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Abstract

The implementation problems associated with the synchronised
Hl:landshaking form of process communication are analysed within a
formal setting. Milner's Calculus of Communicating Systems (CCS) is

used as the vehicle for these investigations.

A single processor implementation of CCS is described and its
adequacy as a programming language discussed. For the more ge'neral
case of a distributed irﬁplementation, a subset of CCS is identified that
admits a simple synchronisation scheme. The subset consists of those
programs that possess a synchronising annotation. A method for
constructing these annotations is developed and an implementation

based on this approach is then proved correct.

A technique for synchronising arbitrary (static) CCS programs is
developed involving program transformations.” In order to prove the
validity of these transfofmations, a new equivalence relation is propos‘ed
based on the teéting approach of DeNicola and Hénnessy.‘ The new
equivalence incorporates' the notion of strong fairness while preserving
the natural connections between parallelism' and non-determinism as
expressed by the expansion theorem in CCS. The meaning of
transformational correctness within the CCS framework is also
investigated. These developments are psed to prove that an

implgmentation scheme based. on prog;'am transformations is indeed
correct. The results are then extended to the case where the
transformation is only pafl{ially applied to the source program, leading

to an efficient implementation strategy.
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Introduction

The last decade has seen a great increase in the demand for
concurrent programming languages. In part, this has been due to the
continual requiremeﬁt for faster machines. By exploiting the parallelism
inherent in many problems, multiprocessor systems may provide a cost
effective solution to the performance problem. One approach is to
detect this potential for parallel execution automatically, using
sophisticated compilers. While there have been some notable successes,
mainly in the area of numerical computations, the work has been
hampered by the continued use of imperative, sequential programming
languages. The presence of side—effeéts in these languages greatly
increases the problems associated with the automatic detection of
parallelism. This has led to a greater interest being shown in the purely

functional programming languages.

An - alternative +to the functional approach is +to allow the
p~rograrnrner to explicitly indicate the parallelism inherent in .the
problem by using a concurrent programming language. This -has- a‘
number of advantages. For instance, the parallelism specified by the
programmer may be of a more useful form than that derived
"automatically. Many parallel machines consist of a cpmparati\}ely small
number of powerful processors, and for these machines”the detection of
parallelism present in the evaluation ofl an afjithmetic expression may be
unusable, due to the overhead of the process mechanism. In such
cases, a more global and higher-level form of parallelism must be
- exploited, and this is the level at which concurrent programming
languages operate. If'we wish to execute a program on a dataflow
machine, then the paréllelism present in arithmetic expressions- will
assume a much greater importance. This illustrates why the choice of

programming language may be influenced by the underlying target
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"hardware. By adding concurrent features to a functional language, we
may achieve the advantages of both approaches. The level at which
parallelism is then -exploited is left to the compiler for the target™

machine.

.An important benefit of concurrency is that it“provides a useful
structuring tool, and may greatly aid the program design process in a
way similar to functional abstraction. This fact has been appreciated by
real-time programmers for many years, but the lack of convenient and
commonly available concurrent languages has inhibited its use by the
wider programming community. This situation is gradually improving as
languages such as Ada [DoD 80], Edison [Brinch 81], Modula [Wirth 77],

and Occam [INMOS B4a] become more widely available.

It is a sad fact that nearly all sequential programs are never proved
correct in any formal sense. This is in part due to the difficulty of the
task, but also because, by careful construction, it is possible to build
programs that are remarkably free of errors. The need for formal
verification of concurrent programs is far more acute. Even simple
concurrent programs of only a few lines may contain subtle errors and
there have>been some notable cases where numerous versions of an
algvérithm have - been published before the correct .version was
obtained [Gries 77]. When this occurs for very small programs, the

seriousness of the problem should be immediately apparent.

These .problerns have strongiy influenced the language designers,
resulting, for the most part, in languages with far cleaner and elegant
features than are present in their sequential counterparts. Along with
the. development of these languages have come the associated proof
methodologies and semantic techniques necessary to form t.he basis of
theorem provers and other verification aids. These trends are most
apparent in those languages developed from a mathematical, or
theoretical, Background such as CSP [Hoare 78], ccs [Milner 80] and
Petri Nets [Peterson 77]. These languages are not judged purely. on
their syntactic convenience, or evén on the simplicity of the underl;}ing

semantics. Their mathematical tractability, and the ease of performing



Introduction o ' . 3

proofs, are perhaps the most crucial factors influencing the success or

failure of these languages.

We have identified the need for‘ concurrent languéges. and also why
they must be designed to aid the proofs of the resulting programs. The
question still remains as to what concurrent primitives to provide.
Perhaps the simplest appr'oach would be t; introduce processes
communicating through shared variables. Unfortunately, as a program
s'tructuring device, this a;;proach leaves much to be desired. It is also
extremely difficult to perform correctness proofs in such a framework.
Such deficiencies led to the introduction of more structured forms of
concurrency control such as semaphores [Dijkst»ra 65], [Habermann 72]
and monitors [Brinch 73]. These enhancements, while successful as a
conceptual aid to programrriing, did little to aid the verification of the
résulting programs, although there has been some success in applying

the axiomatic approach to program correctness [Owicki 75].

Petri néts [Petersori 77] were propoged as a way of studying
concurrency at its most primitive levels. The formalism was inadequate
as a programming language, at least. in its original form, but it did
. ‘illustrate how various properties could be checked for in a program,
such as the presence of deadlocks. There now exists a large body of
work concerning net theory, and numerous extenéions of the original
proposal have been developed, such as the various forms of stochastic

Petri nets [Marsan 84].

Hoare and Milner have both devéloped concurrent languagés based
on the handshake model of communication. If two processes wish to
communicate, then the s'ending of the message and its reception form a
single indivisible actic.)n. The Hoare version, known as Communicating
Sequential Processes (CSP) [Hoare 78], is based on an imperative view of
the world, whereas Milner's version, Calculus of Communicating Systems
(CCs) [Milner 80)], is more applicative in nature. Both of these
languages have developed a consideréble body of associated semantic
descriptions,. proof teéhniques, ‘axiomatisations, equivalence relations,

and the like, that make them eminently suitable as a vehicle for the
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study of concurrency. Although, superficially, the two languages appear
very different, at the level of the process synchroniéation meéchanism
they have much in common. This thesis addresses“itself to the
problems of implementing the handshaking view ‘of process
communication as embodied in these languages. As such, the results
are of relevance to the implementation of both CCS and CSP. Ada [DoD
80] and Occam [INMOS B4a) have based their concurrent primitives on
CSP, and so the work is indirectly applicable to ‘these languages as well.
The examples and proofs presented in the thesié are based on CCS, as

this language has developed furthest at the theoretical level.

Concurrency may be used as a method for decomposing a'nd
structuring solutions to problems. It is therefore important to develop
implementations of concurrent.languages on single processor machines,
even though this will not result in any performance gain, and may result
in a performance loss over the sequential version. The thesis starts
with a discussion of the problems of im_plementing CCS on a single
processor. The difficulties associated with the implementation of the
concurrent primitives form only part of the problem. The need to
provide a user interface to the system, and the extensions required to
the calculus if it is to form a complete programming environment, also
raise intere;ting questions. An example of a programming language

based on CCS is used to illustrate these problems.

Sequential implementations of concurrent languages are adequate if
the languages are used purely as program structuring aids. The second
aim of concurrent languages, namely the potential for performance
improvements, requires the development of distributed implementations.
Unfortunatefy. hathematical elegance does not necessarily imply ease of
implementation. In particular; the implementation of the handsheaking
view of process synchronisation is a non-trivial problem on truly
-distributed systems (those that possess no shared memory). This thesis
'illustrates the implementation difficulties and reviews the previous

algorithms aimed at solving this problem.

An alternative method of implementing languages such as CCS and
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CSP is proposed. It relies on the development of program
transformations t.hat produce, as resulté. programs that are easier to
implement in some sense. A subset of CCS is exhibited that admits a
very simple impleme'ntati(;n strategy, and an existing implementation
.schem'e is presented in the form of a transformation *that produces
programs contained within this subset. By partially applying the
transformation, an efficient implementation of CCS programs may be
derived in many cases. A correctness proof of the transformation is
complicated because, under certain circumstances, the transformed
"program may not terminate, even though the original program always
does so. Existing definitions of process equivalence are ina;iéquate in
this respect, and so new notions of implementation and transformation
equivalence must be introduced. Developing these ideas and perf.orming
the associated correctness proofs constitutes the main body of this

thesis.

The remainder of the introduction is devoted to a summary of the

work presented in this thesis.

‘In Chapter 1 the basic concepts and notations ‘concerni'ng CCS are
introduced. The concurrent operators of CCS are defined, along with an
voperational semantics. The definitions of strong and observational
équivalence in terms of recurrence relations are then described. An
alternative to these definitions, in terms of maximal fixed points, is
introduced leading to the notion of bisimulation and its use as a proof
technique. Deficiencies in these equivalences are then highlighted and
the testing view o"f process equivalencev, as proposed by DeNicola and
Hennessy, is'introduc‘ed. No new work is presénted in this chapter and
those readers already familiar with the litera-ture surrounding CCS may,

safely proceed directly to Chapter 2.

Chapter 2 deals with the problems associated with irnplernehtin’g'CCS
on a single processo;'. A particular example of a CCS implementation,
the Chalmers PFL system, is described and some examples of concurrent
programs written in PFL presented.  This system " consists of an

embedding of CCS in the functional.language ML, and so the chapter'



. Introduction o ) ' 6

-

includes a brief introduction to those features of ML used in the PFL
ethples. Finally, some extensions and deficiencies of the current

implementation are discussed.

Chapter 3 deals with the more general case of implementing CCS on
a distributed-system. The analysis is restricted to Static CCS, the
subsetlof CCS with no dynamic process creation, as even in this case
there are considerable difficulties involved in an implementation. The
problems of synchronising CCS processes are discussed, and a subset of
the language exhibited that can be implemented efficiently. This subset
consists of those programs for which a synchronising annotation can be
found. We show how a number of previously proposed implementation
schemes are particular instances of this approach. An algorithm is
developed for determining these annotations under certain simplifying
assumptions. We then discuss the approaches that may be followed
"when a\synchronising annotation cannot be found for the program under
investigation. The algorithms previously p'roposed as solutions to this
problem are first reviewed, and then an alpernative approach is
described involving the transformation of CCS progfams. We show how
the resulting transformed terms may be easier to synchronise than the
original program. In particular, we present the synchronisation scheme
.due to Schwarz in the form of a transformation, and s_how how
synchronising annotations may always be constructed for the resulting
terms. The advantages of the transformational approach to process '
synchronisation are outlined, such ~as the possibility of partial
application. Finally, we discuss the problems involved in proving
t.,ransformations correct. The Schwarz transformation introduces the-
possibility of non-termination, for exampie, and so requires some

fairness assumptions in order to prove its correctness.

The problems of transformational correctness in CCS lead naturally
to the theoretical investigations of Chapter 4. The 'notion of
implementation 1is first investigated, and the inadequacy of this"
definition in the presence of diverging processes discussed. The need
for some form of fairness analysis is explained, followed by a brief

review of the relevant work in this area. We argue that existing notions
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of fairness for CCS are inadequate because they do not preserve the
expansion theorem that relates the parallel composition and non-
determinism operators of CCS. An alternative approach, based on
DeNicola and Hennessy's testing preorders, is proposed that captures the
desired fairness properties. Various algebraic properties are exhibited.
for the new preorder in order to show that it is well behaved in some
sense. Use of the weak testing preorder is hampered by the necessity
to deal explicitly with tests, and so an investigation is carried out into
the possibility of an alternative characterisation that admits a simple
proof technique. The equivalence proposed by Kennaway is investigated
and rejected, although a connection is shown between the two
approaches under certain restrictive conditions. Two further preorders
are proposed that imply the weak testing preorder, and may be proved
using bisimulation techniques. Finally, the problems of transformational
correctness are investigated, and a new definition pres'ented based on

the weak testing preorder.

Chapter-5 makes use of these new definitions to prove that the
Schwarz synchronisation scheme is correct.when presented in the form
of a transformation. - The structure of the problem rules out the
'possibility of an inductive proof, and so notation is developed to allow
the bisimulation  proof .to be carried out on the whole program. The
chapter concludes with a diséussion of how the transformation may be
partially applied to a program so as to minimise the synchronisation

overhead.
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CHAPTER 1

Preliminary Definitions

§1.1 Introduction

This. chapter aims to provide a brief overview of CCS, and the
theoretical work based on the language, where it is of relevance to the
work that follows. CCS (Calculus of Communicating Systems) is a
mathematical calculus designed to'éid the specification of  concurrent
systems and their subsequent analysis. This desire to not only specify,
but also to reason about concurrent systems has lead to a large
emphasis being placed on the mathematical tractability of CCS. In
particular, a number of equivalence relations have been proposed for
the language, each attempting to highlight some particular aspects of
the concurrent programs under investigation. The chapter starts by
describing't;he language and a particular method for generating
equivaiences khown as’ Bisimulation [Park 81]. This method is used-to
define strong(~) and weak (X) equivalences for the language. Some
deficiencies of these equivalences are identified, leading on naturally to
é discussion "of DéNicola and Hennessy's testing view of process

eqﬁivalence (e_oi).

§1.2 CCS

We start by reviewing the definition of CCS and its operational
semantics. CCS deals with systems of computing agents communicating
via named ports that are connected by channels. The communication
channels have no buffering capacity, and are wunidirectional.
. Communication takes the form of', a valﬁe—paésing act, requiring the

simultaneous co-operation of both the sender and the receiver.
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The sirnplési' agent, denoted by NIL, can perform no actiéhs
whatsoever. This agent, along with recursion, forms the basis from
which' all other agents are constructed. Given an arbitrary agent p, a.p
represents the agent that may flrst commumcate with another process ‘
through the « port, and if successful will then evolve to the agent p‘
Agents may be composed through the bar operator, |, and in the
resulting agent, p|q, p and q may proceed independently. However, they
. may also communicate with each other via matching ports, where the
exact form of this matching will be: explained shortly. To allow some
degree of choice and non-determinism, the language also includes the +
operator, where p+q represents either the process p or the process q.
Depending on the actions offered by p and q, {hié choice may or may
not be resolvable. exf.ernally. The names of the ports used by each
process are significant in that they affect the communication potential
of the 'process (i.e. the names can be viewed as forming the channel
-linkage mech.anism). Thus, to be able to define a generic agént, and
thén use it in different contéxts, we need to be able to relabel the
agent's por_{s to form the desired connections with its context. This is
achieved by the postfixed renaming operator [S]. where S is a port
renaming function. Finally, to prevent channels from forming when not
frvequireld, the language has -a hiding, or scoping mechanism known as
' restriction " Thus, p\a hldes the label a so that the resultlng agent

cannot communicate to its external environment through the a port.

We now express ',theAse ideas more forrnaily. Let us assume the
existence of a fixed set of names, A, ranged over by «, 8, . ... The
set of co-names, A disjoint from A, is constructed using the bijection

where
a€A D @eA
We refer to @ as the complement of a. We also use  for the inverse

bijection and hence & = «a.

We defme Act, the set of visible actions or labels to be AUA. We also
introduce the label T, where 7 is a dlstmgulshed actlon not occurrlng in

4ot We will allow 1 to range over ActU{T] and A to range over Al
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We define a function, S, over Adu(‘rl to be a relabelling if
i) S(r) =171
ii) S is a bijection
iii) S respects complements,

i.,e. S(A) = S(A) for A Aedet

We may now introduce the operator set for CCS. Let

20‘ = {NIL}

r = fu. | pedetufr}} U {[S] ] S is a relabelling} U \A | A€det}
z, =t+ .1} '

¥ =¢,n>3

where I denotes U{Ek | k>0}

Let X be a set of variables, ranged over by x. The set of recursive
terms over X, ranged over by t,v is defined by the following BNF-like
notation:

t = x| op(tl, . ,tk), opeEL, | fix x.t
The ‘operator fix x.; binds occurrences <;f x in the subterm t of fix x.t,
and. introduces the usual notions of free and bound variables in a term.‘
A terfn is said to be closed if it clontains no free variables. We call such
-terms agents and v"vi.ll use #? to stand for the class of agents. The terms
behaviour “é.nd process will be used as alternatives for agent throﬁghout
the rest of the thesis. The operational semantics for CCS is given in
terms of labélled rewrite rules over these agents( [Milner 80.], -[DeNicola
B82]). For each ucddu{r}, we define a binary relation b—l‘—> ‘over P. We
interpret p'_‘—)q' as "agent p performs the action'y, and in doing so

evolves to agent q".

Let %> be the least relation over £ that éatisfies
i) ppt->p
ii) p-£—>p' implies p + q &> p’
qQ+p = p
pla *= p'lq
qlp *= alp



Preliminary Definitions . ' , ] -1

iii) p-£—>p' implies p[S]) S 5s]
iv) p—>p' a A¢{y.7} implies p\y *—>p"\y

A R X o - . ' R
v) p—>p'. q—>q impliesp | q —> p'| q
vi) t[fix x.t/x] %> p implies fix x.t £>p.

We extend this relation to sequences of actions in the obvious way.

It will often prove convenient to ignore the 7 actions in a sequence

of transitions. We define the === relation by

P <= q iff there exists p’, q' such that

p (=) p £ q (T=>) q

We extend this relation to sequences of actions in the obvious way and
‘define & to be the empty sequence. "A question arises as to whether
p1=>p is always true. Certainly p'—c—7->p‘ is always possible, but, by the
preceding definition, = is a sequence with at least one 7 transition
and so pfﬁp will not be true in general. This is the approach taken
by Milner [Milner 80)]. Unfortunately, Hennessy and DeNicola treat 7 as a
special case and equate ==> and %, as this simplifies their
proofs [DeNicola 82]. We will also adppt this convenfion for the same
reason. This subtle but important difference in convention has created
some confusion in the past, and the reader should be aware of this
peint ‘when reviewing the current CCS literature. We use p4—> to
indicate that >p cannot perform a A as its .‘first'action, and p%‘&) to
indicate that no sequence of silent moves will enable p to reach a state.

where it can perform a A action.

We define the set of derivatives of p to be "

{p' | 3s. p=>p'}

and the set of initial moves to be

Init(p) = {acdd | p=—=]}

A sort of an agent is a set of labels which contains all labels
through which communication can possibly (but may not) occur. If an

agent' p has the sort L (written p:L) then it will prove convenient to
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allow p to possess all larger sorts containing L as well. The minimal
sort for an arbitrary agent can be computed using an iterative closure
~algorithm, and it is simple to show that finitely expressible agents’ have

finite sorts.

The versién of CCS presented so far deals.with pure synchronisation
signals; no values are passed between the agents. It is simple to extend
‘the calculus to the general case. We adopt the convention that ax.p
and av.p denote agents that input and output values on the a port
respectively, where in the first case the resulting input value is bound
to x throughout the agent p. Let t{u/x}] denote the term which results
from substituting u for every free occurrence of x in t. We extend the
binary relation £ to allow values and variables and write it as £ .
For the most part the definition of - is a simple extension of the

> definition except for the following cases.

ax.p = piv/x} _
oE.p = p where the expression E evaluates to v

Tp —> p

We shall refer to a label, together with a variable or value expression,
as a guard. ~ We will sometimes use the CSP notation for value passing
when this is convenient. Thus, a!3.p and B?x.q are alternative ways of

writing a3.p and gx.q respectively.

When mapping CCS onto finite reso‘urc’es. such as real processors, it
may:not b; possible to support dynamic process creation. Furthermore,
certain. tr!;nsformations ‘on CCS terms may require all processes to be '
transformed simultaneously, thus precluding the use of dynamic procé§:é
creation. -Such cases are sufficiently frequent that wé define- a"
subcalculus of CCS, known as Static CCS, that only allows the use of | in

a restricted form.

Let ] p. denote the CCS term p, | p. | | p. Furthermore,
ien ¢ 1 2 n
we extend the restriction notation to allow sets of actions, as in p\L for

‘ -any L_C_.Jot.
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.Definition

An agent pe? is static if the parallel composition operator,

|, is not used in its construction.

An agent pe?® is a member of Static CCS if it is

syntactically of the form (H‘EN p‘_)\L for some set of static
1 .

processes {p|i€N] and Lot 4

Note that if we only required bounded parallelism, then this could be
ensured by not allowing the | operator inside the body of a recursion,
which is a slightly weaker requirement than a process being a member

of Static CCS.

§1.3 Strong and observational equivalences

There have been many equivalences propo‘s‘ed for CCS, . each one
' ac'centuating some different aspects of the processes under exarmination.
Furthermore, some of these are also congruences (i.e. equivalences that.
are preserved by the substitﬁtipn of equivalent programs), while for
others we must explicitly derive the congruence from the equivalence.
‘We start by defining the original two equivélences for CCS, known as ~thev
strong and observational equivalences. Milner [Milner 80] describes

'

strong equivalence, '~', in terms of a decreasing sequence ~or ™

~;, .. . of equivalence relations as follows.
P~ Q is always true.
P ~.,, 9iff for all u, v ‘
(i) if p~+~>p' then for some q', q**>q' and p’ ~ qQ
(ii) if q+>q' then for some p', p > p’ and p' ~_q'

p ~ q iff Vk>0. p ~. 9

This equivalence has a number of desirable properties, such as p|NIL

~ P, p+NiL ~ p, that ease program proofs. Usihg ~ we may derive what

o
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Milner describes as the Expansion Theorem [Milner 80]. This theorem
provides & connection between the parallel composition and the
sumrna_tjoﬁ operators. Summarising briefly, if B = (B1| c. |Bm)\A. where

each Bi is a choice of.ghax;ds, then

B ~ Zip.v.((Bll ... IBl ... IBNA)
where pv.B, is a summand of B, and L.agA ;

+ Lir (B, .. BE/RY . . B)l . . . IB_)\A)
where cx)'?.B; is a sumrnand of Bi,

TxE’.B; is a summand of Bj. i#j ;

provided that in the first term no free variable in Bk(k;éi) is

bvound by uv.

Unfortunately, for many problems ~ is too restrictive an equivalence.
For example, a.p and «.7.p are not equated by strong equivalence. The
problem is caused by the silent 7 actions, as we frequently wish to
ignore them. This prompted the development of the observational
equivalence, '®’', so called because the 7 actions are not observable by

an external agent. Milner defines the equivalence as follows.
P 20 q is'always true.

P ®,,, 9 iff for all s€(det x V)’
(i) if p-——'s——>p' then for some q’, qSZ>q' and p' R, q’

(ii) if qs=q'_ then for some P, b%p’ and p’ =, q

‘pzqifkazo.pqu

It is simple to show that a.p & a.7.p. Furthermore ~cCx. Unfortunately,

Q

is not a congruence under the + operator. To see why, we note that

NIL =~ T.NIL
" but

NIL + «.NIL #2 7.NIL + «.NIL
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Milner defines *° to be the weéakest congruence stronger than (smaller .

than) ~ and shows that x~° and ~* are identical, where

P ‘zf q iff Vr. p+r &~ q+r-.

§1.4 Bisirnuvlations :

We may redefine the latter half of the ~ definition to be of the form

.where '
E(R) = { <p.q> | P=s=>p' >.3q". '(qs=q' A <p'.qQ'>€R) A
q's=>q' > 3p". (ps=>p' A <p'.q'>€R) }
for se€dect ‘

One anomaly of the x equivalence is tha;c it is not a fixed point of E. No
simple example exists of two behaviours, p and q, such that pxzq but
<p.q>¢E(x). However, MilnerA has exhibited such a pair [Sanderson 82],
élthough the example is rather unnatural. Park [Park B1] has suggested
an alternative definition of observational equivalence by considering the‘
maximal fixed-point of E using the partial ordering of set inclusion. We
can show that the function E is monotonic and so this is
sufficient [Térski 55] to deduce that a maximal fixed point for E exists’

given by

UR | RCE(R)}

This leads to the following, alternative, definition of observational
equivalence.

~ = UR | RCE(R)}

In fact, for practical purposes, thesé two definitions of &~ appear to be
identical. However, we shall show that the fixed-point version of the
‘equivalence admits a simple yet powerful proof technique. The same
fixed-point can in fact be obtained by a simpler version of E where only
single actions are considered rather than arbitrary strings, i.e. we-can

replace the definition of E by



Preliminary Definitions Co . : 16

E(R) = { <x,y> | x===x' > dy'. (y“ﬁy’ A <X'.y'>€R) A
yéy' > 3x'. (x £=x' A <x',y'>€R) }

for pedctur

Defining observational equivalence (and also strong equivalgnce)
using the fixed-point approach leads to a very powerful and elegant
proof technique'. known as bisimulation. To prove that p=q, it is
sufficient to construct ‘a relation R such that <p.q>€R and RCcE(R).
Following Park [Park 81], we reft;,r to such a relation R as a bisimulation
between p and q. This technique forms one of the main proof methods
for CCS as the examples in [Sanderson 82)], [Backhouse 83) and [Prasad
84] illustrate. Furthermore, Sanderson [Sanderson 82] has proposed an
algorithm that allows the cohstruction of bisimulation relations to be

carried out mechanically in some cases.

§1.5 Testing equivalences

For many examples the x equivalence is too particular about when

non-deterministic choices are made. Consider the two behaviours

_Tl Tz . T, T.
Then p#q and pq. However, it is not clear why we should distinguish
between these two processes. In either case an a followed by a g move
is -possigle followed by either process r orr, "In neither case can the
external environment force the choice of whether r orr, is executed.
In order to remedy this deficiency of the =& equivalence,
Kennaway [Kennaway 81] developed an alternative definition of

observational equivalence involving sets of processes. We discuss this

approach more thoroughly in Chapter 4.

DeNicola and Hennessy [DeNicola 82] ‘have also proposed an
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equivalence that equates these two processes. However, in their case,
this property was merely a byproduct of their more general view of what
‘process equivalence should mean for languages such as CCS. 'fheir basic
premise is that two  processes are equivalent  if they are
indistinguishable when tested by another agent. A process is tested by
placing it in parallel with an observer process, where the observer agent
has a distinguished action Vv in its sort (written o in [DeNicola 82]). A
test succeeds if the combined processes reach a state where the v move

~ is possible through a sequence of silent actions.

We formalise these intuitions as follows. We denote by 0 the set of
agents that may be constructed from the CCS operator set augmented
with the action v (i.e. #c0). A term p is successful if it may perform a

v action, i.e. 3p'. pL>p'.

A computation is any finite or infinite sequence of terms {pnln_>_0;

such that pn-7—>p”+1.‘ whenever p is defined, and if P is not

n+l

defined, then pn%p' for no p'.

A computation is successful if one of its states is successful, and the

set of successful computations is denoted by Success.

For any pe?, o€0, we define €omp(p,0) to be the set of computations

whose initial element is the term (plo).

We can distinguish two classes of tests on the process p; those that
may succeed (indicated by at least one successful computation in
ﬁw(p,o)), and those that mﬂsucceed (where all éomputations in
Bw:/»“(p_,o) are successful). This leads to the following three preorders.’

We first define

i) p moay satis o iff (plo) (=)  q for some q such that q —\/—>

ii) p must satisfy o iff whenever plo = poloo%pllol—?—>

is a computation from plo then 3n>0 such that on-L>

or equivalently,

i) p may satis o iff 3c€Bomp(p,0) s.t. CE€ELuccens
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ii) p must satisfy o iff Bemp(p,0)CFuccess

Then
P E; q if Vo€0 p may salisfy o implies q may satis o

P E, q if Yo€0O p must satisfy o implies q must satisfy o

PE,aif pE;qAaPpPE,q

Note that' a.NIL|7® must satisfy @&v.NIL is false (written o.NIL|7

must/satisfy &v.NIL), because Bomp (. NIL|T®,& V.NIL) has 7% as one of its

computations.

The preorders may be extended to equivalences in the obvious way, i.e.
P qif pg;aAqE; P
P~ qif PE,QAQE, P
P~ qifpgagaqE p

The definitions of . presented in [DeNicola 82] are complicated by
the explicit- treatment of unguarded recursion and divergence. However,
the simplified definitions presented above are sufficient to give some
indication of the general approach taken by DeNicola and Hennessy. It

has been shown that =, coincides with. zl and > lies between zl and x

3 .
This indicates that the observational equivalence distinguishes between

more terms than the testing equivalence.

The main work of this thesis now begins, starting with an

investigation of how to implement CCS on a centralised machine.
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CHAPTER 2

Implementing CCS on a Single Processor

§2.1 Introduction

The primary aim of this thesis is to analyse the various approaches
to‘i‘_rh»};lementing Static CCS on a distributed system. However, for
completénesﬁ, we start by discussing the difficulties associated with
providing an implemention of CCS on a single processor. Part of this
work will be rélevant to the more general case, as we show how cCs may
be embedded in a functional language to form a complete programming

system.

In its intended role as a simplev concurrent calculus, CCS is very
successful. °~ Each user of the calculus extends it with features
appropriate to the problem domain under investigation. However, in
order to implement the calculus as a .programming lénguage, we must be
a lot more specific about areas such as the syntax, that tend to be
neglected when the only manipulations performed on the programs are
by hand. CCS is ihadequate as a programming language for a number of
reasons. Firstly, the syntax is very restricted. There is no facility for
local declarations, for example, which may greatly limprove the clarity of
a program., Secondly, the calculus dées not deal with the introduction
and use. of new data types. In fact it is not even specified what data
types are provided as primitives of the language. There is no mention
of how to connect a process to the external environment of printers,
keyboards etc. One desirable, but not essential, facility that is omitted
from the calculus is sofne form of static typechecking that would
prevent one process frofn sending a value of type t1 and the receiv‘er'~

expecting a value of type tz. All of these omissions are understandable



Implementing CCS on a Single Processor ‘ 20

as CCS was originally designed as a minimal calculus for reasoning
about concurrent systems. These points illustrate why we must extend

the calculus if we wish to prod-uce an acceptable programming language.

There are two ways to tackle this task. The first wouid be to
develop an imblementafion of CCS from scratch, adding extensions as
required, until an acceptable programming environment was constructed.
The problem with this approach is that the sequential part of the
language would almost certainly end up forming a programming
language in its own right. The resulting implementation effort would
therefore be considerable. The second approach would be to take an
existing language as the sequential part of CCS, and embed the
concurrent operators within this system. This approech has the
advantage that the difficulties in implementing the concurrent operators
are not obscured by decisions involving the sequential subset of the

language.

Holmstrom [Holmstrom B83] tackled this problem by embedding CCS
in the applicative ianguage ML [Gordon 79]. Althougﬁ the input and
output primitives of CCS are imperative, the rest of the calculus has an
applicative flavour due to the similaritS' of value binding in CCS and the
Lambda Calculus. Thus a functionél language was a natural choice as
" the ern‘bedding language. Furthermore, ML is a strongly typed léﬁguage
with sophisticated data abstraction facilities which -make it an ideal
candidate for this role. The Holmstrom system, known as PFL (Parallei
Functional Language), was built on top of an existing ML system which
constrained the implementation in a number of ways. Firstly, the new
syntax to handle the CCS constructs was cumbersome, as the primitives
were encoded in the existing ML syntax. This encoding made extensive
use of the coﬁtinuation style of prograrnmir‘xg-to simulate call-by-name
value passi‘ng in a call—by—.value environment. Secondly, the processes
- were rescheduled only when a data transfer took place between two
components. Therefore, in the worst case, the system would hang if a
process entered a non-terminating computation. that performed no

communications.
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To resolve these difficulties, the author reimplemented PFL on top of
an ML-in-ML compiler [Mitchell 85]. In this implementation, the
concurrent operators were built into the un-d.erlying compiler resulting'
in a more faithful éxprjession of the original CCS pr;imit'ives.' It is this
version of PFL, ’described in [Mitchell 84], that ﬁe use as an example of
a CCS implementation in this chapter. Many of the underlying ideas are
based on the original Holmstrom implementation of PFL to which we are

indebted.

§2.2 A short introduction to ML

This section briefly introduces the functional language ML. It is not
intended to provide a complete .description of the language; for this the
reader is directed to [Gordon 79], [Cardelli 82]., [Miiner B4]. However we
hope to give some flavour of the language and sufficient detail to enable

the reader to understand the PFL examples.

ML was originally in’.(.ended'as a metalanguage for the LCF theorem
prover [Gordon 79]. ‘However it quickly established itself as a
programming _langl__lage in its own right. This was in part due to certain
' -fe'aturés in the language, while originélly designed to aid the LCF .system,
gaining wider popularit); in the programming community. These included
thé sophisticated static typechecking, the data abstraction facilities, and

the failure, or exception, mechanism.

At this point it was a natural progreésion fo reimplement ML as a
'stand-alone programming language. This work was performed by
Cardelli [Cardelli 82] and he took the opportunity to extend the..syntax
of the language, particularly in the area of environrnent.constructors.
He also introduéed two new primitive data types, the labelled record and

.variant.

Recently there has been an attempt to rationalise the existing ML
systems and the Hope language [Burstall 80] resulting in a new version
of ML-known as Standard ML [Milner B84]. We shall describe the Cardelli

version of ML simply because this is what the ML-in-ML compiler
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implements, and it is this system that has served as a test bed for our

PFL experiments.

First and'l.for'emost._. ML is an ihteractiVé, strongly-typed langﬁage.
However, unlike the typing systems in languages such as Pascal and Ada,
the ML system does not require that the user specify any t);pe'
infofrnét.ion for most expressions. It is the responsibility of the type
checking phase of the compiler to infer this information from the user’s
program. For example, consider the expression

- [1+2; 3]); .

The ML system on receiving this expression would perform the following
analysis. Firstly, + is‘a binary operator requiring two integers as
arguments’ and producing an integer as a result. 1 and 2 are both
integers and so 1+2 must represent an integer. Given a list of elements
e. ....e of type t, [el; . ;en] constructs a list of these elements
' of type t list. In this case the first element of th.e list is an integer
and so the type checker examines the remaining elemeﬁts (in th_is case
just the element '3") toiensure that they all have the same type. This is
indeed the case and so the type of the whole expression must be an
integer list. It passes this information back to the user, along with the
evaluated result.
.> [3:3] : int list

The description given above is a simplification of the truth, as, in
practice, the type checker unifies types rather than performing exact
matching of types. Such details do not aid the understanding of the
PFL examples that follow,  and, therefore, the description of ML

presented in this chapter ignores such matters.

Values and functions can be defined, and functions applied, as
follows.
- let a = 3;

> a = 3 :int;

- let Tec f(z) = if = = 0 then 1 else z*f(z-1);

> f =\ :int -> int
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- f(a):

> 6 :int

Unnamed functions can be introduced by the \ construct (wher.é‘ \ is
meant to represent A). The function suc that increments its argument
by 1 could‘be defined in either of' the following two equivalent ways.

- let suczx =z + 1;

> suc = \ : int -> int

- let suc = \z.x + 1;

> suc =\ : int -> int

Consider the function definition

- let add(z,y) = = + vy;

' We can view this definition as stating that add takes two arguments, x
and y, and returns the'ir sum. Alternatively, we might view add as
taking a single argument that is a pair. This is the view taken by ML.
The comma infix operator constructs pairs or tuples, and the
corresponding type constructor is denoted by #: Thus the system would
respona with

> add = \ :int # int -> int

Sometimes it is desirable to specify a function that  takes an
argument but subsequently ignores it. This is achieved by the
construct, as in the following function that returns the first of a pair of

arguments.

- let _fst(x,_) = z;

To provide a complete description of ML would take a chapter in its
own right. However, the features described above-should be sufficient

for an understanding of the PFL programs that follow.
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§2.3'.PFL, an embedding of CCS in ML .

CCS consists of a parallel composition operator, |, a summation
operator, +, an action operator, . , a restriction operator, \, and a
renaming operator, []. We ignore recursion as it does not affect this
discussion. One appi'oach to merging CCS and ML would be to simply
take their union in some sense. However, this would involve duplication

of some of the underlying concepts, as we shall now show.

The primary aim of the restriction operator is to limit the scope or
visibility of an action. However, ML already has a static scoping
mechanism, and so it would be unwise to incorporate two similar
concepts in a single language. The renaming operator allow; the
interface to a behaviour to be relabelled. But”again this is sirnila;* to a
concept already existing in ML, namely functiohal, or lambda -
" abstraction. Instead of constructing a behaviour and then i'elabelling
the interface, we can construct a function that, when applied to a
collection of ports, returns the appropriate behaviour. To do this we
Tequire two new types, one for ports and one for behaviours. We extend
ML with the primitive data types beh ahd * chan, where we assume that
every port is of type * chan for some type *. For example, a port of

‘ type int chan can only pass values of type int(eger).

CCS .uses the . operator for action prefixing and employs the
overbar notation T to indicate that a value is to be outpﬁt. Thus ﬁs.NIL
.an.dva.x.NIL denote the processes that output a value and receive a value
on the a port respectively. The ~ operator would be impractical in a
programminé ‘language, and so some alternative must be sought. .. The
CSP convention of ? for input and ! for output are attractive, but
unfortunately clash with existing uses of ? and !Vin ML. This illustrat.es
one- of the difficulties of embedding CCS in an existing language. The

syntax eventually chosen in the Edinburgh PFL system was as follows.

a inp x. p to input a value and bind it to x

a out v. q to outpht a value v.
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where p and q are of type beh.

At first glance, the binding of a value to x may look as if we have
introduced a new form of value binding into ML. However a inp x. p and
a out v. q are expanded by the'implementation into the expressions
read(a, \z.p) and write(a. v, \_.q). respectively, where read and - write

have types

read: * chan # (* -> beh) -> beh

and write: * chan # * # (. -> beh) -> beh

The function w’r’ite‘reqﬁires some ekplanation. .Firstly, () denotes the
single element of type ..  The reason we expand a out v. g into
write(a,v,\_.q) rather than write(a,v,q) is because we~wish to inhibit the
evaluation of q until the value v has been output. By péckaging up q in
a trivial function, we can delay its execution until we evaluate (\x.q)().
This technique is a standard way of simulating call-by-name in a
language such as ML with a call-by-value evaluation order. | Using these
expansions, it becomes immediately apparent that ho new variable

binding mechanism has been introduced to the language.

ML has no eqﬁ'ivalent‘ concepts to the parallel composition or
- 'surnmation‘operators. ahd so we must introduce these. ‘Unfox"tunately,
vagain Vwe cannot:use the CCS syntax as +'and | are already used in ML.
Therefore we ‘introduce the operators ++ and || . We also add the
constant NIL of type beh. Thus, for exampie, ‘
- let rec n(z,c) = c out z. n(z+1,c);

,.defin'es 'a‘function thatAtakes as parameters An integer, x, and Va
channel, ¢, and returns a behaviour that outputs an infinite ascendirig

sequence of integers on channel’ ¢ starting at the value x. The ML type

checker would thus determine the type of n to be
>n = \:int # int chan -> beh

Note that the function _requiresA an int chan as an argument to ensure

» type consistency between behaviours.

Although we have shown how to construct functions that take
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channels as arguments, returning ’behaviours as a result, we have not
‘shown how t;o construct new channels. The exbression-

chen c in B
binds free occurrences of ¢ in B to a new unique port. ;n fact “chan c
in B"” is expanded by the implementation into the expre’ss}i.on "ch(\c.B)"

where ch is a built-in function with type (* chan -> beh) -> beh. Ve

extend ‘this notation to allow
chancl, c, ...,cni_nB
in the obvious way.

*We can now construct .behaviours but héve no way . of evaluating
them. The function exec: beh -> . performs this function. Given a
behaviour, b, exeé(b)_executes b and only terminates when all the

constituent processes have either terminated, or are deadlocked.

This completes our deécription of PFL. The next section gives a
'  number of PFL ekamples. We then discuss the problems associated with

implementing a system such as PFL.

§2.4 Some PFL examples

Consider the problem of computing prime numbers using the method
6f Eratosthenes’ sieve. Irnagi.ne_ constructing a process that first
receives an integer, prints it out, and then passes‘on.any further
< integers it receives that were not multiples of the original number. - By
pipelining n of these processes together and using as input a behaviour
‘that generates thé sequehce 2,3,4,5,6,... we can.pri'nt out the first n

prirmme numbers.

2,3.... L
From(n) »

<l

P = ax. <output x>. P1(x)
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P1(v) = ax!. _
if (x' mod v) = 0 then P1(v)
else Bx'. P1(v)

Pﬁ(n) =if n =1 then P
else (P[y/B] | PN(n-1)[y/a])\y

FROM(n) = @n. FROM(n+1)

To compute the first 10 primes we would use
PN(10) | FROM(R)

The equivalent PFL program is presented in Figure 2-1.

27

let rec pl(i,o,x) =
i inp x’.
if (x” mod x) = @ then pi(i,o,x)

else o out x’.pi1(i,o,x)

ins p(i,0) =
i inp x.
(output the value of x>; p1(i,o,x));

let rec duplicate(p,n,ic,oc) =

if n = B then fail

else if n = 1 then p(ic,oc)

else chan c in (plic,c) ! duplicate(p,n—-1,c,o0c));
let firstNprimes(n,ic,oc) = duplicate(p,n, ic,oc);

let rec from(n,oc) = oc out n.from(n+i,oc);

let firsti@primes = _
chan c, ¢’ in (from(2,c) ! firstNprimes(10,c,c’));

exec(firstiBprimes);

Figure 2-1: A Bounded Prime Number Program
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We can modify the program to dynamically create new versions of

the process p instead- of having a fixed number of them. The new PFL

code is illustrated in Figure 2-2.

let rec pi(i,o,x) =
i inp x’.
if (x’” mod x) = @ then pi(i,o,x)
else o out x’.pl1(i,o0,x)

ins rec p(i,o) =
i inp x.

(Coutput the value of x>; chan c in (pl1(i,c,x) ! p(c,0)));

let infiniteprimes =

chan ¢, ¢’ in (from(2,c) || p(c,c’));

exec(infiniteprimes);

Figure 2-2:° An Unbounded Prime Number Program

As an example of a larger PFL program we show how to implement

an asynchronous weavesort. The program consists of a pipeline of

idepfeical cells

- P e —
—at - — — —
each of the form
Small Big
Lval Rval

—_— S

Lempty Rempty

 ———— . e e————

The ports Lval and Rval send and receive values between neighbouring
processes. The Lempty and Rempt.y- ports allow a process to interrogate

the status of a neighbouring process. Each cell has the following

behaviour characteristics.
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® if the cell is empty then it may offer the Lempty action to
its neighbour on the left. '

® it may accept a value from the neighbour on the left, and if
~the cell is already full it must then wait to pas§ the big

element to the process on its right.,

‘® the value in small must always be kept less than or equal to

the value in big.

®* a non-empty process may transmit the small value to the
process on its left. It must then wait for a value from the

neighbour on the right unless that process is empty.

It is left to the reader to convince himself that this description
constitutes a valid sorting algorithm. Further details may be found
in [Hennessy 84a], where a proof of the resulting CCS program is also
presented. . We can implement this algorithm in CCS by the following

definitions, where the ? and ! notation is used for readability.

AWC Lval?x.AWCl(x) + Lempty! .AWC
AWCl(x) = Lval?y.ASWAP(x,y) + Lval!x.AWC0

AWCa(x,y) = Lval?z.Rvally. ASWAP(x,z) +
Lval!x.(Rval?z. ASWAP(y,z) + Rempty? .AWCl(y))

ASWAP(x,y) = if x > y then AWCz(y,x) else 'AWCZ(x,y)

SRW = AWCo oo SRW

where oo is defined by

P oo Q = (P[SR] | Q[SL])\I
where SR(Rx) = Ix, SL(Lx) = Ix

and I restricts anything of the form Ix.
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The process SRW will sort-integer lists of arbitrary length. Figure 2-3
contains the equivalent PFL program (including some output routines).
The behaviour screen(inva'l,ou'tval) prints out values sent to the port
outval on the terminal, and passes user input from the terminal to the
rest of the program through the channel inval. These examples should
convince the reader that CCS algorithms when translated into the PFL

framework lead to reasonably intelligible programs.

§2.5 The implementation of PFL

' Implementing PFL on & single processor, while straightforward when
compared to the distributed case, still presents some interesting
problems. For example, consider the PFL expression

A ++ (B C) ' 4 .
where A, B and C are PFL behaviours. In Vorder'tol determine the
possible initial moves of B||C we must evaluate B and C in parallel.
. Coping with such expressions is prohibitively expensive, because every
time we evalﬁate a summation such as this we will have to create two
new processes B and C, that are then discarded if an action in A was
performed. One possibility would be to restrict the language to Static
CCSs whérg 'such exampleé cannot occur. We take this approach in the
rest of the thesis as it éids in the analysis of distri‘buted
‘.'I:implementatiohs b‘y removing one extra level of compléxity. It is also
possible in many cases' to compute the initial actions of BJ||C at
compilation time, using the expansion theorem. However, a simpler
approach for the centralised case is to prohibit the parallel composition
operator at the top level of a summation . (i.e. all processes in a -
summation must be guarded by an acti'on). This case can be detected
-at compile time and. an error generated. Holmstrom intreduces two
additional versions of the read and write primitives, and an extra
behavioui‘*“type, cbeh, in order to catch this ca'se' as a type-checking
error. This approach is taken to avoid performing any major changes to
the underlying ML system. | At the present time, the Edinburgh PFL
implernentat”ion performs this check at run-time to avoid the complexity

and confusion introduced by the extra types and functions, while again
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let rec AC(Lempty,Lval,Rempty,Rval) =
AWCB(true)
where rec (
AlCA(last) = .
(Lempty out (). AWCB(last))
+(Lval inp x. ARWC1(x, last))
and
ANC1(x, last) =
“(Lval inp y. ASWAP(x,y, last))
++(Lval out x. AWCB(last))
and
ANC2(x,y, last) =
(Lval tnp z. Ruval out y. ﬂSNﬁP(k,z,last))
++(Lval out x. (Rval inp z. ASWAP(yY,z, last))
++ (Rempty inp _. AWC1(y, last)))
and
RSWAP(x,y, last) =
if last
then chan newRempty, newRval in
(ASWAP(x,y,false) |1 AWNC(Rempty,Rval,newRempty,newRval)l)
else if x > y then AWUC2(y,x, last) else AWCZ2(x,y, last) };

let rec (
master(inval,Lval,Lempty,ocutval) =
inval inp t. 4
let val = intofstring(t) in
if val < B8 then outresults(inval,Lval,Lempty,outval)
else Lval out val.” )
master(inval,lLval,lLempty,outvall
and '
outresults(inval,lLval,lLempty,outval) =
(Lval inp x. outwal out'(stringofint(x)).
outresults(inval,lLval,lLempty,outval))
++(Lempty inp _. A '
master(inval,lLval,lLempty,outval)) };
let prog () = ’
chan inval, outval, Lempty, Rempty, Lval, Rval in
(screen(inval,outval) 1|
master(inval,lval,Lempty,cutval) |!
AWC(Lempty,Lval,Rempty,Rval));

Figure 2-3: A Weavesort Program
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minimising the changes to the underlying system. It is hoped that the

required check for this case can be included in the compiler shortly.

One of the major problems encountered when impl,erne_riting PFL
arises ' from the need to create an acceptable impression of fairﬁess in
the system. By this we mean that every communication that is
theoretically possible in a program must be possible in the
implementation of the program as well. A very simple implementation
fnight use a round-robin sched\iling strategy for the processes, and the
elements of a summation might be t'estéd'in a fixed order. Such an
" approach to the implementation of CCS would lead to an unfair system,
since there. may- be communications between processes that could
theoretically oqcur; but would be prevénted from doing so indefinitely. .
As the user can only perform a finite number of tests on the system,v
each of a finite duration, the implementor' could justify his claim that
t.he..implementation was correct. If the system was treated as a closed
Box, then the user would have no way of proving that some valid
sequences of actions wefe impossiBle due to an unfair implementation
strategy without testing the systerm for an infinite amount sf time.
Having said this, it must be appreciated ‘that the theoretical
requirements of an imi)_lernentation, and the user's expectation of its
" behaviour, are not alwéys in agre:ement. For a system to be acceptable
.to a user, it must be seen to be fair, preferably without haviﬁg to

perform prohibitively lengthy tests.

Consider the following PFL example.
lﬂ p(x) = x out 0. p(x) ++ x out 1. p(x) in p(outchan)

“where 'outcl'.xa:n displays any values sent to it on the térmihal.. An
infinite sequence_of Zeros w'ould be a perfectly acceptable computation
of this behaviour if we only took into consideration the semaﬁtics of
CCS. We might add some form of fairness constraints to the language,
so that in any infinite computation of this example .an infinite sequence

‘of zeros and ones must be printed. Unforitu’nately, a computation that
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printed zeros for a year followed by alternating ones and zerog would
still be an acééptable fair computation, élthough it would not be very-
acceptable to a user of the system. The user expects to see zeros and
ones appearing on the screen within a short space of time, and this can

only be achieved with some form of random guard selection.

We Also need to schedule the processes randomly, which is not such
an obvious requirement at first sight. Consider_ the following example.
A process requires exclusive access to both a card reader and a line
printer in order to accomplish its task. It may request access to both
of them in either order, and once allocated to the process they remain
in that state until explicitly released. We would like to run two of these

processes concurrently, leading to the following PFL program.

let rec cdr (sr,er) = sr out (). er inp x. cdr (sr,er) ;

let rec lpt (sw,ew) = sw out (). ew inp x. lpt (sw, ew) H

let rec p (id, sr, er, sw, ew) =
((sw inp 1. sr inp c. )
(<output id to terminal)

(er out (). ew out (). NIL)))
+

(sr inp c. sw inp 1. _
((outﬁut id to terminal)
(er out (). ew out (). NIL))));

let sys () = chan sr, er, sw, ew in
(cdr (sr,er) i}l lpt (sw,ew) |}

p(l,sr,er,sw,ew) || p(2,sr,er,suw,ew)) ;

~ While not being a particularly good example of a concurrent program, as e
it contains an obvioﬁs deadlock, it does illustratewwhy we require
random scheduling in order to saﬁisfy the user’'s expectationé. Let us
assume that we execute this program on a PFL implementation with
round-robin scheduling. The currently executing process has exclusive
use of the processor until it wishes to perform a communication. If

there is a matching communication request in some waiting process
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then the appropriate value bindings are performed and the processes
placed at the back of fhe 'scheduler queue. If no matching request is
available, the process is suspended. In either case thé next process in -
the scheduler queue is then executed. Consider how this strategy.
effects the above example. Process P, starts executing and requests
exclusive access to the card reader or the line printer. Let us assume
that it is granted access to the card reader. The process is then
rescheduled and P, starts executing. It also requests access to the card
reader and the line printer, but in this case only the line printer is still
" available. At this point the systemm deadlocks as both P, and p, are
waiting for a resource held by the other process, and neither will
release the resource it holds before it has finished its task. While this
behaviour of the system is to be expected some of the time, there is
another possibility. that should also occasionally occur. Process P,
might obtain access to both the card reader and the line printer before
P, in 'which case it may perform its task and then release both
resources. The round-robin scheduling strategy tends to inhibit this
secdnd possibility. Even if we introduce real time-slicing of the
processes, the gfanulari-ty of the time-slicing is typically much greater

- than the rate at which interprocess communications are performed, and

so the problem still remains. The solution is to adopt random
‘scheduling of the processes. However, we must also ensure .that no
process ‘that can run is prohlblted from doing so 1ndef1n1tely For

- larger examples, the deficiencies of the round-robin approach may not
be so apparent, and so there is -a case for providing two versions of the
PFL system; a random version for demonstration purposes, and a more

efficient version for larger programs.

- §2.6 Extensions and restrictions

" In this sectioni”we discuss extensions to PFL that would improve the
". language. We also propose'restfictions that may be necessary in order
to implement PFL on a distributed system. Our preliminary experiences
with PFL lead us to believe that it‘.could form a very powerful and

useful. extension to ML, as well as a practical teaching tool for



Implementing CCS on a Single Processor : 4 35

concurrent programming. For these reasons .we believe that the
language should be developed further, and the following points"-

investigated.

Firstly, PFL can be regarded as a superset of CCS. To see why, we
note that channels and behaviours can be passed between processes as
"values in PFL, which is not allowed in CCS (strictly speaking, CCS allows
them to be passed as values but not used). This possibility greatly
increases the difficulty of reasoning about the resulting programs, which
is why CCS excluded it. Restricting PFL so that structures containing
channels and behaviours . are not valid arguments to an output
communication would result in a less elegant language due to the
resulting loss of orthogonality. The-view we take here is to propoée the
‘definition of a number of subsets of CCS for specific uses. These
jsubsets could be optionally checked for in the compiler.-- For example, a
program that is to be frerifiea may be written in a subset that permits
no channel or behaviour value-passing so as to aid the ‘evehtual proof,
and the compiler can check that this was indeed the case. It might also
be desirable to inhibit the passing of updatable objects between'
processes. Without such a restriction, we allow processes to bypass the
no‘rmsal 'CCS "communication primitives by using shared variables and
‘thus introducing all the .problem's .of shared variable access that CCS

was designed to avoid.

Another subset that is useful (and checkable) results from the
observation thaf in a distributed implementation of PFL without any
éhared memory, the passing of_lva'rge ‘data structures betweén processes
may be difficult.’ There is a case for only allowing primitive data types
such as infegers, reals, strings etc., to be passed between processes.
This would allow thé underlying process synchronis‘ation mechanisrﬁ to”
be;‘ kept as simple as possible, which is especially important when this
mechanism may be implemented in hardware. The restriction may be
circumvented, to some extent, if we allow channels to be passed as
values between behaviours.. For example, consider the problem of
pa>ssing a tree between two processes. When the tree is viewed as a

static (passive) ~data structure, this may cause. problems as the
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components of the tree have to be passed between the .p-rocesse‘s as
separate messaées, the tree reassembled at the other end, and only
then can the destination procéss' continue its execution. The underlying
message-passing mechanism may therefore be quite complex. However,
we can assemble a tree of processes that models the original data
structure, and access the elerﬁents by sending the structure requests',
- rather than manipulating the structure directly- as in the original case.
To pass this active data structure to another process, we only have to
pass the channels that act as communication links to the structure.
Furthermore, vxewmg the data structure as a collection of processes
allows us to defme parallel replication and maintenance functions for
the structure. Of course, on a real .distributed implementation -of PFL
this raises the question of how to manage very large numbers of
processes arising from replacing some of the data objects by processes.
In particular, on a -distributed machine, how do we ensure that the data
structures required by a process are not spread throughout the entire
processor network? = There have been préliminary attempts at
architectures that allow processes to spread smoothly through the
processor network that may be of relevance to this problem [Hewitt 80].
However, solving such problems is very diffiquft and is not investigﬁted
further in the thesis. - This view of data as active structures in terms of
pfocesses is similar to the actor model of Hewit_.f [Hewitt 77] and also .
the object-based programming lénguéges such as SmallTalk [Goldberg
83].

The current PFL implementations allow the user to interact with the
system via an input and output channel to the terminal. Once the exec
‘function has been applied to a behaviour, the input and output channels
provide the only meéns» of interaction v}ith -the system until the
~behaviour has terr;‘linated. or deadlockedv, This style of interaction has a
number of def‘iciencies. Firstly, the need to explicitly apply the function
exec to the behaviour in order to evaluate it appears inelegant; it would
be better if this function could be implicitly applied in some way. A
more serious criticism of the éystem ‘becomes apparent when the

program is to be tested. In order to test a behaviour, a testing process
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must be constructed that tekes commands from the terminal - and
converts them into the required communication requests. AThe_:

construction of such testing processes may become very tedious.

An alternative implementation strategy is to enter an interactive
‘question and answer mode wheh the exec func'tion is applied. The
system would indicate the possible actions at each poiﬁt, and the user
would select the required choice. Such an interface is similar to that
. provided in proof checkers for CCS. By allowing the system to proceed
automatically for a controlled number of steps, or wuntil- specified
actions are possible, complicated systems may b:eA debugged more easily

than with the current implementation.

If we imagine the system under test to b.e composed of a tree of
processes (where the tree structure is derived from the restricfions and
renamings) then we can view the first approach as placing the user
within, or interacting with, a special procéss v}ith a limited set of
communication possibilities with the rest of the system (namely just an
input and output channel of strings). The second approach canAbe
viewed as placing the user outside the system, viewing what is going on
from a distance, and controlling it at the metalevel. A third approach
again places the user within the system. However, in this case we allow
the user compléte freedom to.perforrn any communications pe—:desifé:s.'
In practice this would mean that the evaluation of a beha\;i"o'ur would
retufn control back to the user immediately, running the behaviour
asynchronous'i)'l in the background. The user would then be able to type
sirnple actions, 'summatibns etc., that would communicate with the
Eehaviour. This type of interaction emphasises the need to impiicitly
perform execs when required so as to provide a natural and conveniént
interface to the background tésks. Such‘ an a;)proéch 1s similar to the
use of the & operator .in the Unix operating system. Using such an
interface has many advantages. Behaviours may be evaluated
asynchronously while the wuser continues with some other task.
Furthermore, at any point in time the user may cofnmunicate with the
behaviour through any ports that are accessible to both the user and
the background behaviour. We hope to develop such an ipte_fface for

the Edinburgh PFL system in the near future.
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There are & number of concurrent calculi that have been influenced
by CACS. The synchronous version .of CCS, SCCS [Milner 83), a similar )
calculus developed by Austry and Boudol called MEUJE [Aﬁstry 84], and a
éalculus developed by Milne for hardware descriptioh and verification
called CIRCAL [Milne 85], are good examples of such languages. This
‘_-raises the question of whether to incorporate any of the novel features
of these languages into PFL, in order to extend its power and
applicability as a concurrent programming language. One extension to
the language that could be considered is the ability to perform more

than one communication simultaneously. This allows the notion of

clocked systems to be conveniently specified for example. The
extensions to the syntax necessary to accommodate this feature would
be simple. However, even a centralised implementation of this feature

would be quite a complex task.

One extension that is explicitly present in CIRCAL, and can be
treated as a aerived op'erat.or in SCCS, is the ability to broadcast. a
message on a channel to all processes with access to the channel. In
fact, this is the only form of communication present in CIRCAL. This
extension would be simple to add to PFL in the centralised case. The
- difficulty of implementation in the d.ist.ributed case would depend on the
underlying computer architgcture. An Ethernet based implerﬁentation
miéht support broadcasting very efficiently, whereas a message-passing

network between the processes might make broadcasting impractical.

The asynchronous nature of the current PFL implementation makes
debugging of behaviours difficult. One possibility would be to create a
- pseudo-random version- of PFL that takes a seed as a parameter to exec.
Such an approach would be useful when testing systems, although
genuinel); asynchronous béhaviours. such as interrupt handlers, would

still cause problems.
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§2.7 Conclusions

In this chapter we have present'.ed'a‘version of CCS called PFL that
transforms the calculus into a usable programining language. We have
éiven some illustrative examples of its use, and discusséd a few of the
implementation problems associated with the language. Finally, we have
bointed out some areas in which the system‘is still" deficient and some

- areas for future work and development.

We believe the embedding of CCS in a functional language is the
most desirable way of constructing a usable CCS programming
environment. There are. obviously difﬁc_:ulties associated with such an
approach, such as éyntax constraints and the possible need to constrain
the types of values used in value passing. However, experience with the
system has lead us to conclude that there are no obvious features of a
lnang-uage such as ML that are a hindfance to. CCS. Furthermore,
although we could construct a system with.restriction and relabelling
operations, we believe that the features of a general purpose functional
, lahguage would still be required leading to the rédundanéy.described at
the start of this chapter. .Therefore, we believe . that even if an
implementation of CCS was carried out directly, Ithebresulting ‘s‘ystern

‘would be very similar to PFL.

The next step is to consider the ifhplementation of CCS in a

distributed environment, a much more difficult task.
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CHAPTER 3

Implementing Static CCS on a Distributéd System

§3.1 Introduction

The previous chapter described how we might implement a
concurrent langl.iage such as CCS on a single processor. There are no
problems in synéh_ronising such a system, because all the information

pertaining to each of the processes is readily available, and can be used

- by a centralised scheduler. However, it is difficult to impose a degree

of randomness on the system without an associated loss in performance.
Without some form of randomisation, the user's expéctations of ihe
likely behavibur of a system will differ from the actual behaviour, even
though the implementation may be technically correct. We now wish to
examine the case where CCS is implemented on a distributed network of
ﬁrocessors. ‘Such implementations require the development of protocols,
or ‘.i;;tteraction strategies, for synchronising CCS agents efficiently in a
distributed environmel;lt;;" One possibility would be to implement a
centralised Slcheduler, as for the single processor case.. However, such a
" scheduler is undesirable because the overhead in keeping a .centralised
record of the state of each of the proce-sses may be significant. This
.-contrasts with the..singlé processor approach where the scheduler can
asceftain the global state merely by examining shared - memory
locations. Furthermore, the centralised' scheduler creates a bottleneck
on the performance of the syﬁtem, as all synchronisations in the syétem
are managed by a single process. For these reasons, we do not consider
the centralised approach any further. The problems encountered when
implementing CCS on a distributed sys_t_;em, with a distributed scheduler,
are opposite to those of a single processor system. The fluctuations in

the relative speeds of processes on different processors creates a degree
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of randomisation without any additional overhead. However, the fask of

synchronising communications is not trivial in the distributed case.

The goal of this chépter is to present a number of different
protocols, or interaction strategies, for synbhronising processes in a
distributed framework. We start by examining the problems encoimter_ed
when synchronising Static CCS processes on a distributed system. We
show that for certain programs, those ﬁhere a synchronising annotation
can be constructed, there is ‘a simple algorithm for synchronising the
processes. The algorithm requires a minimum of unidirectional control
messages to be exchanged between.'processes for the establishment of
each bidirectional handshake. We then show how various restrictions
that have been proposed for; CSP can be viewed as methods for
guaranteeing the existence of synchfonising annotations. One of these
schemes has been used as the basis for a derivative of CSP, called
- Occam [INMOS B84a], designed to run on a special purpose processor
called a Transputer [INMOS 84b]. We argu‘e that by using syﬁchronising'
annotations explicitly, rathér than just one particular schem)e for

constructing them, we would obtain a more flexible languége.

The second part of the‘chapter deals with those s-ituations where we
wish to implément a pfogran_m that does not possess a synchronising
annotation. Suc-:l'-i'situations are common, especially as we may not wish
to force an unnatural structure on a p.rogragm purely to aid its efficient
execution. One approach in these situations would be to use a more
complicated synchronisation scheme, that placed fewer or no constraints
on the program. Section 3.6 briefly reviews the work in this area.
"Some of these vschemes rely on aﬁ underlying Syric.hronous message—
passing mechanism, or can be modified to do so. Such algorithms can
‘often bé expressed within Staf,ic CCs, ar-xd in these cases we can view the
schemes as program transformations, rather than an implementation of
Static CCS on top of some lower-level protocol. By wusing such
transformations, it is possible to replace a program that uses the full
power of Static CCS by an equivalent one that only requires a subset of
“the language. Implementation schemes may then be developed for these

vsubset's that are more efficient than implementations of the full
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language. We illustrate this technique by describing an algorithm due to
Schwarz [Schwarz 78] in the form of a transformation. ‘We show that by
using this scheme it is possible to construct a synchronising annotation
for the transformed version of any Static CCS program. We also discuss
" why a transformational approach may be preferable to using the more
tradit.ional implementation techniques. Finally, we illustrate the
difficulties involved in reasoning about the correctness of such
transformations. For example, we must shqw that our transformations
do not change the overall visible b.ehaviour ofA the. system. This last
section illustrates the inadequacies of the existing equivalences for CCS
when applied to these problems and leads us into the theoretical

investigations of Chapter 4.

§3.2 Synchronising processes in a distributed
environment '

A discussion of the problems of implementing CCS in a distributed
environment can only take place once the exact nature of the
-environment has been specified. Furthermoré, some method of
describing the possible process synchronisations in a program, in a form
amenable to analysing the complexity of the communication requests,

must also be developed.

A collection of processes communicating via shared memory may be
‘referred to as a distributed system. The term may also be used to
describe a collection of machines spread across a continent,
- communicating via a satellite network. The diversity of systems covered
by the term is sufficiently vast that any general discussion of the
problems involved in the distributed implementation of CCS would be of
little practical use. We therefore restrict our attention to a particular
class of distributed systems, namely those where processes communicate
via asynchronous, unidirectional, point-to-point messages. Such systems
are important for a number of reasons. They are relatively easy to
implement, and 'thereforje form one of the more common classes of

distributed system. The message-passing model may also allow us to
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. view systems employing & variety .of inter-processor communications

methods in a uniform framework. For example, processors may be
connected to their nearest neighbours wusing shared memory. A
broadcasting method, such as an Ethernet, may be usec;l for medium
distance communications, while a satellite link may be used for loné'
distance traffic. The type of interaction possible between any group of
processors m"a-ybtherefore depend on the cémmunications link(s) between
them. The use of a message-passing protocol for inter-process
communications may allow us to reason about the system uniformly, at
the expense of not using the full communications capabilities of some of

the interconnections.

- Informally, we may view a CCS agent as evolving by packaging up the
actions it may potentially perform in its current state into a request
that is then passed to an underlying subsystém whose task it is to find
matching requests. The agent is then suspended until the subsystem
finds a request containing a complementary label, at which point it
performs the corresponding action, possibly involving an exchange of
values with the matching'agent. It then evolves to the continuation
agent associated with this-action, and the cycle repeats. A non-
deterministic choice may be required in this last step, as in the agent -
P = d.pl + a.p, The mapping of CCS onto a distributed éystem must
therefore describe how agents are mapped onto the processes provided
by the unde'rly’ing system, the form of a communication request, and the

rﬁ‘ég-hanism by which matching requests are found.

There are undoubtedly many ways of implementing CCs o-n- a
distributed system of the form described above. CCS agents
communicate with each other by exchanging messages 'through
con;lp_.lvernen{ary labels, and so oAne péss;ibility would be to assign a
process to each CCS Vagent, and also to each pair of complementary
labels in the program. We refer to these label processes as ports.
Agents may then express thgir desire to communicate using any one of
a set of labels. by sending messages to the corresponding port processes.

Using such an approach, an agent-need not be aware of the identities of

the processes that may synchronise with it by issuing a complementary
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requésf,. This property may be espécially important when processes are
created dynamically, and so the number of communicating"partners
cannot be dpt.ermined in advénce. If CCS possessed no choice operator,
then a very simple synchronisation protocol would suffice. In the
general case; h‘owever, the request sent to a port must contain the
identities of the other ports the agent is also willing to communicate
‘with. The ports may then communicate amongst themselves in order to

establish a synchronisation.

If we restrict our attention to Static CCS, then the éynchronisation
" task becomes simpler. In this ctase, the possible recipients for each
action can. be statically enumerated, or at least an upper bound.
established, and so the label mechanism can be viewed as a convenient
notation for naming an explicit set of processes. In such cases, we may
be able to map each agent into one or more processes communicating
directly with the \processeé representing the other agents. The
implementa;(.ion of Static CCS in such a framework raises many
interesting issues, and so the rest of ‘the thesis will limit itself to this
case. However, while thé specific protocols developed for synchronising
agents in such a ffamework may not be directly applicable to the-
general caée of CCS, the techniques developed in the thesis for analysing
these protocols may also be of use in the analysis of implementation

_strategies for the full language.

If we wish to map a - Static CCS program onto a system where the
" processes representing agents communicate - directly,ﬁ rather than
through ports, then a request will have the form of a set of explicitly
named processes, as well as the corresponding labels. In S}_atic CCs,
- each program is syntactically of the form (Hi_eNp‘_)\L, and so each
constituent agent, p,, may be assigned a unique number i, its process
index, corresponding to its syntactic position in the product
representing the program. We can therefore represent a request by a
set of pairs of the form <process index, label>, called a request s_et.-' To
construct a request set, we must replace a set of labels, formed by the
guards in a summation, with the process indices of . all the processes

that may potentially offer a complementary action.
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The use of request sets is similar to the original development of -
CSP, where. all .communication Trequests ha.d to explicitly name the
destination process. However, in this case, the translation from .labels
to process indices is quite subtle. In general, it will depend on the
current:state of all the égents in the system. It is technically sufficient
to map a label to the set of all process indices, as requesting to
communicate with an agent, using a label whose complement is not
contained in the sort of that agent, cannot result in any unwanted
synchronisations. However, it is reasonable to assume that the
complexity of synchronising a system is in some way related to the
nul;nber of simultaneous requests iss-ued by an agent, and so increasing
the number of requests unnecessarily may lead to implementation

difficulties.

At any point in a computation there 'will be a minimum request set.
Consider a state P = Hiﬂ" | where the implementation of process p‘,.
has translated a set of labels L to a set of process indices PI. This
translation is safe if the identities of all potential communicating
partners for the sﬁmmation correspondihg to the actions in L are
contained in the set PI. More formally, the translation is safe if for all
derivatives of P that require no participéti_on from p‘ in their derivation
from P, if the it cqmpone‘nt, pj’ (1741) in the resulting derivative can

synchronise with an action in L, then j€PI.

For a process to produce an optimal safe re{quest‘."set from a given
set of labels,vthe global state- of the system must normally be
accessible. This is because the ability of an agent to respond to an
action will typically depend on its current state, and hence to determine
an optimal safe request set, the current state of the. other processes
‘must t;e known. Even if the global state is accessible by each process,
the analysis may still be computationally infeasible in most cases. In
practise, the situatioh is further complicated because only local state
information will be accessible to a distributed process. A careful
analysis of the state information that is available may reveal some

indications as to the current state of the other processes,. and hence

potentially reduce the size of the requést set. For example, in a
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network of processes communicating by message-passing, the local state
information might consist of the values of the local state variables and
the history of previous communications performed by this process (and
possibly the identities of the recipients). ‘Using this information, the
possible states of the other processes may be deduced, or at least

partially constrained.

A simple mapping between labels and process indices may be
constructed using the sorts of the processes in .a program. Its
simplicity makes it a suitable candidate for practical implementations.
For a given program P = Hie;v P, where each ‘process P; has sort Si, we
define the function

RS(L) = { j | AeL A %eS, }

where LCAct.

For any derivative of P, say P' = H'EN p,. the request set offered by p/
' 1
may be generated by RS(Init(pi')). It is simple to show that such

request sets are safe.

Other methods for mapping between labels and process indices may
require additional arguments to the mapping function, containing local
state information. A 'discussio'n based on the general notion of a
-request set mapping is compliéated because of this flexibility in the
definition of the mapping. We will therefore assume that RS is used as
the mapping function throughout the rest of this thesis. Generalising to
other, more elaborate, functions is not difficult, but notatior_lally

cumbersome.

Given a program P, and a r'equest set mapping, RS, we can associate
with each c!erivative of P a lab.elled directed graph, called a request
graph, thet describes the currently outstanding communication requests
in the network. The complexity of synchronising the communication
requests of a program 'is reflected in the complexity - of the

corresponding request graphs.
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Definition
For a given program P, request set mapping RS, and derivative of P,
Pt = Hielvpi
graph of P' iff the set.¥ corresponds to the process indices of P,

'

the labelléd directed graph GB=(JV'.8R) is the request

and <i,A,j> is an element of e, if )\€Init(p‘_') and jERS({A}), where

i#j.

One approach to analysing - the complexity of synchronising a
program, P, would be to examine the request graphs generated by all
the derivatives of P. A process will pass a request to the synchronising
subsystem asynchronously from the rest of the processes, and will
receive its replies asynchronously as well. Checking the request graphs
corresponding to each derivative of the program assumes that all of the
requests are synchr"onilsed. For exa@ple, if processes P; and P;
synchronise, then the only request graphs that are examined after this
transaction assume that both P, and P; have issued their next requests
irnmediately after the synchronisation. We do not examine a request
graph where pi has issued its request, but P; is still computing its
request set. Such a distinction does not affect the analysis if delaying
a request does not alter the value of the request set.‘ This is obviously
true for the function RS, but would not be true if a process had access.
to fragments of communications histories involving other proéesses,
such AS could be obtained by eavesdroping on an Ethernet. In such
cases,” delaying a request may mean that the eventual request set is
smaller. Indeed, we could imagine constructing protocols that
deliberately waited until other communications had taken place, in order
to minimise the size of some request sets. The aﬂalysis of ‘such an

approach, and its consequences; are outside the scope of this thesis.

Corresponding to each request graph there is a synchronisation

graph, where <i,j> is an edge in the graph if it is possible for p‘_' and pJ_'

to synchronise.

Definition
The synchronisation gf‘aph corresponding to. the ‘ request graph
G8=(.//',6‘R), for a derivative P' = HieN p, . is defined to be the
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undirected graph Gs=(.ﬂ',é's), where <i,j> is an element Q‘f é's if _ther'e

exists a label A such that <i',)\,j> and <j,Ai> are both elements of

&g

The synchronisation graph summearises the possible communications
that can take place in the current state. The complexity of these

communications is reflected in the complexity of the graph.

§3.3 Synchronisation graphs for some simple
examples’

This section - informally examines the reciuest graphs and
synchronisation graphs for some simple examples, in order to
characterise which programs are simple to synchronise. A method for
synchronising programs with sifnple synchronisation graphs will then be
presented in the next section. The problem of synchronising more

‘complex Static CCS programs will be treated later in the chapter.

Consider a network of processes P, P, - S, P, statically connected
as follows.

RO

" The behaviours represented by P, . - ..p_ are unirri}')ortant,'except that

we assume that P, can'a'lways output a value and p, can always input a
value. Furthermore, any process P, 1<i<n, can either inputv é.value
from P,, or output ar vall:le to pi;l, bul cannot offer both possibilities
simultaneously. All synchronisation graphs resulting from such a system
have the property tﬁat the maximum path length in the graph is one.
To see that this is the case, suppose there existed a graph such that for

some process p_,
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Then the corresponding request graph must be of the form

which. is impossible from the definition of the behaviours. Such systems
are simple to synchronise because whenever a process p, can poténtjally
communicate with another process P; then this is the _c@y process it
can communicate with. Suppose we impose some arbitrary ordering on
-the processes. For example we might chose p‘_<pj if i<j. Then to
synchronise P, and in our simple example it is sufficient to always
" make P, wait fpr a request from P, ©OF in general to make the smaller

of the two processes, with respect to the ordering, wait for the larger.

Let us now consider 'a slightly more cornplicatedA example. We
construct a. tree of processes that can be viewed statically as shown

below.
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Each. process can input values from either of its son.s (if any) or
transmit a value to its father (except po). However it cannot attempt
both simultaneously. If no path exists between two nodes, P, and P;. in
a synchronisation graph, G, then at that point in the computation the
synchronisation of is independent of the synchronisation of P
- Therefore the network of processes containing p, may be synchronised
séparately from the network containing P; Of course, P; may
communicate with some other process, and then evolve to a state where
it can communicate with P, This case wﬂl manifest itself as a more
complicated network in some other synchronisation graph corresponding
to a different derivative of the program. We may therefore analyse the
complexity of the synchronisation graphs by analysing each connected
component of each graph separately. The most complicated connected
component that can occur in a synchronisation 'graph resulting from our

-example is of the form
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We can exploit this property of the synchronisation graphs by allowing
one process in any potentiall synchronisation to wait for the other
process. However, whereas 'in our first example the process that waited
could be chosen arbitrarily, in this case we must force the process that
contains the sum (p‘_) to wait for either of the other processes (p‘_o,pu)

to send a request.

Th-e synchronisation of processes was simplified in these two
examples due to the restricted forms of the possible synchronisation
graphs. In both cases, one partner in every potential communication
had no other partners. We could therefore choose a rule whereby this
process would send a message to its partner and the partner would wait
for the first matching request. Unfortunately, it is not always mnatural
t.o‘ express an algorithm in such a way t..hat the resulting
synchronisation graphs always have this propert‘.y. As an example of
such a case, consider our first example whére each process P; is now
.vallowed to simultaneously a.tt.empt to communicate with P, ‘and Pir
The resulting synchronisation graphs may mnow have c‘c;nnected
components with path lengths greater than two, aé is illustrated in the

following example.
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If a ﬁetwork of processes can produce such graphs, then the approach
_we used for the first two examples is obviously not applicable, as there
is no process that can safely wait for a request without the possibility
of deadlock being introduced. Any scheme for synchronising such a

network must take care to avoid the introduction of deadlock or

livelock. As an example of these possibilities, consider the four
processes

P, = ap, + B.p, q = 3q + 7q,

P, = 7P, + 6P, 4q,=Bq,+ 0dq,

Synchronising such a network is difficult because one of the resulting

synchronisation gréphs may be of the form

P q

1

If we try to synchronise this system in a distributéd environment, the

following two scenarios might take place.
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1. Lazy or timid behaviour.

- In this scenario a process wili attempt to cp)mmunicate with
each of its partners in turn and will reject all requests
from other processes until it has received a reply. We call
the process lazy or timid because it only attempts one
possibility at a time. This scenario may lead to a livelock.
- Suppose P, sends a message to q,. q, sends a message to P,
P, to q, and q, to pl'. When the target processes _receivé
their requests they will reject them because each process
will have an outstanding query. These rejections will
eventually arrivé back at the source processes and each
process will then try one of the other possibilities.
However,the new set of requests may also be rejected for
the same reason and this sequence of events may continue
indefinitely. If the relative speeds of the processes can
fluctuate then we might use probabilis;cic arguments to show
that a successful communication will eventually occur.
However,there will be no upper bound on the number of
messages that may i’lave to be exchanged before a

successful synchronisation is achieved.

2. Eager behaviour.
Weimight try the opposite approach where a process hoards
requests while waiting for a reply from its own query in the
hope that, if its query is rejected, then it can positively
acknowledge one of the waiting requests. This ‘'scenario may
introduce a deadlock as the following sequence of messages
illustrates. Suppose P, sends a 'fequest to q,. While waiting
for an acknowledgement. it receives- a request from q, which
it queues. P, now sends a request to q, which q, queues as
it is waiting for a reply from P,, q sends a message to P,
and this message is also queued. This completes our
deadlock as
P, is waiting for q,

q; is waiting for P,
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P, is waiting for q,

q, is waiting for pl'

§3.4 Synchronisihg annotations

We have seen that for some Static CCS programs a very simple
synchronisation strategy will suffice, whereas in the general case, a
much more sophisticated protocol is necessary. We now consider the
simple case in more detail. The second part of this chapter will' then

deal with how to synchronise arbitrary Static CCS programs.

A simple synchronisation mechanism was possible for the first two
exampleé because in both cases there was an ‘asymmetry that could.be
imposed on the system. Each request issued by a process could either
be flagged as péssive, in which case the process was suspended until a
‘ma.tching' request was received, or else active, in which case the process
transmitted its request to the only process that could synchronise withA
this r.equest,. We call the process that waits the’ M, and the process
that issues the request the master. If we. wish to use such a protocol,
then, in addition to translating each summation into a set of process
indices', we ' must also indicate whether the process is to perform an

active (master) or passive (slave) role in any potential communication.

‘If all requests are annotated with either a slave or master flag, then
a reqﬁest grabh GR=(.Af,é'R) may also be annofated by constructing the
corresponding function MS from the set & of prc?cess indices to the set
{master,slave} of annotétions. The resulting annotated gf'aph ils
"‘represénted by the pair <GR,MS5. Synchronisation graphs-rnay also be

annotated in a similar way.
Definition .
The master/slave function used to produce these annotations is

safe if for every annotated synchronisation graph <(N,68),MS>

corresponding to a derivative of P,

S l.<ijreg o MS(i) # MS(j)
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2. <ij>€€ A <ik>€&, j#k D MS(i) = slave

. . The intuition behind the definition is that if two processes can
potentially communicate, then one will be the master and the other the
slave, and if a process wishes to communicate with more than one

partner, then it must play a passive role in this communication:

Consider the program

(I'T p )\«

i€§1,2,3]
where

P, = &P, P, = &P, Py = &P,

There is only one synchronisation graph for this program, namély

A safe annotation function for this example would be
MS(1) = slave ‘
MS(2) = MS(3) = master’

A program will have an efficient implementation if it is possible to
construct a safe annotation function MS for the program. In such cases

we say that the function MS safely annotates the program.  If this

function is static, i.e. it remains constant as the program evolves, then
this is equivalent to annotating each summation in the program with

either the masier or slave flag.

There will be many cases where it is impossible to construct a safe
master/slave annotation function for a given Static CCS program. This
will obviously be the case when the program contains patterns of
communications that cannot be synchronisedl using the master/slave

approach. However, even when all communications are amenable to this
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approach, the restricted local state information available to ‘each
process may make it impossible to construct a master/slave function

. thét_ only'bases its decision on this restricted knowledge.

If it is not possible to construct a function that safely annotates a
program with the limited state information available, then it may still
be useful to know which communications can use this approach. The
simple communications could still be synchronised using this method,
while a more sophisticated scheme could be used to synchronise the
remaining communications. Chapter 5 takes this approach further by
transforming those communications that are difficult to synchronise into
'equivale;’lt' sequences of communications that can use the 'r'na.sbte'r/sla've

method.

To allow the partial annotation of a program, we extend the possible
values of an annotation to inSlude the unknown flag. An annotation
function is then safe if the communications that use thé master/slave
approach are disjoint from the communications where the requests are
flagged with unknown, and the master/slave corﬁmunications are safe in

the sense defined earlier.

Definition _
An annotation function is safe if for every annotated graph

<(./V',8;),MS> corresponding to a derivative of P,

1. <i,j>€é; A MS(i) = unknown > MS(j) = unknown
2. <i,j>eé DMS(l) # MS(j) v MS(i) = unknown
3. <i,j>€& A <ik>€&_ j#k D MS(i) # master

Every program has a trivial safe annotation function that flags each
request with the wunknown value. If there exists a s.afe annotation
function, MS, for a program P that produces no unknown flags, then we

say that MS is a synchronising annotation for P. Similarly, we may say -

that P possesses a synchronising annotation under specified constraints

on the local state information.
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§3.5 Generating sjnchronising annotations

One simple technique that can be used to automatically generate
synchronising annotations is to i)lace some restrictions on the source
language.. For instance, Hoare's original proposal for CSP [Hoare'78] did
not allow output gﬁards within summations. If we adopt this restriction,
we could then annotate every input summation as a slave and every
output action as &a master and this would produce & simple
synchronising annotation. The same restriction was used in the Occam
language tINMOS 84a], and in both cases a very efficient synchronisation
scheme is possible, but ét the expense of imposing an asymmetry on the
source language. This approach has the advantage that each process
can be annotated independently of the rest of the éystem, whereas in
the more general case the context influences the annotation of a

process.

There are many cases where a  problem cannot be naturally
expressed in the asymmetric subsets of CSP or Static CCS. We would
like té be able to automatically annotate all Static CCS programs, while
keeping the number of unknown requests to a minimum. The function
RS may be used as the basis of a simple annotation function. It is
certainly not optimal, as it avoids examining the state space of a
program by assuming that all combinations  of process sta.teswére
possible. - The advantage of this approach is that it is computationally
efficient, whereas a more detailed analysis‘ would probably be too
expensive for a practical implementation. The main disadvantage is that
v'we .may have to synchronise some of the communications using a more

complicated protocol than is theoretically necessary.

An algori'thm for atitomatical_ly annotating Static CCS programs is
-presented below. It avoids exami.n.ing the state space of the system by
using fuﬁction RS to map between labels and process indices. For this
reason it is far from optimal, although a more detailed analysis of the
'pr’jogr"am is probably not feasible if the algorithm is to.formv part of a
compiler. ‘We show that under this simplifying assumption, the problem

of annotating ‘the program is equivalenf to constructing an acyclic
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dominance relation between the processes with certain properties. We.
present an algorithm for cdnstructing this dominance relation based on

computing the connected components of graphs.

The first step in the algorithm is to construct for each process p in
a progr.am P = Hi yPi 2 set PC‘. containing all request sets that may
€N .-
be ‘issued by this process.” We define PC_ by

PC, = { RS(Init(p‘,')) | p‘,'€de'ri'uat‘i'ves(p‘_) ]

Note that some of the derivatives of p, may not be reachable when
P; is placed in the program P. A more careful analysis might detect this,

and the definition of PC  could be modified accordingly.

As an example of the construction of the,PCi sets, consider the

- following network of processes.

where p, = a.p, 'pz = p.ap, p,= Bpa and p, = RP‘

Then PC, = PC, = PC, = {{2}} and PC, = {{13, {3,4;%

In order to construct an annotation, we must assign to each element of
éver_'y set PC  either the master, slave or unknown flag. We adopt the
convention that the annotation assigned to an element s of PCi_ refers to
the role that process i will assume when communicating with the

processes in the summation represented by s. . Because of our
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underlying .assumption ~about the accessibility ‘of process states,
annotating theé sets can be shown to be equivalent to imposing an 4
acyclic dominance relation < on the processes. .In any communication
between P; and P if p‘<pj then P, is the sla:ué and P; the master, and if
they are incomparable, then this is equivalent to annotating both terms
with the wunknown flag. For example, consider the annotated set PCI,.
Let us suppose that {j, ... ] is an element of the set and has been
annotated with the slave flag. Then it is simple to show that every .
other possible communication between P; and P; must also be annotated
so that P, is the slave. Suppose that this were not the case, i.e. there
was an element of PCj of the form {i, .. . ] that was annotated as a
slave. Our simplifying assumption would then imply that process P, and
>process p, may reach a state where they wish to communicate with each
other and both of them are slaves in the communication, which is not
possibl'e if the sets have been annotated correctly. Similarly, if an
element of PCi mentions j and is flagged as a master then in all
communications ihvolying P; and P, P, will always be the master.
Finally, if a communication of P; involving P; is flagged as unknown then

all communications of P, involving P; will be flagged as .unknown.

- The previous analysis -implies 'that the task of annotating the
elements of the sets PCi is equivalent to constructing an acyclic

dominance relation < between processes such that

i) if S€PC, and j€s then p, < P; or p, < P, .

or they are incomparable (written p, # pj)

ii) if SEPC, A [s|>1
then either Vj€s p, < pj

or Vj€s p-‘_'# p; o ..

Note that the relation will not be a partial order in general as p‘,<pj and
pj'<pk does not necessarily imply P,<P,. i.e. < is antisymmetric but not
transitive. It is Simple to show that such an ordering generates safe

-annotations.
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Silberschatz [Silbérschatz 79] pfoposed a scheme whereby a
dominance relation was provided by the user along with his program. If
two processes p, and. P could cornmu_n.icat.e then either p‘,<pj or pj<p‘,.
Furthermore, the relation was constrained so that if P, has a summatioq '
where P; and ;;k are communicands, for example, then pi<pj and p‘_<pt-.
This scheme can therefore be considered as a method of producing a
synchronising annotation, and implicitly uses our simplifying assumption.
Silberschatz extended this“ ;vork by introducing communic'ati'én
ports [Silberschatz 81]. These can be viewed as a mechanism for
implicitly generating the process dominance relation. Processes
communicate via ports but in this proposal each port is owned by one,
and only one, process. However, there may be several users of the port:
Silberschatz imposes the restriction that summations can only involve
ports owned by the process. This restriction provides the asymmetry
necessary to construct a dominance relation automatically and hence a
synchronising annotation can be deterr'nined‘ for any program using
communication ports. In both of these schemes, the onus is on the
user to .provide the dominance relation, either explicitly in the first
case, or implicitly in the second. We now show how to generate these
orderings mechaniéally. although in many cases we will not achieve a

synchronising annotation as there may be incomparable processes.

We wish to detect all pairbs of sets of the form

{ik, ... ] e PC, ., fim, ... . ] € PCJ,
as these may lead to the following connected component in the

synchronisation graph.

S,

If we encounter such a case then we must make P; and pj incomparable

(p‘,#pj‘). This means that in any communication between P, and P; the
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waiting strategy is inabplicable. As P, is also. involved in this
communication, we must set 4p‘#pk so.that P, does not use the waiting
"strategy when communicating with P, Similarly P,.#P, Suppose that |
{k.n} was also ‘an element of PC‘.. Now p{#pk so we must make p‘_#pn. In

other words, the incomparability may propagate.

We start by grouping together all those processes in PC‘_ that are '
affected by setting P, incomparable to one of them. For each set PC‘,,
we define an undirected graph G‘ = <N1_,E'i>, where Ni is the set of
communicating partners of p, and <j,k>€E“, iff ij.k}és for some sepPC. 1If
we compute the cohnected components of Gi, CC",, then it is simple to
show that if pi#pj then pi#pk f'or all processes P, that are in the sarﬁe
connected component as pJ_ and these are the only processes that are
affected by setting P, incomparable to P, Thus we have a convenient
way of propagating # to other processes. Furthermore, we may use the
CCi_ sets as substitutes for the 6riginal PC{ sets, as any clashes between
the PC'{ sets will also occur between the CC’i sets, and these sets will not

. introduce any additional clashes.

For example, consider the network

with the ‘following PC, sets ot

PC 1 2 3 4 5 .6

;iZ.BIE 321.4!% iy - ey {Hiy t=]
£3,53 {6}
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This leads to the following CC, sets”

cc 1 2 3 4 -5 6
112.3-5331311,”; {1y {23 {1 {233
{6}

The next step in 'determiniﬂg a safe annotation is to look for
synchronisatib&i clashes in the CC’i sets. One approach is to construct a
graph where i is a node if c is a connected component of p, and <ic,jc,>
is an edge of the graph if i€c’ and jec. Returning to the previous

example, this would produce the following graph.

152.3.51 2i1.4¥ 2161

If we now examine all of the connected components in the resulting
graph, then any component containing a path of length greater than two
is a potential cause of a clash. Therefore if <ic,jc,> is an edge in this
compqnent' then we set i#j. These are the only instances of
incomparable pairs and any other ‘connected components are either of

the form

in which case we set i<j, i<k etc, or the component is of the form

'Lc ) ']c"

in which case we can set i<j or j<i. Thus we may deduce P,#P, P,#P,

pl#pa. pl#p5 and p2<p8 from our previous example.
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For a shghtly more encouraging example, one where there are more

comparable pairs, con31der the following example.

P ; P |
1 pz ' ey Py
y oA ' )
B,
5 n
where the PC sets (and the CC sets) are
PC 1 2 3 4 5 6 7 8 9 10

{=) gi'?iz. tt433 \ {3} ) (e} 553§ 322.43 ,354.61 {7.83) t{oy3
(3 {7.81) - {83 93 ) ( 93 ) (1103

This leads to the following graph

Te
616

from which we can deduce

P, <P, P, # P, Py < P,

P, < P, P, # P, Py <P,

Ps < Pg P, # Py Py < Py :
 Pg # P,

‘Given a graph G = <N,E> it takes O(MAX(N,E‘)) time to compute the
connected components, and so this algorithm should be of practical use

in constructing safe annotations.
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This concludes our dnalysis of synchronising annotations.” We have
shown that by annotating a Static CCS program we }nay obtain an
efficient implementation scheme in some cases. This can be done
~automatically if we make some sirnplifying assumptions, although the
algorithm may produce an annotated program invol\.ring unknown flags.

In such cases, we caﬁnot use the simple synchronisation. scheme
- directly, and the techniques of Chapter 5 must be employed. These
involve transforming thghrprogram to simplify those communications that

are annotated with the unknown flag.

'§3.6 A review of synchronisation schemes for Static
CCS ’

We now consider the case where the.‘synchronising annotation
approach is not applicable. We start by reviev}ing' some of the
synchronisation schemes that have been proposed for Static CCS. In
fact they were all originally proposed as solutions to the synchronisation
problems of CSP, but the two languages are sufficiently similar at the
process synchrohisation ~1éve1 for the algorithms to be applicable to
Static CCS as well. This section is not meant to provide an exhaustive
review of the literature in this area although it does cover the major
published papers. The aim of the section is to give some idea of. the
types of imélementation strategy that are possible when a synchronising
annotation cannot be found for a program. We postpone the discussion
of one synchronisation scheme, the polling algorithm due to-

Schwarz [Schwarz 78], until later in this chapter.

' There are a number of ways of classifying process synchronisation
schemes. . For example, some are desfgned for real—time-applicatiohs
while others are designed to work on broadcasting networks such .as an
Ethernet. Some use the natural hierarchies preseht in the source
program to aid synchronisation while others attempt a probabilistic
approach where it is possible for two processes to wait indefinitely to
'synchronise”although this can only happen with a vanishingly small
probability. Figure 3-1 summarises the synchronisation algorithms that

are discussed in this chapter.
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Language Language

asymmelric symmetric

No output
guards

[Hoare 78] [Martin 80]

Asymme t-;'ic Symmetric
ASilbe'rschatz 79]

implementation implementation
/

: i .
[Snepscheut 81] roadcasting

Intermitient Continuous

polling polling
[Bernstein 80]  [Schwarz 78] Probabilistic
[Buckley 83]
[Schneider 82] " [Reif 84]
[Ron 84] [Francez 80]

Figure 3-1: Sy.nchronisation schemes for Static CCS
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One approach to synchronising Static CCS is to break the symmetry
of the systermn in some way. This can be done either at't.he source level
( [Hoare 78], [Silberschatz 79]), or at the implementation level. We Vlilaveb
already seen- some examples of the f'i;'st possibility earlier in this
chapter. One other scheme, due to Snepscheut [Snepscheut 81], also
falls into this category. Snepscheut argues that it is natural to restrict
oneself to'hierarchica]ly composed systems. In such a framework, a
process p, 6 may either communicate with its 'parent pJ its siblings
(children of pj), or its children. It is the task of process P; to
synchronise all communication requests of P, r}a;n.ing either p, or a
sibling of P, P; synchronises all communication requests naming one of
its children and it is also responsible for synchronising pairs of children
with matching requests. Although there are no technical limitations on
the programs that may be synchronised using this approach because a.
suitable communication tree may always be constructed, there are
- practical limitations. Fér example, if ‘a particular program requires a
communication tree of height two, then thé algorithm degenerates to a
global scheduler synchronising all communications, which is obviously
undesirable. This is why we classify this scheme as one requiring a

restriction of the source language. -

We now discuss those schemes that place no constraints on the
source language and will start by describing some algorithms that
produce asymfnetric implementations. An implementation is asymmetric
if the code exgcutgd by process P, depends in some way on its syntactic
position in the program. The purpose of 'the following descriptions is to
illustrate the scope of fhe possible strategies for implementing a
process >synchronisation mechanism. For more detailed descriptions of

these algorithms, the reader is referred to the relevant references.

The first scheme we consider is the one vdue to Bernstein [Bernstein
.V'BO]. A process may be in one of three states, called active, query and
wait. When a process p‘- does not wish to.perform a communication it
is in the active state. Eventually p‘_'will reach a point.wherelit needs to
communicate with some other processes and at that point it enters the

query state. In this state it queries each of its possible communicands
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to ascertain if they are waiting to cornmunieate with Py A
communicand pj may respond positi\'rely with the messege YE'S,. in which
case the connection is established. It may also respond negatively with
the message NO, in which case this.indicates that process P; is not
interested in a communication w1th P, at the current time. Process P;
may also respond with the message BUSY in which case p, may try to
query it again at some later point. If all communicands respond
negatively then the process enters the wait state where it will agree to
the first matching request that is presented to it. If process p, sends a
query to P, and while waiting for a reply a matching query from P,
arrives, then two things may happen. If k > i then P, sends a BUSY
message back to P, and otherwise it deiays responding to p, until it has

received its reply from P;

Buckley and Silberschatz [Buckley 83] show that with certain
schedulers there may be no bouna on the amount of time or number of
messages needed to establish a communication between ‘two processes
using Berstein's algorithm. They remedy this defect by proposing a
more sophisticated retry  mechanism. The first part of the algorithm is
identical to the Bernstein proposal. However, if p, receives a BUSY
response from P; then it attempts no further communications with that
process. until P; has finished its initial queries. At this }Soint P, sends a
RES message to all processes it had sent a BUSY reply to earlier.
Process p;, may then resolve the noncommittal answer it received from
P, by sending one RETRY message. Process P; will either respond with
NO in the case where it has returned to the active state since the BUSY
message was sent, or YES if it has unsuccessfully queried all of its
cornmunicands' Process p; may also be currently resolving a BUSY
communication with some other process P, and in this case it delays
replying to the RETRY message (or any new QUERY messages). This
delay does not lntroduce a potential deadlock as the chain of RETRY
messages is acychc The algorithm has the desirable property that if
two processes can communicate, and one of them does not establish a
communication with a third process, then they will communicate with

each other within a time bounded statically by the program text.
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It is bossible to construct synchronisation schemes that have a
symmetric implementation. The ones we shall describe either require a‘
broadcasting netwérk as their .underlying communication mechanism, or
they rely on probébilistic arguments to justify their correctness. Ron,
Rosemberg'aﬁd Pnueli [Ron 84] present a synchronisation scheme which
relies on the ability of processes in a carrier-sense based network, such
as an Ethernet, to "eavesdrop” on messages not directly addr"essed'to
them. A ‘process P; starts by sending communication requests to all of
its communicands. If a matching request is sent ba_ck from one of the
processes then the other communicands recognise this event by
eavesdropping on. the line .‘and discard the request from P, as it is no

longer valid. This obviates the need to send retraction messages to the

other partners when a successful communication has been established.

The synchronisation scheme due to Schneider [Schneider 82] makes
use of a buffered communications network with broadcasting facilities.
Each message is tagged with a timestamp obtained from a distributed
clock. Lamport [Lamport 78] shows how such clocks may be
implemented without using a centralised control mechg_nism.< This
timest"aﬂmp is used to order the requests received by each process. The
queue represents the complete state of the system as far as process
syncl‘ironisaﬁiqn is concerned and so to ensure that process selection
operates on a consistent queue, every process broadcasts an
aékn_owledgement tov all other processes when it receives a request.
Schne_ider‘s algorithm deals with fault-tolerant issues not addressed in
the other synchronisation schemes but this advantage has to be weighed
against the large number of control messages that rhéy have to be
transferred before a syﬁchronisatioﬂ is achieved. Banino, Ka‘iser and
Zimmerman [Banino 79] have also developed a synchronisation scheme

based on the use of a shared broadcast channel.

Another approach to obtaining symmetrical implementations where a
broadcasting mechanism - is “nhot possible, or would be prohibitively
expensive to implement, is to make use of probabilistic methods. This
approach does not guarantee that two processes will communicate within

a finite time but the 'prbbabili'ty of them not doing so can be made
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vanishingly small. Francez and Rodeh [Francez 80] have 'developed such
a scheme. We assume that each pair of processes that potentially rﬂay
wish to communicate has access to a. _privat‘e"shared varviable. For
simplicity, we will also assume that for each pair’ of processes there is a
unique label that is used for their communication. Suppose process P,
wishes to cornmunicate with process P, It indicates its willingness to do
so by setting the shared variable between them. We assume that this
flag is initially cleared. If after a certain 'timeout’ period the flag is
still set then the process assuxﬁgs that P; is not interested in
performing a communication. In this case P, clears the flag shared with
P, and sets the flag connecting it -to one of the other communicands.
This action is known as a 7etraction. Process P; will continue this
polling until it finds that the flag has been cleared when it is examined
after a timeout. Process P; takes this as an indication that the process
that shares the variable wishes to communicate and so the connection
is established. Similarly if P; wishes to communicate with P, ar}d_ finds
that the shared variable has already been set, it clears the variable and
waits for lthe connection to be established. The algorithm assumes that
there is some form of mutual exclusion mechanism that prevents p, and

P; from setting their shared variable simultaneously.

The probabilistic scheme introduces the possibility that a ‘pair of

processes may repeatedly set the shared variable but, due to an

unfortunate scheduling strategy, may continually miss each other.

Francez and Rodeh therefore assume that the underlying implementation
uses a fair random scheduler. With such a scheduler they argue that
although an infinite time may elapse while two processes try to establish

a successful connection, this can only happen with zero probability.

Reif and Spirakis [Reif 84] also present a probabilistic solution to
the synchronisation problem. Their approach can be viewed as a réal—
time solution in the sense that they can plac'e a limit on the time taken
to establish a communication, and the chance that this bound is

exceeded can be made va'nishingly small.

While our review of these synchronisation schemes covers the major
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work in this area, there are other algorithms which, although not
specifically addressed to the problems of process synchronisation, -can
be applied to such a case. The research published on resource

synchronisation problems is a good example of such work ( [Lynch 80]).

§3.7 Synchronisation schemes considered as program
transformations

Some synchronisation schemes for Static CCS are based on a
synchronous message-passing mechanism, and so may be expressible in
Static CCS. Other schemes may be placed in such a framework even -
though they may be initially presented in terms of shared variables for
example!: We might argue that to “transform a program using a
particular synchronisation scheme is no better than implementing the
program directly using the scheme. We counter this remark in the
following ways. Firstly, we may not be able to use a particular scheme
directly because we have no control over the underlying implementation.
More importantly, it is very wasteful to synchronise an entire network of
processes using a complicated synchronisation scheme when only a small
number of the ~communications may require its gengrality. The
transformational approach has the advantage that it can be applied only
to those parts of the system where a synchronising annotation cannot
be found_. While it would obviously be possible to mix strategies at the
implementation level, this would be more difficult and because of this
we argue that the transformational approach is more flexible. The
algorithm we use may depend on our particular broblem;-»we may want a
transformation with real-time properties for example. It would be
unreasonable to expect the underlying implementation to present us

with such a wide range ®f choices.

§3.8 Schwarz’' synchronisation scheme

This section describes the synchronisation scheme due to
Schwarz [Schwarz 78). The next section will then show how it may be

expressed as a program transformation. Furthermore, it is shown that
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a synchronising annotation . may always be constructed for the

transformed program.

.Many of the schemes for synchronising Static CCS employ the
technique of imposing some form of asymmetry on the system either at
the source or 1mp1ementat10n level. The scheme due to Schwarz also
follows this approach. We assume that an acyclic dominance relation
> has been imposed on the processes. The choice of whether p

dominates q or vice versa is independent of the direction of any

' possible communication between these two processes and can be chosen

afbitrarily. Schwarz has shown that the choice of dominance relation

can affect the performance of the algorithm but not its correctness.

In order for process P, to establish communication with P Schwarz
proposes that they perforrn a ‘"question and answer exchange". One
process is permanently designated the asker and the other the answerer.
If p‘,>pj then P, is the asker and let us assume that this is the case.
These two processes synchronise through the two variables Qij and Aji.
We will allow Q,—,— to be set by P, and be read by P Similarly we will
allow P; to set Aj‘, and it can be read by P; We‘ assume that both
variables are initially set to A. If P; w'ishes to communicate with P; it‘
.start.s by sett.ing Qij to the value "R". This is sensed by P; and the
process responds by setting A,--; to either "Y" if it wishes to communicate
with P, or "N" otherwise. When P, senses the setting of A’,i it resets Qij
and after this action P; clears Aﬁ. In order for a connection to be.
successfully established between P, and p, 'p must ask if p wishes to
communicate and P; must reply positively. Process P, is suspended until
it receives an answer frorn P, which implies that P; must be monltormg
Qij even when it has no desire to communicate with P; Because P; must
respond to questions even when no communication is to take place,
Schwarz assumes that each process oontains a "poller” subprocess which
is responsible for asking and answering questions. Each process must
have a means of communicating with its subprocess, or poller, and so
Schwarz provides a set of variables Cij for process P, such that setting
C‘_j to true implies that the main process p, is willing to communicate
with P, How the poller indicates the successful establishment of a

communication is left undefined.
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Schwarz shows that to avoid deadlocks it is necessary to choose the
> relationship between processes such ‘that there are no infinite

seguences

p‘_>pj>pk>

This is why we stated that the dominance relation should be acyeclic.
If we assume that the processes are indexed by positive integers in
some arbitrary way, we may take > to be "greater than” (>). In order
for a poller to check for communication requests from other pollers, it
must ascertain which processes can potentially communicate with it. We
assume that the i‘" process p. can potentially communicate with the Ni

processes con'necti[O].'connecti[l], Ce e, connecti[Niil].

We give an outline of the algorithm executed by the it® poller in

Figure 3-2.

The commands "lock x" and "unlock x"” respectively freeze and
unfreeze the variable x to prevent the variable changing while in a
critical section. We assume that these primitives can only be used on
variables that ére shared by local processes. This is true in the poller
definition as Cij is shared by the poller- and its control}_ing process and
these are local to each other. "await C" is an abbreviation for the
busy-waiting loop

“while -C do od"

§3.9 A transformation version of Schwérz" scheme

—— e

In an‘e‘xp_erimental imﬁl;-l:nent_‘g_t;ion of CSP, Shrira and F‘rar'lcve;[Shrira] ~E
have transf_grmedlSchwarz’_SynChron_is_ati.Qli{__S_C_f_lff'i}e_._il_'}'fg_‘_a. version that usesé'
message-passing rather than shared variables to communicate between |
processes. The approach is quite general, and could be applied to other
algorithms that use shared variables. Instead of a variable 'b'eing set by
one process and read by another.. we modify the algorithm so that a

message is sent by one and received by the other. We must also modify

 the pollér algorithm so that it continually offers the message "I do not
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Poller 1:
begin n,j,a,q; n:=0;

while true do _
n:=(n+1) mod N j:=conneqti[n];

lock C

ij’

if i>j A C‘,j
then Q :="R"; await 4_#A;
a:=4_;
Jji
Q. :=A; await A =A;
A 7} ji

a = "Y" then "establish channel i j”

=
—h

a = "N" then {offer rejected] fi

O

0Oi>jaA=C..
ij

then {do nothing]}

0Oj>i
then q:=@Q
if q#A A Cij
then 4 _:="Y"; await Q =A; A_:=A;
Y 21 j
"establish channel i j"
0O q#A A —,Cij |
then A_:="N"; await Q =A; A_:=A;
i ji i
O q:A :
then {do nothing}
fi
fi
unlock C._; .
kY] .
od;

Figure 3-2: The Schwarz Poller Algorithm
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want to communicate” rather than doing nothing and letting the other

process deduce this fact by looking at the shared variable.

The substitution of message-passing i’or ‘the shared variables allows
us to expréss Schwarz’ scheme in Static CCS, and hence to view it as a
program transfofmation. However, if this approach is to be meaningful,
we must avoid introducing any additional communication possibilities
that are difficult to synchronise as otherwise we would be reintroducing

the problem that the transformation was designed to solve.

We introduce the transformation as a function over syntactic terms
representing Static CCS expressions. Because of the syntactic nature of
‘the transformation function we would not mnecessarily expect thev
transformation of plga to i>e identical to the transformation of q|p
although the two resulting terms would hopefully behave in an identical
féshion to an external observer. The syntactic treatment of the
arguments to the mapping function, coupled with the fact that all Static
. CCS argumenfs will consist of a parallel composition of one or more
simple processes, allows us to associate a natural orderihg on the
source processes based on their relative positions in the parallel

composition.

In order to transform a Static CCS program, we must translate each
summation into an explicit request set. We use a variant of the request

set function, RS, to perform this task. We-d‘efine

C(A) = ] 7\65'], } for any A€ded,
and will assume that the source programs are such that the

corresponding function C also satisfies the following restrictioh

C(A) n C(A\') #¢ D A = X' whenever AN'€ES, for any i

This condition guarantees thét_if process p, wishes to communicate
with process pj then there is no -confusion over which labelvthey wish to
use in the communication. The restriction simplifies the presentation of
the algorithm, although the analysis can be extended to cover the

general case without difficulty.
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Our first step in the conversion of Schwarz' scheme to a CCS version
is to decide how a master process interacts with itév .poller. In the
original algénr‘iihm the two processes‘interacted via the Cij variables.
The poller prevented its master changing a vériable when it was
examining it, and at all other times the master was free to change the
variable. We must replace this mechanism by one which involves
message-passing. There are'a number of poséibilities open to us at this
point. For example, the poller may .refuse to communicate witﬁ any
other process until it has received a request from its master, after

which it ignores the master until a cprnrriunication has been established.

Another alternative would be for the poller process to be always
willing to accept a request from its master. We might choose to poll

- the master process along with all the other pollers. Allowing the poller

" to always be able to accept a message from the master process creates

a = synchronisation problem because when two pollers wish to
communicate there will be a many-to-many communication request at

this point. We therefore reject this alternative.

Allowing a poller to poll its master means that a translation of a
. process muét continually be willing to offer its request wuntil a
successful communication has been established. This approach does
allow a master process to retract a request at any point which may be
an advantage if we wish to allow 7 moves in our source program. Such
. an extension does not provide.any extra insight into the problem and-
adds 'aﬁ extra degree of complexity. For this reasoﬁ we will choose the
first alternative which does not allow retractions but allows: a simple

presentation of the ' algorithm.-

It is not sufficient to leave the NIL process unchanged in the
transformatiqp using this. approach because the poller "will interrogéte
its master when it has no outstanding requests, and this will deadlock
the poller and possibly lead to a total deadlock of the syétem. However,
if process P, reaches a state where it is equivalent to NIL, then the
transformed version can send a message to the poller requestiné to

" communicate with itself. Such a request can never be satisfied and so
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the poller does not require any additional communications .wit.h its
mvaster. At this 'pqint the master can safely evolve to the NIL process.
To avoid similar problems ‘when a process wishes to synchronise on
communications that can nevér oécur, due to the inverse labels not
appearing in the sorts of ahy other processes, we add i to all request

sets of process P,

We assume that each poller, Polle‘ri say, receives requests from its
master in the form of a set of process identifiers via the port offer,.
Polleri indicates a successful synchronisation by passing back the
 identity of the communicating partner using the port selecti: Given a
Static CCS term of the form HKN P, We translate each process p_ using

the function t'ri as follows.

Each process P, can syntactically be viewed as the process ) a; Py
: jeEm
"~ with a suitable choice of variables. Then

t'ri[[ Z a.j.pij:[’ = let partners =) C(a;j) in
JEM jeEm
offe'ri(pq.'rtne'rsufi}). .
Z (selecti()\).ak.triﬂpik]] where C(ak) = n)

n€pariners

We should really treat the label a, as being composed of two parts; a
label and an optional -value or variable if we are using value passing.
. The function C should then be defined so as to ignore the value part, or
alternatively we should supply a projection function from a, to the label
of a. However, as there is no scope for confusion if this coercion is

performed implicitly, we will use the variable a, for both purposes.

Instead of using an indexed family of transformation func.tions, ‘we
could"equally well have used a single transformation funptioh and then
applied an indexed family of renamings to the transformed processes to
‘achieve the same result. Each master process has its own local poller
process. We introduce a second local process, Buffe'ri, to obtain the

effect of the Q‘,j shared variables. The pfocesé could be incorporated



Implementing Static CCS on a Distributed System ) -7

into the poller definition but this would unduly complicate matters. The
setting of the Qii variable by boller{ is achieved by sencl_ingv a se.'ti(j)
message to Bufferi. Pollerj can interrogate the status of this variable
by using the Q‘_j port. This port returns YES if Polle’ri currently wishes

to query Pollerj and NO otherwise. A typical transformed component is

illustrated in Figure 3-3.

selecti

Figure 3-3: A Poller Component

We define PC, to be U C(A) - {i}. Then Buffer can be defined by

AesS,
1
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Bufferi = Z Ev(NO). Bufferi
: ePCi
e + seti(j)t‘Buffer't(j) )

- Buffer'i(k) = ( Z - Q¢(NO). Buffer'i(k) )

jePCi-§k}

+ m(YES). Bufferi

All that remains to complete thé transformation is a description of
the poller subprocesses. In order for Polle'r;_ to perform its task it must
know | the identities of all the remote pollers that may . wish to
communicate with_if. The set. PCt, contains the identities of all such
processes. To allow Polleri to interrogate the members of this set fairly
we assume that some ,arbitrary' ordering has been imposed on the set

" such that PCi[n] denotes the n'® element.
A description of Polle'rl, is presented in Figure 3-4.

We assume that addition is (modulo IPCi|)+1 so that n ranges over 1
to |PC.

To transform a Static CCS program H_eN p, . we first determine the
1

- sorts .S'i and then apply the transformation function 7r where

i€EN

e I p‘.]]= [T (trlpJ | Polter(1.8) | Busfer)
o ‘ i€N o _

In fact this definition illustrates one of the problems that arises .
v ‘when“dgaling with transformations in CCS. It would be natural to expect
that séme restrictions should appear in the above expression. However,
if we added the relevant restrictions we would find that all ihe actions
of the system would be affected by the restrictions. There would be no
externally visible actions, and this raises the question of how to prove‘»‘
that the transformation is correct. We deal with such problems in the

next chapter.
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Poller (n.k) = let j = PC[n] in

offe'r{(k')». Polleri(n,k') if 'k = ¢
+. Qi(j). if i>j A jek

Aji(r).

if r = YES

then select (j). Poller (n+1 )

else Polle'ri(n+ 1.k)

+ 7. Poller (n+1.k) if 15§ A jZk A ki
+ Q. (r). - if i<j A jek
if r = YES

then Zij(YE’S). select (j). Poller (n+1,9)

else Polle’ri(n+1 k)

+ Q. (r). if i<j A jgk A k#¢
if r = YES
then Zij(NO). Poller (n+1,k)

else Polle’ri(n+1,k)

Figure 3-4: The Schwarz Poller in Static CCS

§3.10 A synchroriising’"‘ annotation for Schwarz’
transformation

In order to justify the transformation, at this point we must ask
ourselves ‘two questions. Firstly, ar.e the transformed terms any easier
to .'ir.nplem‘ent than the original program, a'nd secohdly, does the
transformed program behave identically to the original program, i.e. is
the transformation correct in some sense? A third questioﬁ,i how does
the transformation affect the performance of the program, will be left

until later when we describe how the transformation méy be partially

applied. This section deals with the first question-. -We show how a
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s.ynchrohising annotation can be constructed for any transformed
program, even when the original'program does not possess one. The
first part of this chapter has already described how wé can efficiently
implement programs that have a synéhronising annotation, and so we
may deduce that the transformation does indeed aid the implementation

process.

" The first property we observe about the transformation is that all
the conditional cases in the poller definition are mutually exclusive.
The offe'ri message between Polle'ri and its master is a one-to-one
communication and so either may be the "master”. The ﬁti(j) message
matches with a sum in Buffe'r‘_ so ,}?olle'ri must be the "master” and
Buffer the "slave” for this communication. Aj‘,(r) is a one-to-one
communication between Polle’ri and Pollerj so either can be the
"master”. The selecti(j) message interacts with a sum in the master
process so Polleri must be the “master” in this case. Qj'r(r) interacts
with a sum in B'u,fferj so Polle'r‘_ must be the "master” in this case as
well. Finally, the messages that are exchanged between masters are of
the one-to-one form so any "master/slave” relationship is adequate.
This completes our analysis and shows how a synchronising anriotation

may be constructed for this transformation.

Both the pollers and buffer processes contain input and output
actions within a summation, and so the Hoare restriction of forbidding
output  guards in summations, to obtain an efficient implementation,

" would be inapplicable in this case.

§3.11 Transformation correctness

If+ the same observer process examined both the program and its
transformation, then it would obviously notice a difference. This is
because the interfaces to the environment are different in the two

programs. Therefore, if we tried to apply the testing equivalence =, to

2
these programs we would deduce that they were not equal. In order to
compare the programs the observer must interact with the transformed

system like all the. other processes, via a poller. Suppose we are



Implementing Static CCS on a Distributed System L 81

; and a source program [] v Py Then
1€

we must translate both components simultaneously, i.e. ‘we first

presented with an observer ] «°
i€

construct a new term

H q, where o, = q, Vi€EM and P, = q,,, VieN.
iEM+N

We can then determine the sorts and apply the Tr function to obtain a
transformed version of both the observer and the observed. Such an
approach to transformational correctness is dealt with in more detail in
the next chapter. At this point it is sufficient to note that some
modification of our notion of equivélence is necessary when a

transformation changes the externally visible interface to a system.

Another perhaps more serious problem that confronts us when trying
to reason about the correctness of the transformation is due to the
introduction of non-termination caused by the transformation even when
the original processes terfninate. For exafnple, consider the process
Poue'rl. If the master process reaches a NJ/L state then Poller1 will have
the variable .k set to {1}. The poller will continually check all other
pollers in PCi, and if none of them wish to communicate with Poller ,

then there can be an infinite sequence of communications between

~Polle‘r1 ‘and remote Buffer processes with no other processes progressing.

To avoid such problems in the Schwarz transformation, we could try
to modify the polling algorithm, or restrict the class of programs that
were transformed, in an attempt to‘ eliminate all infin.ite T sequences
that may be introduced by an unfair implementation.. If we view the
collection of PCi sets as specifying a connection graph for the system, -
then there may be more than one connected component in the graph,
énd t‘.he lowest element of every connected component may perform an
infinite sequence of polling communications leading to a diverging
computation. We might argue that it only makes sense to have one
connected component in any connection graph, because either the

observer must exist in only one of the connected components, in which

‘case the other connected components cannot influence the success of
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its ‘t'est.ing, or else the observer is part of a number of connected
‘.component.s, in which case this is ei]uivalent to running several tests on
several separate components simultaneously, and this could equally well
be done separately. Even if we restrict ourselves to connection graphs
with only one connected component, there is still the possibility of'. non-
termination. To 'try to remove the possibility of non-termination from
the process with the lowest index, we might force this process to be
part of the observer and assume that the system is always willing to
communicate with the observer. However, this is unrealistic as in
general the observed system will negd to evolve internally between each
communication with the observer. There a"ppear to be no other
reasonable changes or restrictions we might make to the system so that

it will function correctly on an unfair implementation.

Before we can prove the correctness of Schwarz' transformation
scherné,_we must examine in. more detail those preorders and
equivalences that treat the introduction of some forms of non-
termination as being benign. We must also describe how to perform
transformation correctness proofs when the visible interface to the
system is altered by the transformation. This work forms the core of

the next chapter.
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CHAPTER 4
A Mathematical Framework

for the Notion of,"I‘rnplementation”

§4.1 Introduction

An agent defining the intended behaviour of a component is usually
called a specification in CCS. There is no formal distinction between
specifications and other agents, although a specification will typicaily
define the desired behaviour in as clear a way as possible, with little
regard for efficiency. An implementation of the specification then
consists of a behaviour that is equivélent to it, but that also satisfies
other constraints, such as being more efficient, or containing a fixed
number of processes. There is some flexi‘bility, in these informal

~ definitions, as the equivalen_ce used may depend on the particular agents
under investigation, but the specification/implementation relationship is
symmetric. The first part ofv the chapter argues that there is a case for
making the relationship asymmetric. The aim is to develop an ordering
that pléces less constraints on what constitutes an imiplernent_ation.
while retaining the ability to be observably indistinguishable from the
specification. We do not deal with context-dependent piroofs‘in this
thesis, and so ény proposed definition of irriplementatidn should
preservéd the ordering under all CCS contexts. These constraints limit
the 'degree to which an ifnplementation can differ from being- simply
quivalent to its specification. A candidate for this ordering is proposed
tﬁat corresponds io the intersection of £, and the converse of Eq
P'roving that a behaviour @mpl‘ementsma specification using the new -
definition is not only simpler than proving an equivalence, but is also
sufficient. for many applications, including .the proof of .the Schwarz

transformation.
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The second part of t'h'e' chapter develops a fair equivalence for CCS.
The starting“point. for this aﬁalysis is the testing equival.e.nce approaeh
of DeNicola and Hennessy [DeNicola 82]). We argue that their approach |
agrees with our intuitions concerning process equivalence, except where
feirness arguments influence these intuitions. In particular, we argue
that for any behaviour p, p|t“ should be a valid implementation of p. if
we are only interested in fair \?ersiens of CCS. Previous attempts at
applyihg fairness arguments to CCS have been too resfrictive, and do
not interact properly with the expansion theorem. A new preorder,
known as the weak-must testing preorder, E, is developed as a fair
replacement for the must testing preorder, éz. A weak-must equivalence,
=~ ., is also defined. We show that the new definitien behaves in a
similar way to the = preofder, except for certain infinite computations

where we argue that the new treatment of the behaviours is more

‘natural when reasoning in a fair framework.

Proofs that deal explicitly with observers are difficult in general,

‘and so it is desirable to find an alternative characterisation of the

 weak-must ~ preorder that does not involve observers.

" whose treatment of

certain infinite terms is identical to that required by ~ ., and so

provides a suitable ‘starting'point for t'hiAs'vsearch». We define the

‘corresponding preorder, ,, and prove that E, is contained within Ky

although the converse is not true'.”v_ We argue._that the treatment of
behaviours when the two preorders differ is more natural using the weak
must preorder. We show that a sufficient, but not necessary, condition

for the two preorders to agree is when the class ~of processes is

'restricted to those that are determinate in some sense. The Kennaway

preorder involves sets of processes and so, wh;lle_proofs may be simpler
than*® with the weak must preorder, they are by no means
straightforward. A preorder whose definition is arﬁenable to
bisimulation style proof techniques [Park B81] is obviously more
desirable, and this leads to the definition of the > preorder. The new

preorder directly implies E, but not g . It is also more particular about

" when non-deterministic choices are made in the two processes. Finally,
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to obtain a preorder that aoes directly imply the E, Ppreorder, ‘and also
has a bisimulation proof technique, the >, preorder is proposed. This
preorder is even more particular about when non-deterministic choices
are made. There is therefore a trade-off between ease of proof, and the
class of programs to which these techniques are é};plicable. This last
point will become important when we prove the correctness of the
'Schwarz transformation. Figures 4-1 eand 4-2 summarise the
relationships between the preorders and equivalences presented in this

chapter.

The final part of the chapter discusses how a CCS transformation
function can be proved correct. =~ A definition of transformation
correctness, due to Millington [Millington B8R2], is first presented. This
definition is then generalised to covér the type of functions tsrpified by

the Schwarz transformation.

<(ax | ), (a | %) + 7>

<p . p+tq>

<a.(f.6 + B.y) , x.f.6 + «.B.y>

<a , a.17>

<a , a|T>

<a.(B.6 + B.y), (af.6 + aB.y) | T>

<p ., (p+q)|7°>

where p = a.p + a..NIL and q = (x.q“

Figure 4-1: The relationship between various equivalences
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<p . q>

<a.(B.6 + B.¥) . a.B.6 + aB.y>

<a.B + a.(f + ), a.(B + ¥)>

<a..0 + a.fy , «.(B.6 + B.y)>

<y.a.p + '};.a.é , 7. (a.q + «.8)>

where p = a.p + a..NIL and q = «.q

Figure 4-2: The relationship between various preorders

§4.2 Implementations

Let us consider a specification process'srén"ld another pfocess i that
is supposed to "implement” s in all contexts (see Larsen [Larsen 85] for
a discussion' on context-dependent proofs). Following the testing
approach of Hennessy and DeNicola, what relations would “VVe expect to

hold between pfocesses s and i? Suppose s must satisfy o, or in other.

words, when observing s with observer o, the combined system always
succeeds. Process s therefore always perf(.njms in such a ‘way that o can
eventually signal v, success. What would :Ne expept to happen if i was
placed in parallel with o? If‘there was a corriputétion of ijlo where
success could not be reported we would be rather unha:ppy. We might
argue that part of the specification of s demanded that it must always

satisfy o, and so any procéés that claims to impléement the specification

must also satisfy o. This r:equi‘rement is equivalent to stating that
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s must satisfy o O i must satisfy o

Suppose that i may satis o. It would seem reasonable to demand
that an implémentationl has no more possible actions than its
s'pecificat.i;m. If we did not demand this then placing i in a context
previously occupied by s might result in totally unforseen behaviour,
due to the implementation communicating with the environment through
" labels .that were not used in the specification. We must also ensure that
the implementation does not contain sequences of actions that are not
present in the specification for the same reason. Thus we will demand

that

i may satisfy o > s may satisfy o

What about the other two possibilities? Suppose s may satis o. If

s always satisfied o then we would have s must satisfy o and hence i

must satisfy o. If this is not the case then it may be that the
implementation has chosen to implement a different non-deterministic

branch of the specification, and so may never satisfy o.

Suppose that i must satisfy o. Then we do not want to demand that

s must satisfy o because s i’nay specify a choice of actions of which the -

~-implementation only choses one of them. As i must- satisfy o implies i
may satisfy o, we know that it is possible for the specification to
* satisfy o some of the time. To -illustrate these points, letA us take a
simmple example. A change making machine might be specified and

implemented as

CD = pound?. _
e . (‘r.pencve!(lOO).CD -+ 7.shilling!(20).CD + -r.fiftypence(Z).CD)

ICD = pound?.(pence!(100).ICD)
where CD is the specification and ‘ICD a possible implementation.

CD must be able to accept a pound note and then deliver some

change. There is no way of forcing a particular form of change as this
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depends on what résources are left in the machine. Therefore the only
tests that must succeed aré those which are prepared to accept any.
form of change. But then ICD is alwéys willing to give back one
acceptable form of change, and hence ICD is a reasonable
: impleméntation of CD. Similarly, we had better check that any change
_.given back by our implementation of the cash dispenser was mentioned
in the specification. Forﬂe)v(ample, a cash dispenser that returned

dollars and cents would not be an acceptable implementation of CD.

What of the other two cases? CD may return shillings but as we
cannot demand that it does, we have no way of checking whether our
implementation has this capability, and so we do not demand it.
‘Similarly, our implementation must return pence but again any observer
would * be happy with our implementation as it would " always be
performing an acceptable part of the specification; it is not necessary

that the Specification must return pence and so we do not demand it.

To summarise, we define the notion of implementation as follows.

i implements s or i is an implementation of s iff

V 0€0. i may satisfy o D s may_satis o

s must satisfy o D i must satisfy o

It might be argued that even this notion of implementation is too
restrictive. For example consider the hardware device known as a flip-
flop. The specification of this device is normally very naive in that it
- only specifies what happens if the device is used sensibly. By this we
mean that it is- possible to drive the flip-flop ‘in a way that is not
covered by the specification. In these ca‘ses, t‘he‘behav’iour of the
hardware may be non-deterministic and so we have a situation where
the i.fnplemebntation has more possibilities ;t.hari the specification. We
might argue that the specification should be strengthened to cover these
cases bﬁt this would complicate the specifiéation. especially as the
component is not supposed to be used in such an environment. The
more elegant solution would be to prove that the im‘plementation and
the specification, when placed in a certain cont‘ext, or within a certain

environment restriction, behaved correctly. This type of context-
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dependent proof in CCS is -currently under investigation [Larsén B5].
However the simplest: approach would be to ‘allow the implementation to
have more capabilities than the specification. We might desire

something of the form

i i'mplefhents s < s after s must L D i after s must L

for all visible sequences of actions s, and sets of visible actions L (the
definitions of after and must are presentgd on page 106). However,
although this definition may be easievr to use and prove, the
implementation may be able to perform all kinds of ‘actions not
mentioned in the specification. We would therefore have to be very
careful about the contexts in which we placed the implementatﬁon. In
general, the behaviour of ¢[[i] would be very different from ¢[s] for an
afbitrary context $6. Placing constraints on the sorts, such as
Sort(i)cSort(s), would not help, as i may still possess sequences of
actions not present in s. We rnighf. add fuxv-ther‘constraint_s to cover this
case as well, but as we strengthen the constraints, we are inescapably
drawn to the stage where we demand Ithat i and s are observably
indistinguishable. This is what our pre\}ious definition of implementation
was intehded to formalise. To prove the flip-flop example correct in

CCS, some form of context-dependent proof therefore seems unavoidable.

§4.3 The introduction of non-termination and
fairness

Let us imagine that we have been presented with a CCS expression
that represents the spec’ification of-'som.ve problem. >'Our task is to write
én implementation in CCS that in- some sense agrees with this
'specific;tion. ‘Assuming that s is the specification *and i the resﬁlting'
imple‘mentation, then by our previous al}al')?sis this amounts to showing

that i implements s. Part of this task involves demonstrating that for

any observer o, if s must satisfy o then so must i. This would appear
to be a reasonable requirement of any implementation, and in many
.prob-lerns this is indeed the case. However, suppose that our

implementation introduces auxiliary behaviours that may ‘chatter’
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amongst themselves indefinitely. As an implementor we may_'find this
addition perfectly acceptable. We might appeal to fairness arguments,
for example, to justify the correctness of the implementation. Although
we are introducing the bpossibility of divergence, it is of a rest‘lzﬂ‘i’ct'ed
form in that at any point in a computatio:n it is always possible to
-continue with the desired execution sequence. This cont;rasts with the
introduction of an infinite 7 chain with no other possibilities along its

length, which.is obviously harmful.

Perhaps the simplest example of the sort of process we have in mind
is where we wish to view p|7° as an implementation of p.‘ If we;qs'sﬁmed
that both p and 7° were schedﬁied fairly, i.e. neither behaviour was
allowed to monopolise the processor indefinitely, then p|7® would appear
to be a reasonable implementation of p (although we would expect it to
be slower). . Unfortunately, CCS does not have any fairness assumptions -
built into it and so, for example, the must testing equivalence for CCS,
™, differentiates between these term;. The reason for this is clear;

plT® must satisfy o only when o may report success immediately. This

follows from the definition of must satisfy, where we demand that every

~computation passes through a state where a v move is possible.' This
includes the infinite 7 computation, and so v must form one of the

initial actions of o. . P must satisfy o, on the other hand, may be true

' ~ because of cooperation between p and o. Therefore

p must satisfy o p p|t” must satisfy o ‘

If our view of the world is such that we wish to treat p|7 as a valid
implementation of p, how can we modify the system to permit this? We
need to introduce sorﬁe form of fairness assumption into the system.

~Apt and Olderog [Olderog 84] define four different notions of fairness:
impartiality, justice, weak fairness and strong fairness. Their definitions
assume a static language with a fixed number of processes so that there
. is no ambiguity about what is meant by component i, for example. We
.introduce th_e different notions of fairness in this framework, and thgn
. discuss what needs to be altered for a langﬁage with dynamic process

.ereation such as CCS.
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A computatioﬁ is mpartla if it is either finite or else every
concurrent cbrhponent in the system participates in an infinite number
of communications. - Extending this idea to ccs requires some care in
the Aefinition of what constitutes a component when processes may be
created,’ and terminate, dynemically [Hennessy 84b]. However, this
simple notion of fairness leads to many undesirable anomalies. For
example, p|NIL has no infinite impartial computations as the second
component cannot - participate in any communications. The second
‘notion of fairness, justice, attempts to remeay this deficiency by
aistinguishing between terminated and running components of a parallel
program. Even this notion of fairness is not adequate for languages
such as Static CCS beceuse a- component may not have terminated but
may still be unable to proceed because of no matching requests. This
leads to the definition of weak fairness where the concept of an enabled
component is introduced. A component is enabled if it can potentially
communicate with another process. Then aAcorhputation is weakly fair if
it is either finite or else the following holds for each component: if for
~all but a finite number of steps component i is enabled then the
component participates in an infinite number of communications. Thus

a weakly fair computation of

- («.NIL | (fix X. &NIL + ﬁ XN«

- is guaranteed to terminate whereas

(a.NIL | (fix X. & NIL + By X)N\a
is not, since an infinite computation of the second example may have an

infinite number of steps where the f1rst component is not enabled.

Weak fairness guarantees that components which are continuously
enabled ere not 1ndef1n1te1y prevented from progre531ng Such a
condition may not be sufflclent in mutual exclusion algorithms, for
example, where a component is waiting to enter a critical section. In -
such a case there may be an infinite number of steps where the critical
section is occupied by some other component, and therefore weak
- fairness will not be sufficient to guarantee eventual entry to the section.

Such problems prompted the development of strong fairness. A

computation is strongly fair if it is either finite or the following holds ‘
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for each component i: lf for infinitely many steps component i is
enabled then this component participates in an infinite number of

communications. Returning to our previous example,

(a.NIL | (fix X. NIL + B.y.X)\a

has no infinite strongly fair computations.

The strong form of fairness, while being a desirable attribu_t‘e of a
-_systern, .places some additional constraints on ‘the implementation’
techniques that may be employed in addition to those required for weak
fairness. For example, some forms of round robin schedulers are
inapplicable if a strongly fair implementation is required. Chapter 2 has
already shown how such schedulers do not provide an acceptable
.implementation of Static CCS even though they technically agree with
- the "semantics of the languaée. - Therefore the .techniques required to
implemeht a strongly fair system may be required to give an acceptable

_ view of non-determinism anyway.

The application of these definitions to CCS presents special problems
due to the dynamic nature of the language. In such a framework, the
notion of concurrent component is inadeqﬁate because new processes
‘may be created and old processes rhay terminate within the span of a
" computation. Costa and S’Ciriing [C‘osta B4] develop techniques that deal
with this problem and give a set of finite rules for generating all and.

only the admissible execution sequences when fairness is assumed.

A possible objection to t‘he concurrent component view of fairness
arises because the expansion theorem can no longer be used. To see
why, consider the following two systems.

. P = (fix X. aX) | (fix X. B.X) q = (fix X. a.X + B.X)
We would traditionally treat q to be equivalent to p as they are
obsér’vably indistinguishable, ‘which is why q can be derived from p by
applying the expansion theorem. A strong or weak fair computation of
-p will contain an infinite number of a and B actions as it is composed

of two separate concurrent components. However, an infinite «

sequence is a valid fair computation of q as it consists of only one
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concurrent component, and the forms of fairness treated so far do not
concern themselves with the choice operator. This leads us to conclude
thet the expansion ;theorem is no longer appropriate when dealing with

these notions of fairness.

The stand we take in this thesis is to argue that it is not the
expansion theorem that is at fault when reasoning about fairness, but
rather the decision to consider the fairness of the | operator (| fairness)

and to exclude considering the fairness of the + operator (+ fairness).

We believe that both operators must have fair implementations to
provide an acceptable system. This point has already been touched on
in Chapter 2 where we argued for the neces‘sity of random gu'a'rdh"
selection in an implementatio,n. " If the fairness of both operators is
considered then the expansion theorem still holds, which is important as
we consider it to aid considerably the understanding and usefulness of
CCS. If we wish to take such a decision then definitions of'fairness

based on the concurrent component view of the world are no longer

.sufficient.

Parrow and Gustavsson [Parrow 84] consider a Version of CCS v.vhere
agents may be taggéd with temporal logic expressions that filter out the
unfair sequences of actions. Such an approach allows the implementor
to specify exactly what fairnéss constraints are required by a .par’gicular
algorithm. Furthermore, because these constraints are expressed at the
level of sequences of actions, the distinction between'l fairness and +
fairness is not relevant. - While this scheme is appropriate for particular
algorithms, we would also like to be able to express the fairness
.properties guaranteed by a particular implementation. It would be an
advantage if the fairness assumptions could be built‘into an existing
equivaience éo as to retain a familiar environment when reasoning about
the equivalence of processeé. The testing principle of DeNicola and
Hennessy for the most part agrees very well with our intuitions of
process equivalence, except for its handling of certain infinite
computations where fairness assumptions play a part in influencing

these. intuitions.
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One possibility would be to develop a weaker notion of must satisfy

that ignorés certain infinite _computations.l However, we must be careful
to distinguish between pl‘r“’. and p + 7% Both process-es have the
possibility of an infinite 7 sequence but the first process always has the
option of continuing normally. This gives us a hint as to how to define

a new, weak, form of the must satisfy predicate. The original definition. -

of must satisfy specified that every computation of p|lo must be

successful. If we only demand that at any point in a computation it is
always possible to continue successfully, i.e. every finite prefix of a
computation forms the initial part of a successful computation, then we

have the basis of a weak form of must satisfy.

§4.4 The weak-must form of testing

Chapter 1 defined the set of computations obtained from p|o as
€omp(p,0). Let us extend this notation to represent the set of prefixes
of Bemp(p,o) by PEomp(p.0). We may then give an alternative definition

of the must satisfy predicate as follows.

Definition Vpe?, o€0.

p must satisfy o <> VpcePBomp(p,0).
' Jc€Bomp(p,0) s.t. c€Success A pe<e

We use the notation pc<pc’ to indicate that pc is a prefix of pc'.

To see that this is equivalent to the original definition of must satisfy

we only have to note that Bemp(p,0)CPBomp(p,0).

3

If p must satisfy o then every path through the derivation tree of

plo. including the infinite ones, must pass through a node where a v

move, is possible as is illustrated below.
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We now alter the definition subtly to produce what we shall call the

weak form of must satisfy.

Definition Vpe?, o€0.

P w-must satisfy o <> V finite pc€PBomp(p,0).

Jc€Bomp(p,0) s.t. CESuccars A pe<c

The only change we have made is the addition of a constraint that
the only prefixes we are interested in are finite. We can view the

statement that p w-must satisfy o as an assertion that at any point in

"the derivation tree of plo it is possible to pick a path down the tree

that passes through a successful state.

Consider the derivation trees of (a|7) ‘and a + 7% when observed by

a.v.NIL ..
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" In the first case, wherever we get to in the derivation tree it is always
A_possiblevto find 'a continuation of the path that forms part of a

successful computation. Therefore

alt® w-must satisfy & v.NIL

However there is an infinite computation that is not successful. This

corresponds to always taking the leftmost branch in our tree. Therefore

a|T® must/satisfy &v.NIL

- In our second exémple, there is also an infinite T computation: However
this computation is harmful in that once we have started down this p’é;th

all other possibilities are lost. Therefore .

x + 7% w—ﬂmust/sati§fu a.Vv.NIL

The first example illustrates why our intuitions are not always in

agreement with the original definition of must satisfy. When we look at

" _the derivation tree of «|7°|&v.NIL, we might argue that if we ran the

definition on any ‘reasonable’ implementation of CCS, one of the 7
- branches leading to a v possibility would eventually be taken. However,
CCS has no such fairness constraints built into its definition aﬁd so one
might counter this. argument by exhibiting an extremely malicious
scheduler that carefully i)icked a path through the derivation tree so as
to avoid reaching a state‘ that may perform a v move. Iﬁ our particular

example this would correspond to taking the leftmost path of the tree.
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One obvious question we might ask at this point. concerns the
relationship between the new form of f{esting and the notions of fairness

previously discussed.. Consider the process

P = (a.B.NIL | (rec X. GNIL + 7.7.X))\«

Then under strong fairness assumptions the first process will eventually
perform the avaction and hence a B action will eventually be offered to
the environment. Note that no such guarantee could be made only
ass'uming weak fairness of the system. Consider now what would happen
'if we observed the system with the observer o = BV.NIL. Then

P w-must satisfy o

because at any boint in a computation of plo it is always possible to
extend the prefix to a successful state. Thus the new notion of weak
testing captures the flavour of strong fairness. Because it is defined in
terms of derivation trees, the new definition makes. no distinction
between | fairness and + fairness and so the expansion theorem‘is still

applicable.

Proposition 4.1 If all the elements of Bomp(p,0) are finite then

P must satisfy o < p w-must satisfy o

}-Perof:

- Trivial, as all elements Vof'?‘gom/»(p,o) are finite in this case. O

Proposition 4.2 p w-_*mﬁst satisfy o O p may satis o

Proof:

If p w-must satisfy o then there must exist at least one successful

computation in Bemp(p,0) and hence p may satis o. O

We define the weak equivalents of~1;2 and o, as follows.
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Definition

Pk, Q < Vo€0. p w-must satisfy o D q w-must satisfy o

P~ q < PE,qQAQqQEK, P

..

Our motivation for introducing the weak form of must satisfy was to

allow an imp'lementor some freedom of choice. Thus we could have
defined an asymmetric version of £, Wwhere we assumed that the
specification was not divergent, for example. We might define an

alternaﬂtive version of g, ¢ ', as follows.

PL,'a < Voe€0. p must satisfy o D q 'w;must satisfy o

However, such a definition does not lead to a transitive relation_. For

example,

Pk, pl™g, ¢
but

w

PHE,/ T

. Therefore this possibility was rejected.

§4.5 Some properties of ¢, and = \

~

We will be primarily interested in properties of the preorder g_ as
this is what we will use in the final definition of implementation:

-However, for completeness, the ~ equivalence is also investigated.

One of the most importanf'properties of g,  1is its ability to be
preserved by most of the CCS operators. Before showing this, two

auxiliary lemmas are first proved.

Lemma 4.3

If p w-must satisfy o and

T

plo = poloo pllo1 s —*-%pnlon
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for some n s.t. jm, 0<m<n. om-i-> then P, w-must satisfy- o

Proof: ' ,
Suppose false. Then there exists a préfix m of a computation c
from P, Io which cannot be extended to a successful computation.
But the computatlon obtained by prefixing '
<p°|o°>,<p1|ol>, C ,<pn_1|oﬂ_l> to ¢ is a computation of plo and so
<po|oo>,<p1|ol>; S ,<pn_1|on_1> prefixed to m can therefore be
extended to a successful computation. The only way that

P w-must satisfy o can be true is if for some m<n. om—l/%. But

this is impossible due to our assumptions. O

Lemma 4.4

If a.p w—must satisfy o then 3n s.t.

n
either o150 V> for some o'

D
or o —> o' —> for some o'

Proof:

Follows from the definition of a successful computation. O

Theorem 4.5 If p g 'q then VueddU{T], VAELL Vre? and relabeling S,

KPP E, 4q
plr g, qlr
P\A £ qQ\A

p[S] £, a[S]

-boag\)»-

Proof:

1. Assume u.p w—must satisfy o.

Take a computation of u.qlo, and any finite préf_ix of

- the computation
u.qlo = qo|oo—t—>q1lol—% C. T—>qﬂ|oﬂ

If there exists an i<n such that oiL> then the
computation is successful so we will assume that there
is no such i. If there exists an i<n such that q,=9q

then we have ,uqlo——)qlo and so pu. p|o—-——>p]o But
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p w-must satisfy o, and so q w—-must satisfy o, which

implies that the prefix can be extended successfully.

n
Otherwise-u.plo—>plo_ and by Lemma 4.3,

m.p w-must satisfy o Then by Lemma 4.4, either

m m .
o >0 Y in which case q |[o —=>q |o'—\/—>, or
™ m _ Tm+1" » n
o"—'—>o'-—Léo“ so p.plo“—> plo’’ where

m+1

P w-must satisfy o''. But then qulon-7—> qlo" and

q w-must salisfy o' so again the prefix can be

extended successfully.

2. Assume p|r'w-must satisfy o.

Then p w-must satisfy rlo which implies that

q w-must satisfy rlo and hence q|r w-must_satisfy o.

3. p\X w—must satisfy o <> p w-must _satisfy o\A

and so the result follows trivially.

4. Assume p[S] w-must satisfy o.
We first extend S to deal with the label v, i.e. S(v)=v.
We then define a complement renaming S by S(A) = X if
S(A) = A.

Then p[S] w-must satisfy o < p w-must satisfy o[S]

and so the result follows trivially.

-0

The behaviour' of £ under the fixpoint operaior remains an open
: queéﬁon. Milner [Milner -83] shows that his equivalence' z‘ is preserved
‘ by fix using a bisimulation.. Hennessy and DeNicola [DeNicola 8.2].do not
prove that their. equivalence ~, is preserved by fix directly, but rely on
their induction results to deduce this fact. Neither of these approaches
are open to us for g_-but fortunately we do not require the preservation
of L by fix for the work in this thesis. We therefore postpone 'this

investigation for the time being.

Unfgrtunately, E, is not preserved by + as this simple example

illustrates.
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a.NIL g T.«.NIL but ANIL + aNIL g A.NIL + T.a.NIL

because if o = AVv.NIL then

A.NIL + o.NIL w-must satisfy AV.NIL

whereas

A.NIL + T.a.NIL w-must/satisfy A.NIL

as we cannot prevent the 7 branch from being taken leading to an
unsuccessful computation. This result is not too surprising as gzlis not
preserved by + either. Furthermore, we have the following theorem

which is applicable in many cases.

Theorem 4.6 If p ¢, q then Vuedotuir}, Vre®. pup + r g uq+r

Proof: ' ) >
Suppose this is false. Then there is a computation of (u.q + vr)lo

such that a prefix of it cannot be::successfully extended, i.e.

T

—T—>qn|on;\/b

(n.q + r)lo = qlo,—>q |o,

and Vj<n. Ojﬁ\L}. Let q, be the first point in the sequence where
p1.q + r participates in the computation either by moving silently by
itself or by synchronising with the observer. If no such i exists in
the prefix we can alWays extend the prefix until it does as
otherwise. this would imply thatvthe‘ observer must be able to reach

a successful state by itself which would cause a contradiction.

Suppose the move at q, is due to r, i.e. r—~>r'=q_ .
i i+1

T T o
. Then (u.p +.r)|o p‘;loi - rloi+l

and so r' w-must satisfy s

which leads to a contradiction.

Suppose instea_d that the u move takes place.

Then we have (u.q + r)loi% qlo But then u.ploi%plo and

i+1 i+l

P w—must satisfy o so q w-must satisfy Oii1 leading to a

— i+1
contradiction. O

Although we have shown that £, # G, this does not necessarily imply

.that =, # > If we only consider finite processes, then all
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computations are finite, and so trivially ~, = ~ . However, in the more

ger‘xeralv case, ~, and «_ differ in subtle but significant ways as the

2
following examples illustrate.
Let p = o.NIL|T® q, = (a.NfLI-r"’) + T.NIL

p, = «.NIL q, = o.NIL|T®

Proposition 4.7
1.p, ~, q but p % q,

2. P, 792 qé but pz =, 9,

Proof:

1. We first show that P,~.q,
Let F=7.F, Sl(x) = a.NIL|x and Sz(x) = (a.NIL|X) + T.NIL. We
must show that SI(F) ~, Sz(F) and we prove this by Scott

Induction whose use is justified for ~, in [DeNicola 82].

Inductive base, SI(Q) &, Sa(Q)

aNILIQ ~, a0 + Q

by the expansion theorem
E, cx__.Q + 0 + 7.NIL
 as Q.; X
(a.NIL|Q) + 7.NIL

R

by the expanéion theorem
ie. SI(Q) = SZ(Q)
£, «. + 7(Q+NIL)
by fhg expansion theorem
and X + .Y c 7.(X + Y)
~ o) + 7.0
. as X + NIL = X
ko T(a.) + Q)
as X + 1.Y c7.(X +Y)
= oa.l + 0
as 7.X cC X
aNILIQ
ie. SZ(Q) £, S1(Q)

R
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Hence SI(Q) o, Sa(ﬂ).

Induction step Assume that S,(F) =~, S(F) and show
that SI(T.F) ~, Sz(‘r.F)

aNILIT.F =, a.F + 7.(a.NIL|F)

by the expansion theorem
o.F + 'r.(a.NILlF>+ T.NIL)
by the inductive hypothesis

1R

a.F + 7(7(a.NIL|F) + T.NIL)
as X + 7Y =7+ Y) + 1Y
ana X + NIL = X

7(a.F + 7(a.NIL|F) + 7.NIL)
as X + 7.Yec7.(X + Y)

£, oF + 7(a.NIL|F) + T.NIL

as 7.Xc X

a.NIL|T.F + T.NIL

ie. Sl(‘r.F,) Ep SZ(T.F)

o.F + 7(17(a.NIL|IF) + 7.NIL)

R

12

by the expansion theorem

and pX + p.Y j;_'p.(‘r.X + 7.Y)

14

o.F + 7(«.NIL|F) + 7.NIL)

as X + NIL = X~

and X + 7.Y = 7.(X + Y) + 7.Y
'Aa.F + 1(a.NIL|F)

by the inductive hypothesis

= «.NIL|T.F

i.e..‘Sz(‘r.F) Ko SI(T.F)

Hence SI(T-F) ~, Sz('r.F) and so P, ¥, q,

To see that P, 74" q, consider the test &m.Vv.NIL
Then '

P, w-must satisfy a.v.NIL

whereas
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ql' w-must/satisfy av.NIL

2. p, must sa.t'i,sf-'u a.V.NIL whereas q, must/satisfy av.NIL .
Therefore q,%,q,. ’ '

Suppose p w-must satisfy o but p|v° w—must/satisf'u o for

some process p and observer o. Then there is a prefix of a

computation of p|7”lo that cannot be successfully extended.

A
plT®jo == p'|T%0’ == .
where o has passed through no successful states enroute to

‘

o I

' ‘ v
Then p]oe=>p'|o' and as p w-must _satisfy o, p'lo'== and

\/ .
so p'|t”lo'==> which is a contradiction. Hence pgwpl‘r“’.

Suppose plT® w-must satisfy o but p w—must/satisfu o.

Then ploL———“>p']o'=;vrz—--> for some p', o'

But p|1""|o—'——t‘=>p']’r‘."]o'=\/= and therefore p' and o' must be

able to communicate in such a way that eventually the

observer may perform a v action. Therefore p'|o'\/ﬁ which

leads to a contradiction.

Hen'cé pI7™® £, p and'so p ~_ p|7°. O
This last proof illustrétes» gnother importént difference between =,
.:;nd =~ (and also between [, and g ). To prove that pgwq is difficult in
general because we have to WOr_k with tests. Although [, is also defined
Cin termsv of tests there exists an alternative characterisation of £, that
"avoids the use of these tests. Furthermore,. DeNicola and
Hennessy [DeNicola 82] have shown that for E, it is only necessary to }
consider finite tests. If pg’zq then there will always be a finite observer
"that [can distinguish between them. This is not true for ;’;w as the

'.following example shows.

Let p = a..NIL + a.p and q = «a.q

i.e.
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P (4
(8 . ‘ (84
o & | o
18 & : q
S |
Then we can construct an infinite observer o = @(B.Vv.NIL + o) that can

differentiate between them, i.e.

P w-must satisfy o but q w-—must/satisf'u o.

However, there is no finite observer that can differentiate between these

processes.

We would like an alternative characterisation of By that avoids the
‘use of tests. It would also be highly desirable if it allpwed us to
lperfox-'m bisimulation style proofs. At the very least we would like an
alternative, simpler preorder that treats divergent terms in a similar
way to g, and also implies L. In‘; [kennawéy_ 81], Kennaway develops an
equivalence that is very similar to the 'weak-;must’ equivalence in that it
treats some of the diverging tefms we are concerned about in a similar
way. Furthermore, Kennaway's equivalence can be expressed in a fofm
t-ha;(. is amenable to proofs u.siné' the bisimulation technique. It would
therefore seem prudent to investigate the relationship bet';;reen £, and

‘the preorder version of Kennaway's equivalence.

§4.6 Kennaway's preorder Fi

The version of Kennaway's preorder we shall use is in fact based on
the definition given in [DeNicola 82] by DeNicola and Hennéssy. It
differs from the original in a number of subtle but important ways.
Appendix. A describes the original version of Kennaway's equivalence and

) shows why that version is undesirable because it is not an observationql

equivalence.
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We start with some definitions that will be used frequently in the

rest of this chapter.

Definition

We use p, q to range over # and P, Q to range over subsets of 2.

Let A
- Init(p)
Traces(p)

icle.dct | p-—a——-=>;

. 8
{s€det | p=—}
For any sequence s€dcl, p after s and P after s are defined by

‘ P after- E = p

. -3
p after a0 = {p'|[p==p"}
p after a.s = (p after «) after s
P afters = U Epv after s[p€P;

For any set LCHdcf, p must L and P must L are defined by

. . A
p must L < Vvp' s.t. pcﬁp’. 3N€L. p'=—

P must L < VpeP. p must L

Henness.y and DeNicola presented their version of Kennaway's
equivalence directly. However, as we are trying to find an alternative
characterisation of E, it is necessary to présent it in fhe form of a

preorder.

We define a set of approximations to the desired relation. The.
“preorder is then obtained by taking the limit of %this series. -

P gi Q is always true. ‘
P " Q< i) Vfinite Lgdel. P must L > Q must L

ii) VA€det. P after A g} Q after A

P Q@ < vnx0.PglQ
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We extend this definition to single prchesses and the equivalence in
the obvious way. '

PE,a < (p]kg la} _

P~ Q < Pg Q A Qg P

Pukq <> pEkquEkp

We can give an alternative characterisation of £, Which does not
‘involve a recurrence. This will be useful when reasoning about the
preorder. The proof is based on an equivalent proof for = presented

Tk
in [DeNicola 82]. '

Theorém 4.8 ngQ => Vse.dot‘, vfinite LCAcf.
(P after s) must L > (Q after s) must L

- Proof:

1. (=)
We prove that Pg Q implies Is€det’, LCdcd s.t.
(P after s) must L and (Q after s) myst L

If P;ZkQ then 3In s.t. Pg’;Q. We use induction on n.

Inductive basis, n = 1 _
PZ,Q implies 3L s.t. P must L and Q myst L.
Therefore (P after ) mus't'L and (Q after £) myst L.

Inductive step
1 . . . .
PZ'Q iff either i) Pg/l‘(q
or ii) JA€dct s.t. P after A g’:: Q after A.

In case i) the claim.follows,frorn the base case.
In case ii) the inductive hypothesis states that for some

s€dot, LCAL,

((P after A) after s) must L and
((Q after A) after s) myst L.

But then we may deduce

(P after A.s) must L and (Q after A.s) myst L .

2. (=)
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Suppose 3s€det and finite LCAct such that
(P after s) must L. and (Q after s) myst L.

We show that P g Q by induction on s.

Inductive basis, s = ¢

P after ¢ = P so P£Q, ie. PZQ

Inductive step, s = as

Then ((P after a) after 's') must L whereas

((Q after a) after s') must L
By induction P after o g, Q after « and so P % Q

Corollary 4.9 For all finitely expressible agents p, q V
PE,q > Traces(q) ¢ Traces(p)

Proof:

Suppése 3s s.t. s€Traces(q) and s¢Traces(p). Let a.be such that

sa
q=>.
a exists because q is .finitely expressible and hence has a finite.

sort. Then (q after s) myst {a} whereas_ trivially

(p after s) must {a}. Therefore p % q O

We can prove a similar result for £, l.e.

~

Propdsition 4.10 P E,qQ D Traces(q) ¢ Traces(p)'

Proof: _
Suppose 3s s.t. seTraéés(q) and s¢Traces(p). If s denotes

oo, &, then we construct an observer o as follows, -

o='r.\/+'dl('r.~/+(... 'r.x/+c‘xn) )

Then p w-must satisfy o because at any point in a computation

from plo, the observer can get to a position where it may - perform a

v move by itself. However q w—'must/satisf'u o because
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go—> ... == q'NIL

which cannot be extended successfully. Therefore p\;/w q. O

These two results are useful because they allow us to deduce q g, p

from pg, qor p K, 9 because Hennessy has shown in [DeNicola 82] that

Traces(p) <€ Traces(q) < p k; q

What is the relationship between g, and E,? The following theorem

answers part of this question.

Theorem 4.11 p Ewd 2 PE . q

.Proof: A
We prove that p g, q irnpliés PY, q
If p¥ q then 3s,L s.t.
(p after .s) must L and (q after s) myst L,

A
i.e. p=—5=>p' implies JA€L s.t. p'== while

3q', qs=>q' and q'}‘=> for no A€L.

If s = o0 & then we define an observer o as follows
o =TV + @tV + @ ... GtV + d( P, EY) ... )

acl

Then p w-must satisfy o whereas q w—must/satisf'u o and so

P ¥, q : . o

- Unfortunately, p = | 2 p E, q as the folléwing example shows.

~ -Consider the processes p = a.f.NIL + a.p and q = «.q.
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Then p g, q beceuse (p after s) must L D (q after s) must L vs,L.

To see this we perform a case analysis on s.

i) ~s = a”, so (p after s) = {p, B.NIL}. .

It (p after s) must L then {«, g} € L.
But q after s = q and q must {«, B].

ii) s = a so p after s = {NIL} which must L for no L.

iii) s = something else, in which case p after s = {},

q after s = {} and both of these must L for any L.

However the observer o = &o + [_9.\/_c_‘an distinguish between p and q

as P w-must satisfy o but q‘ w—must/satisfu o, i.e. p;g/wq.

We can trivially show that p ~., 42 p >~ qbut égain the converse is
not true, ie. p ﬁk' q p ~_ q. As an example of why this is not the
case, consider p and o as defined previously and Q" = q + p. Then
P~ q ie. '

(p after s) must L < (q' after s) must L Vs,L.

To see this we again perform .a:case analysis on s.

Then (p after s) = {p, B.NIL}
and (q' after s) = {q, p, B.NIL}
Both sets must L only for any L where {a,8}cCL.
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ii) s = a"g

Then (p after s) = _INIL} = (q' after s)

iii) s = something else.

Then (p after s) = {} = (q' after s)

However p w-must satisfy o but q' w-must/ satisfy o so P ¥, q end

hence p #_q'.

This is an example where =~ and =, agree as we can show that

K 2
P ~, q. Let Sl(p,q) = p and Sz(p,q') = p + q. Then we will show that

S,(p.q) =, S,(p.q)

Inductive basis, Sl(Q,Q) =, Sz(O,Q) trivially.

Inductive step,

Assuming S (p.q) ~, S (p.q).
show _Sl(a.p + a.f, a.q) =, Sz(a.p + «.f, «.q).

Sl(a.p + a.f, a.q) ¥, a.p + a.B
~, a.(p + q) + a.f by inductive hypothesis
=, a.(a.p + a.g + a.q)4+ «.f by expansion
'”z a(a.p + af) + aa.q + a.f

~, a.p + a.f + a.q

o, Sz(a.p + a.f, a.q).

Before summarising our results we show how these equivalences
relate to Milner's observational equivalence x [Milner 80]. None of the

equivalences imply_' ~ as we can show that

It is simple to show that =~ implies ~_ and = .
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' Proposition 4.12
Pxq D> i) p= gq
i) p~, q

" Proof:

i) Suppose w.l.g. that p w-must satisfy o but q w—'must/sat'isf'u o.

3 V[l . 8 8
Then qlo >q'lo' ==, i.e. q==>q', o=—>0'.
But pxq so 3Ip'mq’ s.t. p-l——:'p‘.
v
As p w-must satisfy o then p'lo' ==,

s’ 1:8
ie. p=—p", oo =—>o0" —i-> .

. v )
This implies q's=> and so q'|o'=—>, a contradiction.

ii) If p #, q then w.l.g. assume that
(p after s) must L but (q after s) myst L.
©s A
Then q=—=q' and for all A€L. q' ==

But 3p’' s.t. ps=p"and P'Rq'.
A
Furthermore 3A€L s.t. p'—

A .
and this implies @'=—>, a contradiction. O

It is simple to show that pxq does not imply p~,q as axalT? but -

o, |

§4.7 An analysis of the differences between £, and g,

Consider the processes P, and q, defined by

Both 'orderings agree, i.e. P,ky4, . P, Q.
qQ, ¥ P, . 9 & P,

Similarly, if we define P, and q, by
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Q
o

f
Q

then again they both agree, i.e. Pk, Q  P,K 9,
9, % P, : 9, % P,

Let us now extend P, and q, to the infinite case, i.e. we define

Then both orderings take the view that because it is possible for pl'
to reaci’x a state that can perform a B, and because it will always have
. this option, then it will eventually be allowed to take place. A B move
can never happen in ql' and so pl' Z, ql' and pl’ gz’k qi’. Unfortunately,
the two orderings disagree“on what should happen when p, and q, are

extended to the infinite case. Let pz' and qa' be defined by
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x (84
x (84

'

Then following the argument for P, and ql', the weak preorder
distinguishes between these two terms because it assumes that a g

action will eventually be allowed to happen in pa' whereas it cannot in

q,. ie. p, ¥ q,.

However pz' = qz' which is unfortunate as it implies that £, is not

preserved by the bar operator. To see this we note that

p, = (p,18°N\a and q, = (q,[&N\a

To summarise, these results imply that Kennaway's preorder does not
form the basis of a characterisation of £, and furthermore, it would be
very difficult to use the g préorder in its own right as it is not

preserved by the parallel composition operator.

In ordér to precede from this point the;'e appearl to be. a number of
choices. We vcould try to find another characterisation- of L. The
Kennaway preorder éncounters difficulties because the definition of must
captures our intuitions where 7 moves are involved but when we replace
the 7 actions by visible actions then the preordelj cannot ‘see through'
these actions. We have experimented with some alternative definitions

of must that try to remedy this problem. For example, we might define

P must® L iff vp' s.t. ps=>p‘, p'% for some a€l

where s, s'e M°
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This would allow us to differentiate between pz' and gz' in our previous
example as - . . -

| P, must!*ig} whereas q,’ myst!®ip).

Unfortunately, all attempts to build such definitions into the Kennéway"

preorder have so far proved unsuccessful in faithfully characterising ¢ .

Another posvsibility is to find some additional constraints on
processes p and q such that pg q does imply pg q. The next section
investigates such a constraint called Controllability. Demanding that a
process is controllable is rather a strong requirement and hence the
work, while providing a connection between = and. e is of limited
applicability. Section 4.9 extends this work by relating the notion of
controllability to Determinacy [Milner 80, Engeifriet 84]. Section 4.10
introduces a simple preorder that implies the Kennaway preorder. We
use this preorder in Chapter 5 +to reason about the Schwarz
synchronisation scheme. However it does- not directly imply g, and so
suffers from the same deficiency as E, in that it currently relies on
determinacy to establish a connection with the weak testing preorder.
Because of the limited applicability of these results (although an
example of their use appears later in the chapter and also in Chapter
5), the next three séctions may be viewed as a digré'ssion from the main

results of this chapter which continue in Section 4.11.

§4.8 Controllable processes

Let us start by considering again the example where £, and g

disagreed. -

Q
=™
K

™

One constraint that might allow us to deduce 'Pk,q from pg q would be to
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filter out uncontrollable processes such as p in the above example. ~
Informally, a process is controllable if its evolution can-be controlled by
means of the actions offered to it by the environment. Process p in the
example above is uncontrollable because there is no way for the
external environment to guide the process to a state where a g action is

possible.

The formal definition of controllability uses sets of agents. A set P
is controllable if, whenever one“of the processes in the set can perform
an action, then this action r;lust be an unavoidable choice for all the
agents (i.e. a 7 transition cannot remove this possibility). Furtherrﬁore,
the set of processes obtained by performing this action must also be-

- controllable. A process p is controllable if the singleton éet containing
p is éontrollable. The use of sets. of processes in the definition of
controllability allows non-deterministic choices to be present in an
agent, but ensures that such choices dé not affect the externally visible

behaviour of the process.
‘Definition

P is controllable iff
A
(3peP, A€det. p=—=) D P must {A}, and (P after A) is controllable °

P is controllable iff {p} is controllable.

"Proposition 4.13 P controllable > (P after s) controllable for any s€dct

Proof:

By induction on s.

Induction Basis, s = ¢

* P after ¢ = P so the proposition follows immediately.

1

Inductive step, s = as

P after s = (P after a) after s’

Then if P after « = {} then P after s = {] and

is trivially controllable. Otherwise P after o is controllable
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by definition and so by the inductive hypothesis,

(P after a) after s' is therefore controllable. O

, . ' A
Corollary 4.14 If p' € p after s and p'==> p" then (p after s) must {A}
Proof:l Immediate. O

We now show that controllability of p is sufficient to deduce =l |

from PE. Q-

Theorem 4.15 p g, q A p controllable > pg_q

Proof:
Suppose pr{wq so that there exists an observer o where

P w—must satisfy o and q 'w—'must/satisfu o. In other words there

exists a computation

go = qo,—>qjo > ... ——>gq Jo ">
and a prefix qoloo, - ,qﬂlo,l that cannot be extended to a
successful computation. Let s be the sequence of actions
performed by q between q, and Q. Either the computation is finite

or infinite; we treat the two cases separately.

1. The finite case
We take qn]on to be the final state of the computation.
qs=>qn and pg,q so ps=pﬂ for some P, Now if a
computation from plo is to be successful then either the
computation has passed through a successful state before
reaching pnlon, in which case the computation from qcloo

would also have been successful, or

s' 5’
o =o'—>\/ , p=—>p' for some o ', p '
n n n n n

n

and so p_ must Init(ou) (with rather loose notation).

This is true of any such P, i.e.

(p after s) must Init(on)

whereas
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(q after s) myst Init(o )

and so we have derived a contradiction.

2. The infinite case.
If q=s=qn then ps=>pn for some.p . Furthermore, there

exists an s' = s .as, such that

Now p '€p after s.s and pn'=‘:=> so (p after s.sl) must {a} as
p is controllable. However (q after s.sl) myst {a}] which leads -

to a contradiction. ) D

Corollary 4.16 If p and q are finite and P5,Q then pgwq

- Proof:
For finite processes we only need to use finite observers and so all
computations are finite. The first part of the last proof will. .

therefore hold which makes no assumptions about controllability. 0O

§4.9 ~ -determinacy

Suppose we ha§e a process p with the property that if p can
perform an a action to become the process P, then any other process
P, that is also reachable from p via an « move is related to P, in some
wa'y'.' If P,~P, then Milner [Milner B0] calls thié property of a process

. strong determinacy, i.e.

Definition
p is strongly determinate iff VA€Act
i) p>p end p2>p, > p~p,

ii) p—’\——>p' O p' is strongly determinate.

The intuition behind this definition is that if a process is strongly

determinate, and contains a non-deterministic choice involving visible
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actions, then this choice has no observable significance, i.e. the

‘behaviour appears deterministic. Unfortunately, the definition does not
constrain non-determinism d'ue to the 7 action, and so this aim is only
partially successful.” The requirement that members of the set of agents-
reachable from a visible non-deterministic choice must be strongly
congruent to each other is also an unnecessarily strict requirement in

many cases.

Engelfriet [Engelfriet 84] extends this idea by defining =-determinacy
for any equivalence relation =. His definition is observational, or weak,
in the sense that he deals with sequences of actions =— rather than

the single actions of strong determinacy.

Definition Let = be an equivalence relation over piocesses.
Then a process p is =-determinate iff for any s€dof

s 8 .
p=—>p, and p==p, O p =p,

Engelfriet goes on to prove that =~-determinacy and: =~ -determinacy
are the same and calls this property determinacy. He then shows that
for determinate processes x and m3‘ coincide. We may obviously extend
this result to our weak equivalence as

R

Therefore, if we are working with equivalences rather than preorders,
-showing that the processes are determinate is sufficient to deduce P=_q

from p=~_q.

The situation for the preorders is more complicated. If we define a
Ppreorder version of w,

P [ qiff Vs€dof . p==p' > 3q. q=—>q' A p' L q

~then p £ q 2 p'k, q,-for example, as
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A result for the other preorders along the lines of [Engelfriet 84] may
be possible but it is outwith the scope of this thesis. However, we will
show that = -determinacy is equivalent to controllability for a process
and so either constraint on p will allow us to deduce PE,q from pg.q.

We start by presenting some lemmas about controllable processes.

Lemma 4.17

If P controllable then P’ controllable for all P'CP.

Proof:
Suppose false. There must exist a sequence s such that for

N .
p'eP’ after s, p'==p" but (P' after s) myst {A}. But p'eP after s

and so (P after s) must {A] which leads to a contradiction. O

Lemma 4.18

If P controllable and P must L then 3IA€L s.t. P must {A}

Proof:
If P must L then either P is empty in which case trivially
Pm_us_t {A] for any A, or P has at least one element p.
Furthermore, as P must L, JA€L s.t. pL—‘*—,’. But then P must {A} as

P is controllable. O

Lemma 4.19

If P is controllable then for any P'CP,

if (P’ after s) must L for some s, L where (P' after s) # ¢,
then (P after s) must L. -

" Proof:

P’ after s is controllable as it is a subset of P after s by Lemma
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4.17. Therefore 3A€L s.t. (P’ after s) must {A}] by Lemmae 4.18.

A
P’ after s is non-empty, Ip'€P’ after s s.t. p'=p"”. But

p'€P after s and so (P after.s) must {A] and hence

(P after s) must L. O

" Lermmma 4.20

If P is controllable and Png'-!k then (P after s)x(P after s)C,

for any sequence s€det

Proof:

Suppose it is false, i.e. 3s s.t plyékp2 for some P, P,€ P after s.

Then let s’ be such that for any s’ where [s”| < |s|

(p1 after s") must L' < (p2 after s") must L' for any L'

and w.l.g.

(p1 after s') must L but (p2 after s') myst L for some L.

~There are two cases to consider.

1. P, after s’ is non—émpty.

In this case (P after s) after s’ must L by Lemma 4.19

as ipllg_P after s. But p, after s’ ¢ (P after s) after s’

so we have a contradiction.

2. P, after s' = ¢. Now s’ cannot equal € so 3Ja,s” such

that s’ = s''a. Furthermore, P, after s’ # ¢ and so

s" a
p,=> P, =>p," for some p,, p,".
Now p, after s is controllable and so

(pz after s') must {a} but (p1 after s") myst {a}. But

“121

then by Lemma 4.19, ((P after s) after s’) must {a} and

(p1 after s') ¢ ((P after s) after s") so we have

obtained a contradiction again. O

.

Lemma 4.21

N .
- If p= and p is ~ -determinate, then p must {A}

Proof:

_ N _
Suppose false, i.e. p£=>pl-)‘—>pl_' and p£=>p2;b. Now because

of uk—determinacy‘, P,~,P, Let ¥ be such that pl'%y&'-;'. Then
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(p2 after A) must {y] whereas (p1 after A\) myst {y} and hence

P,#,P, & contradiction. D

: . | .
Corollary 4.22 If p=— and p is ~ ~determinate
then (p after £) must {A} ‘

We are now in a position to establish a connection between

=~ —determinacy and controllability.

Theorem 4.23 p controllable < p ~ -determinate

Proof: -
1. (=)
Suppose false, i.e. ps=>p', pé$p", p’#kp". But p' and
p'' are members of {p} after s and so by Lemma 4.20,
p'~,p', a contradiction.
2. (=)

A
Suppose false, i.e. 3s and P,€p after s s.t. p1=>p1' but
(p after s) myst {A}]. In other words 3p,€ p after s s.t.
A
pztﬁpz';b. Now P,~.P, and so by the previous lemma,

P, must {A]. But this leads to a contradiction as

(p1 after £) must {A} but (p2 after ¢) myst {A]. O

§4.10 The > preorder

'Although Kennaway's preorder is: easy to work with because it does
not inyélve observers, it does require the manipulation of sets of
processes. Motivated by what we require of an ierlementation, we now
: .develop a ;/'ery simple preorder that wiliimply ti'le Kennaway preorde.r_.
It involves no sets of processes or tests, but the relation will be quite
restrictive. However, we will argue that it is applicable to many real

situations.

Let us suppose that i was designed to be an implementation of the

specification s. What relationship would we expect between i and s?
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One reasonable requirement would be that if the implementation i can
perform =a v.isii)le action A to become the process i' then the
specification s must also allow this to happen, and i' must be an
.implementation of the  resulting proééss s'. Fu.rthermore, if the
specification cannot avoid performing a particular action then the
implementation must also be unable to avoid it. Formaeally we can

express these requirements as follows.

Definition
i is a refinement of s or i refines s (written s > i) iff
A
i) i==>i' > 35’ st. s==>s' A 8'>1' for all Aedet

ii) s must L D i must L VLcA4

Hennessy has investigated a similar preorder in [Hennessy B84c]
called the must-testing preorder. His definition differs slightly from the
one ‘presented here because in . his framework - all. divergence is

considered harmful and so it is explicitly dealt with in the definition.

What is the relationship between the refinement preorder and
Kennaway's preorder? The definition of > does not involve sets of
processes and so we would expect that the refinement ordering is more
particular about when non-deterministic choices are made. However, fhe

situation is a little more subtle than this. Consider the processes

p = oaf.r + a’.ﬁ.r’ g = oa(Br+ g.r)

Kennaway's ordering equates these terms, i.e. P5,q9 and qg,p. Although
we can show that q>p, which we can view as saying that p is a valid
implementation of the specification q, we cannot show that P>q. In

other words, our definition allows p to be an implementation of q if,
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. amongst other things, p makes non-deterministic choices no later then -
q- This may not be too restrictive in practise as a specification will
typically keep its options open for as long as possible. whereas &an
impleme'htation- may commit itself to a particular non-deterministic
choice (because of silent internal cornmtinications) much earlier on in

the execution sequence.

Before showing that p>q implies PE,9 we will need to prove the

following lemma.

Lemma 4.24 If p>q and q8=>q’, Sgdot‘ then 3Jp’ s.t. ps=>p' AP>q

Proof:
If s = ¢ then we show that p>q'.
A A A
Suppose 9'==>q". Then q===q'' and so p=>p' for some p' where

p'>q". If p must L then q must L and so q' must L. Therefore p>q'.

If s #¢ then
&, 8, ’ a
qQ=9,=—>q,==>q, . . . =>q_=q’
. ‘ al
where s=aa,...a. Therefore Elp1 s.t. p==>p, and P,>q,, and
similarly  for the other q, processes so 3p’l s.t. '

a a a .
1 2. n
p=po=: pI:pz e :_p” and pﬂ>q". O

Theorem 4.25
P>q O pL.q

Proof:

Suppose pg.q. then 3s,L s.t. (p after s) must L and

(q after s) myst L ie. Vp' st pégp'. p' must L and 3q' s.t.
qs=.>q’ and q' myst L. If q:s=q’ then 3Jp' s.t. p=s=p' and p'>q' .
which leads to a contradiction as p’ must L and q' myst L. O

It is not true that p>q > P5,q és the following example illustrates.
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This result is not surprising as > uses must in its definition which is

what caused the problems for Kennaway's preorder.

Can we simplify > even further? Suppose we used the version of
must defined in [ivﬁlner‘ 80]. What would be the consequences? Consider

the processes

q

With process p we can choose between performing an « or a g action,

but we don't always get a chance and may have to perform a 7 action.

With q we always have a chance to perform an « or a g, but only one of

thérn will be offered, the choice beipg~ non-deterministic. Neither

process can really be viewed as an implementation of the other.

(p after &) must {y] whereas (q after &) must {«, B} so PYZ,q and qZ, P

Furthermore, p¥q and q¥p.

Let us use >° to denote the refinement ordering using the single

action must, defined in [Milner B80] as

' A
p must A iff Vp' s.t. p.r:p’. p =

Then pY¥°q but q>°p which is undesirable.



A Mathematical Framework .
Jor the Notion of "Implementation” ‘ .- 126

The other simplificatio.n we might make would be to replace p%p'
in the definition of > by p-£—>p' or even p-L>p' (where pedctuir) s;nd
Xe.dd). This would simplify bisimulation style proofs as we would only
have to examiﬁe the immediate actions that can be performed by p
rather than examining all sequences that p might berform. In fact we

could define four variants of > as follows.

- q > p iff i) vpﬂ:p' > q“=>q’ A qQ'> p' and ii) q must L > p must L
q >, p iff i) p-}‘—-—>p’ > q)‘=>q' A q'>,p' and ii) q must L > p must L
qQ >, p iff i) p-£>p' > q”=>q' A q'>3p’ and ii) q must L > p must L
q >, p iff i) pA—>p’Dq=}~——,‘»q'Aq'$4p’ and ii) q must L > p must L

What is the relationship between this family of orderings. >, is the
most difficult to use and ‘>4 the simplest. However, the following

example forces us to rule out >, Consider

’

P = T.0.p' + a.q q = «.q

‘Then qQ>,p but q¥ Moreover p is not a very reasonable realisation

1,2,}3P'
of q intuitively and so we will reject >, as a possible candidate.

We can trivially show that >.€>, and >1§>3. We will show that >,C>,
and >,E<,, which will be sufficient to show that all three orderings are

equivalent.

Let §Rl be the defining relation for > when presented in . its

1
simulation form (where a simulation is one half of a bisimulation).

Let # = >y Consider any pair <q, p>€Rk. .

If pép' then either pu=7, in which case q—e——>q and q>2p’, or K=A in
which case trivially q}‘=>q' where q'>p’.

JIf q must L then p must L as q>,p. ’ ' S

This shows that R_C_.’RI(R) and hence q‘>2p > q>p.

Let & = >, Consider any pair <q, p>€R.
" If p===>p' then 3p,. . . ..p, st

T

P=p,—>p,—/> . .. p,—p,,—> ... —>p =p

But q>3p so 3 q, - .. q, s.t.
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T T - m T T C
q=qo=>q1==> . qi=>qi+l=> N =>qn—q

where qj>pj. 0<j<n. Therefore qéq'_where q'>3p'.
If q must L then p must L as q>_p. '
In other wor.ds. .‘RQRI(.%) and so q>.p > q> p.
This proves that >0= >, = >, As > is the simplest of the
definitions to use, we wiAll assume that we are referring to >, When we

write q>p.

§4.11 The >, preorder

So far, our only connection between = (and hence >) and E, is if
the processes under investigation are controllable or =~ ~determinate.
This is quite a strong condition to demand of a system, and in
particular, we will see that it is not true for the Schwarz
transformation. As the f'inal result of this part of the chapter we will
develop a preorder along the lines of > that does imply £ . Although it
is more restrictive than >, we will show in Chapter 5 how to express

Schwarz' scheme in a way that makes the new preorder applicable.
Definition )
P> q iff i) q%>q > 3p. p=p Ap>q

ii) Traces(p) ¢ Traces(q)

. where p;\ =E p=—=>

If P>.q then we know that if qs=> then pi——> and so

Traces(p) = Traces(q).

Proposition 4.26 If P>.q then VLCAe p must L D q must L

Proof:
A
Assume false. Then qc=>q' s.t. ZA€L. q'==. But 3p’ s.t.
A ’ A
pc=>p' A p'>tq' and p'= for some A€L. Therefore q'=—> as

Traces(p')cTraces(q’) and so we have a contradiction. O
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This implies that >.&> as whenever P>,q it satisfies the conditions

for p>q. They are not equal, however, as our favorite example shows.

P oyl o o q
o g o«

| 5 i
| |
| |

Here p>q but p)‘tq. This example illustrates why > did not imply the

weak must preorder. We now show that >, does imply ¢ .

Theorem 427 p > q implies p [ q

Proof: _
Suppose P>.9q but pz’wq, i.e. there exists an observer o€0 such that

P w—must satisfy o and gq 'w—'must/satisfu o. In other words there

exists a computation

T

qle = qo,—>q o > qlo

with a prefix qoloo, o ,qnlo,l that cannot be extended to a
~successful computatfon. Let s be the sequenée of visible actions
'performed by q between q, and q_. Then p=s=pn where ;;n>qn.
Furthermore pn=s::$>pm and ou?: om—‘/-—> for some s' as all
computations of plo have successfully extendable prefixes. But if
p”"-—s—-.—$pm then 3q_ such that qn% q,_ and so qnlon—e—=> qmlom—\i—>

which is a contradiction. O

Theorem 4.28 If p >, q then VYuedctulr], VAELt, Vre?, S a relabelling,

BP > pq
PIr > qlr
P\A >, qQ\A
- p[S] >, q[S]

LI S

Proof:
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1. If u.q-%>q then y..p“=>p_and P>q.
If s€Traces(u.p) then either u=7, in which case
s€Traces(q), or else s=u.s' and so s'€Traces(p) which

implies s'€'fraces(q) and hence ,d.s'e'l‘races(u‘.q-). o

2. Let !Rt be the defining relation for >, when presented in
its simulation form.
Let & = {<p|r, qir> | p > q}. If qlr %> q'Ir' then there

are three possibilities.

a. r-£>r', q=q'. Then p|r % p|r' where
<p|r’, qlr'>€.7?..

b. q-¥*>q', r=r'. Then P > q so p”=>p' where
p'> q and hence <p'|r, q'[r>€R

c. q—"—>q', r—-’fﬁr', MH=T.
Then p‘=)‘=p' and hence p|r == p'|r' where

<p'lr’, q'|[r'>eR

Suppose se€Traces(p|r), i.e. p]rs=>p'|r'. Then there
S s

1 CT2
exists S,» S, such that p=—=p', r r', where s, and

s, can be merged to form s (pos'éibly with some actio_ns
cancelling to form ‘rsmoves). -But then leTraces(q) as.
P> q and hence qéq' for some q' which implies
qlrsﬁq'lr', i.e. s€Traces(qlr). This proves that

b.R_C_§R(R) and hence p|r >, qlr.

3. Let R = {<p\A, qQ\A> | p > ql

If QA\N+—=>q'\A then q-£ q. p = P’ and hence
p\)\:"ap\)\ where- <PN\A, . g\A>€R.

If s€Traces(p\A) then s'€Traces('p), s€Traces(q) and
hence s€Traces(q\A).

Thus RCR(RK) and hence p\A >, Q\A.

" 4. Let & = {<p[S], q[S]> | p >, aj .
If q[S]-+—>q'[S] then q—*=>q' for some v such that
S(v)=p. But then p=>p where p’ >, 9 and hence
p[S]=='p[S] where <p'[S], q'[S]>€&. ‘
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If s€Traces(p[S]) then 3s’':such that s'€Traces(p) and
S(s')=s where the morphism S is extended to s_eq;_lences
in the obvious way. But s'€eTraces(q) and hence
seTfaces(q[S]).

Thus RCR(R) and hence p[S] >, q[S!.

>, is not preserved by + as the normal bexample for this case
illustrates, i.e.
T a.p >t T.0.p

but a.p + r ;4‘ T.a'p + r in general.

Trying to prove that PL,q by using >, removes some of the freedom

" of the implementer. For example,
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§4.12 A simple example

Consider the simf)le synchronisation problem involving p'rbce'sses jo)

and q defined by

p=ap + B8P q=aq+ Bq+ y.NIL

o o

4

In an implemehtation of this program we might try to replace the °
summations in p and q by simpler ones involving a timeout agent. Each
process would offer one or other of its actions for a while but would

then timeout and try the other one if unsuccessful.

Timer ' Timer

p I?-" " q I.

It we assume that the timers are not synchronised, we may model the
timeout processes implicitly us.ing T actions, i.e.

' ’

p =p, and q = q,

. -where

'pl = 'cF(.pz + TP, q1 = «a.q, + 'r.‘qz
P, = P, + TP, q,=Bq, + T.q,
q, = y.-NIL + T.q,

It is simple to show that p#,p’ as p’ introduces the possibility of an
[infinite 7 sequence that was not present in p. The observer «.v.NIL can

differentiate between the two processes as

p must satisfy «.v.NIL whereas P’ must/sat'i.sf‘u a.v.NIL

.The derivation trees for p and p’' make this clearer..
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L p'=py

1 _

- a . B -
e, N3P,
T * Py T ﬁpz

| P, | P,

In this particular case we can apply either of our. approaches to show
that p= p'. Of course with such a simple example it would be easy to
prove the equivalence directly but on larger examples t}his would be

much more difficult.

We start by shoWing that p>p’ and p'>p. Rather than performing two

. separate simulation proofs, we combine them as follows.

Let ® = {<p,.p>, <p,P> <P.p,>. <p.p,>}

<p,p> if pl—a—>p2 then p;'—'?p, <p,p>€R
' if pl--l—>p2 then p-'e=,'p, <p2,p>€.7¢
€p2,p>. -if pz—L>p1 then pp=»p, <p,p>€R

if pz;a’.p1 then peﬁp, <p,p>€R
<p.p,>. if p-—“—>p then pla=>p2,_<p,p2>€.ﬁ’.

if p—L>p then plp=>p1, <p,p1>€5\’.
<p.p,>. ' if p—2->p then pza=>p2, <p.p,>€R

if p—'Eﬁp then pzﬂ=p1, <p,p1>€.R

It is easy to show that VLcde, p must L impliés {&BlcL. This is true
 for P, and pz' as well and so the second part of the conditions for > are
'satisf‘ied. “We have therefore shown that P>P, and P,>P '(similarly for
pz). We may therefore deduce that P~,P,. Both p and p, are trivially

controllable and hence we may deduce that P P,

In this particular example we may prove that P~ p, more directly by

using > Using the same relation ® as before we must show that for
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each pair <p‘,pj> in R, Traces(p‘)gTraces(pj). This follows immediately
from the fact that _

Traces(p) = Traces(pl) = Traces(pa) '
Therefore we can prove that P>.P, and P,>.P. This allows us to deduce

that p~ p . -

4.12.1 Decomposing problems with global dependencies

Our assumption that the timers for each process were unconnected
allowed us to replace them by internal r moves. The interfaces to the
original process p and its replacement p' were therefore identical; they
both just had {& B} in their sort. This allowed us to reason about the

transformation applied to p separately from the rest of the system.

Suppose we wished to model a variant of the above system where

there was a global clock that generated the timeout signals, e.g.

Global
Clock

el
-

We might generalise the problem further and assume that all the

original communications took place via this transformation, i.e.

Clobal
Clock

The new Yarianf suffers 'ffom two complications not present in the



A Mathematical Framework -
or the Notion -of. "Implementation” 134
S f P

original problem. Firstly, we cannot prove anything about the individual"
- processes as they no longer have an identical. interface to the original
process .they ‘r.e.present. This is because they will have timeout actions
appearing in their sort. We therefore have to reason about the system
as a whole. However, this intr.oduqes our second problem. If all of the
communications in the original system eare transformed so that they
take place via the new mechanism, then either there will be no
externally visible actions in either system, or the visible actions will be
different because of the different protocols involved in the two systems.
This raises the question of how to ‘tell that we have constructed a valid
transformation. These problems form the motivation behind the rest of

this chapter.

§4.13 Implementation and translation
transformations

In this section we develop further the notion of implementation and
then present a definition of transformation correctness for CCS

. processes.

4.13.1 The weak-must form of implementation

While the definition of implementation presented in the first part of
this chapter characterises most of our intuitions about what constitutes

an implementation, there are some deficiencies that are now discussed.

Firstly, consider an arbitrary process p. If we placed it in parallel
with a pr'ocess that idled continuously, would we view the resulting
system as a valid implementation of p? Certainly the current definition
would not.view p|7” as a valid implementation of p. This is because for

‘all observers o, plT“ must _satisfy o is false due to an infinite 7 path in

the derivation tree of p|t°lo. However with anything other than the
most malicious of schedulers, we would view p|t¥ as an implementation
of p. It might run (a lot) slower than the original but it would still

behave eventually in a similar fashion to p.
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Suppose that we have a process p|T®. Would we- expect (p|T¥) + 7.NIL
to .be an implémentatio'n of this process? Our current definition of
_implementation says-that this is the- cas.ve‘, but; our intuitions might say
ti'lat pl7® is a slower version of p whereas (plt®) + 7.NIL might stop
‘completely. At this point it should be pointed out that if we make no
assumptiohs about the scheduler used to implement these examples
then the existing definition of an implementation may be adequaie. The
reason our intuitioﬁs may differ from this definition is because we
would like to aséume that a fair sc.heduler is used to run these
processes, or at the very least a scheduler that is not designed to select
the worst possible path through a derivation tfee. The development of

the weak form of must satisfy was prompted by these intuitions and so

the definition of implementation is changed accordingly to

i implements s or i is an implementation of s iff

V o€0. i may satisfy o O s may_satis o

s w—must satisfy o O i w—must satisfy o

This definition may be simplified by noting that P59 2 qg,p. and

hence proving that i implements s is equivalent to showing that sg i, i.e.

i implements s or i is an implementation of s iff s = i

.>Incorporating the weak muét preorder into the definition of
implementation results in a simpler definition. Unfortunately, it also
means that ICD is no longer an implementation of CD in the change
machine example presgnted at the beginning of this chapter. The
original definition allows an implementation to provide only part of the
nori—_deterministic choices offered by the specification. The new
definition requires, in addition, that if' a particular action will be
eventually offered by the specification, due to fairness arguments, then
it will also be eventually offered by the implementation as well. By
fairness arguments, CD must eventually offer shillings as change,
whereas ICD never has this possibilty. It is, however, possible to define..

an unfair version of CD such that ICD is a valid implementation.
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" The developrnen’(, of the orlgmal deflmtlon of 1mplernentat10n and
" the weak must preorder are essentlally independent. For the proof of
the Schwarz scheme .it will be convenient to merge these ideas into the
new, simplified, .definition of imialementat.ion However, "for other
purposes, it may be more convenient to work with the orlglnal deflnltlon“

" of 1rnplementatlon

With our new definition of implementation, it is easy to show that

plT® implements p whereas (p|t”) + 7.NIL does not implement (p|7%).

Proposition 4.29 Implementat.ion is a transitive relation

Proof:
Let us suppose that p implements q and q implements r.
Then for all observers o € 0,

if r w-must satisfy o then q w-must satisfy o and so

P w—must satisfy o. Therefore p implements r. O

4.13.2 Transformations

In general, when p £, q or p implements q, the syntactic structure ofA
,. p is not related to the syntactic structure of q. However, sometimes we
_wiSh to exhibit a transformation function #r such that the expre.ssion
bproduced by tr(p) is related to the expression p in some way; Often the
relationship is independent of a particular process p. These
transformations are purely syntqctic; they take as ‘arguments
expressions representing CCS terms and syntactically manipulate them
to produ.ce new  expressions represerit'ing CCS terms. - The
transformations do not depend on the semantic meaning of their
arguments; thus, for example, the transformation of p|q is not
'neces‘saril}; the same as the transfo.rmation of q|p. This point will
become important -later when‘ ‘we introduce functions ;ciuat apply a
different transformation to each process in a product depending on its

relative position.

The synchronisation scheme presented in Chapter 3 is an obvious

example of such a transformation. These purely syntactic
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transformations also occur when féasoning about different variants of
CCS. For example, rather than using a single message to synchronise
between two processes, we may wish to model the synchronisatio-n by a
start message and a firhxi‘sh message. This allows a communication to
take a finite amount of time rather than being instantaneous. This
variant of CCS may ‘be; expressed as a syntactic transformation.
Motivated_ by this example  and other similar préblems,
Millington [Millington 82] developed & notion of transformation
correctness for CCS based on the testing approaéh to process
equivalence of DeNicola and Hennessy. The key observation was to point
out that if we replace a process p by the transformed process ¢r(p) then
it will not usually be valid to examine both processes with the same
observer. This is due to the fact that a transformation may introduce
observable differences. If we take a process p and transform it into its
‘start finish' form, then there would obviously be an .obsérvable
difference between the oi'iginal and the transformed system. However, if
we introduce a pair of transformations, one for the pro’cess p and one
_for the observer o, then Millington showed that we can develop a notion

of correctness for such transformations.

Prompted by the sort of reasoning that influenced our definition of
implémentation,. Millington developed a similar notion for
transformations. Furtherrﬁore, he introduced the 'concept of -_a
translation which can be viewed as the transfél;i'nation equivalent.-of the

. =, equivalence.

We start’ by presenting Millington's original definitions of these
concepts and then develop them further based on our previous

discussions of the weak must and also motivated by our intended usage.

.

Millington views a transformation as being composed of a pair of
transformation functions. One of these functions is applied to the
system under investigation, p, and the other to the observer of the

system, o.

Definition A transformation ¢r = <t'rproc,t'robs> is implementation correct
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iff Vpe®. Voeo.

1.p must‘sa._t'i_sf'u o implies t"'Proc(P) must satisfy tr (o)

2. tr (p) may_satisfy t'robs(o) implies p may satisfy o.

proc

A transformation tr. = <iér ,r > is translation correct
. proc obs

iff the reverse implications also hold, i.e. Vpe?. Vo€0.

1. p may satisfy o iff tr  (p) may satisfy tr , (o)

2. p must satisfy o iff t'rpmc(p) must_satisfy t'robs(o).

In Millington's paper, a transformation was called a translation which
led to the possibility of a translation being translation correct, for
example. We prefer to keep the notion of transformation distinct from

that of a particular form of transformation called a translation.

We may view the concept of implementation correctness as the
transformation equivalent of our original notion of implementation, énd
similarly, translation correctness may be viewed as corresponding to the

&, equivalencg.

When we introduced 'the notion of implementation earlier in this

chapter, it was eventuall'y defined using the weak form 6f must satisfy.
It therefore seems natural to apply the same sort of reasoning to the
" transformation case. A more serious limitation of the previous
definitidns: _irii%é_lves the choice of two separate transforrx.:lation functions.
This is adequate when the transformation applied to the observer is
independent of that applied to the observed process. However this is
not alwa'ys the case. For example, the transformat;ion applied to the
observer may depend on the .number of proce‘sses i1"1 the observed
component. Apt and Oidei‘og [Olderog 84] define the. adjective
||-preserving for transformations that preserve the parallel structure of
programs. In such a c‘:asé-, the only inforrﬂation the transformation

function applied to each component may use about the structure of the
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system, S, is the total number of components-in S and the index of t,hé

currently transformed component.

For ||-preserving transformations, the transformations applied to the. ..
observer and the observed processes must be linked in some way. One
epproach to the problem would be to treat the transformation as a
function that accepted a pair of processes (i.e.-a process ‘and an
'observer) and returned.a pair of transformed. processes. However, this

is more general than we need as the definitions of w-must satisfy and

may satisfy immediately place the resulting pair in parallel again. The
only difference between the pair of processes is thét' the translated
observer process may have v in its sort. Therefore we take the .view
that the transformation need only return a single expression which can
be viewed as the parallel composition of the transformed process p and
the transformed observer process o. Frequently, the same
transformatioﬁ is applied to both the observer and the observed
processes. As this simplifies the Ipresentation, we will assume that this
will’ a-lways be the case, although it is‘not essential to our work. In
other words, we will assume that a transbformation also takes a single
expression as its argument, formed from the parqllel composition of p

and o.

In order to express these ideas in practice, we must mo'dify our

definition of w-must satisfy, becaﬁse the current definition is in the

form of an infix binary predicate. We introduce an equivalent postfixed

predicate as follows.

Definition

(plo) w-must succeed = P w-must satisfy o ¢

It will also prove convenient to be able to reason about the -
correctness of a transformation relative to a second transformation.
The simpler case then follows by taking the second transformation to be
the identity function. Finally, as pg q > qQc;p. We may omit the

may satisfy case as it is implied by the w-must satisfy case.

Summarising all of these developments, we might define
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Definition

N trl" |~ trz (read "t.rl implements tfe") iff Vvpe®. voe0.

trz(plo) w-must succeed implies tri(plo) w-must_succeed

By merging the observer and the' observed processes, we see that the
- distinction between p and o in the definition has become irrelevant. In
Millington's case, 'the’ distinction may be useful because different .
transformations may be applied to the two processes. Becausé there is
no longer a need for this distinction, we define implementation and

. translation transformations as follows.

Definition tr g tr, (read “tr, implements trz”) iff vqeo.

trz(q) w-must_succeed > trl(q) w-must succeed

tr =~ tr, (read "tr, translates 'trz") iff vqeo:

1 w

trl(q) w-must_succeed < trz(q) w-must succeed

If we_takéqtrz to. be the identity function then weISay that trl‘ is an
implementation transform, or t.r‘1 is a translation transform. We may
also omit the ﬁord transform and talk about tr1 being an
implementation if the cont;ext makes it clear that we are referring to a

transformation function.

-Proposition 4.30 If the pair <ir,tr> is ‘translation corre:ct by Millington's
definition and ¢r(plo) = tr(p)ltr(o) then ¢r is a translation

transform.

.

Proof: Follows from ihe definitions.

Proposition 4.31 K, and =  are transitive for transformations,

i.e. for any trl, trz, tr3, .

1. if t.r1 E, tr2 and t'r.2 = t.r3 then t.r1 g, tr3
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2. if trl ‘u' trz and t.r"_2 o t.r3 then t.rl o t.r3

Proof: Follows immediately from the definitions.

We may elso compose the transformation functions ’t.r'1 and tr, to

form trlotrz. This composed transformation preserves Ky and & in the

: féllowing sense.
Proposition 4.32

1. if trl is an implementation and trz is an implementation

then trlotrz is an implementation

2. if tr is an translation and tr, is a translation then trotr,

is a translation

‘Proof:

1. If q w-must succeed then trz(q) w-must_succeed and so

trl(trz(q)) w-must succeed.

2. The proof is similar to the implementatibn, case. D

Li [Li 83] has also investigated the concept.of the correctness of a
translation in an operational frarhework. The task of finding sufficieht o
cénditiqns for proving translation correctness is called the adequacy
problem. 'Li-presents an adequate set of conditions for his notion of
correctness. However, we prefer to work with the tésting view of
translation correctness as it is incorporated more néturally wit};- the
weak-must testing preorder. '

Note that, as with the definition of implementation, it is not

essential for the defintion of transformation to be based on the weak- .

must preorder. However, if this is not desirable for a particular

application, then we ,rnustvve‘fls'ure that the may succeed case is retained

in the definitions.
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This completes our discussion of .transformations and also concludes’
this .cha\p‘tgr. To summarise, we have introduced . the notioh of
implementation which led to a di'scussionia‘bout fairness. This prompted
the development of the weak-must testing preor_'der E, In an atternp'tﬂ to
develop a proof tec’hniqué for this preorder, we introduced Kennaway's
preorder g, and the > preorder. A connection was established between
£, and g,  using the notion of controllability or o~ ~determinacy. A
simpler preorder, >, was then introduced that directly implied the
" weak-must preorder. We then turned our attention again to the
definition of implementation where it was redefined to reflect the work
on g . Finally, Millington's work on transformations was introduced and

extended to prepare the ground for Cheapter 5 which now follows.
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CHAPTER 5

A Rigorous. Validation of an Implementation

§5.1 Introduction

Chapter 3 developed a transformation that may be applied tofi"

'arbitrary Static CCS expressions in order to facilitate their efficie—n£
‘execution. However, as wé saw in the latter part of that chapter, it was
not clear in what sense the transformed system was e(juivalent to the
original program. This prompted the developments outlined in Chapter
4. We are now in a posiiiqn to use these rnc;re precise notions of
implementation and transformation to show that our transformation is

indeed a valid implementation of the original system.

The proof of the Schwarz transformation is split into two parts. We
first show thaet the subnetwork consisting of the polle/rs‘ is an
ifnplem_entation of a simpler network of lprocesses called syhchronisers.
We- then show that a simple transformation ‘involving the synchronisers
is correct, from which the corr‘e'étness of the Schwarz transformation
follows almost immediately. The proofs are compliéated by the
ﬁnstrucft:ured nature of the program which prevents an inductive style of
."proof from being used. We therefore. develop some mnotation to

conveniently represent the states of the systems.

~In order to prove that the poller network P is an implementation o'f‘
the network of simple synchronisers, S, we first use the refinement
ordering, which is sufficient to prove that Sg,P. Unfortunately, S is not
: uk-determinate. and so we cannot prove that Sg P using this approacﬁ:
This prevenfs us from completing the proof that P implements 8,
éithoﬁgh we believe this to be the case, and illustrates the need fér a

less restrictive property that allows us to deduce Pk,q from pg . q.-
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The only other indirect {ecﬁnique for proving Sg P is to use the >
orderiné. Unfortunately. we can show that S 7‘1 P, although a sifnpl'e
modification of the poller algorithm does gllow this "o.rderi'né. to be used,
and hence produces a proof that the modified 'poller network is an
implementation of the sync.hroniser network. We motivate why the
modification to the algorithm is reasonable, and the proof that S > P

may be adapted to this case, involving only a small amount of additional

work.

The final part of the chapter discusses how to partially apply the
Schwarz transformation, and the consequences of this on the

correctness proof.

We start by briefly summarising the transformation described in
Chapter 3. Given a Static CCS term of the form H_eN P, we syntactically
1

translate the processes using the function TrPoll defined by

'frpou[[ ,I;[, pi]] = };[v (t'rt_llpi]] | Polieri(1,¢) | Bufferi)

where the transformation function applied to each process, t'ri, is

defined by

t’l‘i[[ Z aj.pij]] = let partne'rs = |J C(aj) in
. jem jem '

offe'ri.(partne'rsuii}).

: Z (selecti()\).ak.t;rillpik]] where (_I'(ak.)- = ZT)

nEpariners

{+ V.NIL if 3aj=v)

This definition is identical to the one presented in Chapter 3 except
that we now deal with the case where v may appear in the sort of the
processes. There is no partner for such an action and so it is left

unchanged.
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Each translated process is placed in parallel with a poller and buffer

process, the definitions of which are presented in Figure 5-1.

Our problem then is to ghow that _T?Poul[nienpi]] is a valid

implementation of HKN P,

5.1.1 Structuring the proof

The transformed processes in Trpou[[]—[_e” p‘,:ﬂ communicate with each
< .

. other via pollers, and so the observable behaviour will be different from

H{N P, Therefore the conventional equivalence relations and preorders

. 1

cannot be used to prove the correctness of Tr The approach we take

Poll’
here is to show that Trpou is an implementation transformation in the

sense of the previous chapter. TrPQH[[H p‘,]] is a rather complicated

‘ .objeict to wofk with as it involves both :Nchange bf interface and also
reduced behaviour potential when compared with H‘_eN pl The interface
is changed because of the use of pollers to synchronise the inter-
procéss communications. The behaviour potential is reduced because
the sequencing of the pollers may mean that certain non-deterministic
branches of the computation are not always possible. One way of‘

reasoning about the translated system would be to analyse it

' inductively.  We can view a translatéd"sjstem pictorially as
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Polleri(n.k) =let j = PC‘[n] in

offe'ri(k')_. Polle'r‘(n;k’) itk =¢

+ -s?ti(j). ’ Jif i>j A jek
Aji r).
if r = YES

then selecti(j). Polleri(n+1,¢)
else Polle'ri(n-f-l.k)

+ T Polle’ri(n+1,k) if. i>j A j€k A k#¢
+ @ (r). if i<j A jek
if r = YES

then Zij(YE‘S). select (j). Poller (n+1,¢)

else Polle’ri(n+ 1,k)

+ Q. (r). if i<j A i€k A k#
if r = YES
then Zij(NO). Poller (n+1,k)

else Polle’ri(n+1,k)

. Buffer = Z | ( aij(NO). Buffer, )

jePe, _
+ seti(j). Buffe'r"‘,(j)

Buffer () = (Y T (NO). Buffer (x))

jePCi-Uc}

+ b;( YES). Buffer,

Figure 5-1: The Schwarz Poller and Buffer in Static CCS
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PB_ = Poller, | Buffer,
%
Py= tTi[I:pi]].

1)

Poller
Network

2 U

There is a link between PBl, and PBj if at some point in a computation

of the program, P«; may request to communicate with Pj, or vice versa.

_ We could attempt to  prove something about the subnetwork of PB«;
nodes by showing inductively that a single PBi node was equivalent to
some si;hpler expression and then showing that n+1 nodes were
e‘quivalent to the ekpression ass’ﬁming that h‘-were.A However, the
inductive approach is not really applicable in this case. The reason
becomes clear if- we analyse the connection pattern between the PBi
cells. The connections depend” on the particular program under
investigation, and so there is no general-structure that we can exploit
inductively. In contrast, consider the case where we have a pipeline of

processes

If we extract P, and Py and hide away their internal int’erfa)ces, then we
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can often replace them by some simpler definition that has thé. same
interface as one pf the constituent parts. Thus, by repeatedly applying
'this technique, we gradually reduce the number ;)f processes without
increasing the éorﬁf;lgxit'y of the overall term. : 4 ‘
HH»\ F)——®) POanhi
| N e |

;___

If the same techniﬁue was applied to the poller subnetwork, we would

find that although the number of processes decreased, their complex{ty

. increased. . It is only when the internal details are hidden from the

complete poller subnetwork that a simpler definition can be found. It is
because all the network needs to be present before it can be simplified

that prevents us from using the inductive approach.

Another way of simplifying the system inductively would be to show,

R lobsely speaking, that

Trpaul[p:l] I TrPoul]:q]] = Tr"’““":plq:”

Such an approach would allow us to reduce the number of processes but
unfortunately, Trpou[[p]] | Trpou[[q]] and TrPon[[p|q]] have different

"behaviours, and so this technique is not directly applicable either.

- §5.2" Simple synchronisers

Our analysis of the problem seems to imply that we must reason
about the network without using an inductive approach. We start by
showing the the complete poller subnetwork is equivalént to a simpler

network composed of simple processes called synchronisers.
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The transformation function t'r‘ that w‘e apply to process P, is‘ quite
general. It converts a communication that would normally take p.l_é.ce.
implicitly into one where .a. request is passed to some synchronis@ng
agent whoée task it is to find a partner for one of the offered
communications. The synchronising agent may be composed of a set of .
pollers, but there will be many other possible definitions of processes
that perform this task. We would be one 'step nearer to our goal if we
could show that the complicated synchronising agent in terms of pollers
was equivalent to some simpler agent. The simplest agent we might
consider would be a single centralised process that took requests from
all over the network and selected matching requests. However, the
 definition of such a process would ‘be very cumbersome, and a more
structured approach is to define a network of simple synchronising

agents, one for each host process, that perform this task.

The simplée synchronising agent is defined as follows.

SSynci = of feri(k).
if k=¢ then SSynci

else ( Z mji. selecti(j). SSynci
j€knj<i )

+ Z mij. selecti(j). SSync-i)
j€kni>i

A simple synchfonising agent accepts olffers from its host until it
receives a non-empty request set. The synchroniserﬁthen atterripts to
communicate with the synchronisers mentioned in the request set, usiﬁg
" the m, actions. To ensure that these actions complement each other.
correctly, the processes are ordered, gnd the convention adopted that
SS"yn‘ci offers an ™ to any S.S;yncj such that j < i, and an m, to any
other synchroniser, SSync‘,k. When one of the m; requests succeeds,
this fact is reported back to the host via the select action. The mij
communications reflect the communications that would have happened

in the original system except that no values are passed, and the

‘direction’ of the message may be switched.
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Let us suppose that we can show that

]_—_[ (Poller‘(l,qb) |Buffer‘)

ieEN

is an implementation of ’

IT (ssne,)

iEN

when both collections of processes are surrounded by a restriction so
that the only visible actions are offers and selects. Then we can define
a simple transformation function T_rsync that treats the host processes as
in TrPoll but places them in parallel with simple synchronisers rather
“than pollers. If we can show that Trsnic is an implementation
transformation in the sense of Chapter 4, then we can also deduce that
Trpou is an implementation transformation. There is the 'additional
benefit that if we 'wished to analyse a different synchronising agent then

we would only need to show that it was an implementation of our simple

synchronising agent.

Unfortunately, with our current definitions,

. 1__[ (Polle'r"i(l,cla‘) |Buffe1",)

ieEN

is not a valid implementation of

H (SSynci) .

i€EN

To see why, consider what happens when qule'ri and Pollerj can
potentially communicate, and Pollerj has no other summands.
Furthermore, assume that no other process wishes to communicate with
Polle'r‘_. Eventually we would expect the system to output a selecti(j)
message to the external environment. Further let us suppose that there
exists another poller, Polle’rk. that is in a position where it wishes to
output a select méssage. The system may be in a state where i>k and k

" is a possible communicand " of Polle'ri. - Under these circumstances,
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Pol.le'r1i may have to check for a communication with Poller, befpre it
reaches a state where it can communicate v_vitﬁ Polle'rj. In . this case,
Polle'r‘_ will have to wait until the environment accepts the select
message from Polle'rk which then frees Polle‘rk to reply negatively to
Polleri. With an arbitrary environmeﬁt this c'auses problems because the
envirénment may wish to accept a message from Polle‘ri before accepting
one from Poller, and so this part of the system will deadlock. No such

problems exist with the simplle synchroniser network.

Thve difficulty arises only when we consider environments which may-
perform arbitrary interactions with the system. In a closed 'systern. one
. where all environment and source program communications take place
via the translation, suc,h- ﬁroblems cannot arise. Thus we are only
requiring the two subnetworks to be equivalent in a limited class of
environments. There are two courses of action open to us at this point.‘
"One would be to conduct some form of context-dependent proof [Larsen
85] assuming that all of the original communications take place via the
transformation. The second approach would be to modify the poller
algorithm so as to rerﬁove the potential deadlock when placed in an
arbitrary environment. One of the eventual aims of this wox‘“'k is to
enable the tfansformation to be used selectively on those
' communications that are difficult to synchrqnise. Therefore there may
- be communications that take place without the aid of the
transformation. To avoid potential problems at a later stage, and also
to avoid performing a context-dependent proof, it would be desirable to
develop a version of the poller network that matched our simple

synchroniser specification more exactly.

One way of solving the problem is to allow the pollér to satisfy . its
commitments to other pollers while waiting to output a select message
or input an offer message. But in ovrder for the transformation to be
meaningful, .we must take steps to avoid introducing any new
_comﬁunications that may be difficult to synchronise. If we did not do
this, we would be reintroducing the problem that the pollers were
 designed to solve. As an example of this potential pitfall. suppose we

removed the constraint that k#¢ in the definition of the: poller when
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j¢k. This would allow the poller either to accept an offer from its
master or to accept a jS i’nessaée from a remote poller. :Unfortunateiy.
the remote process offering this message is also offering similar
meséages to oth_er processes and so we _hpve unwittingly constructed a

communication net which is difficult to 'syhchronise.

The approach we take here is to introduce an extfa T move before
the le_ message wheﬁ l<j and j¢gk. In this case, when we are iﬁ a
situation where i<j and j¢k for some non-empty set k, then although we
still have a choice of actions, the sources of these choices do not
themselves have other possible communications. This removes the
synchronisation difficulty. In practice, it is easy to implement
summands with 7 moves as follows. When we encounter a summation,
some of whose summands are T moves, we first check to see if any
matching communication requests are waiting and if so we pick one of
these; otherwise we randomly choose one of the 7 branches. What this
wéuld imply for our particular example is that if the master process
was currently waiting to send a request then the poller would accept it,
and if the master was busy then the poller would carry on‘ polling the

rest of the system.

In ;>fder to avoid a similar deadlock problem with the ;elect
. ._Y.mes's‘age, we treat it in the same way as the offer message. Thislvallows‘
the poller to process 6ther messages while>waiting for- the master to
respond. The modified version of the poller process is presented in
Figure 5-2. It will prove convenient to be able to specify which part of
the definition a process is currently executing. We therefore labél the
different locations in the algorithm by means of integers enclosed  in

A

braces.

In order that we may compare the states a boller -can reach with
-those of the simple synchroniser, we label the SSync proéesées with

numeric labels as well.
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Poller(nk.s) = {13 let j = PC[n] in

offe'r;(k").- Polle'r‘(n,k',s) if k = ¢
+ selecti(s). Poller{(n+1'..¢.i.) : if s#L
+ Ee—ti(j). if i>j A j€Ek A s=1
(23 4,,(r).

ifr = YES

then Poller (n,k.j)

else Polle'ri(n+ 1,k,s)

Q). if i<j A jek A s=1
if r = YES
then {3} Zij(}’.E'S). Poller (n.k,j)
else Polle'ri(n+1,k,s)

[
/

+ T Polleri(n+1,k,s) if

Lo ]

1>j A (ig€k v s#1)

-ty

+ T -§4§Qﬁ(r). : if
' if r = YES
then iszzﬁ(Noy Poller (n+1k,s)

i<j A (j€k v s#L)

else Polleri(n+1;k,s)

Figure_s-é: The Modjfied Schwarz Poller

We assume that each poller starts with n=1, k=¢ and s=1.

SSynci = {1]offeri(k).
if k=¢ then SSynci

else 52;( Z mji. {3}selecti(j). SSynci
jeknj<i

+ Z mij. {3)selecti(j). SSynCi)
jeknj>i
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Note that we have two labels with the value 3 as they are effectively

the same state.

§5.3 Process state representations

In order to réason about the relationships between the states of the
individual pollers, a convenient representation for a poller's state mus£
be developed. A similar representation for a simple synchroniser’s state
is also needed to ease the expression of the simulation relation which
we develop shortly. 'Thei .no’tation- developed so far only allows us to
denote a poller in its initial state. We would like to be able to write an
expression denoting a poiler in any of its possible states. We éoﬁld have
made the locations explicit by breaking the poller definition into a
number of small parts and then either giving them all unique names or,
more conveniently, introducing an extra variable to distinguish between
the states. However, such approaches would obscure the structure of
the algorithm, and so-we will define a new beh&viour, p,, that denotes a
" poller and its associated buffer, and will include the state information

as part'of its definition.

Definition pi(ni,kri.si,li,ti) ,

| ~denotes the derivative of (Polle’ri(l,¢)|Buffér;)\seti where thé
cufrént value of n, k”and s in'Poll‘e'ri are n,, ki,and s, Polle'ri is at
location 1i and ’(.i is either equal to L, in which case the buffer is
in state B'uffe?’i, or else ti is equal to some j in which case the

b.uffer is in state Buffe"ri'(j).
Thus P, allows us to denote any possible derivative of the component
. : (Polle'ri(l,q&) | Bufferi)\seti.

'~ We extend this notation to allow us to denote any derivative of the

complete system as follows.

Definition -~ PSys(R.ESIE) =" .. | p(n k,s.1.t) |
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' The state of each component of the network will be dependent c;n
the states of oﬁe or more of the other components in the system. We
will express these constraints by means of predica'ges on the component -
states‘.b Given a state of the system, PSys(fi,.K.S'ff), we can define a

predicate Pi(n,k,s,l,t) on the i'" component as follows.

Definition PSys(n,K.s.IY) = P (n.k,s.1t)

holds for eny i iff n = n, k = k,s=s,1=1andt =t

Note that if PSys(3.K.5.I'%) k P (nk.slt) holds then the i'® component of
the system must be pi(n,k,s,l,t).
- .Often we shall write P(nk,slt) in place of PSys(i.KsIt) P(nk,s,lt)

when the parameters of the intended system are clear from the context.

We introduce a similar set of definitions for the simple synchroniser

" system, i.e.

" Definition  s,(k.1.j)
denotes the derivative of SSynct, where the current value of k¥ in
SS”y'n.ci is ki, SSyTLci is at location 1i and ji is either equal to &
when the synchroniser is not at location 3, or else ji‘ is equal to

the value currently bound to j.

Ssys(K.I')

skl |

Ssys(K.I;5} E S(k.1j) holds iff k = k, 1 =1 and j = j;

'§5.4 The relationship between individual pollers

"Before exploring the relationship between the poller network and the
simple synchroniser network, a closer look at how the individual pollers
interact with each other would be advisable. We study this interaction

by means of the following two theorems.

Definition PSys(fi,K,s'I't) is an accessible state

iff it is a derivative of the initial state PSys(T.$,I.1,T)
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Theorem 5.1
Every accessible state PSys(R.k.s.IE)
satisfies the following implications,

i.e. they are invariant properties of the system.:

i) Pi(n,k,s,l,t) Dt=14 A Vj.—wpa'rt'ne'rj(i) A a(k=pasFEl)

-iia) Pi(n.k,s,Z,PC‘,[n]) D s=1 A Vj.—,paftnerj(i)

|iib) Pi(n,k,s,z,.L) D> s=L A Vj;ém.-—;pa.rtnerj(i) A PC'm[n']=i A
(P_(n'k,1,3,1) v P_(n'k's'.5,1))
where rn=PCi[n] .

iii) P(nks3.1) >t=1 As=1 A Vi#m.—partner (i)
Pm(n',k',J.,z,.L) N PCm[n']=i where m=PC‘_[1’1]

iv) Pi(n,k,s,4,'t) Dt=1 A Vj.-vpa'rtne’rj(i) .

v) Pi(n,k,s.5,t) Dt=1 A Vj;ém.-vpartnerj(i) A
Pm(n!,k'.J.,z,J.) A PCm[n']=i where m=PCi[n]

where partner(j) = (3nkslLt. P(nk,sLt) A (1=3v1=5)) > PC[n]=j

Proof: »
To prove the theorem we need to show that the initial state
satisfies the invariants and every transif.ion preserves the

invariants.

Initially every component is of the form pi(l,gb,.L,l,.L) and therefore
Pi(1,¢,.!.,1,.L) is true. The consequences of i) are trivially true and
none of the other invariants are applicable so this satisfies the

first part of the proof.

Fovf every possible transition of one of the pollers we must check
t‘ha't in the new statve the relevant éonsequences will _bé true and
additionally, we must make sure that none of the other
consequences have been falsified without their antecedents also

being falsified.

| We consider all the transitions of an arbitrary component

pi(n,k,s.l,t);
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Case 1, Pl(n,k,s,l,t) is true.
We know that t=1. Suppose k=¢. Then the system may
perform an offér‘,(k') action and evolve to a state where

'Pl(n,k'.s,l,.l.) ‘is true. The consequences of i) remain unchanged
for component i and the transition does not effect any of the
other processes and hence the invariants still hold in the new
state.

Suppose s#L. Then we may output a select‘,(s) message which
fesults in a state sa{isfying Pi(n+1,¢',L‘,1,J_). Again it is easy to
verify that the invariants hold in the new state.

If k#pAas=1Aajek then there are two possibilities depending on
whether i>j or i<j. If i>j then we may perform a 7 move which .
internally sends a éeti(j) to Buffer resulting in a state
satisfying Pi(n,k,.L.Z.PC‘_[n]). The consequences of iia) are true
and the transition effects nothing else.
If i<j then we may receive a jS message with either the value
YES or the value NO. If NO is received the system evolves to a
~ state satisfying Pi(n+1,k,i,1,¢) which still preserves the
invariants. If we receive a reply with the value YES, the
system evolves to a state satisfying Pi(n,'k,.L,S,.L). For this last
transition to occur, P,(n’,k',.L,Z,PC_[n’]) must have been true
before the transition where PC [n ]=i. Therefore, after the
transition, P (n k',1,2,1) will hold and it is easy to verify that
the 1nvar1ants iib) and iii) hold for j and i respectlvely.
If j¢k or s#i then there are two more possibilities depending‘ on
the relative values'of iand j. If i>j then we may perform a T

-move to a state satisfying P (n+1 k,s,1,1) and. if i<j then we

may perforrn a T move to a state satisfying Pi(n,k,s,4,4.) which

satisfies the consequences of iv). - : .

Finally, as t=1, we may always issue a Qij'message with the
value NO to any poller that requests it. This transition leaves
the process unchanged. However, the remote poller may either
req'uest: it from a state satisf)'ing Pj(n'.k',L.l.L) which has

already been dealt with, or it may request it from a state
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satisfying P’(n‘;k',s.4.J.). In this case the remote process
evolves to a state satisfying Pj(n'+}.,k',s,’1,.L) which preserves

the invariants.

This exhaustively deals with all transitions that involve the i'
component of the system when Pl(n.k,s_,l,t) holds for some n,k,s

and t.

Case 2a, Pl(n.k.s.Z,PCi[n]) is true.

'We know that s=1. A component that satisfies this predicate
cannot receive an Ajl_ me3sage as this would imply that P,
(where j=PC’i[n]) satisfied Pj(n'.k’,s,3.t) or Pj(n’,k'.s,5,t) where
PCJ_[n']=i. However, these possibilities are ruled out by the
invariance conditions. Therefore the only possible transition.
that involves this componnentiis a response to a Qij query.

If j;éPC‘i[n] then we respond with the value NO and the situation:
is identical to the analysis in Case 1. In fact, in every state
there may be the possibility of sending a negative response to
a'Q;j query. In each case the analysis is identical, and so when
examining the rest of the states we will ignore thi§ possibility.

- If j=P¢i[n] f(.hen we respond T'Nit_h YES and progress to a state
sgtisfying ,'Pvi(n,k,L,Z;.vL). pj-may have préviously' been in a .svtate
satisfying either Pj(n',k',.L,l,J.), in which case the new state will
satisfy Pj(n',k',J.,S,.L); or Pj(n',k',s',4,.L), in which case the new
state will satisfy Pj(n’,k",s',5,.L). In either case, i=PC],[n’] and so

the invariants are preserved.

Case 2D, Pi(n,k,s,z,.l.) is true. ‘

We can deduce from the invariants that s=.1 and P, satisfies
either Pj(n',k',.L,S..L) or Pj(n',k’,s’,é,J.), where j=PCi[n] and
PC],[n']=i. In the first case, th‘g'two pollers may communicate
evolving to states satisfying P,(nk,PC[n].1,1) and
Pj(n'.k",PC}[n'],l,J_). In the second case, the two processeé
evolve to states satisfying _»Pi(n-*-l,k,J.,l,.L) and Pj(n’+1,k',.L,1,J.).
In both cases it is simple to verify that i) holds for i and j and

that no other-invariants have been effected.
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Case 3, P (n k,s,3,t) is true
‘"We meay deduce from the 1nvar1ants that t=14, s=1 and P, is in
a state satisfying Pj(n k',1,2,1) where ]—PC‘,[D] and x—PCj[n ].
This possibility was analysed in 2b).

Case 4, Pi(n,k,s,4,t) is true. .
We may deduce that t=1 from the invariants. The case where
we receive a jS rnessage with the value NO has already been
dealt with. If we receive a YES response then p'_ must have
been in a state satisfying P (n k',1,2,i) where j PC [n] and this

possibility was analysed in 2a)

Case 5, Pl(n,k,s,5,t) is true.
Fro.rn' the invariants we may deduce that t=1+ and P, is in a
state satisfying,"Pj(n',k',.L,Z,.L) where j=PCi[n] and i=PCJ_[n’].
This possibility was analysed in 2b).

This completes our case analysis and proves that the invariants are

preserved by all transitions. O

The next theorem formalises our intuitions that a poller  will alway.s
be able to cycle around its communication partners without becoming
deedlbcked waiting for a response from the environment. This theorem
was not true for our- original presentation of the system as a poller may
have been prevented from interacting with its partners because it was

waltlng to output a select message.

Theorem 5.2 i
Let: PSys(71.K,5\0F) represent a p0351b1e denvatlve of the
.system where PSys(n,K,s\I'T) = P, (n k, s Lt) holds.
Then for all ISmSIPCiI

PSys(ﬁ.K,?.ﬁf) = PSys(n'.k'.s'.I".t)

such that PSys(fi' . k'.s'.I"t) = P (m k,s',1,1) holds for some s'.
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Proof:
By inspec-tiAon of the text of a poller in conjunction with Theorem -
5.1, we see that the only commpnication that can stop a poller
progressing from a state satisfying Pi(n.k.s.l.t) to one satisfying
Pi(n+1,k,s'.1,.L) is when it is waiting for an Aji messége that never
arrives. All the other communications are either optional (the
of fer and selec't messages), or involve synchronising wi-th prbcesses

that are guaranteed to be able to reply.
We prove the theorem by using induction on the index i.

Induction basis, i=1

In this case, there exists no j such that i>j and so Polle'ri never
waits for an Aji message to be output from another poller.

Therefore the theorem holds.

Inductive step, we assume the theorem is true for all j, 1<j<i.

The only case that might cause problems is when Polle'ri is waiting
at position {2] for an Aﬁ message from Potle'rj, where i>j. But then,
by the inductive hypothesis, Pollerj can eventually move to a state
satisfying Pj(n',k',s',l,.l.) where PCj[n’]=‘i. At this point, the two
processes have the opportunity of communicating, thus freeing

Polle'ri to move onto the next state. DO

§5.5 The relationship between pollers and simple
synchronisers

We are now in a position where we can attempt to show that the
poller network is an implementation of the simple synchroniser network.
'W‘e could ai)pfoach this task in a number of ways. The most direct -
scheme would be to prove ‘that SSysg PSys using the definition of =
However, this task is made difficult by the need to quantify over all
tests. We could try to show that SSysg PSys, which is perhaps an easier
task as some form of simulation could be used. Finally, we could try‘to
show that SSys>PSys or SSys>tPSys. Unfortunatel);, for reasons that will

become clearer later in the chapter, it is not true that SSys> P3ys. If
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we try to use > or By wé risk the possibility of not being able to relate

the result to g . The technique. that we have currently. proposed to -

relate ¢ and l;k.‘namely controllai)ility or g -determinacy, is too strong a
requirement for our example, although as controllability is a sufficient,
but not essential condition for establishing a connection, there may be
other ways of completing'the proof. Fortunately, a small alteration to
the transformation function is sufficient to allow >t to be successfully
applied and this result will directly imply the result for £, This proof
is contained in Section 5.6. Although it appears highly probable that
'the current version of the poller algorithm is a valid implementation of
the simple synchroniser network, this cannot be proved until a less

restrictive condition than controllability is found that still allows us to

deduce i)g'q >f¢7:>xr'mwi)gkq. Hrorwever, we start by proving that SSys>Psys, i

and hence SSysg PSys, in the hope that such a connection will eventually

"t-:;e establ-ished.

5.5.1 A proof that SSys > PSys

The first step is to show that the prooler network is a refinement of

the simple synchroniser network.

Theorem 5.3 SSys(3,T.T) > PSys(T,3,2.1,2)

Proof:

We construct a set ® and then show that it forms a valid éimulation

relation for > .

R = 5<SSys(1zs,1:,j‘;),pSys(ap,Izp,g‘p,g,?p)> |

(eta) i (P(n.¢.1.1,1) A S(¢.1,1))

(c1b) v (Pi(n,k,J..l.J.) A k#d A si(k,z,q)

(‘clc) v (Pi(n,k,s,l,.L) A SEL A Si(R,S,s))

(cRa) v (Pi(n,k,.L,Z,t) A ((LAL) v Pj(n',k',s',s,.L) where j=PC1_[n]) A

Si(k,z,.L))

(c2b) v (P(nk.1.21) ANPj(n',k',.L,S,.L) A S,(k.3,]) mhere j=PC [n])
(c3a) - v (P(nk,+.,3,1) A S (k,3,PC[n]))

(c4a) oV (Pi(n,k,J.,4,J.) A k#EP A Si(k,Z,J.))

(c4b) (P(nk.s,4,1) A s#L A S(k.3.5))

<



A*RigoTous Validation of an Iﬁplqmentqtibn 162

(c4c) v (P(n..1.4,1) A S($.1,1))

(c5a) v (Pl(n,k.L,S.L) A k#ED A Si(l‘_(,z,..L))
(c5b) v (P‘(n,k.s.S,L) A SEL A S,(k,3.s))
(c5c) v (P(n.¢,+.5.1) A S(6.1,4)) |3

We factor the proof into two parts. We first show thét for any pair
<S8Sys,PSys> in R, if PSys <%= PSys' then SSyséSSys". where
<SSys'.PSys'> is also an element of . We then show that for each
pair <SSys,PSys> in R, if SSys';_ngs_t L for some L then PSys must L
as well. This allows us to concentrate on one aspect of the
preorder at a time, and. in addition, it will allow us to use the first
part of the prpof as the basis of a proof that SSys>tPSys', where
PSys' is the modified version of PSys mentioned at the beginning of

this section.

Ini’tially, we must check that for any pair <SSys,PSys> in R, if
PSys—P-éPSys’ then SSyséSSys' where <SSys',PSys'>€R. To
simplify the analysis of internal transitions, we need only look at
those transitions that alter the state of a process. For exarn1;>le, if
. a Buffer i)rocess outputs a NO value, the state of the associated
component does not change. We therefore rely on the change of
state at the destindiion proéess to trigger any anﬁlysis we may
have to perform. If the staté of the destination process remains
unaltered as well then this is still acceptable as SSysT:SSys |
trivially and the resulting pair is obviously in £ To reduce the
case analysis further, for the internal T moves we need only check
one side of the comrﬁgnicatio_n since at that pvoint we examine all
the possible configurations of the remote process. We start by
performi.ng‘ a case analysis on each possible transition of an

_arbitrary component that involves a change in its state.

la) P(n¢,1,1,1) A S(.1,1)
. offer (k)
Suppose p (n,¢,4.1,4) ——>p (nk,1,1,1).

. There are two possibilities.
' of fer (k)
If k=¢ then s (¢,1,1) =—>5(¢,1,1)
: offer‘_(ﬁ)
and if k#¢ then Si(¢,1,.l.) :si(k,Z,J_).
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"1b)

In

either case, the resulting pairs are in K.

We may also perform a 7 move to ;;i(n+1,¢,.1.,1,.1,)

or to pi(n,¢,J.,4,.L).

In

either of these cases component s, can remain unchanged.

P(nk.,1,1,1) A k¥ A S,(k.2,1)

There are four possible moves we are interested in depending

on whether i<j and je€k.

a)

b)

c)

d)

i>j A jek
pi(n,k,.L.l,.L) J——)pi(n,k,_L,Z,PCi[n])

which satisfies (c2a)

i<j A jek

There are two possibilities;

either pi(n,k,J_,l.L) | pj(n',k',s',l',t') ——
pi(n+1,k,.L,1,J.) | pj(n‘,k’,s’,l’,t') where j=PCi[n]/\t;éi

or pi(n,k,J_,l,J.) | pj(n',k’,s',l',i) _—

pi(n,k,+_3,¢) | pj(n‘,k',s',l',L) where again j=PC1_[n] .

In the first case, the state effectively remains unchangéd.
In the second case, Theorem 5.1 implies
that 1'=2 ‘and s'=.1.
We can therefore deduce from R that Sj(k',2,.L) was true,
where ick’. But

s (k.2,1) ]_sj(k',2,¢)T=>si(k,3,j) | s,(k".3.9)
and the resulting pair satisfies the requirements for

membership of K.

i>j A je€k
pi(n,k,.L,l,.L)T—>pi(n+1,k,4.,4,.1.) and so

the state effectively remains unchanged.

i<j A jZk

163 ", .
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1c)

2a)

p;(n,k,.l.,l,.L)J—%p‘_(n.k..LA,.L)thich satisfies (c4a).

P(nk.s,1,1) A s£L A S(k.3.5)
From Theorem 5.1, we know that k#¢.
There are three possibilities

select (s)

a) p‘,(n,k,s.l,L) ———%pi(n+ 1,¢,4,1,1)
select (s)

But s (k.3,5) =——>5(¢.1,4).

b) pi(n,k,s,l,.l.)-T:—>pi(n+1.k,s,1,1) if i>j

c) Pi(n,k.s.l.-L)T—>pl_(n.k.s,4,J.) if i<j.

P.(nk,1.2,t) A ((t#L) v P’(n',k',s’,5,_L) where j=PCi[n]) A Si(k,Z.J.)
Suppose t#L. Then by Theorem 5.1, the only transition that
we are interested in is if pj reads the @ meésage

where 'j = PCi[n].

164

There are two possibilities depending on which branch of Polle'rj

requests the communication.

a) j<i, Pj‘(n',k',L,LL) A i€k’

This case has been dealt with in 1b) part b).

b) j<i, Pj(n.',k’,s',4,.1.) A igk’
Then p (n.k,1.2,j) | pj(n'!k',s',4,7L)"—>
: pi(n,k,J.,Z,.L) | pj(.n',k',s',f),.l.).
But before the transition Sj(k',S,s'), Si(k',L,Z) or
Sj(¢,1,.{.)> ;’rgust have been true depending on the value of
s' and k, and therefore after the transition the states will

still match with Pi(n',k’.s',5,.1.)

Let us now assume that t=1 so Pj(n',k',s',5,.l.) is true where
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2b)

3a)

4a)

ab)

j=PCi[n].
Then p(nk,1.,2,1) | pj(n'.k’,s',S,.L)-'—)
pi(n+1.k,.1.,_~1,.1.) | pj(n'+1,k',s',l,.|.)’

P(nk,+.,2,4) A Pl(n'.'k',i.s,u A S,(k.3.j) where j=PC [n]
Then we can use Theorem 5.1 and ® to deduce that
Sj(k',S,PCJ_[n']) and PCj[n']=i must be true.
pl_(n,k,J.,Z,.L)lpj(n',k',J.,S,.L)—I—>pi(n,k,j,1,_L)|pj(n"k‘,i,1,_L)

and the resulting pairs are in &

Pi(n,k,J-.3..L) A Si(k,B,PC‘,[n])
Then by Theorem 5.1, Pj(n',k’,.L.Z.J.) and PCj[n’]:i

rﬁust be true. This case has been covered in 2b)

P (nk,1,4,1) A k#d A Si(k,z,.L)

There are two possibilities depending on the value received with

the jS communication.

If the value received is NO then the following transition must

have taken place . | '
pi(n,k,.L,4,J.) | pj(h'.k',s',l',t')—L>pi(n+1,k,L,1,L) | pj(n',k',s',l’,t')

where j=PC[n] A t'#A. '

If a YES value is received then by Theorem 5.1, Pj(n'.k’,L,Z,i)

‘

must be true. This case has been covered in 2a).

Pi(n,k.s,4,.l-) A SEL A Sl(k,3,s)»
Again there are two possible transitions and the analysis

is similar to 4a).

P‘(n,¢,¢,4,.l.) A Si(¢'1'J')

This case.is essentially the same as 4a) = -
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5a) P‘(‘n,k,J..S,L) A k£D A Sl(k,z,l,)
Then by Theorem 5.1, Pj(n’.k',.L,Z,.L) A SJ(k'.Z,J.) A k'#p
must be true where j=PC [n].

This case has been dealt with in 2a).

.5b) P (nk,s,5,1) A SEL A si(k.s.s)’
and
5¢) Pi(n,¢,.L,5,.L) A Sl(¢,1,J.)

can be treated as in 5a).

This completes our case analysis and hence the first stage of the

proof.

‘We must now check all the pairs in £ to make sure that if
<SSys,PSys> €R and SSys must L for some L theh PSys must L also.
W.lg. we may assume that L is a minimal set, i.e. ZL'cL s.t.

SSys must L'. We perférrn an induction based on the cardinality of
L. If L is empty then SSys must ¢ is not possible and this forms our
base case. For each A in L we show that if PSys=€$PSys' then
either PSYS'A=>, or else SSys'-’-——c—=> SSys' such that <SSys' PSys'>efR
and SSYS'%\b. In this case SSys' must L' for some L'CL where A¢L'
'We assume inductively that PSys' must L' and so 3y€l’ s.t.
PSys'=7: and y€l. The inducti‘on relies on the fact that each +
de_rivative must eventually be able to perform'om? of fhé actions in

L as otherwise we would reach the base case which is not possible.

If L is a. minimal set it can only be composed of offer and select

actions. Furthermore, SSys must be in a state where it can

potentially perform these actions. We treat each possibility in turn,
. . and for each action consider the' possible states the éynchroniser

components, and hence the poller components, may be in.

1. offe‘ri(j)eL for some i,j.
Then for this action to be possible, Si(gb,i,i) must be true.

Using the relation R, there are three case{:svwhé‘re this is
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possible; when Pi(n,¢,J.,1,J.), Pl(n'¢'J"4'J') or Pl(n,¢..L.5..L) is .true.
Using Theorem 5.2 and t_'he' fact that k remains empty until an
offer is selected, we know that all 7 sequences stafting from
PSys can be extended to .a PSys’ such that PSys' E Px(n’,¢,4.,1,.L).

offer (i)
But pi(n',¢,.L,1,¢) ‘—)pi(n',j,.L,l,J.).

2. select‘,(j)eL for some i,j.
Then Si(k,Z,.L) or Si(k,B,j) is true where jek.

.We treat the two cases separately starting with the simpler case.

a. Si(k,3,j) is true

Let us. enumerate the p4ossible states of D,

i. Pi(n,k,j,l,J.) v

ii. Pi(n,k,.L,Z,J_) A Pj(n',k',.L,S,.L) where j=PC{[n] |

iii. Pi(n,k,J_,S,.L) A j=PCi[n]
- iv. Pi(n,k,j,4,_L) '

v. Pi(n,k,j,5,.1_)

We know that irrespective of what the rest of the syétem
does, if ii) or iii) is frue then p, can progress to a state
where Pi(n,k,j,l,J_), i.e. i) is true. If iv),v) or i) is true then
by Theorem 5.2 and the fact that the s field is only cleared
‘after a select message, we know that eventually we can get
‘_to a state where i) is true. Finally, it is immediately
apparent that |

select (j)

p(nkj1,1) —’>pi(n+1,¢,¢,1,+)

b. Si(k,Z,J.)‘is true where jek
This‘ is the case where the induction is required becaluse at"
the point where Si(k,2,.!.) is true, SSys is not committed to
the select action. It must be i)ossible for the action to
occur but the system may also non-deterministically choose
another alternative if one is available. Let us start by

enumerating the possible states of P,
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"i Pi(n',k.;",l..L)

ii. Pl(n,k,.!.,z.t) A ((RAL) v (Pm(n'.k',s',S,.L)) where m;PCi[n]

iii. Pi(n.k,J.,4,.L) '

iv. P‘(n,k,J.,S,.L')
By Theorem 5.2 we know that after any sequence of T moves

it will always be possible to get-to a state where

Pl(n',k',s',l,L) is true where PCi[n’]=j.
Furthermore, we know that k cannot change until we have
output a selecti message and so k'=k. Suppose s'#L. If s'=j
then we are able to output a selecti(j) message. What if s'#j?
Then at some point in our sequence of T either p, was in a
state satisfying Pl(m,k,.l;,2,4_) and p_. was in a state satisfj;ing
P_(m'k",1,3,1), or vice versa, where i=PC_[m’'] and s'=PC [m].
In either case this implies that Ss,(k",B,J.) must have been

true in SSys. But then

s,(k.2.0) | s (k",2,0) 1> 5 (k3,5 | s_(k".3.0)
and the resulting SSys' cannot output a selecti(j) action.
Furthermore, P, must now be in a state satisfying .
Ps,(m",k",i,l,.l.) where 1=1, 4 or 5, and in all of these cases
the resulting. pairs of new states are in ® Therefore our
inductive hypothesis allows4' us to deduce that this case is
correct. ‘
If s'=1 then there are two cases to be considered depending
on whether i is less than or greater than j.
Case i<j

In this case the system can wait until it receives a jS ‘
message. If the value YES is returned then the system will
e\lz'entuallyvreach a state which satisfies Pi(n"fk,j,l,L) which
will then be able to output a seleéti(j) message. If a NO
message is received then it may be because Polle'rj has not
yet reached a state where it wishes to communicate with
Polle'rl,. In this case, the poller can continue until either a
YES answer is returned to the jS query, or a NO value is
returned due j(.o P, being in a state such that the system

satisfies P‘j('rn,k“,s",l,.L) where s'#1. In the second case we
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may reason that pj must have arranged this communication
during ‘the sequence of 7 moves as otherwise the select‘_(j)'
message would not have been possible right from the start.
By & similar analysis to the case where s'#1, we may reason
that 's'_ also had the potential to communicate with S, and so
we may employ the inductive hypothesis.
Case i>j

The analysis is similar to the previous case. Either the
poller‘receives a positive Aﬁ reply, in which case it may then
output a selecti(j) message, or else a negative response is
received which implies that Polle‘rj has‘negotiated'a

communication with some other process in which case we can

show that this is also a possibility in SSys.

This completes our proof and shows that ® is a valid simulation

relation and hence that SSys(#,T,T) > PSys(1.,¢.2Z.7.T). ©

From the previous result, and Theorem 4.25, we may deduce that

SSys(¢.1.T) ¢, PSys(T.3.X,T.7)

We must now show how to extend this result to the L, preorder.

vUnfbrtunately,_ our efforts’ in this direction have so far proved to be

- unsuccessful. Chapter 4 showed one way of deducing PE,q from PEq if p

- is =~ -determinate. In our particular example, this would be equivalent

to showing that the s.y.stem SSys(¢.7.1) is o -determinate. However a

simple example illustrates that it.is not. Suppose we have the following

. 'situ'ation.
Sl

AN

Se

where we assume that we have already issued the messages

offer,(113) and offer,({1}).



A Rigorous Validation of an Implementation } ' 170

If we now output an offerl({2,3;) message then the system may arrange
_' a communic.ation between either s, and s, or between '31 énd S, In thé
first case, £he system will then be willing to output a selectl(Z) message
and in the second case, a selectl(S) message will be offered. These two
possible states are therefore not related bywﬁk and so the system is not

: uk—d eterminate.

£, and g for the most part treat processes identically. Therefore it
is reasonable to hope that there may be other constraints that we may
impose on processes p and q that let us deduce pg q from P£,q. but our
searches in that direction have so far proved to be unproductive'.ﬂ'c" An
alternative approach might be to restrict the class of observers that Ey
is defined over in an attempt to bring the two preorders even closer.
However, given that g is preserved by | whereas £, is not, it seems that
restricting the observer class would only provide part of the answer if

we wanted to preserve the properties of _.

§5.6 A proof that SSys > PSys'

Chapter 4 introduced one other way of proving P54 indirectly. This

approach used the preorder >, If we could show that
SSys(¢.T.1) >, PSys(1.¢.1.1.T)

then we could directly infer the required result. However, there is a A

problem that occurs when trying to use >, This is due to the fact that
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if 7‘7'cwes(pl )= T'races(pz )

To see why, consider what happens when q performs an « move. Let us
assume that it tekes the left-hand branch. Then process p after an «

move reaches a state

7

1 2
and
g /\ﬁ | , [6
p1 p2 pl

as the possible traces are different.

Note that with the relation > the following is true

' o o/ 1o 1o x
&) a > but b) p
' ﬂ*ﬁ ﬁmﬁ ﬁm o

The proéf'for SSys > PSys exploited this fact in the following way. When

a process is in a state satisfying Pi(n,k,.L,Z,PCi[n]), then at that point it

may be committed to a certain action even though we have equéted it
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to Si(k.z,.L). The cornmurlx-i’caticb-n we are committed to depends on the
states of ihe communicating partners and their relative orders. 'I"he
reason we were successful in proving that SSys >A 'PSys waé because,
although the st',(k;z,.L) term was uncommitted, i‘t'had no control over
what comrﬁunication would eventually -occur and so the situation was
similar to (3). However () shows that this technique will not work for
>, V '

In order to use the >, preorder, two alternatives are open to us.
The first approach would be to equate a term satisfying Pi(n,k,J_.Z,PCi[n])
to a term satisfying. Si(k,3.,j) for some j, if a global analysis of the state
indicated that Polleri was corpmitted to establishing a communication
with Polle'rj due to the ordér in which Polle‘rtj pelled its partners.” If we
did this, the commitment point in the simple synchronisers and the
pollers would then be iaentical as far as the relation & was concerned.
: Unfort;lnately, this approach would greatly complicate what is already a

lengthy proof.

The first approach ‘can be viewed as moving the point of
commitment of‘the simple synchronisers so as to coincide with that of
the pollers. The other approach is in some sense the opposite. We can
modify the algorithm so -that ‘the commitment point of the pollers
coincides with the comrnitmept point ‘of the simple synchronisers. If we
allow the component p, when in the state (n,k,J.,Z,PCi[n]), to

"

spontaneously ‘give up and revert back to a state satisfying
Pi(n+1,k,.L,1,.L), then it allov}s the P, component complete freedoi’n of
choice until it reaches the state (nk,j,1,1) or (nk,1,3,1), where in

ei;cher case the equivalent state of s; is also committed. .

Obviously, by taking such an appfoach, we accept the criticisrﬁ that
we are changing the problem to suit the proof. However, in this case we
believe the approach is justified for the following reasons. In the first
place, there'appears to be no other way of completing the proof using
the > ‘preorder without a great deal of additional complexity. We feel
that this cannot. be j'u'stifie‘d while there is & possibility that some

relation between Ey and E, can be found that allows us to complete the
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original and simpler proof. Secondly, the modification gives a very
similar effect to a variant of the original algorithm where, instead of
incrementing the index into 'PCt, each time, we cﬁoose .the next index at
random. " As long as -we have a random number generator that
guarantees that each process will eventually be polled, then this random
version of the scheme effectively performs identically to the original
version. Furthermore, the random version and our proposed
modif‘ication have very similar behaviours. For these reasons we choose

the second approach. . -

One way of implementing our proposed change is by replacing

Buffe'ri by the’ definition in Figure 5-3.

NBuffer. = 3¢ ( @ (NO). NBuffer, )

jepe, . ‘
+ set (j). NBuffer' (j)

NBuffer' (k) = ( : Z 51.].(1\70)- NBuffer'i(k))
) jePci—ik;
+ Q_“C(YE'S). NBuffer,
+.A_H(N05. NB'u,ffe‘ri".

Figure 5-3: A modified version of the Buffer process

It is easy to check that the new modification has not created any.

" additional synchronisation problems. Furthermore, the additional

transition we have introduced does not effect Theorem 5.1, or perhaps

~more accurately, the extra check for this transition can be added to the

proof. of Theorem 5.1 without changing the rest of the proof.

In order to prove that

SSys(3.7,%) >'t PSys'(T.$.2,T.1),

where PSys' represents the modified poller network, we use the same
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simulation relation £ as before. Because Theorem 5.1 still holds, and
the first part of the definition of >, is identical to that for >, we may
use thé first part of-the previous proof without change, except to verify
that the additional transition causes no problems. We are then left with

the problem .of checking that for each pair <SSys,PSys>€® that
Traces(SSys)CTraces(PSys).

We first prove the following theorem.

Theorem 5.4 '
Let PSys represent a derivative of PSys(T,3.X.7T,%).

Then if PSys E

(i) Pi(n,k,.L,l,J.)

(ii) v P(nk.1,2t) A ((t£L) v P_(n'K's"5,1))
where m=PC [n]’ '

(iii) v P(nk,1,4,1)

(iv) v Pi(n,k,J.,5,.1.)

holds then Vn' s.t. j=PC[n'] A jek A PSys k& P (n"k's1,t)
3PSys' such that PSys = PSys’ and o
PSys' E P(n'k,L,1,4) A P(n"K's,Lt)

Proof:

We assume that for any process, m, in PC‘i where m#j, if it reaches

a state p”;(n',k’,.L,Z,PCm[n']) then it immediately performs a

tranéition to a state pm(n‘+1,k',J_,1,.L). ‘

'Then if iii) or iv) is true, we may perform a sequence.of T moves to
W a state satisfying Pi(n+1,k,.L,1,.1.). If ii) is true we may again
perform a transition to Pl(n+-1,k,¢,1,4.). If i) is true then we can
always progress to the next index, either by timing out or by
relying on the fact that any partners other than Polle'rj will have
timed out and so will return NO to a jS query. Therefore we will
eventually get to a state Pi(n’,k,_L,l,.L) and this sequence of moves

does not require any participation by Polle'rj and so its state will

have remained unchanged. O
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We can now show that SSys(g§,T,T) > PSys (1.8, 1.1.1).

Theorem 5.5 SSys(§,1.T) >, Psys'(1.8.1.1.1)

Proof: _ '
The firs‘t'}:')a_rt of the proof has already been disc;ussed. All that
remains is to c_heck that f"or all pairs <SSys,PSys> in R,
Traces(SSys)CTraces(PSys). We do this by showing that for all
sequences s in Traces(SSys), s also. exists in Traces(PSys). We use

induction on the length of s.

Inductive base, s=¢

Then trivially e€Traces(PSys)

Inductive step, s=as’
What possible values can « have? It must either be an offer or

a select message and we treat these two cases separately‘

1. a = offeri(k)’
In order for this'action to form part of a trace of SSys, the
action must be possible which implies that Si(¢'1"L) holds.
This is possible when Pi(n,qb;J.,l,J.), Pi(n'¢"L’4’J') v
Pi(n,¢,J_,5,.L) holds. We may use Theorem 5.2 to deduce that
eventually we mhy progress to a state Pi(n',¢,1.,1,J_) where

the transition

of fer (k) .
Pi(n'.¢,L.1.L)—->1 pi(n',k.J-,l,L) is possible.
" If k=¢ then ‘
of fer (k)

s(9.1.1) ——>s(g.1,1)
and otherwise
, offer (k)
si(¢,1,¢)——’—>s‘,(k,2,¢).
In either case the resulting pairs are in ® so we may use

the inductive hypothesis to show that s'€eTraces(PSys') where

PSys' represents the state after the transition.

2. = select‘,(j)
In order for this action 'to be possible we know that either
Si(k,3,j)>or Si(k,2,J.) is true. In the first case, we may

perform the same analysis as for > to deduce that
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ulect‘.(]) » ' select‘,(j) '
PSys === PSys' and SSys =====— SSys'
where <SSys',PSys'>€f and so again we:may use the
inductive hypothesis on s'.

If Sl(k,2,.l.) is true then there are two possibilities.

a. i>j
In this case, by Theorem 5.4, we méy eventually reach a
state P‘(n',k,i.,l.i.) where jek and j=PCi[n'].
Furthermore, this sequence of transitions doesn't effect
Polle'rj. Polle'ri then outputs a set‘_(j) acti-on and waits
for a reply from Polle'rj. We can apply Theorem 5.4 to
deduce that Pj(n",k',J.,l,L) will eventually hold, where
i€k’ and i=PCJ_[n’]. At this point it can receive a positive
Qij response which means that the system will eventually
be able to output a sele’cti(j) message. Furthermore, the
reéulting pairs are in'.ﬂ and so we may apply the

inductive hypothesis to s'.

b. i<j .
The analysis is similar to the previous case except that

'Pozzerj waits for Poller,.

This completes our proof that Traces(SSys)cTraces(PSys) and hence
we may deduce that SSys(3,T,IT) > PSys(T.¢.L.T.T) O

§5.7 A proof that Tr_: is an implementation
transformation

Before proving that Trpou is an implementatlon “transformation we
first show this property for Trsync. We can then extend the result to

T in a si le way.
T Pon 11 imp ay

To show that TrSync is an implementation we must show that
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I l P ‘w-must succeed > Tr [[ l I P :I] w—must succeed
N L ¢ Sync i
iEN . i€EN

We have previously represented the state of a simple. synchroniser by
s‘,(k,l,j), where k is the set of processes we are trying to synchronise
with, j is the identity of a process we have successfully established a
.communication with (or 1), and 1 represents the current position in the
algorithm. When we place the simple synchroniser in parallel with its
host, we need to extend the state to keep track of the'pi'ocess from
which this transformation was derived. This extension will be described

by means of the following éxample.

Suppose we have a process P, and we translate it to obtain the
component s‘_(¢,1,.L,p‘,), where we have added an extra field, p, to
indicate the source of the transformed term. Then a communication .
perform;ad by the original process with process P, is translated into the

following sequence of actions.

am
P, = 2 a,p,; and p——>p_,

k3
jEN
7 i

s($.1,1.p) >

j€n,
T .

s U c(a)uti}, 2,1,p) 20H

s U c@)uti}, 3kp) "=

€n
2 .
a

LN

si(¢,4,J. ,am.pim)
s{(®.1,4.p,)

" where C(a_)=k
m

and m(i,k) = m_ if k<i and 'xi“m if k>i.

This sequence is matched by a similar one in the translation of p,. Ve
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extend the possible locations from 3 to 4 where 4 indicates that the

master has not yet pefformed the synchronised action.

It would be useful if we could extend each process into a kl;lown
state. Fufthermore, we ‘would like this known state to be equivalent to
some transformation of a process. A transformation currently starts in
a state where all the processes are at location {1}]. However, we cannot
always extend & computation so that all processes are in this state
because a process may already be at locétion {23 witp no possibility of
communicating with another process. We will show that it is always
possible to extend a computation so that all processes are at location
{2]. When a process is at location {1] then it can progress silently to
location {2}, so that case presents no problems. If it is at location {3}
then this implies that it has just performed an m(k,i) transition which
in turn means that s, has just performed an m(k,i) transition. They
may both independently proceed to location {4], and due to the
definit:ion of €, they are guaranteed to -be able to communicate with
eaéh sther again in order to reach location‘ {1} which silently brings the

component back to location {2}.

The discussion in the previous paragraph leads us to assume that
the transformation function results in a state where £he initial
communication between the host and the simple synchroniser has
already taken place. This is equi\valent to performing the initial move at
céi’hpile time instead_ of at run time, and doesn't alter any of our

previous results concerning the transformation.

Altering the starting point of the transformation allows us to prove

the following proposition.

Propésition 5.6

€ ~y L3 [
Trsync[[ I;\I, p‘,]]=>tp.3 3 p st tp :Trsyncﬂ Ie_zlv pi]]
1 1

Proof:
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Immediate .as the transformation function starts with each process
s, in a state saf.isfyihg Sx(k,2,J_,p‘) and we have shown that every
state can be extended to this form in a cc;mpufation, so in
particular, ‘all the processes in tp may be extended so that tﬁey are

equivalent to the transformation of some HKN p“. O

However, we will need a stronger result than this, namely that the

ieN
moves. In other words, we wish to prove the following proposition.

' processes can be obtained from by a sequence of silent
P, P sen Pi

Proposition 5.7

[ ~, 4 '
Trsyncl[ 1;[, pl==tp >3 p st tp =>Trs.ync[[ ,1;1, p, 1
1

and furthermore, H p‘.£=> H Pi'
ieN " ieN

Proof:

Suppose

€
TrSynclI 1_-[ pi]] TrSync[[ H pi ]] ’
. ieN ieN

Let o, be the sequence of actions contributed by component i. In
other words, the set IoilieN; can be merged in some way to form an
€ sequence. Each sequence o, consists of a number of subsequences

each of the form

T vm(i.k)' T m

The situation may be viewed as follows
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T  m(1,3) T a,,
e /\ 1 e AN
1 P '
T i m(2,n T ! a
P A S{\ ) A ARz
= 7 T
3 m(3,1) T,
* T H ’ T
n m(n,2) &m2

We define the function f on sequences such as these as follows
f(T.m(i,k).T.am.s) = am.f(s)
f(NIL) = NIL

Let us denote by TrSync the transformation applied to the ith

A o t(o))
component. If Trsync [[pi]]%Trsync [[pi']] then pt_—'l>p‘_'.
i i

Furthermore, by examining the effect of f on our previous diagram,
we may conclude that the set of sequences If(oi)lieN} can also be

merg‘ed to form an-&¢ sequence. Therefore we may deduce that

€N iEN

By examination of the transformation function, we may deduce that

v - Vv
Tr cﬁllpinﬁ®llpi—>
1€EN 1EN

‘We m‘ayv also extend this to our last propositi.‘on‘.- If the transformation

passes through a state where a v move is possible on its way from

Trg . [ IT»J to Trg . L [ »,1

i€EN €N

then the path from
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I p, to IT b,

ieN . ieN
also has this possibility, and vice versa.

We now have to show that every comrﬁunication that was possible in
the original system may be mirrored in the transformed system. This is

the purpose of the next proposition.

Proposition 5.8

ITp—=> Il »; > Trg . [ I p‘,]]=7=»'1'rsync[[ IT »,1

iEN - i€EN i€EN iEN

Proof:

R ] . .
If Hi_eN p,—/™> HieN p, then there exists a pair p, P, such that

pi% P, pj°—>pj’ and

IT»p, =p,| | p, | | p, | | p, and
1EN

Hp,'=p1| | p; | | p, | | p,
1€EN

Consider T‘"Sync[[H,-en pi]]. Then S (k,2,1,p,) and Sj(kj,2,.L,pj) hold
where i€kj and jeki. Therefore these two processes may evolve to
s;(ki,s,j,pi) and sj(kj,s,i,pj). These may then separately evolve to
si(¢,4,.L,a.p‘_') and sj(¢,4,4.,6.pj') because, due to our assumptions
about C, there is a unique port between s, and s These two
processes may then communicate to produce si(cp,l,L.pi') and
sj(¢,1,.L,p’,'). Finally, both of these processes may move
independently to si(ki',z..l.,p‘,') and sj(kj',2,¢,pj') where ki' and kj'
‘contain.the set of processes that pi' and pj' wish to communicate
with. The rest of the components have remained unchanged and so .

th 1ti t i i 1.
e resulting system is equivalent to Trsync[[nielv P, ]] m]
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We are now able to show that 'Trsync is an implementation

transformation.

Theorem 5.9

. H P, w-must succeed > Trsync[[ H p‘Il w-must succeed
ieN ieN

Proof:

Suppose that this is not the case. Then there is a prefix of a

computation of Tr [H—[_EN p‘]] which cannot be extended to a
1

Sync
successful state, i.e.

£ ' £ i
Tr ync[I H pi]]=>tp s.t. Jtp'. tp==tp' —>

S
i€EN

By Proposition 5.7 we know that there exists a H'eN pi' such that
1

& & '-
TrSync[I I—-[ pi]] >tp ; TrSynéII H pi]]

‘ ieN . icN
where 1—_[ picﬁ H P, -

i€EN ieEN

" But then there are two possibilities. Either H_eN P, passed tAhrough
1 .

a successful state on the way to H_eN p‘_',' and therefore
1

Trsync[[HieN pt_]] must have_ also passed through a successful state, or
o L w v

H p‘_= I—.[ p‘_ _—

ieN ieN

But then by the last proposition,

¥ L =€ ' " \/ 3
TrSync[[ H pi ]] TrSync[[ H pi‘ ]]
i€EN ieN

In other words, we have achieved a contradiction. O

We have therefore proved that Trsync is an implementation

transformation.
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§5.8 A proof that Tr,.
transformation

, 1s an implementation

The end is in sight. We show that Trpou is an -implementation
transformation by showing that it is an implementation of Trsmc and

then appealing to transitivity.

The transformation function Trsync consists of two parts. The first
translates the processes into their offer/select form, and the second

part consists of the simple synchronisers. TrPoll may be broken down in

a similar way and, loosely speaking, we may view the two translations as

follows.

TrSync[[ 1—-[ p‘l]] = (Trl[I 1—-[ pi]] ‘ Trsyﬂ: H pi]])

i€EN 1EN 1EN

Trpul I 20 = (n0 [T o0 17 T IT ».0)

i€EN iEN i€N

Suppose that TrsynclI ,1;[; p‘_]] w—'m'u:st succeed.
Then (Tri[[ H p‘_]]vl Trsyl[ H p‘_:[}) w-must succeed
ieN iEN _
and so (Tri[[ H p‘,]] | Trpol[ H pi]]) w-must succeed,
. ieN ieN
which implies that TrPoHII H pi]] w-must succeed.
. dieN

which is sufficient to show that Tr

is an im ntati
Poll I plementation of Trsync and

hence is an implementation transformation.

§5.9 Partial application of synchronisation
transformations

One of the advantages of treating synchronisation schemes as
program transformations lies in their ability to be partially applied to a

system. We now investigate this possibility in more detail.
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Let.us consider again the example presented in Chapter 3, page 63.

PC 1 4 | /
()} 173 1433 g £33 ; (e}l (153 12 41 {4,6} 357 83; (o3
{13 {7.8} {8} {93 10}

The algorithm for determining synchronising annotations produced

the following dominance relation for this system.

P, < p, P, # P, P, < P,

P,<pP, P #DP, P, < Py

Pg < Pg p, # Py Py < Py
Pg # Pg

A fundamental property of the algorithm involved its treatment of
the propagation of inébmp‘arable processes. If two processes p and gq
- are attempting to communicate and p#q then these processes cannot be
affected by any other communications between pairs of comparable
. processes. For example, suppose q could also simultaneously attempt to
. communicate with r and r with s where r<s. This might potentially
- influence the communication between P and q because one of the
summands of q (with r) may be withdrawn .due to r communicating with
s. However, this situation is not possible because p#q and q can
vsimultaneously attempt to communicate with r which implviesA g#r and
héncé r#s. As a result, all communications that take place between
comparable processes are ih some sense disjoint from those between the
incomparable processes. This allows us to partially apply a
transformation only to those processes that are incomparable to some
other process. In the case of Schwarz' scheme, for example, even thé

transformed processes only need to communicate via a poller when
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synchronising with a set.' of incomparable processes. For the comparable
cases ‘they may communicate directly with the other processes. Thus.in
the example above, P, could always communicate directly “with its
partners (in this case Pz) wheretbaks“p4 must communicate with p, and. p,

via a poller although it can communicate directly with Py

- The correctness proof for Schwarz’' scheme still holds in the partial
application case because the direct communications between comparable
terms manifest themselves as silent moves among the hosts. If
communications between comparable terms could influence the other
communications then this would not be the case as a successful direct.
communication would potentially require the ability to send retraction

messages to the pollers which we have not considered.

Partial application of the transforr_nat;ion has obvious advantages.
Implementing pollers, even when done in hardware, is an expensive
process. It is therefore desirable to omit unnecessary uses of them.
Furthermore, this approach has more general applicability. Other
synchronisation schemes may also be expressed as transformations and
partially applied. The success of this appr.oach relies on naturalilimits
.to the propagation of incomparable processes in the dominance relation.
One reason for expecting this to be the case is that many programs
satisfy the restrictions imposed by the asymmetric version of CSP, for
exampl'& For these programs no incomparable processes will be .
necessary, although some may be generated due to the simplifications
assumed by the current algorithm. 'We expect in the more general case
that programs will. contain a sizable subset thaf. will have no’
incomparable processes. These subsets will be connected 'togéther by-
more elaborate synchrorﬁsation nets containing incomparable prdcesses

at the interfaces.
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CHAPTER 6

Conclusion and further work

The aim of this thesis has been to study the problems associated
with the implementation of concurrent languages based on ‘the
synchronous handshaking view of process communication. These
problems afise not only in the désign of the implementation algorithms
themselves, but also in the associated proofs of these algorithms. The
language chosen as the basis of these investigatioﬁs was Milner's
Calculus of Communicating Systems. CCS was an appropriate vehicle for
this research due to the ﬁell developed body of proof techniques and
equivalences that already existed for the language. Because of the
unusual nature of the proofs conducted in this thesis, however, the
previous work on. CCS has had to be extended to accommodate fairness

and transformational correctness in an intuitive fashion.

The theoretical problems tackled in this thesis have been broblem—
dri\‘i‘én to a great extent. The development of the weak-must preofder,
and the definitions of implementation and transformation, were
prompted by the desire to perform a correctness proof for a CCS
_implementation. Such a problem-driven ,approa‘ch has the advantage
that the theoretical investigations are well motivated. Furthermore, the
particular problems under consideration may crlrive the investigations in
directions that may not oﬁherwise be conterhpiated. The .broblem—driven
apprdach aiso has its drawbacks. There is a danger that the theoretical
work is incomplete and the results may also be of relevance to only a
small class of -problems. The quest for intuitively appealing definitions
may also lead to equivalences that are mathematically intractable.
While we do not believe that these potential drawbacks of the problerh—

driven approach are applicable in this case, the implications of the work
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presented in the thesis need to be- examined in more detail from a
theoretical standpoint. Even if the definitions themselves do not gain
wide acceptance, it js hoped that vthe motivation behind the choice of

the definitions will influence future work in this area.

We stated in the introductioﬁ that an important use of concurrent
programmiﬁg constructs was as a structuring tool in program design.
This prompted the work in Chapter 2 where the Edinburgh version of the
language PFL was described. It was argued that this was a natural way
of extending CCS to a complete-programming language, and preliminary
feedback from the teaching of this language, both in Edinburgh and
Goteborg, reinforces this view. The chapter also pointed out the séope
for future enhancements, including the need for a more sophisticated
user interface, and the possibility of extending the language with
features from other languages such as Synchronous CCS, MEIJE and
CIRCAL. Care must be taken in PFL to create an acceptable impression
of non-determinism to the user. The additional manipulations required
to achieve this complicate the implementation of the concurrent
primitives. To what extent these measures are necessary in a large PFL
program needs to be investigated. The preliminary work on PFL has
been encouraging and we believe that further work on single processor
implementations of CCS, not necessarily based on PFL, should be

encouraged.

Chapter 3 demonstrated the problems involved in providing a
distributed imﬁlementation of Static CCS. A subset of Static CCS based
on synchronising annotations was identified, and an efficient
implementation strategy based on this subset outlined. A method was

proposed for computing these annotations automatically under certain;

simplifying, assumptions. The results are limited to Static CCS (and
CSP). The more general case of CCS has not been considered for
simplicity. The effect. of these results in the presence of dynamic

process creation therefore needs to be investigated.

A new approach to the implementation of process synchroriisation,

based on program transformations, was also proposed in Chapter 3.
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Some of tﬁe existing synchronisation schemes may be reformulated as
- program transformations, and by applying these _transfor;mations
selectively to parts of the source program, an efficient'implementation
strategy may be achieved. .The problems associated with proving these
" transformations correct led to the theoretical investigations of'Chapter
4.A The weak-must testing equivalence was proposed as a way of
incorporating fairness constraints into the must testing equivalence,
" while retaining the validity of the expansion theorem. The most obvious
weakness of the new equivalence is the lack of an alternative
characterisation that admits some form of bisimulation style proof
technique. This omission is important as there currently does not exist
.a, proof technique that is directly applicable to the weak-must testing
equivalence. We hope that the motivation behind the introduction of
this equivalence will be sﬁfficientl'y' appealing that others will also
attempt to find such a characterisation, or propose alternative
equivalences of a similar nature to =~ . “A connection was established
between E, and the E, and < preorders, under certain conditions, and
perhaps these may form the basis of future searches in this direction.
An important area for future research involves the development of
transformations that produce, as output, programs that have no output
guards in summatiéns. This would allow the resulting programs to be
run on.existing implementations of languages such as CSP and OCCAM.
Partial application of such transformations would allow the asymmetric
nature of these language's to be hidden, although a performance penalty
would obviously have to be paid. Program transformations could be
developed that produced programs with bounds on their interconnection
patterns. Such transformations would be useful for processors, such as
the Transputer [INMOS 84b], where there are physical constraints on the
interconnectivity of the processors which would otherwise create
difficulties wh_en mapping processes onto processors. . The technigues
presented in Chapter 4 may help in proving these transformations
correct. The work presented in Chapters 3 and 4, especially the
proposal to wuse program transformations as an aid to process
synchronisation, and the deveiopment of the weak-must testing

preorder, forms the major achievement of this thesis.
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A new definition of implementation was presented, based on the
weak-must testiﬁg preorder. Although this definition, along with the
definition of transfoz;mation correétness, was motivated by the need to
prove the Schwarz transformation scheme correct, these Qefinitions are
of far wider applicability. The areas to which these techniques may be
applied will increase as larger proofs become more feasible, and the

problems tackled become more complex.

There have been other approaches to the treatment of weak and
strong fairness that have been introduced s;nce the weak-must testing
equivalence was defined. While these approaches do not currently
respect the expansion theorem, they may form the basis of techniques
that do, and these should then be compared with our approach. While
we strongly believe that the expansion theorem should still held when
fairness constraints are taken into consideration, this is' open to debate

and furtheér, more convincing, arguments should perhaps be developed to

resolve this matter one way or the other.

Chapter 5 presented a comparatively large proof of the Schwarz
transformation scheme. The problem raised a number of interesting
issges concerning the proof methods that had to be employed. We
believe these problems, and the techniques developed to treat them, are.
of a general significance. In particular, .the need to conduct the proof
without appealing to inductive arguments, and the notation developed to
keep the proof manageable, may aid in the analysis of similar problems.
Anether beneficial aim of exhibfting such proofs is perhaps less obvious.
In ofder to develop theorem provers for languages such as CCS, it is
necessary to be able to identify the types of operations that need to be
performed in a verification, and the detailed presentation of proofs is

one way of helping this process.

In conclusion, the problems associated with implementing a_language
such as CCS have been analysed within a formal framework.
Furthermore, new techniques have been developed to aid the
~implementation process and also . to anelyse the resulting

synchronisation algorithms. Implementations of languages such as CCS
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are still in their infancy, as is their associated theoretical support. It
is hoped thet the work presented in this thesis will contribute in some

small way to the growing process.
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Appendix A
The Original "Kennaway' Equivalence

This appendix describes the equivalence due to Kennaway as it was
presented in [Kennaway 81]. We justify using the version due to
DeNicola and Hennessy [DeNicola B2] by showing that the original

definition is not an observational equivalence in any meaningful sense.
We start by defining a weak form of testing with a set of actions.

Definition For any finite LcdctuiT].

p must L < 3Jue€l. p——l—‘=:>

P must L <> VpeP. p must L.

“

Note that 7 may be an element of L. We also extend the definition of

after to allow 7 to be one of the admissible labels.

Definition For any uedcfuir}

p after u ip' | p“=>p' for some p'}

P after U{p after K1 | peP]

®
It

Note that as a consequence of th.e definition of =—=> in [Kennaway
81], p.after 7 # p after ¢ as p after 7 is the set of processes that can
be reached after one or more 7 moves whereas p after ¢ is the set of
'processes that can be reached a{fter zero or more T moves. Thus, in

general, p€p after ¢ whereas p¢p after T.

Kennaway then goes on to describe his equivalence R, by means of a

recurrence relation.
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P zz Q is always true.
P x"*' Q <> i) Viinite LCdetUi7]. P must L > Q must L
ii) Yuedotufr].-P after u =} Q after u

szQ <> vn>0. P =~ Q.

n
k
We extend this definition to single processes in the obvious way, i.e.
PR a9 <= [p]~x lq].
Unfortunately, although this equivalence is intended to be weak, or
observational, in the sense that a.7.p and a.p are indistinguishable, this

is not so. To see why the definition differentiates between these terms,

consider the following analysis.

«.8.NIL after « {B.NIL}

{t.8.NIL, B.NIL}

«.T.8.NIL after «

{B.NIL} after 7 = ¢
§T7.B.NIL, B.NIL} after T = |{B.NIL}

We can therefore deduce that

((«.B.NIL after «) after"r) must §y}

whereas

((ax.7.8.NIL after «) after 7) must {7}

and so a.B.NIL 733 o.T7.8.NIL.

Unfortunately if we restrict the definition of after to the case where
1 cannot equal 7 we still run into difficulties as the equivalence then

equates

oa.NIL + B.NIL + T.NIL end T.a.NIL + B.NIL

This is because the ability to specify "after 7" coupled with the
‘definition of must acted as a substitute for must. Take away the ability

to use “after 7" and the system breaks down.
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The defin'ition presented by DeNicola and Hennessy [DeNicola 82] was
originally intended as t;n alternativ,e definition  of Kénnaway’s_
equivalence. However this appendix, along with the work in Chapter 5,
has shown that the DeNico]a. version is not an alternative
characterisation of the original definition but rather a corrected version

that manages to avoid the deficiencies of the original definition.



