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Abstract 

A wide variety of physical, chemical and biological systems can be represented as a 

collection of discrete spatial locations within which some interaction proceeds, and 

between which reactants diffuse or migrate. Many such real-world spatial reaction 

systems are known to be both non-linear and stochastic in nature, and thus studies of these 

systems have generally relied upon analytic approximation and computer simulation. 

However, this later approach can become impractical for large, complex systems which 

require massive computational resources. 

In this work we analyse a general spatial reaction system in both the deterministic 

and stochastic scenarios. A study of the deterministic parameter space reveals a new 

categorisation for system development in terms of its criticality. This result is then 

coupled with a complete analysis of the linearised stochastic system, in order to provide 

an understanding of the spatial-temporal covariance structures within reactant distribu-

tions. In addition to an analysis, and empirical confirmation, of the various criticality 

behaviours in both deterministic and stochastic cases, we use our theoretical results 

to enable efficient implementation of spatial reaction system simulations on parallel 

supercomputers. Such novel computing resources are necessary to enable the study 

of realistic-scale, long-term stochastic activity, however they are notoriously difficult 

to exploit. We have therefore developed advanced programming and implementation 

techniques, concentrating mainly on dynamic load-balancing methodologies, to enable 

such studies. These techniques make direct use of our analytic results in order to achieve 

the most efficient exploitation of supercomputing resources, given the particular attrib-

utes of the system under study. These new techniques have allowed us to investigate 

complex individual-based systems on a previously untried scale. In addition, they are 

of general applicability to a wide range of real-world simulations. 
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Introduction 

I am never satisfied until I have said as much as possible 

in afew words, and writing briefly takes far more time than 

writing at length. 

- Carl Friedrich Gauss 



1.1 Introduction to Spatial Reaction Systems 

There are a vast number of real-world systems that can be thought of in terms of an array 

of locations within each of which some interaction proceeds in time. In addition, the 

reactants involved might be mobile, and therefore migrate or diffuse between adjacent 

locations. Such a system can be used to model the flow of a fluid over an aerofoil; 

the movement of petroleum through porous rock; the distribution of chemicals within 

a group of cells; the movement of infected individuals and hence of a viral infection 

through a distributed population; or even the spatial development of competing species 

in an ecological model. We have attempted to bring the general cases of all such 

systems together under one name, and refer to them as spatial reaction systems. The 

term "spatial" is intended to convey the fact that our systems are composed of discrete 

locations between which individual reactants can migrate, and within which they can 

evolve. 

The serious mathematical study of spatial reaction systems has its major roots in the 

pioneering work of Alan Turing during the 1 950s. His particular interest lay in under-

standing the biochemical processes behind what he termed morpho genesis - the process 

whereby a living body takes on a particular shape, structure or pattern, either from some 

initial homogeneous start, or possibly following some external interference. Turing 

postulated that such structural formation could be triggered by the presence of certain 

chemicals (morphogens) in particular concentrations. His model of a developing foetus 

therefore consisted of a set of discrete cells within which any number of morphogens 

could interact, and also between which the morphogens could migrate in some manner 

(e.g. by diffusion or osmosis). Taking the simple case of a ring of cells, Turing [1952] 

linearised some general interaction functions to provide an analytic solution for the 

deterministic cell concentrations of each morphogen through time. His results show 

the formation of spatial fluctuations in morphogen concentrations as sinusoidal waves 

around the ring of cells. 

Since Turing's initial work, the spatial reaction model (sometimes referred to as reaction-

diffusion, although this term is only strictly correct for continuous systems) has grown 

to be an accepted standard basis for analysis and simulation in many branches of biology 

(see Renshaw [1986]),  ecology (Smith [1991]) and zoology (Murray [1989]).  It has also 

gained popularity in such diverse areas as petroleum engineering (see Wheeler [1988]) 



and epidemiology (Mollison [19771). Whether we consider the physical, chemical 

or biological system at the centre of our studies as being continuous, or constructed 

of discrete spatial locations, a computer simulation will generally contain some level 

of discretisation to allow computer implementation. This can sometimes lead to a 

confusion between the terms reaction-diffusion and reaction-migration. It is our belief 

that many real-world systems are specifically discrete in their structure, and we will 

highlight results that expose the importance of considering them as such. Additionally, 

we can always return our spatial reaction systems to the continuous diffusion domain 

under the standard computational approximation of very many spatial locations on a 

fine-grained lattice. 

In general such systems can be used to model any spatial system where reactants have 

both a particular location within which they interact, and neighbouring locations to which 

they can migrate. In population modelling, for example, the reactants may be different 

species (e.g. predator and prey), and the location is a particular geographical region of 

an appropriate scale, within which the species live and die with rates regulated by the 

local population size. We can then construct one-, two- or possibly three-dimensional 

models of a "global" system by specifying the spatial relationship between individual 

locations. The dimensionality of the world is dependent on the particular system under 

study; thus a one-dimensional system could be used for modelling movement within 

a river or along a coastline, a two-dimensional system could be used for land-based 

models, and a three-dimensional system could represent air or sea based worlds. To 

take an example from a different field; in petroleum engineering spatial reaction systems 

are used to model the mixing of water and oil in porous rocks, and the resulting flow 

through the rock structure. In this case the reactants are water, oil and the rock itself. 

Thus at each point in the model the water and oil interact with each other and also with 

the rock. This then affects the movement of the mobile substances through the rock, 

and leads to a technique for simulating oil reservoir behaviour. 

These examples are obviously specific to certain fields, and such models will un-

doubtedly contain some difference in their system parameters and spatial structure. For 

our analytic studies (in particular those covered in Chapters 2 and 4) we will retain 

as much generality as possible in our mathematical specification. This will enable the 

extraction of generic descriptions of system behaviour. However, as we present results 

for our numerical solutions and computer simulations, we will concentrate on a partic- 
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ular suite of biological and ecological systems. This focus provides for ease and clarity 

of comparison between simulations, as well as following the subject area of Turing's 

original work. 

1.2 Biological and Ecological Systems 

Although there has been only a small amount of further study into the field initially 

explored by Alan Turing, that which is documented lies almost completely within the 

biochemical sciences. It is in this area that we can observe the most direct link between 

real applications and the original discrete cell model. However, recent research trends 

seem intent on pulling studies back to the continuous system. One of the first studies to 

review Turing's results came after a delay of over 20 years (see Bard & Lauder [1974]) 

and, significantly, made use of the emerging computer technology in an attempt to 

discredit Turing's conclusions. Bard & Lauder observed that for small numbers of cells 

and non-linear interactions, Turing's approximate solutions become dependent upon 

initial conditions. It is unfortunate that this observation then set the tone for further 

work, with Murray [1981] using it as evidence that discrete models are "incorrect", and 

hence as a reason for concentrating study on continuous diffusion systems. What is 

even more unfortunate is that prior to both these works, a study by Wolpert [1969] had 

claimed that Turing's approach was in fact too continuous to handle situations where 

spatial differentiation is required to produce different results in different regions of the 

model. Wolpert was interested in whether genetic information was responsible for this 

cellular differentiation, and developed a gradient approach model in which morphogen 

concentration varied spatially in order to control system development. This idea has 

been recently resurrected by Maini et al [1992] to investigate the large number of 

biological systems that are known to exhibit spatial inhomogeneity. This recent work 

uses a version of Wolpert's space-dependent diffusion parameter in a continuous spatial 

domain. In Chapter 3 we will highlight the importance of considering the discrete 

version of such systems, as often this conversion can provide a more straightforward 

solution to the inadequacies of current continuous-space diffusion models. 

Some time before Bard & Lauder [1974] restarted interest in this field, a line of research 

into the location of hair follicles on Drosophilia had suggested Turing-type mechanisms 
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as being responsible, see Maynard-Smith & Sondhi [1961]. Standard linear interactions 

were used in a two-dimensional domain of cells, and this produced regular hot-spots 

in chemical (morphogen) concentration. If such high concentration locations are con-

sidered as the starting points for hair growth, patterns similar to those in nature are 

obtained. Further work by Nagorcka & Mooney [1985] suggests the possibility of sev -

eral waves or phases of growth, and this brings the resulting theoretical patterns even 

closer to the real world. Our own results reviewed in Sections 3.6 and 5.4 show these 

same patterns, but with the addition of considering a stochastic environment. The link 

between spatial reaction systems and Drosophilia is further strengthened by Kauffman 

et a! [1978] who use standard linear interactions coupled with a diffusion mechanism 

to explain the formation of body-parts for different functions within an embryo. This 

idea is taken further by Bunow et at [1980] by incorporating non-linear interactions 

(and hence using computer simulation rather than mathematical analysis) to show that 

a series of binary decisions based on chemical concentrations within cells can produce 

natural patterns. However Bunow et at were concerned with their results, since the use 

of non-linear interactions had produced "unreliable and patchy" systems. This concern 

has recently been countered by Hunding [1990] through incorporating Wolpert's ideas 

on spatially-varying parameters something Hunding terms a "Turing pattern of the 

second kind". 

However, the most widespread use of Turing-type systems has probably been in the study 

of pattern formation, particularly in animal coat markings. Again all the work in this field 

has been with deterministic continuous (diffusion) systems, and Murray [1989] provides 

an excellent review of the topic. Previous work ranges from the early analysis of the 

possible parameter space for Turing-pattern formation (see Murray [1982]), to the more 

recent and more complex simulations of gradient-diffusion models (see Nagorcka & 

Mooney [1992]) that show how patterns can change significantly upon a single animal. 

The one remaining problem in this field of research is that the actual morphogens 

themselves seem to avoid identification; although two very recent studies from the 

chemical physics discipline (Castets et a! [1990] and Ouyang & Swinney [1991]) have 

shown reaction-diffusion patterns occurring under laboratory conditions. 

Our particular interest in the analysis and simulation of spatial reaction systems is to 

assist in the study of complex ecological systems, and ultimately to understand the ef- 

fects of mutation and evolution within such systems. We therefore intend to implement 
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complex numerical simulations of interacting species, where certain attributes of each 

species can be successively adapted through random mutation. We are therefore dealing 

at a level where it is natural to consider discrete systems. However the results we 

achieve can be applied directly back to those smaller-scale systems currently analysed 

with diffusion techniques. Such an approach can therefore satisfy the ecologist study-

ing species migration patterns, the genetic biologists looking for waves of gene-gap 

morphogens (see Hunding [1990]),  or the zoologist attempting to explain animal coat 

patterns. 

Our study of such spatial reaction systems starts with an analysis of the deterministic 

linearised and non-linear systems; we then advance to the stochastic versions of these 

models; and thus produce measures of their expected behaviour. This is vital as we then 

go on to presents the results obtained through extensive simulation of these systems on 

the latest generation of high performance computers. In order to run realistic models 

we need to consider stochastic simulations of non-linear interactions on many sites and 

over long time-scales, and thus very powerful computers are an absolute requirement. 

This leads us to an understanding of effects introduced by non-linearity, stochasticity or 

discreteness in the system. This is important since a complete analysis is only available 

for deterministic linearised systems. 

1.3 Modelling Evolutionary Processes 

Charles Darwin's theory of evolution through natural selection [1859] is now well over 

100 years old. It has survived many attempts, both biological (see Denton [1985]) 

and mathematical (Hoyle [1987]), to discredit it, yet its status in the scientific com-

munity currently seems to be at its strongest. Following the successful coupling with 

genetic theory by Fisher [1930], and the more recent popularisation brought about by 

Dawkins [1976, 1986], the theory is now as established in biology and ecology as 

quantum mechanics is in physics. Moreover, evolutionary analogies are also appearing 

in other branches of science. Neuro- scientists suggest that neuron growth in the brain 

occurs in a Darwinian manner, with mass-multiplication of cells followed by selec-

tion of certain connections (see Edelman [1989]).  These ideas tie in well with neural 

network theories where systems of electronic neurons are thought of as "learning" solu- 
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tions to problems. In a recent book, Basalla [1988] suggests that evolution occurs in 

technological advancement in the same way as it does in natural selection. He proposes 

that inventors tinker with existing tools and devices, producing continuous incremental 

improvements, rather than the stereotypical image of the scientist or engineer making a 

great breakthrough. This idea can be supported by archaeologists who have searched 

in vain for any discontinuity in the history of the development of stone-age tools. 

The concept of non-biological evolution has recently been taken one step further by 

Root-Bernstein [1989] who presents a specific analogy between evolution and scientific 

discovery. He suggests that ideas themselves are passed down through generations from 

teachers to pupils. Thus they proliferate, possibly undergoing slight mutation, and a 

small number are then selected for use. These ideas lie very close to those of memes, 

as suggested by Dawkins in the final sections of The Selfish Gene [1976]. However, 

the connection between general science and evolutionary theory is probably seen most 

clearly in the application of genetic algorithms to problem solution (see Holland [1975]). 

Here multiple possible algorithms for the solution of a problem are programmed into a 

computer and are then allowed to mutate and inter-breed in order to provide an optimal 

result. A cost-function is used to describe the performance of each algorithm. The 

best performers have the highest chance of surviving to successive generations and thus 

being the "parent" of subsequent solutions. After many generations the programmer 

can then select the best performing algorithm from the pool of current solutions. 

Evolutionary theory and ideas are clearly becoming ever more popular with the scientific 

community. There are, however, two remaining obstacles for those wishing to produce 

real evidence that evolution can account for much of what we observe in nature. First, 

the very essence of natural selection suggests that its effects cannot be observed in 

any reasonable time-scale, such that it can be analysed whilst in progress. It would 

therefore be ideal if computer models could be developed to reproduce the effects of 

evolution in a much shorter time. The recent work of Dawkins [1986] attempts to do 

this, and shows that very simple rules and starting configurations can produce the most 

intricate of final states. However, this model highlights the second obstacle, in that 

all the manipulation is deliberately controlled by a human operator. Each successive 

generation is specifically chosen with some goal in mind. There is therefore no natural 

selection through interaction with an environment, or through simple random changes. 

This exposes a major problem with computer models for evolution - they must not 
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contain any in-built bias in their simulation of the evolutionary process. 

An alternative approach to evolution modelling is possible through a more rigorous 

application of ecological theory. If we create an accurate individual-based ecosystem 

model, we can then add random mutation to that model, and observe the changing popu-

lation attributes as the system develops in time. If these implementations are sufficiently 

accurate and efficient,.and simulations can be run of large systems over long time periods, 

then we can present results that describe the effects produced by mutation and evolution 

within the systems. We therefore extend our general spatial reaction systems to cover 

this type of evolutionary simulation, and the resulting reaction-evolution-migration sys-

tems (REMS) are directly applicable to ecological studies of species interactions, and 

show the effects that mutation can produce in such systems. Simulation can show the 

effects of adaptions to individual behaviour, with reactants switching between compet-

ing, co-operating, and parasitic modes of activity, or they can identify the interaction 

between a single evolving species and some changing environment. However, there 

may well be other applications for such extended models. In epidemiology, we can cur -

rently model a viral epidemic (e.g. AIDS) moving through a simple population through 

contact infection (see Isham [1988]). It is also possible that the REMS model will also 

allow the simulation of epidemics of infections that can in some way mutate, and thus 

change their impact or infectiveness on the population. In biochemistry and botany we 

could model the effects on reacting systems produced by small adaptions in the nature 

of the reactants due to slight changes in molecular structure. 

1.4 The Role of Parallel Computing 

In recent years ecologists have begun to produce computer models of ecosystems that do 

behave in ways similar to what is observed in nature, i.e. exhibiting spatial and temporal 

population fluctuations (see Zeigler [1977] and Onstad [1988]). Similarly, in other fields 

of science, the importance of computer modelling is constantly gaining wider recognition 

Kaufmann & Smarr [1993] give a stimulating review of the development of modern 

techniques. The major obstacle to this advance in the past has been the vast amounts of 

computer power necessary to run very large models over very long time periods. The 

advent of parallel computing has changed this by providing massive amounts of power 
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at reasonable costs, and there is evidence that this new technology is becoming accepted 

even in the ecological community (see Haefner [1991]) - not traditionally one of the 

first disciplines to exploit the leading edge in computing hardware. 

Ever since computers were first used for serious scientific or applications work, there 

has been a demand for ever-faster machines. This results from scientists always having 

larger-scale problems to solve, and always desiring more accurate solutions to current 

calculations. Since their invention in the 1940s (another important area in which Alan 

Turing's influence cannot be underestimated - see Hodges [1983]),  computers have 

followed the basic design of a single processor connected to a single memory store, 

executing one instruction at a time. Until recently the performance of these individual 

machines has been able to improve through constant innovations in processor techno-

logy. However, in the 1990s the ability to improve the performance of single processors 

has virtually disappeared, although the demand for increased performance remains un-

ceasing. Current processor technology is touching the limits set by the fundamental 

laws of physics; electrons cannot travel through silicon (or any other substrate) faster 

than the speed of light; and transistor-type units on microprocessor wafers must remain 

large enough to avoid quantum effects introducing uncertainty into their operation. The 

only way to meet fully this increasing computation demand is to abandon dependence 

upon single processor hardware and look towards parallel processing - the use of 

many independent processors to solve a single problem. However, such use requires a 

decomposition of our problem into many tasks that can be distributed to the available 

processing units. In addition, this decomposition must be balanced (in terms of the 

computation load of each task) to ensure efficient use of the supercomputing resource. 

Every major computer manufacturer now recognises that parallel processing, of one 

kind or another, is where the future of high-performance computing lies. It therefore 

seems certain that in a few years time the vast majority of all computers in use on 

large scale numerically intensive work will be based upon a parallel architecture of 

some kind. Undoubtedly some of these machines, perhaps the majority, will hide 

the parallelism from the user in some way, and allow "normal" sequential code to be 

executed. However, leading edge technology and the best achievable performance will 

almost certainly require the additional effort and expertise of parallel programming by 

the user. 
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Parallel computers are currently growing rapidly in acceptance as they enter service 

first throughout academia (see Wallace [1988]) and more slowly in industry (e.g. Smith 

et al [1991] and Chantler [1993]).  The range of current parallel applications goes 

from common-or-garden database searching for banking institutions (Keane [1993]),  to 

the calculations involved with quantum-chromodynamics in fundamental physics (the 

UKQCD consortium [1992]). However the power of these machines is not always so 

easily accessible. Although there are certainly problems that can be transferred to the 

new generation of supercomputers with very little work, there are also very many that 

require a serious effort to implement efficiently. This extra work stems from the fact that 

many problems are, by their nature, difficult to decompose into independent and equally 

balanced tasks. Because of this, a programmer of parallel computers must often make 

significant changes to code in order to allow its balanced decomposition. Section 5.2 

covers this area in more detail, and lays the ground for the later chapters that discuss 

the techniques we have developed for efficient parallel implementations of our spatial 

reaction systems. 

1.5 Research Objectives 

Since the pioneering work of Turing, relatively little mathematical research has been 

forth-coming to extend his ideas and methods. This is surprising as he had only just 

begun his studies in this field before his tragic death, and the techniques he developed 

have become widespread in their use in many fields of science. Since there has been 

so little mathematical advancement, scientists seem to have become constrained to use 

the results produced by Turing's deterministic linearisation techniques. The, admittedly 

limited, advances in stochastic mathematics never seem to have been fully linked into 

studies of spatial reaction systems in the applications domain, despite their growing use 

in more abstract theoretical studies. This is undoubtedly due, in part, to the accuracy, 

simplicity and applicability of Turing's methods. However we do hope that now is the 

time to attempt to extend the field, if only by a small amount. 

In this work we first give a review of the solution techniques that already exist for linear 

systems. This involves extending Turing's work to give a complete parameter space 

specification to identify the regions in which the various forms of linear behaviour exist. 
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This result is then extended to produce a full classification of the possible behaviour 

of general spatial reaction systems. This classification is performed in relation to the 

concept of the systems' criticality, i.e. whether populations or concentrations of reactants 

develop in sub-critical, super-critical or critical patterns. Here we have adopted the 

terminology from the field of chain reactions, or branching processes. Following this 

analysis we introduce a mathematical model of a stochastic version of our spatial reaction 

system. We work through a probabilistic formulation of the linearised equations for a 

discrete, one-dimensional spatial reaction system, and then solve the resulting equations 

using a Fourier transform approach. This leads us to an exact measure of the expected 

behaviour of (linearised) stochastic populations, and these results can be compared to 

those produced by the linear and non-linear deterministic analyses. This exposes the 

importance of the use of stochastic versions of real-life systems, if we wish to have 

any hope of accurately modelling what we observe in reality. In general it is only in 

stochastic modelling can we reproduce the inherently fluctuating and random attributes 

of natural systems. We feel that to obtain a true understanding of real-world systems it 

is necessary for us to enhance our theoretical knowledge of such stochastic systems. 

A major part of this work has been the implementation of computer realisations and 

simulations of deterministic and stochastic systems. Such efforts allow us to confirm the 

results produced by our analyses, and also to investigate the behaviour of the systems 

throughout their parameter space. In particular, the ability to view graphical output from 

deterministic realisations allows us to study transient as well as asymptotic effects. This 

has proved a vital matter, since it seems that it is often the strength of these transients that 

determines the long-term state of the system, and as such we can observe unexpected 

effects within discrete systems that could not be identified by any kind of continuous 

or discrete analysis. For stochastic models the ability to run system simulations is 

possibly even more important for obtaining a feel for the way in which the system 

behaves. In particular, when we move onto the study of evolutionary systems, it is only 

through stochastic computer simulation that we can provide any results that could show 

evolutionary mechanisms in action. We therefore present a fairly extensive review of 

the realisation and simulation results that we have achieved, and their presentation is 

motivated by successful comparisons between analysis and simulation of both linear 

and non-linear, stochastic and deterministic systems. In addition, for one particular 

ecological system we present simulation results that detail the way in which a stochastic 
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implementation can model realistic system behaviour. Indeed this produces some very 

interesting insights into the relative stabilities of systems containing reactants with 

varying attributes. In turn this can lead to the modelling of a complex ecosystem where 

such differing strains of reactants co-exist. 

The third major thrust of this work has been mainly from a theoretical computer science 

perspective. The massive computational effort necessary to run the simulations that we 

desire far exceeds that available from standard university mainframe machines, or even 

from modern dedicated workstations. We have therefore had to turn to supercomputing, 

and in particular parallel supercomputing, in order to obtain the necessary machine 

performance. The basis of parallel computing was introduced in Section 1.4 and is more 

fully explained later in Section 5.2. It constitutes a relatively new area of technological 

advancement, and as such the techniques to exploit it fully are still under development. 

These techniques are of general applicability to the modelling of any stochastically 

varying system, and as such represent a significant advance in certain fields of computer 

science research (see Smith & Renshaw [1993]). 

The work presented here can therefore be seen to cover a fairly broad field of interests. 

We have attempted to draw the areas together where possible. In particular, we feel 

that we have established an important link between analytic mathematics and theor-

etical computer science, in terms of using system parameters to predict the necessary 

implementation parameters to obtain optimum simulation efficiency. This new ability 

allows us to make a major investigation in the field of ecological modelling, and it is 

from this field that the majority of simulations examples are taken. This bias does not 

only stem from a personal interest in this particular area, but also because it provides 

such excellent examples of all types of system behaviour, and in particular is by far the 

best (and possibly the only) source of examples of evolutionary effects. 
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Mathematical Analysis of 

Deterministic Spatial Reaction Systems 

Just as deduction should be supplemented by intuition, so the 

impulse to progressive generalisation must be tempered and 

balanced by respect and love for colourful detail. 

- Richard Courant 



2.1 Introduction to Spatial Reaction Systems 

The first step towards a full mathematical understanding of the equations governing 

spatial reaction systems is the analysis of the deterministic system. Although we should 

generally consider the case of potentially non-linear interactions (see Section 2.4), we 

can often make assumptions that simplify the systems (e.g. linearisation) to obtain 

an approximate solution. The validity of such simplifications can then be quantified 

analytically, through study of resulting expressions, and also qualified through numerical 

simulation of both complete and approximate systems (see Chapter 3). 

The spatial systems under study in this work have applications in many fields of science, 

each potentially requiring descriptive equations of differing complexity and dimension-

ality. We therefore present a general representation of such systems, allowing the 

subsequent analytic results to be widely applicable. The systems we consider consist of 

a set of N reactants, populating locations organised as a regular grid of dimensionality 

D with periodic boundary conditions. The latter allows us to avoid edge or boundary 

effects, and thus produce an approximation to an infinite system. Let us denote the 

amount of a reactant of type c in location r within dimension k (with r = 1,. . . , Nk 

and k = 1,. . . , D) as Xk.  For systems of competing chemicals X,i will represent a 

value for the local concentration of a certain chemical, whereas in a population dynam-

ics scenario it may represent the number of individuals of a certain species present in 

location rk. The development of such systems in time can be described by a set of N 

coupled ordinary differential equations, thus: 

dXk 	c(Xi,...,XNc)+c(_2DXc +X 1 ) for c= 1,...,N (2.1) 

where X ±1  represents the two terms corresponding to reactant concentrations in sites rk 

neighbouring location r in dimension Ic. This migration term can be considered as a 

specification of resultant net flow regulated by the reactant-type specific migration rate 

ji. We also have N functions .P that describe the nature of the interaction between 

reactants within a single location. 

In order to enable the analysis of such systems, we will typically use three mechanisms 

to simplify matters, although consideration is later made of cases devoid of these 

approximations. First, we generally consider systems containing two reacting agents 
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(N = 2). In this case we replace the representations for reactant population and 

migration rate with X1 ==> X, X 2  = Y,IL I  ==> u and IL 2 => V. Second, we will often 

reduce the dimensionality of the problem to D = 1, besides simplifying notation this 

also allows us to reduce the migration terms to 

- 2Xr  + Xr+i ) and v(Y,._ - ' + ') 

However, the most significant simplification to the system comes from the linearisation 

of the interaction functions Tc. In this case we regard all terms higher than first-order 

to be negligible, whether these are single reactant terms (e.g. terms of O(X 1'), where 

p > 1) or cross-interaction terms such as O(XY). In the general case of N reactant 

types we can write the linearised local interaction functions within site r as 

N 
f C (x i  . . . , X) = 	aCX3 for c = 1,. . . , N 

j=1 

This introduces the concept of a coefficient of interaction (a) that describes the weight-

ing attributed to the population of each type of reactant in the linearised interaction 

function. There thus exist N 2  such coefficients which can be divided into two classes - 

self-interaction coefficients when j = c, and cross-interaction coefficients when j  =A c. 

The cross-interaction coefficients thus describe the nature and strength of the coupling 

between the differential equations. 

2.2 Linearised One-Dimensional Systems 

Let us consider the simplified case of spatial reaction systems comprising two reactants 

in one periodic dimension (such that we have ring of N sites with site 0 indeterminate 

from site N, and likewise for sites 1 and N + 1 etc.), undergoing local interactions 

defined by the general non-linear functions .1 and G.  We can therefore write 

dX r /dt = Y(X r , Y.) + ji(X r1  - 2X r  + Xr _ i ) and 

dY./dt = c(X r , ) + v('. +  - 2} + Y 1 ) 
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Since we are generally interested in using these equations to describe real physical, 

chemical or biological systems, let us postulate the existence of a stable equilibrium 

state with real and positive reactant concentration values, X' and Y", such that we have 

T(X*, Y*) = 0 and 9 (X", *) = 0. If we assume the approximation that X, (t) and 

Y, (t) vary around these equilibrium values by only small amounts, x, (t) and y, (t), such 

that 

X, (t) = X' + x,Jt) and Y,  (t) 
= y* + y

r (t) , 	 (2.2) 

then we can approximate the system by using Taylor's expansion. Ignoring terms higher 

than first-order in X r  and Yr  we obtain 

P(X* + X r , Y + Yr) P(X*, y*) + XrDJ(X 
y*)/ 	

+ Yr ay(X* Y*)/D Yr  

g(X* + X r , 	+ Yr) g(X*, y*) + x rag(X Y*)/DXr + yr ac(X* ,  Y*)/D Yr  

Hence the linearised equations reduce to 

dX r/dt = ax,. + bYr + /2(X r+1 - 2X r  + Xr_i) 	 (2.3) 

dYr/dt = CX,. + dYr + V(yr+i - 2Y + yr..i) 	 (2.4) 

where 

ar(x, 

= 	

b = aJ(X* 	

' 

, *) 
C = 
	 - 

and d 
ag(X, 

ô 	' 	9Y,. 	 ôX r 	 - 	 aYr 

We have therefore specified the linearised self-interaction coefficients as a and d, and the 

cross-interaction coefficients as b and c, for our one-dimensional, two-reactant system. 

2.2.1 Turing's Method of Solution 

Let us study the method introduced by Turing [1952] to solve the linearised equations 

(2.3) and (2.4). His approach involves taking Fourier transformations of X r  and Yr 

N 	 N 
Ur  = (1 IN) >x3exp(-2'irirs/N) and V r  = (l IN) 	 y 3 exp(-27rirs/N) 

041 



with standard inverse transformations 

N—i 	 N—I 

x,. = E u8  exp(27rirs/N) and y = 	v exp(27rirs/N) . 	(2.5) 

These values can be substituted into (2.3) and (2.4), and making use of the relation 

N 	121rirs1 	f 0 if 0< r <N 
exp L N  j = N if r = OorN 

we obtain 

du 5 /dt = [a - 4[t sin 2 (irs/N)]u, + by5  and 

dv5/dt = [d - 4v sin 2 (irs/N)]v 5  + cu . 	 (2.6) 

Thus (2.3) and (2.4) been converted into a standard form, with solution 

u = A5 e + B5 e t  and v = CseP3t + De' 

Here p5  and p' are the roots of the equation 

(P—a+4ILsln 2 
 (k )) (—d+4vsin 2 

()j =bc 	 (2.7) 

and the constants A 3 , B3 , C and D5 , determined from initial conditions, satisfy the 

relations 

A, [p,, -  a+ 4i sin 2 (irs/N)] = bC3  and B, [p' - a + 41sir 2  (is/N)] = bD3   

These results can now be substituted back into (2.5). Whence replacing the variables X r  

and Yr  with the actual values X r  and Y. according to (2.2) Turing obtains the solution 

N 
2irirs/N 

Xr = X' + 	[A 5e + B3 e' t ]e 	 (2.8) 
s=I 

N Y, = y* + 1[C3 e t  + D3e't] 
2irirs/N 

e 	. 	 (2.9) 
S=1 



2.2.2 Asymptotic Behaviour of the Linear Solution 

For the general linear solution (2.8) and (2.9) to be valid, initial departures from equi-

librium around the ring are defined to be sufficiently small such that the linear ap-

proximations to the functions T(X r , and G(X r , can be used. Although such 

approximations may be highly inaccurate as populations diverge in realistic scenarios, 

it is often the initial small-scale movements that determine the final state of our full non-

linear systems. Therefore, for now, we will assume local linearity in the interactions 

between X and Y and study the types of behaviour that can be produced using Turing's 

solutions. There are two reasons for pursuing this line of study. Firstly, we are interested 

in initial departures from equilibrium, which by the nature of the linear approximation 

should be modelled accurately. Secondly, it has been shown by Renshaw [1991] that 

such approximations can actually perform with remarkable accuracy, even for systems 

that have moved a great distance from equilibrium. 

After an initial perturbation of the equilibrium ring system, there will be a transient 

phase as the effect of this perturbation is transmitted through the system. In general 

we are more interested in long term (asymptotic) behaviour, although in some unstable 

scenarios the transient phase can be seen to dominate the solution - this has often 

lead to a disregard for these techniques in the past (see Bard & Lauder [1974]). The 

asymptotic solution to Turing's system is in general a set of spatial wave-like variations 

in cell populations, defined by the terms in (2.8) and (2.9), and brought about 

by differences in the migration rates driving instability (Murray [1989]).  These terms 

each produce s population peaks around the N sites, although in general only one of the 

N solutions will dominate in the long-term. The scale of this asymptotically dominant 

feature is in turn governed by the ePt  terms in (2.8) and (2.9) as t becomes large. A subset 

of such situations has been analysed for a certain set of parameters by Turing [1952], 

and we will give later a complete specification of this parameter space. Alternatively, as 

we will see in Section 2.3.5 and Chapter 3, in certain circumstances the transient activity 

of the non-linear system can in fact govern the ultimate system morphology. For the 

moment, however, let us consider that there are basically six types of linear behaviour 

associated with the e terms. Dependent upon the nature of p, these can be organised 

into two categories: 

. If p is real then ePt  behaves in a stationary manner, dependent on the sign of p. As 
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t —p 00 then 

- if p is positive, e grows indefinitely large, 

- if p is negative, ePt  decays to zero, and 

- if p is zero, 	remains constant at unity. 

If p is complex then ePt  oscillates. The amplitude of these oscillations is dependent 

upon the real part of p. Thus 

- if R(p) = 0 then the amplitude is constant, 

- if (p) > 0 then the amplitude increases, and 

- if R(p) <.0 then the amplitude decreases. 

The persistent solution of our linearised one-dimensional spatial reaction system is 

clearly dominated, as I —+ oo, by those terms in (2.8) and (2.9) that have real parts 

that are largest in magnitude; let us denote them by p = p 0 . Whether these terms are real 

or complex then determines the temporal nature (which we term kilter) of the solutions. 

If p 0  is real then we obtain a temporally stationary situation with so  waves arranged 

around the ring of cells. These waves consist of a spatial variation in cell populations 

that is morphologically stable in time. Figure 2.1 shows examples of this behaviour 

taken from the computer realisation results detailed in Chapter 3. Alternatively, if p50  

is complex we obtain the oscillatory kilter case with s o  waves of oscillating amplitude. 

Here the waves also 'consist of spatial variations in cell population, though as time 

progresses the amplitude of these wave structures oscillates (see Figure 2.2, and later 

Figure 3.2 for more detail). 

Within each type of system kilter we believe that it is important to consider the criticality 

of the solution (this concept will be fully detailed later in Section 2.3). Provided 

there is genuine instability in the linear system, i.e. the real part of p 0  is positive, 

then wave amplitude will increase exponentially as time progresses, this is super-

critical behaviour. Alternatively, if (p50 ) is negative we obtain the sub-critical case 

of decaying wave amplitudes. At the boundary between the super- and sub-critical 

domains we obtain critical behaviour (i.e. when J(p 50 ) = 0). Although the super-

and sub-critical cases 'cover the vast majority of possible solutions, the critical case can 

often produce interesting results. In particular, it is at criticality that strong transient 
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Figure 2.1: Reactant waves in the stationary kilter 
Time evolutions of temporally stationary waves in our standard realisation scenario. 
Using a ring of N = 50 cells, migration and interaction coefficients are chosen to 
produce so  = 5 and p80  = 0.1. The three graphs represent stationary kilter, linear 
wave growth at times t = 10, 20 and 30. 

activity can overwhelm any expected asymptotic behaviour. We thus have three classes 

of criticality for our linearised system, all of which can exist in both system kilters - 

stationary and oscillatory. We therefore have a total of six possible modes of system 

behaviour. 

Figure 2.2: Reactant waves in the oscillatory kilter 
Time evolutions of temporally oscillatory waves in our standard realisation scenario. 
Using a ring of N = 50 cells, migration and interaction coefficients are chosen to 
produce so = 5 and p30  = 0.1. The three graphs represent oscillating kilter, linear 
wave growth at times t = 10, 20 and 30. 

2.2.3 Turing's Behavioural Classification 

In his pioneering paper Turing [1952] classifies six possible behavioural sub-cases, all 

within the super-critical scenario. He concentrates his efforts in this criticality region 

since it is here that wave structures will be persistent, although under the linearisation 
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approximation these waves will always have exponentially growing amplitudes. Two 

of his cases can only be realised if more than two reactants are present, and we will 

now concentrate on the other four cases when two species X and Y exist. These cover 

the stationary and oscillatory cases of super-critical activity, and can be summarised as 

follows: 

Stationary case with extreme-long wavelength. 

This situation will exist if, for example, ft = ii = 1/4, b = c = 1, and a = d. 

These parameters produce p3  values that are always real, and are largest when 

s = 0. The dominant solution will therefore have neighbouring cell populations 

evolving in close synchronisation, although there will not necessarily be any 

direct association between distant cells. There is a general equilibrium around 

the ring, with groups of cells acting in a similar manner due to strong short 

range correlations between reactant populations. Turing suggests that this effect 

is unlikely to be very interesting on a ring of cells, and this is supported by the 

realisation results in Figure 2.3. These show the gradual spread of global effects 

(there is no differential migration) dependent upon initial perturbations. 
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Figure 2.3: Stationary extreme-long wavelength reactant waves 
Time evolutions of the first of Turing's wave classifications using 50 sites in one 
dimension. The three graphs represent growth of X-reactant population waves at 
times t = 0 (showing the initial perturbations), t = 1 and t = 1.5. 

However this can produce some interesting dappled patterns in two dimensions, 

and therefore proves more interesting for study with a two-dimensional determ-

inistic implementation (Section 3.6) and in the stochastic scenario (Section 5.4). 

Oscillatory case with extreme-long wavelength 

This case will dominate when, for example, IL = v = 1/4, b = —c = 1, and 



a = d. This is very similar to the first case; now p3  is complex, but the largest 

R(p 3 ) still occurs when s = 0. There is again strong local correlation, but very 

weak distant correlation. This could again result in dappling or other interesting 

behaviour in a two-dimensional or stochastic system. The difference between this 

and the previous case is that any movement of a cell population away from the 

equilibrium state will be oscillatory rather than stationary. This effect is shown 

graphically in Figure 2.4. 
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Figure 2.4: Oscillatory extreme-long wavelength reactant waves 
Time evolutions of the second of Turing's wave classifications using 50 sites in one 
dimension. Following the same initial perturbations as in Figure 2.3, these three 
graphs represent oscillatory growth in X-reactant populations at times t = 1, 3 and 6. 
Note that the final graph uses a different scale. 

3. Stationary case with extreme-short wavelength. 

An example of this behaviour can be produced using ft = 1, v = 0, d = I, a = 

I - 1 and b = —c = 1, where I is Turing's Instability parameter. In this scenario 

p3  is always real and is greatest when s/N = 1/2, i.e. each wave exists within 

just two neighbouring locations. With the ring system in general equilibrium, any 

perturbations will either decay back to equilibrium (for I < 0 - the sub-critical 

behaviour not considered further by Turing) or explode exponentially (for I > 0 

- super-critical behaviour). The drift away from equilibrium will tend to be 

in opposite directions for neighbouring cells, thus producing N12 waves around 

the ring. There is therefore a large correlation between all populations that are 

multiples of two cells apart. Figure 2.5 shows a graphical realisation result for 

such a stationary, sub-critical extreme-short wavelength case. This is unlikely 

to provide many interesting examples of natural behaviour, but what may be 

interesting is how much of the total parameter space falls within this category. 
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Figure 2.5: Stationary waves of extreme-short wavelength 
Snapshots of a two-reactant Turing ring system, using parameters necessary to produce 
sub-critical stationary waves of extreme-short wavelength. These graphs show Y -
reactant populations at times t = 40 and t = 200 following a single perturbation. The 
extreme-short wavelength patterns are clearly visible, as is the steady advance of the 
perturbation effect around the ring of sites. Note the change of scale between the two 
graphs as the sub-critical wave amplitudes decay. 

4. Stationary waves offinite wavelength. 

This is the most interesting of Turing's six cases, as it provides a direct math-

ematical link to the production of stable wave patterns from simple interactions. 

Turing quotes one set of specific parameters that can produce this category of 

behaviour as follows: 

a= 1-2, b=2.5, c= —1.25, d= 1+1.5, and 

•2 irs0  
4p sin (-k-) = 8vsm (--) = 112 

These parameters will produce s0  symmetric waves around a ring provided that so 

divides exactly into N; should this not be the case then waves with a wavelength 

corresponding to the nearest whole integer to N/s 0  will be produced. Turing 

states that these waves will grow from any perturbation of the super-critical (i.e. 

I > 0) system in equilibrium, although the long-term physical nature of these 

waves must be questioned because of the exponential growth in their amplitude. 

In effect we should only regard the general morphology of these systems as 

representative of physical behaviour, since as soon as cell populations become 
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large our linearisation approximation ceases to be valid. As we will see in 

Section 3.2 this problem can disappear for non-linear interactions where amplitude 

growth is restricted. In addition, in Chapter 3 we will show that the linearised 

situation is actually much more complex and interesting than Turing suggests, as 

perturbation size and location can produce transients that dominate asymptotic 

system activity. 

In Turing's analysis of the stationary waves of finite wavelength case he considers only 

the case of I > 0. Therefore all wave scenarios produce explosive exponential growth 

under the linear approximation. We will now extend Turing's efforts in order to give 

a complete theoretical analysis of the parameter space for the linearised two-reactant 

one-dimensional system. This will in turn allow a more thorough experimental analysis 

of the parameter space, in particular the production of permanent wave patterns, and a 

study of system stability. 

2.3 Criticality in Linear Systems 

Our objective in this section is to provide a second level of specification for the behaviour 

of our standard one-dimensional spatial reaction systems. Much biological study has 

centred on such models (see Murray [1989] for a review), although little emphasis is 

placed even on Turing's division of stationary and oscillatory kilter. In the study of 

morphology it is often simply the size and nature of pattern that is of interest. We 

believe that not only kilter-state, but also system criticality should be considered for all 

such models, as these can highlight fundamental problems with current models that can 

actually lead them away from representing true physical or biological systems. 

We have found that an understanding of criticality provides a rationale for certain 

scenarios being dominated by initial conditions or transient activity. In addition, con-

sideration of the oscillatory/stationary kilter divide can expose reasons for difficulty in 

producing particular behaviours in certain systems. In particular, we show that in some 

scenarios a fine-grain diffusion model cannot produce large-scale effects without the 

incorporation of unrealistic parameter values. 
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2.3.1 Parameter Space Specification 

The comparatively straightforward one-dimensional, two-reactant system analysed by 

Turing contains a wealth of possible parameter sets. In his initial analysis, this is 

countered by choosing specific values for coefficients in order to produce a sub-set 

of the various types of system behaviour. This approach is ideal for exposing and 

demonstrating specific details of possible system activity. However, in this work we are 

more concerned with exploring the actions of such systems when parameters are chosen 

to lie close to stability limits. We therefore investigate areas of parameter space in more 

detail, learning about the structure of regions within the space, and hence enabling a full 

study of the system behaviour. 

It must be noted that despite the simplifications inherent with linearisation, and the 

consideration of only the one-dimensional system of two reactants, the free variables 

in the general system solutions still number seven - two self-interaction coefficients 

(a and d), two cross-interaction coefficients (b and c), two migration rates (IL and v) 

and the number of cells in the ring (N). Besides the difficulties involved with the 

size of such a high-dimensional parameter space, the value of any analytic results will 

always be tempered by the difficulties presented in attempting to interpret such analyses. 

Therefore, any reduction in the number or range of free system variables is useful. 

We can achieve some simplification by incorporating some of the parameter restrictions 

detailed by Turing, and we can ascertain others from considerations of the physical nature 

of the system. This task is simplified if we restrict our consideration to the specific types 

of system behaviour in which we are particularly interested. We believe this approach to 

be legitimate as it allows us to obtain a precise specification of scientifically interesting 

scenarios, albeit at the cost of rigorous detail. In addition, once complete, a specific 

analysis can be used to describe the complete parameter space by allowing previously 

fixed parameters to vary, and then detailing the effect this has on the initial results. 

In essence, a full description of parameter space equates to a complete understanding 

of the behaviour of Equation (2.7). Such an understanding will provide us with the 

general roots of the equation, where the nature of the largest root then determines 

the system kilter and criticality. Let us therefore rewrite (2.7) in a slightly simplified 

manner by introducing two new terms: the ratio of reactant migration rates rn = 

and the system periodicity, \', defined as the ratio s/N. This latter ratio equates to 

32 



the reciprocal of the number of ring locations within a wavelength. In our linearised 

solution this simplification can be achieved without loss of generality, although both N 

and s must retain discrete integer values for a real physical system. We can thus express 

(2.7) as 

(p — a + U)(p — d + U/m) = bc , 	 (2.10) 

where U = 4isin2 (7r\') = 4mvsin2 (7rA'). The roots of (2.10) can be determined as 

a + d 	m+11(U 	 - a) 
)2 	

(2.11) 
bc+('—(m—l)+(d  

P1,2 	- _______ 	
4 2 	2m M 

Let us now concentrate on our region of particular interest. The classifications of 

asymptotic behaviour detailed in Section 2.2.3 reveal three main categories of system 

activity in terms of the wavelength of the structures apparent in the system. Two 

of these classes are limiting extremes of system activity: the case of "extreme-long 

wavelength" occurs when migration parameters are chosen to be equal (i.e. m = 1) 

so as to give s 0  = 0, and hence all cells act in an identical manner; and the case of 

"extreme-short wavelength" where all cells act in total independence, although there is 

a strong correlation between the populations of next-nearest neighbour locations (see 

Section 2.2.3). Interesting system activity occurs in the region between these two 

extremes where observable wave structures dominate activity. These are the cases of 

"finite wavelength", and it is in this region (equating to the vast majority of parameter 

space) that we will focus our attention. 

This representation does not allow us to reduce the number of free variables in our 

system. However, it and other physical considerations do place some specific range 

restrictions on certain parameters: 

. p, ii > 0 enforces genuine physical migration/diffusion, 

•y > v loses no generality as ii > i can be generated by exchanging the two 

reactants, and 

• N > 0 and .s > 0 dictates the use of a bonafide physical system. 

We now introduce additional restrictions and simplifications to remove degrees of 

freedom that are unimportant to qualitative behaviour. Later in Section 2.3.5 we will 
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study variation of currently fixed parameters, but for now we are interested in gaining 

an insight into the details of specific system behaviour. To this end we choose to fix 

certain coefficients that allow us to simplify the solution of (2.11) and hence determine 

the leading eigenvalue solutions. We can make use of some of Turing's suggested 

parameters, as we choose to keep the cross-interaction coefficients (b and c) constant 

and introduce an instability variable (I) that is used to specify a constant relationship 

between the self-interaction coefficients (a and d). The following analysis is therefore 

built upon the assumption that b = — 2c (ensuring bc < 0) with b set to 2.5, the self-

interaction coefficients are defined as a = I - 2 and d = I + 1.5, and the ratio of 

migration rates m = tt 1v = 2. The choice of these values leads to the solution roots of 

(2.11) being given by. 

P1,2 =I_(l+3U)±U2 +14U_ 1, 	 (2.12) 

where the value of Pi = max(p1 ,P2)  determines asymptotic behaviour. 

We have therefore reduced the degrees of freedom in this system to three free variables 

- the system instability (I), migration rate (j) and periodicity (A'). We can now identify 

the regions of this three-dimensional parameter space in which different variants of the 

finite wavelength scenario occur. The space must be partitioned to reflect system kilter 

- whether the resulting wave structure is stationary or oscillatory - and for each kilter a 

criticality partition must be made to describe whether the system is critical, sub-critical 

or super-critical. 

2.3.2 The Stationary—Oscillatory Divide 

The identification of the division between oscillatory and stationary waves is straight- 

forward from a consideration of equation (2.12). Oscillatory systems result from the 

largest eigen-value max(p1 ,P2)  being complex, and this will occur for our system when 

U2 +14U— 1<0, i.e.when —7—v<4sin2 (irA') <-7+v. 

The system kilter divide is therefore independent of instability, I, and since we can ignore 

all negative ,u values, we can plot the division line in (ii, A')-space where 41L Sin 2 (irA') = 
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- 7 (see Figure 2.6). This gives the separation of the two main behaviours in terms 

of the two relevant parameters, j.t and A'. 

a) 
CO rr 
C 
0 

Ca 

C) 

0.00 	0.10 	0.20 	0.30 	0.40 	0.50 	0.60 	0.70 	0.80 	0.90 	1.00 

Periodicity - s/N 

Figure 2.6: The stationary/oscillatory divide 
Locus of points lying on the parameter space boundary between stationary and oscil-
latory wave structures in the linearised, one-dimensional two-reactant Turing system. 
Given fixed values of b = —2c = 2.5, in = 2, a = I - 2 and d = I + 1.5, the result 
is independent of I and specifies the section of (It, A')-space for oscillatory waves 
as below the curve, and that for stationary waves as above the curve. Note that the 
migration parameter axis uses a log scale. 

The division presented in Figure 2.6 highlights some important features of this kilter 

divide. First, note that the curve is reflected about the line A' = 0.5. At this point we 

have reached one of our limiting cases - that of extreme-short wavelength. Thus all 

points for A' > 0.5 are unimportant for the real system, since we are left with less than 

two cells per wavelength (and hence an un-realisable physical system). However, the 

full curve is shown here for the sake of analytic completeness. We can also observe the 

other limiting case behaviour (extreme-long wavelength) as A' —* 0. As we approach 

this point we see that the system will be oscillatory unless y is exceptionally large. 

Indeed, when A' = 0 we would require It to be infinite to obtain stationary waves of 

finite wavelength: as we increase the size of our particular system, while holding the 

35 



number of waves constant, we must use very large migration rates to ensure temporally 

stationary rather than oscillatory waves. For example, to obtain five stationary waves 

on 1000 sites, the migration rate must be in excess of 711. This problem highlights the 

difficulty that diffusion-based or fine-grain models can have in producing large scale 

(relative to the size of individual sites) features in certain scenarios. 

The oscillatory/stationary division curve also allows us to specify the lower bound on the 

migration rate necessary to ensure stationary waves for all possible periodicities. We can 

see from Figure 2.6 that for our standard parameter set, the overall minimum migration 

rate for stationary behaviour occurs when A' = 0.5 and equates to [trn = 0.0178. For 

an example of a typical scenario used in our simulation work, if one considers using a 

specific periodicity (e.g. A' = 0.1), then for stationary waves we must use a migration 

rate ji > 0.1861. Conversely, given a particular migration rate, Figure 2.6 allows us to 

define the set of possible wavelengths that could be achieved on a system of given size. 

Having successfully defined the division between these two main classes of "finite 

wavelength" kilter, let us now move on to consider how to subdivide each of these into 

specific classes of criticality. 

2.3.3 Criticality in the Oscillatory System 

Given that we have an oscillatory wave structure in our system, i.e. we have chosen 

system parameters within (, A')-space that lie below the curve in Figure 2.6, we can now 

define the parameter regions that correspond to critical, super-critical and sub-critical 

behaviour. From Section 2.2.2 we know that criticality depends upon the sign of the real 

part of the largest eigenvalue solution (p0),  and manifests itself in the evolution of the 

physical system in terms of wave amplitude development. In the sub-critical case, with 

(p30 ) < 0, we will observe long-term wave structures with amplitudes that decrease 

with time at an exponential decay rate, thereby asymptotically approaching equilibrium. 

When l(p80 ) > 0 we have the super-critical case, where any waves that are not due 

to initial transients will have exponentially increasing amplitudes. Lastly, we have the 

critical case when D(p 80 ) = 0. Here long-term wave structures will have a constant 

amplitude; although such a system would be stable in equilibrium, a perturbation may 

lead to transient structures strong enough to determine the long-term state of the system, 
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since there are no asymptotically dominant solutions to outweigh the transient activity. 

We can observe from (2.12) that the real part of the largest eigen-value of the solution 

for the oscillatory case is 

PS, =I—(1+3U)/4 

We must therefore consider our third global parameter, the system instability (I), in order 

to establish system criticality. For our partially constrained system this is achieved by 

considering the surface in (I, ,u, A')-space that represents all points such that 

1 	 1 	.2 I = —(1 + 3U) = —(1 + 12sin (irX)) . 	 (2.13) 
4 	4 

This surface is shown graphically in Figure 2.7, and represents the set of (I, j, 

values that correspond to critical behaviour. It therefore provides a division between 

the parameter regions that represent super- and sub-critical activity, the former being 

the volume above the surface, and the latter being that below. 

The main feature of interest from Equation (2.13) and Figure 2.7 is that, in the oscillatory 

kilter, we will always observe sub-critical, decaying amplitude waves for instability 

values I < 0.25. The minimum instability value to achieve criticality is therefore 

= 0.25, although this only occurs in the limit of extreme-long wavelength (\' = 0) 

or extreme-short wavelength (IL = 0). The value of 'mm  is determined purely by 

the relation between the self-interaction coefficients a and d. For finite wavelength 

classes 'm  must increase as either migration rate or periodicity increase. Although 

Figure 2.7 gives migration rates only up to p = 10, the rising trend in the bell-shaped 

surface continues linearly with u. However, if we recall that not all of the (ji, A')-space 

represents inherent oscillatory behaviour, we must reconsider the results in Section 2.3.2 

for a specification of this division, and incorporate the resulting structure shown by 

Figure 2.6 in our representation. This coupling leads us to Figure 2.8 in which we 

have added a third dimension to Figure 2.6, and super-imposed this upon the surface 

detailed in Figure 2.7. Thus Figure 2.8 is a union of the two previous diagrams 

(2.6 and 2.7), and highlights the region of the criticality surface that is valid for the case 

of oscillatory waves. We see (from the colour coding) that, for the oscillatory wave 

case, the criticality surface is always very close to I = 0.25 for our particular choice of 

parameter restrictions. 
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Figure 2.7: The criticality boundary in the oscillatory domain 
The criticality boundary for the oscillatory wave structure scenario in the linearised, 
one-dimensional two-reactant Turing system. Given fixed system parameter values 
of b = —2c = 2.5, m = 2, a = I - 2 and d = I + 1.5, the figure shows the 
inter-dependence between I, t and A' necessary to produce the three criticality cases. 
The region below the surface corresponds to sub-critical behaviour, and that above 
to super-critical behaviour. Critical behaviour is represented by points on the surface 
itself. 

2.3.4 Criticality in the Stationary System 

Let us now consider the three criticality regions within the domain of stationary waves. 

In this case we know that the largest eigen-value of the solution of (2.12) is real and can 

be expressed as 
1 

j 50 =I__(1+3U)+U2 +14U_1 
4 

We can now proceed as in Section 2.3.3 and describe the parameter region for critical 

behaviour as the surface where p 0  = 0, i.e. where 

I=(1+3U)_U2 +14U_1. 	 (2.14) 
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Figure 2.8: A union of criticality and kilter divisions 
Definition of the region of criticality that is valid for the oscillatory wave case in 
the linearised, one-dimensional two-reactant Turing system. Given fixed values of 
b = —2c = 2.5, m = 2, a = I - 2 and d = I + 1.5, the dark blue barrier represents 
the division of oscillatory from stationary behaviour (as in Figure 2.6), and thus shows 
that only a small part of the criticality surface is relevant to this scenario. The colour 
shading used in the diagram is used to convey the height of the criticality surface, 
and is based on a rainbow colour-map assigned linearly between the maximum and 
minimum height values. This shows that the criticality value of I is close to 0.25 
throughout the oscillatory domain. 

From (2.14) it is clear that the surface will be lower in the I-dimension than that for 

the oscillatory case (Figure 2.7), although any comparison between the two is purely 

notional, as they are each only valid on their respective sides of the oscillatory/stationary 

divide. However, for the sake of comparison, Figure 2.9 is provided to expose this 

variation. 

Figure 2.9 reveals some interesting features of the stationary criticality surface. We 

see that in general, as u and \' increase, we again need increasing values of instability 

(I) to obtain critical behaviour. The diagram also shows that the surface rises in the 

I-dimension as (ii, A')-values approach the oscillatory/stationary divide. This can be 

better viewed in a complete impulse plot of criticality values shown in Figure 2.10. Here, 
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Figure 2.9: Comparison of oscillatory and stationary criticality surfaces 
A notional comparison of the criticality surfaces for the oscillatory and stationary 
scenarios in the linearised, one-dimensional two-reactant Turing system. Given fixed 
values ofb = —2c = 2.5, rn = 2, a = I —2 and d = 1+1.5, the red mesh corresponds 
to the stationary case criticality surface, and the coloured mesh to the oscillatory case. 
The objective here is to highlight the effects of the extra terms in the definition of the 
surface. 

as (IL, A')-values approach the division between the stationary and oscillatory domains, 

the value of I necessary to achieve criticality (Ia) approaches that for the oscillatory 

case (i.e. for our standard system I 	0.25). However, as p or )' increase from this 

boundary, I initially decreases to a minimum value of 	before increasing again 

(considering )' < 0.5). We can identify the locus of 1 0-values within the stationary 

domain, since it must occur when 

+ 3U) = VU-2  + 14U - 1 

This can be simplified to U = 1/2, and thus occurs when y = 1/8 sin 2 (7r\') 

Figure 2.11 shows the relative positions of the oscillatory/stationary division and the 
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Figure 2.10: The criticality surface in the stationary domain 
An impulse plot of the criticality values for the stationary wave domain in the linearised, 
one-dimensional two-reactant Turing system. Given fixed values of b = —2c = 2.5, 
m = 2, a = I - 2 and d = I + 1.5, the points that correspond to the dividing surface 
between sub-critical behaviour (below the points) and super-critical behaviour (above 
the points) are plotted as impulse lines (i.e. vertical lines are drawn from each point 
down to the (li,  V)-surface). 

locus of migration rate and periodicity pairs that allow stationary criticality with mm-

irnum instability. By identifying a point upon the periodicity curve we can select 

( au. A')-values to give stationary wave structures at criticality with minimum system 

instability. For example, with a system periodicity of A' = 0. 1, we can use a migration 

rate of IL = 1.309 to obtain criticality with 1 0  = 0. 

2.3.5 A Unified Kilter and Criticality Description 

For our particular case of interest, in the linearised one-dimensional two-reactant Turing 

system it is possible to unify the descriptions of system kilter and criticality that have 
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Figure 2.11: Kilter divide and minimum instability positions 
A comparison of the loci of oscillatory/stationary division and minimum instability 
to give stationary criticality in the linearised, one-dimensional two-reactant Turing 
system. The following fixed values are used: b = —2c = 2.5, in = 2, a = I - 2 and 
d = I + 1.5. 

been detailed in the previous sections. We can achieve this with a surface plot of I. 

values for the complete (jt, A')-parameter space (see Figure 2.12). This surface thus acts 

as a complete description of the (I, t, A')-values that produce critical behaviour, and is 

possible because at the interface between possible system kilters the critical instability 

values converge. 

The surface shown in Figure 2.12 clearly shows the divide between oscillatory and 

stationary domains as a distinct U-shaped ridge, and also highlights the 10  valley between 

the kilter divide and the eventual rise in J with both migration rate and periodicity. Given 

this surface, we can clearly identify system kilter and criticality for any given set of 

parameters. 
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Figure 2.12: Unified criticality surface in linear parameter space 
The unified criticality surface for the linearised one-dimensional two-reactant Turing 
system. Given the fixed values b = —2c = 2.5, m = 2, a = I - 2 and d = I + 1.5, 
this surface defines the regions of system kilter as being either side of the distinct 
purple ridge, with oscillatory behaviour lying axes-side of this divide. It also defines 
the regions of criticality (on the surface), sub-criticality (below the surface) and super-
criticality (above the surface). 

An Extended Kilter Specification 

Having reached a unified criticality specification, let us now re-generalise our system to 

demonstrate the variation of the criticality surface with the (currently) fixed interaction 

parameters a, b, c, d and the ratio of migration rates, in. Let us reconsider equation 

(2.11), abandoning use of the simplifying instability parameter, I, and retaining the 

self-interaction coefficients a and d. For this more complete description of our system 

we see that we obtain oscillatory behaviour when, from (2.11), 

4bc+(U(m— 1)/rn+d—a) 2  <0 
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This allows us to define the locus of points lying on the stationary/oscillatory divide as 

(U(rn - 1)/rn + d - a)2  = —4bc . (2.15) 

It must be noted that if be > 0 then we always obtain stationary behaviour. To allow the 

possibility of oscillatory motion (a necessity if we intend to describe the divide between 

the two killers) we must therefore have be < 0 (as used earlier). We find the values of 

U (a function of migration rate magnitude and system periodicity) that satisfy (2.15) to 

be 

U1 , 2  = M
(a - d + 2/i). 	 (2.16) 

rn  — i 

This allows us to specify the region of oscillatory kilter as being when 

m_(a—d-2) <4sin2(') < m_ (a—d+2)  
rn — i 	 rn—i 

We therefore see that the restriction be < 0 also allows us to deal exclusively in the real 

domain. In addition, if we consider be = 0, we see that the two roots of (2.15) converge 

to 

U1 , 2  = rn(a - d)/(m - 1) 

which again produces only stationary behaviour since the oscillatory region between 

the roots has shrunk to zero. In general, therefore, we will consider all values of be < 0. 

It is obvious from (2.16) that as IbcI grows, so does the oscillatory region of parameter 

space which is bounded by the U1 , 2  values. 

The most fully representative case for kilter division occurs when both the lower and 

upper bound on U lie within the physically realistic region of parameter space, i.e. 

U = 4sin2 (7rA') > 0, with u 0 and 0 < < 0.5. Since we can restrict the 

migration ratio to rn > i (as m < 1 can be accounted for by a reversal of reactants) we 

can specify the nature of the lower and upper bands according to the values of a and d, 

the two remaining free parameters, as follows: 

e Ifa=dthen 

- lower bound, U, = —2m//(m - 1) is always negative, and 

- upper bound, U2 = 2m\/7/(m - 1) is always positive. 
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Figure 2.13: Oscillatory domain periodicity limits 
Graphical representation of the upper and lower bands of the oscillatory region within 
(, A')-space for the linearised, one-dimensional two-reactant Turing system. This 
represents the most general kilter divisions, with the whole of the oscillatory region 
contained within realisable parameter space. This example uses set parameter values 
ofa= m= 2,d= —2 and bc= —3. 

. Ifa<dthen 

— lower bound, U1  = m(a - d - 2/)/(m - 1) is always negative, and 

— upper bound, U2 = m(a—d+2'/)/(m-1) ispositiveif2\/T7> a—dj. 

. Ifa>dthen 

— lower bound, U1  = m(a—d-2'/)/(m— 1) is positive if2/7 < a—d, 

and 

— upper bound, U2 = m(a - d + 2/)/(m - 1) is always positive. 

Therefore the lower bound on the oscillatory region will always equate to U = 0 if we 

choose a < d, and we will always have a real upper bound (i.e. the co-existence of 

both kilters within possible (, X')-space) if we choose a > d. We have the possibility 

of no kilter divisions, and hence all possible solutions are stationary, if a < d and 

2/7 	a - dl. Whilst with a > d and a - d > 2\/ 	we will have both upper 
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Figure 2.14: Variation of the oscillatory domain boundaries 
Graphical representation of the upper and lower bands of the oscillatory region within 
(ji, A')-space for the linearised, one-dimensional two-reactant Turing system for vary -
ing values of ja - dl. This example uses set parameter values of a = m = 2, d = —2 
and be = —3, and shows how the bounds rise with increasing I a - dl. 

and lower bounds within (it  A')-space. This final alternative is the most interesting and 

gives us the possibility of a band of oscillatory parameters entirely contained within 

physically realisable parameter space for stationary activity. An example of such a 

scenario is given in Figure 2.13. 

Given such a general scenario we can also investigate how the nature of this oscillatory 

band is affected by varying the chosen values of a, b, c, d and m. We need not consider 

each of these five alternatives individually, since from (2.16) the bounds are dependent 

upon only Ibcl, m and ja - dl. Dealing with the latter dependency first, it is straightfor-

ward to see that as the difference between self-interaction coefficients, I a - dl, increases, 

the width of the oscillatory band remains constant; whereas its position with respect to 

the migration rate increases in linear proportion to p (this can be seen in Figure 2.14). 

Variation of the migration rate ratio, m, and the product of cross-interaction coefficients 

bel, not only affects the position of the oscillatory band, but also changes its width. It 

was noted earlier that increasing lbcl would widen the oscillatory region, this expansion 
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being in proportion to V/_—_bc around a central ji-value (all other variables being held 

fixed). Alternatively, increasing m will decrease both the width and position of the band 

relative to ji in proportion to m/(m - 1). Figure 2.15 shows both these effects on a 

single graph. Each of the three sets of five curves represents the system for a particular 

value of migration ratio, showing the variation as m - 1; within each set we see the 

increase in the size of the oscillatory kilter region as I bcl grows and we move away from 

a central single kilter curve. Equation 2.16 shows that the band width in U, and hence 

the amount of available parameter space responsible for oscillatory motion, is 

4rn rn 
\/i centred around U = 	(a - d) 

rn  — i 	 rn  — i 

An Extended Criticality Specification 

Now we have defined the general bounds of oscillatory and stationary activity, we can 

also study the criticality surface within each area. Following the same principles used 

earlier for our specific set of parameters, let us define the surfaces within each kilter 

domain, and then unify these for the whole of the parameter space. 

Oscillatory kilter: From (2.11) we obtain critical behaviour when 

U = 41 Si  112 
(irs ' ) = in(a + d)/(m + 1) . 	 (2.17) 

This value is independent of bc, and produces a surface very similar to that shown 

in Figure 2.7 if we regard the vertical axis to represent the value a + d. We can 

thus determine those a and d values that will provide critical behaviour for each 

point in (ii, A')-space, although we must remember that only a certain band of this 

space will actually represent oscillatory kilter. As we vary m within this scenario 

the criticality surface will be scaled in proportion to (m + 1)/rn. 

Stationary kilter: Here the criticality can also be deduced from (2.11), and is slightly 

more complex. Critical behaviour will occur when system parameters are chosen 

such that 

a+d 	rn+1 (U 	 2 

2 
—U 

 2rn 	
4bc+_(rn_1)+(d_a)) =0 

in 
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Figure 2.15: Possible variations in oscillatory domain size 

A graphical representation of the variation in position and width of the upper and lower 
bands of the oscillatory region within (, A')-space for the linearised, one-dimensional 
two-reactant Turing system, given a range of m and IbcI values. This example uses 
set parameter values of a = 2 and d = —2, and shows how the bands widen with 
increasing IbcI, i.e. colour shading increases. For each m value we have five curves. 
The central (lightest shaded) line represents be = 0, the two extreme lines (darkest 
shading) represent be = — 1, and the two lines between these correspond to be = —0.5. 
In addition, we see that as m - 1 the oscillatory band lies at increasing values of 
migration rate A. 



This expression can be simplified substantially to give 

U2  - U(md+ a) + rn(ad+ bc) = 0, 	 (2.18) 

which provides the roots 

U1 , 2  = (md + a)/2 + 1/2J(md - a)2  - 4rnbc, 

that produce critical behaviour. 

In order to define a complete unified criticality specification, let us examine Equa-

tion (2.18) and reorganise the terms to give us an expression for one interaction coef-

ficient with respect to all other system parameters. If we choose a, for example, we 

obtain 

a = U - bc/(d - U/rn) 

at criticality, as compared to 

a = U(in + 1)/rn - d 

taken from (2.17) for the oscillatory kilter. Figure 2.16 shows the criticality surface 

for a given certain choices of parameter as detailed. We see that this surface is very 

similar to that previously described in Figure 2.12, except that we now have both kilter 

divisions within the physically realistic parameter space. 

Equations (2.16) and (2.18) fully describe the criticality and kilter for the most general 

parameter space of a linearised one-dimensional spatial reaction system. We can there-

fore predict expected behaviour directly from any interaction and migration/diffusion 

coefficients, and in addition, can identify the changes in behaviour produced by any 

parameter variations. This is of particular importance in assessing the criticality of 

systems close to stability, if certain parameters are subject to some uncertainty. We will 

return to this subject when studying the stochastic system in Chapter 4. 
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Figure 2.16: Parameter values to achieve criticality 
The unified criticality surface for a in the linearised, one-dimensional two-reactant 
Turing system with be = —3, in = 4 and d = —2. The graph shows the necessary 
value of a to achieve critical behaviour. The two impulse plots highlight the upper 
and lower bounds of the region of oscillatory kilter. This graphs shows that the unified 
surface is continuous at these divisions. 
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2.4 Systems with Non-Linear Interactions 

As stated at the start of this chapter, any scientist wishing to study real-world systems 

must, in general, consider non-linear functions of interaction between system reactants. 

In an excellent review paper Mollison [1977] describes the importance of studying full 

non-linear systems, a view expressed lucidly by May [1976] one year earlier. It is 

interesting to note that Mollison also stresses the inadequacy of diffusion based models, 

and points out that a deterministic model can only be approximately equivalent to a 

stochastic system in the linear case. Indeed, the importance of stochastic systems was 

realised in some of the earliest work in the ecological field; Fisher [1937] dealt with the 

deterministic case in the knowledge that this was an approximate substitute for stochastic 

phenomena. In more recent publications we have seen specific analytic results that show 

a much closer relationship between the non-linear deterministic and the linear stochastic 

scenarios (McKean [1975]),  and this motivates us to attempt some form of analysis of 

the non-linear system. 

However, analysis of non-linear systems is still in its infancy. In the biological field there 

have been only a small number of notable successes. The first of these was the saddle-

point approximation technique of Daniels [1954], which he later applied specifically to 

ecological modelling [1977]. Much more recently Renshaw [1994] has applied truncated 

Fourier transforms to approximate non-linear Turing ring systems. His observations of 

non-linear wave patterns in reactant populations complement our results detailed later 

in Chapter 3. Renshaw [1977] has also worked in a third area of non-linear system 

analysis, following some early work of Mollison in epidemiology [1972a]. In this 

scenario, knowledge of the existence of a travelling wave structure within the expected 

solution allows the development of particular solutions to the non-linear system. 

From our realisation studies of spatial reaction systems, we know that in the transient 

phase following a perturbation, the effect on reactant populations travels through the 

system in a wave-like manner (see Section 3.4). In addition, Turing's original work 

suggests that for scenarios with three reactants, given appropriate parameter choices, the 

linearised system produces travelling waves of reactant concentrations. We therefore 

have a strong motivation to investigate a travelling waveform approach for the solution 

of our general spatial reaction systems with non-linear interactions. 
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2.4.1 A Travelling Waveform Solution 

In Mollison's ground-breaking work [1972a] a technique is introduced to obtain approx-

imate travelling waveform shapes and velocities for simple spatial epidemic processes 

using first-order techniques. These results are then confirmed by Daniels [1975] using 

saddle-point approximations; later he strengthens the case for non-linear analysis as 

he cast doubts on the validity of general linearised deterministic results [1977]. At 

about the same time Renshaw [1977] produces exact expressions for wave propagation 

velocity and shape for birth-death-migration models in a one-dimensional stepping-

stone environment. Renshaw [1981] then turns his attention to one-dimensional spatial 

epidemics with non-linear infection functions, and develops a new technique based on 

Laplacian power series expansions to determine the velocity of the wave of infection. 

He then applies this same approach to spatial predator-prey processes to describe the 

rate of spread of predators [1982]. 

We therefore see a host of literature (see Mollison [1977] for an early review) concerning 

the mathematical study of the velocity of population movement. This is accompanied 

by much application-based work, from the spread of oak trees by Skellam [1951] to the 

dispersion of innovations within spatial human geography models by Cliff & Ord [1975]. 

In general this past work has been concerned with the movement of a single type of 

entity within a spatial. domain, and an attempt to define a shape and velocity (v) for the 

population density waves. It usually proves possible to define such a shape only when 

the velocity of propagation is above some minimum threshold v 0 , and there then exists a 

set of possible waveforms, one for each possible velocity value v (see Mollison [1 972b]). 

In order to observe travelling waves in our spatial reaction scenario we need to advance 

current techniques to consider at least two reactants. Our analyses attempt to approach 

both the transient and persistent states of our spatial reaction systems, and the simulation 

work we have performed (detailed in Chapter 3) has been invaluable in allowing us to 

highlight areas of potential interest. In particular, graphical realisations of our one-

dimensional systems (akin to those shown in later Figure 3.23) provide the motivation 

to look for transient travelling wave structures in the two-reactant systems, where 

previous analysis had pointed to more complex scenarios (e.g. at least three reactants) 

being necessary to produce such behaviour. 
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2.4.2 Systems with Two Reactants 

In order to enable the study of non-linear systems, we can extend our consideration of 

linearised spatial reaction systems to include the following general, potentially unstable, 

local non-linear interaction functions as used by Renshaw [1991]. 

T(X,Y) = X(r 1  + a1 X + b1 Y) and yC(X,Y) = Y( 7'2 + a2 X + b2 Y) . (2.19) 

Concentrating on the dynamics of the general system at each individual site, thus 

ignoring migration between cells, we can denote the populations of the two species in a 

cell to be X(t) and Y(t). We know from (2.19) that the deterministic equations for the 

system are 

dX(t)/dt = X(t)[r1  + a1 X(t) + b1 Y(t)] and 	 (2.20) 

dY(t)/dt = Y(t)[r 2  + a2 X(t) + b2 Y(t)] 

For a positive equilibrium solution (X*, y*) to exist we must clearly have 

X*[ri + aiX*  + b1Y*] = 0 = Y*[7'2 + a2X*  + b2Y*1, 	(2.21) 

from which we can deduce 

= 	- b2 7 1 
and Y * 

 = 
a1 r2  - a2i1 
	 (2.22) 

a1 b2  - a2 b1 	 a2 b1  - a1 b2  

If we consider equations (2.1) and (2.19) with interaction functions in their most general 

non-linear form, we can attempt to expand the techniques of Renshaw [1982] for this 

system. Let us therefore assume that we can describe the reactant populations in terms 

of a simple Laplace transform-type power series expansion. Assuming the waveform 

is travelling through the spatial domain at constant velocity, a tangible analytic solution 

requires a change in the frame of reference for the system to one that moves at constant 

velocity (v) with the wave front. We can specify this change of reference frame by 

denoting s = r - W. Providing we ensure that t is small relative to N (so that the ring 

system approximates to an infinite line, for a local initial perturbation from equilibrium) 

we can denote 

rn(s) = X,+,, (t) and n(s) = Y,+,, (t) 
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These expressions can now be substituted into (2.1) and (2.19) to give the following 

representation of the non-linear system 

—vrn'(s) = m(s)[7- 1  + ai m(s) + bi n(s)] + [m(s - 1) - 2m(s) + m(s + 1)] (2.23) 

—vn'(s) = n(s)[7' 2  + a2 rn(s) + b2n(s)] + v[n(s - 1) - 2n(s) + n(s + 1)] . (2.24) 

Here (') represents differentiation with respect to s, with d/dt = — v d/ds. 

Let us introduce the Laplace transform-type power series expansions 

	

00 	 CO 

—pBs rn(s) = 	ce 	and n(s) = 	i3e, 	 (2.25) 

	

P=O 	 P=O 

where 0 is real and positive and the coefficients a,, and i3, are unknown constants. 

Substituting (2.25) into (2.23) and (2.24) gives 

00 	 00 	 CO 	 00 
—pBs 	 —pBs 	 —pBs 	—pBs 

V 

	ap0e 	= (r1  - 2) >ce 	+ a1  >c,e 	>Jce 	+ 
P=O 	 P=O 	 P=O 	P=O 

00 	 00 	 00 	 00 

b1 E ape-1S 	/3p9S 
+ 	 + It E ape_P6(5+1) (2.26) 

P=O 	P=O 	 P=° 	 P=O 

and 

00 	 00 	 00 	 00 

-PBS —ps = ( 
	

—pBs + a2 	a e pOe
B

r2 - 22v) /3e  
P=O 	 P=O 	 P=O 	P=O 

00 

	

00 

	 00 	 CO 
—pBs —PBS 

b2 	/37,e 	/3,e 	+ v E Ope_PB(s_1) + v E /3ePO(s+i) . (2.27) 
P=O 	P=O 	 P=O 	 P=O 

Expressions (2.26) and (2.27) can now be used to obtain values for the coefficients {c} 

and {i3,} by the extraction of the coefficients of the eBS  terms for successive values 

of p. Starting with p = 0 we obtain 

r1 a0  + a1 c + b1a0130 = 0 and r2/90 + a2 a0/30  + b2 /3 = 0 . 	(2.28) 

These relations can be valid for two distinct cases: we have termed these 0-waves and 

c-waves as they represent waveforms travelling through an empty ring and a ring at 

equilibrium respectively. 

o-waves: We have a simple special case of (2.28) when a0 = 	= 0. In Ren- 
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shaw [1982] this corresponds to the case of zero populations in all cells ahead 

of the wavefront. Simulation details given later (Section 3.4.3) show that in 

sub-critical scenarios both reactants can spread out from a single cell (given a 

sufficiently large initial perturbation) to populate the whole system. 

Extraction of the coefficients of e 19  when p = 1 from (2.26) and (2.27) produces 

-9 ca1 O = (r1  - 2t)a1  + t(ce 9  + c 1 e ) 	 (2.29) 

and 

C010 = ( 7'2  - 2u)31  + 	+ Ole- 
0). 
	 (2.30) 

However, when we attempt to solve (2.29) and (2.30) for v and 0 we find that we 

obtain the straightforward equality 

- 

vO= 
—11 

which upon differentiation with respect to 0 produces 

dc 
v+0=O. 

dO 

So if we wish to obtain a constant wave velocity (i.e dy/dO = 0), we find that this 

is impossible for any real value of v. 

e-waves: In this more general case we consider that either, or both, 	cz 	0 and go  =A 0. 

This allows some simplification of the relations (2.28), namely 

Ceo = 
b1 r2  - b2r1 

an 	
a2 r1  - a1 r2  

(2.31) 
a1 b2  - a2b1 	

d O = 
ab2  - a2 b1  

It should be noted that these expressions are equivalent to (2.22) and therefore 

correspond to the equilibrium populations of each reactant in the linearised version 

of the system. Simulations show that we observe travelling wave motion for such 

equilibrium-start scenarios during the transient phase. 

With defined values for both ceo  and 0, and we can look again at equations (2.26) 

55 



and (2.27) and extract coefficients of 	when p = 1, namely 

e vcE 1 O = (r 	 a 1  - 2i)a1  + 2a1a01  + b1 (c o fi 1  + a 1 /30) + ji(ae 9 + ale- ) (2.32) 

v131 0  = ( r2 -  2v)0 + a2 (ao /31  + a1 90 ) + 2b2 /3001  + v(/31e9 + /3e ° ). (2.33) 

The above relations can be used to generate successive values of the power series 

coefficients {a} and {i3}  given known values for v and 0. However, when we 

attempt to manipulate equations (2.32) and (2.33) to give an expression of the 

waveform velocity v in terms of 0, we again obtain expressions with no solutions 

when dy/dO = 0 for real v. 

We therefore see that the constant waveform approximation cannot account for the 

transient wave activity in the two-reactant scenario. 

2.4.3 Systems with Three Reactants 

Since Turing claims that the three-reactant scenario produces travelling reactant waves in 

the linear approximation, let us consider the full non-linear three-reactant case under the 

constant waveform approximation. Unfortunately we find that although this approach 

does yield an analytic result, numerical solution using parameter values known to 

produce travelling wave solutions shows that the analytic wave velocity lies in the 

complex domain. However, the process of reaching this result is informative. Therefore, 

if we again consider equation (2.1), we must first form a specification for the non-

linear interaction functions J for the three-reactant case. Let us follow the same 

pattern as in Section 2.4.2 and use the following functions, with Wr  representing the 

population/concentration of the third reactant type in cell r: 

.F(Xr , Y., W r) = X, (7- 1  + aiXr  + b, Y,+ c 1  WT,.), 	 (2.34) 

g(X r , Y, M"r) = )'ç(v 2  + a2 Xr  + b2 Yr  + c2 W), and 	(2.35) 

'h(Xr , Y., Wr) = Wr (r3  + a3X r  + b3 Y + c3Wr) . 	(2.36) 

Inserting these functions into (2.1) for a one-dimensional system, we obtain equations 

that are very difficult to handle analytically. Using Turing's linearisation approach we 

56 



can study the system as a simple extension of the two-reactant case in Section 2.2. This 

approach gives us equations for perturbations from an equilibrium state (X*, y*  W*) 

as: 

dX r /dt = ax,. + by,. + CWr  + [t(Xr+i - 2X r  + Xr_i) 

dyr/dt = dX r  + eYr  + fW r  + "(Yr+i - 2Yr + Yr-1) 

dWrldt = 9X r  + hyr  +3W,. + 19(Wr+i - 2W r  + Wri) 

Introducing the Fourier transforms 

N—i 	 N—i 	 N—I 
2irirs/N 	cç 	27rirs/N 	 2irirs/N 

X.r = Y (e 	Yr = 	 , and Wr = 
S=O 	 S=O 	 S=O 

we obtain 

d(3 /dt = [a - 4i sin  (7rs1N)]C8  + bi73  + c, 

dij/dt = d(5  + [e - 4v sin 2 (irs/N)]ij + f, and 

d 3 /dt = g8 + hi,,  + [j - 479 sin  (7rs/N)] 3  

using methods extended from those in Section 2.2.1. 

Let us again look for a non-linear solution for the reactant populations in terms of a 

simple Laplace transform-type power series expansion, Assuming that this waveform 

is moving with a constant velocity v, and again specifying a change of reference frame 

by denoting s = r - vt, we can denote 

m(s) = X3+ (t) , n(s) = +(t) and i(s) = 

Substituting these expressions into (2. 1), together with the non-linear functions above, 

yields 

—vm'(s) = m(s)[7 , 1  + a 1 rn(s) + b1 n(s) + c1 1(s)] + [m(s - 1) - 2m(s) + rn(s + 1)] 

—vn'(s) = n(s)[r2  + a2 rn(s) + b2n(s) + c2 1(s)] + v[n(s - 1) - 2n(s) + n(s + 1)] 

(2.37) 

—vl'(s) = i(s)[r3  + a3rn(s) + b3n(s) + c3 1(s)] + [l(s - 1) - 21(s) + l(s + 1)], 
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where (') again represents differentiation with respect to .s, and d/dt = —c d/ds. 

To solve Equations (2.37) we introduce the following Laplace transform-type power 

series expansions 

	

00 	 00 	 00 

	

v-j' 	 —pUs rn(s) = .2 ce 	, n(s) = > 	e'' and i(s) = E -/,e—PO', 	(2.38) 

	

P=O 	 P=O 	 P=O 

where 0 is real and positive and a, 0, and -y, are unknown coefficients. Substituting 

(2.38) into (2.37) gives 

	

00 	 00 	 CO 	 00 
-pUs 	 -PUS 	 -PUS 	 -PUS 

	

v>ap0e 	= (ri -2 )>ape 	+ai>ae 	>c,e 	(2.39) 

	

P=O 	 P=O 	 P=O 	 P=O 

	

00 

	
0) 

	

 e 	/3
00 	 00 	 CO 

—pUs 	—pUs 	 —pUs 	—pUs 

	

• b1 > 	 ,e 	+ c1 	ae 	ye 

	

P=O 	P=O 	 P=O 	P=O 

	

00 	 00 

• IL :ii: a e_PU(S1) + i 	ae9(1) 

	

P=O 	 P=O 

	

00 	 00 	 00 	 00 

= (r2  - 2v) E /3e 	+ a2  E ape_PUS 	/3-PU5 (2.40) 

	

P=O 	 P=O 	 P=O 	 P=O 

	

00 	 00 	 00 	 00 

• b2 	 I3p 	+ C2 	 E Ope 

	

P=O 	 P=O 	 P=O 	 P=O 

	

00 	 00 

• v 	/3pe_PO(S_1) + ii 

	

P=O 	 P=O 

	

00 	 00 	 00 	 00 
—pUs 	 —pUs 

	

—pUs 	—pUs 

	

vLpOe 	= (r3-29)-ye 	+a3>ae 	"ye 	(2.41) 

	

P=O 	 P=O 	 P=O 	P=O 

	

00 	

00 

	 00 	 00 
—pUs 

+ 	 +c3>ye 
PUS 	

'ye 
—PUS 

	

P=O 	P=O 	 P=O 	 P=O 

	

00 	 00 

—pO(s 1) 
+ 	P 	

- 	> ype_PU1). 

	

P=O 	 P=O 

Expressions (2.39), (2.40) and (2.41) can now be used to obtain values for the coefficients 

lap } , 
 {

13 } and  {-y}  by extracting coefficients of 6p9s  for successive values of p. With 

p = 0 we obtain 

ra0  + a1a 2
0 + b1 ao00  + ca0 '-y0  = 0, 	(2.42) 

	

r2fi0 + a2/30a0 + b2 /3 + c200 -y0  = 0, and 	 (2.43) 

2 r3 y0  + 	+ b3 'y0 130  + c1 -y0  = 0 . 	 (2.44) 



These three relations produce unique values for the leading terms in the power series ex-

pansions (an , flo , -ye ), provided that we ensure that all remain non-zero. This assumption 

allows us to simplify the above equations to give 

r1  + a1 a0  + b1 /30  + c1  'y0  = 0, 

r2  + a2 00  + b2 30  + c2 y0  = 0, and 	 (2.45) 

1 3  + a3 a0  + b3 /30  + c1 70  = 0 

These relations can then be manipulated to give exact determinant-like expressions for 

the leading terms in the power series expansions in terms of the interaction coefficients, 

e.g. 
(r1 c2  - r2 c1 )(b3c2  - b2 c3 ) - (r2 c3  - r3 c2 )(b2 c1  - b1 c2 ) 

a0  = 	 , 	(2.46) 
(ci a2  - c2 a1 )(b3c2  - b2 c3) - ( c2 a3  - c3 a2 )(b2 ci  - b1 c2 ) 

and similarly for #0  and '. By considering our three-reactant extension to the lin-

earisation approximations given in (2.21) in Section 2.4.2, we can see that equations 

(2.45) are identical to this extension if we regard a0 = X, 00 = Y" and 'Yo = W. 

Therefore these leading terms can be taken to equate to the non-linear global equilibrium 

populations, and hence it is valid to ignore scenarios where a0 , 00 , 70 = 0. 

Using these defined values for a0 , f3o  and 'Yo  we can examine Equations (2.39), (2.40) 

and (2.41) to extract coefficients of e_POS  when p = 1, namely 

va1 O =. (r - 2)a1  + a(a0a1  + aao ) + bi(a0131 + a1 fi0 ) 	(2.47) 

+ c1 (ao1  +a1 70)+[t (al  e ° + a1 e ° ) 

v130  = (r2 -  2v)3 1  + a2 (a0 /31  + a1 30 ) + b2 (0001  + 03) 	(2.48) 

-9 
+ C2 (0071 + 19'yo)  + v(/31e e + fl1e ), and 

vy1O = (r3  - 219)y 1  + a3(a0'y1 + a1 yo ) + b3 (0071  + 13170) 	(2.49) 

+ c3 ( 01  + 	+ 0( 1 e 9  + e ° ) 

Similarly with p> 1 we have the general relations of the form 

vpaO = (r1 - 2ji)c + a1(aoa + a1 a_1  + 	+ ap_ 1 c + a) 

+ 	 (2.50) 



• c1 (ao  + ai 7p _ 1  + 	+ aP11  + a 0 ) 

• ji(ae °  + ae 9 ) 

Equations (2.47), (2.48) and (2.49) can be simplified using the expressions in (2.45) to 

give 

a1 (vO - a1 a0  - 	- 2 + e 9 )) = b1 a01  + c1 a01 , 

01(vO - b2130 - u(e 
0  -2 + e-0 )) = a2 /30a1  + c2 0071 , 

71 (VO - c 3 70  - 	 -2 + e 9 )) = a30a1  + b3001  

Given these three equations in the three unknowns a1 , f3l  and Yi  we can manipulate the 

relations to produce expressions unique in each unknown. Thus for a 1  we obtain 

Ac 2  + a2 c1 a0 	Ab 3  + a3 b1 a0  
Ace,= bj30 a1 	 + c'y0 c 1 	 (2.51) 

b1 c2 /30  + Bc1 	Cb1  + c1 b3'y0 ' 

where 

A 	vO-a 1 ao -t(e 9 
-2+e ° ), 

B = vO - b2/30 - 	(9 - 2 + e ° ), 	and 

C 	= 	vO-c3'y0 -19(e 6 -2+e
0

) 

Provided we ensure that a1  is non-zero, (2.51) reverts into an expression where the only 

unknowns are v and 0, namely 

vO - a1 a0  - y(0) = 

H 

b1 c2 00 (vO - a1 a0  - i(0) + a2 c1 a0 /c2 ) 

c1 (vO - b2,30 - v(0) + b1 c200 /c 1 ) 

c1 b3 y0 (v0 - a 1 a0  - IL(0) + a3 b1 ao /b3 ) 

b1 (vO - c 370  - 19(0) + b3c170/b1) 	
(2.52) 

This expression can be differentiated with respect to 0, whence on setting dy/dO = 0 we 

can look for values of v and 0 that satisfy the system. If we investigate one particular 

three-reactant scenario in which Turing predicted the presence of travelling waves, we 

see that unfortunately the Laplace transform approximation fails again. Using Turing's 

linear parameter set (with I = 0) we obtain the following coefficients for the non-linear 
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system; 

a1  = — 1/3, b1  = 3/10, c1  = — 1/10, r1  = 4/3, ft = 2/3 

a2  = — 1/5, b2  = 7/30, c 2  = 0, r2 = — 1/3, ii = 1/3 

a3 =3/1O, b3 =-2/5, c3 =0, r3 =1, 19 =O 

These allow us to reduce (2.52) to 

3(vO) 2  + 14v0 - 2v0(e 6  + e) + 90 = 0, 	 (2.53) 

which differentiates with respect to 0 to give 

6v0 = 2e9 (1 + 0) + 2e ° (1 - 0) - 14 	 (2.54) 

after setting dy/dO = 0 and assuming v =A 0. 

Numerical solution of (2.53) and (2.54) reveal that there is just one solution, but this 

lies in the complex domain (0 = 1.8 - 1.151, v = 0.66 - 2.980. We therefore have 

no real wave velocity for which this approximation to the non-linear system is valid. 

This is an unfortunate result, since our computer realisations clearly show the existence 

of travelling waves during the transient phase of system development. However, if 

we consider long-term behaviour, the results detailed later in Section 3.5 highlight an 

important difference between Turing's predictions and actual realisation results. What 

we observe for the scenario selected above is the development of standing waves of 

reactant populations, and clearly not the travelling waves predicted. We therefore 

see that we have a situation in which current non-linear techniques cannot adequately 

describe system behaviour, and past linearised analysis has also failed to predict the 

result of either linearised or full non-linear computer realisations. 

It is clear that further study is required in this domain, and investigation of other non-

linear techniques may prove useful. In this work we feel that we have progressed our 

understanding of the general behaviour of the linearised scenario, in particular in terms 

of system criticality. The knowledge gained has proved vital for the next stage of study 

- deterministic realisations of linear and non-linear spatial reaction systems. 
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Numerical Realisation of Deterministic 

Spatial Reaction Systems 

Mathematics, viewed rightly, possesses not only truth, but 

supreme beauty - a beauty cold and austere, like that of 

sculpture. 

- Bertrand Russell 



3.1 Introduction to Computer Realisation 

Since their inception in the 1940s, computers have provided mathematicians and other 

scientists with a method of accelerating arithmetic calculation. It is interesting to con-

nect the inventive mathematical genius of Alan Turing (so much discussed in previous 

chapters) with his pioneering work in the field of Computer Science and Computabil-

ity [1936], for which he is perhaps more famous. The broad functionality offered by 

todays desk-top computers or workstations can often make it difficult to believe that 

these machines are still only performing arithmetic or logical operations - thereby 

assisting us with our mathematics. Turing had great interest in the development of com-

puting because of his insight into how such machines could help with his mathematical 

investigations (see Hodges [1983]).  The continued efforts of computer scientists since 

Turing's time have meant that computers become ever more usable and powerful. 

The development of high-resolution workstation displays, coupled with straightforward 

programming languages and graphics libraries, allows modern-day mathematicians to 

visualise the results of calculations in a matter of seconds. This not only allows study 

of more systems in a given time-scale, but it also allows investigators to concentrate 

immediately on areas that appear to produce interesting results. This chapter details our 

investigations into the behaviour of various deterministic spatial reaction systems. The 

work has its foundation in the analytic studies of Chapter 2. 

The basis of computer realisations of deterministic systems lies in the numerical solution 

of the equations that describe system development. Techniques for accurate numerical 

solutions are well established (see Rice [1983]),  particularly in the field of non-linear 

differential equations (see Ortega [1970]). The main approach of all such techniques is to 

start from some given initial conditions, and then make some first-order approximation 

(based on given differential equations) of the state of the system after some small time 

increment (st). The accuracy of this approximation increases as we consider smaller 

values of St, and can be further improved by using higher-order techniques (e.g. Runge-

Kutta as covered by Gear [1971]) to improve our first-order estimates. This pursuit of 

accuracy can be very computationally expensive, potentially adding orders of magnitude 

to the time taken to reach a certain point in a realisation. However, we must always 

ensure that our solutions are accurate enough to give a true representation of system 

development. Any inaccuracy in the predicted state of a system after a given time-step 
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can be compounded at the next iteration, as predicted values are used as the base for 

the next set of approximations. Errors that creep into the solution can thus grow very 

large, in the worst case they can dominate the true solution entirely. This is especially 

true when dealing with non-linear equations. For this reason we are always vigilant for 

approximation errors, typically caused by using too large a value of St with a low-order 

solution technique, as well as for rounding errors that are inherent with any digital 

computer solution. 

Various implementations of deterministic spatial reaction systems have been produced in 

the course of this work, and used to provide the results detailed in this and later chapters. 

These programs run on a number of parallel and serial machines, and were designed to 

provide a flexible user interface, and to offer a graphical display of realisation results. 

Recent developments in computer network technology have provided users with the 

ability to generate and visualise results on office workstations, making connections 

to supercomputers when required. This provides a powerful and flexible working 

environment. The majority of the one-dimensional results detailed later in Section 3.2 

were, for example, performed on a serial Sun workstation, or Sometimes on a Silicon 

Graphics two-processor graphics workstation, since the models are small enough to 

allow such machines to calculate accurate solutions within very short time periods (i.e. 

a few minutes). In contrast, the two-dimensional system realisations in Section 3.6 

were all performed on a parallel supercomputer (details of such machines are given 

later in Section 5.2) in order that the much larger and more complex system can be 

visualised in very short time-scales - thus enabling interactive investigation of system 

parameter space. Full details of the parallel implementations of our models are given in 

Chapters 6 and 7; at this stage we intend to detail only the functionality of our programs. 

3.1.1 Computer Implementation Details 

The software written for this work is either standard C or FORTRAN code with some 

necessary additions to enable parallel execution. Our main design aim is to produce 

robust, flexible software that can be executed to model a variety of scenarios without 

the need for editing and re-compilation, and indeed, can be switched between modes 

of realisation at run-time. The user is therefore free to investigate system behaviour 



without interruption. This functionality is provided through the use of command-line 

arguments, which can easily be stored in an input data file. The options available to the 

program user can be categorised as follows: 

System description: The user can input specifications of the size and nature of the spa-

tial system and the type of realisation to be executed. This involves providing the 

number of cell locations for each dimension of the system, as well as the number 

of species present. The realisation type can be specified as either deterministic 

or stochastic (see Chapter 5 for further details of these latter simulations), and as 

using either the full non-linear versions of the interaction equations, or alternat-

ively, linear approximations. The user can also specify the length of a realisation 

by giving both the system time at which the run should terminate (all runs start 

with t = 0) and the time-step (6t) to be used. 

Initial conditions: A small number of options are provided for the initial configuration 

of our system. All cells must start either empty of all reactants, or with equilibrium 

populations of all species; a simple flag is provided to toggle between these two 

options. The user can then specify some initial perturbation size and location. 

Although the most commonly used initial perturbation for our realisations is 

the simple addition of a single reactant to a single cell, options are available to 

perturb each reactant type by any given amount. In addition, initial perturbations 

can be made at 'a number of points within the spatial model, either contiguously 

or regularly distributed. This allows study of the transient interference between 

population movements caused by separate perturbations. 

System parameters: Having described a particular physical system and the desired 

length and initial conditions of a realisation, the user must now specify the inter-

action and migration coefficients from the system equations. The program allows 

the user either to input each and every parameter individually, or alternatively 

to give values for the system instability (I) and the number of waves desired in 

the final steady-state solution. If the latter option is taken, the program assumes 

standard values for cross-interaction coefficients, based on Turing's case of "sta-

tionary waves with finite wavelength". The two given values are used to calculate 

self-interaction coefficients and migration rates, given the prior knowledge of the 

system size and dimensions. Full details of these calculations as well as those for 
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determining the relationship between linear and non-linear coefficients is given 

later in Section 3.1.2. An extra feature of our software is that a range of I-values 

can be requested, and given an increment value to step through this range, the 

program will execute a number of realisations, one for each successive value of 

system instability. 

File output: Facilities are provided for the specification of two output files for each 

realisation. One file stores complete results from the run (i.e. all cell populations, 

input parameter listings, and rates of decay of populations); the other is reserved 

for recording values of global populations and the results of any special features 

requested by the user. Two of these extra options are provided by simple file 

output flags. One requests that only the final state of the system be recorded, and 

the other restricts the recording of data to a single user-specified cell, rather than 

for the complete system. Both of these options are useful to extract particular 

information from the very large data-sets that this program can produce. 

Display options: As has been noted above, the user has the option of a graphical 

run-time display of reactant populations. This display takes the form of a set 

of circular graphs for the one-dimensional realisations, and a flat plane for the 

two-dimensional results. Populations values are shown by the height of the graph 

in the first case, and for the two-dimensional work by either colour-coding or (if 

working on a monochrome workstation) by displaying whether populations are 

above or below equilibrium values. Examples of all these graphical outputs can 

be viewed later on in this and other chapters. The program user has three simple 

options for use with the graphical display. First, the display can be activated 

with a toggle-flag; second, the number of displays to be taken from the run 

must be given (this therefore specifies the simulation time between displays); and 

finally an option is provided to enable reactant populations to be rescaled before 

display. This final option is particularly useful for the study of linear systems 

when populations can grow at an exponential rate. 

Interrupt mode: If this option is requested then the program will pause after each 

display point to allow the user to change the nature of the realisation. This facility 

has proved very useful in testing the stability of steady-state solutions when they 

are subjected to further perturbations through adding or removing reactants from 

Me 



particular cells during the course of the realisation. In addition, it has proved 

useful for the close investigation of the step-by-step evolution of the system. 

Within interrupt mode the user has the choice of the following options: 

• add a perturbation of a given size to either a single or a number of cells; 

• toggle between linear and non-linear versions of the system equations; 

• toggle between deterministic realisation and stochastic simulation; 

• save the current state of the system; 

• adapt the step-size (St); 

• change the system instability (I); and 

• cancel the interrupt mode and continue to the end of the realisation. 

Special features: During the course of the development and use of the realisation code a 

number of extra features were added in order to investigate particular properties or 

behavioural modes of the system. The first of these changes the one-dimensional 

ring system into a line system by breaking the link between the cells opposite cell 

number one. No migration effects are allowed across this break, and the code is 

written so as to notify the user whenever the cell populations at the line-end move 

away from their initial state by a user-specified amount. This therefore provides 

notice of the point at which a line of N cells, with a perturbation at its mid-point, 

ceases to act in the same way as a ring of N cells with a single perturbation. 

The realisation software also has the facility to record the velocity of perturbation 

effects moving through the system. This is achieved by the program recording the 

time that each cell's population moves away from its initial state by more than a 

given percentage of the equilibrium population. Recording the times at which this 

change first occurs in each successive cell gives a specification of the movement 

through the system of the effect of a perturbation. 

Using a similar technique the program can be used to identify the realisation 

time at which the system has reached stability. Again the user specifies some 

percentage of equilibrium populations, and once the population movements of all 

cells within a single iteration are within this ceiling, stability is judged to exist and 

the time recorded. Details of the realisation results achieved with these special 

features are given later in this chapter. 

MA 



Help information: It can be seen that the user of our software has a large number of 

options and facilities available. We have therefore provided a help option within 

the program. This displays all available command-line options, with explanations 

of their purpose and instructions on their use. Figure 3.1 gives a sample of the 

"help" option output, and thus also acts as a summary of all the functionality of 

our realisation software. 

-a (Adjacent cells initially perturbed) 
-b (Single cell initially perturbed) 
-c [int] (Number of cells in ring) 
-d [file] (Dump ascii values: give filename for totals) 
-e (Use equilibrium background populations initially) 
-f [file] (Output file for full results) 
-g [float] (Set graphics on, give max population for graphs) 
-h (Help information - this screen) 
-i [float] (Minimum Instability) 
-j [float] (Instability Increment) 
-k [float] (Maximum Instability) 
-1 (Use linear approximation) 

-m (Use Turing approximation) 
-n (Interrupt run to allow changes) 
-o [float] (Cut ring to form line, give change to spot arrival) 
-p [int] (Number of data sets to be printed) 
-q (Set rescaling after each iteration) 
-r [int] (Use stochastic simulation, give seed) 

-S (Save final state to file) 
-s [float] (Step-size for iteration loop) 
-t [float] (Finish time for run) 
-u [float] (Measure velocity, give percentage to recognise wave) 
-v [float] (Identify stability, give measure) 

-w [int] (Number of waves around ring) 
-x [int] (Initial X population perturbation) 
-y [int] (Initial Y population perturbation) 
-z [int] (Data dump limited to one cell, give number) 

Figure 3.1: Help information from the standard realisation software 
Running the standard realisation program with the "help" option (-h) produces screen 
output as in this figure. The screen therefore acts as a listing of all the available 
command-line options for the program. The first column gives the command-line 
option, the second specifies what (if any) additional parameter must be supplied, and 
the third column gives a brief description of option's effect. 
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3.1.2 Calculation of Realisation Parameters 

Building on the analytic work detailed in Chapter 2 we require a mechanism for cal-

culation of the interaction and migration coefficients to be used in our deterministic 

realisations. To do this we use the linear coefficients covered in Section 2.2 and the 

general non-linear interaction detailed in Section 2.4.2. We can thus convert an instabil-

ity value and a desired number of waves into the appropriate interaction and migration 

coefficients to produce finite wavelength behaviour. At this stage we restrict ourselves 

to the one-dimensional two-reactant scenario; details for more complex cases are given 

later. 

Interaction Coefficients 

We can define inter-relations between linear and non-linear interaction coefficients 

by inserting the linearisation relations (2.2) into the non-linear equations (2.1) with 

interactions (2.19). We thus obtain 

f(X, Y) (X* + x)[r 1  + ai(X*  + x) + b, (Y* + y)] and 

g (Xi  , ) = (y* + Y) [T2  + a2  (X *  + x) + b2  (Y*  + lJ)1. 

By differentiating these equations with respect to the movements away from equilibrium 

(x 1  and y2 ), and then setting x 2  and y2  to zero, we obtain at X = X and Y = 

,Of 1,9x i  = r + 2aiX*  + b, Y* and ôf/8y1 = 

ôg/ö; - a 2 Y and 009y1  = r2+ a2X* + 2b2Y* 

Equations (2.3) and (2.4) use the Taylor series expansion to give 

a= 
af(X*,Y*), - b— af(X* , Y*) 	= Dg(X* 

xi  

' *) 

and d
Oyj

Dg(X*,Y*)  

axi
=

ayi  

So we can equate the four linear coefficients to our six non-linear coefficients of the 

general quadratic scenario. Obtaining additional simplification from (2.19) we can write 
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down 

a = aiX*, b = 	c = a2Y*, and d = b2Y* . 	(3.1) 

These expressions, coupled with 

Ti + a 1 X + b1Y* = 0 =r2+  a2X* + b2Y*, 	 (3.2) 

also derived from (2.19), allow us to convert from non-linear to linear coefficients. 

It is often useful to employ Turing's simplification of reducing all the interaction coeffi-

cients to a single Instability value, I, and then defining some coefficients as constant and 

some as functions of I. The ability to concentrate on a single controlling parameter is 

most profitable, for example, during the investigation of possible parameter space (see 

Section 2.3.1). In such circumstances the above equations allow us to produce Turing's 

single linear instability value from the corresponding full non-linear system. 

Migration Rates 

In the course of studying our realisations we are often not particularly concerned with 

studying the system behaviour given some particular value of migration rate for each 

species. We are more often interested in studying the behaviour of specific wave-like 

solutions to our system, and so desire that migration rates be set to the particular values 

that will produce such behaviour. We therefore turn to our analyses of the previous 

chapter (in particular Section 2.2. 1) to define the migration rates t and v in terms of a 

single variable (U) along with the size of the system (N) and the number of waves () 

present in the asymptotic solution, i.e. re-working (2.7) produces 

2 	 2 U = 41L sin (irs o /N) = 4mv sin (7rs 0 /N), 

where m is the ratio of the migration rates (it/u). Using this simplification we can write 

equation (2.7) as 

	

(J) 2 +( 1  + 3U )(J)+l(U 	1)2 
=0. 	 (3.3) 
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If U = 1/2 then (3.3) has the straightforward single solution equating to the value 

of instability, p = I. We will therefore often choose this value for U during our 

investigations, thereby allowing the migration rates to be determined from the user-

requested value of .S. 

3.1.3 The General Non-Linear Interaction Coefficients 

Although this work covers a wide variety of spatial reaction systems, we will often 

return to one particular scenario for reference, comparison and further investigation. 

This case corresponds to the non-linear version of Turing's system of "stationary waves 

of finite wavelength", and has produced a wealth of interesting results that are detailed 

later in this chapter. In particular we are interested in extending the work of Renshaw 

[1991, cf. page 321]. In this he developed interactions that produced dynamic wave 

patterns for stochastic simulations with non-linear interactions: we now study both the 

general stochastic and deterministic schemes, and investigate the behaviour of systems 

that exhibit permanent wave structures. 

Turing provides us with a particular set of parameters that can be used to produce 

stationary waves of finite wave-length (see Turing [1952], page 52); these are a = 1-2, 

b = 2.5, c = —1.25, d = I + 1.5, rn = 2 and U = 1/2. The one-dimensional systems 

that we investigate are typically chosen to contain 50 cells, with five complete wave 

structures present in the final steady-state solutions. Such systems are of sufficient 

size to allow the production of large-scale spatial effects, but can also be realised in 

short timescales (i.e. a few minutes) to enable study of many system parameters. With 

equilibrium reactant populations chosen as X = = 10 say, from equations (3.3), 

(3.2) and (3.1) we can determine a set of non-linear coefficients that satisfy the given the 

instability value I. For example, Table 3.1 details the coefficients that are used when 

we choose I = —0.2 (e.g. as we do in the final example in Section 3.3.2). 

3.2 General One-Dimensional Realisation Results 

The software detailed in the previous section enables us to perform a broad-ranging 

investigation into the behaviour of deterministic one-dimensional spatial reaction sys- 
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Migration coefficients IL 	= 	1.3090 
ii 	= 	0.6545 

Interaction coefficients a 1 	= 	-0.220 
a2 	= 	-0.125 

= 	0.250 
= 	0.130 

7-1 	= 	-0.300 
= 	-0.050 

Table 3.1: Standard simulation system parameters 
The choice of these parameters will produce sub-critical behaviour in a two-reactant 
one-dimensional spatial reaction system, with instability I = —0.2. These values are 
taken directly from Renshaw [1991]. 

tems. We first investigate the types of behaviour that Turing predicted for this system 

with linearised interactions and periodic boundary conditions. Although the majority 

of these cases are limiting in terms of certain parameters (and therefore represent a 

small proportion of the available parameter space) they do show some specific types of 

behaviour. The majority of these studies confirm Turing's predictions, although there 

are a number of scenarios in which the systems develop in a manner more complex than 

previously analysed. 

The predominant part of the results within this chapter are concerned with one of 

Turing's cases in particular - that of stationary waves of finite wavelength. Not only is 

this case the most relevant in terms of representing physical or chemical systems, but as 

described in Chapter 2 it also accounts for the vast majority of the available parameter 

space. Our studies of this case include: 

an investigation into the effect of varying system instability I and other paramet-

ers; 

. an examination of the morphological stability produced in linear scenarios where 

the actual reactant populations are growing or decaying exponentially; 

• a comparison of the development of the non-linear and linear systems, including 

a description of the circumstances where we can regard the linear approximation 

as accurate; 

• a study into the rates of decay of perturbations back to steady-state solutions, and 
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how these decay rates are related to the instability of the interactions; 

an analysis of the stability of wave structures as initial perturbations and I-values 

are varied - this leads us to an empirical specification of when wave structure 

breaks down; 

. a study of the number of waves that appear on a ring when migration rates are 

held constant, but the number of cells, N, is varied. 

This final item has produced significant results in terms of the importance of using a 

discrete-space or stepping-stone model rather than a diffusion-based realisation. We 

have observed certain interesting, and potentially physically relevant, effects on our 

discrete system that cannot be reproduced by continuous models of the same system. In 

particular we report on a study of the effects of using very small ring systems, and the 

way in which the wave structures then map onto the physical system. A categorisation 

of wave types is introduced and used to map the wave structures produced as ring size 

and instability are varied. 

We will concentrate on the finite wavelength system later in Section 3.3. In advance 

of this, however, let us examine the results of our realisations for the two limiting case 

scenarios - those with extreme-long and extreme-short wavelength wave patterns. 

In Section 2.2.3 we detailed the possible behavioural cases for the one-dimensional 

two-reactant spatial reaction system with linear interactions. We now present the 

results of our computer realisations of these linearised systems to enhance these earlier 

descriptions. We are thus constrained to vary only the reactant migration rates (p and 

ii), the cross-interaction coefficients (b and c), and the self-interaction coefficients (a 

and d). 

3.2.1 Extreme-Long Wavelength Scenarios 

In this scenario the wavelength of reactant populations is so long that it encompasses all 

cells in the system. In effect, we therefore see unified movement of all cell populations, 

either away from, or towards, equilibrium. This case occurs when we restrict reactant 

migration rates and self-interaction coefficients to be equal, and the cross-interaction 

coefficients to have lb I = Icl = 1. If these cross-coefficients are both positive or negative 
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(i.e. be > 0) we have linear stationary waves with extreme-long wavelength, if one is 

negative (and thus be < 0) we obtain the oscillatory kilter (see Section 2.2.3). 

Turing states that for both the stationary and oscillatory kilter the linear system is in 

unstable equilibrium, and thus any perturbation will create an explosive movement in 

the reactant populations. In the stationary case this movement is constantly in one 

direction, whilst in the oscillatory kilter the movement has a periodically changing sign. 

Our realisations confirm these predictions, but only if we ensure that the self-interaction 

coefficients, a and d, remain positive. In the linearised stationary kilter all cells move 

away from equilibrium with amplitudes of the same sign as the initial perturbation. In 

the oscillatory case the populations oscillate (see Figure 3.2), and changing the sign of 

the perturbation produces the same development, but with the reactants reversed. 
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Figure 3.2: Extreme-long wavelength reactant populations 
A graph of the reactant populations of a perturbed cell in a one-dimensional, two- 
reactant spatial reaction system with linear interaction coefficients chosen to produce 
oscillatory, extreme-long wavelength behaviour. It can be seen that the two populations 
oscillate Out of phase by ir /2, once the transient effects of the perturbations has passed. 

However, if we consider the situation with a = d = —1, we observe very different 

behaviour to that detailed above. Our realisations now all produce an inherently stable 

linear system, with all perturbations decaying back to equilibrium, rather than exploding. 
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We still observe the fundamentals of extreme-long wavelength behaviour, but with 

exponential decay to equilibrium, and with bc < 0 we still obtain amplitudes that 

change sign periodically. However, with negative self-interaction coefficients our results 

definitely show that the linear system is stable to perturbations. This is our first empirical 

experience of the need to consider system criticality as well as kilter. With a = d = —1 

we have moved into a sub-critical scenario, whereas using Turing's values the system 

behaves super-critically 

We have also investigated running systems with non-linear interactions equivalent to 

the linear ones detailed above. In the super-critical case with a = d = 1 the systems 

behave very much as the linear case provided the initial perturbation is positive, the 

only difference being that the population explosion is more severe. In fact for the 

oscillatory kilter, the explosion can rise in one direction so rapidly that the system 

undergoes no oscillations at all. However, for the unstable non-linear system with 

negative initial perturbations the reactant populations decrease exponentially towards 

zero, hence reaching a permanent stable (if "uninteresting") state. 

In the inherently stable (sub-critical) extreme-long wavelength scenario (a = d = —1) 

we observe behaviour exactly like the linear case, with all perturbations returning to the 

equilibrium position. However, the non-linear interactions are much more sensitive to 

perturbation size. We find that should initial perturbations in one population exceed 10% 

of equilibrium population level, then the system is in danger of being overwhelmed by 

transient activity, and a localised irreversible population explosion can occur. Thus even 

when choosing parameters to give a sub-critical non-linear system, initial conditions 

(and system discreteness) can produce inherent local instability that dominates the final 

solution. 

3.2.2 Extreme-Short Wavelength Scenarios 

In this case of limiting behaviour we see the first true wave-like structures appearing 

in our realisations. Extreme-short wavelength development corresponds to each cell in 

the one-dimensional system behaving in a manner opposite to that of its neighbours. 

We can thus obtain spatial population distributions with a periodic structure. We can 

produce the stationary kilter (the oscillatory kilter will be discussed later in Section 3.5) 
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of this type of system by setting one of the reactants migration rates to be zero, and 

by restricting bc < 0. It is important to note (again see Section 2.2.3) that unlike the 

extreme-long wavelength case, stationary behaviour requires bc to be negative rather 

than positive. In this scenario we can also introduce Turing's simplifying instability 

parameter, I, and thus define the self-interaction coefficients as a = I - 1 and d = I. 

Given b = —c = 1, y = 1 and ii = 0, this allowed Turing to write the solution of 

equation (2.7) as 

= I - 1/2 - 2 sin 2 (s/N) + (2 sin  2(s/N) + 1/2)2 - 1 . 	(3.4) 

The largest possible value of this solution (p 50 ) occurs when the sin 2 (irs/N) term is 

greatest, i.e. when s/N = 1/2. The dominant asymptotic solution of the linear system 

should therefore contain N12 waves evenly distributed around the ring - this, of course, 

fits ideally with adjacent cells acting alternately as crests and troughs in the wave 

structure, and this result is confirmed by our realisations. The resulting structure of 

the linearised system is morphologically similar to that shown in Figure 3.3, but with 

reactant populations increasing or decreasing exponentially in time. 

We have performed a number of realisations of the above one-dimensional system with 

two reactants, and an investigation of the system with varying instability values has 

proved to be of particular interest. As expected, if I is chosen to be negative (Turing 

does not consider this sub-critical option), any perturbations to a system result in decay 

back to the steady-state equilibrium case; this occurs for realisations with both linear and 

non-linear interaction functions. For super-critical systems we expect any perturbation 

to result in extreme-short wavelength waves appearing throughout the system, and 

thus reactant populations to grow exponentially in magnitude, with a high correlation 

between next-nearest neighbour cells. For this system with linear interactions, we find 

that for I = 0.1 and I = 0.2 the reactant populations returned to equilibrium (showing 

sub-critical behaviour), although with I increased to 0.3, permanent short-wavelength 

waves are produced. If we set s/N = 1/2 in Equation (2.7) we obtain 

PS0 = I - (vi - 5)/2 = I - 0.20871 

and this reveals that for the leading eigenvalue of the linear solution to be positive 

(thereby giving true instability or super-criticality) we must have I > 0.20871. We 
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Figure 3.3: Extreme-short wavelength reactant populations 
A graphical example of the reactant population waves for the case of extreme-short 
wavelength in a one-dimensional implementation of a two-reactant spatial reaction 
system with non-linear interactions. Migration rates have been fixed at p = 1 and 
v = 0, cross-interaction coefficients are b = —c = 1, self-interaction coefficients are 
a = I - 1 and d = I, and I has been chosen as 0.3 for this realisation. Note the stable 
wave structures with differing amplitudes for each reactant; no rescaling has been used 
for this experiment. The upper graph represents the X-reactant, and the lower graph 
the Y-reactant. 

therefore see that in the extreme-short wavelength scenario the sign of Turing's (finite 

wavelength) instability, value does not provide the divide between system criticalities in 

the extreme behaviour cases. Thus even with a positive I-value as proposed by Turing, 

we can obtain sub-critical activity that is not described in his work. We must therefore 

look to Equation (2.7) to find our criticality divide. 

This same modification to the threshold I-value holds true for our empirical investigation 

of the equivalent system with non-linear interactions. For example, with I = 0.3, we 

obtain a ring of short-wavelength waves which have a stable fixed amplitude. This is our 

first example of permanent stable wave structures, Figure 3.3 provides an illustration of 

such a system. 

Our investigations then move on to non-linear systems with higher instability values, 

and this produces additional interesting results. For example, with I = 0.5 we obtain a 
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system that exhibits almost chaotic behaviour in terms of the amplitudes and locations 

of waves. The extra instability seems to drive several modes of spatial oscillation 

around the ring, and it thus becomes difficult for the largest eigenvalue solution to 

dominate. A few snap-shots of the reactant population for such a system are shown in 

Figure 3.4, where we can observe the changing wave patterns. This type of model is 

particularly interesting as such behaviour may be a lot closer to natural systems than 

some of the more simplistic scenarios we have previously observed. As we increase the 

instability further, this chaotic behaviour becomes more extreme, until, with I = 1.0 

sudden population explosions in one species lead to extinction of both reactants, and 

this extinction then spreads around the ring to reach a final, empty steady-state. 

Figure 3.4: Complex patterns in the extreme-short wavelength scenario 
Time evolution of the population of reactant Y in a one-dimensional two-reactant 
spatial reaction system with non-linear interactions and a single initial perturbation. 
Coefficients are chosen to produce extreme-short wavelength behaviour, but the chaotic 
nature of the development is produced by using a relatively high instability parameter 
of I = 0.5. The four graphs represent the reactant populations at times t = 10.0 (top 
left), t = 26.0 (top right), t = 50.0 (bottom left) and lastly t = 95.0 (bottom right). 

Our experiments with the stationary extreme-short wavelength scenario are concerned 

with systems where the natural wave structure is incompatible with the ring structure. 

The simplest example of this is to consider a ring with an odd number of cells, since 

W. 



we cannot now have a regular set of N12 waves, each with a wavelength of two cells. 

We have found that, providing I is large enough to create genuine instability, Turing's 

claim of regularly varying wave amplitudes around the ring is correct for the linear 

case. However, with non-linear interaction functions we find that all wave amplitudes 

are identical, except for the point opposite the initial perturbation. Here the spatial 

structure of the pattern adapts to account for the missing cell, and thus a cut-off wave 

is formed. We therefore have N12 - 1 waves, all but one of which have identical 

amplitudes (see Figure 3.5). This behaviour is interesting because the non-linear short-

wavelength reaction we see here is very similar to the linear finite wavelength behaviour 

that we will study in Section 3.3. It also provides us with an example of behaviour that 

is significantly different between systems with linear and non-linear interactions, and 

which cannot be produced using diffusion-based continuous systems. 

Figure 3.5: Extreme-short wavelength waves on an odd number of cells 
A comparison of the linear and non-linear reaction to an extreme-short wavelength 
two-reactant scenario with an odd number of cells. In this case we have N = 49, and 
the left hand graph shows the rescaled variation of reactant X with linear interactions, 
and the right hand graph shows X with equivalent non-linear interactions. Both graphs 
are taken at time t = 800, and equate to explosive linear amplitudes of over 1032  at 
the point of perturbation (the front of the ring as viewed), and bounded, spatially 
constant, non-linear amplitudes. This massive contrast in realisation populations is a 
fundamental difference between linear and non-linear systems. 

3.3 Finite Wavelength Scenario Behaviour 

Let us now move on to our main area of interest - the production of wave structures with 

a finite wavelength, where we use Turing's definition of finite, referring to all system 

scenarios other than those with "extreme" wavelength solutions. In Section 2.2.3 we 

detailed linear coefficients to produce such behaviour, and in Section 2.3.1 we discussed 

the regions of parameter space within which this behaviour occurs. Using this work 
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as a base, we can now complete an extensive investigation into the production of finite 

wavelength patterns in both the linear and non-linear scenarios. 

For the majority of the results in this section, we have used Turing's suggested migration 

and interaction coefficients for stationary waves, using the techniques presented in 

Section 3.1.2 to convert to non-linear interaction coefficients where necessary. Adopting 

this approach allows us to unify representation of the interaction coefficients into just 

a single variable (the instability parameter I), and results in the migration rates being 

determined by the values chosen for the ring size, N, and the number of desired waves, 

s. The actual coefficient values used for the majority of realisations are therefore as 

detailed in Section 3.1.3 for the linear interaction functions, and in Table 3.1 for non-

linear interactions. This choice produces stationary kilter wave patterns in the linear 

scenario, provided we use a positive value for I - a decision that is implicit to all of 

Turing's results. The amplitude of these waves grows rapidly, and is appears sensible to 

regard the structures in terms of their morphological stability only. Since for any natural 

system such exponential population or concentration growths would always reach some 

limiting factor not accounted for by the linearised interaction functions, hence rendering 

the linearisation assumptions invalid. 

We thus concentrate a large proportion of our studies on investigating more physically 

realistic behaviour by using non-linear interaction functions, thereby building a portfolio 

of comparisons between the linear and non-linear variants. In particular we have found 

that non-linear systems can produce finite stationary wave patterns with a constrained 

amplitude, and we provide an analysis of such systems in terms of their variation with 

initial conditions and system instability. 

A second important study concerns realisations where I is not restricted to be positive. 

We detail realisation results to support our proposal that I be considered as a measure 

of the criticality of the system. Thus positive I values produce super-critical behaviour 

(i.e. exponentially exploding wave amplitudes in the linear scenario, and permanent 

waves with non-linear interaction functions); negative I values produce sub-critical 

activity (where we expect any perturbations to return to stable equilibrium); and with 

I = 0 we obtain the critical state, where behaviour proves to be more complex, and far 

more dependent upon initial conditions. 



3.3.1 A Comparison of Linear and Non-linear Systems 

The most important result of these realisations is the confirmation that, by choosing 

parameters as suggested by Turing, we can reproduce spatial distributions of reactants 

with wave-like patterns. This is of great relevance to scientists working with spatial re-

action systems in many fields, since the ability to analyse and simulate systems without 

boundary conditions becomes possible. Provided we choose interaction coefficients and 

a migration rate ratio that lie in the relevant section of possible parameter space (see 

Section 2.3.1), it is possible to adjust the magnitude of reactant migration rates to pro-

duce reactant population distributions with periodic variations of a specific wavelength. 

Figure 3.6 shows the typical wave structures produced by both linear and non-linear 

interactions, when migration rates are chosen to produce five waves around the ring 

system. 

Aij 

Figure 3.6: Linear and non-linear wave structures on a ring of cells 
Circular graphs of the population of reactant X in a one-dimensional two-reactant 
spatial reaction system containing 50 cells. Interaction coefficients and migration 
rates are chosen to give five waves. The yellow plane in the diagrams represents 
zero populations, it can been seen that the linear realisation (left) contains negative 
populations. In addition, this graph is rescaled according to the maximum population, 
since this explodes exponentially with time. Conversely, the non-linear graph (right) 
is not rescaled, and highlights that these wave structures produce stable waves with 
positive population values. 

In general, wave structures of this type are produced in our ring systems for any 

displacement of the system from its equilibrium state. If we have genuine instability 

in our interactions (i.e. a super-critical system, I > 0) the effect of any perturbation 

will spread throughout the ring to produce persistent waves. This super-critical case 

is detailed later in Section 3.3.2, and the effect of perturbation spread is shown below 



in Figure 3.7. This same effect is observed for other possible instability values in the 

few time periods after realisations begin (say, t < 25); though for cases where I < 0 

we do not obtain distinct permanent waves. The sub-critical scenario (with I < 0) 

is straightforward - although we can observe transient wave-like structures, with the 

required wavelength, all perturbations to the system are attenuated and the final system 

state returns to equilibrium. We will discuss this decay later in Section 3.3.3. The 

critical case, with I = 0, is more complex. Here we have no leading eigenvalue for the 

linearised solutions, and our experiments show that system development does produce 

wave structures similar to the sub- and super-critical cases, but the asymptotic state of 

the system is highly dependent on initial conditions. 

Figure 3.7: Permanent wave development from a single perturbation 
These four graphs show the spread of influence of a single perturbation through a 
two-reactant spatial reaction system on a ring. The graphs show the population of 
reactant X at times t = 0 (top left), t = 2.0 (top right), t = 20.0 (bottom left), 
and t = 500 (bottom right). The system shown contains 50 cells, and non-linear 
interaction functions are used. The graphs are taken from a graphical display in which 
the position of the initial perturbation rotates in time. 

Later in this chapter we will discuss matters of the discreteness of our realisations, 

the stability of our models, and the effects of varying system instability and initial 

conditions. It is important to understand how the non-linear versions of these systems 

differ from those with linear interaction functions, for which we have been able to 

RIN 



perform the most complete mathematical analysis. Figure 3.6, and the brief discussion 

above, show that there are quite substantial differences between the development of 

linear and non-linear super-critical scenarios, although the morphological nature of 

the waves is roughly similar. However, we obtain much closer agreement between 

linear and non-linear realisations for sub-critical runs. Although we observe significant 

difference in transient activity as the systems move closer to their equilibrium states, 

we see a convergence in both total system population and wave amplitude decay rates 

(see Section. 3.3.3). 

We can compare total ring populations and their variation with time for linear and non-

linear sub-critical systems (I = —0.2), with two types of initial conditions. The first of 

these, described as the small perturbation system, consists of all cells with equilibrium 

populations (X* = = 10), except for five cells (evenly distributed around the ring) 

in which both X and Y populations are perturbed by a small positive amount (six units). 

In the second case, with large perturbations, all cells are initially empty, but five cells 

have X and Y populations just in excess of the equilibrium levels. Figure 3.8 shows 

the time development of total ring populations for both these cases. We observe that 

the same final total population is consistent between linear and non-linear realisations. 

Where differences do. occur, they are in the transient phase (i.e. with t < 10 for small 

perturbations, and t < 20 for large perturbations) when the higher-order terms in the 

non-linear interactions take effect. Once all perturbations are small, the linearisation 

approximation proves accurate. It is interesting to note, however, the difference in the 

way the two realisations approach equilibrium in the large perturbation case. The system 

with linear interactions does so in a "convex" manner, i.e. the second time-differential 

of the population is generally negative during the transient phase, without a change in 

the sign of the gradient of the line between time t = 1 and equilibrium being reached 

(t 15). In contrast, the non-linear system approaches equilibrium in a "concave" 

manner with at least three oscillations in the approach, but with the second differential 

of the population being generally positive. The linearised system is therefore acting 

similar to an over-damped version of the non-linear system. 

The final case for this comparison of linear and non-linear systems is for system be-

haviour at criticality (I = 0). Our empirical results show that under these conditions 

our systems can exhibit very striking behaviour that is highly dependent upon initial 

conditions. However, the persistent structure will always lie close to equilibrium (un- 
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Figure 3.8: Sub-critical systems approaching equilibrium 
Total populations on a 50-cell two-reactant spatial reaction system with I = —0.2, 
showing the difference between non-linear and linear numerical solutions. The left 
hand graphs shows small perturbations returning to equilibrium, the upper two lines 
represent the X and Y populations for non-linear interactions, the lower represents 
the linear equivalent. The right hand graph shows the same system, but with large 
perturbations. The higher-order terms in the non-linear interactions can be seen to 
affect the transient phase of system activity, and produce damped oscillations in the 
total populations of X and Y. In all cases, however, ring populations return to 
equilibrium. Note the different scales on these two graphs. 

less initial perturbations are excessively large) and thus the linear critical systems are 

generally an accurate approximation to the non-linear system. At criticality, since there 

is no dominating eigenvalue for our solution, persistent system behaviour is very slow 

to develop. This presents us with a problem when realising the system on computer, 

since we often find it difficult to determine when a final steady-state solution has been 

achieved. We feel that this subject is important enough, and our results are interesting 

enough to warrant specific treatment, and therefore we will return to these realisations 

later in Section 3.3.4. 

3.3.2 Super-Critical Non-Linear Behaviour - Permanent Waves 

As shown earlier, the correct choice of system parameters can produce persistent, 

stable wave structures in non-linear realisations of two-reactant, one-dimensional spatial 

reaction systems. In the course of our empirical studies we have discovered some 



I Multi-Extreme 
Perturbation Type (see text) 

Single-Extreme 	Multi-Small Single-Small 
-0.15 Decay - Bounce Decay - Bounce Decay to Equil. Decay to Equil. 

Decay to Equil. - 0-waves 
-0.10 Decay - Explode Decay - Explode Decay to Equil. Decay to Equil. 

Decay to Equil. - 0-waves 
-0.05 Decay to Zero Decay to Zero Decay to Equil. Decay to Equil. 

0.0 Decay to Zero Decay to Zero Small "stable" Growing then 
waves decaying waves 

0.05 Decay to Zero Decay to Zero Stable waves Stable waves 

0.10 Decay to Zero Decay to Zero Stable waves Stable waves 

Table 3.2: Wave behaviour patterns in non-linear systems 
Descriptions are given of the wave pattern development for our generic spatial reaction 
system with four types of initial conditions, and a range of instability values. In general 
the table describes wave structures that "Grow" or "Decay", with "Explode" referring 
to very rapid growth. "Bounce" refers to a period of rapid growth in wave amplitude, 
but followed by a return to stable activity. "0-waves" are travelling waves of reactant 
as introduced in Chapter  2. The various other terms used to describe the perturbation 
types and the different wave patterns are detailed in the surrounding text. 

interesting types of system behaviour, and some unusual special case scenarios. In 

Table 3.2 we summarise the wave structure behaviour of our generic ring system, as 

we experiment with different initial conditions and move through from sub-critical to 

super-critical states. Besides providing an overview of empirical system development, 

this table also allows us to identify inflection points, where wave structure formation 

patterns change from one type to another. In one case this point separates systems that 

have a zero-population final state from those with a (non-zero) equilibrium population 

final state (with an explosive interface between the two), and in another case the table 

serves to highlight the criticality boundary. 

In general, our realisation experiments used four different sets of initial conditions. 

Some of these have been mentioned earlier; let us now detail these types more exactly. 

Multi-Extreme: All cells are initially empty, except that a given number of cells 

(regularly distributed throughout the spatial domain) are populated with both 

reactants to a level 20% above the equilibrium cell population. The number 

of cells to be perturbed is normally taken to be equal to the desired number of 
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wavelengths around the ring. 

Single-Extreme: Again all cells are initially empty of reactants, but now just a single 

cell (index 0) is perturbed with a population 20% above the expected equilibrium 

value. 

Multi-Small: All cells are now populated with equilibrium reactant populations, and as 

such produce a steady-state non-zero solution. However, under this perturbation 

we add 20% of the equilibrium populations to both reactants in a given number of 

cells. The number of perturbed cells is (by default) equal to the expected number 

of waves, and these perturbed cells are distributed evenly around the ring. 

Single-Small: Like the previous case we now have all cells populated with equilibrium 

levels of reactants. A single cell (index 0) is then perturbed by adding 20% to 

both reactant populations. 

It is clear from Table 3.2 that for the case of small perturbations, the criticality point 

(I = 0) acts as the dividing line between steady-state equilibrium populations and stable 

wave patterns. The amplitude of the waves observed in these realisations is related to the 

magnitude of I, and is totally independent of the size of initial perturbations (providing 

they are not extreme) Figure 3.9 shows this variation in maximum cell population (at 

final stability) with increasing instability. It can be seen that following an initial rise in 

peak populations, these level-off above I = 0.3, and then decrease as we increase I even 

further. Once we move above I = 0.5 all realisations become unstable in their persistent 

state. The results shown in Figure 3.9 are for the Multi-Small initial conditions, although 

the Single-Small scenario produces almost identical amplitude results. 

When we consider high values (i.e. I > 0.3) of instability in the super-critical case 

we find aberrations in the expected system morphology. Once the system instability 

value is above I = 0.3 the final persistent waveform is spatially distorted, and the wave 

amplitude is reduced. Figure 3.10 shows a set of wave patterns for various super-critical 

instability values. It can be seen that for the higher instability values the location of the 

first and fifth wave-crest has been displaced by one cell towards the cell that contained 

the initial perturbation (cell 0). In addition, when the instability reaches I = 0.5 we 

lose the wave-crest opposite the initial perturbation, and are thus left with only four 

complete waves. These effects are independent of the numerical technique used and 
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Figure 3.9: Variation of wave amplitude with interaction instability 
The population in cell 0 of a two-reactant ring reaction system is recorded once the 
system has reached a persistent steady-state solution (i.e. at time t = 200.0). All the 
realisations performed for these results used the Multi-Small initial conditions and our 
generic interaction and migration coefficients on a ring of 50 cells. 

highlight the importance of considering discrete rather than diffusion models, especially 

for systems of high instability. We will discuss the importance of discreteness further 

in Section 3.3.4. 

The second interesting effect apparent in Table 3.2 is that produced by using extreme 

perturbations. All such cases with positive instability, i.e. super-critical realisations with 

non-linear interaction functions, do not in fact produce the expected wave patterns, but 

result in final states with zero reactants in all cells. This effect is independent of whether 

a single, or several, cells are perturbed. It seems that when real instability exists, large 

perturbations have such a strong effect that they prevent the leading eigenvalue solution 

from having its expected persistent effect. What is even more interesting is that extreme 

perturbations can also affect non-linear systems at criticality, and sub-criticality when I 

is small in magnitude. Only when we reduce the instability to I = —0.1 and below do 

we achieve the same final system state as with the small perturbation realisations, and 

this final state is only reached after some unusual transient behaviour. 
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Figure 3.10: Wave crest displacement at high instability values 
Reactant populations for a two-reactant ring reaction system, recorded once the sys-
tem has reached a persistent steady-state solution (i.e. at time t = 200.0). All the 
realisations performed for these results used the Single-Small initial conditions with 
a negative perturbation, and our generic interaction and migration coefficients on a 
ring of 50 cells. Note the displacement of two wave crests for high I values, and the 
complete loss of one crest when I = 0.5. 

As is recorded in Table 3.2, with I = —0.15 the extreme perturbations (single and multi) 

undergo an initial decay period, and the reactant populations can reach surprisingly low 

levels as they spread around the ring (see Figure 3.11). At a certain simulation time 

(dependent upon the instability of the system), namely around t = 35.0 when I = —0.1 

(see Figure 3.11) and close to t = 12.0 with I = —0.2 (as in Figure 3.12), these low 

populations bounce. That is we observe either wave structures with the expected number 

of waves, and with a sudden increase in amplitude for the multi perturbation case; or 

we observe the gradual spread of a single wavefront around the ring for the single 

perturbation case. We have termed this single wavefront spread as 0-waves, and these 

are described in more detail later in Section 3.4. For the multiple perturbation (bounce) 

scenario the amplitude of the waves produced then gradually decays, and the system 

returns to the expected sub-critical state with all cells having equilibrium populations of 

both reactants. Figure 3.12 shows the four main stages of this Multi-Extreme sub-critical 
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Figure 3.11: Cell populations in an explosive sub-critical realisation 
The X and Y populations of cell 0 from a sub-critical spatial reaction system in one-
dimension, with two reactants, non-linear interactions (I = —0.1), and multi-extreme 
initial conditions. Note that the population scale is logarithmic, and that the X-reactant 
curve is the lower of the two during the initial decay phase and the upper of the two 
during the post-explosion decay. 



system development. 

It is interesting to note the strong wave structures that are produced by this sub-critical 

system in the short period before these decay back to equilibrium. There is a substantial 

shift of all cell populations between times t = 2.0 and t = 12.0 (see Figure 3.12 for the 

case with I = —0.2). They move from small amplitude waves with reactant populations 

values of one to two per cell (i.e. approximately the initial perturbations redistributed 

among all cells), to large amplitude structures with approximately equilibrium pop-

ulations in all cells. It is only from this point that the sub-critical decay behaviour 

dominates, and the wave amplitudes gradually decrease to produce the final steady-state 

equilibrium solution. 

As we increase our system instability to I = —0.1, we observe a similar pattern of 

behaviour for both types of extreme initial conditions. However, the initial decay period 

is followed by a far more violent rise in reactant populations. We have therefore termed 

this rise an explosion rather than a bounce, since not only do the populations rise very 

rapidly, but they also reach very high values, before either forming stationary waves of 

decaying amplitude or travelling 0-waves (see Section 2.4.2). Figure 3.11 shows the 

development in time of the reactant populations in cell 0 during a realisation with multi-

extreme initial conditions. It should be noted that the population scale on this graph 

is logarithmic, and the extremes of the X-reactant population in particular are clearly 

visible - the population of the perturbed cell rises by over four orders of magnitude 

within eight time units. This explosive rise in populations becomes more severe as 

we increase the interaction instability in our realisation, and becomes so severe after a 

particular threshold that we lose all persistent behaviour other than the absence of any 

reactant. Table 3.2 shows this effect as the extreme initial condition scenarios "Decay 

to Zero" when I > —0.10. A closer investigation of the multi-extreme case shows this 

threshold to lie at I —0.093, with its exact position dependent upon the choice of 

perturbation size and temporal discreteness (Si) used in the realisation. The important 

result here is that, in the non-linear domain, strong initial perturbations can force a 

system out of its "expected" behaviour in all the criticality scenarios. We can thus 

observe very regular, large amplitude transient wave structures in sub-critical systems 

before the standard decay behaviour dominates the asymptotic result. We detail this 

same behaviour later in our stochastic simulations (Chapter 5), and show that it can 

have a very significant bearing on the effectiveness and efficiency of naïve computer 
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Figure 3.12: Non-linear wave development after extreme perturbation 
These four graphs show the reactant population at various stages of system devel-
opment, following a Multi-Extreme perturbation to a spatial reaction system with 
non-linear sub-critical interactions (I = —0.2). The graphs show the initial system 
perturbations (top left, t = 0.0), the system during the initial decay period (top right, 
t = 2.0), the sudden bounce in populations (bottom left, t = 12.0), and the final wave 
structures as they decay back to equilibrium (bottom right, t = 25.0). 
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implementations of such systems. 

3.3.3 Wave Amplitude Decay in Sub-Critical Systems 

One recurring attribute of many of the realisations detailed in the previous sections is the 

decay of wave amplitudes in sub-critical systems. We can make empirical measurements 

of this decay rate (ic) by recording cell populations at each time unit. We then define 

FC as the ratio of the population change in unit time, to the wave amplitude before the 

decrease. We can thus calculate the decay rate as the realisation develops, and how it is 

affected by the system instability. This allows us to determine the rate of decay of high 

population locations directly from the system parameters. This ability proves vital for 

our later work on efficient computer implementations of stochastic system simulations. 

Time(t) Populations 
X, (t)Y 1  (t) 

Decay 
z\X 	AY 

Decay/Amplitude  

, 

13 16.34 16.16 
14 15.07 14.68 1.26 1.48 0.199 0.240 
15 13.74 13.42 1.34 1.26 0.264 0.269 
16 12.71 12.51 1.02 0.91 0.273 0.266 
17 11.98 11.87 0.73 0.64 0.269 0.255 
18 11.47 11.43 0.51 0.44 0.256 0.235 
19 11.12 11.12 0.35 0.31 0.238 0.218 
20 10.88 10.90 0.24 0.22 0.214 0.196 
21 10.70 10.73 0.17 0.16 0.193 0.178 
22 10.58 10.61 0.13 0.12 0.186 0.164 
23 10.48 10.51 0.10 0.10 0.172 0.164 
24 10.41 10.43 0.08 0.08 0.167 0.159 
25 10.34 10.36 0.07 0.07 0.171 0.163 

Table 3.3: Decay rates for a sub-critical non-linear realisation 
Unit time changes in X and Y populations from peak wave amplitude to equilibrium, 
for a sub-critical two-reactant one-dimensional spatial reaction system. The final two 
columns represent the population decay rate - the ratio of unit time population change 
to the wave amplitude. 

As an example of this empirical study, let us look at the rate of decay of wave amplitudes 

in the sub-critical scenario detailed in the previous section in Figure 3.12. Table 3.3 

details population values for the reactants X and Y within cell 0 of the realisation. 

Measurements of cell populations are recorded for time intervals from the time of 
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Figure 3.13: Large perturbation linear and non-linear decay rates 
Empirical population decay rates for sub-critical (I = —0.2) realisations of two-
reactant spatial reaction systems with both linear and non-linear interaction functions, 
and multi-extreme initial conditions. These results show that the linearised system is 
an accurate approximation to the persistent state of the non-linear system, and from the 
graph we can identify stable decay rates of ,c = 0.181 for non-linear, and #c = 0.184 
for the linear scenarios. 

maximum wave amplitude (t = 12.0) until equilibrium is almost reached (t = 25.0). 

The table details the change in population in unit time for X and Y, and the respective 

decay rates rx  and Ky. 

The results from Table 3.3 can be seen in graphical form (which also includes more 

detailed results) in Figure 3.13. This graph also includes the equivalent decay rates 

for a realisation with linearised interactions. The initial oscillation of the rates show 

that, even after the bounce phase of the realisation, transient activity is still dominating 

development. The rather more random variation at larger time values (t > 40 in the 

linear case, and t > 60 for non-linear) is caused by the ever-increasing rounding-errors 

in the numerical calculation of the decay rates, as both the change in cell population and 

wave amplitude become very small, and comparison of such small amounts is always 

prone to numerical error. However the graph does allow us to identify the persistent 

system decay rate before these errors dominate, and this allows us to compare our 
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realisation results to a deterministic analysis. The rate we obtain (by measurement 

of the asymptotic values from the graph in Figure 3.13) for the non-linear case is 

nX  = ry = 0.181 and for the linear case nx = = 0.184. If we consider the simple 

calculation of this rate for the wave amplitude of reactant X - A (t), and relate this 

to an exponential decay function ed,  we obtain 

Ax(t + 1) = (1 - tCx)Ax(t) = A xed , 

from which we can calculate the empirical exponential decay factor d. In this way 

we find that for the non-linear case with multi-extreme initial conditions the persistent 

exponential decay factor is d = —0.199, and the equivalent for the linear realisation 

is d = —0.203. Both of these values are remarkably close to the leading eigenvalue 

of the linearised solution (I); the non-linear result is somewhat closer than the linear. 

This again confirms that, for the persistent solution at least, the linearised mathematics 

developed by Turing provides an accurate model of system behaviour. 

We have performed similar investigations for realisations with Multi-Small initial con-

ditions, using both linear and non-linear interaction functions. The decay rate results 

for these cases can be studied in Figure 3.14, and here we see an even closer agreement 

between non-linear systems and their linearised approximation. The observed value 

of ,c for both reactants in both scenarios becomes stable at ,c = 0.185, which equates 

to d = — 0.2045, again very close to the instability value used to calculate interaction 

coefficients for the realisations. These results show that for both linear and non-linear 

sub-critical systems we can use the system instability parameter as a direct measure of 

the exponential decay rate for high-reactant populations. 

3.3.4 The Importance of Discrete Systems 

Throughout our work we have concentrated on spatial systems with discrete locations 

in which reactants interact, and between which they can migrate or diffuse. This type of 

system is quite distinct from a diffusion model where the spatial domain is continuous. 

When modelling such continuous systems by numerical simulation, some degree of 

spatial discreteness must be introduced to provide a mechanism for solution. However, 

here we are interested in true discrete systems. Many physical and biological systems 
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Figure 3.14: Small perturbation linear and non-linear decay rates 
Empirical population decay rates for sub-critical realisations of two-reactant spatial 
reaction systems with both linear and non-linear interaction functions (with instability 
I = —0.2), and multi-small initial conditions. These results show that the linearised 
system is an accurate approximation to the persistent state of the non-linear system, 
and from the graph we can identify a single stable decay rate for all scenarios of 

= 0.185. 

95 



can be most accurately modelled in this way (see the pioneering experimental work of 

Huffaker [1958] and the more recent review of the field by Hengeveld [1989]).  For 

example, we can consider the discrete spatial domain as a string of island habitats 

(Simberloff [1976]),  a collection of animal or plant cells (Wolpert [1969]),  or perhaps 

spatially distributed individuals or colonies in a geographically continuous domain (see 

Levin & Paine [1974]). Although in many cases the discrete and continuous systems 

produce approximately identical behaviour, we have found that there are regimes where 

certain system development features can only be produced with a discrete model. This 

effect becomes more important later in Chapter 4 when we discuss stochastic systems, 

but it can still manifest itself in deterministic realisations. 

The importance of considering spatial models within the field of population dynamics 

has been understood for some time now, with Renshaw [1986] providing a review of 

such stepping-stone systems, and the recent work of Mollison, Isham & Grenfell [1994] 

leaving the reader in no doubt that such systems are vital to epidemiological model-

ling. We have already discussed one feature that is peculiar to discrete systems (see 

Section 3.2), namely that when we have an odd number of locations extreme-short 

wavelength waves cannot fit exactly onto the system. This important distinction ex-

tends also to all cases when the number of expected waves does not divide exactly into 

the number of available locations. 

We have also highlighted the displacement of wave crests within discrete systems of 

high instability, see Figure 3.10. Neither of these effects could be observed with 

continuous systems, where the requisite number of waves will always be present and 

correctly located. In realisations where we know that the number of reactant locations 

does not match that required for the expected spatial-wave structure, we might expect 

to observe non-standard behaviour. However, where our discrete realisation behaviour 

is most interesting is when the physical system can support the expected number of 

reactant waves, but it develops in a quite different manner producing wave structures 

quite different from those predictable from the system parameters. 

Let us consider our standard one-dimensional, two-reactant system with periodic bound-

ary conditions, but now with only ten locations, yet with migration rates set to produce 

five waves in the system. This scenario is theoretically possible, with neighbouring 

locations having populations on opposite sides of the equilibrium values. Indeed for 



Single perturbation 
I 	Waves 

Multiple perturbation 
I 	Waves 

0.001 5 
0.007 5 0.010 5 
0.008 41  0.070 5 
0.010 41  0.080 42 

0.020 41  0.090 42 

0.030 42  0.097 42 

0.100 42  0.098 3 
0.120 3 0.100 3 
0.200 3 0.400 3 
0.400 3 0.500 - 

0.430 - 

Table 3.4: Wave shapes on a ten-cell ring with various instabilities 
This table details the number of waves produced for a 10-location non-linear spatial 
reaction system in a super-critical state (I > 0). We list the number of waves in the 
persistent system state for each instability value. Figure 3.15 can be used as a reference 
to identify these patterns; note the differences highlighted by the super-scripts for the 
two different four-wave solutions. 

the cases with linear interaction functions five waves are always produced, and for the 

non-linear case at criticality and below (provided initial perturbations do not destroy the 

system before it reaches a persistent morphological state) we also obtain the expected 

five-wave format. However, when we have I > 0 and our standard non-linear interac-

tion functions, we can observe some interesting wave patterns that show the unexpected 

ways in which discrete systems can develop. 

Table 3.4 details the number of "waves" that we observe for our ten-location super-

critical realisations. These structures are often not regular and Figure 3.15 shows the 

form of some of the observed patterns. As the instability in our realisation increases 

we see that the system contains persistent reactant distributions that bear decreasing 

resemblance to the solutions we would expect from our theoretical results in Chapter 2. 

For all the realisations detailed in Table 3.4 the perturbation used is a single X-reactant 

removed from the initial populations in either a single, or five equally spaced cells. We 

see that once the instability is over a certain value (just over I = 0.4) it becomes too large 

to produce any persistent solution other than an empty system, with all cell populations 

reducing to zero. Just before this occurs, the system can enter violent oscillations. 
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Figure 3.15: Possible wave-shapes on a ten-cell Turing ring 
Four graphs of the irregular wave structures produced by super-critical realisations of 
two-reactant spatial reaction systems with non-linear interaction functions on a ring of 
ten cells. The top left graph shows the first four-wave variant (denoted 41  in Table 3.4), 
the top right graph shows the second four-wave variant (42)•  On the bottom left we 
have the three-wave distribution, and finally at bottom right we have the standard 
five-wave case for comparison. 



We observe this for the single cell perturbation case with I = 0.4. The final steady-

state now contains just three waves (see Figure 3.15, bottom left graph), but before 

stability is reached the wave structures undergo rapid oscillations in amplitude. Any 

further increase in instability causes these oscillations to be severe enough to destroy all 

reactant populations. 

Further experiments, similar to the above but investigating a variation in the number of 

cells rather than in instability, also produce interesting and informative results. Our spa-

tial reaction systems now develop population wave patterns that make direct use of the 

discrete nature of the ring system by adjusting the wavelength and periodicity of the 

final stable state to fit the available discrete locations. The diffusion-driven instability 

will always push the system to a wave-like state, although the resulting morphological 

structure may be far removed from that expected from the system parameters. Such be-

haviour cannot be demonstrated for continuous systems in which specific migration rates 

can always produce the specified number of wave crests, since the required wavelength 

is not restricted by available locations. 

Number of cells Waves Produced 
7 2 
8 3 
9 3 
10 41 

11 
41 

12 41 

13 41 

14 5 
15 5 

Table 3.5: Wave numbers produced with small ring sizes 
Using a super-critical two-reactant spatial reaction system with instability I = 0.1, 
and Single-Small initial conditions, this table records the number of wave crests that 
appear for small ring systems with a range of sizes. In all the realisations migration 
parameters were set to produce five waves according to the linearised approximations, 
although the actual interactions used are of our general non-linear type. 

The results obtained from this variation of ring size are detailed in Table 3.5. Again 

Figure 3.15 can be used as a guide to the general structure of the three- and four-wave 

cases. We do, however, need to consider one new wave-shape, that with just two waves, 

and this has been reproduced for the seven-cell system in Figure 3.16. 
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Figure 3.16: A two-crest wave-shape on a seven-cell ring 
This graph shows the wave structure produced by a super-critical (I = 0.1) realisa- 
tions of two-reactant spatial reaction systems with non-linear interaction functions. 
Migration rates are set to produce five waves around a ring with only seven locations, 
and we observe that the resulting state of the system contains just two complete waves. 
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3.3.5 Wave Structure Stability in Systems at Criticality 

In covering both sub- and super-critical realisations of two-reactant spatial reaction 

systems in one dimension, we have given many details of wave pattern behaviour, and 

how it is governed by the leading eigenvalue of the solution to the system equations. 

We have, often in passing, mentioned that the critical system (where I = 0.0, and 

thus the leading eigenvalue has zero magnitude) does not fit into any of the behaviour 

patterns so far discussed. We have found that following some initial perturbation to an 

equilibrium system at criticality, wave structures will appear around the ring of cells, 

and will (over very long time periods) settle to produce a stable state. This final state will 

usually contain the expected number of population waves according to the migration 

rates chosen (as in super-critical systems), but the amplitude of the structures, and the 

time taken to reach stability, are dependent solely upon the initial conditions of the 

realisation. 

It is important to define what is meant by stability in these discussions. In an ideal real-

isation we would expect that, at the point of stability being reached, reactant populations 

in all cells undergo no change within a given time period. Unfortunately, when working 

with computer realisations, there is always some numerical error involved with using 

real numbers, and each machine has a particular level of accuracy inherent in its hard-

ware. In all our realisations we have used "double precision" arithmetic, this provides a 

numerical accuracy of 10_16  (compliant to the IEEE standard) on all our workstation 

or supercomputer platforms. These rounding errors can occur throughout a realisation, 

and although they can be kept small enough so as not to affect the accuracy of the result, 

they can prevent us from guaranteeing an accurate measure of real stability within our 

systems. We therefore choose to identify stability as the first point in the realisation that 

all cell populations change by less than some specified stability threshold, A, Provided 

that we choose A. to lie above the known numerical accuracy of our realisation, we can 

identify the point at which the realisation has reached our given measure of stability. 

For the results detailed in this chapter, we have chosen this threshold to be ) = 10_ 6 .  

Table 3.6 details our experimental results for the stable state wave amplitudes of both 

reactants (A x , A) and times to reach stability (t 3), for a variety of initial conditions. 

In all these realisations we used the Single-Small conditions detailed in Section 3.3, but 

with the single positive perturbation of each reactant being of varying size - from 10% 
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Perturbation 
% 

Linear Interaction 
t 	A x 	A 

Non-linear Interaction 
A' 	A 

10 957.2 0.040 0.040 956.9 0.039895 0.039896 
20 1005.0 0.080 0.080 1004.2 0.079482 0.079483 
30 1032.9 0.120 0.120 1031.5 0.118611 0.118613 
40 1052.8 0.160 0.160 1050.5 0.157133 0.157140 
50 1068.2 0.200 0.200 1065.0 0.194909 0.194921 
80 1100.7 0.320 0.320 1093.7 0.302474 0.302518 
100 1116.1 0.400 0.400 1106.1 0.368325 0.368405 
150 1144.2 0.600 0.600 1126.0 0.508878 0.509091 

Table 3.6: Critical wave amplitudes and stability timings 
This table compares the times to reach stability, and the stable wave amplitudes for 
each reactant, for spatial reaction systems at criticality (I = 0.0). Results are given 
for realisations using both linear and non-linear interaction functions, for our standard 
50-cell, five-wave scenarios. 

to 150% of the population of the equilibrium cells. 

The results detailed in Table 3.6 identify a number of important effects. First we can see 

that there is good agreement between the amplitudes and timings for the linear and non-

linear realisations, although the discrepancy grows as we increase the strength of initial 

perturbations. This discrepancy leads the non-linear system to reach stability faster 

than the linear system, by an amount that increases with perturbation size. However, 

non-linear stable wave amplitudes are reduced relative to the linear case. We can also 

see that there is a growing discrepancy between the X and Y populations at stability for 

the non-linear scenario, whereas for linear interactions reactant populations are always 

identical. The linear amplitudes are also directly proportional to the perturbation size, 

agreeing to the full accuracy of our double-precision realisation. We feel that this result 

provides us with direct evidence that the final stable state of these critical realisations 

(i.e. when I = 0.0) is crucially dependent upon the initial conditions for the system. 

We can also use the above stability measure technique to study the time taken to reach 

stability (t a ) in non-linear systems that are either sub- or super-critical. A similar study 

of systems with linear interaction functions fails when we consider the super-critical 

case, as this can never reach true stability. Figure 3.17 shows the variation of t with the 

system instability I between small sub-critical values (I -0.05) and super-critical 

values high enough to cause a breakdown in any persistent state (I > 0.5). This graph 
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Figure 3.17: Time taken to reach non-linear stability 
The variation of times to reach stability (t 5 ) with interaction instability I for a two-
reactant one-dimensional spatial reaction system with non-linear interaction functions. 
The stability threshold is taken as ) = 10 4  and the system contained 50 locations with 
single-small initial conditions. The discontinuity in the graph lies around criticality 
(I = 0.0), which is a special case as discussed earlier in this section. The apparent 
breakdown at high instability is also discussed below. 
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shows a distinct resonance-like area where realisations take substantial times to settle 

to stability. The main area of strong resonance is centred around small super-critical 

instability values I 0.05, for our particular standard parameter set. The graph in 

Figure 3.17 also shows some unusual activity for instability values above I = 0.4. 

Initially as I rises over this value we appear to be approaching another "resonance" 

and thus the time to stability increases again. However, we then find that our system 

becomes unstable over I = 0.5 and thus the graph "breaks down" in this region. 

3.4 Realisations of Travelling Reactant Waves 

In the earlier sections of this chapter we have studied, in some depth, the presence of 

stationary and oscillatory wave patterns. We have concentrated upon the asymptotic 

results from our generic system with two-reactants in a one-dimensional system with 

discrete locations. In Section 2.4.1 we provided analytic solutions for the transient 

systems with two or three reactants and non-linear interactions. Given the assumption 

that the solution could be approximated (using Laplace Transform techniques) by a 

travelling waveform moving through the ring locations with a constant velocity (v), 

these investigations produced no acceptable solution. This analytic study was motivated 

by the realisations detailed in this section, as they show the clear presence of travelling 

transient waves. Hopefully, a successful non-linear analysis will result from future 

work. 

For an empirical study of transient travelling waves the realisation program discussed in 

Section 3.1 has been adapted to allow the progress of population waves to be monitored. 

This proved to be an awkward task due to the difficulty in specifying a population 

wavefront within a computer program. Although it is relatively easy to produce real-

isations that provide an obvious travelling wave to the human eye (see Figure 3.18 for 

example), specifying such details as computer code requires substantial additions to 

the original programs. In general all the wavefront-identification methods developed 

in this work depend upon identifying a specific change in the population of a cell, and 

then determining whether this constituted the arrival of a wavefront. Later we detail 

the various techniques that have been implemented, along with the results that we have 

produced. This follows a brief discussion of numerical accuracy considerations for ring 
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and infinite-line systems. 

For a truly deterministic spatial system, as soon as a perturbation occurs at any cell, the 

effect is felt immediately in all other cells in the ring. However, because of the discrete 

nature of computer simulations, this effect can only travel around the ring through one 

cell for each iteration. Therefore, for the case of a ring of 50 cells, the effect of the 

perturbation in one cell will only be felt in the cell opposite after 25 iterations, rather 

than immediately. Thus, should the iteration step-size be large this specific number of 

iterations may constitute a significant time when compared to the time-scale over which 

any travelling wave exists. Therefore in all the realisation results detailed below we 

identify the rate of fastest possible progress through the spatial domain according to 

the iteration step-size in use. We can therefore confirm that any travelling wave effects 

observed are in fact genuine, and not solely an artifact of the particular realisation 

parameters. 

As was detailed in Section 2.4.2 there are two possible scenarios of wave motion in 

our spatial reaction systems. The first of these involves motion away from a populated 

equilibrium state following a single perturbation, and the second covers the spread of 

a reactant through an empty ring. These two cases have been termed E-waves and 

0-waves respectively, and we now consider each in detail. 

3.4.1 Non-Linear Movement from Equilibrium - E-waves 

We have studied super-critical non-linear realisations using a ring of 200 cells with 

equilibrium populations X, = XK and Y = Y" for i = 1, N, with a single cell 

(j) perturbed so that X3 = X' - 1 and Y = - 1. This configuration produces 

a travelling wave around the ring, emanating from the initially perturbed cell. The 

wavelength of the permanent wave left behind the wavefront is defined by the choice 

of migration rates. Similarly, the wave amplitude is determined by the instability of our 

system. However, let us concentrate on the transient phase of system development, as 

the wavefront moves through the ring as though it were an infinite line system. The 

realisation software is written to identify the time of any population change at the ring 

location opposite the initial perturbation, and at this time the realisations are halted. At 

this point the transient infinite-line behaviour merges with the persistent wave solution 
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to give the periodic boundary condition results detailed earlier in this chapter. All the 

results in this section are therefore equivalent to having been performed on an infinite 

line, rather than a ring of cells. 

V 
Figure 3.18: Travelling wave evolution in a one-dimensional system 

Four snap-shots of the travelling wave created by perturbing a single cell in a super-
critical non-linear spatial reaction system. The realisation uses 200 locations, migra-
tion rates calculated to produce a wavelength of 10 cells, and a system instability of 
I = 0.2. 

The first naïve attempt to record the times of wave-front arrival at each cell involves 

recording the first time that the population of each cell moved away from initial equilib-

rium by more than a given percentage of the equilibrium value; we define this percentage 

as the wave threshold, A.. The graph in Figure 3.19 shows the timings achieved using 

a wave threshold of A = 10% for a range of instability values. The rather uneven 

curves produced by this method appeared in similar simulations with both larger and 

smaller ) values. The shape produced is due to positions on the ring furthest from the 

eventual nodes of the wave shape moving away from equilibrium much faster than those 

closer to the wave nodes, which may in fact never move much away from equilibrium. 

We can see that for increasing values of I these spikes are less apparent, and the line 

gradient (which corresponds to the reciprocal of the speed of wave progression) is easier 

to observe. At higher I-values the wave patterns produced are increasingly severe, and 

therefore the movement away from equilibrium may be more noticeable at all points in 

the ring. 
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Figure 3.19: Raw arrival times for non-linear transient waves 
For a non-linear super-critical spatial reaction system, we show the first time that each 
cell's X-population moved more than 10% away from X*.  The line corresponding to 
the arrival of the iteration-size effect is also shown, and it can be seen to lie substantially 
below the main identification lines. 

Filtered non-linear movement from equilibrium 

In an attempt to remove the location-dependent fluctuations from the graphs of wave 

arrival times, we can introduce a filtering function that weights each arrival time from 

the graphs in Figure 3.19 according to its position on the final wave state, assuming a 

permanent wavelength of ten cells. This filtering provides a new arrival time t f  (r) for 

each cell r, according to the relation; 

t(r) = 	(t(r —5) + t(r +5) + 2( E t(r + i))) 20 

The results produced by this method give very regular wave arrival times, as can be 

seen from Figure 3.20. We are now able to use these results to extract specific empirical 

velocities for each instability value. Taking the reciprocal gradient of each line provides 

a measure of the number of sites the wavefront moves through in unit time (.spt). We 

make these measurements using a standard regression gradient calculation facility within 
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Figure 3.20: Filtered non-linear E-wave arrival times 
Filtered non-linear deterministic wave arrival times for a range of super-critical in-
stabilities in a 200-cell system. Wave arrival is signalled by the first A,, = 10% change 
in equilibrium populations. 

the Xmgr graph-plotting software package, and have obtained velocity measurements 

ranging from 0.59.spt with I = 0.1 to 1.34spt when I = 0.5. The full set of results is 

detailed later in Table 3.7. Following further experimentation we are able to provide the 

graph in Figure 3.21 that shows the variation of empirical non-linear E-wave velocity 

over a wide range of system instability. 

3.4.2 Linear Movement from Equilibrium 

Let us now consider the realisation of transient travelling waves in the linear system. 

As in the non-linear case above, the ring is initially at equilibrium, and a single cell is 

then perturbed. We again achieve wave-like patterns around the ring, though unlike the 

stable structure of varying positive populations that results from the non-linear system, 

the linear case gives us exponentially growing with amplitude waves. Rescaling the 

populations for display purposes produces graphical output such as in Figure 3.6 in 

Section 3.3. 
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Figure 3.21: Variation of non-linear E-wave velocity with instability 
Empirical E-wave velocities are taken from the reciprocal gradients of filtered wave 
arrival times. This graph shows the variation of wave propagation speeds (measured 
in sites per unit time (spt)) with the interaction instability within the super-critical 
systems. 

We can again measure the velocity of progression of the travelling wave during the 

transient phase of system development. As in the previous non-linear study this was 

attempted by identifying the times for each cell at which the population of one species (X, 

say) first moved away from equilibrium by a certain percentage (A) of the equilibrium 

population. Figure 3.22 shows the results produced by this approach for a single 

instability value (I = 0.1) using a range of recognition thresholds Q). As in the 

previous section the lines produced are highly distorted due to certain cells populations 

being more mobile than others. However, this distortion is more regular than for 

the non-linear case, and empirical gradients (and hence wave velocities) are easily 

identified without requiring filtering. It is interesting to note that even for very small 

recognition thresholds (e.g. ) = 10- 7)  our realisation identifies the wave arrival at 

times substantially after the arrival of the numerical iteration effect. 

This more regular variation in the curves of Figure 3.22 allows us to determine accurate 

gradients and these are detailed in Table 3.7. It is interesting to note from Figure 3.22 
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Figure 3.22: Linear E-wave arrival times 
Wave arrival times for a linear system moving away from equilibrium. The system 
instability, I = 0.1, and wave arrival times are recorded for a variety of sensitivities 
of movement ()). The lowest line on the graph, labelled iteration corresponds to the 
fastest possible arrival time due to numerical iteration effects. 

the variation in waveform velocity with the recognition threshold A. The graph 

details approximate velocities ranging from 0.55spt at 1% movement to 1 .67spt at 

= 10- 7  %. This increase in speed at higher sensitivities may be due to the recognition 

of transient behaviour ahead of the main wavefront, and this conjecture is supported by 

the steadily-increasing gradient of the high sensitivity scenarios. This effect is not the 

same as the iteration size effect (which can be seen to travel very much faster than all 

measured velocities 100.spt), although it may be directly related to it. If we consider 

the very small changes that can (and will) propagate through the system at speeds equal 

to the iteration effect, these could induce (secondary) perturbations into the system as 

it is in unstable equilibrium (I being positive). These perturbations would grow in the 

system and hence tend to move populations away from the equilibrium value. So when 

we study sensitivities as small as = we may well be observing the growth 

of waves produced not only by the original perturbation of one cell, but by the small 

secondary perturbations caused by the iteration size effect moving around the ring. This 

effect can be thought of as a cascade emanating from the single initial perturbation. 

For this reason is makes more sense to concern ourselves with the wavefront velocities 
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corresponding to larger sensitivities of recognition. The results for the empirical studies 

in this section are fully detailed later in Table 3.7, where again gradients (and hence 

velocities) have been calculated with the Xmgr facility. 

3.4.3 Travelling Waves Through an Empty Ring - 0-waves 

Let us now look at the other type of system discussed in Section 2.4 - 0-waves. In 

this case we start with a ring devoid of both species and then introduce reactants of 

both types into one, or a group of cells. In the non-linear realisations detailed earlier in 

Section 3.3.2, we saw that with Single-Extreme initial conditions the sub-critical scenario 

could produce waves of each reactant moving out from a single point to populate the 

whole system. The spread of this extreme perturbation can be seen as a simple population 

wavefront travelling through the system, leaving equilibrium populations in its wake (see 

Figure 3.23). We have therefore performed empirical measurements of this wavefront 

velocity, using initial conditions of a group of perturbed cells as this provides a more 

stable development of the system. The critical and super-critical equivalents of both 

linear and non-linear systems, as well as the linear sub-critical scenario, do not support 

the above 0-wave behaviour, since all initial perturbations simply decay back to the 

empty ring state. 

Our experiments have produced results for these non-linear 0-wave scenarios that 

provide surprisingly well-defined arrival time gradients, since the wavefront progression 

does not suffer from the super-position of a stationary wave structure on to the final 

stable state. Figure 3.24 shows the wave arrival times for our 0-wave realisations in 

non-linear scenarios. The actual values of wave propagation speed determined from 

these results are detailed in Table 3.7. Gradients have been measured for the latter 

sections of the graphs in Figure 3.24, thus ignoring the early transient motion affecting 

cells zero to ten. 

Table 3.7 therefore provides us with wave velocity values for both super-critical E-waves 

and sub-critical 0-waves, for both linear and non-linear interaction functions (other than 

linear 0-waves which are never produced). We observe that the velocity of propagation 

increases with the system instability for all super-critical waves. In the sub-critical 

scenario we see that wave velocity also increases as the system parameters move further 
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Figure 3.23: Travelling 0-waves in a one-dimensional system 
Four snap-shots of a travelling 0-wave created by perturbing a single cell in an empty 
sub-critical non-linear spatial reaction system. The realisation uses 50 locations with 
migration rates calculated to produce a wavelength of 10 cells, and a system instability 
of I = —0.15. The diagrams correspond to the system at times t = 0.5 (top left), 
t = 16.0 (top right), t = 30.0 (bottom left) and t = 60.0 (bottom right). 

from the criticality conditions (and therefore I becomes more negative). The table also 

shows a reasonable correspondence between linear and non-linear velocities, with the 

non-linear versions producing slightly higher wave velocities. 

3.5 Realisations of Three-Reactant Systems 

In his pioneering paper Turing [1952] predicts that a ring system with three reactants 

can produce travelling reactant wave patterns, given the correct system parameters. Our 

simulations of such systems show that his suggested parameters (see Table 3.8) produce 

standing waves of oscillating amplitudes, rather than true travelling waves. However 

the simulations do result in some very interesting behaviour dependent upon the system 

criticality. 

In general, the realisations of such three-reactant systems result in two reactants (X and 

Y) oscillating almost in phase, and the third (W) oscillating 7r out of phase with them 

both. These oscillations are highly regular, and similar to the oscillating two-reactant 

linear wave shown in Figure 3.2. However, by using non-linear interactions we can 

often keep the wave amplitudes bounded for some of the possible realisation scenarios. 
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Figure 3.24: 0-wave timings for sub-critical systems 
Wave arrival times for non-linear 0-waves advancing through an otherwise empty 
ring. These waves are produced following a block of five cells being perturbed, and 
hence recognition times begin from cell number five rather than zero. The recognition 
sensitivity is A = 10%. Note that the instability values are negative. 

3.5.1 Non-Linear Three-Reactant Systems at Criticality 

The critical parameter set suggested by Turing produces standing waves using the non-

linear versions of the interaction functions, with a conversion from the parameter set in 

Table 3.8 following similar lines to that detailed in Section 3.1.3. The system initially 

appears stable, and for substantial times (up to 200 time units) the reactant populations 

oscillate with fairly regular amplitudes. We thus obtain three standing waves with 

identical periods. Figure 3.25 shows the population variation in cell 0 - at a mid-point 

between two standing wave nodes, and thus where the oscillation amplitude is at a 

maximum. For cells lying on wave nodes there is almost no movement in the reactant 

populations. 

However, when we consider long realisation times (i.e. over 200 time units), the critical 

system moves away from these stable oscillations. We eventually observe an exponential 

explosion in the reactant populations - the type of behaviour we would expect from a 

super-critical system. This sudden swing to instability can be seen clearly in Figure 3.25, 
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Figure 3.25: Critical standing waves of three reactants 
This graphs shows the amplitudes of oscillation of the population of cell 0 in our 
standard 50 cell one-dimensional spatial reaction system with non-linear interactions 
at criticality. Note that for substantial times these oscillations appear constant, until 
after approximately 150 time units they begin to grow, leading to an explosion around 
t = 300. 
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) I Velocity Error 
10 0.1 0.5901 0.002 
10 0.2 0.8502 0.002 

Non-linear E-waves 10 0.3 1.0362 0.001 
10 0.4 1.1991 0.002 
10 0.5 1.3435 0.003 
10 -0.05 0.050 0.081 

Non-linear 0-waves 10 -0.1 0.120 0.029 
10 -0.15 0.200 0.019 
10 -0.2 0.284 0.017 

10 0.1 0.563 0.120 
10 0.2 0.797 0.069 

Linear E-waves 10 0.3 1.005 0.046 
10 0.4 1.170 0.033 
10 0.5 1.306 0.031 

Table 3.7: Wave progression velocities 
Empirical values for the velocity of wave progression have been determined from 
our realisation results, using the standard regression facility within the Xmgr software 
package. We have considered both non-linear and linearised system interactions, and 
give speeds for the two types of observed travelling waves: E-waves in super-critical 
scenarios where reactant populations move away from a populated equilibrium state; 
and 0-waves in sub-critical systems where a wavefront of reactant spreads through 
empty cells. Error values detailed are standard root-mean-square errors as calculated 
by the Xmgr package. 

and is almost certainly due to a lack of accuracy in the numerical simulation resulting in 

an effectively non-zero instability value being created by the rounding errors introduced 

during the very large number of iterations. 

3.5.2 Non-Critical Three-Reactant Systems 

For super-critical systems we generally obtain very complex explosive behaviour. For 

example, in the non-linear super-critical case with I = 0.1 we initially see a double 

wave structure, with twice as many waves of each reactant as expected from the system 

parameters. This system then undergoes a rapid explosion in oscillation amplitudes 

(see Figure 3.26). This graph clearly shows the standing wave oscillations of all three 

reactant populations. As in the critical case, the X and Y populations oscillate almost 

in phase with each other, and the W population oscillates approximately 7r out of phase 
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Reactant 
Type 

Interaction with 
X 	Y 	W 

X 1-1013 3 	-1 
Y -2 1+7/3 	0 
W 3 -4 	I 

Migration 
Rate 2/3 1/3 	0 

Table 3.8: Coefficient values for three-reactant waves 
The parameters suggested by Turing [1952] for the production of travelling waves 
of reactant populations. Our realisations, detailed in this section, show that standing 
wave patterns are produced using this set of coefficients. These coefficients produce 
a critical system if we take I = 0. 

with them both. 

In the linearised super-critical system we also get arise in oscillation amplitude, although 

the increase is linear rather than exponential. If we select an arbitrary amplitude as the 

limit for explosion (say 50) we can plot the time taken for the system to explode as it 

varies with instability - see Figure 3.27. We see a relationship whereby explosions 

occur faster as instability increases. 

In sub-critical systems with three reactants we get much more controlled behaviour 

(both linear and non-linear) as the oscillation amplitude decays towards zero and the 

system return to equilibrium. This type of inherently stable behaviour is what we would 

expect from such systems, and it can be seen in Figure 3.28. 

In summary, we see that the three-reactant scenario does not produce travelling waves, 

but produces standing waves that fit exactly into our concept of criticality. The period 

of oscillation of these standing waves is found to be invariant with the instability, 

although for high instability super-critical scenarios we have little data to analyse before 

the explosive behaviour dominates. Testing over a range of instabilities produces the 

results detailed in Table 3.9 which show consistency in period size between different 

instability values, but a distinct lengthening of the oscillation period as the system 

moves away from regular amplitude oscillations. This therefore occurs earlier in those 

experiments with higher instability values. 
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Figure 3.26: Super-critical standing waves of three reactants 
This graph shows the amplitudes of oscillation of the population of cell 0 in the three-
reactant variant of our standard 50-cell one-dimensional spatial reaction system with 
interaction coefficients chosen to produce super-critical behaviour (I = 0.1). Note the 
rapid explosion of the oscillation amplitudes. 
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Figure 3.27: The time to explosion of super-critical standing waves 
Having chosen an explosion to have occurred whenever the amplitude of oscillation 
has exceeded 50, we can plot the time to explosion for a range of instability values 
in the super-critical domain. The results are for our standard 50-cell one-dimensional 
spatial reaction system. 
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Figure 3.28: Sub-critical standing waves of three reactants 
This graphs shows the amplitudes of oscillation of the population of cell 0 in our 
standard 50-cell one-dimensional spatial reaction system with interaction coefficients 
chosen to produce sub-critical behaviour (i.e. I = —0.1). Note the decay of the 
oscillation amplitudes. 
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Instability Empirical Period 
0.001 6.45 	6.40 	6.45 6.40 6.35 	6.40 	6.40 
0.01 6.55 	6.50 	6.55 6.50 6.50 	6.60 	6.65 
0.02 - 	 6.55 	6.65 6.70 6.95 	7.05 	- 
0.1 - 	 - 	 6.60 6.90 7.10 	- 	 - 

Table 3.9: Empirical periods of three-reactant standing waves 
For a range of instability values, our standard 50-cell spatial reaction system on a ring 
with three reactants shows consistent periods of standing wave oscillation. Only as 
the amplitudes of oscillation grow do the periods change substantially from 6.5 time 
units - the more violent oscillations producing more rapid lengthening of the period. 

3.6 Two-Dimensional Realisations 

In this section we report briefly on the empirical results of our realisations of two-

dimensional spatial reaction systems. These calculations typically cover very large 

spatial domains, and have therefore been performed on powerful parallel computers 

in order that a representative sample of experiments could be completed in a realistic 

time-scale. The actual parallel computer implementations of these simulations will be 

described in full detail later in Chapters 6 and 7. In this section we concentrate on a 

small sample of our results in order to give a flavour for the types of study that are 

possible for these systems. 

We feel that two-dimensional studies such as those we detail later will grow rapidly 

in importance in the scientific community. This will be made possible by computers 

becoming available that can service the massive calculation requirements for realisations 

and simulations of such systems. In recent years the chemical studies of Castets 

et al [1990] and Ouyang & Swinney [1991], along with the biological research of 

Hunding [1990] and Nagorcka & Mooney [1992], have all shown that two-dimensional 

systems can produce effects close to those observed in natural systems. Such results help 

to confirm the importance and relevance of computational analysis, and thus encourage 

wider research and use of simulation techniques. 

The parallel computers in use for our two-dimensional work all produce very high qual-

ity interactive graphical output. This proves a vital component for understanding the 

development of realisations, and thus permits an effective investigation of parameter 
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Figure 3.29: Extreme-long wavelength waves in two dimensions 
A two-reactant spatial reaction system on a 64x64 location domain with periodic 
boundary conditions. System parameters are chosen to produce stationary waves 
with extreme-long wavelength - = 	= 0.25,a = b = c = d = 1.0. Initial 
perturbations consist of randomly distributed 1% changes to all reactant populations. 

space. All of the graphical results presented in this section have been produced directly 

from the standard graphics interface provided on the parallel hardware, and have pro-

duced realisations that complement the fine graphical results detailed in an earlier work 

by Nagorcka & Mooney [1985], and the excellent review provided by Murray [1989]. 

3.6.1 Limiting Case Behaviour 

In Chapter 2 we discussed the various limiting cases of the linearised two-reactant spatial 

reaction system in one dimension. We noted earlier Turing [1952] had predicted that 

the case of extreme-long wavelength waves could produce two-dimensional behaviour 

of more interest than the one-dimensional studies. However he was, of course, unable 

to study such systems in the manner we can today by using advanced computing 

technology. 
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If we recall the standard (linearised) parameter set for the extreme-long wavelength 

scenario (see Section 3.2), we used reactant migration rates of t = ii = 1/4, cross-

interaction coefficients b = e = 1, and self-interaction coefficients a = d = 1. In the 

one-dimensional system these parameters produce a stationary kilter scenario where all 

cell populations tend to move together away from equilibrium. In Figure 3.29 we see 

the graphical output from a large spatial system in two-dimensions (64x64 locations) 

using these same parameters but with migration to the four nearest neighbour locations. 

The system initial conditions are small levels (1% of equilibrium population) of random 

perturbation added to equilibrium populations. We observe that the whole system does 

not now act in unison, but that different areas cluster around different population levels. 

We can still observe "long-wavelength" behaviour as the areas of similar activity cover 

large numbers of cells, but the system as a whole takes on a quite un-deterministic 

aspect - similarities can be drawn to the dappled animal-coat patterns suggested by 

Turing [19521 and extensively investigated by Murray [19811. 

3.6.2 Finite Wavelength Behaviour 

The second stage of our study of the two-dimensional system involves a translation of 

our finite wavelength system. Using a non-linear parameter set identical to that used 

for the realisations detailed in Section 3.3, we can produce a two-reactant system in 

which both reactants interact exactly as in the one-dimensional scenario, but can now 

migrate in four directions to the four nearest neighbour locations. In the graphical 

output from such a realisation we observe the clear presence of spatial waves spreading 

from a single perturbation to dominate the steady-state solution (see Figure 3.30). Note 

that we observe approximately the same number of waves along each axis of the two-

dimensional model, as we expect to find from the one-dimensional system, upon which 

the parameter set is based. 

However, we feel that we obtain even more interesting results for this system if we 

consider starting from an equilibrium state, but with very many small perturbations to 

the individual cell populations (as in the limiting case behaviour above). We are thus, 

in effect, adding a low level (' l4) of random noise to all reactant populations. If we 

take such a system (with non-linear interactions, and super-critical parameters) and run 
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Figure 3.30: Spatial waves on the surface of a torus 
This realisation output from a DAP-608 massively parallel supercomputer is ma-
nipulated by a Silicon Graphics workstation to produce the toroidal surface display 
corresponding to a two-dimensional two-reactant spatial reaction system with periodic 
boundary conditions. Using our standard non-linear interactions migration rates are 
chosen to give eight waves along each axis according to the linearised one-dimensional 
approximation. A populated equilibrium system is perturbed at a single point (vis-
ible to the centre-right of the torus) and we observe spatial waves radiating from 
this point. The colours in the display show the population of reactant X at each of 
64x64 locations; dark colours show high population cells, lighter colours represent 
low populations. 
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Figure 3.31: Deterministic hot-spots from random initial populations 
The realisation output from a Connection Machine CM-200 massively parallel super -
computer is recorded directly from an X-windows workstation display. These images 
show a two-dimensional spatial reaction system using noisy initial equilibrium popu-
lation. The migration rates were chosen to produce four, eight and sixteen waves in 
each dimension, respectively from left to right in the displays. The colours in the dis-
play show the population of reactant X at each of 64x64 locations; red colours show 
high population cells; light blue represents populations close to, or below, equilibrium 
levels; and yellow coloured locations are those with populations slightly above the 
equilibrium level. 

a realisation forward in time, we observe the production of distinct hot-spots of reactant 

population (see Figure 3.31) similar to those identified over thirty years ago in the 

ground-breaking work of Maynard-Smith and Sondhi [1961] on embryo development. 

We find that the spatial distribution and abundance of these high-population points is 

controlled directly by the migration rate, set by the chosen value of system periodicity, 

A' = s 0 /N, which thus directly controls the desired number of waves () given the 

fixed size of the system, N. 

The graphs in Figure 3.31 show the variation of hot-spot abundance for varying values 

of A' and hence various numbers of intended waves. We observe that from each random 

starting situation all scenarios settle to a stable structure with approximately the expected 

number of wave-peaks (or hot-spots) along any axis taken through the spatial domain. 

Figure 3.31 clearly shows that strong local concentrations can be produced in two-

dimensional systems with stable asymptotic states. From a random initial configuration, 

we cannot predict the exact location of hot-spots, however we can closely specify their 

distribution, size and abundance. We feel that such systems relate to early stages of 

development in embryos and genetic work. In particular, this is a much stronger result 

than that of Bard & Lauder [1974] and Bunowetal[1980] who had great doubts about 

the usefulness of such systems. We believe that we have shown a straightforward system 
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for the production of realistic natural effects, by simply considering a system with non-

linear local interactions coupled with a variation in reactant migration (or diffusion) 

rate. We thus avoid the complications of potentially artificial space dependent diffusion 

terms (see Maim et aI[l  992]) and interaction terms (see Hunding [ 1990]). 

We have obviously just touched on the potential scope of these two-dimensional studies. 

The initial conditions that we have used here have given the first indication of where we 

feel that further analytic and empirical study is required. The random nature of these 

starting perturbations is, we believe, linked inherently to the production of results that 

show natural effects. The next stage of our investigation therefore turns to the study of 

systems that operate in a stochastic mode throughout their development. 
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Mathematical Analysis of Stochastic 

Spatial Reaction Systems 

At bottom, the theory of probability is only common sense 

reduced to calculation. 

- Pierre Simon de Laplace 



4.1 An Introduction to Stochastic Models 

The next stage of our search for mathematical understanding of spatial reaction systems 

is to study the stochastic representation of the system equations. In particular we are 

interested in obtaining a measure of the spatial and temporal variation for each of 

our reactant populations, as this will lead us to some theoretical understanding of the 

behaviour of stochastic spatial reaction systems. A large number of examples can be 

drawn from nature to show the importance of random fluctuations in the environment 

in order to produce realistic behaviour. We meet the idea of chance effects being 

of importance to theoretical population biology in the work of Kendall [1949], He 

references Feller [1939] as the first to define mathematically a stochastic birth-death 

population scenario. 

The importance of considering complex and stochastic models has been well known for 

some time, and efforts have been made in many fields to formulate stochastic mathem-

atical analyses. Initial work by Einstein into Brownian Motion [1905] introduced many 

of the principles of stochastic modelling of natural phenomena; a study of this contri-

bution is given by Gardiner [1985]. Further efforts into stochastic modelling theory 

have been particularly strong in the disciplines of Ecology and Biology, where the inter-

face to the real world is perhaps more immediate. In addition, interest has also grown 

in connection with the study of social processes, e.g. modelling the spread of news, 

rumours and ideas within human society (see Bartholomew [1982]). In an excellent 

position paper from over 35 years ago Bartlett [1957] expressed the need for stochastic 

models (of global populations) in order to produce mathematical results that can mimic 

experimental observations. As an example, Bartlett highlights the experimental results 

of Gause [1935] that require a such a model to exhibit sustained oscillations rather than 

the damped variety produced by standard deterministic techniques. In their fine recent 

review paper, Mollison, Isham and Grenfell [1994] leave no doubt as to the importance 

of stochastic representations of epidemic models. We feel that their considerations of 

discrete stochastic phenomena and population heterogeneity translate exactly to our 

general spatial reaction systems. 

One of our ultimate aims in our work is to produce simulations of evolutionary processes. 

These necessarily include random mutation of some attributes of system reactants in 

order to observe the evolution of fitter solutions. However, even for the more straight- 

127 



forward stochastic simulations detailed in Chapter 5, the results we obtain may differ 

substantially from those predicted by a purely deterministic analysis of the governing 

system equations. We believe that it is also necessary to move away from non-spatial 

(global) populations as we search for accurate representations of real-world systems. 

Although the added complication of spatial dimensions makes solving stochastic system 

equations much more difficult, even greatly simplified equations can provide interesting 

results such as damped one- and two-dimensional population waves (see Bailey [1968]). 

Therefore the analysis we develop later in this chapter will tackle a general stochastic 

spatial reaction system. 

4.1.1 Mathematical Formulation of Stochastic Systems 

There are a number of methods available to construct mathematical descriptions of 

stochastic systems, and clear differentiation must be made between exact stochastic 

(or probabilistic) representations, and approximate techniques that typically treat the 

stochastic part of the system as an addition to a deterministic model. Probably the best 

known approach to generating exact stochastic equations is to consider such a system as 

a Markov process, and thereby generate the Kolmogorov differential equations from the 

probabilities of transfer between the available states. This approach is formulated as the 

random variable technique by Bailey [1964], and has been applied by the same author 

to the stochastic simple epidemic [1950, 1963]. The random variable technique has also 

been applied to a subject closer to our own interest by Renshaw [1973] which deals with 

stochastic versions of spatial population processes for a single reactant. It is generally 

accepted (see Chapter 1 of Gardiner [1985]) that equations resulting from this type of 

derivation prove very difficult to solve, even for simple single reactant systems. We 

must typically resort to approximations in terms of linearisation of interaction functions, 

or the use of specific initial conditions. This difficulty is greatly increased as we consider 

more complex systems such as our coupled two-reactant model. Thus full probabilistic 

solution of a spatial system with non-linear stochastic interactions, has to be regarded 

as intractable with current mathematical methods. 

However, there is now an established model for approximating stochastic systems based 

on considering the system stochasticity to be external to a (well-understood) determ- 
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inistic model. We can think of this as simply the addition of Gaussian noise to the 

right hand side of a deterministic differential equation. Here "noise" describes an ideal-

ised, completely random process, with individual random variables being distributed 

Normally and independently. The first formulation of such a stochastic system was by 

Langevin in 1908 (see Gard [1988] as a reference to the original) to describe the motion 

of a particle in a random force field. This work was a continuation of the theoretical 

Physics drive towards understanding the Brownian motion problem that was initiated by 

Einstein. The Gaussian noise technique (often termed stochastic linearisation) has been 

popularised in the field of Ecology and Epidemiology by Bartlett in his comprehensive 

text books [1955, 1960]. In those fields it has been used to determine the expected 

values of large populations that remain close to equilibrium values, thus allowing the 

possibility of reactant extinction to be ignored. 

The stochastic linearisation approximation provides us with a technique for producing 

solutions to the stochastic version of many deterministic models, although we must 

remember that the full behaviour of a stochastic model is not determined entirely 

by the expectation values of the random variables. Strictly we should consider the 

whole probability distribution of all variables at each time interval to achieve such a 

result (see Smith & Mead [1980]).  However the Gaussian noise technique has proved 

to be an excellent (and tractable) approximation for much biological and ecological 

work with stochastic difference equations, and we shall generally restrict ourselves to 

this approach. It is possible, however, to produce stochastic differential equations for 

continuous time solutions, and the stochastic linearisation technique was formalised into 

a theory of stochastic differential equations by Ito [1951], with an alternative approach 

proposed later by Stratonovich [1966]. Such formulations are now well established 

in the engineering field, and recent texts (see Gard [1988]) also acknowledge their 

increasing application in Biology and Ecology, with the work of Turelli [1977] being 

a fine example of the union of the two disciplines. This same author has performed 

further work [1978] that shows that the stability criterion for exact stochastic models 

using stochastic differential equation techniques is inherently different from that for 

deterministic scenarios. 

It is important to remember that there can be a substantial difference between the results 

we obtain from stochastic systems developed using the different techniques described in 

this section. If we regard pure deterministic modelling, and full probabilistic modelling, 
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as lying at the two opposite extremes of potential modelling techniques, then the Bartlett-

type Gaussian noise methodology can be placed somewhere between the two. Although 

we will choose to concentrate on this technique for our work (for reasons of tractability 

of solution - Renshaw [1972] states that the full probabilistic equations for even a 

single species spatial model are immune to direct solution), it cannot be regarded as an 

exact representation of stochastic systems but rather as an approximation, and we must 

be ready to qualify our stochastic linearisation results accordingly. The best method for 

this qualification is to compare our results with the full stochastic simulations detailed 

later in Chapter 5. 

4.2 Formulation of the One-Dimensional System 

The stochastic equations for a general spatial reaction system in one dimension with 

periodic boundary conditions can be formulated by adding Bartlett-type Gaussian noise 

to the deterministic equations (2.1) with non-linear interaction functions (2.19) studied 

in Chapter 2. This allows us to develop expressions for the auto- and cross-covariance 

coefficients for two reactants on a ring of cells via a Fourier transform approach. We 

perform this analysis for both spatial and temporal correlations; the first provides us 

with information on the morphological structure of our stochastic reactant populations, 

whereas the second allows us to understand the stochastic development of reactant 

populations in time. The results allow us to find the typical half-life of locations 

with high concentration populations. This information is used to implement stochastic 

simulations efficiently on parallel computers, as detailed later in Chapters 6 and 7. 

Recalling our general deterministic equations for a spatial reaction system with non-

linear interactions on a ring of N cells containing populations of species Xr  and Y 

where r = ito N, (i.e. (2.1) and (2.19)), we have 

dXr  (t)/dt = X (t) [r 1  + ai Xr  (t) + b 1  1K- (t)] + / t[Xr+i (t) - 2Xr  (t) + Xr _i (1)] (4.1) 

dY,.(t)/dt = t'.(t)[r2  + a2Xr (t) + b2 .(t)] + v[}ç 1 (t) - 2ç(t) + Y._ 1 (t)]. (4.2) 

To convert (4.1) and (4.2) into stochastic equations by allowing for random fluctuations 

in the values of Xr  and iç, we add to each equation a site-dependent noise component 
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Zr" 
( t) and 8Z,' (t). This is a spatial and multi-reactant extension to the technique 

popularised by Bartlett [1957] as discussed in Section 4.1.1. These random variables 

are independent with respect to time, site and to each other, and have mean values of 

zero, but non-zero variances as detailed below in Section 4.2.2. By introducing a small 

time increment St we obtain 

X r (t + SI) = Xr (t) + Xr (t)8t[ i  + a i Xr (t) + b1 1'(t)] 

+ /i8t[Xr+i(t) - 2Xr (t) + Xr_i (t)1 + SZ'(t) 	(4.3) 

1'(t + St) = l'.(t) + iç (t)St[r2  + a2X r (t) + b2 }ç(t)] 

± vS1[}ç 1 (t) - 2(t) ± 1'; 1 (t)] + 8Z'(t). 	(4.4) 

These discrete time equations can be compared to the stochastic differential equations 

produced by letting St -* 0 (see Gard [1988], page 182) to give 

dX = Xr ( i  + aiXr  + b1Y.)dt  + i1t(Xr+i  - 2Xr  + Xr_ i ) + g1 XdW 1 (t) and 

dY,. = Y,( 7'2 + a2Xr  + b2 Y.)dt + iidt(Y r+i  - 2Y, + Y,_ 1 ) + 92 Y,.dW. 2 (t), 

where the VV(t) are independent Weiner processes, and the g j  are constant coefficients. 

4.2.1 Linearisation 

The direct solution of the full non-linear equations (4.1) and (4.2) has proved intractable 

in the deterministic case, and it is therefore highly unlikely that we could produce a 

complete solution of the more complex non-linear stochastic form shown in (4.3) and 

(4.4). We therefore look towards some simplification of the system. If we can assume 

(as in Chapter 2) that the populations X r  and Y, lie close to some equilibrium state 

(X*, y*) and that the system consists of small perturbations x, (t) and y, (t) around this 

value, we may introduce the linearisations 

Xr (t) = X*[1 + X r (t)] and }'(t) = Y*[1 + yr(t)] . 	(4.5) 

These are similar to the approximations used for the deterministic case (2.2), and give 

identical results to first-order calculations, although this equality does not hold to higher 
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orders. This particular representation is preferred here as it introduces perturbations 

as a proportion of the equilibrium population, rather than in absolute terms, thereby 

reducing the complexity of results for the general case when X' 54 7*  By substituting 

(4.5) into (4.3) and (4.4) we obtain 

X*[1 + Xr (i + Si)] = X*[1 + X r (t)] + 5(t) 

+ X*[1  + X r(t)]Si(V + aiX*[1  + X r (i)] + b1Y*[1  + yr (t)]) 

+ IL6t(X[1 + Xr+i(t)] - 2X*[1 + X(t)] + X*[1  + X r_i(i)]) 

y*[l + yr (t + Si)] = y*[1 + yr (t)1 + SZ'(i) 

± 1*[i ± Y r (t)]8t(T2 + a2X*[1  + X r (t)] + b2Y*[1  + yr (t)1) 

+ vSt(Y*[1  + y+1(t)] - 2Y*[l + Y r (t)] + Y*[1  + yr i(t)]) 

We have seen previously that at equilibrium (X*, 	our general interactions can be 

simplified using the relations (2.21), and this allows us to reduce the equations above 

to linearised stochastic equations in the variables X r  and y, i.e. the site-dependent 

perturbations expressed as a ratio of the equilibrium populations. Dividing the above 

equations by X and Y respectively, regarding all terms of higher than single order in 

X r  and Yr  as negligible (since we assume departures from equilibrium to be small), then 

yields 

X r (t + St) - Xr(t) = [aiX*xr(t) + biY*yr(i)]St 

+ I15t[Xr+(t) - 2X r (t) + X r_i(t)] + SZ(t)/X* 	(4.6) 

yr (t + Si) - yr(t) = [a2X*xr(t) + b2Y*yr(i)]6i 

+ 1/6i[Y r+1(0 - 2yr (t) + yr _ i (t)] + 8Zf(t)/Y* . (4.7) 

The assumption of small departures from equilibrium is known to be inaccurate as we 

have many simulated results of populations moving away from equilibrium by amounts 

far greater than the equilibrium population itself, and at exponential rates. However, 

since it is generally the initial movements away from the equilibrium state that determine 

any final system morphology, we can use the above simplifications to find these important 

initial small perturbations. In addition, the recent results of Renshaw [1991] suggest 

that this linearisation technique is surprisingly accurate, even when populations have 

moved substantially away from equilibrium. 
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4.2.2 Probability Analysis of the General System 

Let us now look at the probabilities of various integer changes in the reactant populations 

X and }', during a time interval St. This analysis will lead us to a measure of the 

expectation and variance/covariance of the random variables 8Z"(t) and 8Z'(t). If we 

assume that all populations are near the equilibrium values (X* ,  Y*) then we can write 

down the probabilities for the evolution of the system within each cell. It can be seen 

that this leads to an overall migration effect of zero, since we are in a global equilibrium 

state. For a system with positive instability we know that the final state is often not in 

global equilibrium, but in some stationary phase-locked state with local equilibria in 

each cell. However, in order to produce values for the variances of our random variables 

SZ (t) and SZ' (t) we must accept that for early movements away from equilibrium 

the global conditions hold true. 

Since we are dealing with our general non-linear interaction equations, with three inter-

action coefficients for each species, we must develop some general system to express 

simply the probability of positive and negative integer changes in the reactant popula-

tion. Let us therefore borrow some terminology from ecological studies, and consider 

probabilities for the birth and death of a reactant. This introduces a conceptual problem 

when one considers the scenario of, for example, interacting chemicals. However, this 

problem is only one of terminology, and a straightforward choice of certain coefficients 

to represent death (i.e. a negative integer change), and others to represent birth (i.e. a 

positive integer change) will suffice for our purposes, since the mathematical effects 

will be controlled by the sign of the individual coefficients. Such a pragmatic choice 

can therefore be made based upon the sign of the coefficients as used in our generic 

examples in Chapter 3 - see Table 3.1. We can thus choose the b3  coefficients to 

represent birth, and the a 3  and r3  to govern death within each reactant type j. Again, 

it must be stressed that we are not actually dealing with a birth-death scenario, but 

rather with our general spatial reaction system. This arbitrary choice forces us to negate 

the probability value for deaths in order to retain full generality in our system, both 

mathematically and conceptually. Thus the probability values detailed below apply to 

the specific scenario of positive b3  values and negative a 3  and 7-3  values denoting birth 

and death respectively, hence 
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Pr[Xr birth] = 	Pr[8Z"(t) = +1] = 	b1X*Y*6t (b 1  ~! 0) 

Pr[}ç birth] = 	Pr[SZ'(t) = +11 = 	b2(Y*)28i (b 2  > 0) 

Pr[Xr  death] = 	Pr[SZ"(t) = —1] = 	—(r i  + aiX*)X*St (r1 ,a1  < 0) 

Pr[Y death] = 	Pr[8Z 1'(t) = —11 = 	- ( 7- 2 + a2X*)Y*8t 
('2, a2 	0) 

Pr[Xr migrate] = 	Pr[SZ(t) = +1] = 	St(X* - 2X* + X*) = 0 

Pr[Y migrate] = 	Pr[8Z'(t) = +1] = 	zi St(Y* - 2Y* + Y') = 0. 

If we now calculate the expectation value of the two random variables we can confirm 

that they equal zero, as follows, using the relations (2.21) to simplify where necessary 

E{SZ(t)} = (+1) Pr[SZX(t) = +1] + (-1) Pr[SZX(t) = _1] 

= (+1)(b1X*Y*Si) + (_1)(_X*6t(ri  + aiX*)) 

= X*St(ri + aiX*  + b1Y*) = 0 

E{8Z'(t)} = (+1) Pr[SZ'(t) = +1] + (-1) Pr[SZ'(t) 

= (+1)(b2(Y*)281) + (_l)(_Y*8t(r2  + a2X*)) 

= y*St( + a2X*  + b2Y*) = 0 

We can also calculate the variance of each of the random variables as follows, again 

using the relations (2.21) to simplify where necessary. 

Var{SZ(t)} 	= 	E{SZ(t) 2 } 

= 	(+1) 2  Pr[SZX(t) 

= bX*Y*St 
- 

- 
E{SZ(t)}E{SZX(t)} 

+1] + (_1)2 Pr[SZ"(t) 

r1 X St - ai (X*) 2 8t 

= 	2b1X*Y*6t (4.8) 

Var{SZ' 	 2  (t)} 	= 	E{SZ' (t)} 

= 	(+1)2 Pr[SZ'(t) 

= 	b2 (Y*) 2 8t -  

- E{SZ'E (t)}{SZ' (t)} 

= +1] + (_1)2 Pr[SZ'(t)  

7 . 2 Y*St - a2X*Y*St 

= 	2b2 (Y*) 2 8i .  (4.9) 

It can also be shown that since the random variables are independent, their covariance 

at a particular site r and time t is of order St, and so can be ignored under our current 
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approximations. That is 

Cov{8Z"(t), 6Z'(t)} = E{8Z" (t)SZ,'(t)} - E{8Z71" (t)}E{8Z'(t)} 

= (+l) 2 (Pr[8Z'(t) = + 11 x Pr[6Z 17 (t) = +1]) + 

(_l)2(Pr[SZX(t) = —1] x Pr[8Z 1'(t) = —1]) + 

(+1)(-1)(Pr[Z(t) = +1] x Pr[SZ'(t) = —1]) + 

(+1)(-1)(Pr[8Z(t) = —1] x Pr[8Z 1"(t) = +1]) 

= X*Y*5t2[b1b2(Y*)2 + (7_ 1  + aiX*)(r2  + a2X*) 

+biY*(1-2 + a2X*)  + b2Y*(ri  + aix*)1 

= O(6t)2  

In a similar way we can show that the other spatial and temporal covariance values for 

our independent random variables (e.g. the covariance for site r at times t and s say, or 

that for sites r and q at time t) can be taken as zero, since they too are of order 8t 2 . 

4.2.3 Expectation Values of the Linear System 

Since the expectation values for our random variables can be taken as zero, we can 

produce a tractable linearised solution for the stochastic mean perturbation values. 

Taking expectation values of the linear stochastic equations (4.6) and (4.7) gives 

dm(t)/dt = aiX*mr(t) + biY*flr(t)  + ji(m1(t) - 2m r (t) + rnr_i(t)) 	(4.10) 

dr(t)/dt = a2X*mr(t) + b2Y*flr(t)  + V(fl r+ (t) - 2n, (t) + n,_ 1  (t)), 	(4.11) 

where mr(t) = E{ r (t)} and fl r (t) = E{yr(t)}. Thus the equations for the linear 

stochastic mean perturbations reduce exactly to the linearised deterministic system 

detailed in Equations (2.3) and (2.4). We can therefore use the results of Turing's initial 

analysis to detail the time evolution of the expected values of the stochastic population 

perturbations. 
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4.3 Covariance Analysis Using Fourier Transforms 

Having produced linearised stochastic equations (4.6) and (4.7) that describe the be-

haviour of site-dependent perturbations away from a global equilibrium state, we now 

need to find a mechanism for determining the spatial and temporal correlations that exist 

between these perturbations. In order to achieve this we can build upon a technique first 

introduced by Renshaw [1984] for the analysis of competition spectra in plant-growth, 

and used more recently by the same author [1994] for a spatial system with a single 

species undergoing linear self-interaction. We will now extend and adapt this approach 

to our general two-species scenario, where we must consider two auto-covariance func-

tions (one for each species), as well as a measure of cross-covariance. Therefore, 

following Renshaw [1994], let us introduce a new variable, u, to represents the cell lag 

between any two instances of the stochastic system. We can thus write two lag-adapted 

versions of equations (4.6) and (4.7) by replacing r with r + u, namely 

X r+(t + St) - 	= [aiX*xr+u(t) + bi Y* yr+ (t)]St 	 (4.12) 

+ 	6t[Xr++i(t) - 2X r+u (t) + Xr+u_i(t)] + SZX ( t )/X* 

yr+u( + St) - y+(t) = [a2X*xr+,u(t) + b2 Y* yr+u(t)18t 	 (4.13) 

+ V8t[yr+u+i(t) - 2yr+u (t) + yr+u_ i (t)] + 	r+u
(t)/Y* 

4.3.1 Introduction of Second-Order Moments 

Let us introduce the following definitions for three second-order moments: 

x a (t) 	= E{[Xr(t) - 	 - rnr+u (t)]} 
U' 

= E{X r (t)X r+U (t)} - mr(t)mr+u(t) 

Y a (t' 	= E{[yr(t) - 7r(t)][Yr+u(t) - fl r+u (t)]} 
U' I 

= E{yr (t)yr +u (t)} - flr(t)flr+u(t) 
xY U 	(t) = E{[Xr(t) - mr(t)][yr+u(t) - 72r+u (t)]} 
U 

= E{X r (t)y r+u (t)} - mT(t)nT+U(t) 

We can simplify these expressions if we consider our system to have started from a 

uniform equilibrium state, i.e. Xr (0) X and Y. (0) Y. Thus the initial expected 
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perturbation values m, (0)= n, (0)= 0 for all r, and hence, provided our linearisation 

approximation remains valid, equations (4.10) and (4.11) show that all future expected 

values for perturbations m, (t)= n, (t)= 0 for all r and all t. We can therefore write 

E{X r (t)Xr+u (t)} = U U
x  (t) 

	

E{yr (t)yr+u (t)} = ay  (t) and 	 (4.14) 

E{X r (t)yr+u (t)} = a U
xY  (t) 

We must now look for mechanisms to produce expressions for the expectation values 

on the left-hand side of the above equations. Taking the X reactant first, multiplying 

(4.6) and (4.12) gives 

    X 	 X* 2  X r (t + 5tX r+u (t + St= X r (t)X r+u (t) + SZX(tSZt/) 

+6t[2aiX*xr(t)xr+u(t) + b1 Y*(Xr(t)yr+u(t) + X r+u (t)y r (t)) + IL(X r  (t)X r+u+i (t) 

+Xr (t)X r+u_i(t) + X r+U (t)X r+l(t) + X r+u (t)X r_i(t) - 4Xr(t)Xr+U(t))1 

where we have already ignored all terms in St 2  (as negligible) and all terms that are 

first-order in SZ" (t), as we know that these will equate to zero when we perform the 

next step of taking expected values. On taking expectations and using the relations 

(4.14) we can write 

	

xY 	xY 
= a (t) + St{2aiX*a(t)  + b1 1 (a (t) + a (t))] o(t -FSt) 	

X 
U 

+ iist[2ax  (t) + 2a_1(t) - 4a(t)1 + 2bi Y*StS( u;  0)/X* ,  
U+ 1  

where S(u; 0) is the Kronecker delta function which equals unity when u = 0 and is 

zero otherwise. This allows the incorporation of the variance of the random variable 

'(t) 	* (SZ (t) = 2b1 X Y St), which is only non-zero (or of order St) when u = 0, since 

multiplication by the Kronecker delta function, S(u; 0), produces a term that is always 

zero unless u = 0. 

After division by St and letting St - 0 we obtain the following differential equation for 

the second-order moment a x  (t), i.e. the auto-covariance of perturbations in population 

X at cell lag u: 

* XY 	XY( daX(t)/dt = (2aiX* - 4z)a " (t) + b1 Y (a (t + a_ t)) 

	

\ u 	1 	U 
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+ 2(a 1 (t) + 	+ 2bi Y*S( u;  O)/X* . 	(4.15) 

We can now perform a similar analysis for the Y reactant by multiplying (4.7) and (4.13) 

to obtain 

yr (t + St)yr+ (t + Si) = yr (t)yr+u (t) + SZ'(t)SZ (t)/(Y*)2 r 	r+u 

+8t[2b2Y*yr(t)yr+u(t) + a2X*(yr(t)xr+u(t)  + Yr+u(t)r(t)) + V(yr(t)yr++i(i) 

+yr(t)yr+u_i(t) + yr+u (t)yr+i (t) + yr+u (t)yr_ i (t) - 4Yr(t)Yr+u(t))] 

where we have again ignored all terms in St 2  and all terms that are first-order in SZ'(t). 

By considering the expected value of all the terms in this equation, and using (4.14) and 

the variance values from (4.9), we can write 

,* xY = a (t) + Si[2b2Y*a(t)  + a2 	(a (I) + a(t))] o'(t--St) 
IL 

+ vStFzo 	(I) + 2a' 1 (t) - 4o'(t)] + 2b2 8t8(u; 0) 
u+1' 

After division by St and letting St - 0 we obtain a second differential equation, on this 

occasion for the second-order moment o- '(t), i.e. the auto-covariance of perturbations 

in population Y at cell lag u, 

da'(t)/dt = (2b2Y* - 4v)o'(t) + a2X*(a XY 	XV 
(tI+a 	(t)) ' u \ 	-u 

+ 2v(a' 1 (t) + a ' 1 (t)) + 2b2 8(u; 0) . 	 (4.16) 

Finally, we can produce a differential equation for the cross-covariance of perturbations 

in the populations X and Y at cell lag u by considering the multiplication of equations 

(4.6) and (4.13). By ignoring all terms in 8t2 , first-order in 5Z"(t) and SZ'(t), and 

SZ"(t)SZ'(t) cross-terms, we obtain 

X r (t + St)yr+u (t + Si) = X r (t)yr+u (t) + 6t[a2X*xr(t)xr+u(t) 

+b2Y*Xr(t)yr+u(t) + aiX*yr+u(t)xr(t)  + b 1  Y* yr (t) yr+u (t)] 

(t) + X r (t)yr+n_ i  (t) - 2Xr  (t)y(t)] 

+ Xr_i(t)Yr+u(i) - 2Xr(t)yr+u(t)1, 
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which yields 

xY 
da'(t)/dt - 
	* X a2  a (t) + biY*aY(t)  + [aiX*  + b2Y* - 2( + v)]a (t) 

	

XY 	XY( 
+ (i  + zi)Ia 	(t') + a

L I 
 t)] . 	 (4.17) 

4.3.2 Fourier Transform Representation 

In order to solve this system of three coupled differential equations for the system coy-

ariances —(4.15), (4.16) and (4.17), let us follow the lead provided by Renshaw [1994] 

where he considers the single reactant system with periodic boundary conditions, i.e. on 

a ring of cells. This approach is also inherently tied to the initial studies of Turing [1952] 

covered earlier in Chapter 2, who suggested the use of Fourier transforms to solve this 

type of periodic system. 

Let us define a Fourier transform of the X-perturbation covariance as 

1N-1 
X 	2irit9/N 

 (t) = a (t')e 
U' ,  

u=0 

which has the standard inverse transform 

N-I 
a' (t) = 	(t)e_2O/ 	. 	 (4.19) 

9=0 

Similarly we can define transforms for the Y- and XY-covariances as 

' 	
1 N-I 	 1 N-i  

Y 	2iriu8/N XY 	2iriu9/N 	(420) I(t) = 	a u \ / (t')e 	and 	t) = 	au  (t')e 

u0 	 u=0 

respectively, with inverse transforms 

N-i 	 N-i 

	

-2iriu9/N 	XY -2lriUO/N 	(4.21) a 1'(t) = 	 and a 	(t) = 	'I"(t)e 
0=0 	 9=0 

If we now multiply (4.15) by e 
27riiz0/N

and  sum all terms from u = 0 to N - 1, then 
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division by N gives 

1 N—I  do' (t) 2iriu9/N 	
2aiX* - 	N—i 

U 	 = 	 X( )e 2lritLO/N (4.22) 
N 	di 	 N 	u=O 

bi 	 XY 	2iriu9/N + I 	 XY 21riuU/N 	2f 	X 21riu9/N 
+* 	 bv* N—i 

" e 	+ 	o e a (fle 	
N 	—u 	 u+1 IL N u=:O 	 u0 	 N 

± 	X 2iriu9/N 2b /* N—i 

+ 	a
ti l e 	+ NX* 	

S(u;O)e21O 

N 

Using the Fourier transforms defined above we can simplify this expression substantially 

to give the following differential equation for the transform of the X-perturbation auto-

covariance, 

2b1 Y* 
2 	X(1) 

+ 2b1Y*Y(t) 
 + NX* 	(4.23) d(t) —2 (aiX* —4/,tsin 	a di - N ) 

To obtain (4.23) it must be noted that three features of the system have been exploited. 

Since we are dealing with a system with periodic boundary conditions, we can 

define a circularity condition for the system as 

crU+PN=aUforallu=O,...,Nl and oo<p<oo, 

for any integer p. This condition allows us to equate 	a with >Ii o-1, 

which removes the complexity of any —u covariance terms. In addition, it also 

allows us to equate arithmetic progressions such as 	a and E NI u±1' 

although in this case we must take care to make the necessary changes to the 

exponential term within the summation, e.g. 

N—i 
v' X 27riu9/N 

	

, ae 	= 	e 2iO  1   

IL=O 

We can simplify the final term in Equation (4.22) since 

	

1 N—I  2b Y* 	2iriu9/N 	
2b1Y* 

	

S(u;O)e 	= NX* 
u=O 
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3. The final simplification is a straightforward use of the trigonometric relation 

2u 	-2i 	 . 2 
e +e 	=2cos2C=2(l—sin(), 

which yields 

 X 
(e

2ir9/N + e-2iri9/N 
- 2) = —8i sin 2C 

N 

Using the above procedures on Equations (4.16) and (4.17) we obtain two further differ-

ential equations for the Fourier transforms of the Y- and XY-perturbation covariances. 
riuO Multiplication of (4.16) and (4.17) by e21/N,  summation of all terms from u = 0 to 

N - 1, and then division by N gives 

— 2 ° d'I'(t) 	(b2Y* 	2 ire\ y 

dt - 	
- 4v sin 	(t) + 2a2X*T'(i)  + 2b2 1N and 	(4.24) 

d(D xo y (t) = a2X*(t) + b1 Y* '(t) + (aiX*  + b2Y* - 4( + v) sin 2  
dt 

(4.25) 

4.3.3 Summary of System Approximations 

In the previous section we have successfully worked through an analysis of the auto- and 

cross-covariance values (or second-order moments) for perturbations to the populations 

within a stochastic version of our generalised linear spatial reaction system in one 

(periodic) dimension: In Section 4.3.4 below we detail the resulting coupled differential 

equations. However, let us now review the approximations that have been made thus 

far, so as not to lose sight of the range of applicability of our results. 

The first, and most important, approximation is that we can represent our stochastic 

system as of Bartlett type, with the stochasticity specified by an external random noise 

process added to the standard deterministic model. We know that this type of approach 

generally produces stochastic means in agreement with both the deterministic and full 

probabilistic representations, as we have shown for our system, but can produce variance 

values quite different from the full probabilistic scenario. 
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The second major approximation in use is the linearisation of the system interactions. 

Without this it would have been difficult to move our analysis past the initial non-

linear stochastic equations (4.3) and (4.4), so we are forced to choose the linearisation 

approximation in order to solve the system analytically. 

We also make a number of approximations and assumptions during the body of the 

analysis work in Sections 4.2 and 4.3. We assume that the initial state of our system is 

free of any perturbations, and our results therefore represent the population covariances 

that are produced purely by the fact that we have a stochastic system - i.e. the nature 

of the perturbations away from equilibrium are due solely to the noise variation in the 

system. In addition, we ignore all terms that are second-order in 8t, an approximation 

that ties in with a study of the linearised system. 

All of these simplifications to our system point us towards a study of small movements 

away from equilibrium, and thus typically to short times after t = 0. As stated earlier, 

we find that the typical morphology of spatial reaction systems is defined by these initial 

departures from equilibrium, and thus we feel that, despite this set of approximations 

and assumption, we have an analysis that provides important insight into the workings 

of stochastic spatial reaction systems. We detail later (in Chapter 5) how accurate these 

approximation prove to be. 

4.3.4 Resulting Coupled Equations 

The previous analysis has produced three coupled differential equations for the Fourier 

transform of the second-order moments of the perturbations away from an equilibrium 

state in our stochastic spatial reaction system - (4.23), (4.24) and (4.25). If we define 

the following simplifying functions 

 00 ao = aiX* - 41t sin .-, 	= b2Y* - 4v sin 2 ° and 	= c + , 

and the following constants 

a = a2X* , b = b1 Y* , c = 2bY*/NX* and C2 = 2b2 /N, 
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we can write our set of coupled differential equations as 

d'(t)/dt = 2a9 '(t) + 2b'(t) + C1, 

C) 
 XY d '(t)/dt 	a' 9  (t) + 2/39 cI'(t) + c2 , and 

xY d''(t)/dt = 	+ b '(t) + -y 	(t) 

(4.26) 

4.4 Stationary-State Covariance Analysis 

Equations (4.26) represent the inter-relationship between the Fourier transforms of the 

spatial covariance values as they vary with time. They therefore represent a full spatial-

temporal covariance result, which we will evaluate later in Section 4.5. First, however, 

let us look for steady-state (or stationary) solutions where we can assume that the time-

differentials of all the transform functions (F 9 (t)) are zero. From our deterministic 

studies (Chapter 3) we know that the linearised system will produce such a stationary 

state provided the system instability is negative (i.e. a sub-critical scenario), and in this 

case the final state is a uniform stable equilibrium. For the super-critical deterministic 

case (I > 0) no such stationarity exists in the linearised system, since any movement 

away from initial equilibrium leads to explosive population growth or decay throughout 

the ring. In comparison, the non-linear system can achieve a stationary state (often 

with interesting system morphology) in both sub- and super-critical scenarios, and will 

typically take the general morphological structure of stationary population waves. 

4.4.1 Solution of the Simultaneous Equations 

If we set all time-differentials to zero in (4.26) we obtain the system of linear simultan-

eous equations: 

—c 1  = 2o9 	+ 2b 

C) XY —c2  = aI9  + 29'I' 	 (4.27) 

	

Y 	XY 
0 = a+b9 
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These equations are easily solved to produce the following expressions for the Fourier 

transform functions: 	

40 X-  b2 c2  + (/3y - ab)c1 	
428 

9 	29(ab—a90) 

2 

	

- a c1  + (a9 79  - ab)c2 	
(4.29)  9 - 	2 9 (ab - cr0 09 ) 

xy = — acj39  - bc2c 	
(4.30) 

70 

We can then use the inverse transform expressions (4.19) and (4.21) to obtain expressions 

for the three auto- and cross-covariance functions for cell lag u in the stationary case. 

These are 

N-i  b2 c2  + 07y - ab)c1 -21riu9/N 
0 = 

U 

9=0 	2'19(ab - 

Y 	a2 c + (c9'y9 - ab)c2_29/N 
0•= 

U 

9=0 	279 (ab - a9 39 ) Po ) 

 N-i —ac1/30 - bc2a9 -2iriuO/N 
a= 	 e 

IL 

9=0 	70 

4.4.2 Covariances for Stationary Sub-Critical Systems 

It is a straightforward process to take the exact expressions above for the stationary 

covariance functions, and evaluate them for a given set of system parameters. In 

doing this we can obtain a qualitative graphical representation of the behaviour of 

the covariances for different types of spatial reaction system, and also obtain some 

quantitative measure of the population structure within a stationary stochastic system. 

In almost all the numerical evaluations in the following sections, we deal with our 

generic two-species system, using Turing's instability parameter (I) as the main tool for 

investigating our parameter space. We therefore choose to set the following parameter 

values (as used for the standard realisations detailed in Chapter 3): ai = (I_2)/X*, b1  = 

—1.25/X*, a2 = 2.5/Y* and b2  = (I + 1 . 5)/Y* ,  with X = = 10, on a ring of 

N = 50 cells with the migration rates set to produce five waves with a migration rate 

ratio in = jL1v = 2. By choosing these parameters we can use the sign of I to control 

the criticality of the system - positive I-values give super-critical behaviour, whereas 

negative values produce the sub-critical system. 
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The sub-critical system is the most obvious for us to investigate as it is in this scenario that 

we observe stationary behaviour in our linearised deterministic studies. In the linearised 

scenario any perturbation to the equilibrium state of the super-critical deterministic 

system will result in exponential explosion of the cell population, and hence no stationary 

state. We will see later in Section 4.5.5 that the stochastic spatial-temporal covariances 

undergo similar explosions as the super-critical system evolves in time. We can therefore 

be certain that any numerical calculation of stationary state values must be flawed. 

Figure 4.1 shows the numerical evaluation of the three covariance functions when the 

system is only just in the sub-critical domain - with I = —0.001. We observe a very 
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Figure 4.1: Low interaction stationary-state covariance structure 
Using our standard system parameters with a very small negative instability (I = 
—0.001), we observe a very strong wave structure in both the X and Y auto-covariance 
values. The XY cross-covariance measure is negligible in comparison, and shows no 
interesting spatial structure, other than a slight local negative correlation. 

strong spatial wave pattern in the covariance values, with the wavelength agreeing with 

that expected from our parameter set (i.e. we obtain five waves). It is interesting to note 

the almost identical behaviour of both X and Y auto-covariances, and the negligible 

effect of the XY cross-covariance at all cell lags other than u = 0. The graph in 

Figure 4.1 indicates that for a linear stochastic spatial reaction system that lies just 
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inside the sub-critical domain of parameter space, there will be a strong correlation 

between the perturbations that occur (due to the Gaussian noise structure added to the 

deterministic model) at cells that are multiples of ten cells apart. Additionally, there is 

a strong negative correlation between those population perturbations that are separated 

by lOp + 5 cells, where p = is any integer. It is also worthy of note that although the 

correlation reduces slightly (by approximately 20%) as the cell lag moves to the furthest 

point away on the ring, the auto-correlations have a strong influence throughout the 

whole system. 

Figure 4.2 shows the effects of making two slight adjustments to our system parameters. 

The first is to increase the magnitude of the system instability (still maintaining a sub-

critical scenario), and the second is to adapt the migration rates in the system, in order 

to produce parameters that create ten population waves in the deterministic case. 

Figure 4.2: Medium interaction stationary-state covariance structures 
Again using our standard parameter set, these graphs show the effects of increasing the 
magnitude of the sub-critical instability (left-hand graph, I = —0.01), and increasing 
migration rates to produce ten deterministic waves (right-hand graph, I = —0-001). 

In both these new scenarios we see that the strength of the auto-covariance for both 

X and Y is substantially reduced (by approximately 80%) as the cell lag approaches 

the furthest point away on the ring. However, the wave structure is still very evident, 

and so we can expect to see a regular wave pattern in the stochastic populations using 

these parameters. Note that for the case of increased migration rates, the deterministic 

wavelength has been exactly preserved for the stochastic auto-covariances. In addition, 

the cross-covariance values again appear as negligible, except for their slight negative 

correlation for very small cell lag values (u < +5). 

Figure 4.3 shows that using a relatively high magnitude of negative instability value 
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Figure 4.3: High interaction stationary-state covariance structure 
Exact auto- and cross-covariances for perturbations in our standard sub-critical system 
with high magnitude instability (I = —0.1). All three covariance functions are only 
non-negligible for small cell lag values. This highlights that only short range correl- 
ation effects are produced as the sub-critical system instability magnitude increases. 

such as I = —0.1 has a dramatic effect on the covariance functions within our stochastic 

systems. We now see that all positive correlation is restricted to small cell lag values. 

This knowledge of the correlation-length between perturbations is of great use for 

implementing efficient parallel versions of such stochastic simulations, and we will 

cover such issues in later chapters. The details from Figure 4.3 show that there is a 

significant positive auto-correlation for both X- and Y-perturbations only when u < 2; 

for u = 3 and 10 < u < 13 the correlation is very small but still positive; and for 

4 < u < 9 we have a small negative correlation. For all larger values of u we observe 

that auto- and cross-covariance values are negligible. This pattern suggests a system 

where all perturbations in either population will have a strong short-range effect, creating 

reinforcement of the perturbation in local and near-neighbour cells, plus a very small 

effect on those cells approximately one wavelength distant (in this case ten cells). In 

addition there will be a small inhibitory effect on perturbations in cells a half-wavelength 

distant from the initial perturbation. It is clear that such a system can contain many 
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independent concentrations of reactants (localised "waves" or hot-spots) that will have 

little effect on each other apart from a tendency to inhibit similar perturbations at a 

half-wavelength distance. This is very different from the small magnitude instabilities 

that produce such strong long-range influences. 

This trend continues as we again increase the magnitude of our sub-critical instability: 

with I = —1.0 numerical evaluation of the exact covariance functions produces values 

that are small for almost all cell lag values, e.g. the X- and Y-auto-covariances are both 

close to 0.07 for u = 0, and equal 0.03 when u = 1. We thus see that as the sub-critical 

system instability decreases from zero, there is a marked reduction in the magnitude of 

correlations between perturbations. This analytic result can be compared directly to the 

stochastic simulation results in Chapter 5. 

4.5 Spatial-Temporal Covariance Analysis 

Following success with the solution of the covariance equations at stationarity, let us 

now solve the system in the general time-dependent case. This will generate expressions 

for spatial covariances as they changes in time, thereby giving us a very powerful to tool 

to examine and predict the behaviour of our general stochastic spatial reaction systems. 

Let us therefore re-examine the coupled differential equations (4.26) for the Fourier 

transforms of our second-order moments. Such a system can either be solved using 

standard simultaneous differential equation techniques, or by treating it as a vector 

differential equation with a matrix of coefficients. These approaches are equivalent, and 

both ultimately result in the calculation of the determinants of the coefficient matrix. 

Let us tackle the problem from the former approach in order to concentrate specifically 

on the two auto-covariance values. Our coupled equations are 

d'(t)/dt 	2et(t) +2b( 	'(t) + C1   
	

(4.31) 

d'(t)/dt = 2aI'(t) + 2/39 4'(t) + c2 	 (4.32) 

dJ'17 (t)/dt = aI(t) + b&(t) + 9 J(t) 
	

(4.33) 
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We can reorganise (4.31) to give 

= (1/2b)(dT' (t)/dt - 2a9 ''(t) - c1 ), 	 (4.34) 

and (4.32) to produce 

= (1/2a)(d' (t)/dt - 2/39T1(t) - C2) . 	 (4.35) 

If we now substitute (4.35) into (4.33) we obtain 

d 11  (d(t) -t) 
- C2)] 

dt[2a( 	dt

-to = wDx  + b(t) + 	I -2fi9(t) - C2
2a 	di 

A little rearrangement gives us the following second-order differential equation 

= 1 [d2(t) - ( + 	)d(i) + 
	- ab)(t) + c29] 

(4.36) 

If we now substitute (4.36) and (4.35) into Equation (4.31) we obtain a third-order 

differential equation in I' (I). This reduces to 

d3 T'(t)/dt 3 	 ' 	2  - 3y9 d2 '(t)/di + 2(y + 2(a9 /39  - ab))d'(i)/dt 

+470(ab - 	 2(a2 c1  + (a979  - ab)c2 ) . 	(4.37) 

Following a similar procedure we can also obtain a third-order equation for the X 

covariance. Substituting (4.34) into (4.33) gives us 

1 Id2 (t) 	
d(t) + 2(a90  - ab)(t) + 	(4.38) 

2b 2 	dt2 	
—(3a+j3) 

di 

which can in turn be substituted into (4.32), with (4.34), to produce 

	

d3 I(i)/di3  - 37,d 20X 	+ 2(-y + 2(ae/39 - ab))d'(t)/dt 

+479(ab - c 9 /39 )I(t) = 2(b2 c2  + 07 - ab)ci ) . 	(4.39) 
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4.5.1 Solution of Third-Order ODEs 

We now have two almost identical third-order inhomogeneous ordinary differential 

equations for the Fourier transform of the X and Y perturbation auto-covariances. We 

must find complete solutions of these equations in order to determine the nature of the full 

spatial-temporal auto-covariance structure. This task is assisted by noting that the two 

ordinary differential equations (4.37) and (4.39) are identical in their homogeneous form; 

it is only the constant inhomogeneous term on the right-hand side of the equations that 

distinguishes them. This allows us to find just one general solution for the homogeneous 

case of both equations, to which we can add different particular solutions to complete 

the full inhomogeneous solution. 

Thus, let us put (4.37) and (4.39) into the general form 

d3(t) + 3B9d2t)  + 3Ce9(t)  + Ve(t) = Cs , 	(4.40) 
dt3 	dt 2 	dt 

where s indexes the two reactant types X and Y. Thus 

CX  = 2(b2 c2  + c1 0979  - ab)) and Cy  = 2(a2 c1  + c2 (c 97o  - ab)), 	(4.41) 

and the equation coefficients are 

Be = xe , C o  = 2(-y + 2(amBe - ab))/3 and Ve = 479(ab - ae/3e) . (4.42) 

Solution of the homogeneous case 

Taking the homogeneous case of (4.40), we can follow standard theory (see Sned-

don [1976]) to write the auxiliary equation for the system as the cubic 

03
+315o 

02  
+ 3C9 çb + Ve = 0 . 	 (4.43) 

In the general case this equation will have three roots, Oj  (j = 1,2,3), one of which 

must always be real, but two of which could be complex conjugates, say 02,3 = p + iw. 

This result is dependent upon the discriminant (A) condition that we will examine later. 
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The general homogeneous solution will therefore take the form 

= Aie1t + A2e2t  + A3e3t 

if all Oi  are real, and 

9(t) = Bie1t + B2e(0t cos rut + Be" sin t, 

if two of the roots are complex. 

Again using standard theory, if we introduce a new variable (sb) in (4.43), so that 

= - 8, we can rewrite the auxiliary equation as 

03 + 3pL' + q = 0 	 (4.44) 

where 

p = Co  - B and q = V9  - 3139 C9  + 2B 

In this form we can write the equation discriminant as 

A = 4p3  + q2  

Cubic equation theory states that if A < 0 the equation will have three distinct real 

roots, if A = 0 we obtain 3 real roots, two of which are equal (except in the special case 

of p = q = 0 when all three are equal), and if A > 0 we get one real and two conjugate 

complex roots. Using (4.42) we can simplify this discriminant since 

q 2  = (V9  - 38000  + 2B)2 = 0 and p3  = (Co - 	= —[( a9 - 
	

+ 4ab]3 /27 

Let us define w = (c - 9)2 + 4ab = —3p, since we see that the nature of our 

homogeneous solution is governed by the sign of w. If w > 0 then A < 0 and we 

have three real roots, whereas if w 2 <0 we get A > 0 and a complex solution. 

Incorporating q = 0 into (4.44) we can write the solutions as 0 = 0, 	— \/ j. 

This allows us to revert back to our original variable 4 to obtain the solutions Oj  = 
—B e , w 9  - B, —w 9  - B, i.e. Oj  =70,-y0  + w9 . We can therefore write the general 

solutions to the homogeneous equations for the Fourier transforms of both the X and Y 
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auto-covariances as 

w9t I(t) = e°t  (A 1  + A2 e + A3 e t ) if 	> 0 and 	(4.45) 

4) , = (B 1  + B2 cosw 9t + B3 S i ll if 	<0, 	(4.46)  

where s indexes the two reactant types X and Y. The coefficients A 3  and B3  are 

dependent upon initial conditions, as well as the particular solution (C3 ), the latter must 

be added to give the full inhomogeneous solution. 

Solution of the general in homogeneous case 

In order to obtain a complete solution to the full inhomogeneous third-order ODEs for 

I(t) and '(t) (4.40) we must add a particular solution (I' 8 (t)) to the homogeneous 

result (F(t)) which is given above in Equations (4.45) and (4.46). If we consider the 

technique of variation of parameters (see Greenspan [1960]) we can detail the general 

methodology for all cases (X and Y, and w 2 
~ 

0 and w < 0), before providing precise 

results for each. 

Considering the general particular solution T(t) as a summation of terms linear in 

each of the functions, making the general homogeneous solution (0(t) say), but with 

potentially time-dependent coefficients k3  (t), we can write 

'11 (t) = k 1 (t)ç 1 (t) + k2 (t)02 (t) + k3(003(0, 	 (4.47) 

where, for example, if 	> 0 then 1 (t) = e and q 2  (t) = 	etc. 

Using the variation of parameters technique we now perform a succession of differ-

entiations with respect to time. For simplicity and clarity we specify this by ('), and 

remove all time dependent references from the equations. Thus, differentiation of (4.47) 

produces 

'11' = k ' q 1  + kq 2  + k3 q53  + k1  + k2 q + k3 q 

The standard approach assumes that we can set 

kq 1  + 	+ k ' 03 = 0 . 	 (4.48) 
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Differentiating again with respect to time gives 

'1/" = q + kçb + kq + k1  q' + k2 çb'' + k3 q 3'I  

With a similar assumption that 

1cç + kq + k 	= 0, 	 (4.49) 

we can perform a final differentiation to obtain 

'I" „,  q = k' + k' ± k/I ± k11  ± k2 ç' + k3  

If we now reconsider the original inhomogeneous equation (4.40), and substitute our 

particular solution 'I' into this equation, this gives 

"I' + 389 'P” + 3C9  'J" + Do  = C5  

Substituting the above expressions into this equation produces 

II 	/ 	IF kq' + k F  2 q 2  + kq + 	+ 3B' + 3C9 q + Vo çb) = Cs , 

where j = 1, 2, 3. Since the Oj  are solutions of the homogeneous version of (4.40) we 

can write 

+ 3Be q + 3C0 q + D0  q5 = 0, 

and thus 
/ 	II 	F 	II kq + k2  q 2  + k33  = C8  (4.50) 

Therefore equations (4.48), (4.49) and (4.50) form a set of simultaneous linear equations 

for the first temporal differential of the coefficients, k3  (t), in the particular solution. 

Given known functions q,(t) and their first and second differentials with respect to 

time, we can solve these systems exactly using standard linear algebra techniques. 

Thus, as detailed in Sneddon [1976], 

- c5 	
32 - q2q3 k' 

- c 	- 

— 	F(q3) 	' 2 - 	F() 
and 	= Cs  q 	2 - 02 01 

—F() 
(4.51) 
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where 

	

/ // 
	0/1011)(020/1 

  
F(q) = (31 - 3 	- 0/201) - (030 /1 -  03/01)(0/20/l/ - 0/10/2/ 

	

2) 	(4.52) 

4.5.2 Exact Solution of the Real System 

If we concentrate specifically on the solution of the full (inhomogeneous) ordinary 

differential equation (4.40) when we have three real roots for the auxiliary equation (i.e. 

> 0), we then have a particular solution in the form 

= ki(t)et + k2(t)e 9+wo)t + k3(t)e0_w91 	 (4.53) 

(where again s denotes the reactant type X or Y) and thus we have the general homo-

geneous solution functions 

= 01  

	

(t) 	, q52(t) = e(6+w0)t and 03(t) = (y9—YO 

These functions all have straightforward first and second differentials with respect to 

time. Thus substitution of these functions and their differentials into (4.52) gives 

	

3 	4,,,,t
F(q) = w8 y8 e 

This allows us to specify the time-dependent coefficient functions as 

- 	
k(t) 

- Cse _ 

2

9+9)t 	 Cs e_ 8 _w8 ) t  

= 	. 

k(t) - - ______ 	- 	
and k(t) 	 (4.54) 

2w 2  

We can integrate all of the expressions in (4.54), and since we are looking for any 

particular solution to. this system, we can freely ignore any constants of integration. 

This provides us with 

= 
Cse_9t 	 C5e _ 919)t 	 Cs e_ 8 _w9)t  

k 	• 	= 	 (t) and k3 	= 	 . (4.55) (t) 	 , k2(t) 	
2w 9 +  w9) 	 2w 9 —w 9 ) 

Substituting the coefficient functions (4.55) into the particular (real) solution (4.53) 

we find that all the time-dependent terms cancel and we obtain a constant particular 
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solution. We thus obtain the real case particular solution: 

	

JJ8 	
—C3/'y9('y - w) = —C 8 /4'y9 (a9 /39  - ab), 	(4.56) 

which therefore allows us to write the general solution to the inhomogeneous equations 

for the auto-covariance transforms (with w > 0) as 

	

t = 	 Wt 	 w 

	

- C/"y9(' -w)  .e°(A1 + A2e+ A 3 e
-

)  	(4.57) 

In order to determine the coefficients (A) of this general solution, we use our knowledge 

of the initial system conditions. Assuming our system has no initial spatial structure, 

with all perturbation values x, (0)= y, (0) = 0 for r = 1,.. . , N, we see that all initial 

second-order moments (4.14) equate to zero at t = 0. Thus we also find from (4.18) 

and (4.20) that the values of the Fourier transforms of these second-order moments also 

equal zero, i.e. iI (0) = I' (0) = J }'(0) = 0. In addition we can determine the value 

of the first and second differentials of the Fourier transforms at t = 0. Studying (4.31), 

(4.32) and (4.33) reveals that 

	

dI(0)/dt = c1 , d'(0)/dt = c2  and dF9xY  (0)/dt = 0, 	(4.58) 

and differentiation of (4.31) and (4.32) gives 

d2 (0)/dt 2  = 2a9 dI(0)/dt + 2bd''(0)/dt = 2a9 c 1  and 

d2 '(0)/dt2  = 2ad'17 (0)/dt + 2169 '(0)/dt = 239 c2  . 	(4.59) 

We can now differentiate (4.57) twice to give alternative expressions for the coefficients 

A 3  as 

d 
	 —1et 

	

) and 	(4.60)A w9t 	
- 	A  

2 	t 2 =e t ('+(9+w9)2w 
 —w9)23 	) . 	(4.61)d(t)/d 	A 	 Ae+(y 	Ae  

Taking (4.57), (4.60) and (4.61) at t = 0 gives us the set of linear simultaneous equations 

A + A 2 + A3  = C19( - 

155 



C8e 0t 
12  = 	 , 	(t) 11(t) 	

- W'Yg 

C5e'°('Ye cos Loot - w9 sin wet) 

L02 2  + w) ON 0 

and 

A + ('ye  + we )A 2  + ( re - w9 )A 3  =c, and 	 (4.62) 

'Yo A1 + (e  + we)2 A 2  + (e - w9 ) 2  A 3  = 2p5 c3  

Here C5  is defined by (4.41), c3  = c1  for the X-reactant and c 3  = c2  for Y, and p = a9  

for the X-reactant and p = 13e for Y. Equations (4.62) solve to give 

S  I 	'Y eCs  

A = 'Ye 

—C 

L1 - 
2 

C. 
('Ye _5)] 

- 	C5 	- ('Ye + w9)C5 	 I and (2('Ye - p5) - w9) A2 
- 2w('Ye+we) 	C 

C5 	- ('Ye - we)C s  

= 2w('yg  - w9) [ 	
' 2 YYe - P5) ± we)] 

o 

These values can now be inserted into (4.57) to obtain an exact expression for the Fourier 

transform of the spatial-temporal auto-covariance values in the real domain, namely 

(t) = ('Ye('Ye - 

+'Ye('Ye + (j9) e (YO—w0)t 

2 	2 	yeti —2 ('Ye - w9 )e 	- 

w0)t 	('Ye + w9)c5 
(2( - p5) - we)] 

CS  

[i 	('Ye _we)C5 (2(-yo  —PS) +we)] 
C5  

2'YeC5 
('Y 	)I 	2w) 	C. 	(4.63) 

C. 	
e - P5 

- 	2'Yew('Y - w) 

4.5.3 Exact Solution of the Complex System 

Let us now consider the scenario where we have two complex roots for the auxiliary 

equation (4.43), i.e. we have W2 < 0. We now have a solution of the form shown in 

(4.46), but with the addition of a particular solution (%1J5  (t)). If we again use the variation 

of parameters technique detailed in Section 4.5.1 we look for a particular solution of the 

form 

= 11(t)e8t + 12(0e0t cosw9t + 13(t)e9t sin we t . 	(4.64) 

Thus, as in Section 4.5.2 we can obtain the coefficient functions 13 (t) through a succes-

sion of linear manipulations. We obtain 

156 



C3e_9t( y9  sin w9 t + w9  cos w 9 t) 
13 (t) = 

w('y+w) 

which produce the constant particular solution 

= 	+)=—C/2y9 ( + + 2ab) 	(4.65)  

We can therefore write the general solution to the inhomogeneous equations for the 

auto-covariance transforms (with w <0) as 

I(t) = 	+ B2  cosw0 t + B3  sin 	- C3 /y9 (y + w) . 	(4.66) 

Using the initial conditions as specified in Section 4.5.2, we can find values for the 

constants B3  in (4.66) and in its first and second derivatives. This provides us with 

another set of three linear equations. These can be solved straightforwardly to produce 

the coefficient values 

C I 	2'y9 c3 	1 	_- 8C 	I 	2('y + w)c3 	)] (-y—p B1 = 	2 - ____ - Ps)] , B2 = w( + w) L1 - __________ -/ew9  

—C s 	I 	(y+w)c1 
and B3 = 

w(+w) 	C3 	] 

These values can now be inserted into (4.66) to obtain an exact expression for the Fourier 

transform of the spatial-temporal auto -covariances for reactant perturbation values in 

the complex domain, thus 

2 	2 	 -i 

I(t) 
- 	C3 	/ 	2 	 2(9 +w9 )c5 	I 

- 9w( + w) - 9 	
- 	

- v5) 

	

(e 	] 

- 7eWe sin wete°t 	
- ( 	

C  
+w)c31 	(4.67) 

] 

2'y9  c3 	

] 	

2' 
+ (y +w)et Li - C5 ° - 	

_ w9) 

4.5.4 Unified Spatial-Temporal Auto-Covariances 

Studying Equation (4.67), we notice that in this complex scenario (w < 0) there are 

a number complex terms (i.e. terms in single powers of w9 ). Ideally we would like to 
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remove such terms, since this would allow us to unify our auto-covariance solutions for 

both real and complex systems. Thus, for the w < 0 scenario, let us define 

LOO = iJff = iw and w = LO 02 

This allows us to write (4.67) as 

2 
- (j) )c 	

)] 
yeCs  

' 

- (we)2 )c I 

CS  

yt 
cosh(w t)e °  

0   

+w sinh(wt)e° t  [i - 

+- (w)2)e9t [1_  

2 

2y 9  c5 	

)J + (w)2) 	—C3 
- PS 	 (w) 2 ( - (w) 2 ) 

Using the standard relations sinh k = (e tc - 6 -k  )/2 and cosh k = (e' + e)/2, we can 

reduce the above equation to 

(yo+w)t 	- 	
(2(-y - p5) - w)] (t) = (e(e - L",e)e 	

CS 

+ -YO( -YO + w)e0_t [i - ( - w9)c3 
(2( - p 5 ) + w)] 	 (4.68) 

CS  
2'YeC s 	 2 	 C5 

- 2( - (w ) 2 ) e 0t 
 I1_ c 	- p5)] - 2(w 	2'y(w)2('y - (w) 2 ) S 

It can be seen that result (4.68) is identical to the real scenario solution (4.63), but with 

w9 replaced with w, where w = w0 when w > 0 and w = when w < 0. 

We can therefore write down exact (unified) expressions for the Fourier transform 

representations of the X and Y spatial-temporal auto-covariance functions for our one-

dimensional stochastic system. Using (4.41) to define C5  values, (4.58) to give c5  values, 

and (4.59) for p5  values, we obtain 

= C1  (70 (e - w '  )e 	[i - c
1 ('y0  + w)(2/ - w)] 

2(b2 c2  + c1 (/30 -y0  - ab)) 

+ 'y('y +w)e0_t  [i - 
c1( -y9 —w)(2/3 e  +w)] 

2(b2 c2  + c1 ( 0 'y0  - ab)) 	
(4.69) 

- 2('y - (w)2)e0t k - 	1 	)2 	and  

L 	
b2 

C2 + c1 ( 0 70  - ab)] - 2(w
0 ) 	and 
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I'(t) 	2 (Ye('Ye 
- w)e9t [i - C2( -YO + w)(2c 9  - w) ] 

2(a2 c1  + c2 (cy g  - ab)) 

 (y9—YO 	[ 
	- w ' )(2c + _w) 

+ 70  (70  + w9) 	
_   (4.70) 

2(a2 c1  + C2(9e - ab)) ]  

- 2(y - (w) 2 )e °2  [i - 
	a9y9c2 	

] 	

/ 2) 
a2 c1 + c2(O99 - ab) 

- 2 (we) 

where 

bc2  + C1 0070 - ab) 
= 	 and C2 = 

7(w') 2 ('y +w)(yg  —w) 

a2 c1 + c2 (a9 y9  - ab) 

70 (wi)2(7 +w)(ye —w) 

We can now use the inverse transform expressions (4.19) and (4.21) to obtain expressions 

for the actual X and Y reactant perturbation auto-covariance functions for cell lag u 

in the unified spatial-temporal scenario. These expressions can then be numerically 

calculated given values for system coefficients. 

Consistency proofs 

We are able to confirm that results (4.69) and (4.70) are consistent with certain system 

conditions and assumptions. First we can confirm that they are consistent with initial 

conditions through two stages of differentiation with respect to time. If we take the 

resulting differentiated expressions, and set t = 0, we find that 

dI'(0)/dt = c1 

d2 '(0)/dt2  = 2c1a9  

d'(0) = 

d2 '(0)/dt 2  = 2 C2 00 

which show exact agreement with the specified initial conditions in (4.58) and (4.59). 

For our second confirmation, if we remove all time-dependent terms from (4.69) and 

(4.70) we see that the expressions can be rewritten as 

= b2 c2  + (0070 - ab)c1 
'I and 	' = 

219(ab - ag/3e) 

a2 c1 + (ag -y9  - ab)c2  

2'y9 (ab—ae /39 ) 

These agree exactly with the stationary case solutions produced in Section 4.4 (see 
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Equations (4.28) and (4.29)). 

4.5.5 Spatial-Temporal Auto-Covariance Values 

Taking the exact auto-covariance expressions above, we can evaluate them for any 

given set of system parameters. In doing this we obtain a qualitative description of the 

auto-covariance behaviour for different types of spatial reaction system, and also obtain 

some quantitative measure of the population structure in the full stochastic system. In 

all of the numerical evaluations in the following section, we deal with our generic two-

species system, using Turing's instability parameter (I) as the main tool for investigating 

our parameter space. We thus choose to set the following parameter values (as used 

for the standard realisations detailed in Chapter 3) detailed earlier in this chapter in 

Section 4.4.2. 

Sub-critical scenarios 

Figure 4.4 shows the time evolution of a selection of auto-covariance values for a sub-

critical spatial reaction system. It can be seen that the spatial-temporal auto-covariances 

grow from zero to reach steady-state values within 20 time units. Figure 4.4 highlights 

the positive correlation between perturbations of both X and Y reactants that are 

separated by two, one or no cells (i.e. u < 2), whereas those separated by a lag of five 

cells have a negative correlation. The final covariance values attained with this system 

equate exactly with the stationary scenario detailed earlier (see Figure 4.3). 

This growth of temporal auto-covariances towards the stationary state values can be seen 

in more detail in Figure 4.5. This graph shows the growth in magnitude of correlations 

for all u values in the 50-cell system, as the evolution time progresses. It can be noted 

that for very small times (e.g. t = 10) correlations are negligible for all but small (i.e. 

u < 5) lag values. However, as the system develops strong long-range correlations are 

created in the expected five-wave pattern. 

We can further investigate the effect of variation in system instability for the sub-critical 

scenario in terms of the magnitude of the correlations produced, and the time taken to 

reach the stable steady-state solution. Figure 4.6 shows both of these effects. Studying 
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Figure 4.4: Sub-critical temporal auto-covariance values 
Using a system instability of I = —0.1 this graph shows a selection of temporal 
auto-correlations for differing cell lag values. The system parameters are set to our 
standard linearised generic two-reactant spatial reaction system. 

the maximum auto-covariance value (i.e. taken for u = 0) we see that as the sub-critical 

instability decreases in magnitude, then the auto-correlation values for perturbations in 

both species increases, very rapidly so for very small instability values. In addition, 

we can see from graph (b) in Figure 4.6 that as the stationary state correlation value 

decreases, so does the time taken to reach stability. 

Thus, in the sub-critical scenario, we see that for high magnitude instabilities there are 

only very short range correlations between perturbations in either reactant type. These 

correlations are also very small in magnitude, and are established on very short time-

scales. However, as the system parameters move towards criticality, we obtain strong 

correlations between perturbations throughout the spatial reaction system, although such 

correlations only become fully established over long time-scales (e.g. many hundreds 

of time units). 
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Figure 4.5: Sub-critical spatial auto-covariance values 
Using a system instability of I = —0.001 this graph shows a selection of spatial auto-
correlations for differing time values. The system parameters are set to our standard 
linearised generic two-reactant spatial reaction system. 

Super-critical scenarios 

If we now consider the super-critical scenario of our standard two-reactant spatial 

reaction system, we can again calculate spatial-temporal auto-covariances for both 

reactants. Here we know that we do not obtain any stationary state for these systems, 

as all reactant perturbations will tend to move away from equilibrium. 

Figure 4.7 shows the spatial auto-covariances for a super-critical system with very small 

instability (I = 0.001). We observe a pattern very similar to that for the sub-critical 

case in Figure 4.5 - we find long-range correlations that produce a wave-like pattern 

that grows in magnitude with time. In this scenario, however, the covariances are not 

limited by the stationary state values, but continue to grow with time. 

As we increase the instability for super-critical systems we find that all auto-covariance 

values become explosively large in finite time-scales. It is only in short times (e.g. 

t < 50) that we can observe interesting effects. However, since it is these time-scales 

that define eventual system morphology, it is of significant importance to study short- 
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Figure 4.6: Auto-covariance variation with sub-critical instability 
These two graphs detail the variation of auto-covariance values with system instability. 
The left-hand graph (a) shows the maximum auto-covariance value (i.e. the variance, 
when it = 0) with varying sub-critical instability. The right-hand graph (b) shows the 
rise to stationarity for the X reactant auto-covariance (again with it = 0) for a variety 
of instability values. 

term correlation development. 

Figure 4.8 shows temporal auto-covariances for a selection of cell lag values for a 

system with instability. I = 0.1. It is clear that all covariance values have left the scale 

of the graph before time t = 50, however some very interesting activity can be identified 

before this time. Firstly, we can observe that there are growing positive auto-covariances 

for the Y reactant at lags u = 0 and it = 1; and there are growing negative correlations 

for X reactant at u = 10 and for the Y reactant at u = 5. However, more interesting 

behaviour is found for the X reactant at lags u = 0 and it = 1. In these cases we see 

a positive auto-correlation (at small times) reach a maximum value and then turn to a 

strong negative correlation. A similar activity takes place for the Y reactant at u = 10, 

where an initial negative covariance becomes positive once t > 28 time units. 

Thus, in this super-critical scenario with high instability, we see that an X perturbation 

will tend to reinforce itself for up to 46 time units, after which point there will be a 

strong negative correlation. In contrast, Y perturbations have an ever increasing positive 

auto-correlation for cells close to the perturbation, and increasing negative correlation 

for cell perturbations one half wavelength distant. 
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Figure 4.7: Super-critical spatial auto-covariance values 
Using a system instability of I = 0.001 this graph shows a selection of spatial auto-
correlations for differing time values. The system parameters are set to our standard 
generic linearised two-reactant spatial reaction system. Note the growing strong long-
range auto-covariances that follow a five-wave pattern. 

We can compare the results in this section to the stochastic simulations detailed in 

Chapter 5. We see that graphs such as Figure 4.4 and Figure 4.8 and the equations 

they represent - (4.69) and (4.70) - provide us with a direct measure of the expec-

ted development of stochastic perturbations within our spatial reaction systems. The 

expected lifetimes of perturbations, and the size and range of their expected influence 

can be used directly by our parallel computer implementations (see Chapters 6 and 7) 

to ensure efficient and effective simulation. 
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Figure 4.8: Super-critical temporal auto-covariance values 
Using a system instability of I = 0.1 this graph shows a selection of temporal auto-
correlations for differing cell lag values. The system parameters are set to our standard 
generic two-reactant spatial reaction system with linearised interaction coefficients. 
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Numerical Simulation of Stochastic 

Spatial Reaction Systems 

It is not knowledge but the act of learning, not possession but 

the act of getting there, that grants the greatest enjoyment. 

- Carl Friedrich Gauss 



5.1 An Introduction to Stochastic Simulation 

As discussed in the previous chapter, increasing attention is being paid to the import-

ance of stochastic systems. It is generally accepted that many physical, chemical and 

biological systems can be understood fully only by considering their stochastic repres-

entations. However, in many fields of science stochastic analysis is still less advanced 

than its deterministic equivalent, and for this reason stochastic study has often been 

restricted to computer simulation work (see Morgan [1984]). In the analytic work 

detailed in Chapter 4 we have provided a first level of understanding for the spatial-

temporal development of reaction systems. We found that inherently stable systems, 

lying near equilibrium, but subject to Gaussian noise perturbations, will produce changes 

in reactant levels that follow distinct and regular patterns, dependent on basic system 

parameters. This analytic result shows predicted stochastic behaviour similar to the 

recent experimental work of Vibert [1994] who observes that random noise activity 

produces regular frequency behaviour patterns within neural network models. In this 

chapter we detail the results of our stochastic simulations of spatial reaction systems, 

and thus present the empirical confirmation of our analytic work. 

In Section 3.1 we detailed the functionality provided by a suite of computer programs 

developed to perform deterministic realisations of spatial reaction systems on a variety 

of computer systems. This software also provides a facility to perform stochastic 

simulations of spatial reaction systems. In fact, for the majority of the simulations 

detailed in this chapter, the software is a single program, and by use of command line 

arguments the realisation can be chosen to be deterministic or stochastic. In addition, we 

have provided the user with the opportunity to switch between these two modes at run 

time. This allows investigation of the effects of stochastic development on a persistent 

system state, as well as the study of the recovery of a deterministic steady state from a 

previously stochastic scenario. 

The development of this software package enables a wide range of simulations to be 

investigated with relative ease, and the important results of this work are detailed later 

in this chapter. These results are often substantially different from those obtained in 

the deterministic regime, and much of our effort will go into highlighting and analysing 

such departures from the deterministic solution. Later (in Chapters 6 and 7) we will 

make direct use of both our theoretical and empirical results in order to produce efficient 
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and effective implementations of stochastic spatial reaction systems. Such studies will 

highlight, from the programming perspective, an important division between determ-

inistic and stochastic computer realisations of numerical systems - the time taken to 

compute the solution. The problem of long simulation times is enhanced as we look 

to study larger, more complex, systems over long timescales. Unfortunately, this is 

exactly the direction in which we must move if we are to produce results that resemble 

real-world systems. 

When solving deterministic systems, efforts are obviously made to ensure that the 

numerical solution technique in use is accurate. This often involves using time incre-

ments that are small enough to guarantee that the approximations made in the numerical 

solution technique remain valid. This point aside, the solution technique is generally 

straightforward, and solution times are consistent and, for most system sizes, small, 

even when executed on a standard desk-top workstation. However, for stochastic simu-

lations we must employ different solution techniques, and these often prove to be both 

expensive and unpredictable in terms of computer time. To overcome the former of 

these problems we can turn to supercomputing resources for our long-term or large-time 

simulations. However, even there our work can be severely disrupted if we cannot 

predict the run-time of our simulations. In addition, most available supercomputers are 

now parallel architecture machines (see Section 5.2) and it can be difficult to achieve 

optimum performance on such machines, especially for stochastic simulation calcula-

tions. We will return to this subject in Chapters 6 and 7, and introduce some of the new 

implementation techniques and programming algorithms we have developed. 

5.1.1 Computer Implementation of Stochastic Simulations 

There are now a small number of standard methods for performing stochastic simulations 

on computers, and these techniques are widespread throughout all scientific disciplines. 

The basis for all of these techniques lies in the concept of a program generating a series 

of random numbers to compare against the probability of an event occurring within the 

simulated system. This technique has its foundation in the earliest days of computing in 

the work of Metropolis et a! [1953] when it was introduced as the Monte Carlo technique 

- due to the similarity with the generation of a series of "random" numbers on a roulette 
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wheel. Using this technique we can construct a program such that for a given small 

increment in time (St) we have a set of probabilities that certain possible events will 

occur. We then decide which (if any) event actually does occur by comparison with 

the generated random number. For example, if we consider a process where a single 

population of size X can undergo either birth or death with given deterministic rates 

,\ and i. We can state that the probability of a birth occurring in time St is X)St and 

the probability of a death is X5t. Thus for each individual member the probabilities 

of giving birth (Pr(B)) and dying (Pr(D)) are 1uSt and -ySt respectively. Although our 

spatial reaction system simulations are obviously more complex than this (for example, 

see Equations (4.3) and (4.4)), the same simulation principles can be applied. Thus for 

a given St a uniform random number (u) is generated (in the range 0 to 1) for each 

reactant. We then make an arbitrary choice that if u < Pr(B) then a birth event will 

occur for that particular individual, whereas if u > 1 - Pr(D) then the individual will 

die. There are clearly different methods for performing stochastic simulations. For 

example, we could calculate the expected time until an event occurs, and at that point 

choose a particular event. However, as will be stressed later, it is vital that our spatial 

reaction systems simulations retain discrete individuals within the model, each of which 

can be subject to different interaction probabilities and thus tracked uniquely. In order 

to allow efficient parallel supercomputer implementations this individual basis for the 

stochastic models suggests the use of our selected simulation technique. 

Our large-scale Monte Carlo processes are computationally intensive for two reasons: 

they require the generation of very many random numbers; and they need separate 

calculations to be made for each individual reactant. Execution time profiling of almost 

any stochastic simulation code will show that a large proportion of run time is spent in 

the random number generation routine. This can lead to a temptation for very simple 

random number generators which often produce cycles of numbers with very small 

periods. However, if we are to have any confidence in our stochastic simulation results 

we must ensure that the random numbers we use to make probabilistic decisions are 

totally uncorrelated. Much work has been performed in this field, and efficient generators 

with massive periods are now available from standard texts (e.g. Press et al [1988]),  and 

such functions are used in all our simulation work; their high execution-time costs have to 

be accepted as inevitable. In contrast, the additional cost of performing calculations for 

individual reactants rather than for whole populations (as in the deterministic scenario) 
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may seem like something to be avoided. Although it is true that simulation techniques 

are available that do not require this complete discretisation of system reactants, such 

methods cannot be used if one considers this work in terms of our final aims (see, for 

example, the case study in Chapter 8). Since we are dealing with reactants that have 

certain attributes specific to the individual, and more importantly, the situation when 

such attributes are evolving in time, we find that we are forced into making probabilistic 

decisions at the level of the individual reactant. 

In addition to the cost of many individual-specific calculations, stochastic simulations 

are also hindered by the need to ensure that the time increments used are small enough to 

ensure that only one event can occur in a given time St. If this were not the case, we could 

encounter the unrealistic situations of a reactant both dying and reproducing at the same 

instant, or alternatively, of a particular event having a probability greater than unity. In 

the non-linear systems we simulate in this work, it can be seen from Chapter 4 that the 

probability of events is often related to the current population of a cell. Since these 

populations are unpredictable a priori, and can often become very large, this requires us 

to use values of St that are very small, thus ensuring that individual event probabilities 

always remain small. It has often proved necessary in this work to use values of St one or 

two orders of magnitude smaller than those used in the deterministic realisation work - 

typically St 0.0005 time units. This said, it is nevertheless a straightforward process 

to implement adaptive simulation time-steps. Thus St can shrink to accommodate large 

populations, or can expand when all populations are small. 

The algorithm used for the simulation of the development of one-reactant type in a 

general spatial reaction system is given in Figure 5.1. The terms birth and death are 

used purely to assist in understanding the process. It must be noted that for a chemical 

or biological system such abstract concepts should merely be regarded as reflecting unit 

increases or decreases in reactant concentration. 

5.2 Using Parallel Computers for Stochastic Simulation 

Throughout the history of scientific and numerical computing there has been a desire 

to achieve the ultimate performance from a computer. The term "supercomputer" was 

coined in the early 1970s to describe a machine that performed calculations at a rate way 
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For each cell 

calculate birth and death probabilities 

check probabilities sum to significantly less than unity 

for each reactant in cell 

generate a uniform random number u(0,1) 

compare against birth and death probabilities 

perform necessary births and deaths 

next reactant 

calculate migration probabilities 

for each reactant in cell 

generate a uniform random number u(0,1) 

compare to migration probabilities 

perform necessary migrations 

next reactant 

next cell 

Figure 5.1: Stochastic simulation algorithm 
This pseudo-code details the structure of the particular algorithm used to simulate the 
development of a general spatial reaction system. The terms birth and death are used 
in a general sense, and simply represent positive or negative unit changes in reactant 
levels. 

in excess of that achieved by standard computers. The term is probably over-used today 

as all manufacturers clamber to identify their particular product as a supercomputer. 

However, one thing that is now certain is that all computer manufacturers are look-

ing towards some form of parallel computing architecture for their high performance 

machines. 

Parallel computing is simply the use of multiple processing units for the collaborative 

solution of a particular problem. For the past forty years computer performance has 

managed to maintain an approximate ten-fold increase in performance every five years. 

Although micro-processor performance is still improving, the rate of annual increase has 

shown a distinct decrease in recent years. This is in most part due to hardware engineers 

beginning to push against the fundamental laws of physics. Namely, electrons cannot 

travel faster than the speed of light; they must travel at least some finite distance to effect 

an operation in a silicon chip, and this distance must be sufficient to allow quantum 

physical effects (i.e. uncertainty) to be negligible. Thus single processors may become 

increasingly compact, and hardware research continues to develop mechanisms to en-

hance processor speed (e.g. reduced instruction set (RISC) architectures, see Patterson 

& Sequin [1982]). However, we know that there are fundamental limits to the ultimate 
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performance obtainable from an electronic micro-processor. Thus the only mechanism 

whereby we can obtain yet more computational performance is to make use of a number 

of processors concurrently - called parallel processing. 

The idea of parallel processing is not new. Most human and natural systems operate 

in an inherently parallel manner, and it is perhaps unfortunate that early computing 

machines introduced the notion of sequentialisation for the sake of simplicity. Computer 

programmers have been stuck with that framework ever since. The quote below from 

Lewis Richardson [1922] (highlighted recently by Wallace [19881) dates from over 70 

years ago, and shows that parallel thinking seemed to come naturally to a scientist, 

long before mechanical computers came into existence. The computers referred to by 

Richardson are in fact individuals put to work on a particular arithmetic calculation 

(with pencil and paper) as part of solving a global weather prediction problem. 

If the time-step were 3 hours, then 32 individuals could just compute two points 

so as to keep pace with the weather, if we allow nothing for the very great gain 

in speed which is invariably noticed when a complicated operation is divided up 

into simpler parts, upon which individuals specialise. If the co-ordinate chequer 

were 200km square in plan, there would be 3200 columns on the complete map 

of the globe. In the tropics the weather is often foreknown, so that we may say 

2000 active columns. So that 32 x2000 = 64000 computers would be needed to 

race the weather for the whole globe. That is a staggering figure. Perhaps in 

some years' time it may be possible to report a simplification of the process. But 

in any case, the organisation indicated is a centralforecast-factory for the whole 

globe, or for portions extending to boundaries where the weather is steady, with 

individual computers specialising on the separate equations. Let us hope for their 

sakes that they are moved on from time to time to new operations. After so much 

hard reasoning, may one play with a fantasy? 

In order to classify computer architectures a variety of different taxonomies have been 

developed. Perhaps the most commonly used in the parallel computing field is that from 

Michael Flynn [1972]. Flynn's taxonomy classifies the available computers as follows, 

based on the number of streams of instructions and of data. 

SISD: Single Instruction stream, Single Data stream. This is the theoretical basis 
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for the simple single processor machine (from Personal Computers to standard 

mainframes), and is the conventional von Neumann architecture [1963]. 

SIMD: Single Instruction stream, Multiple Data stream. Here many processors simul-

taneously execute the same instructions, but on different data. This is the basis for 

massively parallel machines like the AMT Distributed Array Processor (DAP), 

or Thinking Machines' Connection Machine. Both of these machines use many 

thousands of very simple processors and can thereby achieve "supercomputer" 

performance on certain problems. 

MISD: Multiple Instruction stream, Single Data stream. Such a machine would apply 

many instructions to each datum fetched from memory. No computers that 

conform strictly to this model have yet been constructed, although there is some 

debate as to whether the Dataflow machine could fit into this category of Flynn's 

taxonomy. 

MIMD: Multiple Instruction stream, Multiple Data stream. This is an evolutionary step 

forward from SISD technology. A MIMD computer contains several independent 

(and usually equi-powerful) processors, each of which executes its individual 

program. There are several ways of building such a machine - the differences 

lie in how processors are linked together for communications, and how each is 

linked to memory. 

Of Flynn's classifications, only SIMD and MIMD are currently relevant to parallel 

computing. In this work we have exploited both of these major architectural variants, and 

have developed specific parallel implementation techniques for each. These techniques 

will be detailed in later chapters; in this section we simply introduce the concepts behind 

the different architectural classes. 

5.2.1 SIMD: Data Parallel Machines 

The basic architecture of an SIMD computer can be seen in Figure 5.2. A large number 

of simple processors all execute the same piece of code (broadcast by a host orfro nt-end 

machine) in complete synchronisation, but operate upon the data in their individual 

memory stores. This approach is data parallel computing, using a single instruction 
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thread for straightforward programming, but using parallelism within the program data 

to extract high performance. There are simple extensions to standard languages that are 

usually used when programming such machines. These extensions allow the transfer 

of data between neighbouring processors, as well as the masking of operations to allow 

selective execution of some tasks. The data parallel programming paradigm is the basis 

for much of the current effort in establishing the new High Performance Fortran (HPF) 

standard (see Koelbel [1994]). 

HOST 	 I 	INTERFACE 

One-bit processors 

Array memory 

Eight-bit 
processors 

Figure 5.2: Typical SIMD architecture 
This diagram shows a schematic layout for a typical SIMD computer. This image is 
based on the AMT DAP machine, with an array of simple single-bit processors. A 
separate array of eight-bit co-processors, and columns of array memory, are directly 
available to each processor/co-processor pair. 

An example of an SIMD computer is the Distributed Array Processor (DAP) from AMT. 

The machine consists of a two-dimensional grid of bit-serial processors. In the machine 

used for some of our early experimental work, there are 4,096 processors arranged 

in a 64 x 64 grid with periodic boundary conditions. The machine is hosted from a 

Sun workstation, and provides a clean development environment with a familiar and 

stable operating system. The DAP runs a derivative of the Fortran language called 

Fortran-Plus, which includes all the necessary functions to operate selectively, as well 

as to transfer data, between processors. A second SIMD machine (the Connection 

Machine CM-200) has been used for the majority of the two-dimensional data parallel 
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simulations described later in this chapter and also in Chapter 7. This machine contains 

16,384 processors and is also hosted by a Sun workstation; it runs data parallel variants 

of both C and Fortran. 

5.2.2 Shared Memory MLMD Computers 

This class of MIMD machine is typified by computers such as symmetric multi-processor 

high performance workstations, or multi-processor mainframe machines. These systems 

use standard microprocessors in modest numbers, typically attached to a single memory 

store by bus-based links. Shared memory machines allow much existing system software 

to be re-used, as well as implementing many well-understood ideas about managing 

simple concurrency, e.g. semaphores to manage multi-tasking (see Dijkstra [19651). 

The major draw-back with this class of MIMD machine is that there is an upper limit 

on the number of processors that can be used with shared processor-to-memory links. 

A typical shared memory architecture is shown schematically in Figure 5.3. Each 

processor has a direct link via some bus mechanism to a single global memory store 

(although increasingly some use is being made of local memory caches). Processors 

can "communicate" through objects placed in global memory. This is conceptually easy 

to implement, but has severe implications for the amount of message traffic through the 

single bus link to memory. There are also problems with memory access control. For 

example, how to select which process should update an item of memory when two wish 

to do so concurrently; or the fact that memory locations may need to be "locked" to 

outside processes when input or output (I/O) is being performed. 

Shared memory computers are attractive primarily because they are relatively simple to 

program. Most techniques developed for multi-tasking computers, such as semaphores, 

can be used directly on shared memory machines. However, these machines have one 

great flaw in that they cannot be scaled-up infinitely. As the number of processors 

trying to access memory increases, so do the chances that processors will be contending 

for such access. Very quickly access to memory becomes a bottleneck to improving 

the speed of the computer. Some machine architectures attempt to avoid this problem 

by dividing memory into as many sections as there are processors, and connecting all 

segments to processors through a high-performance switching network. However, this 
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Figure 5.3: Typical shared memory MIMD architecture 
This diagram shows a schematic lay-out for a simple shared memory multi-computer. 
An array of processors is attached to a central memory store via some shared (typically 
bus-based) link. System software is usually implemented in order to control concurrent 
read and write access to shared data items. 

eventually leads to the same effect and cripples the performance of the switch. The 

escape route for shared-memory architectures is to introduce memory caches on each 

processor. This is, of course, simply the first step towards full distributed memory 

machines. 

5.2.3 Distributed Memory MIMD Computers 

This class of MIMD computer typically contains machines with much larger numbers 

of processors, and thus is often thought of as medium-grained parallelism, as opposed 

to fine-grain SIMD machines and coarse-grained shared memory MIMD computers. 

Machines in this class can avoid the memory access bottle-necks of shared memory 

systems by distributing memory, giving some to each processor. 

Figure 5.4 shows schematically the architecture of a typical distributed memory machine. 

The reasons for distributing memory were discussed earlier as the case against shared 

memory. However we must now consider how to solve the main problem that distributed 

memory raises - how will the processors be connected and communicate in order to 

solve their shared task. Connecting all the processors to a bus, or through a single 
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Figure 5.4: Distributed memory MIMD machine architecture 

This diagram shows the schematic architecture for a simple distributed memory MIMD 
computer. Individual processors have dedicated access to a section of the computers 
memory. Processors are then inter-connected in order to be able to share data values, 
and to synchronise their operation if required. 

switch, brings back the bottlenecks of shared memory systems. Introducing connections 

from each processor to all other processors is completely infeasible for large numbers 

of processors, since the number of necessary connections rises as the square of the 

number of processors, and therefore soon becomes too large to contemplate. The only 

practical solution comes from connecting each processor to some small subset of the 

others. Many computers have been built that do exactly this, with a fixed topology 

of inter-processor links - for example, the hypercube based machines (see Hayes et 

al [1986]).  The alternative is to use switching chips between processors that allow the 

user to adapt the topology to suit the particular program being run. This technology 

was pioneered by Meiko in their Computing Surface machines which are based upon 

standard four-link Transputers from Inmos (see Smith in Trew and Wilson [1991]). 

Such four-link devices allow the creation of many topologies such as processor trees, 

meshes and 4-1) hypercubes (see Figure 5.5), which can then be suitably applied to most 
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Figure 5.5: Possible topologies with four-link processors 
Given independent processors with four available communication links, we can con-
struct a variety of useful multiple processor topologies. Binary and tertiary trees can 
be used efficiently to solve search or divide and conquer problems. Two-dimensional 
meshes are ideal for a wide range of physical system simulations, and four-dimensional 
hypercubes are often used in theoretical physics calculations where all four spatial and 
temporal dimensions must be simulated. 

physical applications. Once a given topology is in place, we then require a programming 

environment and toolkit to allow efficient use of a distributed memory machine. We 

discuss these problems and their solution later in Section 5.2.4. 

If we accept that the future of general purpose high performance architectures lies in 

distributed memory multi-computers, then the only problem we face is deciding what 

development and programming environment is made available on these future machines. 

We have already seen the manufacturers of tran sputer- based machines moving away 

from the Occam language towards providing tools to allow multiple sequential processes, 

written in C or Fortran, to run in parallel. It seems likely that even further in the future, 

machines will become available that hide all the fine details of the machine architecture 

from the programmer. The provision of high bandwidth, low latency, communications 

systems should enable high-level programming models to become more efficient, thus 

leading users to a virtual shared-memory machine. This would contain the power 
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benefits of a distributed memory design, with the ease-of-use of a shared-memory 

system. Other potential innovations would be an efficient, possibly hardware based, 

process-to-process message passing system common to all architectures. This would 

have the effect of making parallel versions of software portable between different 

machines, with possibly very different architectures. This same goal is currently being 

explored with the provision of a Fortran 90 standard (see Ellis [1990]) that would 

provide extensions for parallel data structures, and thus allow porting of code between 

any machine with a suitable Fortran 90 compiler. While such developments are still 

being studied, those wishing to use parallel machines must be willing to get involved in 

understanding the nature of the underlying architecture, and write their software to take 

best advantage of the features of these systems. 

5.2.4 Extensions to the Standard Computing Model 

In order to use the parallel architectures detailed above, we must add specialised func-

tionality to our model of computing. Such additions can make parallel computing more 

complex, and do not always guarantee that extra programming effort will result in com-

mensurate performance improvements. There are three basic types of parallel computer 

programming: 

• In trivial parallelism we simply wish to execute a program a given number of 

times, perhaps with a selection of initial conditions or parameters. In such cases 

we can use multiple processors running the standard sequential software, but each 

loaded with the instructions for a subset of the desired executions. This type of 

parallelism often leads to task farming of a problem. 

• In functional parallelism we identify different operations from within a program, 

and attempt to apply these operations concurrently on parallel processors. This 

approach often leads to pipelining of an implementation. 

• In data parallelism we typically run identical programs, but each operates on some 

subset of our problem data. There are a variety of methodologies to decompose 

our data set, depending upon the nature of the data and the available architecture. 

However, they will all generally use the data structures from the original problem 
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to define the decomposition strategy to be used. 

It is clear that all these parallel computing methodologies are centred on the division of 

a computation between multiple processors, either in terms of problem data, or program 

functionality. 

Decomposition 

In general a program can be split into two parts, namely sections that are inherently 

sequential (e.g. accepting input data from a user), and sections that are potentially 

parallel (e.g. independent operations on the data). In addition it is often possible 

to identify separate sequential streams that can be executed concurrently. The main 

objective of parallelisation is to reduce execution time by decomposing the problem 

to allow parallel execution. It is important to consider how we can identify potential 

parallelism within a sequential program. 

The most frequently exploited source of parallelism is within iterative constructs. Al-

most every scientific or numerical program contains loops of the sort: 

Do I = 1, 2000 

Call Operate(I) 

End Do 

Given a large number of processors, each could be programmed to perform the Operate 

procedure upon a particular subset of I values. The task of decomposition therefore 

becomes that of deciding how to divide up the set of I values. Potential decomposition 

schemes may also be identified by studying the data structures within sequential code. 

There is obviously overlap between these two areas, since programs often contain 

iterative constructs to loop through the elements of data structures, e.g. 

Do I = 1, 2000 

Answer[I] = Question[I] ** 2 

End Do 
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Figure 5.6: Boundary exchanges within a decomposed data structure 
A two-dimensional data structure is decomposed to allow parallel solution of an 
iterative nearest-neighbour process. This diagram shows the communication paths 
necessary to ensure that the required "boundary" information is exchanged between 
processes with responsibility for calculations within neighbouring regions. 

For these cases of potential parallelism it is important that full consideration be taken 

of data dependencies within the program. Functions that use the same data will need to 

communicate new values between each other, and iterative constructs cannot always be 

simply decomposed. Take, for example, the case 

Do I = 1, 2000 

Answer[I] = Question[I-1] -2*Question[I] + Question[I+1] 

End Do 

Here all processors will not necessarily have all the information they need to complete 

the operation, as they will only have direct access to a subset of the current array values. 

Some communication will therefore be necessary to allow boundary values to be known 

to all processes. This requirement is shown graphically in Figure 5.6, and illustrates the 

necessary communications structure for an iterative, nearest and next-nearest neighbour 

interaction process in two dimensions. 
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Granularity 

On the assumption that a successful decomposition has been performed, we must now 

consider how efficiently the decomposed program can be executed in parallel. For 

example, is the best performance achieved through use of maximum parallelism, i.e. 

using as many processors as possible? Since there is almost always a considerable 

cost involved with decomposing a problem into a number of sub-problems, this is 

generally not the case. In addition to the cost of problem decomposition itself (which 

will usually increase with the number of sub-problems), we must also consider the 

need to communicate between the separate sub-problems, both to share data as well 

as to synchronise execution (as in Figure 5.6). Almost all communications have a 

detrimental effect upon execution time, and thus large message numbers or volumes 

can severely damage calculation efficiency. It is therefore important to choose the 

correct granularity for the decomposition of the problem. A large granularity (i.e. a 

small number of large tasks) may not extract all the available parallelism, whereas a 

small granularity (i.e. a large number of small tasks) may swamp the calculation in 

communication and decomposition costs. 

Load Balancing 

The third major consideration for successful parallelisation is whether the sub-problems, 

allocated to processors as a result of the decomposition, all require the same execution 

time. If the sub-problems are allocated one per processor, then the total execution 

time is dependent upon the execution time of the longest individual task - Amdahl's 

Law [1967]. If this task is inherently sequential (i.e. unparallelisable) it will always 

provide a measure of the lower limit for execution time, and no additional parallelism can 

hope to reduce run times any further. Although in such situations the overall performance 

is limited, efficiency can often be improved by better use of other processors, potentially 

freeing computing resource to work on other problems (see Figure 5.7). In addition, by 

placing more than one task on each processor we can potentially reduce inter-processor 

communication costs. 

The best level of efficiency is achieved by having sub-problems spread as evenly as 

possible across the available processors - called load balancing. Achieving this 
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balance is clearly dependent upon the decisions made during problem decomposition 

and the size of granularity selected. If either of these are poor then the load balance 

can rarely recover the efficiency of the implementation. Figure 5.7 shows how to 

achieve this most efficient use of the available processors by changing the granularity 

of decomposition. 

5.2.5 Parallelisation of Spatial Reaction Systems 

From the previous sections we see that optimal parallelisation results from the choice of a 

good decomposition scheme, coupled with the right granularity to ensure even balance 

of processor loads across available processors. For spatial reaction systems we can 

often use the spatial nature of our simulation data to suggest an optimal decomposition. 

We can thus assign particular regions of our simulation to particular processors in our 

parallel machine (e.g. as in Figure 5.6). Since the operations to be performed for each 

location are generally identical, this approach is suitable for both MIMD and SIMD 

implementations, as detailed later in Chapters 6 and 7. 

In deterministic scenarios, when dealing with total reactant populations, the calculation 

cost for each location is guaranteed to be constant, and we can thus ensure efficient ex-

ecution by placing equal numbers of spatial locations on each processor. This approach 

is straightforward, and can produce immediate speed improvements, for example the 

Connection Machine CM-200 can produce deterministic results at 850 times the rate 

of a Sun4 SPARCstation (see Chapter 7). However, parallel implementations of such 

systems are not always required, as calculation times can be relatively short even for 

large versions of these systems. 

Where computational restrictions do tend to occur is with stochastic simulations. As 

mentioned earlier, me must be prepared for the increased cost of calculating very many 

random numbers. This suggests that we look to use high performance computers for all 

our major stochastic simulations. In the early stages of this work we made extensive use 

of a transputer-based Meiko Computing Surface, a distributed memory MIMD system. 

Each of the processors in this machine could perform approximately one million float-

ing point operations per second (1 MFLOPS), a performance equivalent to a standard 

departmental mainframe of the time (e.g. a VAX 750). We were able to make use 
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Figure 5.7: Freeing processor resource by using load balancing 
A straightforward graphical representation of the inter-play between the mechanisms 
of decomposition, granularity and load balance. We can improve efficiency with better 
load balance, and we can reduce overall run-times with finer granularity. 



of "domains" with up to 130 of these processors. We therefore had access to a very 

high performance computing resource; provided it could be efficiently programmed. 

Transputers have now, of course, been surpassed by RISC-type workstation processors 

a single DEC Alpha processor can currently achieve up to 150 MFLOPS perform-

ance. However, in our desire to investigate more simulation scenarios, in ever-greater 

complexity, our parallel programs are written to make use of large numbers of such 

processors concurrently. In the meantime, the trend for increased computational power 

continues. For example, the new Cray T313 massively parallel supercomputer at the 

Edinburgh Parallel Computing Centre contains 256 DEC Alpha processors and can de-

liver 50 billion floating-point operations per second (50 GFLOPS). We are certain that 

our future studies of stochastic spatial reaction systems will attempt to make use of the 

extraordinary power of such systems. 

In addition to the load of many random number calculations, since our stochastic 

simulations are required to track individuals results in a location-based decomposition, 

we no longer have a guarantee of good load balance for these systems. In fact, from our 

simulation results shown later in this chapter, we know that often single locations can 

contain several orders of magnitude more reactants than the average. Such situations 

can lead to drastic imbalance in processor loads, and hence highly inefficient use of 

parallel computers. This problem is aggravated in our particular spatial reaction system 

as it is typically extremely difficult to predict the location, distribution and temporal 

occurrence and longevity of high population locations (hot-spots). It can thus be 

impossible to design an effective decomposition and load allocation strategy in advance 

of stochastic simulation. We have therefore found that we must consider dynamic 

methods for load-balancing, whereby computations are allocated (or re-allocated) to 

processors at run-time, using an adaptive mechanism to ensure optimal load balance. 

Dynamic load balancing has been a major issue for parallel and distributed computing, 

almost since the first such machines were used (see Fox et a! [1988]).  Many of the 

simulation results presented in this chapter are made achievable, not only by the present 

availability of parallel supercomputers, but also by the use of dynamic load balancing 

techniques developed during the course of this work (see Smith and Wilson [1991], 

Smith [1993], and Smith & Renshaw [1993]). 

Chapters 6 and 7 detail two specific load balancing algorithms developed for spatial 



reaction systems on MIMD and SIMD architectures respectively, as well as the per-

formance results achieved through use of these techniques. However, in this chapter 

we now concentrate on simulation results purely in terms of spatial reaction systems, 

and their relation to our analytic results detailed in previous chapters. Perhaps the most 

important of these results are those that allow us to extract some link to our analytic 

understanding of such systems. Given a quantifiable understanding of the nature of 

stochastic system development, e.g. underlying population growth or decay rates, or 

the expected distribution of population hot-spots, these results have then been used to 

confirm parameter inputs to our dynamic load balancing functions. This enables the 

resulting implementations to automatically perform at near optimal efficiency for any 

given spatial reaction system. 

5.3 One-Dimensional Stochastic Simulations 

The majority of the simulation results detailed in this section are based around our 

generic one-dimensional spatial reaction system. Maintaining consistent values for 

the majority of system parameters allows greater insight into the fine effects produced 

by varying the remaining parameters that have been shown to be of earlier interest. 

Our "standard" system was introduced in Chapter 3, and it is used throughout our 

investigations, whenever possible. There is obviously an endless amount of simulation 

work possible, even when restricted to our particular spatial reaction system. Although 

a great many scenarios have been investigated during the course of these studies, in this 

chapter we attempt to distill the general features of stochastic simulation results, in order 

to highlight the important aspects of these systems. Later we will detail results that are 

more particular to a specific application. Although such specific studies form the basis 

for the majority of our simulation investigations, full details of all results would prove 

too expansive to be reported herein. 

Our generic scenario contains two reactant types on a ring of 50 sites. Non-linear 

interaction coefficients are chosen to produce spatial wave structures of finite wavelength 

(see Section 2.2.3) with a single governing variable I - the system instability, as 

discussed in Section 3.1.2. Variation of I allows us to analyse the stochastic system 

in the three criticality states: with I < 0 we have sub-critical behaviour (in which a 
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deterministic realisation produces morphologically stable waves with amplitudes that 

decay exponentially towards equilibrium); with I> 0 we have the super-critical scenario 

of permanent deterministic waves; or finally, at criticality (I = 0), we have no governing 

eigenvalue, and the final system state is dependent upon initial conditions. The only 

other system parameter to be varied here is the system periodicity (\) which acts as a 

specification of the number of reactant waves expected around the ring. In effect this 

parameter controls the migration rates for each reactant, with increase in the numbers 

of waves corresponding to a decrease in migration rate. It will be seen later that the 

discrepancy between deterministic and stochastic patterns can vary substantially with 

the chosen migration rate. 

All of the results presented in this chapter relate to simulations of the full non-linear 

specification of our spatial reaction system. This choice is made on the grounds of 

accuracy of simulation; since our Monte Carlo techniques are a numerical calculation 

of the stochastic solution for the system, there seems little point in using additional 

approximations via linearisation of the interaction functions. Therefore, although linear 

realisations were studied as a comparison exercise for the deterministic regime, we feel 

that a similar comparison for the stochastic simulation case is of less worth. In addition, 

there are conceptual problems involved with simulating a linearised system in which we 

study the evolution of small perturbation rather than actual populations. As was seen 

in the deterministic case, linear realisations produce reactant "populations" that can be 

negative, since perturbations from equilibrium are allowed to explode in both positive 

and negative directions. However, when dealing with stochastic simulations, we must 

be much more aware of the reality of the system. Since we deal with unit changes in 

reactant populations or concentrations, once these reach zero, there can be no possibility 

of values then going negative. 

5.3.1 Short-Term Critical Simulations 

The first area of interest for our stochastic simulations, is the behaviour of the reactant 

populations in the short time period following initialisation of the one-dimensional 

system. We know from our deterministic results in Chapter 3 that initial conditions 

can have a direct bearing on our final system state. This is either because the system 
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is at criticality, or if (in either super- or sub-critical scenarios) any initial perturbation 

from equilibrium will lead to diffusion driven instability to create spatial waves in the 

cell populations. In all deterministic scenarios, if there is no initial perturbation from 

equilibrium, then no changing effects will be observed. In contrast a stochastic system 

will always be able to move away from equilibrium. 

Let us first look at the development of a stochastic critical system within the first time 

unit of evolution. Figure 5.8 shows four graphs of reactant populations in such a system, 

and they show a highly random state at early times (t = 0.2). However by t = 0.4 we 

start to see the stochastic populations settle down. Thus in the second graph we see the 

X- and Y-populations beginning to match each other in the individual cells, although 

any "wave" structure that exists has very short wavelength and is difficult to discern. 

As we move on to t = 0.8 we observe the first population explosion (in cell 35), and 

we can clearly see the beginnings of a stochastic wave pattern. This pattern has become 

quite obvious by the last graph (t = 1.0) where we can identify five major wave crests 

around the ring, although their locations are somewhat irregularly spaced. 

It is interesting to study the location of wave-crests in the development of this critical 

simulation. At time t = 0.8 we observe that five large populations have grown within 

each ten-cell region roughly bounded (in this particular simulation) by low populations 

in all cells that are numbered as a multiple of ten. However, from the slightly longer 

term graphs in Figure 5.9, by t = 3.0 we see the morphological structure changing 

substantially. For example, at t = 3.0 cells 0 and 20 now host large population 

concentrations, and we have a clustering of four peaks between cells 20 and 35. As 

the simulation progresses, the wave structure appears to move through completely 

unrelated morphologies - the graph for t = 4.0 in Figure 5.9 shows just four main 

reactant hot-spots now centred on cells 11, 26, 42 and 48. 

The above results cover the short- to medium-term development of stochastic waves 

at criticality. We would expect such systems to contain stochastic wave structures that 

are somewhat unpredictable, there being no leading eigen-value to drive the solution. 

This belief is born out by the simulation results shown, where we observe systems that 

undergo large variations in the number of waves present at the start of the simulation. 
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Figure 5.8: Short-term stochastic wave development at criticality 
These four graphs show reactant populations at various stages of stochastic system 
development. The system has non-linear critical interactions (I = 0). The graphs 
show the reactant populations at times t = 0.2 (top left), t = 0.4 (top right), t = 0.8 
(bottom left), and finally the emergence of clear wave structures at t = 1.0 (bottom 
right). 
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Figure 5.9: Stochastic wave departure from initial perturbations 
These two graphs show reactant populations at medium-term stages of stochastic 
system development. The system has non-linear critical interactions (I = 0). The 
graphs show the reactant populations at times t = 3.0 (left) and t = 4.0 (right). 

5.3.2 Short-Term Non-Critical Wave Structures 

Let us now examine the short-term behaviour of our standard system with non-zero 

instability values. In these simulations we have chosen to use strong initial conditions, 

with five equally spaced cells having initial populations of X ri = 15 and Y, = 15, and 

all other cells with Xr = X = 10 and Y = = 10. Here r' = 0, 10, 20, 30, 40, 

and from our deterministic results we would expect a wave structure to form with 

peaks at these locations. Figure 5.10 shows the temporal development of such a system 

in a super-critical state (I = 0.1). This graph is drawn in three dimensions, and 

shows only the population of reactant X, since the spatial-temporal distribution of both 

reactants follows the same general pattern (as can be seen in Figures 5.8 and 5.9). The 

vertical axis markings have been removed from Figure 5.10 to assist with clarity, and 

the X-population maximum is 1,500. We therefore see that our super-critical system 

undergoes only minor development during the first time unit, but then explodes into 

action. The graph details the emergence of five clear stochastic wave crests, and despite 

the opportunity in the first time unit to lose any effect of the initial conditions, we see 

that four of these hot-spots lie close to the "expected" location. 

Although mesh-based representations of the time development of our simulations are 

useful for viewing the scale of any wave structures, in order to identify crest location 
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Figure 5.10: Early time development of super-critical stochastic waves 
The population of reactant X within a 50-cell ring is shown for a short-term stochastic 
simulation, following an initial state with five positively perturbed cells. The system 
has non-linear super-critical interactions (I = 0.1). The graph shows the emergence 
of five clear wave crests, distributed fairly evenly around the ring. It is interesting to 
note the temporal persistence of these structures. The maximum value on the vertical 
axis corresponds to an X-reactant population of 1,500. 

and temporal persistence more accurately, we feel that a contour plot is more useful. 

Figure 5.11 thus provides a direct comparison of short-term simulations for the super-

critical scenario detailed above, along with similar plots for the sub-critical and critical 

systems. There are a number of features of these graphs that are worthy of mention: 

• The super-critical system develops stochastic waves that are much more regularly 

located then either the sub-critical or critical cases. 

• There is distinctly less stochastic "activity" in the sub-critical scenario. Hot-spots 

certainly do occur, but the population levels are lower than in either critical or 

super-critical scenarios. In fact, following the few initial population explosions 

between t = 0.5 and t = 1.5, the system seems to have returned to a very subdued 
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state by t = 2.0. 

• In the deterministic sub-critical case any initial perturbations always return to the 

equilibrium state. Although in the stochastic version we have a decay of popu-

lation hot-spots that is obviously faster than in the super-critical case, we should 

note that there still exists a clear five-wave structure, albeit with low population 

levels, and new population centres continue to develop (see Section 5.3.3 below). 

• Through comparison with the super- and sub-critical simulations, we now have 

an enhanced understanding of the important features from the critical scenario. 

Figure 5.11 shows that at criticality, although we have many examples of persistent 

stochastic wave crests, their number and location bears far less resemblance to the 

expected five-wave structure. For example, at t = 1.8 we appear to have six or 

seven stochastic waves in three main clusters around the ring. This gives yet more 

evidence that the critical case does not follow exactly the same morphological 

structure 'expected" from the system parameters. 

5.3.3 Long-Term Stochastic Wave Structures 

Using our high performance computing resources we are able to run our standard 

stochastic simulations over longer time periods. For example, simply the use of 20 

SPARC workstation processors (whether connected via a local area communications 

network, or within the Meiko CS-2 SPARC-based Computing Surface) increases our 

simulation time substantially, even if poor load balance leads to only 50% efficiency. 

In addition, efficient use of the SIMD architecture CM-200, or the MIMD CrayT3D, 

provides computing power well over two orders of magnitude greater than a powerful 

single workstation. Direct use of these resources this allows us to add to the results 

detailed in Section 5.3.2, which covered the early formation of wave structures. 

In general we see that we generate wave structure patterns that follow logically from 

these earlier results. It must be stressed that it is difficult to make definitive statements 

about the results of these stochastic simulations. By their very nature they exhibit 

strong random fluctuations in their structure, and we should never expect to observe and 

define regular emerging patterns. What we are therefore looking for is some general 
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Figure 5.11: Variation of stochastic wave development with criticality 
These contour plots show the spatial and temporal development of stochastic wave 
structures in a one-dimensional spatial reaction system. The system has non-linear 
interactions, and the three graphs represent the scenarios of super-criticality (I = 0. 1, 
top left), sub-criticality (I = —0.1, top right), and criticality (I = 0.0, bottom). 
Contour colours use a "rainbow" look-up table and show reactant levels between zero 
and 2,000. Blue represents populations below 200, red those between approximately 
500 and 1,000, yellow represents populations between 1,000 and 1,500, and green 
colours show those cells with more than 1,500 reactants. 

193 



description of the behaviour, and thus some extraction of qualitative features. In the 

following sections we will therefore describe particular details that we feel give an 

insight into the general system activity. It is encouraging that in doing this we see that 

the results can be matched to the stationary, and long term temporal covariance analyses 

produced in Chapter 4. In particular we observe that for systems with low magnitude 

instabilities we obtain wave patterns with many regular peaks, whereas for high sub-

and super-critical systems hot-spots are more irregularly located as well as being less 

numerous. 

Figure 5.12 shows some long-term snap-shots of a system that is close to criticality, 

with I = —0.001. These graphs show the consistent presence of between five and 

six roughly equal-strength wave crests. Although some of these hot-spots may change 

location, they are generally fairly consistent. For example, clear crests can be seen 

close to cells 4, 25 and 46 at all given times, and close to cells 14 and 35 on three of 

the four graphs. While these wave patterns certainly retain their stochastic nature (e.g. 

at time t = 40 we could postulate the presence of 10 wave crests) they are distinctly 

more regular and wave-like than those shown later (Figures 5.13 and 5.14). This is the 

result we would expect from our (linearised) stochastic analysis of these systems (see, 

for example, Figure 4. 1, where regular global correlations should exist throughout the 

system). 

In comparison, we can look at our spatial reaction system simulations with a high 

magnitude sub-critical instability I = —0.1. Thus Figure 5.13 details the evolution 

of a rather different system in some important respects. We now see a much wider 

variation in the number and location of strong wave crests, and the formation of a more 

inhomogeneous system, with localised areas of the spatial domain becoming either 

highly active or relatively quiet in terms of reactant hot-spots. 

The sub-critical analytic results detailed in Chapter 4 predict that systems such as that 

covered by Figure 5.13 should posses only short-range correlations between reactant 

populations. (see Figure 4.3) Thus activity effects close-neighbour locations only, and so 

no global patterns are to be expected. The graphs in Figure 5.13 exhibit this behaviour 

almost exactly, although again it is difficult to make definite quantitative claims for 

these simulation results, and we must be willing to see qualitative results. We see nine 

irregularly located waves at time t = 10, five when t = 25, and eight at t = 50. In 
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Figure 5.12: Long-term stochastic waves close to criticality 
These four graphs show reactant populations at various stages of stochastic system de-
velopment. The system has non-linear slightly sub-critical interactions (I = —0.001). 
The graphs show the reactant populations at times t = 10 (top left), t = 25 (top right), 
t = 40 (bottom left), and finally at t = 50 (bottom right). Note the clear presence of 
numerous regular stochastic waves. 
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Figure 5.13: Long-term sub-critical stochastic waves 
These four graphs show reactant populations at various stages of stochastic system 
development. The system has non-linear sub-critical interactions (I = —0.1). The 
graphs show the reactant populations at times t = 10 (top left), t = 25 (top right), 
t = 40 (bottom left), and finally at t = 50 (bottom right). Note the presence of varying 
numbers of stochastic waves in an inhomogeneous distribution. 
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Figure 5.14: Long-term super-critical stochastic waves 
These three graphs show reactant populations at various stages of stochastic system 
development. The system has non-linear super-critical interactions (I = 0.1). The 
graphs show the reactant populations at times t = 10 (left), t = 15 (centre), and at 
t = 20 (right). Note the presence of varying numbers of stochastic waves, in a very 
irregular and inhomogeneous distribution. 

addition, the wave crest location varies from relatively regular at t = 25 and t = 40 

to the very inhomogeneous structure at t = 50 where all high population activity lies 

between cells 16 and 40, with the rest of the domain almost empty of reactants. We 

therefore see that this - type of system is much more dynamically imbalanced than those 

close to criticality, and will therefore potentially require more effort to load-balance on 

a parallel computer. In Chapter 7 we require such a specification of reactant population 

homogeneity in order to decide on optimal dynamic load balancing strategies. 

As a final example of this variation of stochastic wave patterns with criticality, we can 

examine the super-critical system with relatively high instability I = 0.1. Figure 5.14 

shows a number of snap-shots of this system's development. As in the previous case, 

we again observe very irregular wave structures, this time varying from six, to two, then 

to four major waves between times t = 10 and t = 20. In the super-critical scenario, 

cell populations are highly susceptible to very large population explosions (e.g. see cell 

19 at time t = 20). The graphs in this case are therefore drawn to a different scale than 

the previous examples, however this does not change their important features, it simply 

increases the imbalance and irregularity of this scenario. 

Rather than the expected five constant waves, Figure 5.14 details a system that moves 

from six high population locations at t = 10, to just two (cells 0 and 4) at t = 15, 

and to a system with one very large population in cell 19 plus a small number of other 

hot-spots at time t = 20. It can be seen that there is very little regularity in the location 
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Figure 5.15: Temporal evolution of reactant populations 
These three graphs show X-reactant populations for cells 1, 21 and 41 during 100 
time units of stochastic system development. The system has non-linear super-critical 
interactions (I = 0.1). 

and number of super-critical hot-spots, as predicted by our stochastic analysis (see 

Figure 4.3 in Chapter 4), and we therefore have a system that will require regular and 

powerful dynamic load balancing in order to allow effective simulation. 

The analytic results shown in Figure 4.8 detail the expected temporal covariance for 

super-critical simulations with I = 0.1. We can show the accuracy of this analysis by 

comparison the the time evolution of particular cell populations in the above simulations, 

rather than by studying the particular full system state graphs given above. We therefore 

see in Figure 5.15 a selection of temporal developments for particular cells (numbers 1, 

21 and 41) selected at random from a super-critical simulation. 

The important feature to observe in Figure 5.15 is that strong reactant population activity 

seems to occur in short bursts generally separated by longer spells of consistent low 

populations. The time in between these bursts is obviously highly random, but averages 

at around 30 time units. The linearised analysis of this system (Figure 4.8) predicts 

a strong correlation between X-reactant populations in the same cell over a timescale 

of some 40 time units. We therefore feel that such stochastic analysis can provide a 

general quantitative specification of hot-spot activity in such scenarios. In the dynamic 

load balancing algorithm detailed in Chapter 6 we are be able to make direct use of this 

measure of "time between explosions" in order to optimise the use of these techniques. 



5.3.4 Periodicity Variation Simulations 

In addition to the study of short- and long-term stochastic waves in different criticality 

regimes, we can also study the effect of varying the wave periodicity (\) in short-term 

simulations. Figure 5.16 shows the contour patterns produced using system periodicities 

of 0.04, 0.06, 0.1 and 0.2, which create 2, 3, 5 and 10 deterministic waves, respectively. 

The main point of interest from these graphs is the vast difference in wave definition as we 

increase the system periodicity (i.e. decrease the reactant migration rates, see Equation 

(2.10)). For high migration rate simulations we observe a very complex pattern in the 

population contours, although the colour scheme does allow us to postulate two or three 

general regions of high population for the 0.04 and 0.06 periodicity cases. We see a 

marked contrast between these two cases and those with lower migration rates (the five-

and ten-wave cases). Here there is very little stochastic activity shown by the contour 

maps, other than around definite population hot-spots. 

These results suggest that observable (i.e. strong) stochastic waves are best obtained by 

using low migration rates, and therefore large numbers of wave crests. The irregular 

but slightly more homogeneous patterns produced when the migration rate is high 

highlights an important departure of the stochastic simulations from the numerical 

realisations of the corresponding deterministic systems. However, we can also see that 

the potential imbalance is greatest with low migration rates (high periodicity), and thus 

in these situations we will need to make most use of efficient dynamic load balancing 

routines. This is an effect similar to that observed in Section 5.3.3 for high magnitude 

instability scenarios. In particular, use of system periodicity as a measure for reactant 

population homogeneity is an important ingredient for the effective use of the dynamic 

load balancing algorithm introduced in Chapter 7 for SIMD systems. 

5.4 Two-Dimensional Simulations 

The vast majority of our stochastic simulation studies in two dimensions have been 

performed as specific ecological model studies, or as investigations into the performance 

of dynamic load balancing techniques. These results are therefore covered in some detail 

in later chapters. In particular, the ecological simulations are detailed in Chapter 8 and 

199 



Time 

1.0 

0.5 

Time 

1.0 

0.5 

Cell Number 	 Cell Number 

Time 

  

Time 

1.0 

0.5 

2.0 

1.0 

Cell number 
	 Cell Number 

Figure 5.16: Variation of stochastic wave development with periodicity 
These contour plots show the spatial and temporal development of stochastic wave 
structures in a one-dimensional spatial reaction system, following an initial equilibrium 
state. The system has non-linear super-critical (I = 0.1) interactions, and the four 
graphs represent the scenarios for a range of system periodicities. We would expect 
deterministic runs of these systems to produce two waves (,\' = 0.04, top left), 
three waves = 0.06, top right), five waves (\' = 0. 1, bottom left), and ten waves 

= 0.2, bottom right). It is clear from these graphs that reactant level inhomogeneity 
is increased with system periodicity. For low A'-values populations appear fairly well 
balanced, however as \' increases high population hot-spots become increasingly 
severe. 
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the performance related work is covered in Chapter 7. 

Other two-dimensional investigations that are not covered in later chapters are those 

relating to the special cases of Turing's linearised spatial reaction system. In particular, 

we have simulated stochastic versions of the cases of "extreme-long" and "extreme-

short" wavelength scenarios. These correspond to the limiting case activity in our 

standard linearised spatial reaction system. 

Figure 5.17: Extreme-long wavelength two-dimensional stochastic waves 
Using Turing's [1952] parameters to produce extreme-long wavelength stochastic 
waves, we obtain the following graphical output from a two-dimensional simulation on 
a 64 x 64 location world. Each location is coloured black if the X-reactant population 
is below the equilibrium level X, and coloured white if the population X > X* .  

Note the "patchiness" of the solution with neighbouring locations tending to contain 
the same class of population. 

Figures 5.17 and 5.18 show the results of two-dimensional simulations of spatial reaction 

systems in which interaction parameters are set to reproduce the "extreme" wavelength 

behaviours discussed earlier in Chapter 2. These examples of graphical output show 

the clear tendency for "extreme-long wavelength" scenarios to produce neighbouring 

locations with similar reactant population levels; whereas "extreme-short wavelength" 

scenarios produce locations with neighbouring populations that are highly dissimilar. 
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Turing [19521 suggests that the former case could be related to the dappled patterns 

exhibited on the skins of many species of animal. This initial idea has since been 

investigated extensively in the deterministic domain (e.g. Murray [1989]),  and is now 

ripe for further stochastic study on very large spatial domains. 

Figure 5.18: Extreme-short wavelength stochastic waves 
Using Turing's [1952] parameters to produce extreme-short wavelength stochastic 
waves, we obtain the following graphical output from a two-dimensional simulation on 
a 64 x64 location world. Each location is coloured black if the A'-reactant population 
is below the equilibrium level X' , and coloured white if the population X > X . Note 
the almost "checker-board" effect of the solution as neighbouring locations tending to 
contain the opposite class of population to their neighbours. 
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DDR Dynamic Load Balancing on 

MIMD Systems 

To isolate mathematics from the practical demands of the 

sciences is to invite the sterility of a cow shut away from the 

bulls. 

- Pafnuty Lvovich Chebyshev 



6.1 Introduction to Dynamic Load Balancing 

Many scientific programs can be characterised as working with a set of particles or events 

that are free to interact and move within a world described by a regular or irregular mesh 

or grid. Such programs are usually parallelised by decomposing the grid into a number 

of sections and having one processor carry out calculations for each section. When this 

spatial decomposition technique is used, processors must synchronise when exchanging 

boundary values (see Fox et al [1988]) in order to ensure consistent iteration generations 

across the processors. This synchronisation comes automatically with SIIMD systems, 

but must be enforced by the programmer in "loosely coupled" MIMD machines. If 

the work-loads of the processors differ significantly, than those with less work will 

frequently be idle, waiting for their neighbours' boundary values to arrive. Since these 

lightly-loaded processors could spend that idle time doing calculations on grid points 

assigned to heavily-loaded processors, it is clear that there is potential for improvement 

in the overall speed of the program through consideration of a different mesh or grid 

decomposition. 

For many deterministic problems the work-load for any section of the grid can be 

determined a priori. Using this information, the programmer can decompose the grid 

so that each processor will have an approximately equal load. Alternatively, if work-

loads are irregularly distributed, such that it proves difficult to create equally loaded 

contiguous sections of the grid, or if work-loads are not known in advance, then the 

programmer can break the grid into many small fragments and distribute these randomly 

among the processors (see Fox & Otto [1986]).  This technique is known as scattered 

spatial decomposition (SSD), Nicol & Saltz [1990] have shown using the Central Limit 

Theorem this method can ensure that each processor receives a roughly equal amount 

of work. 

However, if the amount of work required on a section of grid varies with time, both 

regular and scattered decompositions can be ineffective, though for different reasons. 

Regular decomposition suffers because increases in work-load may be localised, thereby 

increasing the loading on some of the processors. Employing SSD can avoid this if 

a sufficiently fine-grained decomposition of the mesh or grid is used. However, for 

architectures with relatively high communications costs we cannot decrease grain-size 

indefinitely, since our overall communications overhead will increase with the ratio of 
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patch boundary to area. In the worst case, with single-point patches, every point in 

the grid becomes a "boundary" point. We therefore find that many stochastic systems 

with time-varying work-loads can only be implemented effectively by using some form 

of dynamic load balancing, in which work is (re-)distributed at run time. This idea 

was probably first postulated by Stone [1977] during early work on computer networks, 

and is becoming ever more important for a wide class of scientific problems (see Hong 

eta! [1988]). 

Early suggestions of the need for dynamic load balancing were centred within the 

systems programming side of computer science. The work of Chow & Kohler [1979] 

provides a review of the concepts of task farming - the centralised distribution and 

scheduling of many independent tasks within a (potentially heterogeneous) computer 

network. While no estimate of the work-load associated with each part of the problem 

is available before execution, by decomposing the total work into small independent 

jobs, and distributing these jobs on demand, the programmer can ensure roughly equal 

loading of processors. A large body of later work has since concentrated on how to 

allocate tasks to processors within such environments: for example Hwang et a! [1982] 

provide a bidding algorithm in which the currently smallest loaded processor receives 

new tasks; and the later work of Eager et a! [1986b] concentrates on a comparison 

of "receiver-initiated" and "sender-initiated" load sharing policies for the migration of 

tasks to free processor resources. Unfortunately this latter work does not produce any 

conclusive evidence for either policy being preferable in the general case. 

As research into dynamic load balancing progressed, work started to move onto ever 

larger computing systems, and it soon became apparent that for such systems a cent-

ralised task allocation mechanism was highly inefficient. This is due in most part to 

the bottleneck created as a single processor is used to output tasks and receive results. 

The work of Bryant & Finkel [1981] is an early attempt to counter this problem through 

the development of a task scheduling algorithm that is distributed across the available 

processors. Although a stable algorithm is produced, performance is seen to be severely 

hampered by the phenomenon of thrashing, which means that tasks are continually 

transferred between processors rather than undergoing execution. We will see this same 

problem occurs in early implementations of our own dynamic load balancing algorithm. 

However, a variety of mechanisms have been found to counter the thrashing problem, as 

well as many others that have hindered the development of a truly general mechanism for 
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dynamic load balancing of independent tasks. The initial work of Lin & Keller [1984] 

replaced a central queue of tasks with a distributed "balancer" that measures local work 

"pressure" and migrates tasks when the pressure gradient between processors is over a 

certain threshold. In a fine paper from a year later, Ni, Xu & Gendreau [1985] highlight 

a solution for thrashing, and also introduce some of the problems involved with how to 

identify processor load and how to deal with the transfer protocol information required 

to allow decentralised load balancing. Both of these latter problems become even more 

complex when considering calculations that cannot be considered as independent tasks. 

The methods used within our new decentralised re-mapping algorithm (DDR) to solve 

these problems will be detailed later. Shortly after the work of Ni, Xu & Gendreau 

this field had advanced to the state of the first paper classifying the various decentral-

ised balancing strategies for independent tasks (see Wang & Morris [1985]), and in the 

following year Eager et a! [1986a] produce the first analytic evidence that even simple 

dynamic load balancing strategies can yield high performance at low costs. Although 

there has been some recent interest in moving back towards the centralised approach for 

particularly well-suited problems (see Ahmad & Ghafoor's work on "semi-distributed" 

load balancing [1991]), it is now generally accepted that some form of distributed 

balancing algorithm is ideal for task farming on a large number of processors. 

Most research in the past decade has concentrated on systems in which we cannot use 

the general simplification that the problem can be decomposed into independent tasks. 

This is certainly the case for our spatial reaction system, in which the localised activity 

at any instant in the simulation can have a direct effect on other locations. If we were 

to task farm this type of problem, our implementation could suffer from excessive 

communication costs and, more importantly, the interaction between neighbouring grid 

points would have to be considered by the central scheduling process at each iteration. 

What is needed is a combination of the two approaches, namely retaining connectivity 

of the mesh or grid, but re-mapping it as hot-spots develop and decay. 

Although, a variety of approaches have been suggested to solve this problem, unfor -

tunately none of them allow us to solve the general system represented by our spatial 

reaction system. Nicol & Saltz [1988] suggest that such "data parallel" applications 

require the use of a centralised remapper that can be invoked at a global synchronisation 

point in the execution; though no such point is available in general models. Nicol & 

Reynolds [1990] use an advanced, calculation intensive static re-mapping algorithm 
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that is dynamically invoked only when a recognisable phase-change occurs within a 

simulation; however, such systems prove very expensive if substantial load distribution 

changes occur at regular intervals. There is a school of enthusiasm (typified in the work 

of Boglaev [1992]) for the use of periodic exact global re-mapping calculations, which 

would again prove very expensive to implement for spatial reaction systems. In fact 

Hong et a! [1988] stress that such an approach is only possible for a restricted class of 

problems. 

In this chapter we describe an implementation of a dynamic load balancing technique 

called Decentralised Dynamic Re-mapping (DDR) tested on our standard stochastic 

spatial reaction system that has been analysed and simulated in earlier chapters. We 

have developed a mechanism that not only solves many of the problems highlighted 

above, but also provides very low computation-cost load balancing of a high quality. We 

find that DDR avoids the overheads of centralisation, and yet remains flexible enough 

to be applied to a variety of grid-based problems (see Smith & Wilson [1991]). DDR 

achieves near-perfect load balance for our general problem at a very low cost, and results 

in execution time improvements of over 40%. 

6.1.1 The Model to be Load Balanced 

Mesh- or grid-based simulation models are well established for use in numerical solu-

tions of physical systems on a spatial domain. However, the mathematical techniques 

for analytic solution of such systems, particularly in the non-linear regime, are not 

currently so advanced. In the earlier chapters of this work we studied spatial reaction 

systems in some detail, and found that Turing's [1952] model can be used to analyse 

any spatial system where reactants/particles have a particular location within which they 

interact, and neighbouring locations to which they can migrate. 

Our particular interest in spatial reaction systems is to enable a study of complex 

ecological systems, and in particular to study the effects of mutation and evolution. 

We therefore desire to implement complex stochastic simulations of interacting species, 

where certain attributes of each species can be successively adapted through random 

mutation. If these implementations are then sufficiently efficient, and simulations can 

be run of large systems over long time periods, then we should be able to present 
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results that describe the effects produced by mutation and evolution within the system. 

More importantly, the implementation techniques developed in this work have a much 

wider application than stochastic spatial reaction modelling. In our system we are 

working with a highly unbalanced data structure that requires some added work in 

order to distribute it evenly across a number of processors. The balancing techniques 

described in this and the next chapter are therefore applicable to a very wide range of 

numerical simulation work. For example, in multi-particle dynamics simulations we 

deal with large numbers of particles existing within some spatial domain - these may 

well cluster in certain regions; in meteorological modelling we are often confronted with 

highly uneven distributions of sensor locations, leading to a very unbalanced loading 

of a regular spatial grid; in cosmological modelling galaxial structures form in highly 

localised regions of activity; in Geographical Information Systems we may be studying 

point-locations which may again be clustered in certain small areas of our grid-based 

model. The strategies we are about to describe could be applied to any of these problems 

in order to support efficient parallel implementations. In fact, some of the key ideas 

from this work have been incorporated in general purpose parallelisation tools developed 

under the Parallel Utilities Library (PUL) Key Technology Programme at the Edinburgh 

Parallel Computing Centre (see Trewin [1992]). 

To allow an analysis of the performance of our load balancing strategies for general case 

simulations, we introduce a generalisation for the local interaction process. We feel 

that the migration process is far more consistent between systems, as we are restricting 

ourselves to simple nearest-neighbour migrations of reactants. By comparison, the local 

interactions within different systems can vary substantially in terms of the computational 

effort required to compute each iteration. For example, in some epidemic models there 

may be a relatively simple interaction between a single infective and each susceptible 

in the location, whereas in cosmological modelling we may have to calculate complex 

all-to-all interactions between many elements. We have therefore introduced the idea 

of model complexity (C) as a measure of how much computation must be done for each 

reactant in each iteration. This measure is proportional to the number of floating point 

operations needed for each reactant. For our simple spatial two-reactant system this 

complexity value is taken to be unity. As the number of reactants increases, this value 

obviously rises linearly with the number of potential interactions within the system, as 

well as with the added work of extra model features such as evolutionary behaviour, 



or environment dependence of interactions or migration. We will see from our results 

later (particularly in Chapter 7) that the performance of our dynamic load balancing 

strategies can be highly dependent upon the complexity of the system under simulation. 

6.2 Implementation of DDR 

Let us consider our one-dimensional spatial reaction system with periodic boundary 

conditions, in which reactants can migrate to neighbouring sites around a ring of loca-

tions. At each location we therefore have a certain set of reactant populations for which 

we must make calculations. We also assume that these cells make up the indivisible 

calculation unit size for the problem (i.e. a task that cannot be divided between pro-

cessors for calculation), and that they may vary by orders of magnitude in work-load. 

This indivisibility assumption is required for two reasons. First, the stochastic nature 

of the simulations is produced by a stream of random numbers generated on a per-cell 

basis. Second, when we consider that each reactant's actions are dependent upon the 

current location population totals, if this is divided between processors, then severe 

communications patterns can become necessary to keep track of all events that may 

effect the evolution within a cell. 

While such a system is a simple one-dimensional mesh, the load balancing strategies we 

have studied are intended to scale-up to be useful for more complex problems. Indeed, 

the DDR strategy could be improved, for example through the incorporation of problem 

specific information, for our one-dimensional spatial reaction system itself, but any such 

simplification would lead to a loss in generality. 

The overriding design feature of a dynamic load balancing algorithm must be that the 

operations involved in calculating changes in processor responsibility, and in trans-

ferring work between processors, should not outweigh any efficiency gains achieved. 

Accordingly, we adhere to the following principles in designing the distributed dynamic 

re-mapping algorithm: 

Local Decision-Making: Load balancing decisions must be made in a truly distributed 

fashion for a scalable solution, as shown by Eager et al [1 986a]. All load 

balancing decisions must therefore be made locally, based on communications 
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only with near-neighbours. Although this restricts us to decisions based on partial 

knowledge, such sub-optimal balancing has been shown to yield good results at 

low costs (see Barah & Shiloh [1985]). 

Local Balancing: For similar reasons, all transfers of work must be made to near-

neighbours only, allowing work to diffuse from heavily-loaded to lightly-loaded 

processors. This helps to ensure contiguity of the mesh across processors, which 

minimises the latency of boundary value message traffic. This work-migration 

approach has proved very successful for independent tasks in a network (see the 

advanced work of Lin & Keller [1987]), and has been shown to converge to an 

optimal balance as a quadratic in the number of processors by Boillat [1990], a 

study that provides a dynamic load balancing system that is very similar to the 

initial DDR algorithm detailed later. We show that although complex heuristics 

must be developed, local balancing can be successfully employed for general grid 

or mesh codes. 

Use of Existing Communications: Since processors must communicate regularly to 

exchange boundary data, load balancing information should be included in these 

messages, rather than as separate communications, as suggested by Ni, Xu & 

Gendreau [1985]. This will reduce the number of message start-up costs incurred 

- a significant saving on many systems. 

Infrequency of Balancing: If it takes a significant time for load imbalance to develop 

or decay, then it would be wasteful to attempt to continually re-map data. It 

has been claimed by Williams [1991] that in such quasi-dynamic scenarios we 

can afford to redistribute the mesh based on global information. However, we 

prefer to maintain complete balancing flexibility by allowing the load balancing 

algorithm to make re-mapping decisions periodically and with variable frequency. 

It is in this area that our analytic knowledge from earlier chapters can be used to 

enable the most effective choice of how often we should attempt to re-map data - 

based on our statistical understanding of the occurrence and longevity of reactant 

hot-spots. 

Our choice of MIMD load balancing strategy is obviously shaped by our target ar -

chitecture, whether it be the original platform for this work - the Edinburgh Con- 
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current Supercomputer (ECS), a Meiko Computing Surface containing over 420 T800 

transputers - or more recently produced machines that tend to be based around stand-

ard workstation (RISC) type processors. With such platforms processors can typically 

be reconfigured to any required topology. The DDR load balancing software has been 

developed in the C programming language, using Meiko's CS Tools [1990] program-

ming environment, which includes a software router offering anywhere-to-anywhere 

connectivity. Our software uses this functionality to divide the available P processors 

into a single master process and W = P - 1 worker processes. The master handles user 

interaction and file I/O, while the workers carry out the simulation calculations. 

DDR operates by adjusting the boundaries of responsibility between worker processors. 

Decisions on when balancing should take place are made locally by processors that 

control neighbouring sections of the mesh. To do so, they compare times taken to 

complete the last iteration. If the time taken by a worker process to complete one 

iteration is significantly greater than that of its neighbours, then the worker may give 

its lower boundary cell to its lower neighbour, or its upper boundary cell to its upper 

neighbour. The protocol for achieving this transfer is included in the boundary value 

messages normally passed between processors. Along with the number of migrant 

reactants, each worker includes the population of the appropriate boundary cells, and 

the time it took to complete the last iteration. Each worker can then compare its own 

time with those of its neighbours, and should a cell transfer be required it already has 

the necessary cell populations with which to work. 

To permit flexibility in the load balancing strategy, three parameters were implemented 

to control the operation of the technique: 

Time-Thresh: In certain circumstances it would be wasteful for neighbouring work-

ers to transfer cells whenever there is any difference in their calculation times. 

Therefore to limit the amount of load balancing, a threshold A was used. Thus 

a worker will pass a cell to one of its neighbours only if the difference between 

their respective timings for the last iteration is greater than ). 

Cell-Thresh: In order to ensure that no worker ever emptied itself of work, a second 

threshold parameter allowed workers to pass cells only if they had more than ) 

cells. This cell threshold was set to unity for many of our simulations, but can 
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be increased for large simulations in order to optimise performance or limit the 

amount of memory required on each worker. 

DLB.Freq: Since location imbalances may change relatively slowly, it is not always 

necessary to attempt to load balance every iteration. Accordingly, a third para-

meter f1, the load balancing frequency, is used to control how often load balancing 

is attempted. Since the DDR load balancing function is highly efficient in this 

implementation, very little is lost by re-mapping the problem more regularly than 

was necessary. However, for general applicability of the strategy to all types of 

MIMD computers, this parameter was included to enable optimal efficiency and 

future adaptability, 

We can therefore define the DDR strategy for transferring a cell across a particular 

boundary by using the pseudo-code protocol detailed in Figure 6.1. This section of 

code is called following the receipt of boundary exchange information, but before local 

interaction calculations are begun. The interim counter records the number of iterations 

completed between each call to the load-balancing code. 

IF 	(Interim counter equals DLB_Freq) AND 
(I have more than Cell-Thresh cells) AND 
(This cell is my smallest edge cell) AND 
(My calc time - neighbours calc time > Time-Thresh) 

THEN (Transfer Cell) 

IF 	(Interim counter equals DLB_Freq) AND 
(Neighbour has more than Cell-Thresh cells) AND 
(Neighbours edge cell is his smallest edge cell) AND 
(Neighbours calc time - My calc time > Time-Thresh) 

THEN (Receive Cell) 

Figure 6.1: DDR dynamic load transfer heuristic 
This pseudo-code details the structure of the heuristic protocol used by each processor 
in order to decide when to transfer a cell of work to a neighbouring processor. 

6.2.1 Initial Problem Decomposition 

For simplicity we require the number of cells in the ring N to be an integer multiple 

of the number of workers W. Each worker j is therefore initially given n = N/W 
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contiguous cells, running from cell jri to cell (J + l)n - 1, as shown in Figure 6.2. Each 

Figure 6.2: Initial DDR cell distribution 
Simulation locations, numbered 0-14 in this example, are initially distributed evenly 
between available worker processors 0-4. Cells on each processor are maintained as 
a contiguous section of the one-dimensional mesh. 

worker keeps track of its cells' populations in separate arrays for each reactant. For each 

worker, these arrays are made large enough to store the entire ring, in order to simplify 

the load balancing implementation. In fact, processors only need to allocate enough 

space for N - (W ­ I) A cells, where ) is the cell threshold described above. Each 

worker maintains an index base to show the start in the reactant arrays of the Section 

it is responsible for, and a count num to indicate how many cells it has to update (see 

Figure 6.3). 

During each time step of the simulation, each worker process calculates new reactant 

populations for its cells, and determines the number of reactants migrating in both direc-

tions around the ring. The time taken to do these calculations is directly proportional to 

the total population of the worker's cells. Workers then exchanged migration informa-

tion with their ring neighbours, adding incoming migrant values to their boundary cells; 
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Figure 6.3: DDR's maintenance of array sections 
Each processor holds arrays for each reactant, maintaining their current range of 
responsibility using local variables base and num. 

the time required to do this is constant and independent of cell populations. 

In the first version of DDR, each worker dealt with each of its boundaries independently. 

If there was a significant difference between the calculation times on either side of the 

boundary, then the processor with the lower time would accept responsibility for its 

neighbour's boundary cell, incrementing its num counter and, if the cell was arriving on 

the lower boundary, decrementing its base index to include the new cell in its update 

calculations (see Figure 6.4). Similarly, the processor with the higher time would 

decrement num (and possibly increment base) to exclude the transferred cell from its 

calculations. This strategy failed to load balance the problem efficiently because heavily 

loaded workers would continually pass small-valued cells to their neighbours until a 

high-valued cell reached the boundary. Neighbouring processors would then pass this 

high-valued cell back and forth, as each flipped between being lightly and heavily 

loaded, depending upon whether they held the large population cell. This thrashing was 

observed by Bryant & Finkel [1981] in some of the earliest work on distributed load 

balancing, and in our simulations it led to large oscillations in the calculation time on 

each worker, and thus to a high overall iteration time. 

In order to overcome the problem of thrashing we developed an improved dynamic 

load balancing strategy. In this advanced version of DDR a worker only passes the 

boundary cell with the lower population if it finds that it is taking more than A t  time 

units longer to complete an iteration than both of its neighbours. This encourages the 
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Figure 6.4: Updating boundaries in DDR 
This diagram shows the mechanism for re-mapping work within the array of pro-
cessors. When it is decided that responsibility for cells must be passed to neighbouring 
processors, the necessary reactant values are exchanged and recorded in the reactant 
arrays, and the processors involved simply adjust their local value for base and num. 

In this example we see processor 0 pass cell 0 to processor 4, and processors 1 and 3 
both pass cells to processor 2. 

retention of high-valued cells. In addition, if a worker's execution time is less than that 

of either neighbour it may accept either one or two cells, depending on which cells those 

neighbours are willing to transfer. Finally, if a worker's time is between that of its two 

neighbours, it may accept a cell from one, and pass a cell to the other. This effectively 

passes a cell around the ring, although this can also be thought of as a processor moving 

its domain of responsibility one step around the location array. Figure 6.5 shows these 

three alternative work transfer cases. 

6.3 Dynamic Load Balancing Results 

There are certain problems with claiming exact results when dealing with the simulation 

of stochastic systems. Since we use random number generators that reside on particular 

processors, when we make load balancing decisions that change the work particular 

processors must undertake we can change the very nature of the simulation. We must 

therefore collect statistics from a sizable number of executions, in order to gain any 

insight into the performance of our strategy. The timings that we detail later show quite 

clearly that the cost of using DDR amounts to a small proportion of run-time for models 

of all complexities. Although this result is due, to some extent, to the inherent efficiency 

of our use of the features of a particular message passing system (i.e. exploitation of the 

high ratio of message start-up to data transfer costs), it enables us to to make very good 
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Figure 6.5: Boundary Cell Swapping Cases in DDR 
This diagram shows the three alternative scenarios for dynamic load transfer within 
DDR. In case (A) the central processor only passes its smaller boundary cell (to the 
right), despite the fact that it is more heavily loaded than either neighbour processor. 
In case (B) the central processor accepts a new cell from each neighbour. In case (C) 
the central processor accepts one cell from the left and passes another to the right - 
thereby effectively moving its domain of responsibility one cell around the ring. 

execution time savings. 

6.3.1 Performance Prediction 

In the general case we can regard the execution time of a perfectly balanced spatial 

reaction system simulation (without using DDR) as consisting of a proportion of time 

spent on calculation (aC) and a proportion for data communication (a + bt), where a is 

the start-up cost for the message passing, i is the amount of information in a message, 

and b is the cost to send each item of data. The additional cost of running DDR on 

such an implementation can be defined as the sum of the additional calculation cost 

DDR C  (the number of calculations involved in load balancing decision making) and 

the extra message passing cost DDR 7  t, where D D R,,  is the number of extra pieces of 

information that must be transferred to enable the DDR balancing protocol to operate. 

We can therefore state that the proportional run-time cost (1) of using DDR for a single 
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iteration is 

11= 
DDR C  + DDRm t 

aC+a+(b+DDR7 )t 

We can assume that DDR C  will always be small, especially when compared to a. In 

fact, for our typical problem DDR C  5, whereas a is typically of order 100-1000, 

and DDR 7  is comparable to b. The overhead of using DDR is therefore most highly 

dependent upon the relative costs of the transfer of the balancing information (DDR ?lI t) 

to the unavoidable costs of the simulation calculations (aC) and the message passing 

start-up cost (a). High values of a and C will therefore give rise to low overhead 

balancing by DDR. We can also use the cost measure, ci, to produce a relation to give 

the maximum possible cost (DMAX ) of using DDR (as a percentage of execution time) 

for any complexity and balancing frequency values, i.e. 

DMAX = 1l/f1 C. 

When implemented on our particular hardware and software systems, for the case with 

the highest profile balancing - i.e. lowest complexity (C = 1), highest frequency (f1  = 
1), and artificially enforced perfect balance in the system - DDR has been empirically 

shown to be responsible for only 2% of execution time. This exceptionally low cost 

is mostly achieved from two factors. First, the relatively high start-up costs of our 

message-passing system (for CS Tools a 200ms, and b 2ms) enable the additional 

balancing information to be transferred at negligible additional communications cost. 

Second, our simple load balancing heuristics mean that DDR C  is small compared to a. 

This empirical result can be confirmed against the known parameters of our system, and 

hence a value of DMAX can be determined for any further simulations, for given f1. 

Although the above relations show that DDR can be a very low-cost dynamic load 

balancing technique, is does not give us any real understanding of the success of the 

strategy in reducing overall simulation run-times. If we define the work-load associated 

with a cell n as L, then for N cells distributed to W workers the ideal balancing would 

provide all processors with a loading of 

N-
(1/W) 	L. 
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The performance of DDR will always be limited by the relative size of the largest single 

work-packet (max (L,,), say) compared to the best mean loading of the remaining work 

on the remaining processors. Given knowledge of the worst case largest indivisible 

work-packet, we can produce a degradation factor (x) for the performance of a DDR-

balanced application by giving a lower bound on the ratio of the best possible DDR 

balanced run-time to the best possible run-time. It can be shown that (assuming A c.  = 1) 

this degradation factor is given by 

(W - 1) x max(L 7,,) 
(6.1) X = N-1 L n  - max(L) 

and so DDR will always fail to give optimal balancing if any one cell's work-load, 

max(L,3, is greater than S/W where S is the sum of all cell work-loads. 

We know from the explosive nature of super-critical spatial reaction systems as detailed 

in Chapter 5, that it is often the case that a single cell's population can dominate a 

particular stochastic simulation. Under such circumstances DDR will never be able 

to achieve perfect load balance due to our restriction of retaining complete cells on 

individual processors. However, we do find that the technique has been successful in 

producing execution times close to the best possible, even compared to computationally 

expensive post-processing to perform re-balancing using the Knapsack algorithm (see 

Sedgewick [ 1 988]). 

The results detailed in this section are for sub-critical simulations (I = —0.2) as these 

are naturally subdued and do not suffer from extremes of imbalance, or singularities in 

reactant populations. We concentrate on this class of system as results for super-critical 

simulations are inherently linked to the run-time for the single largest cell, and DDR 

rapidly adapts load distribution to solve this problem in all cases. However, such a 

solution may not be optimal if the single largest cell is dominating the calculation load 

(see Equation (6.1)), and thus some alternative load balancing technique may be more 

suitable than DDR. For example, the "parallel-prefix remapping" technique introduced 

in the following chapter may be a far better solution. Although extreme populations can 

also occur in spatial reaction systems at or below criticality, and thereby prevent perfect 

load balancing, sub-critical simulations do not generally suffer from a large amount of 

such behaviour. Therefore, by tackling this sub-critical scenario we are better able to 

analyse DDR's performance for a simulation in which active load balancing is required 
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regularly, and can actually produce a close to optimal implementation. 

6.3.2 DDR Performance Results 

Table 6.1 details the executions timings achieved over many sample runs of our one-

dimensional spatial reaction system. The mean execution time from ten simulations, 

and their standard deviation, are recorded for each pair of parameters ) and fl . Unfor-

tunately, it is impossible to compare exactly one particular balanced run to an identical 

unbalanced one. As soon as any work is transferred between processors the random 

number generator will produce completely different series of events. It would have 

been possible to create generators that were specific to a cell, and therefore attempt to 

produce duplicate runs. However, this was unnecessary for two reasons. First, equival-

ence between balanced runs can never be guaranteed since the balancing decisions are 

dependent upon clock cycle figures. These figures can vary by ±1 for identical calcula-

tions, and this can be enough to change the nature of an individual simulation. Second, 

it is not clear that taking an average result from a number of direct comparisons from 

particular runs is a more representative measure of performance than simply averaging 

a number of independent runs. 

100 80 60 40 20 
f1 Time a Time at  Time at 

 
Time u t  Time at  

1 25.24 1.72 26.56 2.21 25.87 2.06 25.78 1.27 26.23 2.45 
50 25.87 2.43 25.93 2.44 24.94 2.21 25.29 1.70 26.32 2.68 
100 26.41 2.68 25.73 2.06 26.11 2.71 25.77 2.28 25.46 1.22 
200 25.16 1.92 25.00 2.70 26.57 2.17 25.98 1.63 26.73 3.30 
400 26.63 2.96 26.13 2.43 27.32 2.56 25.97 2.64 26.39 3.98 
600 26.98 1.65 28.77 3.01 29.20 3.32 26.94 1.71 26.86 2.53 
800 28.81 3.23 28.29 3.32 27.77 2.29 27.22 2.13 29.23 2.75 
1000 29.10 3.43 1 30.21 2.71 28.46 2.64 30.23 3.71 30.20 2.50 

Table 6.1: Distributed dynamic remapping (DDR) performance figures 
Timings (in millions of processor clock cycles) for our standard spatial reaction simula-
tions in one dimension using sub-critical non-linear interactions (I = -0.2). Dynamic 
load balancing parameters X and f, are varied with ), held constant at unity. The 
simulation uses 80 reaction cells on 16 T800 (transputer) processors. 

For the particular size of model chosen the mean timing over many unbalanced runs was 

219 



33.15 million processor clock cycles (MegaTicks), where one clock cycle is 64s (i.e. a 

"MegaTick" equates to 64 seconds). Figures 6.6 and 6.7 give a graphical representation 

of these results. It is observed from these graphs, and Table 6.1, that calculation time 

is reduced for every parameter set investigated. Even for high values of load balancing 

frequency there is a significant saving to be made; this is in part due to the slow changing 

nature of the sub-critical spatial reaction system model. For super-critical applications 

the choice of f1 could be far more critical as these systems can change their morphology 

far more rapidly. In addition, there seems to be little difference in execution time savings 

for different time thresholds (h). Again this may be something that differs for other 

types of system. 
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Figure 6.6: Load balanced execution times with low time threshold 
Mean run times for our standard spatial reaction simulations in a one-dimensional 
sub-critical (I = —0.2) system, using DDR with X = 100. 

As mentioned earlier in this chapter, execution times for programs with and without the 

load-balancing code show that the cost of using DDR is very small. For this particular 

model approximately 2% of execution time is spent load-balancing in a simulation run 

when load-balancing is attempted at every iteration. As detailed above, this is achieved 
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Figure 6.7: Load balanced execution times with high time threshold 
Mean run times for our standard spatial reaction simulations in a one-dimensional 
sub-critical (I = —0.2) system, using DDR with A, = 20. 

by the successful exploitation of existing communications traffic for message passing, 

and the simple rules that define when cells are transferred. 

DDR reduces the average run times for sub-critical spatial reaction system simulations 

by up to 40%, a substantial saving for these inherently balanced (but very dynamic) 

systems. As mentioned earlier, for super-critical systems DDR results can almost always 

match the best possible result, as it soon reduces to hold the single largest cells on a 

single processor. From the start of this work the aim has been to design a load-balancing 

strategy that could be applied to grid- or mesh-based problems in general. It is therefore 

necessary to insist on processors controlling contiguous sections of the mesh, and for 

individual sites to remain indivisible. The graphs in Figures 6.6 and 6.7 show the 

mean reduction in run time that could be achieved for sub-critical systems by using 

the Knapsack algorithm to balance the simulation, assuming it incurred no execution 

costs (which is known to be false). The algorithm collects timing information for 
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each cell, sorts the cells by this timing, and then distributes them in order among the 

available processors, always placing the next cell on the processor with the least work. 

This Knapsack approach retains the indivisibility of cells, but ignores the contiguity of 

processor allocations. It also introduces large execution time costs not shown on these 

graphs (the program written to analyse data output by the simulations had a run time 

of several times the actual simulation run-time), which would only be increased further 

by the additional communications that would be necessary for implementation. The 

Knapsack line is therefore included on the graph to give some target for the absolute best 

possible speed-up given cell indivisibility, although not location contiguity. A numerical 

analysis to find the line corresponding to the additional restriction of contiguous sections 

on processors has not been attempted, but given that this is a constricting factor, this 

line cannot lie below that of the Knapsack line, and in most cases will lie above it. 

We therefore believe that DDR is an effective dynamic load balancing technique for 

general spatial reaction systems, and that it can be applied straightforwardly to a wide 

variety of other grid-based calculations. While the book-keeping necessary to implement 

DDR on a multi-dimensional mesh would be significantly greater than that required for 

a ring, we believe that the gain in speed due to improved load balancing would outweigh 

these costs, in particular if the technique is further enhanced to incorporate asynchronous 

periodic balancing. In such a system processors can initiate a work transfer whenever 

loads become unbalanced, rather than waiting for the next "balancing iteration". The 

basic concepts of DDR, as well as these further ideas are currently being incorporated 

in automatic dynamic load balancing parallelisation libraries for both regular grid and 

unstructured mesh problems within the Parallel Utilities Library (PUL) project at the 

Edinburgh Parallel Computing Centre (see Trewin [1992]). These libraries are used 

for a variety of commercial projects to implement industrial strength software on high 

performance parallel computer systems, 
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Not only in research, but also in the everyday world ofpolitics 
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realised that simple non-linear systems do not necessarily 
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- Robert M. May 



7.1 Data Parallel Load Balancing 

In Chapter 6 we reported on the development of dynamic load balancing algorithms for 

one of the major classes of high performance parallel computers - MIMD machines. 

Much of our simulation work, however, has made use of the other class of parallel 

supercomputers - SIMD architecture machines. As discussed in Chapter 5, SIMD 

(or data parallel) machines can provide an extremely powerful computing resource, 

especially for specialised problems. During the course of this work we have had access 

to two different data parallel computing platforms, the Active Memory Technology 

DAP-608 and the Thinking Machines Corporation Connection Machine CM-200. Both 

of these machines were capable of providing the highest available levels of computing 

power available at the time of their use, provided that they could be programmed to make 

efficient use of the large numbers of processors that they contain. SIMD machines are 

typified by their massive number of processors; the DAP contained 4,096 processors, 

and the CM-200 contains 16,386 processors with 512 additional floating-point units. 

The physical nature of the SIMD architecture, and the associated data parallel program-

ming model, provides an ideal platform for the implementation of very large spatial 

simulations, as we can map our spatial data structures directly onto the spatial arrange-

ment of processors. In particular, we have used these machines for our two-dimensional 

spatial reaction system studies. This approach has proved particularly productive, since 

the actual processor connectivity of SIMD architectures maps directly onto such two-

dimensional grids. We detail in Table 7.1 the excellent performance results that we 

have achieved on these machines for deterministic realisations such as those detailed 

in Section 3.6. However, this chapter will focus mainly on new simulation algorithms 

developed to enable SIMD machines to be used for efficient stochastic simulations. 

Since SIMD architecture machines obtain their performance by using massive numbers 

of very simple processors, they are more sensitive to processor load imbalance than 

similar powered MIMD machines. The reasons for this are three-fold: firstly, there 

are many more processors to be loaded with work, all of which must execute in com-

plete synchrony, thus tasks requiring single calculations can delay all other processors; 

secondly, individual processors are typically low-powered and thus calculations not 

distributed across many processors will have a long execution time; and thirdly, due 

to the large number Of processors, when few are performing useful calculation, this 
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configuaration will return only a very low rate of overall machine efficiency. Although 

these points suggest that effective load balancing on data parallel applications is vital 

when using such machines, there has been very little research into general balancing 

techniques. To a large extent this is due to the fact that the data parallel programming 

model is so restrictive as to make balancing functions such as DDR difficult to imple-

ment, and thus most SIMD machine users will adapt their implementation to ensure as 

balanced a load distribution as possible. 

In this chapter we present a new algorithm for the efficient data-parallel implementation 

of stochastic spatial reaction systems based on individual reactants or particles. From 

our analytic work in Chapter 4 we know that such systems can be extremely unbalanced 

in terms of the number of reactants in different locations. We have therefore turned to 

a radical re-mapping of our implementation. Using this new approach (parallel-prefix 

re-mapping - PPR) we can ensure that all processors are evenly loaded, no matter 

how spatially imbalanced the reactants become or how dynamic reactant hot-spots may 

behave. However, PPR does introduce a computational overhead, and thus, if used 

on an inherently balanced simulation, could result in performance degradation when 

compared to a standard spatial decomposition. It therefore becomes vital to be able 

to predict the expected behaviour of spatial reaction simulations in order to decide 

on the best implementation strategy, as well as to estimate the expected simulation 

time. We must therefore use our knowledge of the mathematical analysis of the general 

stochastic differential equations that govern such models. This analysis can provide us 

with a statistical measure of system behaviour, which can then be used to predict the 

performance of both standard, and our new implementations. 

7.1.1 Problem Definition 

For the simulations studied in this chapter let us use our standard spatial reaction system 

in two dimensions. Thus Xjj  and Yjj  (where i,j = 1,. . . , N) describe the reactant 

population (or concentration) in each location (i, j) in a two-dimensional world of N x N 

sites. All our systems use periodic (i.e. toroidal) boundary conditions. In addition, if 

we let jt and ii be the rates of migration between neighbouring cells we can then write 

the following equations for the system: 
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dX 2 ,3 /dt = 	Y) + ii(X +1 , + X_ 1 , - 4X + X,_ 1  + 	and 

dY,/di = 	+ '(Y 	+ Y_ - 4' + 	+ 

where T and g are the non-linear functions (see Equations (4.1) and (4.2)) that describe 

the interactive growth rates for reactants X and Y within each cell. Figure 7.1 shows 

the structure of this system in two dimensions, with migrations to and from nearest-

neighbour locations. In earlier chapters we have detailed the analysis of this general type 

of system, based initially on the linearisation work of Turing [1952] in one dimension, 

and also on our stochastic representation of the one-dimensional system. 

Figure 7.1: Nearest-neighbour migration options 
The basic structure of spatial reaction systems in two dimensions, with nearest-
neighbour migrations of reactant types X and Y occurring at individual rates mu 
and nu respectively. 

This type of system has been used by Renshaw [1991] for a variety of one-dimensional 

stochastic simulations. First for a spatial Volterra [1926] predator-prey system, and 
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then for the case of stochastic wave simulations produced by using coefficients that 

produce inherently unstable local interactions. Our task now is to extend this work 

into two dimensions and implement numerical realisations of both the deterministic and 

stochastic forms of the system. For the case of systems that produce spatial and temporal 

waves we can follow the approach of Chapter 3 and define the eight interaction/migration 

coefficients in terms of just three system variables: the system instability I, the ratio 

of desired wave number W to world dimension size N, and the size of the equilibrium 

populations X" = y* The first and last of these parameters are calculated from the 

linearised values from our general non-linear interaction functions. For the latter we 

typically approximate the reactant migration rates to those from the one-dimensional 

analysis performed in Chapter 2. We see from the realisation and simulation results in 

Chapters 3 and 5 that this approximation proves remarkably accurate if we view the 

number of waves present along any axis within the spatial domain. 

7.2 Spatial Decomposition Techniques 

The most obvious and straightforward way of decomposing the spatial models described 

above is to perform a spatial decomposition. Such an approach is also obvious for 

other spatial applications such as molecular dynamics, lattice gas cellular automata and 

cosmological modelling. For data parallel implementations we can therefore construct 

an array of spatial locations (the array having the same dimensionality as the physical 

world we wish to model) which can then contain the value of the local populations in each 

cell - be that individuals, particles or galaxies. This array can then be distributed across 

the available processors within a SIMD machine. Local interactions, which may depend 

on the size of local populations, can be performed in parallel by the processor assigned 

to each array element. In addition, since migration is allowed only to nearest-neighbour 

locations, it can be performed using the inherent local communication facilities provided 

by the parallel architecture. Thus on the Connection Machine one could use either the 

CSHIFT or PSHIFT Connection Machine Fortran (CMF) functions for these operations. 

227 



7.2.1 Deterministic System Performance 

This spatial decomposition approach works extremely well for systems for which there is 

an identical amount of work to be done for each location in the model, and hence for each 

array element within the machine. This is because the calculations are perfectly balanced 

across the machine, and therefore make maximum use of the available resources. 

Machine Implementation CPU time (s) 
Sun 4/20 Fortran 77 1615.2 

CM-200 (8k) raw CMF code 5.07 
CM-200 (8k) PSHIFT 4.09 
CM-200 (8k) 

L 
 optimised 3.83 

Table 7.1: A comparison of data parallel execution times 
Execution times are detailed for a deterministic realisation of our standard deterministic 
spatial reaction system realisation, using a 256 x 256 world and running for 1000 
iterations. Timings are given for the original Unix workstation implementation, and 
three successive implementations running on half the processors (8,192) in the CM-
200. 

The results shown in Table 7.1 are for the deterministic realisation of a simple two-

species spatial reaction system. This implementation uses two distributed arrays, each 

containing a single real number value that represents the current reactant population 

for each location. These values are updated, and migrating reactants exchanged, at 

every iteration. The "raw CMF code" version represents code that was ported from 

a Unix workstation implementation onto the CM-200 with minimum effort (a few 

hours work, admittedly by an experienced data parallel programmer, for 300 lines of 

Fortran 77). This transfer immediately produced a version of the software which ran in 

just over five seconds on half the Edinburgh Connection Machine. This performance 

was then improved by a further 19.3% through the use of poly-shift (PSHIFT) multi-

dimensional communication routines, specifically provided within CMF to perform 

regular shifts to all four nearest-neighbours simultaneously. Finally, a further 6.4% 

run-time improvement resulted from other optimisations such as "code-blocking" - 

placing parallel code, in contiguous sections within the program. We thus obtain a 

very impressive 844 times speed-up by running on the full Edinburgh CM-200 (16k 

processors) when compared to running on a desk-top workstation. Access to this 

level of simulation performance provides a new range of opportunities to the research 
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scientist. In addition to the ability to investigate a far wider range of complex systems, or 

particular systems to a far greater depth, this type of high performance solution provides 

access to methods of system investigation that were previously beyond the scope of 

computational feasibility. For example, we could now consider the development of 

an interactive simulation system in which parameters are adapted at run-time, and the 

effect viewed immediately, thereby allowing further exploratory variation. 

7.2.2 Stochastic Simulations 

As discussed in Chapter 4, although deterministic scenarios have proved adequate 

for modelling a great many physical systems, there is now a growing trend towards 

stochastic modelling for real-world simulations. Unfortunately, for stochastic sim-

ulations we cannot always guarantee that calculations are well-balanced across our 

distributed arrays, and when this situation arises we can easily make very inefficient 

use of parallel machines with a SIMD architecture. This results from the fact that 

all processors must perform identical operations in complete synchronisation, so all 

processors must perform the same number of operations as the most heavily loaded 

processor, even if they have much less work to complete. These unwanted operations 

are prevented from affecting simulation results by masking techniques (effectively turn-

ing off sets of processors for particular calculations), although they obviously do affect 

simulation times as the technique involves inefficient use of all processors. Our field 

of simulation study exposes this load-balancing problem particularly well, and we will 

shortly concentrate on our particular system. However, the same problems can be found 

in many other applications typically thought of as "difficult" to implement in a data 

parallel fashion. 

Efficiency problems arise in data parallel implementations of spatial reaction system 

models as soon as we move from deterministic to stochastic simulations. There is much 

debate in the ecological and biological communities as to the relative merits of the 

two approaches (see Chapter 1 of Renshaw [1991] for a brief review). This has led to 

two main modelling groups; one that follows the ideas of May [1986] in that complex 

ecological behaviour can be explained by the fine structure found in deterministic chaotic 

systems; and the other is typified in the work of den Boer [1981] where nature is regarded 
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Figure 7.2: Histogram of reactant populations 
A snap-shot population distribution histogram for reactant X in a 128 x 128 location 
spatial reaction system with W = 8, I = —0.1 and X = 10. The final bar in 
the histogram represents the sum of all locations with reactant populations over 210. 

as inherently stochastic and should be modelled as such. Since it is our ultimate desire to 

model mutation and hence evolution (both of which we believe to be natural stochastic 

processes), we are ourselves in favour of the stochastic approach. 

As discussed earlier in Chapter 5, we immediately face load-imbalance problems once 

our models contain non-homogeneous population levels. This occurs because we need 

to make a set of probability calculations for each individual in the system, rather than a 

single calculation for a total population in a particular location. This involves the gen-

eration of many uniformly-distributed random numbers to compare against calculated 

probabilities, and is therefore computationally expensive on any computer architecture. 

Although one could approximate with a single stochastic calculation for the whole 

population of each location (hence balancing the implementation), for our evolutionary 

system studies we must track individuals, since each is potentially unique in terms of its 

current attributes. In this situation we are therefore forced to make separate probability 

calculations for each individual reactant. 

If the stochastic system under study is highly stable, and hence contains populations 
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that never stray far from equilibrium positions, any slight imbalance between processing 

elements can probably be suffered. However, since we generally use inherently unstable 

interactions to produce the spatial and temporal wave patterns in which we are interested, 

we find that some cell populations inevitably move a great distance away from equilib-

rium. Figure 7.2 shows a typical population distribution histogram from a stochastic 

spatial reaction system (with negative instability, i.e. a fairly stable case) after just one 

time unit - 1000 iterations. 

It should be noted that there is a logarithmic scale for the number of occurrences in 

Figure 7.2. We therefore see that in over 6,500 locations the reactant population is 

below 10, and in almost 8,000 locations it lies between 10 and 20. The number of 

occurrences then decays rapidly for higher populations. We find that there are two cells 

(from a total of 16,384) with a population between 200 and 210, and there is a total 

of just eight cells with a population of over 210. Figure 7.3 shows the formation and 

stabilisation of a typical population distribution from a set of these histogram graphs. 

Following an early narrow distribution as populations diverge from initial equilibrium, 

we get many population "explosions" that create a broad distribution by time t = 1.5. 

The later graphs show that the system then settles into a generally steady state, but with 

occasional high-population cells. 

Over the course of a full simulation we find that the maximum cell population (XM, 

say) will fluctuate between 150 and 800 for I = —0.1 (the range becomes 250-1500 

for I = 0.0), and never more than a few cells will contain a reactant population with 

a magnitude close to this maximum value. It is therefore obvious that a simple spatial 

decomposition will be highly inefficient, since XM  random numbers will be generated, 

and X   probability calculations will be made for every cell at every iteration, even 

though the vast majority of locations contain fewer than 20 individual reactants. The 

effect that this inefficiency has upon simulation execution times can be seen in Figure 7.4. 

This graph details the time taken to complete sets of 100 iterations on a 128 x 128 world, 

as well as showing the total number of individual reactants in the system. The upper 

line on the graph shows this total population, and it can be seen that this rises (in a 

relatively short time) from the initial configuration to a relatively constant level of just 

over one million individuals. The two lower lines in Figure 7.4 show the time taken to 

compute successive blocks of 100 iterations. The lower of these is for an artificial test 

case where the total population at each iteration (as taken from the actual simulation) 
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Figure 7.3: Reactant population distribution development 
These four population histograms show the distribution of reactant X in a 128 x 128 
location spatial reaction system with W = 8, I = —0.1 and X' 5  = 	 = 10, 
at simulation times t = 0.5 (top left), t = 1.5 (top right), t = 3.0 (bottom left) 
and t = 14.4 (bottom right). The final bar in the histograms represent the sum of all 
locations with reactant populations over 210. It can be seen that the extreme imbalance 
in reactant populations grows rapidly, but then settles to a constant form, although the 
actual cells falling into each category will be constantly varying. 
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Figure 7.4: Stochastic populations and naïve execution times 
Total populations and incremental run-times for a stochastic spatial reaction system 
with N = 128, W = 8, I = 0.0 and X* = 	= 10. This graph shows both 
total reactant population levels (the upper line, Total Pop) divided by 1000, and 
timings taken for executing blocks of 100 iterations using both the standard spatial 
decomposition Time and an artificial perfectly balanced case Test. 

is automatically distributed evenly across all processors. Interaction and migration 

probabilities are forced to be zero, thereby providing ideal balance but removing all 

reality from the simulation. However, we can use these timings as a comparison to 

the actual timings taken for a particular stochastic run (the central line). We observe 

the sudden growth in run-times as hot-spots emerge in the world, and certain cell 

populations grow rapidly. After approximately 400 time units the run-time for the last 

100 iterations does settle down, but it is still (in this case with I = 0.0) around a factor 

of ten greater than for the test case. Indeed, in the early stages of the simulation the 

straightforward implementation can take over 100 times longer than the test case to 

perform 100 iterations. It is this level of discrepancy that we need to overcome if we 

intend to study systems on large spatial scales, at high complexities, or over very long 

time periods. 

It can be noted from Figure 7.4 that the run-time of successive iteration sets is rather 

unpredictable for the unbalanced implementation, since it depends upon the latest value 
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of XM.  Also, it should be remembered that these timings are already an aggregate 

over 100 iteration steps, so the variation within such blocks could be even more severe. 

However, if we could evenly distribute this work, the execution times could become 

very regular, since the total population has reached its quasi-equilibrium value. 

7.3 Data Decomposition Techniques 

The obvious solution to the load imbalance problems of our spatial reaction systems 

is to consider another form of data decomposition. Since we cannot rely upon our 

locations to have equal work-loads, we must find another unit of decomposition that 

is balanced. In the case of our spatial reaction systems we can think of distributing 

the individual reactants among the available processors, since for each member of each 

species we have the same simple probabilistic calculations to perform. This will give 

us a very large data structure to work with (simulations often contain a million or more 

individuals, each described by a few integer values) but one that is evenly loaded in 

terms of calculations. The large number of elements in such an array should also ensure 

a relatively even spread amongst the many processors within a SIMD machine. 

Unfortunately, such a change in data structure presents the programmer with two addi-

tional problems. 

• It is generally the case that in order to perform local interaction calculations in-

formation must be available about other reactants in the same (or even neighbour-

ing) locations. This type of information is easily available when using a spatial 

decomposition, but now it will be distributed throughout our reactant-based data 

structure. Such information can be contained within the local data structure that 

each individual carries, however this must be updated at each iteration and could 

be affected by events at any other location within the data structure (as reactants 

migrate). Such events will almost certainly be non-local to the processor, and we 

must therefore engineer the PPR software to keep efficient track of cell popula-

tions as well as individuals, and to allow mutual communication between both 

sets of information. 

• We must allow our new data structure to be flexible, since the total number of 
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particles in our system will almost certainly vary over time, with individuals 

appearing and disappearing at random. We therefore need an efficient technique 

for retaining a compact data structure, with as few unused elements as possible. 

In converting our simulation algorithm to this individual-based mapping we have con-

verted the problem of a simple implementation with poor load balance, to a more 

complex (but balanced) algorithm potentially requiring substantial amounts of internal 

communication. Providing this additional communication cost is restricted to a reas-

onable level, we can obtain an implementation with relatively short, and also fairly 

predictable, execution time. 

7.3.1 Parallel-Prefix Re-mapping 

In order to present the parallel-prefix re-mapping algorithm, we must first detail the 

reactant-based data structure it uses. Figure 7.5 shows this structure diagrammatically 

for a two-reactant scenario. The array has a single parallel axis (running through the 

reactants, distributing them across processors), and a serial axis (data maintained within 

a single processor) for storage of data pertinent to each individual. This serial data is 

made up of both permanent reactant details, and temporary information used by the 

PPR algorithm. Figure 7.5 also details two logical arrays Cf lag and Sf lag; these 

contain logical flags to denote the cells that contain the first reactant of a new cell and 

type, respectively. These logical arrays therefore delimit the array into location and 

reactant-type sections. 

The complete PPR algorithm is given in pseudo-code later in Figure 7.6. Before 

describing the main functions of its operation, let us concentrate on the methodologies 

used to solve the two specific implementation problems detailed above. To achieve 

their solution we make extensive use of parallel-prefix (or "scan") functions. Scans 

cover a range of operations that perform some combination calculation on all elements 

along a dimension of a parallel array; i.e. they compute for each element in an array the 

combination of itself and all previous elements on that particular dimension. Thus add-

scans will sum all elements along a given dimension, and copy-scans will spread one 

value throughout an array. Parallel-prefix operations can also be segmented, whereby 

operations are executed upon separate sub-sections of the array, as delimited by some 
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Figure 7.5: Parallel-prefix re-mapping array structure 
A simple representation of the array structure necessary for the PPR strategy. Indi-
vidual reactants are distributed along the parallel axis, and information pertinent to 
each individual is stored locally along the serial axis. 

logical flags. 

Obtaining local site information: If the reactant array is sorted with respect to the 

grid-location of each individual, then we can ensure that those reactants sharing 

the same location will occur in contiguous sections of the array. Then, by use of 

segmented parallel-prefix add-scans we can sum populations delimited by the flags 

given in Cf lag and Sf lag. These location-specific values can then be distributed 

to reactants using similarly segmented parallel-prefix copy-scans. If information 

is also required for neighbouring grid-locations, this can be achieved through 

additional parallel-prefix operations to pass sum values to neighbouring segments. 

However, transfer of such neighbour information can only be performed one 

dimension at a time, and thus involve a re-sort for each additional dimension after 

the first. 

Retaining array contiguity: In order to create maximum efficiency of memory usage 

and program performance, we must ensure that all parallel array elements are 

occupied with data relevant to a "live" reactant. Thus, when one reactant leaves 

the simulation, or when a new reactant is created, the data that describes ot 

must be removed or added to the data structure in a manner that keeps the 

array contiguous. A mechanism for retaining this type of contiguity has been 

developed independently by both Boghosian et a! [1991] and Nicol [1992], for 
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use with simulations with no specific location-dependence. However, we find that 

this technique can be directly adapted for this part of our algorithm, and it has 

the added advantage of retaining the existing order of the array. The technique 

uses a global parallel-prefix add-scan on the NextGen element in the reactant 

array. This provides a Total value that can then be used as the parallel index 

to which all serial data must be moved. This will shuffle down reactants to fill 

free array locations, as well as leaving space for duplications of reactants that 

have multiplied. These duplications can then be shifted down the parallel axis to 

complete the re-mapping. Should the simulation be in a reactant growth phase, 

we can use the final value from the Total array to indicate any need for dynamic 

array allocation, since normally, for maximum efficiency, the size of the parallel 

dimension will be kept close to the number of live reactants. 

7.3.2 The PPR Algorithm 

Based upon the two implementation techniques above, the main iterative loop of a PPR 

program (as detailed in Figure 7.6) moves the system forward in time, and undergoes 

the following operations for each iteration. 

Interaction calculations: Using an individual uniformly-distributed random 

number and the location populations, each individual reactant makes a prob-

abilistic calculation to decide whether it lives, dies or duplicates. The result of 

this calculation is stored in the NextGen element of the reactant data structure. 

There are only three possible values to be stored here; a zero if the individual 

has died, a one if there has been no change, and a two should the individual have 

duplicated. 

Re-contiguise: This unusual term refers to the action of reorganising the distrib-

uted array following the changes brought about in the interaction phase. Such 

re-organisation activity involves the removal of gaps created by deaths, and the ad-

dition of new individuals following births. In order to create maximum efficiency 

of memory usage and performance, this reorganisation should be performed so 

that all gaps are removed and we have a single contiguous section of individuals 
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in the array. This can be achieved using parallel-prefix operations as detailed 

above, and the resulting values stored in the total element. 

We can then use the values in the total element as the identifiers for the locations 

to which the contents of every currently live individual (i.e. Next Gen equals one 

or two) should be sent. This allows the array to shrink or expand with the total 

population, with all gaps being removed. The final step of this process is to 

do a local copy for all the birth cases into the free space left beside them (see 

Figure 7.5). 

Migration calculation: More random numbers are used to allow calculations to 

be made to determine whether each current individual undergoes migration. By 

comparing the number generated to the defined probabilities we can determine 

into which of the four possible directions an individual is to move. Here we use 

two more local elements of the array to describe any such movement. Move size 

gives the amount of change to be added to the current x or y location value, i.e. 

+1,—i or zero. This change is then added to the value stored in the element 

that is indexed by the value stored in Move dir, i.e. either '1' or '2', defining 

x and y movement respectively. Using this slightly convoluted structure allows 

all migrations to be performed in one simple step, regardless of species type or 

direction of motion. 

Resorting: The unfortunate effect of the migration of individuals is that the data 

structure may no longer be sorted according to location values. This occurs as 

the data will be sorted according to one dimension (say x) in priority to the other. 

Thus a migration in the y-dimension will produce an array element with a location 

value that no longer fits with the current sorted pattern. This order is necessary 

later when we wish to find new total cell populations, and thus the array must 

be resorted. There are sorting routines provided for the Connection Machine and 

these are used to sort the array in terms of x-location, y-location and then species. 

Retotalling: Following the sorting process we must re-process the logical Cf lag 

and Sf lag arrays to find the location of new cells and species. These arrays can 

then be incorporated in add- and copy-scan routines to provide each individual 

with the latest value of species populations for its location. These routines perform 

a segmented add-scan through the array of individuals, summing members of each 
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species. This sum is reset each time Sf lag is set to TRUE. Once these sums are 

known they can be copied to all reactants within locations by segmented copy-

scans between the locations where Cf lag is TRUE. By reversing the direction of 

this scan, we can achieve this spreading of totals using just two copy-scans. 

Set-up initial array structure and probability tables Probs 
Loop through time evolution of the simulation 

Local interaction calculation phase: 

Generate random numbers in Random 
Compare Random to Probs and add changes (+1) to NextGen 

Array contiguity phase: 

Global add-scan of NextGen into Total 
For elements 0-5 and 10 

If NextGen. GT. O send element to array position given by Total 
If NextGen . EQ .2 copy-shift element down parallel axis 

Reset empty elements, and NextGen to 1 

Migration calculation phase: 

Generate random numbers in Random 
Compare Random to Probs and set changes (±1) in Move-size 
and set Move_dir to dimension number 

Add (Mod N) of Move-size to value in element Move_dir 
Collecting local information phase: 

Sort parallel array by location and type 

Set Sflag TRUE when Reactant (i) different from (i - 1) 
Set Cflag TRUE when location changes between neighbours 

Downward add-scan of NextGen into LocaiX, segmented by Sflag 
masked by Reactant. EQ. 1 

Upward add-scan of NextGen into LocalY, segmented by Sf lag 
masked by Reactant.EQ.2 

Upward copy-scan of LocalX into LocaiX, segmented by Cflag 
Downward copy-scan of LocalY into LocalY, segmented by Cf lag 

next time step 

Figure 7.6: Pseudo-code for the PPR algorithm 
The complete PPR algorithm for a two-reactant spatial reaction system. The steps 
involved in the execution of this algorithm are described in detail in the preceding text. 
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7.3.3 The Performance of Parallel-Prefix Re-mapping 

The parallel-prefix re-mapping strategy described above, and detailed by Smith [1993], 

works very successfully in terms of maintaining low and constant run-times for stochastic 

simulations. In particular we see from Table 7.2 that run-times for high complexity sim-

ulations can be reduced by up to factor of 17 over a simulation that is already running on 

the most powerful supercomputer in the UK. It does, however, suffer from fairly high 

overheads, mostly due to the sorting and scanning operations on such a large array. The 

cost of these operations is constant for constant array sizes, and thus the relative cost of 

using this technique is highly dependent upon the amount of calculation necessary for 

each reactant (i.e. the interaction complexity C, introduced in Chapter 6) as well as the 

average imbalance of the location populations. For the simplest systems (complexity 

C = 1) where each reactant undergoes two floating-point operations, the time to sort 

the reactant array (on the CM-200) is around seven times that for the interaction calcu-

lations themselves. When the time taken for the parallel-prefix operations is included, 

the result is an overhead of approximately a factor of eight over a perfectly balanced 

spatially-decomposed case. We therefore need a load-imbalance degradation of more 

than this value to warrant using PPR in this scenario. 

However, since the costs of sort and scan routines are constant with array size, their rel-

ative overhead decreases as the system complexity, and potential imbalance, increases. 

This effect is clearly detailed in Table 7.2, as the run-time for PPR implementations 

becomes substantially lower than a variety of naïvely implemented simulations. The 

same table also shows the relative gains over systems with varying instability, where 

we can clearly see the effect of increasing imbalance (hence longer run-times) as sys-

tem instability increases. It is also interesting to note the increase in variation of the 

execution times for the critical scenario. Although the overall run-time is below that of 

the super-critical case, we see a marked increase in the variability of the run-times. The 

increase in naïve execution time for super-critical systems is as we would expect from 

the analysis introduced in Smith & Renshaw [1993], and detailed earlier in Chapter 4. 

Figure 7.7 shows graphically the effect of system complexity on the performance results 

for PPR and naïve simulations. 



Type Instability Complexity 
1 5 10 20 

0.01 14.3 ± 2.0 41.6 + 6.0 148.0 + 22.0 306.0 + 45.0 
Naïve 0.0 12.9 ± 3.8 37.4 + 11.2 133.0 + 40.0 275.0 + 80.0 

-0.1 10.7 + 3.0 30.7 + 8.0 111.0 + 31.0 230.0 ± 65.0 
PPR  14.41 15.06 15.87 17.48 

Table 7.2: Parallel-prefix re-mapping (PPR) performance results 
Comparison of run-times for 100 iterations of a stochastic spatial reaction simulation. 
All timings are for a 32 x 32 world on 8,192 processors of a CM-200. 

7.4 Future Improvements to PPR 

The complexity measure used for the PPR results above represents the number of 

stochastic operations to be performed for each reactant. In the case of simple two-

species ecological models this value may well be unity, and under such circumstances 

the use of the PPR dynamic load-balancing neither gains nor loses over the use of raw 

unbalanced code (other than for the obviously lighter implementation cost of the latter). 

It may be possible to develop other strategies for such simple models, and some ideas 

for these are covered in Section 7.4.1. However, as has been stated earlier, one of our 

main interests for the future lies in producing realistic models of ecological systems that 

exhibit evolution. For this reason our interactions will become increasingly complex, 

as will the environmental factors that must also be calculated at each iteration. Indeed, 

a surprisingly small step in model structure that lead to a system complexity that gains 

substantially from the use of PPR. 

We also believe that the PPR technique could be useful for many other applications, 

such as molecular dynamics or N-body problems, where the calculations to be made 

for each individual can also be very large. Any unbalanced spatial reaction system 

in which reactants undergo more than one stochastic operation per iteration can gain 

from the use of our parallel-prefix re-mapping strategy. In fact, the more complex the 

interaction becomes, the more compute time (proportionally) can be saved, or perhaps 

more importantly, longer simulations can be executed in a given amount of user-time. 

In addition to this saving in run-time, PPR also provides the added benefit of consistent 

and predictable run-times. This in itself is a very useful feature when running many 

large simulations in order to collect results. 
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Figure 7.7: Performance of PPR and unbalanced implementations 
Comparison of run-times for 100 iterations for different interaction complexities, 
between the load-balanced implementation (PPR) and a typical set of 100 iterations 
taken from the unbalanced runs (Stoc). These timings are for a 32 x 32 world, run on 
8,192 processors of the Edinburgh CM-200. 

7.4.1 Alternative Array Distribution Schemes 

We believe that is is possible to develop a strategy that is a hybrid of PPR and the standard 

spatial decomposition technique, which maintains the balance and speed of using a 

distributed array of individuals as in the PPR strategy, yet avoids the costly sorting 

operations. This technique would use two separate array structures, both distributed 

across the machine, but with no direct relation between their distribution schemes. 

One array contains the individual members of each reactant-type, the other is a two-

dimensional array that maps directly onto the model world and contains the populations 

of each location. By using this double array approach we would expect to retain the 

benefits of having easy access to location populations (hence removing the need for 

sorting), and be able to balance the calculations involved with the members of each 

species at the same time. 
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This planned strategy of double array distribution currently has three separate potential 

varieties. In the first, at each iteration all individuals would access the populations array 

for the relevant cell population data. They would also update this array following any 

events such as birth, death or migration. This strategy therefore replaces the resorting 

and re-totalling sections of the PPR technique with distinct communications between 

two distributed arrays. The parallel-prefix operations for maintaining the contiguous 

nature of the animals array is retained. The obvious problem with this first variant of the 

strategy is that when certain locations become hot-spots and have very large populations, 

many elements of the reactant array may be attempting to access the same single element 

in the population array. The bottleneck this may cause within the Connection Machines' 

internal communications network is difficult to predict accurately, but we expect that it 

would certainly hinder performance. To reduce any such effects we propose two further 

variants: 

Record changes: We reduce the number of attempts per unit time to access the pop-

ulation array because it now records only changes in populations. If we can set 

logical flags in the reactant array to identify all individuals possibly affected by a 

change in cell population (probably using parallel-prefix operations), only these 

elements need to initiate any data transfer. In simulations that are only developing 

slowly, we would expect the majority of cells to not require updating in any single 

iteration. This may result in the saving of some communication costs. 

Randomise population array: We retain the original double array structure, and intro 

duce a third dimension to the population array randomised across the processors. 

The array access events can therefore be spread more evenly across the avail-

able processors This would be the ideal solution giving us balanced individual 

calculations, direct access to population data, and no communication bottlenecks. 

7.4.2 PPR Conclusions 

We believe that the work we have detailed in this chapter has substantial relevance for 

real world simulation applications, which typically involve systems of high complexity 

and calculable instability. Our main intended application is in the field of evolutionary 

ecological simulation (see Chapter 8), where (like in many other fields) we have high 
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complexity models, and need to investigate systems with a wide range of instabilities. 

The main benefit to our work is the ability to make accurate execution time predictions. 

We have presented a variety of mechanisms to aid the dynamic load-balancing of 

individual-based simulations. These techniques are very successful in balancing work-

load across the processor arrays of SIMD machines. Their usefulness depends upon 

the ratio of the amount of calculation involved with each individual in the system to 

the overhead of performing the balancing. When this ratio is large the PPR technique 

can provide substantial run-time savings, and even for models with small calculation 

levels per reactant (i.e. C = 1) the technique provides run-times equivalent to a naïve 

implementation, but with much greater predictability. Work in this field is still progress-

ing, and we have indicated the directions in which we are looking in order to provide 

a successful, but computationally inexpensive, mechanism for balancing these spatial 

individual-based problems. 



Predator-Prey Studies with Evolution 

A Supercomputing Case Study 

If nature were not beautiful, it would not be worth knowing, 

and if nature were not worth knowing, life would not be worth 

living. 

- Henri Poincaré 



8.1 Introduction to Evolutionary Ecological Studies 

In Darwin's [1859] "Theory of Natural Selection", evolution is driven by genetic muta-

tions which occur, for example, through damage to DNA by cosmic rays. Although 

most of the resulting mutations are less suited than the original to their environment and 

therefore do not survive, occasionally a mutated individual may be better suited and 

thus grow in number eventually replace the original. It is thought that natural selec-

tion works by selecting characteristics which enable the species as a whole to survive. 

However, in Dawkins' recent books [1976, 1986] we are presented with an alternative 

viewpoint. Dawkins believes that Darwin's theory makes more sense if natural selection 

selects traits which enable the individual to better survive. He views the gene as the 

element which wishes to survive and reproduce as prolifically as possible; the species 

then becomes simply a means for the gene to reproduce. 

As discussed in Chapter 1, the fundamental ideas behind evolutionary processes are 

gaining popularity in many disciplines. Unfortunately, any mathematical understanding 

of such processes is very limited, and thus the majority of studies attempt some computer 

simulation of "evolution" in order to investigate such matters. In this chapter we 

detail the results achieved through the use of parallel supercomputers for evolutionary 

ecological modelling. Such high performance computers have allowed us to simulate 

systems that are of a size and complexity thought previously impractical for computer 

simulation. In order to model true evolutionary behaviour, any mutation events must 

have a low occurrence rate, and must make only small changes to individuals. It is clear 

that we require simulations of many individuals, running over many iterations, if we 

hope to reproduce such evolution-like results. We therefore feel it is vital to use very 

large systems in order to claim any accuracy in our analysis of evolutionary effects. 

We report on the studies of Smith [1991] in the development of spatial predator-prey 

systems in which individuals migrate according to a set of behavioural rules. We then 

extend these rules to include mutation of individual's attributes. Our long time-scale 

simulations of large spatial systems then reveal how evolutionary pressure can produce 

individuals with attributes "selected" by evolution. 

For seventy years scientists have been using mathematical techniques to study the dy- 

namics of animal populations (e.g. see Lotka [1925] and Volterra [1926]). In more recent 

times concern has been expressed by den Boer [1981] at the reality of "universal determ- 
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inistic models". He showed that, in a heterogeneous environment, dispersion of prey 

is necessary to ensure the survival of isolated populations. In addition, Hilborn [1979] 

shows that a spatial predator-prey model that includes migration can provide a globally 

stable system from inherently unstable local interactions. Similar persistence of species 

has also been shown by Zeigler [1977] for stochastic spatial models where, in isolated 

cells, populations would rapidly decay to extinction. Zeigler studied the parameter 

region that provides global stability for a 100-site world, and states that this region is 

increased for a larger 900-site model. 

Within the spatial model described in this chapter, predators and prey are able to mi-

grate to neighbouring locations in a two-dimensional world. Dubois [1975] introduced 

a non-linear deterministic model of simple predator-prey relations coupled with dif-

fusion to explain observed patchiness in plankton populations. However, that work 

and that of Levin & Segel [1976] and Murray [1975] have all found that deterministic 

patchiness or waves in populations soon decay to leave a "quasi-equilibrium" state. 

The stochastic study detailed here extends basic diffusion into preferential migration by 

both species according to a selection of behavioural rules. This successfully produces 

dynamic patchiness throughout our simulations, which can be related directly to the 

inhomogeneous population distributions observed in nature. 

Previous ecological work by Shiyom [1980] accredited predators with certain levels 

of mobility and attaëk ability, in order to study the effects on the spatial patterns 

of a stationary prey. In this work we introduce some measure of power into the 

predators' attack ability, and allow the prey species to migrate, potentially according 

to preferential rules. In addition to studying the geographical distributions of the two 

species during simulations, we also compare the effect of different migration rules on 

the global stability of the system, and finally study the effects produced by the mutation 

of predator migration rates. 

8.1.1 Supercomputers in Ecological Modelling 

As we strive to increase the reality of ecological models by increasing the size of our 

model worlds, and by studying longer term effects in these worlds, we are often halted 

by the limitations of the computer doing the simulations. Onstad [1988] predicted 
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that supercomputers would be used increasingly for ecological study since theoretical 

models cannot be generally accepted if they are not realistic, and realism requires 

vast amounts of compute-time. There is increasing evidence (see Haefner [1991]) 

that Onstad's prediction is being realised, and that parallel computing technology is 

a major contributor to this advance. Haefner's review of this subject concentrates 

upon individual-based models and the various parallel architecture machines that are 

available, giving some references to current simulation work. In Conrad and Rizki's 

review of their modelling work [1989] there is regular allusion to the short-comings of 

available computer hardware. As their models became more complex, so the ability to 

study them in depth was reduced due to computing resource limitations. As detailed 

in Chapter 5, present semi-conductor technology is reaching the absolute limits set by 

the fundamental laws of physics; and we have therefore almost reached the maximum 

calculation speed possible from a single processor. The only mechanism left to increase 

computational power further is to multiply the number of processors being used. This 

fact is being acknowledged by every major computer manufacturer as they all look 

toward parallel processing for their future machines, see Trew & Wilson [1991]. 

As detailed in Chapters 6 and 7, potential performance gains from using a parallel 

computer are not always easily exploitable. The programmer must often expend extra 

effort to identify potential parallelism within a problem, and then convert this into writing 

a parallel program for a particular machine. Parallelism does not change the fundamental 

nature of the problem solution, it simply provides the means to solve larger problems in 

shorter times. The rewards provided by parallelisation can therefore be high - in the 

work covered in this chapter, large spatial models that would take days to study using 

a normal departmental mainframe computer were viewed (via direct high-resolution 

graphical output) and analysed in a matter of minutes. Our early work and results on 

preferential migration have all been obtained from the use of a DAP-608 machine. The 

more recent work on evolutionary effects exploited the Thinking Machines Corporation 

Connection Machine CM-200, and the dynamic load balancing technique (PPR) detailed 

in Chapter 7. Both of these machines are SIMD supercomputers, technical details of 

which were discussed earlier in Section 5.2.1. 
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8.2 The Predator-Prey Models Investigated 

The predator-prey models studied in the course of this initial investigation are all 

chosen to make the maximum possible use of the parallel architecture of a particular 

SIMD supercomputer. The models have a spatial dimension in which each of the 

processing units in the machine takes responsibility for a section of the system. It is most 

straightforward to consider each processor as controlling a location that contains a certain 

number of each species. Thus for the DAP-608 for example, there are 4,096 locations in 

each model, arranged on a two-dimensional (64 x 64) grid. Periodic boundary conditions 

applied to the grid then allow boundary effects to be eliminated. However, cyclic 

effects are introduced, all be it on a large scale, and the model can therefore be likened 

to a stochastic Turing [1952] system in two dimensions. As the simulation evolves, 

calculations are made to decide whether an individual predator or prey will migrate, 

die or reproduce. This is therefore an individual-based model, in some ways similar to 

those studied by Zeigler and Conrad, although on a much larger scale both spatially and 

temporally. 

8.2.1 Lotka—Volterra and Volterra Oscillations 

The work of Lotka and Volterra in the 1920s laid much of the foundation for present 

models of population dynamics. The coupled differential equations they developed 

produce their now-famous deterministic population oscillations. The initial objective 

of our ecological work is to recreate these oscillations in a stochastic model that tracks 

all animals individually. 

The model we use owes much to the work of Wolff [1989] in its design and parameter 

values. It is based upon predators having two states - hungry or satisfied, the state 

assigned depending on whether the predator has or has not made a kill in the previous 

time-step. The state of a predator then determines the probability that it may reproduce 

or die during that time-step. Additionally there are probabilities to determine whether 

members of either species will migrate to another cell. Table 8.1 lists all the probabilities 

relating to a single time-step, and these remain invariant throughout all our simulations. 

These parameter values are those used by Wolff in his work, and have been chosen 

since they produce the desired Lotka-Volterra predator-prey oscillations for a random 
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movement model. 

Prey reproduction (br) 0.40 
Satisfied predator reproduction (b3 ) 0.40 
Hungry predator reproduction (bh) 0.01 
Prey mortality (mr) 0.05 
Satisfied predator mortality (m e ) 0.05 
Hungry predator mortality (mh) 0.08 
Prey migration (ii) 0.45 
Predator migration (it) 1.00 

Table 8.1: Invariant spatial predator-prey simulation probabilities 
Parameter values from Wolff [1989] for a spatial predator-prey system in which 
predators' reproduction and mortality rates depend upon how recently they ate, i.e. 
whether they are hungry or satisfied. This choice of parameters produces Lotka-
Volterra oscillations if migration is performed at random to any other location in the 
system. 

In addition to the fixed parameters in Table 8.1, there are two additional system para-

meters which are varied between simulations as part of the study. The first of these is the 

carrying capacity (K) of a location with respect to the prey species. Lotka-Volterra os-

cillations are produced without this factor, and cannot be stochastically modelled without 

an exponential explosion in the populations (see Renshaw [1991]). However, when a 

carrying capacity was introduced by Volterra [1931] the resulting Volterra oscillations 

do lend themselves to realistic stochastic modelling. The carrying capacity equates 

to the maximum prey population a location can support in the absence of predators. 

It therefore represents a limit to natural resources and thus prevents prey populations 

rising exponentially. To incorporate the carrying capacity, the prey birth routine reduces 

the probability of reproduction as the prey population rises, so that this probability will 

reach zero as the population reaches the carrying capacity K, viz: 

Pr(birth) = b p  x (1 - (Cell Population/K)) . 	 (8.1) 

Our second variable parameter is termed the predator-power, and provides a measure of 

the average hunting ability of a predator. This can therefore be considered as equivalent 

to the "voracity" of predators in the work of Bartlett [1957]. The predator-power is 

implemented as the probability with which a predator will catch a particular prey that is 

in the same location during a particular time-step. Once a prey is caught, the predator 
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Parameter Typical Value Range Used 
Carrying capacity (K) 
Predator-power (Pr) 

10 
0.3 

5 - 100  
0.2 - 0.4 

Table 8.2: Variable spatial predator-prey simulation parameters 
Two simulation parameters are varied during our spatial predator-prey work - the 
prey carrying capacity, and the predator hunting power. This table gives the normal 
values used, and the range of other values considered during our investigations. 

becomes satisfied and stops hunting. If the prey escapes, the predator will attempt to 

catch another prey inhabitant of the field, should one exist. Typical ranges of values for 

these two parameters are given in Table 8.2. 

In order to mimic the non-spatial Volterra model results with our spatial stochastic 

model, we produce a simulation where a complete mixing of animals takes place at 

each time-step. In effect, animals are allowed to migrate to any randomly chosen 

location in the world. Although unrealistic when compared to nature, this simulation is 

intended to remove the spatial aspects of the system, and thus act as a control to test the 

suitability of the model for reproducing Volterra's results. The re-shuffle of individuals 

is implemented such that the field populations lie on a Normal distribution and, using 

the probabilities given above, it produces the intended oscillations, as detailed later in 

Section 8.3. 

8.2.2 Preferential Migration Simulations 

Our basic spatial predator-prey model can be extended to introduce rules for the prefer-

ential migration of predators and prey. Thus random infinite migration (i.e. migration 

to any other location selected at random) is replaced with migration into one of the 

four neighbouring locations. The choice of cell into which an individual migrates is 

made either completely randomly, or according to certain preferential migration rules. 

Predators and prey are therefore divided into two subclasses - "random-movers" and 

"rule-movers". 

In order to investigate the influence of preferential migration on our spatial predator-prey 

system, the initial populations of predators and prey, in each such simulation, contain 

just 2-3% of rule-moving animals, the rest being random-movers. There is no method 
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of inter-breeding between the two subclasses in each species, therefore random-movers 

always give birth to like animals, as do rule-movers. In addition, preferential migration 

has no effect on a predator's hunting abilities, or a prey's escaping abilities. Therefore 

the relative survival of each type of individual is purely dependent upon their migration 

behaviour. We discuss below the relative success of various preferential migration rules 

in terms of the growth or decline of the rule-moving proportion of the populations, 

and the stability of the system as a whole, as the populations evolve. The preferential 

migration rules investigated are: 

Foxdelay The probability of predator migration is weighted by the prey population 

in the destination location, as a proportion of the total prey population in all 

four neighbouring locations (see Figure 8.1). Similarly, the rule-moving prey 

preferentially migrate towards the neighbouring field with the smallest predator 

population. Foxdelay acquires its name from the asynchronous nature of the 

population counting and the movement of the species. The migration probabilities 

use the field populations as they are at the start of the migration routine. However, 

the prey migrate first, and the predators then migrate with the knowledge of where 

the prey have already migrated to. Therefore the rule-moving predators have a 

stronger preferential migration rule than the prey. 

Eighthunt Similar to Foxdelay in that with this rule predators again migrate after the 

prey, and both can migrate to one of the four neighbouring locations. However, 

now the predators migration probabilities are weighted by studying the prey 

populations of all eight surrounding fields (see Figure 8.1), and thus encourage 

movement in the direction of an area that may correspond to that which has a 

higher potential prey density, i.e. in the direction of the group of three cells with 

the highest population, rather than a single cell. 

Liniitfox The Limitfox migration rule is identical to that of Foxdelay, except that the rule-

moving predators are restricted from dominating completely by the introduction 

of a 5% probability that a rule-moving predator will produce offspring that are 

random-movers. 

Synchro As the name suggests, this migration rule has synchronised movement of 

predators and prey. The Foxdelay probability weighting is used again, but both 
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Figure 8.1: Preferential predator migration probabilities 
These diagrams show example predator migration weightings for the three rules cases 
of Foxdelay (top left), Shyfox (top right) and Eighthunt (bottom). The Foxdelay 

weightings are also used as the basis for the Synchro and Limitfox simulations, and are 
inverted for the Dumbfox examples. 
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the predators and prey preferentially migrate using their knowledge of field pop-

ulations at the end of the previous time-step. The predators therefore have no 

knowledge of present prey populations, as they do for Foxdelay. 

Shyfox This migration rule has a very different basis for the predator migration. The 

weighting given to the probability of migration into neighbouring locations is 

now dependent upon the number of predators (rather than prey) in those locations. 

Rule-moving predators now preferentially move away from other predators, as 

shown in the example probabilities in Figure 8.1. 

Dumbfox In this simulation, rule-moving predators are endowed with a deliberately 

poor preferential migration rule. The probability weightings of Foxdelay are 

inverted to encourage rule-movers to migrate into the fields with fewest prey. This 

deliberately weak migration rule is studied simply as a control on the behaviour 

of the simulations. 

8.2.3 Evolutionary Process Simulation 

Since our original model is designed to follow individual members of each species, it 

is a straightforward task to allow certain attributes of the individuals to vary. We can 

therefore introduce low-probability small-scale changes to these attributes during the 

course of a simulation, for example a mutation in a parameter value as it was passed 

from one generation to the next. Thus over very many generations we may be able to 

simulate evolutionary forces by studying the distribution of parameters values across 

all individuals as the simulation develops. 

The parameter chosen to be varied in this initial investigation of evolution is the migra-

tion probability of the predator species. Therefore predators are divided into ten groups 

each with a different probability of migration (in equal intervals from 0.1 to 1.0). If 

this were the only adaption made to the model, it would be expected that the population 

would simply swing towards the faster (more frequent) movers, since their additional 

speed will allow them to cover more locations and therefore increase their probability of 

finding food. We therefore introduce a relationship between the migration probability 

of a predator and its reproduction capability. As the predator uses more resources to 

migrate, it has less left to use for reproduction. This produces a balance between the two 
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"attributes", and most individuals cluster around this "optimum" solution. Ultimately 

we aim to look at finding the evolutionary stable optimum cluster for a large number of 

variable parameters. 

In this scenario we will have a complex model in which we may introduce a single muta-

tion parameter that describes how far each individual has evolved from its original State. 

Both species may then alter their migration rate and any other connected parameters 

(e.g. reproduction rate, predator power, hunting strategy etc.) to any real value accord-

ing to this overall mutation parameter. Initial implementations of such systems formed 

the basis of the simulation performance results detailed in the previous chapter. The 

complexity studied in the PPR performance results (see Section 7.3) is directly related 

to the amount of "evolutionary" calculation to be made for each mutating individual in 

these simulations. We can therefore begin to study the distributions of individuals that 

occur within such complex evolving systems, and we are greatly assisted in this work 

by the dynamic load balancing functions that we have developed. 

8.3 Spatial Predator-Prey Simulation Results 

The results detailed in this section are divided into three groups: firstly, those that 

show the production of Volterra-type oscillations within our spatial system; secondly, 

we give a review of our studies into preferential migration; and thirdly, the results of 

our evolutionary process simulations. 

8.3.1 Volterra Oscillations in Spatial Models 

These simulations (as described earlier in Section 8.2) are typically run over 1,500 time-

steps using initial populations of 10,000 prey and 6,000 predators, randomly distributed 

throughout the model world. Figure 8.2 shows the variation with time of the total 

populations of predators and prey using carrying capacity K = 10 and predator power 

P = 0.4. The Volterra oscillations produced by this system are quite clear from these 

graphs, and Figure 8.2 also shows the corresponding limit cycle for these oscillations. 

We believe that this result confirms that our spatial system simulation can be used as a 

base for further investigations of more complex ecological systems. The graphs shown 
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Figure 8.2: Stochastic spatial Volterra population cycles 
Variation in total stochastic predator and prey populations with time, using carrying 
capacity K = 10 and predator power P, = 0.4. The top graph shows the total global 
predator and prey populations, the lower graph shows the corresponding population 
limit cycle. Note the low variability in the curve shapes between cycles. 
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in Figure 8.2 show a remarkable regularity in the predator and prey populations. We 

believe that this is in some part due to the large spatial scale of the model used, allowing 

global populations to be little effected by localised extremes of behaviour. 

Using this same model, but increasing each location's carrying capacity to K = 15 has 

been found to produce more regular and larger amplitude oscillations in both predator 

and prey populations. In many simulations the prey species is forced into extinction 

after a number of cycles, as the predator population becomes so large during oscillation 

peaks that the prey species is eradicated. This result cannot be reproduced by standard 

deterministic equation models, but requires the demographic stochasticity that this 

spatial model provides. A similar effect can be produced by holding the carrying 

capacity at K = 10 and raising the predator power to P,, = 0.5. This again decreases 

the chances of prey survival, and therefore when prey are small in number, increases the 

chance of a distribution of predators occurring that can force the prey into extinction. 

An alternative phenomena can be produced by decreasing either K or P,,. Under these 

conditions a more stable system is produced, and initial population oscillations damp 

down to give fairly stable populations (see Figure 8.3). 
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Figure 8.3: Low carrying capacity Volterra oscillations 
The Volterra-type predator-prey system is altered by reducing the location carrying 
capacity to K = 5, the predator power is held at P = 0.4. We observe a distinct 
damping of population oscillations, due to the reduced maximum number of prey in 
any single location. This restriction prevents severe population explosions, and thus 
produces a stable stochastic system that never nears extinction of either species. 
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8.3.2 Preferential Migration Simulation Results 

Following the successful reproduction of typical predator-prey phenomena using our 

spatial model, we can extend our investigation to study the effects produced by introdu-

cing preferential migration rules for both species. Individuals can now move into one of 

the four neighbouring locations according to the migration rule in use (see Section 8.2). 

Each of the simulations detailed in this section is run over the same time period (1,500 

time-steps), and uses the parameters detailed in Table 8.1. Initially a random distribu-

tion of 10,000 random-moving prey and 6,000 random-moving predators is used, with 

an additional 200 rule-movers from each species scattered randomly throughout the 

system. For all these runs the variable parameters are set to K = 10 and P,, = 0.3. 

Figure 8.4 shows the simulation results for our standard preferential migration system 

(Foxdelay) in which members of both species can migrate to the neighbouring location 

with most prey (for predators) or least predators (for prey). The graphs in Figure 8.4 

show the rise to dominance of the rule-moving animals of both species as well as the time 

evolution of the total populations. It can be seen that the rule-movers of both species rise 

to dominance, and the eventual extinction of the random-movers. The predators reach 

extinction much sooner than the prey. This is to some extent due to their advantage in 

migrating second. It is probably also caused by the predators having a much stronger 

evolutionary pressure to be "intelligent". This extra "pressure" follows from the fact 

that by making the correct choice of location a predator has an immediate influence 

upon its probabilities to survive and reproduce. The prey, on the other hand, have no 

direct effect on their reproduction, although their survival chances will be reduced as an 

indirect effect of being better "escapees" from the predators. 

The graph of total populations for Foxd day shows that the model still produces predator-

prey type oscillations. It is interesting to note the increase in oscillation amplitude as 

both species become dominated by rule-movers. It can be seen that the oscillations 

become most severe when there is the greatest "power" difference between the predator 

and prey populations, i.e. when the predators have become 100% rule-movers, but with 

the prey mostly random-movers. Once the prey population nears 100% rule-movers the 

oscillation amplitude reduces substantially, and thus the global system becomes more 

stable. This phenomenon occurs with all our migration rules, and has been tested using 

a variety of initial distributions of predators and prey. None of these influence the result, 
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since any initial distribution is always destroyed within the first population oscillation. 

The Eighthunt migration rule also leads to rule-mover dominance as with Foxdelay, 

although the rate of increase in the proportion of rule-moving predators is significantly 

slower (see Figure 8.8 later for a graphical comparison of all the predator migration 

rules). It would seem that by weighting movement to locations that cannot actually 

be accessed, the predator migration rule is weakened. This effect makes sense when 

one considers that predators' overwhelming requirement is for immediate food, in order 

to gain improved reproduction and survival chances. Thus the strongest preferential 

migration rule should take predators directly to prey, hence the result that Eighthunt is 

a weaker predator rule than Foxdelay. 

However, for Eighthunt the rule-moving prey rise to dominance much faster than for 

Foxdelay. This can be explained by considering that in order to undergo a population 

boom, a prey species must reside in an area relatively devoid of predators. This 

demographic stochasticity allows localised prey population explosions, as well as the 

survival of small prey populations. The weakening of the predator hunting rule probably 

allows the formation of more of these predator-free areas, therefore giving the small 

number of rule-moving prey the opportunity to dominate more rapidly. 

The Limitfox preferential migration rule, where 5% of rule-moving predators revert to 

random-movers, is another example of a slight weakening of predator power. We find 

that it also allows the rule-moving prey to dominate slightly faster than for Foxdelay. In 

addition, the rule-moving predator domination, as well as being limited to around 85% 

of the total population (the mutation is one-way only), is not so swiftly achieved. It is 

also interesting to note that the oscillations in total populations are not as severe as for 

Foxdelay. Figure 8.8 compares the oscillation size of all the migration rules. 

In the Synchro preferential migration rule we have now removed all the predator ad-

vantage of Foxdelay, as both species migrate based on knowledge of only the population 

levels at the last iteration. This results in the rise to dominance of the rule-moving prey 

being greatly accelerated as compared to previous rules, and the rise to dominance of 

the rule-moving predators taking far longer. The most interesting result of the Synchro 

simulation can be seen in Figure 8.5. The large amplitude oscillations in total popu-

lations disappear almost completely once both predators and prey are all rule-movers. 

The resulting system is therefore far more stable than for the previous "stronger" pref- 
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Figure 8.4: Stochastic population development for Foxdelay 
Using the Foxdelay migration rule we observe from the top graph that the proportion of 
rule-movers within each population grows rapidly, with predators reaching dominance 
within 500 iterations, and prey doing the same by 1,200 iterations. The bottom graph 
shows the global populations of both predators and prey, and highlights the increase 
in system instability (oscillation amplitude), as the discrepancy in the strength of each 
species increases. 

90 



erential migration rules, where "stability" is a measure of the movement (away from an 

equilibrium population) that occurs for each oscillation. 
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Figure 8.5: Variation in total populations for Synchro 
Using the Synchro preferential migration rule, both predators and prey rule-movers 
base their migration on the positions of each species at the last iteration. This graph 
shows the variation in total populations within the simulation, and highlights the fact 
that from iteration 500 onwards the system has become fairly stable. This corresponds 
to the point when both species have become almost completely Synchro rule-movers. 

Our last results within this section are concerned with the Shyfox migration rule. This 

rule is very different from all others in that rather than predators selecting a migration 

direction based on the number of available prey, they select on the basis of moving to 

where there are fewest other predators. This leads to predators spreading out across the 

world as evenly as possible, thus increasing the hunting chances of the species as a whole, 

to the possible detriment of the individual. Figure 8.6 shows that preferential migration 

is still a benefit to both species, as the proportion of rule-movers rises, although the rise 

to dominance is slowed substantially compared to other rules. It is important to note 

that the rise in rule-moving Shyfox predators shows that the action of moving to free 

areas is certainly better than purely random movement. In addition, Figure 8.6 shows 

that we again have a very stable global system. Once both populations move away from 

random movement we see the amplitude of global population oscillations being reduced 

almost to zero. Such a system never moves close to either species becoming extinct. 

In this section of results we have detailed a range of stochastic simulations of ecological 

systems with specific individual behavioural rules. These simulations formed our 
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Figure 8.6: Stochastic population development for Shyfox 
Using the Shyfox preferential migration rule we see that both predators and prey rule-
movers rise slowly in their proportion of the total species populations (top graph). In 
addition the total species populations (bottom graph) are remarkably stable, showing 
only very small oscillations. 
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early studies in this field, and were all performed on a discrete-time basis, using a 

massively-parallel SIMD supercomputer. None of these simulations use the dynamic 

load balancing techniques described in the previous chapters, and thus were rather 

unpredictable and extensive in their use of the supercomputing resources. It was this 

experience that prompted the development of our advanced modelling techniques in 

order that our future studies can make more efficient and controlled use of the available 

machines. The first such "applications" use of these advanced techniques will be in the 

area of evolutionary modelling, from which we have taken our test-bed performance 

results. 

8.3.3 Evolution Simulation Results 

As discussed earlier in this chapter, we first introduce mutation of individual attributes 

into the spatial predator-prey system running on the DAP-608 parallel computer. In 

these simulations we allow ten varieties of predator. These varieties differ in terms of 

the probability that they will migrate in any one time-step, the possible values being 

equally spaced from 0.1 to 1.0. In order to prevent faster migrating predators from 

dominating, the predator reproduction rate is adjusted as well as the migration rate. 

Thus we introduce an adjustment of 0.05 in reproduction probability for every 0.1 

change away from the median migration probability, viz: 

Pr(birth) = b - 0.05 x (i - 0.5) . 	 (8.2) 

Mutation is included in the simulation by allowing a 2% chance that a reproducing 

predator will give birth to offspring with a migration probability differing by +0.1, 

and therefore a reproduction probability differing by +0.05. One individuals have 

minimum or maximum migration rates further mutation is only permitted in the one 

)logical) direction. We find that the mutation function allows dynamic formation of 

a distribution of populations of the types of predator, a typical example of such a 

distribution is shown in Figure 8.7. 

Using a consistent set of simulation parameters, similar distributions are reached from 

a wide variety of initial distributions, from the two extremes of almost all fast or all 

slow predators, and through many intermediate distributions. There is clearly scope 
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Figure 8.7: Typical population distribution of predator varieties 
Our first simulations of evolutionary systems are based on the original Volterra oscil-
latory system detailed in Section 8.2. However, we now have ten classes of predator, 
with specific migration and reproduction probabilities. This graph shows the typical 
steady-state distribution between these classes for a random migration simulation. 

to investigate the distributions produced by stochastic models for other many other 

inter-relations between predator and prey attributes. We now intend to progress our 

work towards production of a more accurate model of such class distributions. Through 

use of a flexible simulation system, developed for the Connection Machine CM-200, 

and using the PPR dynamic load balancing algorithm (see Chapter 7), we intend to 

develop a much more detailed analysis of an evolutionary spatial predator prey system 

(as discussed in the previous Section) to build upon these initial evolutionary system 

studies. 

8.4 Case Study Conclusions 

The results produced by our investigations into various preferential migration rules are 

summarised in Table 8.3. These cover a single set of parameter values, as no study 

of the effects produced by varying these parameters was undertaken. Some of the 

effects observed will be parameter-dependent, rather than model-dependent, however 

this investigation centres around studying the effects of preferential migration on a 

model known to exhibit predator-prey oscillations. We feel that these results highlight 

the important and interesting ecological implications that can be identified through 
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Name Pred. Gradient Oscillation Amp. Prey Gradient 
Foxdelay 1/3 12000 1/12 
Limitfox 1/4 10000 1/11 
Synchro 1/12 2500 1/4 
Eighthunt 1/5 9000 1/8 
Shyfox 1/25 2500 1/12 

Table 8.3: Summary of preferential migration simulations results 
This table details the "strength" of each preferential migration rule, measured as the rate 
of increase in the proportion of rule-movers in the population, and the "instability" in 
the resulting system, as measured by the amplitude of the global population oscillations. 
"Pred. Gradient" is a measure of the rate of rise to dominance of rule-moving predators; 
the "Prey Gradient" is a similar measure for that species; and "Oscillation Amp" is a 
measure of the system instability in terms of the average total population oscillations 
in the later stages of the simulation. 

the use of high performance computing. We have developed techniques to allow this 

exploitation of supercomputers to be more straightforward and efficient. We have not 

as yet obtained a full set of application results, this will be the subject of future work. 

The gradient values given in Table 8.3 are a measure of the strength of the preferential 

migration rules, in that they are a measure of the speed of the rise to dominance of each 

of the species. The amplitude of the population oscillations is taken as a measure of 

the instability of the global system, and is measured from when both populations are 

dominated by rule-movers. 

Figure 8.8 shows the relationship between the strength of the preferential migration rules 

and the stability of the system. The work of Hilborn [1979] and Zeigler [1977] has shown 

that both deterministic and stochastic spatial models can bring stable equilibrium to a 

system. The results given here show that for very large systems with periodic boundary 

conditions an individual-based stochastic model can run for very long time periods 

without nearing extinction. The model still exhibits constant population dynamics, both 

in terms of oscillations in global populations, as well as dynamic population patchiness 

(see Figure 8.9). In addition, these results show this persistence for a range of predator 

hunting strategies, and provide some idea of how such strategies affect the stability of 

the global population. 

There appears, even from the few rules investigated, a clear relationship between the 

strength of the predator hunting rule and the stability of the predator-prey system as 
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Figure 8.8: Strength versus stability for predator migration rules 
This graph shows a plot of predator migration rule strength (equating to dominance 
rate) against system stability (i.e. amplitude of population oscillations). We see a 
clear relationship between the two factors, suggesting that strong predators can lead 
to unstable global systems, and hence increase the potential for extinction. 

a whole. The greater the strength of the predators, the more unstable the system. 

This suggests that the "selfish" optimisation of individual improvement produces in-

stability that could lead to the extinction of both the species in the system. This is 

obviously a point of substantial interest to the ecological modelling community (see 

Smith [1991]) and as such provided a substantial driving-force for the development of 

both the mathematical understanding of such systems, and also the connecting link to 

their efficient implementation and investigation on the latest range of high performance 

parallel supercomputers. 

Figure 8.10 shows the relationship between the success of the rule-moving predators 

and prey for each predator migration rule. For both species the success of the rule-

movers is measured as the gradient of the increase in the proportion of rule-movers in 

the population. The prey migration rule is identical for each of the different predator 

migration rules. It can be seen from the graph that for each of the predator rules where 

the predators are "chasing" prey, the rule-moving prey dominate the prey population 

faster as the predator rule weakens. This "weakness" of the predator seems to give the 

rule-moving prey more chance to gain rapid control and dominate. 

The Shyfox migration rule, where predators attempt to spread themselves evenly across 

the world, does not fit into this scheme. This rule may be "weak" for predators, but 
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Figure 8.9: Graphical output from spatial predator-prey simulation 
Example graphical output from a spatial predator-prey simulation with preferential 
migration running on an AMT DAP supercomputer. The screen output represents a 
two-dimensional array of locations. Within each location coloured block represents 
the population of predators (red blocks) and prey (blue blocks). Light shades of both 
species represent random-movers, and dark colours represent rule-movers. Note the 
distinct patchiness in all the populations. This photograph shows the early stages 
of a simulation, and hence small numbers of rule-moving individuals. The simple 
bar-graphs in the bottom left corner display the total populations. 
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Figure 8.10: Comparison of rates of domination for rule-movers 
This graph shows the relative strengths of the preferential migration rules for each 
predator migration rule. We see a clear inverse relationship between predator strength 
and prey strength. There is one clear exception to the pattern - Shyfox, in which both 
predator and prey appear to have "weak" migration rules. This is perhaps best thought 
of as having a low level of evolutionary pressure to evolve to rule-movement. 

it also restricts the rule-moving prey from rapid dominance. Shyfox produces a very 

stable system, where neither species ever acquires a population dense enough to start 

a population explosion. This seems to suggest that the Shyfox rule is the best to use 

should global stability and species survival be the major concerns. 

In this work we have only just begun to study the effects of evolutionary processes 

within ecological simulations. We have however seen that we can produce distribution 

of individuals within a species, where random mutation has resulted in the species as a 

whole adapting to fit best its "environment" (i.e. the system parameters and governing 

equations). There is obviously a substantial amount of potential further work in this 

area, in particular in expanding the research into "optimising" systems with many more 

than just two dependent variables. 

8.4.1 Ecological Implications 

The ability to simulate large spatial systems in short time periods is of great interest 

to many ecosystem modellers. There is a constant demand for more accurate models 

of the real world in order to confirm theories on animal behaviour. The patchiness 

observed in the two-dimensional models described above (see Figure8.9) is similar to 
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that seen in deterministic models of sea life from the work of Dubois [1975] and Levin & 

Segel [1976], and the population oscillations produced have been a feature of ecological 

modelling since the pioneering days of Lotka and Volterra. 

One of the important features of this model is that it is stochastic in nature, and exhibits 

persistent dynamics. It has been shown by Murray [1975] that deterministic realisations 

of a spatial Volterra system have no permanent patchiness or wave-like properties since 

any perturbations decay to equilibrium. We know that this is contrary to what is 

observed in the real world. This fundamental difference between the results produced 

by deterministic and stochastic models is present through a wide range systems. The 

deterministic Lotka-Volterra system exhibits damped oscillations, whereas the stochastic 

version often leads to extinction; the spatial Volterra model gives deterministic decay of 

perturbations, but stochastic persistence of oscillations (see Renshaw [1991]). While is 

is somewhat risky to place one's belief completely within a single theory, the merits of 

stochastic simulations are undeniable. 

The case for the use of complex individual-based models has been made by, for example, 

Conrad & Rizki [1989], and this route is potentially lucrative for ecosystem modellers. 

As systems become more complex the cost of performing full stochastic realisations can 

become too expensive in terms of execution time, however the availability of parallel 

computers can help to make such work possible. This availability will be even more 

important as our work continues into a deeper study of evolutionary systems. Ever more 

complex models will be used as mutation of parameters is permitted, and thus more 

calculations are needed for each individual in the system. 



Conclusions 

Mankind always sets itself only such problems as it can solve; 

since, looking at the matter more closely, it will always be 

found that the task itself arises only when the material con-

ditions for its solution already exist, or at least are in the 

process offormation. 

- Karl Marx 



9.1 Computational Science and Mathematical Analysis 

In this work we have brought together recent advances from computer science and 

general computational science, and coupled them to new analytical work from math-

ematics. It is our hope that such efforts will encourage further development within both 

disciplines. In particular, we feel that as scientific disciplines broaden their range of 

investigation, they can to look to use research from the other disciplines upon which 

they begin to impinge. In this work we have started to touch upon many other forms 

of scientific study. The systems we investigate are of direct relevance to areas of bio-

logical, chemical, ecological and physical study. We hope that researchers in these 

disciplines will also have something to gain from a greater mathematical understanding 

of the models they develop, and of the computer systems upon which they investigate 

them. 

The spatial reaction systems that form the basis for this work have been studied mostly 

in the general case. It is intended that this maintains their accessibility to Scientists from 

varied disciplines. In reviewing and expanding upon Turing's [1952] original linearised 

analysis of such systems, we have introduced the concept of system "kilter" and "crit-

icality". We believe that these categorisations of system behaviour provide an intuitive 

mechanism to predict the general activity of spatial systems with linear local interaction. 

This understanding leads to good approximations for non-linear and stochastic activity, 

and we have stressed, in particular, that this knowledge provides a mechanism for con-

trolling parallel computer implementations of such systems. Our mathematical analysis 

of two- and three-reactant systems with non-linear interactions focussed specifically on 

the production of travelling reactant waves. Although our realisation and simulation 

work showed that such scenarios can be produced by computation, an analysis assum-

ing that such waves move with a constant velocity fails to produce a result. We must 

assume that the Laplace transform-type power series expansions are not an adequate 

approximation to transient population waves in spatial reaction systems. 

In our mathematical analysis of stochastic spatial reaction systems we developed a 

mechanism for calculating the expected behaviour of systems with linearised interac-

tions. Through unifying our spatial-temporal covariance analysis over all kilter and 

criticality regions, we have developed a mechanism for producing exact solutions for 

the covariance of all perturbations to reactant populations throughout our stochastic 
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system. Such analysis allows us to predict the expected distribution patterns of reactant 

"hot-spots", as well as the expected temporal behaviour of such reactant concentrations. 

All such information proves very useful for the selection of optimal techniques for 

implementation of simulations of such stochastic systems on parallel computers. 

As a major constituent of this work we have developed a suite of computer programs for 

the realisation and simulation of spatial reaction systems. Many examples of the graph-

ical and statistical output from this software can be viewed in the preceding chapters. 

In particular in Chapters 3 and 5 we review the behavioural modes of deterministic and 

stochastic spatial reaction systems. We have concentrated particularly on systems that 

exhibit permanent wave structures in the reactant populations. This is currently an area 

of great interest as natural systems that exhibit such effects are being identified in biology 

(e.g. see Nagorcka & Mooney [1992]) and chemistry (see Ouyang & Swinney [1991]). 

Our analysis produces a review of the permanent wave scenario, plus new results that 

link wave amplitude decay rates to system criticality. In addition we provide evid-

ence for the importance of discrete-space reaction systems for the production of certain 

"real-world" phenomenon. These simulation results help to reinforce the importance of 

computational techniques as tools for scientific and mathematical investigation. 

Our extensive use of high performance computing is inherently linked to our simulation 

work. In an almost circular relationship, our initial parallel computer investigations 

produced an interest in spatial reaction systems. This interest led to the use of very 

large amounts of supercomputer resources for large-scale simulations. The nature of 

stochastic systems necessitated the development of specialised parallel implementations 

(incorporating dynamic load balancing techniques) to enable efficient and effective 

use of such supercomputers. In order to achieve maximum efficiency from these 

implementations, it was found that we required predictive information about spatial 

reaction system behaviour. We therefore looked to a specific mathematical analysis of 

both deterministic and stochastic systems to enable the extraction of such predictive 

measures. This leads back to being able to use the available supercomputing resources 

with optimal efficiency, and thereby return to our extensive investigation of the behaviour 

of complex spatial reaction systems. 
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92 Directions for Future Study 

We feel that there are many opportunities for future work in developing a deeper un-

derstanding of spatial reaction systems. In particular, further analysis of systems with 

full non-linear interactions would certainly enhance our current levels of understand-

ing. Analysis of the stochastic system has enabled efficient implementations of spatial 

reaction system simulations for the two currently dominant types of parallel computer. 

Hopefully this analysis will also be expanded to gain more theoretical insight into the 

behaviour of these systems. Our own future study will now, however, concentrate on a 

study of evolutionary spatial reaction systems. 

We have already obtained interesting initial results for spatial systems with reactants 

that "evolve" by adapting their behaviour or physical attributes between generations. 

One of the basic tenets of Darwinian evolution is that all animals have the capacity 

to more than replace themselves. Exponential explosions of species populations are 

prevented in nature by a vast array of factors: predators, limited resources, variable 

seasons and weather, and also disease. The result of this complex interaction is that 

almost all populations fluctuate, exhibiting a cyclic pattern of population explosions 

followed by mass-reductions in numbers with species reaching low densities, often 

on the point of extinction. It is possible that at these minimum population levels 

mutation of attributes can have it's strongest effect, as the mass reproduction about 

to occur may produce proportionally large numbers of mutants in a very short time-

scale. It is a major task of modern ecologists to understand the mechanisms involved 

in these population fluctuations. The interest is not just theoretical, but has practical 

applications in the prediction of the effects of climate change and man-made alterations 

to the environment. We hope to continue our investigation into evolutionary ecological 

systems. In particular we will study the development of individuals in systems where 

we have a number of behavioural traits in competition, thereby discovering those types 

of activity that are evolutionary stable. We feel that research of this type may yield very 

interesting results, and will almost certainly produce suggestions for yet more areas of 

investigation. 
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