings of 2nd International Conference on

Distributed Systems, pages 126-136. Paris, France,
• 	 April, 1981.

[Silberschatz 79] Silberschatz, A.
Communication and Synchronization in Distributed

Systems.
IEEE Transactions on Software Engineering SE-5(6),

1979.

[Silberschatz 81] Silberschatz, A.
Port directed communication.
The Computer Journal 24(1), 1981.

[Snepscheut 81] Van de Snepscheut, J.L.A.
Synchronous Communication between Asynchronous

Components.
Information Processing Letters 13(3), 1981.

[Tarski 55] 	Tarski, A.
A Lattice-theoretical Fixpoint theorem and its

Applications.
Pacific Journal of Mathematics 5, 1955.

[Wirth 77] 	Wirth, N.
Modula: a Language for Modular Multiprogramming.
Software-Practice and Experience 7, 1977.

The Original "Kennaway" Equivalence 	 196

Appendix A
The Original "Kennaway" Equivalence

This appendix describes the equivalence due to Kennaway as it was

presented in [Kennaway 81]. We justify using the version due to

DeNicola and Hennessy [DeNicola 82] by showing that the original

definition is not an observational equivalence in any meaningful sense.

We start by defining a weak form of testing with a set of actions.

Definition For any finite LC4cufr.

p must L <==> 3EL. p==

P must L <==> Vp€P. p must L.

Note that r may be an element of L. We also extend the definition of

after to allow T to be one of the admissible labels.

Definition For any 	4du-r

p after u = p' I pp' for some p'

P after jL = Up after 	I p€P

Npte that as a consequence of the definition of

T
	in, [Kennaway

81], pafter T A p after e as p after r is the set of processes that can

be reached after one or more r moves whereas p after c is the set of

processes that can be reached after zero or more 'r moves. Thus, in

general, p€p after e whereas pp after T.

Kennaway then goes on to describe his equivalence
k

by means of a

recurrence relation.

The Original "Kennawaj" Equivalence 	 197

P 	Q is always true.

P 	' Q 	i) Yfinite LC4C.1UT. P must L D Q must L

ii) Vj1€41ur P after bi 	Q after j

k 	
Vn>O. P

:

Q.

We extend this definition - to single processes in the obvious way, i.e.

4=

Unfortunately, although this equivalence is intended to be weak, or

observational, in the sense that a..p and a.p are indistinguishable, this

is not so. To see why the definition differentiates between these terms,

consider the following analysis.

afl.NIL after a 	= i fl-NIL~

a.-rfl.NIL after a 	= 	rfl.NIL, fl.NIL~

fl.NIL after r =

-r..NIL, p.N114 after T = fi.NIL

We can therefore deduce that

((a..NIL after a) after T) must

whereas

((a.Tfi.NIL after a) after i-) mi(st

and so a..NIL 	a.-r.fl.NIL.

Unfortunately if we restrict the definition of after to the case where

/.t cannot equal r we still run into difficulties as the equivalence then

equates

a.NIL + NIL + T.NIL and -r.a.NIL + fl.NIL

This is because the ability to specify "after T" coupled with the

definition of must acted as a substitute for must. Take away the ability

to use "after T" and the system breaks down.

The Original "Kennriway' Equivalence 	 198

The definition presented by DeNicola and Hennessy [DeNicola 82) was

originally intended as an alternative definition of Kennaways

equivalence. However this appendix, along with the work in Chapter 5,

has shown that the DeNicola version is not an alternative

characterisation of the original definition but rather a corrected version

that manages to avoid the deficiencies of the original definition.

