
PARALLEL COMPUTATION ON SPARSE NETWORKS OF PROCESSORS

GORDON BREBNER

Ph. D.

University of Edinburgh

1983.

I hereby declare

• that this thesis has been composed by myself; and

• that the work described herein is my own, except where stated

In the text.

Ab.sfrac(

Abstract

In this thesis, problems related to parallel computation on a set of

processors connected together in a sparse network are considered. The

two main interconnection graph families studied are the n-dimensional

binary hypercubes ("cubes), and the De Bruljn graphs of degree d (d-

shuffles).

The main focus is directed towards analysis of the time and space

required to route data between processors, in order to model the operation

of an idealistic parallel computer in which each processor has access to a

shared global memory, and so discover whether general purpose parallel

computation is feasible on a fixed interconnection model. The randomised

routing algorithm of Valiant, which has optimal time complexity with high

probability, is used. It is shown that this may be generalised to model

simultaneous reads at the expense of a space penalty, but that

generallsation to modelling simultaneous writes involves a time penalty.

Since analytic complexity results for the routing algorithm do not yield the

tight time and space bounds that are desirable for practical purposes. its

behaviour is investigated in considerable detail by simulating it on a serial

computer. The basic algorithm is investigated on several other

Interconnection networks relevant to parallel computation. Also, various

modifications to the basic algorithm are examined. The results may be

summarised by the empirical relationships that, when the expected load on

all routing processors is equal. (I) Expected time grows at approximately

double the rate of expected route length. and (ii) Expected space grows at

approximately half the rate of the base two logarithm of the number of

processors (independent of interconnection pattern). These observations

Indicate that the routing algorithm is very efficient.

While the routing results indicate that general purpose computation is

feasible using certain interconnection patterns, albeit with time complexities

Abstract

Increased by a logarithmic factor, it is likely that algorithms should still be

optimised to take account of the pattern. A preliminary investigation of the

extension of the analysis of the routing algorithms to the analysis of general

algorithms Is undertaken. and an analytic framework Is suggested.

A technological restriction on many parallel computing devices Is that they

are amenable to two-dimensional rectangular reallsation. An organisation

where processors are arranged In a grid is bad for routing data. The

necessary and sufficient areas required to lay out cubes and d-shuffles in a

grid are determined, and it is proved that any such layouts require long

paths in the grid, which means long Inter-processor communication times.

The conclusion Is that general purpose computers are not viable in such

technologies. It is also shown that, while algorithms for grid-style

architectures may be efficiently simulated on a cube network, they cannot

be efficiently simulated on a d-shuffle network.

Table of Contents 	 1

Table of Contents

1. Parallel Computation Schemes 3

1. 1 Introduction 3

1. 2 Networks as parallel computers 6

1. 3 Routing on networks 8

1. 4 Choice of graph for routing networks 13

1. 5 An argument against determinism 17

2. Randomised parallel computation schemes 18

2. 1 Introduction 18

2.2 Random order of edge traversal on the cube 20

2.3 Randomised routing 22

2. 4 Analysis 1 : Packets Intersecting the path of a fixed packet 24

2.5 Analysis 2 : Packets intersecting delay sequences 26

2.6 Multiple reads and writes 30

2.6.1 Multiple reads 30

2.6. 2 Multiple writes 36

3. Experiments with parallel communication schemes 39

3. 1 Introduction 39

3. 2 The n-dimensional cube 43

3. 3 The d-shuffle 52

3. 4 The cube-connected cycle graph 64

3.5 The shuffle-exchange graph 72

3.6 The two-dimensional square grid graph 79

3.7 Variations of the standard routing algorithm 100

3. 7. 1 Variation of cube routing 100

3. 7. 2 Optimised routing for the d-shuffle 102

3. 7. 3 Variation of queueing discipline 106

3.7. 4 Single queue shared by all out edges 109

3.7.5 Merging of routing phases 113

3.8 Generalising permutations 116

3. 9 Experimental method 124

Table of Contents
	

2

4. Routing in parallel algorithms
	

128

4. 1 Introduction
	

128

4.2 Staged networks
	

130

4.3 Delay sequences
	

134

4. 4 Analysing parallel algorithms for networks
	

137

4.4. 1 Localisation of communication
	

137

4.4. 2 Analysis of activities
	

140

5. Routing graphs and their relationship to grids
	

145

5. 1 Introduction
	

145

5.2 Embedding routing graphs In grids
	

146

5. 2. 1 Layouts for the n-dimensional cube
	

152

5. 2. 2 Layouts for the d-shuffle
	

155

5. 2. 3 Maximum edge lengths in layouts
	

163

5. 3 Embedding grids in routing graphs
	

165

Acknowledgements
	

168

Bibliography
	

169

Parallel Computation Schemes
	

3

Chapter 1

Parallel Computation Schemes

1.1 Introduction

Parailelisation of computations is probably the most important issue which

faces Computer Scientists at the present time and, in the future, it

promises to pose an increasing challenge. From the earliest days of

computing, economics have favoured an approach whereby algorithms are

executed as a series of sequential steps by a processor which manipulates

data held in a memory. This corresponds well with the typical observable

behaviour of a human being who is tackling a non-trivial problem, and so

algorithm design is frequently a formalisation of a series of human

activities, albeit on a larger scale, which lead to the desired solution.

Now, advances in technology mean that the computer designer has the

freedom to incorporate many processors which can operate simultaneously

and the fundamental question is how this power may be effectively

harnessed by algorithms. ideally, multiplying the number of processors

should lead to a proportional increase in the speed of problem solving.

However, a consideration of the analogous situation in the human world

where. Instead of one person solving a problem, a large number of people

are solving a problem, shows that it is not the case In general that the work

done by one person In a year can be done by 365 people In a day. The

fundamental reason for this Is communication. Most tasks cannot be

formulated as a set of 365 Independent activities - some degree of

Interaction is necessary to exchange information.

In designing a parallel algorithm, the key goal is to partition a problem

among parallel processors in such a way that communication can be

performed simply and each processor can be used at as near maximum

efficiency as possible, and so new approaches to problem solving are

Parallel Computation Schemes 	 4

needed. This thesis Is concerned with communication. The viewpoint Is

that of the computer designer rather than that of the algorithm designer.

and the aim is to investigate how communication capabilities can be

efficiently and realistically provided. Thus. the emphasis is placed on

communication costs rather than processing costs throughout.

In developing an understanding of serial compuatation. many different

models have been proposed, such as Turing Machines (24] and Random

Access Machines (1], and a property of the more fundamental results is

that they hold, regardless of which reasonable model Is chosen. There Is

considerably more scope in choosing models of parallel computation and

Indeed a large variety exist already, employing fairly different techniques.

Research Into behavioural aspects of parallel computers, such as

reachability, deadlock. liveness etc.. typically uses models based on finite

state machines and program schemata, for example Petri nets and vector

addition systems. Here, behavioural issues will be assumed to be dealt

with, and more complexity-theoretic matters will be Investigated. Thus, It

Is desirable to have a model which represents realistic parallel computers

more faithfully, and one which is widely used will be employed. Cook (121

gives an excellent survey of synchronous parallel computer models. The

model here consists of a collection of parallel processors. operating

synchronously, which cooperate in a tightly coupled manner to solve some

problem.

Clearly, the model as described leaves some degrees of freedom, which

must be fixed. While the model might embrace processors which are

extremely simple, for example a processing element occurring in a very

large scale integrated (VLSI) circuit, It will be assumed that they do have

general purpose sequential capabilities as well as some local memory. The

synchronous, tightly coupled approach refers to the manner in which

algorithms are implemented on this model. Each processor computes in

step, and processors communicate at synchronised time intervals.

Typically, each processor may be executing the same program, possibly

taking account of which processor It is. The number of processors is

assumed to be related to the size of the problem, for example N processors

Parallel Computation Schemes 	 5

to sort N keys or to compute an N point Fourier transform. The model is

intended to represent a general purpose parallel computer. While general

purpose serial computers have become accepted as the norm, most

exploitations of parallelism have been for special purpose applications.

This applies in particular to VLSI realisations. for example [341, but also to

more conventional constructions, for example pipeilned central processing

units. A central question is whether realistic parallel computers can be

built which can exploit the parallelism inherent in arbitrary problems.

The important feature of the model which has not yet been resolved is how

processors communicate with one another. There are essentially two ways

In which this can be viewed. Either a global shared memory exists and

communication is done by reading from, and writing to. this memory, or

the processors are connected together in a fixed network. usually assumed

to be fairly sparse. and processors can only communicate with neighbours

In the network. The first type of model (the Idealistic model) is useful

when one is trying to explore the inherent parallelism of a problem. and

offers a convenient framework in which to write and analyse algorithms.

Unfortunately, it is not amenable to realisation in current technologies. due

to fan-In restrictions, and this is why the second type (the realistic model)

is of more Interest in a practical sense. The results in this thesis are

primarily concerned with the efficient simulation of idealistic models by

realistic models. Alternative names, suggested by Schwartz [44]. for the

Idealistic and realistic models are paracomputers and ultracomputers

respectively.

Several idealistic models of parallel computation have been proposed, for

example [18. 201. The main point on which the models differ is that of

read or write conflicts, that is whether more than one processor is allowed

to read from the same memory location simultaneously and whether more

than one processor is allowed to write to the same memory location

simultaneously (and, If so, how such write conflicts are resolved). Such

restrictions affect the computational power of the model. As a simple

example, consider computing the logical OR of n bits contained in memory

locations x 1 x. Then there is a simple algorithm which runs on

Parallel Computation Schemes 	 6

Goldschlager'S SIMOAG (20]. which allows multiple writes In one time step.

Processor I (1 (I < n) merely reads location x1 . then writes a one in x 1 if

and only if x, is equal to one. However, if multiple writes are not allowed.

Cook and Dwork (13] have shown that mlog n) time is required. In

Goldschlager's model, the lowest numbered processor succeeds in a write

conflict. Alternatives are an arbitrary winner, or some combination of the

competing data. Shiloach and Vishkln (45] allow a multiple write only if all

processors wish to write the same datum.

Clearly, any of these Idealistic models can simulate a realistic model,

merely by allocating one memory location to each directed connection in

the network. Simulation of the above varieties of idealistic models by

realistic models will be considered In subsequent sections. The primary

question to be resolved is how a particular memory access can be

simulated efficiently. Of course, if an.. algorithm makes infrequent accesses

to the global memory, the speed of simulation is less important.

1. 2 Networks as parallel computers

The important feature of a processor network is the interconnection

scheme. To describe this, it is most convenient to consider the underlying

graph. which has vertices corresponding to processors and edges

corresponding to inter-processor connections. Some elementary graph-

theoretic terminology which will be employed throughout is collected

together here.

A gaoh G is specified by a pair (V. E), where V Is a set of vertices and E

Is a set of edges lf.the graph is directed., E Is composed of ordered pairs

of edges. i.e.

E S ((u, v) I u, v 6 V)

If the graph Is undirected. E is a set of unordered pairs. I. e.

E S ((u, Y) I u.v e V)

An edge (u. v) in a directed graph is an out edge of u and an in edge of

v. The number of out edges at u is the out degree of u. and the number of

Parallel Computation Schemes 	 7

in edges at V Is the In degree of v. If u has the same in degree and out

degree, It Is said to have dearee of the same number. In an undirected

graph, the number of edges (u. v) such that v € V is the degree of vertex

U. A oatii In G is a sequence of edges

(u1,u2), (u2 - U3)(u 1_ 1 ,u 1)
for some I) 2. The dearee of a graph is the maximum degree over all

vertices. If the degree of all vertices Is defined. The diameter of a graph

is equal to

max (d(u.v) I u, v € \/)

where d(u.v) Is the length of the shortest path between u and v. The Jim

of a graph is the size of the vertex set. lvi.

The graphs considered here will always be directed, but some may be

considered effectively undirected since, for every edge (u,v). there Is a

corresponding edge (V. U).

It should be noted that, when some feature of the underlying graph Is of

Interest, the words "graph" and "vertex" will be used and, when some

feature of the processor network is of Interest, the words "network" and

"node" will be used. "edge" is employed In both contexts, hopefully

unambiguously, in preference to technologically suggestive terms such as

"wire".

The organisation of the network will be such that, at each node, there Is

a processor and some local memory. To simulate the operation of the

Idealistic model, it Is necessary to move data across the network from a

source node, which stores some datum required from the global memory,

to a destination node, which requests It. The realisation of a complete set

of such requests from all processors involves a fundamental problem,

namely that of efficiently routing data through a network. The term packet

will be used to describe an object which Is In transit between a source and

destination node, and the network can be considered as a packet switching

network. A packet will usually carry data, but may be used to carry control

Information. When routing Is taking place, nodes will be termed "routing

Parallel Computation Schemes 	 8

nodes" and. when computation is taking place, nodes will be termed

"processing nodes" (or just "processors"). The path followed by a packet

will often be called its route.

Only routing problems will be considered here. 	Lev, Pippenger. and

Valiant (331 show that, if the collection of packets corresponding to a

simultaneous set of memory requests can be delivered In time r(n). then

one computation step of a PRAC (a model without multiple reads and

writes) can be simulated in O(r(n)) time. Borodin and Hoperoft (91

Indicate how to achieve a similar result for more powerful models. The

Interesting point Is what times r(n) can be achieved for routing a collection

of packets. The central importance of routing networks to general purpose

parallel computers can be seen In such examples as the more theoretical

universal computer of Galil and Paul (19], as well as in the practical

proposal of Gottlieb et al (22].

It can be seen that there Is an asymmetry in simulating reads and writes.

To simulate a read, it is necessary for nodes to send requests to nodes

which store the required data. They then send data to the requesters. For

a write, two such stages are not required since writing nodes merely have

to send the data to the correct storage node. The "missing" second stage

corresponds to the recipient sending an acknowledgement back to the

sender. Such a feature would be desirable, for example. If an

asynchronous parallel system was being developed. Here, the abstracted

problem which is considered can be Interpreted In terms of packets

containing requests or packets containing data. In fact, from now on, little

reference will be made to either the contents of packets or the motivation

for routing packets.

1. 3 Routing on networks

The fundamental problem which will be considered is that of realising

permutations. That Is, one packet starts at each node and. after routing,

one packet finishes at each node. The ability of a network to permute data

Is crucial if it is to be successful. Permutations will also be generalised to

h-relations, in which h packets start and finish at each node. Very often.

Parallel Computation Schemes 	 9

It is required to realise relations which are not total, that is all nodes are

not both sources and destinations, and so partial permutations and partial

h-relations are investigated. Finally, relations which alter the number of

packets. that is multiple copies of the same packet are sent to several

destinations or multiple packets are sent to the same destination, are

required. Regardless of which type of relation is being implemented, an

important characteristic of the problem is that the relation changes every

time that a data transfer takes place. in general. Therefore, routing

solutions designed for applications in which routes are set up and then

used for multiple data transfers. for example telephone systems, are

usually unsuitable because the set up time is relatively large compared with

the data transfer time. An example is the Benes permutation network (6)

which achieves O(log N) time for routing on a constant degree graph of

size N but, even on idealistic models, the best known set up time is

O((Iog N) 2) (33).

Even if such solutions could satisfy timing constraints, they are still

unsatisfactory for another reason. This is essentially because the

behaviour of each routing node is determined by knowledge of the entire

permutation. Given the sparse nature of the network, it is not possible to

collect information from all nodes at one node in a short time. in fact, if

the network has degree d then, within O(log N) time, information can be

gathered from at most O(d log N) nodes, merely because of in edge

constraints. Even if some sort of merging of Information packets is

allowed, packets of size fl(Nd -) would be needed to accumulate the log N!

= O(N log N) bits necessary to represent a permutation. Therefore, given

that the routing strategy has only a small amount of information to work

from at any node, the conclusion is that any algorithm must be highly

distributed.

An example of a routing strategy suitable for sparse networks which is

totally distributed, In the sense that each routing node makes decisions

based only on information at itself, is obtained by considering the sorting

algorithm of Batcher [5]. Parallel sorting can always be used to route

permutations since, to realise a permutation IT on (1N). each packet

Parallel Computation Schemes 	 10

Is labelled with 77(l) where I Is its starting point, and the packets are sorted

according to the keys 770). Given that 77 is bijective. if 77(i) = j then it will

be ranked jth and the packet arrives at node J. It should be noted that this

approach is not Immediately applicable to partial permutations. However, it

Is possible to modify Batcher's algorithm, albeit with some loss of

efficiency.

The worst case route length of Batcher's algorithm Is O((log N) 2

Since the diameter of the networks on which it is implemented is typically

O(log N). there is obviously scope for improvement. No totally distributed

algorithm for switching networks is currently known with better worst case

complexity. Two modifications to the problem are made here. namely to

allow queueing as well as switching at routing nodes, and (later) to allow

the routing algorithm to be non-deterministic. These enable a wider range

of solutions to be explored. Having narrowed down the problem under

consideration. it is possible to give a precise description of the behaviour

of the routing networks to be studied, as well as an indication of the

complexity measures which are of interest.

A routing network is based upon a directed graph in which all vertices

have the same in degree and out degree. The size of the graph will be

denoted by N. and the degree of the graph by d. There is a collection of

packets in the network and, at every integral time instant, each packet is

located at some node. During the interval between each time instant, one

packet may be transmitted along each edge between adjacent nodes.

Every node maintains d queues of packets, one for each out edge, and

some queuing discipline determines which packet is sent along the edge

associated with a queue at each time interval. Therefore, at each time

Instant, the population of a node consists of packets which were destined

for the node In its processing role, and packets queued by the node in its

routing role.

Each packet which is being routed must carry its destination address, in

addition to Its data content. Optionally, additional information may also be

carried. At each node, the routing algorithm decides, using this

Parallel Computation Schemes 	 1 1

information, which queue (if any) an incoming packet should be placed

on. This decision Is independent of the state of any other nodes. When

no packet is queued at any node at some time instant, all packets have

arrived at their destination, and so the routing algorithm has terminated.

For a given routing request. the time complexity of the algorithm is the

number of time instants before termination. The space complexity is the

maximum number of packets which form a node population at any time

Instant.

This description of the model. which is generally accepted in the

literature, e. g. (9]. raises some points which should be discussed further.

The implication of the notion of time is that, firstly node computation is

free, and secondly that transmission time for any packet along any edge is

charged as one unit with all edges being usable simultaneously. The first

assumption Is a common one in the study of queueing networks, e. g. (27],

and, while in this case it may not always be true that transmission time

considerably exceeds computation time, as long as both times are related

by a constant factor it amounts merely to the choice of a particular time

unit. The second assumption is slightly more controversial. In some

technologies it may be the case that all connections do not have a uniform

propagation time: In particular, there has been much discussion recently

on the correct measure to use for VLSI (7. 101. If a technologically

restrictive approach is taken, then the choice of underlying graph typically

becomes very constrained, and it Is questionable whether general purpose

parallel computation is reasonable at all, compared with special purpose

hardware. The main justification for the approach used here Is that it

allows the investigation of the communication capabilities of a very general

class of novel architectures. all of which are technologically feasibile but

not necessarily in all technologies. The results are universal In a negative

sense, namely that a network with bad routing time on this model can only

be worse on a more specific model.

Another questionable point is whether a node can be allowed to receive

[transmit] packets along all of its in edges (out edges) during one time

Interval. If the degree d is constant, 	then time is affected only by a

Parallel Computation Schemes 	 12

constant factor if this is not so. However, as Upfal points out, this Is a

problem for networks with higher degrees. One possible solution Is to

employ parallelism within nodes and, for simple queueing strategies, it is

possible to achieve constant switching time as well as multiple edge driving

capability. Typically, however, this might require 0(d 2)' subprocessors

within nodes.

The decision to make routing decisions purely local, without consultation

even with neighbouring nodes, is one of simplification. This applies to

both the routing algorithm and any analysis of it. In fact, since it is still

surprisingly difficult to analyse strategies, a further restriction is applied,

namely that all algorithms are non-adaptive, or oblivious. Essentially, this

means that a node routes packets without taking into account any other

packets that may be present at it. Therefore, if the routing algorithm Is

oblivious then. for each source-destination pair, there is a unique route

which any packet with that source and destination must follow, assuming

determinism. Not only does obliviousness aid analysis, but it also has a

practical motivation since it is a requirement in the memory arbitration

scheme of the New York University Uitracomputer (22].

Previously, the aim of this work has been expressed as finding efficient"

routing schemes. Now that various parameters have been defined, it is

possible to quantify the notion of efficiency. The aim is to achieve

resource requirements that are simultaneously logarithmic in the network

size N. The primary consideration Is the time complexity of routing, which

will often be referred to as the completion time. Obviously, the underlying

graph must have logarithmic diameter if a logarithmic completion time is to

be achieved. For any packet, the difference between its routing time and

its path length will be termed its delay. The delay of the whole network

when implementing a relation is the difference between completion time and

the maximum route length. Logarithmic bounds are also desired on space

requirements, that is a node should never have more than O(log N)

packets present. Also packet size (including both contents and any extra

information carried) should not exceed 0(log N) bits. Finally, since the

network must be sparse, its degree should preferably be constant and be at

Parallel Computation Schemes
	

13

most O(log N).

Since logarithms will be occurring frequently. it Is perhaps useful to

summarise the notation used

Ig n is the base two logarithm of n

In n Is the base e (natural) logarithm of n

logn is the base k logarithm of n for some k

When the base of the logarithms is constant but not important. the notation

log n is used (typically in the expression O(log n)).

1.4 Choice of graph for routing networks

Before considering the time and space requirements of routing packets

through a network, it is necessary to identify graphs which satisfy the

constraints on degree and diameter. This leads to an important graph-

theoretic problem which has been of interest for some time, namely

determining the maximum number of vertices N(d. 8) which may be in a

graph with given degree d and diameter 8. A well-known upper bound on

N(d. 8) for undirected graphs is due to Moore (8) and a similar argument

can be used for directed graphs giving

8+1 1
N(d,8) 4 	

d 	
for all d > 2

Rearranging this gives a lower bound on diameter, viz.

8> log(N(d-1)+1] 	
log N
log d

Thus, given the logarithmic restrictions on degree and diameter which were

mentioned earlier

log N
log log N 	

8 (O(log N)

So-called Moore graphs, which attain the Moore bound, are rather rare

(one example is the family of complete graphs which form the

interconnection patterns of the idealistic computer). Much work has been

Parallel Computation Schemes 	 14

done recently on finding families of graphs which approach the Moore

bound and have small degrees and diameter, for example (49. 251. In

particular. Leland Introduces Interesting new families of graphs which are

Intended for processor networks (32].

Throughout this work. two paradigmatic graph families will be used which

have attracted interest in the context of both graph theory and parallel

processing. Some other examples will be introduced later. A good survey

of interconnection schemes for parallel processing ls.glven by Siegal (46].

The graphs are not chosen purely on the basis of degree and diameter. It

Is essential for routing that no vertex lies on a high proportion of the paths

In the graph. otherwise bottlenecks will result. This rules out trees. for

example. The two families will be Introduced In turn, along with

appropriate routing algorithms.

The 	first family are the 	n-dimensional 	binary 	hypercubes, hereafter

referred 	to merely as cubes. 	An 	n-dimensional cube is defined as

follows

Vertices.

V = fv I V € (0.
1)fl)

Edges.

E= {(01$7.a8') I

of € (0.1) 1. ,9 € (0.1). 'Y € (0. 1)' for 0 4 I 4 n-i}

The cube is graph-theoretically elegant since it is Just the Cartesian

product of the complete graph on two vertices. K 2 , with itself n times. It

has degree n and (non-optimal) diameter n. Since each edge (u.v) has a

corresponding edge (V. U). It is effectively undirected. The interconnection

structure reflects in a natural way the communication necessary for a class

of algorithms, named the Ascend/Descend algorithms by Preparata and

Vuillemin (40]. whose most noted member Is the fast Fourier transform.

These algorithms have n stages, each of which requires communication In

a different dimension of the cube. In the context of routing, a natural route

for packets to follow Is one which changes each bit in the binary

Parallel Computation Schemes 	 15

representation of the source node address to the correct corresponding bit

in the destination address since it has length logarithmic in graph size.

The cube offers an ideal structure for this. and so seems an ideal

candidate for analysis. The routing algorithm executed at each node of a

cube network is as follows

for each node of in parallel do begin

for each packet at a do begin

Jet 8 be the address on the packet

If a = B then packet Is at destination else begin

d = lowest order dimension in which a and B differ

queue packet for out edge in dimension d

end

end

end

It is clear that the algorithm must terminate with each packet at the

correct destination since, at each time step. each packet still en route

must either traverse a dimension In the direction of its destination, or move

forward one place in a queue.

As a notational point in connection with the cube, It should be noted that.

while dimensions will be numbered 0. 1n-i (0 being low order. n-i

being high). in text they will be referred to as the 1st dimension, nth

dimension when necessary.

The second family of graphs are the de Bruijn graphs (16). As an aid to

brevity, the de Bruijn graphs with degree d > 2 will always be referred to as

"d-shuffle graphs. They are defined by

Vertices.

V = {v I v € (0.1d-1)'J

Edges.

E = {(av.i$) I a,$ e (0.....d-1). Y C (0.....d-1)" 1 }

The graph has degree d and. when there are d' vertices, it has

Parallel Computation Schemes 	 16

(asymptotically optimal) diameter n. It gives the best known N(d.ö) for

directed graphs. Until recently, it was also best for undirected graphs. but

It has now been beaten, albeit by small constant factors. Indeed, the new

technique of Jerrum and Skyum [25] Is still underpinned by the d-shuffle.

Therefore, d-shuffles offer hope for routing purposes since they can also

have constant degree and do not have bottlenecks. In the routing context,

the cube may be regarded as the idealistic" candidate, and the d-shuffle

as the "realistic" candidate. It can be noted that the 2-shuffle is very

similar to the shuffle-exchange graph (considered later). which has been

proposed as an architecture for both special and general purpose parallel

computers (48. 221.

The routing algorithm employs similar principles to that for the cube. in

that the d-ary representation of the source node is changed to that of the

destination. However, since d-ary digits cannot be altered "in situ", they

must be "shifted" to the one (rightmost) position where they can be

changed. The algorithm will be slightly inefficient because all packets

follow a route of length precisely n with a different d-ary digit changed at

each step. As well as a destination address, packets carry a counter

which counts down route steps from n to 0.

for each node in parallel do begin

for each packet at the node do begin

let the packet have counter c and destination a

If c = 0 then packet is at destination else begin

c := c-i

queue packet with new counter c for edge which shifts in sG

where a = aTh' for some

a € (0.....d-1)'' 1 and Y C (0.....d-1)°

end

end

end

At each step, every packet still en route either has its counter reduced by

one and the corresponding d-ary digit altered to the correct one, or moves

one place forward in a queue. so packets are routed correctly. For some

Parallel Computation Schemes
	 17

routes, this algorithm is bad (for example.
on

 to on) , but later on in

Chapter Three it will be shown that It Is not much worse than a more

optimised algorithm. This one has the advantage of being easier to

Implement at nodes, thereby simplifying switching. A similar scheme for

the cube, which has far better connectivity, leads to far greater inefficiency

In routing.

Having discussed the choice of specific graphs, a negative result will now

be presented which applies to all reasonable graphs.

1. 5 An argument against determinism

The investigative framework has been laboriously described. Now a result

of Borodin and Hoperoft [9] will be stated

Theorem (1.1): In any network with N nodes and in degree d,

the time required in the worst case by any oblivious routing

strategy is fl
d41

The outline of the proof is based upon the fact that a routing request can

be constructed which forces a large number of packets to pass through the

same node on their routes. Since at most d packets can leave a node at

each time Interval, this forces a long completion time. Arguments of a

similar style will be employed in the next chapter.

This easy theorem would appear to rule out further progress on the

problem. One line of attack is to remove the restriction to oblivious

routing, but this appears to be very hard to analyse. Instead, one other

card, mentioned earlier, can be played. The notion of an algorithm will be

slightly relaxed, so that it may behave non-deterministically.

Randomleed parallel computation echemee
	

18

Chapter 2

Randomised parallel computation schemes

2. 1 Introduction

Having observed that the best known time for deterministic routing of

packets on a graph with N vertices was 0 ((log N)
2)

 even when the

diameter was 0(log N). Valiant (54] proposed a randomised parallel

algorithm which ran in 0(109 N) time with high probability. The notion of

randomised algorithms was introduced (in the context of serial

computation) by Rabin (41] and Solovay and Strassen [47]. They may be

viewed as being the same as normal deterministic algorithms except that.

at certain points in their execution, they pick a random value according to

some probability distribution. By making appropriate use of this added

randomisation. useful fast algorithms with probabilistic behaviour can be

obtained.

The best known class is that of "Monte Carlo" algorithms, which always

produce a result fast but with a small probability of the result being

Incorrect. An example is Rabin's primality testing algorithm which always

gives the correct answer if the number input, n say, is prime but may

wrongly Identify a composite n as being prime. Monier (361 has shown that

the error probability is smaller than when the run-time of the algorithm

Is O(k log n). Another class which has appeared recently consists of the

"Las Vegas" algorithms (31. These run fast and usually produce a correct

result but may indicate "no result found" with small probability. This is a

more useful feature than the slighly dubious result obtained from a Monte

Carlo algorithm. Clearly, any Las Vegas algorithm can be trivially

transformed into a Monte Carlo algorithm.

The routing algorithm of Valiant displays a different property of

randomisation. The algorithm always computes the correct result. but may

Randomised parallel computation schemes 	 19

not always be fast. Consider the following definition

DefinitIon (2.1): An algorithm has time complexity T(n) with

confidence 1-E (E>O) if, for every input of size n, the time taken

to compute the correct result exceeds T(n) with probability at

most E.

Note that the probability E Is typically either a small constant or a vanishing

function of the Input size n. This definition describes the tail of the run-time

distribution unlike the definition of expected time complexity given by Rabin

for randomised algorithms

Definition (2. 2): An algorithm has expected time complexity

T(n) if, for every Input of size n, the expected time taken to

compute the correct result. over all randomisations. Is at most

T(n).

The second definition illustrates a motivation for the development of

randomisation. The conventional definition of expected time complexity

requires assumptions to be made about the distribution of inputs in order to

demonstrate that an algorithm Is fast on average". However, with the

Rabin definition, only the distribution of the random numbers chosen need

be considered. and this is more predictable than*real worlds inputs.

Rabin gives an example of an algorithm for finding the nearest pair(s) in a

set of n points in k-dimensional space which has good time complexity In

this sense.

The first definition, however, Is more in the spirit of normal complexity

theory in the sense that worst case times are of more interest than expected

times. As far as is known, Valiant's routing algorithm was the first

randomised algorithm (it was certainly the first parallel one) which had a

provably tight time complexity bound in the sense of this definition. It has

time complexity O(K log N) with confidence 1 - for any suitably large

constant K. Before looking at the algorithm, a simpler (and apparently

more Intuitive) algorithm employing randomisatlon will be considered. it is

designed to be implemented on a cube graph.

Randomised parallel computation schemes 	 20

2.2 Random order of edge traversal on the cube

The central problem which any routing algorithm must attempt to solve is

that of collisions caused by two packets wishing to traverse the same edge

at the same time interval. When packets follow paths which involve the

minimum number of inter-dimensional traversals then. as has been seen

earlier, it is possible to construct input permutations which inevitably lead

to collisions when routing is deterministic. Here. the order of dimensions

traversed in the path of each packet will be selected randomly in the hope

that not only will worst case behaviour be less dependent on pathological

Inputs but also that frequency of collisions will be reduced as packets are

distributed "more randomly" about the cube.

Therefore, the distributed algorithm is implemented as follows

for each node a in parallel do begin

for each packet at a do begin

let 8 be the destination of the packet

If a = B then packet is at destination else begin

let 0 be the set of dimensions in which a and B differ

let d be a random member of 0

queue packet for out edge in dimension d

end

end

end

The algorithm is clearly correct, since each packet is either moved one

dimension closer to Its destination or one place forward In a queue at each

time step. At any given time interval, one might hope that, at a given

node, packets will arrive randomly along in edges and then be randomly

distributed amongst out edges. In this way, collisions can be minimised

and a fast completion time achieved. Unfortunately, this is not the case

since input permutations can still be chosen which force bad behaviour, as

the following theorem, based upon one of Valiant (541. shows

Theorem (2.3): There exists an input permutation for which the

algorithm does not have expected time complexity which is

	

Randomised parallel computation schemes
	

21

logarithmic in the network size.

Proof: Consider any edge (u.v). If the cube has n dimensions

then, for any r (
ni

 there are) source nodes at

distance r from u from which paths may Include the edge (u.v).

and (n1) destination nodes at distance r from v to which paths

may lead after including (u.v). Now consider the algorithm

applied to a partial permutation of (n;1) packets from the source

nodes to the destination nodes. Each path intersects (u.v) with

probability

, 2r+1
r+1 	r 	I

so the expected number of paths intersecting (u, v) will be

(n-i)! 	ri ri

ri (n-r-1)l 	(2r+1)I

- 	(n-i) 	. . (n-r)

- 	(2r+1) . . . (r+i)

n-r) r . 	1 -

2r 	2r+1

5 	n/5 	 n
= 	2 	lfr=

2n+5 	 5
1/5

N
log N

Thus, the expected time complexity for this permutation Is not

logarithmic in N.

Clearly then, while this randomisation may reduce bottlenecks in the

network compared with the deterministic schemes, for large networks at

least It is inevitable that some permutations will make heavy demands on

certain edges. In order to overcome this difficulty. Valiant suggested a

particularly elegant form of randomisation which ensures that the traffic is

more evenly distributed about the network, hence dramatically reducing the

probability of overloaded edges. for all input permutations. This method

will be discussed in the next section.

Note that, for reasonable sized networks of, say. under 1000 nodes, no

permutation has been found which causes an implementation of the

Randomisod parallel computation schemes 	 22

previous algorithm to perform worse than algorithms with provably

logarithmic time complexity. It is therefore probably adequate for use with

present-day parallel computers. However, as network size increases, the

lower bound on completion time becomes more significant, and more

sophisticated routing algorithms are required.

2.3 Randomised routing

In the new routing algorithm, a packet is no longer sent from its source

node to its destination node by the shortest path. Instead, the route

consists of two distinct phases. In the first phase, the packet travels from

the source to a randomly chosen node. Then, in the second phase, it

travels from the random node to the correct destination. The effect of this

change is that, in each phase. the route followed by any packet is

Independent of the route followed by any other and moreover, the route

consists of random edges independent of the input permutation.

Therefore, while Initially it appears that the route length is being

unnecessarily doubled, these gains are sufficient to ensure that the routing

time for each phase is logarithmic with overwhelming probability. This fact

will be established both analytically and experimentally in later sections.

It should be noted that this routing technique is completely general.

regardless of the underlying graph for a particular network. It is also valid

for realising partial h-relations, not merely permutations. In the remainder

of this chapter, attention will be focused on how cube and d-shuffle

networks can realise partial h-relations efficiently.

In each phase. each packet carries a current destination address. In the

first phase. this is chosen to be any of the N nodes with equal probability.

The final destination address must also be carried, in the second phase.

this is of course the same as the current destination address. No more

Information than this is needed to implement the routing. The manner in

which the distributed routing algorithm is implemented at each node

depends on which type of network is being used.

In the case of the cube, the node algorithm described in the previous

Randomised parallel computation schemes 	 23

section may be used. Thus, gains from random ordering of the random

route are also obtained. in fact, the overall algorithm described previously

Is just the new one with the counter-intuitive first phase omitted. For the

more restricted d-shuffle, it is not possible to obtain a similar random

ordering, and so packets will be routed just as in the scheme described in

the previous chapter. Note that, if random ordering Is not employed. it is

possible to do without the extra (random) address carried in the first phase

and use zero instead of lg N bits for the cube. and flg log Ni instead of

lOgd N bits for the d-shuffle. by distributing the randomisation to nodes as

follows

for each node of the n-dimensional cube in parallel do begin

for each packet do begin

let d be the dimension which the packet arrived on

white d < n-i do begin

d := d+1

If a zero-one random choice is one then

queue packet for dimension d and exit from loop

end

if the packet is not queued in the previous loop,

the packet has arrived at its random destination)

end

end

For a d" node d-shuffle. each packet carries a counter from n-i down to

O which Indicates how many random digits in the d-ary representation of the

destination address have still to be chosen.

for each node of the d-shuffle in parallel do begin

for each packet do begin

If counter = 0 then packet is at destination else begin

decrement counter

queue packet for out edge selected according to a

random number selected from the range 0 to d-1

end

end

end

Randomised parallel computation schemes 	 24

Obviously, this makes the complexity of routing operations In nodes

greater. However, If packet size was particularly important, this type of

randomisation might be worthwhile. The revised algorithm Is still oblivious,

since packets are still treated Independently. It will be seen later that

random ordering of cube dimension traversal Is not necessary in order to

achieve a fast algorithm, and so can be omitted.

There are two main approaches to the analysis of random routing. The

first one to be considered will be an early proposal of Valiant 1531 (this

technique will also be employed in a later section). it is less powerful than

the second approach. suggested recently by Alelulnas (2] and Upfal 1511.

After looking at these analytic methods, a result will be quoted which shows

that. for some graphs at least, the doubling of route lengths Is not merely

a device for obtaining proofs. but Is Inevitable for any oblivious routing

algorithm.

2.4 Analysis 1 : Packets Intersecting the path of a fixed packet

The sequence of edges forming the route of a fixed packet is considered.

A collision with another packet may result if that packet uses any of these

edges. By estimating the probability of this happening, and then summing

over all the packets which may collide with the fixed packet. it Is possible to

obtain an upper bound on the probability that the fixed packet collides with

some number. k say, of other packets and hence suffers a delay of k time

units. If this argument is repeated with each packet being the fixed one in

turn, the probability of any packet having k collisions can be obtained,

giving the probability of completion time being increased by k units due to

queuelng.

Clearly, this method cannot be expected to yield tight bounds. 	All

Intersections of pairs of routes are counted as collisions, although in

practice packets do not usually compete for an edge because they reach it

at different time intervals. In effect, the proof is aiming to achieve an Ideal

routing whereby all paths are disjoint. In view of this, it is not surprising

that it does not give useful bounds for all graphs, in particular those with

constant degree. While the cube and a logarithmic degree shuffle have

Randomised parallel computation schemes 	
25

sufficient edges to achieve disjoint routes in theory, constant degree

shuttles certainly do not.

Before stating the theorem on completion time, two technical terms must

be defined. A randomised routing scheme is symmetric, it; independently

of the permutation being realised, the expected number of distinct packets

which traverse an edge is the same for every edge in the network. A

scheme is non-reoeatifl.q. if whenever two packets take paths p 1 p2 . . . Pr and

q 1 q2 . . . q, in which p 1 = qj and Pk = q 1 (k > I) it is the case that k-i = I-i

and for all m such that I 14 m 4 k. Pm = qm+j-t, that is any two paths never

have more than one common sequence of edges.

It is not hard to see that the scheme for the cube which does not involve

randomisation of the order of edge traversal is both symmetric and non-

repeating when total h-relations are being realised. In general, it is not

symmetric if partial h-relations are being realised and it is not non-

repeating if edge ordering is random. and so the next theorem cannot be

directly applied. However, by slight adjustments to the proof. both of these

cases can be handled in the desired manner.

Theorem 	(2.4): 	(Valiant) In any 	oblivious 	random 	routing

scheme which is symmetric and non-repeating and has 	(i) 	N

nodes. 	(ii) 	I = hN packets. (iii) degree d. 	(iv) expected route

length 7. 	and (v) maximum route length IL, 	the probability that

some packet is delayed 	by at least k units during one of the

phases is less than (-!' k T. where e is the base of natural
kd

logarithms.

For the n-dimensional cube, it is the case that N = 2". T = h2", d = n.

= n/2. and IL = n. Therefore, the probability that a phase fails to finish

within time cn is at most

(_eh _)(C1)fl h2''
2(c-1)

Now, for all c) 3. 5h + 1, this expression is at most NC 	
and thus the

probability vanishes rapidly as c increases.

Randomised parallel computation schemes 	 26

The standard algorithm for the d-shuffle is neither symmetric or non-

repeating. By modifying it so that packets always follow the shortest path.

rather than the straightforward path, the scheme can be made non-

repeating. Then, by employing a modified version of the proof of the

general theorem, a result of the same style can be obtained. However, in

the case of a. constant degree d-shuffle, which is the one of interest, a

vanishing probability is not obtained. To achieve this, the tighter technique

of the next section is required.

The proof of the results using this type of collision analysis involve the use

of some non-trivial results from probability theory. Recently, an interesting

new approach for estimating inter-packet collision probabilities has been

suggested by Relsch and Schnitger (43]. 	They apply Koimogorov

complexity (39] in the analysis. which makes the proof easier. 	Without

going into the details Kolmogorov complexity, the main point of the

argument used is as follows : The routes involved in either phase of the

scheme for the n-dimensional cube can be precisely represented as a

string of
n2n

 bits. Given the randomisation of routes, each such string is

equally likely to be the description of a particular run. Now, it can be

shown that any run which involves k or more collisions with a fixed route

can be represented in at most

n k-5n
n2 - 2 -

bits. Therefore, by an information-theoretic argument, the probability that
-(k-5n)/2 k or more collisions occur must be at most 2 	. Using a more

complicated representation of runs with many collisions, this probability

bound can be improved.

2.5 Analysis 2: Packets intersecting delay sequences

In the previous analysis. a far too pessimistic view was taken of

collisions. This method rectifies the problem by identifying paths in the

network which cause delays, and ultimately cause the completion time to be

delayed. In order to do this, It is necessary to put further conditions on

the routing algorithm, but these are not unduly restrictive. The approach

of Aleluinas is expressed In terms of critical path analysis. and Is more

Randomised parallel computation schemes 	 27

complex than that of Upfai. Here the common underlying features will be

outlined together with the results obtained, which can be applied to graphs

with constant degree.

To capture the notion of packets meeting at the same time interval, a

rather artificial constraint is placed on the routing algorithms used by

nodes. If AL is the maximum route length. then a packet can be at stage I.

for 1 14 i 14 A. of Its journey at any time interval. A node will only start

forwarding packets at stage I when all packets which pass through it at

stage i-i have been forwarded. ObvIously, in practice, a more realistic

algorithm would merely give priority to packets at earlier stages of their

journey, but it is easier to analyse the slower algorithm. Now the

collection of activities ([U. U I u is a node, 1 4 I 4 U), corresponding to

node u handling packets at stage I. Is considered.

If (u.v) is an edge In. the network. (v.1+1] cannot finish until [ui] is

complete. Also. Eu, 1+11 cannot finish until Eu. ii Is complete. 	Suppose

that, for some node nU. the activity EnU.IL] is one of the last activites to

complete, that is it causes the completion time for routing to be delayed.

Then, working backwards, a node nU_1 can be found such that, either

= n or the edge (nIL_i, 	exists and EnIL_i./L_l] was one of the last

activities which delayed En IL I
/L] starting. Continuing In this way, a complete

delay seauence (n1. n2.....IL1' 	can be Identified. In general, more

than one delay sequence will exist for a given run and so all of the last

activities to completeTM at each stage must be considered, rather than just

one. Given such a delay sequence. the proofs are obtained by bounding

the probability of packets reaching node n 1 when they are at stage I. This

allows the number of packets handled by the delay sequence, and hence

the completion time, to be bounded.

It should be noted that the separation of the behaviour of the network into

stages corresponding to the stages of packets on their routes is Just a

formal method for interpreting a recirculating network as though It was in

fact an expanded network with IL stages. This distinction between

recirculating and expanded is a common feature of parallel computing

Randomised parallel computation schemes 	 28

architectures in general. for example FFT networks, and the point will be

considered again in Chapter Four.

The following theorems are applicable to random permuting schemes

employing priority queueing at nodes which have the property that, when a

packet leaves .a node, the out edge is chosen with equal probability. This

property Is clearly true for the d-shuffle scheme. However. it does not

hold for the cube since a packet never leaves along the same dimension as

It arrived on. The statement of both theorems has been modified slightly to

fit more consistently into this chapter.

Theorem (2. 5): [Aleluinas] For a network with constant degree

d and N = d' nodes, if m = d-1 log(d-1)N then the probability

that the completion time for a phase exceeds cm Is less than

N3d -cm e2hT() for any c> o.

Theorem (2. 6): (Upfal] For a non-repeating scheme on a

network with constant degree d. maximum route length /L, and the

"balance" property that, for any (U. ii the mean number of packets

handled is bounded by one, then the probability that the

completion time for a phase exceeds c'/A. for some c', is less

than e any sufficiently large c.

The first theorem Justifies the use of the d-shuffle graph analytically. No

examples will be given here of schemes which are balanced in the sense of

Upfal. His example employs a three-phase algorithm in which the phases

are not entirely distinct. Indeed, a slightly different model to the one used

here appears In his paper. Note that, when the term "balanced Is used

later In this work, it refers to an Intuitive ideal notion of balance rather

something provable in the technical sense of Upfal. That is. packets are

equiprobably distributed among nodes and packets leave nodes along

equlprobabiy chosen out edges at each time step. More details of the style

of the proofs of the above theorems will be seen In Chapter Four set In a

more general context.

It can be seen that this technique is still not bounding network behaviour

as tightly as might be possible because the time analysis considers the total

Randomised parallel computation schemes 	 29

collection of packets at each node rather than the total collection of packets

at each edge. Since the desired results can be obtained without this

further complication, it is not a matter of concern. However, a further

benefit -of the more gross analysis is that space complexity results can be

deduced immediately using the following theorem

Theorem (2. 7): It a random routing scheme has provable

completion time I for both phases using an activity-style analysis,

then it also has space complexity I for both phases.

Proof: If a node had a population of more than I at any time,

then a sequence of activities could be identified. involving the

dispersal of the population at that node, which delays the

completion time beyond I. The size of any node population in the

first phase due to arrivals Is dealt with by the simultaneous time

bound requirement on both phases.

Note that the results of Aleluinas and Upfai. which assume constant degree

d, are not particularly useful for obtaining asymptotic space complexity

results since a scheme with completion time T clearly has space complexity

bounded by d. T.

Before leaving analytic proofs of random routing schemes for realising

permutations and h-relations, a further comment on the two-phase

algorithm is in order. The following result proved by Valiant (551 shows

that, for the d-shuffle graph, which has optimal diameter, the algorithm is

essentially optimal with respect to path length, for oblivious algorithms.

Theorem (2. 8): (Valiant] For a d-shuffle with diameter logdN.

any oblivious algorithm either takes time n(N E) for some E > 0 or

makes packets travel at least 2109N edges.

A more general result provides similar lower bounds on graphs which have

nearly-optimal diameter. This does not apply to the n-dimensional cube

which has diameter n, rather than the Iog2'1 =n that might be

expected. In fact, It is conjectured that a fast random routing algorithm

exists which only involves packets travelling a maximum distance close to

n. However, the result indicates that the introduction of the randomising

Randomised parallel computation schemes 	 30

phase is not merely a technical trick.

2.6 Multiple reads and writes

So far, the relations which have been implemented were restricted, in the

sense that no more than 0(d log N) packets could start or finish at any one

node of an N node network with degree d. This restriction is necessary so

that packets can depart and arrive fast enough to enable an 0(109 N)

overall time bound to be achieved. Even Ignoring timing aspects. It is

unlikely that any processor could handle more than 0(d log N) packets. In

this section. solutions to a pair of problems arising from this will be

considered. These are multiple reads, where a packet must be sent from

one source node to several destinations, and multiple writes, where

packets are sent from several source nodes to a common destination

prepared to accept only one packet. Because of the remarks above, it is

not adequate. in general, just to realise an h-relation with h Ocopleso of a

packet at a source. or destination, node respectively.

2. 6. 1 Multiple reads

Firstly, multiple reads will be considered. In order to implement these, a

smaller number of packets initially have to be copied and distributed to a

larger number of destinations. Since the copying cannot be done before

packets start their journey, it must be done while packets are being routed.

The idea is that a switching node now sends a packet along more than one

out edge when appropriate, thus ensuring that a correct number of copies

are ultimately delivered to their destinations. The question is whether this

rather different way of loading the network (although it should be recalled

that the final total number of packets is no more than for a normal

permutation) has an adverse effect on completion time. The following

theorem shows that it can if any significant copying Is done In the first

phase. However, a suitable algorithm Is then demonstrated which does the

copying in the second phase.

Theorem (2. 9): Suppose that a random routing network has the

property that, for some edge 9 and some constant d > 1. there

Randomised parallel computation schemes
	

31

are at least d 	nodes such that a random route from any of them

Intersects e with probability at least for 	any 	k such 	that

1 4 dk (N where N is the graph
d 1

size. 	Then, there Is a multiple

read operation which has fl(nE) completion time if each of N 8

Initial packets is copied NE times in the first phase. for any E 	8

such that E+O (1.

Proof: Consider a set of N 8 nodes which satisfy the property In

the statement of the theorem, and initially place one packet at

each. The probability that a random route from any of them

Intersects the distinguished edge e is at least dN° Since the

first phase destinations of NE copies of each packet must be

random and independent, the expected number of packets

traversing e is at least

8 	1 N N dN° =fl(NE).

Thus it is not possible to do much useful copying in the first phase. It is

easy to see that the theorem applies to both the cube (without random

ordering of route edges) and the d-shuffle. In the first case. d = 2 and for

any edge in the (k+1)th dimension, a suitable set of 2 nodes consists of

all nodes contained in the k-dimensional subcube formed by the lowest

order dimensions and containing the start node of the edge. in the second

case, d is the (constant) degree and for any edge, a suitable set of d

nodes consists of all nodes which have a d-ary representation a$. where a

k and the edge starts at fry for some .8 € d" and 'Y € dk € d 	 .

Now a suitable scheme for the n-dimensional cube will be described and

analysed. A similar scheme can be developed for the d-shuffle. The

Important change from previous algorithms is that now, instead of carrying

a single destination address, packets carry a non-empty = of destination

addresses. While a packet is being routed, a node may replicate it on

more than one output queue with the address set being partitioned among

the replicas. The algorithm will implement partial h-relations which, in this

context, are defined to have at most h packets at any one node at the

beginning and end of a run, that is no destination occurs in more than h

Randomised parallel computation schemes
	

32

destination sets. 	The first phase is the same as previously but, In the

second phase, a replica of each packet is sent to each node in its

destination set. To implement the copying. each routing node executes the

following

for each node a in parallel do begin

for each packet do begin

let T be the set of destinations of the packet

if a € T then begin

save packet as an arrival

T : = T \ (a)

end

let (T,,.T_1) be a partition of I such that

Tk=(TET I

k is the smallest dimension in which a and T differ)

for each non-empty Tk do begin

queue packet with destination set Tk for dimension k

end

end

end

From this, it can be seen that packets still follow the shortest route, and

a packet is not replicated until a divergence is necessary. The algorithm is

both oblivious and non-repeating. It can also be proved to be fast with

high probability, as follows

Theorem (2. 10): 	if the new algorithm is used to realise a

multiple read h-relation on an n-dimensional cube, the probability

that some packet Is delayed in one of the phases by at least

time units Is less than (
) A•

h2', where e is the base of

natural logarithms.

Proof: in the case of the (unchanged) first phase, the result

follows from the theorem of Valiant, stated earlier. The rest of

the proof refers to the second phase.

Suppose that initially there are a total of m packets with

Randomised parallel computation schemes
	

33

destination set sizes K,. . . - K m respectively.

Consider a fixed route B and name the edges of the graph so

that B = el e 1 . . . e 1 . where I. is the number of the dimension
12 	r

traversed by e 1 .

All packets which pass through edge e 1 = (u. v) must originate at

a node in L1 = (w I w and u are in the same subcube formed by the

I lowest order dimensions). lL 1 i = 2. and sc the probability that a

packet has an appropriate starting point is

Consider a packet X. if it starts at a random node In L, with K

destination addresses. the probability that it traverses dimensions

o.....I to u, then goes to v, is less than or equal to the

probability that at least one of K independent packets. each with

one destination address. would follow a similar route passing

through v, which is K. 21

Hence. if Pxi is the probability that a packet X intersects an edge

e 1 .

X

1 	
irK.2I1

= 2.2" 	
K

since there are (h2" destinations

and If P, is the probability that a packet X intersects at least one

edge of B.

X
r

E E PX1
X 1=1

r
= E E 'x

i=1 X

Randomised parallel compufetlon schemes
	

34

"fl—

2

Now consider a particular packet Y and let B be one of its

routes. There are rn-i other packets which may intersect

B. Since the scheme Is oblivious, rn-i independent trials with

probabilities summing to less than-J- can be considered. By a

theorem of Hoeffdlng [23], the probability of having at least A

successes is bounded above by B(&m-l. hn

2(m-i)) which is the

probability of having at least A successes in rn-i independent

trials each with success probability 	
hn

2(m-1)

Now, using an inequality due to Chernoff (1 1) that, for m > Np.

B(rn.N.p) 	
NP rn N-NP) Nfl
mN-m

and observing that (1 + _1_)c < e when x = N-rn-
x 	 rn-Np'

B(m.N.p)()
Np rn

.e
 rn-Np

rn

So the success probability is bounded by

hn e6't2 	
hen) A

2A 	 2A

Since there are at most h2" packets to consider, the probability

that one or more suffers a delay more than A is bounded by h2
n

times this number.

While the algorithm runs in logarithmic time. there is a further problem

which is implicit In the previous description. This is the amount of space

needed to represent the address set carried by the packet. Formerly.

0(log N) bits were sufficient but now, to achieve full generality. 0(N) bits

are required. This is liable to become an unacceptable overhead and,

unfortunately. it cannot be reduced if any node is to be able to broadcast a

packet to any set of nodes it wishes. Here, a few ways are considered for

reducing the space if various problem constraints are modified.

Firstly, It may be acceptable to place a bound f(N) on the size of the

Randomised parallel computation schemes 	 35

address set. 	Given this. O(f(N)log N) bits are needed. 	Such a

restriction may be reasonable if. for example. only more iocaiised, rather

than global, distribution of data is required. Also, there may be time

constraints on a processing node which preclude the generation of a large

set of destination addresses.

Secondly, a more compressed representation of addresses might be

possible, if the arbitrary addressing requirement is relaxed. One simple

approach is to allow address representations to be strings of symbols over

an alphabet augmented by a special'wild cardo symbol * which means that

any alphabet symbol may replace * in a string. For example. in a

five-dimensional cube, the address 1*00* could mean all nodes with

dimensions 1 and 2 zero and dimension 4 one or ***** could mean "au

nodes. More complicatedly, concise descriptions of certain interesting

sets, for example all nodes with prime indices, may be possible.

The key property which any compressed representation must have is that,

whenever a set is partitioned (and here the partitioning is dependent on the

routing scheme), It must be possible to obtain a concise representation for

each set in the partition. Clearly, examples such as the set of primes in

some range are highly unlikely to have this property. However, the "wild

card representation does, with respect to the cube routing scheme just

described. Occurrences of ms in the destination address can be removed

when a routing node makes two copies of a packet, containing a 0 or 1

respectively in the corresponding address position, and forwards them

along appropriate edges. A similar representation exists for the d-shuffle.

If all of the original destination sets do have concise representations but

the 	above 	property does 	not hold, 	a further 	technique 	might 	be 	to

dynamically compute the current address set of each packet at each node

on 	its 	route. 	This requires a fast algorithm which, 	given 	the original

destination set and the 	routing history of a packet. 	can determine the

current address set.

Lastly. the feasibility of a more radical change will be considered.

Randomised parallel computation echemes 	 36

Instead of storing address sets with the packet, they would be stored In the

only other possible place. namely at nodes. Because of the distributed

nature of the algorithm, the nodes must be those which the relevant packet

passes through. In order to store the data at the nodes, it is necessary to

modify the scheme so that, instead of one node broadcasting a packet, it

is assumed that all nodes which want a copy of the packet send a request

to the source node.

Then the Idea Is that, when several requests for the same packet meet at

a routing node, it remembers the addresses of the nodes which Issue the

requests and forwards a single request from Itself. When the packet is

delivered, it can retrace the paths followed by the requests in reverse

order, recovering addresses from the*distributed stack' as it proceeds.

Effectively, the whole process takes the form of a multiple write operation

followed by a multiple read operation. so further consideration of its use

must be postponed until multiple writes have been investigated.

However, note that packets need only carry O(log N) bits of data and, if

the network has degree d and routing time O(iog N) with high probability,

then the extra data stored at any node will require O(d log 2N) bits with high

probability. So this method does offer a prospect of useful gains, as well

as demonstrating an interesting algorithm employing a distributed stack.

2.6.2 Multiple writes

In implementing multiple writes, it Is necessary to arbitrate between

packets all destined for the same node This arbitration must be performed

during routing. rather than when all competing packets have arrived. As

long as it Is possible to define an associative arbitration operator on two

packets, distributed arbitration can be implemented. All of the common

mechanisms, for example 4select random winner, write logical OR of

data, write logical AND of data", are satisfactory In this respect.

The arbitration operator can be applied whenever two packets carrying the

same destination address meet at a routing node, resulting in a single

surviving packet. If packets are being routed to random destinations, the

Randomised parallel computation schemes 	 37

number of such arbitratlbie collisions Is necessarily small, since they

should be no more probable than any other collisions. The conclusion is

that arbitration must take place when packets are travelling to their final

destination (and are guaranteed to collide eventually if they are going to the

same node). Unfortunately. this proves to be the stumbling block in

implementing multiple writes, as the following inverted" form of theorem

(2. 9.) Indicates

Theorem (2. ii): Suppose a random routing network has the

property that. for some edge e and some constant d > 1, there

are at least d nodes such that a random route to any of them

Intersects a with probability > d1 for any k such that

1 (d 14 N. the graph size. Then there is a multiple write

operation which has fl(NE) completion time if initially each of No

destinations has NE competitors starting at random nodes, for any

E 0 such that E+8 1

Proof: Similar to that for theorem (2.9).

This means that it is not possible to extend the random routing scheme to

embrace multiple writes. Given that multiple writes extend the power of

parallel computers with a globally shared memory, it is perhaps not

surprising that they are harder on the model used here. Clearly, it is

possible to realise a great many useful multiple write permutations fast, for

example the OR of N elements. but certain pathological cases requiring.

say. f)(IN) time prevent the scheme being truly general purpose.

Returning to multiple reads with requests, the same remark applies. if

one is content with "acceptable" request patterns then, given a network

which has bidirectional routes, it is possible to implement multiple reads

fast without Increasing packet size. Given the fact that multiple reads

Increase storage requirements and multiple writes Increase time

requirements, a routing interpretation of the hierarchy normally associated

with Idealistic parallel models, that is

Randomised parallel computation schemea
	 38

multiple writes

> multiple reads

) single read/writes

becomes possible.

Experiments with parallel communication schemes 	 39

Chapter 3

Experiments with parallel communication schemes

3. 1 Introduction

In the previous chapter, good asymptotic bounds on the run time of

parallel communication schemes were obtained. However, the analyses

did not yield the tight multiplicative factors on these bounds which are

necessary when considering the performance for realistic (I. e. small)

numbers of processors. Furthermore. it is often necessary to place

restrictions on both the underlying graph, and the routing strategy, in order

to achieve the desired analytic result.

The role of this chapter Is to rectify these shortcomings by investigating

the behaviour of various schemes using serial simulation of the parallel

routing algorithms. All of the simulations were programmed in Pascal, and

run on a DEC VAX 11/780 computer. The program performed a series of

experiments, each measuring interesting statistics for a fixed permutation

request on a fixed graph. resulting In a set of distributions from which

useful observations could be made.

The "interesting statistics" collected were chosen to reflect the load put on

the network under circumstances of worst case (or perhaps, freak)

conditions. Thus. It is possible to predict the resources, and indeed

redundancy. required if a practical implementation was to be built. The

first measure, not surprisingly since it has been of central interest, is the

completion time, that is the time at which all packets have reached their

destinations. 	It has been predicted that this time will be moderate with

high, indeed asymptotically overwhelming, probability. 	Secondly. the

maximum number of packets simultaneously congregated at one node is

considered. This total Is made up of packets which have arrived at their

final destination and those which are queued for forwarding to neighbouring

Experiments with parallel communication schemes 	 40

nodes. From it. the amount of storage which must be provided with each

processor for buffering packets can be estimated. Finally, the maximum

queue length at any node is measured. This gives a useful indication of

whether bottlenecks are occurring in the network. In the context here, a

high value means that the routing algorithm is unwisely favouring a

particular node, or even an edge. for many routes.

In general. when a computer program is being tested for correctness, it

has a very large, possibly infinite, number of possible inputs. Therefore,

exhaustive testing is not possible and. as an alternative, extensive research

has been conducted into formal proof techniques over the last twenty years.

A similar, but rather different, problem is associated with the parallel

randomised algorithms being simulated here. It is assumed that the

programming is correct. and that packets reach their proper destinations,

but it is necessary to characterise various complexity measures precisely

and. in general. these might vary with each different input.

Traditionally, complexity theory copes with this problem by considering

either the worst case or expected value of a measure over all inputs. Two

difficulties with such an approach arise here. Firstly, the inamenability of

the algorithms to mathematical analysis has led to this measurement by

"running the program" and it is not usually possible to identify a set of worst

case inputs. Secondly, because of the randomised nature of the

algorithms, the complexity measures vary over each possible input and it is

necessary to consider worst case or expected values of distributions of

worst case or expected values.

The second difficulty is handled by repeating an experiment many times

within a particular simulation so that a close approximation to the actual

distribution is obtained by considering an appropriately large sample size.

In the results presented here, the distribution of a measure will generally

be characterised by its mean, variance, and maximum value. The

maximum value Is, of course, a less robust measure than the other two in

that the observed value will generally be dependent on the sample size

chosen. It is included here In order to give some information about the

Experiments with parallel communication schemes 	 41

range of the observed distribution since space restrictions preclude the

tabulation of all observations.

The first difficulty, while seemingly Insurmountable without enumeration of

all inputs, that is all reiations. Is luckily dealt with by the observation that

many of the algorithms have a remarkable and unusual property

Definition (3. 1): An algorithm is testable if, for all inputs, its

behaviour, as reflected by some set of complexity measures. is

the same.

In particular, randomised algorithms have the same distributions of the

complexity measures for all inputs. Clearly, there is no analogous concept

for program proving, except in the case where a program ignores its input.

Thus, by considering only one particular input, which can be chosen to

be as trivial as possible. positive statements about program behaviour can

be made. Note that this powerful technique should not be confused with

the practice of running a program on a suspected Obad inputa, which gives

no general information.

Unfortunately, not all of the algorithms described so far, or to be

described, are testable. In these cases, it is sometimes possible to obtain

results by identifying phases with calculable worst case inputs and

combining these with other testable phases in a mixed simulation.

The form of the simulating program is. therefore, as follows

for I : = 1 to sample size do begin

simulate parallel routing algorithm for identity relation

store completion time, max. node population, max. queue size

end

analyse statistical distributions

The relations simulated are, in fact, usually total permutations. it is fairly

obvious that

Experiments with parallel communication schemes 	 42

Lemma (3.2): Both phases of the standard randomised routing

algorithm for total permutations are testable.

Proof: In the first phase. one packet Is sent from each node to

a random destination; this is independent of the input

permutation, in the second phase. one packet is sent to each

node from a random source; this is similarly independent of the

Input, as long as each source with more than one packet

transmits them In a random order.

The lemma easily generailses to the case of total h-relations for fixed h

and indeed to each class of partial h-relations with fixed size initial and

final packet distributions. Clearly, there is no testable algorithm which

Implements All h-relations, so attention is primarily restricted here to total

1-relations, that is permutations. However, the effect of increasing h is

Investigated for certain fixed graphs.

In the simulation, the routing of packets through the processor network is

Implemented slightly differently from the way described earlier. There.

each packet carried a destination address and Intermediate nodes deduced

from this which edge to forward the packet along. Here, the source node

precomputes the sequence of edges which the packet will follow. This

means, in general, that forwarding nodes do significantly less computing at

the expense of Increased packet size and increased initial computation. In

a practical system. this may be desirable.

Sometimes, precomputation of routes can lead to optimisations. 	For

example. consider a 2-shuffle graph in which a packet has to be routed

from 00101 to 10111. The normal shifting algorithm would choose the path

00101 -> 01011 -, 10110 -> 01101 -> 11011 -> 10111

whereas an optimising source node could select

00101 -> 01011 -> 10111

The d-shuffle graph also has the pleasant feature that packet size need not

be increased to implement this scheme, since the destination size is never

smaller than an edge sequence description. Conversely, of course, an

Experiments with parallel communication schemes 	 43

algorithm might be speeded up by delaying the choice of route if It was

non-oblivious.

The simulation of the algorithm proceeds as a sequence of parallel

computation steps until all packets have arrived. At each step, a packet is

removed from each non-empty queue at each node, and transferred to

either an arrivals set or a forwarding queue at the next node on its route.

In succeeding sections of this chapter. experimental results are presented

and discussed. Firstly. n-dimensional cubes and d-shuffles, both

analysed previously, are examined and then several other graphs which

have attracted interest in connection with parallel computation are

Introduced. A comparison of all these graphs as suitable frameworks for

parallel computation schemes follows. Then, variations of routing strategy,

number of queues. queueing discipline, and pipelining of phases. are

considered. These are mainly motivated by various restrictions necessary

to obtain analytic proofs. All of these experiments involve implementation

of permutations, then examples of more general h-relations are

Investigated briefly. Finally, some points of experimental method are

checked. namely the suitability of the random number generator used, the

correctness of the testability assumption, and the choice of sample size.

3.2 The n-dimensional cube

In this sectIon, the realisation of permutations on cubes of size 22. 2.
212 is considered. The standard two-phase routing scheme is

employed, with the second phase starting after the first is complete. In

each phase, all packets traverse edges between source and destination in

a random order of dimensions. Queues are organised on a first-in first-out

basis, apart from the randomisation of queues between phases to ensure

testability.

The experimental results are presented here using statistical summaries.

Tabulation of Individual results will only be employed when it is convenient

to compare the effect of different algorithms visually.

Experiments with parallel communication schemes
	

44

No. dimensions Mean Variance

2 1.69 0.22
3 2.72 0.28
4 3.83 0.30
5 4.91 0.36
6 6.04 0.31
7 7.06 0.31
8 8.15 0.32
9 9.19 0.30
10 10.27 0.32
11 11.28 0.26
12 12.30 0.26

Table 3-1: 	Time for 1st phase on cube

No. dimensions Mean Variance

2 1.80 0.39
3 2.92 0.42
4 4.04 0.42
5 5,11 0.42
6 6.25 0.39
7 7.24 0.35
8 8.36 0.40
9 9.39 0.39
10 10.43 0.35
11 11.45 0.32
12 12.46 0.32

Table 3-2: 	Time for 2nd phase on cube

No. dimensions Mean Variance

2 3.48 1.13
3 5.65 1.15
4 7.87 1.04
5 10.02 1.13
6 12.29 0.83
7 14.30 0.86
8 16.51 0.83
9 18.58 0.72
10 20.71 0.75
11 22.73 0.63
12 24.76 0.59

Maximum

2
4
6
7
8
9
10
11
12
13
14

Maximum

3
5
6
8
8
10
11
12
13
13
15

Maximum

5
8
11
15
15
17
19
22
24
26
28

Table 3-3: Total time for both phases on cube

The completion time results provide encouraging evidence that the cube

Experiments with parallel communication schemes 	 45

routing algorithm Is extremely efficient. 	They indicate that the mean

completion time for each phase can be expressed In the form (1+E)n-a,

where n is the number of dimensions. E Is a phase-independent constant

close to zero. and a is a phase-dependent constant in the range (0.0. 5.

larger for the first phase than the second. The mean completion time of a

routing Is therefore 2(1+E)n-(a 1 +a2) and, estimating the constants from

the numerical results, this time is upper bounded by 2. 2n.

The relationship (1+E)n-a corresponds reasonably well with an Intuitive

view of how the cube algorithm should work. Considering the packet which

has the longest delivery time, it Is reasonable to assume that it is

traversing all n dimensions. Then its Journey time may be obtained by

totalling the number of time units in which it appears at each node en

route. Given a very low probability of collisions, the duration of each stay

should average 1+E for a small E. The constant a reflects experiments In

which no maximum route occurs. the fact that collision probabilities reduce

as the worst case packet proceeds, and the difference between phases. In

that queues have size one uniformly at the start of the first phase. The first

two reasons would suggest that a should In fact be a very slowly growing

function of n rather than a constant but, within the constraints of

experimental error and feasible sizes of n, it was not possible to verify this.

Later, experimental results from other graphs will provide more Intuition.

Of course, the mere fact that the mean completion time is good does not

Indicate that the algorithm performs well almost always. However, a

consideration of the variance indicates that the distribution of completion

time is sharply peaked around the mean. in both phases, the variance is

smaller than 0. 5, and does not appear to depend on the size of the cube

used. The slightly smaller variance for the first phase reflects the slightly

more predictable nature of it, given that it always starts with one packet at

each node at a particular time Interval.

The variance of the total run time decreases with n. and is below one for

cubes with more than 32 nodes. The decrease is double the decrease in

the covariance of the first and second phase run times. Since the second

Experiments with parallel communication schemes 	 46

phase is always run on input provided by the first phase. these two times

are clearly not Independent. Indeed, because the identity permutation is

being implemented. the second phase routes are simply random

reorderings of the first phase routes. However, as the cube size

Increases. the redistribution of packets during a phase becomes

Increasingly complex. meaning that the impact of initial coupling between

phases Is lessened and hence independence is more nearly achieved. In

fact, for the 4096 node cube, the run time covarlance is reduced to 0.0

(although this does not imply independence).

Finally, examining the extremes of the run time distribution, it can be

noted that the maximum value never exceeded n+2 for the first phase or n+3

for the second phase. Apart from the two dimensional cube, which has a

very restricted distribution, the maximum value never account for more than

2% (more typically < 1%) of the experiments. Therefore, regarding the

maximum as a worst case complexity measure, the algorithm in practice is

fast always.

From these empirical considerations, a probable upper bound on

completion time, with overwhelming probability. is U(n) = (1+€)n+c, where

C is less than 0.1 and c = 3 or 4. Compare this with U(n) = (1+K)n.

where K is*sufficiently large, for example 4. 5, proved analytically for the

cube.

No. dimensions Mean Variance 	 Maximum

2 2.24 0.28 	 4
3 2.82 0.51 	 6
4 3.43 0.51 	 7
5 4.05 0.61 	 7
6 4.47 0.43 	 6
7 4.94 0.51 	 8
8 5.35 0.43 	 8
9 5.71 0.48 	 9
10 6.17 0.39 	 8
11 6.55 0.38 	 9
12 6.91 0.48 	 10

Table 3-4: Max node populations for 1st phase on cube

Experiments with parallel communication schemes
	

47

No. dimensions Mean 	 Variance Maximum

2 2.19 	 0.26 4

3 2.70 	 0.51 6
4 3.26 	 0.49 7

5 3.85 	 0.55 7

6 4.23 	 0.37 6

7 4.67 	 0.46 8

8 5.10 	 0.39 7

9 5.45 	 0.40 8
10 5.88 	 0.42 8
11 6.23 	 0.33 8
12 6.56 	 0.38 10

Table 3-5: Max node populations for 2nd phase on cube

From the tables of maximum node populations, it can be seen that the

amount of local storage needed in nodes is relatively modest. For both

phases, the mean Increases linearly with the number of dimensions, in two

stages. Up to five dimensions, the mean Is approximately 0. 6n+c 1 : above

five dimensions, it is approximately 0.4n+c2
1

in each stage, the first

phase mean grows slightly faster than the second.

Recalling that the node population cosists of packets on the n queues for

other nodes together with packets which have arrived at their destination,

some observations can be made about this relationship. At first. It is

tempting to argue that its linear nature is caused by the fact that the

number of queues, and hence opportunities for packet storage, increases

linearly. However, assuming that the routing scheme is reasonably

balanced as desired, the expected traffic through one node is one packet

per time Interval and does not increase with n. Although the cube provides

an out degree of n. the perceived advantage is to offer more opportunities

for disjoint routes, rather than have all n out edges at a node in use

simultaneously. indeed, consideration of fixed degree graphs in the next

section will reveal that the linear relationship still holds.

Also, the number of arriving packets does not increase with n for the

second phase, where it is always precisely one per node, in the first

phase, the contribution from arriving packets will be larger, but only

Experiments with parallel communication schemes 	 48

significant when packets are arriving while routing Is still proceeding on a

significant scale. This can happen for the cube routing algorithm because

routes do not have uniform length. and the slightly higher mean maximum

node populations for the first phase may be explained by this phenomenon.

More detailed simulations indicate that. In the first phase, the time

Interval at which the maximum node population occurs is fairly evenly

distributed throughout the run. However. in the second phase. the

maximum occurs in the initial distribution of packets In a large number of

experiments. Given that both phases have some point at which packets are

uniformly distributed about the network. it appears that maximum node

populations will occur at the point at which packets are most randomly

distributed, in the absence of imbalances leading to bottlenecks. In the

first phase, the combination of routing queues and arrivals at their random

destination can increase this maximum. Intuitively then, maximum node

population is determined by the number of packets and number of nodes.

Empirically, the hypothesis advanced now, and investigated further in later

sections. is that mean maximum node population for permutations is

logarithmically related to the number of packets.

Since the node population distribution between phases can be

characterised precisely, it Is instructive to examine this distribution In order

to assess how much queueing problems affect node population. In a

network with N nodes, the relevant distribution is a muitlnomiai distribution

with N equiprobable outcomes and N trials, and it is necessary to examine

the distribution of the maximum number of successes atributed to one

outcome. Analytically, this involves twofold problems. Firstly, estimating

the distribution of the maximum of a collection of random variables is

usually hard. Nair (37] tackles the problem of the extremes of a distribution

(with significance testing in mind) but here, for example. such features as

the mean are of interest. Secondly, estimating features of the multinomial

distribution is also hard, apart from a few isolated properties such as the

marginal distributions which are binomial (17]. Johnson and Young (26]

Investigate approximations to the multlnomial distributions but, again, these

are concerned with the upper tail. Combining the two problems, David and

Experiments with parallel communication schemes 	 49

Barton (153 do investigate approximations to the largest muitinomiai

frequency but these are best for more extreme values of the distribution.

Therefore. continuing in the spirit of this chapter, the distribution is

examined using Monte Carlo methods. This type of technique has been

suggested as an aid when investigating more Intractible distributions, for

example by Good in (21]. The table gives a summary of the distribution of

maximum successes observed during 500 tests of a muitlnomial distribution

with N outcomes and N trials for N = 2 2 212 .

N Mean Variance Maximum

4 2.10 0.34 4

8 2.66 0.53 5

16 3.07 0.57 6

32 3.54 0.55 6

64 3.95 0.68 7

128 4.34 0.49 7
256 4.78 0.50 7
512 5.11 0.54 9

1024 5.56 0.51 9
2048 5.86 0.51 8
4096 6.22 0.43 9

Table 3-6: Distribution of maximum number of muitiriomiai successes

It can be seen that the distribution of maximum node populations for the

cube is close to those for the pure random distribution, but growing with

the dimensionality of the cube at a slightly larger rate. This indicates that

populations due to queueing are not having a particularly large effect.

The apparently different rate of growth for smaller cubes is due to the fact

that an insufficient number of node populations are sampled during a run

(for example, less than 100 for a four dimensional cube) to reflect the true

tails of the worst case node population. The mean is therefore artificially

low. Approximately. the correct mean is 0. 4n+2.

The variance of the distribution is less than 0. 5. in almost all cases. and

does not increase with n. Therefore, the space requirement also has a

Experiments with parallel communication schemes 	 50

sharp distribution. The worst maximum node population, which normally

occurs in less than 5% of the experiments, is never more than the mean

plus 3. 5. It Is less than n for all n greater than eight.

No. dimensions Mean Variance 	 Maximum

2 1.00 0.00 1
3 1.15 0.13 3
4 1.50 0.27 3
5 1.93 0.17 3
6 2.10 0.10 4
7 2.31 0.22 4
8 2.56 0.27 4
9 2.82 0.22 5
10 3.02 0.12 5
11 3.10 0.10 5
12 3.16 0.14 5

Table 3-7: Max queue length for 1st phase on cube

No. dimensions Mean Variance 	 Maximum

2 1.24 0.19 2
3 1.57 0.29 3
4 1.97 0.20 4
5 2.16 0.18 4
6 2.31 0.24 4
7 2.49 0.27 4
8 2.74 0.27 4
9 2.98 0.17 4
10 3.07 0.09 6
11 3.16 0.14 5
12 3.23 0.18 5

Table 3-8: Max queue length for 2nd phase on cube

In the previous discussion, it has been deduced that not much congestion

occurs and hence queue lengths are normally at most one. The tabulated

results show that even the worst case queue length during a run is normally

small. For both phases, the growth of the mean is smaller than the

number of dimensions. n. Because the range of mean values obtained for

n between 2 and 12 is so small, it is not reasonable to. place any more

detailed functional interpretation on the values, which have a higher relative

Experiments with parallel communication schemes 	 51

error than usual.

Having observed that the maximum node population grows linearly with n,

clearly the mean maximum queue length grows no faster. Indeed, since

routes of packets meeting at a node are random, they will be randomly

distributed among the n queues. Just as the entire network appears to

have maximum node populations when packets are randomly distributed, the

behaviour of a particular node can be viewed in a similar way, except that It

has n trials with success probability -i--. rather than
2n

 trials with success

probability Given the previous empirical result, the expected mean of

the maximum queue length would be O(iog n), which Is consistent with the

observations.

The mean for the second phase is always higher than that for the first. It

can be seen that, for each n) 4. the second phase mean for n

dimensions is approximately equal to the first phase mean for n+1

dimensions. In view of the remark made when considering completion

time, that the first stage of the first phase was different in the sense that

packets had a non-random uniform distribution, this might suggest that the

maximum queue length was, in fact, related to route length rather than

number of routes. However, more detailed simulations Indicate that, in

most experiments, a maximum queue appears after the first step in the first

phase and Initially in the second phase. This indicates that path length Is

not relevant. If this'correlation' is indeed significant, then the increasing

degree Is a more likely cause.

The difference between initial distributions in the two phases does account

for the (decreasing) difference between the means. The Increased mean

In the second phase is due to the initial queues. which are unnatural in the

sense that they do not evolve during routing. As n grows, bad routing

queues are more likely than bad Initial queues, and bad queues are less

likely because more queues are available to share the load at bad nodes.

All the values obtained, for maximum queue length are contained in a

small range and, for each n, are tightly grouped around the mean with

1

Experiments with parallel communication schemes 	 52

small variance. On only one occasion, a queue of length six occurred; in

the same phase of the set of experiments, no other queue length exceeded

four. No serious effect on completion time resulted from it.

This concludes the examination of the standard routing algorithm for the

n-dimensional cube. it has been seen that the scheme is sufficiently

balanced that collisions are relatively infrequent. The expected run time is

close to the ideal and the number of buffers required for queueing at any

node is less than the number of out edges. Of course, the major

disadvantage of the cube Is the fact that it has degree logarithmic in the

number of nodes. In the next section, the d-shuffle, which can have

constant degree but retain logarithmic diameter, will be considered

experimentally.

3.3 The d-shuttle

The experiments in this section involve the realisation of permutations on

d-shuffle graphs with degree 2.3.....10 and up to 4096 nodes, using the

standard two-phase routing scheme. In each phase, all packets traverse

exactly logdN edges. where N Is the graph size, between source and

destination. Queues are organised on a first-in first-out basis, with

randomisation between phases.

Altogether. 39 different graphs are considered. The usual measures are

tabulated, with graphs grouped by degree.

Considering the whole set of graphs, the most interesting fact to emerge

Is that the 3-shuffle graph can almost match the completion times of the

correspondingly sized cube, and that higher degree d-shuffles all beat the

cube. Since a severe restriction on connectivity has been made, this is a

very encouraging result. It tends to confirm the expectation, expressed

earlier, that cube edges are unused most of the time. The d-shuffle

routing must be making far greater use of edges, while not significantly

Increasing the probability of routes colliding.

Comparing graphs with differing degrees, it can be seen that the

Experiments with parallel communication schemes 53

Degree Diameter Size Mean Variance Maximum

2 2 4 2.45 0.25 3
3 8 4.14 0.32 6
4 16 5.86 0.51 9
5 32 7.55 0.54 10
6 64 9.41 0.59 12
7 128 11.33 0.71 15
8 256 13.16 0.76 16
9 512 15.19 0.99 22
10 1024 17.11 0.99 25
11 2048 19.00 0.89 24
12 4096 20.97 1.01 27

3 2 9 2.70 0.25 4
3 27 4.39 0.32 7
4 81 6.38 0.36 9
5 243 8.21 0.38 11
6 729 10.14 0.40 13
7 2187 12.10 0.43 15

4 2 16 2.82 0.23 4
3 64 4.62 0.34 6
4 256 6.47 0.31 8
5 1024 8.46 0.37 11
6 4096 10.38 0.31 13

5 2 25 2.94 0.18 4
3 125 4.73 0.31 7
4 625 6.63 0.36 9
5 3125 8.55 0.35 11

6 2 36 3.01 0.15 4
3 216 4.86 0.28 7
4 1296 6.76 0.33 9

7 2 49 3.03 0.15 4
3 343 4.89 0; 22 6
4 2401 6.75 0.30 9

8 2 64 3.06 0.12 4
3 512 4.92 0.17 6
4 4096 6.85 0.22 8

9 2 81 3.11 0.15 6
3 729 4.95 0.15 6

10 2 100 3.10 0.11 4
3 1000 5.00 0.10 6

Table 3-9: Time for 1st phase on d-shuffle

Experiments with parallel communication schemes 54

Degree Diameter Size Mean Variance Maximum

2 2 4 2.45 0.25 3
3 8 4.23 0.40 7
4 16 5.99 0.54 9
5 32 7.92 0.68 13
6 64 9.84 0.69 12
7 128 11.83 0.90 19
8 256 13.81 0.86 18
9 512 15.77 0.95 20
10 1024 17.66 0.83 21
11 2048 19.60 0.85 24
12 4096 21.63 0.87 26

3 2 9 2.70 0.25 4
3 27 4.58 0.34 6
4 81 6.56 0.42 9
5 243 8.54 0.43 11
6 .729 10.48 0.43 14
7 2187 12.42 0.47 15

4 2 16 2.85 0.24 4
3 64 4.79 0.35 7
4 256 6.77 0.33 9
5 1024 8.66 0.35 11
6 4096 10.64 0.35 13

5 2 25 2.95 0.19 4
3 125 4.90 0.24 7
4 625 6.86 0.31 9
5 3125 8.79 0.32 11

6 2 36 2.99 0.16 5
3 216 5.01 0.19 7
4 1296 6.95 0.19 9

7 2 49 3.05 0.16 6
3 343 5.05 0.15 6
4 2401 7.01 0.20 9

8 2 64 3.04 0.10 4
3 512 5.06 0.13 7
4 4096 7.04 0.13 9

9 2 81 3.10 0.15 4
3 729 5.11 0.13 7

10 2 100 3.10 0.15 4
3 1000 5.09 0.11 6

Table 3-10: Time for 2nd phase on d-shuffle

Experiments with parallel communication schemes 55

Degree Diameter Size Mean Variance Maximum

2 2 4 4.89 0.50 6
3 8 8.37 0.85 13
4 16 11.85 1.18 16
5 32 15.48 1.32 20
6 64 19.25 1.49 24
7 128 23.17 1.67 31
8 256 26.97 1.68 32
9 512 30.97 1.88 38
10 1024 34.77 1.79 42
11 2048 38.60 1.70 44
12 4096 42.61 1.82 48

3 2 9 5.40 0.50 7
3 27 8.97 0.73 13
4 81 12.95 0.80 16
5 243 16.75 0.79 20
6 729 20.63 0.78 24
7 2187 24.52 0.86 27

4 2 16 5.67 0.47 7
3 64 9.41 0.71 12
4 256 13.24 0.68 17
5 1024 17.13 0.76 20
6 4096 21.02 0.67 23

5 2 25 5.89 0.38 8
3 125 9.63 0.56 12
4 625 13.49 0.71 17
5 3125 17.34 0.67 20

6 2 36 6.00 0.31 8
3 216 9.87 0.47 13
4 1296 13.71 0.53 16

7 2 49 6.08 0.33 10
3 343 9.94 0.37 12
4 2401 13.77 0.52 16

8 2 64 6.10 0.22 8
3 512 9.97 0.30 12
4 4096 13.89 0.36 16

9 2 81 6.21 0.28 9
3 729 10.06 0.27 12

10 2 100 6.20 0.25 9
3 1000 10.09 0.20 12

Table 3-11: Total time for both phases on d-shuffle

Experiments with parallel communication schemes 	 56

completion time always grows at slightly less than double the rate of

Increase in diameter. It is pleasant that the factor of two is approximately

Independent of the degree, but it compares with a factor of one for the

cube with corresponding diameter. This is not unexpected because, on

average, the routing algorithm for the d-shuffle sends packets twice as far

as that for the cube. While a worst case packet will travel the same

distance on either graph. there is half as much total traffic to interfere with

It. Further. long distance packets are sufficiently rare on the cube that

the probability of them being involved in an occasional collision Is very

small. For the d-shuffle however, the completion time is always composed

of the diameter added to the maximum number of delays incurred by any

one packet.

To estimate the worst case Journey time for a packet, its journey length

must therefore be taken into consideration. This is trivial for the d-shuffle,

and the results obtained indicate that a bad (I. e. frequently colliding)

packet is delayed on average for one time interval at each node on route.

Applying this observation, which holds for all degrees. to the cube, a bad

packet with the mean Journey length -s-- would still complete inside time

n. As a working hypothesis, it is suggested that the expected completion

time grows at about double the rate of increase in expected route length on

a randomised routing scheme which is reasonably balanced.,

A closer study of the d-shuffle results shows variations between degrees

and phases for any fixed diameter. As the degree increases, the

completion time increases siightiy. This increase is largest by far when

going from degree two to three. The cause is that the total number of

packets Is of course increasing with d. Hence, the number of opportunities

for collisions at a particular node is increased. As the Inter-packet

collision probability is small given a balanced scheme, only a small

contribution to completion time is expected from this fact.

The completion time for the second phase is always slightly greater than

that for the first, with the difference becoming smaller with increasing

degree. For sufficiently large graph sizes (more than 200 nodes) the

Experiments with parallel communication schemes 	 57

difference Is constant as diameter Increases. 	As usual. this can be

explained by the Initial distributions at the start of the second phase. With

lower degree. there are fewer queues and so a bad packet suffers an

additional inital queueing delay if it starts at a relatively highly populated

node.

Looking at the whole distribution of completion time for d-shuffle graphs.

It can be seen that those for degrees two and three are less sharply peaked

than those for the cube. However, for higher degrees, the distributions

are very closely packed. This is an indication that. when connectivity Is

severely restricted, the much-feared bottlenecks do occur, albeit rarely.

Even for larger sizes of the 2-shuffle, where the maximum observed value

Is as much as five or six greater than the mean, the upper tail is shallow

with never more than 2% of the completion times more than three greater

thark the mean. This is reflected in the variance, which never exceeds one

In any phase. It is noticeable that the variance apparently increases with n

and flattens out when n is large enough. Again, this is due to experiments

on small size graphs not being large enough to reflect probability

distributions of events accurately; in this case, extremes of queueing do

not occur frequently enough.

The maximum value for completion time of the two phases is never more

than 4n+3 and, for most graphs, is less than or equal to 4n. Considering

phases independently, completion times of up to 2n+5 occurred. but In

none of the experiments did two worst case phases occur in the same run.

This Indicates that bad packets are probably independent between phases.

Confirming this. the covariance of the phase completion times is always

small, and tends towards zero as the diameter increases.

So. for any d-shuffle graph with degree larger than four, an improved run

time distribution is achieved over the cube. The next results will indicate

whether this improvement is achieved at the expense of resources at

nodes.

The maximum node population tables show that a small amount of storage

Experiments with parallel communication schemes 	 58

Degree Diameter Size Mean Variance Maximum

2 2 4 2.16 0.28 4
3 8 2.70 0.50 6
4 16 3.27 0.41 5
5 32 3.65 0.44 7
6 64 4.17 0.47 7
7 128 4.59 0.43 7
8 256 5.02 0.53 8
9 512 5.46 0.46 8
10 1024 5.82 0.42 8
11 2048 6.21 0.44 10
12 4096 6.62 0.48 9

3 2 9 2.80 0.42 5
3 27 3.52 0.46 7
4 81 4.35 0.47 7
5 243 4.93 0.50 8
6 729 5.54 0.42 9
7 2187 6.13 0.36 8

4 2 16 3.24 0.39 5
3 64 4.15 0.42 7
4 256 4.95 0.47 8
5 1024 5.72 0.46 8
6 4096 6.45 0.42 10

5 2 25 3.58 0.49 6
3 125 4.43 0.45 7
4 625 5.41 0.40 8
5 3125 6.36 0.42 9

6 2 36 3.78 0.52 6
3 216 4.89 0.58 8
4 1296 5.83 0.44 8

7 2 49 4.01 0.45 7
3 343 5.14 0.45 8
4 2401 6.19 0.37 9

8 2 64 4.17 0.49 7
3 512 5.42 0.38 8
4 4096 6.42 0.36 10

9 2 81 4.36 0.49 7
3 729 5.58 0.49 9

10 2 100 4.48 0.47 7
3 1000 5.79 0.47 9

Table 3-12: Max node population for 1st phase on d-shuffle

Experiments with parallel communication schemes 59

Degree Diameter Size Mean Variance Maximum

2 2 4 2.17 0.29 4
3 8 2.71 0.51 6
4 16 3.26 0.41 5
5 32 3.67 0.45 7
6 64 4.16 0.47 7
7 128 4.61 0.51 8
8 256 5.01 0.56 8
9 512 5.47 0.47 8
10 1024 5.77 0.47 8
11 2048 6.18 0.51 10
12 4096 6.55 0.47 10

3 2 9 2.78 0.43 5
3 27 3.49 0.47 6
4 81 4.31 0.47 7
5 243 4.94 0.51 8
6 729 5.55 0.48 9
7 2187 6.06 0.42 8

4 2 16 3.18 0.41 5
3 64 4.12 0.49 7
4 256 4.92 0.51 8
5 1024 5.67 0.47 8
6 4096 6.40 0.39 10

5 2 25 3.53 0.49 6
3 125 4.43 0.45 7
4 625 5.39 0.41 8
5 3125 6.26 0.41 9

6 2 36 3.68 0.50 6
3 216 4.86 0.58 8
4 1296 5.81 0.42 8

7 2 49 3.88 0.49 7
3 343 5.11 0.47 8
4 2401 6.11 0.44 8

8 2 64 4.10 0.49 7
3 512 5.32 0.39 7
4 4096 6.38 0.38 10

9 2 81 4.28 0.49 7
3 729 5.51 0.52 9

10 2 100 4.33 0.45 7
3 1000 5.66 0.51 9

Table 3-13: Max node population for 2nd phase on d-shuffle

Experiments with pare)!.t communication schemes 	 60

is still sufficient at each node when a d-shuffle graph is used. 	The

interesting feature is that. for a particular graph size, the maximum node

population is approximately the same, independent of both degree and

diameter. Indeed, the results are approximately the same as those

observed for the cube. Thus, they give substantial supporting evidence to

the hypothesis that maximum node population is logarithmically related to

graph size for any balanced random routing scheme.

Also, it can be noted that there is very little difference between the two

phases. This is consistent with the view that arrivals do not influence this

measure a great deal. Since all packets travel a uniform distance, it is not

expected that a cluster of arrivals in the first phase will have gathered in

time to have an impact on packets in transit.

A slight decrease in mean population between d-shuffle graphs with

Increasing degree (in particular between the 2-shuffle and the others) and

the same size can be observed. This might be attributed to either higher

degree or lower diameter. Since the second phase results for the 2-shuffle

and the cube are so remarkably consistent, it is reasonable to assume that

the degree Is not significant. Also, this indicates that the diameter, in the

context of path length or completion time. is not significant. In fact, closer

study of when maximum node populations occur indicate that, for higher

degree d-shuffles. random distribution of packets Is more frequently the

cause rather than routing problems. Therefore, the gain In performance

over the cube may be attributed to slightly better balance, as well as the

more obvious reduction in path length. This, of course. assumes that the

number of queues at a node is not a great handicap.

In all the experiments, the distribution is sharply peaked around the mean

and the variances are similar. As was observed for the cube, the worst

case maximum node population never exceeds the mean plus 3.5. Of

course. the number of buffers required is no longer less than one per out

edge, but that is because out edges (presumably more expensive) are

being saved.

Experiments with parallel communication schemes 61

Degree Diameter Size Mean Variance Maximum

2 2 4 1.45 0.25 2
3 8 1.98 0.14 3
4 16 2.23 0.20 4
5 32 2.52 0.30 4
6 64 2.97 0.28 5
7 128 3.34 0.28 6
8 256 3.72 0.37 6
9 512 4.16 0.39 7
10 1024 4.51 0.41 7
11 2048 4.93 0.44 7
12 4096 5.33 0.42 8

3 2 9 1.70 0.25 3
3 27 2.21 0.18 4
4 81 2.84 0.26 5
5 243 3.24 0.23 6
6 729 3.72 0.35 6
7 2187 4.30 0.28 7

4 2 16 1.82 0.23 3
3 64 2.42 0.26 4
4 256 3.07 0.15 5
5 1024 3.57 0.34 6
6 4096 4.20 0.22 7

5 2 25 1.94 0.18 3
3 125 2.54 0.28 4
4 625 3.20 0.18 5
5 3125 3.85 0.27 6

6 2 36 2.01 0.15 3
3 216 2.72 0.29 5
4 1296 3.25 0.20 5

7 2 49 2.03 0.15 3
3 343 2.78 0.23 4
4 2401 3.34 0.24 5

8 2 64 2.06 0.12 3
3 512 2.84 0.18 4
4 4096 3.40 0.26 5

9 2 81 2.11 0.15 5
3 729 2.88 0.15 4

10 2 100 2.10 0.11 3
3 1000 2.96 0.13 4

Table 3-14: Max queue size for 1st phase on d-shuffie

Experiments with parallel communication schemes 	 62

Degree Diameter Size Mean Variance Maximum

2 2 4 145 0.25 2
3 8 2.08 0.25 4
4 16 2.45 0.33 4
5 32 2.92 0.29 5
6 64 3.33 0.37 6
7 128 3.75 0.47 7
8 256 4.16 0.40 7
9 512 4.54 0.42 7
10 1024 4.92 0.43 8
11 2048 5.31 0.47 8
12 4096 5.64 0.50 10

3 2 9 1.70 0.29 3
3 27 2.34 0.28 4
4 81 2.97 0.30 5
5 243 3.44 0.32 5
6 729 4.05 0.36 7
7 2187 4.51 0.33 7

4 2 16 1.85 0.24 3
3 64 2.49 0.31 5
4 256 3.21 0.24 5
5 1024 3.82 0.29 5
6 4096 4.32 0.23 6

5 2 25 1.95 0.19 3
3 125 2.63 0.28 4
4 625 3.27 0.22 5
5 3125 3.96 0.21 7

6 2 36 1.99 0.18 4
3 216 2.72 0.29 5
4 1296 3.36 0.27 5

7 2 49 2.05 0.16 5
3 343 2.80 0.26 4
4 2401 3.44 0.29 6

8 2 64 2.04 0.10 3
3 512 2.90 0.19 5
4 4096 3.51 0.28 5

9 2 81 2.10 0.12 3
3 729 2.92 0.20 4

10 2 100 2.10 0.14 4
3 1000 2.97 0.13 4

Table 3-15: Max queue length for 2nd phase on d-shuffle

Experiments with parallel communication schemes 	 63

As would be expected. the distributions of maximum queue length for the

d-shuffle graphs differ from that for the cube. It has been shown that

maximum node populations do not vary significantly with type of graph and

so. when the degree and hence number of queues is reduced. queue

lengths must be increased. Of course, if completion times and storage

requirements are still acceptable, maximum queue lengths need not be a

worry but It is interesting to examine them to see whether packets flow fairly

freely in the network.

For any fixed degree, the mean maximum queue length can be seen to

grow linearly with the diameter (for those d-shuffle graphs tested with a

reasonable number of different diameters). However, the multiplicative

factor varies with the degree. It is noticeably smaller for the 2-shuffle - and

appears to decrease more slowly for higher degrees. This behaviour

corresponds to the intuition obtained from consideration of queue lengths in

terms of individual nodes, In which the node population (of size K log d' in

the worst case) is randomly distributed among d queues. For fixed d. one

would expect the queue lengths, including the worst queue length, to grow

with n. which is the diameter. Since the node population grows with log d

for fixed a and the number of queues grows with d then, having observed

previously that a situation with 0(d) trials and success probability would

have O(log d) mean maximum queue length, it can be deduced that the

mean here grows sublogarithmicaily in d. Combining these remarks. ar

approximate relationship for all d-shuffles would be that the mean maximum

queue length is O(n log d) = 0(109 N) where N is the graph size. Note

the difference from the cube, where the increasing degree with graph size

leads to an apparent O(log log N) mean.

Queue lengths in the second phase are always worse than the second,

with the difference being more acute for small degrees. As in the case of

the cube, the state of the queues at the start of the second phase is

responsible. While worst case node populations at this point would be the

same for similarly sized graphs. the packets are distributed amongst more

queues as the degree increases.

Experiments with parallel communication schemes 	 64

Considering the whole distribution, values extend over a very limited

range. with the maximum never exceeding the mean by more than five (and

that in one extreme case). in fact, the maximum is always less than ig N

for all d-shuffle graphs examined. These worst cases occur for degree

two; for higher degrees the distribution becomes increasingly sharp with the

degree ten results showing that queueing is probably becoming negligible.

It can be noted that. as with the cube, the queue length results (indeed

the whole distribution) for the 2-shuffle have the property that those for the

first phase on a given graph size match those for the second phase on a

graph with half the size. Having failed to establish a significant property

shared by the cube and the 2-shuffle. the best explanation which can be

offered here is that the relationship Is coincidental, possibly due to

fortuitous constant factors In logarithmic terms.

This concludes the initial examination of the d-shuffle family of graphs.

3.4 The cube-connected cycle graph

In the next few sections. some previously unconsidered graphs will be

examined. All of these graphs have attracted interest because of being

advantageous for the implementation of parallel algorithms, and here their

amenability to routing will be considered.

The cube-connected cycle graph (CCC) is an attempt to harness the

communication complexity of the cube, while having constant degree. It

was first proposed by Preparata and Vuillemin [401. Galil and Paul have

proposed it as a routing network in their general purpose parallel computer

(19. 351. A CCC with size
s2 is defined as follows

Experiments with parallel communication schemes
	

PR

Vertices.

(Cc.d) I c € (O.1). 0 (d ' s-i)

Edges, for each c = c 1 . . . cc and d.

((c5_1 . 	. . co , d) . (c3_1 . 	C a ... co , d)]

((cd) . (c. (d+l) mod s)J

((c. d) . (c. (d-i) mod s)3

It is essentially an s-dimensional cube, in which every vertex is a cycle

of size s. When s is a power of two. the CCC can simulate a

(s+lg s) -dimensional cube, with each set of s vertices sharing s inter-

dimensional edges.

As defined above, the CCC may effectively be regarded as undirected

since every edge has a partner in the opposite direction. This is a quality

which is shared with the cube, and it will be exploited here to shorten path

lengths. In some versions of the CCC, the cycles are strictly directed. and

the set of edges (iii), say, are omitted. These tend to be employed in

algorithms with s stages, with data making a circular tour during the

computation, each datum moving in step.

The graph can be generalised to have h2 3 vertices in cycles of size h

embedded in an s-dimensional cube. When h=i. it Is a cube and when

s=O. it is a cycle. For simplicity, the only case considered here is that of

h=s, although the actual simulation can handle the general case.

The routing algorithm employed is similar to that used for the cube.

except that the cycles have to be taken Into account. As usual. each

packet is sent to a random node in the first phase and then sent to the

correct node in the second phase. The route followed by a packet in each

phase first takes It to its destination cycle and then takes it to the correct

node in that cycle. During the first stage, all packets traverse cycles in

the same direction and hence the order in which dimensions are traversed

by a packet Is fixed modulo s. Since the traversed dimensions are selected

Experiments with parallel communication schemes
	 w

randomly. it is not possible for optimisation of their ordering to yield much

gain. In the second stage, when a packet must travel a random distance

round a cycle. it Is sent in the direction which provides a shorter path.

thereby halving the expected and maximum distance.

Note that. later on, an algorithm for the cube whióh involves the

dimensions being traversed in a defined order will be examined, and it will

Indicate whether this aspect of CCC routing Introduces difficulties.

S 	 Size = s28 Mean Variance Maximum

2 	 8 3.63 0.27 4

3 	 24 6.11 0.22 7

4 	 64 9.60 0.52 12

5 	 160 12.44 0.60 15

6 	 384 16.08 0.80 20

7 	 896 19.20 0.82 23

8 	 2048 22.98 0.90 27

Table 3-16: Time for 1st phase on CCC

s 	 Size = s2 Mean Variance Maximum

2 	 8 3.98 0.54 7

3 	 24 7.49 0.63 10

4 	 64 11.46 0.93 15

5 	 160 14.68 0.90 19

6 	 384 18.56 1.10 24
7 	 896 21.83 1.12 26

8 	 2048 25.77 1.36 31

Table 3-17: Time for 2nd phase on CCC

$ 	 Size = s2 Mean Variance Maximum

2 	 8 761 1.32 11

3 	 24 13.60 1.00 17

4 	 64 21.06 1.62 26

5 	 160 27.12 1.64 32

6 	 384 34.64 2.04 41

7 	 896 41.03 2.19 47

8 	 2048 48.75 2.27 55

Table 3-18: Total time for both phases on CCC

Experiments with parallel communication schemes 	 67

As one might expect. the CCC has the worst completion times. seen so

far. This Is because the path length for each packet is relatively long,

without even beginning to consider collision problems. It is composed of

the number of inter-dimensional edges traversed, plus the number of cycle

edges traversed In doing so, together with the length of the final Journey

round the cycle. In the worst case, it will be s+s+rsi1 = 55/I. The

expected value is given by

Lemma (3.3): Expected path length for the CCC is

7s 	1 + 	— 2 when s is even
4 	2

75 	1 — 	— 2 when s Is odd 5-1

Proof: Expect packet to traverse 	Inter-dimensional edges.

The expected cycle distance travelled In doing so is equal to

+ s2 + 	+ ., + .4 + .4
which sums to : + 21 - 2. 	Finally.

2

 the expected Journey

distance is

For s even,

+ 	+ ... +(--- 1) a. + 	=
s 	s 	 2 	s 	2$ 	4

For s odd.

O+ 1.L. 	+ s-i 2 = s
2
-i

$ 	S 	 2 	$ 	4s

Looking at the results, it can be seen that completion time grows

approximately linearly In S. with a greater multiplicative factor in the second

phase. For the first phase. and indeed the overall run. the results support

the earlier hypothesis that mean completion time grows approximately at

double the expected path length. The second phase grows slightly faster

but this can be explained by the initial bottlenecks created by the Initial

packet population queueing for the two available output edges. It has been

seen that the two phases of the 2-shuffle, also with two output edges, do

not differ by more than a small constant. However, for the CCC, there Is

Experiments with parallel communication ' -schemes 	 68

greater demand for cycle edges (around 7 of arrivals will be queued for

the forward edge during the first stage of routing) and so the network is

more sensitive to long Initial queues. This is the first time that a routing

scheme has been used that does not have a uniform pattern of demands for

out edges at each node.

The distribution of completion times is more dispersed than usual and,

Indeed, the variance Is apparantly growing with S. This is not unexpected

because of the unbalanced nature of the scheme. just noted, which is

liable to make the outcomes of experiments less predictable. Occasional

build-ups of packets at a node may be more noticeable when not smoothed

by even distributions among queues. In this connection, it is worth noting

that the second phase variance is about 50% more than that for the first.

Despite this, the maximum value for each phase is always within six of the

mean and, indeed, more than 98% of the values observed are within three

of the mean. The maximum total time is always within seven of the mean,

with more than 98% of the values within four of the mean. Thus, there Is

still not a great deal of variability, especially when the increased means are

considered.

$ 	 Size = s23 Mean Variance Maximum

2 	 8 2.85 0.45 5

3 	 24 3.71 0.48 6

4 	 64 4.40 0.43 7

5 	 160 4.97 0.46 8

6 	 384 5.51 0.52 8

7 	 896 6.08 0.58 10

8 	 2048 6.60 0.49 9

Table 3-19: Max node population for 1st phase on CCC

In the first phase, the values observed for mean maximum node

population have the same relation to graph size as those for the first phase

of the cube. Here, as before, a maximum node population will be formed

of a small number of early arrivals (due to variable path length) plus

Experiments with parallel communication schemes 	 69

s 	 Size
= s2 Mean Variance Maximum

2 	 8 2.76 0.47 5

3 	 24 3.51 0.41 6

4 	 64 4.23 0.46 7

5 	 160 4.89 0.60 8

6 	 384 5.53 0.57 10

7 	 896 6.18 0.68 10

8 	 2048 6.83 0.64 11

Table 3-20: Max node population for 2nd phase on CCC

packets en route elsewhere. The interesting fact about the correspondence

with the cube is that packets being routed still seem to be randomly

distributed about the network. 	Considering a node in isolation, this

suggests that arrivals and departures are balanced. 	in view of the

asymmetric nature of arrivals and departures, already noted, the

Implication is that, in the vast majority of cases, queues are not forming

and packets pass through a node with no delay.

The effect of asymmetric node behaviour is. however, illustrated by the

second phase. The node populations do not match those for the cube, or

Indeed the d-shuffle, since they grow more rapidly with graph size from

comparable initial values. This was to be expected if the justification of

longer run time in the second phase was true. While it appears that the

CCC algorithm lets packets flow fairly freely in the absence of external

pressure, the initial perturbation is enough to interfere, albeit to a limited

extent. The conclusion is that node behaviour Is very finely tuned indeed.

While the above remarks are interesting from the point of view of studying

routing algorithms, in practical terms the storage requirement at a node is

not significantly more than that required on a cube. Since the first phases

behave similarly, only the second phase is of concern. Here, the

maximum value Is at most five more than the mean, which in turn is less

than one more than the cube mean. Since the variance appears stable for

larger graph sizes, it reasonable to compare the CCC and cube means to

estimate relative store requirements. Empirically, the results indicate that

the CCC requires about 15% more than the cube.

Size = s2

8
24
64

160
384
896

2048

Mean Variance Maximum

1.84 0.31 4

2.55 0.41 5

3.54 0.47 7

4.27 0.55 8

4.93 0.55 9

5.68 0.63 10

6.32 0.65 11

S

2
3
4
5
6
7
8

Experiments with parallel communication schemes
	

70

Size = s28 	Mean 	Variance 	Maximum

8 1.00 0.00 1

24 1.87 0.13 3

64 2.55 0.32 4

160 3.17 0.22 5

384 3.92 0.35 7

896 4.58 0.40 8

2048 5.35 0.49 9

Table 3-21: Max queue length for 1st phase on CCC

S

2
3
4
5
6
7
8

Table 3-22: Max queue length for 2nd phase on CCC

The queue size results are the worst seen so far and outpace even the

2—shuffle, which has only two queues per node. The difference between

mean maximum node population and mean maximum queue length in the

second phase is also the smallest seen yet. This adds further evidence for

the hypothesis that, when bottlenecks do occur, they are due to packets

being preferentially queued for the outgoing forward cycle edge. This

biases the previously uniform distribution of packets to queues. The effect

Is accentuated at the start of the second phase by the (random) distribution

of first phase arrivals amongst queues, which is sufficient to initiate

bottlenecks. As the graph size increases, so does the worst case initial

queue length and hence the second phase will worsen in relation to the

first. One Interesting special case is the eight node CCC graph. It is not

hard to see that, for any permutation, a set of routes can be chosen such

that there are no collisions. The difference between phases is thus due

purely to the inpact of the initial loading of the second phase, since the

first phase has no queueing delays.

Experiments with parallel communication schemes 	 71

It has been seen that the routing deficiencies in the CCC algorithm arise

from two sources. Firstly, and by far the most important. is the relatively

large expected path length. Secondly. there is the unbalanced routing of

packets within nodes. The path length is primarily dictated by the diameter

of the graph. and so cannot be substantially improved. Two possible

modifications are (I) to optimise the round-cycle route while traversing

dimensions, but this yields no improvement for worst case paths. and (Ii)

to miss out the random cycle trip at the end of the first phase, which

should improve the first phase a little but may handicap the second phase

for certain permutations. After a random dimension traversal, a packet is

most likely to be in a cycle postion close to its starting position.

Therefore, a permutation which sends packets to the opposite side of

cycles will cause the second phase to have final in-cycle paths with

expected length -- instead of -. which cancels out the first phase

advantage.

The problem of unbalanced node behaviour can be handled by

considering the CCC graph. which Is a variant of the CCC with

unidirectional cycles, introduced by Upfal (511. its edges are

For each c = c 1 . . . C0 and d.

{[(c1. . . c J . . . c0 .d) . (c1. ­ 7d... Co . (d+D mod s)])

and

{((c 1 . .cd. . . c0.d) . (c. . . cd. . . c0 . (d+1) mod s)J)

The proposed routing algorithm first sends a packet on a round-cycle trip

for s steps, randomly choosing whether to make an inter-dimensional move

or not. Then the packet is sent to the cycle position corresponding to its

target cycle position, again randomly traversing dimensions. Finally, by

another round-cycle trip, the packet moves to Its correct destination. Note

that this algorithm differs from the normal one in having three phases.

It can be shown that node behaviour is now balanced (this time balanced

in the strict sense of Upfal) as required, and this allows analytic results to

be proved about the scheme. However, the expected path length is now

Experiments with parallel communication schemes 	 72

between 2s and 3s, depending on the permutation. 	Therefore, the

algorithm will exhibit worse behaviour, based on the hypothesis regarding

this measure dominating completion time.

This problem is inevitable In any graph where the shortest paths from a

vertex to other vertices are not evenly distributed among out edges.

Balance can only be achieved at the expense of path length. For the CCC,

it has been seen that the imbalance does not have (but is close to having)

the same impact on delays as path length does.

3.5 The shuffle-exchange graph

In the previous section, a graph related to the cube was studied. Here.

a close relative of the 2-shuffle will be examined. The shuffle-exchange

graph Is historically Important, being one of the first non-trivial

architectures proposed for parallel computers. . Stone [48] first

demonstrated its natural suitability for problems such as the fast Fourier

transform and since then. It has been studied by several researchers. It

has also been proposed as a suitable basis for routing In a general purpose

parallel computer (22. 441. A shuffle-exchange graph with size 2" Is

specified as follows

Vertices.

(V I V € (0. 1)")

Edges, for each v = v... 1 .. . v.

(I) (v_ 1 . . . V0 . v_1 ... v 0) (exchange edges]

(ii) (v- 1 v_2 . . . v 	v_2 . . . v0v_ 1) [shuffle edges]

It can be seen that this graph bears the same kind of relationship to the

2-shuffle as the CCC does to the CCC. With the 2-shuffle, exchanges and

shuffles are effectively combined into one operation which always shuffles

and optionally exchanges as well. It is not clear that any gains will accrue

from considering the shuffle-exchange graph since it has the same degree

and double the diameter of the 2-shuffle but. because of widespread

Experiments with parallel communication schemes 	 73

(possibly misplaced) interest in it. practical Implementations of it are being

considered (22] and so it Is useful to know whether it performs well or badly

when used for realising permutations.

The routing algorithm used is the obvious two-phase one, which is similar

to that for the 2-shuffle, except that exchanges must be made explicit.

When a packet with destination a ...1 . . . a0 arrives at a node n-1•190.at

stage I (I = n- i. n-2.....1 . 0) on its journey, the node executes the

following algorithm

If a 1 0 180 then begin

send to 	• 4e01 still at stage I

and else begin

If I = 0 then begin

packet has arrived at destination

end else begin

send to 	.'80fln-1.at stage I-i

end

and

Initially, source nodes send packets along their outgoing shuffle edge, at

stage n-i of their journeys.

Note that no advantage is taken of paths which need length less than

n. This will allow easy easy comparison with the d-shuffle results.

The completion times are comfortably the worst recorded so far. This is

not surprising since the shuffle-exchange graph has degree two, non-

optimal diameter, and the routing algorithm does not ensure balanced

handling of packets within nodes. Looking at the mean completion times, It

can be seen that they increase linearly with n. The constant of

proportionality is slightly below three in both cases, with that for the first

phase being smaller. The expected route length for a packet is

made up of n shuffle edges and 	exchange edges, totalling and so

these results again fit the hypothesis about completion time for randomised

routing schemes. Therefore, unless the graph had some magic property,

nothing better would have been expected anyway.

Size = 2
n

4
8

16
32
64

128
256
512

1024
2048
4096

Mean Variance Maximum

3.69 0.22 4
6.13 0.42 8
8.63 0.50 12

11.32 0.74 15
14.05 0.93 18
16.92 1.56 31
19.73 1.18 25
22.56 1.39 30
25.58 1.56 33
28.43 1.46 35
31.26 1.32 37

n

2
3
4
5
6
7
8
9
10
11
12

Experiments with parallel communication schemes
	

74

n

2
3
4
5
6
7
8
9
10
11
12

Table 3-23: Time for 1st phase on shuffle-exchange

Size =n 	Mean 	Variance 	Maximum

4.50 0.63 7
7.06 0.89 - 10
9.79 1.03 14

12.61 1.46 20
15.48 1.78 22
18.37 1.64 25
21.37 1.59 29
24.22 1.72 32
27.18 2.02 37
30.18 2.15 38
33.09 1.93 40

Table 3-24: Time for 2nd phase on shuffle-exchange

4
8

16
32
64

128
256
512

1024
2048
4096

n Size =n Mean Variance

2 4 8.19 1.20
3 8 13.19 1.65
4 16 18.41 1.71
5 32 23.93 2.43
6 64 29.53 2.55
7 128 35.30 3.33
8 256 41.10 3.00
9 512 46.77 3.03
10 1024 52.76 3.75
11 2048 58.61 3.55
12 4096 64.36 3.38

Maximum

11
17
24
31
37
50
51
56
63
66
73

Table 3-25: Total time for both phases on shuffle-exchange

Experiments with parallel communication schemes 	 75

As well as the large mean values, the distribution of completion times is

rather more dispersed than usual. This is a consequence of the

unbalanced nature of the scheme causing bottlenecks in the network. The

most striking example occurred during experiments on the 2 node graph.

There, one experiment had a completion time for the first phase of 31 time

units: the next highest was 23. and the others were under 21. This was

due to a queue of size eleven (also an isolated maximum) building up.

Clearly, since the completion time normally fails within the same sort of

bound as that predicted from other graphs. the load is fairly evenly

distributed about the network. However, whereas balanced schemes do not

show much variability, one has to be very cautious when making statements

about worst case behaviour of unbalanced schemes, such as this one.

Like the CCC routing algorithm, the second phase is made slower than

the first by the fact that it starts with non-trivial queues. These can only

serve to increase the likelihood of early bottlenecks. The variance also

noticeably increases, as an indication of greater run time instability. One

consolation for the fact that unpleasant worst cases do occur is that they

appear to happen independently in the different phases. The difference

between the worst and mean total run time is about the same as the

difference for the separate phases.

n Size
= n

Mean Variance Maximum

2 4 1.44 0.25 2

3 8 2.17 0.15 3

4 16 2.67 0.39 6

5 32 3.24 0.28 6

6 64 3.73 0.46 6

7 128 4.28 0.50 11

8 256 4.83 0.56 7

9 512 5.37 0.55 10

10 1024 5.87 0.54 9

11 2048 6.41 0.48 9

12 4096 6.96 0.61 10

Table 3-26: Max node population for 1st phase on shuffle-exchange

For the first time, the node population results vary from the previously

Experiments with parallel communication schemes 	 76

n Size
= n Mean Variance Maximum

2 4 2.20 0.33 4

3 8 2.82 0.54 5

4 16 3.39 0.46 6

5 32 3.89 0.65 8

6 64 4.48 0.63 8

7 128 4.98 0.73 8

8 256 5.53 0.67 10

9 512 5.98 0.69 9

10 1024 6.52 0.75 11

11 2048 7.04 0.71 11

12 4096 7.59 0.72 11

Table 3-27: Max node population for 2nd phase on shuffle-exchange

observed pattern. 	However, since the hypothesis was that balanced

schemes effectively distributed packets randomly among nodes, the

variation is not surprising. 	Given any imbalance, greater worst case

populations will be expected. 	in both phases, the mean values grow

linearly with n at a faster rate than for other schemes but, surprisingly,

both phases grow at the same rate, with the second being about 0. 6 more

than the first, and the first phase mean is actually smaller than the normal

(balanced) mean for all n up to ten. Given that a certain node population

results from routing packets, it has been noted previously that early arrivals

In the first phase, and initial populations in the second phase, can both

cause increases logarithmic in the graph size. In the case of the cube,

this meant that the first phase mean grew faster: in the case of the CCC.

the second phase mean grew faster. Here, it seems that both phase-

dependent features have equivalent effects, to within a constant difference.

and cancel each other out. Note that the effects are not entirely

Independent - the arrivals at a node in the first phase form the initial

population In the second phase.

A reason for the fact that the first phase mean maximum node population

Is smaller than that observed for comparable graphs is not obvious at first

sight. Further discussion of this point will be deferred until queue sizes are

considered.

Experiments with parallel communication schemes 	 77

For the sizes of graph involved in the experiments, the worst node

populations occurring are not significantly more than those for the cube,

for example. 	While the variance of maximum population Is larger, the

extreme values differ by at most one usually. 	However, the rogue

experiment when n equalled seven indicates that. although the shuffle-

exchange does not appear to make much extra demand for storage at

nodes, it is prone to occasional excesses. To circumvent this. it may be

sensible for a node to refuse new packets while Its population is too large,

hopefully without much affect on network performance.

n Size =n Mean Variance Maximum

2 4 1.00 0.00 1

3 8 1.91 0.21 3

4 16 2.35 0.27 5

5 32 2.95 0.36 6

6 64 3.42 0.37 6

7 128 3.95 0.59 11

8 256 4.49 0.52 7

9 512 5.05 0.59 10

10 1024 5.53 0.52 9

11 2048 6.05 0.49 9

12 4096 6.66 0.61 10

Table 3-28: Max queue length for 1st phase on shuffle-exchange

n Size =2n Mean Variance Maximum

2 4 2.10 0.33 4

3 8 2.68 0.53 5

4 16 3.22 0.53 6

5 32 3.74 0.60 7

6 64 4.26 0.62 8

7 128 4.78 0.70 8

8 256 5.28 0.63 9

9 512 5.71 0.63 9

10 1024 6.28 0.80 11

11 2048 6.76 0.68 10

12 4096 7.27 0.70 11

Table 3-29: Max queue length for 2nd phase on shuffle-exchange

Experiments with parallel communication schemes 	 78

Relatively large queues, presumably for outgoing shuffle edges. occur.

As well as being the largest queue lengths seen compared with other

graphs. the mean maximum queue length is very close to the mean

maximum node population. The difference is similar for both phases.

which Is further evidence that the "special features" of each phase, which

affect node population. are balanced out. The queue lengths for the

second phase are, as expected, larger than those for the first.

Having noted that the size of one queue is effectively responsible for a

large node population, an explanation of why first phase maximum node

populations are smaller than those on other graphs is possible. In a

scheme where packets are randomly distributed among output queues at a

node, a large population is formed primarily by a number of maximum

length queues. Assuming that queue lengths are a property of the graph

combined with the routing algorithm, if there is only one queue at a node

which is likely to grow large, rather than several, the resulting node

population would be expected to be smaller. Eventually, as can be seen

here, the mean maximum queue length outpaces the mean maximum node

population for other graphs. and this effect is not significant any longer.

The occasional queueing bottlenecks, which cause the behaviour of the

shuffle-exchange graph to be more erratic than others, are perhaps best

summarised by the worst queue sizes occurring over a series of

experiments. These fluctuate a great deal, whereas the mean increases

linearly with n. In more than 95% of the experiments, the observed

maximum queue length is not more than two away from the mean. Clearly.

a much larger number of experiments with this scheme would be necessary

In order to get a true picture of the relevant distributions. Events such as

the eleven packet queue in a 128 node graph will not occur frequently.

The two major drawbacks of the shuffle-exchange graph are, therefore,

Its larger diameter, which leads to longer completion times, and the

unbalanced use of edges, which leads to bottlenecks. Although minor

optimisations can be made to routes. the first problem cannot be handled

effectively. One solution to the second problem might be to consider the

Experiments with parallel communication schemes 	 79

graph as being undirected with bidirectional shuffle edges. If packets are

then routed using a random shifting direction, the expected shuffle edge

queue lengths should be decreased. However, route lengths would not

decrease. A more obvious solution is to merge the shuffle and exchange

edges In such a way that imbalance is removed, and route lengths

decrease. if this is done in a simple-minded manner. the resulting graph

Is the 2-shuffle. which has already been considered.

3.6 The two-dimensional square grid graph

The final graph to be considered differs markedly from all the others

examined previously. It consists of an array of processors connected in a

two-dimensional square grid. In general. It can take the form of an array

of processors connected in a k-dimensional grid, for some integer k > 0.

with each dimension of arbitrary size, but only the special case will be

considered In the context of routing. The definition of the graph, with n 2

vertices. Is as follows

Vertices.

((Li) I 0 (1.1 (n-i)

Edges.

(i) 	 .0.1-1)]101n-1.0<in-1)

.(i.J+1)1 I 0 (I < n-i. 0 IC j < n-i)

(1-1,j)1 1 0 < I 4 n-i. 0 (j (n-i)

(iv) (((1.1) . (1+1.1)] I 0 (I < n-i. 0 <j< n-i)

This organisation has been the most popular for early parallel computers

consisting of distinct processing units. for example ILIAC IV (4). It is also

Ideal for Implementation in current two-dimensional Integrated circuit

technology since, as will be seen In Chapter Five, it can be laid out so that

all edges have a uniform short constant length. Because of this great

practical importance. it will be examined as a medium for implementing

randomised routing algorithms. Some analytic results for the grid can be

found in (53).

Experiments with parallel communication schemes 	 80

The major difference from the other graphs Is that the diameter is

2(n-1). which is proportional to the square root of the graph size.

compared with the normal logarithmic (and optimal for constant degree

graphs) diameter. Therefore, it is clearly going to perform in a far inferior

manner. Indeed. it Is probably unsatisfactory as a basis for a general-

purpose parallel computer and best restricted to problems of a systolic

nature (30]. Nevertheless, it is Interesting to see whether the empirical

hypotheses already formulated still hold in such a different context.

The routing algorithm, as usual. consists of sending each packet to a

random node in the first phase and then to the destination node in the

second phase. Two different ways of selecting paths will be considered.

In the first, a packet moves to the correct row, and then to the correct

column. In the second, a packet moves between rows and columns In a

- random sequence.

One interesting feature of this scheme is that, whereas previously the

expected path length was the same for all packets, the length for each

packet differs, depending upon the starting node. Since this measure

appears to determine completion time, It has to be studied. The worst

case expected path length is n-i (for a packet starting at one of the

corners"). The expected expected path length over all packets is given

by:

Lemma (3.4): The expected expected path length is

2 	1

Proof: The expected distance between a fixed node and a

randomly selected one Is equal to the sum of the expected row

distance and the expected column distance. Since the grid is

square, all nodes In row I. for each I, have the same expected

row distance and it is the same as the expected column distance

shared by all nodes in column I. Call this expected distance e 1 .

Then the expected expected path length is equal to

E
1=0 	j=1 	 n

	

Experiments with parallel communication schemes
	

81

= 2nEl

Now It can be seen that

	

n-i 	li-Il 	1 r 	
n-i

	

a1 = E 	= 	I. E 	(i-J) + E

	

J=O 	 1=0 	 1=1

= 	1 	 - 1(1-1) 	n(n-i) 	t(i-i)
[ci- (n

-
 D]i 	 + (- n 	 2 	 2 	 2

- _1...[212 - 2(n-i)i + n(n-1)]
- 2n

n1
Henc 	

2
e. - 	e, can be expressed as

1=0
n(n-1) (2n-i)

-n(n-i) 2 + n2(n-1)]

i
=—[2n

2
 -3n+i-3n2+6n-3+3n2-3n]

an

ir 2
= —t2n -2] 3n

2 	1 = --[fl-7]

Both the worst case and the expected value will be borne in mind when

considering how completion time grows, to see whether either is the

dominating Influence.

The range of graph sizes considered for the grid is smaller than that for

other graphs because of the longer run time and hence longer simulation

time. The side length n is increased from five to thirty in steps of five.

Results are tabulated first for the "rows, then columns" routing, then for the

rows and columns mixed" routing. For the sake of brevity., the two

strategies will be referred to as the "strict" and the "random" strategies

respectively for the rest of this section.

The mean completion times, while large, are always less than the

diameter of the graph, and even the worst case completion times are not

much relatively more than the diameter. Thus, it appears that no

significant congestion is occurring, assuming that near-maximally sized

Experiments with parallel communication schemes
	 82

n 	 Size = n2 Mean Variance Maximum

5 25 6.83 0.60 9

10 100 15.55 1.34 18

15 225 24.41 2.21 28

20 400 33.62 2.93 38

25 625 43.00 4.05 48

30 900 52.36 4.42 58

Table 3-30: Time for 1st phase on grid with strict strategy

n Size = n2 Mean Variance Maximum

5 25 7.44 1.10 12

10 100 16.57 1.86 21

15 225 25.70 3.06 33

20 400 35.05 4.03 41

25 625 44.61 5.12 52

30 900 54.03 5.40 61

Table 3-31: Time for 2nd phase on grid with strict strategy

n Size = n2 Mean Variance Maximum

5 25 14.26 2.72 20

10 100 32.12 5.55 39

15 225 50.11 8.97 59

20 400 68.67 12.28 78

25 625 87.61 16.24 98

30 900 106.39 17.78 118

Table 3-32: Total time for both phases on grid with strict strategy

n Size = n2 Mean Variance Maximum

5 25 7.19 0.86 10

10 100 16.69 1.71 21

15 225 26.49 2.29 31

20 400 36.51 3.32 41

25 625 46.53 3.66 52

30 900 56.34 4.69 63

Table 3-33: Time for 1st phase on grid with random strategy

Experiments with parallel communication schemes
	 83

n Size = n2 Mean Variance Maximum

5 25 7.56 1.15 12

10 100 17.17 1.62 21

15 225 27.01 2.76 35

20 400 36.94 3.93 44

25 625 46.96 3.71 53

30 900 56.76 4.24 62

Table 3-34: Time for 2nd phase on grid with random strategy

n Size = n2 Mean Variance 	Maximum

5 25 14.74 3.13 21

10 100 33.87 4.94 41

15 225 53.50 7.20 61

20 400 73.45 10.80 84

25 625 93.49 9.91 101

30 900 113.10 12.33 123

Table 3-35: Total time for both phases on grid with randoñi strategy

routes occur in each experiment, it can be seen that, for both strategies.

the mean completion time grows at about twice the rate of increase in n.

the rate being slightly less for the strict strategy and for the first phase of

the random strategy. This is consistent with the completion time hypothesis

If expected path length is taken to mean the maximum expected path

length, taken over all packets, which is encouraging.

The strict strategy produces an improvement over the random one, the

improvement being better for the first phase. This is because it is

advantageous to have all packets moving in the same direction, that is

horizontally or vertically. Then, each row (or column) acts as a pipeline

with packets being 'pumped through' without suffering delays. At the

beginning of the first phase, this pipeline effect is achieved totally since all

packets move along columns with no Initial queues. As packets begin to

switch to move along rows. queues can start to form and so packets are

slowed down. Throughout the second phase, a similar state of affairs

applies and so a lesser improvement in completion time results.

Experiments with parallel communication schemes 	 84

At first sight. the Improvement may seem to conflict with previous remarks

that routing strategies which direct a packet to a random output queue at a

node are preferable. This would tend to favour the random strategy.

However, there are two points to note about the strict strategy. Firstly,

taken over all in edges at a node, each out edge is equally favoured, and

so the output queues should be balanced. Secondly, with the vast majority

of arrivals on a particular in edge being directed to a particular out edge.

the lack of randomness favours free pipellning.

There Is only a very small difference between the completion time for the

two phases with the random strategy. This is not unexpected since routes

are so long that any initial effects in the second phase are likely to be

ironed out as packets progress.

The entire distributions of completion time are markedly more dispersed

than for any of the other graphs. Further, they are fairly symmetric about

the mean whereas, although not mentioned earlier, the others are very

much skewed towards the maximum value. The variance increases with n

and is larger for the strict strategy, more notably so for the second phase.

Considering the variance of the completion time for both phases. It can be

seen that the covariance of the phase completion times is increasing with

n. and is considerably larger for the strict strategy.

Given that completion time is determined by the packet which has the

worst Journey time, it follows that the distributions of completion time will be

different for the grid because the distribution of worst path length is far less

sharp than that for logarithmic diameter graphs. As n increases, so does

the range of possible worst path lengths but, whereas for other graphs the

maximum of the range may occur for any packet, this is not the case for

the grid, where only the four packets starting at the corners can achieve a

maximum path length. The strict strategy yields a fairly uniform

Improvement for the first phase, and so the distributions are similar for

both strategies. However, for the second phase. while the imposition of

strictness improves the mean completion time, there are obviously worst

cases in which Initial node populations hinder queueless pipelining and so

Experiments with parallel communication schemes
	

85

maximum values are similar for both strategies. Hence the strict strategy

has a broader second phase distribution.

The high correlation between the two phases Is a feature of the Identity

permutation being used in experiments; packets follow the first phase path

In reverse In the second phase under the strict strategy and so both

completion times are essentially dependent on the choices of the

Intermediate random nodes for each packet. The Increasing correlation

with n for both strategies is again an indication of the two completion times

both being determined by one packet with a long route, rather than two

Independent packets.

n Size = n2 Mean Variance Maximum

5 25 4.07 0.53 7

10 100 5.12 0.51 8

15 225 5.71 0.56 10

20 400 6.13 0.47 10

25 625 6.36 0.44 8

30 900 6.58 0.46 10

Table 3-36: Max node popn for 1st phase on grid with strict strategy

n Size = n2 Mean Variance Maximum

5 25 3.76 0.48 7

10 100 4.70 0.50 8

15 225 5.19 0.42 9

20 400 5.49 . 	0.44 10

25 625 5.68 0.46 8

30 900 5.82 0.50 8

Table 3-37: Max node popn for 2nd phase on grid with strict strategy

For both strategies, the first phase node populations are greater than the

second. Since there is a large variance of path length, early arrivals will

have a significant impact on the grid routing scheme, so this observation is

to be expected. The difference is slightly larger for the strict strategy since

the node population due to routing is smaller with respect to n, whereas the

contribution from early arrivals is the same.

Experiments with parallel communication schemes 86

n Size = n2 Mean Variance Maximum

5 25 4.26 0.54 7

10 100 5.57 0.57 9

15 225 6.46 0.61 9

20 400 6.98 0.68 10

25 625 7.44 0.67 10

30 900 7.77 0.62 11

Table 3-38: Max node popn for 1st phase on grid with random strategy

n Size = n2 Mean Variance Maximum

5 25 3.96 0.49 7

10 100 5.23 0.41 7

15 225 6.03 0.63 9

20 400 6.48 0.53 11

25 625 6.88 0.59 11

30 900 7.21 0.51 11

Table 3-39: Max node popn for 2nd phase on grid with random strategy

It is immediately obvious from the results that the strict strategy produces

smaller maximum node populations on average, as a result of its freer

flow. However, a more interesting distinction can be seen by considering

the increase in expected worst population with graph size. For the random

strategy, the increase is logarithmic In graph size, as has been observed

for other graphs, whereas the increase Is sublogarithmic for the strict

strategy.

The result for the random strategy Is encouraging In view of the

hypothesis that, given random routing, the distribution of packets over the

network does not cause isolated bottlenecks to occur at nodes, resulting In

the logarithmic worst case node population. Here. as with the shuffle-

exchange graph the constant factor multiplying the logarithmic factor Is

larger than the "standard" one applying to all balanced schemes. Clearly,

packets are more likely to be in the central part of the grid rather than near

to the edges. so the distribution is not uniform. leading to imbalance in a

controlled manner.

Experiments with parallel communication schemes 	 87

As with completion time, the strict strategy exhibits better asymptotic node

population behaviour, despite Its lack of randomisatlon. PIpelining is

operating sufficiently well that packets are more equitably distributed than is

possible by random distribution, and so the worst case population is

smaller.

As well as a reduced mean maximum node population, the strict strategy

also produces a slightly sharper distribution. However, it can be seen, by

examining the maximum values occurring, that the worst cases for the two

strategies cannot be effectively differentiated, and so the peak storage

requirement at nodes is similar. However, since the variance does not

appear to increase with n. it is reasonable to suppose that, for larger

values of n than those considered here, the two distributions will have

differing extremes as the mean values diverge.

n Size = n2 Mean Variance Maximum

5 25 1.87 0.21 4
10 100 2.25 0.21 4
15 225 2.56 0.32 5
20 400 2.71 0.26 4
25 625 2.84 0.22 4
30 900 2.94 0.17 4

Table 3-40: Max queue length for 1st phase on grid with strict strategy

n Size = n2 Mean Variance Maximum

5 25 2.72 0.47 6
10 100 3.58 0.52 6
15 225 4.09 0.53 7
20 400 4.39 0.47 7
25 625 4.63 0.51 7
30 900 4.83 0.50 7

Table 3-41: Max queue length for 2nd phase on grid with strict strategy

The most striking feature of the queue length results is the first phase of

routing with the strict strategy. This highlights the gain from strictness,

namely the avoidance of queues in the first phase. it can be seen that.

Experiments with parallel communication schemes 88

n Size = n2 	Mean Variance Maximum

5 25 	 2.11 0.18 4

10 100 	 3.02 0.24 5

15 225 	 3.55 0.38 6

20 400 	 4.02 0.38 6

25 625 	 4.44 0.40 7

30 900 	 4.76 0.45 7

Table 3-42: Max queue length for 1st phase on grid with random strategy

n Size = n2 	Mean Variance Maximum

5 25 	 2.48 0.37 6

10 100 	 3.39 0.38 6

15 225 	 3.96 0.44 7

20 400 	 4.32 0.50 8

25 625 	 4.67 0.42 7

30 900 	 4.96 0.50 8

Table 3-43: Max queue length for 2nd pliase on grid with random strategy

within the limits of experimental error, maximum queue length is not

Improved in the second phase. it is interesting to note that, for the strict

strategy, maximum queue length grows with n In the first phase at half the

rate of increase in the second phase. intuitively, this is consistent with the

fact that half of the packet movements In the first phase are expected to be

queue-free. This view is rather naive, of course, because rather than

obtaining a reduction to half-size of all queues at a node, one direction Is

reduced to zero and the other stays the same. Indeed, further experiments

(not included here) indicate that, when the first phase Is divided Into two

distinct horizontal and vertical stages, queue lengths In the second stage

are not halved, but remain the same. However, it is clear that, in some

more complex way, the merging of the two stages does lead to the desired

Improvement.

The unbalanced behaviour of nodes in the strict scheme Is highlighted by

the close correlation of maximum queue length and maximum node

populations in the second phase. This is less noticeable when the random

scheme is used. However, as already noted, the strict scheme is

Experiments with parallel communication schemes 	 89

deliberately unbalanced and so this observation merely confirms that it Is

working as expected. 	The distribution of maximum queue length in the

second phase Is similar for both strategies. 	Therefore. the worst

bottlenecks are no different. However, the Improved completion times for

the strict strategy indicate that the frequency of bottlenecks Is reduced.

The experimental results have pinpointed one deficiency of the grid which

impacts on several performance issues. This is the lack of symmetry, in

the sense that the nodes around the "sides" of the grid have smaller degree

than internal nodes. The effect Is to Increase the diameter and expected

path length, and hence completion time. Further, packets can no longer

be considered as being randomly distributed about the network, since they

are more likely to be at the more internal nodes.

The problem can be overcome by augmenting the graph In such a way

that It becomes symmetric, while retaining the desirable property of having

a planar embedding with short edge lengths (described in Chapter Five).

The revised set of edges is

(I) ([(LI). (1,(J-l) mod n)1 10 4 i,J 	n- li
(ii) [[(I, J) 	(I. (1+1) mod n)] I 0 (1.1 	n-i)

{((i.J). ((i-i) mod n,j)] 10 	Li 	n-i)

(iv) (((1, 1). ((1+1) mod n.j)J I 0 (i,J (n-i)

Clearly, the graph has been wrapped round" in both vertical and

horizontal directions. so that opposite sides are Joined together. The

diameter of the graph Is reduced from 2(n-1) to 2r1-1. I.e. it is almost

halved. For a randomised routing scheme, the expected path length is

now r--i uniformly for all packets.

Further experiments have been conducted on the revised graph and the

results are now tabulated together, along with a brief discussion and

comparison with those obtained for the original graph.

As predicted, these are superior in all respects to those for the

unwrapped grid. For both strategies, the mean completion time Is reduced

Experiments with parallel communication schemes

n Size = n2 Mean Variance Maximum

5 25 5.16 0.38 7

10 100 9.96 0.31 12

15 225 15.29 0.47 17

20 400 19.96 0.36 22

25 625 25.33 0.52 27

30 900 29.95 0.34 31

Table 3-44: Time for 1st phase on wrapped grid, strict strategy

n Size = n2 Mean Variance Maximum

5 25 5.51 0.58 8

10 100 10.66 0.69 13

15 225 16.01 0.73 20

20 400 20.92 0.77 24

25 625 26.25 0.94 30

30 900 31.02 0.79 34

Table 3-45: Time for 2nd phase on wrapped grid, strict strategy

n Size = n2 Mean 	Variance Maximum

5 25 10.68 	 1.38 14

10 100 20.63 	 1.17 24

15 225 31.30 	 1.63 36

20 400 40.88 	 1.39 45

25 625 51.58 	 1.93 57

30 900 60.97 	1.37 64

Table 3-46: Total time for both phases on wrapped grid, strict strategy

n Size = n2 Mean Variance Maximum

5 25 5.19 0.52 8
10 100 10.45 0.57 13

15 225 16.13 0.80 19
20 400 21.28 0.77 24

25 625 26.95 0.97 31
30 900 32.09 0.99 35

Table 3-47: Time for 1st phase on wrap grid, random strategy

Experiments with parallel communication schemes
	 91

n Size = n2 Mean Variance Maximum

5 25 5.49 0.69 8

10 100 10.84 0.80 13

15 225 16.50 0.84 20

20 400 21.63 0.89 24

25 625 27.30 1.25 31

30 900 32.39 1.15 37

Table 3-48: Time for 2nd phase on wrap grid, random strategy

n Size = n2 Mean Variance Maximum

5 25 10.68 1.84 15

10 100 21.29 1.73 26

15 225 32.63 2.07 37

20 400 42.91 1.84 47

25 625 54.26 2.52 59

30 900 64.48 2.40 70

Table 3-49: Total time for both phases on wrap grid, random strategy

n Size = n2 Mean Variance Maximum

5 25 3.77 0.48 6
10 100 4.70 0.47 7
15 225 5.33 0.45 8
20 400 5.73 0.54 9
25 625 5.99 0.48 8
30 900 6.22 0.44 9

Table 3-50: Max node popn for 1st phase on wrap grid, strict strategy

n Size = n2 Mean Variance Maximum

5 25 3.58 0.42 6
10 100 4.41 0.38 7
15 225 4.92 0.46 8
20 400 5.21 0.45 9
25 625 5.42 0.39 8
30 900 5.59 0.46 9

Table 3-51: Max node popn for 2nd phase on wrap grid, strict strategy

Experiments with parallel communication schemes 92

n Size = n2 Mean Variance Maximum

5 25 3.81 0.47 6
10 100 4.85 0.50 8

15 225 5.49 0.47 8
20 400 5.87 0.49 9
25 625 6.16 0.41 8

30 900 6.38 0.44 9

Table 3-52: Max node popn for 1st phase on wrap grid, random strategy

n Size = n2 Mean Variance Maximum

5 25 3.62 0.42 6
10 100 4.49 0.37 8
15 225 5.11 0.44 8
20 400 5.36 0.41 8
25 625 5.57 0.40 8
30 900 5.79 0.45 8

Table 3-53: Max node popn for 2nd phase on wrap grid, random strategy

n Size = n2 Mean 	Variance Maximum

5 25 1.83 	 0.23 3
10 100 2.28 	 0.22 4
15 225 2.55 	 0.29 5
20 400 2.68 	 0.24 4
25 625 2.82 	 0.20 4
30 900 2.89 	 0.15 5

Table 3-54: Max queue ten for 1st phase on wrap grid, strict strategy

n Size = n2 Mean 	Variance Maximum

5 25 2.34 	 0.32 5
10 100 3.12 	 0.28 5
15 225 3.54 	 0.37 6
20 400 3.80 	 0.38 7
25 625 4.02 	 0.34 6
30 900 4.16 	 0.31 6

Table 3-55: Max queue len for 2nd phase on wrap grid, strict strategy

Experiments with parallel communication schemes 93

n Size = n2 Mean Variance Maximum

5 25 1.91 0.20 3

10 100 2.41 0.25 4

15 225 2.94 0.16 4

20 400 3.11 0.11 4

25 625 3.27 0.22 5

30 900 3.44 0.30 5

Table 3-56: Max queue len for 1st phase on wrap grid, random strategy

n Size = n2 Mean Variance Maximum

5 25 2.20 0.18 3

10 100 2.84 0.26 5

15 225 3.23 0.21 6

20 400 3.39 0.31 6

25 625 3.62 0.33 6

30 900 3.86 0.30 5

Table 3-57: Max queue len for 2nd phase on wrap grid, random strategy

by around 45%. Although the worst expected path length has been reduced

by 50%. a corresponding reduction In completion times Is not possible

because, in the wrapped case, one packet is expected to travel the worst

case distance during every experiment, whereas this event occurred with

low probability In the unwrapped case. in fact, the wrapped grid shares a

property with the cube, namely that the worst case distance for any packet

Is always double the expected distance, and so the completion time must

be slightly larger than double the expected path length.

The benflclal effect of the strict strategy is preserved on the modified

network, with the improvement, relative to completion time, being the same

as before. For both strategies, the variance Is substantially reduced, as

desired. However, the random strategy now has the larger variance.

Intuitively, one would expect that the random strategy would lead to more

variability than the strict one. In the unwrapped case, most of the

variability was due to varying worst path lengths and so the variance of the

strict strategy, which has completion time more sensitive to path length,

was greater.

Experiments with parallel communication schemes 	 94

All of the node population distributions are moved downwards. 	The

reduction for the strict strategy Is very small but, for the random strategy.

it Is more significant. This is a result of making the grid symmetric. While

the strict strategy relies on pipelining to avoid large node populations, the

random one relies on random distribution of packets throughout the

network. Now that a packet is equally likely to be at any node, the mean

maximum node population is reduced. in fact, the random strategy on a

wrapped grid is a completely balanced random routing scheme. It is

extremely Interesting to consider the following table, which compares the

distributions of maximum node population for the second phase over 500

experiments on a ten dimensional cube, a diameter ten 2-shuffle, and a

32x32 wrapped grid. I. e. three graphs all with size 1024. The distribution

of the maximum number of successes observed from 1024 trials with 1024

equiprobable outcomes Is also given.

Population 4 	5 6 7 8 	9

Cube - 	 133 299 63 5 	-

2-shuffle - 	 181 258 54 7 	-

Grid - 	 145 296 50 8 	1

Multlnomial 6 	259 188 42 4 	1

The distributions for the cube and grid are remarkably similar. 	The

2-shuffle one is more skewed to the left since the constant path length

lessens the effect of the second phase arrival packets contributing to a

maximum node population size. Given the disparities of degree, diameter,

and expected path length, these results are a striking demonstration of the

near independence of packet distribution and graph structure. Since all of

the distributions are similarly displaced from the distribution solely due to

random addressing, this is a comment about queueing behaviour.

Returning to the comparison of unwrapped and wrapped grids, it can be

seen that mean maximum queue sizes are reduced, with the more

substantial gain being for the random strategy. Indeed, the change in first

phase means for the strict strategy is imperceptible. Given that the strict

strategy does not appear to benefit much from more uniform packet

distribution during routing, It is reasonable to deduce that the gain in the

Experiments with parallel communication schemes 	 95

second phase is due to the shortening of the initial queues due to all nodes

randomly distributing the first phase arrivals between two queues. The

random strategy. which is better suited to a symmetric system. shows

significant improvements in both phases. In fact, for the second phase,

the random strategy has smaller maximum queue lengths than the strict

strategy.

This concludes the consideration of grid graphs as random routing media.

and It is the last graph to be looked at here. The next four pages contain

plots which allow a pictorial comparison of the completion times and

maximum node populations to be made between all of the graphs studied.

96 Experiments with parallel communication schemes

32
Key

30 Cube

• 	: 	2-shuffle

28 6 	: 	3-shuffle

o 	4-shuffle

Cube-connected cycle

26 -- : 	 Shuffle-exchange

Wrapped grid 	 V
(strict strategy)

24--

22.

20 V

18

/
16

V

14

12

10

8"

6 A 	•
V

4.

0

22 2 	2 	2 	26 	2 	28 	2 	210 	2 11 	212

Mean completion time for first phase v. Graph size

1-1

22

20

18

16

14

12

10

8

A
6

4

2 L

Experiments with parallel communication schemes 	 97

32

	

Key 	 v 	/
30 	 Cube

• : 2-shuffle

28 	
3-shuffle

O : 4-shuffle

Cube-connected cycle

26 	A 	Shuffle-exchange 	 V
V : Wrapped grid

24 	
(strict strategy)

0 	I 	 I 	I 	i I 	I 	I

22 	2 	2 	2 	26 	2 	2 	2 	2 10 	2 11 	2 12

Mean completion time for second phase v. Graph size

Experiments with parallel communication schemes

8
Key

Cube

• : 	2-shuffle

3-shuffle

o : 	 4-shuffle

Cube-connected cycle

A1 Shuffle-exchange
• 	 1A1. , • 	vvr,i,#u WrIC

(strict strategy) 	

t
1-a

13
t e

5 	 1013
V

4
	 z

tv

A
3

9 2

A
2

1

101

22 	2 2 2 26 	2 	2 	2 210 	2 11 	2 12

Mean maximum node population for first phase v. Graph size

Is'

7

7

21
(strict strategy) 	 -

4

A
D

A
0

Cube

• 	: 2-shuffle

3-shuffle

o 	: 4-shuffle

Cube-connected cycle

Shuffle-exchange

¶7 	: Wrapped grid

Experiments with parallel communication schemes

8

Key

3

RI

2

1

0 	• i 	I 	I 	I 	I 	I 	I 	I 	I

22 	2 	2 	2 	26 	2 	28 	2 	210 	2 11 	2 12

Mean maximum node population for second phase v. Graph size

Experiments with parallel communication schemes 	 100

3.7 Variations of the standard routing algorithm

The routing algorithms employed in the previous experiments have, in

general, been the most simple-minded possible. This has a practical

motivation. in that computation within routing nodes is kept efficient.

Thus, packets follow obvious routes; queues are first-come first-served,

one per edge; and the two phases are regarded as separate entities.

There are two reasons for varying this approach. Firstly, gains in

performance may result. Secondly. analytic guarantees of performance

sometimes rely on the imposition of special routing algorithm features.

This section examines some modifications, for the cube and the d-shuffle

graphs, to assess their effects experimentally. The presentation of results

Is far briefer than before, and typically consists of comparative distributions

between standard and modified algorithms for two instances of a particular

graph. -

3. 7. 1 Variation of cube routing

in the routing algorithm for the cube, the randomly chosen dimensions to

be altered are traversed In a random order. Some analytic results proved

for cubes depend upon the dimensions being traversed in increasing order.

This allows guarantees to be made about equal expected utilisation of all

edges (the symmetry property). This Ostricto variant is compared here with

the original random variant and with a 'semi-stricto scheme. In which

dimensions are traversed in Increasing order modulo the number of

dimensions, with a random starting dimension. The cube representatives

chosen, as throughout this section, are the 256 and 512 node networks.

7 8 9 10 11 	12 	Mean Variance

Random 1st phase 39 355 98 8 - 	 - 	 8.15 0.32

Semi-strict 1st phase 65 373 61 1 - 	 - 	 8.00 0.26

Strict 1st phase 72 389 38 1 - 	 - 	 7.94 0.22

Random 2nd phase 19 304 155 21 1 	- 	 8.36 0.40

Semi-strict 2nd phase 31 357 106 6 - 	 - 	 8.17 0.29

Strict 2nd phase 3 245 225 24 3 	- 	 8.56 0.39

Table 3-58: 	Comparative time for varied routing on 256 node cube

Experiments with parallel communication schemes
	

101

8 9 10 11 12 Mean Variance

Random 1st phase 30 350 113 7 - 9.19 0.30
Semi-strict 1st phase 64 364 69 3 - 9.02 0.29
Strict 1st phase 55 403 42 - - 8.97 0.19
Random 2nd phase 15 297 170 16 2 9.39 0.39
Semi-strict 2nd phase 29 356 106 8 1 9.19 0.32
Strict 2nd phase 4 196 250 48 2 9.69 0.44

Table 3-59: 	Comparative time for varied routing on 512 node cube

It might be expected that the imposition of less random routing strategies

would worsen the completion time. it can be seen that this is true for the

second phase with the strict strategy, but a small improvement is obtained

In all the other cases. Looking at the other experimental statistics, the

maximum node population distributions are similar for all three strategies.

but the maximum queue length distributions do provide interesting

Information. and so they will be reproduced here.

2 3 4 	5 6 	Mean Variance

Random 1st phase 229 264 7 	- - 	2.56 0.27
Semi-strict 1st phase 342 157 1 	- - 	2.32 0.22
Strict 1st phase 344 155 1 	- - 	2.31 0.22
Random 2nd phase 149 330 21 	- - 	2.74 0.27
Semi-strict 2nd phase 198 287 15 	- - 	2.63 0.29
Strict 2nd phase 6 319 159 	14 2 	3.37 0.34

Table 3-60: 	Comparative max queue for varied routing on 256 node cube

2 3 4 	5 6 	Mean Variance

Random 1st phase 108 377 14 	1 - 	 2.82 0.22
Semi-strict 1st phase 220 275 5 	- - 	2.57 0.27
Strict 1st phase 195 295 10 	- - 	2.63 0.27
Random 2nd phase 46 417 37 	- - 	 2.98 0.17
Semi-strict 2nd phase 102 378 19 	1 - 	2.84 0.22
Strict 2nd phase - 194 266 	36 4 	3.70 0.40

Table 3-61: 	Comparative max queue for varied routing on 512 node cube

From this, it can be seen that the maximum queue lengths occurring In

the second phase with the strict strategy are dramatically worse. 	The

Experiments with parallel communication schemes 	 102

explanation for this ties, as so often, in the initial queues. instead of the

first phase arrivals being randomly distributed amongst queues, there is

now a preponderance of packets in the queues for edges of the lower

dimensions. This has the effect of lengthening the completion time.

In the other cases, maximum queue lengths are reduced corresponding to

reductions in completion time. This is because, when two packets arrive at

a node at the same time interval, the probability of them both joining the

same queue is reduced. A limited form of pipeilning has been Introduced.

In that packets arriving on different edges are likely to depart on different

edges since they follow separate paths in order of increasing dimension.

Thus, packets progress more freely and are not subjected to the random

collisions which are forced by the original strategy. It is hard to separate

the completion times for the semi-strict and strict strategies within the limits

of experimental error, but the marginal improvement for the strict scheme

does correspond with the intuition that packets are more likely to proceed

Independently when their dimension traversals are more in step.

Therefore, although strict routing Is used analytically to guarantee

N symmetry. I. e. each edge having equal probability of usage during a run.

Its practical effect Is that any gains result, in fact, from a lack of symmetry

In the behaviour of packets at nodes. This has been a characteristic

brought out by most of the experiments: consideration of node balance at

each time Interval appears more useful than consideration of edge balance

over the whole run.

3.7.2 Optimised routing for the d-shuffle

Next. an optimised path for packets being routed in a d-shuffle graph Is

considered. The standard algorithm makes each packet traverse a path of

length n, where n Is the diameter of the graph. However, as mentioned

earlier. a shorter path is possible if the source and destination node

representations have a substring In common (i.e. a path from afl to $V for

some a. $, 'V has length n-1,01) . Therefore, expected path lengths can be

reduced, at the expense of introducing more variability, and so expected

completion time should decrease.

Experiments with parallel communication schemes 	 103

Analytically. it Is often necessary to modify routes in this way in order to

prevent multiple Intersections of paths (or packets) during a run (the

non-repeating property). Since there is at most one shortest route

between any two nodes, packets cannot suffer two different intersections

while en route.

The representative graphs used here are a diameter six 3-shuffle and

diameter four 4-shuffle, which will be the standard examples throughout this

section in view of the routing utility of these degrees, together with

diameter eight and nine 2-shuffle graphs, which are of interest in this

particular case. Only the completion time results are given here. Other

statistics are omitted, but may be referred to to explain the results.

9 10 11 12 13 14 Mean Variance

Normal 1st phase 54 334 99 12 1 - 10.14 	0.40

Revised 1st phase 86 317 90 6 1 - 10.04 	0.42

Normal 2nd phase 3 287 182 22 5 1 10.48 	0.43

Revised 2nd phase 16 259 192 28 4 1 10.50 	0.50

Table 3-62: Time using varied routing on 729 node 3-shuffle

6 7 8 9 10 Mean Variance

Normal 1st phase 281 203 16 - - 6.47 0.31

Revised 1st phase 287 195 15 2 1 6.47 0.36

Normal 2nd phase 149 318 30 3 - 6.77 0.33

Revised 2nd phase 164 299 36 1 - 6.75 0.34

Table 3-63: Time using varied routing on 256 node 4-shuffle

11 12 13 14 15 16 17 18 Mean Variance

Normal 1st phase - 	 103 257 102 31 7 	- - 	 13. 16 0.76

Revised 1st phase 50 	251 138 47 11 3 	- - 	 12.45 0.84

Normal 2nd phase - 	 12 203 181 83 16 	4 1 	13.81 0.86

Revised 2nd phase 4 	110 243 108 31 2 	2 - 	 13.13 0.80

Table 3-64: Time using varied routing on 256 node 2-shuffle

It can be seen that the completion time is only significantly affected in the

case of the 2-shuffle graph. 	In all cases, mean maximum node

Experiments with parallel communication schemes
	 104

13 14 15 16 17 18

Normal 1st phase 3 107 243 103 33 8

Revised 1st phase 46 236 157 41 17 2
Normal 2nd phase - 26 185 198 66 19
Revised 2nd phase 7 115 227 112 27 11

19 20 21 22 Mean Variance

1 1 0 1 15.19 1.00
0 1 - - 14.52 0.91
4 2 - - 15.77 0.95
0 1 - - 15.15 0.95

Table 3-65: Time using varied routing on 512 node 2-shuffle

populations were slightly increased, as a consequence of the reduced

balance in the network.

Of course, given the small number of d-shuffle graphs considered, it

would be rash to attempt to make general statements about the behaviour of

completion time. It can be seen that the gains for the 2-shuffle are

approximately the same in both graphs and in both phases. An explanation

of this and the absence of improvement in the higher degree cases is

provided by the following result concerning expected path length under the

new regime

Lemma (3.5): Let s(i) be the expected number of shuffle steps

to move from vertex I to a random vertex I in a d-shuffle graph

with d" vertices. Then, for all I.

- 	 2 +
_ 	1 	 d 	s(I)

(d-i) 	(d-1)d (n + d-1

and

s(i) (n- 1+
d-1 	(d-1)d"

Proof: Let a(k) be the number of vertices which can be reached

using at most k shuffle steps from some fixed start vertex.

Clearly. 0(n) = d" and, for 0 < k < n-i,

k
d1 = d

11 -1
0(k)

d-1 1=0

Experiments with parallel communication schemes
	

105

and

d 1 0(k)

Now.

s(i) = 	
k. 0(k)-0(k-1)

d" k=1
1 n-i

= n - -li- E 0(k)
d k=O

and so

1 n-i d 1" 1 l 	 1
n --n- 	 s(i) 	 dk

d k=O d-1 	 k=0

Summing the series gives the required result.

The bounds on s(i) are tight. The lower bound is achieved when the

start vertex is for example, and the upper bound is achieved when

the start vertex is
on,

 for example.

The lemma shows that the worst case expected path length reduction from

the previous constant value for all nodes is
d-1

 for the d-shuffle. Since

path lengths are integral, there can only be a significant reduction when d

equals two. This corresponds with the observation made about completion

time.

The fact that the only effect of introducing the revised routing scheme Is

to reduce completion time because of shorter path lengths indicates that

the problems regarding repeating routes in analytic proofs are not

significant. Note that the rate of increase in completion time with diameter

does not change significantly (looking at results for the 2-shuffle over the

complete range of diameter). This is consistent with the hypothesis about

completion time. given that the improvement In expected path length Is only

a constant.

Experiments with parallel communication schemes 	 106

3.7.3 Variation of queueing discipline

Having observed that the imposition of shortest path routing on a d-shuffle

does not degrade performance, and may indeed improve it. another

modification, applicable to all graphs, is examined. This is the choice of

queueing discipline employed at nodes. Some analytic proofs do not make

any constraints on queueing discipline, as long as the first item on a

non-empty queue Is always defined. Others, however, are more specific

and demand that packets which have the furthest distance to go should be

given priority. Intuitively, this should speed up the overall algorithm.

Here, three queueing disciplines are compared for both the cube and the

d-shuffle. They are the normal first-come first-served (FCFS). furthest-

to-go first-out (FTGFO). and remove in random order (RIRO). The

graphs are the 2 and 2 node cube. and the
36 and

44 node d-shuffle.

7 8 9 10 11 Mean Variance

FCFS 1st phase 39 355 98 8 - 8.15 0.32
FTGFO 1st phase 150 350 - - - 7.70 0.21

RIRO 1st phase 35 325 121 19 - 8.25 0.40

FCFS 2nd phase 19 304 155 21 1 8.36 0.40

FTGFO 2nd phase 156 344 - - - 7.69 0.21

RIRO 2nd phase 10 292 169 27 2 8.44 0.42

Table 3-66: Time for varied queueing discipline on 256 node cube

8 9 10 11 12 Mean Variance

FCFS 1st phase 30 350 113 7 - 9.19 0.30
FTGFO 1st phase 183 317 - - - 8.63 0.23
RIRO 1st phase 19 329 142 10 - 9.29 0.32
FCFS 2nd phase 15 297 170 16 2 9.39 0.39
FTGFO 2nd phase 177 323 - - - 8.65 0.23

RIRO 2nd phase 4 290 180 23 3 9.46 0.39

Table 3-67: Time for varied queueing discipline on 512 node cube

From the tables. it can be seen that FTGFO always makes an

Improvement to the completion time for FCFS, as expected. Indeed, for

the 512 node cube, the completion times are now essentially optimal with

respect to the routing strategy. In this case,

107

Mean Variance

10.14 0.40
9.76 0.51

11.01 0.65
10.48 0.43
9.67 0.41

11.56 0.73

Experiments with parallel communication schemes

9 10 11 12 13 14 15 	16

FCFS 1st phase 54 334 99 12 1 - - 	 -

FTGFO 1st phase 180 271 41 7 0 0 0 	1
RIRO 1st phase 1 131 255 91 21 0 1 	-

FCFS 2nd phase 3 287 182 22 5 1 - 	 -

FTGFO 2nd phase 208 249 41 2 - - - 	 -

RIRO 2nd phase - 26 249 157 57 9 2 	-

Table 3-68: Time for 729 node 3-shuffle

6

FCFS 1st phase 281
FTGFO 1st phase 308
RIRO 1st phase 104
FCFS 2nd phase 149
FTGFO 2nd phase 328
RIRO 2nd phase 28

Table 3-69:

7 8 9 10 	Mean Variance

203 16 - - 	 6.47 0.31
179 13 - - 	 6.41 0.29
317 72 7 - 	 6.96 0.41
318 30 3 - 	 6.77 0.33
163 9 - - 	 6.36 0.27
292 151 26 3 	7.37 0.48

Time for 256 node 4-shuffle

Prob(no packet has a length 9 route)

= (1- 1)5120 367
512

and

Prob(no packet has a length 8 or 9 route)

- 5
)512 0.000

512 	12
so. over 500 experiments. It Is expected that 184 will have a maximum path

of length eight and 316 will have a maximum path of length nine. This

correlates remarkably with the experimental result. Indicating that queueing

is not affecting the completion time. In the case of the 256 node cube,

where packets with relatively long path lengths are more likely, the

completion time is less than optimal, so some of the length seven packets

are obviously not getting a clear run without queueing.

For the d-shuffle, such a striking Improvement Is not possible because all

packets have the same path length, rather than there being a few which

can extract maximum benefit from FTGFO. Any gains will be achieved by

balancing the rate of progress 'of packets through the network, and so

achieving a fairly uniform arrival time for all packets, with no bad worst

Experiments with parallel communication schemes 	 108

cases. The 3-shuffle graph shows more evidence of improved completion

time than the 4-shuffle, given the limited number of results. This would be

expected since, with the higher degree. there is less likelihood of packets

being delayed for several time periods. Also. In this case, the diameter,

and hence path lengths, are smaller and so give less scope for variations

In completion time to develop.

For all of the graphs. it can be seen that FTGFO has the effect of

reducing the completion time for the second phase so that it is

approximately equal to that for the first phase. Throughout. it has been

assumed that the difference between phases was due to dispersing the

Initial node populations in the second phase. This is supported by the

behaviour here because, for the cubes, the queues will be emptied In order

of distance to be travelled which avoids all but very improbable initial delays

occurring, and for the d-shuffle (modulo the freak first phase completion

time for one of the 3-shuffle experiments), any packets detained on Initial

queues will catch up more fortunate packets during the run, rather than

being permanently disadvantaged.

Unlike FTGFO. there is no reason to expect that RIRO would lead to

Improvements over FCFS, and this Is borne out by the results. For the

cubes, there is a slight, but not serious, deterioration in all cases. This

Is further evidence that queues do not play a very significant part In causing

delays: if they did. RIRO should have a retarding effect when packets were

overtaken In a queue by later arrivals. The d-shuffles show a greater

worsening under RIRO, more so in the second phase. This Is due to an

Inversion of the effect produced by FTGFO. When all packets are travelling

the same distance, similar progress rates are desirable, but RIRO only

serves to Increase variation in the time which packets spend in queues.

Supporting evidence for this comes from the increased variance of

completion time. The Implication of the behaviour of RIRO is that analytic

methods which do not make assumptions about queueing discipline may

lead to less tight bounds on completion time. Of course. more

"outrageous disciplines than RIRO, such as last-come first-served, should

lead to further slow downs, but are not studied here.

Experiments with parallel communication schemes 	 109

In all of the experiments, no significant changes in mean maximum node

population and mean maximum queue length were seen. This is not

surprising since the revised queueing disciplines affect the order in which

packets flow through the network. but do not change their global

distribution among nodes in the network throughout the run.

3.7.4 Single queue shared by all out edges

Having looked at the effect of varying the queueing discipline, the effect of

having only one queue for outgoing packets at each node. instead of one

queue per edge. will be examined. In a practical sense, this would model

a processor with a shared output device, which could only transmit one

packet per time Interval. More abstractly. graphs in which many

resources. Le. edges. are unused at each time interval can be examined

to assess the effect of explicitly making these resources available. With

this in mind, the only graph considered here is the cube. Since It has

logarithmic degree rather than constant degree. it is liable to suffer most

from the queue restriction. However, if the routing was Ideally balanced.

the connectivity of the cube should mean that, on average, only one packet

leaves each node at each time interval. Certainly. it is true that (n-1)2"

edges of a
n2n edge cube are unused at each time Interval.

7 8 9 10 11 12 	13

8 queue. 1st phase 39 355 98 8 - - 	 -

1 queue. 1st phase - - 9 112 223 113 	32

8 queue. 2nd phase 19 304 155 21 1 - 	 -

1 queue. 2nd phase - - - 3 88 202 	134

14 15 16 17 Mean Variance

- - -
- 8.15 0.32

13 3 - - 11.22 1.02
- - -

- 8.36 0.40
57 10 5 1 12.42 1.14

Table 3-70: Time for varied queues on 256 node cube

All of the statistics collected in this case are reproduced, in view of the

fundamental change made to the structure of the algorithm, which obviously

Experiments with parallel communication schemes

8 	9 	10 11

9 queue. 1st phase 	 30 350 113 7
1 queue. 1st phase 	 - 	- 	- 	8

9 queue. 2nd phase 	 15 297 170 16
1 queue. 2nd phase 	 - 	- 	- 	-

12 13 14 15 16

161 212 88 27 3
2 - - - -
13 129 228 88 28

110

17 18 	19 20 21 22 	Mean Variance

- - 	 - - -
- 	 9.19 	0.30

1 - 	 - - - - 	 12.96 	0.86
- - 	 - - -

- 	 9.39 	0.39
8 4 	1 0 0 1 	14.08 	1.21

Table 3-71: Time for varied queues on 512 node cube

4 5 6 7 8 	9

8 queue. 1st phase 23 304 150 21 2 	-
1 queue. 1st phase 3 198 211 73 12 	3

8 queue. 2nd phase 64 334 91 11 - 	 -

1 queue. 2nd phase - 158 224 83 32 	2

10 11 12 Mean Variance

- -
- 5.35 0.43

- -
- 5.80 0.68

- -
- 5.10 0.39

-
- 1 6.00 0.85

Table 3-72: 	Max node population for varied queues on 256 node cube

4 5 6 7 8 	9

9 queue. 1st phase - 203 243 50 2 	2

1 queue. 1st phase - 43 241 164 42 	9
9 queue. 2nd phase 2 302 168 24 4 	-

1 queue. 2nd phase - 29 238 161 54 	9

10 11 12 Mean Variance

- -
- 5.71 0.48

1 - - 6.47 0.72
- -

- 5.45 0.40
6 2 1 6.61 0.96

Table 3-73: 	Max node population for varied queues on 512 node cube

affects queue sizes. and may in turn affect node populations. Also, given

Experiments with parallel communication schemes
	 111

2 3 4 5 6 7

8 queue. 1st phase 229 264 7 - - -

1 queue. 1st phase - - 125 274 81 16

8 queue. 2nd phase 149 330 21 - - -

1 queue. 2nd phase - - 12 205 193 67

8 9 10 11 Mean Variance

- - - - 2.56 0.27

4 - - - 5.00 0.61
- - -

- 2.74 0.27

22 0 0 1 5.77 0.82

Table 3-74: 	Max queue length for varied queues on 256 node cube

2 3 4 5 6 7 	8

9 queue. 1st phase 108 377 14 1 - - 	 -

1 queue. 1st phase - - 3 214 215 55 	13

9 queue. 2nd phase 46 417 37 - - - 	 -

1 queue. 2nd phase - - - 60 253 140 	32

9 10 11 12 Mean Variance

- - -
- 2.82, 0.22

- - -
- 5.72 0.59

- - -
- 2.98 0.17

11 2 1 1 6.39 0.89

Table 3-75: 	Max queue length for varied queues on 512 node cube

the tight coupling between queue size and node population, the effect of

arrivals on maximum node population may be observed easily.

The fundamental change is, of course, in maximum queue length. it has

Increased, in all cases. to a level greater than that of the maximum node

population for the multi-queue case. Thus, new bottlenecks are being

created, in addition to packets being forced to use the same queue. On

average, the "bottleneck increase" in queue size is not large but,

considering the entire distribution, the variance is relatively large. The

effect of this is to make the distributions of completion time and maximum

node population more variable than before. As an example, in both an

eight and a nine dimensional experiment, the impact of one particular bad

Experiments with parallel communication schemes 	 112

queue can be traced through all of the results.

The completion time, as well as being greater for the one queue scheme,

grows at a faster rate with the dimensionality of the cube. This Is verified

by results not Included here. As observed previously, for schemes in

which node behaviour with respect to arrivals and departures Is not

symmetric, completion time is still linear In the expected path length, but

the constant of proportionality is larger. The constant Is still approximately

the same for both phases. despite the Increased difference in queue sizes,

which only affect the mean completion time by a constant amount.

The maximum node populations are only increased by a relatively small

amount. the difference being more prominent in the second phase. This is

encouraging. on average, since it means that packets are still being fairly

evenly distributed about the network. The increased variance, however.

means that worse Imbalance occurs in worst case runs. Atypically.

maximum node populations are larger in the second phase than the first.

This is because maximum queue lengths are sufficiently larger to dominate

the effect of packets which have terminated at a node. Observing the

difference between both maximum queue length and maximum node

population in the two phases, long-awaited positive evidence in favour of

the explanation that higher first phase populations are due to early arrivals

is obtained. In these experiments, there Is a very noticeable separation

occurring.

The maximum queue length In the second phase is larger than that In the

first In the one queue scheme. However, the difference decreases as cube

size Increases, since the effect of the Initial bottlenecks at the start of the

second phase becomes less pronounced as routing bottlenecks begin to

dominate the queue length measurements. Note that, since packets on

any queue are being sent along a random edge in a logarithmic degree

graph. a large queue at a node Is unlikely to re-form later at some

succeeding node. The most extreme maximum queue lengths (and thus

the larger variances) occur In the second phase. Indicating that the worst

queues do develop from the seed provided by an Initial queue.

Experiments with parallel communication schemes 	 113

The Imposition of the one queue restriction is a little unnatural with

respect to the parallel model, which stresses communication complexity by

regarding processing time as negligible. Upfai (51] has suggested that the

operation of the scheme should be further restricted by only allowing one

packet to arrive at. or one packet to depart from, any node in any time

interval. Analytically, the best upper bound on completion time under the

first restriction for the n-dimensional cube is 0(n 2). rather than 0(n).

Thus it is of the same complexity as can be achieved using a deterministic

scheme. The best upper bound under the second restriction is 0(n 3).

Some limited experiments have been performed with a cube operating under

Upfai's regime, and these indicate that an 0(n 2) mean completion time

results. with an extremely large variance of the distribution.

3.7.5 Merging of routing phases

Finally in this section, another variation on the basic randomised routing

scheme is considered. This is the merging of the two phases so that.

Instead of being run independently, they are overlapped. The motivation in

doing this is to achieve gains in completion time by pipelining. The

drawback, in this context. Is that such a change makes the scheme non-

testable because combined path lengths are no longer independent of the

Input permutation in general. For example, in the case of the n-

dimensional cube, which will be examined, for the identity permutation,

first and second phase path lengths are the same, the total length having

mean n and worst case 2n. However, the inverting permuatlon, which

sends packets to the node with the complemented binary address of the

source, has every path of length precisely n. In fact. these two

permutations have the two extreme distributions of total path length. and so

are considered here to investigate the best and worst improvements

possible by pipeiining. It is important to remember, though, that these

results do not apply to all permutations.

In the case of the d-shuffle. there is no such problem because all paths

have the same length, namely the diameter. This feature means,

however, that pipeilning is less liable to produce significant gains since

packets arrive at their first phase destinations at similar times and so the

Experiments with parallel communication schemes 	 114

two phases are inherently separate. No d-shuffle experiments are reported

here.

Two variations are tested. In the first. full merging, a packet commences

the second phase as soon as it completes the first phase and then

proceeds to its final destination. The second variation, partial merging,

behaves similarly except that packets still on the first phase are always

given priority in queues. This is a higher level version of the furthest-to-go

first-out queueing discipline seen earlier, and it occurs in a slightly

modified form in the parallel communication scheme proposed by

Upfai 1511.

The results tabulated include the standard scheme implementing the

Inverting permutation, for completeness. Comparing the results for this

with those for the Identity permutation confirms the testability assumption for

these two differing permuations.

10 11 12 13 14 15

Identity, no merging - - - - 7 33
Identity, part merging - - - - 26 130
Identity. full merging - - - - 10 112
Inverse, no merging - - - - 2 37
Inverse, part merging 148 318 32 2 - -

Inverse, full merging 134 335 31 - - -

16 17 18 19 Mean Variance

239 149 62 10 16.51 0.83
238 101 5 - 15.86 0.69
217 137 21 3 16.11 0.79
239 180 48 4 16.51 0.62
- - -

- 10.78 0.33
- - -

- 10.79 0.29

Table 3-76: 	Total time for routing with merged phases on 256 node cube

The significance of the input permutation is immediately obvious from the

results. The improvement obtained for the Identity permutation is very

little, whereas that for the inverting permutation Is of the order of a 50%

Experiments with parallel communication schemes 	 115

11 12 13 14 15 	16 17

Identity. no merging - - - -
- 	 3 30

Identity, part merging - - - -
- 	 18 127

Identity. full merging - - - -
- 	 12 88

Inverse, no merging - - - - - 	
- 25

Inverse, part merging 35 378 82 5 - 	 - -

Inverse, full merging 30 391 76 3 - 	 - -

18 19 20 21 22 	Mean Variance

209 200 49 8 1 	18.58 0.72

236 107 11 1 - 	 17.94 0.72

217 143 33 7 - 	 18.24 0.89

219 184 61 11 - 	 18.63 0.71
- - - - - 	 12.11 0.26
- - - - - 	 12.10 0.23

Table 3-77: 	Total time for routing with merged phases on 512 node cube

reduction In completion time. These observations confirm the stature - of

the cube as a medium for routing with few delays per packet. When all

paths have equal lengths. the mean completion time is much closer to the

path length than for a comparable situation on. say, the d-shuffle. When

the path length has a binomial distribution, the mean completion time is

almost equal to the maximum path length.

There is no difference between the partial and full merging methods for

the inverting permutation, whereas (as might be expected) there is for the

identity. Assuming that packets travel at approximately similar rates, there

is no advantage in giving priority to packets when all routes are the same

length, since phases are irrelevant. However, when a long route in the

first phase means also a long route in the second phase, packets still on

the first phase should always take precedence.

The measurements of maximum node population and maximum queue

length have been omitted. but the main features of each can be succinctly

summarised. The distributions of maximum node population are similar for

all experiments with merging. The means are close to the second phase

means for separately phased routing. but the variances are smaller. This

Is as expected, given that the unnatural node populations generated at the

Experiments with parallel communication schemes 	 116

end of the first phase have been eliminated. The distributions of maximum

queue size are again similar. However, the means are slightly larger than

in the unmerged experiments, while the variances are slightly smaller.

/ 	
This is explained by the fact that the utlilsatlon of the network has

7 	increased, with all packets now travelling to their final destination without

artificial inter-phase waits. There are longer time periods during which the

majority of packets are active, and so more opportunity for bottlenecks to

develop.

In conclusion, it has been seen that meging of phases does not alter

worst case complexity of randomised routing a great deal. Clearly, the

partial merging technique cannot worsen completion time. and experimental

results indicate that node populations are not worsened. In practical

circumstances, substantial gains can be achieved for appropriate

permutations. However. in a theoretical and experimental sense, it is little

loss to consider separate phases since worst case permutation performance

Is normally of greatest Interest.

3. 8 Generalising permutations

All of the experimental results so far have been concerned with realising

permutations. In this section, more general h-relations are considered, in

which h packets start and finish at each node. It has already been

observed that, for any fixed h, randomised routing algorithms are testable.

Values of h from one (permutation) up to eight will be considered, firstly

on the 2 and 2 vertex cubes and secondly on the
36 and

 44 vertex

d-shuffles. For reasons of space, the style of presentation reverts to

summaries of mean, variance, and maximum only for the three usual

measures.

The effect of increasing h from one is that the minimum worst case

completion time for a packet must be increased from n, the dimensionality

of the cube, 	to n + (h-i). corresponding to a packet with maximum path

length 	being 	last to 	leave its 	source 	node. Looking 	at the maximum

completion times recorded, they approximately follow this rule. 	The mean

completion time also grows with h, 	but with a constant of proportionality

Experiments with parallel communication schemes
	 117

h Mean Variance Maximum

1 7.11 0.33 9
2 8.02 0.37 10

3 8.80 0.48 11

4 9.61 0.54 13

5 10.42 0.74 17

6 11.19 0.78 14

7 12.05 0.85 16

8 12.76 0.97 17

Table 3-78: Time for 1st phase of h-relations on 128 node cube

h Mean Variance Maximum

1 7.30 0.40 10

2 8.19 0.40 10
3 8.97 0.49 12
4 9.81 0.62 12

5 10.60 0.64 14
6 11.38 0.86 16
7 12.10 0.87 16
8 13.00 1.18 18

Table 3-79: Time for 2nd phase of h-relations on 128 node cube

h Mean Variance Maximum

1 8.15 0.27 10
2 9.15 0.36 11
3 9.89 0.46 12
4 10.65 0.59 14
5 11.46 0.56 15
6 12.30 0.71 15
7 13.05 0.74 17
8 13.89 0.84 18

Table 3-80: Time for 1st phase of h-relations on 256 node cube

less than one. The encouraging feature of the results is that, in the vast

majority of experiments, increased completion time Is no more than the

time taken to disperse h packets from a source. Therefore. the network

gives the appearance of processing h times as much data with only an

Increase of h in time. This is classical behaviour of a pipeilned system

but. In this case. that impression is not true. The point Is that. given the

Experiments with parallel communication schemes 	 118

h Mean Variance Maximum

1 8.32 0.32 10

2 9.26 0.42 11

3 10.03 0.48 13

4 10.88 0.66 14

5 11.58 0.57 15

6 12.35 0.62 16

7 13.11 0.76 16

8 13.99 0.95 19

Table 3-81: Time for 2nd phase of h-relations on 256 node cube

high degree of the cube. an initial population will be quickly dispersed with

high probability and it is the high redundancy of edges which allows a

greatly increased throughput without greatly Increased delays. Obviously,

the scope for bottlenecks is greater. and this Is reflected in the increasing

variance, which Indicates that bad routes are sufficiently rare not to occur

In every experiment.

To flesh out these remarks, the statistics for node population and queue

length will be examined.

Max. population Max. queue length

h Mean Var Max Mean Var Max

1 4.90 0.53 8 2.26 0.19 3

2 7.18 0.82 11 3.10 0.18 5

3 9.02 0.94 14 3.68 0.36 6

4 10.86 1.29 16 4.34 0.39 7

5 12.55 1.61 20 4.89 0.50 10

6 14.16 1.75 20 5.48 0.51 8

7 15.66 1.72 21 6.03 0.60 10

8 17.15 1.85 23 6.49 0.69 10

Table 3-82: Max. popns and qs for 1st phase of h-rel on 128 node cube

The maximum node population Is growing more rapidly than the other

measures. Recalling that mean maximum node population was

approximately 0(109 N) when permutations were realised on a N node cube

and packets were randomly distributed. it appears that the mean here is

O(log h log N) and so. for fixed graph size, this measure grows most

Experiments with parallel communication schemes 119

Max. population Max. queue length

h Mean Var 	Max Mean Var Max

1 4.63 0.50 	8 2.50 0.27 4
2 6.82 0.75 	11 3.30 0.25 5
3 8.67 0.88 	14 3.99 0.35 6
4 10.49 1.24 	16 4.61 0.49 8
5 12.17 1.54 	20 5.24 0.46 8
6 13.78 1.61 	19 5.82 065 9
7 15.20 1.72 	20 6.32 0.73 11
8 16.83 1.93 	23 6.85 0.84 12

Table 3-83: Max. popns and qs for 2nd phase of h-rel on 256 node cube

Max. population Max. queue length
h Mean Var 	Max Mean Var Max

1 5.41 0.49 	8 2.56 0.38 4
2 7.68 0.58 	11 3.30 0.26 6
3 9.72 1.09 	14 3.99 0.31 6
4 11.55 1.17 	17 4.55 0.36 7
5 13.32 1.44 	20 5.19 0.38 7
6 14.88 1.45 	21 5.72 0.47 9
7 16.59 1.67 	23 6.27 0.67 10
8 18.23 1.75 	24 6.82 0.63 10

Table 3-84: Max. popns and qs for 1st phase of h-rel on 512 node cube

Max. population Max. queue length
h Mean Var 	Max Mean Var Max

1 5.09 0.43 	8 2.72 0.26 5
2 7.28 0.58 	10 3.47 0.32 5
3 9.29 1.03 	14 4.21 0.31 6
4 11.11 1.15 	17 4.87 0.50 7
5 12.82 1.41 	20 5.49 0.48 8
6 14.36 1.28 	20 5.98 0.61 10
7 16.07 1.61 	20 6.53 0.60 9
8 17.63 1.57 	23 7.01 0.67 11

Table 3-85: Max. popns and qs for 2nd phase of h-rel on 512 node cube

rapidly in the range of h under consideration. However, because these

populations are distributed amongst log N queues, the maximum queue

sizes (and hence delays) do not Increase by a similar amount. Repeating

the same argument would imply that mean queue size was

Experiments with parallel communication schemes 	 . 	 120

0(109 log h log log N). but obviously the experimental results are not

accurate enough to speculate about this. As evidence for the maximum

node population mean, comparing the results for the eight and nine

dimensional cubes shows that, for each h, the ratio of corresponding

means Is approximately the same.

Both the completion time and maximum queue length grow at similar rates

during both phases. The maximum node population grows faster during the

first phase since, as h increases. so does the number of packets which are

destined for each node. The limited number of experiments performed

here are not sufficient to make statements about Implementing h-relations

on the cube with absolute certainty. However, it does appear that, if

additional storage capacity is provided at nodes of the cube, then routing

time Is fast, in the sense that It Increases by only an additive term in h.

rather than the multiplicative factor suggested by analytic proofs.

It might be expected that the degree-bounded d-shuffle will not show the

same capacity for handling the increased load. This will now be

Investigated. again in a rather restricted manner.

h Mean Variance Maximum

1 10.16 0.41 13

2 13.30 0.77 17

3 16.47 1.24 22

4 19.36 1.32 24

5 22.31 1.55 29

Table 3-86: Time for 1st phase of h-relations on
36 node 3-shuffle

h Mean Variance Maximum

1 10.47 0.43 14

2 13.61 0.74 17

3 16.67 1.26 22

4 19.62 1.55 25

5 22.62 1.68 28

Table 3-87: Time for 2nd phase of h-relation on
36 node 3-shuffle

Experiments with parallel communication schemes
	

121

h Mean 	 Variance Maximum

1 6.54 	 0.37 9

2 8.37 	 0.49 11

3 10.16 	 0.74 15

4 11.79 	 0.94 16

5 13.44 	 1.16 18

6 15.04 	 1.36 20

7 16.74 	 1.55 21

8 18.24 	 1.44 24

Table 3-88: Time for 1st phase of h-relation on
44

 node 4-shuffle

h Mean 	 Variance Maximum

1 6.75 	 0.38 9

2 8.50 	 0.52 12

3 10.26 	 0.75 13

4 11.92 	 0.93 15

5 13.47 	 1.17 18

6 15.22 	 1.38 21

7 16.68 	 1.47 22

8 18.24 	 1.87 24

Table 3-89: Time for 2nd phase of h-relation on
44 node 4-shuffle

For both graphs. the completion time again grows by a linear term in

h. However, with a more restricted degree, the linear factor is somewhat

larger. Compared with the cube, the variability of the distribution is larger.

Since the ability of a node to disperse abnormal populations is at the root of

these observations, further discussion is postponed until the other statistics

have been tabulated.

Max. population Max. queue length

h Mean Var 	Max Mean Var 	Max

1 5.61 0.52 	8 3.76 0.33 	7

2 8.15 0.67 	12 5.55 0.51 	8

3 10.33 0.90 	15 7.11 0.76 	12

4 12.35 1.03 	17 8.55 0.73 	12

5 14.23 1.14 	18 9.81 0.93 	13

Table 3-90: Max popns and qs for 1st phase of h-rels on
36 node 3-shuff

Experiments with parallel communication schemes 122

Max. population Max. queue length
h Mean Var 	Max Mean Vat Max

1 5.54 0.54 	8 4.08 0.32 7
2 8.12 0.69 	11 5.90 0.59 9
3 10.33 1.02 	15 7.58 0.73 11
4 12.35 0.99 	17 8.99 0.84 13
5 14.29 1.25 	19 10.40 1.17 15

Table 3-91: Max popns and qs for 2nd phase of h-reis on
36

 node 3-shuff

Max. population Max. queue length
h Mean Var 	Max Mean Var Max

1 4.99 0.46 	8 3.11 0.19 5
2 7.34 0.80 	10 4.20 0.35 7
3 9.32 0.97 	14 5.31 0.50 8
4 11.11 1.04 	16 6.26 0.57 10
5 12.76 1.33 	17 7.20 0.68 11
6 14.54 1.66 	22 8.07 0.83 11
7 16.17 1.81 	21 8.96 1.09 13
8 17.80 1.98 	24 9.69 0.88 14

Table 3-92: Max popns and qs for 1st phase of h-rels on
44

 node 4-shuff

Max. population Max. queue length
h Mean Var 	Max Mean Var Max

1 4.95 0.48 	7 3.19 0.21 5
2 7.25 0.79 	10 4.46 0.43 8
3 9.26 1.06 	14 5.60 0.57 9
4 11.09 1.06 	16 6.66 0.70 10
5 12.80 1.24 	17 7.53 0.76 11
6 14.51 1.80 	23 8.55 0.98 13
7 16.19 1.76 	21 9.33 1.05 14
8 17.80 1.97 	26 10.20 1.26 14

Table 3-93: Max popns and qs for 2nd phase of h-rels on
44

 node 4-shuff

Comparing the second phase mean maximum node population of the 256

node d-shuffle and the 256 node cube for different values of h. it can be

seen that they are approximately equal. This means that the hypothesis,

predicated on random distribution of packets about the network, about

maximum node populations being a function of graph size rather than graph

structure, still applies when there are more packets than nodes. This fair

Experiments with parallel communication schemes 	 123

distribution of packets among nodes Is achieved despite an increasingly

large difference in maximum queue length between the cube and the d-

shuffle. Of course, the variance of the maximum node population

distribution increases with h in both cases. but more detailed significance

testing of the two distributions indicates that it Is reasonable to assume that

the samples come from the same distribution.

In both phases of routing on the d-shuffle networks. the completion time

and maximum node population distributions are similar. However, the

maximum queue length distributions differ. with larger queues occurring In

the second phase. This indicates that the worst queues which form are not

having a dominating effect on the performance of the system. The larger

queues In the second phase do form at the most appropriate time, namely

at the beginning of the phase, and so have the most opportunity to disperse

without prolonging completion time.

The maximum queue sizes are now becoming large. and It must also be

the case that all queues are non-trivial since the expected number of

packets at a node at any time, h, exceeds the number of queues (here

three or four). Therefore, the simple hypothesis relating mean completion

time to expected path length must be modified. At each node on Its path,

a packet Is expected to meet (h-i) other packets and use the same output

queue as any one of them with probability --. So. to take account of

overloading of the system by a factor of h. it Is reasonable to expect an

Increase In completion time of O(expected path length. (h-i).

Analysing the completion time results for the cube and the d-shuffle. It

can be seen that the linear term in h does indeed follow this pattern, with

the Implied constant In the O(...) notation being around
3
j-.

 In the case

of the cube, the function Is truly a constant multiple of h. However, for the

d-shuffle with fixed d, the function takes the form O(h. diameter), which

means that completion time is as bad as suggested by analytic methods.

While the 4-shuffle Is superior to the cube when h = 1, it would be

necessary to increase the degree to get comparable performance for h > 1

on some particular graph size. The node storage requirement would be

Experiments with parallel communication schemes 	 124

similar for all graphs of this size.

3.9 Experimental method

When analysing the behaviour of randomised computations by collecting

statistics from simulation experiments, it is vital to ensure that the sample

runs reflect the underlying distributions faithfully. In this section, two

Important factors will be considered. Firstly, the pseudo-random number

generator used is tested for approximation to a true random number

generator in the context of the simulation. Secondly, the number of

experiments, which determines how closely observed results match

expected results. Is examined.

The pseudo-random number generator used was that supplied by the Vax

library software, and it is of the linear congruential type with successive

values computed by the relation

y11 =(69069. y1 + 1) mod 2
32

yielding a value in the range (0.1) from the most significant 24 bits. A

value in the range [0. r) was obtained by calculating Tr.?. The initial value

y0 was given by the number of centlseconds which had elapsed in the

current clock hour.

Various tests of the goodness of pseudo-random number generators are

well-known, such as the serial correlation test and the spectral test (291.

Here, a method particular to the problem under discussion will be used. It

Is based upon some experiments done by Valiant (52]. However, the

statistical analysis performed here will be dIfferent, and more applicable to

the probability distributions Involved.

Valiant compared the above procedure with a linear congruential random

number generator, designed following the rules-of-thumb recommended by

Knuth which guarantee passing of several of the tests for randomness. The

standard two phase algorithm was run on an eight dimensional cube 500

times, using both random number generators, to realise three differene

permutations. These were the identity, the complement, and the

Experiments with parallel communication schemes 	 125

(1+117) mod 256. permutations. The ad hoc acceptance criterion was

whether the six sets of results could reasonably come from a common

distribution. The results for completion time In the second phase (which

has the least sharp distribution of the various statistics) were as follows

7 8 9 10 11

Identity, standard gen. 18 329 131 20 2
Complement, standard gen. 17 314 157 12 -

(1+117), 	standard gen. 20 318 147 14 1

Identity. 	Knuth 	gen. 24 309 154 12 1

Complement. "Knuth 	gen. 23 305 153 17 2
(1+117). 	Knuth 	gen. 24 324 129 20 3

Table 3-94: 	Comparison of different random number generators

Valiant used a chi-square test to obtain slightly weak confidence limits on

a common underlying distribution. However, this test assumes that the

underlying distribution is normal, which is not the case here since, as has

already been remarked, most of the observed distributions are skewed in

the upper direction. Instead, the Kolmogorov-Smlrnoff test is applied,

since it is distribution-free. The test statistic Is obtained by comparing the

samples pairwise to find the largest difference in observed cumulative

Tat 'DP frequencies, and then dividing by theAsample size. Here. the value

348-328 -0
/500 	-

Is the test statistic. Since the threshold for the 0. 05 significance level is

1. 22, the conclusion is that there is a common underlying distribution.

Based on this result. the random number generator is taken as being

acceptable for the experiments. Note also that the testability assumption

has been checked in this experimental case. The identity and

complementing permutations have been compared earlier. Here, a third

permutation is introduced. Testability Is closely linked to the goodness of

the random number generator and, based on this limited sample, is

assumed to be true in general. Of course, to be completely rigorous,

each experiment attempted should be repeated, as a check, with other

permutations and random number generators. in practice, this was not

Experiments with parallel communication schemes 	 126

done on cost grounds, and verification was limited to occasional spot

checking of experiments for evidence of significant variation.

Given that the sampling technique Is faithful, it is necessary to choose

sample sizes which are adequate to approximate the underlying distribution.

Throughout. the sample size used here has been 500 experiments. This

was chosen bearing in mind both the available simulation resources and the

significance required from the results. Since the principal measure of

Interest for each distribution has been the mean, it Is necessary to

establish adequate confidence limits on the estimate obtained by calculating

the sample mean. As the distribution is not assumed to be normal, a

rather weak confidence interval can be established for an arbitrary

distribution using Chebychev's inequality giving that the estimated mean lies

within

na

of the true mean with probability 1-a, where v is the sample variance and n

Is the sample size.

The criterion for. acceptlbility here Is that the above quantity, when a =

0.05 (1. e. with 95% confidence). is smaller than 0.05 of the estimate.

When n is equal to 500, this means that /v must be less than the sample

mean divided by four. Most of the results given are comfortably within this

bound, the only exception being those for some of the very smallest graph

sizes. However, since the smallest results have generally been ignored

because their underlying distribution differs from that for larger graphs, this

is not a problem. Their role should be seen merely as one of

completeness.

Earlier published results from similar experiments (531 used a sample size

of 100. This was adequate for the limited range of graphs considered but

the Increased sample size here allows more scope (although. of course, a

fivefold increase in error limits is not obtained, merely a 45-fold

Improvement).

Experiments with parallel communication schemes 	 127

Clearly, the addition of the second decimal place is rather gratuitous. in

the discussion of the results, it has been disregarded. indeed, the

precision obtainable in any given experiment has always qualified the

Interpretation placed on the results, even if this is not explicitly pointed out

in the text. Luckily, results for the main graphs considered, the cube and

the d-shuffle, have sharp distributions and more detailed study of them Is

facilitated by the good approximations obtainable from a sample size of

500.

Note that the maximum observed sample, as remarked at the beginning,

Is included for informational purposes, rather than as a "good parameter

of the distribution - it is certainly not unbiased, but is consistent. The

distribution tables in the later sections are intended to give an instant

picture of the effect of modified algorithms. The parameter of interest is

still the mean: no attempt Is made-to put confidence limits on the observed

frequencies as indicators of the underlying distribution.

Routing in parallel algorithms
	

128

Chapter 4

Routing in parallel algorithms

4. 1 Introduction

This thesis Is primarily concerned with routing of data In order to simulate

arbitrary parallel memory accesses. However. In this chapter. entire

computations of algorithms on networks of parallel processors are examined

In order to Indicate that some of the ideas used in the analysis of routing

(such as priorities, merging of phases) reappear at a more global level,

expressing familiar concepts in the optimisation of parallel algorithms. An

attempt is made to begin the construction of a framework in which it is

possible to analyse parallel algorithms for processor networks by employing

similar techniques to those used for routing analyses. It Is felt that one

major reason why there is a dearth of non-trivial algorithms for this type of

parallel computer is that analytic tools are not available and so algorithms

are either very special purpose for particular network structures, or for

Idealistic parallel models. As before, the approach concentrates

exclusively on the movement of data between processors and thus the

notion of run time Is based upon communication time. Of course, there is

no longer a fixed set of data since, if the computation is non-trivial, some

transformations are Inevitable.

The behaviour of the network is expressed as a 	collection 	of 	activities

related by a notion of causality. Essentially, 	an activity consists of some

processor 	transmitting data 	to its 	neighbours at 	some 	step 	In 	the

computation. 	In 	a similar 	style to 	activities 	In the 	routing 	analyses 	of

Aleluinas and Upfal. In its most general sense, an activity will be defined

by

Definition (4. 1): An activity Is a quadruple (p. d. a. 5] where

Routing in parallel algorithms 	 129

p Is a processor in the network

d is a set of data involved In a particular computation

a Is an algorithm step being applied to the data set d

s is a stage in routing of data at algorithm step a

Thus. (p.da.$) involves processor p transmitting packets. containing data

from the dth set of data operated upon by the algorithm, which are at stage

$ of routing to satisfy the data exchanges at step a of the algorithm.

Sometimes. the structure of the network or the algorithm might make

some of the four activity parameters redundant, or make some of them

Interdependent. In other cases, It might be convenient to view the

parameters as being tuples themselves, in order to further refine the scope

of an activity. However, in general, the triple (d.as) reflects three

Important levels of a parallel computation. Assuming that p. d. a, and s

range over sets P. D. A. and S respectively, a few simple observations

can be made immediately.

If lPl = 1. then the algorithm must be serial and, in the absence of

communication problems, is not of interest here. if 101 = 1. then the

algorithm handles only one set of data at any given time period. That is,

there is no pipelining of data in the parallel processing sense of optimising

resource usage by processing several different Inputs at the same time. If

lAl = 1, then the notion of an algorithm collapses into being a single

routing problem of the type considered at length previously. If lSi = 1. the

routing is simplified in the sense that each processor only communicates

with its neighbours and so the concept of a routing node disappears.

Clearly. if any of P. D. A. or S is empty, then analysis of communication

behaviour is rather trivial.

A form of interdependence among the parameters p, d. a. and s which

can occur frequently independently of particular algorithms, reflects an

important design feature in the construction of parallel computers. That is,

whether the network should be exDanded or recirculating. Fundamentally,

this reflects a decision on whether the concept of stages In a computation

should be directly incorporated into a network so that its structure can'be

Routing in parallel algorithms 	 130

viewed as consisting of a number of processing stages.

It has already been seen that, in the context of analytic proofs of routing

network behaviour, the major advance in the approach of Aleluinas and

Uplal over that of Valiant was that the behaviour of a particular processor

could be viewed as a number of separate activities over time, rather than

as a single entity throughout the computation. This enables a more precise

analysis of collisions at the processor. In order to achieve the separation

of processor activities over time, it was necessary to envisage a routing

algorithm In which a processor does not deal with data packets at a given

routing stage until all packets at earlier stages have been dealt with.

4.2 Staged networks

A more direct approach to implementing the desirable feature of staging is

to expand the network in such a way that the processors are copied with

different copies handling different stages. This is a familiar feature of

parallel architectures, such as the sorting network of Batcher [5]. The final

stage of the network may be connected back to the first stage; in this

case, the network will be described as being wraøoed.

As examples of expanded networks, the shuffle family may be considered.

An expanded version of a d' vertex d-shuffle (V. E) has nd' vertices

((v.$) lv€V. 0sn-11

and edges

(((u.$). (v, (s+1) mod n)1 I (u, v) € E. 0 4 s (n-i]

That is, each shuffle edge moves to the next stage. The conventional

expanded version of the shuffle-exchange graph is similar In that shuffle

edges also change stage. However, exchange edges remain within a

single copy of the graph.

It is interesting to note that the cube-connected cycle graph, which was

motivated as a practical compromise which can simulate the properties of

the n-dimensional cube, is in fact related to these expanded shuffle

	

Routing in parallel algorithms
	 131

graphs. it turns out that the CCC, when either undirected, or directed with

backward cycle edges only. Is Isomorphic to the wrapped expanded shuffle-

exchange graph. Further, the variant of the CCC, the so-called CCC I ,

employed by Upfai is similarly just a wrapped expanded 2-shuffle graph.

Theorem (4.2): (for undirected graphs) (I) A CCC with n2
n

vertices is Isomorphic to a wrapped expanded n-stage shuffle-

exchange graph with
2n

 vertices. (ii) A CCC with
n2n

 vetices Is

Isomorphic to a wrapped expanded n-stage 2-shuffle graph with

vertices.

Proof: In both cases, the CCC (CCC) vertex

(c.d). 0 (c < 2fl1; 0 < d < n-i

Is mapped to the expanded shuffle-exchange (2-shuffle) vertex

(c>>d. (n_1)_d)

where the notation c>>d means the binary representation of c

shifted cyclically right by d places. It can easily be seen that this

map is a bijection. -

Also for both graphs, the edges

t(c,d).(c.(d-1) mod n)]

map to

((c>>d. 0-1)-d)

(c>>((d-1) mod n),((n-i)-d+1) mod n)]

For the CCC
+
 . the edges

	

((c_ 1 . . . Cd_i. 	. . c0 . d) , (c_ 1 Co . (d-1) mod n)1

map to

((cd_i. . . C0C,._1 ... Cd. (n-1)-d),

(cd_2. . .c0c_1 ... cd , ((n- l)-d+l) mod n)1

For the CCC, the edges

Routing in parallel algorithms 	 132

[(c_1 .. .Cd. . . co , dL(c_1. . . C.. .cd)]

map to

((cd_i.. .cOcfl_l. . .Cd. (fll) d)

(Cd_i.. .cocn_l. . .cd.(n - l) d) J

Thus, the edges are mapped bijectively from one graph to the other. The

underlying idea is that the traversal of a sequence of stages in the shuffle

graph corresponds to traversing a cycle in the CCC graph. but In the

opposite direction. Indeed, recent analyses of algorithms for the CCC, for

both routing (51] and sorting [421 rely on this Implicit staging. The 2-

shuffle interconnection pattern is the key feature of the actual algorithms.

Of course. the advantages of an expanded network are bought at a price,

namely the increase in graph size. It has always been an assumption here

that the number of processors and the number of data packets is related by

a constant factor. If this linear relationship is to be maintained, some

algorithmic modifications are necessary. Either the size of the set of data

handled by the algorithm can be enlarged to match the number of

processors, or multiple sets of data, each of the original size, can be

handled simultaneously. Typically this distinction depends upon whether

the network is wrapped or not.

At this point. It is necessary to make the notion of a set of data more

concrete. With respect to one particular computation being performed

according to some algorithm, the data set at any point in time consists of

all data packets which are being sent from one processor to another

(whether queued or actually in transmission). That is. the contents of the

packets in a data set correspond to those items which are currently being

read from, or written to, the equivalent of a global memory in some

Instantiation of the algorithm. Initially, the data set may be considered as

the collection of input data to the computation which arrives in the network.

Ultlmately, the data set may be considered as the collection of output data

from the computation which leaves the network. During routing steps,

packets may be copied or merged, in the sense of the section on multiple

Routing in parallel algorithms 	 133

reads and writes. It will be assumed that such alteration is done in a way

which preserves the property that the total number of packets In the network

at any time does not exceed the number of processors by more than a

constant factor.

If the size of individual sets of data is of the same order as the number of

processors in an n-stage expanded network. it Is necessary for each

processor to be able to handle any stage of routing in the algorithm if the

Input data Is to be treated uniformly. For example, if one input datum

starts at each processor, the data packet starting at (i.j). 0 (I < 2"-i: 0

j (n-i say, will be handled by a processor at stage (k+j) mod n at the

kth step of its Journey. An example of such an approach which has all

processors In use simultaneously in an expanded network is Upfals routing

algorithm.

The other approach, 	namely handling multiple sets of data

simultaneously. Is more familiar, since it corresponds to the normal notion

of plpelinad processing. in its purest form, each stage in the network

handles a different data set at each time interval, and moreover always

handles the same step in the route of each data set. Examples of this are

the systolic arrays of Kung (301, in which the expanded networks take the

form of one, or two, dimensional arrays of uniform processors. Note,

however, that the uniformity of processors is not essential. In a practical

context, this approach Is also more attractive since it allows a far smaller

proportion of processors to be capable of handling input or output from the

external world.

When an algorithm for an n-stage network is less straightforward, in the

sense that data packets are involved in journeys with a total length greater

than n, the distinction between the above two approaches becomes

blurred. Pure pipelining Is only intended for situations where essentially

the structure of the network reflects the expanded structure of the

algorithm. It is interesting to note, however, that pipeIining of data sets

may occur at an intermediate stage of the algorlthm, even if all input data

sets arrived at the same time.

Routing in parallel algorithms 	 134

Such behaviour can be observed in the sorting algorithm of Reif and

Valiant (42] where, simplifying slightly, input data starts at each of the n2
n

nodes of a CCC network and then all packets are routed to stage 0

processors. After this, the data packets are pipelined through the

network. as though a sequence of data was being input to the stage 0

processors. Thus subsets of data are being dynamically formed during

execution of the algorithm.

When the execution of an algorithm can be divided into a series of

stages, one per time Interval, it can obviously be easily analysed even if

the network Is not expanded. In such circumstances, where all activities

are guaranteed to last for at most one time interval, a non-expanded

network Is usually described as a recirculating network. Examples of

algorithms for such networks, including the fast Fourier transform, may be

found In Stone (48]. It is interesting that many of these algorithms,

Intended for a recirculating shuffle-exchange network, reappear in

Preperata and Vuillemin (401 as algorithms for a CCC network which is, of

course. just an expanded shuffle-exchange network.

Of course. since the aim here is to relax the rigid connection between

algorithms and networks, it is not generally possible to obtain analyses

based upon exact notions of stages. In such circumstances, it is

convenient to impose restrictions on the algorithm which make its behaviour

over time more predictable. However, great care must be taken to ensure

that such restrictions do not adversely affect performance in order to

achieve analytic ends.

4.3 Delay sequences

To analyse the time complexity of parallel algorithms, it is necessary to

consider not only the time required for each processor in the network to

complete all of Its activities, but also the delays which an activity may suffer

due to non-completion of other activities.

Suppose that a 1 and a2 are activities.

Routing in parallel algorithms 	 135

Definition (4. 3): a l delays a2 , written a 1 - a2 , if the

transmission time of some packet in a2 is delayed until some

packet has been transmitted by a.1 .

Definition (4.4): A delay sequence of activities a. 1 , a2

consists of the sequence of delays a 1 - a2 -4 . . . -4 a.

Using the notation S(a) for the starting time of activity a and F(a) for the

finishing time of a, the time requirement to complete all of the a 1

In a delay sequence is

max F(a1) - mm 	S(a,)
1Ik 	 1lk

Since It is not usually possible to estimate the time exactly. it will be upper

bounded by applying the following fact

If a -+ a2 then F(a2) - la2 l 4 F(al) .

where [al denotes the number of data packets transmitted by

activity a.

If the fact was not true then a 1 could not be responsible for delaying the

transmission of any data packet by a2 , contradicting a 1 - a2 . From It, the

following can be deduced

For all i, F(a 1) 4 F(a1) + E la1 j
j=2

and so

k
max F(a 1) 	F(a1) + E laI

1 Q4 	 J=2

Now define a delay sequence to be complete if there is no activity a which

satisfies either a -4 a 1 or ak - a. Then the fact that a 1 is undelayed

Implies that S(a 1) = 0 and F(a 1) = 1a 1 1. This establishes the result that

Routing in parallel algorithms 	 136

The time requirement for the complete delay sequence

is upper bounded by

k
E

J=1

Further, since a delays no other activity, it can be deduced that the run

time required for a computation is upper bounded by the maximum, over all

complete delay sequences, of the total number of data packets transmitted

by activities in the sequence.

Since the run time is the measure of interest, it will be assumed from now

on that delays sequences are complete, without loss of generality. Another

assumption which can be made about the activities comprising a delay

sequence is that, for any a 1 -4 aj1 . there Is not an activity a such that a 1

-+ a and a -+ a11 . One consequence of this is the following:

Lemma (4. 5): Given any delay sequence under the above

assumption, it has the property that, for any [p.d.a.s]

-11 Ep'.d'.a'.s'l in the sequence, either p = p' or (p, p') is an

edge in the network.

Proof: Suppose that p 0 p' and (p, p') is not an edge. Because

of the delay property, there must be a path from p to some

processor p" and an edge (p", p') in order for (p.d.a.$) to affect

(p'.d'.a',s'l. Clearly there exists a'.d".s" such that

- 	(p',d'.a',s']. 	and 	so 	(p.d.a.s]

- (p".d".a".s"l also. 	This contradicts the absence of an

Intermediate delaying activity.

The two types of neighbouring activity in a delay sequence Illustrate the

two fundamental sources of delay. if both activities occur at the same

processor, then the delay is a consequence of competition for an outgoing

edge. If the activities occur at adjacent processors, then the delay Is a

consequence of the sequence of operations performed by the algorithm or

by routing.

Routing in parallel algorithms 	 137

It is important to note that, unlike usual critical path techniques. there is

no constraint that a processor must only handle one activity at a time. It is

assumed that, in each time interval, each processor will transmit as many

packets as possible. There is not even a per se assumption that any

activity will be given priority over another although. in practice, this is

liable to be enforced by means of some ordering on triples (d, a. s). The

manner in which activities are defined precludes analyses which take

account of the order In which packets are transmitted during one particular

activity since such a fine resolution does not appear to be very helpful,

merely more complicated.

Having established this framework of activities and delay sequences, it is

possible to explain how analysis of parallel algorithms can be attempted.

Of course, just as analysis of serial algorithms often involves ad hoc

procedures, it is not possible to give general purpose results. Rather, the

Important features of the analysis will be discussed, and useful properties

of certain classes of algorithms will be investigated.

4. 4 Analysing parallel algorithms for networks

4.4. 1 Localisation of communication

Consider the original motivation for the study of routing. 	This was to

simulate memory accessing at each step of the algorithm. If the algorithm

Is viewed as a sequence of discrete steps over time then, If routes may

have length up to n, a typical delay sequence may look like

(p,O.O.O] -4 (p01 .O.O. ii -4 . .. - (p01_1.0.0.n-1]

.4 (p10,O.i.0] (Pi 1,O,i.l] -+ . . . (p1,_1.0.i.n-1]

-4

- [p5_110,0,s-1.O] .4

4 (Ps-1,n-1-0,s-1,n-11

Routing in parallel algorithms 	 138

where there are s steps and one data set. Since It is known that the

routing delay at each step is 0(n). a total time bound of 0(sn) can be

obtained.

Unfortunately, such a simple-minded approach cannot usually yield

anything better than crude upper bounds. This is for two main reasons.

Firstly. at any step of the algorithm, memory accessing may be more

iocaiised, that is the routes followed by data packets can all have length

less (sometimes considerably less) than the diameter of the network.

Secondly. both algorithmic steps and processing of data sets may begin

before previous steps and data sets have been completed. Both of these

features may lead to substantial reductions in run time and, of course,

both highlight the advantages of tailoring algorithms to networks, rather

than mindlessly employing a general-purpose computer. It would be

desirable to imagine some future optimising compiler which could fit

programs to networks. much as present-day compilers match programs to

Instruction set peculiarities, but here it is impossible to do anything more

than try to point in the correct direction.

A simple example of the impact which locality can have on the analysis Is

given by the Ascend/Descent class of Preparata and Vuillemln (40]. These

have the desirable feature that, at each step. data Is sent only to adjacent

processors and moreover that no processor receives data from more than

one neighbour. From this, it follows that any activity handles one packet

only and that an activity can only be delayed by an activity with a smaller

algorithm step parameter. Thus, the run time is the same as the number

of algorithm steps.

More generally. one - class of algorithms which Is amenable to

paralleilsatlon with localised communication is that of so-called "divide and

conquer" algorithms. In serial form, such an algorithm when applied to N

items. partitions them Into some number of sets and then applies Itself

recursively to each of the smaller sets. To obtain a parallel

Implementation, the aim Is to route data at each partition step to an

adjacent processor In such a way that the members of each set In the

Routing in parallel algorithms 	 139

partition become closer together in the network. As an example, suppose

that N Items have to be transformed in some way (for example. sorted.

Fourier transformed) using a d-shuffle network with N = d' processors.

Then the outline method is as follows, starting with a serial algorithm

Call Transform (S. n) where ISI = N and n = logdN.

procedure Transform (set S. integer n)

If n = 0 then transform S non-recursively also begin

partition S into S 1 . . . 	s. preferably of equal size

Transform (S i . n-i)

Transform (Sd. n-i)

recombine 	• 	to form a new S

end

end Transform

From it. a parallel algorithm can be obtained

for each processor p in parallel do begin

for step = n downto 1 do begin

partition arrivals Into S. S d
transmit S along out edge I for each i in parallel

end

apply serial non-recursive algorithm to arrivals

for step : = 1 to n do begin

combine arrivals Into S. 1 Sd

transmit S along out edge I for each i In parallel

end

end

The efficiency of the algorithm depends crucially upon the partitioning

process and the combination process. Note that, at step I. the sets of

processors

((a/I I a e (0.....d-11') I /3 6 (0.....d-1) 	}

correspond to the d' 1 ' subproblems which the serial algorithm considers.

For some divide and conquer algorithms, such as FFT, partitioning and

Routing in parallel algorithms 	 140

combination can be done using Information local to each processor and this

leads to a fast parallel algorithm. Others. such as Quicksort. use

Information which is local to each set of processors. which could lead to

communication overheads. In these cases. overlapping of algorithm steps

is necessary if an 0(n) run time Is to be achieved rather than the obvious

0(n2) run time. One part of the Fiashsort algorithm of Reif and

Valiant (421 essentially demonstrates that such an optimisation is possible

for Qulcksort.

One important feature which divide and conquer algorithms should have is

that their partitioning Is approximately balanced (see, for example. Aho.

Hoperoft. and Ullman (11). In the way that they have been presented here,

this ensures that the final non-recursive stage does not have to deal with a

large subproblem. However, in the parallel context. another familiar

advantage Is highlighted, namely that the packets leaving a node are

approximately evenly distributed. This is helpful when performing a detailed

analysis of such algorithms. Thus it becomes easy to see the common

underlying feature of the random choice of partitioners in Quicksort and the

random selection of Intermediate addresses In the two-phase routing

algorithm.

4.4. 2 Analysis of activities

When a parallel algorithm has been developed. It is necessary first to

specify the set of activities and then determine all of the ways in which one

activity may delay another. Given this, the set of all possible delay

sequences can be investigated. In all but the simplest algorithms. It will be

Impossible to ascertain all Interactions between packets and activities in

delay sequences and so a probabilistic analysis of collisions Is

necessitated. This yields results which upper bound the number of data

packets handled by each delay sequence with high probability, and hence

upper bound the run time with high probability.

The composition of the set of delay sequences is very dependent upon the

algorithm. As has been seen, various optimisations may be necessary in

order to bound the maximum length of any such sequence. Clearly. the

Routing in parallel algorithms 	 141

length of delay sequences gives a lower bound on the run time of the

computation. In addition, a crude upper bound on the number of delay

sequences can be obtained from maximum sequence length and the

maximum number of activities which one particular activity can affect. This

will be useful if the set of delay sequences cannot be precisely

enumerated.

In order to simplify the analysis of dependent activities, the delay

sequence might be partitioned into a collection of subsequences. so that

the set of data handled by the activities In a subsequence Is independent of

any activities in other subsequences. For example, one elementary

partition could be based upon the data set associated with each activity in

the delay sequence. A further partition may be done by noting that the sets

of packets handled by the same processor appearing In adjacent activities

are generally non-intersecting.

Now, a technique for probabilistic analysis of the number of packets

handled by a delay sequence is considered. It incorporates notions due to

both Alelulnas and Upfal. and Is intended to be applicable over a wide

range of algorithms with good probabilistic behaviour.

Considering the data packets handled by some activity in the sequence, if

there are X such packets then, given that the routing behaviour of the

algorithm Is oblivious, A independent events can be considered, the jth

event being that packet J is handled by a further activity in the sequence.

Suppose that, for every packet which intersects the sequence, the

probability of this event at any stage in the sequence can be upper bounded

by, say, r for packet d. with r,, (1 j .

Then, Independently of all other packets. It is true that, for any packet d

which Intersects the subsequence, the number of activities which handle It

after the first can be upper bounded by a random variable X with

Prob (X = t) = (l -rd)rd
t

I. e. a geometric random variable with parameter r. 	The problem of

estimating the delay then reduces to one of summing a set of independent

Routing in parallel algorithms
	 142

geometric random variables.

To do this. a result of Chernoff (11] is useful. From it.

Prob E) x)
d

. 	 z -x . ii
I 	i_rd for any z € [1,1/(max rd))
d ltdZ 	 d

Since all rd 4 1/2, this can be bounded by

-x 	,. z . 	 / (1---)
d

and by considering a constant c) 1 and letting z =
2c

. then if there are
c+1

H intersecting packets.

Prob (no. packets handled) cH)

r2c - cH
[(1_* 	c)/(1_ _+ 1

C)] H

c+ 1

I 	1 (1 ~ 1)) C]H
2 	2 	C

- r (0+1)9 ,H
I

By choosing c large enough, this probability can be made arbitrarily close

to zero, as H increases.

Having this result, it is necessary to determine H. the number of packets

which may intersect the sequence. in general, this part of the analysis

relies upon packets being randomly routed through the network if a

probabilistic bound is required. The most convenient condition to apply to

an algorithm to achieve this aim is one due to Upfai which, adjusted to the

algorithmic context here, demands that the expected number of packets

handled by any activity is less than or equal to one. Without this condition,

some activities are expected to handle an atypical amount of traffic and

more careful analysis would be required.

Suppose that there are at most T packets in the data set, and the length

Routing in parallel algorithms 	 143

of the sequence is X. Then there are at most Tindependent. , 	- 	trials

with the expected number of successes being at most one, at each activity

In the sequence. The theorem of Hoeffding bounds the probability of m) 2

successes by B(m.T. _1_). From this, the probability of achieving m

Intersections with the whole sequence is less than B (m. TX,

Thus, using a binomial corollary to the result of Chernoff derived, for

example. in (421.

For 0 < C' 4 1.

Prob((c'+l)X Intersecting packets) (e-C'?X/2

The previous two results can be combined to prove the following

Theorem (4.6): For any length X delay sequence In an oblivious

algorithm which has the properties that (i) no activity Is expected

to handle more than one packet. and (Ii) if a packet is handled

by one activity, then the probability of it later being handled by

another is at most

For any constant c) 1,

Prob (Time taken for sequence (2cX)

) 1 - [e_'2+ _(c+1)e
2X

2c+1)1

As a trivial example of the application of the theorem, consider a phase of

the normal random routing algorithm, in a graph with degree d and

diameter 0. Then all delay sequences have length 6 and there are at most

N(d+1) of them. Therefore, applying the above, the probability of the

run time exceeding 2c6 for c) 1 is at most

N (d+1) 8 e'" 	
, (c+1)e

2 	
)20]

which is bounded by N for some k.

It should be noted that care must be taken when a packet is being sent to

several destinations. For, in this case, the second property required by

the theorem is unlikely to hold for the packet. which has a larger than

typical probability of being handled by subsequent activities in the

Routing in parallel algorithms
	

144

sequence. In the case of broadcasting using a random routing approach.

then the same idea as used in Theorem (2. 10) can be applied, that is the

behaviour of the broadcast packet can be upper bounded by that of a

collection of independent packets. one corresponding to each address on

the broadcast packet. If this is done, the same bound as that just obtained

for the normal algorithm follows.

Routing graphs and their relationship to grids 	 145

Chapter 5

Routing graphs and their relationship to grids

S. 1 Introduction

In this chapter. the Implications of technology on the graphs which

underly routing networks are considered. To be specific, the particular

technology is one in which it Is most advantageous for vertices to be laid

out in a regular pattern in a plane, with uniform length edges connecting

adjacent vertices. This is the desirable type of graph for VLSI in order to

achieve efficient use of chip area and minimum on-chip signal propagation

time. Three types of graph which meet these constraints are triangular,

rectangular, and hexagonal. arrays. Most designs employ rectangular

arrays (a notable exception being the remarkable hexagonal matrix

multiplier of Kung and Lelserson E341). and so the two-dimensional grid will

be taken as a technologically sound graph with which the routing graphs

can be related. It may be noted that the use of grids for parallel

architectures predates VLSI. and that they have been constructed In

discrete component technologies.

The relationship between graphs will be that of embedding one graph in

another, that is mapping vertices to vertices and edges to disjoint paths.

More formally.

Definition (5.1): If G, = (V 1 . E 1) and G. = (V2
1

E2), then an

embedding f : G i —> G2 has the properties that

f is a one-one map from V 1 into V.

f is a one-one map from E,into a set of

edge-disjoint paths in G. such that the

Image of (u.v) under f has start vertex f(u)

and end vertex f(v)

Such an embedding is sometimes referred to as an edge embedding.

Routing graphs and their relationship to grids 	 146

The motivation for considering embeddings involving routing graphs and

grids is twofold. Firstly, embedding routing graphs In a grid corresponds

to finding a two-dimensional rectangular layout of the graph. Secondly,

embedding grids in routing graphs corresponds to simulating algorithms for

grid architectures, on which much time has been spent. on the routing

graph. In both cases, the aim is to determine whether it is reasonable to

employ routing graphs for practical purposes in place of the grid which, as

has been seen earlier, is not particularly useful for routing. The two

directions of embedding will be considered in turn.

5.2 Embedding routing graphs in grids

The relevance of such embeddings to VLSI is provided by the VLSI circuit

model of Thompson (501. This allows the concepts of chip area and

propagation time to be precisely defined. The assumptions made in this

model regarding area are generally accepted, but those for time have

provoked considerable controversy. In the model, processors and wires

are laid out on a grid with processors at some grid vertices and wires

following grid edges. No wire may cross a processor and each wire has a

processor at each end. Two wires may not occupy the same path in the

grid, and wires may only cross at grid vertices. The area of a layout is the

area of the smallest rectangle that contains all processors and wires. The

proposed propagation time for a wire is constant, regradless of the length

of the path followed by the wire. More realistically, the time should be

proportional to the path length (101, or even to the square of path

length [7]. Note that, in this specific context. edges in the grid will often

be referred to as tracks, reflecting common usage.

Clearly, the problem of finding an area-efficient layout of a graph is that

of embedding the graph in a grid with a small number of vertices since area

is equal to the grid vertex count. However, because the graphs used here

have degree greater than four in general, the notion of embedding must be

extended and, to do this. it is necessary to represent each embedded

vertex by a set of adjacent vertices in the grid.

Note that, in this section. all edges will be considered as being

Routing graphs and their relationship to grids 	 147

undirected. Since all 	directed grid edges have opposite partners, area

results are affected by at most a constant factor. 	The assumption allows

the 	results to be presented 	in a 	manner consistent with 	that of other

researchers.

Definition (5.2): if G = (V. E) is an undirected graph with

degree d. then a grid embedding I of G in the grid with vertices

(v1) has the properties that:

(I) I maps each v € V into a set of vertices

I r 4 i 	r+rd/41-1. s 4 1 < s+rd/41-11

for some r.s such that U (f(v 1) (1 f(v2)) =
v 1 Ov2 €V

(ii) f maps each (u, v) 6 E into a path

(y . 	v.) . (V1 	v,)(V1 	. v
li 	22 	2 2 3 3 	 r-1 r-1 	rr

for some r 2 such that

v.' lii €f(u).

visis
	Vi <s<r and w€V

vy € f(v)

and 	U (f(e 1) fl f(e2)) = 0
e 1 Oe2€E

Intuitively, each vertex is being mapped on to a squares in the grid with

perimeter 4Vd/41. Embedded edges are not allowed to cross these

squares.

The results for lower bounds on the area required depend upon a theorem

of Thompson. Before stating it, two further graph-theoretic definitions are

required. Let graph G = (V. E). if E' S E then E' is said to bisect G if the

removal of E' Induces a partition of V into V 1 and V2 . each containing half

of the vertices in V.

Routing graphs and their relationship to grids 	 148

More formally.

(I) V 1 U V2 = V

(ii) 1V 1 1 4 1V21 4 lV 1 l+1

(lii) Every edge In E\E' has both endpoints in V 1 or In V.

The minimum bisection width of G is the size of the smallest bisecting

edge set E'.

Theorem (5.3): (Thompson) A layout of any graph with minimum

bisection width W and degree at most four must occupy at least

fl(w2) area.

A detailed proof of the theorem may be found in (50]. As it stands, the

theorem is not directly applicable to grid embeddings. However, since the

the lower bound on area is obtained by considering embedded edges only,

the result applies to the area occupied by edges in a grid embedding. The

area occupied by vertices (which is zero for Thompson's embeddings) may

also be included, giving the following

Theorem (5.4): A grid embedding of any graph with minimum

bisection width W. N vertices and degree d must occupy at least

fl(Nd2 + w
2)

area.

For the cube and d-shuffle, the main graphs of Interest, this theorem

gives a tight lower bound on area since layouts will be demonstrated which

achieve it. However, it will also be shown that any layouts of these graphs

will inevitably have long paths, which implies large propagation times if

Thompson's model of time is not accepted.

Before considering these graphs, a layout for the wrapped grid graph

used in Chapter Three will be given. Clearly, the original grid graph has a

trivial layout. The new layout involves"folding" such a layout about a

horizontal, and a vertical, axis and interleaving the overlapping vertices and

edges. Figure 5-1 illustrates the process.

Theorem (5.5): A wrapped grid graph with N vertices can be

embedded in an unwrapped grid graph with 0(N) vertices and

Routing graphs and their relationship to grids
	 149

3 I

f
I 2

- fold

fold

3--

2

- - - - - 	old edges at fold points

new edges at end points

Figure 5-1: 	Folding a grid layout to give a wrapped grid layout

Routing graphs and their relationship to grids
	 150

each embedded edge represented by a path with (short) constant

length.

Proof: An embedding can be expressed by the following mapping

(assuming, for simplicity, that the grid Is of size 2n x 2n)

Vertex (I.J) mapped to

(41.4J) for 0 4 1.1 4 n-i

(40-1-1)+1.4j+1) for n (I 4 2n-1. 0 (j (n-i

(41+2.4(n-J-1)+2) for 0 4 I IC n-i. n 4 j (2n-1

(4(n-i-1)+3.4(fl-J-1)+3) for n 14 1,1 1C 2n-1

This Increases the length of each side of the layout by a factor of

two, and so the total area Is quadrupled. All edges Internal to

any of the four blocks (1). (2). (3). or (4) of vertices are

mapped to the obvious horizontal and vertical paths of length four.

The other edges (1. 9. those between blocks at either folds or

ends) may be added using paths of length four and eight. All of

these edges are formed by paths between vertices In the rows and

columns of four grid edges at the extremes of the layout. To

Include the paths. it is necessary to add one new track at the left

and right sides of the layout and two new tracks at the top and

bottom of the layout. Then eight sets of paths can be defined

corresponding to the two types of edge embedded at each of the

sides of the layout. These are

Left side, wrap edges between (1) and (2).

((0.J).(2n-1.1)]. for 0 < J 4 n-i. Is embedded as

(0.4J) - (-1.4J) -. (-1.41+1)

- (0.41+1) 	(1.4J+1)

Left side, wrap edges between (3) and (4).

((0.j). (2n-1.J)]. for n 4 j 4 2n-1. is embedded as

(2.41+2) 	(1.4j+2) 	(0.4j+2)

	

-. (-1.41+2) 	(-1.4j+3)

-, (0.4j+3) -. (1.4J+3)

- (2.4J+3) 4(3.4j+3)

Routing graphs and their relationship to grids
	 151

Right side, fold edges between (1) and (2).

((n-1.J) ,(n.1)1. for o(j (n-i. Is embedded as

(4(n-V .41) 	(4(n-1)+1.41) 	(4(n-1) +2,41)

-. (4(n-1)+34j) -. (4n4j)

(4n. 41+1) 	(4(n-1)+3.41+1)

-. (4(n-1)+2.4J+i) 	(4(n-1)+1.41+1)

Right side. fold edges between (3) and (4).

((n-U. (n.j)]. for n (j (2n-1. Is embedded as

(4(n-1)+2..41+2) 	(4(n-1)+341+2) 	(4n, 4J+2)

(4n.41+3) -. (4(n-1)+3.4J+3)

Bottom side. wrap edges between (1) and (3).

((1.0). (1.2n-1)]. for 0 (I (n-i. Is embedded as

(41.0) 	(41.-i) -. (41.-2)

-. (41+1.-2) 	(41+2. -2)

(41+2.-i) 	(41+2. 0)

(41+2.1) 	(41+2.2)

Bottom side, wrap edges between (2) and (4).

((1.0). (I.2n-1)1. for n (I (n-i, is embedded as

(41+1.1) 	(41+1.0) 	(41+1.-i)

(41+2.-i) 	(41+3.-i)

(41+3.0) 	(41+3.1)

(41+3.2) 	(41+3,3)

Top side. fold edges between (1) and (3).

M. n-1).(I.n)]. for 041 (n-i. is embeded as

(41.4(n-1)) 	(41. 4(n-1)+i) - (41.4(n-i)+2)

-. (41.4(n-1)+3) -. (41.4n)

-. (41+1.4n) -. (41+2.4n)

-. (41+2.4(n-1)+3) -. (41+2.4(n-1)+2)

Routing graphs and their relationship to grids
	 152

Top side, fold edges between (2) and (4).

E(i.n-1) .(l..n)]. for n < I 4 2n-1, is embedded as

(41+1.4(n-1)+1) 	(41+1,4(n-1)+2) 	(41+1.4(n-1)+3)

-. (41+1.4n) 	(41+1.4n+1)

-. (41+2.4n+l) - (41+3.4n+1)

-. (41+3•4n) 	(41+3,4(n-1)+3)

It may be verified that these paths are disjoint in order to confirm

that this is a valid embedding.

A similar folding idea has been used Independently by Culik and

Pachl (14]. However, they restrict the folding process to one dimension.

and assume that a two-layer embedding is used. This simplifies the

embedding" to the point where it is trivial.

5.2. 1 Layouts for the n-dimensional cube

In view of the high connectivity of the cube, it is not surprising that it has

a high minimum bisection width, as indicated by the following:

Theorem (5.6): The minimum bisection width of a cube with N

vertices is 0(N).

Proof: The minimum bisection width is at most N. since the

cube can be bisected by removing the set of N edges which

traverse one particular dimension.

Now consider the set of all paths between pairs of vertices in the

cube which consist of a sequence of edges which traverses the

differing dimensions in strictly increasing order. If the set of

vertices is partitioned into two halves, there are clearly

such paths connecting pairs of vertices in different halves. Let e

= (u, v) be an edge which traverses dimension i, for some 0 (I

ig N - 1. Then the maximum number of paths including e can be

obtained. Any path reaching it must start at a vertex which has

dimensions 1.1+1lg N - 1 in common with u, and any path

reaching v must finish at a vertex which has dimensions 0. 1

Routing graphs and their relationship to grids
	

153

In common with v. Thus. there are at most

• 2
N - (Iii) = 	

2

paths including e.

Hence. removing any edge can break at most 	paths, and

so at least -j-- edges must be removed to break all paths

between different halves of the partition. That is, the minimum

bisection width is at least

Corollary (5.7): Any grid embedding of a cube with N vertices

requires fl(N 2) area.

An optimal layout for the cube will now be constructed.

Theorem (5.8): A cube with N vertices can be laid out in 0(N 2)

area.

Proof: The basic idea is that the vertices are arranged as a IN

by IN square in the grid. Edges which traverse even dimensions

follow horizontal paths, and edges which traverse odd dimensions

follow vertical paths. The construction Is described Inductively by

considering a layout for the N vertex cube constructed by

combining two vertex cube layouts. New edges are added

which run in the horizontal or vertical direction at alternate

induction steps and which leave from, and arrive at, their

endpoints In a north. west, south. east direction repeating every

four induction steps.

As an Illustration of this, consider the construction of a 16 vertex

cube starting from a one vertex cube which Is shown in the figure.

New edges at each stage are drawn dotted.

Without loss of generality, suppose that N = 241 for some

k > 0. Then new edges are being added In a horizontal direction,

to and from the north of their endpoints. By symmetry, similar

arguments apply to the other three cases.

L___.I

Routing graphs and their relationship to grids
	

154

4
I 	 I

- 	 I 	 I :1
L4 	L_.

Figure 5-2: Layout of 16 vertex cube

Take two Identical 2 by
22k layouts of -- vertex cubes. 	By

2 	 2k
doubling the horizontal spacing of each column of 2 vertices,

form a
22k+1

 by
 22k layout In which corresponding columns in the

sublayouts are horizontally adjacent. In doing this, horizontal

paths in the sublayouts will have become overlapped, although

vertical paths remain disjoint. These horizontal paths correspond

to cube edges traversing dimensions 0.2,4 4k-2. To

remove the overlapping, the horizontal paths in the sublayouts

a

Routing graphs and their relationship to grids
	

155

must be double spaced so that they occupy alternating disjoint

horizontal tracks. Finally, new edges traversing dimension 4k

may be Included using one extra horizontal track which contains

paths connecting horizontally adjacent vertices.

A last consideration occurs only when N Is of the form 241.

The size of each vertex Increases by one unit In each direction.

Since there are 2 rows of vertices and 2+1 columns of vertices,.

the extra area requirement Is
22k221

() O(tJkj)

If A(N) is the area required for the layout. then the above

construction gives

AM (2(2(A(N 	+ O(WLoN)

and solving this recurrence gives

A(N) = 0(N2)

as desired.

Therefore. It has been established that a grid embedding of an

N vertex cube has area e(N 2).

5. 2. 2 Layouts for the d-shuffle

A similar technique to that used for the cube will be used to lower bound

the bisection width of the d-shuffle. Not surprlsIngIy, the bisection width of

the d-shuffle is smaller.

Theorem (5.9): The minimum bisection width of a d-shuffle with
N

N vertices Is n(d).
logdN

Proof: 	Let n = logN and consider the set of paths of length n

which connect any pair of vertices a ...1 . . . a0 and 	.
.

180
 with

the ith edge, 	1 4 I (n. being

(cx 	...ac/3n 	. 	n-i.1 	a 11 . . 	
...

Routing graphs and their relationship to grids
	

156

If the set of vertices is partitioned into two parts of size Ld'1/2J and

rd ,21 then there are Ld/2J. rd"/21 such paths between vertices in

different halves.

Now, if e = (0g . . . 0 1 1 O n-1 * . 0) is any edge in the graph,

then a can be the ith step in the path between any pair of vertices

x,_1
ø and 	00n-i-1' 	,

for 1 < I (n and

any X J1 	
, Therefore. if e is removed, the number of paths

which are broken is at most nd 1 1 d'' = nd 1 .

Hence, to break all paths between different halves of the

partition, at least

	

n 	n 	 n

nd 	2 	2 	 n

edges must be removed.

The minimum bisection width Is, in fact. 8(dN). 	a result which
logN

follows from the area-optimal embedding to be demonstrated.

Corollary (5. 10): Any grid embedding of a d-shuffle with N

vertices requires fl((dN
Pd) 2) area.

logd

Now, a d-shuffle layout which achieves this area bound will be developed

In two stages. First. a layout for the 2-shuffle graph is obtained, and then

it is utilised as a basis for layouts of arbitrary degree d-shuffles.

Theorem (5.11): A 2-shuffle graph with N vertices can be laid

out in 0 	
N

	

Ig N 	
area.

Proof: As has been remarked earlier, there is a close

relationship between the 2-shuffle graph and the shuffle-exchange

graph. This enables the exploitation of a non-trivial area-optimal

shuffle-exchange layout developed by Kieitmann at al (28]. it is

necessary to map the shuffle edges of the 2-shuffle on to the

shuffle and exchange edges of the shuffle-exchange. Consider a

vertex a/I, where a e (0. 1) and B € (
0, 1)n-1

Then edges leave

a/I to /Io and 01 and these can be simulated by paths a/I -, Ba

Routing graphs and their relationship to grids
	 157

and aB -. Ba -11 Ba. Thus, each shuffle edge and each exchange

edge in the shuffle-exchange is used in exactly two paths.

Therefore, to obtain a 2-shuffle layout, the shuffle-exchange

layout Is doubled in each direction so that two copies of each

embedded edge are adjacent to one another. Then the layout

must be adjusted at the endpoints of the edges since there are

now six edges with endpoints in the region of each vertex. As an

Illustration, consider a vertex OaO as shown in the figure.

It can be seen how these six edges must be incorporated into

the new layout. The two original shuffle edges remain intact.

One of the new shuffle edges is connected to the previously

unused "fourth side" of the vertex. The other is connected to the

original exchange, edge. Finally, the new exchange edge is

connected to the vertex at the point vacated by the original

exchange edge. In order to achieve this rerouting of edges, it is

sufficient to expand the area in the region of each embedded

vertex (and hence the total area) by a small constant factor.

Therefore, given that the shuffle-exchange layout requires

o((_N)2)

area, the same area is sufficient for the 2-shuffle. The previous

result Indicates that this area is also necessary.

Theorem (5.12): A d-shuffle graph with N vertices can be laid

out inO((dN)) area.
logN

Proof: The 2-shuffle layout will be used as a basis for a general

d-shuffle one. The basic idea is to view the d-ary string

encoding each d-shuffle vertex in a "binary coded d-ary"

representation. That is, if N = d' 1 . each vertex is represented by

a string consisting of n blocks of fig dl bits. Then, starting from
nflg dl

a layout of a 2 	vertex d-shuffle, adjustments are made in

158 Routing graphs and their relationship to grids

shuffle-exchange

edges doubled

•iOa

(Ill) OaO adjusted

Figure 5-3: Layout of 2-shuffle vertex OaO

Routing graphs and their relationship to grids
	 159

order to achieve the desired goal.

First, it should be noted that the area required by each

embedded vertex of the degree 2d undirected graph Is 0(d 2). and

so the original layout must be expanded appropriately. There are

then 4rd/1 Interconnection points at each vertex Instead of four.

To embed the edges of the d-shuffie, it is necessary to realise

each as a path of length precisely fig dl in the 2-shuffle. This

path effects a shift by one d-ary digit using fig dl shifts by one

binary digit. As an example, consider the edge between 615 and

1520 In an 8-shuffle. The binary representation of these vertices

are 110 001 101 and 001 101 010 respectively. Then the edge

between 615 and 1528 is embedded as the path

110 001 101 - 100 011 010

-* 000 110 101

- 001 101 010.

In order to embed all edges. it Is clear that 2-shuffle edges

must be replicated since they will form part of many paths. In

general. an edge may appear at stage 1. 2.....or fig dl of a

path. If it appears at stage I then the path may have started at

any one of 21_i vertices and also the path may finish at any one of

2 dl-i vertices. Thus, the edge may occur in at most

hg d12
r1g dl-i = 0(d ig d)

paths. To replicate each edge this number of times, the original

layout must be expanded in area by an 0 ((d Ig d)
2)

 factor. Note

that this area increase is simultaneous with, not in addition to,

that required to accomodate the degree 2d vertices. This will be

made clear by seeing how the replicated edges are incorporated.

A replicated edge need only have contact with one of its end

vertices if it is forming the first stage of a path in the 2-shuffle,

and with the other if it Is forming the Jig dlth stage of a path. The

above remarks indicate that at most 21
dl-i replicas come into

Routing graphs and their relationship to grids
	

160

each category. 	All others may be connected to neighbouring

edges in the patI at each end. To illustrate what must be done.

figure 5-4 shows vertex OaO in the 2-shuffle (if d is not a power of

two, some vertices may be surplus to the requirements of the

embedding without affecting the upper bound in area. Assume

that the selected vertex is relevant). The orientation of edges is

chosen for diagrammatic simplicity rather than to Imply anything

about the 2-shuffle layout.

Of the (at most) Jig d12
r19 dl-1 edges incident at each side of the

vertex, 	at most 2 	
d1-1 	

are connected 	to the vertex. 	The

remainder are divided between connections to two of the other

three incident edges. 	with at most 	(Jig d1-1)2
d1-2

 going to

either. 	In the example. 	this means connections as shown in

figure 5-5.

In the diagram. the ordering of incident replicated edges is

particularly amenable to the required routing. In general. the

routing can still be performed at the expense of a constant

increase in area around the vertex. If the ordering of incident
1g d1-1 2 	 2

replicas is random, 0 ((2)) = 0 (d) extra area is needed

to align path start and finish edges correctly (if d is not a power

of two, all replicas may not have the same orientation at the

vertex). Finally, a doubling of the number of tracks in the

horizontal and vertical direction is sufficient to connect the

remaining edges together.

Thus, the area expansion of the 2-shuffle layout is

O ((d Ig d)
2) Since the original area is 0 ((INN)2) the d-

shuffle layout occupies

0((d.lQd.N)2) = o((_dN 	2
) area

Ig N 	 logN

which matches the lower bound.

161 Routing graphs and their relationship to grids

Original 2-shuffle at vertex OaO

aoO
- . . S S S • S S S S S

a 	 --

a

	

a
	 Ia, ' 	 a

a
a

a

	

ioa
a 	 aol

	

a 	 S

S

	

a
	 a

a

• Sb.. S S S S S• • 5•S

OOa

2-shuffle at OaO after expansion of vertices and edges

Figure 5-4: Role of 2-shuffle vertex OaO in d-shuffle layout

OaO

4'
2 	

11-i

I
(fig d11)2 ng 61-2

I
(fig d1-1)2 61-2

Routing graphs and their relationship to grids
	 162

Figure 5-5: WIring at vertex OaO in d-shuffle layout

	

Routing graphs and their relationship to grids
	

163

5.2.3 Maximum edge lengths in layouts

As already remarked, while the embeddlngs demonstrated have optimal

area, they require long paths in the grid. The necessity for long paths can

also be shown by a simple argument.

Theorem (5.13): Any graph with diameter 8 which has a grid

embedding with area A must have an embedded edge with path

length fl() in the grid.

Proof: Since the g °rid has area A. it is possible to choose two

points in the grid such that any path connecting the two points

must have length at least IA. Further, these points may be

chosen so that they lie on embedded edges of the graph.

Therefore, because the graph has diameter 8. at most 8 edges

can separate the two points in the embedding. Thus, some edge

must have length at least -.

Corollary (5. 14): Any layout of an N vertex cube has an edge of

length ii (N _lgN

Corollary (5. 15): Any layout of an N vertex d-shuffle has an

edge of length 	
dN

, 	z)
logu)

Similar minimum maximum edge length results have also been shown for

other graphs recently by Leighton [31] and Paterson. Ruzzo. and

Snyder [38], for example. The layouts obtained here are not optimal in the

sense of maximum edge length. Both are worse by a logarithmic factor.

In the case of the cube, it is easily seen from the construction that the

longest edges are those in the first and second dimensions and, since they

run half the length of a side of the grid, they have length 0(N).

The details of the d-shuffle are not so obvious, primarily because no

Information has been given about the underlying shuffle-exchange layout.

The only two details of this layout which are needed are

(I) It has 0(_
N 	

side length
Ig N

and

Routing graphs and their relationship to grids 	 164

(ID No edge runs In more than a constant number of tracks

From these, an O(IgNN) maximum edge length follows. The adjustments

made to the shuffle-exchange edges to obtain 2-shuffle edges

approximately quadruples their length (doubling of layout. then combination

of pairs of edges) In the worst case. This means that the 0(N) bound

still applies. When the 2-shuffle layout Is expanded up to form the d-

shuffle layout. edge lengths are increased firstly by a dflg dl factor and

secondly by a flg dl factor when hg dl edges are concatenated. This gives

a

d. IQ d. N
logN

bound on maximum edge length. which Is 0(lg N) away from the lower

bound.

The nature of exact bounds for these two graphs is unresolved. The

naivity of the lower bound proof suggests that a tighter result may be

possible. However, techniques for proving lower bounds on problems

related to grid embeddings are currently not well developed. It seems likely

that the cube layout demonstrated Is optimal. On the other hand, the

d-shuffle layout involves certain inefficiencies, notably each embedded

edge following a 2-shuffle path of length Ig d, and the upper bound may be

reducible to 0 (dN). The reader should not seize upon the similarity of
log A N

these bounds to those on minimum bisection width - consider at one

extreme a tree and, at the other, the grid itself.

Regardless of whether the given lower bounds are tight. they do indicate

the Infeasibility of implementing the routing graphs in a two dimensional

rectangular technology if transmission time is proportional to edge length.

It has been seen empirically that 0(0) randomised routing time can be

achieved on any of the graphs with diameter 8 considered. However, the

effect of maximum edge lengths means that that

= c(/A)

time is required in a linear time model for routing on a graph with layout

area A. This changes the perspective on what is a'good' routing graph.

Routing graphs and their relationship to grids 	 165

Naturally, the grid (which has an ideal grid embedding) is best. The

d-shuffle is superior to the cube, unless the maximum edge length bounds

hold in opposite directions. This matches intuition since the cube has

many more edges. which do not buy it proportional extra power in routing.

The obvious conclusion from these results is that grid-style technologies

are not appropriate for general purpose parallel computation, and should

be reserved for more special purpose applications.

5.3 Embedding grids In routing graphs

Assuming that technologies are available in which desirable routing

graphs can be constructed with good timing characteristics, it is interesting

to ask whether it is possible to efficiently simulate the many algorithms for

grid architectures without employing general-purpose routing at each step.

In other words. can a grid graph be efficiently embedded in the routing

graph?

This question can be affirmatively answered for the cube.

Theorem (5.16): An N x N grid can be embedded in a cube

with
2 2r1 Ni vertices, which Is optimal.

Proof: The proof is inductive, with the base case N = 1 being

trivial. Suppose the result is true for every grid with side length at

most 2 for some I > 0.

Consider a cube with 221) vertices. Then It can be divided

Into four subcubes. each with 2 vertices, which contain

embedded 2 x 2 grids. If the subcubes are-combined in pairs

giving two subcubes with 221 vertices then edges now connect

corresponding vertices along one side of the embedded 21 x 2

grids, meaning that a 21+1 x 21 (or 2 x 21) grid is embedded).

Repaeating this process again means that a 241 x 21 grid is

embedded In the cube with 221) vertices. Clearly, any grid with

side length at most 2141 must therefore be embedded also. The

embedding also has the pleasant property that edges are mapped

one-one into edges.

Routing graphs and their relationship to grids

Unfortunately, but not unpredictably, the grid cannot be simulated so

effectively on the d-shuffle graph. The next theorem shows that the

minimum number of d-shuffle vertices required is more than a constant

factor times the number of grid vertices being embedded. While such

Increases In graph size were regarded as acceptable when graphs were

embedded in grids (which had a geometrical motivation), in this context an

Increase In the number of processors is necessary and this Is regarded as

expensive.

Theorem (5.17): Any embedding of an N x N grid in a directed

d-shuffle graph requires

NN 2 . 	log N
dZ log logd N

vertices.

Proof: Consider the following pairs of paths in the grid

N
For 0 4 1.1

(21.21) 	(21+1.21) 	(21+1.2J+1)

and

(21.21) -. (21.21+1) 	(21+1.2J+1)

Fix I and j and suppose that vertices a and B in the d-shuffle

graph correspond to (21.21) and (21+1.21+1) respectively. Now.

there must be two paths between a and B corresponding to the

above grid paths. If 8 is the diameter of the d-shuffle then. If

both paths are to be as short as possible they will have length less

than 8 and so a and B must have the form

a = POT and B = OTXØ = Ty' where x 0 y

Thus, the total path length Is at least 8- 171.

Now, if k = 8 - 1 7 , there are at most kdk strings B which have

their Initial substring T repeated jnternally. To accomodate all

such pairs of paths of the grid. N2 strings B are required. The

smallest total embedded path length Is therefore at least

rn-i 	k E k.d
k=1

167 Routing graphs and their relationship to grids

where m is defined by

E kdk< 	2
but E kdk)..

rn-i 	N 	 m

4
k=1 	 k1

Hence, summing the series.

mdm = n(N2)

and so

M = fz(_
 log N
log logN

The total number of d-shuffle edges required is

fl((m_1) 2dm_)

=fl(N2_
IoqN

d log logdN

The result follows from the fact that the d-shuffle has degree d.

01

Acknowledgements
	 168

Acknowledgements

Two people have supervised this work, and both are due many thanks.

Firstly. Las Valiant, who passed on his enthusiasm for Complexity and

supplied many suggestions and much advice. Secondiy, Mark Jerrum. who

had the difficult task of taking over midway but responded to the challenge

magnificently.

Many others have helped in various ways. 	Worthy of note are Carl

Sturtivant. for many interesting discussions; George Ross, for dealing with

numerous queries about the text formatter used to print this thesis; and

Peter Schofield, for some conversations at tricky moments.

Bibliography
	 169

Bibliography

(1) 	Aho. A. V.. Hoperoft. J. E. and Ullman. J. D. 	The design and

analysis of computer algorithms". Addison Wesley. 1974.

(2] 	Aleluinas. A. 	Randomised parallel communication. 	Proc. ACM

Symposium on Principles of Distributed Computing, Ottawa. Canada.

1982. pp. 60-72.

(31 	Babal. L.. Grlgoryev. D. Vu. and Mount. D. M. 	Isomorphism of

graphs with bounded eigenvalue multiplicity. Proc. 14th Annual ACM

Symposium on Theory of Computing. San Francisco. California.

1982. pp. 310-324.

(41 	Barnes. G. H. et al. The ILIAC IV computer. IEEE Transactions on

Computers Jj (1968). pp. 746-757.

Batcher. K. Sorting networks and their applications. Proc. AFIPS

Spring Joint Computing Conference. 1968. pp. 307-314.

Benes. V. E. 	"Mathematical theory of connecting networks and

telephone traffic". Academic Press, New York. 1965.

Bllardi. G.. Pracchl. M. and Preparata. F. P. A critique and an

appraisal of VLSI models of computation. Proc. CMU Conference on

VLSI Systems and Computations. Pittsburgh, Pennsylvania. 1981. pp.

81-88.

Bollobas. B. London Math. Soc. Mongraphs. Volume 11: "Extremal

graph theory". Academic Press, London. 1978.

(9) 	Borodin. A. and Hoperoft. J. E. Routing, merging and sorting on

parallel models of computation. Proc. 14th Annual ACM Symposium

on Theory of Computing. San Francisco, California. 1982. pp.

338-344.

(10] Chazelle. B. and Monier. L. A model of computation for VLSI with

related complexity results. Proc. 13th Annual ACM Symposium on

Theory of Computing. Milwaukee, Wisconsin. 1981. pp. 318-325.

(111 Chernoff. H. A measure of asymptotic tests of efficiency for tests of

a hypothesis based on the sum of observations. 	Annals of

Bibliography
	 170

Mathematical Statistics 2A (1952). pp. 493-507.

Cook. S. A. 	Towards a complexity theory of synchronous parallel

computation. 	L'Enseignement mathematique 27 (1981). pp.

99-124.

Cook. S. A. and Dwork. S. Bounds on the time for parallel RAMs to

compute simple functions. Proc. 14th Annual ACM Symposium on

Theory of Computing. San FrancIsco, California. 1982. pp.

338-343.

(14] Culik II. K. and Pachl. J: 	Folding and unrolling systolic arrays.

Proc. ACM Symposium on Principles of Distributed Computing,

Ottawa. Canada. 1982. pp. 254-261.

[15] David. F. N. and Barton. F. N. 	"Combinatorial chance". Griffin.

1962.

Even. S. "Graph algorithms*. Pitman. 1979.

Feller. W. "An introduction to probability theory and its applications.

Volume 1 0 . Wiley. 1967 (3rd edition).

(181 Fortune. S. and Wyllie. J. Parallelism in random access machines.

Proc. 10th Annual ACM Symposium on Theory of Computing. San

Diego, California. 1978. pp. 114-118.

(191 Gaul. Z. and Paul. W. J. 	An efficient general purpose parallel

computer. Journal of the ACM 30. (1983). pp. 360-382.

(201 Goldschlager. L. M. A unified approach to models of synchronous

parallel machines. Proc. 10th Annual ACM Symposium on Theory of

Computing. San Diego. California. 1978. pp. 89-94.

(21] Good. I. J. A Monte Carlo method that will be Impracticable before

the year 2001. Journal of Statistical Computation and Simulation j.j

(1981). pp. 67-69.

(221 Gottlieb et al. The NYU ultracomputer - designing a MIMD shared

memory parallel machine. Ultracomputer Note #40. Courant

Institute, New York University, 1982.

(23] Hoeffdlng. W. 	On the distribution of the number of successes in

independent trials. Annals of Mathematical Statistics 2L (1956). pp.

713-721.

(241 Hoperoft. J. E. and Ullman. J. D. "introduction to automata theory,

languages, and computation". Addison-Wesley. 1979.

Bibliography
	 171

(25] Jerrum. M. A. and Skyum. S. Families of fixed degree graphs for

processor interconnection. internal Report CSR-121-82, Department

of Computer Science. University of Edinburgh. 1982. To be

published in IEEE Transactions on Computers.

(261 Johnson. N. L. and Young. D. H. 	Some Applications of two

approximations to the multinomial distribution. Blometrika ..L (1960).

pp. 463-469.

(271 Kleinrock. L. 	Queueing systems. Volume 2 	Computer

applications. Wiley-Interscience. New York. 1976.

(281 Kleitman. D.. Leighton, F. T.. Lepley. M. and Miller. G. L. New

layouts for the shuffle-exchange graph. Proc. 13th Annual ACM

Symposium on Theory of Computing. Milwaukee, Wisconsin. 1981.

pp. 278-292.

1291 Knuth. D. E. 	The art of computer programming. Volume 2

Seminumericai algorithms. Addison-Wesley. 1969.

(301 Kung. H. T. Let's design algorithms for VLSI systems. Technical

Report CMU-CS-79-151. Department of Computer Science.

Carnegie-Mellon University. 1979.

[311 Leighton. F. T. New lower bound techniques for VLSI. Proc. 22nd

Annual IEEE Symposium on Foundations of Computer Science,

Nashville, Tennessee. 1981. pp. 1-12.

(321 Leland. W. E.'Density and reliability of Interconnection topologies

for multicomputers. Ph. D Thesis. University of 'Wisconsin

- Madison. 1982.

(33] Lev. G. . Pippenger. N. and Valiant. L. G. A fast parallel algorithm

for routing in permutation networks. IEEE Transactions on Computers

Q.(1981). pp. 93-100.

(341 Mead. C. and Conway. L. introduction to VLSI systems. Addison

Wesley. 1980.

(351 Meyer auf der Heide. F. 	Infinite cube-connected cycles.

Information Processing Letters 1 6 	pp. 1-2.

(361 Monier. L. 	Evaluation and comparison between two efficient

probabilistic primality testing algorithms. Manuscript. 1978.

(371 Nair. K. R. The distribution of the extreme deviate from the sample

mean and its studentized form. Biometrika 35 (1948). pp. 118-144.

Bibliography 	 172

Paterson. M. S.. Ruzzo, W. L. and Snyder. L. Bounds on minimax

edge length for complete binary trees. 	Proc. 13th Annual ACM

Symposium on Theory of Computing. Milwaukee, Wisconsin. 1981.

pp. 293-299.

Paul. W. J. Kolmogorov complexity and lower bounds. Proc. 2nd

International Conference on Fundamentals of Computation Theory,

Berlin. 1979. pp. 325-334.

Preparata. F. P. and Vuillemin. J. The cube-connected cycles : a

versatile network for parallel computation. 	Communications of the

ACM j(1981). pp. 300-309.

(41] Rabin. M. 0. 	Probabilistic algorithms. 	in OAlgorithms and

complexity. J. F. Traub (Ed.) .Academic Press. New York. 1976.

(421 Reif. J. H. and Valiant. L. G. A logarithmic time sort for linear size

networks. 	Technical Report TR-13-82. Aiken Computation

Laboratory. Harvard University. 1982. 	(Also In Proc. 15th Annual

ACM Symposium on Theory of Computing. Boston. Massachusetts.

1983).

(431 Reisch. S. and Schnitger. G. Three applications of Kolmogorov-

complexity. Proc. 23rd Annual IEEE Symposium on Foundations of

Computer Science, Chicago, Illinois. 1982. pp. 45-52.

1441 Schwartz. J. T. 	Ultracomputers. 	ACM Transactions on

Programming Languages and Systems .a(1980) . pp. 484-521.

(45] Shiloach. Y. and Vishkln. U. Finding the maximum, merging, and

sorting in a parallel computation model. 	Journal of Algorithms .2.

(1981). pp. 88-102.

(48] Siegel, H. J. 	Interconnection networks for SIMD machines.

Computer .1.2. (June 1979). pp. 57-65.

Solovay. A. and Strassen. V. A fast Monte Carlo test for primaiity.

SIAM Journal on Computlng.(1977). pp. 84-85.

Stone. H. S. 	Parallel processing with the perfect shuffle. 	IEEE

Transactions on Computers 20. (1971). pp. 153-161.

(491 Storwick. R. 	Improved construction techniques for (d, k) graphs.

IEEE Transactions on Computers 19 (1970). pp. 1214-1216.

(501 Thompson. C. D. 	A complexity theory for VLSI. 	Ph. 0 Thesis.

Department of Computer Science. Carnegie-Mellon University. 1980.

Bibliography
	 173

(51] Upfal. E. Efficient schemes for parallel communication. Proc. ACM

Symposium on Principles of Distributed Computing, Ottawa. Canada.

1982. pp. 55-59.

[521 Valiant, L. G. Experiments with a parallel communication scheme.

18th Allerton Conference on Communication. Control. and

Computing. University of Illinois, 1980. pp. 802-811.

(531 Valiant. L. G. and Brebner. G. J. 	Universal schemes for parallel

communication. Proc. 13th Annual ACM Symposium on Theory of

Computing. Milwaukee, Wisconsin. 1981. pp. 263-277.

(541 Valiant, L. G. 	A scheme for fast parallel communication. 	SIAM

Journal on Computing fl (1982). pp. 350-361.

1551 Valiant. L. G. 	Optimality of a two-phase strategy for routing In

Interconnection networks. 	Technical Report TR-15-82, Aiken

Computation Laboratory. Harvard University. 1982.

