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ABSTRACT 

Salloway, J.C. The Structure of the Geomagnetic Field during 

Polarity Transitions and Excursions. 

An investigation into the nature of the geomagnetic field 

over the past four million years was carried out using sediments 

from the South Atlantic Ocean, and from lacustrine and marine 

basins of NorthernItaly. In particular the aim of the research 

was to identify smaller geomagnetic events or excursions, and to 

observe the structure of the field during changes in polarity. 

Consideration of the processes involved in the acquisition of a 

reiranence by sediments enables the selection of the best rocks 

for this study. Sediments present an averaged record of the field, 

so in some cases smaller geomagnetic features may not be recorded 

by certain sediments. 

Sediments from the South Atlantic record most of the last 

Lj. m.y., that is, back to the Gilbert Epoch. A short excursion is 

seen at 3.95 my. Most of the polarity transitions are restricted 

in longitude, but there is no definite near-sided or far-sided 

pattern, in fact many of the transitional paths cross the equator 

90°  from the site. 

The four river sections from Northern Italy which were investi- 

gated show a transition from marine sedimentation to continental 

fluviatile and lacustrine sedimentation, consequently the palaeo-

magnetic record is often interrupted due to periods of non-deposi-

tion. The major change in environment occurred between the beginning 

of the Jaramillo Event and the base of the Brunhes Epoch, and in 

one case the whole of this interval is missing. A composite section 

indicates the possible presence of excursions in the lower Brunhes 



at about 0.45 and 0.68 m.y. 

Additional work carried out on sediments from Italian 

glacial lakes, and from a series of cores in Tuscany suggest 

the presence of excursions in the Thunhes at 0.18 in.y. and in 

the Gauss at 2.65 m-y. 

Two transitions can be studied in detail in these Italian 

sections, the Lower Jaramillo (R-.N) seen at two sites crosses 

the equator approximately 60°  W of the site. The Matuyarna-Brunhes 

(R-'N) crosses between 160°and 190°  E of the site. 

The Hoffman (1979) model for the Natuyama-Brunhes transitional 

field involves zonal components only, giving VGP paths confined 

longitudinally and passing through the site. The results from 

Tiepido and other European sites do not fit into this pattern, 

suggesting an additional source to the east of Europe. Further 

results from Europe and the Argentine Basin appear to indicate 

that transitions involving purely zonal fields are rare, and that 

additional sources such as current loops may often contribute to 

the transitional field structure. 



Abbreviations used in the Text 

A.F. Alternating Field 

A .R.M. Anhysteretic Remanent Magnetization 

C.R.M. Chemical Remanent Magnetization 

D.R.M. Defritat 	Remanent Magnetization 

G.R.M. Gyroremanent Magnetization 

I.R.M. Isothermal Remanent Magnetization 

M.D.F. Median Destructive Field 

N.R.M. Natural Remanent Magnetization 

S .1 .R.M. Saturation Isothermal Remanent Magnetization 

V.G.P. Virtual Geomagnetic Pole 

my. 	 Miflion years 

Note: The c.g.s. units for field strength and flux density are 

used throughout the text. 

1 Oersted Zj~ x i& Amperes per metre 

1 Gauss 	10 Tesla 

(lpG 	0.1 nT) 
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CHAPTER I 

INTRODUCTION 

When Motonori Matuyama (1929) reported normal directions re-

corded by recent Quaternary basalts and reversed directions record-

ed by older Quaternary basalts he effectively introduced the science 

of magnetostratigraphy. Although previous workers such as Brunhes 

and Mercanton had shown that some rocks recorded directions opposite 

to the present day field (see Cox, 1973), ratuyama was the first 

person to study the ages of the reversed rocks. As a result he 

showed that the Earth's magnetic field changed direction in com-

paratively short times. 

More detailed refinement of geomagnetic reversal history had to 

wait until the development of an accurate method for dating volcanic 

rocks. Once the potassium argon method had been applied to younger 

rocks in the late 1950's a number of workers with the U.S. Geological 

Survey and the Australian National University were able to produce 

increasingly more refined records of the reversal sequence (see Cox, 

1973). Initially the reversals seemed to occur regularly at about 1 

million year intervals (Cox et al, 1963) but later the discovery of 

shorter events (e.g. Doell and Dalrymple, 1966) showed that the 

reversal sequence consisted of long and short intervals with the 

change from one regime to another seemingly occuring at random. Cox 

(1969) suggested that reversals were due to coincidence of extremes 

of dipole variation and non-dipole field turbulence, which gives a 

probability distribution function for the lengths of polarity inter-

vals. Polarity Intervals of all lengths should occur, however 

shorter polarity intervals are rarely seen, perhaps due to gaps in 

the formation of rocks or slow sedimentation rates. 



More detailed investigation of the boundaries of these magnetic 

epochs showed that the field changed sign over a period of about 

10,000 years, with lava flows recording field directions interme-

diate between the two stable directions (e.g. Watkins, 1969). This 

fact, along with the evidence that reversed rocks were distributed 

according to age, not rock type, effectively proved that reversal of 

the geomagnetic field had occured, not self-reversal of the magnetic 

minerals. 

Once a number of records of the actual transition between polarity 

states had been obtained it was clear that the structure of the tran-

sitional field was different for different reversals, sometimes the 

direction changed gradually, at other times the magnetic vector 

looped about its initial direction with increasing amplitude, then 

changed to the other direction, settling down via loops about this 

new direction. 

The aim of this study is two-fold: to attempt to redefine the 

magnetic reversal history for the past four million years, in particu-

lar with respect to the shorter episodes which studies of reversal 

frequency suggest should occur; and secondly to investigate the 

actual structure of reversals of the magnetic field to discover 

whether there is any given pattern for successive reversals, and 

also to investigate the transitional field for given reversals at 

different sites around the Earth. 

The study was undertaken in two major areas, both sedimentary 

basins. Although it can be shown by redeposition experiments that 

sediments are capable of carrying a record of the Farth's magnetic 

field from about the time of deposition, careful attention had to be 

paid to selecting and sampling the sediments for study. 

The first deposits studied were the marine sediments of the 



Argentine Basin, where hydraulic piston coring by the Deep Sea 

Drilling Project recovered virtually undisturbed sediment, covering 

an almost continuous interval extending 	to 4 m.y. b.p. The sedi- 

mentation rate in these sediments was extremely high enabling a 

detailed study of the intermediate field directions between polar-

ity epochs. 

The second area visited was northern Italy where the marine and 

continental deposits of the Po Valley present opportunity to study 

the magnetic field for at least the past 2 million years, although the 

coverage of the past one million years by the continental deposits 

is intermittent. Four river sections were sampled: the Stirone, 

Crostolo, Tiepido, and Panaro rivers, as shown in Figure 1. These 

investigations were supplemented by studies on glacial deposits in 

Lombardy where glacial traps allowed deposition in temporary lakes 

at various times during the ice age including those at Bagaggera, 

Pontida, Leffe, and Pianico (Figure 2). The different deposits ware 

correlated with the aid of Italian geologists. One point of interest 

in the investigation was to find out whether the structure of tran-

sitions was different for different transitions and to see whether 

these could be used for correlation. 
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CHAPTER 2 

METHODS 

The palaeomagnetic determination of the ancient field direction 

can be divided into two parts: the process by which rocks recorded 

the ancient field, and the subsequent measurement of this record in 

the laboratory. The palaeomagnetist has no control over the magneti-

zation process which introduces the largest errors, although considera-

tion of the theory involved can enable the selection of the best rocks 

for study. The second part consists of sampling of rocks in the field 

and then of measurement of the direction and strength of the natural 

remanence, and of susceptibility and other magnetic properties of 

the rocks in the laboratory. 

THE PROCESSES OF MAGNETIZATION 

The rocks used in this study are all sediments, deposited in 

conditions varying from deep sea basins, through shallow marginal 

seas, to continental lacustrine and fluviatile environments. A few 

samples were taken from sub-aerial deposits such as loess. The 

major form of magnetization in most sedimentary rocks is detrital 

remanent magnetization, in which particles already possessing a 

remanence (usually magnetite grains with a thermal remanent magneti-

zation acquired through igneous activity) give an average alignment in 

the ambient field direction. This may either form contemporaneous 

with deposition (depositional URN) or a short time afterwards (post-

depositional DRN). Formation of magnetic minerals such as haematite, 

within the sediment, through weathering and pedogrienesis when the 

sediments are exposed at the Earth's surface, gives rise to a chemical 

remanent magnetization (CRN). Other factors such as viscous remanen-t. 

magnetization ('rnr) formed through relaxation of domains with time, 



and isothermal remanent magnetization (TRIM..) formed by large fields 

associated with lightning strikes, may contribute to the natural 

rernanence, but these effects can be removed by demagnetization, and by 

taking samples over a wide area. 

DErOITI0NAL DETRITAL REMANENT MAGNETIZATION 

Initial work on glacial varves (Ising, 1943;  Granar,  1958)  re-

vealed that they recorded the direction of the ambient field, but with 

a lower inclination. Granar noted that a grain falling through water 

was subjected to magnetic, gravitational, and hydrodynamic forces, 

and also that a systematic deviation was produced by deposition on 

a sloping surface. Redeposition experiments by Griffiths et al (1960) 

suggested that the inclination error was not related to grain size, 

and that currents could produce deviations of up to 10°  in declination, 

although inclination error was reduced. Having studied the properties 

of magnetic grains, which were mainly spherical, and about the same 

size as the non magnetiL fraction 	, with magnetite as inclusions, 

Griffiths et al were able to produce a theory for inclination error. 

Grains reaching the sediment-water interface will tend to roll into 

the nearest hollow. On a horizontal surface this rolling direction 

will be equally probable in any direction, however while rolling 

north will increase inclination in a normal field, rolling east, 

west, or south will decrease inclination. Averaging for all directions 

of rolling Griffiths et al found that the observed inclination (To) is 

related to the ambient field inclination (If) by: 

tan 10 	(2cos/1+cos) tanlf 	 CD 

where 0 is the average angle rolled. For deposition on a slope this 

angle is increased in one direction (downhill) and decreased in the 

opposite direction, and in addition the probability of rolling ia the 



first direction is increased. It was estimated that currents reduced 

the effectiveness of such rolling by introducing scatter. 

King and Rees (1966) were able to consider the various factors 

affecting particle alignment. A grain of diameter D, density d, and 

moment 	j, at an angle 0 to the applied field H, is acted upon by 

a magnetic torque 

Cm = (D 3 . jHsin@)/2 	 © 

A particle falling through a layer of laminar motion of velocity 

gradient dU/dz will tend to be rotated out of alignment by a hydra-

dynamic torque 

C = D 3  v dU/dz 

where v is fluid viscosity. Spherical grains will achieve equilibrium 

in a position governed by these two torques. On reaching the sediment 

surface the grain may tend to rotate into a hollow, or if the grain is 

non-spherical, to rotate until its long axis is horizontal. The gravi-

tational couple is: 

Cg = D 3.g (d-1)a 
	

© 

where a is the horizontal distance between the point of contact and 

the centre of gravity. For spherical grains and random packing 

a = iJ/4. King and Rees estimated that grains have intensities of about 

2 emu cnf3, and suggested that for a grain of 1 pm the magnetic torque 

will be dominant, but for a grain of 10 pm gravity will cause complete 

rotation. There will thus be a systematic deviation of remanent direc-

tions in a sediment at the time of deposition. 

Additional factors contribute to introduce a randomization in 

the alignment of grains. The major effect of this will be a reduction 

in the intensity of the sediment as a who'e. 

The initial orientation of grains will affect the remanence if 

there is insufficient time for alignment to take place. The fraction 



of grains aligned as a function of time (t) for n uniform grains is given 

by 

Jr/Jo = tanh (2N.Ht/p,.)/3 

where N is the moment of a single particle, and ). a viscosity 

coefficient of rotation (-i-rvD3 ). Given v = 0.01 poise, H = 0.5 

Ce, N = (rrD3J)/6, then to, the time constant for the alignment 

process is 0.12/J. This implies that all but the weakest grains 

would be aligned within 1 second. The settling rate for most magnetic 

particles is only a few millimetres per minute, so in still water most 

grains would become aligned. Even in turbulent water, the boundary 

effect of the bottom gives rise to a layer of laminar flow, however 

there will be a critical grain size which falls through this layer 

too quickly to become aligned. King and Rees estimate this to be 

50 pm. The effect of high energy environments was noted by Thompson 

and Berglund (1976) who attributed scatter in coarser deposits to 

this. They suggested that sediments of greater than 62.5 pm (that 

is anything coarser than very fine sand) should not be used for 

palaeornagnetism. 

Brownian motion will be acting continually to reduce the align-

ment. The mean amplitude of oscillation decreases with increased 

grain size, as given by: 

Ornis 2  = 2kT/D 3  JH 

ignoring smaller motions 

Orms > 0.1 if D < 1. pm 

King and Rees suggest that there will always be some preferred align-

ment, but it is difficult to see how particles of less than 0.1 pm 

could contribute to the magnetization of sediments containing magnetic 

grains larger than 1 pm. 

Jr  is the actual remanence and J0  the remcjnence when all grains are aligned 



The inclination error model produces a systematic error for 

spherical grains. For non-spherical particles or inhomogeneous par-

ticles the grain will come to rest with the upward force passing 

through the centre of gravity. If remanence is not related to particle 

shape, the result will be a random scatter about the field direction. 

If the remanence is soft it will preferentially lie along the long 

axis of the grain, and this will introduce a horizontal component 

which will reduce inclination. 

Amerigian (1974) noted ways in which climate may affect sediment 

intensity and remanence direction. Increased carbonate production, 

which is controlled by climate, will dilute the density of magnetite 

in a sediment. He also suggested that the efficiency of alignment 

under DR• is related to grain size, which can be affected by bottom 

water velocity. Climate change may alter bottom water velocity which 

will also affect inclination in the boundary layer of laminar flow. 

In another paper Amerigian (1977)  reports redeposition experiments 

for different grain size ranges. For particles up to 38 pm, the DRM 

is simar in st25ilHty 	to an ARM induced in the samples. The ARM 

is higher in intensity which is explained as due to the presence of 

inclusions in larger grains which contribute to ARM, but are unable 

to become aligned to contribute to the DRM. Above 38 pm the DRM is 

unstable under alternating field demagnetization above 400 Ce, 

possibly because grains of different coercivity are aligned by 

different factors. An ARM given to the same samples is stable. 

Depositional Detrital Rernanent Magnetization will be present in 

all subaqueous sediinentaz'y deposits at the moment of deposition. 

Taboratory experiments suggest that at this point all the deposits 

will possess some inclination error, but in many rocks additional 

factors such as current velocity, and large grain size will lead to 



even greater distortion in the recording of the ancient field. Sedi-

ments with grain sizes of over 62.5 pm (and possibly some smaller 

grained sediments) are unlikely to give an accurate record of the 

ambient field at the time of deposition. There does not seem to be 

any indication of a saturation remanence being reached when redeposi-

tion experiments are repeated at higher fields (Barton et al, 1980), 

which probably indicates that the percentage of grains contributing 

to the remanence is small. 

POST-DEPOSITIONAL DETRITAL RE,-'ANENT MAGNETIZATION 

Irving (1957) noted that slump beds within the Torridonian 

sandstones had magnetizations parallel to those of the overlying hori- 

zontal beds. As intensity in these rocks varied with ppecularite 

content not haematite staining, the highest intensities occuring in 

black-banded rocks, he concluded that the magnetization resulted from 

alignment of detrital grains which were still free to rotate, after 

deposition, in the pore spaces between quartz and feldspar grains 

which were larger than the specularite. This post-depositional rota- 

tion was, he suggested, inhibited after a certain period, at a critical 

water content. Irving also noted a relationship between dispersion and 

grain size: there was a marked increase in dispersion for coarser 

sediments. Subsequent redeposition experiments (Irving and Major, 

19614) proved that if the sediments were allowed to stand for 70 hours 

before the water was drained off, then allowed to stand for a further 

48 hours, the remanence directions would show no significant departure 

from the applied field. Irving and Major noted that intensity increased with 

applied field strength, indicating an increac1. alignment of grains. 

Kent (1973) suggested that the origin of post-depositional DRr1 

is related to Prownian motion or to disturbance caused by bioturbation. 



He redeposited sediment, and stirred the slurries before allowing them to 

dry in the presence of a magnetic field. No systematic deviation from 

the applied field was seen, and intensity showed a linear response to 

the magnitude of this field. When the samples were not stirred inclina-

tion was recorded accurately, but remanence was lower. 

Verosub (1977) noted that glacial varves retained an inclination 

error. Sediments deformed 13 years after deosition were unable to 

correct their directions. Some lake and shallow sea sediments with rapid 

accumulation rates gave a skewed distribution of inclinations suggesting 

that inclination error was present, on the other hand deep sea sediments 

with low deposition rates accurately record the ambient field. In these 

sediments bioturbation destroys the depositional DRM. Verosub considers 

that two types of enviornnient can be distinguished: in sediments with 

low water content re-orientation is prevented, whereas post-deposition-

al realignment takes place in environments with high water content, 

which may be created or maintained by bioturbation. In redeposition 

experiments Barton et al (1980) noted an increase in remanence with 

vibration, and Kent's (1973)  results also support this theory. Even-

tually dewatering takes place due to compaction. Factors important 

in determining water content include grain size, clay mineralogy, 

shape, and also the ratio of non-magnetic 	to magnetic grain size. 

Verosub reports that FD-DRN is seen in some cases, but not in others 

in the same area. Subtle changes in environment influence the relative 

contribution of D-DRN and PD-DRM. For sediment with a single grain 

size and a single magnetic carrier size there should be a critical 

water content. Verosub et al (1979) redeposited sediments, and from 

the results estimated that only 10-20% of the grains were able to re-

align. In many cases their initial slurries had insufficient mobility 

as they were beneath the estimated 70% water content necessary for re-

alignment. Barton et al (1980) suggest, however that short- 



term post-depositional processes are not important in compacted fine-

grained. rocks. 

The timing of PD-DRM can be studied by reversing the applied 

field during a redeposition experiment. Lovlie (1974)  redeposited 

natural foraminiferal clay containing magnetite of less than 5 pm 

over a period of 100 days. The ambient field was reversed after 62 

days, and the time marked by introducing calcium carbonate in the 

sediment. The rernanent magnetization records the reversal over a 

five day period between 10 and 5 days earlier than the actual reversal. 

Further experiments (Lovile, 1976) showed that intensity was decreased 

over the interval in which the reversal was recorded. Decrease was 

gradual before the transition, and increase rapid afterwards. Lovlie 

suggested that a variety of grains are affected, each being blocked 

in at a critical depth, with the larger grains in general being locked 

in before the finer grains. The observed pattern is best modelled, 

according to an exponential pattern (as in Figure 3). The minimum 

intensity (theoretically zero) will occur when half of the grains are 

locked in before the reversal, and half after it. 

Tucker (1979)  deposited synthetic sediment, mainly between 1 and 

5 pm with 90% water content, after stirring and agitation. After 

2+ hours the fild direction was changed through different angles for 

different samples. When water content had reached 700/-the  samples 

were measured. Inclination error was present at IM1,11, but demagneti-

zation reflected this field change, the harder component having devel-

oped a PD-DRN, the softer component remaining aligned in the IYRM 

position. This would support Lovlie's suggestion that smaller high 

coercivity grains become locked in later than larger, low coercivity 

grains. 

Further redeposition experiTients (Tucker, 1980a) compared the 
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Figure 3. Model of POURM Acquisition 
(from Løvlie, 1976) 



effect of grain size, applied field, interstitial fluid, and com-

paction. Only 10% of the renanence was available for realignment, 

this occurring within 24 hours. Realignment increased with increasing 

matrix size, however mobility was reduced with depth. Tucker recog-

nized four types of post-depositional realignment: Zone 1 consists 

of grains which are more or less reversible, they are held in 

minima of gravitational or surface tension energies. These are 

responsible for an initial sharp increase with time, related to 

field strength. Zone 2 consists of grains which rotate within water 

filled voids, and respond freely to magnetic torques. They show a 

logarithmic increase in alignment up to saturation point, when the 

applied field is removed they suffer long term decay due to external 

perturbations. Zone 3 occurs above a critical field of 35 Am 1, and 

probably results from rotation of grains through distortion of the 

void. This factor is not seen in sands. Zone 4 is only seen above 

350 Am7l  and represents grains rotating against surface tension 

forces. This component increased when an interstitial fluid with 

a lower surface tension coefficient was used. 

The grains are blocked in by dewatering and compaction. De-

watering occurs between 70% and 68% water, causing the removal of 

a lubricant for rotation. Compaction decreases void size and increas-

es resistance to deformation. Only a small fraction of the grains 

were mobile at a depth of 30cm. Tucker lists the factors controlling 

PD-DRM, these include depositional conditions, mineralogy, organic 

content, and particle size (all of which affect void size), as well 

as the initial water content. 

?oth Tucker (1980a) and. Verosub et al (1979) note that in rede-

position experiments only 10 to 20% of the remanence is able to rotate 

after deposition. Total remagnetization may result from disturbances 



such as bioturation, slumping, or the upward movement of gas bubbles, 

all of which temporarily increase water content. Tucker (1980b) 

studied stirring as an analogue for post-depositional disturbances. 

Slurries of 75%water were continuously measured while being stirred. 

with slow stirring rates a percentage of the grains retained an 

alignment. For faster stirring rates the rernanence on the cessation 

of stirring was higher. The rernanence was ten times greater than 

for similar sediments which settled in a field without stirring. 

Stirring liberates the grains from clusters and allows them to 

become aligned in the ambient magnetic field. The constraining 

forces which block the grains in reassert themselves a certain time 

after the disturbance. The magnitude of PD-DRM depends on the type 

and scale of the disturbance. The depth to which realignment can 

occur depends on the depth of burrowing. Weaver and Schuitheiss 

(1983) noted burrows over 2m below the surface. Although sediment 

is not mixed greatly the burrows increase permeability so greater 

water content may enable re-orientation. 

Post-depositional Detrital Remanent Nagnetization will be 

present only in those sediments which maintain a sufficiently high 

water content for a certain length of time after deposition. Sedi-

ments with high deposition rates such as glacial varves will reach a 

critical stage of compaction before the grains have had time to align 

themselves more accurately. Amerigian (1974)  suggests that in any 

sediment the number of grains available for post-depositional rota-

tion will be less than the number of grains which become oriented 

during deposition. Unless the ORM is destroyed by disturbances such 

as bioturbation, then the renanence will be partially erroneous. The 

results of Verosub et al (1979)  and Tucker (1980a) support the 

suggestion that PD-D2 is limited in undisturbed sediment, however 



Lovlie (1974, 1976) shows that disturbance is not necessary to produce 

a time lag in the majority of the remanence, and Channell et al (1982) 

show by demagnetizing sediments deposited during a geomagnetic transi-

tion that a chemical remanence carried by haematite can form in situ 

before the detrital remanence carried by magnetite is locked in, 

Clearly the timing of post-depositional re-alignment, and the percent-

age of grains able to react to field changes varies with sediment 

type. 

Tucker (1979)  points out that if the smaller grains have higher 

coercivity and these grains become locked in at a later date than 

the larger, lower coercivity grains, then demagnetization may remove 

an older component and leave a slightly younger component. 

As the rock becomes coherent, compaction will produce scatter 

and also decrease inclination. Whatever processes give rise to the 

remanence there will be an inherent variability in the palaeoirag-

netic recorder, as noted by Verosub (1979). Glacial varves in New 

England show changes that would imply secular variation of 1.5/yr 

which is much faster than that observed at present. Verosub also 

reports that the same horizon at different sites within the same 

lake shows differences of as much as 8°in inclination and 15in 

declination. 

Post-depositional DRM will cause both a delay and a smoothing of 

the magnetic signal recorded by sediments. This problem is particular-

ly pertinent in the study of transitions. The amount of smoothing 

involved will be governed by the width of the interval over which 

locking-in occurs, while the delay of the transition is caused by 

the offset of the lock-in zone. The shape of the lock-in zone will 

affect both the smoothing and the delay, by giving different weight-

ing to shorter or longer lock-in offsets. 



The effects of PD-DRN can be illustrated by a series of deposi-

tional models constructed by computing the effect of depositing grains 

during a transition1. The direction and strength of the ambient field, 

and the shape of the grain response curve for the sediment are put in 

to the program which then calculates the remanence at each level. It 

is assumed that there exist a number of grain sets having different 

delay times ( t1  .. . -t.... T, ) each grain set becoming locked in along 

the field direction existingi time units after it was deposited. 

Each grain set is, as a whole, completely aligned along this direction 

(it is unlikely that a grain would be unable to rotate as fast as the 

field changes). Within each grains set the alignment of individual 

grains is proportional to the ambient field strength, so the intens-

ity of the remanence carried by that grain set is itself proportion-

al to field intensity. In addition to the grain sets which do become 

aligned with the ambient field there is another set of grains which 

are not oriented. If there is no current or shape anisotropy these 

grains will be randomly oriented and will not affect the remanence. 

These models use various field configurations including an 

instantaneous reversal, great circle reversals, a complex reversal, 

and excursions, all with or without intensity decrease. The grain 

delay curves include no-delay, which models depositional JJRM, but can 

also be applied to post-depositional DRN which is locked in at a 

single depth. The second model is a linear grain delay curve, the 

third is an exponential curve similar to Lovlie's (1976) suggestion, 

and the fourth involves a maximum in the grain response at a given 

depth below the sediment-water interface as modelled by Denham and 

Chave (1982).  This is called the '5' grain delay curve (Figure ). 

Figure 5 shows the affects for an instantaneous transition, 

comparable with that used by Lovlie. A decrease in intensity is 

1 	The program is listed in Appendix A 
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introduced due to opposing grains sets cancelling each other out. 

This decrease is symmetrical for linear and 'S' delay, but sharper 

after the transition for exponential delay if there is no decrease in 

the ambient field, as seen by Lovlie (1976). If the transition is 

accompanied by a decrease in intensity, the exponential delay may 

cause a steeper decrease before the change in direction. As the 

normal and reversed directions are directly opposite, no interme-

diate field positions are seen. A slight bias in the two opposing 

directions will give a great circle path. This will be far-sided if 

there exists a grain set with an inclination error (that is one 

unable to undergo realignment). The transition occurs at the point 

where more than 50% of the grains have reversed. This is nearer 

the actual date of the transition for the exponential delay model 

used than for the linear delay curve. 

Where the transition is of finite length (Tr) the depth interval 

representing the transition is extended to (Ti' + tmax)C where C is 

the sedimentation rate, (Figure 6). The directions do not cancel 

each other out completely so intensity decrease is smaller than for 

an instantaneous reversal (where the theoretical minimum intensity 

is zero). The resultant directions are smoothed, this will not 

affect a great circle path, however complex reversals will become 

more even (Figure 7). The exponential delay curve gives more 

weighting to shorter delays, so the linear delay curve will give a 

smoother path than the exponential delay. 

Excursions2  will also be smoothed and may be considerably reduced 

if the smoothing interval is long compared with the excursion. The 

smoothing is more marked if there is a decrease in intensity during 

the transition or excursion, as this gives less weighting to the 

anomalous directions. Figure 8 shows and excurion with anomalous 

2. 	An excursion is here token to be a deviation of the 'lOP to' between 45N and 45S 

See the discussion on p. 46 
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directions for seven time units, and intensity reduction to a minimum 

of 10% spread over 10 time units. In addition to the no-delay sedi-

mentation model, Figure 8 shows the effects of a linear delay curve 

(with 50% of the grains aligned within 4 time units), an exponential 

curve (50% within 2 time units) and and 'S' curve similar to Denham 

and Chave (1982), (50%  within 4 time units). Probably only the ex-

ponential delay results would be interpreted as an excursion 

The deposition rates are constant for each model. A change in 

deposition rate or a change in sediment will give a change in the 

grain delay curve. If this occurs during a reversal the reversal 

may appear to be repeated. However if the grain delay curve is 

constant, the transition will always appear simpler than it is in 

reality. Another thing to note is that the recorded intensity is 

also lower than field intensity during a reversal due to the oppos-

ing directions of grain sets. The longer the reversal interval, the 

less difference there will be between true intensity and recorded 

intensity. 

FACTORS AFFECTING IMAG1,1ETTZATION AFTER DEPOSITION 

The samples t1-at comprise this study are taken from sediments 

between about 10,000 and 4,000,000 years old. Since deposition most 

of the sediments have been uplifted, in some cases folded and faulted, 

and exposed to weathering and erosion. (Only the deposits from DSDP 

Site 514 had remained unmoved between deposition and sampling.) In 

the intervening period the magnetization carried by the sediments 

may have been affected by viscous decay or chemical alteration. 

The main carriers of detrital reiranent magnetization are titano-

magnetites which possess thermal remannt magnetizations. The magnetization 

of a single domain grain may change as a result of thermal fluctuations. 



A given grain set will decay from its initial moment o. to Nr at 

time t according to 

where t is the relaxation time, and is related directly to coercivity. 

Relaxation time is small for small grains when temperature is high, 

but may increase to 1011  years for 0.1 pm grains at 25C C (McElhinny, 1973) 

In a sediment there will exist a number of grains with high relaxation 

times which retain their magnetization from the time of deposition. 

In addition there will be a number of grains which have decayed since 

deposition, and are aligned along the present Earth's field. Two 

methods may be used to remove the effect of this viscous remanence: 

demagnetization (which will be discussed later) and storage in a 

zero field. Samples were left in a zero field for periods of 1-12 

months before measurement. Any grain moment which decays during 

this time will assume a random orientation and the set of such grains 

should cancel each other out. There will however still exist a 

viscous remanence due to grains with relaxation times between 1 

year and up to 4 million years, which must be removed by demagneti-

zation. 

Exposure of sediments at the Earth's surface may lead to weather-

ing which can cause chemical alteration of the ferrous oxides to 

ferric oxides, that is oxidation of magnetite (Fe3  04 ) to haematite 

(Fe 2  03 ). As it grows the haematite will develop a chemical 

remanence when it reaches a critical diameter. In most cases this 

will mask the original depositional remanence, however in some 

Italian soils the extent of alteration is such that all of the magne-

tite has been altered to haematite. Iiaematite is generally more 

resistant to alternating field demagnetization than magnetite so 

chemical overprinting can prevent the identification of the primary 



magnetization. To avoid this problem the samples collected should be 

taken from unweathered sediments. In the case of the palaeosols of 

northern Italy the purpose was to date the weathering in which case 

samples were taken from the dark red matrix. 

If the sediments are subjected to high fields, even for short 

periods of time an isothermal rernanence may form. This effect can 

be produced by lightning, so it is necessary to avoid prominent 

exposures while sampling. McElhinny (1973)  notes that a lightning 

strike of 5 x 10 4 amps produces a field of 100 Oe at lm, and that the 

effect can be removed by demagnetization at this field. 

A large number of factors may give rise to a change in dtcection 

after deposition, and it must also be remembered that the direction 

after deposition (and post-depositional realignment) may not have been 

exactly that of the ambient field at that time. For this reason all 

results must be treated with caution, particularly isolated samples 

bearing anomalous results. 

SA MPLING 

Most of the samples from Italy were taken from exposures in 

quarries, river banks, and road cuttings. This involved cleaning 

the exposure of weathered material and trimming the section to a verti-

cal face (measured using a specially constructed device consisting of 

two perpendicular spirit levels). The samples were taken in plastic 

boxes which are 2cm cubes, open at one end. These are pushed into 

the vertical face using the spirit level device to keep the sides of 

the sample box vertical. The orientation of the sample is measured 

using a magnetic compass before it is removed, and its lid replaced. 

Magnetic North is about 10  111  west of true North at Bagaggera and 

10 10' east of true north at Tiepido, no correction is made for the 



use of a magnetic compass which probably has an error of about 1 

The rocks are weakly magnetized so they do not affect the results. 

(Declination was calculated for 1981 using information on maps 13211 

S.E. and. 86 I S.E.) The measurement of vertical and the variation of 

sample position during insertion probably add up to errors of around 

5 0 •  

The boxes have a hole in the base to allow air to escape while 

the box is being inserted into the sediment. These holes are sealed 

with 'Lasso' tape, and the samples kept in sealed tupperware contain-

ers to prevent loss of moisture, as drying may lead to disturbance of 

the magnetic grains. 

Ocaassionally three samples were taken from the same strati-

graphic level to enable the comparison of separate records of what 

should be the same ambient field. The agreement can be expressed as 

the alpha 95 angle for the mean direction, that is the half angle of 

a cone of 95% confidence about that mean. 

The deposits of Leffe and Sovere were too hard to be sampled 

using plastic boxes, so these were cut to 20cm cubes in the field and. 

later cut down to 2cm cubes in Edinburgh. Orientation was preserved 

by trimming the top surface of the block while it was in situ, until 

it was horizontal (as measured by two spirit levels) and inscribing 

an arrow on this surface in the direction of magnetic north. 

The sediments of Piombino and DSDP Site 514 were retrieved using 

coring methods. In both cases disturbance is kept to a minimum, and 

at Piombino relative orientation was maintained. Samples were taken 

from the cores using square plastic boxes, and in addition, plastic 

cylinders were used on board the Glornar Challenger, and small cylin-

drical boxes for Piombino cores. The DSDP cylinders are similar to 

the cubic boxes in that they are pushed into the sediment however the 



Piombino smaples were taken using a hollow metal tube, and were subse-

quently extruded into the round boxes. The surface area which is 

pushed into the sediment is much smaller for the thin metal tube 

than for the cubic boxes, so less deformation takes place. 

THE MEA S URE ME NT OF NATURAL REMA NENCE 

The Clornar Challenger samples were measured on a Digico magne-

tometer at Edinburgh University, whereas all other samples were 

measured on the cryogenic magnetometer. 

The Digico spinner magnetometer uses a flux9ate to measure the 

magnetr signa' produced by 	a rotating sample. The amplitude of this 

5igna 	is related to the intensity of the magnetization in the plane 

of rotation, and the phase difference is governed by the direction 

of magnetization in this plane relative to a reference mark on 

the sauLpie holder. Six separate measurements are made with the 

sample in different positions enabling the resultant to be 

calculated. The three mutually perpendicular axes (x, y, and z) are 

each measured four times, ideally with two measurements in an opposite 

direction to average out the remanent intensity of the holder. The 

noise level of the magnetometer is due partly to the holder and partly 

to electronic noise which decreases with the number of spins made 

(usually 32, sometimes as many as 512). When the holder is spun with 

no sample the results for one measurement can be as high as 1._5 jG, 

however after six measurements this averages out to between 0.1 and 

0.2 pG (at 256 spins). The Clomar Challenger samples were measured 

twice (that is two sets of six readings) and the resultant direction 

calculated from two results usually within 101 Intensity is cali'crated 

by comparing with a sample of known intensity. 

The cryogenic magnetometer consists of three independent S..I.D. 



systems (SQID stands for Superconducting Quantum Tnterference Device). 

These are arranged so as to provide an output voltage proportional 

to the three orthogonal components of the magnetization of a sample. 

The remanence of a sample can thus be measured with one reading, how-

ever three separate measurements were made with the sample in different 

orientations to cancel any remanence carried by the sample holder. 

The sample holder varied in intensity with use, and it appears that 

it was susceptible to viscous remanence, particularly developing 

a magnetization when left at the top of the magnetometer due to 

the field at the entrance to the mumetal shielding. The sample 

holder was therefore demagnetized at regular intervals and left in a 

zero field when not in use. The remanence of the sample holder 

could be kept down to 0.1 p0, with three measurements this averaged 

out to around 0.05 pG, which is equivalent to an intensity of less 

than 0.01 pG for a sample with a volume of 6.4cm3. Samples with 

intensities of less than 1.0 pG were measured twice and the average 

direction found. In most cases the two results were very close 

(t 2). Tt is possible to obtain conistent results from samples 

with intensities of 0.05 pG. Occasionally one of the three SQIDs 

would begin to drift badly, or not respond to tuning. In these cases 

it was possible to measure only two of the three orthogonal components 

in one reading. Four separate readings were then used to find the 

rernanent magnetization of the sample. 

ALTERNATING FIELD DEMAGNETIZATION 

Demagnetization is used to test the magnetic stability of 

samples and to remove any unwanted secondary components, such as 

viscous remanences. The most common method used for sediments is the 

alternating field method in which samples are subjected to alternating 



magnetic fields which are raised from zero to a preset maximum, and 

then reduced to zero. Grains with coercive forces of less than this 

field will follow the field as it alternates, each grain becoming 

fixed in the direction of the field at its coercivity. Relaxation 

time is proportional 	to coercivity so those grains whose magnetic 

alignment is destroyed will be those more likely to have acquired a 

viscous remanence. In order that the grains do not align themselves 

in any preferential direction as the alternating field strength 

decreases through their individual coercivities the demagnetization 

takes place in a zero field. Ideally the weaker grains will then be 

aligned equally in the two opposite directions of the alternating 

field, however fields inside the demagnetizer cannot be completely 

removed, so the sample may be tumbled along two or more axes during 

demagnetization. Alternatively the sample is demagnetized along 

three mutually perpendicular axes, and then demagnetized along the 

reverse of the third axis at half the maximum field, in this case 

any anhysteretic magnetization formed through the existence of small 

fields inside the demagnetizer will cancel out if the range of 

coercivities are equally distributed about this half field. 

Stephenson (1980 a, b) has pointed out the dangers of 

gyroremanent magnetization (GR) which may develop through tumbling 

during demagnetization or through stationary demagnetization of 

anisotropic material. As Stephenson (1980b) points out grroremanence 

results from rotation of a magnetic moment, and is formed by the 

moments iDecoming inclined towards the rotation axis. Figure 9a 

shows a simplified alternating field demagnetization trace with 

opposite spikes in field strength (from Stephenson, 1980 a). 

In a stationary rock demagnetization will cause the grain 

moments to oscillate between two antiarallel directions. The motion 
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of the grain moments between the two directions will be random if 

the grain is isotropic. However if the grain is anisotropic with 

its easy axis at an angle 6 to the applied field the moment will 

flip to its easy axis as the field oscillates between opposite peaks. 

Consider the grain shown in Figure 9b, when passing from an eastward 

direction(1) the rotation will be via position A, when passing from a 

westward direction (2) the flip will be via position B. Thus the 

motion will always be closkwise. The magnitude of the gyroremanence 

is dependent on the time taken for this flip between directions, 

which is itself dependent on the frequency of the alternating field. 

The speed of tumbling usually used is not great enough to produce 

this effect, however a close analysis of the path of individual grain 

moments between each opposite field peak shows that there is a prefer-

ential direction for the flip. Between successive opposite peaks 

the sample shown in Figure 9c will have rotated so that the direction 

of the opposite peak (2) is less than 180° from the first peak (1). 

(Imagine the sample stationary and the field rotating clockwise,) 

The third peak (3) will be the same angle away, and the flip will 

be in the same direction. The amount of flip depends on the ratio 

of rotation frequency to field frequency. If these are identical a 

GEM will not develop, however an IBM will form because each alter-

nating field peak coincides with a particular orientation of the grain. 

Stephenson suggests that the best method of demagnetization is 

to rotate samples, changing the direction of rotation at the end of 

each cycle (discussion of a paper at UXCA Cardiff, 1982). This is 

not possible at Edinburgh at present, so an investigation into the 

best method of deiragnetization was undertaken. There are two demag-

netizers at Edinburgh, knowr by the names of their designers (De Sa 

and olyneux). The olyneux demagnetizer has a tumbling device 
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attached, however this cannot be used with the De Sa demagnetizer.. 

Twenty four samples were taken from Section 127 of Piombino core MTO. 

The NRM results (Creer et al, 1979) showed that the reinanent intensity of 

these samples was very high (150-200  pG) and the directions were all 

closely grouped around the normal field direction (they date from the 

upper Gauss Epoch). Six samples were demagnetized with tumbling in the 

Molyneux demagnetizer, up to 600 Oe, and then demagnetized again at 600 

Oe but with the position reversed with respect to their inner rotation 

axis. Figure 10 shows that at 600 Oe the direction was almost entirely 

dependent on the position with respect to the inner rotation axis. In 

fact the anomalous directions first appeared above 350 Oe. When x, y, 

and z directions are considered it can be seen that the z component 

(the one aligned with the inner rotation axis) varies with direction, 

having a reversible remanence of 15 to 25% of the initial reinanence. 

In addition x occasionally changes by up to 10% perhaps due to in-

efficient tumbling. 

Six samples were demagnetized using the four axes method in the 

Molyneux demagnetizer. At 900 Oe the samples were demagnetized three 

times with different arrangements. None of the samples showed any 

large anomalous components: the individual components were usually 

less than 57o' of the initial renanence, but there is no dominant 

orientation. Reversing sample X3 in the y and z directions produced 

variation of k% of the initial reinanence, but this is about the level 

of variation for sample Xl which remained in the same position. This 

variation is thus due to the weakness of the samples not to any growth 

of an anomalous reiranence (Figure 11). 

The remaining twelve samples were demagnetized in the De Sa 

demagnetizer along f axes, repeating the measurements at 900 Oe with 

three sample positions (the second time with y and z reversed, the 

third time with x and z reversed, see Figure 12: for example MTO X19, 
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I'I'0 X23). At 900 Ce reversing the direction usually produced a 

change in the component along that direction. The largest ARM is that 

in the y direction (about 20% of the remanence). This axis was the 

one parallel with the direction of the alternating field, and the 

ARM in this direction prolably arose due to irregularities in the 

alternating field. ARMs produced in the other directions were about 

5% of the initial remanence. 

The Molyneux demagnetizer was used for all demagnetizations 

with samples being demagnetized along four axes. As the samples 

were too weak to measure at high fields there is a danger of ARMs. 

Dankers and Zijderveld (1981) suggest measuring the sample after 

each step of the 3 axes method and using the component parallel to 

the coil axis, summing after three measurements. This involves 

three times as many measurements, and does not cancel out any effect 

due to asymmetry of the alternating field. In most cases the only 

rernanent component needed to be removed is a low coercivity viscous 

remanence 	so the problem of AR',-'s at high fields is not important 

in this study. 

Usually ten or twenty samples from a particular site were 

demagnetized at fields increasing in steps of between 25 and 100 Ce 

from 0 to 600 Ce. This will reveal a number of components with 

different coercivities. Apart from a primary remanence some samples 

possess a secondary magnetization developed in the direction of the 

present Earth's field. This is removed by alternating fields of 

about 100 Oe. Generally all samples are demagnetized at 150 Ce, after 

inspection of pilot demagnetization results, although some samples 

were urisLable at moderate fields, so they were demagnetized. at 100 Ce, 

A number of weathered samples showed that a stable component was 

still present at 600 Ce, This is due to haeraatite which is resistant 



to alternating field denagnet:ation. In order to remove this chemical 

remanence the samples were soaked in a sodium dithionite - sodium 

citrate solution with a sodium bicarbonate buffer (ehra and Jackson, 

1960, Kirschvink, 1981). This should ideally dissolve Fe2C3  but not 

Fe304. Unfortunately the samples tended to collapse completely after 

3 or 14  hours, without any marked change in remanent direction. This 

was partly due to the loosening of the material due to removal of 

haematite cement, and partly due to swelling of clays through removal 

of aluminium. 

SUSCEPTIBILITY, ARM AND IRM 

The amount of magnetic minerals prusent in a sediment can be 

measured by inducing an artificial remanence in the sediment, or by 

measuring its low field susceptibility. Comparison of those para-

meters can give information on the type of mineral and the grain 

size involved. 

Low field susceptibility is measured on the Digico suscepti-

bility bridge, and is calibrated using a sample of known susceptibility 

made from copper sulphate. Susceptibility gives a measure of the 

total magnetic mineral content (including superparamagnetic grains) 

but it is more sensitive to coarser grains. The Kbnigsberger ratio 

(Q-ratio) is the ratio of intensity to susceptibility, and is a 

measure of the efficiency of grain alignment in sediments. 

Samples are given an ARM by placing them in a 0.75  Ce direct 

field, whilst applying a 1000 Ce alternating field which decreases 

to zero. Like susceptibility this gives a measure of the total 

magnetic rineral  content, but is more sensitive to smaller grains. 

Plotting AR against susceptibility can give an idea of the grains 

involved. (see Ming et al, 1982; Figure 8) provided no haematite is 



present. 

Samples were given isothermal renanent magnetizations in direct 

fields of up to 10,000 Oe. TThe IR1 at this peak value is usually 

referred to as the saturation !RN (Jsr), however samples containing 

haematite may not be completely saturated at this field. Nagnetite 

grains saturate at between 1000 and 2000 Ce. In addition to using 

the saturation IRN as an indicator of magnetic mineral content, the 

rate of increase of this remanence with increasing fields can be 

studied to determine mineralogy. Stober and Thompson (1979) 

suggest that the reverse IRN should be studied after samples have 

been given a saturation IRN. This eliminates the effects of any 

initial remanence. 

The coercivity of remanence (Nor) is the reverse field necessary 

to reduce the saturation remanence to zero (Figure 13). This is less 

than 1000 Ce for magnetite and over 5000 Ce for haematite (see 

NcElhinny, 1973 pp37  and 38). The parameter 'S' is defined by Stober 

and Thompson as the ratio of IRM in a reverse field of 1000 Ce 

(following saturation at 10,000 Ce), to the saturation IRN. A 

magnetite grain saturating at 1000 Ce will give S z 1.0, a haematite 

grain becoming saturated at 10,000 Ce will give S equal to or less 

than zero. 

Levi and Banerjee (1976) discussed the possibilities of using 

susceptibility ARN, and SIRN to normalize the intensity of natural 

remanence. Consideration of the acquisition of detrital rernanent 

magnetization shows that intensity is dependent on depositional 

environment, and ambient field intensity as well as magnetic 

mineral co.LlLent. However if the depositional environment has re-

mained constant over the period of sedimentation intensities can be 

normalized providing the natural remanence is carried by the same 



Figure 13. Parameters used in the Study of Isothermal Remanence 



grains as those which contribute to susceptibility, ARM, or SIR. 

ARM tends to enphasize the s:aller grains while susceptibility and 

SIRM emphasize larger particles. To discover which artificial 

magnetization is closer to the natural remanence the decrease in 

intensity with demagnetization is compared for each type of remanence. 

The normalization parameter is chosen so that its demagnetization 

curve most closely resembles that of the 	that is the artificial 

magnetization is carried by grains with a similar coercivity spectrum 

to those carrying the natural rexnanent magnetization. 

'DRZS`E,'iTA'TCI'T OF RES UTTS 

Various computer plots are used for the presentation of the 

results, some of which need, perhaps, a little discussion. The pilot 

demagnetization plots are generally intensity versus field graphs 

together with stereographic projections of directions. A typical 

stable sample will show no change in direction, and will decrease 

gradually in intensity. Initial increases in intensity may be due to 

secondary overprints. This method of plotting enables calculation of 

the median destructive field; the field at which half of the natural 

remanence had been removed, which is a measure of the coercivity 

spectrum of the grains carrying the remanence. 

Zijderveld (1967) suggested an alternative method of plotting 

demagnetization results in which x, y, and z components were plotted 

against each other, magnetization components being indicated by 

straight line segments. The primary direction is identified as a 

segment moving towards the origin with higher fields. Both methods 

are equally useful in isolating stable conpononts, however the stereo-

graphic projection is used throughout this work as it more clearly 

shows how a sample is behaving with respect to the normal direction. 



Hoffman and Day (1978) suggested that magnetization components 

carried by grains with overlapping coercivity spectra could be better 

identified by plotting the vector removed at each step. This method 

enhances any random noise between each step and in samples of low 

intensity it can give very inaccurate results. 

The plots of intensity, declination, inclination, susceptibility 

etc with depth are straight forward, note however, that intensity and 

susceptibility are plotted logarithmically. Virtual geomagnetic pole 

latitude (calculated from each pair of declination and inclination 

readings) is used to determine polarity. Some plots include a sedimentary 

column, the key to which is shown in Figure 14. 

Transitions are studied using plots of the virtual geomagnetic 

pole position. There has been much debate about the meaning of such 

plots as there will only be a transitional pole at the position 

indicated if the transitional field is dipolar. Recently Hoffman 

(pers. corn.) has suggested plotting directions rotated so as to appear 

to start at one geographic pole and end at the other. The major 

debates about transitional paths concern whether the VGP path passes 

through the site or at 180 to it, which can be equally effectively 

shown by both plots; and whether successive transitions take the 

path or not. Similarities can be better identified by comparing 

geographic locations of, albeit imaginary, poles rather than by 

comparing similar directions. 

The plots used for transitions are Molleweide's Projection which 

gives a more realistic shape near the poles than the Sinusoidal plot. 

The Mercator projection extends the polar regions to the same width 

as the equator, giving the impression that reversals may begin from 

different positions. A simple transition is shown on the three pro- 

jections in Figure 15. Stereographic Projections are used to study 
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variation around the polar regions. On the plots virtual poles are 

joined using great circles, however for poles almost 180 °  apart 

this path has little meaning. 

The term • excursion' is used throughout the thesis, and although 

one of its aims is to define these phenomena, it is necessary to have 

a temporary definition. Those reversed intervals which are too short 

to be recorded as such by some sediments with low deposition rates, 

and those attempts by the field to reverse which fail may appear in 

the palaeornagnetic record as changes in magnetic direction of between 

45 and 135  from the stable direction. These are refered to in the 

text as excursions. 

The magnetstrtigraphic frame work used in the text is taken from 

Mankinen and Dalrymple (1979)  and is shown on P.  300. Note that 

current usage is for Chron to replace Epoch, and Subchron to replace 

Event. 



CHAFFER 3 

ARGENTINE BASIN 

Site 514 was drilled in February 1980 as part of :)'_:)O  Leg 71. 

The Site is located at 46s, 27 	on the west flank of the Iid-..tlantic 

Ridge in the Argentine Basin (see Figure 16). Slightly more than 150m 

of sediment were retrieved from a water depth of 1+138m using the 

hydraulic piston coring method. The core tube is forced into the 

sediment to a depth of LL.km, then the outer core is drilled down 

around this core length. The 4.4m of sediment is then removed and 

another core is taken to cover the rext 4.4m. DSDP convention refers 

to the entire sequence as the 'Site' or 'Hole', to the 41 .4m sediment 

length as a 'Core' , and to the three c 15m working divisions of the 

Core as 'Sections'. Any sample is defined by its Site number, Core 

number, section number and depth within a Section, for example 51422 

88 to 90 cm. As all samples in this study refer to Site 514 this 

prefix will be dropped. 

Deformation due to drilling disturbance is reduced by hydraulic 

piston coring, in particular the relative orientation of samples along 

the 4.4m core lengths is preserved, whereas with rotary drilling 

disking often takes place. It was hoped that relative orientation 

would be preserved from one core to another by stamping an aluminium 

ring as the core is taken, however movement of the core holder before 

firing due to the poor weather conditions led to the aluminium ring 

moving continuously and being stamped repeatedly giving confusing 

results. Recovery was very high at Site 514 (92%), however significant 

gaps occur in the upper ;art of the sequence, particularly at 23o 

27.5m (Core 7). 

The sediments recovered are Olio-Pleistocene grey-green 



Figure 15. Map of sites, OSOP Leg 71 



diatorrtacecUS clays of a similar lithology throughout the hole. 

Bioturbation is present at most levels, but it is only of minor 

intensity. Quartz silt and manganese are seen towards the top of the 

Pleistocene deposits. 

Study of radiolarians and diatoms has erialled the zonation of the 

sediments as shown in Figure 17.  (In fact the results of this site led 

to the redefinition of some diatom zones for the southern oceans: see 

Ciesielski, in print). The section appears to be complete save for an 

unconformity in the lower Pleistocene and a possible unconformity in 

the Brunhes. The lower unconformity is placed at 112rrt, representing 

the interval 3.9 to 3.1 million years, coincident with the first 

glaciation in Argentine Patagonia 	Above this level a large number of 

reworked rnicrofossils are seen. The lower 	unhes Stylatractis 

universus radiolarian zone has not been identified, but an equivalent 

diatom zone is present. There may be an interval of low sedimentation 

rate or a hiatus here. Sedimentation rates are generally quite high, 

particularly in the lower half of the section: 10-20cm/1000 years for 

the interval up to about 2 rn.y. (cJOm), and then about 1.5crn/1000 

years following this. 

Analysis of radiolarians shows that the area was north of the 

Polar Front (i.e. warm) for most of the period 4.2 to 2.7m.y. b.p.(the 

latter date being the approximate age of the formation of the north 

American ice sheet). Since this time the site has been to the south of 

the Polar Front (i.e. cold), apart from three short intervals, 

including the present (see Figure 2, in part from Ludwig et al, 1980). 

SA 'TLING 

Samples were taken from the working half of each core section on 

board the Glomar Challenger, and later supplemented by further samples 

1 	Due to appear in volume 71 of the initiol Reporls of the Deep Sec Drilling Project 
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taken  at the Core repository in 1ew York. The shipboard samples were 

taken using 2.5cm plastic cylinders which were pushed into the core, 

oriented by a notch pointing up the hole. These were sealed with 

adhesive tape. The samples taken in 7ew York were the standard 2cm 

boxes used for the majority of the other work in this study. All the 

measurements reported here were made on land, mainly on the Digico 

magnetometer at Edinburgh. (The ten or so samples taken in New York 

were measured on the cryogenic magnetometer while it was at 

Southampton.) 

Apart from the interval represented by Core 7 which was not 

recovered, there were gaps in sampling at 0 to 1.80m, 9.30 to 11.50m, 

and 42.80 to 46.60m due to the poor quality of recovered material, in 

these sections water had entered the core and 'diluted' the sediment 

causing it to flow. It was also noted that rust flakes collected at 

the top of each core having been removed from the inside of the drill 

string as the core tube was lowered into position, and settling at the 

top of the sediment inside the core duing the coring process. A small 

amount of deformation sometimes occurred at the bottom of each core as 

a result of flow of the sediment due to creation of a vacuum during 

removal of the core. Samples with anomalous directions at the top and 

bottom of the core can be rejected, particularly when intensity is up 

to 100 times the normal amount. 

RESULTS 

NRN results for samples from Site 514 are shown in Figure ie. The 

declination within each core was more or less constant, except where a 

polarity transition was seen in incliration, when a coincident change 

of 180°  was seen in declination The declination in Figure 18 has been 

corrected so that the mean declination of all samples representing 
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Llc~ Jc rorra1 polarity ir zero in each core and is 1EC for reversed 

polarity). Inclioation has an absolute mean value of 51.0±17.0and 

gives clearly defined polarity zones. 'Intensity averages 2.7±3.1pC and 

is higher in the uppermost lOm of the core, and between 70 and 90m. 

There are a large number of fluctuations throughout the section. 

Jan Bloemendal has measured the susceptibility of each of the 

samples together with the ARM produced by a direct field of 0.14 Ce in 

an alternating field of 1000 Ce, and the IBM produced by a direct 

field of 10,000 Ce (Figure 19, see Bloemendal, in print). 

Susceptibility, ARM, and IBM all show larger values in the uppermost 

tOrn. Susceptibility shows a slight increase at 70-90m but the 

normalized intensity curves all show higher values here. Average 

susceptibility is 8.5±3.9p0/Ce giving Q,-ratios of 0.280.22. Average 

ARM is 3.±2.8ij, and average TRM is 552.6±390.1pC. Bloemendal 

interprets the short period fluctuations as variations in current 

strength giving increased ratios of heavy magnetic minerals to lighter 

grains. Comparison of the demagnetization characteristics of natural, 

anhsteretic and isothermal rernanences show that NRM is softer at Site 511+ 

than ARM and always harder than IRM. Because NRN is not carried by 

similar grains to these artificial magnetizations Bloemendal suggests 

that normalization of NRM by them is not possible. However it does 

seem that the harder 2grains (represented by ARM) have a similar 

distribution with respect to depth, to the softer grains (represented 

by IBM), so it is possible that grains of intermediate hardness also 

have a similar distribution down the hole. If hardness is inversely 

related to size it seems unlikely that the middle of the range should 

vary while the ends remain constant. 

Examples of pilot demagnetization are shown in Figure 20. Many 

samples from the top of the section were very stable (e.g. 2/2/89 at 

2 	Magnetic hcrdness, i.e. high coercivity 
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3.90. and /4,12/1.5 at 11 •6Ca) . The remanence of samples from the tower half of the 

hole tended to move about the initial direction, this is probably due 

to the high noise of the Digico magnetometer (for example 29/2/91 at 

122.41m). median destructive fields show a large amount of variation, 

but are usually between 150 and 300 Oe for the more stable samples. 

Demagnetization behaviour was often complicated when samples which 

were apparently stable, that is showed no change in direction, 

displayed sudden jumps in intensity (e.g. ji/j/kk at 132.25m). It 

cannot be definitely proven, however, that this was due to changes in 

the sensitivity of the Digico, although many samples were demagnetized 

while using the cryogenic magnetometer and this behaviour was not 

seen. Samples from Site 514 left in the magnetic field of the 

laboratory for periods of up to one month did not show significant 

changes in direction or intensity suggesting that large viscous 

remanences are not the cause. 

Blanket demagnetization was carried out at 200 Oe (Figure 21). 

Average intensity was reduced by 2% to 1.57±1.75G, while absolute 

inclination increased slightly to 53.5(±16.0) There is very little 

change in the overall magnet ostratigraphy. Five reversed1  and five 

normal zones can be recognized (note that this site is in the southern 

hemisphere so normal polarity is represented by negative inclination). 

By comparison with the inicropalaeontôlogy the magnetostratigraphy is 

incomplete: the Nitzschia interfrigidaria diatom zone should stretch 

from the top of the Kaena Event to the Gilbert beneath the Cochiti 

Event. However in this interval (125-60m) only two reversed zones are 

seen. The unconformity at 112m therefore 	spans 	the Upper Gilbert 

Event. The inagnetostratigraphy is thus as follows: 

The Gilbert Epoch occurs from the base of the oore to 112m with 

the Cochiti Event above 125m.  A small event is seen at 135rn, which 
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tends to become thinner with demagnetization, although the inclination 

of two samples becomes more normal, giving VGP latidues of 46N at 

134.35m and 55N at 134.50m. Sample 32/1/129 at 134.50m is more or 

less stable with demagnetization, however samples 31/1/92 (134.13m), 

32/1/96 (134.17m), and 31/1/105 (134.26m) have low intensities and 

show large changes in direction with demagnetization. It seems likely 

that a short excursion exists as similar anomalous directions have 

been seen in other cores from this region (Ciesielski pers. comm.). If 

the base of the sequence is assumed to lie just above the Nunivak 

Event, the excursion can be dated at around 3.95 million years with a 

length of 3000 to 6000 years. 

The Gauss Epoch occurs between 112m and 45m, with the Kaena Event 

at 89 to 96m and the Mammoth Event at 103 to 112m. The top of the 

Gauss was not sampled, but the lowermost Matuyama sediments have low 

VGP latitudes due to variation in both inclination and declination. 

This interval is core 11 which contained sediment which may have been 

disturbed during drilling. 

The Matuyama Epoch occurs between 45 and 8m, cut by one normal 

event at 18.5 to 21m, interpreted to be the Olduvai Event. At 13.32m a 

sample occurs with shallow negative inclination and easterly 

declination, giving a VGP latitude of 4S, while an adjacent sample 

has northerly declination giving a VGP latitude of 17°N.  This is 

interpreted to be the Jaramillo Event, although it must be stressed 

that the interval between 9.30 and 11.50m was not sampled, so the 

Jaramillo Event may have been missed completely. If this is the case 

then the excursion seen at 13.32m can be dated at approximately 1.15 

my, by assuming a constant sedimentation rate. Using the assumption of 

constant sedimentation rate throughout the Matuyama, then the Reunion 

Events will also have been missed due to the non-recovery of Core 7 



(23.Om to 27.in). 

The Brunhes Epoch occurs above 8m. Two possible excursions are 

seen represented by single samples at 5.21 and 5.79m, although the 

former is at the base of Core 2 and the latter at the top of Core 3, 

so both may be from disturbed sediment. 

TRANSITIONS 

Intermediate field directions were seen in almost all of the 

polarity transitions recorded. The Natuyama-Brunhes transition occured 

between two adjacent samples, however seven transitions with 

intermediate poles are seen at Site 514, these are shown in Figure 22, 

together with two short events. In some cases these paths are slightly 

different to those published in the Initial Reports of the Deep Sea 

Drilling Project (Salloway, in press). The original paths were the 

results after blanket demagnetization at 200 Oe, whereas for Figure 

22 the most stable direction was chosen for those samples that were 

demagnetized stepwise. 

- The UpperMatuyama excursion, referred to here as the Jaramillo 

Event for convenience, does not involve complete reversal. VGP 

positions reach the equator in Africa, then return to the South Pole, 

giving an excursion and suggesting that this may in fact not be the 

Jara.millo. The normal to reversed transition at the top of the Olduvai 

Event involves drift westwards to Australia from the eastern Pacific 

giving a far sided path. The Lower Olduvai boundary includes three 

reversals, two of which pass through the Indian Ocean (i.e. 90°  east of 

the site), although the final reversed to normal path has no 

intermediate poles. The third path, which is the oldest of the three 

is similar to the Upper Olduvai path in that it crosses the western 

Pacific, this time passing from the Indian Ocean to near Hawaii before 
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reaching the North Pole. 

Assuming constant sedimentation through the Matuyama gives a very 

large estimate for the length of the Lower Olduvai transition (over 

40,000 years), so either sedimentation was faster in this interval, or 

- a hiatus occurred causing the Reunion Event to appear much nearer the 

Olduval Event. 

The three reversals in the Gauss Epoch all show short returns to 

lower latitudes at the end of the transition. The Lower Kaena (normal 

to reversed) transition has the least amount of deviation from a 

smooth, longitudinally confined path, crossing the equator at about 

145W, more than 90°west of the site. The Upper Kaena transition is 

just near-sided, passing through the east Pacific, 60°w of the site, 

but returning to low southerly latitudes in Australia after the main 

reversal. The Upper Mammoth reversed to normal transition passes 

through the Indian Ocean (slightly more than 90east of the site) but 

momentarily returns from the North Pole to the mid Pacific. 

The Upper Cochiti (normal to reversed) transition is near-sided, 

pasing through South America, and apparently reaching high southerly 

latitudes just  before the unconformity. The Lower Cochiti reversal is 

sharp, but includes a return from the North Pole to the mid Pacific 

after the transition. The Gilbert Epoch excursion at 134m (starting 

from reversed polarity) is concentrated on the near-side, with the 

lower part to the east of the site, and the return part mainly to the 

west. 

The five transitions from the Gauss and Gilbert Epochs were 

recorded in sediments with higher accumulation rates, and give 

reversal durations of 3,000 to 10,000 years (averaging 6,500 years) 

which is of the same order as other estimates for the time taken by 

the field to reverse. 
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The Site 514 data probably offer the best opportunity to 

study the variation of field strength within these transitions. The 

intensity of sedimentary rocks is dependent upon magnetic mineral 

content, conditicns of sedimentation and geomagnetic field strength. 

Most of the other sites studied in this report have varying conditions 

of deposition so variations in intensity are chiefly controlled by 

current velocities, and grain size of the matrix. At Site 514 the 

deposition conditions have probably been more or less constant 

through the past four million years, although variations In current 

strength may have led to increased amounts of magnetic minerals 

being transported to the area at some stages. The total magnetic 

mineral content may perhaps be normalized by ARM or IBM of the grains 

which carry them have the same distribution with respect to time as 

the carriers of the natural remanence. This would appear likely as 

any change in supply would presumably affect either end of the grains 

size range before affecting the middle, that is assuming a single 

source for the magnetic minerals which is highly probable for mid-

ocean sediments. 

Figure 23 shows the intensity across each of the transitions 

normalized by susceptibility, ARM, and IBM. Although in many cases 

there are large fluctuations in normalized intensity outside the 

transitional zones, it would certainly appear that lower field 

intensity occurred during most of the transitions including reversals 

of both senses. For example the Lower Olduval transition at 21m occurs 

in an interval with Q-ratio less than 0.25 between 20.61xn and 21.60m, 

while either side of this interval -ratio is greater than 0.55. 

Similarly NRN/ARM changes from less than 0.4 to greater than 0.55, and 

NRM/SIRN from less than 0.3 x 102to over 0.4 x 10 	This ire section 

compares with the interval between 20.79m  and 21.60m which defines the 

'1 
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change in direction associated with this transition. The Upper C'lduvai 

transition at 18.58m coincides with higher than average normalized 

intensity, but other normal to reversed transitions such as the 

Lower Kaena transition (96-95m) are associated with low intensity. It 

is, however, difficult to estimate the amount of decrease because of 

the large fluctuations which are present in intensity. 
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CHAFFER 4 

PO VALLEY DEPOSITS 

PART 1 STIRONE 

GEOLOGY 

The Stirone River in northern Italy is a tributary of the Taro 

River, which is itself a tributary of the Po, the Stirone meeting the 

Taro 51cm south of that river's confluence with the Po. Plio-

Pleistocene sediments are exposed between Scipione Ponte and Casa 

Nuova, 3 to 7km southwest of Fidenza (Map 73 IV  S.W.), see Figure 

24. The sediments consist of at least 1000m of marine sands, silts, 

and clays, overlain by 95n of continental fluviatile sediments. 

The marine sediments exposed in the Stirone valley date from the 

Lower Pliocene, that is 5.5 my. b.p., to approximately 1 M.Y. b.p. 

The series begins with a transgressive conglomerate, which is 

followed' by silts and clays, becoming coarser upwards, deposited to-

wards the southern margin of the Po gulf. The main source of detri-

tus was the Appennines, to the southeast; however, mineralogical 

evidence indicates some contribution from the Alps to the north 

(Bertolani et al, 1979). The uppermost 109m of this series (i.e. 

between depths of 95 and 2014m) from Nicornede to Laurano, has been 

studied in detail by workers from the Universities of FITna and 

Bologna (Pelosio and Raffi, 1977; Bertolani et al, 1979; Fapani, 

unpublished). The nature of the deposits of the marine series was 

controlled by bathymetry: there is a gradual regression which takes 

place from the Lower Pliocene to the Pleistocene and superimposed on 

this four 'microcycles' can be seen within the uppermost beds, where 

fluctuations in depth are chiefly characterized by changes in the 
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Figure 24. Nap of the St/i-one valley with sampling sites 
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moRusc fauna (Figure 25).  Within this part of the series, lithology 

varies from sand to clay, gradually becoming coarser upwards, with 

occasional gravel lenses and irregularly cemented bioclastic lenses. 

The generally abundant macrofossils are characteristic of sandy 

substrates, sedimentary structures are indicative of wave action, 

showing that the environment was mostly shallow water infra-littoral. 

The lowermost microcycle, between 186m and 170m, consists of 

only a minor fluctuation in depth: fine infra-littoral sands follow 

well cemented biosparite at 186m, while above 174n the sands are 

well-sorted with a supra-mesolittoral fossil assemblage. The 

conventional Pilo-Pleistocene boundary, that is the first appearance 

of Arctica islandica, is seen at 186n. The second cycle begins at 

170m with silty clay and sand "ontaining infra-littoral molluscs such 

as Venus multilanella, the sediments become coarser upwards, ending in 

the Dreissena sands between 156 and 150m. The infra-littoral molluscs 

give way to freshwater molluscs including Unio and Liydrobia between 

133m and 150m. Arias et al (1982) suggest this freshwater phase 

follows a major hiatus in deposition. Green clays are seen in this 

Interval overlying a conglomerate indicative of a lacustrine 

environment. The first appearance of Hyalinea baithica is seen at 

162m. 

The third microcycle commences with clays and sands bearing 

infra-littoral molluscs between 125.5  and 133m. These are followed 

by a beach sand with gravel and red sand lenses between 121.0 and 

125.5m, suggesting a short period of emergence. Plant remains are 

seen in this interval, but invertebrate macrofossils are rare. A 

slight unconformity follows this hiatus in deposition, with the 

formation of an erosional surface. The uppermost microcycle begins 

at hOrn with a rounded pebble bed, above which occur sands with 



Figure 25. 	Sad/men fological Column at Stirone with Sampling Levels 
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infra-littoral fossiles. Between 95 and 104m the sands are coarse 

with reworked fossils representing the final regression. The top 

of the marine series is an erosional surface. 

The variations in lithology arose from changes in sea level due 

to local tectonism which has given rise to a northeasterly dip vary-

ing from 1L at the Plio-Pleistocene boundary to 3° at the top of the 

series. Pollen analysis by Bertotani 	et al (1979)  shows that the 

series can be divided into seven sections on the basis of Sequoia 

(indicating coastal forest) and Sciadopytis (indicating mountain 

vegetation favoured by rainy seasons). The general trend through the 

section is of a gradual warming and drying from the initially cool 

period coinciding with the first appearance of Arctica islandica to 

the warm temperate forests immediately preceeding the Pleistocene 

regression. Pelosio and Raffi (1977) note a decrease i" mollusc 

diversity due to climatic oscillation, though this may be partly due 

to change in environment. Macrofossils in the marine series are 

both boreal and warm temperate. 

The continental series of fluviolaoustrine sands and clays 

follows the marine series, separated in time by a period of emergence 

represented by erosional hollows, manganiferous laminations, and 

intense alteration, possibly pedogenesis, in the uppermost marine 

sandstones (cigala Fulgosi, 1976). The continental sediments, which 

lie discordantly on the marine sands, begin with gravel lenses and 

fossil tree trunks filling the erosional hollows, followed by 

lacustrine clays and silts containing freshwater molluscs such as 

Unlo. The section consists of fluvial and lacustrine sands and clays, 

followed by coarse pebbly deposits (Cremaschi, pers comm.). Bones 

from two rhinoceras (Dicerorhinus hemitoechus) have been found just 

[ 
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above the base of the series. Comparison with an example of D. 

etruscus found in the Upper Villafranchian sediments in the Arno 

valley suggest a continual trend of evolution, implying that these 

lowermost continental deposits are post-Villafranchian (Cigala 

Fulgosi, 1976). Direct palaeomagnetic correlation with Villa-

franchian deposits is not, at present, possible (although an 

excellent opportunity for palaeomagnetic study exists at the type 

section of Villafranca d'Asti). The lowermost continental sediments 

can be dated at about 800,000 years or less on the basis of the 

fossil D. hemitoechus (Oremaschi, pers comm.). Alessio et al (1980) 

report that material from marsh clay at the top of the series is 

older than 37,000 years, the limit of C14 dating. 

COLLECTION OF SANPLES 

In 1980 the entire section from Casa Nuova to the Plio-

Pleistocene boundary at San Nicoinede was sampled at intervals of 

approximately one metre. Previous work by Bucha et al (1975)  and Kukla 

(unpublished) placed the Reunion Event coincident with the first 

appearance of Arctica islandica, and the Jaramillo Event just below 

the top of the marine series. Bucha et al placed the Matuyama-Brunhes 

transition at about 57m in the section, that is near the confluence df 

the Chiara river. This would date the D. hemitoechus remains as 

immediately post-Jaramillo, the oldest reported occurrence of this 

species. 

In 1981 a number of sections along the river were studied in 

more detail, in an attempt to define the magnetostratigraphy more 

accurately, and to study the polarity transitions recorded. These 

sections are shown in Figure 2, they included possible excursions 

recorded in the continental deposits, however in some cases 

11 

71 



re-examination of the outcrop revealed that slumping and faulting had 

disturbed the beds. A section of the river below the Plio-Pleistocene 

boundary was also sampled. 

RESULTS 

Figure 26 shows NRN intensity, susceptibility, and Q-ratio, 

together with NRN directions for the whole section (that is the 1980 

samples and the samples taken from below the Plio-Pleistocene boundary 

in 1981). The arithmetic mean intensity is 0.94±1.97jjG  throughout the 

section, variation is high, but there is no systematic deviation from 

the mean at any particular depth. Susceptibility is more uniform, 

averaging 10.35±3.94f/Ce, giving an average Q-ratio of about 0.1. 

The continental deposits are more or less all normally 

magnetized, whereas the marine deposits (below 9.5rt) show periods of 

reversed and normal polarity. The directions in the continental 

deposits all give high latitude, normal VQPs, save for occasional 

isolated samples such as C52 (33.10m), c136 (57.10m), and C17 (72.50m) 

which have steep positive inclination and southeasterly declination, 

and c13 (78.80m) and c6 (87.50m)  which have northerly declination but 

shallow negative inclination. 

The uppermost samples of the marine series are normal, but 

intermediate directions occur below 101.39m.  Between this level and 

140.00m  there is much variation in direction giving normal, reversed, 

and intiediate pole positions. Inclinations are generally reversed, 

the variation in pole latitude being mainly the result of declination 

changes. However a normal i3lterval, with northerly declinations is 

seen between 116.6m and 119.5m. Below 140m the magnetostratigraphy is 

better defined, normal olarity occurs between 140.5 and 1144.Om and 

between 174.50 and 186.00m, although the latter interval is split by a 
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single sample with shallow reversed inclination (M80A: 185,00m)- 

Pilot demagnetization (Figure 27)  showed that a large number 

of the samples were stable, changing little in direction, although 

median destructive fields varied from 125 Ce (M60: 141.50m) to 

in excess of 14.00 Ce (Cl: 94.25m, M35:  120.50m, and M70: 166.5n). 

There is no specific variation in magnetic hardness with depth. 

Sample 030 (65.50m) displayed a gradual change from a normal direc-

tion to an intermediate direction reaching an end point of D167.6, 

I4.6at 200 Ce. Samples in the marine series between 101.39in and 

144.00m often have low intensity, so demagnetization may cause the 

intensity to drop below the noise level of the instrument. Some. 

samples in this interval are stable (e.g. M35: 120.50m) some show 

a change in direction, often with an increase in intensity (e.g. M26: 

114.00m, in this case from reversed to normal above 200 Ce). 

After blanket demagnetization at 150 Ce, intensity has decreased 

by about 532 to an average of 0.424.±0.97jG (Figure 28). Only in the 

bioclastic sands below the Plio-Pleistocene boundary is there no 

appreciable drop in intensity. Directions are similar to the NRM 

results, apart from the intervals between 57.10  and  77.00m  and between 

101.39 and 140.50m.  In the former interval some inclinations become 

intermediate and occasionally reversed (C15: 77.00m), but more often 

declinations become southerly while inclinations remain positive, giving 

low latitude VOPs. It may be that the samples have not been 

demagnetized to an end point, although it should be noted that the 

end point of smaple 030 (65.5Cm) had an intermediate direction. The 

interval between 101.39 and 140.50m which showed much variation at NRN 

has been 'cleaned' by demagnetization. Most samples have negative 

inclination and southerly declination, although low normal VCP 

latitudes are seen at 108.30 to 109.30m  and 118.00 to 119.50m,  the 
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former with northerly declination and shallow negative inclination, 

the latter with shallow positive Inclination and a range of declina-

tions. Demagnetization causes a few of the samples in the normal 

event just above the Plio-Pleistocene boundary to become more 

intermediate, emphasizing a split in this event. 

Alpha 95 values for groups of three samples at the same level are 

low (generally less than 20) above 57m  and below 1414.m, whilst between 

there is much variation. Demagnetization decreases alpha 95 where 

values are low, but causes much larger values where there is a change 

in direction with demagnetization, that is between 57 and  77m and 

between 101 and 140rn, probably due to differing effectiveness of 

demagnetization. 

INVESTIGATION OF CONTINENTAL SECTIONS 

Five anomalous sections within the continental series were 

resampled in detail, these being 57-58m, 65-68m, 71-73m,  78-80rri, and 

87-89m, Of these, two showed evidence of faulting (Sections 3 and 4: 

71-73m and 78-80m), and will not be considered here. Figure 29 shows 

the ITRM results for sections 1, 2, and 5, toget!er with susceptibility 

and Q-ratio. 

Section 1, correlating with 036 (57.10m) marks the top of the 

anomalous interval within the continental series described above. 

Intensity is low (0.1e(±0.08)) and directions show some variation. 

Inclination is positive averaging 55.722.?) however declination is 

mainly southerly giving intermediate VGPs. 

Section 2 correlates approximately with samples C20 and 030 

(68.65 to 65.50m) which represent a detailed section in the original 

investigation. The original section had positive inclination, but a 

few samples had southerly declinations which persisted after 
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demagnetization. Intensity in the 1981 section averages 0.77±O.31iI 

at NRM. Most of the directions are normal apart from CS42 (65.93m) 

which has southerly declination and low inclination, this sample has 

a lower intensity than the others (0.15pC). 

Section 5 between 87 and 89m  is equivalent to sample c6 (87.50m). 

Intensity is relatively high (1.03±0.531iG)  and susceptibility is much 

higher than in the rest of the continental series (25.2±8.1 /0e). 

All the samples have a more or less northerly declination, however 

inclination varies between -79.O  and +52.0, giving intermediate VGP 

latitudes between 87.76  and  88.09m. 

Pilot demagnetization of samples from section 1 show that in 

many cases there is a soft normal component superimposed on an inter-

mediate component (for example cs46' at 57.30m;  see Figure 30). 

Median destructive fields vary from 53 Ce to over 600 Oe depending on 

the size of the overprint, the primary component generally being quite 

hard. Samples CS29'  and  CS29"  (both  66.73rn  in section 2) show no 

large change in direction with demagnetization, but vary around their 

original direction, probably due to low intensity. On the other hand 

CS30 (66.81m) shows behaviour similar to C30 (65.50m), that is, a soft 

normal component superimposed on an intermediate component. These 

samples have low median destructive fields (49 to 60 Ce), however C30 

is quite hard (343 Ce). The samples from section 5 which were 

demagnetized stepwise show large variation between steps, even though 

intensity is relatively high. Some samples show changes in direction, 

although there is no definite trend to these changes, sample CS15' 

(88.09m) becomes more reversed with demagnetization. Sample cs16 

(88.19m) however shows gradual decrease in intensity with no change 

in direction. In none of these co'+inental  sections do the demagne-

tization paths show uniform behaviour, however this may be the 
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result of variation in lithology. There are samples in all three 

sections which show the definite presence of an anomalous primary 

magnetization. CS46A and 315A reach endpoints by 150 Cie, but 0330 

continues to become more reversed above 300 Ce. 

The results of blanket demagnetization of these sections at 150 

Ce are shown in Figure 311. Intensity in section 1 decreased by about 

40% to 0.11±0.07iJG, Inclination became more intermediate, and 

declination more southerly giving VGPs with a latitude of around 

403. This direction is similar to that reached by samples 033 (58.50m) 

and 036 (57.10m), however samples C34 and 035  show normal directions. 

It is not possible to correlate the 1980 and 1981 samples exactly, but 

this part of the section definitely records anomalous directions. 

Section 2 shows a large (75) decrease in intensity to an average 

of 0.18±0.08KG (although 0342 at 65.93m increases to 0.25). 

Inclinations become more scattered, but mainly remain normal. 

Declination of the upper samples (above 66m) becomes southeasterly 

while in lower samples it remains northerly but shows more scatter. 

The alpha 95 values for groups of three samples from the same level 

increase from 10-20'at NRN to 70-120 with demagnetization demonstrat- 

ing the increased scatter after demagnetization. VGPs are in low 

southerly latitudes at the top of section 2 gradually becoming more 

northerly downward. It is possible that the anomalous directions 

seen in section 1 are continuous with those seen at the top of sec- 

tion 2. 

Intensity in section 5 decreases by about 40% to an average of 

0.64±0.466 with demagnetization. Inclination is more scattered than 

at 1'RN, samples having both normal and reversed inclinations. 

Declination, which was mainly notherly at NRN, becomes southerly 

between 87.69 and 87.88rn, giving rise to an excursion of the pole to 

1 	Alt blanket demagnetization diagrams include results for samples demagnetized stepwise. 

In these cases the result shown is the most stable endpoint. 
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southerly latitudes between these depths. VGP latitude is northerly 

elsewhere in the section, although latitude is by no means high. No 

intermediate poles are seen either side of the excursion (Figure 32). 

MARINE SECTION A 

Ninety six samples were taken from a section of the river 

corresponding to, and about 50m upstream from, the 1980 section at 

the top of the marine series where a reversed to normal transition 

was observed. Figure 33 shows the detail of the 1980 samples after 

demagnetization at 150 Ce. Inclination changes from negative to 

postve 	 with a large number of intermediate values. 

Declination is mainly southerly below 101.00m, but with much variation, 

above lOim declinations are northerly. 

NRN directions for the 1981 section with intensity, suscepti-

bility and Q-ratio are shown in Figure 34.. Intensity averages 0.77± 

i.15pG, the uppermost metre of the section has lower than average 

intensity (about 0.1G)• while samples from either side of the 

bioclastic rudite which splits the section between 103.57 and 

104.20m have higher than average intensities (3.0 to 6.0G). The 

environment in which these sediments were deposited was shallow, 

water infra-littoral, causing sands and clays to alternate in rapid 

succession. A number of small erosional surfaces are seen the major 

one occurring beneath the bioclastic rudite at 1014.20m. These 

erosional breaks probably represent only minor gaps in deposition. 

No variation in intensity or susceptibility with respect to the 

sediment type is seen. Susceptibility is more or less constant in 

the section at 9.941.65,.G/Oe so Q-ratio reflects variation in 

intensity. 

NBN directions are scattered: above the bioclastic rudite 
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inclirations are mainly normal, becoming intermediate below 102.98m. 

Declinations are more or less northerly above 102.98m, but show much 

variation, below this level declinations are mainly southerly. VGPs 

are in high northerly latitudes at the top of the section and in low 

latitudes of the southern hemisphere between 102.98 and 103.57m. 

Blow the bioclastic rudite directions are variable, however inclina-

tions are mainly negative with a normal interval between 104.56 and 

104.88m. Declinations show much variation between 90°  and 270 but 

are mainly biased towards the south. 

Examples of the pilot demagnetization of section A are shown 

in Figure 35. Some of the normal samples at the top of the section 

show a tendency to move toward more intermediate directions (for 

example MS320', 102.45m), others such as MS312" (102.00m) are stable 

in their normal direction. Intermediate samples below these also 

tend to be stable (MS328: 103.11m), or show movement towards more 

intermediate directions (MS329": 103.15rn). These samples remain 

at the intermediate endpoints above 150 Ce. Median destructive 

fields range from 50 Ce to over 4O0 Ce. Most of the reversed samples 

below 104.20m are stable, all showing the removal of a normal  

overprint (for example MS282': 104.20M, and MS31I': 105.56n). 

Even allowing for this overprint, the MDF of these samples is around 

400 Ce. Samples among the sandstones between 104.56 and 104.88 are 

much less stable, showing erratic changes in intensity and direction 

(for example MS293:  104.65rn). The removal of a normal overprint 

occasionally leads to a change in direction, for example the declina-

tion of MS301  (105.07m) changes from 101.7 at NRM to 162..5°at  Ce, 

giving a definitely reversed direction. 

The results after blanket demagnetization at 150 Ce are shown 

in Figure 36. Intensity decreases by 52, to 0.3?±0.68)pG, the 
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decrease being more marked in the upper part of the section (the 

softer components in the lower part of the section carried normal 

overprints, so the removal of these softer components often led to 

a slight increase in intensity). Inclination in the lower part of 

the section remains more or less the same, although some isolated 

samples with shallow inclinations become more negative. The declina-

tions of this lower set of samples become more consistent, the 

majority are close to 180% This gives VGPs near the south pole, 

except for an excursion coinciding with the sand. The sands showed 

erratic behaviour during demagnetization, and isolated samples taken 

from the sands have anomalous directions (including 1,19284: 104.29m, 

and MS306: 105.30m).  There must be some doubt about the accuracy 

of the samples from the sand between 104.56 and 104.88m, although the 

suggestion of an excursion is supported by low latitude VGPs in samples 

MS289 and MS290  (104.48 and 104.51m), both of which were taken from 

clay. 

Above the bioclastic rudite, demagnetization leads to a 

shallowing of inclination, and a drift in declination towards the 

south. Between 102.98 and 103.57m  directions are consistently 

intermediate with inclination about zero, and declination about 190 

giving VGP latitudes of around 30°  S. The uppermost samples show 

variation in inclination and in declination, directions do not 

become completely normal until 102.00m. 

Alpha 95 values reinforce the theory that sands are poor recorders 

of the palaeomagnetic field, at least in the Stirone valley. In the 

lower half of the section, alpha 95 rises from 10-20°  in the clays to 

over 90°  in the sands. The top of the section also shows large 

alpha 95 values, possibly due to the lower intensity. Demagnetiza-

tion causes alpha 95 to increase in the sands, while in the clays 
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it remains more or less the same. 

Twelve samples from section A were given ARMs and SIRMs, each 

time the samples were demagnetized stepwise (Figure 37). There are 

slight differences in the relative hardnesses of the synthetic 

magnetizations in individual samples but no systematic difference 

with respect to depth or lithology. Median destructive fields 

range from 250 to 350 Oe for both types of remanence. The demag-

netization curve for NRN varies considerably from sample to sample, 

suggesting that although the total magnetic mineral content is con-

sistent throughout the section, the carriers of the natural rernanence 

vary greatly. In many cases the demagnetization curve is complicated 

by normal overprints. Another possible cause of variation in 

demagnetization behaviour is the variety of lithologies, representing 

environments of differing energies. High energy environments such as 

those represented by the sands will give rise to a dominance of 

current forces over magnetic forces as the particles settle. This 

is manifested in the poor palaeomagnetic fidelity of the sands, that 

is, the coarser sediment.3 have a larger scatter in directions. The 

amount of magnetic alignment within a sediment will be controlled by 

the amount of current or wave action, so that two different deposits 

with similar magnetic mineral content may have different intensities. 

In most cases, the remament direction will be true, as the individual 

grain moments are distributed about the ambient field direction. The 

pattern of variation of ARM and SThN with respect to depth is in 

some way similar to that of the intensity curve. However differences 

in normalized intensity probably occur due to differences in current 

strength rather than ambient field strength. 

Hysteresis curves for samples from this section (Figure 38) show 

that the dominant mineral is magnetite, although some haematite is 
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Figure 37 	Demagnetization of NRM, ARM, & SIRM at Section A 
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Figure 38 	Examples of Hysteresis loops from Stirone 



present. Most samples reach saturation between 2000 and 3000 Oe, 

with coercivities of remanence of 500 to 660 Ce. The ratio of IBM 

(1000) to SIRM Is over 0.6 in most of the cases. There is no 

difference in the curves between clays (e.g. MS283) and sands (e.g. 

MS284) indicating that the source of magnetic grains was constant, 

even if the environment of deposition was not. 

Figure 39 shows the transitional path - the first part shows all 

intermediate poles many of which are grouped in the South Atlantic, 

and nearly all of which are in the quadrant between 0 and 90 west of 

the site. Smoothing the path shows that there is a clockwise loop 

about the Atlantic and Africa before transition via America, which is 

90 west of the site. Figure 40 shows a smoothed path for the 1980 

section (about lOOm downstream). Many of the \TGPs are situated in 

the northern hemisphere about 100 west of the site. However the 

transition path is similar to the 1981 section, but shows an anti-

clockwise loop part way through the transition. It may be that the 

loops were caused by delayed acquisition of remanence giving a 

different direction in each case. The poles which give the loops 

are scattered and another possibility is that at this point in the 

reversal the direction fluctuated rapidly. 

MARINE SECTION B 

The section between 115 and 122m is equivalent to the larger of 

the two excursions in the upper part of the marine series. Pre-

liminary investigation showed that three samples gave a normal, 

albeit shallow, inclinations compared with the usual reversed inclina-

tions. F'i--ther investigation was necessary to discover whether this 

excursion was real, and to find out if it included complete reversal 

of the field. NRM directions, intensity, susceptibility, and Q-ratio 

are shown in Figure 41. Intensity averages 0.18c±0.3 	in the upper 
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part of the section above 120m, and. 4.39t3.53)pG  in the lower part. 

The lithology in this section is more or less uniform; however a 

short sand interval occurs between 119.57 and. 119.69m.  There is 

little change in susceptibility within the section, the average 

being 9.85±1J-.46)JG/Ce. Q-ratios show a marked increase from about 

0.02 above 120m to around 0.4 below. Apart from the lowermost 

samples which record consistently reversed polarity, there is much 

variation in the directions of magnetization. Above 116.7m,  the 

majority of the samples are reversed, but between 116.70 and 120.00m 

directions are very scattered. 

Examples of pilot demagnetization of samples from section B 

are shown in Figure 42. Samples which are initially reversed such as 

MS189' (120.11m) and MS212 (121.14n) show no change in direction with 

demagnetization. All of these samples have a large normal overprint 

which is usually removed by 100 Oe. Median destructive fields for 

these samples are high, generally between 300 and 350 Oe. Other 

samples with lower intensities show more change in direction between 

steps, and often unusual changes in intensity. In general the 

pattern is for normal or intermediate samples to become reversed 

(e.g. MS250: 117.05m and MS254': 117.22m) and for reversed samples 

to stay reversed (e.g. MS177': 119.25m). Very occasionally, samples 

change from reversed to intermediate (MS243":  16.70m). 

Figure 43 shows the results for section B after blanket 

demagnetization at 150 Ce. Intensity decreases slightly in both 

parts of the section, however the step in values at 120m is still 

present (0.14±0.16)G above compared with 1.791.73iG below). The 

directions become much more consistently reversed; in fact only three 

samples have positive inclinations. In addition, a number of samples 

have northerly declinations giving two intervals of low VGP latitude: 
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Figure 43. Re.0 I 1* Por' S.o1 ion B aPP or Domo9neP izaP ion at 150 Ge 
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between 117.17 and 117.44m and between 119.45 and 119.74m. Clearly, 

this section does not record a completely reversed event. The upper 

excursion is recorded in sediments with low intensity, so the 

anomalous directions may result from relatively high noise (only 

MS256  at 117.31rn has an intensity greater than 0.1X; nevertheless 

this sample records a stable intermediate direction giving a VCP 

near Hawaii, see Figure 44). The lower excursion is more probably 

real; intensities are greater than 0.1jC, and the directions are 

similar to those seen in the preliminary survey. However a number of 

samples were taken from sand, so there must still be some doubt 

about the reality of this excursion. The lower excursion consists 

of a transition to near Japan, then a long westward drift through 

south Africa and southern America to the Mid Pacific before return-

ing to the South Pole (Figure 144). 

Alpha 95 values are high in the upper part of the section, 

reflecting the large variation due to low intensity. Demagnetization 

inproves the grouping, reducing alpha 95 from 40°- >90°  down to 

between 20° and 607. Below 120m, alpha 95 values are low, usually less 

than 20°. 

As with Section A,laboratory induced magnetizations showed little 

change within the section. ARM and SIRM have similar ranges of 

coercivity, with median destructive fields between 250  and 350 Oe. 

fR'i is always harder, although the pattern is complicated by normal 

overprints (Figure 145). The jump in intensity below 120rn is also 

seen in the laboratory induced magnetizations, however the effect is 

smaller for SIRM. Both SIRM and susceptibility are more constant 

within the section, suggesting that the increase in intensity below 

120m is due to increase in the smaller grained fraction. Intensity 

normalized by ARM shows a smaller increase below 120m (Figure 46). 
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Figure 44 Excursions at Shrone Section B 
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Figure 46 Norrnol izol ion oF inensi y For SecI ion B 
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MARINE SECTION C 

Section C covers 12m of sediment just above the Dreissena sands, 

corresponding to samples M55 (137.00m) to M62 (149.00m).  The deposits 

are freshwater sands and clays. Initial investigation showed that 

these sediments recorded a normal event, the upper limit of which 

occurred between 135 and 140m. The lower limit was not seen, due to 

the difficulty of sampling the Dreissena sands. NRM measurements for 

section C are shown in Figure 47. NRM intensity is more or less 

the same throughout the section, averaging 0.88t0.96)I. Susceptibility 

is slightly higher than in other sections from this river: 13.7± 

5.4G/Oe, and Q-ratio is fairly constant at 0.07.  NRM directions 

show much variation, below 145.48m inclinations are normal and 

declinations northerly giving normal VOP latitudes, between 145.48 

and 141.56m both inclination and declination show much variation 

giving rise to a wide range of pole positions. Further up the section 

inclination is definitely negative , and although declination is 

occasionally northerly, the majority of the VGPs lie in high southern 

latitudes. 

Demagnetization (Figure 48) shows that samples from the top of 

the section are stable, for example MS171''' (137.97in) and MS143' 

(140.86m), with median destructive fields of around 250 Ce. Samples 

between 141.56 and 145.48m become more reversed, for example MS121' 

(143.79m) changes declination from 81.7° at NRM to 180.6°at 300 Ce, 

however some samples become normal (e.g. MS112", 142.38m). The 

normal samples below 145n tend to become more reversed (e.g. MSI10: 

146.94m) and no stable normal samples are seen. 1.1here there is a 

change in direction with demagnetization median destructive fields 

range from 170 to 470 Ce, depending on the effect of the soft over-

print. 
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The results after blanket demagnetization of section C are 

shown in Figure 49. Intensity decreases by about 40% to 0.51±0.50), 

the greater decrease being shown by samples toward the bottom of the 

section. Apart from the lowermost 1.5m, inclination is consitently 

negative 	Declination in the upper part of the section is more or 

less southerly apart from anomalous directions below 1.42.83m. Below 

145.50m inclination is positive or intermediate, and declination varies 

considerably, giving VGPs in low northerly latitudes. The section 

records a normal to reversed transition, however the base of the 

section does not quite reach the stable directions of the normal 

event. In addition there may be two excursions caused by variations 

in declination above the transition at 142.3 to 11+3.56m and 14+.00 to 

144.86m. The younger one is recorded in coarser grained sediments and 

may thus represent scatter, but the older one being recorded by clay 

may be real, forming part of the transition. Alpha 95 values are 

less than 45 in the upper part of the section (above 141m), but values 

increase to >90 below this. Demagnetization causes an increase in 

the scatter in the lowermost transition zone. 

Figure 50a shows pole positions in the transition zone (i.e. 

below 144m).  These are slightly biased towards the far-side, although 

there is a large amount of scatter. The smoothed plot for the 

transition path (Figure 50b) shows a far-sided path, with an initial 

swing to India from the Aleutians then a swing back to Hawaii. 

Following the normal to reversed transition is a far-sided excursion 

around the southern Pacific. 

MARINE SECTION D 

Section D is approximately equivalent to samples M74  and  M75 

(170.50 to 174.50m), which recorded a normal to reversed transition. 



Figure 49 ReeuIte For Se& ion C oPler Demagnetization 
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Figure 50a 	All inlermediateVGPs oF Sechon C 



Figure 50b VGP Path at Section C 



Initial sampling in this interval was sparse, so a number of samples 

were taken to redefine magnetostratigraphy. NRM results are shown in 

Figure 51. Intensity averages 0.940.89!G throughout the section, 

with slightly larger values occurring in the centre, and lower inten-

sities above 171.5m and below 173.5m. Susceptibility is more or less 

constant at 8.75l  .12)G giving a Q-ratio of 0.1, again with larger 

values between 171.5 and 1.73.5m. Directions are opposite to those 

that were expected: a reversed to normal transition occurs between 

171.6 and 170,82m. Most of the values outside this transition zone 

are clearly normal or clearly reversed, however shallow inclinations 

and northerly declinations are seen between 174.15 and 174.35m giving 

VGPs in low northern latitudes. 

Examples of pilot demagnetization are shown in Figure 52. Most 

samples are stable (e.g. MS22: 171.65m and 54:  173.31m), with 

MDFs of 300 to 350 Oe. Normal samples from the top of the section 

show little change in direction until they develop an ARM above 300 

Oe, however MDFs are lower (e.g. ?13' at 170.60m which has a MDF of 

246 Oe). Intermediate samples at the bottom of the section may 

change sign, but they remain intermediate. MDFs are low (75 at 

174..46m has a NDF of 130 Oe). The difference in MDFs between normal 

and reversed samples is due to the soft normal overprint. 

After blanket demagnetization at 150 Oe there is little change in 

direction except in the lowest metre of the section (Figure 53). 

Inclination between 174.15 and 174.35m remains more or less the same 

but declinations change to become more southerly, causing VGP latitudes 

to be lower, and to lie both sides of the equator. Average intensity 

drops by an average of 50% to 0.480.39)pC, with the greater change 

occurring in the stable central part of thesection. Alpha 95 values 

are generally low (10-3d) even in the excursion recorded at the 



Figure 51. 	NRM Results for Section 0 at Stirone 

DECI 1tiPTI3  3 : 13311 

O 91 	10 	33 9 

T U:P 

72 

17 

'7 

71 

173f 

7 

I7C 

17 

3 

17 
	

17 



w E 

S 

S 

E 

>_ 1.2. 

Lj 

/ 	100 	200 	SQO 	
I 	

,. 100 200 500 400 500 600 

WPM
MS 13 	 M 	FIELD 	 N 	FIELD CE. 

- 	0.. S 	" 	 PM 	f SQ 

w 

S 

I- 
1.0. 

LU 0.8.. 

0.6.. 

0.4. 

0.2. 

MS 54 
100 200 500 400 500 600 

N 	FIELD CE. 
1.82 ___ 

V 

S 

E 

E 

Figure 52. Examples of Pilot Demagnetization from Section D 



Figure 53 ReeuIte Pop Section D aPter Demagnetizc*ion 
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bottom of the section; however demagnetization causes a slight increase 

in alpha 95. 

These results seem to conflict with the initial investigation; 

however originally sampling was sparse, so the upper normal interval 

may represent a short event which was not seen due to gaps in the 

first set of samples. This upper section is recorded in sands; how-

ever the close grouping of all directions and the stable behaviour 

during demagnetization suggests that the palaeomagnetic record of the 

field is accurate. There are at least 20m of sediment between this 

section and Section C, which yield consistently reversed directions, so 

that the event at the top of section D is not the same as that seen at 

the base of Section C. The excursion at the base of Section D is 

apparently part of a normal to reversed transition, as below this 

section there are a number of normal, or intermediate samples. This 

lowermost normal event in the marine series is often interupted by 

samples of reversed polarity. If intensity can be normalized by 

susceptibility the two events or excursions in Section D appear to have 

taken place when field intensity was slightly lower, compared with the 

stable reversed period between 171.5  and 173.5m. 

The transition at 171.50m  gives a far-sided path which passes 

between Mexico and Hawaii (Figure 54). The linear path is confined to 

135°W of the site. VGP positions in the interval 174-175m  show large 

amounts of variation and may be inaccurately recorded. 

MARINE SECTION E 

Section E was sampled about im above the Plio-Pleistocene 

boundary to study a reversed interval within the lowermost normal 

event of the marine series which occurs between 174.5m  and 186m. The 

NRM directions for Section E (Figure 55) show northerly declination, 
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Figure 54 VGP Path For Transit-ion at Sect-ion D 
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but shallow inclination, positive above 185.32m, and mainly negative 

below, (art from the lowermost sample at 185.82m). VGP latitude is 

about 15°N between 185.72  and 185,39m and kO to 60°
N either side of 

this excursion. Intensity averages 0.3&0.11)jG and shows a slight 

decrease down the section. Susceptibility which averages 5.7±0.5) 

1jG/Oe shows the opposite trend, becoming larger downwards giving an 

increase in Q-ratio from 0.04 within the excursion to about 0.1 at 

the top of the section. 

Pilot demagnetization of some samples is shown in Figure 56. 

The uppermost sample (1: 184.75m) does not change in direction, 

and ?35 (185.20m) changes only slightly, moving from a low 
positive 

Inc ination to a low negative inclination. On the other hand MS10 

(185.72) shows a large amount of variation, especially at higher fields. 

Median destructive fields are between 130 and 300 Oe. 

Blanket demagnetization at 150 Ce leads to a decrease of 50% 

in intensity to O.16tO.06) (Figure  57), however the same basic trend 

to lower values near the base is maintained. The excursion is more 

pronounced due to a change in declination to about 180°  between 185.72 

and 185.39m. Inclination becomes more negative in this interval and 

more positive either side of it. VGP latitudes now change from 60'N to 

50°s within the excursion. The low Q-ratios within this interval 

suggest that the field strength was low during this excursion, however 

there are very few normal samples to enable comparison. 

The beginning of the excursion is abrupt, however the end 

consists of a gradual change from negative inclination to positive 

inclination giving a path through the eastern Pacific about 90° west 

of the site (Figure 58). 
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PART II CROSTOLO 

GEOLOGY 

The River Crostolo flows northeast from the Appennines, 30km 

east of Stirone, and like that river flows towards the Po. During the 

past ten years erosion of the valley has cut through recent alluvium to 

reveal a sequence of about 75m of continental deposits overlying at 

least 1700m of marine sediments. The continental series crops out 

between Rivaltella and Puianello, between 5 and 1.1km south of Reggio 

Emilia (maps 86 IV NE and NW), with the marine series cropping out 

further to the south (Figure 59). 

The whole succesiOn., has been studied by Barbieri and Petrucci 

(1967). About 1700m of sediment are present in this area dating from 

the Upper Miocene to the present. At the base of the succesion are 

Messinia n gypsum and anhydrite evaporites which indicate shallQw water 

deposition. These are followed by almost 1000m of PIiocene grey-blue 

clays and silts deposited in a neritic environment. The Calabrian 

deposits are initially similar to those below, but upwards they 

represent shallower water, eventually becoming continental. Deposition 

during the marine series was more or less continuous the deposits can 

be sub-divided on the basis of foraminifera. The marine series was 

studied between Puianello and the Vendina. confluence (see Figure 60), 

this interval includes the Calabrian identified by the presence of H. 

baithica and A. islandica to a depth of 125m. The remaining sediments 

all belong to the C. inflata zone • The Vendina confluence occurs 

about 300m above the base of the Piancenzian which Labrecque et al 

(1977) place in the Gauss below the Mammoth Event. 

The close of the marine series is marked by a coastal sand 

deposit overlain by a gravel layer. The gravel layer consists of 

pebbles imbricated towards the Appennines, indicating deposition from a 
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river flowing from the hills. Above this four units can be recognised, 

each separated by an erosional surface (Ambrosetti and Cremaschi, 1976). 

The first unit (the Casa Bacchi Unit) consists mainly of yellow-brown 

lacustrine clay in which freshwater molluscs and bones are seen. 

Above this is a grey-blue clay with sandy lenses. The Casa Romensisi 

Unit which follows begins with fluviatile gravel filling in meander 

hollows of the erosion surface which terminates the preceeding unit. 

Flood plain channel and bar sand deposits alternate, the flood plain 

deposits containing organic detritus including tree trunks. These 

sediments give way to grey-blue freshwater lacustrine clays. This 

unit is truncated by an erosion surface with meander channels. The 

Melmare Unit is similar to the preceeding unit in that it begins with 

yellow fluvial sands and gravels before passing upwards into grey-blue 

lacustrine clays. The uppermost unit, The Rivaltella Unit is wholly 

fluvial, consisting of bar and channel sands with gravel lenses. A 

red decalcified palaeosol is formed on gravel at the top of this unit, 

which can be correlated with other soils belonging to the Mindel-Hiss 

interglacial. 

Each unit seems to represent a cycle of drying up of a lake, 

fluvial deposition, and flooding to form a lake. It is not possible 

to say whether the cycles represent local tectonism or global climatic 

variations. Nor is it possible to say whether the cycles represent 

long periods of time, or isolated intervals. 

Study of mammal remains recovered from the deposits suggest that 

the cycles all belong to the Upper Villafranchian B or zone 5-6 (based 

on Hippopotamus amphibus and Libralces gallicus). This fauna is con-

sidered to be older than 900,000 years (Cremaschi, pers comm.). The 

Hippopotamus was found at the base of the Casa Bacchi Unit, but the 

Libralces found in the Hivaltella Unit is probably either reworked or 
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wrongly identified. 

The continental series is folded into an anticline, dipping about 

4°towards the north between Le Forche and Rivaltella, and dipping by 

the same amount to the south between Le Forche and Puianello. The 

marine sediments are much more steeply dipping, angled at 0-60°  

towards the north, implying the existence of a syncline south of 

Puianello. The sharp increase in dip may be due to a fault with an 

Appennine trend beneath the deposits. 

SAMPLING 

Recent attempts by local Italian farmers to slow down the erosion 

of the Crostolo valley have resulted in the construction of a number of 

dams downstream from Puianello. While being successful in their 

environmental application, these dams have seriously hindered geological 

investigation by creating large lakes which have drowned up to .50% 

of the exposure. It was only possible to sample thé'continental series 

in gaps, as shown by the geological column (Figure 60), for example 

only 3 samples were taken from the Melmare Unit. This, added to the 

probably intermittent sedimentation, creates difficulties in interpre-

tation. Samples were also taken from the marine series at more 

regular intervals, along the river bank. 

RESULTS 

The NRM results for samples from Crostolo are shown in Figure 61. 

Overall intensity averages 5.07(± 6.7L4pG, the marine clays have intensi-

ties distributed evenly about this mean; whereas in the continental 

series there is a gradual decrease from top to bottom. The palaeosol 

,at the top of the Rivaltella Unit has a reinanent intensity of about 

20pG, and the rest of this unit has intensities of around lOpG. The 

samples from the Melinare Unit are slightly weaker, and the lowest 
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units have an average intensity of between 0.1. and 1..OpG. Suscepti-

bility averages 16.74(± 15.97)C/0e, with high values in the soil and 

the Rivaltella Unit (20-60 pG/Ce), the remainder of the continental 

series and the marine series being more consistent. -ratios are much 

higher in the marine deposits than in the continental deposits (0.48(t 

0.34) compared with 0.08(± 0.09)), the Rivaltella Unit being slightly 

higher than the other continental sediments (0.20 to 0.25). 

Directions are normal in the upper two units of the continental 

series, although two samples at 12.40 and 12.70m have easterly declina-

tions. The lower two units of the continental series are much more 

complex, these are shown in detail in Figure 62. Declination in the 

Casa.Romensini Unit is mainly northerly, apart from two isolated 

samples. Six samples at the bottom of the unit show declination of 

between 0 and 120°. Inclination is normal at the top of this unit, but 

between 33 and 4m shows signs of reversing. There is a large amount 

of scatter in this interval, VGP latitudes are mainly between 0°  and 

30°N. Of the six samples at the base of this unit, the uppermost has 

negative inclination, giving a VGP latitude of 45°S, but the others 

are normal. In the Casa Bacchi Unit, the uppermost samples between 

60.50m and 61,71m  are reversed albeit with low inclinations (-10°  to 

46), nevertheless giving VGP latitudes of around 60°S. Below these 

samples there is an interval with much variation in declination, and 

largely normal inclination down to 66.86m, then an interval of 

northerly declination and inclination between Wand 30° S, both giving 

VGP latitudes of around 30° N. Finally at 71+m four normal samples 

occur with VGPs of 60° to 70° N. 

The marine series has reversed polarity down to about 460m, with 

a larger degree of variation at the top of the series, mainly in 

declination. Between 460m and the bottom of the section there are two 
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wide normal zones: 1+60m to 507m and 514m to 591m, separated by a short 

reversed interval. Both normal zones are split by samples that give 

equatorial VGPs. 

Examples of pilot demagnetization are shown in Figure 63. Samples 

from the top two units, and also from the upper part of the third unit 

of the continental series, all show of stability (CC5: Rivaltella 

Unit, 12.80m; CC12': Melmare Unit, 17.72m; CC17': Casa Romensisi 

Unit, 38.75m). Median destructive fields for these samples are low, 

ranging from 80 to 150 Oe. The majority of the remaining continental 

samples are weakly magnetized, and as a result show much variation with 

demagnetization. Median destructive fields are often less than 100 Oe, 

so intensity falls below the noise of the magnetometer at higher 

fields. Samples between 39.10 and 39.78m change from normal to 

reversed inclinations with demagnetization (e.g. CC25: 39.48m). 

Below this samples are only stable at low fields, and often show much 

variation about the NRM direction, which may be close to the initial 

stable direction, (CC47 and CC50: Casa Romensisi Unit et 57.60 and 

60.50m; cc61: Casa Bacchi Unit: 66.16in). Below 68m the three samples 

that were demagnetized stepwise proved to be unstable. 

The majority of samples from the marine series were very stable, 

with median destructive fields of over 300 Oe (18': 127.5Cm, i80: 

425.2m). Samples from the soil of Rivaltella also showed little change 

with demagnetization, median destructive fields were between 200 and 

280 Oe, although unlike the marine samples, these were still stable at 

600 Oe; (e.g. SC4: 62cm). 

Samples were demagnetized at 150 Oe, apart from the samples in the 

Casa Romensini and Casa Bacchi Units of the continental series (CC16 

onwards), which were demagnetized at 100 Oe. Results are shown in 

Figure 64, with the detail of the lower units of the continental section 
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in Figure 65. Overall intensity drops by about 45% to 2.76 

The marine series shows the smallest decrease, although isolated 

samples lose more than half of their intensity. The continental series 

as a whole shows a large decrease in intensity. The upper two units 

of the continental deposits remain normal, but one samp'e at 19.05m has 

low inclination, and another at 12.70m has declination of 125: The 

apparent reversal in the Casa Romensini. Unit is more strongly emphasized, 

as negative inclination increases in some samples, and southerly 

declination is also seen. VGP5 reach a maximum of 35S. At the bottom 

of this unit there are two samples which were demagnetized stepwise 

and show moderately stable normal directions, although with easterly 

declination. Another sample just above retains a reversed direction. 

The reversed interval at the top of the Casa Bacchi Unit remains after 

demagnetization; however the samples below this show an increased 

amount of variation. Only four samples with relatively high intensity 

at 74m are stable and normal. When the samples with unstable demagne- 

tization paths and remanent intensities of less than 0.1 are removed 

from the interval between 62 and 70m this interval still shows much 

variety. In this interval only sample cc61 (66.16m) was moderately 

stable giving a normal direction. 

Samples in the marine series do not show much change after 

demagnetization, however some of the anomalous samples (but not all) 

at the top of this part of the section become fully reversed. The 

large normal intervals remain, each split by samples with intermediate 

VGP5. 

TRANSITIONS 

Many transitions are seen at Crostolo, however none are recorded 

with any great accuracy. Sampling was not dense enough in the lower 

part of the marine section, although two intermediate poles in the 
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oldest transition seen give a path through the eastern Pacific. This 

reversed to normal transition may be the Upper Mammoth boundary 

(Figure 66). At the base of the continental series low intensities 

cause scattered results giving a confused picture. 

It would appear that at 1+0m to 44xn there is part of a transition 

recorded in sediments with intensities of over O.ijiG. These are clays 

and silty clays with no sign of any breaks. Inclination becomes 

reversed below kim, however declination is scattered between 9f and 276. 

This is the youngest indication of reversed directions seen at 

Crostolo, however much of the sediment above was not sampled. All of 

the poles in this interval are shown in Figure 67, many occur in the 

eastern Pacific, between 9O and 18cr west of the site. Smoothed direc-

tions for this transition are shown in Figure 68. The VGPs reach a 

maximum southerly latitude of 45°  at 43m. Both above and below this 

depth the latitude of the pole becomes more northerly, however for the 

most part the paths are confined to the far-side, although poles 

drift across Europe to North America above the 'transition'. 
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PART III TIEPIDO 

GEOLOGY 

The Tiepido river is a left bank tributary of the Panaro river 

which itself is a tributary of the Po, both rivers flowing northeast 

from the Appennines. The sediments exposed in the Tiepido valley were 

deposited in the same sedimentary basin as those of Stirone, Crostolo, 

and Panaro. Recently accelerated erosion over the past ten years has 

removed the overlying alluvial deposits and exposed older sediments 

along a 3.5km section between Torre Mama (c. PQ 492293) and Pozza 

bridge (PQ 510321), approximately 15km south of Modena (Map 36 I S .E., 

Formigine): Figure 69. The section can be divided into a marine 

series and a continental series, similar to those seen at Crostolo 

(30km to the west) and at Stirone (80km to the northwest). The 

following geological description is based on the work of Annovi et 

al (1979),  see Figure 70. 

The Marine Series. 

Almost 700m of lower Pleistocene marine clays are seen in the 

Tiepido area, although the lowermost 80m are not exposed in the river 

section. The base of the series is represented by 20-30m  of trans-

gressive sands and gravels with shell breccia, deposited unconforrnably 

on a pre-Pliocene basement. These are followed by approximately 670m 

of calcareous grey-blue siltose clays. The beds are often massive 

and devoid of structure due to the remarkable lithological homogeneity 

and to the intense effects of bioturbation, traces of which remain 

in the form of silt-filled burrows. Occasionally silt laminae are 

seen, usually with gradual contacts above and below, however in some 

instances the lower contact is sharp with ripple structures. These 

layers contain an abundant mollusc fauna, often represented by broken 
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shells. The environment of deposition was a protected platform, the 

sea closed to the south by the Appennines, and to the north by a chain 

of barely emerged islands. The high rate of accumulation (almost 

700m in approximately 1 million years) shows that sedimentation was 

almost perfectly compensated by subsidence. 

The marine clays contain abundant well preserved foraminifera 

which can be used to determine the age of the deposits, and the 

environment of deposition. All of the foraminifera found in the 

marine series indicate a Lower Pleistocene age. No forms pertaining 

to the Plio-Pleistocene boundary were seen, although Arctica islandica 

does not appear until a depth of 625m. Hyalinea taithica first appears 

445m below the top of the section, allowing the section to be divided 

into Zone C, Calataian or Santernian (or the C. pachyderina zone) 

below this marker; and Zone D, the Emilian (H. talthica zone) above. 

The majority (92%) of the foraminifera are benthonic, or bottom 

living, comparison of the ratios of forms such as Cassidulina on one 

hand, and Ammonia and. Elphidium on the other allow the relative depth 

to be determined. Comparison with environments existing in the 

Mediterranean at present indicate that at all times the marine clay 

was deposited in a neritic infra-littoral environment, at depths not 

greater than 70m. There was a gradual decrease in depth with time 

although at two points (310m and 220m) an increase in depth is seen. 

The foraminifera also indicate that a climatic deterioration had 

begun before the first deposits in this series, the start of this 

deterioration usually coinciding with the Plio-Pleistocene boundary. 

Within the marine clays 50m below the top of the series there is 

a lOin thick yellow sand containing calcareous lenses, fossil lenses 

and tree trunks several metres long. The sands display ripple 

structures and represented by a yellow beach sand, 12m thick with a 
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sharp base which is almost devoid of macrofossils and consists mainly 

of quartz sand. 

The Continental Series. 

The 90m of continental deposits follow the marine series after a 

short hiatus, marked by an erosional surface, however without 

unconformity. The time represented by the hiatus is shorter than that 

at Stirone (Cremaschi pers comm.), the transition from neritic 

environment to beach environment was apparently rapid. The basal 

continental deposits axe gravels with a sandy matrix showing cross 

lamination. Pebbles within this gravel bed which are of both sandstone 

and limestone show no current structure, indicating that the deposit 

was that of a beach. The remaining, mainly fluviatile sediments are 

varied, consisting of brown and yellow clays with gravel and sand 

lenses, which form beds in the upper part of the series. The clays 

are sandy with calcareous concretions, and contain continental mollusc 

fossils including pulmonate gastropods (in which the mantle cavity is 

developed as a lung). The clays are occasionally black through organic 

remains, and rarely there is evidence of a low energy environment such 

as a pond or lagoon. The gravel lenses have irregular outlines, the 

bases are erosive contacts, as they are mainly channel fills. The 

pebbles are imbricated towards the south and southwest, indicating 

currents from that direction. The source of material was the Appennine 

formations - the composition is similar to that seen in the river 

today. The continental series was interrupted many times by periods of 

non-deposition and erosion. During one of these periods of emergence 

a palaeosol formed, this is seen 3m from the top of the section. The 

soil is well developed, although the uppermost layers are missing 

through erosion. The base of the soil is sharp, possibly representing 

a faulted contact. The alteration is excessive, giving a red colour, 



and. suggesting that the climate was warmer than that of today, but 

with much seasonal variation. A further palaeosol developed on 

alluvial gravels at the top of the series, which can be correlated 

with other soils that are overlain by Rissian loess. At Tiepido, 

therfore, there are two distinct pedogenetic phases preceeding the 

Riss glaciation. 

Structure and Relationship with the surrounding area. 

The sediments of both series dip towards the northeast, initially 

at 50, decreasing in the marine beds to 10 increasing to 30at the 

marine - continental boundary, before becoming horizontal toward the 

P0 plain. The deposits are cut by normal and reversed faults of 

Appennine trend. 

The marine sediments of the Tiepido area become thicker towards 

the centre of the basin in the north, reaching 1810m in a borehole at 

Albaretto 20km away. In the Tiepido region the Pleistocene is 

transgressive on Pre-Pliocene formations. Towards the east, between 

Villabianca and Panaro, 200m of Upper Pliocene sediments are preserved 

as a syncline, while to the west the Pleistocene is usually trans-

gressive on Pre-Pliocene sediments, and occasionally on Lower Plio- 

cene sediments. 

Outside the area between the Panaro and Secchia rivers the 

situation changes abruptly, suggesting that the two rivers follow 

lines of major faults. The Pliocene is well developed both to the 

east of Panaro and to the west of Secchia indicating that the Tiepido 

block was relatively uplifted during this time. The thickness of 700m 

of Lower Pleistocene marine deposits compares with 150m of Calabrian 

deposits at Crostobo, and 82m at Stirone, both of which lie to the 

west. Sixty kilometres to the southeast over 1100m of Pleistocene 

marine sediments are seen at Santerno. The sedimentation rate there.- 
Fl 
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fore increases from west to east, as does the uniformity of sedimen-

tation. The environment of deposition was generally deeper in Tiepido 

than at Stirone, so it was not affected by cyclic deposition, except 

at one point 50m below the top of the marine series, where there was 

a short period of emergence. The onset of continental sedimentation 

generally progressed from west to east, and at both Stirone and 

Tiepido it was preceded by a Irief period of emergence. The regression 

was not accompanied by a major tectonic event at Tiepido as the 

continental deposits follow with no unconformity. At Stirone there 

is unconformity, and the interval of non-depositoin probably lasted 

for a longer period of time. 

SAMPLING 

The whole of the continental series, save for 25m of conglomerate 

at the top and the uppermost 190m of the marine series were sampled at 

intervals of un where possible. Closer sampling was carried out in 

the lower part of the continental series, where the Matuyama-Brunhes 

transition was thought to be. Conglomerates occur in the upper part of 

the marine series, as well as in the continental series, causing gaps 

in the sampling. In addition flooding of the river while sampling was 

in progress prevented a continuous section being obtained. 

RESULTS 

NRM directions for the whole series are shown in Figure 71, 

together with intensity, susceptibility and -ratio. Intensity 

averages 1.96(±4.08) throughout the section, with high values 

occurring at the top of the continental series in the palaeosol 

(2.5-5.0m from the top of the sampled section: intensity 20C), and 

also at the top of the marine series between 150m and 180m (c5pG). 

Lower values occur in the bottom 25m of the continental series (0.1 to 
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Figure 71. 	NRN Results for Tiepido 
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0.5 pG) and also towards the bottom of the marine deposits sampled 

(0.5 jG). Susceptibility is more or less constant in both the marine 

and continental deposits, averaging 11.82(t 9.9) pG/Ce, the high 

standard deviation being due to the high values occurring in the 

palaeosol (averaging 60 pG/Ce). Thus Q-ratio shows a decrease from 

top to bottom in both the continental and marine sections. 

Most of the samples in the marine series are reversed with 

inclinations around -55'and declinations around 1.80°  giving high VGP 

latitudes. The inclination is lower than that expected at this site 

(-63) but this may result from inaccurate measurement of dip. Normal 

samples are seen at the top of the marine series in the interval where 

sampling was interrupted. Other isolated normal samples occur in the 

section, but only the lowermost three samples from a shell bed 

show consistent directions. 

The continental samples are normal above 60m, although 

occasionally inclinations are as low as 307  The section between 52m 

and the base of the continental series is shown in detail in Figure 

72. An interval of negative inclination occurs between 65m and 70m, 

although declinations are mainly easterly, averaging 90°  giving VGP 

latitudes of 30°S. The transition above the reversed interval takes 

place over 2m with some large variations in inclination, the 

transition at the bottom of the section occurring between 70m and 

75m shows variation of up to 180°  in both inclination and declination, 

and hence rapid alternation of northerly and southerly VGP latitudes. 

Examples of pilot demagnetization are shown in Figure 73, Due to 

the low intensities at the bottom of the continental series, compari-

sons of direction after each demagnetization step are susceptible 

to instrumental noise. Samples from elsewhere in the Tiepido section 

are stable, as illustrated by CT1' (35cm) and CT71' (49.91rri) in the 
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continental series, and !1'17' (1.81.65m) and Mr86' (262.70m) in the 

marine series. These samples have median destructive fields 

ranging from 90 to 450 Oe, with the marine series being harder, as 

well as having a normal viscous overprint. 

The samples from between 50 and 75m, the most interesting 

interval palaeomagnetically, show a large amount of random variation, 

especially at higher fields. Samples such as CT128 (64.10m) and 

CTI.78 (73.60m) however record stable normal directions, and samples 

CT147' (66.19m) and CT159 (67.62m) record stable reversed directions. 

Samples from within the transitional zone and just above it (CT961 : 

58.10m and CTI.32: 64.48m) often show variation of about 4o about a 

mean direction, probably due to their low intensity. On the other 

hand some samples can be rejected as unstable. Median destructive 

fields for these samples vary from less than 100 Ce to over 600 Ce, 

both this and the variation in stability are reflections of the 

variation in lithology in this section. 

After blanket demagnetization at 150  Ce intensity decreases by 

LO% to an average of 1 .13(± 2.05' pG, however the decrease is much 

larger in the continental sediments than in the marine clays, the 

removal of a soft normal component from the reversed marine clays 

tending to increase intensity. There is little change in direction 

in the marine series, with directions remaining reversed, and where 

anomalous samples occurred the normal overprint was usually re-

moved. The normal interval at 98m remains after demagnetization, 

becoming more consistent, however one of the three normal samples 

at the bottom of the section becomes reversed, the cone of 95% 

confidence for these samples after demagnetization has a half 

angle of over 93°suggesting that this mean direction is not a true 

reflection of the geomagnetic field. 

15"  



In the continental series there is a general decrease in 

inclination, however this is not very large in the upper 50m. The 

results for the interval between 52m and. 75m are shown in Figure 74. 

Inclination between 52 and 62m has decreased to between 0 and 30°  with 

some southerly declinations between 56 and 58m. This gives average 

VGP latitudes of 30 to 60°N, with excursions to the southern hemisphere. 

This large, rapid fluctuation in VGP position suggests that the record 

is distorted by noise, rather than representing a geomagnetic 

excursion, the intensity of these samples after demagnetization 

averages 0.1 pG. 

The directions between 62 and 64m become more reversed with 

negative inclinations and declinations mainly around 90°  but showing 

a large amount of variation. VGP latitudes for this part of the 

section are grpuped near the equator. Below this declinations 

become uniformly southerly giving VGP latitudes of 70 to 90°  S1  con-

firming that a complete reversal of the field is recorded in these 

samples. Demagnetization has not been able to clean up the lower 

transition zone between 70 and 75m, which still involves much fluc-

tuation of the pole. 

Alpha 95 values at Tiepido are 20-40° at NRM, rising to 40°  

to 80°  in the reversed interval. With demagnetization these values 

rise to between Wand >90°  in the reversed interval, as intensity 

is lowered towards the noise level. 

TRANSITIONS 

The main transition from reversed to normal polarity between 

60m and 66m shows a large amount of variation, however most of the 

intermediate poles are concentrated in the Pacific as shown by 

Figure 75, giving a far-sided path. The transition was recorded in 

clays suggesting more or less constant, uninterrupted deposition. 

15 
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Figure 76 shows a Molleweide Projection for the transition with a 

running mean of three samples. Samples with unstable demagnetization 

paths and with intensities of less than 0.05 pG have been removed. 

There appears to be a short excursion to Australia then a large 

anticlockwise loop encompassing Australia and. New Zealand. The 

actual transition is smoothed to a path confined more or less to 

the longitudes of 160 to 190°E, although the pole does not become 

completely normal below the coarser sediments in which the excursion 

occurs. 

The lower transition at 76 to 71m consists of very few samples, 

widely separated which give scattered results. It is not possible to 

select a definite transitional path for this interval, however 

most of the intermediate poles lie in the Pacific region (the far-

side). The possible excursion at 57m consists of backwards and 

forwards motion, mainly across Asia and Europe. The paths are 

mostly near-sided and cannot be correlated with the excursion at 

Stirone. The very erratic distribution of poles suggests that the 

excursion is not real. 
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PART IV PANARO 

The Pariaro is one of the larger rivers draining the northern 

slopes of the Appennines. It is the most easterly of the rivers 

studied in this area; lying 5km east of Tiepid.o, 20km east of 

Crostolo, and 55km east of Stirone. Marine sediments are overlain by 

continental deposits; the marine sediments are neritic grey clays, and 

are similar to Tiepido, both sections representing deeper water than 

Crostolo or Stirone. The top of the marine series is represented by 

an erosion surface which is overlain by a beach conglomerate. Ten 

metres of grey alluvial plain clays follow, then a fluvial episode 

marked by erosion and deposition of sand in channels. 

Unfortunately the period of sampling coincided with the start of 

the rainy season, the river rose by about 3m during the first morning 

of sampling, so it was only possible to obtain a few samples from 

either side of the marine-continental boundary (see Figure 77). 

RESULTS 

NRM results are shown in Figure 78. Intensity averaged 1.89(± 

2.3iG with higher intensities occurring in the marine deposits 

(about 51jG). Susceptibility is more or less constant in both series 

averaging 11.04(± 5.65pG/0e, giving higher Q-ratios in the marine 

clays. The marine deposits are clearly reversed, while the continen-

tal deposits are mainly normal, but show two independent samples with 

VCPs in the southern hemisphere, the lower one reaching only 15°S. 

Demagnetization proves that all deposits have a stable remanence 

(cP6: 8.70m and CPu: 18.60m are shown in Figure 79). Median 

destructive fields for these samples are high: at least 400 Oe. 

Demagnetization was carried out at 150 Oe, giving rise to a 

decrease of about 18% in intensity to 1.55(±2.16)pG (Figure 80). The 
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continental sediments showed a slightly larger decrease than the 

marine beds. Only one sample at 6.60m shows any major change in 

direction, developing a westerly declination resulting in a low 

latitude pole position. The marine series is reversed, but the 

continental deposits, especially those below the upper erosion. 

surface, show much variation, with two independent reversed samples, 

and a period of intermediate polartity between 6.60m and 7.35. The 

transition between reversed and normal polarity at Panaro involves 

much scatter, like that at the bottom of the continental series of 

Tiepido (which was normal to reversed). Unlike the transition at 

Tiepido, most of the intermediate poles at Panaro are centred 

around South and Central America. 
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PART V FIDENZA 

A new road cutting near Fidenza Servito Militare, on the road. 

between Noceto and. Fidenza has exposed a 4m section comprising 

roughly 75cm of Wurmian loess, im of Riss-Wurm soil, and over 2m of 

red Mindel-Riss soil, the latter correlating with that at Rivaltella. 

At least three samples were taken from each of these units. 

NRM intensity averages 4.79(± 3.67pG with higher values at the 

top of the Wurmian loess and at the top of the Mindel-Riss soil 

(Figure 81). Susceptibility averages 23.45(±13.16jG/0e, and is also 

higher at the top of the Mindel-Riss soil. Q-rations are similar to 

those at Rivaltella (about 0.2), though intensity and susceptibility 

are much lower. 

The samples are relatively stable with demagnetization, PL1' 

from the Wurmian loess has a median destructive field of 180 Oe, and 

PLJ+' from the Mindel-Riss soil has a median destructive field of 

only 60 Oe (Figure 82). Both samples are softer than examples from 

Crostobo which had median destructive fields of 200 to 300 Oe (see 

SC4, Figure 63). 

After blanket demagnetization intensity has decreased by 70% 

to 1.38(±0.95)pG, the amount of decrease is constant within the 

section, showing that the magnetic carriers of all samples have low 

coercivity. All of the samples are normal, with inclinations of 

around 50° and declinations near 0°, only the samples at 190cm have a 

different (though not significantly different) direction, with a more 

westerly declination (Figure 83). The grouping of samples at the 

same level is better at the top of the section, with alpha 95 of 16 

to 20° in the upper units, and 40° to 70°  in the Mindel-Riss soil. 

Demagnetization gives a closer grouping near the top of the section, 

but alpha 95 increases in the Mindel-Riss soil. 
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Figure 83 Results For Fiderzo aPter demagnetization at 150 Oe 

INTENSITY 	 INCLINATION 	 DECLINRTION 	 VCP LTIT)E 

(H G) 

0.01 10 100.0 	-90.0 	90.0 	 0.0 180.0 	 -90.0 	90.0 

1 
	 1-I 

2..J 

S. 

4- 	 4 



PART VI CORRELATIONS 

Figure 84 shows a summary of the results for the uppermost 

deposits at the four river sections studied together with geological 

features which may be used for correlation. 

STIRONE 

At Stirone the continental series is mainly normal, apart from 

perhaps two or three excursions; the marine series is reversed with 

two normal events at 140 to 145m and 175  to 186m. The simplest 

interpretation would be to put the Natuyama-Brunhes transition just 

below the top of the marine series (104m) and correlate the two events 

with the Jaramillo and Olduvai. Kukla et al (1979) report that the 

first appearance of Arctica islandica at Santerno (90km southeast of 

Stirone) coincides with a normal event interpreted as the Reunion 

Event. Another normal event occurs above the first appearance of 

Hyalinea taithica, and is correlated with the Olduvai Event. The 

correlation between Arctica islandica and the Reunion Event is also 

made at two profiles from Tuscany: Ceppato and Collesalvetti (Arias et 

a]. 1982). Therefore the two normal events at Stirone should be the 

Olduvai and Reunion Events. 

If this correlation is correct, it raises the question of the 

position of the Jaramillo Event. It may be represented by the 

excursion at about 120m, or it may have been removed by erosion. The 

period of non-depositi'i between the continental and marine deposits 

is thought by Italian geologists to represent a fairly long period so 

it is possible that the whole of the Upper Matuyama is missing that is 

period of at least 180,000 years is absent. The continental series 

may be entirely Brunhes, and the top of the marine series is the 

Jaramillo Event. 
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Bucha et al (1975) put the Matuyama-Brunhes transition at about 

57m, which is at the top of the anomalous interval recorded in this 

study. Their results (Figure 2, p14) show that much of the interval 

between 57m and the marine-continental boundary is characterized by 

normal inclination and northerly declination. The upper anomalous 

zone may be affected by slumping, especially in view of the occurrence 

of slumped beds just a little upstream. The Dicerorhinus hemitoechus 

found at about 90m is younger than 800,000 years, so as these samples 

are normally magnetized they must represent the Brunhes. 

If we accept this identification of the major epochs and events 

it is possible to speculate on the identity of the excursions 

reported. The results from the continental series are too scattered. 

to enable identification of long period secular variation, however 

there are two intervals, at 57m and 88m which may be interpreted as 

excursions, and the possibility of a third at 66m. All were resampled 

in 1981: the first gave consistent directions with horizontal 

inclinations and southerly declinations, the second interval gave 

similar directions then a transition to normal polarity. The lower 

interval showed a clear reversal within a section suggesting that this 

is at least in situ. Given an age of greater than 37,000 years for 

the top of the continental series, (Aléssio et al, 1980), and an 

age of less than 730,000 years for the base of the continental series 

(95m), the excursions can be dated at 450,000 520,000 and 68o,000 

years B.P. even though continental deposition is rarely constant 

these ages are probably close enough estimates. Calculations of 

the duration will be too large because the overall sedimentation 

rate will include periods when no deposition took place, and the 

actual sedimentation rate at any particular time will have been 

faster. Even for overestimated durations the intervals are short: 



50cm at 57m giving 3,650 years, about im at 66m giving 7,300  years, and 

only 30cm at 88m giving 2,200 years. During the third excursion the 

pole changed from northern latitudes to southern latitudes in less 

than 1,000 years. 

Most of the apparent excursions in the marine series have been 

dismissed as due to anomalous results arising from either low 

intensity or poor fidelity of sands. The sands may initially record 

anomalous directions due to deposition in a high energy environment, 

or in some cases these anomalous directions may result from 

percolation of water which collects in the sands, being prevented 

from further downward movement by impervious clays. When sampled the 

bottom layer of a sand bed was often so waterlogged that it would 

start to flow out of the vertical face. Given this high water content, 

it is possible that grains are free to rotate in the present normal 

field. 

The interval just above the Plio-Pleistocene boundary is 

represented by a complex magnetic period, consisting of at least two 

events, one at 171m and one between 174  and 186m, the second event 

split in at least one place by reversed directions. These are 

identified as the Reunion Events, suggesting that there were two or 

more events in this interval. 

CROSTOLO 

At Crostolo the top of the continental series is normal to about 

40m, then shows much variation until the top of the marine series. 

The marine series is mainly reversed to a depth of about 460m, below 

which two large normal events occur separated by a short reversed 

interval. The oldest samples taken are Piacenzian and probably younger 

than the Gilbert Epoch (Labrecque et al 1977).  The base of the 

Pleistocene is placed at 125m, however inclinations between 80m and 



450m are entirely reversed, and only variations in declination give low 

VGP latitudes. This interval of 370m includes no normal intervals, 

although short events may have been missed due to gaps in sampling. 

The normal interval below 460m is probably the Gauss, with the Kaena 

and Mammoth Events at 507-514m and 606 to 640w. Gauss excursions 

may occur above and below the Kaena Event, however there are only 

limited samples at these points so positive identification must await 

further work. 

The top of the marine series has some samples with low VGP 

latitudes, however the first definitely normal samples above the 

Gauss Epoch occur at 74m, at the base of the Casa Bacchi Unit. This 

is a similar stratigraphic position to the Hippopotamus (cf. amphibus) 

fauna that is dated at greater than 900,000 years (Crernaschi pers. 

comm.). This puts the oldest continental sediments within the 

Jaramillo Event as a date of 1,670,000 years is too old. The Casa 

Bacchi and Casa Romensini Units have low magnetic fidelity and the 

exact position of the Upper Matuyamna reversed interval is uncertain. 

The reversed samples at 68-70m were shown to have little stability 

after demagnetization, even though the results of all samples at 100 

Oe are closely grouped. This suggests that the Upper Matuyairia may 

occur at the top of the Casa Bacchi Unit (60.62m) or in the Casa 

Romensini Unit below the apparent reversal at 40 to 44m. While it is 

conceivable that the results record a Rrunhes excursion at 141+m and a 

middle Matuyama excursion at 74m, the more likely explanation is that 

the poor fidelity of these deposits has confused the palaeomnagnetic 

record. 

The large reversed interval in the marine sediments probably 

covers 1,510,000 years from the base of the Jaramillo to the top of 

the Gauss. This gives a sedimentation rate of 25cm/1000 years which 



compares with 75cm/100  years at Tiepido (Annovi et al 1979) and 

Santerno (Kukla et al, 1979) during the Lower Pleistocene. The 

position of the Plio-Pleistocene boundary as defined by Barbieri and 

Petrucci may be affected by environmental factors; the fossil species 

may not have entered the region until some time after the end of the 

Pliocene. 

TIEPIDO 

At Tiepido 60m of normal continental sediment overlie a short 

reversed interval tOrn thick. Beneath this a few normal samples are 

seen, in the lowermost continental sediments and in the uppermost 

marine deposits; the remainder of the marine sediments are reversed. 

As the lowest level sampled lies above the first appearance of H. 

baithica the long reversed period can be correlated with the middle 

Matuyama above the Olduvai Event. 

There was little recovery between 150m and 80m, nevertheless a 

few normal samples were recovered that allow the marine regression to 

be placed within the Jaramillo Event, as at Stirone. The Upper 

Matuyama occurs therefore, between 70 and 65m, which is shorther 

than would be expected, but this period was apparently represented by 

no deposition at Stirone. 

The transition at 65m is far-sided, which is dissimilar to that 

at 102m at Stirone, but similar to the part of the reversal seen at 

44m in Crostolo. Transitional paths should be simlar at sites only 

200km apart as the sources for the magnetic field are within the 

core. This supports the suggestion that the lowermost Rrunhes and 

uppermost Matuyama are missing from Stirone. If the highest transi-

tion at Crostolo is real, and represents the Matuyama-Rrunhes then more 

continental deposition occurred there during the Upper Matuyama than 

n 



at any other site. 

The lowermost deposits of the Brunhes Epoch have low normal 

inclination at Tiepido, which becomes reversed occasionally between 

56 and 58m. This excursion consists of rapid alternation in VGP 

liatitude, and although similar in stratigraphic position to the 

third excursion at Stirone, it is not represented by simlar VGP 

positions. The deposits in which this transition was recorded are 

sandwiched between conglomerates, so the directions may again reflect 

poor magnetic fidelity. 

PANARO 

The marine deposits of Panaro are reversed, while the overlying 

continental deposits are mainly normal, but with at least two reversed 

samples. By comparison with the other sections, the marine deposits 

probably correspond to the middle Matuyama. The continental deposits 

may correlate with either the Jaramillo or the Brunhes. The 14m of 

continental deposits compare in thickness with the Upper Matuyama and 

Jaramillo at Tiepido, so it is possible that both the Brunhes and 

Jaramillo are recorded with the Upper Matuyama at 7-13m. It is 

interesting to note that the Upper Matuyama transition at Tiepido also 

seems to involve rapid alternation of northerly and southerly VGP 

latitude while at Crostolo mixed polarity is seen in this interval. 

The intermediate VGPs at Panaro are near-sided, suggesting that the 

transition is more likely to be the Matuyama-Jaramillo than the 

Matuyama-Brunhes. 

CONCLUSIONS 

The marine regression along the Po valley occurred approximately 

900,000 years ago, that is during the Jaramillo Event. The regression 

occurred slightly later at Tiepido than at Crostolo, while at Stirone 

U 



the regression occurred later than at Crostolo and was followed by a 

period of non-deposition. In all deposits the sediments just above 

the marine regression are discontinuous. Figure 85 shows sedimenta-

tion rates during the Brurthes and Matuyama Epochs. This shows much 

faster deposition of the marine deposits at Crostolo and Tiepido than 

at Stirone, followed by a period of little or no deposition coiriid-

ing with the marine regression. From estimated sedimentation rates, 

the transitions lasted much longer than the accepted length of 

5-10,000 years, which probably indicates inaccurate calculation of 

deposition rates due to the intermittent deposition involved, 

especially in the continental deposits. 
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CHAPTER 5 

LOMBARDY SECTIONS 

PART I BAGAGGERA 

GEOLOGY 

Bagaggera quarry is located 30km northeast of Milan, and 2.5km 

west of the town of Merate (nap 32 II S.E. NR 300625, Figure 86). The 

sediments exposed in the quarry were deposited in two small basins 

dauuned by a terrace formed of conglomerate, and separated by a bed-

rock threshold. The basins which occupy the Curone valley on the 

side of Montevecchia Hill were surrounded by glaciers throughout the 

Quaternary, but were never actually covered. The complex sequence of 

deposits which results has been described at nine sections by G. 

Orombelli and M. Cremaschi (Figures 87 and 88, see Cremaschi et al, 

in prep.). 

In the southern sub-basin at least 4m of laminated silty clay 

occur at the base of sections 8 and 9. The clays which comprise Unit 

9 of Cremaschi et al contain local sand lenses and also mollusc shells. 

The base of this unit is not seen. The clays are overlain by a 

coarse to medium grained sand up to 70cm thick (Unit 7), which is 

separated from Unit 9 by an erosional surface. Clasts of chert and 

quartz are seen in this layer, and isolated pieces of lignite plants 

(Abies alba). Unit 7 is followed by fluvial silts and sands up to 

9m thick. The lower beds of this unit (Unit 6) are thinly laminated 

fine silts containing thin sand beds. Towards the top of Unit 6 the 

sediments become generally coarser, but can be divided into four 

cycles which themselves become finer upwards. The cycles start with 

ripple sands developed on an erosion surface and end with a dark 

massive clay with high organic content. 
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In the northern sub-basin up to 2m of lacustrine clays belonging 

to Unit 9 are seen immediately overlying the steeply dipping. 

Cretaceous flysch in the centre of the quarry. The clays pinch out 

laterally and at one point (section 2) contain a slope deposit (Unit 

8) consisting of angular clasts. Nearer the edge of the basin 

(section 1) this slope deposit is not overlain by Unit 9 clays. The 

flysch is heavily weathered wherever it is exposed, but the slope 

deposit is only intensely altered at Section 1 indicating that this 

weathering took place after Unit 9 had been laid down, and therefore 

represents a later period of alteration than that developed on the 

flysch. Above Units 8 and 9 there are five units in the northern 

sub-basin, each separated by an erosion surface, each with a soil 

developed on top. Unit 5 directly overlying the lacustrine clays 

consists of up to 4m of fluvial sand and gravel with a clay matrix. 

The size of the clasts increases towards the threshold to the south. 

Unit 4 is a gravelly loam, likewise becoming coarser to the south, 

ranging from 1 to 3m in thickness. Unit 3 is a loam deposit up to 

2.5m thick with angular clay clasts, probably from Unit 9, at the 

base, and aeolian deposits at the top. Units 3, 4, and 5 are re-

stricted to the northern sub-basin, but Unit 2 covers both parts of 

the quarry. It consists of at least 3m of fluvial sand and gravel 

capped by aeolian silt which contains Middle Palaeolithic artefacts. 

Unit 1 which also covers the entire area of Bagaggera is comprised 

of two loess sheets each 1 to 2m thick. The uppermost sheet contains 

Upper Palaeolithic artefacts, and is thus correlated with the Würm 

glacial period. 

In the surrounding area soils are seen in sections at Via 

Vivaldi (NR 27286130) and Ronco (NR 305606). Via Vivaldi is 

immediately behind the moraine, the soils are developed on till. 
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At Ronco the soils are developed on gravel which is possibly the 

same terrace as the one which dammed Bagaggera. 

SAMPLING AND MEASUREMENT 

Samples were taken at intervals of 1-5cm from the lacustrine and 

fluviolacustrine clays and silts of Sections 8 and 9. Bucha and 

Sibrava (1977) reported the occurrence of a polarity reversal in 

Unit 9 at a profile similar to Section 9. The reversal occurs very 

close to a vertical change from grey silty clay to oxidized brown 

silty clay. At Section 8 the oxidation is not seen in Unit 9, 

perhaps because downward percolation of water was prevented by a 

thick black clay at the top of Unit 6b. Palaeornagnetic investiga-

tion of both sections was undertaken to determine whether the rever-

sal is real, or if it was caused by superimposition of a chemical 

remanence at a later date. In 1982 the quarry was revisited to 

allow resampling of the transition, and to extend Section 8 to 

cover 1+m of Unit 6 which was exposed through excavation in the 

autumn of 1981. 

Samples were also taken from the matrix of weathered profiles 

developed on Units 1 to 5 and on the flysch bedrock in the northern 

sub-basin, as shown in Figure 88. The lacustrine clays at the 

base of section 6 were also sampled. A number of samples were taken 

from the soils of Ronco and Via Vivaldi to investigate whether any 

correlation could be made with soils in the quarry. 

RESULTS 

Northern Sub-basin 

The natural remanent magnetization (NRM) of samples from the 

palaeosols, varies in intensity from 10 to 100 pG, although intensity 

in the flysch of Section 1 is slightly lower (between 1 and 2 pG). 
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Susceptibility lies between 10 and 100 pG/Oe, giving Q-ratios of 

almost 1. The clays of unit 9 in section 6 have lower intensities 

(0.1 to 1.0 pG) with susceptibilities of slightly less than 10 

pO/Oe giving lower Q-ratios (Figure 89). 

Examples of pilot demagnetization are shown in Figure 90. 

Most samples from the weathered profiles are stable, changing little 

in direction with demagnetization, however hardness varies con-

siderably: median destructive field varies from about 115 Oe (BL2) 

to over 600 Oe (BL7'). Samples from the bottom part of section 6 

show larger changes in direction with demagnetization, BL16 appears 

to have a moderately stable normal magnetization, however BL12' 

becomes intermediate in direction at 200 Oe, accompanied by a rise 

in intensity. In both cases the initial remanence is low ( 0.5 pG) 

so the directions may be masked by instrument noise. 

The results after blanket dernagentization at 150 Oe are shown 

in Figure 91. The samples of Section 1 showed little change in 

intensity reflecting a hard magnetization as seen in sample BL7'. 

This behaviour is characteristic of haematite which is resistant to 

aithernating field demagnetization. Most of the samples from Section 

1 are normal, however one sample from Unit 8 has a low negative 

inclination. This may be due to alteration during a reversed epoch, 

or it may represent the primary remanence of a fallen block. The 

remanent directions in the flysch below are more consistent with 

stable normal polarity before correction for dip, suggesting that 

the alteration that gave rise to the magnetization in these rocks 

occurred after folding. 

Samples from Units 1, 2, and 3 in Section 6, and Unit 14  in 

Section k have normal inclination, probably representing alteration 

during a normal epoch, although one sample (BL27) at the base of Unit 

inn 
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Figure 90. 	Examples of Pilot Demagnetization from the Northern sub-basin 

190 



Figure 91 ReeuII-  e For Nor,  I- hem Sub-Bas ir aPer DemogneHzaHon 

INTENSITY 
	

INCLINATION- 	 DECLINATION 
	

VGP LATITUDE 
(PG) 

0.01 10 100.0 
	

-90.0 	90.0 
	

0.0 180.0 
	

—90.0 	900 

Section 1 

0 

2 

3 

4 I 
Section 6 

0-- 

2-- 

4-L 24 

5-- 

7-- 7 	 7 7 	 7 

91 10 	 10 

8 8 	 8 

9 

Section  4 

11 	 11 11 

1: 14 	 l2 12

1 1: 3  
13T 	 13 

14i 	 14 	 14 Ii 

Section 6 

191 



3 has a southerly declination, giving an intermediate virtual geo-

magnetic pole (vGP) latitude. Unit 5 is represented by two samples, 

both with reversed inclination, one with southerly declination, 

suggesting that the palaeosol on Unit 5 formed during a reversed 

epoch. 

Samples from the lacustrine clay in Section 6 have mainly 

normal inclinatio;, however there is much scatter in declination, 

probably due to low intensity. Two samples from the flysch (13-14m) are 

reversed. These differ in strength (NRN= 0.1 pG) and in direction 

from the flysch in Section 1, so they may represent a different, less 

intense period of alteration, or they may reflect the original 

detrital remanence of the flysch. 

The resampled sections in the northern sub-basin were studied 

to check the magnetizations of Units 5 and 8. Three sections were 

sampled, one entirely in Unit 5 (Section  3), and the other two 

sampling Unit 8, one where it had been oxidized (Section 1) and one 

where it had been protected from oxidation by overlying clay (Section 

2). NRN results for these three sections are shown in Figure 92. 

Intensities in the two weathered sections are high, averaging 17.8(± 

14.3)pG in Unit 5 and  9.3 (±3.5) pG in the breccia. In section 2 

intensity averaged 1.6(±1.4)pG the breccia having a slightly stronger 

remanence than the lacustrine clay. Section 1 is entirely normal 

at N1M with high positive inclination averaging 61.8(±6.1. Section 

2 shows a large amount of variation, however directions are mainly 

positive. In Section 3 inclination is very low, and declination 

slightly to the west of north giving VGP latitudes of between 25 

and 

With demagnetization (Figure 93) sample B33 fron the breccia of 

Section A shows signs of reversing, although the median destructive 
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field is very low (47.5 Oe) and the negative direction is carried by 

only a small percentage of the rernanence. Sample BS8 from the 

lacustrine clay is stable although it has a low median. destructive 

field (85 Oe). Sample BS11 from the unweathered breccia shallows in 

inclination, while changing declination, but decreases by only 30% 

between 0 and 250 Oe. Unit 5 samples also have low median destruc- 

tive fields, BS18 loses half of its magnetization at 63 Oe, and shows 

signs of becoming more negative, with a slight increase in negative 

inclination. 

Demagnetization results at 100 Oe are shown in Figure 94. 

The weathered sections (1 and 3) had lost 81% and 89% of their 

initial reinanence to give intensities averaging 1.7(±1.1)1jG and 2.0(± 

0.7)G respectively. Intensity in Section 2 had fallen by 58% to 

0.7(±1.0)pG. The samples from Unit 5 showed only a slight change 

in direction, with inclination becoming slightly more negative giving 

VGP latitudes of 10 to 30°N. In Section 1 two samples from the 

'breccia became reversed, however two other samples remained normal 

as did one from the flysch. The samples in Section 2 gave a variety 

of results with both positive and negative directions in the lacustrine 

clays, southerly declinations, but shallow positive inclinations in 

the lireccia and an intermediate direction in the bed-rock. Three 

samples taken at the same level in the breccia give widely differing 

directions (alpha 95 > 90). This suggest that the results are 

random, due to the mode of deposition of this unit. Only when the 

breccia is oxidized does it give more consistent results. Further 

blanket demagnetization at 150  Os did not cause any further change 

in direction. 

Results for the whole of the Northern sub-basin are summarized 

in Figure 95. Units 1, 2, 3, and 4, together with the flysch give 	/ 
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reasonably accurate positive results, with circles of 9_5/0" confidence 

about the directions of less than 20. Units 5, 6, and 8 give 

directions which are intermediate. For the unweathered breccia 

directions are very scattered, in the weathered breccia directions 

become progressively more negative with depth. No adjacent samples 

were taken, however results from different levels are often quite 

different. The results of Section J show that Unit 5 is consistently 

intermediate. Samples toward the top of Unit 5 are more normal in 

both sections suggesting an overprint of a normal direction on a 

reversed direction, with the normal overprint being stronger towards 

Unit k. This implies at least two periods of weathering, which may 

also affect Unit 8, although the results are not as conclusive. It 

is interesting to note that all of the soils at Bagaggera have very 

low coercivities except that developed on the flysch which loses very 

little of its remanence with demagnetization (as typified by sample 

BL7'). 

Vivaldi 

The NRM results from Vivaldi are shown in Figure 96. Intensity 

is high averaging 42.6(±24..3)pG, inclinations are positive but 

declinations become southerly towards the base giving intermediate 

VGPS. Susceptibility averages 52.9(±23.1)IJG/Oe giving high Q-ratios 

(0-79(±0.22)). Demagnetization (Figure 97) shows that samples are 

mainly stable, however those with southerly declinations change to 

northerly declinations (e.g. v4) Median destructive fields are low 

(57 to 183 Oe). At 150 Oe intensity had dropped by 73% to 11.4(± 

2.8)jG (Figure 98). Except for the lowermost sample (v7) all the 

directions had become normal giving VGP latitudes of 75 to 90'. V7 

retained its southerly declination to give a VGP at a latitude of 

12 in norhtern Africa. The samples show behaviour similar to the 
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upper four units at Bagaggera so it is unlikely that they correlate 

with Unit 5. 

B onc 0 

N1M results from Ronco show that intensity is more or less 

constant, averaging 45.8(±12.6)pG (Figure 99). Susceptibility is 

high and more or less constant within the section (54.6(±13.8)pG/Oe) 

giving -ratios averaging 0.84(i 0.10). Demagnetization (Figure 100) 

indicates that all samples are stable, although median destructive 

fields are low, as they are for most soils (ranging between 89 and 

164 Oe). Results after blanket demagnetization (Figure 101) show 

very little change in direction, although intensity had dropped by 

62% to 17.2(z 6.1 )pG. Inclination averages 62.2(± 5.8r, however de-

clination is slightly biased to the east giving VGP latitudes of 

80 to 85: Again these results show that soils are capable of 

carrying a very accurate remanence. The higher intensity compared 

with samples from Units 1 to 4 at Bagaggera suggest a slightly 

different process is involved in the formation of the remanence. 

Southern Sub-basin 

1. Section 8. 

NRN intensity in the clays of Units 6 and 9 averaged 5.2(±7.2) 

iici, including the samples taken in 1981 and 1982. Unit 6a has higher 

intensity toward the bottom especially in the black clays. The 

lowermost 150cm of Unit 6b has lower intensity compared with the top 

of this Unit, and Unit 9, this low is also seen in susceptibility 

indicating that there was a reduction 1n magnetic mineral content 

during this interval. Susceptibility averages 7.7(±3.6)pG/Oe 

throughout the section giving Q-ratios of about 0.6 (Figure 102). 

Pilot demagnetization demonstrated that most of the samples 
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possessed a stable remanence, carried by grains with a range of 

coercivities (Figure 103). Median destructive fields are generally 

between 300 and. 500 Oe, however occasional samples at the top of 

Units 6a and 6b, and near the transition are softer (e.g. BS42 at 

13cm, and BG80" at 711cm). Reversed samples do not show the presence 

of a normal overprint resulting from viscous remanence (BG97': 

441cm). Most samples show no change in direction apart from the 

development of a spurious magnetization at 400 Oe or above. Samples 

in the transition zone show a small amount of movement: BG84' 

(719cm) changes from normal to intermediate, the softer component 

representing a younger magnetization. 

The results after blanket demagnetization are shown in Figure 

104. Intensity has been reduced by only 15% to an average of 4.4(± 

6.5)pG, and shows a pattern similar to that seen at NRM. The lower-

most samples are reversed, showing a fair degree of scatter. A 

reversed to normal transition occurs between 724 and 713cm, above 

which samples are normal apart from an excursion at 687 to 688cm, 

coinciding with Unit 7. The results show a large amount of scatter 

between the transition and about 560m, above which there is little 

variation. However between 1.30cm and 1.61cm there are low latitude 

VGPs caused by an eastward swing in declination. The decrease in 

scatter away from the transition is reflected by alpha 95 values for 

the averages of samples at the same level. These are less than 10' 

in the upper 2m, below which they increase to around 20 to 40. Demag-

netization does not improve the alpha 95 values except for the 

metre of sediment below the transition. It does, however, sometimes 

increase the latitude of low latitudes poles away from the transition 

zone, for example the palaeolatitude given by BG64' (660cm) changes 

from 3.7'to 37.0 with demagnetization. 
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Synthetic nanetizations, which were atven to the 198 	pies 

only, in general reflect the main variation in NRN intensity. Both 

ARM and SIRM averages are greater than at Section 9, and both show 

large variations (20.7(±21.6)pG and 670(±710)pG respectively). SIRN 

is harder than ARM, median destructive fields for SIRM ranging from 

400 Oe to greater than 600 Oe, and for ARM ranging from 280 Oe to 

380 Oe (Figure 105). The difference between SIRM and ARM becomes 

more marked above 710cm. The hardness of NRN varies, in some cases 

being much softer than both ARM and SIRM (B34', 501cm) and in other 

cases being harder (3597', 761cm). Normalization of NRM by ARM or 

SIRM produces scattered values which are relatively low in the transi-

tion zone, higher between 25cm and 50cm above and below the transition, 

then low again further away. The transitional values are not signi-

ficantly lower than the mean for the upper part of the section. The 

higher values bracketing the transition are not necessarily indicative 

of geomagnetic behaviour as it cannot be shown that the same range of 

grain sizes carries the natural remanence and the artificial remanence. 

Hysteresis curves for IRN at section 8 (Figure 106) show that 

coercivity of remanence lies between 500 and 850 Oe, with S values of 

0.19 to 0.73. Samples below BG91' (740cm) reach saturation by 2000 

Oe; samples above 3575' (700cm) do not show signs of reaching satura-

tion by 10,000 Oe. S values at the top of the section are lower 

than at section 9, however the coercivities of the carriers of the 

natural remanence and the colouring of the clays themselves suggest 

that any haematite present in Section 8 is of minor importance in the 

natural remanence. 

The resampled section of the transition, about lOm away from 

this section, consisted of alternating sands, silts, and clays. The 

coarse woody bed which was used as a marker was observed to be con- 
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Figure 106 	Examples of Hysteresis Loops for Sect/on 8 



tinuous between the two sections. At section 8 the transition 

occurred about 30cm beneath this bed. NR1'1 results for the re-

sampled section are shown in Figure 107. These are markedly different 

to Section 8 where the transition occurred within lOom. Most of the 

inclinations are reversed and declination is mainly southerly, 

giving negative or intermediate poles. 

Pilot demagnetization shows that most samples are stable, like 

those at Section 8 with median destructive fields of 250 to 520 Oe. 

Blanket demagnetization does not lead to any large change in 

direction. Only one sample (BS23, 15m below the woody bed) is 

definitely normal. compared with an interval of about 25cm (9 

samples) between the transition and the woody bed at Section 8, see 

Figure 108. The overall pattern is the same, that is a transition 

and an excursion so the most probable explanation is that the in-

creased sand content at the second site has blurred the signal. 

2. Section 9. 

The NRM directions for section 9, together with the remanent 

intensity, susceptibility, and Q-ratio are shown in Figure 109. 

Intensity shows a step in values coinciding with the first visible 

signs of oxidation at 113cm (more complete oxidation is seen above 

98cm). Below the step intensity averages 4.6(±3.3)pG, above 113cm 

average intensity drops to 0.2(±0.1) pG. Susceptibility is only 

slightly lower above 113cm but not significantly so, the average 

throughout the section is 7.9(±1.8)pG/Oe. Low values are seen be-

tween 98cm and 113cm, reaching a minimum of 3.4 pG/Oe at 103cm. 

Q-ratios reflect the step seen in the intensity curve, averaging 

0.5(±O.4)in the blue clays, and 0.03(±0.02)in the brown-orange 

clays. 

The direction of the natural renianence shows a marked change 
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Figure 109. 	NRM Results for Section 9 
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coiflCiciiYL with t 	change in intensity at 113n. Inclination is 

mainly negative below this averaging _39.4(t15.1)° between 113cm and 

107cm inclination becomes positive, and averages 45.1(±23.4)°ifl the 

upper part of the section, although low inclinations are seen be-

tween 93 and 97cm. Declination is reversed below 113cm, most values 

lying to the west of south. Above  113cm the scatter of values be-

comes much greater, with rapid oscillation between normal and re-

versed directions. The quality of the results can be analyzed 

by studying the alpha 95 values for averages of groups of three 

samples taken at the same level. Below 113cm alpha 95 va'ues lie 

between 3.0° and 18.0° between  113cm and 97cm they vary between 18
°  

and 108°, above which they are more constant at 32°  to 
148°. Virtual 

geomagnetic pole (vcP) latitudes for the IM directions reflect 

the step in inclination, changing in general from southerly 

latitudes to northerly latitudes, however the pole does not reach 

high normal latitudes in the upper part of the section, and show a 

large amount of scatter. 

Demagnetization characteristics can also be classified into 

two groups: those of oxidized and unoxidized samples. Below  113cm 

samples are generally stable, with little or no change in direction, 

and median destructive fields of between 2240 and 590  Oe (Figure ho). 

Sample B242 (115cm) shows a slight increase in intensity up to 

100 Oe, which is indicative of a normal viscous remanence superim-

posed on the reversed primary remanence. In the oxidized clays, 

low intensity causes larger scatter in directions between demag-

netization steps because of the relative increase in noise. The 

samples generally change direction between 1 and 150 Oe, then 

remain more or less stable (e.g. B46 at 111cm and B66 at 91cm). 

Intensity sometimes decreases between 0 and. 150 Oe if a change in 
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direction occurs. After 150 Se there is very little chor;e in 

intensity (compare B244 at 113cm  with B43 at 112cm). Median 

destructive fields are generally either lower than 150 Oe 

(B58 at 99cm)  or greater than 600 Oe (B14). The general trend 

for this upper set of samples is toward a direction with low 

inclination and usually southerly or southwesterly declination. 

The directions after blanket demagnetization (Figure iii) 

show a step in inclination at 113cm  as at NEM, but while the 

lower samples have a similar value to NRM (-39-9(t16.3) the 

upper samples have decreased to 21.5(±18.7). Declinations are 

mainly between 180 and 270  throughout the section giving VGP 

latitudes of 60 * S to  30 * S in the lower part, and 30 * S to cf in 

the upper part. The decrease in intensity after blanket demag-

netization is proportionally greater in the upper part of the 

section (35% compared with 10%) indicating that a greater per-

centage of the remanence in the oxidized samples is carried by 

grains with low coercivities. The grouping of samples at the 

same level is not generally improved by blanket demagnetizations 

between 110 and 117cm  alpha  95 vues drop slightly but above this 

they increase somewhat. 

The intensity of ARM averages 15.0 jG, and is higher in the 

lowerpart of the section, though not significantly so (24.8(± 

13.2)pG c.f. 8.4(±4.3)pG). SIHI1 averages 350 1jG showing a more 

marked decrease from 531.7(t 405. 5)pG to 145.7(± 53.1) pG above 

113cm (see Figure 112). SIRN is more resistant to demagnetization 

than ARM, however at 113m  (BLI-Li-) the curves are similar up to 

250 Oe (Figure 113).  Median destructive fields are 300 to 500 

Oe for SIRN, 250 to 300 Oe for ARM, both becoming lower nearer 

the top of the section. According to the modified Lowrie-Fuller 

I 
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Figure 112. Normal ised inIensiy For,  SecV ion 9 
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test (Johnson et al, 1975)  a harder SIRN when compared with ARM 

indicates that coarser, multi-domain grains are more abundant than 

finer, single domain grains. The NRM demagnetization curves show 

variation in comparison with synthetic magnetizations above 113cm 

the NRM has two components, one very soft and one very hard. Below 

113cm the NRM is sometimes softer, sometimes harder than SIRN, 

but always harder than ARM. Towards the bottom of the section the 

NRM and SIRN curves coincide up to 200 Oe. Due to the variety of 

magnetic carriers displayed by the NRM, it is not, however, possible 

to normalize intensity using artificial magnetizations, the dominant 

feature of the normalization curves (both initially and after blanket 

demagnetization) is the decrease above 113cm. 

Study of IRN hysteresis reveals that none of the samples become 

saturated at 1000 Oe, and samples above 113cm  (B50' to B89') do not 

show signs of becoming saturated at 10,000 Oe (Figure 114). Coercivity 

of remanence is between 540 and 770  Oe, with S values ranging from 

0.13 to 0.64. In general S decreases up the section with a step from 

0.5 to 0.6 below 113cm down to 0.3 to 0.5 above 113cm.  Values of S 

of less than 0.6 indicate the presence of large quantities of 

haematite in the section, this conclusion is supported by the 

coercivity of NEN above 113cm  and by the decrease in SIRM. Attempts 

to determine the grain size of magnetite in the section by comparing 

susceptibility of ARM and low field susceptibility could be hampered 

by the presence of haematite; however the results suggest a decrease 

in size up to 113cm,  than a return to larger grain sizes above, 

(Figure 115). 

The palaeomagnetic history of Section 9 at Bagaggera can be 

interpreted as follows. The lowermost 2.87m  of blue-grey clay were 

deposited at a time of reversed polarity, recorded by the natural 



Figure 114. 	Examples of Hysteresis from Sect/on 9 
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r&.anerce. The clay above a depth of 113n  was deposited durri: a 

polarity transition and during the period of normal polarity which 

followed. The initial remanence was piobably carried by similar 

grains to those in the lower part of the section. Some time after 

deposition the upper 113cm  of the section were subjected to chemical 

alteration resulting in the formation of a chemical remanent magne-

tization. The alteration preferentially attacked the smaller grained 

magnetite, giving rise to haematite as shown by the colour of the 

section which is blue-grey below 113cm and brown-orange above, and 

the coercivity spectrum of NTN which changes with the removal of a 

component whose coercivity is represented by alternating field de-

magnetization between 200 and 600 Oe, and its replacement by a 

component still present above 600 Oe. In addition hysteresis experi-

ments show that S values as defined by Stober and Thompson (1979) 

show a decrease above 113cm  which is indicative of haematite in the 

oxidized clays. Demagnetization of these oxidized sa-les involves 

a change in direction from normal to intermediate between 0 and 150 

Oe, usually with a drop in intensity. The initial drop in intensity 

is due to the removal of a normal component carried by less finely 

grained magnetite, which is not greatly affected by oxidation 

(susceptibility, which generally reflects the amount of larger 

grained magnetite is more or less constant above and below the 

level of oxidation). This nmal vector is probably a primary 

rernanence similar in nature to that seen in the lower half of the 

section. The intermediate directions carried by the haematite 

imply that the oxidation took place when the ambient field was 

other than normal. The directions may represent the true field at 

the time of oxidation, in which case the field was either partly 

through a reversal, or undergoing an excursion. Alternatively the 



directions represent a mean between the am5nt field direction and 

the primary rernanence recorded before alteration, in which case 

the ambient field may have been stable and reversed. When difference 

vectors are claculated for the oxidized samples, for the component 

removed up to 150 Oe, the inclinations are high and positive and, 

although declinations are scattered around north (largely due to 

the increased error involved in finding difference vectors), the 

VCP latitudes above 113cm  are positive. 

Bucha and Sibrava (1977) were able to sample a more extensive 

section near Section 9, including unit 6 above the erosion surface 

which forms the limit of sampling for this work. From their Figure 2 

it would appear that directions in this part of the section are 

consistently normal, suggesting that the reversed oxidation is not 

present in these deposits. The sediments of Unit 6a in Section 8 are 

slightly oxidized, but show no signs of overprinting. This 

oxidation was prevented from extending below the clay 	between 

Units 6a and 6b. The heavy oxidation at Section 9 was possibly due to 

an earlier event, which took place in a reversed epoch before 

deposition of Unit 7. This does not explain the absence of oxida-

tion in the lower part of section 8, so perhaps the erosional and 

weathering history is more complex than appears at first sight. 

TRANSITIONAL PATHS 

The age of the transition recorded in Sections 8 and 9 must be 

at least 730,000 years, the age of the Matuyama-Brunhes transition 

(Mankinen and Dalrymple, 1979).  The presence of reversed oxidation 

above the transition suggests that this reversal may be the base of 

the Jaramillo Event (970.000  yr. B.P.) or older. It is, however 

possible that reversed polarity occurred during the Brunhes either 



at 110.000 years during the Blake Event (flian) or at h65,000 years 

b.p. during the Ernporer Event (Holsteinain) although Units 6 and 7 

where probably deposited after this first phase of oxidation. 

The record of the transition at Section 9 is confused by the 

reversed overprint. At NRN the path passes northward through South 

America and the Western Atlantic, with a lot of variation in the 

second half of the transition. When demagnetized the directions 

give VGPs clustered around the South American continent, never 

reaching high northerly latitudes. In an attempt to improve the 

resolution difference vectors were calculated for the component of 

the natural remanence removed up to 150  Oe. These results suggest 

that the transition took place between samples B43' (114cm) and 

B44' (113cm). The nature of the transition zone cannot be clearly 

decided from the results of Section 9, but there is a suggestion of 

bias towards South America (Figure 116). 

The results from Section 8 probably represent a much more 

accurate record of the ambient field during the transition. The 

mean directions of samples in the upper 2m lie within 5°  of the 

axial dipole directions and have alpha 95 values of between 5and 

10 There isno obvious change in sediment below these samples 

suggesting that the increased amount of variation with depth is 

a true reflection of large geomagnetic variation both before and 

after the transition. The increase in divergence between samples 

apparently recording the same time interval may be due to variations 

in magnetic grain size. 

The NRM directions of transitional samples give poles concen-

trated in the North Atlantic. However demagnetization suggests 

that this includes a normal vector which is removed below 150 Oe. 

Whether this is a viscous overprint, or the result of acquisition of 
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the primary renanence over a period of time Is not clear, however 

Tucker (1979) suggests that softer magnetic grains, being larger 

should generally be trapped in position in a sediment before smaller, 

harder grains. 

The pole moves first towards India (BC85, 4O2cm) then across to 

the Caribbean and the South Atlantic (384 to BG82: 399-395cm), and 

finally through North America to Alaska (B81 at 393cm),  see Figure 

117. Three samples at 397cm  have a cone of 95% confidence about the 

mean direction with a half angle of 60, however this still gives a 

near-sided path, slightly biased towards the west. The diagram uses 

great circles to join the poles, but the poles for BG85 and BG84 are 

almost 180°  apart so there is little control on this part of the path. 

The Indian pole may represent an excursion before the reversal, it 

may be part of the transition with westward drift between 90°E and 

90° W, or it may represent the transition, with the Atlantic loop 

being an excursion. Without this pole the path is more longitudinally 

confined. 

Following the transition, for about 1.50m, the virtual 

geomagnetic poles oscillate in latitude within the northern hemis-

shere before settling down within 5 o  the geographic pole above 

2.140m. Only once does the pole cross the equator after the transi-

tion: at 687 and. 688cm, when an excursion to the eastern Pacific is 

seen. Both this excursion and a smaller one shortly later are far-

sided as shown in Figure 118. The three samples recording the larger 

excursion are tightly grouped suggesting rapid development and collapse 

of a short tern anomalous field rather than dirft of a strong non-

dipole field. The upper excursion (BG66 and BG67: 670 to 672cm) 

may in fact be due to low fidelity recording of the ambient field 

in the coarser, woody bed. 
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Although the results from Section 8a are not as good as those 

at Section 8 the transitional poles appear to be concentrated around 

the Americas, though with a loop to Africa, suggesting that the 

Indian pole is unimportant (Figure 119). Billard et al ( in print) 

studied two parallel sections of this reversal, both giving paths 

through America (c90 W of the site) without any excursions to the 

east (Figure 120). 
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TART II Pc:;TIDA 

The deposits of Pontida accumulated in an ice-dammed lake 

sandwiched between the hills of Mcite dei Frati and M. Chigno-

letti near the town of Pontida on the main Como to Bergamo road, 

15km west of Bergamo, just to the east of the Adda river (Map 33 

III S.0.: NR 381651)- 

GEOLOGY 

At least 60m of laminated lacustrine clays and silts were 

deposited in the Pontida basin, which trends east-west, between 

hills formed of Cretaceous flysch (Figure 121). The valley is 

blocked 'by moraine to the east, however little moraine is seen at 

the western end of the valley, suggesting that the lake was dammed 

directly by the Adda glacier (Alessio et al, 1978). 

Twenty metres of lacustrine sediments are exposed in quarries 

on either side of the Como to Bergamo road, with a further LIOm 

proved in a borehole. The deposits rest directly on the Cretaceous 

flysch bedrock, and consist of silts and clays which presumably 

accumulated very quickly, with occasional sand lenses. Towards 

the top of the sequence the clays are oxidized. Locally delta 

foresets are seen, often at the edge of the basin, or in a position 

that was probably very near the ice. The lake clays are overlain 

by fluvial sands and gravels deposited after the lake had been 

drained. Vegetation remains at a depth of about lOin have been 

dated at 17,700±360  years by radiocarbon, which probably represents 

the end of the Wünn glaciation (Alesslo et al, 1978). 

A six metre section, consisting mainly of clay, but split by 

lxii of sand between 2.75  and  3.75m,  and by other smaller sand levels 

was sampled during September 1980. The top of the section sampled 
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s about im above the interval dated at 17,700 years. 

RESULTS 

Intensity at NRN (Figure 122) is relatively high (the mean is 

15.4.6(±10.39)pG). There is a large amount of variation, with 

occasional isolated samples having intensities of only 1 or 2 jJG. 

Susceptibility is more constant throughout the section, averaging 

20.144(±4.03)jG/Oe, which gives high Q-ratios (0.7(±0.5. In fact 

Q-ratio is often in excess of 1, which is higher than at any other 

site. High Q-ratios probably reflect very still conditions of 

deposition allowing complete orientation of grains, as contrasted 

with the much lower Q--ratios seen in marine and fluvial sediments 

(where susceptibility is almost the same). At Pontida Q-ratio is 

higher between 1.35 and 2.15rn  and between 4.14 and 5.30m; this may 

result from change in water depth and thus a change in current 

action or from change in geomagnetic field intensity. 

Samples from Pontida were very stable when subjected to 

alternating field demagnetization (Figure 123).  Both P10 (500cm) 

and P39 (100cm) showed little change in direction with demagneti-

zation, having median destructive fields of about 25 and 235  De 

respectively. 

After blanket demagnetization at 150 Oe, very little change 

had taken place; direction had hardly changed at all, and intensity 

had decreased by 357c,  to 10.07(±7.86)pG  (Figure 1214). Declination 

is very close to zero, but inclination is low: 31.0(± 15.14)°  after 

demagnetization, giving VGP latitudes of 60°  N, lying near Alaska. 

This represents an error in inclination of 30 to 35,°  which is much 

greater than reported elsewhere (f0.3 compared with 0.85 to 1.0 

at Bagaggera). The high Q-ratio suggests that these deposits 

n no 
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record the geomagnetic field with high fidelity, the beds are 

clearly not dipping, nor is there any indication of deposition on 

a slope, which may also give rise to inclination error. Alpha 

95 values are low; generally less than 10, apart from in an inter-

val of 30cm just above the thick sand bed where an apparent 

excursion takes place. In this interval inclination increases 

while declination swings first to the east, then to the west, 

and finally back to the east before returning to zero. The VGP 

traces a clockwise loop through Asia to eastern America, then an 

anticlockwise return loop following the same path, maintaining a 

latitude of between LlO and. 20Th. (Figure 125).  Although this 

excursion occurs just above the sand there is no indication that 

this excursion is caused by any sedimentological phenomena. 

It would appear that the sediments of Pontida were deposited 

during a period when the VGP had drifted 30 from the pole towards 

Alaska, and maintained this position for some time. It is inter-

esting to note that no viscous overprint with a steeper inclination 

is seen - a fact also noted in the reversed clays at Bagaggera. 

An excursion of the field took place while the pole was in this 

anomalous position, consisting of clockwise and then anticlock-

wise looping of the pole. The length of time represented by the 

6m of clay is not known, however the excursion (and indeed, the 

period of low inclination) can be dated at around 18,000 years B.P. 

I 
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Figure 125. VGP path For Excursion at Pont-ida 
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TART III LEFFE 

The deposits of Leffe are situatd in the Bergamo prealps, 14km 

west of Lago d'Iseo and 22km northeast of Bergamo. The sections 

studied were a small exposure on Tappetificio Hill in the grounds of 

a carpet factory, at a height of 500m above sea level (NR 68887343) 

which represents the top of the sequence, and a cutting of the River 

Re at a height of 420m a. s. 1. (NR68177330) which is towards the base 

of the series of (Figure 126, see Map 33 II N.E.). 

Altogether there are about lOOm of lacustrine sediments at 

Leffe, mainly consisting of fine grey-green silts and clays, but 

with numerous lignite layers. An Upper Villafranchian fauna has 

been found in the uppermost depoits, which Ax'ias 2t al (1982) 

correlate with the Olivola and Farneta Mammal Zones (that is between 

2.5 and 1.0 m.y.). 

Due to restricted access, only a limited number of samples 

could be taken: a 2.30m section of clays on Tappetificio Hill 

capped by a thin red soil representing a river terrace, and a 14m 

section of orange-brown clays overlying grey-green clays in the 

River Re, just below two lignite layers. Most of the samples from 

the lower section were taken as large blocks and cut into 2cm cubes 

at Edinburgh. 

RESULTS 

The NBN results for section 1 are shown in Figure 127. Intensity 

is high in the soil (5-10jG), below which the clay averages 0.59(± 

0.36)pG. Susceptibility is similarly higher in the soil (c 15 

pbe) but does not show as much variation in the lower deposits 

(4.11(± 1.58) pG). Q-ratio averages 0.2, and is slightly higher in 

the soil. The directions are normal at the top, in the soil and in 



Figure 126. 	Nap of Leffe showing Sampling Sites 	1 500 m 
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the upper 20cm of the clays; but with declinations of 20to 50and 

inclinations of only 20to 40. Below this the directions are more 

or less reversed, however inclinations are shallow (-20to 40) 

giving low VGP latitudes. 

Section 2 (Figure 128) has an average intensity of around 0.5 pG. 

This is slightly higher in the upper two metres of the section than 

below, coinciding with a change from orange-brown silty clay to 

grey-green silty clay (0.57(±0.47)pG  cf. 0.19(±0.16)pG). The direc-

tions are mainly reversed, however the lowermost samples show much 

variety, both in declination and inclination, giving generally low 

VGP latitudes. In addition there is an apparent excursion in 

declination at 82 to 94cm, with no coincident variation in inclina-

tion, giving VGPs approaching the equator. 

Examples of pilot demagnetization from Leffe are shown in Figure 

129. Some of the more intensely magnetized samples are stable with 

demagnetization (e.g. L30A2, 1.21m) while others show a tendency to 

drift above 100 Oe: 1140B1 (2.60m) and L50B3 (3.78m). There is no 

general pattern to the directional change: L4OB1 develops a normal 

magnetization but L50B3 varies around its initial direction. Median 

destructive fields for Leffe samples vary from 90 to 170 Oe. 

Blanket demagnetization gives rise to a very small decrease in 

intensity in section 1 to 0.54(±0.32)jG while the soils have a 

reinanence of about 4.0 pG (Figure 130). The directions are much more 

consistent after demagnetization with positive inclination and 

northerly declination in the soil, and negative inclination and 

southerly declination below. In both intervals inclination is low, 

averaging about 400,  giving VGP latitudes of 60°  North or South. 

Nevertheless the clays clearly record an interval of reversed polarity 

while the overlying soil developed during normal polarity. 
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Section 2 shows a small decrease in intensity with demagnetiza- 

tion to 0.43( 0.46) pG 	(Figure 1.131).  The directions remain mainly 

reversed, however below 2m the inclintions are generally more 

shallow (averaging 36 compared with 5(1) which coupled with the 

variation in declination gives low VGP latitudes in the southern 

hemisphere. Two samples at the top of the section have VGPs in the 

northern hemisphere: one with a high positive inclination and 

southerly declination, the other with low inclination and northerly 

declination. Again the section records a reversed interval, however 

there may be an interval in which normal polarity is obscured by an 

overprint. The samples do not stand up to further demagnetization so 

it is not possible to resolve this question. The correlation of both 

sections with the Matuyama does not contradict the palaeontological 

evidence. 
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FART IV PIANICO 

The deposits of Pian5co are exposed in the Borlezza river which 

flows into Lago d'Iseo near the town of Lovere, 30km northeast of 

Bergamo (Figure 132, see Nap 34 III N.0.). At least 70m of cal-

careous mans, clays, deltaic sand and gravel are present, de-

posited in a lacustrine environment. These sediments have a varved 

appearance with layers 1 to 10mm thick, though it is not known 

whether these layers represent yearly variations or not. The 

deposits are attributed to the classic Riss-Würm interglacial on 

the basis of palaeontology, stratigraphy, and geomorphology (Alessio 

et al, 1978). They are covered by Wtrmian glacial till and contain 

much organic debris, this has been dated at greater than 43,000 

years using the radiocarbon method, which does not conflict with 

the traditional dating. 

A 6m section was sampled in the river bank at NR 805742, taking 

blocks approximately 20cm x 20cm x 10cm which were cut down to 2cm 

cubes at Edinburgh. The section consists of 2.75m of grey silts and 

sands, 1-75M  of grey-green alternating clays and silts, with 1.50m of 

alternating cream and dark grey silts at the base. 

Apart from a black clay layer at 4.5m, NRM intensity is low, 

avera,ging 0.30±0.60 1jG (see Figure 133). Lower values occur in the 

bottoinost deposits (around 0.05 1jG), while in the black clay layer 

intensity is 10 to 20 pG. The directions are all normal with 

inclinations of about 45° which indicates an inclination error of 

about 15 The lowermost light cream varves have more variation in 

direction. VGP latitudes are between 60 and 70°  N. 

The samples all have low median destructive fields (for example 

SS7AI. at 1.42m: 100 Oé, and S15B3 at 4.43: 90 Oe, see Figure 134). 

Most of the samples appear stable, but those with low intensity soon 
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Figure 134. 	Examples of Pilot Demagnetization from P/an/co 
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reach the noise level of the rragnetoineter (e.g. S1OA3 at 3.83m, and 

S35A2 at 5.89rn). The result is that blanket demagnetization at 150 

Oe gives rise to a scattering of diretions (Figure 135). Intensity 

drops by 66% as a whole to 0.10(± 0.07) VG, the black clays drop to 

between 2 and 5 pG. Inclination averages 55 but declination is 

often southerly (though not consistently so), giving occasional low 

latitude VGPs. 

The NRM directions are probably a more accurate representation of 

the ambient field at the time of deposition, although there is a 

large inclination error. The deposits are all normal, and do not 

contradict the classic date of Riss Würm interglacial (which is 

within the Brunhes Epoch). Declination appears to be biased slightly 

east of north, but neither declination or inclination show any 

marked periodic variation. The deposits represent at least 1000 

years of deposition, but may not represent a period long enough to 

display large secular variation swings which are seen in Holocene 

lake sediments. 
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CHAPTER 6 

PIOMBINO 

The sediments of Piombino were taken in five boreholes drilled 

along an east-west line between the towns of Piombino and Follonica 

in central Italy (namely MTO, rrr1, tff2, MI'3, and Kr4 from east to 

west, see Figure 1.36). The boreholes penetrate up to 1.30m of 

continental and marine deposits dating back to the Middle Pliocene, 

resting on Oligocene formations. Each core section of up to im was 

individually orientated with respect to geographic north. 

The lowest geological unit encountered (Unit E of Aquater, 

1978) is a thin continental or lagoonal deposit, seen only in cores MTO & 

MI2, see Figure 137. This is followed by a transgression and de- 

position of about 20m of calcareous blue-grey clays (Unit D). These 

represent a shallow sea environment, usually littoral, occasionally 

neritic, with a water depth of up to lOOm. On the basis of nano 

plankton this unit can be placed in the D. tamalis sub-zone of the 

D. broweri zone, i.e. about 2.5 to 3.0 million years old, repre- 

senting the base of the Upper Pliocene. Unit C consists of about 

lOm of lagoonal or littoral sediments followed by a regression 

which Aquater dates at probably Upper Pliocene. This is followed 

by up to 85m of continental clays, silts, sands, and gravels ascribed 

to Unit B. Above Unit B there is an alternation of continental and 

marine sediments (Unit A') before a full marine transgression and 

deposition of up to 30m of littoral clays. These are overlain by a 

thin layer of Wurmian continental deposits. 

PREVIOUS WORK 

Palaeomagnetic investigation of these five cores has been 

carried out by Creer et al (1979)  and by Readman and Evans (1979). 
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The cores all date back to at least the middle of the Gauss Epoch 

(c3.0my) although identification of the Matuyama Epoch is difficult 

due to a strong normal overprint. The stratigraphic boundaries pro-

posed by Aquater are diachronous, the regression at the base of 

Unit B occurred first in the west (i.e. Mr2, 3, and Li.), but the 

transgression of Unit A apparently also occurred first to the west 

(Figure 137), suggesting that the western end of the section has 

moved both up and down with respect to the east. 

In core MrO, the Matuyama-Brunhes transition was initially 

placed at 18m (Creer 1977),  then later at 39m (Creer et al, 1.979), 

to coincide with the level in the other cores. The Gauss-Matuyama 

transition is at 74m, with the Gauss-Gilbert 	at 122m. 

The Brunhes is represented by an interval of normal inclina-

tion and northerly declination to a depth of about 18m below which 

directions are more scattered, though still mainly normal. Readman 

and Evans (1979)  studied the stability of samples from the Brunhes 

in ?TO and showed that between 9m and 20m the directions were 

stable. Between 39 and 47m declinations are southerly, and inclina-

tions are negative (averaging about .-3c1), then occurs a further 7m 

of normally magnetized sediment correlated with the Olduvai Event. 

Between 54  and 61m declinations are mainly southerly, with inclina-

tions of between 70and -40'. The remaining 13m of sediment 

ascribed to the Matuyama, belonging to Unit C, have scattered, mainly 

normal inclination and scattered declination. 

The top of the Gauss coincides with the top of Unit D. Inclina-

tion is high and positive apart from two intervals correlated with 

the Kaena-Mammoth Event, and the Gilbert Epoch. Similarly declina-

tion is uniformly northerly apart from scattered directions at the 



top and southerly declinations in the two intervals noted with 

negative inclination. Although much of what is assumed to be 

Matuyama has scattered directions, Core MO is the only one of the 

five Piombino cores with definitely reversed directions. 

In core Mf 1 the Matuyama-Brunhes transition occurs at 39m with 

the Gauss-Matuyama at 75m. The Brunhes is normal to a depth of 20m 

apart from an excursion at 15m. There is then a lOm gap below which 

directions are scattered to a depth of 63m. In this interval most 

inclinations are positive and declinations are mainly northerly, 

apart from the interval 39m to 48m. Below 63m directions are 

mainly normal, becoming more closely grouped below 75m. Within this 

period ascribed to the Gauss three excursions are seen (termed 	, 

& X). The N excursion involves only a change in declination, the 

other two involve both negative inclination and southerly declina-

tion. 

Headman and Evans (1979)  studied the stability of a number of 

intervals and showed that the Brunhes Epoch at 5m was stable but 

had low median destructive fields ( 100 Oe). The Matuyama at 57m 

and 67m  was also stable and appeared to remain normal, again with 

low median destructive fields suggesting that this may in fact be a 

normal interval. The Upper Matuyama at 45m became reversed with 

demagnetization in some cases. In the Upper Brunhes there appears 

to be a long period secular variation with a period of 50,000 to 

100,000 years. There is also an excursion at 15m  which remains 

after demagnetization and features a clockwise loop of the VGP. 

The age is estimated by Headman and Evans to be 400,000 years, and 

the duration only 5,000 years. 
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The Matuyama-Brunhes boundary is placed at about 40m in Core 

'rr2, with the Gauss-Matuyama transition at 71m. The Brunhes is 

mainly normal, but with some scatter in directions. The Matuyama 

between 40 and 55m is represented by positive inclinations (between 

Oand 85) and northwesterly declinations. The remainder of the 

Matuyama consists of very scattered directions: declinations are 

distributed about the entire 360, while inclinations are slightly 

biased towards positive directions. The Gauss begins with 4m of 

normal sediment, but is then interrupted by a gap in sampling to a 

depth of 96m. The remaining 24m have directions scattered around 

normal and may belong to the Kaena or Mammoth Event. 

MT3 

In Core !'TT3 Creer et al (1979) place the Matuyama-Brunhes 

transition at 36m and the Gauss Matuyama transition at 83m. The 

Brunhes is similar to that in MTZ with a large degree of scatter 

about the normal direction, and again interupted between 18 and 

25m. All of the sediments assigned to the Matuyama Epoch give 

scattered directions, however the Gauss has fairly consistent 

normal inclination and declinations centred around zero. Three 

excursions may occur in the Gauss Epoch, the first represented by 

southerly declination only, the other two involving low positive 

or negative inclination. 

rr4 has mainly normal polarity to a depth of 35m which is 

ascribed to the Brunhes. The Matuyama between 35m and 91m consists 

of very scattered directions with a slight positive bias in inclina-

tions. The Gauss is also scattered, but inclinations are mainly 
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normal to a depth of 110m which may represent the top of the Kaena 

Event. 

In general the Piombino sediments are poor recorders of the 

magnetic field. The Matuyama is almost always overprinted (only in 

rro are true reversed directions seen). The epoch boundaries are 

defined by the amount of scatter - often the Gauss has directions 

closely grouped about a normal field direction, perhaps because any 

normal overprint does not conflict with the primary magnetization. 

Creer et al (1979)  note that higher scatter coincides with higher 

susceptibility which may reflect that the poorer magnetic recorders 

have coarser grained magnetite, reflecting either a lack of align-

ment or a readiness to acquire viscous magnetizations. In the 

Brushes sediments between about 20m and LOm in the cores the scatter 

must be due to sedimentation because there is no possibility of a 

reversed viscous overprint developing. 

SAMPLING 

In the summer of 1981 various intervals in each of these five 

cores were resampled to study Gauss excursions, the Gauss-Matuyama 

transition, and also the effect of demagnetization on some sediments 

from the various magnetic intervals. Each core is divided into two 

halves, and two types of sampling were used: round mini-cores were 

cut with a special tool from the upper half of each core section and 

extruded into 1cm cylindrical sample holders; samples from the bottom 

half of each section were taken using plastic boxes in the normal 

way. The sediment is often hard, so using square plastic boxes often 

leads to distortion of the sediment which is avoided using the former 

method. The smaller round samples can be selectively taken to avoid 

areas of oxidation, so in all cases the round samples probably give 

a more accurate record of the rernanent magnetization. 
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RESULTS 

Eight intervals from Core MI'O were resampled, these were Sections 

28 and. 29 (22 to 24m) representing the lower Brunhes in which there 

was much scatter, Sections 78 and. 79 (67 to 68m) representing the 

lower Matuyama, two intervals (Sections 82 and 86; 70m and 74m) 

which may record the Gauss-'1atuyama transition, three intervals which 

may record excursions in the Gauss at 79m, 83m, and 87m and finally 

a section at 105m which recorded very consistent normal directions 

attributed to the lower Gauss. 

NRM results for these intervals are shown. in Figure 138. The 

Brunhes section, recorded in square samples only, has an average 

intensity of 7.06(:t7.32)pG. Inclinations are mainly normal, but 

show a large amount of variation. Declinations vary between 0°  and 

180°  giving a wide range in VGP latitudes. The section from the 

lower ?.tuyama has lower average intensity (0.76(±0.79)pG). Four 

separate polarity intervals are recorded: two normal and two 

reversed, with VGP5 alternately reaching high northerly and southerly 

latitudes. The upper normal zone shows slightly . more variation 

than those below. The first reversal occurs between sections 78 

and 79, the others all occur in section 79. 

The five intervals.sampled between 70m and 90m all have mainly 

positive inclination, though with much variation. The declination 

in the uppermost of these sections (70-71m) varies between 90°  and 

180°, and between 78 and. 80m is around 90°. The other three intervals 

have mainly northerly declination. VGP latitudes also show much 

variation they are mainly southerly between 70 and 71m, but in the 

other intervals they vary from 10° S to 80N. Average intensity in 

each of these intervals varies from 0.1 to 10.0 pG. The final 
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section (1.05m) consists of consistently normal directions and has a 

very high intensity (184.5(± 646) pG). 

Examples of pilot demagnetization for samples from MTO are shown 

in Figure 139. Those of the Brunhes samples which were initially 

reversed remain so, while those initially normal become reversed 

(MTO All: 23.02m, MTO A1.5: 22.81m). Both of these samples show 

normal overprints, median destructive fields are 240 and 210 Oe 

respectively. The Matuyama samples vary in stability: some are 

very stable, with high median destructive fields (e.g. ff0 B5: 

68..51m), others show some variation about an initial direction before 

developing an anomalous direction above 250 Oe (e.g. MTO B32, 

67.37m). Nevertheless it would appear that most samples record 

stable directions. 

Samples from the Gauss are generally stable, with median 

destructive fields of between 220 and over 500 Oe. Only sample 82-

16 (70.71m) shows any marked change in direction with demagnetization, 

developing a higher inclination. Samples from the lowermost section 

were demagnetized as part of the ARM versus RRM study (see Chapter 

2). As noted earlier all the samples were very stable, and had 

high median destructive fields. 

After demagnetization at 150 Oe, section A in the Brunhes had 

become reversed. Directions remain constant between 150 and 250 Oe 

(Figure 140). Intensity has dropped by 63% to 2.64(± 1.91) pG at 

150 Oe, and by a further 17% to 1.28(t O.+)pG at 250 Oe. This be-

haviour is different to that noted by Readman and Evans (1979) for 

sediments above 20m, so these sediments may belong to a Brunhes 

Event, or, more probably, to the Matuyauia Epoch. 

The second section (67-69m) retains the pattern seen at NRM, 

but with slightly more variation in the upper normal interval. 
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Intensity in this section fell by 32% to 0.52(t0.56)pG after 150 

Oe, and by a further 11% to 0.44( 0.51) 1jG after 250 Oe. Two of the 

reversals occur within section 79 and probably reflect true geomag-

netic behaviour. The most likely interpretation is that the normal 

intervals correspond to the Reunion Events. 

The Gauss sections retain their scattered directions after 

demagnetization. The sediments are fine grained clays and silts so 

the direction is probably an accurate reflection of the field during 

times of erratic VGP movement. The section 70 to 71m still had 

positive inclination and southerly declination, and may represent 

overprinted Matuyama, though there is little indication of removal 

of an overprint between 0 and 150  Oe. The sections at 78 to 80m, 

83 to 84m, and 86 to 87m may record excursions • but before this can 

be stated definitely, it has to be shown that the remainder of this 

section of the Gauss records stable normal directions. The section 

at 105m showed a drop of only 2% after demagnetization at 150 Oe. 

Directions remained normal, although declinations are all east of 

north. This may, however, be due to a slight error in orientation of 

the core sections, Figure 2 of Creer et al (1979) shows that the 

easterly bias is seen throughout the Lower Gauss. 

Re-examination of the 'Rrunhes' between the sections studied by 

Readman and Evans (1979), that is up to Section 24, and section A of 

this study (Core sections 28 and 29)-showed that all samples above 

Section 28 have normal inclination, though in some cases this is 

shallow. Some samples with southerly declination are seen, giving 

intermediate VGPs. Section 25 is mainly normal (i.e. down to c 20. 

50m). The Matuyamna-Bruzthes transition probably lies within sections 

26 and 27 but the results for this interval are complicated by the 

variation in lithology from grey clays to coarse black sands (Figure 

27 



Figure 141. Reeulte Por' Sec Hone 24 to 29 oPt-er DemogneHzaHon 

INTENSITY 	 INCLINATION 	 DECLINATION 	 VGP LATITUDE 

(p0) 

0.01 10 100.0 	-90.0 	90.0 	 0.0 180.0 	 -90.0 	90.0 

20 	I 	iii 	20 	 2011  

21 	 2j 

24± 	 241. 	 24 

27 



141). 

The transitions bounding the Reunion Events at 67 to 69m are 

mainly sharp, however mid-points are seen for the upper reversal of 

the lower event, occurring off the west coast of South Africa, giving 

a near-sided path. The lower transition of the Upper Reunion Event 

occurs about 90° east of the site, passing through eastern Asia. Most 

of the intermediate poles form a clockwise loop around Asia towards 

the end of the transition (Figure 142). 

IIT1 

Five sections from MT1 were resampled: the Matuyama at 57m, 

three possible excursions (71m, 87m, and lOOm) and what appears to 

be the Gauss-Matuyama transition at 75m. NRM results for N1 are 

shown in Figure 14:3. The Matuyama section (at about 57m) has a 

low average intensity (O.36(±O.13)pG) and also low inclination and 

easterly declination giving VGP latitudes of 0-30°  N. The other sec-

tions (70-72m, 714-76m, 86-88m, and 99-100m) have mainly normal 

inclination and northerly declination, however at 87m there is a mark-

ed reversal, albeit very narrow, with negative inclination and 

southeasterly declination. At loom the inclinations are low 

and declinations are centred around 90°, so VGPs are sometimes 

located in the southern hemisphere. 

Demagnetization (Figure 11411)  shows that all of the intervals are 

stable, however intensity for samples Mrl A2 and MTI A7 does not 

decrease at all, suggesting that the Matuyama has a large overprint 

due to the presence of haematite. Other samples have median des-

tructive fields of 180 to 260 Oe. 

After demagnetization the four Gauss intervals are similar to 

the NEM results (Figure 145). The interval 86 to 88m clearly records 

an excursion, with about 25cm of reversed sediment separating two 
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intervals of normally magnetized sediment, while the interval 74-76rn 

is mainly normal, and 70-72m  is normal except for occasional samples. 

Unless the Matuyama is totally obscured by normal overprints, these 

sections probably belong to the Gauss. The original investigation 

(see Figure 3 of Creer et al 1979)  showed that either side of the 

excursion at lOOm the directions were consistently normal, so the 

low VGP latitudes seen here may represent a true excursion, the 

boundaries of which were not resampled. Figure 146 shows a VGP 

plot for the excursion at 87m. All the poles are concentrated about 

900 east of the site giving transitional paths through east Asia. 

rr2 

Two sections in M2 were resampled: 67-68m and 70-71m. The 

former represents a change from scattered inclination to normal 

inclination, the latter a change from scattered declination to 

normal declination, either of which could represent the Gauss-

Matuyama transition. On further examination of the interval 74-75m, 

which may have recorded an excursion, it was decided that the reman-

ence was poorly recorded because the sediments are coarse sands. 

NRM directions are shown in Figure 147.  The interval between 

67 and 68m has scattered declinations similar to those seen in the 

original survey for the Matuyama. Inclinations are low but positive 

giving VGPs between 0 and 30 N. Intensity in this interval is low 

(O.4iO.21)G). The lower section (70-71iu)  is slightly stronger: 

about 4.0 pG, and appears to record an excursion from normal direc-

tions to southerly declinations and low inclinations at 70.20 to 

70-50m. 

Samples from these sections had low median destructive fields 

(30 to 50 Oe). Samples EN2-36 and EN2-142 (70.35m  and 70.66m respec-

tively) change sign at 100 Ce, after which they were more or less 
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stable until 300 Oe, Figure 148. After blanket demagnetization the 

first interval remained scattered, so the results should be rejected 

as the sediment is a poor recorder of the ambient field. The second 

interval became almost completely reversed (although the negative 

inclinations are often shallow). The intensity dropped markedly to 

about 0.7 pG. This interval obviously belongs to the Matuyama 

(Figure 149). 

MT3 

From Core MT3, samples were taken to study the Gauss-Matuyama 

transition (81 to 83m) and four possible excursions at 96-97m, 

99-101m, 107-109m, and 114-116m. The interval 107-109m was repre-

sented by coarse sand, so the magnetic direction is probably in-

accurately recorded. NRM results for the four other sections are 

shown in Figure 150.  The interval 81-83m has an average intensity 

of about 1.0 pG, the round samples have negative inclination and 

declination around 135 while the square samples have normal inclina-

tion (c 4.5') and easterly declination. Thus the round samples give 

VGP latitudes of 0 to 60S, and the square samples 0 to 60N. The 

interval 96-97m has fairly scattered results, probably due to the 

low intensity (0.5 pG). Inclinations are positive but declinations 

range from 90 to 180, giving VGP latitudes from 30S to 60N. The 

other two intervals have higher intensity (about 7 and 13 pG 

respectively), and record consistently normal directions. 

Examples of pilot demagnetization from MT3 are shown in Figure 

151. All samples have low median destructive fields (30  to 60 Ce) 

and show a large amount of variation even though they are initially 

strong. Two samples in the topmost section (EN3-8 at 81-70m,  and 

EN3-16 at 82.01m) remain normal, as does one sample from  115.09m 

(EN3-119). Sample EN3-90 (100..70m), however changes sign at 150 Ce, 
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and remains reversed until it develops an ARM at 250 Oe. 

After blanket demagnetization the contradiction between round 

samples and square samples for the interval 81-83m remains: in both 

cases declination is easterly yet the round samples have negative 

inclination and the square samples positive inclination, Figure 152. 

Intensity is low (0.25 pG) for both sample sets. It is possible that 

the smaller round sample boxes avoided areas of oxidation, and so 

represent the primary Matuyama magnetization, while the square samples 

also record a secondary normal overprint due to oxidation. 

The interval 96-97m  remains intermediate after demagnetization, 

with a large amount of variation, especially in inclination. The 

interval 114_116m has shown a large decrease in intensity, and re-

mains normally magnetized, although there may be an excursion at 115m, 

however this may result from low intensity which dropped by about 

95% to 0.5 pG. The interval 99-101m changes direction completely as 

indicated by the pilot speciment EN3-90.  A short anomalous interval 

remains at lOOm but represented by easterly declinations giving low 

VGP latitudes, and not by complete reversal. This interval is clearly 

reversed, and probably represents the Kaena Event. 

rr4 

The two inclination excursions recorded in the Gauss Epoch of 

rr4 (91  and 96m) were both recorded in coarse sands, and consequently 

may not represent a good reflection of the ambient field. The Gauss-

Matuyama transition, placed at about 80m was resampled. NRM results 

are shown in Figure 153. Intensity is relatively high (30 pG), but 

the directions are anomalous: inclination is consistently low (o to 

Jo') and declination averages 270'. Pilot demagnetization shows that 

although median destructive fields are low (58 to 65 Oe), there is 

little change in direction, Figure 154. After blanket demagnetization 

292 



F i gur'e 152 Reeu I l-e Pot' MT3 aPI-er' Dema9nel-  I zot- ion 
(Square Samples) 

INTENSITY 	 INCLIP1TION 	 DECLINATION 	 VGP LRTITU)E 
(i) 

0.01 10 100.0 	-90.0 	90.0 	 0.0 180.0 	_9Ø 	90, 

set 

4- 
I 	 I 	 I 

971 	 971 	I 	 971 	I 	 971 	I 

100- 	 Joe 

101 	 101I 	 101 	I 	 101  

11& 	 114j 	

I 	

114 	

I 	

114.. 

11 	 11 lis - 

Ilk 

'4 

11 	I 	 III 	I 	 111 

293 



Figure 152 ReeuIte F'or' MT3 aPIer Oemo9neHzaHon. oonl. 

(Round Samples) 

INTENSITY 
(HG) 

.01 1•0 100.0 

I 	I 	I 	I 

H 
INCLINATION 	 DECLINATION 

-90.0 	90.0 	 0.0 180.0 

81  

YGP LATITUDE 

-90.0 	90.0 

81' I I I I I I 

971 	I 	 97i 	I 	 971 

N 100 	 100 

10 	I 	 10 	I 

114r 	 "1 	I 	
111 

11 	I 	 111 	I 	 J 

11{ 

29 



F igur'e 15 3. NRM ReuI 1e Por' M14 

INTENSITY 

.01 10 100.0 

INCLINATION 

-.0 	90.0 

:9 

Square Samples 

DECLINATION 

0.0 180.0 

VOP LRTITL1E 

-90.0 	90.0 

 

Round Samples 

295 



U, 

1 

§ 

8 

a 

ALIGi.H1 

8 

LU 

o 	 • oJ 

UIBNiH1 

(jr) 

296 



intensity has dropped to about 4 pG but there has been no large 

change in direction. This interval may represent a semi-stable mid-

point of the transition, located at the equator at a longitude of 

90W. Given a sedimentation rate of 11cm/1000 years (Creer et al 

1979) this interval lasted about 10,000 years, which is much longer 

than most estimates of the lengths of transitions. Creer et a]. 

(1979) note that this interval has much higher Q.-ratio than the 

rest of the core, suggesting a different source for the remanence. 

CONCLUSIONS 

Although only isolated sections were investigated in this study 

it is possible to make some remarks about the nature of the magne-

tization in the Piombino cores. The records of the Gauss are 

quite often scattered whereas previous work suggested that the Gauss 

Epoch was represented by consistently normal directions. It may be 

that the scattered directions result because each of the intervals 

studied was one in which an excursion was recorded, and an excursion 

is definitely seen at 87m in ITI'1. Other excursions in the Gauss may 

occur at 79m and 83, in MrO, at lOOm in rift, and at lOOm in M.3, 

although this last example is completely reversed, and may be part 

of the Kaena Event. Further studies must be carried out to prove 

that the 'quiet' normal Gauss does not show any large variation 

similar to that seen in MTO. 

The removal of large normal overprints from sections of MT0, 

if2, and Iif 3 suggests that more accurate measurement of what is 

assigned to the Matuyama Epoch will lead to a redefinition of the 

magnetostratigraphy, particularly as regards the Gauss-atuyama and 

atuyama-Brunhes transitions. The results from MTO at 22m suggest 

that the Matuyama-runhes boundary occurs higher than noted by Creer 

et al (1979),  probably occurring at about 21m. Further work may 
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lead to the relocation of the ?tuyama-Brunhes transition at the 

base of the 'quiet' Brunhes seen in all cores at about 20m (as 

after Creer and Readxnan, 1978). The doubts that exist over the 

position of the Gauss-tuyarna transition as a result of these 

studies make it difficult to date the suggested excursions in the 

Gauss. The most prominent excursion (at 87m in MT1) was dated by 

Greer et al (1979) at 2.50 to 2.55 m-y. taking the Gauss-Matuyama 

transition at 75m. If this transition is relocated at 61m (because 

the section at 70m was definitely normal) the revised age is only 

slightly greater (2.65 m.y.), however the age control at the base 

of the hole is poorly established. 
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CHAPTER 7 

DISCUSSION 

PART 1 EXCURSIONS 

There has been much speculation about the existence of excur-

sions in the palaeoxnagnetic record. Before considering the validity 

of possible excursions recorded at Stirone, Piombino, Pontida, and 

DSDP Site 514, it is perhaps worthwhile to investigate whether there 

are any grounds to prove that excursions actually do exist. 

Figure 155 shows the Mankinen and Dalrymple (1979)  revised 

timescale for the interval covered by this study (o to 4 million 

years b.p.) (Figure 158 shows possible excursions reported during the 

past 15 years, and also showing the excursions recorded at the sites 

mentioned above.) Mankinen and Dalrymple state that none of the pro-

posed brief reversals within the Brunhes have been conclusively shown 

to be reversals of the geomagnetic field, however they admit that the 

Laschamp Event at 0.02 m.y. b.p. and the Blake Event at 0.18 m.y. b.p. 

may be of regional significance. Mankinen and Dalrymple suggest that 

there is little evidence for the existence of a Gilsa Event distinct 

from the Olduvai Event, however apparent bimodal distribution of dates 

around 2.00 to 2.14 m.y. b.p. indicates that there may be two Reunion 

Events. There is also a possible event just above the Gauss-Matuyamna 

transition referred to as the 'X' anomaly in magnetic anomaly 

profiles. 

As Verosub (1982) shows there are sound theoretical reasons for 

believing in the existence of short excursions. Secular variation 

due to turbulence in the Earth's core varies in amplitude according 

to a statistical distribution (e.g. Dodson, 1982). At the extremes 

of this distributiQn the largest deviations from an axial field occur, 
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however these will be restricted in geographical extent. It is not 

known whether these extremes occur for long enough periods, or with 

large enough amplitudes to be manifested as excursions in the palaeo-

magnetic reocrd. 

Geomagnetic reversals arise from complete reorganization of core 

motions. Cox (1981) considers stochastic models for geomagnetic 

reversals: instabilities occur in the core with a statistical dis-

tribution with respect to time. Some of these instabilities will be 

'fertile' and give rise to transitions. Infertile instabilities may 

therefore give rise to aborted reversals. If transitional fields 

are dipolar and instabilities are related to dipole wobble, then 

the aborted reversals will have the same record at all sites on the 

Earth's surface, however if the instablilities occur in specific 

areas of the core as suggested by Hoffman and Fuller (1978) the 

aborted reversals will be of limited geographical extent. If the 

instability is of a different nature to normal secular variation 

then the aborted reversal excursion will have a different structure 

to a large secular variation excursion - compare for example Dodson 

(1979) and Hoffman (1981). [A more complete discussion of transi-

tional structure will be found in the following chapter.] 

The Cox (1981) model may give rise to very short polarity inter-

vals if two fertile instabilities follow in rapid succession. If 

the field takes between 5,000 and 10,000 years to reverse com-

pletely then the shortest reversed event that will be seen at all 

sites on the Earth will be 10,000 to 20,000 years long. The short-

est event accepted by Mankinen and Dalrymple is the earlier Reunion 

Event which lasted for about 20,000 years. Complete reversal over 

a shorter period may occur at some sites during an excursion due to 

large secular variation or aborted reversal, but these would only 
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be seen as small deviations from the axial field at other sites. 

Verosub and Banerjee (1977) warn about the errors that can arise 

in the recording of the geomagnetic field by sediments due to slump-

ing, viscous overprinting, inclination error etc (see Chapter 2). 

Ideally any reported excursion should be confirmed at another site, 

however excursions will not have the same structure if they are 

recorded at sites more than about 2000km apart, in fact deviation 

need not necessarily be seen at all points on the Earth's surface. 

REPORTED EXCURSIONS 

Reported excursions can be considered in three groups for the 

sake of convenience, these are: 

the large number of excursions reported during the 

past 50,000 years, 

the set of apparently periodic excursions occurring 

during the Brunhes, and 

excursions reported in the Matuyama and Gauss Epochs. 

Set  

(a) The Gothenburg Excursion 

The Gothenburg Excursion or 'flip' was first reported by Morner 

et al (1971)  at about 12,400 b.p. in a core from Sweden. Morner and 

Lanser have since claimed that its existence has been confirmed in 

other Swedish cores (Morner and Lanser, 1974)  and in the North 

Atlantic (Morner and Lanser, 1975).  The excursion consists of a 

swing in declination to about 106, then back, followed by a temporary 

decrease in inclination (Morner, 1981). Anomalous directions between 

14,000 and at least 7,600 years b.p. were reported by Creer et al 

(1976) from Lake Erie, Noel and Tarling (1975) report a 'quasi-

reversal' at 10,100 B.C. from southern Sweden, both of which may 
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correlate. 

Verosub (1982) points out that much of the data ascribed to the 

Gothenburg excursion was very poor, for example many of the sightings 

consisted of just one reversed sample. Opdyke (1976) pointed out 

that the North Atlantic core was very poorly preserved, and may have 

undergone rotation between coring and sampling. In addition many 

European Lake studies have failed to find the excursion in similar 

aged sediments (Creer et al, 1980). Banerjee et al (1979)  failed to 

observe any abnormal behaviour over the past 16,000 years in two small 

Lakes in Minnesota, near the original site of the L. Erie excursion. 

The Gothenburg excursion is probably a result of poor fidelity in 

glacial sediments, slumping, or weathering due to climatic change 

(Thompson and Berglund, 1976). 

(b) The Imuruk Excursion 

Noltiinier and Colinvaux (1976) report a change of 50 in inclina-

tion at a site in Alaska. The unglaciated lake sediments which 

record the excursion are dated at 18,000 b.p. on the basis of 

extrapolation from pollen and radiocarbon dates. This is similar 

in age to the uppermost Biwa excursion of Yaskawa (1971+)  which is 

also dated by extrapolation from radiometric dates. Pierce and 

Clark (1978) report reversed lavas from Iceland with an age of 

about 20,000 years. This age is based on the nature of the outcrop 

which is assumed to be late Wisconsinian and may be inaccurate. 

Pierce and Clark suggest that the excursion was probably due to a 

strong dipole feature and may correlate with older excursions such as 

the Lake Mungo or Laschamp Events. 

Many excursions have been reported in cores from the Gull' of 

Mexico (Clark and Kennett, 1973),  dated between 5,000 and 20,000 
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years from the Aegean Sea and from Mono Lake, California. Although 

there is some evidence for an excursion at Iceland, Japan, and Alaska, 

the date is at present very uncertain. 

(c) Mono Lake Excursion 

The Mono Lake Excursion, first reported by Denham and Cox (1971) 

has aroused particular interest. Similar records have been reported 

from four sections on the northern side of the lake, recorded in 

sediments exposed at the Earth's surface (Liddicoat and Coe, 1979). 

This would seem to suggest that the excursion dated at 25,000 to 

24,000 years b.p. was a real geomagnetic phenomenon, consisting of 

a westward swing in declination with a shallow inclination, followed 

by an eastward swing with higher than normal inclination. The 

resultant VGP path traces first a clockwise loop, then a smaller 

anticlockwise loop (see Figure 156: No Delay). The excursion lasts 

for about 1,000 years and would appear to be due to large secular 

variation. 

Nearby sections do not, however, show the excursion, Liddicoat 

(pers. Comm.) states that on the southern side of Lake Mono only the 

steepening of inclination is seen. At Clear Lake, 320km away, there 

is no sign of the excursion (Verosub, 1977). Similarly at Pyramid 

Lake, Nevada, 230km away, there is no evidence of an excursion be-

tween 25,000 and 36,000 b.p. (Verosub et al, 1980). This would 

suggest that there must be gaps of up to 1,000 years in some lake 

sediments, or that the dating at Mono Lake is inaccurate, and the 

excursion covered a much shortér period. Another possibility is 

that at Clear Lake and Pyramid Lake the signal is averaged out by 

post-depositional realignment, however the sediment is finer at these 

sites, and one would expect a greater time delay in coarser sediments 

(see Chapter 2). Palmer et al (1979)  report a feature similar to that 
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Figure 156. VGP Plot for the Mono Lake Excursion modified by depositional delay 
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at Lake Mono from Lake Tahoe on the California-Nevada border. The 

correlation is made by aligning periodic secular variation. The 

sediments at Lake Tahoe are of a similar grain size to those at Mom  

Lake, so there may be some sedimentological control on the acquisi-

tion of remanence. Figure 156 shows four hypothetical records of 

the Mono with no non-dipole contributions, interrupted by deviation 

of the local field to cause the anomalous directions and the intensity 

pattern noted by Liddicoat and Coe (1979).  The first plot is for 

sediment acquisition with no delay (for discussion, see Chapter 2). 

The other plots are linear delay, exponential delay, and 'S' delay 

with half-alignment times of 5, 5, and 2 units. Assuming constant 

sedimentation at about 35cm/100 years each time unit represents about 

60 years. All delay curves markedly reduce the record of the 

excursion. The maximum deviation in declination is between 345°and 

35 even for the exponential curve. Five samples would have inclina-

tions of less than 30, with this curve, giving poles in European 

Russia. These may not be interpreted as anomalous. 

There would seem to be a large amount of evidence to support the 

Mono Lake excursion, however the age is, at present, uncertain. The 

C14 dates at Mono Lake were carried out on material susceptible to 

contamination (Liddicoat and Coe, 1979)  and the age of 24,000 years 

b.p. is lased on extrapolation. 

(d) Lake Mungo Excursion 

Barbetti and McElhinny (1972)  reported anomalous directions dated 

at 26,000 to 30,000 years from aboriginal fireplaces in Australia. 

The directions are not completely reversed, however the dating is on 

the actual material. Soloyanis and Brown (1979)  report an excursion 

which may correlate in New England tills. These are dated at between 

22,000 and 28,000 years b.p. by glacial stratigraphy. The Meadow- 
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cliffe Till near Toronto dated at between 38.000 and 31,500  years 

b.p. by radiocarbon also records an excursion (Stupavsky et al, 1979). 

The directions are similar to Lake Mungo in that the VGP passes to 

equatorial Africa, then to the Mid Pacific. An excursion at Lake 

Biwa also has a similar path (Yaskawa 1971+), but it is dated at 

49,000 years on the basis of extrapolation between radiometric 

dates. 

There would appear to be some evidence for an excursion at Lake 

Mungo, but it is not clear whether this is distinct from the Mono 

Lake Excursion. Verosub et al (1980) suggest that both the Mono 

Lake Excursion and the Lake Mungo Excursion are the same geomagnetic 

phenomenon occurring between 35,000 and 40,000 years b.p. It may be 

that there are two or three different excursions, including the 

Imuruk Excursion, with limited extent, occurring at different times, 

but perhaps all due to the same drifting non-dipole feature. 

(e) The Laschamp Event 

One further event has been reported to have occurred during the 

past 50,000 years; the Laschamp Event. This was the first Brunhes 

event to be reported, but it has been re-dated many times since then, 

allowing all the 'excursions' listed above to be correlated with it 

at one time or another. The most recent age: 35,000 to 42,500 b.p. 

(Gillot et al, 1979)  was obtained using the potassium-argon and 

thermoluminescence methods. Gillot et al confirm the reversed mag-

netic directions, but note that these do not coincide with those at 

Lake Mungo. The Event may in fact correspond to the Mungo Excursion 

the cause 	being drifting 	 non-dipole sources, Heller 

and Peterson (1982) show that some samples undergo self-reversal when 

heated, although Gillot et al state that chemical and mineralogical 
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analysis and thermal demagnetization suggest this to be unlikely. 

Set 2 

On a larger scale there iave been suggestions that there is long 

period secular variations in the Brunhes with a period of between 

100,000 years and. 150,000 years (Wollin et al, 1971;  Bucha, 1973). 

Rainpino (1981) suggests that excursions occur at the peaks of each 

period (Figure 157). This set of excursions have been considered 

together because they appear to coincide with non-geomagnetic 

phenomena such as eccentricity of the Earth's orbit and climate 

(Wollin et al 1977, 1978), suggesting that all three factors are 

linked by one mechanism. Wollin et al (1978) suggest that increased 

eccentricity gives increased perturbation in the core due to the 

difference in torques between the mantle and core. Weaker geomag-

netic fields reduce the shielding against corpuscular radiation 

giving warmer climate. Bucha (1977) first studied climate and in-

tensity over the past 25 years and noted that increased geomagnetic 

activity at the north pole due to higher corpuscular radiation gives 

rise to an increase in temperature. This leads to lower pressure 

areas causing winds to change direction, thus affecting harvests in 

Central Europe. Bucha suggests that a link between climate and geo-

magnetism on a larger scale may exist with slight changes in climate 

such as those mentioned above causing instabilities which lead to 

the collapse. of the present system, possibly resulting in the develop-

ment of an ice age. 

Recently many workers, for example Chave and Denham (1979)  and 

Amerigian (1974)  have shown that changes in intensity and direction 

may be caused by factors such as current strength, rate of erosion 

on land, and carbonate precipitation, which are governed by climate, 

Thus magnetic phenomena may be dependent upon climatic phenomena and 
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not vice versa. 

Rampino (1981) lists three cores in which these periodic excur-

sions are seen. These are Lake Biwa (Yaskawa, 1974), North Pacific 

Core V20-108 (Wollin et al, 1971)  and Gioia Tauro in Calabria, Italy 

(Creer et al, 1980). Rampino has re-calculated sedimentation rates 

so that these excursions occur at intervals of about 100,000 years. 

The lack of age control at these three sites and the doubts raised 

about the link with eccentricity and climate demonstrate the difficulty 

in establishing an overall pattern to these excursions. It is per-

haps necessary to examine the validity of individual excursions. 

The excursions involved are listed in Figure 157 Of these only 

the Blake and Emporer Events have been identified and dated inde-

pendently. The other four excursions arise from correlations be-

tween the cores of Lake Biwa, Gioia Tauro, the North Pacific, and a 

Mediterranean core reported by Ryan (1972). 

The Blake Event. 

The Blake Event was first reported by Smith and Foster (1969) 

and dated at 114,000 to 108,000 years b.p. This was confirmed from 

the Greater Antilles Outer Ridge by Denham (1976). The Blake Event 

seems to be split by a short normal interval, both in the western 

Atlantic and in Italy (taking the original interpretation of the 

Gioia Tauro core of Creer et al, 1980). This similarity of records 

has led even the most sceptical of workers to admit to the existence 

of this event (Verosub, 1982). 

The Emperor Event 

The Emperor Event was first reported by Ryan (1972)  and has 

since been confirmed in marine anomalies (Wilson and Hey, 1981) 

and in lavas from Snake River, Idaho where it is dated at 465,000t 
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50,000 years by the potassium-argon method. All the evidence points 

to the reality of this reversal as a geomagnetic phenomenon, although 

it is not clear whether it is an excursion or an event. 

An excursion dated at around 400,000 years was reported from. 

Core MT1 at Piombino.by.Readmafl and Evans (1979). The excursion 

consists of a clockwise loop of the VGP. Further work on the series 

of cores suggests that the excursion may be older than noted by Read- 

man and Evans. 

(c) Other Events 

The other four events are less well represented in the 

palaeomagnetic record. Ryan (1972) reports results from cores in 

the Eastern Mediterranean which can be correlated with a core from 

the Jamaica Ridge of the Caribbean Sea by foraminifera and oxygen 

isotope climate zones. As well as the Blake Event in faunal zone 

'XI  there are two events in zone 'V.  at about 200,000 and 300,000 

termed the Jamaica and Levantine Events respectively. Another small 

event seen only in the Caribbean core within the 'U' zone was named.. 

the Emporer Event by Ryan. 

The North Pacific core V2-.-108 (Wollin et al, 1971) shows 

three short reversals below the Blake Event, at approximately 0.2, 

0.3, and 0.4 m.y. b.p. (the first two were correlated with the 

Jamaica and Levantine Events). All three have been correlated with 

short excursions at Biwa (Yaskawa, 1974).  In these two cores only 

inclination is recorded, howeir the excursions all involve complete 

reversal, although the Biwa reversals are limited to one or two 

points. The Biwa I Event at about 100,000 years b.p. has been 

interupted by ash layers which correlate with similar layers in 

Lake Biwa (Hayashida, unpublished). 

The four excursions (, 3, ', ) seen at Gioia Tauro are 
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represented by single samples in a section of the core from which few 

samples were taken. The inclination varies between about 1V and 

70 in this part of the section with few definitely positive samples 

(declination is not recorded). 

In all these sections the number of reversed or intermediate 

samples is high compared with the number of normal samples, which 

seems to suggest that 20% to 30% of the lower Brunhes was of reversed 

or intermediate polarity (in the Gioia Tauro core 33% of the samples 

below the Blake Event record inclinations of less than 35"). This 

contrasts with the results for lavas in which only 2 out of 73 

results dated within the past 730,000 years have proved negative 

(Champion et al, 1981) and suggests that some of the anomalous sedi-

mentary results are due to errors in the processes of magnetization 

in depositional rocks. As Champion et al note, this ratio of 2:71 

implies that only 20,000 of the past 730,000 years were reversed. 

Even divided between only two events (Champion et al list the Las-

camp and Emporer Events) this gives lengths of 10,000 years for 

each event, the minimum length of time for a completely reversed 

event. If more anomalous periods occurred during the Brunhes, 

which have yet to be located in lava flows, then the average length 

must be less than 10,000 years, implying that all anomalous direc-

tions in the Brunhes are 'excursions'. 

Set 3 

Less attention has been paid to short events or excursions in 

the Matuyama and Gauss Epochs. There are four areas of interest in 

the Matuyama, in addition to the well-established Jaramillo and 

Olduvai Events. These are the proposed Cobb Mountain, Gilsa, Reunion, 

and Neuquen Events. 
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Cobb Mountain Event 

Mankinen et al (1978)  reported anomalous results dated at about 

1.1 m.y. b.p. from volcanic rocks in California. The directions differ 

by up to 100 from a reversed field suggesting that the rocks record an 

excursion rather than a completely normal event. Maenaka (1979) 

proposed a Komyolke Event. at 1.1 m.y. b.p. recorded in sedimerits of 

southwestern Japan. The sediments are interbedded with ashes which 

have been dated. The rocks of Cobb Mountain were also dated directly 

so given the close agreement of dates there seems to be some evidence 

for an excursion at this time. 

Gilsa Event 

The suggestion of a Gilsa Event after the Olduvai Event arose 

from the separate dating of Lower Matuyama events in Iceland and 

Africa. Watkins et al (1975)  studied the type section for the Gilsa 

Event in Iceland. There was no evidence for more than one event, how-

ever the normal lavas gave 'disappointing' potassium-argon results, 

averaging about 1.6 m.y. b.p. (The results were described as 

disappointing because of the lack of repeatability and the occassion-

al disagreement with stratigraphy.) Brock and Hay (1976) studying 

the type section for the Olduvai Event in Africa report a single 

normal event between 1.86 and 1.71 m.y. b.p. They prefer to think 

that only one event is represented but admit that an older event 

may occur, possibly correlating with the Reunion Events. It is 

probable that the Gilsa and Olduvai Events are one and the same, the 

confusion having arisen from inaccurate dating. Opdyke (1972)  who 

studied deep sea sediment cores alone reported only one event in 

this interval. 
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(c) 	The Reunion Events and the Neuquen Event. 

Mankinen and Dalrymple (1979) accept the existence of two Reunion 

Events due to bimodality in age determinations for normal rocks at 

about 2.0 m.y. b.p. McDougall and Watkins (1973)  report one event 

dated at 2.0 m.y. b.p. and lasting between 12,000 and 50,000 years 

from lava flows on the island of Reunion. The confusion in the number 

of Reunion Events may, like the Gilsa-Olduvai problem arise from in-

accurate dating. It is necessary to study continuous sequences in 

order to resolve this. One such section is the Searles Valley core 

(Liddicoat et al, 1980). Two Reunion Events are seen, together with 

three unidentified events. Two of these unidentified events occur 

between the Jaraxnillo and Olduvai Events and may correlate with the 

Cobb Mountain Event and suggested Gilsa Event, however Liddicoat et 

al have reservations about the reliability of the section of the core 

recording this latter event. Rea and Blakely (1975) report a number 

of short wavelength anomalies including one at 1.1 m.y. b.p. They 

point out that there need only be one event at 2.03 to 2.06 m.y. b.p., 

but add another at 2.24 to 2.26 m.y. b.p. This latter may represent 

what is known as the lower Reunion Event, or it may correlate with 

Ni from Liddicoat et al (1980). Liddicoat (1982) includes this short 

reversal in his study of the Gauss-Matuyama transition (he in fact 

refers to the short reversed interval as a pre-transition excursion 

in the Gauss). This lowest normal excursion in the Matuyamna is 

probably the Neuquen Event of Valencio (1981)  which is seen at Buenos 

Aries. It may be advisable to refer to this as a Gauss excursion if 

the Neuquen Event can be correlated with Liddic oat' s results. The 

reversed directions in the Gauss do not necessarily involve complete 

reversal as it is not certain that declinations were southerly. 

Liddicoat (1982) points out that the two short intervals lasted for 

2,000 years as did the final normal to reversed transition. 
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The Neuquen Event may be reverred to as a separate entity or 

as part of the compound Gauss-Matuyama transition. Apart from this 

only two events are necessary to explain palaeomagnetic results be-

low the Olduvai Event. 

(d) Gauss Excursions 

The Searles Valley core (Liddicoat et al, 1980) also includes 

two reversed intervals above the Kaena Event in the Gauss Epoch. 

These are dated at 2.81 to 2.79  in.y. b.p. and 2.71 to 2.67 m.y. b.p. 

on the basis of extrapolation of sedimentation rates which appear to 

be constant in the Matuyama and Brunhes Epochs. Liddicoat et al. 

state that some reversely magnetized basalt flows of this age have 

been reported from Hawaii, Iceland., and St. Vincent. 

EXCURSIONS REPORTED IN THIS STUDY 

A number of excursions were seen at Stirone and Piombino, with 

other possible excursions at Pontida and DSDP Site 514. The Pontida 

excursion seems to be a large secular variation loop and is dated by 

the radiocarbon method at about 18,000 b.p. The sediments are fine-

grained, however at other levels they record an anomalous field, 

that is inclination of about 30' compared with the axial field inclina-

tion of 60 to 65 This excursion may correlate with the short 

Imuruk Lake excursion reported by Noltimier and Colinvaux (1976), 

but it is probably distinct from the Mono Lake Excursion. 

The continental deposits of Stirone record perhaps three ex-

cursions at 450,000; 520,000; and 680,000 years b.p. on the assump-

tion of constant sedimentation rates, however there is a great deal 

of error involved in this calculation because of the probable 'inter-

mittent deposition. Of these the youngest and oldest are the ones 
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which are most likely to have occurred, the other may perhaps be due 

to slumping. The simplest explanation of the Stirone results is to 

accept only the oldest excursion but correlate it with the Emporer 

Event at 1465,000 years b.p., implying that an even longer hiatus than 

was originally imagined is represented by the unconformity at the top 

of the marine series (500,000 years compared with 200,000 years). A 

more likely explanation is that the excursion at 1450,000 yr. bp. 

correlates with the Emporer Event and the excursion at 680,000 yr. 

b.p. is a newly discovered phenomenon and should be named the laurano 

Excursion after the nearby hamlet. 

If the Cobb Mountain Excursion at 1.1 in.y. b.p. is accepted as 

real the upper Matuyama event at DSDP Site 5114  could be correlated 

with this and not the Jaramillo Event, thus explaining the absence of 

completely normal directions. The Stirone excursion toward the top of 

the marine series was probably due to inaccurate recording of the 

field, however if the directions are real, this interval may also 

represent the Cobb Mountain Event. 

At 67 to 69m in MTO at Piombino two normal intervals are seen 

interpreted as Reunion Events. Similarly complex behaviour occurs 

above the Plio-Pleistocene boundary at Stirone, where the lowermost 

normal interval is split by reversed samples and at least one further 

normal interval occurs between this event and the Olduvai Event. The 

Reunion Events have been correlated with the Plio-Pleistocene 

elsewhere in Italy (Kukla et al, 1979; Arias et al, 1982). In both 

cases there are good reasons to accept the results as accurate 

reflections of geomagnetic behaviour, so there may in fact be more 

than one Reunion Event. 

Many excursions were seen in the Gauss of the Piombino cores, 

however only one of these consists of a clear change from the stable 
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normal field, consisting of 25cm of clearly reversed sediment. This 

is dated at about 2.65 m.y. b.p. which correlates with one of the 

excursions of Liddicoat et al (1980). Other excursions may occur in 

the Piombino cores, correlating with this R2 excursion, or the older 

Ri excursion of Liddicoat et al. The existence of at least one 

excursion above the Kaena Event is confirmed, this should be referred 

to as the Searles Valley Excursion. 

The short excursion at about 3.95 m.y. b.p. recorded at DSDP 

Site 514 is represented by at least two stable samples, although 

adjacent samples showed erratic behaviour when demagnetized. Apart 

from reported sightings in other South Atlantic cores this short 

excursion has not been previously reported, and should be referred 

to as the Argentine Basin Excursion. 

CONCLUSION 

Figure 158 shows the polarity time scale of Figure 1 amended as 

a result of this study. Three late Brunhes excursions are included, 

each recorded over limited areas at slightly differing times, namely 

the Imuruk, Mono, and Nungo Excursions. Two other reversals are 

seen in the Brunhes, the Blake Event at 0.11 m.y. b.p. and the Emporer 

Eventat 0.465 m.y. b.p. The results from Stirone suggest that another 

excursion may have occurred at about 0.68 m.y. b.p. In the Matuyama 

the Cobb Mountain and Neuquen Excursions are added to the Mankinen 

and Dalrymple (1979)  tiinescale, while in the Gauss and Gilbert Epochs 

the Searles Valley and Argentine Basin Excursions are also included. 

These additional events and excursions may not represent a 

complete record of geomagnetic phenomena for the past 4 million years; 

however it would appear that at least 27 reversals have occurred in 

the past 4 million years, 21 (78) of them succesful (if the Blake 

and Emporer are classified as Events, and the other 6 as excursions). 
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Nine of these reversals have been reported during the past 1 m.y.,, 

this slightly greater concentration is probably due to the larger 

amount of research concentrated on this interval. 
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PART II TRANSITIONS 

THE STRUCTURE OF STABLE FIELDS 

The geomagnetic field is seen, in the palaeomagnetic record ,to 

have two equally stable states each of which can be modelled in the 

simplest form by a dipole at the Earth's centre, aligned along the 

rotation axis. These states are normal polarity, as at present, when 

all magnetic compasses point towards the north geographic pole, and 

reversed polarity, during which compasses point towards the south 

magnetic pole. The magnetic field remains stable in one polarity 

for periods of between 50,000 and 1.0,000,000 years (Cox, 1981), com-

pared with which the periods of transition between two states are 

relatively quick, occurring in less than 10,000 years. 

Superimposed on the simple dipole model are such factors as 

dipole wobble and dipole offset in addition to non-dipole effects. 

The offset dipole was used by Wilson (1972)  to explain the apparent 

'far-sidedness' of poles for the past 25 million years (Figure 159). 

The axial dipole should be offset to the north by about 1,050 km 

during reversed polarity and 175km during normal polarity. An 

alternative solution is that a quadrupole source exists which is 

stronger during reversed polarity. The offest dipole theory has 

recently been checked by Harrison and Watkins (1979)  who found it a 

more likely cause for far-sidedness than any non-dipole configuration. 

The axis of the main dipole deviates slightly away from the spin 

axis, the change in deviation known as dipole wobble has been shown 

by Thompson (1982) to vary between 2and 9over the past 300 years. 

The non-dipole field contributes about 10% of the total inten. 

sity of the geomagnetic field. It is due to turbulence in the core, 

however there does seem to be some pattern. Alldredge and. Hurwitz 

(1964) pointed out that the present Earth's field could be modelled 
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by a main dipole and a number of radial dipoles representing current 

loops at the surface of the core, These radial dipoles are a very 

popular method for modelling non-dipole field changes. Harrison and 

Cane (1982) point out that radial dipoles are preferable to spherical 

harmonic analysis in that they do not lead to long wavelength features 

contained in higher harmonics being cut off. Another advantage is 

that they can be related directly to physical processes in the core, 

Figure 160 shows the variation in potential due to a radial dipole at a 

depth Rd compared with a loop of radius r. Harrison and Cane ob-

tained the following expression linking depth of a radial dipole to 

width of a current loop 

(kin) = 3701 - 4915Rd/Re 

where Re is the Earth's radius. 

Cox (1975) suggested that these radial dipoles were pre-

ferentially arranged to account for a bias in secular variation in 

Hawaii. Most periods of large deviation from the normal field in-

volved deflection-to lower inclinations. Cox explained this as due 

to passing cyclones in the core, these cyclones (represented by radial 

dipoles) are negative, that is the dipoles point outward, near the 

equator, and positive at high latitudes. This suggestion would give 

higher than normal inclination at Iceland which, as Harrison and 

Watkins (1979) show, is not the case. Dodson (1980) suggests that 

the distribution of radial dipoles is more, or less random, there is, 

however, greater variation in the non-dipole field in Iceland than 

at lower latitudes, so Dodson considers non-dipole sources to be 

stronger or more numerous at higher latitudes. 

Given that a distribution of radial dipoles can account for the 

non-dipole field at specific times during the past, the next point 
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is the question of how variation in these sources contributes to the 

variation of the geomagnetic field with time. Recent secular varia-

tion recorded directly in observatories extends back only as far as 

the 16th century, so these records must be supplemented by palaeo-

magnetic studies on lakes in which deposition rates are high. 

Creer (1981) shows maps of the vertical component of the non-

dipole field for the past 400 years which is essentially quadrupolar, 

that is one negative and one positive anomaly occur in each hemi-

sphere. These have drifted westwards at 0.257year for at least 

the period of 400 years studied (Figure 161). Thompson (1982) 

suggests that the average lifetime of a vertical anomaly is only 

500 years (Figure 162), however the period of time available for 

direct study through observatory records is not long enough to show 

whether anomalies disappear, or continue drifting and merely oscillate 

in intensity. 

The lake sediment records show periodic variations in both 

inclination and declination. These produce VGP paths which loop 

around the geographic pole (see Figure 163, from Creer and Tucholka, 

1982; which shows paths for North America and the U.K. between 5500 

and 2000 b.p.). Since 1972  much work has been carried out rede-

fining the record from lakes in North America and Europe. If the 

variation was solely due to westward drift of anomalies, the North 

American record should be similar to that of Europe, but delayed 

by a time approximately equal to one quarter of the period. While 

there are some similarities for the past 4,500 years, the records 

differ before this. An alternative to the drifting non-dipole field 

is the oscillation of two out of phase anomalies. Creer and Tucholka 

(1982) show that this can also produce looping of the virtual geo-

magnetic pole about the geographic pole, and that this may be either 
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clockwise or anticlockwise depending on the phase. As a possible 

explanation for the change in the nature of the secular variation 

curves at 4,500 years b.p. Creer and Tucholka suggest a drifting 

radial dipole which oscillates in strength. The sense of the varia-

tions will be similar for both Europe and North America, unless the 

radial dipole is between the two sites, in which case the variations 

will be opposite. The change at 4,500 y. b.p. may be due to the 

radial dipole passing beneath one of the sites. 

TRANSITIONS 

The dipole field reverses on average once every 330,000 years 

(Cox, 1975 estimates reversal frequency for the past 50 m.y. to have 

been about 3 per million years). Based on our knowledge of the 

structure of the stable field we can envisage three types of reversal, 

each started by some sort of instability in the core which may or 

may not develop to cause full scale reversal. 

(a) Dipolar Transitions 

The simplest type of reversal is a change of the whole field 

with the main dipole (and possibly the non-dipole field) reversing, 

but maintaining the characteristics of stable polarity during the 

reversal. Thus part way through the transition the field would 

still be dominated by the dipole, and palaeomagnetic results from 

all sites on the Earth for the mid-point of the reversal in time 

should give the same pole. If transitions are caused by insta-

bilities as suggested by Cox (1981) one can imagine dipole wobble 

reaching a point at which the field becomes over-balanced and 

reverses, eventually settling at its other stable state. 

Initially it appeared that many transition paths passed through the 

Indian Ocean (Creer and Ispir, 1970)  however once two paths had been 
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obtained for the same transition this was shown not to be the case. 

Niitsuma (1971) reported a record of the Matuyama-Brunhes transition 

from Japan in which the virtual geomagnetic pole passed through the 

West Pacific. Hillhouse and Cox (1976) studied the same transition 

in sediments of California which gave a path passing through the 

Atlantic. 

(b) Transitions Dominated by the Normal Non-Dipole Field 

If the dipole does not simply rotate from one stable polarity 

state to the other it must undergo some sort of breakdown. If both 

dipole and non-dipole field decrease to zero there would at some 

stage during the transition be no geomagnetic field. With no field 

at all the alignment of magnetic grains would be governed by currents, 

or by shape, or if anisotropy was absent, they would be randomly 

oriented. Many transitions, however, seem to be repeatable at 

different sites within a region suggesting that there are magnetic 

fields during transitions. The Gauss-Matuyama transition, for 

example, is seen to be similar at sites in Turkmenia up to 300km 

apart (Burakov et al, 1976). 

If the dipole disappears without similar disappearance of the 

non-dipole field, the non-dipole field would dominate transitional 

fields. The type of transitional field produced by a non-dipole 

field depends on the structure and variation of this non-dipole 

field. The lengths of transitions are of the order of the length 

of the lake sediment secular variation record, so it should be 

possible to compare models to investigate whether the non-dipole 

field drifts, oscillates, or does both during a reversal. Larson 

et al (1971) modelled a transition with non-dipole drift of 0.2°  

yrduring a reversal of the dipole which lasted 3000 years, and 

involved rapid reduction in dipole field strength. The VGP path 
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completed at least one complete loop of the globe (Figure 164 shows 

a similar path created by allowing a radial dipole to drift during 

a simple dipole reversal). The linear path at Lake Tecopa (Hill-

house and Cox, 1976) among others suggests that this drift pattern 

did not occur during the Matuyaina-Brunhes transition. Dodson et al 

(1978) show that drift of the non-dipole field during a reversal of 

the dipole field would produce effects similar to those which they 

observed in the Tatoosh Intrusion record. Hillhouse and Cox point 

out that reduction in dipole strength would reduce core-mantle 

coupling, and thus reduce drift. They propose that transitional 

fields are governed by stationary non-dipole features. The non-

dipole field may increase in strength as the dipole field weakens, 

leading to increased stability of the non-dipole features. This may 

give rise to phenomena such as that reported by Shaw (1975). 

Directions part way through a reversed to normal transition in Ice-

land became stable while palaeointensity which had decreased during 

the beginning of the reversal temporarily regained its initial value 

(Figure 165). 

The cause of the instability for reversals dominated by the 

ordinary non-dipole field would be the non-dipole anomalies them-

selves. Either the configuration of sources is such as to over-

balance the dipole field, or the magnitude of one or more of the 

anomalies have reached the limits of their range. If growth of the 

non-dipole feature caused the reversal one would expect growth to 

continue until the main dipole began to reassert itself. In this 

case 'normal' non-dipole field reversals are unlikely. 

(c) Hybrid Transitions 

A third possible form for a transition is one in which the 

dipole field breaks down into a form which is unique to transitions. 
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The non-dipole field may or may not contribute to this creation. 

The instability causing breakdown occurring in the actual dipole 

dynamo as distinct from the non-dipole current loops. Hoffman and 

Fuller (1978) noted that many transitional fields were constrained 

in longitude and considered axisynunetric non-dipole fields. A 

quadrupole field (Figure 166) may arise through the core reversing 

in one hemisphere before the other. An octupolar field would result 

from the core reversing first at the equator, or, simultaneously 

at both poles. These types of transitions would give paths which 

either passed through the site (that is the magnetic vector would at 

some stage be vertically downward) or at 18O from the site (with the 

vector vertically upward). Study of reversals of both senses 

(normal to reversed and reversed to normal) from both hemispheres 

would determine which, if any, of these configurations occurred for 

all transitions. 

Initially (Hoffman and Fuller, 1978;  Fuller et al, 1979)  it 

seemed that most reversed to normal data from the northern hemisphere 

was near-sided suggesting either a quadrupolar field reversing first 

in the southern hemisphere or an octupolar field reversing first 

at the equator. Data from excursions, which may be aborted transi-

tions, from the southern hemisphere appeared to indicate that fields 

are quadrupolar (Hoffman, 1981). Recent results from the Phillipines, 

however show a far-sided reversed to normal path (Williams and 

Fuller, 1982) indicating that a general site dependence for all 

transitions does not exist. 

While there is no indication that each reversal has the same 

harmonic content, it seems that the most recent generally accepted 

reversal (i.e. the Matuyama-Brunhes)..can be modelled in this way. 

Hoffman (1979)  reports five paths for this transition all of which are 
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near-sided. By imagining the transition to commence at a point in the 

core with a latitude of 0 and a longitude of 338  *E and spread like a 

cancer, Hoffman is able to model the VGP paths for these five 

transition records (Figure 167 shows four of these records to-

gether with Hoffman's predicted path). Williams and Fuller (1981) 

also modelled the Matuyama-Brunhes transiton, they distributed the 

energy from the dipole (i.e. the gfield) between the three terms 

4 4 and in the ratio 2:3:5.  The modelled and observed inclina-

tion records can all be stretched so as to coincide, except the Lake 

Tecopa record which may contain non-zonal terms. The Williams-Fuller 

model assumes these to be absent, and therefore does not take de-

clination into consideration. 

Testing the Models 

As yet the structure of reversals is not known. It is, however, 

possible to test whether any of the proposed models actually stand 

up to the observed data. The Hoffman model predicts that all rever-

sals for the same transition should have similar paths when compared 

with the site longitude. He has shown that this holds for the 

Matuyamna-Brunhes transition, and this can be further tested using the 

Italian data. Both the possible axisymnmetric structures for the 

Matuyama-Brunhes transition (a quad.rupolar field resulting from 

initiation in the southern hemisphere and an octupolar field re-

sulting from initiation at the equator) should, if they apply to 

consecutive reversals, give paths 180apart, while the standing 

field model of Hillhouse and Cox (1976) should give identical paths 

if the non-dipole field persists for periods longer than epoch 

lengths. Valet and Laj (1981) report two consecutive reversals from 

Crete which have paths 180 apart (Figure 168). There are additional 

reversals both above and below those shown which conform to the 
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pattern (Laj, pers. comm.), alternating between about 90°W (Reversed 

to Normal) and 135°E (Normal to Reversed). On the other hand Bogue 

and Coe (1982) report similar paths for two successive reversals in 

Hawaii, so neither system can be proved conclusively. 

Although many reversals are linear, there exist transitions 

in which looping, drift, or oscillation of the virtual geomagnetic 

pole occur. Oscillation of the field (for example the Upper Jam-

millo transition recorded by Kawai et al, 1973: see Figure 169) 

may be due to poor recording of the field or acquisition of the 

remanence at different times. The Searles valley core clearly shows 

three reversals comprising the transition, recorded over 2m, which 

is probably beyond the limit of post-depositional realignment. 

The Steens Mountain transition (Watkins, 1969: Figure 170) 

shows a loop across the Pacific superimposed on a path through 

America. At the extremity of the loop there is an apparently semi-

stable point at which a number of poles occur. Other transitions 

such as the Santa Rosa transition (Larson et al, 1971:  Figure 171) 

show large amounts of drift during the transition. Both of these 

features resemble non-dipole field variations suggesting that in 

some cases the 'ordinary' non-dipole field is important during a 

reversal. Many of the transitions from Iceland display anomalous 

behaviour - Hoffman and Fuller (1978) noted that reversed to normal 

transitions from Iceland did not conform to the near-sided pattern 

shown by all other data. This may be due to the greater variation 

in the non-dipole field seen at higher latitudes. 

Even those transitional paths which do conform to the Hoffman 

model show a larger amount of variation in the later stages. Hide 

(1982) suggests that this is because decaying fields have an axis of 

symmetry but stable fields cannot have axial symmetry, in which case 
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studies relating to quadrupolar or octupolar fields should be carried 

out on the first part of the transition. 

OBSERVED TRANSITIONAL PATHS 

(1) The Matuyama-Brunhes Transition in Europ.e 

Hoffman (1979)  uses the Bruggen path from Koci and Sibrava 

(1976) as his type section for the Matuyama-Brunhes transition in 

Europe. Other European records of theMatuyama-Brunhes transition 

from Koci and Sibrava (1976) and Bucha et al (1975) are shown in 

Figure 172, together with the Bruggen transition and the Tiepido 

record for the Matuyama-Brunhes. The geographical location of each 

site is shown in Figure 173. 

The Tiepido transition, recorded in continental fluviatile 

silts and clays was described in Chapter 4 Part III. It consists of 

a far-sided path through the Pacific possibly including an anti-

clockwise loop about Australia. The Krems transition from Austria 

is found in loess underlying a soil attributed to the Cromer inter-

glacial. The path involves much oscillation, but is mainly confined 

to the far east, the path including a clockwise loop about Australia. 

At Stranska Skala, near Brno, in Czechoslovakia, the Matuyama-

Brunhes transition is recorded in loess. The interglacial layer 

overlying the loess is correlated with the soil at Krems. The 

transition consists of an anticlockwise loop about eastern Australia, 

then a far-sided reversal through Japan. The Cerveny Kopec transition, 

from a site near Stranska Skala, is also far-sided, passing through 

Indonesia and oscillating across eastern Asia. The Suchdol transi-

tion also in Czechoslovakia, is recorded in aeolian, fluvial, and 

colluvial deposits. The path includes a clockwise loop about India, 

and a reversal through Asia. A reversal at Bad Soden (West Germany) 
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contains one intermediate pole which lies north of Australia giving 

a far-sided path (Bucha et al, 1975). 

At Regensburg in West Germany the transition is recorded in 

terrestrial loess. Few intermediate poles are seen, but these lie 

in the Atlantic region. An excursion preceed.ing the reversal involves 

a loop about South Africa. The Bruggen transition is recorded in 

clays at a site in West Germany near the border with Holland. This 

was considered by Hoffman to be the most complete record. There 

is an initial excursion to China represented by one sample followed by 

reversal across the western Atlantic. The main path is similar to 

that at Regensburg but different to the other paths. Hoffman (1979) 

suggests that these other records show only the initial excursion 

at Bruggen, and not the main transition. Hoffman had no direct 

contact with Koci concerning these records. The bases for the corre-

lations mentioned by Koci and Sibrava are not fully explained, al-

though most correlations are based on glacial stratigraphy. Koci 

(pers. comm.) suggests that the Bruggen transition may be as old as 

the Lower Olduvai, and also expresses doubt about the age of the 

Regensburg transition. Thus it would appear that the tuyaina-

Brunhes transition in Central Europe was far-sided, crossing the 

equator at a longitude of about 150 E. 

This is incompatible with Hoffman's (1979) model (and if Bruggen 

did represent the Matuyama-Brunhes transition, the excursion to India 

should be taken as the important part of the transition). The 

Matuyama-Brunhes transition as recorded at Boso in Japan (14()*E; 

Niitsuma, 1971) passes more or less through the site, however most 

other paths occur to the east of the site longitude. The difference 

is smaller for the Pacific sites: KH 70.2.5 (190E)  has a path 25E 

of the site (Ka'wai et al, 1973)  and the Freed results from the east 
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Pacific (269 to 273E) pass between 30-and 79°east of the site (see 

Hoffman, 1979). At Tecopa (2414E; Hillhouse and Cox, 1976) the 

difference is 85 while in Europe (10 to 20E) the difference be-

tween site and path ranges between 55and 135(see Figure 174). This 

would seem to suggest some sort of non-dipole field having a stronger 

effect on European sites than on sites elsewhere. There are three 

records of the Matuyama-Brunhes transition from southern Siberia. 

The sections are all near the town of Novosibirsk (84E), and were 

studied by G. A. Pospelova. The deposits are loessic soils, with 

some fluviatile and lacustrine sediments interbedded. Each of the 

transitions involves much oscillation between the northern and 

southern hemispheres, most intermediate poles being located on the 

near side. The final reversed to normal transition after smoothing 

by a running mean of two is shown for all three sites in Figure 175. 

At Gonba the path passes more or less through the site but involves 

a westerly loop at the end. At Elunino the path begins via Australia 

but crosses the equator at more or less the same longitude as the 

site. This path also shows a westerly loop in the northern hemi-

sphere. At Shelabolikha the path crosses the equator 70west of the 

site. Taken overall these paths show a slight westerly bias super-

imposed on a near sided path, suggesting an extra source region be-

tween Central Europe and Siberia. These sites have mid-northern 

latitudes, similar to all the others listed except the east Pacific 

results of Freed. 

The two mid-northern latitude sites studied by Clement et al 

(1982) give eastward components, producing paths 30 to 75 beast of 

the site which is near that studied by Kawal et al (1973). They 

also report an equatorial site near that studied by Freed giving a 

main reversal 40west of the site, but including a loop around the 
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site (Figure 176). Kawal et al (1976) report a further equatorial 

Pacific record for the atuyama-Brunhes transition. This involves 

three reversals, all of which are near-sided, crossing the equator 

between 75W and 36E (average of the 3 paths is 20W, see Figure 

177). The localised source between Europe and Siberia may also in-

fluence the equatorial results, however there seems to be an addition-

al easterly bias on all mid-northern latitude data which may be re- 

lated to the right-handedness noted by Wilson (1972). 

All the five far-sided paths for Europe show short returns 

during the transition. At Tiepido, Stranska Skala, and Suchd.ol these 

take the form of anticlockwise loops. The Tiepido path is very 

scattered, but the close agreement of the three smoothed paths may 

indicate that the loop is a real feature. 

The Matuyama-Brunhes transition may thus be dominantly 

axisymnietric but, if so, then there are additional fields acting, 

including a localised source situated beneath Eastern Europe affect-

ing most sites in America, Europe, and Asia; secondly some form of 

field may give rise to a right-handedness in the Northern hemisphere 

(either the dipole retains an influence, or the effect is caused by 

current phenomena); and thirdly, minor perturbations have caused 

looping of the field in Central Europe. 

(2) Other Transitions in Europe 

There are few transitional paths for other reversals recorded 

in European rocks. Bucha (1970) reports a path through Australia 

and the far east which he thought could have been the Lower Jaramillo, 

although no reversed sediments were seen above it (Figure 178). 

However like the 1atuyama-Brunhes paths it shows a very narrow 

clockwise loop. The paths for the reversals at Stirone (Section A) 
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and Bagaggera are both near-sided • as are those of Bruggen and 

Regensburg. The Stirone and Bagaggera transitions are probably the 

Lower Jaramillo, although at neither site are reversed directions seen 

above the sediments recording the transition. If this is correct then 

the Cerveny Kopec reversal is probably the F1atuyama-Brunhes. 

A transition recorded in Core MTO from Piombino (Readman and 

Evans-, 1979) is also most probably the Lower Jaramillo (see Chapter 

6). The transition consists of at least five reversals which may be 

due to delayed acquisition, however all paths pass through the 

Americas, so it would seem that this is the typical path for the 

Lower Jaramillo in Europe, crossing the equator about 90 west of the 

site. If the Bruggen transition is the Lower Olduval, then this 

Atlantic/Americas path seems to have been favoured more than once. 

The Stirone paths (both 1980 and 1981 sections) show loops 

around the east Atlantic and Africa part way through the transition, 

however the 1980 section has an anticlockwise loop, and the 1981 

section a clockwise loop. The Bagaggera transition has one inter-

mediate pole in Africa, so this may reflect rapid east-west drift at 

the centre of the transition, however other results for Bagaggera 

(in Billard et al, in press) do not show this anomalous direction. 

Two reversed to normal transitions at Stirone just above the 

Plio-Pleistocene boundary may represent the start of the two Reunion 

Events, although the lower path is more likely to be part of an 

excursion within the Lower Reunion Event. Both paths pass through 

the eastern Pacific, although they are represented by just two 

intermediate poles in each case. These paths are different from the 

reversed to normal transition at 68m in Core i'ri'o at Piombino which 

crosses the equator about 90 east of the site. The transition con-

sists of a rapid reversal with no intermediate poles, then a loop 
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about Asia, so the actual reversal may have been via the east Pacific. 

The only normal to reversed transition recorded in the Italian 

sediments is the Upper Olduvai reversal at Stirone, although many of 

the results are scattered. Most of the poles are far-sided giving a 

path through the east Pacific similar in some ways to that for the 

Natuyarna-Brunhes transition, but about 90°  further east. This Upper 

Olduvai path is less than 90 from the following transition the 

Lower Jaramillo, and about 90' from Bruggen which may record the pre-

ceeding transition. However the earlier part of the transition which 

involves a loop across Asia is approximately 180°  away from both the 

preceeding and succeeding transitions. 

Valet and Laj (1981) report two back to back transitions from 

Potamida, Crete, approximately 1600km southeast of the Po area. The 

reversed to normal transition is near-sided, passing through the 

equator 70°  west of the site, that is through America. The following 

normal to reversed transition passes through the central and western 

Pacific (130° E of the site). Successive and preceeding transitions 

at Potamida and nearby Skailadhiana repeat the alternating pattern 

(Laj, pers. comm.). These paths are similar to the Lower Jarainillo 

and Matuyama-Brunhes transitions respectively, although the tu-

yama-Brunhes is of a different sense to the Cretan transition. 

Figure 179  shows that other European transitional paths cross the 

equator near one or other of these regions. It would seem that no 

simple axisyminetric pattern exists in Europe. If this pattern exists 

globally, then in Europe it has been repeatedly disturbed by other 

non-dipole sources. One possible explanation is that there are two 

favoured paths, perhaps due to recurring standing fields which 

occupy one of two 'easy' positions. Alternatively drifting non-dipole 

sources reach these areas, which may result from the topography of 

355  



U p 

Gilbert Eve 
Upper Koen 

Upper Olduvai 

Lower 

Lov 

Jora mill 0 

Lower Olduvai 

Gilbert Event 

Lower 
Jaramillo 

Upper Mammoth 

Site 

Lower Jaramillo (E 

S koj tadh inn ci 

Lower Reunion I (S) 
Po turn Id ci 

Upper Mammot 

Lower Reunioi 

Upper 

- Reversed to Normal 

- Normal to Reversed 

B Bagciggero 

C Crostolo 

S Stirone 

East 

atuyamci- Brunhes 

nida 

Figure 179. Equatorial Crossover Points for European Sites 

Lower Olduvai 

Frure 8O. Equaforia Crossover Points for Site 514 



the core-mantle interface, and are induced to stop and grow for some 

reason, leading to downfall of the dipole system. The Matuyama-

Brunhes reversal is the only reversal that breaks the alternating 

pattern, so this transition may be affected by fields not normally 

present during a transition. 

(3) Reversals in the Argentine Basin. 

Successive reversals are seen at DSDP Site 5114., however there 

does not seem to be any alternating pattern to the transitions. The 

Olduvai transitions differ by about 180 with two of the lower set 

of three 90°  east of the site and the upper normal to reversed transi-

tion about 90°  west of the site. The third reversal forming the 

Lower Olduvai transition drifts across the far-side from 11.5°E to 

135° W. The Upper and Lower Kaena transitions take paths 60°  apart in 

the eastern Pacific, although the upper reversal is interupted by a 

short return to southerly latitudes. The upper Mammoth reversed to 

normal transition is about 180°from the Upper Kaena path. The 

Cochiti paths are about 90°apart, with the lower reversed to normal 

transition lying near the lower Kaena normal to reversed transition, 

and the Upper Cochiti path similar to the Upper Kaena path. Con-

sidering the seven transitions mentioned there are two groups of 

paths one passing through the Indian Ocean, the other through the 

eastern Pacific (Figure 180). This includes the drifting Upper 

Olduvai path within the Pacific group and the drifting lower Olduvai 

path within the Indian Ocean group as these parts of the paths repre-

sent the initial stages of each reversal. The Upper Matuyana 

excursion which only reaches 20°N is centred on the Indian Ocean. 

There are few intermediate poles in the DSDP data, so many of 

the transitional paths are defined by only one or two VGPs. Again 
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there is no clear-cut near-sided or far-sided pattern, in fact the two 

favoured areas are almost 90°  E and 90° W of the site. This may also 

be due to recurring non-dipole fields. 

(k) Western U.S.A. and Iceland. 

There are two other areas where a number of transitions have been 

studied (the western states of the U.S.A. and Iceland) which can be 

compared with the results discussed above to see whether favoured 

paths exist elsewhere. Figure 181 shows the equatorial crossover 

point for six transitions from the western U.S.A. These are the 

Tecopa and Searles records (Hillhouse and Cox, 1976; and Liddicoat, 

1982) which are from sediments and studies on igneous rocks from 

Steens Mountain (Watkins, 1969), Santo Rosa (Larson et al, 1971), 

Laurel Hill (Mount Hood) and the Tatoosh Intrusion (Mount Rainier: 

Dodson et al, 1978). The Steens and Santa Rosa records involve 

large amounts of drift or looping, but pass through the equator near 

the site longitude. The Tecopa and Searles records are similar al-

though they represent transitions of opposite senses. These paths 

cross the equator about 90° east of the site, almost 180° from the 

Mount Hood and Mount Rainier paths which cross at almost the same 

point, 600 west of the site. There is a bimodal distribution of 

of transitional paths if the complex reversals are discounted (the 

Santa Rosa transition starts along a path 60°  west of the site before 

drifting to the east). The looping and drifting at these two sites 

may be due to additional non-dipole fields which do not usually 

oscillate or drift during a reversal. 

The records from Eastern Iceland (Dagley and Lawley, 1974) and. 

Western Iceland (Shaw, 1975) show much more complexity in the paths. 

The equatorial crossover points seem to be randomly distributed, al-

though reversed to normal transitions are biased to the near-side 
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and normal to reversed transitions to the far-side (Figure 182). 

The amount of non-dipole variation is known to be higher in Iceland 

during stable polarity, so it would appear that large amounts of non-

dipole field variation disrupt the transitional paths when the dipole 

is weak. 

The results from Europe and the Argentine Basin do not show any 

site dependence as suggested by Hoffman and Fuller (1978).  There 

appears to be a pair of favoured directions about 18O apart with 

alternation between these paths occurring for limited periods as at 

Crete. The alternaticn may be disrupted by unusually large non-

dipole fields in fact at Iceland these fields probably disrupt the 

majority of the transitions. If the dipole dynamo reverses according 

to the Hoffman model this is not always seen at the surface due to 

the presence of stationary or drifting non-dipole fields. In fact the 

longitudinal dependence noted by Hoffman and Fuller may be caused by 

stationary non-dipole sources. These will give near-sided or farsided 

paths if the source is located in the core below the site. Two or 

more radial dipoles growing in strength simultaneously with decrease 

of the axial dipole will produce this behaviour at more than one 

point on the Earth's surface. Only if the radial dipoles change in 

magnitude with respect to each other will there be any longitudinal 

drift of the transitional path. 

Thus it would seem that each transition is characterized by 

different non-dipole fields in different proportions. The results for 

the Matuyama-Brunhes transition show that much more global coverage is 

necessary to be able to define the extent and influence of each of 

these sources. 
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CONCLUSIONS 

The palaeomagnetism of a variety of sediments has been studied; 

and, as may have been expected, these sediments record the Earth's 

magnetic field with varying degrees of accuracy. 

Depositional detrital reinanent magnetization is the resultant 

of the sum of a number of grains, each aligned by forces including 

the magnetic field. The accuracy of the orientation can be measured 

by comparing the renanent intensity with the potential remanent 

intensity if all grains were aligned parallel. Susceptibility is 

the most convenient method of estimating the relative potential of 

sediments, and this was surprisingly constant for all depositional 

sediments, averaging 10/0e. Intensity normalized by susceptibility, 

i.e. 1 -ratio, gives an indication of the effectiveness of align-

ment. The low energy environments are much better for palaeomnag-

netic recording as indicated by the higher Q-ratios for the lacustrine 

clays at Bagaggera and Pontida (0.5 to 1.0). The marine clays at 

Crostolo and Panaro also give high -ratios, however the lowest 

values are seen in the coarse, sandy, fluviatile deposits at 

Stirone and Crostolo (<0.1). The generally high coercivities, and 

the hysteresis characteristics suggest that the dominant magnetic 

mineral is magnetite although often weathering of the continental 

deposits has produced some haematite. 

The palaeosols generally have higher susceptibilities (up to 

lOOpG/Oe), suggesting an increase in magnetic mineral concentration. 

Q...ratios are high at Bagaggera (0.8 to 1.0) but moderate in the Po 

Valley (0.2 to 0.3). Some of the soils have very high coercivities 

including the Rivaltella soil, and that developed on the flysch at 
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Bagaggera, suggesting haematite; but many of the soils have low median 

destructive fields indicating multi-domain magnetite. The soil 

forming processes probably oxidize the finer grained magnetite which 

is either removed, or precipitated as haematite. 

EXC URS IONS 

Short reversals and excursions fit into most theoretical analyses 

of magnetostratigraphic behaviour, however the tendency of some 

workers to interpret every anomalous direction as an excursion has 

led to scepticism about their existence as geomagnetic phenomena. 

It is, however, clear, from a reasoned study of palaeoinagnetic re-

sults, that excursions and short reversals do exist. The most 

notable of these are the Mono Lake Excursion and the Blake Event. 

More work will have to be carried out in order to resolve recent 

geomagnetic history and discover whether the Imuruk, Mono, and Mungo 

Excursions are linked by a common drifting source, manifesting it-

self at different times at different points on the Earth's surface. 

The solution of this problem may produce important constraints for 

the dynamo mechanism. 

Two more phenomena are seen in the Brunhes: the Emporer Event 

at about 465,000 yr. b.p. and the Laurano Excursion at 680,000 yr. 

b.p. Study of the statistical distribution of reversed directions 

dated within the Brunhes suggests that if volcanic activity is inde-

pendent of polarity (and there is no reason for it to be dependent) 

then only 20,000 of the past 730,000  years have been reversed. This 

implies that the four phenomena mentioned had lives averaging 5,000 

years, which is barely enough time for the field to reverse com-

pletely, so all the Brunhes Excursions may only be localized. 

Less attention has been paid to the Ituyama and preceeding 

epochs so the four excursions added to the ?.nkinen and Dalrymple 
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timescale in Figure 158 may be supplemented after further work. 

Global coverage of the Cobb, Neuquen, Searles Valley, and Argentine 

Basin Excursions is not great enough at present to determine whether 

these are excursions, or short reversed intervals. Nevertheless it 

is certain that the reversal frequency for the past 4 million years 

has been greater than suggested by Cox (1975). It may be as high 

as 5 per million years, with an additional two unsuccessful attempts 

in each million year period. 

TRANSITIONS 

Hoffman (1982  ) has argued that if the axisymmetric flooding 

model does not hold for all transitions, then at least it holds for 

the atuyama-Brunhes transition. The results of Tiepido from this 

work as well as the results of Stranska Skala, Suchdol, etc. show 

that even the Matuyama-Brunhes is more complex than originally 

thought. There would appear to be an additional disturbing influence 

causing eastward components in the transitional field at Tecopa and 

in Europe, as well as westward components in Siberia. 

The results of Europe and the Argentine Basin do not show a clear 

near-sided or far-sided pattern. There may be a weak bimodality in 

paths for each area, but if so, then this is independent of the sense 

of the transition. The pattern for successive reversals suggested 

by Hoffman as a method for distinguishing between axisyminetric 

or stationary transitional fields will only hold if the axisyininetric 

field is similar for both transitions, or if the non-dipole field 

remains stationary throughout the stable field interval separating 

the two transitions. That neither pattern holds in Europe or in 

the Argentine Basin suggests that there is no overall pattern for 

transitions, but that each transition has its own structure. Hill- 
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house and Cox (1976) suggested that the non-dipole field becomes 

stationary during a transition due to loss of electromagnetic 

coupling through decrease in the axial dipole field strength. In 

this case there is no reason for these stationary fields to occur in 

the same place for consecutive transitions. 

A possible transitional field structure involves growth of 

non-dipole foci causing collapse of the main dipole at a critical 

point. This in turn causes the non-dipole foci to stop drifting, 

allowing further growth. Ultimately these foci will decrease as 

the main dipole reasserts itself. Many non-dipole foci growing in 

unison will give longitudinally confined paths; if these foci are 

positive, that is downward pointing, then the sites vertically above 

will record near-sided paths. Occassionally the rate of growth or 

decay of two of these foci will be different and this will result 

in longitudinal drift of the transitional path. 

Excursions will be caused by abnormal growth of the non-dipole 

foci, with in some cases, minimal decrease of the main dipole as 

in the case of Lake Mono and Pontida, which gives an exaggerated 

secular variation loop. Collapse of the main dipole with recovery 

in the same sense will give a longitudinally confined excursion, 

similar to the Laurano Excursion or those studied by Hoffman (1981) 

from Australia, Hawaii, and Amsterdam Island. 
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