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Abstract 

The implementation problems associated with the synchronised 

handshaking form of process communication are analysed within a 

formal setting. Miler's Calculus of Communicating Systems (CCS) is 

used as the vehicle for these investigations. 

A single processor implementation of CCS is described and its 

adequacy as a programming language discussed. For the more general 

case of a distributed implementation, a subset of CCS is identified that 

admits a simple synchronisation scheme. The subset consists of those 

programs that possess a synchronising annotation. A method for 

constructing these annotations is developed- and an implementation 

based on this approach is then proved correct. 

A technique for synchronising arbitrary (static) CCS programs is 

developed involving program transformations. In order to prove the 

validity of these transformations, a new equivalence relation is proposed 

based- on the testing approach of DeNicola and Hennessy: The new 

equivalence incorporates the notion of strong fairness while preserving 

the natural connections between parallelism and non-determinism as 

expressed by the expansion theorem in CCS. The meaning of 

transformational correctness within the CCS framework is also 

investigated. These developments are used to prove that an 

implementation scheme based. on program transformations is indeed 

correct. The results are then extended to the case where the 

transformation is only partially applied to the source program, leading 

to an efficient implementation strategy. 
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Introduction 

The last decade has seen a great increase in the demand for 

concurrent programming languages. In part, this has been due to the 

continual requirement for faster machines. By exploiting the parallelism 

inherent in many problems, multiprocessor systems may provide a cost 

effective solution to the performance problem. One approach is to 

detect this potential for parallel execution automatically, using 

sophisticated compilers. While there have been some notable successes, 

mainly in the area of numerical computations, the work has been 

hampered by the continued use of imperative, sequential programming 

languages. The presence of side-effects in these languages greatly 

increases the problems associated with the automatic detection of 

parallelism. This has led to a greater interest being shown in the purely 

functional programming languages. 

An alternative to the functional approach is to allow the 

programmer to explicitly indicate the parallelism inherent in the 

problem by using a concurrent programming language. This has a 

number of advantages. For instance, the parallelism specified by the 

programmer may be of a more useful form than that derived 

automatically. Many parallel machines consist of a comparatively small 

number of powerful processors, and for these machines the detection of 

parallelism present in the evaluation of an arithmetic expression may be 

unusable, due to the overhead of the process mechanism. In such 

cases, a more global and higher-level form of parallelism must be 

•  exploited, and this is the level at which concurrent programming 

languages operate. If we wish to execute a program on a dataflow 

machine, then the parallelism present in arithmetic expressions will 

assume a much greater importance. This illustrates why the choice of 

programming language may be influenced by the underlying target 
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- hardware. By adding concurrent features to a functional language, we 	- 

may achieve the advantages •  of both approaches. The level at which 

parallelism is then -exploited is left to the compiler for the target 

machine. - 

An important benefit of concurrency is that it provides a useful 

structuring tool, and may greatly aid the program design process in a 

way similar to functional abstraction. This fact has been appreciated by 

real-time programmers for many years, but the lack of convenient and 

commonly available concurrent languages has inhibited its use by the 

wider programming community. This situation is gradually improving as 

languages such as Ada [DoD 80], Edison [Brinch 81], Modula [Wirth 77], 

and Occam [INMOS 84a] become more widely available. 

It is a sad fact that nearly all sequential programs are never proved 

correct in any formal sense. This is in part due to the difficulty of the 

task, but also because, by careful construction, it is possible to build 

programs that are remarkably free of errors. The need for formal 

verification of concurrent programs is far more acute. Even simple 

concurrent programs of only a few lines may contain subtle errors and 

there have been some notable cases where numerous versions of an 

algorithm have been published before the correct version was 

obtained [Gries 77]. When this occurs for very small programs, the 

seriousness of the problem should be immediately apparent. 

These problems have strongly influenced the language designers, 

resulting, for the most part, in languages with far cleaner and elegant 

features than are present in their sequential counterparts. Along with 

the. development of these languages have come the associated proof 

methpdologies and semantic techniques necessary to form the basis of 

theorem provers and other verification aids. These trends are most 

apparent in those languages developed from a mathematical, or 

theoretical, background such as CSP [bare 78], CCS [Milner 80] and 

Petri Nets [Peterson 77]. These languages are not judged purely on 

their syntactic convenience, or even on the simplicity of the underlying 

semantics. Their mathematical tractability, and the ease of performing 
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proofs, are perhaps the most crucial factors influencing the success or 

failure of these languages. 

We have identified the need for concurrent' languages, and also why 

they must be designed to aid the proofs of the resulting programs. The 

question still remains as to , what concurrent primitives to provide. 

Perhaps the simplest approach would be to introduce processes 

communicating through shared variables. Unfortunately, as a program 

structuring device, this approach leaves much to be desired. It is also 

extremely difficult to perform correctness proofs in such a framework. 

Such deficiencies led to the introduction of more structured forms of 

concurrency control such as semaphores [Dijkstra 65], [Habermann 72] 

and monitors [Brinch 73]. 'These enhancements, while successful as a 

conceptual aid to programming, did little to aid the verification of the 

resulting programs, although there has been some success in applying 

the axiomatic approach to program correctness [Owicki 75]. 

Petri nets [Peterson 771 were proposed as a way of studying 

concurrency at its most, primitive levels. The formalism was inadequate 

as a programming language, at least in its original form, but it did 

'illustrate how various properties could be checked for in a program, 

such as the presence of deadlocks. There now exists a large body of 

work concerning net theory, and numerous extensions of the original 

proposal have been developed, such as the various forms of stochastic 

Petri nets [Marsan 841. - 

Hoare and Milner have both developed concurrent languages based 

on the handshake model of communication. If two processes wish to 

communicate, then the sending of the message and its reception form a 

single indivisible action. The Hoare version, known as Communicating 

Sequential Processes (CSP) [Hoare 78], is based on an imperative view of 

the world, whereas Miler's version, Calculus of Communicating Systems 

(CCS) [Milner 80], is more applicative in nature. Both of these 

languages have developed a considerable body of associated semantic 

descriptions,, proof techniques, axiomatisations, equivalence relations, 

and the like, that make them eminently suitable as a vehicle for the 
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study of concurrency. Although, superficially, the two languages appear 

very different, at the level of the process synchronisation mechanism 

they have much in common. This thesis addresses itself to the 

problems of implementing the handshaking view of process 

communication as embodied in these languages. As such, the results 

are of relevance to the implementation of both CCS and CSP. Ada [DoD 

80] and Occam [INMOS 84a] have based their concurrent primitives on 

CSP, and so the work is indirectly applicable t.o these languages as well. 

The examples and proofs presented in the thesis are based on CCS, as 

this language has developed furthest at the theoretical level. 

Concurrency may be used as a method for decomposing and 

structuring solutions to problems. It is therefore important to develop 

implementations of concurrent. languages on single processor machines, 

even though this will not result in any performance gain, and may result 

in a performance loss over the sequential version. The thesis starts 

with a discussion of the problems of implementing CCS on a single 

processor. The difficulties associated with the implementation of the 

concurrent primitives form only part of the problem. The need to 

provide a user interface to the system, and the extensions required to 

the calculus if it is to form a complete programming environment, also 

raise interesting questions. An example of a programming language 

based on CCS is used to illustrate these problems. 

Sequential implementations of concurrent languages are adequate if 

the languages are used purely as program structuring aids. The second 

aim of concurrent languages, namely the potential for performance 

improvements, requires the development of distributed implementations. 

Unfortunately, mathematical elegance does not necessarily imply ease of 

implementation. In particular, the implementation of the handshaking 

view of process synchronisation is a non-trivial problem on truly 

distributed systems (those that possess no shared memory). This thesis 

illustrates the implementation difficulties and reviews the previous 

algorithms aimed at solving this problem. 

An alternative method of implementing languages such as CCS and 
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CSP is proposed. 	It relies on the development of program 

transformations that produce, as results, programs that are easier to 

implement in some sense. A subset of CCS is exhibited that admits a 

very simple implementation strategy, and an existing implementation 

scheme is presented in the form of a transformation• that produces 

programs contained within this subset. By partially applying the 

transformation, an efficient implementation of CCS programs may be 

derived in many cases. A correctness proof of the transformation is 

complicated because, under certain circumstances, the transformed 

program may not terminate, even though the original program always 

does so. Existing definitions of process equivalence are inadequate in 

this respect, and so new notions of implementation and transformation 

equivalence must be introduced. Developing these ideas and performing 

the associated correctness proofs constitutes the main body of this 

thesis. 

The remainder of the introduction is devoted to a summary 'of the 

work presented in this thesis. 

In Chapter 1 the basic concepts and notations concerning CCS are 

introduced. The concurrent' operators of CCS are defined, along with an 

operational semantics. The definitions of strong and observational 

equivalence in terms of recurrence relations are then described. An 

alternative to these definitions, in terms of maximal fixed points, is 

introduced leading to the notion of bisimulation and its use as a proof 

technique. Deficiencies in these equivalences are then highlighted and 

the testing view of process equivalence, as proposed by DeNicola and 

Hennessy, is introduced. No new work is presented in this chapter and 

those readers already familiar with the literature surrounding CCS may ,  

safely proceed directly to Chapter 2. 

Chapter 2 deals with the problems associated with implementing 'CCS 

on a single processor. A particular example of a CCS implementation, 

the Chalmers PFL system, is 'described and some examples of concurrent 

programs written in PFL presented. This system ' consists of an 

embedding of CCS in the functional, language ML, and so the chapter 
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includes a brief introduction to those features of ML used in the PFL 

examples. Finally, some extensions and deficiencies of the current 

implementation are discussed. 

Chapter 3 deals with the more general case of implementing CCS on 

a distributed system. The analysis is restricted to Static CCS, the 

subset of CCS with no dynamic process creation, as even in this case 

there are considerable difficulties involved in an implementation. The 

problems of synchronising CCS processes are discussed, and a subset of 

the language exhibited that can be implemented efficiently. This subset 

consists of those programs for which a synchronising annotation can be 

found. We show how a number of previously proposed implementation 

schemes are particular instances of this approach. An algorithm is 

developed for determining these annotations under certain simplifying 

assumptions. We then discuss the approaches that may be followed 

when a \ synchronising annotation cannot be found for the program under 

investigation. The algorithms previously proposed as solutions to this 

problem are first reviewed, and then an alternative approach is 

described involving the transformation of CCS programs. We show how 

the resulting transformed terms may be easier to synchronise than the 

original program. In particular. we present the synchronisation scheme 

due to Schwarz in the form of a transformation, and show how 

synchronising annotations may always be constructed for the resulting 

terms. The advantages of the transformational approach to process 

synchronisation are outlined, such as the possibility of partial 

application. 	Finally, we discuss the problems involved in proving 

transformations correct. 	The Schwarz transformation introduces the 

possibility of non-termination, for example, and so requires some 

fairness assumptions in order-to grove its correctness 

The problems of transformational correctness in CCS lead naturally 

to the theoretical investigations of Chapter 4. The notion of 

implementation is first investigated, and the inadequacy of this 

definition in the presence of diverging processes discussed. The need 

for some form of fairness analysis is explained, followed by a brief 

review of the relevant work in this area. We argue that existing notions 
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of fairness for CCS are inadequate because they do not preserve the 

expansion theorem that relates the parallel composition and non-

determinism operators of CCS. An alternative approach, based on 

DeNicola and Hennessy's testing preorders, is proposed that captures the 

desired fairness properties. Various algebraic properties are exhibited. 

for the new preorder in order to show that it is well behaved in some 

sense. Use of the weak testing preorder is hampered by the necessity 

to deal explicitly with tests, and so an investigation is carried out into 

the possibility of an alternative characterisation that admits a simple 

proof technique. The equivalence proposed by Kennaway is investigated 

and rejected, although a connection is shown between the two 

approaches under certain restrictive conditions. Two further preorders 

are proposed that imply the weak testing preorder, and may be proved 

using bisimulation techniques. Finally, the problems of transformational 

correctness are investigated, and a new definition presented based on 

the weak testing preorder. 

Chapter 5 makes use of these new definitions to prove that the 

Schwarz synchronisation scheme is correct..when presented in the form 

of a transformation. The structure of the problem rules out the 

possibility of an inductive proof, and so notation is developed to allow 

the bisimulation proof to be carried out on the whole program. The 

chapter concludes with a discussion of how the transformation may be 

partially applied to a program so as to minimise the synchronisation 

overhead. 



Preliminary Definitions 

CHAPTER 1 

Preliminary Definitions 

§1.1 Introduction 

This. chapter aims to provide a brief overview of CCS, and the 

theoretical work based on the language, where it is of relevance to the 

work that follows. CCS (Calculus of Communicating Systems) is a 

mathematical calculus designed to aid the specification of concurrent 

systems and their subsequent analysis. This desire to not only specify, 

but also to reason about concurrent systems has lead to a large 

emphasis being placed on the mathematical tractability of CCS. In 

particular, a number of equivalence relations have been proposed for 

the language, each attempting to highlight some particular aspects of 

the concurrent programs under investigation. The chapter starts by 

describing the language and a particular method for generating 

equivalences known as Bisimulation [Park 81]. This method is used to 

define strong(-.) and weak () equivalences for the language. Some 

deficiencies of these equivalences are identified, leading on naturally to 

a discussion of DeNicola and Hennessy's testing view of process 

equivalence (c . ). 

§1.2 CCS 

We start by reviewing the definition of CCS and its operational 

semantics. CCS deals with systems of computing agents communicating 

via named ports that are connected by channels. The communication 

channels have no buffering capacity, and are unidirectional. 

Communication takes the form of a value-passing act, requiring the 

simultaneous co-operation of both the sender and the receiver. 
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The simplest agent, denoted by NIL, can perform no actions 

whatsoever. This agent, along with recursion, forms the basis from 

which all other agents are constructed. Given an arbitrary agent p, a.p 

represents the agent that may first communicate with another process 

through the a port,. and if successful will then evolve to the agent p. 

Agents may be composed through the bar operator, , and in the 

resulting agent, pq, p and q may proceed independently. However, they 

may also communicate with each other via matching ports, where the 

exact form of this matching will be explained shortly. To allow some 

degree of choice and non-determinism, the language also includes the + 

• operator, where p+q represents either the process p or the process q. 

Depending on the actions offered by p and q, this choice may or may 

not be resolvable, externally. The names of the ports used by each 

process are significant in that they affect the communication potential 

• of the process (i.e. the names can be viewed as forming the channel 

linkage mechanism). Thus, to be able to define a generic agent, and 

then use it in different contexts, we need to be able to relabel the 

agent's ports to form the desired connections with its context. This is 

achieved by the postfixed renaming operator, [S], where S is a port 

renaming function. Finally, to prevent channels from forming when not 

.required, the language has a hiding, or scoping mechanism known as 

restriction. Thus, p\a hides the label a so that the resulting agent 

cannot communicate to its external environment through the a port. 

We now express 'these ideas more formally. 	Let us assume the 

• 	existence of a fixed set of names, i, ranged over by a, ...... The 

set of co-names, & disjoint from A, is constructed using the bijection -, 

where 

aEJE 	 • 

We refer to a as the complement of a. We also use 	for the inverse 

bijection and hence = a. 

	

• 	
We define 4€4, the set of - visible actions or labels, to be Aul We' also 

	

• 	introduce the label T, where -r is a distinguished action not occurring in 

44. We will allow ji to range over AdUJTJ and X to range over 4L 
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- 	We define a function, S, over AcdUITJ to be a relabelling if 

S(r)7 

S is a bijection - 

S respects complements, 

i.e. S(X) = S(X) for A,X€4t 

We may now introduce the operator set for CCS. Let 

Flo. = NIL 

= L. I /.LE4c.1UT 	u [S] I S is a relabelling U 	AEAC4 

E 2  = + 

E = , n>3 

where E denotes UE I k>O 

Let X be a set of variables,, ranged over by x. The set of recursive 

terms over E, ranged over by t, is defined by the following BNF-like 

notation: 

t ::= x I op(t1.....tk), OPEEk 	fix x.t 

The operator fix x._ binds occurrences of x in the subterm t of fix x.t, 

and, introduces the usual notions of free and bound variables in a term. 

A term is said to be closed if it contains no free variables. We call such 

terms agents and will use P to stand for the class of agents. The terms 

behaviour and process will be used as alternatives for agent throughout 

the rest of the thesis. The operational semantics for CCS is given in 

terms of labelled rewrite rules over these agents( [Milner 80], [DeNicola 

82]). For each jiEAiUi- , we define a binary relation ---' over P. We 

interpret p >q as "agent p performs the action , and in doing so 

evolves to agent q". 
S 

Let --- be the least relation over 5)  that satisfies 	 . 

,i.p---)p 	, 	 S  

p-1 —)p' implies p + q 	3 p' 

q + p —'— p' 

p I q 	p' I  
q 	qip' 
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p- --- p' implies p[S] 	p'[S] 

p—
A

p
, 
 A XOj -Y,--/j implies p\y—A >p\ 

.p----p', q -->q' implies p I q 	p' I q' 

t[fl  x.t/x] 	p implies fix x.t---p. 

We extend this relation to sequences of actions in the obvious way. 

It will often prove convenient to ignore the r actions in a sequence 

of transitions. We define the 	relation by 

p 	q iff there exists p', q' such that 

p(_!_>)p' 11>q(_I_)'q 

We extend this relation to sequences of actions in the obvious way and 

define e to be the empty sequence. A question arises as to whether 
T 	 e 

p — p is always true. Certainly pp is always possible, but, by the 

preceding definition, is a sequence with at least one r transition 

and so p == p will not be true in general. This is the approach taken 

by Milner [Milner 80]. Unfortunately, Hennessy and DeNicola treat i -  as a 
C 

special case and equate 	and 	, as this simplifies their 

proofs [DeNicola 82]. We will also adopt this convention for the same 

• 	reason. This subtle but important difference in convention has created 

• 	some confusion in the past, and the reader should be aware of this 

point when reviewing the current CCS literature. We use p - 4-. to 

indicate that p cannot perfprm a X as its first action, and p to 

indicate that no sequence of silent moves will enable p to reach a state 

where it can perform a A action. 

We define the set of derivatives of p to be 

I Bs.  p==pi 

and the set of initial moves to be 

Init(p) = JaEAci I 

• 	A sort of an agent is a set of labels which contains all labels 

through which communication can possibly (but may not) occur. If an 

agent p has the sort L (written p:L) then it will prove convenient to 
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allow p to possess all larger sorts containing L as well. The minimal 

sort for an arbitrary agent can be computed using an iterative closure 

algorithm, and it is simple to show that finitely expressible agents have 

finite sorts. 

The version of CCS presented so far deals with pure synchronisation 

signals; no values are passed between the agents. It is simple to extend 

the calculus to the general case. We adopt the convention that ax.p 

and av.p denote agents that input and output values on the cx port 

respectively, where in the first case the resulting input value is bound 

to x throughout the agent p. Let tju/xj denote the term which results 

from substituting u for every free occurrence of x in t. We extend the 

binary relation > to allow values and variables and write it as 

For the most part the definition of > is a simple extension of the 

> definition except for the following cases. 

ax.p -- pv/x 

E.p --' p where the expression E evaluates to v 

T.p 	p 

We shall refer to a label, together with a variable or value expression, 

as a guard. We will sometimes use the CSP notation for value passing 

when this is convenient. Thus, a!3.p and ?x.q are alternative ways of 

writing Zi3.p and flx.q respectively. 

When mapping CCS onto finite resources, such as real processors, it 

may not be possible to support dynamic process creation. Furthermore, 

certain, transformations on CCS terms may require all processes to be 

transformed simultaneously, thus precluding the use of dynamic process 

creation. Such cases are sufficiently frequent that we define a 

subcalculus of CCS, known as Static CCS, that only allows the use of I in 

a restricted form. 

Let Fj . 	p. s denote the CCS term p 1  I p2  I . 	. 	I 	p. . Furthermore, 

we extend the restriction notation to allow sets of actions, as in p\L for 

any Lc4d. 
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Definition 

An agent pE:5 is static if the parallel composition operator. 

I, is not used in its construction. 

An agent p€5)  is a member of Static CCS if it is 

syntactically of the form (fl 	for some set of static
iCN 

processes jpIiEN  and Lç4..1. 

Note that if we only required bounded parallelism, then this could be 

ensured by not allowing the I operator inside the body of a recursion, 

which is a slightly weaker.. requirement than a process being a member 

of Static CCS. 

§ 1.3 Strong and observational equivalences 

There have been many equivalences proposed for CCS, each one 

accentuating some different aspects of the processes under examination. 

Furthermore, some of these are also congruences (i.e. equivalences that 

are preserved by the substitution of equivalent programs), while for 

others we must explicitly derive the congruence from the equivalence. 

We start by defining the original two equivalences for CCS, known as the 

strong and observational equivalences. Milner [Milner 80] describes 

strong equivalence, '-", in terms of a decreasing sequence 
 

of equivalence relations as follows. 

- q is always true. 

p k+1 
 q iff for all [L, v 

if 	ILV>:p then for some q', q---> q' and p' 	q' 	 - 

if q -->q' then for some p', p -- p' and ' - q' 

p - q iff Vk>0. 	
k q 

This equivalence has a number of desirable properties, such as pNIL 
- 	p 	p+NIL - 	p, that ease program proofs. 	Using - 	we may derive what 
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Milner describes as the Expansion Theorem [Milner 80]. This theorem 

provides •a connection between the parallel composition and the - 

summation operators. Summarising briefly, if B = (B 1 1 . . . IBm)\A where 

each B. is a choice of guards, then - 

B - 	v.((BI . . . 	 IB)\A) 

where /Lv.B is a summand of B. and 

± 	r.((B 1 j . . . IB;/'n . . . IBI . . . IB m)\A) 

where ax—. B'is a summand of B., 

is a summand of B., ipj 

provided that in the first term no free variable in B(ki) is 

bound by 'iv. 

Unfortunately, for many problems - is too i'estrictive an equivalence. 

For example, a.p and a.T.p are not equated by strong equivalence. The 

problem is caused by the silent T actions, as we frequently wish to 

ignore them. This prompted the development of the observational 

equivalence, '', so called because the r actions are not observable by 

an external agent. Milner defines the equivalence as follows. 

p 	q is always true. 	- 	 - 

k+1 
q iff for all sE(4d x V) 

if p=p' then for some q', q='q' and p' k  q 

if qq' then for some p' ,  p==p' and p' k  q' 

p 	q iff Vk>0. 	
k 

q 

. 

It 	is simple to show that a.p a.T.p. 	Furthermore -'c. Unfortunately, 

is not a congruence under the + operator. 	To see why, we note that 

NIL 	i- .NIL 

but 

- 	 NIL + a.NIL 96 T.NIL ± a.NIL 



Preliminary Definitions 	 - 	 15 

Milner defines ;:C  to be the weakest congruence stronger than (smaller 

than) 	and shows that 	and 	are identical, where 	 - 

q iff Vr p+r 	q+r 

§1.4 Bisimulations. 

We may redefine the latter half of the 	definition to be of the form 

= E  

where 

E(R) = <p,q> I p 4 p' D-3 q'. (q=q' A <p',q'>E:R) A 

qq' D Jp'. (===' A <p',q>€R) 

for s€44 

One anomaly of the 	equivalence is that it is not a fixed point of E. No 

simple example exists of two behaviours, p and q, such that pq but 

<p,q>gE(). However, Milner has exhibited such a pair [Sanderson 82], 

although the example is rather unnatural. Park [Park 81] has suggested 

an alternative definition of observational equivalence by considering the 

maximal fixed-point of E using the partial ordering of set inclusion. We 

can show that the function E is monotonic and so this is 

sufficient [Tarski 55] to deduce that a maximal fixed point for E exists 

given by 

UR I RcE(R) 

This leads to the following, alternative, definition of observational 

equivalence. 

= UR I RcE(R) 
. 	 . 

In fact, for practical purposes, these two definitions of 	appear to be 

identical. However, we shall show that the fixed-point • version of the 

equivalence admits a simple yet powerful proof technique. The same 

fixed-point can in fact be obtained by a simpler version of E where only 

single actions are considered rather than arbitrary strings, i.e. we-can 

replace the definition of E by 
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E(R) = <xy> I x=x' D 3y'. (y'y' A <x',y'>€R) A 

y:4=:'y' D Jx'. (xx' A <x',y'>ER) 

for /.LE:4ClUi- 

Defining observational equivalence (and also strong equivalence) 

using the fixed-point approach leads to a very powerful and elegant 

proof technique known as bisirnulation. To prove that p--q, it is 

sufficient 	to 	construct 	a 	relation 	R 	such that 	<p,q>€R and 	RcE(R). 

Following Park [Park 81], we refer to such a relation R as a bisimulation 

between p and q. 	This technique forms one of the main proof methods 

for CCS as the examples in [Sanderson 82], [Backhouse 83] and [Prasad 

841 illustrate. Furthermore, Sanderson [Sanderson 82] has proposed an 

algorithm that allows the construction of bisimulation relations to be 

carried out mechanically in some cases. 

§1.5 Testing equivalences 

For many examples the 	equivalence is too particular about when 

non-deterministic choices are made. Consider the two behaviours 

r' r2  

Then p 6q and pq. However, it is not clear why we should distinguish 

between these two processes. In either case an a followed by a j6 move 

is possible followed by either process r 1  or r 2 . In neither case can the 

external environment force the choice of whether r 1  or r 2  is executed. 

In order to remedy this deficiency of the equivalence, 

Kennaway [Kennaway 81] developed an alternative definition of 

observational equivalence involving sets of processes. We discuss this 

approach more thoroughly in Chapter 4. 

DeNicola and Hennessy [DeNicola 82] have also proposed an 
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equivalence that equates these two processes. However, in their case, 

this property was merely a byproduct of their more general view of what 

process equivalence should mean for languages such as CCS. Their basic 

premise is that two processes are equivalent if they are 

indistinguishable when tested by another agent. A process is tested by 

placing it in 'parallel with an observer process, where the observer agent 

has a distinguished action 'I in its sort (written w in [DeNicola 82]). A 

test succeeds if the combined processes reach a state where the '.1 move 

is possible through a sequence of silent actions. 

We formalise these intuitions as follows. We denote by 0 the set of 

agents that may be constructed from the CCS operator set augmented 

with the action J (i.e. 5cO). A term p is successful if it may perform a 

.J action, i.e. 3p'. p -- p'. 

A computation is any finite or infinite sequence of terms pIn>O 

such that p. -!-->p.+,,  whenever p 
71+1 

is defined, and if p 	is not 
n+1 

defined, then p. --!--->p"  for no 

A computation is successful if one of its states is successful, and the 

set of successful computations is denoted by 

For any p€3), oE, we define .in(po) to be the set of computations 

whose initial element is the term (p'o). 

We can distinguish two classes of tests on the process p; those that 

may succeed (indicated by at least one successful computation in 

and those that must succeed (where all computations in 

omji(p,o) are successful). This leads to the following three preorders. 

We first define 

p maw satisfy o iff (plo) (-1-->) *  q for some q such that q 

p must satisfy o iff whenever plo = p0 jo 0 _!_plo_!__> . . . 

is a computation from plo  then 3n>O such that o - - 

or equivalently, 

1) p  may satisfy o iff.3c€w(p,o) s.t. cE 
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ii) P  must satisfy o iff o.niji.(p,o)cYwc.c. 

Then 

p 	q if VoEt p may satisfy o implies q may satisfy 0 

2 q if VoEO p must satisfy o implies q must satisfy 0 

P r., q 	q A P 	q 

Note that a.NILIi- ' must satisfi,j&- /.NIL is false (written a.NJLIT' 

must -/satisfy .v'.NIL), because o.ny.(a.NILIi - .'./.NIL) has TW  as one of its 

computations. 

The preorders may be extended to equivalences in the obvious way, i.e. 

j q if q A q 	JD 

2 q if p F02  q A q 22 P 

p 1 q if p 21 qAq 	1 p 

The definitions of F i  presented in [DeNicola 82] are complicated by 

the explicit- treatment of unguarded recursion and divergence. However,  

the simplified definitions presented above are sufficient to give some 

indication of the general approach taken by DeNicola and Hennessy. It 

has been shown that lkl coincides with 	and 	lies between 	and 

This indicates that the observational equivalence distinguishes between 

more terms than the testing equivalence. 

The main work of this thesis now begins, starting with an 

investigation of how to implement CCS on a centralised machine. 
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-: 	 CHAPTER 2 

Implementing CCS on a Single Processor 

§2.1 Introduction 

The primary aim of this thesis is to analyse the various approaches 

to Implementing Static CCS on a distributed system. 	However, for 

completeness, we 	start 	by discussing 	the 	difficulties 	associated with 

providing an implemention of CCS on a single processor. 	Part of this 

work will be relevant to the more general case, as we show how CCS may 

be embedded in a functional language to form a complete programming 

system. 

In its intended role as a simple concurrent calculus, CCS is very 

successful. Each user of the calculus extends it with features 

appropriate to the problem domain undr investigation. However, in 

order to implement the calculus as a .programming language, we must be 

a lot more specific about areas such as the syntax, that tend to be 

neglected when the only manipulations performed on the programs are 

by hand. CCS is inadequate as a programming language for a number of 

reasons. Firstly, the syntax is very restricted. There is no facility for 

local declarations, for example, which may greatly improve the clarity of 

a program. Secondly, the calculus does not deal with the introduction 

and use. of new data types. In fact it is not even specified what data 

types are provided as primitives of the language. There is no mention 

of how to connect a process to the external environment of printers, 

keyboards etc. 	One desirable, but not essential, facility that is omitted 

from 	the calculus is 	some form 	of 	static 	typechecking 	that 	would 

prevent one process from sending a value of type t 1  and the receiver 

expecting a value of type t 2 . All of these omissions are understandable 
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as CCS was originally designed as a minimal calculus for reasoning 

about concurrent systems. These points illustrate why we must extend 

the calculus if we wish to produce an acceptable programming language. 

There are two ways to tackle this task. The first would be to 

develop an implementation of CCS from scratch, adding extensions as 

required, until an acceptable programming environment was constructed. 

The problem with this approach is that the sequential part of the 

language would almost certainly end up forming a programming 

language in its own right. The resulting implementation effort would 

therefore be considerable. The second approach would be to take an 

existing language as the sequential part of CCS, and embed the 

concurrent operators within this system. This approach has the 

advantage that the difficulties in implementing the concurrent operators 

are not obscured by decisions involving the sequential subset of the 

language. 

Holmstrom [Holmstrom 83] tackled this problem by embedding CCS 

in the applicative language ML [Gordon 79]. Although the input and 

output primitives of CCS are imperative, the rest of the calculus has an 

applicative flavour due to the similarity of value binding in CCS and the 

Lambda Calculus. Thus a functional language was a natural choice as 

the embedding language. Furthermore, ML is a strongly typed language 

with sophisticated data abstraction facilities which make it an ideal 

candidate for this role. The Holmstrom system, known as PFL (Parallel 

Functional Language), was built on top of an existing ML system which 

constrained the implementation in a number of ways. Firstly, the new 

syntax to handle the CCS constructs was cumbersome, as the primitives 

were encoded in the existing ML syntax. This encoding made extensive 

use of the continuation style of programming to simulate call-by-name 

value passing in a call-by-value environment. Secondly, the processes 

were rescheduled only when a data transfer took place between two 

components. Therefore, in the worst case, the system would hang if a 

process entered a non-terminating computation that performed no 

communications. 
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To resolve these difficulties, the author reimplemented PFL on top of 

an ML-in-ML compiler [Mitchell 85]. In this implementation, the 

concurrent operators were built into the underlying compiler resulting 

in a more faithful expression of the original CCS primitives: It is this 

version of PFL, described in [Mitchell 84], that we use as an example of 

a CCS implementation in this chapter. Many of the underlying ideas are 

based on the original Holmstrom implementation of PFL to which we are 

indebted. 

§2.2 A short introduction to ML 

This section briefly introduces the functional language ML. It is not 

intended to provide a complete description of the language; for this the 

reader is directed to [Gordon 79], [Cardelli 82], [Milner 84]. However we 

hope to give some flavour of the language and sufficient detail to enable 

the reader to understand the PFL examples. 

ML was originally intended as a metalanguage for the LCF theorem 

prover [Gordon 79]. 'However it quickly established itself as a 

programming language in its own right. This was in part due to certain 

features in the language, while originally designed to aid the LCF.system, 

gaining wider popularity in the programming community. These included 

the sophisticated static typechecking, the data abstraction facilities, and 

the failure, or exception, mechanism. 

At this point it was a natural progression to reimplement ML as a 

stand-alone programming language. This work was performed by' 

Cardelli [Cardelli 82] and he took the opportunity to extend the. syntax 

of the language, particularly in the area of environment constructors. 

He also introduced two new primitive data types, the labelled record and 

variant. 

Recently there has been an attempt to rationalise the existing ML 

systems and the Hope language [Burstall 80] resulting in a new version 

of ML. known as Standard ML [Milner 84]. We shall describe the Cardellj 

version of ML simply because this is what the ML-in-ML compiler 



Imp ternent.ing CCS on a Single Processor 	 22 

implements, and it is this system that has served as a test bed for - our 

PFL experiments.  

First and foremost. ML is an interactive, strongly'-typed language. 

However, unlike the typing systems in languages such as Pascal and Ada, 

the ML system does not require that the user specify any type 

• information for most expressions. It is the responsibility of the type 

checking phase of the compiler to infer this information from the user's 

program. For example, consider the expression 

- [1+2; 3]; 

The ML system on receiving this expression would perform the following 

analysis. Firstly, + is a binary operator requiring two integers as 

arguments and producing an integer as a result. 1 and 2 are both 

integers and so 1+2 must represent an integer. Given a list of elements 

e 1 .....e of type t. [e 1 ; . . . ; e] constructs a list of these elements 

of type t list. In this case the first element of the list is an inte g er 

and so the t ype checker examines the remainin g  elements (in this case 

just the element '3') to ensure that the y  all have the same t ype. This is 

indeed the case and so the t ype of the whole expression must be an 

integ er list. It passes this information back to the user, alon g  with the 

evaluated result. 

> [3;3] : mt list 

The description given above is a simplification of the truth, as, in 

practice, the type checker unifies types rather than performing exact 

matching of types. Such details do not aid the understanding of the 

PFL examples that follow,' and, therefore, the description of ML 

presented in this chapter ignores such matters. 

Values and fuictions can be defined, and functions applied, as 

follows. 

- let a = 3; 

> a = 3 : int; 

- let rec f(x) = if x = 0 then 1 else x *f( z_1) ;  

>f=\:int->int 	 ' 
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- 

> 6 : mt 

Unnamed functions can be introduced by the \ construct (where \ is 

meant to represent A). The function suc that increments its argument 

by 1 could be defined in either of the following two equivalent ways. 

- let S7.LC 2: = x + 1; 

> suc = \ : mt -> mt 

- let suc = \x.x + 1; 

> suc = \ : mt -> mt 

Consider the function definition 

- let add(x.y) = x + y; 

We can view this definition as stating that add takes two arguments, x 

and 	y, 	and 	returns 	their 	sum. 	Alternatively, we might view add 	as 

taking a single argument that is a pair. 	This is the view taken by ML. 

The 	comma 	infix 	operator constructs 	pairs or 	tuples, 	and 	the 

corresponding type constructor is denoted by #. Thus the system would 

respond with 

> add = \ : mt # mt -> mt 

Sometimes it is desirable to specify a function that takes an 

argument but subsequently ignores it. This is achieved by the - 

construct, as in the following function that returns the first of a pair of 

arguments. 

- let fst(x,j = 

To provide a complete description of ML would take a chapter in its 

own right. However, the features described above should be sufficient 

for an understanding of the PFL programs that follow. 

I 
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§2.3 .PFL, an embedding of CCS in ML 

CCS consists of a parallel composition operator, 1 , a summation 

operator. +, an action operator. . a restriction operator, \, and a 

renaming operator, []. We ignore recursion as it does not affect this 

discussion. One approach to merging CCS and ML would be to simply 

take their union in some sense. However, this would involve duplication 

of some of the underlying concepts, as we shall now show. 

The primary aim of the restriction operator is to limit the scope or 

visibility of an action. However, ML already has a static scoping 

mechanism, and so it would be unwise to incorporate two similar 

concepts in a single language. The renaming operator allows the 

interface to a behaviour to be relabelled. But again this is similar to a 

concept already existing in ML, namely functional, or lambda 

abstraction. Instead of constructing a behaviour and then relabelling 

the interface, we can construct a function that, when applied to a 

collection of ports, returns the appropriate behaviour. To do this we 

require two new types, one for ports and one for behaviours. We extend 

ML with the primitive data types k&h and * chan, where we assume that 

every port is of type * chan for some type '. For example, a port of 

type mt chan can only pass values of type int(eger). 

CCS uses the . operator for action prefixing and employs the 

overbar notation - to indicate that a value is to be output. Thus a3  .NIL 

and a.NIL denote the processes that output a value and receive a value 

on the a port respectively. The operator would be impractical in a 

programming language, and so some alternative must be sought. The 

CSP convention of ? for input and ! for output are attractive, but 

unfortunately clash with existing uses of ? and ! in ML. This illustrates 

one of the difficulties of embedding CCS in an existing language. The 

syntax eventually chosen in the Edinburgh PFL system was as follows. 

a inp x. p 	to input a value and bind it to x 

a out v. q 	to output a value v. 
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where p and q are of type bth. 	- 

At first glance, the binding of a value to x may look as if we have 

introduced a new form of value binding into ML. However a inp x. p and 

a out v. q are expanded by the implementation into the expressions 

read(a, .\z.p) and write(a. v, \_.q). respectively, where read and write 

have types 

read: * chan #(' -> k.th) -> k.h 

and 	write: * chan // * # (. -> kh) ->beh 

The function write requires some explanation. Firstly, () denotes the 

single element of type .. The reason we expand -a out v. q into 

write(a,v,\_.q) rather than write(a.v.q) is because we-wish to inhibit the 

evaluation of q until the value v has been output. By packaging up q in 

a trivial function, we can delay its execution until we evaluate (\x.q)Q. 

•  This technique is a standard way of simulating call-by-name in a 

language such as ML with a call-by-value evaluation order. Using these 

expansions, it becomes immediately apparent that no new variable 

binding mechanism has been introduced to the language. 

ML has no equivalent concepts to the parallel composition or 

- summation - operators and so we must introduce these. Unfortunately, 

again we cannot -use the CCS syntax as +- and I are already used in ML. 

Therefore we introduce the operators ++ and H . We also add the 

constant NIL of type beh. Thus, for example, 

- let rec n(x,c) = c out x. n(x-i-1,c); 

• defines a function that takes as parameters an integer, x, and a 

channel, c, and returns a behaviour that outputs an infinite ascending 

sequence of integers on channel c starting at the value x. The ML type 

checker would thus determine the type of n to be 

> n = : mt # mt chan -> beh 

Note that the function requires an mt chan as an argument to ensure 

type consistency between behaviours. 

Although we have shown how to construct functions that take 
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channels as arguments, returning behaviours as a result, we have not 

shown how to construct new channels. The expression 

chancinB 

binds free occurrences of c in B to a new unique port. 	In fact "chan c 

in B" is expanded by the implementation into the expression "ch(\c.B)" 

where ch is a built-in function with type (* chan -> 	ii) -> beh. 	We 

extend this notation to allow 

chan c 
1 

• C 2 , 	 . . 	. 	, c 	in B 

in the obvious way. 

We can now construct behaviours but have no way of evaluating 

them. The function exec: beh -> . performs this function. Given a 

behaviour, b, exec(b) executes b and only terminates when all the 

constituent processes have either terminated, or are deadlocked. 

This completes our description of PFL. The next section gives a 

number of PFL examples. We then discuss the problems associated with 

implementing a system such as PFL. 

§2.4 Some PFL examples 

Consider the problem of computing prime numbers using the method 

• • of Eratosthenes' sieve. Imagine constructing a process that first 

receives an integer, prints it out, and then passes on any further 

integers it receives that were not multiples of the original number. By 

pipelining n of these processes together and using as input a behaviour 

that generates the sequence 2,3,4,5,6,... we can print out the first n 

prime numbers. 

S 	 - 	 - 	 - 	 • 

P -= ax. <output x>. P1(x) 
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P1(v) 

if (x mod v) 	0 then P1(v) 

else ax'. P1(v) 

PN(n) = if n = 1 then P 

else (P[7/] I PN(n-1)[7/a])\y 

FROM(n) = an. FROM(n+1) 

To compute the first 10 primes we would use 

PN(10) I FROM(2) 

The equivalent PFL program is presented in Figure 2-1. 

let rec pl(i,o,x) 

i inp x'. 

	

if Cx' mod x) 	0 then pl(i,o,x) 

else o out x'.pl(i,o,x) 

ins p(i,o) 

I lnp x. 

(<output the value of x>; pl(i,o,x)); 

let rec duplicate(p,n,ic,oc) = 

If n = 0 then fail 

else If n = 1 then p(ic,oc) 

else chan c in (p(ic,c) 11 11  duplicate(p,n-1,c,oc)); 

let flrstNprimes(n, lc,oc) = duplicate(p,n,lc,oc); 

	

let rec from(n,oc) 	oc out n.from(n+i,oc); 

let firstiOprimes 

chan c, c' in (from(2,c) 1 flrstNprimesC10,c,c')); 

exec(flrstl0prlmes); 

Figure 2-1: A Bounded Prime Number Program 
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We can modify the program to dynamically create new versions of 

the process p instead. of having a fixed number of them. The new PFL 

code is illustrated in Figure 2-2. 

let rec pl(I,o,x) 

i lnp x'. 

If (x' mod x) - 0 then pl(l,o,x) 

else o out x'.pl(l,o,x) 

ins rec pCl,o) 

I lnp x. 

((output the value of x>; chan c in (pl(l,c,x) H p(c,o))); 

let lnflniteprlmes 

chan c c' In (from(2,c) ii 

exec(lnfiniteprimes); 

Figure 2-2: An Unbounded Prime Number Program 

As an example of a larger PFL program we show how to implement 

an asynchronous weavesort. The program consists of a pipeline of 

identical cells 

each of the form 

Lval 

Small Big 

Rval 

Lerapty Rempty 
.4 

The ports Lval and Rval send and receive, values between neighbouring 

processes. The Lempty and Rempty ports allow a process to interrogate 

the status of a neighbouring process. Each cell has the following 

behaviour characteristics. 

S 
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• if the cell is empty then it may offer the Lempty action to 

its neighbour on the left. 

• it may accept a value from the neighbour on the left, and if 

the cell is already full it must then wait to pass the big 

element to the process on its right. 

• the value in small must always be kept less than or equal to 

the value in big. 

a non-empty process may transmit the small value to the 

process on its left. It must then wait for a value from the 

neighbour on the right unless that process is empty. 

It is left to the reader to convince himself that this description 

constitutes a valid sorting algorithm. Further details may be found 

in [Hennessy 84a], where a proof of the resulting CCS program is also 

presented. We can implement this algorithm in CCS by the following 

definitions, where the ? and ' notation is used for readability. 

AWC 0 = Lval?x.AWC 1 (x) + Lempty! .AWC 0  

AWC 1 (x) 	= Lval?y.ASWAP(x,y) + Lval!x.AWC 0  

AWC 2(x,y) = Lval?z.Rval!y.ASWAP(x,z) + 

Lval!x.(Rval?z.ASWAP(y,z) + Rempty? .AWC 1 (y)) 

ASWAP(xy) = if x > y then AWC 2(y,x) else AWC 2 (x,y) 

SRW = AWC Q  00 SRW 

where oo is defined by 

P 00 Q = (P[SR] Q[SL])\I 

where SR(Rx) = Ix, SL(Lx) = Ix 

and I restricts anything of the form Ix. 
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The process SRW will sort integer lists of arbitrary length. Figure 2-3 

contains the equivalent PFL program (including some output routines). 

The behaviour screen(inval,outval) prints out values sent to the port 

outval on the terminal, and passes user, input from the terminal to the 

rest of the program through the channel inval. These examples should 

convince the reader that CCS algorithms when translated into the PFL 

framework lead to reasonably intelligible programs. 

§2.5 The implementation of PFL 

Implementing PFL on a single processor, while straightforward when 

compared to the distributed case, still presents some interesting 

problems. For example, consider the PFL expression 

A++(BIIC) 

where A, B and C are PFL behaviours. 	In order to determine the 

possible initial moves of BIIC we must evaluate B and C in parallel. 

Coping with such expressions is prohibitively expensive, because every 

time we evaluate a summation such as this we will have to create two 

new processes B and ,  C, that are then discarded if an action in A was 

performed. One possibility would be to restrict the language to Static 

CCS where such examples cannot occur. We take this approach in the 

rest of the thesis as it aids in the analysis of distributed 

':implementations by removing one extra level of complexity. It is also 

possible in many cases to compute the initial actions of BIIC at 

compilation time, using the expansion theorem. However, a simpler 

approach for the centralised case is to prohibit the parallel composition 

operator at the top' level of a summation, (i.e. all processes in a 

summation must be guarded by an action). This case can be detected 

- at compile time and an error generated. Holmstrom introduces two 

•  additional versions of the read and write primitives, and an extra 

behaviour type, cbeh, in order to catch this case as a type-checking 

error. This approach is taken to avoid performing any major changes to 

the underlying ML system. At the present time, the Edinburgh PFL 

implementation performs this check at run-time to avoid the complexity 

and confusion introduced by the extra types and functions, while again 
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let rec 4CCLert9,Lval,Remptj,Rval) 

AWC2(true) 

where rec ( 

A4CØ(last) - 

(Lenty out 0. AW(last)) 

++(Lval hip x. AWCI(x, last)) 

and 

FI4C1 (x, last) 

(Lal Inp y. A9AP(x,9,last)) 

4+(Lal out x. AWø(last)) 

and 

R9C2(x, , last) 

(Lal inp z. Rval out U . ASWAP(x,z,last)) 

++(Lval out x. 	(Rval lnp z. ASIFP(g,z,last)) 

++ (Rerty lnp -. 4C1(9,last))) 

and 

ASWAPCx,9, last) = 

if last 

then chan newRempt9, newRval in 

(ASW(x,9,false) H AWC(Rempty,Rval,newRempt9,newRval)) 

else If x > y then AWC2(y,x, last) else AWC2(x,y,last) ); 

let rec C 

master(inval,Lval,Lempty,outval) = 

Inval lnp t. 

let val - lntofstring(t) in 

if val < 0 then outresults(lnva1,Lval,Lerty,outva1) 

else Lval out val. 

master ( inval , Lval,Lempty, outval) 

and 

outresults(inval,Lval,Lempty,outval) - 

(Lval lnp x. outval out (stringoflnt(x)). 

outresults( Inval, Lval,Lempty,outval)) 

++(Lempty lnp 

master(lnval,Lval,Lempt9,outval)) ); 

let prog C) 

chan Inval, outval, Lerrt9, RerrFty, Lval, Rval In 

(screen(inval,outval) 11 

master(lnval,Lval,Lempty,outval) :1 

AWC(Lempt9,Lval,Rempty,Rval)); 

Figure 2-3: A Weavesort Program 
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minimising the changes to the underlying system. It is hoped that the 

required check for this case can be included in the compiler shortly. 

One of the major problems encountered when implementing PFL 

arises 'from the need to create an acceptable impression of fairness in 

the system. By this we mean that every communication that is 

theoretically possible in a program must be possible in the 

implementation of the program as well. A very simple implementation 

might use a round-robin scheduling strategy for the processes, and the 

elements of a summation might be tested in a fixed order. Such an 

approach to the implementation of CCS would lead to an unfair system, 

since there. may be communications between processes that could 

theoretically occur, but would be prevented from doing so indefinitely. 

As the user can only perform a finite number of tests on the system, 

each of a finite duration, the implementor could justify his claim that 

the implementation was correct. If the system was treated as a closed 

box, then the user would have no way of proving that some valid 

sequences of actions were impossible due to an unfair implementation 

strategy without testing the system for an infinite amount of time. 

Having said this, it must be appreciated that the theoretical 

requirements of an implementation, and the user's expectation of its 

behaviour, are not always in agreement. For a system to be acceptable 

to a user, it must be seen to be fair, preferably without having to 

perform prohibitively lengthy tests. 

Consider the following PFL example. 

let p(x) = x out 0. p(x) ++ x out 1. p(x) in 	p(outchan) 

where outchan displays any values sent to it on the terminal. An 

infinite sequence of zeros would be a perfectly acceptable computation 

of this behaviour if we only took into consideration the semantics of 

CCS. We might add some form of fairness constraints to the language, 

so that in any infinite computation of this example an infinite sequence 

of zeros and ones must be printed. Unfortunately, a computation that 
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printed zeros for a year followed by alternating ones and zeros would 

still be an acceptable fair computation, although it would not be very 

acceptable to a user of the system. The user expects to see zeros and 

ones appearing on the screen within a short space of time, and this can 

only be achieved with some form of random guard selection. 

We also need to schedule the processes randomly, which is not such 

an obvious requirement at first sight. Consider the following example. 

A process requires exclusive access to both a card reader and a line 

printer in order to accomplish its task. It may request access to both 

of them in either order, and once allocated to the process they remain 

in that state until explicitly released. We would like to run two of these 

processes concurrently, leading to the following PFL program. 

let rec cdr (sr,er) = sr out C). er inp x. cdr (sr,er) , 

let rec lpt (sw,ew) 	sw out 0. ew inp x. ipt (sw, ew) ; 

let rec p (id, Sr, er, sw, ew) 

((Sw lnp 1. sr inp C. 

(<output Id to terminal> 

(er out 0. ew out 0. NIL))) 

4-F 

(sr inp c. sw inp 1. 

(<output Id to terminal> 

(er out 0. ew out 0. NIL)))); 

let ss C) 	chan sr, er, sw, ew in 

(cdr (sr,er) 11 ipt (sw,ew) 11 

p(1,sr,er,sw,ew) H p(2,sr,er,sw,ew)) 

While not being a particularly good example of a concurrent program, as 

it contains an obvious deadlock, it does illustrate why we require 

random scheduling in order to satisfy the user's expectations. Let us 

assume that we execute this program on a PFL implementation with 

round-robin scheduling. The currently executing process has exclusive 

use of the processor until it wishes to perform a communication. If 

there is a matching communication request in some waiting process 
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then the appropriate value bindings are performed and the processes 

placed at the back of the scheduler queue. If no matching request is 

available, the process is suspended. In either case the next process in 

the scheduler queue is then executed. Consider how this strategy. 

effects the above example. Process p 1  starts executing and requests 

exclusive access to the card reader or the line printer. Let us assume 

that it is granted access to the card reader. The process is then 

rescheduled and p 2  starts executing. It also requests access to the card 

reader and the line printer, but in this case only the line printer is still 

available. At this point the system deadlocks as both p 1  and p 2  are 

waiting for a resource held by the other process, and neither will 

release the resource it holds before it has finished its task. While this 

behaviour of the system is to be expected some of the time, there is 

another possibility that should also occasionally occur. Process p 1  

might obtain access to both the card reader and the line printer before 

p 2 . in which case it may perform its task and then release both 

resources. The round-robin scheduling strategy tends to inhibit this 

second possibility. Even if we introduce real time-slicing of the 

processes, the granularity of the time-slicing is typically much greater 

than the rate at which interprocess communications are performed, and 

so the problem still remains. The solution is to adopt random 

scheduling .of the processes. However, we must also ensure that no 

process that can run is prohibited from doing so indefinitely. For 

larger examples, the deficiencies of the round-robin approach may not 

be so apparent, and so there is a case for providing two versions of the 

PFL system; a random version for demonstration purposes, and a more 

efficient version for larger programs. 

§2.6 Extensions and restritions 

In this section we discuss extensions to PFL that would improve the 

language. 	We also propose restrictions that may be necessary in order 

to implement PFL on a distributed system. Our preliminary experiences 

with PFL lead us to believe 	that 	it 	could form a very powerful and 

useful 	extension to ML, 	as 	well 	as 	a 	practical teaching 	tool 	for 



Implementing CCS on a Single Processor 	 35 

concurrent programming. 	For these reasons we believe that the 

language should be developed further, and the following points 

investigated. 

Firstly. PFL can be regarded as a superset of CCS. To see why, we 

note that channels and behaviours can be passed between processes as 

values in PFL, which is not allowed inCCS (strictly speaking, CCS allows 

them to be passed as values but not used). This possibility greatly 

increases the difficulty of reasoning about the resulting programs, which 

is why CCS excluded it. Restricting PFL so that structures containing 

channels and behaviours are not valid arguments to an output 

communication would result in a less elegant language due to the 

resulting loss of orthogonality. The view we take here is to propose the 

definition of a number of subsets of CCS for specific uses. These 

subsets could be optionally checked for in the compiler. For example, a 

program that is to be verified may be written in a subset that permits 

no channel or behaviour value-passing so as to aid the eventual proof, - 

and the compiler can check that this was indeed the case. It might also 

be desirable to inhibit the passing of updatable objects between 

processes. Without such a restriction, we allow processes to bypass the 

normal CCS communication primitives by using shared variables and 

thus introducing all the problems of shared variable access that CCS 

was designed to avoid. 

Another subset that is useful (and checkable) results from the' 

observation that in a distributed implementation • of PFL without any 

shared memory, the passing of large data structures between processes 

may be difficult. There is a case for only allowing primitive data types 

such as integers, reals, strings etc., to be passed between processes. 

This would allow the underlying process synchronisation mechanism to 

be kept as simple as possible, which is especially important when this 

mechanism may be implemented in hardware. The restriction may be 

circumvented, to some extent, if we allow channels to be passed as 

values between behaviours. For example,. consider the problem of 

passing a tree between two processes. When the tree is viewed as a 

static (passive) data structure, this may cause. problems as the 
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components of the tree have to be passed between the processes as 

separate messages, the tree reassembled at the other end, and only 

then can the destination process continue its execution. The underlying 

message-passing mechanism may therefore be quite complex. However, 

we can assemble a tree of processes that models the original data 

structure, and access the elements by sending the structure requests, 

rather than manipulating the structure directly as in the original case. 

To pass this active data structure to another process, we only have to 

pass the channels that act as communication links to the structure. 

Furthermore, viewing the data structure as a collection of processes 

allows us to define parallel replication and maintenance functions for 

the structure. Of course, on a real distributed implementation ,  of PFL 

this raises the question of how to manage very large numbers of 

processes arising from replacing some of the data objects by processes. 

In particular, on a distributed machine, how do we ensure that the data 

structures required by a process are not spread throughout • the entire 

processor network? There have been preliminary attempts at 

architectures that allow processes to spread smoothly through the 

processor network that may be of relevance to this problem [Hewitt 801. 

However, solving such problems is very difficult and is not investigated 

further in the thesis. This view of data as active structures in terms of 

processes is similar to the actor model of Hewitt [Hewitt 77] and also 

the object-based programming languages such as SmaliTalk [Goldberg 

83]. 

The current PFL implementations allow the user to interact with the 

system via an input and output channel to the terminal. Once the exec 

function has been applied to a behaviour, the input and output channels 

provide the only means of interaction with . the system until the 

• behaviour has terminated or deadlocked. This style of interaction has a 

number of deficiencies. Firstly, the need to explicitly apply the function 

exec to the behaviour in order to evaluate it appears inelegant; it would 

be better if this function could be implicitly applied in some way. A 

• 	more serious criticism of the system -becomes apparent when the 

- 	program is to be tested. In order to test a behaviour, a testing process 
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must be constructed that takes commands from the terminal - and 

converts them into the required communication requests. The 

construction of such testing processes may become very tedious. 

An alternative implementation strategy is to enter an interactive 

question and answer mode when the exec function is applied. The 

system would indicate the possible actions at each point, and the user 

would select the required choice. Such an interface is similar to that 

• provided in proof checkers for CCS. By allowing the system to proceed 

automatically for a controlled number of steps, or until. specified 

actions are possible, complicated systems may be debugged more easily 

than with the current implementation. 

If we imagine the system under test to be composed of a tree of 

processes (where the tree structure is derived from the restrictions and 

renamings) then we can view the first approach as placing the user 

within, or interacting with, a special process with a limited set of 

communication possibilities with the rest of the system (namely just an 

input and output channel of strings). The second approach can be 

viewed - as placing the user outside the system, viewing what is going on 

from a distance, and controlling it at the metalevel. A third approach 

again, places the user within the system. However, in this case we allow 

•  the user complete freedom to perform any communications he desires. 

In practice this would mean that the evaluation of a behaviour would 

return control back to the user immediately, running the behaviour 

asynchronously in the background. The user would then be able to type 

simple actions, , summations etc., that would communicate with the 

behaviour. This type of interaction emphasises the need to implicitly 

perform execs when required so as to provide a natural ,  and convenient 

interface to the background tasks. Such an approach is similar to the 

use of the & operator in the Unix operating system. Using such an 

interface has many advantages. Behaviours may be evaluated 

asynchronously while the user continues with some other task. 

Furthermore, at any point in time the user may communicate with the 

behaviour through any ports that are accessible to both the user and 

the background behaviour. We hope to develop such an interface for 

the Edinburgh PFL system in the near future. 



Implementing CCS on a Single Processor 	 IN 

There are a number of concurrent calculi that have been influenced 

by CCS. The synchronous version of CCS, SCCS [Mimer 83], a similar 

calculus developed by Austry and Boudol called MEIJE [Austry 84], and a 

calculus developed by Mime for hardware description and verification 

called CIRCAL [Mime 85], are good examples of such languages. This 

raises the question of whether to incorporate any of the novel features 

of these languages into PFL, in order to extend its power and 

applicability as a concurrent programming language. One extension to 

the language that could be considered is the ability to perform more 

than one communication simultaneously. 	This allows the notion of 

clocked systems to be conveniently specified for example. 	The 

extensions to the syntax necessary to accommodate this feature would 

be simple. However, even a centralised implementation of this feature 

would be quite a complex task. 

One extension that is explicitly present in CIRCAL, and can be 

treated as a derived operator in SCCS, is the ability to broadcast a 

message on a channel to all processes with access to the channel. In 

fact, this is the only form of communication present in CIRCAL. This 

extension would be simple to add to PFL in the centralised case. The 

difficulty of implementation in the distributed case would depend on the 

underlying computer architecture. An Ethernet based implementation 

might support broadcasting very efficiently, whereas a message-passing 

network between the processes might make broadcasting impractical. 

The asynchronous nature of the current PFL implementation makes 

debugging of behaviours difficult.. One possibility would be to create a 

pseudo-random version of PFL that takes a seed as a parameter to exec. 

Such an approach would be useful when testing systems, although 

genuinely asynchronous behaviours, such as interrupt handlers, would 

still cause problems. 
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§2.7 Conclusions 

In this chapter we have presented a version of CCS called PFL that 

transforms the calculus into a usable programming language. We have 

given some illustrative examples of its use, and discussed a few of the 

implementation problems associated with the language. Finally, we have 

pointed out some areas in which the system is still deficient and some 

areas for future work and development. 

We believe the embedding of CCS in a functional language is the 

most desirable way of constructing a usable CCS programming 

environment. There are obviously difficulties associated with such an 

approach, such as syntax constraints and the possible need to constrain 

the types of values used in value passing. However, experience with the 

system has lead us to conclude that there are no obvious features of a 

language such as ML that are a hindrance to CCS. Furthermore, 

although we could construct a system with restriction and relabelling 

operations, we believe that the features of a general purpose functional 

language would still be required leading to the redundancy described at 

0 the start of this chapter. Therefore, we believe that even if an 

implementation of CCS was carried out directly, the resulting system 

would be very similar to PFL. . 

The next step is to consider the implementation of CCS in a 

distributed environment, a much more difficult task. 
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CHAPTER 3 

Implementing Static CCS on a Distributed System 

§3.1 Introduction 

The previous chapter described how we might implement a 

concurrent language such as CCS on a single processor. There are no 

-. problems in synchronising such a system, because all the information 

pertaining to each of the processes is readily available, and can be used 

by a centralised scheduler. However, it is difficult to impose a degree 

of randomness on the system without an associated loss in performance. 

Without some form of randomisation, the user's expectations of the 

likely behaviour of a system will differ from the actual behaviour, even 

though the implementation may be technically correct. We now wish to 

examine the case where CCS is implemented on a distributed network of 

processors. Such implementations require the development of protocols, 

or interaction strategies, for synchronising CCS agents efficiently in a 

distributed environment. One possibility would be to implement a 

centralised scheduler, as for the single processor case. However, such a 

scheduler is undesirable because the overhead in keeping a ,centralised 

record of the state of each of the processes may be significant. This 

.:.Contrasts with the single processor approach where the scheduler can 

ascertain the global state merely by examining shared memory 

locations. Furtherthore, the centralised scheduler creates a bottleneck 

on the performance of the system, as all synchronisations in the system 

are managed by a single process. For these reasons, we do not consider 

the centralised approach any further. The problems encountered when 

implementing CCS on a distributed system, with a distributed scheduler, 

are opposite to those of a single processor system. The fluctuations in 

the relative speeds of processes on different processors creates a degree 
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of randomisation without any additional overhead. However, the task of 

synchronising communications is not trivial in the distributed case. 

The goal of this chapter is to present a number of different 

protocols, or interaction strategies, for synchronising processes in a 

distributed framework. We start by examining the problems encountered 

when synchronising Static CCS processes on a distributed system. We 

show that for certain programs, those where a synchronising annotation 

can be constructed, there is a simple algorithm for synchronising the 

processes. The algorithm requires a minimum of unidirectional control 

messages to be exchanged between processes for the establishment of 

each bidirectional handshake. We then show how various restrictions 

that have been proposed for CSP can be viewed as methods for 

guaranteeing the existence of synchronising annotations. On' e of these 

schemes has been used as the basis for a derivative of CSP, called 

Occam [INMOS 84a], designed to run on a special purpose processor 

called a Transputer [INMOS 84b]. We argue that by using synchronising 

annotations explicitly, rather than just one particular scheme for 

constructing them, we would obtain a more flexible language. 

The second part of the chapter deals with those situations where we 

wish to implement a program that does not possess a synchronising 

annotation. Such situations are common, especially as we may not wish 

to force an unnatural structure on a program purely to aid its efficient 

execution. One approach in these situations would be to use a more 

complicated synchronisation scheme, that placed fewer or no constraints 

on the program. Section 3.6 briefly reviews the work in this area. 

Some of these schemes rely on an underlying synchronous message-

passing mechanism, or can be modified to do so. Such algorithms can 

often be expressed within Static CCS, and in these cases we can view the 

schemes as program transformations, rather than an implementation of 

Static CCS on top of some lower-level protocol. By using such 

transformations, it is possible to replace a program that uses the full 

power of Static CCS by an equivalent one that only requires a subset of 

the language. Implementation schemes may then be developed for these 

subsets that are more efficient than implementations of the full 
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language. We illustrate this technique by describing an algorithm due to 

Schwarz [Schwarz 78] in the form of a transformation. We show that by 

using this scheme it is possible to construct a synchronising annotation 

for the transformed version of any Static CCS program. We also discuss 

why a transformational approach may be preferable to using the more 

traditional implementation techniques. Finally, we illustrate the 

difficulties involved in reasoning about the correctness of such 

transformations. For example, we must show that our transformations 

do not change the overall visible behaviour of the system. This last 

section illustrates the inadequacies of the existing equivalences for CCS 

when applied to these problems and leads us into the theoretical 

investigations of Chapter 4. 

§3.2 Synchronising processes in a distributed 
environment 

A discussion of the problems of implementing CCS in a distributed 

environment can only take place once the exact nature of the 

environment has been specified. Furthermore, some method of 

describing the possible process synchronisations in a program, in a form 

amenable to analysing the complexity of the communication requests, 

must also be developed. 

A collection of processes communicating via shared memory may be 

referred to as a distributed system. The term may also be used to 

describe a collection of machines spread across a continent, 

communicating via a satellite network. The diversity of systems covered 

by the term is sufficiently vast that any general discussion of the 

problems involved in the distributed implerientation of CCS would be of 

little practical use. We therefore restrict our attention to a particular 

class of distributed systems, namely those where processes communicate 

via asynchronous, unidirectional, point-to-point messages. Such systems 

are important for a number of reasons. They are relatively easy to 

implement, and therefore form one of the more common classes of 

distributed system. The message-passing model may also allow us to 
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view systems employing a variety of inter-processor communications 

methods in a uniform framework. For example, processors may, be 

connected to their nearest neighbours using shared memory. A 

broadcasting method, such as an Ethernet, may be used for medium 

distance communications, while a satellite link may be used for long 

distance traffic. The type of interaction possible between any group of 

processors may therefore depend on the communications link(s) between 

them. The use of a message-passing protocol for inter-process 

communications may allow us to reason about the system uniformly, at 

the expense of not using the full communications capabilities of some of 

the interconnections. 

• Informally, we may view . a CCS agent as evolving by packaging up the 

actions it may potentially perform in its current state into a request 

that is then passed to an underlying subsystem whose task it is to find 

matching requests. The agent is then suspended until the subsystem 

finds a request containing a complementary label, at which point it 

performs the corresponding action, possibly involving an exchange of 

values with the matching agent. It then evolves to the continuation 

agent associated with this action, and the cycle repeats. A non-

deterministic choice may be required in this last step, as in the agent 

P = a.p1  + 0(.P 2*  The mapping of CCS onto a distributed system must 

therefore, describe how agents are mapped onto the processes provided 

by the underlying system, the form of a communication request, and the 

mechanism by which matching requests are found. 

There are undoubtedly many ways of implementing CCS on a 

distributed system' of the form described above. CCS agents 

communicate with each other by exchanging messages through 

complementary labels, and so one possibility would be to assign a 

process to each CCS agent, and also to each pair of complementary 

• labels in the program. We refer to these label processes as ports. 

Agents may then express their desire to communicate using any one of 

a set of labels. by sending messages to the corresponding port processes. 

Using such an approach, an agent-need not be aware of the identities of 

the processes that may synchronise with it by issuing a complementary 
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request. This property may be especially important when processes are 

created dynamically, and so the number of communicating partners 

cannot be determined in advance. If CCS possessed no choice operator, 

then a very simple synchronisation protocol would suffice. In the 

general case, however, the request sent to a port must contain the 

identities of the other ports the agent is also willing to communicate 

with. The ports may then communicate amongst themselves in order to 

establish a synchronisation. 

If we restrict our attention to Static CCS, then the synchronisation 

task becomes simpler. In this ease, the possible recipients for each 

action can be statically enumerated, or at least an upper bound 

established, and so the label mechanism can be viewed as a convenient 

notation for naming an explicit set of processes. In such cases, we may 

be able to map each agent into one or more processes communicating 

directly with the processes representing the other agents. The 

implementation of Static CCS in such a framework raises many 

interesting issues, and so the rest of the thesis will limit itself to this 

case. However, while the specific protocols developed for synchronising 

agents in such a framework may not be directly applicable to the 

general case of CCS, the techniques developed in the thesis for analysing 

these protocols may also be of use in the analysis of implementation 

strategies for the full language. 

If we wish to map a Static CCS program onto a system where the 

processes representing agents communicate directly, rather than 

through ports, then a request will have the form of a set of explicitly 

named processes, as well as the corresponding labels. In Static CCS, 

each program is syntactically of the form (fJ 
EN ' 

p.)\L, and so each 
-  

constituent agent, p., may be assigned a unique number i, its process 

index, corresponding to its syntactic position in the product 

representing the program. We can therefore represent a request by a 

set of pairs of the form <process index, label>, called a request set. To 

construct a request set, we - must replace a set of labels, formed by the 

• guards in a summation, with the process indices of all the processes 

that may potentially offer a complementary action. 
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The use of request sets is similar to the original development of 

CSP, where all communication •requests had to explicitly name the 

destination process. However, in this case, the translation from labels 

to process indices is quite subtle. In general, it will depend on the 

current state of all the agents in the system. It is technically sufficient 

to map a label to the set of all process indices, as requesting to 

communicate with an agent, using a label whose complement is not 

contained in the sort of that agent, cannot result in any unwanted 

synchronisations. However, it is reasonable to assume that the 

complexity of synchronising a system is in some way related to the 

number of simultaneous requests issued by an agent, and so increasing 

the number of requests unnecessarily may lead to implementation 

difficulties. 

At any point in a computation there will be a minimum request set. 

Consider a state P = H i. , where the implementation of process p 
i EN 	

. 

 

has translated a set of labels L to a set of process indices P1. This 

translation is safe if the identities of all potential communicating 

partners for the summation corresponding to the actions in L are 

contained in the set P1. More formally, the translation is safe if for all 

derivatives of P that require no participation from p. in their derivation 

from P. if the ith  component, p.' (i 7/-j), in the resulting derivative can 

synchronise with an action in L, then j€PI. 

For a process to produce an optimal safe request set from a given 

set of labels, the global state of the system must normally be 

accessible. This is because the ability of an agent to respond to an 

action will typically depend on its current state, and hence to determine 

an optimal safe request set, the current state of the other processes 

must be known. Even if the global state is accessible by each process, 

the analysis may still be computationally infeasible in most cases. In 

practise, the situation is further complicated because only local state 

information will be accessible to a distributed process. A careful 

analysis of the state information that is available may reveal some 

indications as to the current state of the other processes, and hence 

potentially reduce the size of the request set. For example, in a 
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network of processes communicating by message-passing, the local state 

information might consist of the values of the local state variables and 

the history of previous communications performed by this process (and 

possibly the identities of the recipients). Using this information, the 

possible states of the other processes may be deduced, or at least 

partially constrained. 

A simple mapping between labels and process indices may be 

constructed using the sorts of the processes in . a program. Its 

simplicity makes it a suitable candidate for practical implementations. 

For a given program P = fl iN p.t 
 , where each process p. * has sort S., we 

define the function 

RS(L) = j I  XEL A IXcS
I 3 

where LcAct. 

For any derivative of F, say F' = fl 	p.', the request set offered by p.
iCN 

may be generated by RS(Init(p.')). 	It is simple to show that such 

request sets are safe. 

Other methods for mapping between labels and process indices may 

require additional arguments to the mapping function, containing local 

state information. A discussion based on the general notion of a 

request set mapping is complicated because of this flexibility in the 

definition of the mapping. We will therefore assume that RS is used as 

the mapping function throughout the rest of this thesis. Generalising to 

other, more elaborate, functions is not difficult, but notationally 

cumbersome. 

Given a pro'ram F, and a request set mapping, RS, we can associate 

with each derivative of P a labelled directed graph, called a request 

graph, that describes the currently outstanding communication requests 

in the network. The complexity of synchronising the communication 

requests of a program is reflected in the complexity of the 

corresponding request graphs. 



Implementing Static CCS on a Distributed System 	 47 

Definition 

For a given program P. request set mapping RS, and derivative of P. 

P' = fl p' the labelled directed graph GR =(X , eR ) is the request ieN

graph of P iff the set.X corresponds to the process indices of P. 

and <i,X,j> is an element of 60  if A€Init(p.') and jERS(A), where 

i?j. 

One approach to analysing the complexity of synchronising a 

program, P. would be to examine the request graphs generated by all 

the derivatives of P. A process will pass a request to the synchronising 

subsystem asynchronously from the rest of the processes, and will 

receive its replies asynchronously as well. Checking the request graphs 

corresponding to each derivative of the program assumes that all of the 

requests are synchronised. For example, if processes p. and p
i 

 

synchronise, then the only request graphs that are examined after this 

transaction assume that both p. and p. have issued their next requests 

immediately after the synchronisation. We do not examine a rennef 

graph where p, has issued its request, but p. is still computing its 

request set. Such a distinction does not affect the analysis if delaying 

a request does not alter the value of the request set. This is obviously 

true for the function RS, but would not be true if a process had access, 

to fragments of communications histories involving other processes, 

such as could be obtained by eavesdroping on an Ethernet. In such 

cases, - ,delaying a request may mean that the eventual request set is 

smaller. Indeed, we could imagine constructing protocols that 

deliberately waited until other communications had taken place, in order 

to minimise the size of some request sets. The analysis of 'such an 

approach, and its consequences, are outside the scope of this thesis. 

Corresponding to each request graph there is a synchronisation 

graph, where <i,j> is an edge in the graph if it is possible for p i'and p.' 

to synchronise. 

Definition 

The synchronisation graph corresponding to. the 	request graph 

C 
R 	R 

=(Jv',c ), 	for a derivative 1D' = FT. tEN p' , is defined to be 	the 



Implementing Static CCS on a Distributed System 	 48 

undirected graph G3=(X,e8), where <i,j> is an element o f & if there 

exists a label A such that <i,A,j> and <j,X,i> are both elements of 

The synchronisation graph summarises the possible communications 

that can take place in the current state. The complexity of these 

communications is reflected in the complexity of the graph. 

§3.3 Synchronisation graphs for some simple 

examples 

This section informally examines the request graphs and 

synchronisation graphs for some simple examples, in order to 

characterise which programs are simple to synchronise. A method for 

synchronising programs with simple synchronisation graphs will then be 

presented in the next section. The problem of synchronising more 

complex Static CCS programs will be treated later in the chapter. 

Consider . a network of processes p 1 , p2, . .. , p statically connected 

as follows. 

KIIIIII 	aKIIIII 	. a:IIEIIii 	-- -KIIiEII:I 2 	 3 

The behaviours represented by p......p are unimportant, except that 

we assume that p 1  can lways output a value and p can always input a 

value. Furthermore, any process p., 1 <i<n, can either input a value 

from p1  or output a value to p  cannot offer both possibilities 

simultaneously. All synchronisation graphs resulting from such a system 

have the property that the maximum path length in the graph is one. 

To see that this is the case, suppose there existed a graph such that for 

some process p. 
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Then the corresponding request graph must be of the form 

which, is impossible from the definition of the behaviours. Such systems 

are simple to synchronise because whenever a process p. can potentially 

communicate with another process p. then this is the only process it 

can communicate with. Suppose we impose some arbitrary ordering on 

.the processes. For example we might chose p<p. if i<j. Then to 

synchronise p, and 	in our simple example it is sufficient to always 

make p. wait for a request from 	or in general to make the smaller 

of the two processes, with respect to the ordering, wait for the larger. 

Let us now consider ' a slightly more complicated example. 	We 

construct a tree of processes that can be viewed statically as shown 

below. 
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11 

p 

Each process can input values from either of its sons (if any) or 

transmit a value to its father (except p 0). However it cannot attempt 

both simultaneously. If no path exists between two nodes, p. and p, in 

a synchronisation graph, G, then at that point in the computation the 

synchronisation of p, is independent of the synchronisation of p. 

Therefore the network of processes containing p. may be synchronised 

separately from the network containing p. Of course, p, may 

communicate with some other process, and then evolve to a state where 

it can communicate with p.. This case will manifest itself as a more 

complicated network in some other synchronisation graph corresponding 

to a different derivative of the prograrñ. We may therefore analyse the 

complexity of the synchronisation graphs by analysing each connected 

component of each graph separately. The most complicated connected 

component that can occur in a synchronisation graph resulting from our 

- example is of the form - 
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We can exploit this property of the synchronisation graphs by allowing 

one process in any potential synchronisation to wait for the other 

process. However, whereas in our first example the process that waited 

could be chosen arbitrarily, in this case we must force the process that 

contains the sum (p.) to wait for either Of the other processes (p . 0,p. 1 ) 

to send a request. 

The synchronisation of processes was simplified in these two 

examples due to the restricted forms of the possible synchronisation 

graphs. In both cases, one partner in every potential communication 

had no other partners. We could therefore choose a rule whereby this 

process would send a message to its partner and the partner would wait 

for the first matching request. Unfortunately, it is not always natural 

to express an algorithm in such a way that the resulting 

synchronisation graphs always have this property. As an example of 

such a case, consider our first example where each process p. is now 

allowed to simultaneously attempt to communicate with p. 1  and 

The resulting synchronisation graphs may now have connected 

components with path lengths greater than two, as is illustrated in the 

following example. 
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If a network of processes can produce such graphs, then the approach 

we used for the first two examples is obviously not applicable, as there 

is no process that can safely wait for a request without the possibility 

of deadlock being introduced. Any scheme for synchronising such a 

network must take care to avoid the introduction of deadlock or 

livelock. As an example of these possibilities, consider the four 

processes 

P, = a.p 1  + .p1 	q 1  = ZR.q 1  + y.q 1  

P2  = 7.p2 + 6.p2  q2  = . q2  + Ô.q 2  

Synchronising such a network is difficult because one of the resulting 

synchronisation graphs may be of the form 	 - 

S 

If we try to synchronise this system in a distributed environment, the 

following two scenarios might take place. 
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Lazy or timid behaviour. 

In this scenario a process will attempt to communicate with 

each of its partners in turn and will reject all requests 

from other processes until it has received a reply. We call 

the process lazy or timid because it only attempts one 

possibility at a time. This scenario may lead to a livelock. 

Suppose p 1  sends a message to q sends a message to p2 . 

P2  to q2  and q2  to p 1 . When the target processes receive 

their requests they will reject them because each process 

will have an outstanding query. These rejections will 

eventually arrive back at the source processes and each 

process will then try one of the other possibilities. 

However,the new set of requests may also be rejected for 

the same reason and this sequence of events may continue 

indefinitely. If the relative speeds of the processes can 

fluctuate then we might use probabilistic arguments to show 

that a successful communication will eventually occur. 

However,there will be no upper bound on the number of 

messages that may have to be exchanged before a 

successful synchronisation is achieved. 

Eager behaviour. 

We might try the opposite approach where a process hoards 

requests while waiting for a reply from its own query in the 

hope that, if its query is rejected, then it can positively 

acknowledge one of the waiting requests. This scenario may 

introduce a deadlock as the following sequence of messages 

illustrates. Suppose p 1  sends a request to q 1 . While waiting 

for an acknowledgement it receives a request from q2  which 

it queues. p2  now sends a request to q2  which q2  queues as 

it is waiting for a reply from p 1 . q 1  sends a message to p 2  

and this message is also queued. This completes our 

deadlock as 

p 1  is waiting for q 1  

q 1  is waiting for p2 
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P2  is waiting for q2  

q2  is waiting for p 1  

§3.4 Synchronising annotations 

We have seen that for some Static CCS programs a very simple 

synchronisation strategy will suffice, whereas in the general case, a 

much more sophisticated protocol is necessary. We now consider the 

simple case in more detail. The second part of this chapter will then 

deal with how to synchronise arbitrary Static CCS programs. 

A simple synchronisation mechanism was possible for the first two 

examples because in both cases there was an asymmetry that could, be 

imposed on the system. Each request issued by a process could either 

be flagged as passive, in which case the process was suspended until a 

• 

	

	matching request was received, or else active, in which case the process 

transmitted its request to the only process that could synchronise with 

• this request. We call the process that waits the slave, and the process 

that issues the request the master. If we wish to use such a protocol, 

then, in addition to translating each summation into a set of process 

indices, we must also indicate whether the process is to perform an 

active (master) or passive (stave) role in any potential communication 

If all requests are annotated with either a slave or master flag, then 

a request graph G 	(X,eR) may 
Et=  also be annotated by constructing the 

corresponding function MS from the set .J( of process indices to the set 

jmaster,slavej 	of 	annotations. The 	resulting annotated 	graph is 

represented by the pair <GR ,MS>. 	Synchronisation graphs may also be 

annotated in a similar way. 

Definition 

The master/stave function used to produce these annotations is 

safe if for every annotated synchronisation graph <(X, 5),MS> 

corresponding to a derivative of P 

1. <i,j>E40 D MS(i) 	MS(j) 	 • 
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2. <j,i>E A <i,k>€e5 , jLk  D MS(i) = slave 

The intuition behind the definition is that if two processes can 

potentially communicate, then one will be the master and the other the 

slave, and if a process wishes to communicate with more than one 

partner, then it must play a passive role in this communication: 

Consider the program 

(1I 	p.)\a, 

where 

P, = a.p 1 , 	p2 	.p2 , 	p3  = .p 3  

There is only one synchronisation graph for this program, namely 

A safe annotation function for this example would be 

= slave 

= MS(3) = master' 

A program will have an efficient implementation if it is possible to 

construct a safe annotation function MS for the program. In such cases 

we say that the function MS safely annotates the program.' If this 

function is static, i.e. it remains constant as the program evolves, then 

this is equivalent to annotating each summation in the program with 

either the master or slave flag. 

There will be many cases where it is impossible to construct a safe 

master/slave annotation function for a given Static CCS program. This 

will obviously be the case when the program contains patterns of 

communications that cannot be synchronised using the master/slave 

approach. However, even when all communications are amenable to this 
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approach, the restricted local state information available to each 

process -may make it impossible to construct a master/slave function 

that only bases its decision on this restricted knowledge. 

• 	 If it is not possible to construct a function that safely annotates a 

program with the limited state information available, then it may still 

•  be useful to know which communications can use this approach. The 

simple communications could still be synchronised using this method, 

while a more sophisticated scheme could be used to synchronise the 

remaining communications. Chapter 5 takes this approach further by 

transforming those communications that are difficult to synchronise into 

'equivalent' sequences of communications that can use the master/slave 

method. 

To allow the partial annotation of a program, we extend the possible 

values of an annotation to include the unknown flag. An annotation 

function is then safe if the communications that use the master/slave 

approach are disjoint from the communications where the requests are 

flagged with unknown, and the master/slave communications are safe in 

the sense defined earlier. 

Definition 

An annotation 	function is safe if 'for every annotated graph 

<(X,),MS> corresponding to a derivative' of P. 

<,i>€& A MS(i) = unknown D MS(j) = unknown 

<ij>eç D'MS(i) 	MS(j) v MS(i) = unknown 

<>s A <i,k>Eê5 , jk D MS(i) 	master 

Every program has a trivial sate annotation function that flags each 

• request with the unknown value. If there exists a safe annotation 

function, MS, for a program P that produces no unknown flags, then we 

say that MS is a synchronising annotation for P. Similarly, we may say 

that P possesses a synchronising annotation under specified constraints 

on the local state information. 
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§3.5 Generating synchronising annotations 

One simple technique that can be used to automatically generate 

synchronising annotations is to place some restrictions on the source 

language. For instance, Hoare's original proposal for CSP [Hoare 78] did 

not allow output guards within summations. If we adopt this restriction, 

we could then annotate every input summation as a slave and every 

output action as a master and this would produce a simple 

synchronising annotation. The same restriction was used in the Occam 

language [INMOS 84a], and in both cases a very efficient synchronisation 

scheme is possible, but at the expense of imposing an asymmetry on the 

source language. This approach has the advantage that each process 

can be annotated independently of the rest of the system, whereas in 

the more general case the context influences the annotation of a 

process. 

There are many cases where a problem cannot be naturally 

expressed in the asymmetric subsets of CSP or Static CCS. We would 

like to be able to automatically annotate all Static CCS programs, while 

keeping the number of unknown requests to a minimum. The function 

RS may be used as the basis of a simple annotation function. It is 

certainly not optimal, as it avoids examining the state space of a 

• program by assuming that all combinations of process states are 

possible. • The advantage of this approach is that it is computationally 

efficient, whereas a more detailed analysis would probably be too 

expensive for a practical implementation. The main disadvantage is that 

we may have to synchronise some of the communications using a more 

• 	complicated protocol than is theoretically necessary. 

-- 	 . 

An algorithm for automatically annotating Static CCS programs is 

presented below. It avoids examining the state space of the system by 

using function RS to map between labels and process indices. For this 

reason it is far from optimal, although a more detailed analysis of the 

program is probably not feasible if the algorithm is to form part of a 

compiler. We show that under this simplifying assumption, the problem 

of annotating the program is equivalent to constructing an acyclic 
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dominance relation between the processes with certain properties. We. 

present an algorithm for constructing this dominance relation based on 

computing the connected components of graphs. 

• The first step in the algorithm is to construct for each process p., in 

a program P = fl p1  , a set PC. containing all request sets that may 
iEN

be issued by this process. • We define PC. by 

PC. = 	RS(Init(p.')) I p.'Ederivatives(p.) 

Note that some of the derivatives of p. may not be reachable when 

pi  is placed in the program P. A more careful analysis might detect this, 

and the definition of PC. could be modified accordingly. 

As an example of the construction of the PC. sets, consider the 

following network of processes. 

where p 1  = a.p 1  p 2  = .ã.p2 p 3 = P.P.3 and p4  = 

Then PC1 = PC 	PC  = 	and PC2  = 

In order to construct an annotation, we must assign to each element of 

every set PC. either the master, stave or unknown flag. We adopt the 

convention that the annotation assigned to an element s of PC. refers to 

the role that process i will assume when communicating with the 

processes in the summation represented by s. 	Because of our 
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underlying assumption about the accessibility of process states, 

annotating the sets can be shown to be equivalent to imposing an 

acyclic -dominance relation < on the processes. In any communication 

between p. and p1. if p1<p1  then p, is the slave and p1  the master, and if 

they are incomparable, then this is equivalent to annotating both terms 

with the unknown flag. For example, consider the annotated set PC.. 

Let us suppose that Jj. . . . is an element of the set and has been 

annotated with the slave flag. Then it is simple to show that every 

other possible communication between p. and pj 
 must also be annotated 

so that p. is the slave. Suppose that this were not the case, i.e. there 

was an element of PC. of the form ji. . . . that was annotated as a 

slave. Our simplifying assumption would then imply that process p, and 

process p
j 
 may reach a state where they wish to communicate with each 

other and both of them are slaves in the communication, which is not 

possible if the sets have been annotated correctly. Similarly, if an 

element of PC. mentions j and is flagged as a master then in all 

communications involving p. and p, p1  will always be the master. 

Finally, if a communication of p. involving p. is flagged as unknown then 

all communications of p i  involving pj  will be flagged as unknown. 

The previous analysis implies that the task of annotating the 

elements of the sets PC. is equivalent to constructing an acyclic 

dominance relation < between processes such that 

- 	i) if s€PC. and jEs then p. < p. or p. < p i  

or they are incomparable (written p. # p) 

ii) if s€PC. A IsI>1 
then either VjEs p. < p. 

orVjEsp.//p 

Note that the relation will not be a partial order in general as p.<p. and 

p<p does not necessarily imply P1<Pk i.e. < is antisymmetric but not 

transitive. It is simple to show that such an ordering generates safe 

annotations. 



synchronisation graph. 

M 

P.  

Pk 

P. 
'7 
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Silberschatz [Silberschatz 79] proposed a scheme whereby a 

dominance relation was provided by the user along with his program. If 

two processes P (  and p5 . could communicate then either p,< pi or p.<p.. 

Furthermore, the relation was constrained so that if p. has a summation 

where p and p are communicands, for example, then p.<p5  and p.<p 

This scheme can therefore be considered as a method of producing a 

synchronising annotation, and implicitly uses our simplifying assumption. 

Silberschatz extended this work by intrndurir 

ports [Silberschatz 81]. 	These can be viewed as a mechanism for 

implicitly generating the process dominance relation. 	Processes 

communicate via ports but in this proposal each port is owned by one, 

and only one, process. However, there may be several users of the port'. 

Silberschatz imposes the restriction that summations can only involve 

ports owned by the process. This restriction provides the asymmetry 

necessary to construct a dominance relation automatically and hence a 

synchronising annotation can be determined for any program using 

communication ports. In both of these schemes, the onus is on the 

user to provide the dominance relation, either explicitly in the first 

case, or implicitly in the second. We now show how to eenerate these 

orderings mechanically, although in many cases we will not achieve a 

synchronising annotation as there may be incomparable processes. 

We wish to detect all pairs of sets of the form 

€ PC. , 	i,m, . . . 	€ PC. 

as these may lead to the following connected component in the 

If we encounter such a case then we must make p. and p. incomparable 

(# 1). 	This means that in any communication between p, and p. the 
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waiting strategy is inapplicable. 	As p is also involved in this 

communication, we must set .p#p so that p does not use the waiting 

strategy when communicating with p. Similarly p#p Suppose that 

jk,nj was also an element of PC.. Now p//p so we must make p.1/p. In 

other words, the incomparability may propagate. 

We start by grouping together all those processes in PC. that are 

affected by setting p. incomparable to one of them. For each set PC., 

we define an undirected graph G 1  = <N.,E>, where N. is the set of 

communicating partners of p. and <j,k>EE. ill jj,k j cs for some s€PC.. If 

we compute the cohnected components of G.. CC., then it is simple to 

show that if p.1/p. then for all processes p ,
, 

that are in the same 

connected component as p
i  and these are the only processes that are 

affected by setting p
i  incomparable to p. Thus we have a convenient 

way of propagating 1/ to other processes. Furthermore, we may use the 

CC. sets as substitutes for the original PC. sets, as any clashes between 

the PC t  sets will also occur between the CC. sets, and these sets will not 

introduce any additional clashes. 

For example, consider the network 

 

P9 P4 

M. P, 

with the following PC. sets 	 S 

PC 	1 	2 	3 	4 
	

5 	6 

j1 
	

HM 	jj2jj 

J3,5 ~ 	161 
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This leads to the following CC. sets 

CC 	1 	2 	3 	.4 	. 	5 	6 

2,3.51 J .  11,41 	jjljj 	jj2jj 	HM 	jj2jj  

The next step in determining a safe annotation is to look for 

synchronisation clashes in the CC. sets. One approach is to construct a 

graph where i is a node if c is a connected component of p. and <i,j,> 

is an edge of the graph if i€c' and jEc. Returning to the previous 

example, this would produce the following graph. 

12,35 	 2 14 	 2 6  

N 
31 	5M 	4121 62 

If we now examine all of the connected components in the resulting 

graph, then any component containing a path of length greater than two 

is a potential cause of a clash. Therefore if <i,j,> is an edge in this 

component then we set i/fl. These are the only instances of 

incomparable pairs and any other connected components are either of 

the form 

1c 	

k. 

in which case we set i<j, i<k etc, or the component is of the form 

C 

	

Jc ,  

in which case we can set i<j or j<i. Thus we may deduce p 1 //p 2 , p2#p4 , 
p 1 #p3 1 p 1 #p5  and p2<p8  from our previous example. 
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For a slightly more encouraging example, one where there are more 

• comparable pairs, consider the following example.. 

P. 

	

Ep 	 P 

P4 	

P 

p6. 	

p 1  

where the PC sets (and the CC sets) are 

PC 1 	2 	3 	4 	5 	6 	7 	8 	9 	10 

	

IM 	1 7,8 

1 63 	 9fl 

1~ 1 .o i  

• 	This leads to the following graph 

4 17.8 

5101 	 6 
151 

6 IV 

7 

from which we can deduce 

p 1  < p 	
• p2  # P7  P9  < P 7  

p3  < p4 	p4  # p7  p9  < p8 

• 	 p5  < p6 	p4  # p8  p9  < p10 

P6  # p8  

Given a graph G = <NE> it takes O(MAX(N,E)) time to compute the 

connected components, and so this algorithm should be of practical use 

in constructing safe annotations. 
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This concludes our analysis of synchronising annotations. We have 

shown that by annotating a Static CCS program we may obtain an 

efficient implementation scheme in some cases. This can be done 

automatically if we make some simplifying assumptions, although the 

algorithm may produce an annotated program involving unknown flags. 

In such cases, we cannot use the simple synchronisation scheme 

directly, and the techniques of Chapter 5 must be employed. These 

involve transforming the program to simplify those communications that 

are annotated with the unknown flag. 

§3.6 A review of synchronisation schemes for Static 
ccS 

We now consider the case where the synchronising annotation 

approach is not applicable. We start by reviewing some of the 

synchronisation schemes that have been proposed for Static CCS. In 

fact they were all originally proposed as solutions to the synchronisation 

problems of CSP, but the two languages are sufficiently similar at the 

process synchronisation level for the algorithms to be applicable to 

Static CCS as well. This section is not meant to provide an exhaustive 

review of the literature in this area although it does cover the major 

published papers. The aim of the section is to give some idea of the 

types of implementation strategy that are possible when a synchronising 

annotation cannot be found for a program. We postpone the discussion 

of one synchronisation scheme, the polling algorithm due to-

Schwarz [Schwarz 78], until later in this chapter. 

There are a number of ways of classifying process synchronisation 

schemes. For example, some are designed for real-time applications 

while others are designed to work on broadcasting networks such as an 

Ethernet. Some use the natural hierarchies present in the source 

program to aid synchronisation while others attempt a probabilistic 

approach where it is possible for two processes to wait indefinitely to 

synchronise although this can only happen with a vanishingly small 

probability. Figure 3-1 summarises the synchronisation algorithms that 

are discussed in this chapter. 
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Language 	 Language 

	

asymmetric / 	 Symmetric 

No output 
guards / 

IMa\

--,owned

Ther/ 

Z/ 
 

slave  
[Hoare 78] 	 [Martin 80] Asymmetric Symc 

/[Süberschal 79] 	implementation implementation 

[Snepscheut 81] B 

. 

roadZcasting 

Intermittent 	Continuous 
polling 	 polling 

[Bernstein 80] 	 [Schwarz 78] 	
Probabilistic  

[Buckley 83] 

[Schneider 82] 	 [Reif 84] 
[Ron 84] 	 [Francez 80] 

Figure 3-1: Synchronisation schemes for Static CCS 
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One approach to synchronising Static CCS is to break the symmetry 

of the system in some way. This can be done either at the source level 

( [Hoare 78] [Silberschatz 79]), or at the implementation level. We have 

already seen some examples of the first possibility earlier in this 

chapter. One other scheme, due to Snepseheut [Snepscheut 81], also 

falls into this category. Snepscheut argues that it is natural to restrict 

oneself to hierarchically composed systems. In such a framework, a 

process p. may either communicate with its parent p., its siblings 

(children of p.). or its children. It is the task of process P. to 

synchronise all communication requests of p. naming either p
i 
 or a 

sibling of p. pi  synchronises all communication requests naming one of 

its children and it is also responsible for synchronising pairs of children 

with matching requests. Although there are no technical limitations on 

the programs that may be synchronised using this approach because a. 

suitable communication tree may ,  always be constructed, there are 

practical limitations. For example, if a particular program requires a 

communication tree of height two, then the algorithm degenerates to a 

global scheduler synchronising all communications, which is obviously 

undesirable. This is why we classify this scheme as one requiring a 

restriction, of the source language. 

We now discuss those schemes that place no constraints on the 

source language and will start by describing some algorithms that 

produce asymmetric implementations. An implementation is asymmetric 

if the code executed by process p. depends in some way on its syntactic 

position in the program. The purpose of the following descriptions is to 

illustrate the scope of the possible strategies for implementing a 

process synchronisation mechanism. For more detailed descriptions of 

these algorithms, the reader is referred to the relevant references. 

The first scheme we consider is the one due to Bernstein [Bernstein 

80]. A process may be in one of three states, called active, query and 

wait. When a process P(  does not wish to perform a communication it 

is in the active state. Eventually p.'will reach a point where it needs to 

communicate with some other processes and at that point it enters the 

query state. In this state it queries each of its possible communicands 
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to ascertain if they are waiting to communicate with -p 1 . 	A 

communicand p may respond positively with the message YES, in which 

case the connection is established. It may also respond negatively with 

the message NO, in which case this indicates that process p, is not 

interested in a communication with p. at the current time. Process p
i 

 

may also respond with the message BUSY in which case p. may try to 

query it again at some later point. 	If all communicands respond 

negatively then the process enters the wait state where it will agree to 

the first matching request that is presented to it. If process p. sends a 

query to p, and while waiting for a reply a matching query from 

arrives, then two things may happen. If k > i then p. sends a BUSY 

message back to p and otherwise it delays responding to p until it has 

received its reply from p. 

Buckley and Silberschatz [Buckley 83] show that with certain 

schedulers there may be no bound on the amount of time or number of 

messages needed to establish a communication between two processes 

using Berstein's algorithm. They remedy this defect by proposing a 

more sophisticated retry' mechanism. The first part of the algorithm is 

identical to the Bernstein proposal. However, if p. receives a BUSY 

response from p3  then it attempts no further communications with that 

process until p, has finished its initial queries. At' this oint p, sends a 

RES message to all processes it had sent a BUSY reply to earlier. 

Process p, may then resolve the noncommittal answer it received from 

p5  by sending one RETRY message. Process p, will either respond with 

NO in the case where it has returned to the active state since the BUSY 

message was sent, or YES if it has unsuccessfully queried all of its 

communicands. Process p
i  may also be currently resolving a BUSY 

communication with some other process p k  and in this case it delays 

replying to the RETRY message (or any new QUERY messages). This 

delay does not introduce a potential deadlock as the chain of RETRY 

messages is acyclic. The algorithm has the desirable property that if 

two processes can communicate, and one of them does not establish a 

communication with a third process, then they will communicate with 

each other within a time bounded statically by the program text. 



Implementing Static CCS on a Distributed System 	 68 

It is possible to construct synchronisation schemes that have a 

symmetric implementation. The ones we shall describe either require a 

broadcasting network as their-.. underlying communication mechanism, or 

they rely on probabilistic arguments to justify their correctness. Ron, 

Rosemberg and Pnueli [Ron 84] present a synchronisation scheme which 

relies on the ability of processes in a carrier-sense based network, such 

as an Ethernet, to "eavesdrop" on messages not directly addressed to 

them. A process p. starts by sending communication requests to all of 

its communicands. If a matching request is sent back from one of the 

processes then the other communicands recognise this event by 

eavesdropping on the line and discard the request from p. as it is no 

longer valid. This obviates the need to send retraction messages to the 

other partners when a successful communication has been established. 

The synchronisation scheme due to Schneider [Schneider 82] makes 

use of a buffered communications network with broadcasting facilities. 

Each message is tagged with a timestamp obtained from a distributed 

clock. 	Lamport [Lamport 78] shows how such clocks may be 

implemented without using a centralised control mechanism. 	This 

timestamp is used to order the requests received by each process. The 

queue represents the complete state of the system as far as process 

synchronisation is concerned and so to ensure that process selection 

operates on a consistent queue, every process broadcasts an 

acknowledgement to all other processes when it receives a request. 

Schneider's algorithm deals with fault-tolerant issues not addressed in 

the other synchronisation schemes but this advantage has to be weighed 

against the large number of control messages that may have to be 

transferred before a synchronisation is achieved. Banino, Kaiser and 

Zimmerman [Banino 79] have • also developed a synchronisation scheme 

based on the use of a shared broadcast channel. 

Another approach to obtaining symmetrical implementations where a 

broadcasting mechanism is hot possible, or would be prohibitively 

expensive to implement, is to make use of probabilistic methods. This 

approach does not guarantee that two processes will communicate within 

a finite time but the probability of them not doing so can be made 
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vanishingly small. Francez and Rodeh [Francez 80] have developed such 

a scheme. We assume that each pair of processes that potentially may 

wish to communicate has access to a. private shared variable. For 

simplicity, we will also assume that for each pair of processes there is a 

unique label that is used for their communication. Suppose process p. 

wishes to communicate with process p1 . It indicates its willingness to do 

so by setting the shared variable between them. We assume that this 

flag is initially cleared. If after a certain 'timeout' period the flag is 

still set then the process assumes that p is not interested in 

performing a communication. In this case p i clears the flag shared with 

p
i  and sets the flag connecting it to one of the other communicands. 

This action is known as a retraction. Process p. will continue this 

polling until it finds that the flag has been cleared when it is examined 

after a timeout. Process p. takes this as an indication that the process 

that shares the variable wishes to communicate and so the connection 

is established. Similarly if pf  wishes to communicate with p, and finds 

that the shared variable has already been set, it clears the variable and 

waits for the connection to be established. The algorithm assumes that 

there is some form of mutual exclusion mechanism that prevents p. and 

p. from setting their shared variable simultaneously. 

The probabilistic scheme introduces the possibility that a pair of 

processes may repeatedly set the shared variable but, due to an 

unfortunate scheduling strategy, may continually miss each other. 

Francez and Rodeh therefore assume that the underlying implementation 

uses a fair random scheduler. With such a scheduler they argue that 

• although an infinite time may elapse while two processes try to establish 

a successful connection, this can only happen with zero probability. 

S 

Reif and Spirakis [Reif 84] also present a probabilistic solution to 

the synchronisation problem. Their approach can be viewed as a real-

time solution in the sense that they can place a limit on the time taken 

to establish a communication, and the chance that this bound is 

exceeded can be made vanishingly small. 

While our review of these synchronisation schemes covers the major 
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work in this area, there are other algorithms which, although not 

specifically addressed to the problems of process synchronisation, -can 

be applied to such a case. The research published on resource 

synchronisation problems is a good example of such work ( [Lynch 80]). 

§3.7 Synchronisation schemes considered as program 
transformations 

Some synchronisation schemes for Static CCS are based on a 

synchronous message-passing mechanism, and so may be expressible in 

Static CCS. Other schemes may be placed in such a framework even 

though they may be initially presented in terms of shared variables for 

example. We might argue that to transform a program using a 

particular synchronisation scheme is no better than implementing the 

program directly using the scheme. We counter this remark in the 

following ways. Firstly, we may not be able to use, a particular scheme 

directly because we have no control over the underlying implementation. 

More importantly, it is very wasteful to synchronise an entire network of 

processes using a complicated synchronisation scheme when only a small 

number of the communications may require its generality. The 

transformational approach has the advantage that it can be applied only 

to those parts of the system where a synchronising annotation cannot 

be found. While it would obviously be possible to mix strategies at the 

implementation level, this would be more difficult and because of this 

we argue that the transformational approach is more flexible. The 

algorithm we use may depend on our particular problem; -we may want a 

transformation with real-time properties for example. It would be 

unreasonable to expect the underlying implementation to present us 

with such a wide range bf choices. 

§3.8 Schwarz' synchronisation scheme 

This section describes the synchronisation scheme due to 

Schwarz [Schwarz 78]. The next section will then show how it may be 

expressed as a program transformation. Furthermore, it is shown that 
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a synchronising annotation may always be constructed for the 

- transformed program. 

• Many• of the schemes for synchronising Static CCS employ the 

technique of imposing some form of asymmetry on the system either at 

the source or implementation level. The scheme due to Schwarz also 

follows this approach. We assume that an acyclic dominance relation 

> has been imposed on the processes. The choice of whether p 

dominates q or vice versa is independent of the direction of any 

possible communication between these two processes and can be chosen 

arbitrarily. Schwarz has shown that the choice of dominance relation 

can affect the performance of the algorithm but not its correctness. 

In order for process p. to establish communication with p., Schwarz 

proposes that they perform a "question and answer exchange". One 

process is permanently designated the asker and the other the answerer. 

If p.>p1  then p. is the asker and let us assume that this is the case. 

These two processes synchronise through the two variables Q.. and A.. 
We will allow Q to be set by p. and be read by p.. Similarly we will

11  

allow p. to set A ... . and it can be read by p.. We assume that both 

variables are initially set to A. If p, wishes to communicate with p. it 

starts by setting Q.. to the value "R". This is sensed by p. and the 

process responds by setting A either "Y" if it wishes to communicate 

with p., or "N" otherwise. When p. senses the setting of A.. it resets Q.. 

and after this action p. clears A ... In order for a connection to be. J 	 2' 

successfully established between p. and p., p. must ask if p wishes to 

communicate and p. must reply positively. Process P. is suspended until 

it receives an answer from p. which implies that p. must be monitoring 

Q.. even when it has no desire to communicate with p. Because p must 

respond to questions even when no communication is to take place, 

Schwarz assumes that each process contains a "poller" subprocess which 

is responsible for asking and answering questions. Each process must 

have a means of communicating with its subprocess, or poller, and so 

Schwarz provides a set of variables C.. for process p1  such that setting 
C.. to true implies that the main process p. is willing to communicate 

with p1. How the poller indicates the successful establishment of a 

communication is left undefined. 
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Schwarz shows that to avoid deadlocks it is necessary to choose the 

> relationship between processes such that there are no infinite 

sequences 

p 1  > p > P 
k > 

This is why we stated that the dominance relation should be acyclic. 

If we assume that the processes are indexed by positive integers in 

some arbitrary way, we may take > to be "greater than" (>). In order 

for a poller to check for communication requests from other pollers, it 

must ascertain which processes can potentially communicate with it. We 

assume that the i 
th  process p. can potentially communicate with the N. 

processes connect [0], connect.[l].....  connect .[N.-l]. 

We give an outline of the algorithm executed by the ith poller in 

Figure 3-2. 

The commands "lock x" and "unlock x" respectively freeze and 

unfreeze the variable x to prevent the variable changing while in a 

critical section. We assume that these primitives can only be used on 

variables that are shared by local processes. This is true in the poller 

definition as C shared by the poller and its controlling process and 

these are local to each other. "await C" is an abbreviation for the 

busy-waiting loop 

"while -C do od" 

§3.9 A transformation version of Schwarz' scheme 

In an experimental implementation of CSP, Shrira and Francez [Shrira] 

have transformedl Schwarz' synchronisation scheme into a version that uses' 

message-passing rather than shared variables to communicate between 

processes. The approach is quite general, and could be applied to other 

algorithms that use shared variables. Instead of a variable being set by 

one process and read by another, we modify the algorithm so that a 

message is sent by one and received by the other. We must also modify 

the poller algorithm so that it continually offers the message "I do not 
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Potter '1: 

begin n,j,a.q; n:=O; 

while true do 

n:=(n±1) mod N.; j:=connect[n]; 

lock C..; 
'3 

if i>j A C.. 

- then 	 await A..A; 
ii  

• 	Q..:A; 	await A..=A; 
2) 	 2' 

if a = "Y" then "establish channel i j" 

• 	 0 a = "N" then joffer rejected 	fi 

o i > j A -C.. 
23 

then Jdo nothing 

0 	> i 

then q:=Q..; 

ii qA A C 

then A.:="Y"; await Q.=A; A..:-A; 
23 32 	 23 

"establish channel i j" 

• qA A 

then A ..:="N"; await Q=A; A ..:=A; 
23 32 	 23 

EJq=A 

then Jdo nothing 

fi 

fi 

unlock C..; 
23 

od; 

end; 

Figure 3-2: The Schwarz Poller Algorithm 
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want to communicate" rather than doing nothing and letting the other 

process deduce this fact by looking at the shared variable. 

The substitution of message-passing for the shared variables allows 

us to express Schwarz' scheme in Static CCS, and hence to view it as a 

program transformation. However, if this approach is to be meaningful, 

we must avoid introducing any additional communication possibilities 

that are difficult to synchronise as otherwise we would be reintroducing 

the problem that the transformation was designed to solve. 

We introduce the transformation as a function over syntactic terms 

representing Static CCS expressions. Because of the syntactic nature of 

the transformation function we would not necessarily expect the 

transformation of plq  to be identical to the transformation of qp 

• 	although the two resulting terms would hopefully behave in an identical 

fashion to an external observer. The syntactic treatment of the 

arguments to the mapping function, coupled with the fact that all Static 

CCS arguments will consist of a parallel composition of one or more 

simple processes, allows us to associate a natural ordering I on the 

source processes based on their relative positions in the parallel 

composition. 

In order to transform a Static CCS program, we must translate each 

summation into an explicit request set. We use a variant of the request 

set function, RS, to perform this task. We define 

C(X) = j 	for any XE41, 

and will assume that the source programs are such that the 

corresponding function C also satisfies the following restriction 

s -- 	 C(X) n C(X') 	X = X' whenever X,A'€S. for any i 

This condition guarantees that if process p. wishes to communicate 

with process p then there is no -confusion over which label they wish to 

use in the communication. The restriction simplifies the presentation of 

the algorithm, although the analysis can be extended to cover the 

general case without difficulty. 
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Our first step in the conversion of Schwarz' scheme to a CCS version 

is to decide how a master process interacts with its poller. In the 

original algorithm the two processes interacted via the C.. variables. 

The poller prevented its master changing a variable when it was 

examining it, and at all other times the master was free to change the 

variable. We must replace this mechanism by one which involves 

message-passing. There are a number of possibilities open to us at this 

point. For example, the poller may refuse to communicate with any 

other process until it has received a request from its master, after 

which it ignores the master until a communication has been established. 

Another alternative would be for the poller process to be always 

willing to accept a request from its master. We might choose to poll 

the master process along with all the other pollers. Allowing the poller 

to always be able to accept a message from the master process creates 

a synchronisation problem because when two pollers wish to 

communicate there will be a many-to-many communication request at 

this point. We therefore reject this alternative. 

Allowing a poller to poll its master means that a translation of a 

process must continually be willing to offer its request until a 

successful communication has been established. This approach does 

allow a master process to retract a request at any point which may be 

an advantage if we wish 'to allow T moves in our source program. Such 

an extension does not provide, any extra insight into the problem and 

adds an extra degree of complexity. For this reason we will choose the 

first alternative which does not allow refractions but allows a simple 

presentation of the algorithm.' 

It is not sufficient to leave the NIL process unchanged in the 

transformation using this, approach because the 'poller 'will interrogate 

its master when it has no outstanding requests, and this will deadlock 

the poller and possibly lead to a total deadlock of the system. However, 

if process p. reaches a state where it is equivalent to NIL, then the 

transformed version can send a message to the poller requesting to 

communicate with itself. Such a request can never be satisfied and so 
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the poller does not require any additional communications with its 

master. 	At this point the master can safely evolve to the NIL process. 

• 	To 	avoid 	similar problems when a process wishes to 	synchronise 	on 

- 	communications that can never occur, due to the inverse 	labels 	not 

appearing in the sorts of any other processes, we add i to all request 

sets of process p.. 

We assume that each poller, Potter. say, receives requests from its 

master in the form of a set of process identifiers via the port offer.. 

Poller, indicates a successful synchronisation by passing back the 

identity of the communicating partner using the port select.: Given a 

Static CCS term of the form fl tEN *p., we translate each process p using 

the function tr, as follows. - 

Each process p. can syntactically be viewed as the process F, 	 a..p.. 
jem J V 

with a suitable choice of variables. Then 

trij[ 	a,.pi2 ] = let. partners = u C(aj ) in 
jEm 	 jEm 

fofferi(partnersui). 	
\ 

( 	 (setect2(A).ak.tri[{pik}] where C(ak) 
iportncrs 	

/ 

We should really treat the label a as being composed of two parts; a 

label and an optional -value or variable if we are using value passing. 

The function C should then be defined so as to ignore the value part, or 

alternatively we should supply a projection function from a •  to the label 

of a. However, as there is no scope for confusion if this coercion is 

performed implicitly, we will use the variable a for both purposes. 

S 

Instead of using an indexed family of transformation functions, we 

could equally well have used a single transformation function and then 

applied an indexed family of renamings to the transformed processes to 

achieve the same result. Each master process has its own local poller 

process. 	We introduce a second local process, Buffer., to 	obtain the 

effect 	of the Q 	shared variables. 	The process could be incorporated 
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into the poller definition but this would unduly complicate matters. The 

setting of the Q.. variable by Polter is achieved by sending a set.(j) 

message to Buffer.. Poller5  can interrogate the status of this variable 

by using the Q.. port. This port returns YES if Poller, currently wishes 

to query Poller5  and NO otherwise. A typical transformed component is 

illustrated in Figure 3-3. 

Host. 

select 	 offer 
IL 

set 
1. 

Poller. 	Buffer 

Q.. 

A  
k 	 Q 

A.. 	
i. 

1.) 

Buff er. Poller. 	Poller 	Poller 
3 	 k 	 m 

Figure 3-3: A Poller Component 
IL 

We define PC. to be U C(A) - 	Then Buffer, can be defined by 
AES 

2 
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Buff en = 	f 	j(NO). Buff en 
jEPC I 

+ sett(j). Buffer(j) 

Buff er'i(k) = ( 	 (No). Buff er'i(k) ) 
j4EPCi-jkj 

 (YES). Buff en 

All that remains to complete the transformation is a description of 

• the poller subprocesses. In order for Poller, to perform its task it must 

know the identities of all the remote pollers that may wish to 

communicate with it. The set. PC. contains the identities of all such 
I 

• 	processes. To allow Poller, to interrogate the members of this set fairly 

we assume that some arbitrary ordering has been imposed on the set 

• 	such that PC.[n] denotes the n th  element. 

A description of Poller, is presented in Figure 3-4. 

We assume that addition is (modulo IPC.I)+1 so that n ranges over 1 

to IPC.I. 

To transform a Static CCS program fl p , we first determine the 
lEN 

sorts S. and then apply the transformation function Tr where 

TrEE fl 	.]1 = ]J (tr.i[p.ill I Poller.(l,cb)  I Buffer.) 
iEN 	 iEN 

In fact this definition illustrates one of the problems that arises 

whendealing with transformations in CCS. It would be natural to expect 

that some restrictions should appear in the above expression. However, 

if we added the relevant restrictions we would find that all the actions 

of the system would be affected by the restrictions. There would be no 

• • externally visible actions, and this raises the question of how to prove 

that the transformation is correct. We deal with such problems in the 

next chapter. 
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Poller(n,k) = let j = PC[n] in 

offer 4(k')-. PoIler.(n,k') 	if k = 

+. 	 if l>j A j€k 

A..(r). 

if r = YES 

then select (j). Poller.(n+ 1, 

else Poller.(n+1,k) 

+ T. Potter(n+1,k) 	 if l>j A jk A 

+ Q..(r). 	 f i<j A jEk 

if r = YES 

then i..(YES). select.(j). Poller(n+ 1,) 

else Poller .(n+1,k) 

+ Q..(r). 	 if 1<J A j'k A k 740  

if r = YES 

then A..(NO). Poller .(n+1,k) 

else Poller.(n+1,k) 

Figure 3-4: The Schwarz Poller in Static CCS 

§3.10 A synchronising annotation for Schwarz' 
transformation 

In order to justify the transformation, at this point we must ask 

ourselves - two questions. Firstly, are the transformed terms any easier 	- 

to implement than the original program, and secondly, does the 

transformed program behave identically to the original program, i.e. is 

the transformation correct in some sense? A third question, how does 	- - 

the transformation affect the performance of the program, will be left 

until later when we .  describe how the transformation may be partially 

applied. This section deals with the first question. We show how a 
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synchronising annotation can be constructed for any transformed 

program, even when the original program does not possess one. The 

first part of this chapter has already described how we can efficiently 

implement programs that have a synchronising annotation, and so we 

may deduce that the transformation does indeed aid the implementation 

process. 

• The first property we observe about the transformation is that all 

the conditional cases in the poller definition are mutually exclusive.. 

The offer, message between Potter, and its master is a one-to-one 

communication and so either may be the "master". The t.(j) message 

matches with a sum in Buffer, so Potter. must be the "master" and 

Buffer the "slave" for this communication. A(r) is a one-to-oneji  
communication between Potter. and Potter so either can be the 

%2 

"master". The select ,(j) message interacts with a sum in the master 

process so Potter, must be the "master" in this case. Q.(r) interacts 

with a sum in Buffer so Potter, must be the "master" in this case as 

well. Finally, the messages that are exchanged between masters are of 

the one-to-one form so any "master/slave" relationship is adequate. 

This completes our analysis and shows how a synchronising annotation 

may be constructed for this transformation. 

Both the pollers and buffer processes contain input and output 

actions within a summation, and so the Hoare restriction' of forbidding 

output guards in summations, to obtain an efficient implementation, 

would be inapplicable in this case. 

§3.11 Transformation correctness 
S 

If the same observer process examined both the program and its 

transformation, then it would obviously notice a difference. This is 

because the interfaces to the environment are different in the two 

programs. Therefore, if we tried to apply the testing equivalence e to 

these programs we would deduce that they were not equal. In order to 

compare the programs -the observer must interact with the transformed 

system like all the.- other processes, via a poller. Suppose we are 
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presented with an observer fl o and a source program fl p. Then 
*EM i 	 tEN i 

we must translate both components simultaneously, i.e. we first 
- . 
	construct a new term 

fl q where o = q. ViEM and p = 	ViEN. 
2EM+N 

We can then determine the sorts and apply the Tr function to obtain a 

transformed version of both the observer and the observed. Such an 

approach to transformational correctness is dealt with in more detail in 

the next chapter. At this point it is sufficient to note that some 

modification of our notion of equivalence is necessary when a 

transformation changes the externally visible interface to a system. 

Another perhaps more serious problem that confronts us when trying 

to reason about the correctness of the transformation is 	due to the 

introduction of non-termination caused by the transformation even when 

the original processes terminate. For example, consider the process 

Poller1 . If the master process reaches a NIL state then Potter1  will have 

the variable .k set to j1J. The poller will continually check all other 

pollers in PC 1 , and if none of them wish to communicate with Poller1 , 

then there can be an infinite sequence of communications between 

Poller1  and remote Buffer processes with no other processes progressing. 

To avoid such problems in the Schwarz transformation, we could try 

to modify the polling algorithm, or restrict the class of programs that 

were transformed, in an attempt to eliminate all infinite T sequences 

that may be introduced by an unfair implementation. If we view the 

collection of PC. sets as specifying a connection graph for the system, 

then there may be more than one connected component in the graph, 

and the lowest element of every connected component may perform an 

infinite sequence of polling communications leading to a diverging 

computation. We might argue that it only makes sense to have one 

connected component in any connection graph, because either the 

observer must exist in only one of the connected components, in which 

case the other connected components cannot influence the success of 
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its testing, or else the observer is part of a number of connected 

components, in which case this is equivalent to running several tests on 

several separate components simultaneously, and this could equally well 

be done separately. Even if we restrict ourselves to connection graphs 

with only one connected component, there is still the possibility of non-

termination. To try to remove the possibility of non-termination from 

the process with the lowest index, we might force this process to be 

part of the observer and assume that the system is always willing to 

communicate with the observer. However, this is unrealistic as in 

general the observed system will need to evolve internally between each 

communication with the observer. There appear to be no other 

reasonable changes or restrictions we might make to the system so that 

it will function correctly on an unfair implementation. 

• 	 Before we can prove the correctness of Schwarz' transformation 

scheme, we must examine in more detail those preorders and 

equivalences that treat the introduction of some forms of non-

termination as being benign. We must also describe how to perform 

transformation correctness proofs when the visible interface to the 

system is altered by the transformation. This work forms the core of 

the next chapter. 

S 
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• CHAPTER 4 

A Mathematical Framework 

for the Notion of .  "Implementation" 

§4.1 Introduction 

An agent defining the intended behaviour of a component is usually 

called a specification in CCS. There is no formal distinction between 

specifications and other agents, although a specification will typically 

define the desired behaviour in as clear a way as possible, with little 

regard for efficiency. An implementation of the specification then 

consists of a behaviour that is equivalent to it, but that also satisfies 

other constraints, such as being more efficient, or containing a fixed 

number of processes. There is some flexibility in these informal 

definitions, as the equivalence used may depend on the particular agents 

under investigation, but the specification/implementation relationship is 

symmetric. The first part of the chapter argues that there is a case for 

•  making the relationship asymmetric. The aim is to develop an ordering 

that places less constraints on what constitutes an implementation, 

while retaining the ability to be observably indistinguishable from the 

• 	specification. 	We do not deal with context-dependent proofs in this 

thesis, and so any proposed definition of implementation should 

• 	preserved the ordering under all CCS contexts. These constraints limit 

• 	the degree to which an implementation can differ from being- simply 

equivalent to its specification. A candidate for this ordering is proposed 

that corresponds to the intersection of and the converse of 23- 

Proving that a behaviour implements a specification using the new - -  

definition is not only simpler than proving an equivalence, but is also 

sufficient for many applications, including the proof of the Schwarz 

transformation. - 
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The second part of the chapter develops a fair equivalence for CCS. 

The starting point for this analysis is the testing equivalence approach 

of DeNiôola and Hennessy [DeNicola 82]. We argue that their approach 

agrees with our intuitions concerning process equivalence, except whe-e 

fairness arguments influence these intuitions. In particular, we argue 

that for any behaviour p, pr" should be a valid implementation of p, if 

we are only interested in fair versions of CCS. Previous attempts at 

applying fairness arguments to CCS have been too restrictive, and do 

not interact properly with the expansion theorem. A new preorder, 

known as the weak-must testing preorder, 	, is developed as a fair 

replacement for the must testing preorder, 	A weak-must equivalence, 

-w , is also. defined. 	We show that the new definition behaves in a 

similar way to the 2 2 preorder, except for certain infinite computations 

where we argue that the new treatment of the behaviours is more 

natural when reasoning in a fair framework. 

Proofs that deal explicitly with observers are difficult in general, 

and so it is desirable to find an alternative characterisation of the 

weak-must preorder that does not involve observers. 

Kennaway [Kennaway 81] defines an equivalence, 
k' whose treatment of 

certain infinite terms is identical to that required by 	, and so 

provides a suitable starting point for this search. 	We define the 

corresponding preorder, 
k' and prove that Z W is contained within 

although the converse is not true 	We argue that the treatment of 

behaviours when the two preorders differ is more natural using the weak 

must preorder. We show that a sufficient, but not necessary, condition 

for the two preorders to agree is when the class of processes is 

restricted to those that are determinate in some sense. The Kennaway 

preorder involves sets of processes and so, while proofs may be simpler 

than • with the weak must preorder, they are by no means 

straightforward. 	A preorder whose definition is amenable to 

bisimulation style proof techniques [Park 81] is obviously more 

desirable, and this leads to the definition of the > preorder. The new 

preorder directly implies 
Ek ' but not 2w . It is also more particular about 

when non-deterministic choices are made in the two processes. Finally, 
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to obtain a preorder that does directly imply the FuW preorder, and also 

has a bisimulation proof technique, the > preorder is proposed. This 

preorder is even more particular about when non-deterministic choices 

are made. There is therefore a trade-off between ease of proof, and the 

class of programs to which these techniques are applicable. This last 

point will become important when we prove the correctness of the 

Schwarz transformation. Figures 4-1 and 4-2 summarise the 

relationships between the preorders and equivalences presented in this 

chapter. 

The final part of the chapter discusses how a CCS transformation 

function can be proved correct. A definition of transformation 

correctness, due to Millington [Millington 82], is first presented. This 

definition is then generalised to cover the type of functions typified by 

the Schwarz transformation. 

<(a I T ' ) , ( a I Tw) + T> 

<p , p+q> 

<a.(.6 + n.y) , afi.ô + afi.y> 

<a , 

<a aIrw> 

<a.(.6 + 	) , (afl.6 + a.f3.7) 

<p , (p+q)j.rW> 

S 

where p = a.p ± a..NIL and q = a.q 

Figure 4-1: The relationship between various equivalences 



<p , q> 

<a.(.â + fl. 7) , afi.ó + 

<afi + a.( + y) , a.( + y)> 

+ 	a.(f3.ô + p.y)> 

<y.a.p + y.a.ö , 7.(a.q + a.6)> 

A Mathematical Framework 
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where p = cx.p + cx.fl.NIL 	and 	q = a.q 

Figure 4-2: The relationship between various preorders 

§4.2 Implementations 

Let us consider a specification process s and another process i that 

is supposed to "implement" s in all contexts (see Larsen [Larsen 85] for 

a discussion on context-dependent proofs). Following the testing 

approach of Hennessy and DeNicola, what relations would we expect to 

hold between processes s and i? Suppose s must satisfz, o, or in other 

words, when observing s with observer o, the combined system always 

succeeds. Process s therefore always performs in such a way that o can 

eventually signal .J, success. What would we expect to happen if i was 

placed in parallel with o? If there was a computation of ilo  where 

success could not be reported we would be rather unhappy. We might 

argue that part of the specification of s demanded that it must always 

satisfy o, and so any process that claims to implement the specification 

must also satisfy o. This requirement is equivalent to stating that 
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s must satisfy o D i must satisfy 0 

Suppose that i may satisfy o. It would seem reasonable to demand 

that an implementation has no more possible actions than its 

specification. If we did not demand this then placing i in a context 

previously occupied by s might result in totally unforseen behaviour, 

due to the implementation communicating with the environment through 

labels that were not used in the specification. We must also ensure that 

the implementation does not contain sequences of actions that are not 

present in the specification for the same reason. Thus we will demand 

that 

i mat, satisfy o D s mat, satisft, o 

What about the other two possibilities? Suppose s may satisfy o. If 

s always satisfied o then we would have s must satisfy o and hence i 

must satisfy o. If this is not the case then it may be that the 

implementation has chosen to implement a different non-deterministic 

branch of the specification, and so may never satisfy o. 

Suppose that i must satisfy o. Then we do not want to demand that 

s must satisft, o because s may specify a' choice of actions of which the 

implementation only choses one, of them. As i must satisfy o implies i 

may satisfy o, we know that it is possible for the specification to 

satisfy o some of the time. To illustrate these points, let us take a 

simple example. A change making machine might be specified and 

implemented as 

CD = pound?. 

(T.pence'(lOO).CD + T. shilling! (20).CD + T.fiftypence(2).CD) 

lCD = pound?.(pence!(100),ICD) 

where CD is the specification and lCD a possible implementation. 

CD must be able to accept a pound note and then deliver some 

change. There is no way of forcing a particular form of change as this 
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depends on what resources are left in the machine. Therefore the only 

tests that must succeed are those which are prepared to accept any 

form of change. But then lCD is always willing to give back one 

acceptable form of change, and hence lCD is a reasonable 

implementation of CD. Similarly, we had better check that any change 

given back by our implementation of the cash dispenser was mentioned 

in the specification. For example, a cash dispenser that returned 

dollars and cents would not be an acceptable implementation of CD. 

What of the other two cases? CD may return shillings but as we 

cannot demand that it does, we have no way of checking whether our 

implementation has this capability, and so we do not demand it. 

Similarly, our implementation must return pence but again any observer 

would be happy with our implementation as it would always be 

performing an acceptable part of the specification; it is not necessary 

that the specification must return pence and so we do not demand it. 

To summarise, we define the notion of implementation as follows. 

i implements s or i is an implementation of s iff 

V o€. i mwii satisft o J s may satisfy o 

s must satisfy o D i must satisfy o 

It might be argued that even this notion of implementation is too 

restrictive. For example consider the hardware device known as a flip-

flop. The specification of this device is normally very naive in that it 

only specifies what happens if the device is used sensibly. By this we 

mean that it is possible to drive the flip-flop in a way that is not 

covered by the specification. In these cases, the behaviour of the 

hardware may be non-deterministic and so we have a situation where 

the implementation has more possibilities than the specification. We 

might argue that the specification should be strengthened to cover these 

cases but this would complicate the specification, especially as the 

component is not supposed to be used in such an environment. The 

more elegant solution would be to prove that the implementation and 

the specification, when placed in a certain context, or - within a certain 

environment restriction, behaved correctly. This type of context- 
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dependent proof in CCS is currently under investigation [Larsen 85]. 

However the simplest approach would be to allow the implementation to 

have more capabilities than the specification. We might desire 

something of the form 

i implements s 	s after s must L D i after s must L 

for all visible sequences of actions s, and sets -of visible actions L (the 

-  definitions of after and must are presented on page 106). However, 

although this definition may be easier to use and prove, the 

implementation may be able to perform all kinds of actions not 

mentioned in the specification. We would therefore have to be very 

- 

	

	careful about the contexts in which we placed the implementation. In 

general, the behaviour of 16Rij would be very different from L[sJ1 for an 

• 	- arbitrary context '. 	Placing constraints on the sorts, such as 

- 	Sort(i)cSort(s), would not help, as i may still possess sequences of 
- 	 - 	

- 

 

actions not present in s. We might add further, constraints to cover this 

case as well, but as we strengthen the constraints, we are inescapably 

drawn to the stage where we demand that i and s are observably 

indistinguishable. This is what our previous definition of implementation 

- 	was intended to formalise. To prove the flip-flop example correct in 

- - 	CCS, some form of context-dependent proof therefore seems unavoidable. 

§4.3 The introduction of non-termination and 
- - 	- 	fairness  

Let -us imagine that we have been presented with a CCS expression 

that represents the specification of some problem. Our task is to write 

an implementation in CCS that in some sense agrees with this 

'specification. Assuming that s is the specification and i the resulting 

implementation, then by our previous analysis this amounts to showing 

that i implements s. Part of this task involves demonstrating that for 

any observer o,- if s must satisfy o then so must i. This would appear 

to be a reasonable requirement of any implementation, and in many 

problems this is indeed the case. 	However, suppose that our 

implementation introduces auxiliary behaviours that may 'chatter' 
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amongst themselves indefinitely. As an implementor we may find this 

addition perfectly acceptable. We might appeal to fairness arguments, 

for example, to justify the correctness of the implementation. Although 

we are introducing the possibility of divergence, it is of a restricted 

form in that at any point in a computation it is always possible to 

- " continue with the desired execution sequence. This contrasts with the 

introduction of an infinite T chain with no other possibilities along its 

length, which.is obviously harmful. 

Perhaps the simplest example of the sort of process we have in mind 

is where we wish to view pIr' as an implementation of p. If we :assumed 

that both p and r' were scheduled fairly, i.e. neither behaviour was 

allowed to monopolise the processor indefinitely, then pIr  would appear 

to be a reasonable implementation of p (although' we would expect it to 

be slower). , Unfortunately, CCS does not have any fairness assumptions 

built into it and so, for example, the must testing equivalence for CCS, 

differentiates between these terms. The reason for this is clear; 

pr' must satisfy o only when o may report success immediately. This 

follows from the definition of must satisfy, where we demand that every 

computation passes through a state where a 'I move is possible. This 

includes the infinite r' computation, and so v must form one of the 

initial actions of o. - p must satisfy o, on the other hand, may be true 

because of cooperation between p and o. Therefore 

p must satisfy o 	plr' must satisfy 

If our view of the world is such that we wish to treat pI T U as a valid 

• implementation of p, how can we modify the system to permit this? We 

need to introduce some form of fairness assumption into the system. 

Apt and Olderog [Olderog 84] define, four different notions of fairness; 

impattiality, justice, weak fairness and strong fairness. Their definitions 

assume a static language with a fixed number of processes so that there 

- is no ambiguity about what is meant by component i, for example. We 

introduce the different notions of fairness in this framework, and then 

discuss what needs to be altered for a language with dynamic -process 

creation such as CCS. - 
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A computation is impartial if it is either finite or else every 

concurrent component in the system participates in an infinite number 

of communications. Extending this idea to CCS requires some care in 

the definition of what constitutes a component when processes -may be 

created; and terminate, dynamically [Hennessy 84b]. 	However, this 

• 	simple notion of fairness leads to many undesirable anomalies. For 

example, pNIL has no infinite impartial computations as the second 

component cannot participate in any communications. The second 

notion of fairness, justice, attempts to remedy this deficiency by 

distinguishing between terminated and running components of a parallel 

program. Even this notion of fairness is not adequate for languages 

such as Static CCS because a component may not have terminated but 

may still be unable to proceed because of no matching requests. This 

leads to the definition of weak fairness where the concept of an enabled 

component is introduced. A component is enabled if it can potentially 

communicate with another process. Then a computation is weakly fair if 

it is either finite or else the following holds for each component: if for 

all but a finite number of steps component i is enabled then the 

component participates in an infinite number of communications. Thus 

a weakly fair computation of 

(a.NIL I (fix X. a.NIL + .X))\a 

is guaranteed to terminate whereas 	 - 

(a.-NIL I (fix X. a.NIL + 

is not, since an infinite computation of the second example may have an 

infinite number of steps where the first component is not enabled. 

Weak fairness guarantees that components which are continuously 

- enabled are not indefinitely prevented from progressing. Such a 

condition may not be sufficient in mutual exclusion algorithms,_ for 

example, where a component is waiting to enter a critical section. In 

such a case there may be an infinite number of steps where the critical 

section is occupied by some other component, and therefore weak 

• fairness will not be sufficient to guarantee eventual entry to the section. 

Such problems prompted the development of strong fairness. A 

computation is strongly fair if it is either finite or the following holds 
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for each component i: if for infinitely many steps component i is 

enabled then this, component participates in an infinite number of 

communications. Returning to our previous example, 

(a.NIL I (fix X. a.NIL + .7.X))\a 

has no infinite strongly fair computations. 

The strong form of fairness', while being a desirable attribute of a 

system, 	places 	some additional constraints on 	the 	implementation 

techniques that may be employed in addition to those required for weak 

fairness. 	For example, some forms of round robin schedulers are 

inapplicable if a strongly fair implementation is required. Chapter 2 has 

already shown how such schedulers do not provide an acceptable 

implementation of Static CCS even though they technically agree with 

the 'semantics of the language. Therefore the techniques required to 

implement a strongly fair system may be required to give an acceptable 

view of non-determinism anyway. 

The application of these definitions to CCS presents special problems 

due to the dynamic nature of the language. In such a framework, the 

notion of • concurrent component is inadequate because new processes 

may be created and old processes may terminate within the span of a 

computation. Costa and Stirling [Costa 84] develop techniques that deal 

with this problem and give a set of finite rules for generating all and 

only the admissible execution sequences when fairness is assumed. 

A possible objection to the concurrent component view of fairness 

• 	arises because the expansion theorem can no longer be used. To see 

why, consider the following two systems. 

- 	 • 	p = (fix X. a.X) 	(fix - X. .X) 	q = (fix X. a.X + fl. X) 

• We would traditionally treat q to be equivalent to p as they are 

observably indistinguishable, which is why q can be derived from p by 

applying the expansion theorem. • A strong or weak fair computation of 

•p will contain an infinite number of a and j6 actions as it is composed 

of two separate concurrent components. However, an infinite a 

• sequence is a valid fair computation of q as it consists of only one 
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concurrent compoflent, and the forms of fairness treated so far do not 

concern themselves with the choice operator. This leads us to conclude 

that the expansion theorem is no longer appropriate when dealing with 

these notions of fairness. 

The stand we take in this thesis is to argue that it is not the 

expansion theorem that is at fault when reasoning about fairness, but 

rather the decision to consider the fairness of the I operator  (I fairness) 

and to exclude considering the fairness of the + operator (+ fairness). 

We believe that both operators must have fair implementations to 

provide an acceptable system. This point has already been touched on 

in Chapter 2 where we argued for the necessity of random guard" 

selection in an implementation. ' If the fairness of both operators is 

considered then the expansion theorem still holds, which is important as 

we consider it to aid considerably the understanding and usefulness of 

CCS. If we wish to take such a decision then definitions of fairness 

based on the concurrent component view . of the world are no longer 

sufficient. 

Parrow and Gustavsson [Parrow 84] consider' a version of CCS where 

agents may be tagged with temporal logic expressions that filter out the 

unfair sequences of actions. Such an approach allows the implementor 

to specify exactly what fairness constraints are required by a particular 

algorithm. Furthermore, because these constraints are expressed at the 

level of sequences of actions, the distinction between fairness and + 

fairness is not relevant. ' While this scheme is appropriate for particular 

algorithms, we would also like to be able to express the fairness 

properties guaranteed by a particular implementation. It would be an 

advantage if the fairness assumptions could be built into an existing 

equivalence so as to retain a familiar environment when reasoning about 

the equivalence of processes. The testing principle of DeNicola and 

Hennessy for the most part agrees very well with our intuitions of 

process equivalence, except for its handling of certain infinite 

computations where fairness assumptions play a part in influencing 

these intuitions. 
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One possibility would be to develop a weaker notion of must satisft 

that ignores certain infinite computations. However, we must be careful 

to distinguish between p1r.  and p + rnr". Both processes have the 

possibility of an infinite T sequence but the first process always has the 

option of continuing normally. This gives us a hint as to how to define 

a new, weak, form of the must satisfy predicate. The original definition. 

of must satisfy specified that every computation of plo must be 

successful. If we only demand that at any point in a computation it is 

always possible to continue successfully, i.e. every finite prefix of a 

computation forms the initial part of a successful computation, then we 

have the basis of a weak form of must satisfy. 

§4.4 The weak-must form of testing 

• 	 Chapter 1 defined the set of computations obtained from plo as 

,in(p,o). Let us extend this notation to represent the set of prefixes 

of o.m(p,o) by 5om(p,o). We may then give an alternative definition 

of the must satisfy predicate as follows. 

Definition VpE, oEcV. 

p must satisfy o <=> Vpc€5o.m(p,o). 

c€.(p,o) s.t. 	 A pC<c 

We use the notation pc<pc' to indicate that pc is a prefix of pc'. 

To see that this is equivalent to the original definition of must satisfy 

we only have to note that  

If p must satisfy o then every path through the derivation tree of 

plo ,  including the infinite ones, must pass through a node where a 

move s  is possible as is illustrated below. 
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N 
N 

N 

We now alter the definition subtly to produce what we shall call the 

weak form of must satisfy. 

Definition VpE3, o€t. 

p w-must satisfy o 	V finite pc€o(p,o). 

3c€m(p,o) s.t. CEc.. 	A pc<c 

The only change we have made is the addition of a constraint that 

the only prefixes we are interested in are finite. We can view the 

statement that p w-must satisfy o as an assertion that at any point in 

the derivation tree of po  it is possible to pick a path down the tree 

that passes through a successful state. 

Consider the derivation trees of (aT") and a + T o  when observed by 

T,J.NIL 

S 



T 

T 

1 
V 

1 

1 

T 
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(aIr'IJ)r/ 	 ((o+rw)t'!)NJ 

In the first case, wherever we get to in the derivation tree it is always 

possible to find a continuation of the path that forms part of a 

successful computation. Therefore 

cxT w-'rnust satisfy a.sJ.NIL 

However there is an infinite computation that is not successful. This 

corresponds to always taking the leftmost branch in our tree. Therefore 

arU must/satisfy a.'J.NIL 

In our second example, there is also an infinite r computation: However 

this computation is harmful in that once we have started down this path 

all other possibilities are lost. Therefore 

a + To  w-must/satisfz, ã.-.,/.NIL 

The first example illustrates why our intuitions are not always in 

agreement with the original definition of must satisfy. When we look at 

the derivation tree of we might argue that if we ran the 

definition on any 'reasonable' implementation of CCS, one of the r 

branches leading to a / possibility would eventually be taken. However, 

CCS has no such fairness constraints built into its definition and so one 

might counter this. argument by exhibiting an extremely malicious 

scheduler that carefully picked a path through the derivation tree so as 

to avoid reaching a state that may perform a move. In our particular 

example this would correspond to taking the leftmost path of the tree. 
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One obvious question we might ask at this point concerns the 

relationship between the new form of testing and the notions of fairness 

previously discussed.. Consider the process -, 

p = (a..NiL I (rec X. &NIL + r.T.X))\a 

T - 

T 

- 

.- 

Then under strong fairness assumptions the first process will eventually 

perform the a action and hence a 9 action will eventually be offered to 

the environment. Note that no such guarantee could be made only 

assuming weak fairness of the system. Consider now what would happen 

if we observed the system with the observer o = P.-,I.NIL. Then 

p w-must satisfy o 

because at any point in a computation of po it is always possible to 

extend the prefix to a successful state. Thus the new notion of weak 

testing captures the flavour of strong fairness. Because it is defined in 

terms of derivation trees, the new definition makes. no distinction 

between I fairness and -+ fairness and so the expansion theorem is still 

applicable. 

Proposition 4.1 If all the elements of 	iii(p,o) are finite then 

p must satisfy o 	p w--must satisfy o 

Proof: 

Trivial, as all elements of 	oen(p,o) are finite in ±his case. 	0 

-S 

Proposition 4.2 p  w-must satisfy o D p may satisfy 0 

Proof: 

If p w-must satisfy o then there must exist at least one successful 

computation in om1 (p,o) and hence p mazj satisfy o. 	0 

We define the weak equivalents of- 2  and 	as follows. 
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Definition 

P z,. q <==> VoEtV. p w-must satisfy o D q w-must satisfy o 

Pq 4=, pJqAqP 

- Our motivation for introducing the weak form of must satisfy was to 

allow an implementor some freedom of choice. Thus we could have 

defined an asymmetric version of ç where we assumed that the 

specification was not divergent, for example. We might define an 

alternative version of w , w ' , as follows. 

VoE. p must satisfy o D q w-must satisfy o 

However, such a definition does not lead to a transitive relation. For 

example, 

P 	pIr F.W '

-  

but 

P V' T. 

Therefore this possibility was rejected. 

§4.5 Some properties of and cc  

We will be primarily interested in properties of the preorder 2 w  as 

this is what we will use in the final definition of implementation; 

However, for completeness, the equivalence is also investigated. 

One of the most important properties of Z w  is its ability to be 

preserved by most of the CCS operators. Before showing this, two 

auxiliary lemmas are first proved. 

Lemma 4.3 

If p w—must satisfy o and 

pjo = p0Io0 --p1 fo 1 --1-- . . . _2.pI0 
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for some n s.t. Xm, O<m<n. o> then p w-rnust satisfy - on  

Proof: 

Suppose false. Then there exists a prefix 71 of a computation c 

from plo which cannot be extended to a successful computation. 

But the computation obtained by prefixing 

<p01o0>.<p 1 1o 1>.....<p 1 1o 1 > to c is a computation of plo  and so 

<p01o0>,<p 1 1o 1>.....<p,1 lo,1> prefixed to it can therefore be 

extended to a successful computation. The only way that 

p w-must satisfy o can be true is if for some m<n. o--. But 
Tn 

this is impossible due to our assumptions. 0 

Lemma 4.4 

If a.p w-must satisfz ,  othen 3n s.t. 

either o 	o' -- for some o' 
• 	 n 	- 
• 	 or o _!_, o' -- for some o' 

Proof: 

Follows from the definition of a successful computation. 0 

Theorem 4.5 If p ç q then V.LE4C.1UT, VA€41, Vrc5' and relabeling S, 

A. p gw  ,u.q 

plr 2, qr 

p\X ZW q\X 

p[S] zw  q[S] 

Proof: 

1. Assume jip w-must satisftj o. 

Take a computation of p.qlo, and any finite prefix of 

• 	-• the computation 

A.qlo = q0lo0 -1---q 1 jo 1 --1-- 	. . . 	 q. 1 o 

If there exists an i'(n such that o. 	> then the 
IL 

computation is successful so we will assume that there 

is no such i. If there exists an i<n such that q=q 

then we have j.L.qIo-1-qo and so 	 But 
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P u-must satisfy o and so q w-must satisfy o which 

implies that the prefix can be extended successfully. 

Otherwise ..plo-'-plo and by Lemma 4.3, 

,i.p w--must satisfy 0. Then by Lemma 4.4, either 

	

M
V 
	

m 
o -!-> 0 ,  - in which case q jo '-)q jo' —, or 

M 	 - 	 m+f' 
 , 	IL 	 7 o -1---> o -- o ,,  so u.pio —> plo where 

m+1 
p u-must satisfq o". But then qo  !_> qj o" and 

q u-must satisfy o" so again the prefix can be 

extended successfully. 

Assume pIr  u-must satisfy o. 

Then p w--must satisfy rio  which implies that 

q w-must satisfy rio  and hence qir w-must satisfy o. 

p\X w-must satisfij o <=> p w-must satisfy o\X 

and so the result follows trivially. 

Assume p[S] u-must satisfy o. 

We first extend S to deal with the label 1, i.e. S(v')v'. 

We then define a complement renaming by (X) = X if 

S(X) = 

Then p[S] u-must satisfy o <=> p w-must satisfi, o[S] 

and so the result follows trivially. 

[! 

The behaviour of 2W  under the fixpoint operator remains an open 

question. Milner [Milner 83] shows that' his equivalence is preserved 

by fix using a bisimulation. Hennessy and DeNicola [DeNicola 82] do not 

prove that their, equivalence 
2 is preserved by fix directly, but rely on 

their induction results to deduce this fact. Neither of these approaches 

are open to us for but fortunately we do not require the preservation 

of tw  by fix for the work in this thesis. We therefore postpone this 

investigation for the time. being. 

Unfortunately, 	is not preserved by + as this simple example 

illustrates. 
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a.NIL 	T.a.NIL but X.NIL + a.NIL 	A.NIL + T.a.NIL 

because if o = X..J.NIL then 

X.NIL + a.NIL w-must satisfy X.J.NIL 

whereas 

.NIL + 'r.a.NIL w-'rnust/satisfz ,  Y.J.NIL 

as we cannot prevent the 7 branch from being taken leading to an 

unsuccessful computation. This result is not too surprising as is not 

preserved by + either. Furthermore, we have the following theorem 

which is applicable in many cases. 

Theorem 4.6 If p FW  q then VE4UT, '1rE. /L.p + r Qw  /.L.q + r 

Proof: 

Suppose this is false. Then there is a computation of (.q + r)Io 

such that a prefix of it cannot be successfully extended, i.e. 

(.q + r)lo = q0 Io0 -1-- q1 I0 1 --'---i . . . 

and Vj<n. o.-~-?".  Let q. be the first point in the sequence where 

ji.q ± r participates in the computation either by moving silently by 

itself or by synchronising with the observer. If no such i exists in 

the prefix we can always extend the prefix until it does as 

otherwise this, would imply that the observer must be able to reach 

a successful state by itself which would cause a contradiction. 

Suppose the move at ci is due to r, i.e. r--'r'=q 1 . 

Then 	+ r)Io --->pJo--'--r'Io. and so r' w-must satisfy o •  

which leads to a contradiction. 

• 	

' suppose instead that the p. move takes place. 

Then we have (p..q + r)Io1 -'—qo 1 . But then p..po1 -1—po. 1  and 

p w—must satisfi,, o 1  so q w-must satisfy o., leading to a 

contradiction. 

Although we have shown that ç 	2' this does not necessarily'rnp1y 

that 	 If we only consider finite processes, then all 
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computations are finite, and so trivially 2 = 	However, in the more 

general case, 	and 	differ in subtle but significant' ways as the 

following examples illustrate. 

Let 	p1 = a.NILITW q. = ( a.NILIT') + -r.NIL 

P2 = a.NIL 	q2  = a 	&J .NILI T  

Proposition 4.7 

p 1 	q but p 1 y4 w  q 

p2 342 q2  but p2
Liw

q2 

Proof: 

1. We first show that p12q 1 . 

Let F=T.F, S 1 (x) = a.NILIx and S 2(x) = (a.NILIx) + T.NIL. We 

must show that S1(F) 
2 S2 (F)and we prove this by Scott 

Induction whose use is justified for 	in [DeNicola 82]. 

Inductive base, S1(Q) 2 

a.NILIC) 	a.D + 1) 

by the expansion theorem 

2 a.O+O+T.NIL 

asl)cX 

(a.NILQ) + T.NIL 

by the expansion theorem 

i.e. S(0) 2  S20) 

a.D + r(Q+NIL) 

by the expansion theorem 

and X + 'r.Y E T.(X + Y) 

a. f] + T . 1) 
S 

as X + NIL = X 

2 

as X + T.Y i T. (X + Y) 

22  a.0 + 0 

asT.XLX 

2 a.NILIO 

1. e. S 2 (D) 	S 1 (0) 
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Hence S 1 (fl) e S2(Q). 

Induction step Assume that S1(F) 2  S 2(F) and show 

that S1(r.F) 2 S2(T.F) 

a.NILIT.F 	a.F + r.(a.NILIF) 

by the expansion theorem 

a.F + T.(a.NILJF + T. NIL) 

by the inductive hypothesis 

a.F + T(T(a.NILIF) + T.NIL) 

as 	+ r.Y = T. (X +Y) + T.Y 

and X + NIL = X 

2 T(a.F + T(a.NILIF) + T.NIL) 

as X + T.Y i T. (X + Y) 

a.F + T(a.NILIF) + T.NIL 

asT.XEX 

a.NILft.F + T.NIL 

i.e. S1(T.F) Z2  S2(T.F) 

2 a.F + -r('r(a.NILF) + T.NIL) 

by the expansion theorem 

and jX + /L.Y = / L.(T.X + -r.Y) 

ccF + T(a.NILIF) +'T.NIL) 

as X + NIL = X 

and 	+ r.Y= r.(X + Y) + T;Y 

22 a.F + T(a.NILJF) 

by the inductive hypothesis 

= a.NILji- .F 

i.e. S2(T.F) Z2  S1(-r.F) 
S 	 - 

Hence S1(T.F) 2 S 2(r.F) and so p 1 	q 1 . 

To see that p 1  Ø q 1 , consider the test &.J.NIL 

Then 

p 1  w-must satisfij a.'J.NIL 

whereas 
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q 1  w-inust/satisfv &4WIL 

2. p2  must satisfy a.J.NIL whereas q 2  must/satisfi, a..J.NIL 

Therefore q & 2q2 . 

Suppose p w-must satisfy o but pftW 
w-must/sat'isf'q o for 

some process p and observer o. Then there is a prefix of a 

computation of pIT"Io  that cannot be successfully extended. 

PIT 1° 	pir
U 

 lo =$=>. 

where o has passed through no successful states enroute to 

0'. 

-SI 
Then pJo=='p'Io'  and as p w-must satisfii o, p'Io'=' and 

SO p'lT'Io' 	which is a contradiction. Hence ppIr 

Suppose 	w-must satisfy o but p w-must/sat'isf'q o. 

Then plo==p'jo'=$ for some p',  W. 

But plr''o ==- p'I -r'Io' 	and therefore p' and & must be 

able to communicate in such a way that eventually the 

observer may perform a J action. Therefore p'o' 	which 

leads to a contradiction. 

Hence PIT' z ,, p and so p 	P I T U. 	0 

This last proof illustrates another important difference between 

and 	(and also between 	and 	). To prove that PWq  is difficult in 

general because we have to work with tests. Although 22  is also defined 

in terms of tests there exists an alternative characterisation of2 2  that 

avoids the use of these tests. 	Furthermore, DeNicola and 

Hennessy [DeNicola 82] have shown that for F 2 it is only necessary to 

consider finite tests. If pq then there will always be a finite observer 

• that s can distinguish between them. 	This is not true for 	as the 

following example shows. 

Let p = a..NIL + a.p and q = a.q 

i.e. 
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cx 

LX 

cx 

cx 

cx 

a 

Then we can construct an infinite observer o = a. .'J.NIL + o) that can 

differentiate between them, i.e. 

p w-must satisfy o but q w-must/satisf-y o. 

However, there is no finite observer that can differentiate between these 

processes. 

We would like an alternative characterisation of 
£ w that avoids the 

use of tests. It would also be highly desirable if it allowed us to 

perform bisimulation style proofs. At the very least we would like an 

alternative, simpler preorder that treats divergent terms in a similar 

way to and also implies zw . In [Kennaway .  81], Kennaway develops an 

equivalence that is very similar to the 'weak-must' equivalence in that it 

treats some of the diverging terms we are concerned about in a similar 

• 	way. Furthermore, Kennaway's equivalence can be expressed in a form 

• 	that is amenable to proofs using the bisimulation technique. It would 

therefore seem prudent to investigate the relationship between Z w  and 

the preorder version of Kennaway's equivalence. 

- §4.6 Kennaway's preorder z 
k 

The version of Kennaway's preorder we shall use is in fact based on 

the definition given in [DeNicola 82] by DeNicola and Hennessy. It 

differs from the original in a number of subtle but important ways. 

Appendix. A describes the original version of Kennaway's equivalence and 

shows why that version is undesirable because it is not an observational 

equivalence. 
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We start with some definitions that will be used frequently in the 

restof this chapter. 

Definition 

We use p, q to range over 5) and P, Q to range over subsets of Y. 	- 

Let 

- Init(p) 	= aEAc4 I 
Traces(p) = s€4ci j p=' 

For any sequence sEAi, p after s and P after s are defined by 

pafter e = p 

p after a = 

p after a.s = (p after a) after s 

P after s = U p  after  sIpP 

For any set Lç4 c& p must L and P must L are defined by 

p must L <==> Vp' 	s. t. 
C 

pp'. 3XeL. 
x 

p' 

P must L 4=> Vp€P. p must L 

Hennessy and DeNicola presented their version of Kennaways 

equivalence directly. However, as we are trying to find an alternative 

characterisation of , it is necessary to present it in the form of a 

preorder. 

We define a set of approximations to the desired relation 	The 

preorder is then obtained by taking the limit of this series. 

P 20 Q is always true. 

P 	Q <=> i) Vfinite LcAd. P must L D Q must L 

ii) VXEAOI. P after X c Q after X 

Vn>0.PQ. 
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We extend this definition to single processes and the equivalence in 

the obvious way. 

P rzk  q 	 jpj F., jqj -  

A 

Pq <==> 	 Aqp 

We can give an alternative characterisation of 	which does not 

involve a recurrence. This will be useful when reasoning about the 

preorder. The proof is based on an equivalent proof for k presented 

in [DeNicola 82]. 

Theorem 4.8 PZkQ <==>Vs€Act, Vfinite LC4C4. 

(P after s) must L D (Q after s) must L 

Proof: 

We prove that 	implies 3sEAc/, Lç40€ s.t. 

(P after s) must L and (Q after s) midst L 

If P'kQ  then Jn s.t. PQ. We use induction on n. 

Inductive basis, n = 1 

PQ implies 3L s.t. P must L and Q midst L. 

Therefore (P after ) must L and (Q after ) m idst L. 

Inductive step 

PC Q iff either i) PZQ 

or ii) 3XE4t s.t. P after A e Q after A. 

In case i) the claim follows from the base case. 

In case ii) the inductive hypothesis states that for some 
S 

sE.4c4, LC4cI, 

((P after A) after s) must L and 

((Q after A) after s) midst L- 

But then we may deduce 

(P after A.$) must L and (Q after X.$) mist L 

2.(z) 
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Suppose 3sE4ct and finite Lç4d such that 

(P after s) must L and (Q after s) m idst L. 

We show that P 
'k by induction on s. 

Inductive basis, s = 

P after c = P so PZ'Q, i.e. PVk Q 

Inductive step, s = as' 

Then ((P after a) after s') must L whereas 

((Q after a) after s') mi dst L 

By induction P after a 
'k 	after a and so P 'k Q 

0• 

Corollary 4.9 For all finitely expressible agents p. q 

P 2k q D Traces(q) ç Traces(p) 

Proof: 

Suppose 3s s.t. sETraces(q) and sTraces(p). Let a be such that 

sa 

a exists because q is finitely expressible and hence has a finite 

sort. Then (q after s) midst Jai whereas trivially 

	

(p after s) mus jaj. Therefore p 	q. 0 

We can prove a similar result for 2 W , 
i.e. 

Proposition 4.10 	p 	q D Traces(q) ç Traces(p) 

Proof: - 

Suppose 35 s.t. s€Traces(q) and sTraces(p). If s denotes 

a 1  a 
2 

. . . a n , then we construct an observer o as follows, 

o = T. 	+ 1 (r1 + ( . . . T. 	+ zi.)  

Then p w-must satisfj o because at any point in a computation 

from p'o, the observer can get to a position where it may-perform a 

move by itself. However q w-must/sat-isf'q o because 
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qo-> 	----q'INIL 

which cannot be extended successfully. Therefore p 	q. 0 

These two results are useful because they allow us to deduce q 	p 

from p Frw  q or p z k q because Hennessy has .shown in [DeNicola 82] that 

Traces(p) ç  Traces(q) <=> p 23 q 

What is the relationship between 2,, and 	The following theorem 

answers part of this question. 

Theorem 4.11 p 	q D 	k q 

Proof: 

We prove that p 'k  q implies p 	q. 

q then 3s,L s.t. 

(p after s) must L and (q after s) mist L, 
S 

i.e. p=p' implies JA€L s.t. p' 	while 
S 

Bq', q=q and q' 	for no XEL. 

If s = a 
1 2

-  a . . . a then we define an observer o as follows 
n 

0 = T. -'/ + 	1.(T./ + 	( . . . 	n-i(T./ ± 	 . . ) 
aEL 

Then p w-must satisfy o whereas q w-must/satisfzi o and so 

pVq. 	 o 

Unfortunately, p k  q 	q as the following example shows. 

-Consider the processes p = a..NIL + ap and q = a.q. 

S 
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p= 
cx 

cx 

a 

cx 

cx 

cx 

Then p k q because (p after s) must L J (q after s) must L Vs,L. 

To see this we perform a case analysis on s. 

s = a, so (p after s) = p, p.N114. 

If (p after s) must L then Jot, flj C L. 

But q after s = q and q must Jot, jej. 

s = a n# so p after s = NII4 which must L for no L. 

s = something else, in which case p after s = ft 
q after s = 	and both of these must L for any L. 

However the observer o = a.o + fi'J can distinguish between p and q 

as p w-'must satisfii o but q w-must/sat-isf, o, i.e. p'q. 

We can trivially show that p 	q 	k q but again the converse is 

not true, i.e. p k  q q. As an example of why this is not the 

case, consider p and o as defined previously and q' = q + p. Then 

i k q, i.e. 

(p after s) must L <=> (q' after s) must L Vs,L. 

To see this we again perform a .  case analysis on 5. 

i) 	s = a. 

Then (p after s) = p, fl.NIL 

and (q' after s) = 	q, p, P.NILJ  

Both sets must L only for any L where ja,j6jCL. 
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s = n. 

Then (p after s) = NIL = (q after s) 

iii) s = something else. 

Then (p after s) = 	= (q' after s) 

However p w-'rnust satisfy o but q' w-'rnust/satisft, o so p 	q' and 

hence p 3A W q'. 

This is an example where 	and 2 agree as we can show that 

P 2 q'. Let S1(p,q) = p and S 2(p,q) = p + q. Then we will show that 

S1(p,q) 	2  S2(p,q) 

Inductive basis, S1(Q,Q) 2 S2 (0,D) trivially. 

Inductive step, 

Assuming S1(p,q) 2  S2(p,q), 

show.  S 1 (a.p + c.j9, cx.q) 	2  S 2(a.p + a., a.q). 

S 1 (a.p ± a., a.q) 2  a.p + 0( . P 

2 a.(p + q) + cx.p by inductive hypothesis 

a.(a.p + afi + a.q) + a.fl by expansion 

2 a.(a.p + a.) + a.a.q + a. 

+ afi + a.q 

2 S 2(a.p + a.j3, a.. q). 

Before summarising our results we show how these equivalences 

relate to Milner's observational equivalence [Milner 80]. None of the 

equivlences imply as we can show that 

aa 

f3 

It is simple to show that 	impliesand 
w 	 k 
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Proposition 4.12 

pq D i) P W q 

.Pq 

- Proof: 	- 

i) Suppose w.l.g. that p w-rnust satisfy obut q w-inust/sat'isft, o. 

Then 	 i.e. q==q', o==o'. 

But pq so 3p'--q' s.t. p=p'. 
'I 

As p w-must sakj2fU o then p'Io' 
5 . V .  

i.e. p'-p", o'o"—. 
'I 

This implies q 
S. 

' and so q'Io' 	, a contradiction. 

If 	k q then w.l.g. assume that 

(p after s) must L but (q after s) midst L. 

Then q=q' and for all AeL. q'==. 

But 3p' s. t. pp' and p'--q'. 

Furthermore 3A€L s.t. p' 

and this implies q' 	, a contradiction. 0 

It is simple to show that pq does not imply p 2q as aaIT" but 

a 2 aIi- '. 

§4.7 An analysis of the differences between 2,. and 

Consider the processes p 1  and q 1  defined by 

q1= TI 

Both orderings agree, i.e. p1 ç q1 	P 1  2k  

q'p1 . 

Similarly, if we define p2  and q2  by 
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• p2 = 

then again they both agree, i.e. p 2  ç q2 	'2 k q2 

q24p2 

Let us now extend p 1  and q 1  to the infinite case, i.e. we define 

q11= :1 
Then both orderings take the view that because it is possible for 

• to reach a state that can perform a fl, and because it will always have 

this option, then it will eventually be allowed to take place. A j6 move 

can never happen in q 1 ' and so p 1' q1 ' and p1' Vk  q 1 '. Unfortunately, 

the two orderings disagree on what should happen when p2  and q2  are 

extended to the infinite case. Let p2' and q 2'be defined by 
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q 2 = 

Then following the argument for p1'  and q 1 ', the weak preorder 

distinguishes between these two terms because it assumes that a p 

action will eventually be allowed to happen in p2' whereas it cannot in 

q2', i.e. p2 ' 4 q2'. 

However p2 ' 	q2' which is unfortunate as it implies that 	is not 

preserved by the bar operator. To see this we note that 

p 1 ' = (p2'I)\a and q 1 ' = ( q2'I)\a 

To summarise, these results imply that Kennaway's preorder does not 

form the basis of a characterisation of ç, and furthermore, it would be 

very difficult to use the Fk  preorder in its own right as it is not 

preserved by the parallel composition operator. 

In order to precede from this point there appear to be a number of 

choices. We could try to find another characterisation of zw . The 

Kennaway preorder encounters difficulties because the definition of must 

captures our intuitions where i -  moves are involved but when we replace 

the 7 actions by visible actions then the preorder cannot 'see through' 

these actions. We have experimented with some alternative definitions 

of must that try to remedy this problem. For example, we might define 

S'a 
p must L i f f Vp' s. t. p=

S
='p', p' 	> for some aEL 

where ; s'E At* 
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This would allow us to differentiate between p2' and q2 ' in our previous 

example as 

p' .mus tk 	whereas q2' mistfl. 

Unfortunately, all attempts to build such definitions into the Kennaway 

preorder have so far proved unsuccessful in faithfully characterising ç. 

Another possibility is to find some additional constraints on 

processes p and q such that pzq does imply Pçq• The next section 

investigates such a constraint called Controllability. Demanding that a 

process is controllable is rather a strong requirement and hence the 

work, while providing a connection between Fw  and k' is of limited 

applicability. Section 4.9 extends this work by relating the notion of 

controllability to Determinacy [Milner 80, Engeifriet 841. Section 4.10 

introduces a simple preorder that implies the Kennaway preorder. We 

use this preorder in Chapter 5 to reason about the Schwarz 

synchronisation scheme. However it does not directly imply 	and so 

suffers from the same deficiency as 	in that it currently relies on 

determinacy to establish a connection with the weak testing preorder. 

Because of the limited applicability of these results (although an 

example of their use appears later in the chapter and also in Chapter 

5), the next three sections may be viewed as a digression from the main 

results of this chapter which continue in Section 4.11. 

§4.8 Controllable processes 

Let us start by considering again the example where Zkand 

disagreed. 

One constraint that might allow us to deduce pçq from PFzk  q would be to 
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filter out uncontrollable processes such as p -in the above example. 

Informally, a process is controllable if its evolution can-be controlled by 

means of the actions offered to it by the environment. Process p in the 

example 'above' is uncontrollable because there is no way for the 

external environment to guide the process to a state 'where a P action is 

possible. 

The formal definition of controllability uses sets of agents. A set P 

is controllable if, whenever one of the processes in the set can perform 

an action, then this action must be an unavoidable choice for all the 

agents (i.e. a T transition cannot remove this possibility). Furthermore, 

the set of processes obtained by performing this action must also be 

controllable. A process p is controllable if the singleton set containing 

p is controllable. The use of sets of processes in the definition of 

controllability allows non-deterministic choices to be present in an 

agent, but ensures that such choices do not affect the externally visible 

behaviour of the process. 

Definition 

P is controllable iff 

(3peP, XE4. 'p==)D P must JXJ, and (P after A) is controllable 

p is controllable iff 	is controllable. 

Proposition 4.13 P controllable D (P after s) controllable for any sE4t 

Proof: 

By induction on s. 

Induction Basis, s = 

P after c = P so the proposition follows immediately. 

Inductive step, s = as' - 	- 

P after s = (P after a) after s' 

Then if P after a = jj then P after s = 	and 

is trivially controllable. Otherwise P after a is controllable 
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by definition and so by the inductive hypothesis, 

(P after a) after s' is therefore controllable. 	0 

Corollary 4.14 If p' € p after s:  and p' 	p" then (p after s) must 

Proof: Immediate. 0 

We now show that controllability of p is sufficient to deduce pçq 

from 

Theorem 4.15 p 	q A p controllable D p ç q 

Proof: 

Suppose pq  so that there exists an observer o where 

p w—must satisfy o and q w-must/satisf-q o. In other words there 

exists a computation 

qo = q0Io0 --> q1lo 1 --1-- . . . —1--qo-1-- . 

and a prefix q0Jo0.....qo that cannot be extended to a 

successful computation. Let s be the sequence of actions 

performed by q between q0  and q. Either the computation is finite 

or infinite; we treat the two cases separately. 

1. The finite case 

We take qo to be the final state of the computation. 

q=q and Pq  so p'p for some p. Now if a 

computation from po is to be successful then either the 

computation has passed through a successful state before 

reaching plo, in which case the computation from q 01o 0  
would also have been successful, or 

S . 	 I ,  
o 

n 	n 
o ' 
	

>
' 

p 
Ti 	p Ti ' 
	for some 

0."  
p Ti' 	 • 

and so p must Lnit(o) (with rather loose notation). 

This is true of any such p. i.e. 

(p after s) must Init(o) 

whereas 
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(q after s) must Init(o) 

and so we have derived a contradiction. 

2. The infinite case. 

If q=q,  then 	 for some.p. Furthermore, there 

exists an s = s 1 .a.s 2  such that 

	

il 	'I 
0  

M 

	

1 	a 	'2 
P"'  = p '=z p 	p and 

qq'z. "  

Now p'Ep after s.s 1  and p 	so (p after 	must 	as 

p is controllable. However (q after s.s 1 ) midst jai which leads 

to a contradiction. 	 o 

Corollary 4.16 If p and q are finite and Pq then p wq 

Proof: 

For finite processes we only need to use finite observers and so all 

computations are finite. The first part of the last proof will 

therefore hold which makes no assumptions about controllability. 0 

§4.9 — k determinacy 

Suppose we have a process p with the property that if p can 

perform an a action to become the process p 1  then any other process 

P2  that is also reachable from p via an a move is related to p 1  in some 

way. If p-..p2  then Milner [Milner 80] calls this property of a process 

strong determinacy, i.e. 

Definition 

p is strongly determinate iff VXE44 

i) p 	> p 1  and p 	> p 2  D pp 

n) p-1-->p' D p is strongly determinate. 

The intuition behind this definition is that if a process is strongly 

determinate, and contains a non-deterministic choice involving visible 
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actions, then this choice has no observable significance, i.e. the 

behaviour appears deterministic. Unfortunately, the definition does not 

constrain non-determinism due to the -r action, and so this aim is only 

partially successful. The requirement that members of the set of agents 

reachable from a visible non-deterministic choice must be strongly 

congruent to each other is also an unnecessarily strict requirement in 

many cases. 

Engelfriet [Engelfriet 84] extends this idea by defining -determinacy 

for any equivalence relation . His definition is observational, or weak, 

in the sense that he deals with sequences of actions =L=> rather than 

the single actions of strong determinacy. 

• Definition Let 	be an equivalence relation over processes. 

Then a process p is -determinate iff for any s€Ac/ 

p==p1  and p 4=p2  ' pp2  

Engeifriet goes on to prove that -determiñacy and 37determinacy 

are the same and calls this property determinacy. He then shows that 

for determinate processes and ctt coincide. We may obviously extend 

this result to our weak equivalence as 

CwC 
3 

k 

Therefore, if we are working with equivalences rather than preorders, 

showing that the processes are determinate is sufficient to deduce pq 

from 

The situation for the preorders is more complicated. If we define a 

reorder version of , 

S 	 - 
p q iff Vs€41. p 

S
p' D sq'. q=q' A p' q' 

-then p q p 	q,for example, as 
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A result for the other preorders along the lines of [Engelfriet 84] may 

be possible but it is outwith the scope of this thesis. However, we will 

show that k-determinacy is equivalent to controllability for a process 

and so either constraint on p will allow us to deduce pq  from 

We start by presenting some lemmas about controllable processes. 

Lemma 4.17 

If P controllable then P' controllable for all P'CP. 

Proof: 

Suppose false. There must exist a sequence s such that for 

p'EP' after s, p' 	p" but (I" after s) m idst JXJ. But p'EP after s 

and so (P after s) must JXJ which leads to a contradiction. 0 

Lemma 4.18 

If P controllable and P must L then 3X€Ls.t. P must JXJ 

Proof: 

If P must L then either P is empty in which case trivially 

P must 	for any A, or P has at least one element p. 

Furthermore, as P must L, 3XEL s.t. 	 But then P must JXJ as 

P is controllable. 0 

S 

Lemma 4.19 

If P is controllable then for any P'CP, 

if (P' after s) must L for some s, L where (F after s) . çb, 

then (P after s) must L. 

Proof: 

P' after s is controllable as it is a subset of P after s by Lemma 
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4.17. Therefore 3XEL s.t. (P after s) must 	by Lemma 4.18. As 

P' after s is non-empty. Jp'EP' after s s.t. p 	pp". But 

p'€P after s and so (P after s) must 	and hence 

(P after s) must L. o 

Lemma 4.20 

If P is controllable and PxPck  then (P after s)x(P after s)c k  

for any sequence seAl 

Proof: 

Suppose it is false, i.e. Rs s.t 	for some p 1 ,p2E P after s. 

Then let s' be such that for any s" where Is"I < Is'l 
(p 1  after s") must L' <=> (p 2  after s") must L' for any L' 

and w.l.g. 

(p 1  after s') must L but (p 2  after s') midst L for some L. 

There are two cases to consider. 

p1  after s' is non-empty. 

In this case (P after s) after s' must L by Lemma 4.19 

as jp 1 cP after .  s. But p2  after s' C (P after s) after s' 

so we have a contradiction. 

p1  after s' = . Now s' cannot equal c so 3a,s" such 

that s' = s"a. Furthermore, p2  after s' 	and so 

s'• 	a 
p2 p 2' =p2" for some p ', 2 

Now p2  after s" is controllable and so 

(p 2  after s") must jai but (p 1  after s") m idst jai. But 

then by Lemma 4.19, ((P after s) after s") must jai and 

(p 1  after s") C ((P after s) after s") so we have 

obtained a contradiction again. 0 

Lemma 4.21 

If p==' and p is k-determinate, then p must JXJ 

Proof: 	 - 

Suppose false, i.e. p= 	pi 	P, and p==p2 ==. Now because 

of 	-determinacy, I
L  kp2 Let y be such that p 1 ' 

44. Then 



A Mathematical Framework 
for the Notion of "Implementation" 	 122 

(p2  after A) must 'y whereas (p 1  after A) m idst 	and hence 

10k2' 
a contradiction. 0 

Corollary 4.22 If p= and p is k-determinate 

then (p after c) must 

We are now in a position to establish a connection between 

-.-determinacy and controllability. 

Theorem 4.23 p controllable <=> p k-determinate 

Proof: 

1.(=) 

Suppose false, i.e. p'p', p='p', 
'k"• But p' and 

p' are members of 	after s and so by Lemma 4.20, 

a contradiction. 

2. 

Suppose false, i.e. :Rs and p 1 Ep after s s.t. p 1 ==p' but 

(p after s) midst 	In other words 3p 2€ p after s s.t. 

4 P2 	P2 1 	. Now p 1 p 2  and so by the previous lemma, 

p 1  must JXJ. But this leads to a contradiction as 

after c) must 	but (p2  after c) mfst 	0 

§4.10 The > preorder 

Although Kennaway's preorder is easy to work with because it does 

not involve observers, it does require the manipulation of sets of 

processes. Motivated by. what we require of an implementation, we now 

develop a very simple preorder that will imply the Kennaway preorder. 

It involves no sets of processes or tests, but the relation will be quite 

restrictive. However, we will argue that it is applicable to many real 

situations. 

Let us suppose that i was designed to be an implementation of the 

specification 	s. 	What relationship 	would we expect between i and s? 



r 
S 

r 
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One reasonable requirement would be that if the implementation i can 

perform a visible action A to become the process 1' then the 

specification s must also allow this to happen, and i' must be an 

implementation of the resulting process s'. Furthermore, if the 

specification cannot avoid performing a particular action then the 

implementation must also be unable to avoid it. Formally we can 

express these requirements as follows. 

Definition 

i is a refinement of s or i refines s (written s > i) iff 

i=='j' D 3s' s.t. S==S' A s'>i' for all AE4CI 

s must L D i must L VLc.At 

Hennessy has investigated a similar preorder in [Hennessy 84c] 

called the must-testing preorder. His definition differs slightly from the 

one presented here because in his framework all divergence is 

considered harmful and so it is explicitly dealt with in the definition. 

What is the relationship between the refinement preorder and 

Kennaway's preorder? The definition of > does not involve sets of 

processes and so we would expect that the refinement ordering is more 

particular about when non-deterministic choices are made. However, the 

situation is a little more subtle than this. Consider the processes 

p= cxfi.r + a..r' 	q = 	a.(.r + 13 .r') 

Kennaway's ordering equates these terms, i.e. Pçq and qçP. Although 

we can show that q>p, which we can view as saying that p is a valid 

implementation of the specification q, we cannot show that p>q. In 

other words, our definition allows p to be an implementation of q if, 
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amongst other things, p makes non-deterministic choices no later than 

q. This may not be too restrictive in practise as a specification will 

typically keep its options open for as long as possible. whereas an 

implementation may commit itself to a particular non-deterministic 

choice (because of silent internal communications) much earlier on in 

the execution sequence. 

Before showing that p>q implies PZkq  we will need to prove the 

following lemma. 

Lemma 4.24 If p>q and q=q', sç4c/ then p s.t. 	 A p'>q' 

Proof: 

If s = c then we show that p>q'. 
A 	 A 

	

Suppose q' 	q". Then q 	q" and so p 	p' for some p' where 

p'>q". If p must L then q must L and so q' must L. Therefore p>q'. 

If systhen 

a 	a 	 a 

	

1 	2 	 n 
q=q0 q 1 ==q2  . . . 

where s=a 1 a 2  . . . a. Therefore 3p 1  s.t. p 	P. and p 1 >q 1 , and 

similarly -  for the other i processes so 3p s.t. 

a 	a 	 a 

	

1 	2 	 n 
p=p0 p 1 p2 	p and p>q. 	0 

Theorem 4.25 

p>q D 

Proof: 

Suppose pq. then Bs,L s.t. (p after s) must L and 

(q after s) m idst L, i.e. Vp' s.t. pp'. p'  must L and q' s.t. 

q==q' and q' midst L. If q=q' then p' s.t. p=p' and p'> q' 

which leads to a contradiction as p' must L and q' m idst L. 0 

It is not true that p>q D pq as the following example illustrates. 
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This result is not surprising as > uses must in its definition which is 

what caused the problems for Kennaway's preorder. 

Can we simplify > even further? Suppose we used the version of 

must defined in [Milner -  80]. What would be the consequences? Consider 

the processes 

USA 

DO 

• With process p we can choose between performing an a or a fi action, 

but we don't always get a chance and may have to perform a 	action. 

With q we always have a chance to perform an a or a fl, but only one of 

them will be offered, the choice being non-deterministic. 	Neither 

process can really be viewed as an implementation of the other. 

(p after c) must 	whereas (q after e) must ja, 61 so P'q and 

Furthermore, pq and qp. 

Let us use >8  to denote the refinement ordering using the single 

action must, defined in [Milner 80] as 

1 	 X 
P must A iff Vp' s.t. p'p'. p' 

Then pq but q> 8p which is undesirable. 
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The other simplification we might make would be to replace p==p' 

in the definition of > by p --- p' or even p--p' (where UEAcdUJTJ and 

AE:4). This would simplify bisimulation style proofs as we would only 

have to examine the immediate actions that can be performed by p 

rather than examining all sequences that p might perform. In fact we 

could define four variants of > as follows. 

q> 1  p 	ill 	1) pp' D qq' A q'> 1p' and ii) q must L D p must L 

q >2  p 	iff 	i) p==p' D qq' A q'> 2p' and ii) q must L D p must L 

q >p 	iff 	i) p 	p' D q=q' A q'> 3p' and ii) q must L D p must L 

q >4  p 	iff 	i) p--p' D q=q' A q'> 4p' and ii) q must L D p must L 

What is the relationship between this family of orderings. 	> 	is the 

most 	difficult 	to 	use 	and 	> 4 	the 	simplest. However, 	the 	following 

example forces us to rule out > 4 • 	Consider 

P = T.a.p' + a. q' 	q = a.q' 

Then q> 4p but q1,2,3 p. 	Moreover p is not a very reasonable realisation 

of q intuitively and so we will reject > 4  as a possible candidate. 

We can trivially show that >c>2  and > 1 ç> 3 . We will show that > 2ç> 1  

and > 3 C< 1 , which will be sufficient to show that all three orderings are 

equivalent. 

Let Ot be the defining relation for > when presented in its 

simulation form (where a simulation is one half of a bisimulation). 

Let . = >2• Consider any pair <q, p>E5. 
Ii 	 t 

If pp' then either ji=i - , in which case q 	and q> 2p', or jz=A in 

which case trivially qq' where q'>p'. 

If q must L then p must L as q> 2p. 

This shows that .clR 1 (.) and hence q,> 2p D q> 1 p. 

Let R = >. Consider any pair <q, p>€5. 

If pp' then 3p 1 ,  . . ..,p s. t. 

P=P o -I-- p 1 	. . . p__p 	. . . 

But q> 3p  so 3 q1.....q,  s.t. 
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T 	 JA 	 71  1 
q=q0 	 - q 	 - q,1 	 - 	 : q, =q 

where qj >pj , O<j!~ n. Therefore q=q' where q' >3p" 

If q must L then p must. L as q> 3p. 

In other words, X c Ot 1 (5) and so q> 3p D q> 1p. 

This proves that > 1  = >2 = > 3 	As > 3  is the simplest of the 

definitions to use, we will assume that we are referring to > 3  when we 

write q>p. 

§4.11 The >; preorder 

So far, our only connection between F
uk (and hence >) and z w  is if 

the processes under investigation are controllable or k-determinate. 

This is quite a strong condition to demand of a system, and in 

particular, we will see that it is not true for the Schwarz 

transformation. As the final result of this part of the chapter we will 

develop a preorder along the lines of > that does imply 
. 

Although it 

is more restrictive than >, we will show in Chapter 5 how to express 

Schwarz' scheme in a way that makes the new preorder applicable. 

Definition 

r > q Lff i) q----*q' D 3'. P==P' A 

ii) Traces(p) ç Traces(q) 

.7- 	 t 

where p 	p 	- 

If P> 
t  q then we know that if q  =!==> then 	 and so 

Traces(p) = Traces(s). 

Proposition 4.26 If p>q then VLC4c4. p must L D q must L 

Proof: 

Assume false. Then q==q' S. t. A€L. q'==. But p' s.t. 

p=p' A p'>q' and p' 	for some AEL. Therefore q== as 

Traces (p')cTraces(q') and so we have a contradiction. 0 
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This implies that >c> as whenever p>q it satisfies the conditions 

for p>q. They are not equal, however, as our favorite example shows. 

P.. 

Here p>q but pX,q. This example illustrates why' > did not imply the 

weak must preorder. We now show that > does imply . 

Theorem 4.27 p > q implies p Zw  q 

Proof: 

Suppose p>q but pVq  i.e. there exists an observer oEO such that 

p w-must satisfy o and q w-'must/satisft, o. In other words there 

exists a computation 

qo = 	 . . . 	 . 

with a prefix q0 o0.....qo that cannot be extended to a 

successful computation. Let s be the sequence of visible actions 

performed by q between q0  and q. Then p=='p where p>q. 
1• 

Furthermore p 
S. 
 p and o 	 o— for some s' as all 

computations of po have successfully extendable prefixes. But if 
S • 	 5' 

PnPm then ]q such that q. 	q and so 

which is a contradiction. 0 

Theorem 4.28 If p > q then V/2E4C1UT, VXE4J, VrE, S a relabelling, 

pjr >qir 

p') > 

p[S]> t q[S] 

Proof: 
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1. If ji.q---q then 	 and p>q. 

If sETraces(ji.p) then either 1L=-r, in which case 

s€Traces(q), or else s=.s' and so s'€Traces(p) which 

implies s'ETraces(q) and hence 	s'E:Traces(ji. q). 

2. Let RZ be the defining relation for > when presented in 

its simulation form. 

Let X = j <pr, qjr> I p, > q. If qIr -- q'jr' then there 

are three possibilities. 

r---r', q=q'. Then pIr---.pJr' where 

<pir' ,  qr'>Ei 

q----q', r=r'. Then p >, q so p==p' where 

p'>q' and hence <p'Jr, qr>e 

q --- q', r -1-->r', 	T. 

Then p=='p' and hence pIr=p'r' where 

<p'r', q'r'>E 

Suppose sETraces(pr), i.e. pIr=='p'Ir'. Then there 

exists s 1 , s 2  such that p 	2 p', r 	r', where s 1  and 

s 2  can be merged to form s (possibly with some actions 

cancelling to form Tmoves). But then s 1 ETraces(q) as.. 

> q and hence qq' for some q' which implies 

qIr==q'Ir', i.e. s€Traces(qr). This proves that 

cR(.) and hence pir > qir. 

3. Let R = <p\X, q\X> I p > q 

If q\X--q'\X then q---'q', p===p'  and hence 

p\X=p\X where <pX, q'\X>ER. 

If sETraces(p\X) then sETraces(p), sETraces(q) and 

hence scTraces(q\X). 

Thus .ç(5) and hence p\A > t  q\X. 

4. Let . = kp[S], q[S]> I p > qI 

If q[S] --- 'q'[S] then q---q' for some ii such that 

S(v)=. But then P' P' where p' > q' and hence 

p[S]==p[S] where <p'[S], q'[S]>e. 
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If s€Traces(p[S]) then 3s':such that s'ETraces(p) and 

S(s')=s where the morphism S is extended to sequences 

• 

	

	 in the obvious way. But s'€Traces(q) and hence 

sETraces(q[S]). 

Thus CZ() and hence p[S] >, q[S]. 

0 

> is not preserved by + as the normal example for this case 

illustrates, i.e. 

a.p 
> t 

T.a.p 

but a.p ± r X t T.a:p + r in general. 

Trying to prove that pçq  by using > removes some of the freedom 

of the implementer. For example, 

However, some freedom of •choice is left as the following example shows. 

>t 
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§4.12 A simple example 

Consider the simple synchronisation problem involving processes p 

and q defined by 

p=.p+.p q=a.q+.q+.NIL 

CX 

In an implementation of this program we might try to replace the 

summations in p and q by simpler ones involving a timeout agent. Each 

process would offer one or other of its actions for a while but would 

then timeout and try the other one if unsuccessful. 

Timer 	 Timer 

If, we assume that the timers are not, synchronised, we may model the 

timeout processes implicitly using T actions, i.e. 

P , 	P 1  and q' 	q 

where 

P, = ip 2  + r.p2  q 1  = a.q 2  + T.q 2  

P2 .= fJ.p 1  + r.p 1  q 2  = . q 2  + .. q 3  

q 1  7. NIL + 

It is simple to show that p 2p' as  p'  introduces the possibility of an 

infinite T sequence that was not present in p. The observer cc'J.NIL can 

• 	differentiate between the two processes as • 

p must satisfy a.'J.NIL whereas p I rnust/sat'isfz, a.J.NIL 

The derivation trees for p and p make this clearer. 
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'=pl . . 	.. 	p 2  

Zi  

P2 T 

I 	p1 

In this particular case we can apply either of our. approaches to show 

that pp'. Of course with such a simple example it would be easy to 

prove the equivalence directly but on larger examples this would be 

much more difficult. 

We start by showing that p>p and p'>p. Rather than performing two 

separate simulation proofs, we combine them as follows. 

Let X = zp 1 ,p>, <p 2'p>' <p,p 1 >, <p,p2> 

<p 1 ,p>. 	if p 1 	->p2  then pp,  <p2 ,p>E 

if p1:>p2  then p==p, <p2 ,p>Ei 

<p2,p>. 	if p2---p1  then p 4 p, <p 1 ,p>E5 

if p2 -->p 1  then p  <P1 P>E 

<pp>. 	if p 	then p 1 =p2 , <pp2>E 

if p -- p then p 1 ==p, <pp 1 >ES 

<p,p2>. 	if p--p then P2 P2' <p,p2>E 

if then p =P==> p I <p,p>E 

It is easy to show that VLcAa, p must L implies ja,flJ9L. This is true 

for p 1  and p2 as well and so the second part of the conditions for > are 

satisfied. We have therefore shown that p>p 1  and p 1 >p (similarly for 

p2). We may therefore deduce that Both p and p 1  are trivially 

controllable and hence we may deduce that p p 
Wi 

In this particular example we may prove that pp1 more directly by 

using >. Using the same relation 51 as before we must show that for 



A Mathematical Framework 
for the Notion of "Implementation" 	 . 	 133 

each pair <p,p1> in R , Traces(p)Traces(p1). This follows immediately 

from the fact that 	 - 

Traces(p) 	= Traces(p 1 ) 	= Traces(p2) 

Therefore we can prove that p> p 1  and p 1>p. This allows us to deduce 

that pp1. 

4.12.1 Decomposing problems with global dependencies 

Our assumption that the timers for each process were unconnected 

allowed us to replace them by internal T moves. The interfaces to the 

original process p and its replacement p' were therefore identical; they 

both just had , flJ in their sort. This allowed us to reason about the 

transformation applied to p separately from the rest of the system. 

Suppose we wished to model a variant of the above system where 

there was a global clock that generated the timeout signals, e.g. 

Global 
Clock 

p1  

We might generalise the problem further and assume that all the 

original communications took place via this transformation, i.e. 

The new variant suffers from two complications not present in the 
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original problem. Firstly, we cannot prove anything about the individual 

processes as they no longer have an identical. interface to the original 

proces.s they represent. This is because they will have timeout actions 

appearing in their sort. We therefore have to reason about the system 

as a whole. However, this introduces our second problem. If all of the 

communications in the original system are transformed so that they 

take place via the new mechanism, then either there will be no 

externally visible actions in either system, or the visible actions will be 

different because of the different protocols involved in the two systems. 

This raises the question of how to tell that we have constructed a valid 

transformation. These problems form the motivation behind the rest of 

this chapter. 

§4.13 Implementation and translation 
transformations 

In this section we develop further the notion of implementation and 

then present a definition of transformation correctness for CCS 

processes. 

4.13.1 The weak-must form of implementation 

While the definition of implementation presented in the first part of 

this chapter characterises most of our intuitions about what constitutes 

an implementation, there are some deficiencies that are now discussed. 

Firstly, consider an arbitrary process p. If we placed it in parallel 

with a process that idled continuously, would we view the resulting 

system as a valid implementation of p? Certainly the current definition 

would not view pITa as a valid implementation •  of p. This is because for 

all observers o, ptT"  must satisfy o is false due to an infinite r path in 

the derivation tree of However with anything other than the 

most malicious of schedulers, we would view PITU as an implementation 

of P. It might run (a lot) slower than the original but it would still 

behave eventually in a similar fashion to p. 
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Suppose that we have a process pjrG.  Would we - expect (PIT') + -r.NIL 

to ..be an implementation of this process? Our current definition of 

implementation says -that this is the. case, but our intuitions might say 

that P I T ' is a slower version of p whereas (PIT') + T.NIL might stop 

completely. At this point it should be pointed out that if we make no 

assumptions about the scheduler used to implement these examples 

then the existing definition of an implementation may be adequate. The 

reason our intuitions may differ from this definition is because we 

would like to assume that a fair scheduler is used to run these 

processes, or at the very least a scheduler that is not designed to select 

the worst possible path through a derivation tree. The development of 

the .weak form of-must satisfy was prompted by these intuitions and so 

the definition of implementation is changed accordingly to 

i implements s or i is an implementation of s iff 

V oE. i may satisfz' o D s maz' satisfi 0 

s w-rnust satisfi o D i w-must satisfz ,  o 

This definition may be simplified by noting that PWq D q 3p, and 

hence proving that i implements s is equivalent to showing that si, i.e. 

i implements s or i is an implementation of s iff s ç ' 

• Incorporating the 	weak 	must 	preorder into 	the 	definition of 

implementation results 	in a 	simpler 	definition. Unfortunately, 	it also 

means that lCD is no longer an implementation of CD in the change 

machine 	example presented 	at 	the 	beginning of 	this 	chapter. The 

original definition allows an implementation to provide only part of the 

non-deterministic choices offered by the specification. 	The new 

definition requires, in addition, that if a particular action will be 

eventually offered by the specification, due to fairness arguments ,, then 

it will also be eventually offered by the implementation as well. By 

- . fairness arguments, CD must eventually offer shillings as change, 

whereas lCD never has this possibilty. It is, however, possible to define.. - 

an unfair version of CD such that lCD is a valid implementation. 
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The development of the original definition of implementation, and 

the weak must preorder, are essentially independent. For the proof of 

the Schwarz scheme At will be convenient to merge these ideas into the 

new, simplified, definition of implementation. However, 'for other 

purposes, it may be more convenient to work with the original definition 

of implementation. 

With our new definition of implementation, it is easy to show that 

pIT rj  implements p whereas (PIT') + T.NIL does not implement (PIT ' ). 

Proposition 4.29 Implementation is a transitive relation 

Proof: 

Let us suppose that p implements q and q implements r. 

Then for all observers o € t, 

if r w-must satisfy o then q w-must satisfy o and so 

p w-must satisfz, o. Therefore p implements r. 0 

4.13.2 Transformations 

In general, when p 22  q or p implements q, the syntactic structure of 

p is not, related to the syntactic structure of q. However, sometimes we 

wish to exhibit a transformation function tr such that the expression 

produced by tr(p) is related to the expression p in some way. Often the 

relationship is independent of a particular process p. These 

transformations are purely syntactic; they take as arguments 

expressions representing CCS terms and syntactically manipulate them 

to produce new expressions representing CCS terms. The 

transformations do not depend on the semantic meaning of their 

arguments; thus, for example, the transformation of pjq is not 

necessarily the same as the transformation of qip. This point will 

become important ' later when we introduce functions that apply a 

different transformation to each process in a product depending on its 

relative position. 

The synchronisation scheme presented in Chapter 3 	is an obvious 

example of 	such 	a transformation. These purely syntactic 
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transformations also occur when reasoning about different variants of 

CCS. 	For example, rather than using a single message to synchronise 

between two process?s, we may wish to model the synchronisation by a 

start message and a finish message. 	This allows a communication to 

take 	a finite 	amount of time rather than being instantaneous. 	This 

variant 	of 	CCS 	may be 	expressed 	as 	a 	syntactic 	transformation. 

Motivated 	by 	this example 	and 	other 	similar 	problems, 

Millington [Millington 82] 	developed 	a 	notion 	of 	transformation 

correctness 	for 	CCS based 	on 	the 	testing 	approach 	to 	process 

equivalence of DeNicola and Hennessy. 	The key observation was to point 

out that if we replace a process p by the transformed process tr(p) then 

it will not usually be valid to examine both processes with the same 

observer. 	This is due to the fact that a transformation may introduce 

observable differences. If we take a process p and transform it into its 

'start 	finish' 	form, 	then there 	would 	obviously 	be 	an 	observable 

difference between the original and the transformed system. 	However, if 

we introduce a pair of transformations, one for the process p and one 

for the observer o, then Millington showed that we can develop a notion 

of correctness for such transformations. 

Prompted by the sort of reasoning that influenced our definition of 

implementation, 	Millington 	developed 	a 	similar 	notion 	for 

transformations. 	Furthermore, he introduced the concept of a 

translation which can be viewed as the transformation equivalent.-of the 

equivalence. 

We start by presenting Millington's original definitions of these 

concepts and then develop them further based on our previous 

discussions of the weak must and also motivated by our intended usage. 
. 	- 

Millington views a transformation as being composed of a pair of 

transformation functions. One of these functions is applied to the 

system under investigation, p, and the other to the observer of the 

system, o. - 

Definition A transformation tr = <tr ,tr > is implementation correct 
- 	 proc 	obs 
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iff Vp€5. Vo€O. 

p  must satisfij o implies tr(P)  must satisfy trObS(o) 

tr roc (p.) may satisfi trobs  (o) implies p ma satisfi o. p 	 - 

A transformatio - 	 procn tr. = <tr 	,trobs > is translation correct 

iff the reverse implications also hold, i.e. VpE:5'. Vo€O. 

p maw satisfy o iff tr proc (p) may satisfy obs tr (o) 

p must satisfi.i o iff tTproc(P)  must satisfy trObS(o). 

In Millington's paper, a transformation was called a translation which 

led to the possibility of a translation being translation correct, for 

example. We prefer to keep the notion of transformation distinct from 

that of a particular form of transformation called a translation. 

We 	may view 	the 	concept of 	implementation correctness 	as the 

transformation equivalent of our original notion of implementation, and 

similarly, translation correctness may be viewed as corresponding to the 

equivalence. 

When we introduced the notion of implementation earlier in this 

chapter, it was eventually defined using the weak form of must satisfy. 

It therefore seems natural to apply the same sort of reasoning to the 

- transformation case. A more serious limitation of the previous 

definitions involves the choice of two separate transformation functions. 

This is adequate when the transformation applied to the observer is 

independent of that applied to the observed process. However this is 

not always the case. For example, the transformation applied to the 

observer may depend on the number of processes in the observed 

component. Apt and Olderog [Olderog 84] define the adjective 

11-preserving for transformations that preserve the parallel structure of 

programs. In such a case, the only information the transformation 

function applied to each component may use about the structure of the 
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system, S. is the total number of components in S and the index of the 

currently transformed component. 

For 11-preserving transformations, the transformations applied to the. 

observer and the observed processes must be linked in some way. One 

approach to the problem would be to treat the transformation as a 

function that accepted a pair of processes (i.e. a process and an 

observer) and returned, a pair of transformed processes. However, this 

is more general than we need as the definitions of w-must satisfy and 

maii satisfy immediately place the resulting pair in parallel again. The 

only difference between the pair of processes is that the translated 

observer process may have V in its sort. Therefore we take the view 

that the transformation need only return a single expression which can 

be viewed as the parallel composition of the transformed process p and. 

the transformed observer process o. Frequently, the same 

transformation is applied to both the observer and the observed 

processes. As this simplifies the presentation, we will assume that this 

will always be the case, although it is not essential to our work. In 

other words, we will assume that a transformation also takes a single 

expression as its argument, formed from the parallel composition of p 

and o. 

In order to express these ideas in practice, we must modify our 

definition of 'w-must satisfy, because the current definition is in the 

form of an infix binary predicate. We introduce an equivalent postfixed 

predicate as follows. 

Definition 

- 	(pjo) w-must succeed 	p w-must satisfij o 

It will also prove convenient to be able to reason about the 

correctness of a transformation relative to a second transformation. 

The simpler case then follows by taking the second transformation to be 

the identity function. Finally, as pq D q 3p,. we may omit the 

maw satisfj case as it is implied by the w-must satisfy case. 

Summarising all of these developments, we might define 
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Definition 

:tr1 2 tr2  (read "tr 1  implements tr2 1 ) iff Vp€. Vo€J. 

tr2(plo) w-rnust succeed implies tr1(plo)  w--must succeed 

By merging the observer and the observed processes, we see that the 

• distinction between p and o in the definition has become irrelevant. In 

• Millington's case, thé distinction may be useful because different 

transformations may be applied to the two processes. Because there is 

no longer a need for this distinction, we define implementation and 

• 	translation transformations as follows. 

Definition tr 1  ç tr2  (read "tr 1  implements tr2") iff VqEO. 

tr2(q) w-must succeed D tr 1(q) w-must succeed 

cni tr
1 W 	2 

tr 	(read "ti- 1  translates ti-2") iff VqEO. 

tr 1 (q) w-must succeed 4=' tr2(q) w-'must succeed 

If we take tr2  to be the identity function then we say that t r1  is an 

implementation transform, or tr 1  is a translation transform. We may 

also omit the word transform and talk about tr 1  being an 

implementation if the context makes it clear that we are referring to a 

transformation function. 

Proposition 4.30 If the pair <tr,tr> is translation correct by Millington's 

V 	 definition and tr(plo) 	tr(p)Itr(o) then tr is 	a translation 
- • • - 	transform. 	 V 	 V 

V 	Proof: Follows from the definitions. 	 V 

Proposition 4.31 	and 	are transitive for transformations, 

i.e. for any tr 1 , tr2 , tr3 , V V 

1. if tr 1  £
w 2 	 2 

tr and tr c
W 3 

tr then tr 
w 

tr 
1 	3 
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2. if trtr and tr 	tr then tr .. tr 
1 W 2 	 2 W 3 	 1 w 3 

Proof: Follows immediately from the definitions. 

We may also compose the transformation functions tr 1  and tr2  to 

form tr 1otr2. This composed transformation preserves Fw  and in the 

following sense. 

Proposition 4.32 

if tr 1  is an implementation and tr2  is an implementation 

then tr 1otr2  is an implementation 

1 
if tr 1  is an translation and tr 2  is a translation then tr 1otr 

is a translation 

Proof: 

If q w-must succeed then tr2(q) w-must succeed and so 

tr 1 (tr2(q)) w--must succeed. 

The proof is similar to the implementation. case. 	0 

Li [Li 83] has also investigated the concept . of the correctness of a 

translation in an operational framework. The task of finding sufficient 

conditions for proving translation correctness is called the adequacy 

problem. Li presents an adequate set of conditions for his notion of 

correctness. However, we prefer to work with the testing view of 

translation correctness as it is incorporated more naturally with the 

Weak-must testing preorder. 
. 	 . 	 . 

Note that, as with the definition of implementation, it is not 

essential for the defintion of transformation to be based on the weak-

must preorder. However, if this is not desirable for a particular 

application, then we must ensure that the may succeed case is retained 

in the definitions. 
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This completes our discussion of transformations and also concludes 

this chapter. To summarise, we have introduced the notion of 

implementation which led to a discussion about fairness. This prompted 

the development of the weak-must testing preorder ç. In an attempt to 

develop a proof technique for this preorder, we introduced Kennaway's 

preorder Ek and the > preorder. A connection was established between 

ZW  and k  using the notion of controllability or k-determinacy. A 

simpler preorder, >, was then introduced that directly implied the 

weak-must preorder. We then turned our attention again to the 

definition of implementation where it was redefined to reflect the work 

on - Finally, Millington's work on transformations was introduced and 

extended to prepare the ground for Chapter 5 which now follows. 
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CHAPTER 5 

A Rigorous. Validation of an Implementation 

§5.1 Introduction 

Chapter 3 developed a transformation that may be applied to 

arbitrary Static CCS expressions in order to facilitate their efficient 

•execution. However, as we saw in. the latter part of that chapter, it was 

not clear in what sense the transformed system was equivalent to the 

original program. This prompted the developments outlined in Chapter 

4. We are now in a position to use these more precise notions of 

implementation and transformation to show that our transformation is 

indeed a valid implementation of the original system. 

The proof of the Schwarz transformation is split into two parts. We 

first show that the subnetwork consisting of the pollers is an 

implementation of a simpler •network of processes called synchronisers. 

We then show that a simple transformation 'involving the synchronisers 

is correct, from which the correctness of the Schwarz transformation 

follows almost immediately. The proofs are complicated by the 

unstructured nature of the program which prevents an inductive style of 

proof from being used. We therefore develop some notation to 

conveniently represent the states of the systems. 

hI order, to prove that the poller network P is an implementation of 

the network of simple synchronisers, S. we first use the refinement 

ordering, which is sufficient to prove that S kP. Unfortunately, S is not 

-_ k  determinate, and so we cannot prove that SP using this approach 

This prevents us from completing the proof that P implements S. 

although we believe this to be the case, and illustrates the need for a 

less restrictive property that allows us to deduce pçq  from Pq• 
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The only other indirect technique for proving SP is to use the > 

ordering. Unfortunately, we can show that S X F, although a simple 

modification of the poller algorithm does allow this ordering to be used, 

and hence produces a proof that the modified poller network is an 

implementation of the synchroniser network. We motivate why the 

modification to the algorithm is reasonable, and the proof that S > P 

may be adapted to this case; involving only a small amount of additional 

work. 

The final part of the chapter discusses how to partially apply the 

Schwarz transformation, and the consequences of this on the 

correctness proof. 

We start by briefly summarising the transformation described in 

Chapter 3. Given a Static CCS term of the form fl 
EN 

p, we syntactically 

translate the processes using the function Tr 
Pon defined by 

Trp u l[ U p]J = ]J (1r.E[p 111 I Poller.(1,)  I Buffer.) 
iEN 	 iEN 

where the transformation function applied to each process, tr., is 

defined by 

tr4 	aj.pij]j = let partners = 	C(a5) in  
jEm 

off eri(partnersui). 

/ 	(selecti(X).ak.triE[pikll where C(ak) =Zr 

( vTEpartners 	 . 

+ J.NIL if 3aj='J 

This definition is identical to the one presented in Chapter 3 except 

that we now deal with the case where -'I may appear in the sort of the 

processes. There is no partner for such an action and so it is left 

unchanged. 
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Each translated process is placed in parallel with a poller and buffer 

process, the definitions of which are presented in Figure 5-1. 

Our problem then is to show that Tr
PoUL[. 

fl
iEN 

pdi is a valid 

implementation of fl 
 t4EN pt. 

5.1.1 Structuring the proof 

The transformed processes in Tr LIfJ p.11 communicate with each 
Poll 	%EN ' 	 - 

other via pollers, and so the observable behaviour will be different from 

• 	 fl tEN 
p. Therefore the conventional equivalence relations and preorders 

cannot be used to prove the correctness of Tr 	The approach we take 
POU 

here is to show that Tr 11  is an implementation transformation in the 

sense of the previous chapter. Tr 
Po lIfi 	' tEN 

p. I is a rather complicated 

• 	object to work with as it involves both a change of interface and also 

reduced behaviour potential when compared with fl p.. The interface 
tEN % 

is changed because of the use of pollers to synchronise the inter-

process communications. The behaviour potential is reduced because 

the sequencing of the pollers may mean that certain non-deterministic 

branches of the computation are not always possible. One way of 

reasoning about the translated system would be to analyse it 

inductively. We can view a translated system pictorially as 
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Poller.(n,k) = let j = PC[nJ in 

off er.(k). Polter(nk') 	if k = 

.+ 	 i>j A jEk 

A..(r). 

ifr= YES 

then select.(j). Poller .(n+1.çb) 

else Poller.(n+1,k) 

± T. Poller 2  (n+ 1,k) 	 if >i A j'k A k 

+ Q.(r). 	 if i<j A jCk 

if r = YES 

then A(YES). select(j). PoIler(n+1 ) 

else Poller (n+ 1,k) 

± Q..(r). 	 if i<j A j'k A 

if r = YES 

then A.,(NO). Poller (n±1,k) 

else Poller .(n±l,k) 

• Buffer. = 	( 	(NO). Buffer. 	)  E 
.i€Pci  

+ set (j). Buff er'(j) 

fluff er'.(k) = ( 	 .(NO). Buffer' i  (k) 
3EPC-k 

+ Q (YES). Buffer.ik  

Figure 5-1: 	The Schwarz Poller and Buffer in Static CCS 
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There is a link between PB. and PB. if at some point in a computation 

of the program, P. may request to communicate with P., or vice versa. 

We could attempt to prove something about the subnetwork of PB. 

nodes by showing inductively that a single PB. node was equivalent to 

some simpler expression and then showing that n+1 nodes were 

equivalent to the expression assuming that n •were. However, the 

inductive approach is not really applicable in this case. The reason 

becomes clear if. we analyse the connection pattern between the PB. 

cells. The connections depend on the particular program under 

investigation, and so there is no general structure that we can exploit 

inductively. In contrast, consider the case where we have a pipeline of 

processes 

. 

If we extract p 2  and p3, and hide away their internal inthrfaes, then we 



A Rigorous Validation of an Implementation 	 148 

can often replace them by some simpler definition that has the same 

interface as one of the constituent parts. Thus, by repeatedly applying 

this technique, we gradually reduce the number of processes without 

increasing the complexity of the overall term. 

• 	- - 	 /c\J - - 

--_ _-- 

If the same technique was applied to the poller subnetwork, we would 

find that although the number of processes decreased, their complexity 

increased. • It is only when the internal details are hidden from the 

complete poller subnetwork that a simpler definition can be found. It is 

because all the network needs to be present before it can be simplified 

that prevents us from using the inductive approach. 

Another way of simplifying the system inductively would be to show, 

loosely speaking, that 

Tr11 III II I Tr11 FE q  ]I 	Tx-11 FE P1 q ]j 

Such an approach would allow us to reduce the number of processes but 

unfortunately, 	Tr 11E[pTI I 	Tr 11E{qJ1 and 	TrL[pIq1J 	have 	different 

behaviours, and so this technique is not directly applicable either. 

§5.2 Simple synchronisers 

Our analysis of the problem seems to imply that we must reason 

about the network without using an inductive approach. We start by 

showing the the complete poller subnetwork is equivalent to a simpler 

network composed of simple processes called synchronisers. 
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The transformation function tr, that we apply to process p is quite 

general. It converts a communication that would normally take place 

implicitly into one where -a. request is passed to some synchronising 

agent whose task it is to find a partner for one of the offered 

communications. The synchronising agent may be composed of a set of 

pollers, but there will be many other possible definitions of processes 

that perform this task. We would be one step nearer to our goal if we 

could show that the complicated synchronising agent in terms of pollers 

was equivalent to some simpler agent. The simplest agent we might 

consider would be a single centralised process that took requests from 

all over the network and selected matching requests. However, the 

definition of such a process would be very cumbersome, and a more 

structured approach is to define a network of simple synchronising 

agents, one for each host process, that perform this task. 

The simple synchronising agent is defined as follows. 

SSynci = off eri(k). 

if k=çb then SSynci 

else ( E mj. selecti(j). SSynci 
5 £k,.j <i 

+ E m-tj. selecti(j). SSync) 
jEkbj>i 

A simple synchronising agent accepts offers from its host until it 

receives a non-empty request set. The synchroniser then attempts to 

communicate with the synchronisers mentioned in the request set, using 

the m •  actions. To ensure that these actions complement each other 
22 

correctly, the processes are ordered, and the convention adopted that 

SSyn'c. offers an m.. to any SSync. such that j < i, and an m.k  to any 

other synchroniser, SSyrtc.k.  When one of the m requests succeeds,
ii  

this fact is reported back to the host via the select action. The m •  

communications reflect the communications that would have happened 

in the original system except that no values are passed, and the 

'direction' of the message may be switched. 
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Let us suppose that we can show that 

JJ (Potter(1,ct)  I Buffer 4) 
tEN 

is an implementation of 

1J (sync) 
tEN 

when both collections of processes are surrounded by a restriction so 

that the only visible actions are offers and selects. Then we can define 

a simple transformation function Tr Sync  that treats the host processes as 

in Tr but places them in parallel with simple synchronisers ratherPon 

than pollers. 	If we can show that Tr 	is an implementation 
Sync 

transformation in the sense of Chapter 4, then we can also deduce that 

Tr P., 
is an implementation transformation. There is the additional 

benefit that if we wished to analyse a different synchronising agent then 

we would only need to show that it was an implementation of our simple 

synchronising agent. 

Unfortunately, with our current definitions, 

JJ (Polzer.(1,0)  I Buffer.) 
tEN 

is not a valid implementation of 

F1 (s'sync.). 
tEN 

To see why, consider what happens when Poller, and Poller, can 

potertialiy communicate, and Poller, has no other summands. 

Furthermore, assume that no other process wishes to communicate with 

Poller.. Eventually we would expect the system to output a select ,(j) 

message to the external environment. Further let us suppose that there 

exists another poller, Pollerk . that is in a position where it wishes to 

output a select message. The system may be in a state where i>k and k 

is a possible communjcand of Poller.. Under these circumstances, 
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Poller may have to check for a communication with Pollerk  before it 

reaches a state where it can communicate with Poller5 . In this case, 

Poller, will have to wait until the environment accepts the select 

message from Pollerk which then frees Pollerk  to reply negatively to 

Poller.. With an arbitrary environment this causes problems because the 

environment may wish to accept a message from Poller, before accepting 

one from Pollerk  and so this part of the system will deadlock. No such 

problems exist with the simple synchroniser network. 

The difficulty arises only when we consider environments which may 

• perform arbitrary interactions with the system. In a closed system, one 

where all environment and source program communications take place 

via the' translation, such problems cannot arise. Thus we are only 

requiring the two subnetworks to be equivalent in a limited class of 

environments. There are two courses of action open to us at this point. 

One would be to conduct some form of context-dependent proof [Larsen 

85] assuming that all of the original communications take place via the 

transformation. The second approach would be to modify the poller 

algorithm so as to remove the potential deadlock when placed in an 

arbitrary environment. One of the eventual aims of this work is to 

enable the transformation to be used selectively on those 

communications that are difficult to synchronise. Therefore there may 

be communications that take place without the aid of the 

transformation. To avoid potential problems at' a later stage, and also 

to avoid performing a context-dependent proof, it would be desirable to 

develop a version of the poller 'network that matched our simple 

synchroniser specification more exactly. - 

One way of ,  solving the problem is to allow the poller to satisfy its. 

commitments to other pollers while waiting to output a select message 

or input an offer message But in order for the transformation to be 

meaningful, we must take steps to avoid introducing any new 

communications that may be difficult to synchronise. If we did not do 

this, we would be reintroducing the problem that the pollers were 

designed to solve. As an example of this potential pitfall, suppose we 

• removed the constraint that k 	in the definition of the' poller when 
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jfk. 	This would allow the poller either to accept an offer from its 

master or to accept a Q.. message from a remote poller. Unfortunately, 

the remote process offering this message is also offering similar 

messages to other processes and so we have unwittingly constructed a 

communication net which is difficult to synchronise. 

The approach we take here is to introduce an extra r move before 

the Q., message when i<j and jfk. In this case, when we are in a 

situation where i<j and jk for some non-empty set k, then although we 

still have a choice of actions, the sources of these choices do not 

themselves have other possible communications. 	This removes the 

synchronisation difficulty. 	In practice, it is easy to implement 

summands with -r moves as follows. When we encounter a summation, 

some of whose summands are T moves, we first check to see if any 

matching communication requests are waiting and if so we pick one of 

these; otherwise we randomly choose one of the T branches. What this 

would imply for our particular example is that if the master process 

was currently waiting to send a request then the poller would accept it, 

and if the master was busy then the poller would carry on polling the 

rest of the system. 

In order to avoid a similar deadlock problem with the select 

message, we treat it in: the same way as the offer message. This allows 

the poller to process other messages while waiting f or : the master to 

respond. The modified version of:  the poller process is presented in 

Figure 5-2. It will prove convenient to be able to specify which part of 

the definition a process is currently executing. We therefore label the 

different locations in the algorithm by means of integers enclosed in 

braces. 

- 	 In order that we may compare the states a poller can reach with 

- those of the simple synchroniser, we label the SSync processes with 

numeric labels as well. 
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Poller.(n,k,$) = Ili let j = PC[nJ in 

off er(k').. Poller(nk's) 

+ select (s). Poller((n+1,rp.) 

if  = 

11 

 

+ 	set .(j). 

A..(r). 

if r = YES 

then Poller.(n,k,j) 

else Poller.(n-4-1,k,$) 

 

A jEk A s=L 

• Q.(r). 	 jf 1<J A jEk A SJ 

if r= YES 

then j31 A..(YES). Poller(n,k,j) 

else Poller.(n+1k,$) 

• r. Poller.(n+1,k,$) 
	

ii i>j A (j'k V sy) 

• T. i4Q..(r). 	 If i<j A (jk v s Li) 

if r = YES 

then J 51A ..(NO). Potler(n+1,k,s 

else Poller.(n+1;k,$) 

We assume that each poller starts with n=1, k=0 and s=-L. 

Figure 5-2: The Modified Schwarz Poller 

.- 

SSynci = 1offert(k). 

if k=0 then SSynci 

else  12j( E mji. 3selecti(j). SSymci 
j Ek4 <i 

+ 	mi2. 3se1ecti(j). SSync) 
j€k,j>i 
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Note that we have two labels with the value 3 as they are effectively 

the same state. : 

§5.3 Process state representations 

In order to reason about the relationships between the states of the 

individual pollers, a convenient representation for a poller's state must 

be developed. A similar representation for a simple synchroniser's state 

is also needed to ease the expression of the simulation relation which 

we develop shortly. The no developed so far only allows us to 

denote a poller in its initial state. We would like to be able to write an 

expression denoting a poller in any of its possible states. We could have 

made the locations explicit by breaking the poller definition into a 

number of small parts and then either giving them all unique names or, 

more conveniently, introducing an extra variable to distinguish between 

the states. However, such approaches would obscure the structure of 

the algorithm, and so we will define a new behaviour, p., that denotes a 

poller and its associated buffer, and will include the state information 

as part of its definition. 

Definition 	p.(n,,k.,s.,l,t.) 

denotes the derivative of (Poller.(1,)IBuffer)\set where the 

current value of n, k"and s in Poller 
2 	 1 1 

are n., k and s., Poller is at 
i 	 2 

V 	location 1. and t. is either equal to i, in which case the buffer is 

in state Buffer., or else t. is equal to some j in which case the 
V 	buffer is in state Buffer.'(j). 

Thus p. allows us to denote any possible derivative of the component 

(Poller.(1,0) I Buffer.)\set.. 

We extend this notation to allow us to denote any derivative of the 

complete system as follows. 	 V 

Definition 	V  P Sys (,1',1't) ... ... I p.(n.,k,s.,l,,t.)  
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The state of each component of the network will be dependent on 

the states of one or more of the other components in the system. We 

- will express these constraints by means of predicates on the component 

states. Given a state of the system, PSys(i,I$11), we can define a 

predicate P 1 (n,k,s,l,t) on the ith  component as follows.  

Definition 	PSys(,11t) 1= P 1 (n,k,s,l,t) 

holds for any i iff n = n 1 , k = k 1 , s = s, 1 = 1 and t = 

Note that if PSys(iT,1'jET) 1= P 1 (n,k,s,l,t) holds then the ith  component of 

the system must be p.(n,k,s,l,t). 

Often we shall write P 1 (n,k,s,l,t) in place of PSys(J,,1't) 	P,(n,k,s,l,t) 

when the parameters of the intended system are clear from the context. 

We introduce a similar set of definitions for the simple synchroniser 

system, i.e. 

Definition 	s.(k.,l 1 ,j.) 

denotes the derivative of SSync. where the current value of k in 

SSync. is k., SSync. is at location 1. and j. is either equal to 4 

when the synchroniser is not at location 3, or else j. is equal to 

the value currently bound to j. 

SSys(I,1 	. . . 	s.(k,l.,j.) j 

SSys(1',1'j 	S.(k,l,j) holds iff k = k., 1 = 1. and j = 

§5.4 The relationship between individual pollers 

Before exploring the relationship between the poller network and the 

simple synchroniser network, a closer look at how the individual pollers 

interact with each other would be advisable. We study this interaction 

by means of the following two theorems. 

Definition PSys(,I',1t) is an accessible state 

iff it is a derivative of the initial state PSys(1,l,r,I) 
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Theorem 5.1 

Every accessible state PSys(i,,1t) 

satisfies the following implications, 

i.e. they are invariant properties of the system. 

i) 	P 1(n,k,s,1,t) D t= A Vj.-partner.(i) A 	k=A5j4-L) 

.'iia) P 1(n.k,s,2,PC.[nJ) D S=-L A Yj.-partner.(i) 

jib) P(n.ks.2.L) D S=-L A Vjm.-,partner1 (i) A PC [n']=i A 

(P(fl',k,.L,3..L) v P(n',k',s',5,i)) 

where m=PC.[n] 

P.(n,k.s,3,t) D t=L A 5=-I-  A Vjym.-partner.(i) A 

A 	 m=PC.[n] 

P(n,k,s,4,t) D t=-i.. A Vj.-partner.(i) 

V) 	P(n,k,s,5,t) D t= A vjLm.-,partner.(i) A 

A PC [n']=i where m=PC.[n] 

where partner.(j) 	 P 1(n,k,s,l,t) A (1=3v1=5)) D PC.[n]=j 

Proof: 

To prove the theorem we need to show that the initial state 

satisfies the invariants and every transition preserves the 

invariants. 

Initially every component is of the form 	 and therefore 

is true. The consequences of i) are trivially true and 

none of the other invariants are applicable so this satisfies the 

first part of the proof. 

For every possible transition of one of the pollers we must check 

that in the new state the "relevant consequences will be true and 

additionally, we must make sure that none of the other 

consequences have been falsified without their antecedents also 

being falsified. 

We consider all the transitions of an arbitrary component 

p.(n,k,s,l,t). 	 - 
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Case 1, P 1(n,k,s,1,t) is true. 

We know that t=-L. Suppose k=. Then the system may 

perform an offér.(k') action and evolve to a state where 

P(n.k's1...L) is true. The consequences of i) remain unchanged 

for component i and the transition does not effect any of the 

other processes and hence the invariants still hold in the new 

state. 

Suppose s/-L. Then we may output a select .(s) message which 

results in a state satisfying P.(n+1,,i1,i). Again it is easy to 

verify that the invariants hold in the new state. 

If kLA5z=AjEk  then there are two possibilities, depending on 

whether i>j or i<j. If i>j then we may perform a T move which 

internally sends a set .(j) to Buffer, resulting in a state 

satisfying P.(n,k,.L,2,PC.[n]). The consequences of iia) are true 

and the transition effects nothing else: 

If i<j then we may receive a Q..  message with either the value 

YES or the value NO. If NO is received the system evolves to a 

state satisfying P.(n+1,k,..L,1,J.) which still preserves the 

invariants. If we receive a reply with the value YES, the 

system evolves to a state satisfying P.(n,k,i,3,i). For this last 

transition to occur, P.(n',k'.i,2,PC.[n']) must have been true 

before the transition where PC[n']=i. Therefore, after the 

transition,' P,(n',k',J..,2,L) will hold and it is easy to verify that 

the invariants jib) and iii) hold for j and i respectively. 

If j'kor s;i then there are two more possibilities depending on 

the relative values of i and j. If i>j then we may perform a T 

move to a state, satisfying P.(n-i-1,k,s,1,.) and. if i<j then we 

may perform a r move to a state satisfying P.(n,k,s,4,L) which 

satisfies the consequences of iv). 	- 

Finally, as t=.i-, we may always issue a Q message with the 

value NO to any poller that requests it. This transition leaves 

the process unchanged. However, the remote poller may either 

request it from a state satisfying P.(n',k',..L,l,J.) which has 

already been dealt with, or it may 'request it from a state 
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satisfying 	 In this case the remote process 

evolves to a state satisfying P(n'±i.k'.s1..) which preserves 

the invariants. 

This exhaustively deals with all transitions that involve the 

component of the system when P(n,k.s.1,t) holds for some n,k,s 

and t. 

Case 2a, P(n.ks.2.PC[nJ) is true. 

'We know that s=-L. A component that satisfies this predicate 

cannot receive an A.. message as this would imply that p. 

(where j=PC.[nJ) satisfied P.(n',k',s,3,t) or P(n'.k'.s5t) where 

PC.[n']z=i. However, these possibilities are ruled out by the 

invariance conditions. Therefore the only possible transition. 

that involves this component is a response to a Q query. 

If jj4PC.[n] then we respond with the value NO and the situation 

is identical to the analysis in Case 1. In fact, in every state 

there may be the possibility of sending a negative response to 

a Q.. query. In each case the analysis is identical, and so when 

examining the rest of the states we will ignore this possibility. 

If j=PC.[n] then we respond with YES and progress to a state 

satisfying.P.(n,k,i,2,i). p. may have previously been in a state 

satisfying either P.(n',k',..-1,L), in which case the new state will 

satisfy P.(n',k',..L,3,), or P.(n',k',s',4,..), in which case the new 

state will satisfy P.(n',k',s',5,.). In either case, i=PC.[n'] and so 

the invariants are preserved. 

Case 2b, P(nk,s,24) is true. 

We can deduce from the invariants that s=.i.. and p. satisfies 

either 	 or P(n'k'.s'.5i) where jPC.[n] and 

PC.[n']=i. In the first case, the two pollers may communicate 

evolving to states satisfying P.(n,k,PC.[n], 1 ,L) and 

P(n'.k'.PC5[n'}1J..). In the second case, the two processes 

evolve to states satisfying 	.(n+ 1,k,-i-,1,..i-) and P.(n'+1,k',,1,..). 

In both cases it is simple to verify that i) holds for i and j and 

that no other invariants have been effected 
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Case 3, P(n.k.s.3.t) is true. 

We may deduce from the invariants that t=i, s=i and p5  is in 

a state satisfying P(n'k'.L.2..L) where j=PC.[n] and i=PC, {n']. 

This possibility was analysed in 2b). - 

Case 4, P 1 (n,k,s,4,t) is true. 

We may deduce that t= from the invariants. The case where 

we receive a Q.. message with the value NO has already been 

dealt with. If we receive a YES response then p must have 

been in a state satisfying P(n'k'.L..2.i) where j=PC.[n] and this 

possibility was analysed in 2a). 

Case 5, P(n,k,s,5,t)  is true. 

From the invariants we may deduce that t=-i.. and p. is in a 

state satisfying P.(n',k',,2,j) where j=PC.[n] and i=PC.[n']. 

This possibility was analysed in Zb). 

This completes. our case analysis and proves that the invariants are 

preserved by all transitions. 0 

The next theorem formalises our intuitions that a poller will always 

be able to cycle around its communication partners without becoming 

deadlocked waiting for a response from the environment. This theorem 

was not true for our original presentation of the system as a poller may 

have been prevented from interacting with its partners because it was 

waiting to output a select message. 

Theorem 5.2 	 : 

Let PSys(,',,fT) represent a possible derivative of the 

• 	ystem where PSys(i,11t) 1= P.(n,k,s,l,t) holds. 

Then for all 1<m<IPC.t, 

PSys(,1t) C 	PSys('J'j',r,t) 

such that PSys(f',1',,r,t) = P 1 (rn,k,s',l,i) holds for some s'. 
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Proof: 

By inspection of the text of a poller in conjunction with Theorem 

5: 1, we see that the only communication that can stop a poller 

progressing from a state satisfying P 1 (n,k.s,l,t) to one satisfying 

P(n+1ks'1,.i) is when it is waiting for an A.. message that never31  
arrives. All the other communications are either optional (the 

offer and select messages), or involve synchronising with processes 

that are guaranteed to be able to reply. 

We prove the theorem by using induction on the index i. 

Induction basis, i=1 

In this case, there exists no j such that i>j and so Poller, never 

waits for an A.. message to be output from another poller. 

Therefore the theorem holds. 

Inductive step, we assume the theorem is true for all j, lj<i. 

The only case that might cause problems is when Poller, is waiting 

at position J2J for an A., message from Poller., where i>j. But then, 

by the inductive hypothesis, Poller, can eventually move to a state 

satisfying P.(n',k',s',l,L) where PC.[n']=i. At this point, the two 

processes have the opportunity of communicating, thus freeing 

Poller, to move onto the next state. 0 
I 

§5.5 The relationship between pollers and simple 
synchronisers 

We are now in a position where we can attempt to show that the 

poller network is an implementation of the simple synchroniser network. 

We could approach this task in a number of ways. The most direct 

scheme would be to prove that SSysPSys using the definition of 

However, this task is made difficult by the need to quantify over all 

tests. We could try to show that SSyskPSys,  which is perhaps an easier 

task as some form of simulation could be used. Finally, we could try to 

show that SSys>PSys or SSys>PSys. Unfortunately, for reasons that will 

become clearer later in the chapter, it is not true that SSys>PSys. If 



A Rigoràus Validation of an Implementation 	 161 

• 	we try to use > or Fck we risk the possibility of not being able to relate 

the, result to ç. The technique that we have currently proposed to - 

• relate 2W and k' namely controllability or k-determinacy, is too strong a 

requirement for our example, although as controllability is a sufficient, 

but not essential condition for establishing a connection, there may be 

other ways of completing the proof. Fortunately, a small alteration to 

the transformation function is sufficient to allow > to be successfully 

applied and this result will directly imply the result for Cw . This proof 

is contained in Section 5.6. Although it appears highly probable that 

the current version of the poller algorithm is a valid implementation of 

the simple synchroniser network, this cannot be proved until a less 

restrictive condition than controllability is found that still allows us to 

deduce pq form pq. However, we start by proving that SSys>PSys, 

and hence SSysPSys, in the hope that such a connection will eventually 

be established. 

5.5.1 A proof that SSys > PSys 

The first step is to show that the prooler network is a refinement of 

the simple synchroniser network. 

Theorem 5.3 SSys(,r,2) > PSys(r,,,1) 

Proof: 

We construct a set . and then show that it forms a valid simulation 

relation for > 

= 

(cia) 	Vi.[ 	 A S(.i.)) 

(cib) 	v 	 A kjq! A S.(k,2,4.)) 

(dc) 	 v (P(n,k,s,1,) A S-L A S 1 (rc,3,$)) 

(c2a) 	v (P.(n,k,i,2,t) A ((ti) v P.(n',k',s',S,i) where frPC[n]) A 

S.(k,2,.i)) 	- 

(c2b) 	v (P.(n,k,i,2,i) A P(n'k'L3.L) A S(k3,j) where j=PC.[n]) 

(c3a) • 	v (P.(n,k,,3,) A S 1(k,3,PC.[n])) 

(c4a) 	v (P(n,k,,4,) A k/95 A S 1 (k,2,.L)) 

(c4b) 	v (P.(n,k,s,4,) A S 	A S1(k,3,$)) 
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(c4c) 	v (P 1(n,,i,4,i) A SL(,1.i)) 

(c5a) 	v (P(n , k , i ,5 .i) A k1 A S(k2..L)) 

(c5b) 	v (P 1(n,k,s,5,i) A S1i A S 1(k,3,$)) 

(c5c) 	v 	 A S1(,1,.)) ] 

We factor the proof into two parts. We first show that for any pair 

<SSys,PSys> in X, if PSys----PSys' then SSysSSys', where 

<SSys',PSys'> is also an element of X. We then show that for each 

pair <SSys,PSys> in R, if SSys must L for some L then PSys must L 

as well. This allows us to concentrate on one aspect of the 

preorder at a time, and. in addition, it will allow us to use the first 

part of the proof as the basis of a proof that SSys>PSys'. where 

PSys' is the modified version of .PSys mentioned at the beginning of 

this section. 

Initially, we must check that for any pair <SSys,PSys> in 5, if 

PSys&PSys ' then SSysSSys' where <SSys',PSys'>€.. To 

simplify the analysis of internal transitions, we need only look at 

those transitions that alter the state of a process. For example, if 

a Buffer process outputs a NO value, the state of the associated 

component does not change. 	We therefore rely on the change of 

state at the destination process to trigger any analysis we may 

have to perform. If the state of the destination process remains 

unaltered as well then this is still acceptable as SSys =L= SSys 

trivially and the resulting pair is obviously in R. To reduce the 

case analysis further, for the internal T moves we need only check 

one side of the communication since at that point we examine all 

the possible configurations of the remote process. We start by 

performing a case analysis on each possible transition of an 

arbitrary component that involves a change in its state. 

la) P(n4,i,1,1-) A S 1(,1,0 
offer(k) 

Suppose 

There are two possibilities. 
offer.(k) 

If k= then 	 >.s() 
2 	

offer.(f) 

and if k 	then s.(,1,i) 	
% 
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In either case, the resulting pairs are in X. 

We may also perform a T move to 

or to 

In either of these cases component s1  can remain unchanged. 

ib) P(nk..L.1,L) A kj40 A S(k.2.i) 

There are four possible moves we are interested in depending 

on whether i<j and jEk. 

i>j A jEk 

p.(n,k,i,1,i) — 1---> p (n,k,-L,2,PC JnD 

which satisfies (c2a) 

1<) A j€k 

There are two possibilities; 

either p.(n,k,i.1.i) I p.(n'k',s,V.t) 	> 

p.(n+ 1 ,k,1 ,) p.(n',k',s,l,t) where jPC.[n]Atpi 

or 	p.(n,k,.i_, 1 ,_) I p.(n',k',s',l,i) ----> 

I p.(nh,k',s'j',.) where again j=PC.[n] 

In the first case., the state effectively remains unchanged. 

In the second case, Theorem 5.1 implies 

that 1=2 and s=i. 

We can therefore deduce from . that S.(k',2i) was true, 

where ick. But 

s.(k,2,..) I s.(k'2,) 	s.(k,3,j) I s(k',3i) 

and the resulting pair satisfies the requirements for 

membership of X. 

C) j>J A jgk 

p.(n,k,-i-,1,-i-)—>p(n+1,k,.4,-) and so 

the state effectively remains unchanged. 

d) i<j A jk 
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p(n.k,1 	_1-p . (n .k,.L,4,i) which satisfies (c4a). 

ic) P 1(n.k,s,1,) A s&L A S 1(k,3,$) 

From Theorem 5.1, we know that k. 

There are three possibilities 

select .(s) 

a)p.(n,k,s,1,i) 	>p.(n+14,.L,1,i) 

select(s) 

But s.(k,3,$) 

p.(n,k,s,1,) _L_.p . (n+1,k, s ,1,i) if i>j 

p.(n,k,s,1,) —1--.p.(n,k,s,4,.) if j<j. 

2a) P(n,k,.L,2,t) A ((t&i) v 	 where j:=PC[n}) A S.(k,2,i) 

Suppose ti. Then by Theorem 5.1, the only transition that 

we are interested in is if p. reads the Q message 

where j = PC .[n]. 

There are two possibilities depending on which branch of Poller 

requests the communication. 

j<i, P.(n',k',i,l ,i) A iEk' 

This case has been dealt with in ib) part b). 

j<i, P.(n',k',s',4,L) A ik' 
• 	

Then p.(n,k,i,2,j) I p.(n',k',s,4,) -- 

p .(n,k,,2,i) I p.(n',k',s',5,). 

But before the transition S.(k',3,s'), S(k',,2) or 

S.(,l,J) must have been true depending on the value of 

s' and k, and therefore after the transition the states will 

still match with P.(n',k',s',5,i) 

Let us now assume that t=i so P.(n',k',s',S,i) is true where 
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j=PC[n]. 

Then 	 p1 (n',k',s',5,i) 

1 ,k,.i.,1 ,i) I p1 (n'+ 1, W, s',  1 ,i) 

2b) P 1(n,k,.L,2,) A P(n'.k'L.3.J..) A S.(k,3,j) where j=PC[n] 

Then we can use Theorem 5.1 and . to deduce that 

S(k'3.PC.[n']) and PC.[n']=i must be true. 

p.(n,k,i,2,i)Ip(n',k',.1.,3,i) _Z__.p.(n,k,j,  1 -)1p1 (n,k,i, 1 ,i) 

and the resulting pairs are in . 

3a) P.(n,k,i,3,..L) A S 1 (k,3,PC.[n]) 

Then by Theorem 5.1, 	 and PC.[n]=i 

must be true. This case has been covered in 2b) 

P.(n,k,,4,..L) A k 	A S 1(k,2,4.) 

There are two possibilities depending on the value received with 

the Q.. communication. 
32 

If the value received is NO then the following transition must 

have taken place 

p.(n,k,.i_,4,.i.) I p5(n,k',s,l,t') —1--p.(n+1 ,k,-L,1 ,4_) 

where j=PC.[n] A t'i. 

If a YES value is received then by Theorem 5.1, P.(n',k',i,2,i) 

must be true. This case has been covered in 2a). 

P 1 (n,k.s,4,.i) A 	A S 1(k,3,$) 

Again there are two possible transitions and the analysis 

is similar to 4a). 

A S 1(,1,..t.) 

This case is essentially the same as 4a) 
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P(n , k , .L. 5, ..L) A k/O A S 1 (k,2,i) 

Then by Theorem 5.1, P(n'.k'.L.2.i) A S 1 (k',2,i) A k';40  

must be true where j=PC.[n]. 

This case has been dealt with in 2a). 

P 1 (n,k,s,5,..L) A sfr&L  A S(k.3s) 

and 

P(n,,i.5,.L) A S(.1i) 

can be treated as in 5a). 

This completes our case analysis and hence the first stage of the 

proof. 

We must now check all the pairs in R to make sure that if 

<SSys,PSys> ER and SSys must L for some L then PSys must L also. 

W.l.g. we may assume that L is a minimal set, i.e. 	L'CL s.t. 

SSys must L'. 	We perform an induction based on the cardinality of 

L. If L is empty then SSys must 0 is not possible and this forms our 

base case. 	For each A in L we show that if PSys==PSys' then 
A 

either PSys'=, or else SSysSSys' such that <SSys',PSys'>c5 

and SSys' 	In this case SSys' must L' for some L'cL where XL. 

We assume inductively that PSys' must L' and so 37€L' s.t. 

PSys' == and 'y€L. The induction relies on the fact that each T 

derivative must eventually be able to perform one of the actions in 

L as otherwise we would reach the base case which is not possible. 

If L is a. minimal set it can only be composed of offer and select 

actions. Furthermore, SSys must be in a state where it can 

otentially perform these actions. We treat each possibility in turn, 

and for each action consider the possible states the synchroniser 

components, and hence the poller components, may be in. 

1. off er.(j)EL for some i,j. 

Then for this action to be possible, S 1(,1,) must be true. 

Using the relation R , there are three cases where this is 
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possible; when P 1 (n4,..L,1,..L), P 1(n.,.L,4,J..) or P 1(n4,.L,5,i) is true. 

Using Theorem 5.2 and the fact that k remains empty until an 

offer is selected, we know that all 'r sequences starting from 

PSys can be extended to .a PSys' such that PSys' 1= P 1(n',,.L,1,.L). 

off er.(j) 

But p(n',,..L,1,i)' 	)p.(n',j,.L,l,..L). 

2. select .(j)€L for some i,j. 

Then S 1(k,2,-.) or S(k,3,j) is true where j€k. 

We treat the two cases separately starting with the simpler case. 

a. S 1 (k,3,j) is true 

Let us. enumerate the possible states of p.. 

1. P.(n,k,j,1,.i) 

P.(n,k,.L,2,.L) A P1 (n',k',,3,.i) where j=PC[n] 

P.(n,k,i,3,i) A jPC[n] 

P.(n,k,j,4,.L) 

P.(n,k,j,5,.i-) 

We know that irrespective of what the rest of the system 

does, if ii) or iii) is true then p. can progress to a state 

where P.(n,k,j,1,.L), i.e. i) is true. If iv),v.) or i) is true then 

by Theorem 5.2 and the fact thatthe s field is only cleared 

after a select message, we know that eventually we can get 

to a state where i) is true. Finally, it is immediately 

apparent that 

select .(J) 
p.(n,k,j,1,..i.) 

b. S.(k,2,..L) is true where jEk 

This is the case where the induction is required beca'use at 

the point where S.(k,2,) is true, SSys is not committed to 

the select action. It must be possible for the action to 

occur but the system may also non-deterministically choose 

another alternative if one is available. Let us start by 

enumerating the possible states of p.. 
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L P(n.kL.1.i) 

P 1(n,k,i,2,t) A ((ti) v (P (n',k',s',5,i)) where m=PC[n] 

P 1 (n f k,J..,4,J.) 

 

By Theorem 5.2 we know that after any sequence of r moves 

it will always be possible to get-to a state where 

P 1(n',k',s',l,i) is true where PC[n']=j. 

Furthermore, we know that k cannot change until we have 

output a select, message and so k'=k. Suppose s'. If s'=j 

then we are able to output a select .(j) message. What if s'yj 

Then at some point in our sequence of T either p. was in a 

state satisfying P 1(m,k,..L,2,i) and p was in a state satisfying 

F,(m',k",L,3,.L), or vice versa, where i=PC,[m'] and s'=PC.[m]. 

In either case this implies that S(k",2,) must have been 

true in SSys. But then 

s.(k,2,J) I s,(k",2,i) -!-> s.(k,3,s') I s,(k",3,i) 

and the resulting SSys' cannot output a select .(j) action. 

Furthermore, p must now be in a state satisfying 

P,(m",k",i,l,i) where 1=1, 4 or 5, and in all of these cases 

the resulting pairs of new states are in R. Therefore our 
• 

	

	 inductive hypothesis allows us to deduce that this case is 

correct. 

If s' 	then there are two cases to be considered depending 

on whether i is less than or greater than j. 

Case i<j 

In this case the system can wait until it, receives a Q., 

message. If the value YES is returned then the system will 

eventually reach a state which satisfies P.(n",k,j,l,.L) which 

will then be able to output a select .(j) message. If a NO 

message is received then it may be because Potter. has not 

yet reached a state where it wishes to communicate with 

Potter.. In this case, the poller can continue until either a 

YES answer is returned to the Q. i  query, or a NO. value is 
• 	• 	 returned due to p. being in a state suchthat the system 

satisfies P(m.k".s'.l.i) where s'L. In the second case we 
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may reason that p5  must have arranged this communication 

during the sequence of r moves as otherwise the select.(j) 

message would not have been possible right from the start. 

By a similar analysis to the case where s'4.L., we may reason 

that s •  also had the potential to communicate with s, and so 

we may employ the inductive hypothesis. 

Case i>j 

The analysis is similar to the previous case. Either the 

poller receives a positive A 5i  reply, in which case it may then 

output a select .(j) message, or else a negative response is 

received which implies that Poller, has negotiated a 

communication with some other process in which case we can 

show that this is also a possibility in SSys. 

This completes our proof and shows that . is a valid simulation 

relation and hence that SSys(,r,2) > PSys(r,,2,r,). 

From the previous result, and Theorem 4.25, we may deduce that 

SSys(,t,2) k  PSys(r,,,T,2) 

We must now show how to extend this result to the Z W preorder. 

Unfortunately, our efforts in this direction have so far proved to be 

unsuccessful. Chapter 4 showed one way of deducing pq from 
PZk if p 

is k-determinate. In our particular example, this would be equivalent 

to showing that the system SSys(,I,I) is k-determinate. However a 

simple example illustrates that it-is not. Suppose we have the following 

situation. 

Si  

/\ S2 	S3  

where we assume that we have already issued the messages 

off er2 ( 1 ) and offer 3(1). 
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If we now output an offer 1 (2.3) message then the system may arrange 

a communication between either s 1  and s2  or between s 1  and s3 . In the 

first case, the system will then be willing to output a select 1 (2) message 

and in the second case, a select 1 (3) message will be offered. These two 

possible states are therefore not related by k  and so the system is not 

kd eterminate. 

and 2W for the most part treat processes identically. Therefore it 

is reasonable to hope that there may be other constraints that we may 

impose on processes p and q that let us deduce pq  from P2k  q, but our 

searches in that direction have so far proved to be unproductive. An 

alternative approach might be to restrict the class of observers that 

is defined over in an attempt to bring the two preorders even closer. 

However, given that 2 W is preserved by I whereas 	is not, it seems that 

restricting the observer class would only provide part of the answer if 

we wanted to preserve the properties of 

§5.6 A proof that SSys > PSys' 

Chapter 4 introduced one other way of proving pq indirectly. This 

approach used the preorder >. If we could show that 

SSys(X,) >t PSys(1,,T,I) 

then we could directly infer the required result. However, there is a 

problem that occurs when trying to use 	This is due to the fact that 

S 	 - 



it  

N 
P 	p1  

if Traces(p 1 )=Traces(p2 ) 

(t) 

/ 
p1  10, 
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PS 

To see why, consider what happens when q performs an a move. Let us 

assume that it takes the left-hand branch. Then process p after an a 

move reaches a state 

fi 

P 1 	p2  

and 

'A#  :it 	I 
P 1 	p2 	 p1  

as the possible traces are different. 

Note that with the relation > the following is true 

a A a 	a Aa 	1 
() 

a) 

A> 	
but b) ( 

The proof for SSys > PSys exploited this fact in the following way. When 

a process is in a state satisfying P 1 (nk,L,2,PC,[n]), then at that point it 

may be committed to a certain action even though we have equated it 
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to 	S 1 (k,2,.i). The communication we are committed to depends on the 

states 	of 	the communicating partners and their relative orders. The 

reason we were successful 	in proving 	that SSys 	> 	PSys was 	because, 

although the s.(k,2,i) 	term was 	uncommitted, 	it 'had no control over 

what communication would 	eventually -occur and 	so the situation was 

similar to 	(1). However '(t) shows that this technique will not work for 

>. 
t 

In order to use the > preorder, two alternatives are open to us. 

The first approach would be to equate a term satisfying P1(n,k,i,2,PC.[n]) 

to a term satisfying. S.(k,3,j) for some j, if a global analysis of the state 

indicated that Poller, was committed to establishing a communication 

with Poller, due to the order in which Poller, polled its partners. If we 

did this, the commitment point in the simple synchronisers and the 

pollers would then be identical as far as the relation 9 was concerned. 

Unfortunately, this approach would greatly complicate what is already a 

lengthy proof. 

The first approach can be viewed as moving the point of 

commitment of the simple synchronisers so as to coincide with that of 

the pollers. The other approach is in some sense the opposite. We can 

modify the algorithm so that the commitment point of the pollers 

• coincides with the commitment point of the simple synchronisers. If we 

allow the component p., when in the state (n,k,,2,PC.[n]), to 

spontaneously "give up" and revert back to a state satisfying 

• 	P.(n±l,k,J,l,), then it allows the p. component complete freedom of 

choice until it reaches the state (n,k,j,l,i) or where in 

either case the equivalent state of s, is also committed. 

Obviously, by taking such an approach, we accept the criticism that 

we are changing the problem to suit the proof. However, in this case we 

believe the approach is justified for the following reasons. In the first 

place, there appears to be no other way of completing the proof using 

the > preorder without a great deal of additional complexity. We feel 

that this cannot. be  justified while there is a ' possibility that some 

relation between 2kand E w  can be found that allows us to complete the 
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original and simpler proof. 	Secondly, the modification gives a very 

similar effect to a variant of the original algorithm where, instead of 

incrementing the index into PC. each time, we choose the next index at 

random. As long as -we have a random number generator that 

guarantees that each process will eventually be polled, then this random 

version of the scheme effectively performs identically to the original 

version. Furthermore, the random version and our proposed 

modification have very similar behaviours. For these reasons we choose 

the second approach.  

One way of implementing our proposed change is by replacing 

Buffer, by the definition in Figure 5-3. 

N.Buff er, = 	( 	(NO). NBuff er, 	) 
jEPC. 

+ set.(j). NBuffer'.(j) 

NBuffer'(k) = ( 	 (No). NBuffer'(k)) 
jEPC.-k 

• Q.k ( YES)  . NBuffer. 

• A,C (NO). NBuffer 2  

Figure 5-3: A modified version of the Buffer process 

It is easy to check that the new modification has not created any 

additional synchronisation problems. Furthermore, the additional 

transition we have introduced does not effect Theorem 5.1, or perhaps 

more accurately, the extra check for this transition can be added to the 

proof. of Theorem 5.1 without changing the rest of the proof. 

In order to prove that 

SSys(',r,2) >t PSys'(1,2,t',2), 

where PSys' represents the modified poller network, we use the same 
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simulation relation X as before. Because Theorem 5.1 still holds, and 

the first part of the definition -of > i s  identical to that for >, we may 

use the first part of. the previous proof without change, except to verify 

that the additional transition causes no problems. We are then left with 

the problem of checking that for each pair <SSYS,PSyS>EX that 

Traces (SSys)cTraces(PSys). 

We first prove the following theorem. 

Theorem 5.4 

Let PSys represent a derivative of PSys(r,,2,1). 

Then if PSys 

P 1 (n,k,..L,1,.i.) 

v P(n,k.,2,t) A ((tL) v P(fl',k',S',5,J)) 

where m=PC.[n] 	V 

v P.(n,k,J..,4,i) 

v P.(n,k,.L,5,i) 

holds then Yn' s.t. jPC.[n'] A jEk A PSys 	P.(n",k',s,l,t) 

FSys' such that PSysPSys' and 	
V 

PSys' 1= P.(n',k,..L,l,.i) A P.(n",k',s,l,t) 

Proof: 

We assume that for any process, m, in PC. where m/-j, if it reaches 

a state 	 then it immediately performs a 

transition to a state p(n'+l,k',i,l,i). 	
V 

Then if iii) or iv) is true, we may perform a sequence of -r moves to 	
V 

- • 	a state satisfying P.(n+1,k,.t,1,). If ii) is true we may again 

Perform a transition to P 1(n+1,k,,1,). If i) is true then we can 

always progress to the next index, either by timing out or by 

relying on the fact that any partners other than Poller, will have 

timed out and so will return NO to a Q, query. Ther"efore we will 	V 

eventually get to a state P 1(n',k,..L,l,i) and this sequence of moves 

does not require any participation by Poller, and so its state will 
V 	 V 	 V 

 have remained unchanged. 0 	 V 	
V 
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We can now show that SSys(,r,t) > PSys'(r,,,r,). 

Theorem 5.5 SSys(,T,2) > PSys'(r,,.1) 

Proof: 	 - 

The first part of the proof has already been discussed. All that 

remains is to check that for all pairs <SSys,PSys> in R, 

Traces (SSys)cTraces(PSys). We do this by showing that for all 

sequences s inTraces(SSys), s also. exists in Traces(PSys). We use 

induction on the length of s. 

Inductive base, s=s 

Then trivially e€Traces(PSys) 

Inductive step, s=as' 

What possible values can a have? It must either be an offer or 

a select message and we treat these two cases separately. 

a = offer i ( k) 

In order for this action to form part of a trace of SSys, the 

action must be possible which implies that 	 holds. 

This is possible when 	 v 

P.(n,,i,5,j.) holds. We may use Theorem 5.2 to deduce that 

eventually we may progress to a state P 1(n',,i,1,i) where 

the transition 

off er.(k) 

>p.(n',k,,1,) is possible. 

If k=0 then 
offer (k) 

and otherwise 
offer.(k) 

In either case the resulting pairs are in X so we may use 

the inductive hypothesis to show that s'ETraces(PSys') where 

PSys' represents the state after the transition. 

a = select .(j) 

In order for this action to be possible we know that either 

S.(k,3,j) or S(k2.) is true. In the first case, we may 

perform the same analysis as for > to deduce that 



A Rigorous Valic1ation of an Implementation 	 176 

PSys 	>PSys and SSys 	>SSys' 

where <SSys,PSys'>€ and so again we may use the 

inductive hypothesis on s'. 

If S(k,2,i)is true then there are two possibilities. 

a. i>j 

In this case, by Theorem 5.4, we may eventually reach a 

state P 1(n',k,i,l,i) where jEk and j=PC.[n']. 

Furthermore, this sequence of transitions doesn't effect 

Poller 	Poller, then outputs a set .(j) action and waits 

for a reply from Poller.. We can apply Theorem 5.4 to 

deduce that P.(n",k',,1,) will eventually hold, where 

iEk' and i=PC.[n']. At this point it can receive a positive 

Q response which means that the system will eventually 

be able to output a select.(j) message. Furthermore, the 

resulting pairs are in . and so we may apply the 

inductive hypothesis to s'. 

b.i<j 

The analysis is similar to the previous case except that 

Poller, waits for Poller,. 
J 

This completes our proof that Traces (S Sys) cTraces(PSys) and hence 

we may deduce that SSys(,r,2) > PSys'(r,',,r,I) o 

§5.7 A proof that Tr5 ' is an implementation 
transformation 

Before proving that Tr 11  is an irnplementat!on transformation we 
Po 

first show this property for Tr 
Sync* 

We can then extend the result to 

Trr 11  in a simple way. 

To show that Tr 	is an implementation we must show that 
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]J p w--'must succeed D Tr 
SyIL nc }] pj w-must succeed 

EN (EN 

We have previously represented the state of a simple. synchroniser by 

s.(k,l,j), where k is the set of processes we are trying to synchronise 

with, j is the identity of a process we have successfully established a 

communication with (or ..L), and 1 represents the current position in the 

algorithm. When we place the simple synchroniser in parallel with its 

host, we need to extend the state to keep track of the' process from 

which this transformation was derived. This extension will be described 

by means of the following example. 

Suppose we have a process p  and we translate it to obtain the 

component s.(q,1,L,p), where we have added an extra field, p., to 

indicate the source of the . transformed term. Then a communication 

performed by the original process with process p 
k  is translated into the 

following sequence of actions. 

p11 = 	a..p.. and p 
;En 

s(,1,i,p.) T > 

S ( U C(a)ui, 2.-'-P11) m(i,k) > i 
jEn 

2. 

s.( U C(a)ui, 3,k,p.) 
jEn. 

s.(,4,,a.p m) m > 

s.(,1,.i,p.) 	. 

where C(a)=k 

and m(i,k) = mki if k<i and mk  if k>i. 

This sequence is matched by a similar one in the translation of 	We 
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extend the possible locations from 3 to 4 where 4 indicates that the 

master has not yet performed the synchronised action. 

It would be useful if we 	could extend each process into a known 

state. Furthermore, we would like this known state to be equivalent to 

some transformation of a process. A transformation currently starts in 

a state where all the processes are at location Ili. However, we cannot 

always extend a computation so that all processes are in this state 

because a process may already be at location 121 with no possibility of 

communicating with another process. We will show that it is always 

possible to extend a computation so that all processes are at location 

23. When a process is at location JI . J then it can progress silently to 

location J2J, so that case presents no problems. If it is at location J3J 

then this implies that it has just performed an m(k,i) transition which 

in turn means that s  has just performed an m(k,i) transition. They 

may both independently proceed to location J4J, and due to the 

definition of C, they are guaranteed to be able to communicate with 

each other again in order to reach location Ili which silently brings the 

component back to location J2J. 

The discussion in the previous paragraph leads us to assume that 

the transformation function results in a state where the initial 

communication between the host and the simple synchroniser has 

already taken place. This is equivalent to performing the initial move at 

compile time instead of at run time, and doesn't alter any of our 

previous results concerning the transformation. -. 

Altering the starting point of the transformation allows us to prove 

the following proposition. 

Propsition 5.6 

Tr 	fl p]='tp. 3 " s.t. tp==Tr 	L[ U p.' ii Sync Sync 
i€N 	 iEN 

Proof: 
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Immediate as the transformation function starts with each process 

s in a state satisfying S 1 (k,2,..L.p() and we have shown that every 

state can be extended to this form in a computation, so in 

particular, all the processes in tp may be extended so that they are 

equivalent to the transformation of some fl tEN p' I
. 0 

However, we will need a stronger result than this, namely that the 

fl 
tEN pI 	 tEN 

' processes can be obtained from fl p by a sequence of silent 

moves. In other words, we wish to prove the following proposition. 

Proposition 5.7 

Tr 	lip ll'tp 	" s.t. tp==Tr 	Iii JJ p.']] Sync Sync 
iEN 	 iEN 

and furthermore, JJ p==  fl p' 
iEN 	 tEN 

Proof: 

Suppose 

Tr 
Sync Ill II p 11]i v 	Tr5 L[ 1I 	Th 

tEN 	 iEN 

Let o be the sequence of actions contributed by component i. In 

other words, the set ju.IiEN can be merged in some way to form an 

e sequence. Each sequence a •  consists of a number of subsequences 

each of the form 

m(Lk) 	 _!!. 

The situation may be viewed as follows 

I 
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m3)  

1 	
T 	m(2,n) 	 T 

p 
2  

T 	 : 	T 

- 
m(3,1) 	 am  

7 T 1 

m(n,2) 	 E111.2 

We define the function f on sequences such as these as follows 

f(T.m(i,k).T.a.$) = a.f(s) 

f(NIL) = NIL 

Let us denote by Tr Sync. the  transformation applied to the i' 

component. If 	
Synci 
 I[pJJ 	Tr 

Sync 
 E[p.'J then 

Furthermore, by examining the effect of f on our previous diagram, 

we may conclude that the set of sequences f(a djiE:Nj can also be 

merged to form an t sequence. Therefore we may deduce that 

I-I p==4> 1J p' 
iEN 	 iEN 

By examination of the transformation function, we may deduce that 

Trj 1J P]l _L><=> 11 p _L 
iEN 	 'LEN 

We may also extend this to our last proposition. If the transformation 

passes through a state where a move is possible on its way from 

Tr 	III JJ pJJ to Tr 	II fT p'J] Sync Sync 
lEN 	 iEN 

then the path from 
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ri p to J[ p' 
iEN 	 iEN 

also has this possibility, and vice versa. 

We now have to show that every communication that was possible in 

the original system may be mirrored in the transformed system. This is 

the purpose of the next proposition. 

Proposition 5.8 

fl p --> FT p.' J Tr 	o: 11 p.1] => Tr ynft Fl p,'] Sync 	 Sc 
iEN 	 lEN 	 lEN 	 lEN 

Proof: 

If Fl .  p -L--> 11 	p.' then there exists a pair p., p. such that 
2EN 	 tEN t 	 ' 	.2 

	

pj --- 'p i ' ,  P 	>p' and 

i[iI p 	= p 1 1 	. 	. 	IPI 	. 	lp,I 	. . . 	p and 
lEN 

Ill Pi'  =p 1 1 	Ip'I 	... 	1p1 'I 	... 	P. 
iEN 

Consider 	
iEN 
	Then S(k.2i.p1) and S(k.2.Lp,) hold 

where iEk and jck.. Therefore these two processes may evolve to 

s(k.,3,j,p1) and s,(k.,3,i,p.). These may then separately evolve to 

s.(,4,i,a.p.') and 	 because, due to our assumptions 

about C, there is a unique port between s and s.. These two 
.2 

processes may then communicate to produce s.(,1,i,p.') and 

Finally, both of these processes may move 

independently to s.(k.',2,,p.') and s.(k.',2,,p') where k. and k' 

äontain, the set of processes that p.' and p' wish to communicate 

with. The rest of the components have remained unchanged and so 

the resulting system is equivalent to Tr 	fffJ 	r.'lI• 0 
Sync 	tEN ' 
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We are now able to show that Tr Sync  is an implementation 

: 	transformation. 

Theorem 5.9 

fl p w-must succeed D Tr fl p ,] w-'rnust succeed 
tEN 	

Syn 	
(EN 

Proof :  

Suppose that this is not the case. Then there is a prefix of a 

computation of Tr 
Sync E[fJ tEN  P.] which cannot be extended to a 

successful state, i.e. 

Tr 
sync Eli U p.tp SA. 'tp'. tp==.tp'--' 

iEN 

By Proposition 5.7 we know that there exists a fl p' such that 
tEN i 

Tr 
Sync IT PII 	tp 	Tr5yn)[ 11 11  

(EN 	 (EN 

where fl pi LI P' 	 - 
(EN 	 (EN 

But then there are two possibilities. Either 
"(EN 

P. passed through 

a successful state on the way to fl 	p.', and therefore 

Tr5 fffl 	pi]I must have also pass7 through a successful state, or
iEN 

II P1 	lip 
tEN 	 (EN 

But then by the last proposition, 

Trsync E[ I[I PI'JJ ==' Trsync ElI Ill P% -_' 1--  
tEN 	 tEN 

In other words, we have achieved a contradiction. 0 

We have therefore proved that Tr 
Sync  is an implementation 

transformation. 
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§5.8 A proof that Tr is an implementation 
transformation 

	

The end is in sight. 	We show that Tr 11  is an -implementation 

transformation by showing that it is an implementation of Tr 
Sync

and 

then appealing to transitivity. 

The transformation function Tr Sync  consists of two parts. The first 

translates the processes into their offer/select form, and the second 

part consists of the simple synchronisers. Tr 11  may be broken down in 

a similar way and, loosely speaking, we may view the two translations as 

follows. 

Tr 
Sync [[  fl p1] 	(i'r 111 LI P11 I Tr 

B7 i LI piI) 
iEN 	 iEN 	 i€N 

TrI[ LI pji 	(Tr11[ j[j[ P)l I TrI[ LI pIi) 
tEN 	 iEN 	 tEN 

Suppose that Tr 
Sync fJ p.TJ w-must succeed. 

EN 	 - 

Then (Tr.[[ LI pJ] I Tr T LI p1]) w-must succeed 
iEN 	 iEN 	- 

and so (Tr 1 [[ LI p1] I Tr 
P0 

E LI p.11]) w-must succeed 
iEN 	 iEN 

which implies that Tr 
POUT LI p.11 w-must succeed. 

iEN 

which is sufficient to show .  that Tr 	is an implementation of Tr 	and 

	

- 	- 	 Poll 	- 	-- 	 Sync 

hence is an implementation transformation. 

§54 Partial application of synchronisation 
transformations 

One of the advantages of treating - synchronisation schemes as 

program transformations lies in their ability to be partially applied to a 

system. We now investigate this possibility in more detail. 
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Let us consider again the example presented in Chapter 3, page 63. 

P3 	

p1.0 

p5 	 p6 

PC 	1 	2 3 	4 	5 6 7 8 9 	/ 	10 

li io~  

The algorithm for determining synchronising annotations produced 

the following dominance relation for this system. 

p 1 <p2 	p2 #p7 	p9  <p7  

p3<p4 	p4_ #p7 	p9  <p8  

P5  < p6 	p4  # p8 	p9  < p 10  

P6  # p8  

A fundamental property of the algorithm involved its treatment of 

the propagation of incomparable processes. If two processes p and q 

are -attempting to communicate and p/fq  then these processes cannot be 

affected by any other communications between pairs of comparable 

processes. For example, suppose q could also simultaneously attempt to 

communicate with r and r with s where r<s. This might potentially 

influence the communication between p and q because one of the 

summands of q (with r) may be withdrawn due to r communicating with 

S. However, this situation is not possible because p//q and q can 

simultaneously attempt to communicate with r which implies qr and 

hence r#s.  As a result, all communications that take place between 

comparable processes are in some sense disjoint from those between the 

incomparable - processes. This allows us to partially apply a 

transformation only to those processes that are incomparable to some 

other process. In the case of Schwarz' scheme, for example, even the 

transformed processes only need to communicate via a poller when 

P, 

3 	 p4 

 

p8  
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synchronising with a set of incomparable processes. For the comparable 

cases ihey may communicate directly with the other processes. Thus-in 

the example above, p 1  could always communicate directly with its 

partners (in this case 
p 2 ) whereas p 4  must communicate with p., and. p 8  

via a poller although it can communicate directly with p3 . 

The correctness proof for Schwarz scheme still holds in the partial 

application case because the direct communications between comparable 

terms manifest themselves as silent moves among the hosts. If 

communications between comparable terms could influence the other 

communications then this would not be the case as a successful direct 

communication would potentially require the ability to send retraction 

messages to the pollers which we have not considered. 

Partial application of the transformation has obvious advantages. 

Implementing pollers, even when done in hardware, is an expensive 

process. It is therefore desirable to omit unnecessary uses of them. 

Furthermore, this approach has more general applicability. Other 

synchronisation schemes may also be expressed as transformations and 

partially applied. The success of this approach relies on natural limits 

Jo the propagation of incomparable processes in the dominance relation. 

One reason for expecting this to be the case is that many programs 

satisfy the restrictions imposed by the asymmetric version of CSP, for 

example. For these programs no incomparable processes will be 

• necessary, although some may be generated due to the simplifications 

assumed by the current algorithm. We expect in the more general case 

that programs will contain a sizable subset that will have no 

incomparable processes. These subsets will be connected together by 

more elaborate synchronisation nets containing incomparable processes 

at the interfaces. 
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CHAPTER 6 

Conclusion and further work 

The aim of this thesis has been to study the problems associated 

with the implementation of concurrent languages based on the 

synchronous handshaking view of process communication. These 

problems arise not only in the design of the implementation algorithms 

themselves, but also in the associated proofs of these algorithms. The 

language chosen as the basis of these investigations was Miler's 

Calculus of Communicating Systems. CCS was an appropriate vehicle for 

this research due to the well developed body of proof techniques and 

equivalences that already existed for the language. Because of the 

unusual nature of the proofs conducted in this thesis, however, the 

previous work on CCS has had to be extended to accommodate fairness 

and transformational correctness in an intuitive fashion. 

The theoretical problems tackled in this thesis have been problem-

driven to a great extent. The development of the weak-must preorder, 

and the definitions of implementation and transformation, were 

prompted by the desire to perform a correctness proof for a ccs 
implementation. Such a problem-driven approach has the advantage 

that the theoretical investigations are well motivated. Furthermore, the 

particular problems under consideration may drive the investigations in 

directions that may not otherwise be contemplated. The problem-driven 

apprOach also has its drawbacks. There is a danger that the theoretical 

work is incomplete and the results may also be of relevance to only a 

small class of problems. The quest for intuitively appealing definitions 

may also lead to equivalences that are mathematically intractable. 

While we do not believe that these potential drawbacks of the problem-

driven approach are applicable in this case, the implications of the work 
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presented in the thesis need to be - examined in more detail from a 

theoretical standpoint. Even if the definitions themselves do not gain 

wide acceptance, it is hoped that the motivation behind the choice of 

the definitions will influence future work in this area. 

We stated in the introduction that an important use of concurrent 

programming constructs was as a structuring tool in program design. 

This prompted the work in Chapter 2 where the Edinburgh version of the 

language PFL was described. It was argued that this was a natural way 

of extending CCS to a complete programming language, and preliminary 

feedback from the teaching of this language, both in Edinburgh and 

Goteborg, reinforces this view. The chapter also pointed out the scope 

for future enhancements, including the need for a more sophisticated 

user interface, and the possibility of extending the language with 

features from other languages such as Synchronous CCS, MEIJE and 

CIRCAL. Care must be taken in PFL to create an acceptable impression 

of non-determinism to the user. The additional manipulations required 

to achieve this complicate the implementation of the concurrent 

primitives. To what extent these measures are necessary in a large PFL 

program needs to be investigated. The preliminary work on PFL has 

been encouraging and we believe that further work on single processor 

implementations of CCS, not necessarily based on PFL, should be 

encouraged. 

Chapter 3 demonstrated the problems involved in providing a 

distributed implementation of Static CCS. A subset of Static CCS based 

on synchronising annotations was identified, and an efficient 

implementation strategy based on this subset outlined. A method was 

proposed for computing these annotations automatically under certain, 

simpifying, assumptions. The results are limited to Static CCS (and 

CSF). 	The more general case of CCS has not been considered for 

simplicity. 	The effect, of these results in the presence of dynamic 

process creation therefore needs to be investigated. 

A new approach to the implementation of process 	synchronisation, 

based on program transformations, 	was 	also proposed 	in 	Chapter 	3. 
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Some of the existing synchronisation schemes may be reformulated as 

program transformations, and by applying these transformations 

selectively to parts of the source program, an efficient implementation 

strategy may be achieved. The problems associated with proving these 

transformations correct led to the theoretical investigations of Chapter 

4. The weak-must testing equivalence was proposed as a way of 

incorporating fairness constraints into the must testing equivalence, 

while retaining the validity of the expansion theorem. The most obvious 

weakness of the new equivalence is the lack of an alternative 

characterisation that admits some form of bisimulation style proof 

technique. This omission is important as there currently does not exist 

a, proof technique that is directly applicable to the weak-must testing 

equivalence. We hope that the motivation behind the introduction of 

this equivalence will be sufficiently appealing that others will also 

attempt to find such a characterisation, or propose alternative 

equivalences of a similar nature to 	. A connection was established 

between 	and the 2k and < preorders, under certain conditions, and 

perhaps these may form the basis of future searches in this direction. 

An important area for future research involves the development ' of 

transformations that produce, as output, programs that have no output 

guards in summations. This would allow the resulting programs to be 

run on, existing implementations of languages such as CSP and OCCAM. 

Partial application of such transformations would allow the asymmetric 

nature of these languages to be hidden, although a performance penalty 

would obviously have to be paid. Program transformations could be 

developed that produced programs with bounds on their interconnection 

patterns. Such transformations would be useful for processors, such as 

the Transputer [INMOS 84b], where there are physical constraints on the 

interconnectivity of the processors which jould otherwise create 

diffic'ulties when mapping processes onto processors. , The techniques 

presented in Chapter 4 may help in proving these transformations 

correct. The work presented in Chapters 3 and 4, especially the 

proposal to use program transformations as an aid to process 

synchronisation, and the development of the weak-must testing 

preorder, forms the major achievement of this thesis. 
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A new definition of implementation was presented, based on the 

weak-must testing preorder. Although this definition, along with the 

definition of transformation correctness, was motivated by the need to -

prove the Schwarz transformation scheme correct, these definitions are 

of far wider applicability. The areas to which these techniques may be 

applied will increase as larger proofs become more feasible, and the 

problems tackled become more complex. 

There have been other approaches to the treatment of weak and 

strong fairness that have been introduced since the weak-must testing 

equivalence was defined. While these approaches do not currently 

respect the expansion theorem, they may form the basis of techniques 

that do, and these should then be compared with our approach. While 

we strongly, believe that the expansion theorem should still, hold when 

fairness 
I 
constraints are taken into consideration, this is open to debate 

and further, more convincing, arguments should perhaps be developed to 

resolve this matter one way or the other. 

Chapter 5 presented a comparatively large proof of the Schwarz 

transformation scheme. The problem raised a number of interesting 

issues concerning the proof methods that had to be employed. We 

believe these problems, and the techniques developed to treat them, are 

of a general significance. In particular, the need to conduct the proof 

without appealing to inductive arguments, and the notation developed to 

keep the proof manageable, may aid in the analysis of similar problems. 

Another beneficial aim of exhibiting such proofs is perhaps less obvious. 

In order to develop theorem provers for languages such as CCS, it is 

necessary to be able to identify the types of, operations that need to be 

performed in a verification, and the detailed presentation of proofs is 

one way of helping this process. . 

In conclusion, the problems associated with implementing a language 

such as CCS have been analysed within a formal framework. 

Furthermore, new techniques have been developed to aid the 

implementation 	process 	and 	also . to 	analyse 	the 	resulting 

synchronisation algorithms. Implementations of languages such as CCS 
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are still in their infancy, as is their associated theoretical support. It 

is hoped that the work presented in this thesis will contribute in some 

small way to the growing process. 

. 
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Appendix A 
The Original "Kennaway" Equivalence 

This appendix describes the equivalence due to Kennaway as it was 

presented in [Kennaway 81]. We justify using the version due to 

DeNicola and Hennessy [DeNicola 82] by showing that the original 

definition is not an observational equivalence in any meaningful sense. 

We start by defining a weak form of testing with a set of actions. 

Definition For any finite LC4cufr. 

p must L <==> 3EL. p== 

P must L <==> Vp€P. p must L. 

Note that r may be an element of L. We also extend the definition of 

after to allow T to be one of the admissible labels. 

Definition For any 	4du-r 

p after u = p' I pp' for some p' 

P after jL = Up after 	I p€P 

 
Npte that as a consequence of the definition of 

T 
	in, [Kennaway 

81], pafter T A p after e as p after r is the set of processes that can 

be reached after one or more r moves whereas p after c is the set of 

processes that can be reached after zero or more 'r moves. Thus, in 

general, p€p after e whereas pp after T. 

Kennaway then goes on to describe his equivalence 
k 

by means of a 

recurrence relation. 
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P 	Q is always true. 

P 	' Q 	i) Yfinite LC4C.1UT. P must L D Q must L 

ii) Vj1€41ur P after bi 	Q after j 

k 	
Vn>O. P 

: 

Q. 

We extend this definition - to single processes in the obvious way, i.e. 

4= 

Unfortunately, although this equivalence is intended to be weak, or 

observational, in the sense that a..p and a.p are indistinguishable, this 

is not so. To see why the definition differentiates between these terms, 

consider the following analysis. 

afl.NIL after a 	= i fl-NIL~  

a.-rfl.NIL after a 	= 	rfl.NIL, fl.NIL~  

fl.NIL after r = 

-r..NIL, p.N114 after T = fi.NIL 

We can therefore deduce that 

((a..NIL after a) after T) must 

whereas 

((a.Tfi.NIL after a) after i- ) mi(st 

and so a..NIL 	a.-r.fl.NIL. 

Unfortunately if we restrict the definition of after to the case where 

/.t cannot equal r we still run into difficulties as the equivalence then 

equates 

a.NIL + NIL + T.NIL and -r.a.NIL + fl.NIL 

This is because the ability to specify "after T" coupled with the 

definition of must acted as a substitute for must. Take away the ability 

to use "after T" and the system breaks down. 
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The definition presented by DeNicola and Hennessy [DeNicola 82) was 

originally intended as an alternative definition of Kennaways 

equivalence. However this appendix, along with the work in Chapter 5, 

has shown that the DeNicola version is not an alternative 

characterisation of the original definition but rather a corrected version 

that manages to avoid the deficiencies of the original definition. 


