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Abstract 

In this thesis two experimental antiferromagnets with the particularly interesting lat-

tice resembling the kagomé basket-weaving pattern, are studied. The kagomé topol-

ogy frustrates the classical antiferromagnetic Néel state, the commonly encountered 

magnetic ground state in transition-metal compounds. Extensive theoretical work has 

shown that in particular the S = 1/2 kagomé antiferromagnet should not show any 

symmetry-breaking transition to a classical long-range-ordered state. Hence, experi-

mental realisations of this system should in theory allow a unique insight into properties 

of the symmetrical quantum-mechanical magnetic ground state. 

Recently a viable experimental realisation of the S = 1/2 kagomé antiferromagnet 

has been discovered, the x = 1 phase of zinc paratacamite ZnCu( 4_X)(OH)6C12. Here 

samples of stoichiometry 0.15 < x < 1 were synthesised and characterised. Using 

muon-spin relaxation spectroscopy on these samples, it was found that for x> 0.6 the 

spins do not freeze, even at 50 mK. From neutron powder diffraction for x = 1 and heat 

capacity measurements on zinc paratacamite with 0.5 < x < 1, it was found that 6% 

antisite disorder is present in the x = 1 phase, and that samples with Zn stoichiometry 

0.8 < x < 1 model the S = 1/2 kagomé antiferromagnet equally well. No quantum 

critical phase transition to a quantum spin liquid is found. Instead, the ground state 

of this model system is magnetic even for x > 0.8. The field dependence of the heat 

capacity provides additional evidence that the total magnetic quantum number 5tot  is 
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not a conserved quantity, despite the fact that no symmetry breaking transition occurs 

in the magnetic degrees of freedom. 

In a polarised X-ray spectroscopy experiment on synthesised single crystals of the 

classical (S = 5/2) kagomé antiferromagnet iron jarosite (KFe3(SO4) 2 (OH) 6 ), it is 

shown that the Fe2+  ion with a 6S free-ion configuration can acquire a large orbital 

angular momentum in the solid state. The high-resolution spectra are reproduced in 

excellent detail, using ligand-field multiplet calculations in which strong a-type covalent 

bonding between the Fe3+  ion and the oxygen ligands mixes in configurations of F e2+ 

character. The values found with this method for the orbital angular momentum (L 2 ) = 

1.9(2) and the easy-plane anisotropy energy of 0.4 meV are in excellent agreement with 

the values estimated from the high-temperature magnetic susceptibility and the results 

from spin-wave calculations. This is in support of a single-ion anisotropy as opposed to 

the Dzyaloshinsky-Moriya interaction, as the origin of the magnetic phase transition. 
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Chapter I 
Introduction 

Central to this thesis is the physics of the kagomé antiferromagnet (figure 1.1 right). 

Most antiferromagnets have an ordered ground state, but the kagomé antiferromagnet 

is geometrically frustrated, and is not expected to undergo any phase transition, even at 

zero temperature. Geometric frustration arises when the lattice geometry of a magnetic 

system prevents the simultaneous satisfaction of all magnetic bonds (figure 1.1 left). 

The resulting underconstraint can lead to such a large ground state degeneracy that no 

symmetry breaking to a magnetically long-range ordered state occurs, even at T = 0. 

Due to the absence of symmetry-breaking for antiferromagnetically coupled spins on the 

kagomé lattice, the magnetic ground state - which can also be non-magnetic - should 

directly reveal the symmetry of the Hamiltonian. 

'A .1 ..7 
•7 

•0 

•,,•• •,.•'•,,, 

... V •••'•"•: 

........ .......... ,,4 ........ 4.  

I "I 

Figure 1.1: The principle of geometric frustration. There is no uniquely defined low-energy 
configuration for the antiferromagnetically coupled spins on a triangle (left) and on the kagomé 
lattice (right). 



2 	 CHAPTER 1. INTRODUCTION 

This summarises the strategy which will be employed here to study the magnetic 

Hamiltonian and its emergent properties in a class of materials which will soon be 

defined in detail. The importance of symmetry-breaking transitions is far-reaching. 

The classical world as it is familiar to us emerges from the underlying laws of quantum 

mechanics through a series of symmetry-breaking transitions, where step-by-step the 

system can be broken-up into components which in themselves are still described by 

quantum mechanics, but which behave in relation to each other in a more classical 

manner. It may at some point for example be possible to give judiciously defined sub-

systems, as well as the system as a whole, definite coordinates and momentum, and 

abandon their description in terms of wave functions as the size of the system increases. 

In sections 2.1 to 2.2.5 some concrete examples of symmetry-breaking transitions are 

given, a combination of which describe the class of materials studied here; narrow-band 

magnetic insulators composed of first-row transition-metal (iron-group) ions which have 

a partially filled 3d shell, highly electronegative elements such as oxygen, sulphur and 

chlorine, and hydroxy groups. Large enough single crystals of such materials often have 

gemstone appeal [109], due to their deep and varied colours, transparency and often 

faceted shape revealing the symmetries of the crystal lattice. 

On another level Landau and Anderson's theory of spontaneous symmetry breaking 

has inspired cosmological theories on the origin of the universe [6]. Though magnetic 

phase transitions have played an important role in the understanding of spontaneous 

symmetry breaking, many questions which date from the 1930's are still not answered 

satisfactorily [120]. Heisenberg [88] and Dirac first described a mechanism for the 

interaction between electron spins based on Pauli's exclusion principle, which was called 

the magnetic exchange interaction. As is elaborated in sections 2.2.3 and 2.2.6 it arises 

from the difference of the potential energy of the two electrons due to their Coulomb 

repulsion, when their spins are aligned parallel as compared to anti-parallel. Heisenberg 

and Dirac showed that the energy difference - the exchange energy - can be written as 
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a function of the spin operators, 

= J1281 S2  

where J19 is the exchange coupling between spins 1 and 2. Hence, on a lattice of spins 

such as for magnetic insulators 

Jnn 	i 
	 (1.2) 

where the sum is over all pairs of nearest-neighbour spins and J, is the nearest-

neighbour exchange coupling. This is the Heisenberg Hamiltonian, due to Heisenberg 

and van Vieck. For a two-spin system, the ground state is a singlet (a closed shell or 

orbital) for antiferromagnetic exchange (J > 0) and a triplet for ferromagnetic exchange 

(J < 0). Néel suggested that for J> 0 the solution of equation 1.2 is a state where the 

spins are arranged in oppositely magnetised sub-lattices, as illustrated in figure 1.2. 

J<o J>o 

Figure 1.2: A ferromagnetic state (left) and an antiferromagnetic ground state (right) as 
proposed by Mel for magnetic insulators. 

This idea was met with many objections, primarily because the state as proposed 

by Ned, the N6el state, is not an eigenstate of the Heisenberg Hamiltonian for any 

finite-sized system. However, using neutron diffraction Shull and Smart [189] were able 

to prove Ned's idea for a number of antiferromagnetic insulators. It is also understood 

theoretically that 3D and 2D square lattices in the thermodynamic limit have a Néel 

ground state [125]. The kagomé antiferromagnet is one of the few 2D systems which in 

theory should not order even at T = 0 [138]. 



4 	 CHAPTER 1. INTRODUCTION 

The subject gained a renewed relevance in 1986, when a new class of superconduc-

tors was discovered [13, 233, 10]. These materials were superconducting at temperatures 

much higher than previously observed and a new theory was needed to understand 

them. In all cases the parent compounds of these new "high critical temperature" 

(high-Ta ) superconductors are antiferromagnetic insulators with a very strong antifer-

romagnetic coupling. One such system is La2Cu04; when some La3+  in this system 

is replaced with Ba2+  the Cu ions become mixed-valence to balance the charge with 

the oxygen ions. The initially insulating system becomes superconducting when mod-

erately doped, and with further doping the ground state becomes metallic. These are 

three qualitatively different phases of matter, which can be realised by tuning a sin-

gle material parameter. The transitions between these different ground states, which 

are transitions between different kinds of broken symmetry, are called quantum phase 

transitions. They occur by definition at T = 0, as a function of some parameter other 

than temperature. 

The story of the high-T a  superconductors is an example of how entirely new plia.ses 

of matter can emerge at the boundary between well-known phases. The symmetry-

breaking transition, in this case from a metallic state with itinerant electrons to an 

insulating state where the electrons are localised, is a cross-over between quantum me-

chanical behaviour to classical behaviour. These are regions in the phase diagram of ma-

terials which are particularly rich in qualitatively new phenomena, hugely challenging 

to understand theoretically [112], let alone to predict a-priori. This inspires chemists, 

physicists and material scientists to keep searching for fundamentally new phases of 

matter in an empirical way. For example by studying the physics as a function of the 

system size, as is done in the fields of nano materials and molecular magnets [199], by 

chemical doping of existing materials and by the application of pressure. Figure 1.3 

illustrates a quantum-critical phase transition as a function of an external magnetic 

field. 
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Quantum- 
E critical point 	m =- 1 
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Figure 1.3: An example of a quantum critical phase transition of a two-spin system as a 
function of an external field. If in zero field the ground state is a singlet = 0) there will 
be a critical field H at which the ground state changes from non-magnetic to ferro-magnetic. 

This thesis builds on the effirts which have been made previously [85, 78] to tune 

to quantum critical phase transitions by synthesising antiferromagnetic materials with 

particular "frustrating" lattice topologies. Chapter 4 describes a study of potassium 

and liydronium iron jarosite (AFe3(OH)6(SO4)2 with A = K or 11 30), both S = 

5/2 kagomé antiferromagnets which have been taken as model systems of the classical 

kagomé antiferromagnet. The main results in this chapter are single crystal and powder 

X-ray spectroscopy measurements of the Fe L2,3 edges carried out at the ESR,F in 

Grenoble, France, and at the SRS in Daresbury, UK. In combination with ligand-field 

multiplet calculations they have yielded information on the local spins of unprecedented 

detail for an antiferromagnetic insulator. Chapter 5 describes a thorough experimental 

characterisation of the zinc paratacamites of general formula Zn x Cu(4_)(OH)6Cl2 with 

x < 1. In August 2005 Shores et al. pointed out that the x = 1 phase is a perfect 

physical reahisation of the S = 1/2 kagomé antiferromagnet [188]. In the field of highly-

frustrated magnetism such a material represents the Holy Grail, and over the last few 

months a large number of publications on this exciting new material have appeared. 

Amongst these are two papers on the work discussed here [131, 57], including muon spin 

relaxation spectroscopy measurements also discussed in section 5.4, where it is shown 

that the spins in this system do not freeze even at 50 mK when x> 0.6. Other major 

results in this chapter come from neutron diffraction (section 5.2), the field-dependent 
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heat capacity for a range of zinc stoichiometries (section 5.5) and neutron spectroscopy 

measurements (section 5.7). 

Experimental details have as much as possible been concentrated in chapter 3. 

Chapter 2 is an original representation and discussion of the theoretical concepts which 

motivate and complement the experimental work in this thesis. In chapter 6 some 

arguments are given which may explain what in some aspects is the rather surprising 

outcome of experiments on zinc paratacamite. 



C 

TheOretical background 

2.1 The emergence of a solid state 

One of the most intriguing aspects of condensed matter physics is that it covers the 

domain from strictly quantum mechanical phenomena to the classical physics we are fa-

miliar with from everyday experience. If parts of a system can be identified as behaving 

essentially classical, this allows important simplifications to be made to the description 

of the system. One of the underlying principles in this cross-over from quantum me-

chanics to classical mechanics is described in Philip Anderson's famous article "More 

is different" [6]. It describes how symmetries which are central in the solutions of the 

Schrödinger equation are broken when the size of the system is increased to macroscopic 

dimensions, giving rise to a new level of complexity requiring a new scientific approach. 

Anderson illustrated this idea by contrasting the inversion of the ammonia molecule 

NH3 , with the absence of such an inversion for the always right-handed spiral of sugar 

molecules made by living organisms. It goes against our intuitive concept of what is a 

particle that in the ground state the nitrogen atom is at both sides of the H 3  plane at 

the same time. In keeping with the laws of quantum mechanics the ammonia molecule 

has no dipole moment, when prepared in a stationary state. For the sugar molecule on 

the other hand, such a symmetric ground state does not exist. In the sugar molecule 
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the symmetry of the Hamiltonian has been broken, and it behaves in the way we would 

expect from our every-day intuitive and classical concept of a particle. Apparently, 

there is a qualitative change in the manner in which a (quantum mechanical) system 

behaves when the system size increases. The Landau theory of phase transitions is 

beyond the scope of this introduction. To provide a context for the experimental re-

suits which form the main body of this thesis, a number of concrete examples of strong 

symmetry breaking are given. 

a) 	 b)  

Figure 2.1: a) The "pyramidal" ammonia molecule with dipole moment /2, and b) The symmet-
ric double well potential, and the lowest energy symmetric IS) (thick line) and antisymmetric 
IA) (broken line) wave functions. 

2.1.1 The symmetry of the ammonia molecule 

The inversion symmetry of the ammonia molecule, a symmetry which is broken in 

larger systems with the same or a similar Hamiltonian is a good illustration of the 

emergence of a solid. The three hydrogen atoms form a plane, and the potential energy 

function for the nitrogen atom has minima above or below this plane. Hence the 

Hamiltonian fl for the motion of the nitrogen atom has a two-fold up/down symmetry, 

i.e. 7rtH7r = N where 7r is the parity operator 7rx7r = —x. If In) are non-degenerate 

eigenfunctions of N so that N In) = En  In), then all these In) must possess the same 

symmetry as the Hamiltonian N. This follows from irtNn  = 7-1, which can be rewritten 

as [ir, N] = 0, and hence irfl In) = Nit In). The latter condition is only true when In) is 

also an eigenfunction of it, i.e. it In) = c In). In the present example of space-inversion 
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symmetry, the eigenvalues of ir are ± 1. Let's define the lowest two energy eigenfunctions 

as 7r IS) = IS) (symmetric) and ir IA) = - IA) (antisymmetric). Figure 2.1 shows the 

very approximate potential for the nitrogen atom in NH 3  where the central barrier is the 

H3  plane, and approximate shapes for IS) and IA), ''s(x) = (xIS) and A(x) = ( xIA) 

respectively. 

This proves that quantum mechanics prescribes that for any non-degenerate eigen-

state, as is the case for the lowest two energy levels of ammonia, the ammonia molecule 

has no dipole moment. Note that also in the case of IA) the probability of finding the 

nitrogen atom at either side of the barrier, given by kbA(x)1 2 , is equal. This proof is 

not specific to the ammonia molecule nor to parity symmetry. A much more general 

statement can be made using a group-theoretical argument [202]. 

1

Of course, it is always possible to "put" the nitrogen either in the left (L) or the 

right (R) well, by preparing the system in states IL) = ç (IS) - IA)) and IR) = 

7 (IS) + IA)) respectively. However, as long as IS) and IA) have different energy 

eigenvalues, ES and EA respectively, the states IR) and IL) are not eigenstates of the 

Hamiltonian, and therefore, they are not stationary. Apart from an arbitrary phase 

factor the time evolution of jL) is given by 

IL; t) = = (IS) - e_i 	-Et/h IA)). 	 (2.1) 

Hence, we see that after a time ti = 2(EA—ES) the nitrogen atom has tunnelled through 

the barrier, and IL; t = t) = iR). The nitrogen atom is hopping from one side to the 

other with a frequency (EAES) = 23.79 GHz [46], so well defined and deterministic 

that it has been used for the first atomic clock. 

It should be stressed that this oscillating state is very different from the ground 

state. In the ground state IS) (and also in IA)) the nitrogen atom is at both sides of 

the barrier at all times, i.e. the atom, including its nucleus, is spread-out in space. 

Again different is the situation for the sugar molecule, which is asymmetric even in 

the ground state, and does not invert. According to quantum mechanics this situation 
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can only occur when the states IA) and IS) are degenerate, i.e. EA = Es, and hence 

tj  = -* oo. By solving the Schrodinger equation for the double well, it can be 

seen that the energy difference EA - E5 -p 0 when the mass of the tunnelling particle is 

increased, and when the height of the potential barrier is increased. The inversion will 

go slower and slower for heavier elements, and eventually cannot be observed anymore. 

This shows how, in the presence of the right kind of degeneracy, the classical 1-

calised state can become a quantum-mechanically allowed solution. However, it would 

be a pointless exercise to try and prepare a sugar molecule which is symmetrical in 

it, i.e. left- and right-turning at the same time, despite the fact that this state would 

in theory still be a possible ground state. In practice a "symmetry breaking transi-

tion" happens before EA = E5 because the system is always coupled to the outside 

world in some way. If the system is in contact with a dissipative environment 1,  the 

oscillations as described in equation 2.1 become (strongly) damped and the system will 

evolve towards a localised, i.e. classical state [117]. Even when the system is prepared 

in a state which at t = 0 reflects the symmetry of the Hamiltonian, like IS) in the 

case of the ammonia or sugar molecules, the symmetry will be broken in favour of a 

classical state [117, 214]. Spontaneous symmetry breaking is the mechanism by which 

for example a sugar molecule is always either left- or right-turning. 

2.1.2 Symmetry breaking in a ferromagnet 

Another instructive example of a symmetry breaking transition is the case of a ferro-

magnet. Take for example a cubic lattice of N spins Si with spin quantum number S, 

where nearest neighbour spins are coupled with a exchange interaction of strength Jrnj, 

so that the Hamiltonian is given by 1.2. The Heisenberg Hamiltonian is invariant upOn 

the simultaneous rotation of all spins from one coordinate frame to another related by 

the Euler angles 0, q' and ; Si'= R(0, 0 , O)Si.This is reflected in the degeneracy of the 

ferromagnetic ground state of 2S 0  + 1 = 2NS + 1, just like each individual free spin 

1 1n this context, "the environment" can also mean additional internal degrees of freedom [213], such 
as nuclear moments in solids [177], etc. 	 - 
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has 2S + 1 states ms = —S, -s + i, . . . S. However, unlike a single free spin, a system 

consisting of a macroscopic number N of spins will not, fluctuate between the different 

states IMstot ). These states are connected to each other via infinite-wavelength spin 

waves. Figure 2.2 shows a typical dispersion relation for spin-waves in a ferromagnet. 

In agreement with the spin-rotational symmetry of the Hamiltonian 1.2, the q = 0 

spin-waves have zero energy. Nevertheless they do not occur, because their multiplicity 

is so low; of order 2NS + 1 compared to the total number of states (2S + i)N. 1-lence, 

the time required for the total spin to drift around from one orientation to 

an essentially different one, in case we prepared the system originally in a 

state of definite spin orientation, is of order N and thus extremely large. [5]. 

As in the previous example, the timescale of the symmetry restoring excitations goes 

to infinity because the energy spacing between the states goes to zero. Hence, this part 

of the spectrum is also called the thin end of the spectrum. 

(a -i 

Figure 2.2: The spin-wave dispersion in a ferromagnet (left) and in a system in which global 
spin-rotational symmetry is not broken (right) [207]. The red line in the right panel, coinciding 
with the x axis, gives the "dispersion" relation for the (zero-energy) collective spin modes on 
the kagomé lattice. 

2.1.3 The solid state 

As a last example: the symmetry-breaking transition to the solid state. a small wonder 

witnessed every time we opened our reaction vessel to find the shiny crystallites of 



12 	 CHAPTER 2. THEORETICAL BACKGRO UND 

jarosite or paratacamite. 

Cool a vessel with 3 He or 4He to sufficiently low temperatures and it will become 

a Fermi or a Bose liquid respectively, which are normal (i.e. non symmetry broken) 

quantum states of matter [150]. However, Li which is only slightly heaver than He, 

condenses into a solid at a temperature as high as 298 K. In the solid the nuclei are 

classically localised particles, fixed in a periodic lattice. The lattices found in the solid 

state of matter in nature display a wide array of symmetries, but clearly the trans-

latiorial invariance of the underlying Hamiltonian has been broken. The symmetries 

which remain are always discrete symmetries, which are then the underlying symmetries 

of the Harniltonian describing the electronic motion. This restricts the wave functions 

of electrons in solids to Bloch functions, of the form 

L'k,(x)(= (xlk, n)) = e ikx
Uk,n(X), 	 (2.2) 

where —7r/a < k < 7r/a and uk(x)  is periodic in x. i.e. invariant under a lattice 

translation g; uk(x + g) = uk(x). Due to the Pauli exclusion principle there are at most 

two electrons per atom in each band. Hence, for most solids many bands are involved, 

labelled here with n. The electron wave functions can be written as a superposition of 

orthogonal wave functions centred on the atoms in the lattice, the Wannier functions 

as defined by 

k,n(X) = N 2 	ew(x - gj), 	 (2.3) 

The sum is here over all N atoms in the lattice, labelled with i. In general the Wannier 

functions are not eigen functions because they are constructed from a superposition of 

Bloch states with different k. Neither are they the atomic wave functions In), which in 

a solid are in general not orthogonal. The atomic wave functions will overlap in a solid 

so that the hopping of electrons from site i to site j is calculated with 

tij = (nINInj). 	 (2.4) 
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In the tight-binding approximation t = 	is the only non-zero contribution apart 

from tij  = Ek0. In this case the dispersion of the band n is given by [182] 

E(k) = E(k = 0) - 2tcos(ka). 	 (2.5) 

When in the lattice the atomic wave functions do not overlap, such as is the case for 

the n = is, 2s and 2p levels in 3d transition metal compounds, the hopping t = 0 and the 

band is dispersionless. For these "bands" all wave vectors k have become degenerate, 

so that the maximally localised Wannier functions become eigenfunctions equal to the 

atomic wave functions I) = us) , 2s) etc. In real systems the phase relations between 

the Wannier functions will then be lost, breaking the discrete translational symmetry 

of the lattice. This is also the case for the magnetic f shells in the rare-earth metals 

and their compounds. As a consequence the unpaired electrons in these systems form 

local moments, which only interact with each other indirectly via the itinerant electrons 

from the covalent bands in the system. 

In "ab-initio" calculations of the electronic properties of crystals, this symmetry 

breaking allows for important simplifications of the numerical problem. First, the 

nuclei are assumed fixed, and are treated in the Born-Oppenheimer approximation [182]. 

Second, the atomic wave functions are taken for the core-level electrons. Not only does 

this constitute an enormous simplification of the calculation, it is actually a better 

representation of the physics, than could be achieved with a full basis of delocalised 

wave functions for each electron and each nucleus. Only the valence electrons need to 

be described as Blochi waves. For the transition metals, this includes in principle the 

magnetic shells/bands of unpaired electrons. 
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Figure 2.3: Left: Illustration of the quenching of the orbital angular momentum in the 
presence of a D4h crystal field. Right: The eigenstates of the 3d shell. In a cubic or octahedral 
(On) crystal field the e 9  levels and the t 29  levels are still degenerate amongst each-other. They 
split in the way illustrated here due to a trigonal distortion, like the Jaim-Teller distortion. 

2.2 Magnetism in transition-metal compounds 

2.2.1 Crystal fields 

So far the energy bands have been labelled with n the quantum number of the corre-

sponding atomic wave function. This is correct as far as the principal quantum number 

is concerned, but due to the crystal field surrounding every atom in a solid, the or-

bital angular momentum is no longer a conserved quantity. In the transition-metal 

compounds these are the cation 3d orbitals which for free ions all have an angular 

momentum quantum number L = 2. For both zinc paratacamite and iron jarosite 

the crystal field is approximately a trigonally distorted octahedron of symmetry D4h. 

In D4h symmetry the eigenstates can still be written using a basis set of the states 

IL = 2, mL). The five new states, all with (L) = 0, pair into 3 bonding and 2 anti-

bonding states, with the largest electron density pointing away from the ligands and 

towards the ligands respectively. 

The energy difference between the e9  and the t29  levels, which in an octahedral 

crystal field (Oh)  are doubly and triply degenerate respectively, is called lODq. A 

partial occupation of either the e9  or the t29  levels will give rise to an orbital degeneracy. 

For example, in the case of Cu 2  (3&) in a Oh  crystal field the unpaired electron in the 
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e9  levels can occupy both the d2_2  and the d3z2_r  orbital. For Cu2+  this degeneracy 

is often lifted by a trigonal distortion of the Oh  crystal field, called a Jahn-Teller 

distortion [lol]. Since only the lowest energy orbital will be occupied this minirnises 

the total energy of the ion. However, there are examples where this degeneracy is 

not lifted, giving rise to an additional degree of freedom which often couples to the 

spin-degrees of freedom [110, 133, 2151. 

In most of the first-row transition-metal oxides the energy splittings between these 

crystal-field-split levels are larger than the 3d band-width and hence they will all have 

their own bands. Often the crystal-field splittings lie in the region of the optical spec-

trum, so that many compounds have colours characteristic of the crystal field of the 

transition metal ions. We will distinguish between t and t hopping, reflecting the 

large difference in overlap of the bonding t29  and antibonding eg  orbitals with the ligand 

orbitals. Systems with a higher electron density, such as metals, and many compounds 

of 2nd and 3rd row transition metals and also La2 Cu0 4 . the overlap between the atomic 

orbitals is larger. Hence, t is larger and the electron band-with exceeds the crystal-field 

splitting. These materials are slimy or very dark coloured, depending on whether they 

are conductmg or not. 

2.2.2 The Pauli exclusion principle 

Another symmetry of fundamental importance in the rest of this thesis is the permu-

tation symmetry between indistinguishable particles [182]. "Indistinguishable" means 

that the particles must not only be of the same kind, but also that it is impossible to 

keep track of the individual trajectories of the particles in a classical way, because their 

wave functions overlap in space, i.e. 

Jdr!w(r)I 2 Ib(r)j2 	0, 	 (2.6) 
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In this case the Hamiltonian should not change on application of permutation of the 

labels P12  in the total wave function 

W(r i , r2 , r3 ,.. .) = (ri (mi) 1n2) In3) . . .) 	 (2.7) 

between any two overlapping electrons, i.e. [R, P121 = 0. All elementary building blocks 

in materials, and even their composite particles, split up into two classes. Bosons, for 

which 

P12  mi) 1n2) 1fl3)... = 1fl2) In,) Ifl3) 	= + mi) 1n2) 1n3)..., 	(2.8) 

and fermions, for which 

	

P12  In') 1n2) n3)... = In2) mi) 1T13)... = - ni) ln2) Jn3)... 	(2.9) 

Bosons always have zero or integer spins, and fermions always have half-odd-integer 

spin quantum numbers. Electrons are fermions with S 1/2 and hence ms = ±1/2. 

The two spin states are often labelled a and 0 , for up and down spin respectively. A 

"particle" consisting of two electrons has integer spin, and is a boson. An example 

are Cooper pairs which are a quasi-particle excitation involving two electrons and a 

phonon, which can form a Bose condensate giving rise to superconductivity [40]. The 

permutation of the coordinates of the composite bosonic particle requires a double 

permutation of the constituent electrons, and —1 x —1 = 1. 

The general Harniltonian of the electrons in a material is given by 

e2  
= h(r,)+ h(r2)+ ... h(rN)+ 	 + 	A i Li  . . 	(2.10) 

(ij) 
 ri — r3 1 

where h(r) are the single-electron Hamiltonians. To simplify the problem consider first 

a two-electron system with a Hamiltonian which does not contain any terms which are 

both a function of spin ms and of position r, i.e. the spin-orbit term > 	. In 
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that case the total wave function can be written as a product of the space and the spin 

part 

'I' = 
	

(2.11) 

and the permutation operator can be written as p12 psPacepsPin Let's as a starting 

point define W a ,b ... (r)  as the eigenstates of the one electron Hamiltonians h(ri), h(r2) 2 

The total ground state wave function (r 1 , r2 ) of 7-1" defined as 

7-1 ' (ri,r2) = h(ri) + h(r2 ). 	 (2.12) 

can now be constructed from the product of w(ri) and wb(r2)  so that (ri , r2 ) is 

an eigenfunction of 	with eigenvalues Pr = ±1. In the same way x must be 

an eigenfunction of P m  with eigenvalues ps = ± 1. To satisfy condition 2.9 only 

combinations of the space and spin parts of the wave function are allowed where PrPS 

—1. 

2(a3— do) 

o a 
x 

2 (o3 + 3(j) 

3,3 

0 (spin-singlet) 	ps = 

1 (triplet) ps 

2-2 1Wa(rj)U;b(r2) - wb(rl)wa(r2)J 

'F(r i . r9) 	
w0(ri)wQ(r2) 

2 1wa (rl)wb(r2) + wb(rl)wa(r2)1 

wb(rl)wb(r2) 

(2.13) 

Pr=?) 

closed shell 

valence bond Pr = + I 

closed shell 

All these states are eigenstates of 7 -1, now correctly symmetrised. It should be clear 

that the total wave function can only be antisymmetric on permutation of any pair of 

2 Ojic could start from a situation where the one-electron orbitals are a closer approximation of the 
actual solution of the total Hamiltoniari 71, by adding to each ((ri ) a term v(i) which is the average 
potential seen by electron i due to the averaged Coulomb interactions with all other electrons in the 
system [1961. This is the Hartree-Fock approximation. 
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electrons, if each electron occupies a different state. This includes a different spin state, 

and therefore two electrons with opposite spin can occupy one spatial orbital. That is 

the Pauli exclusion principle. 

An easy way to construct the antisymmetric wave function from the one-particle 

eigenfunction in the case when many electrons are involved, is with a Slater deter-

minant. For example, the even-numbered N electron St,,t  = 0 configuration can be 

constructed from the available orbitals all occupied with an a and a 3 electron; 

'P(S 0  = 0,Ms 0  = O;r1 ,r2,r3, ... rN) 
	

(2.14) 

waa(ri) u.'a/3(ri) wba(ri) wb/3(rl) wa(ri) 

(N!) 
	waa(r2) wa/3(r2) wba(rl) wbI3(r2) wCa(r2) 

waa(rN) wa/3(rN) wbcz(rN) wb/3(rN) w Ca(rN) 

Ferromagnetic states with total spin up to S t. t  = N12 can be obtained by using more 

a then spins, or the other way around, which will leave part of the orbitals half-filled. 

In this case higher energy orbitals must become occupied, and hence we can conclude 

that in the absence of electron-electron interactions, the ground state is non-magnetic. 

2.2.3 Coulomb interactions 

The properly antisymmetrised total wavefunctions can now be used as a basis set 

for calculations where the Coulomb interactions between the electrons are treated as 

a perturbation. Of course, the Coulomb energy depends on the overlap between the 

electrons. From equations 2.13 it is immediately clear that the doubly occupied orbitals 

have the largest Coulomb energy. In most transition metal compounds, to first order 

this energy 

Uaa (,ij) = e2  fdr i  1 dr2 Iw0(b)(r1)I2Iw(b)(r2)I2 	
(2.15) 

ri - r2 
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is much larger than the splitting of the 3d levels due to the crystal field as discussed in 

the previous section. Note that this is not the explanation that the transition metals 

and their compounds are magnetic. In the case of half-filled orbitals the magnetic 

configuration can still be triplet or singlet, i.e. ferromagnetic or non-magnetic. 

Let's label the configurations of half-filled orbitals in 2.13 as 	and 	where the 

refers to the sign of the 	eigenvalues Pr For these states, the probability 

p(x1, x2) that electrons are simultaneously found at x1 and x2 respectively is given by 

p(xi, X2) = F(xi, X2)12 =2_{Iwa (X1) 2 Iwb(X2)I 2  + jWa(X2)I2lWb(X1)12± 

2Re [Wa(Xi)Wb(X2)W(X2)W(Xl)]}dXidX2. 	(2.16) 

The last term is the exchange density which arises from the symmetrisation of the 

orbitals. It is important to note that this term can be non-zero even if w and Wb are 

orthogonal. For i which must be a spin-triplet, it can be seen that the exchange term 

should be subtracted, and cancels out the first term so that P  (x 1 , x2) = 0 for x1 = x2. 

The probability to find the two electrons at the same point in space vanishes. On the 

other hand, for /)+ we see that in general it is now possible to find the two electrons 

at the same point in space: in fact, both electrons occupy the same wave function, as 

was the case for the closed shells 3. 

St0t = 1 	 0 

wo  ØJJb 

1w0(rl)b(r2) - wa(r2)wb(ri)] {wa(r1)wb(r2) + Wa(r2)Wb(rl)] 

Figure 2.4: Antisyrnrnetric (left) and symmetric (right) superposition of two different orbitals. 
A darker shade signifies a higher electron density. 

Figure 2.4 is a schematic depiction of the electron density for the configurations 

consisting of two half filled shells in equation 2.13. There is an obvious difference in 

3 The interpretation of the antisymmetric spin-singlet is in this case no different to the case of closed 
shells; it does not correspond to an antiferroinagnetic state but to a non-magnetic state, as denoted by 
the total magnetic quantum number St. t  = 0, with no internal magnetic structure. 
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overlap between the singlet 	and triplet -, and hence the Coulomb energy of these 

states U1  is different too, so that either the magnetic or the non-magnetic state is 

chosen as the ground state. To first order perturbation theory, 

u 	fdri Jdr2p+(ri,r2) e 
In - r21 	

Cab± Jab 	 (2.17) 

Cab + Jab (xIPIx). 

Both spin states have the Coulomb integral in common, 

	

Cab = e2fdri f dr2 Ia(n1)I2IWb(r2)I2 	 (2.18) 
ri - r21 

while their energy difference is determined by the exchange integral, which directly 

arises from the exchange density 2.16 

1ab 	
f 

e2fdrldr2 2Re [Wa(X1)Wb(X2)W(x2)W(Xi)] 
(2.19) 

It can be shown that the integral Jab  is positive [70], and hence the ground state is a 

triplet. This is the direct exchange mechanism, which is responsible for the ferromag-

netic alignment of spins within for example the transition metal 3d shell, as long as 

there are free 3d levels. We shall see that the energy difference can be expressed in 

terms of spin operators, and takes the form of the Heisenberg Hamiltonian 

71m.ag = 2JabSl S2. 	 (2.20) 

Figure 2.2.3 illustrates this situation for a Cr 3  ion in a D4h  crystal field. 

2.2.4 The valence bond 

When Wa and wb correspond to orbitals centered on different ions the singlet becomes 

the ground state. The electron density is the highest in between the two protons, 
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Figure 2.5: Illustration of the direct exchange mechaijisin. The energies of the different con-
figurations for a 3d shell in a D41  crystal field occupied by electrons. For clarity only the t29  

levels are shown. The 3d level is r higher in energy than the 3d, and orbitals due to 
the trigonal distortion of the octahedral (cubic) crystal field. The red arrows are unoccupied 
spin orbitals and Jab  is the direct exchange integral. 

creating a valence bond. The situation as illustrated in the right panel of figure 2.4 can 

in this case be taken more literally to resemble the actual charge density. In the case 

of molecular hydrogen the total Hainiltonian is 

71 Na(ii - R) + hat(ri - 	 (2.21) 

e2 	e2 	e2  

ri —RbJ - 1r2 Ra + ri —r21 + R 	RbI' 

and 'a(b)  are eigenfunctions of Hat(r - Ra(b)). The energy difference between the two 

levels is now given by 

ESt0t=i - E&0t 	= 2 1 ab 14 	 (2.22) 

where 

Cab - e2Jdri 	(1)I2 - e2Jdr2 wb(r2)12 (2.23) 
Irl — RbI 	 jr2 — RaI 

and 

lab Jab 
- e2l/ 	

r2 - Ral 

dr2 (r1w(r1) - e2 lJdr2 2)(2)  
1r2 - RaI 
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where I = (WaIWb). This is the Heitler-London description of the valence bond. It 

illustrates how the formation of a spin-singlet gives rise to an effective attractive force 

between the nuclei. However, on its own it does not provide an accurate description of 

the ground state even in molecular hydrogen. At smaller inter-nuclear distances charge 

fluctuations start to play a role. lonised state configurations (the closed shells in 2.13) 

start to mix into the ground state and eventually the ground state is best described 

by symmetric and antisymmetric molecular orbitals. This costs a lot of energy due to 

the electron-electron interaction, but happens due to the Coulomb attraction of the 

electron centred initially on proton a, with proton b; 

	

t = e2fdrW1 	 (2.24) 
Ir — R b I 

The total matrix element which mixes the neutral singlet state with the two ionised 

configurations is —2t. It can be shown that as a result the ground state of the singlet is 

lowered by a further with respect to the triplet state . This exchange mechanism 

is called kinetic exchange [4]. The total magnetic interaction for the hydrogen molecule 

is now 

Jab Jdir + Jkin - 
2 I2 Cb - 'ab 	4t2  

- 	i — Id 	
(2.25) 

As mentioned earlier, in solid state systems the eigenstates of the valence electrons 

are Bloch waves, with a band for each corresponding atomic level. The Bloch waves 

are analogous to the molecular orbitals in molecular hydrogen, and hence, kinetic ex-

change is thought to be the dominant form of exchange in transition metal compounds. 

The treatment in terms of Coulomb and exchange integrals given here for molecular 

hydrogen, can also be given in the case of solid state systems, see for example Zeiger 

and Pratt [237] or Szabo and Ostlund [196]. However, the energy U is not always 

the relevant energy gap for doubly occupied states. In particular in transition-metal 

oxides with more than 4 or 5 3d electrons, often the top of the filled oxygen 2p band 

4 Note that in this case U = Ubb 



2.2. MAGNETISM IN TRANSITION-METAL COMPOUNDS 	 23 

has a higher energy than the top of the filled transition metal 3d band [235]. In that 

case there is a net charge transfer from the oxygen ligands to the transition-metal ions, 

giving rise to non-integer valences. These systems are called charge-transfer insula-

tors [235] as opposed to Mott insulators. The relevant, energy gap is in this case often 

denoted as Apd,  as opposed to U for the Mott insulators. In both cases the Hubbard 

model as discussed next, in section 2.2.5 is thought to apply. 

2.2.5 The Hubbard model 

The problem as sketched above Can be formulated in second-quantisation language, 

which has the advantage that the antisymmetrisation of the electron wave function is 

automatically taken care of. This is the Hubbard model, defined by the Hamiltonian [94, 

70, 128], 

j (C.a C1cj + CCja ) + U 	hj1iij1 	 (2.26)lor 
a 	 j 

where t is the hopping integral of the charge-carriers, the operator cj creates an electron 

with spin o in an orbital centred at site i, c is the corresponding annihilation operator 

removing an electron at site i, ñj is the electron occupation number at site j, and 

U = U. as given in equation 2.15. Here only the valence electrons are considered, 

and they are assumed to be delocalised into Blocli waves. Hubbard argued [94] that 

the energy contribution from the Coulomb interaction between electrons residing on 

neighbouring sites is small compared to the charge fluctuations with energy cost U [94]. 

This on-site Coulomb interaction splits the 3d conduction band in two, a lower band 

corresponding to singly occupied 3d orbitals and an upper band corresponding to doubly 

occupied 3d orbitals. Figure 2.6 illustrates how in the case of perfect half-filling the 

electrical conductivity of the material depends on the band width 4t as determined by 

equations 2.4 and 2.5. 

In general even this simplified model is difficult to solve. However, many transition 

metal compounds are thought to represent the limiting case of U/t 	oo. In this case 
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Metal 	 Mott insulator 

4t 	3d 	 3d (upper) 

4t

/) 	

3d (lower) 

Electron doped 
Mott insulator 

:~:::) 

3d(upper) 

IN) 3d (lower) 

Figure 2.6: In metals the half-filled 3d band of the transition metals gives rise to a conducting 
state, because the density of states at the Fermi level ,Ef , is iion zero. Most transition metal 
compounds are narrow-band systems with U > t, so that the 3d bands splits into two Hubbard 
sub-bands. The density of states at the Fermi level is now zero, and hence most transition 
metal compounds are insulators, termed Mott insulators. These materials can in general be 
made conducting by doping them with ions with a different valence. 

it is thought [70] that the subspace of low-energy fluctuations can be described by the 

effective Hamiltonian 

Hj = —t E 	[(1 - ñj_o.)c.cja(1 - ñj) + c.c.] + 
a 

<z .3> 

[j 	- 	 + higher-order exchange terms 	(2.27) 
 hjhj  

where the sum is over nearest-neighbour pairs of spins. This is the Hamiltonian of the 

t - J model, which has been the subject of intense investigation in order to decide 

whether it includes the essential physics to support super-conducting states up to high 

temperatures. An important parameter here is the degree of filling of the band; super-

conditivity should appear away from half-filling, while when each site has exactly one 

electron, the system should be a Mott insulator with strong antiferromagnetic correla-

tions [125]. In the case of half-filling the effective Hamiltonian can be further simplified 

to yield the effective magnetic Hamiltonian 

HH = 	 S, where J = 4t2 1U 	 (2.28) 
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where the sum is over all pairs of nearest-neighbour spins i, j and Jn, is the nearest-

neighbour exchange interaction. This is the kinetic exchange which arises, just like 

in the treatment in section 2.2.4, from the mixing-in of doubly occupied shells to the 

ground state singlet, which can be interpreted as charge fluctuations. Superexchange [5] 

is the counterpart of kinetic exchange in charge-transfer insulators [235]. 

The Mott metal-insulator transition is thought to coincide with the point where 

the valence electrons become localised [8]. In the limit of a narrow band, the Wannier 

functions become eigenstates and the electrons and their spins become distinguishable 

so that a magnetic structure emerges at the atomic scale. This is clearly a symmetry-

broken regime of the Hubbard model in the sense that for the unpaired 3d electrons 

the discrete lattice symmetry is broken. That the 3d electrons have become distin-

guishable also means that in general the total electronic wave function does not need 

to be antisymmetric on permutation of electrons located at different sites! From the 

discussion in section 2.2.6 it will be clear that this is a necessary condition for the 

existence of Néel like magnetic order. The remaining hopping t is still thought to give 

rise antiferromagnetic exchange in the form of the Heisenberg Hamiltonian [8], which 

it could be argued gives rise to a paradox; if the electrons interact through exchange, 

how can they be distinguishable? The materials studied in this thesis are narrow-band 

charge-transfer insulators, and the paradox outlined here is the central problem of this 

thesis. 

2.2.6 The Heisenberg Hamiltonian 

As already stated in equation 2.17, we can associate the operator Ja&P'  with the 

energy difference of the two lowest-energy spin states. p1fl  can also be written in 

terms of the spin operators & because they have the same eigenstates, the singlet 

and the triplet, which can be seen from 

flH=Ji2SiS2= lj [()2 	2 	2] = 
J12(S— ). 	(2.29) 
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First of all we see that flH  commutes with St.t , the total spin operator. For two spins 

it can take the values 0 and 1, and hence, the eigen energies of 71H  can be calculated 

from St2.t = S(S + 1) = 0 or 2. The eigenstates are given by the symmetric and anti 

symmetric combinations of the spin states a and/or 3. 

St0t = 0 	 2 —  2  (la,3) - I/a)) NM 	E = - 

Stot=l,mS=l 	 Iaa) 

8tot = 1,ms = 0 2- 2 (Jao)  + 	)) FM 	E = J12 

St0t=1,ms=-1 	 10) 

(2.30) 

FM stand for ferromagnetic and NM for non magnetic, as opposed to antiferromagnetic. 

The AF state is a superposition of the singlet with the ISt,,t  = 1, Ms = 0) state; 

IAF) = Iai) = IStot  = 0) + IStot  = 	1, M8 = 0) 
	

(2.31) 

For both the AF state and the singlet state the total magnetisation is zero. The 

difference between the two is that in the spin-singlet state there are no unpaired spins. 

The two electrons paired into a spin-singlet state share the same spatial wave function, 

given by 2 —  2 [wa(r,)Wb(r2) +wb(r l )wa (r2 )] where Wa,b are the localised 3d orbitals of the 

ions involved in the pairing . That there are no spins for a magnetic field to align, to 

measure for example a finite magnetisation using a SQUID magnetometer, can be seen 

by calculating the expectation value of the spin centred on site a, 

(Sa) = ((a/3I - (0a1)Sa (Ia/3) - 1/3a)) = 

((a/3 ISaIa0) + (/3aISaI0a) - (a,l3ISaI0a) - (/3aISaIa)3))= 

0. 

5 1n the case ionised configurations are involved, the super-exchange term wa(ri )Wa (r2) +wb(rl )wb(r2) 
mixes in. 



2.2. MAGNETISM IN TRANSITION-METAL COMPO UNDS 	 27 

This is not a classical average of many actually realised spin orientations, the expecta-

tion value has been calculated for a single well-defined state. 

It is also instructive to actually solve the eigenvalue problem NH Ix) = E Ix) by 

exact diagonalisation, because this method can be extended to larger systems. The 

spin operators S can be decomposed into their x, y and z components; 

= SS + Sly  + SS 
	

(2.32) 

and if we take the following basis of spin states 3 = {aa, a/3, 3a, 3i3}, then the spin 

operator matrices 	can be set-up by letting the operators work on each of these 1,2 

basis elements. This requires the knowledge of the eigenstates of SX and S; I SX ;  ±) = 

2(13) ± a)) and SY; ±) = 2 (IcE) ±i  /3)) or the Pauli spin matrices (see for example 

[26] page 9). The resulting matrix for S for a two-spin system on the basis 

/3 = {aa,a/3,3a,/3/3} is 

(1 o 	o 

0 —1 2 0 	
(2.33) 

o 2 —1 0 I 

o o 0 i) 

It is now clear that only the two antiferromagnetic states aj9 and 3a mix to form a 

singlet with eigenvalue - , and the Mg = 0 level of the triplets with eigen value . 

This shows how the lowest-energy electronic configurations as found in sections 2.2.3, 

2.2.4 and 2.2.5 can all be written in terms of spin states, with a Hamiltonian given by 

the Heisenberg Hamiltonian NH = . j . At first sight it is therefore not a surprise 

that the same Hamiltonian was derived from the Hubbard model. However, in the 

treatments of sections 2.2.3 and 2.2.4 NH arises in first order perturbation theory from 

the Coulomb interactions. This can only be assumed to be correct for small U. - In 
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the derivation of flH  from the Hubbard model on the other hand, it was assumed that 

U>>t. 

It is also clear that the AF state is not an eigenstate of the Heisenberg Hamilto-

nian. This situation does not change for slightly larger systems [120]; regardless of the 

lattice structure 71H  commutes with This means that the spectrum of eigenvalues 

of ?1H can be ordered according to their total spin quantum number S t. t . Quantum-

mechanical spin-lattice calculations [125, 120]  have shown that for most lattices the 

energy difference between the singlet and the triplet states vanishes in the thermo-

dynamic limit (N —p oo). In that case a symmetry breaking transition to a classical 

Néel long range ordered state occurs [5, 6, 120], in which St0t  is not conserved. In the 

same way as discussed in sections 2.1.1 and 2.1.2 a classical state is selected. Another 

problem with the AF state is that it is not an eigenstate of As mentioned in the 

previous section, a necessary condition for the presence of localised moments is that 

the electrons are distinguishable. In other words, the integral of equation 2.16 must 

be zero. Hence the wave function describing 3d electrons localised on different sites no 

longer needs to be antisymmetric on permutation of the two electrons. 

2.2.7 Classical vs. Quantum spins 

The classical analog of the quantum mechanical Heisenberg Hamiltonian operator 1.2 

is defined by 

(2.34) 
(i,j) 

The spin operators S are replaced with the classical spin vector § of magnitude ISI = 

JS(S + 1). The difference between S and 9 is the most clear for S = 	spins. 

The Hilbert space for S = 	spins is two dimensional, with basis vectors a) = 

= ,m3 = ) and  L8) = IS = , ms = -), as opposed to the classical vector 

with a basis , 9, the unit vectors along the three dimensions in Euclidian space. The 
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S=1/2 	 S=5/2 

mS 

mS 

1/2 

-1/2 

Figure 2.7: The classical representation of the up/down states of a S = 1/2 spin, and the 6 
states of a S = 5/2 spin to scale. 

corresponding quantum mechanical spin expectation value is 

(8) =±(S,ms J8JS,rn s)+S,ms Sy IS,ms)+2(S,msJSS,ms). 	(2.35) 

In the case of IS = , ms = ) this gives (8) = 	However, the total spin moment is 

(I) = (/S(S+ 1)I) 0.8660. (2.36) 

The difference between 1 §1 and I(S) I can be explained in a classical picture as due to the 

precession of the spin moment around the axis with an angle = cos (06) = 48°, as 

shown in figure 2.7. In reality there is no actual precession, the spin direction is simply 

no longer defined accurately. This is reflected in the expectation values (Sf) and(Se, ) 

when the spin is maximally aligned along the axis, in the state Icr), 

(aISI) = ((Sr ; + 1— (Sr;  —) S  (ISx; +) — ISx ; _)) = 
1 	

(2.37) 

where !S; +) and ISx ; —) are the eigenstates of 

As the spin quantum number S increases, the description of the spin by a classi- 

cal vector § becomes increasingly accurate. For S = 5/2 for example, the precession 
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angle is already somewhat smaller 0 = cos (2.5/v7) = 380 . In the semi-classical 

spin-wave approach for magnetically ordered solids, the discrepancy between the to-

tal moment given by S(S + 1) and the actual ordered moment S can be entirely 

accounted for by zero-point fluctuations of the magnons [107, 5]. These zero-point fluc-

tuations of the mnagnons are often called quantum fluctuations [120]. As S -* oc these 

quantum-mechanical corrections can be neglected and (S) - S. The term "quantum 

fluctuations" is also used in the context as described in section 2.1.2, as symmetry-

restoring fluctuations or Goldstone modes, which in case of long-range order occur for 

q - 27i- /V where V is the volume of the system. In the case of antiferromagnetism 

it is not immediately clear whether the Goldstone modes appear at all q in addition to 

zero-point magnons [175, 2061 and [70]. 

From a classical point of view the electron spin of S = 1/2 is not sharply defined. 

From the quantum mechanical point of view on the other hand, it could be considered 

surprising that the spin of an electron is always in a symmetry-broken state. For a 

single electron it is not possible to construct a state where there is no net spin moment. 

2.2.8 Spin-orbit coupling 

So far the spin-orbit coupling, of the form 

i 	e ri  ( 

	
(2.38) 

has been neglected. There are few treatments where this term is included in the deriva-

tion of a magnetic exchange Hamiltonian, because L is generally assumed quenched. 

In transition metal compounds the term is relatively weak compared to the direct-

exchange terms, so that when several unpaired electrons are present in each 3d shell, 

the individual L i  and Siadd up to L and S before they couple together, so that for 
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each 3d ion flLS = AL 	where [237] 

(LSIAL 2  LLS) (LSS SLS) 	
(2.39) 

= 	L(L+l) 	S(S+i) 
i 

This is called Russell-Saunders coupling. The other kind of coupling being jj coupling, 

where each and Li first add to J before they add to a total angular momentum J. 

The latter situation arises in rare earth metals where the spin-orbit coupling is much 

stronger. For the 3d metals it can also be shown [237] that A is positive for less than 

half-filled 3 shells, and negative for more then half filled 3d shells. 

In section 2.2.1 it was shown that the 3d orbitals split into states with (L) = 0 in 

the presence of a crystal field. In the presence of 77LS  the situation becomes a bit more 

complicated, and in general some of the orbital angular momentum will be reinstated 6 . 

In free ions with non-zero orbital angular momentum quantum number L, the spin and 

orbital angular momentum combine to a total angular momentum with possible values 

J=L—S,L—S+1,L—S+2,...,L+S-1,L+S 7 . Inthepresenceof flLS  the 

degeneracy between these levels is lifted to form a group of levels called a multiplet. In 

TM compounds only J = L - S and J = L + S are encountered, for less than half-filled 

shells and more than half-filled shells respectively, depending on the sign of A. 

The total magnetic dipole moments are determined by IL = —,aB\/L(L + 1) and 

ps = —ge ,uB\/S(S + 1) with g 2. An external magnetic field couples to L+ 2'. The 

total magnetic moment is therefore given by PJ = gJ/.LBJ where 

3 S(S + 1) — L(L + 1) 

	

gJ = + 	2J(J + 1) 	
(2.40) 

and the Zeeman term is flz = tBgJJ.H. In the case of Cu2+  (3d9) gj can be calculated 

by treating the spin-orbit coupling as a perturbation to the crystal-field-split 3d states. 

6An exception are perfectly half-filled 3d shells, for which A = 0 which follows from the fact that 
A changes sign at this point. More rigorous arguments have been given, see for example [237, 2201. 
However, in many 3d5  TM compounds the total orbital angular momentum does not seem to be zero. 
In chapter 4this is for the first time fully explained. 

7This J should not be confused with the super-exchange constant, which carries two indices corre-
sponding to the ions or shells between which the exchange interaction acts 
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gj relates the induced orbital angular momentum by the spin moment and external 

fields with the crystal field. In ions with S > 1/2 the difference in orbital angular 

momentum induced along different directions with respect to the crystal field can give 

rise to energy splittings between the levels IMs I. This is the single-ion anisotropy term 

l.IsI = DZZ S + 	- 	 (2.41) 

For S = 5/2 systems there is even such a term in a Oh  crystal field ([237] p.  155), 

1cubic = a(S + S + 5) 	 (2.42) 

with many more terms in the presence of an external field. 

The spin-orbit coupling can also give rise to an anisotropic super-exchange interac-

tion, which arises in first order of both super exchange J and HLS, 

HDM = Dab (& X  Sb), 	 - (2.43) 

where Dab = 77a -qb and 

'i/a 	
(OaObIL a IIL aOb) Jab(i.laOb, OaOb) 	 (2.44) 

E °  /La — E(°)  

with an analogous expression for iji [237]. The /La(b)  denotes excited states of ion a(b) 

which mix into the ground state due to the presence of the hopping matrix element t, 

and IOaOb) denotes the zero'th order ground state configuration. Note that because & X 

Sb= 8b X  5a this term can only be present when D ab = —D. Hence, if the magnetic 

bond between ion a and ion b possesses inversion symmetry, then necessarily D ab = 0. 

This is the Dzyaloshinsky-Moriya interaction. It was postulated by Dzyaloshinsky [61] 

to explain the weak ferromagnetic moment in hematite, and later given a formal basis 

by Moriya [144]. 
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The only other term in the total Hamiltonian which couples the spatial and spin 

degrees of freedom is the magnetic dipole-dipole interaction. It is given by [100] 

 ~j)]  1 	 •• 
[,§i 

. 	 - 	 . 	 . 

fldd = 	 —3 	 . 	 (2.45) 
r 

Here = , and is not an operator. In transition-metal compounds this interaction is 

very weak, but because it is long ranged it can give rise to a shape anisotropy. This 

holds in particular in materials with a long-range ordered magnetic structure and with 

a net magnetic moment. 

2.2.9 Magnetic susceptibility 

The magnetisation (M) and x = (M)/H of N free ions in a magnetic field can be 

calculated starting from 

I jflJJ 
(MZ ) = —N 	

e_9JmJB1kBT 	
. 	 (2.46) 

It can be shown that (Me ) = NgaBJBJ() where Bj(y) is the Brillouin function given 

by 
2J+1 	/2J+1 '\ 	1 

Bj(y) 
= 2J 

coth 	
2J 	- 	

coth 
() 	

(2.47) 

where y = gJMJpBJH/kbT. For S = 1/2 this simplifies to 

(IIBH\ 
= 11B tanh 

S\ kBT)' 	
(2.48) 

and in small fields/high temperatures the magnetic susceptibility can be approximated 

with 
g%i4J(J + 1) - Ccurie 

(2.49) X 	3kBT 
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In addition to the temperature dependent Curie susceptibility there are temperature 

independent contributions, the Van Vieck paramagnetic susceptibility and diamagnetic 

susceptibility [26]. 

Using mean field theory [22] it can be shown that 2.49 is also applicable to the 

magnetic susceptibility in the paramagnetic phase of magnetic insulators. In that case 

the energy scale of the magnetic interactions (°) must be added to the temperature 

T in the denominator. This is the Weiss temperature given by Ow  = zS(S + 1)kBJjj , 

where z is the number of spins which couple to each site with strength J,. Hence, the 

expression 

CCurie 
X=T+Ow 	 (2.50) 

can be used to deduce the effective magnetic moment of the spins 

Peff = 9JI-LB\1J(J + 1) 	 (2.51) 

and the magnetic super-exchange constant J j , from the paramagnetic susceptibility of 

magnetic materials measured in a small applied field (of the order of 100 G) 8•  The 

Weiss temperature immediately indicates whether a material is ferromagnetic (Ow  > 0) 

or antiferromagnetic (6 < 0). The results in chapter 4 reconfirm that this method is 

a reliable way to obtain two essential parameters of the system - the effective magnetic 

moment, and the energy scale of the exchange interactions - in a model independent 

way. 

2.3 Geometric frustration 

There are lattices for which a spontaneous symmetry breaking to a classical Néel or- 

dered state is not expected, such as the 1D chain and lattices on which the antifer- 

romagnetic Néel order is frustrated, such as the kagomé and the pyrochiore lattices, 

8 The magnetic fields in magnetic susceptibility measurements are often stated in CGS units. In this 
unit system un = 9.27 10_21  erg/G, to = 1 and kB = 1.3807e - 16 erg/K and tt,,ff 	/8Ccurie. 
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Figure 2.8: The principle of geometric frustration on a triangle (left), for the kagomé lattice 
(centre) and for the pyrochiore lattice (right). 

as shown in figure 2.8. Geometric frustration can cause the ground state to become 

underconstrained, so that the magnetic ground state is not uniquely defined, giving rise 

to a finite ground state entropy [85, 78, 161, 120, 591. This situation is illustrated in 

figure 2.8. Hence, for ant.iferromagnets with S = 1/2 spins on a kagomé or pyrochlore 

lattice no symmetry-breaking is expected, and the ground state should be the symmet-

rical quantum-mechanical ground state with St0t = 0. Already in 1931 it was shown 

that the S = 1/2 linear chain has such an St.t  = 0 ground state [21]. 

Philip Anderson [7] provided a physical picture of the singlet ground state in the 

Mott insulating phase as a linear superposition of valence bond singlets between all 

(nearest neighbour) electron pairs, as illustrated in figure 2.9. This new kind of Mott 

insulating state was called a resonating valence bond (RVB) state. As was shown 

in section 2.2.4 the Heisenberg Hamiltonian as derived from the Hubbard model is 

identical to the effective Hamiltonian for the low-energy subspace describing the valence 

bond. Hence, in the original paper [7] it was suggested that the term valence bond 

should be taken literally, as described by Pauling [156]. Another argument was that 

materials such as V02 and Ti2 03 were known to undergo a static pairing of pairs of 

ions into singlet valence bonds. Since then many more valence bond crystals have 

been found. For example bis-cis- (1 ,2-perfiuorometliyletliylene-1 ,2-dithiolato)-copper 

(TTFCuBDT) [35], CuGe03 [91], and the spinels CuIr2S4 [160] and MgTi204 [186]. 
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Figure 2.9: The Néel state (top) compared with the statically dimerised state of S t. ( ,t  = 0 pairs 
a valence bond crystal (VBC) - as is often found in S = 1/2 linear chain antiferrornagiiets, and 

the resonating valence bond (RVB) state (bottom). This state is a superposition of all possible 
dimerisations. It should be emphasised that this a quantum-mechanical superposition, which 
means that in the ground state never any of these particular dimerisation patterns is realised, 
not even for an infinitesimally short moment. 

It was suggested that for the triangular lattice S = 1/2 antiferromagnet t.hese valence 

bonds would no longer be pinned to particular locations (or "self trapped") [7, 711. 

The idea of a resonating valence bond ground state gained renewed relevance with 

the discovery of an entirely new class of super conductors, the so-called high critical 

temperature - or high T - superconductors [13, 2331. The common factor in these ce-

ramic insulators is that they have non-orhitally degenerate Cu2+  ions on well separated 

2D square lattices. They are Mott insulators with relatively wide bands, and strong 

in-plane antiferromagnetic exchange. Anderson suggested [10] that in the stoichiomet-

nc insulating phase of for example La2Cu04, pre-formed singlet pairs are present in 

the magnetic ground state. He suggested that when these Mott insulators are hole 

doped by replacing some of the La with Ba or Sr, these spin singlets would be the 

bosonic charge carriers responsible for the superconducting properties of materials like 

BaLa4Cu50 5 (3_6) [13] and (Y0.6Bao4)2Cu0(4_6) [233]. The pairing mechanism was 
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therefore thought to be mainly a magnetic interaction. This has spurred the interest in 

geometrically frustrated systems, which are considered the most likely to have a RVB 

or quantum spin-liquid ground state. It has since been shown that the S = 1/2 trian-

gula.r antiferromagnet has a three sub-lattice Néel state [17, 11]. Presently the most 

important candidates are the kagomé and pyrochiore antiferromagnets. The kagomé 

antiferromagnet is the subject of this thesis. First the classical case of S - oc will 

be discussed because many semi-classical approaches for finite spin start out from a 

classical picture, for example [45]. It is also assumed that the systems of which the 

classical analogue does not freeze are more likely to have a quantum spin liquid ground 

state. 

2.3.1 The classical kagomé antiferromagnet 

The classical kagomé antiferromagnet does not show conventional symmetry breaking 

even at T = 0. It has been shown analytically [168] that the ground state of the 

classical Hamiltonian has a macroscopically large degeneracy. The only condition for a 

spin configuration to be a ground state is that the sum of the spins in each elementary 

triangle is zero [45]. Using linear spin-wave analysis starting from q = 0 and q = vx v' 

ground states (two of the many possible ground states) shows that there is a whole band 

of dispersionless zero-energy modes. This means that collective spin re-arrangements 

are possih1c with no cost in energy, and for arbitrarily small clusters of spins [841. 

Figure 2.10 illustrates examples of the open and closed lines of collective spin zero-

energy modes in the q = 0 and the q = v/_3 x respectively. 

As is clear from figure 2.2 the ground state degeneracy of the classical kagomé 

antiferromagnet is much larger than needed to prevent symmetry breaking. It is has 

been shown that in this situation quantum and thermal fluctuations can select a subset 

within the ground state manifold [216] for which the entropy of the system is maximised. 

Using linear spin-wave theory and classical Monte Carlo simulations it has been shown 

that due to this 'corder from disorder" effect a spin-nematic order appears [43, 167] 
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Figure 2.10: The zero-energy collective spin modes in the q = 0 unit-cell spin structure with 
positive chirality (left), and in a structure with a larger unit cell (q = '/ x /) and a staggered 
chirality. In q = 0 the collective modes are open lines, which lends this structure a certain 
rigidity. The q = x structure is much softer because closed ioops of collective spin 
reorientations exist. Hence, the short-ranged correlations in the ground state are mainly of the 
q = x type [84, 43]. The chirality of each triangle is defined in equation 2.53. 

for the classical kagomé antiferromagnet. In the spin-nematic state all spin vectors 

lie in a common plane. This order can be mapped to a co-planar spin arrangement 

where all the spins lie within the 2D (kagome) plane, by a global spin rotation. The 

leading quantum corrections to the spin-wave spectra also induce nematic correlations 

as T - 0 [45]. This picture was confirmed by a large N expansion specifically suited for 

frustrated systems in which the behaviour of the kagomné antiferromnagnet was studied 

as a function of the spin quantum number [179]. 

It can however not be ruled out that at T = 0 in addition to the nematic order 

the ground state shows long range spin-spin correlations, most likely of a v"  x 

structure [179]. This order as T - 0 does not indicate a symmetry breaking transition; 

the dispersionless zero-energy modes guarantee that no symmetries are broken. Any 

time-averaged observable of the system such as the magnetic susceptibility will be 

isotropic. The situation can be compared with that in a high-spin single molecule 

magnet (SMM). All the spins within the SMM are aligned ferromagnetically, but as 

long as the SMM is small enough [199] the total spin orientation ms will not be fixed. 

As an illustration, figure 2.11 gives the nematic correlation function g(r .p) and the 

spin-spin correlation function g(ri) ) at T/J = 0.0001 for a system with 432 spins. 
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Figure 2.11: The spin-nematic order g(r) at T/J = 0.01 (filled circles), 0.001 (filled tri-
angles) and at 0.0001 (filled squares). The spin-spin correlation function at T = 0.01 and 
T = 0.001 are the open circles and open squares respectively. This data was obtained in a 
simulation on 432 spins using Spinner [56], to reproduce [43]. 

gn (r@) defined as [43] 

)2) - 1/2 	 (2.52) 

where ii,, is the chirality vector defined as 

ii, = 2 V_3 ( §1 X §2 + §2 X §3 + §3 X §1 	 (2.53) 

where the subscripts index the spins in unit cell a in a clockwise order. g(r) is non- 

zero for ü 	only because the average is taken over a scalar. The low-temperature 

susceptibility along all three crystallographic axes is identical, even as T 	0, as is 

evident from figure 2.12. 

This order from disorder effect does mean that an infinitesimally small XY anisotropy 

is sufficient to turn the nernatically ordered state into a symmetry-broken state with 

an associated second order phase transition [171]. In addition to a global spin-rotation, 

below the transition temperature the spins are free to align in three orientations making 

an angle of 120° with each other. The dynamics are thought to be glassy with a T2 
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Figure 2.12: The magnetic susceptibility (black) along the a axis (open circles), b axis (x) 
and c axis (+). The heat capacity is given in red, and corresponds to the right-hand axis. The 
magnetic susceptibility and heat capacity are given in reduced dimensionless units. 

temperature dependence of the specific heat [171, 44]. When the XY anisotropy plane 

becomes locally canted as would be the case for the jarosites, it is expected that this 

kind of anisotropy induces long range order [1471. 

Further-neighbour interactions have been shown to induce long-range ordered ground 

states of the q = 0 type for J2 > J3 and q = v3 x v for J2 <J3  [84]. A Dzyaloshinsky-

Moriya term in the Hamiltonian has been shown to induce q = 0 long-range order [63]. 

In this case the sign of D1  determines the sign of the chirality vectors ; if the 

cross products in the DM1 term are evaluated in a clockwise manner around each 

hexagon then sign(D1) = sign(n 1 ). An easy-axis anisotropy leads to a phase transi-

tion to a weakly ferromagnetic state, with critical exponents of the Ising universality 

class [33, 76], but the ground state remains degenerate, as was the case for the XY 

system. 

The magnetic structure factor (S . Sj ) o  of the kagomé antiferromagnet with only 

nearest neighbour exchange has been calculated using a high-temperature series expan-

sion [841. The corresponding Padé approximant of the uniform magnetic susceptibility 



2.3. GEOMETRIC FRUSTRATION 
	

41 

o(T) = + I2r(° Sr) is given by [84, 143] 

o(T) - 	
byf 

where y - 
- JS(S + 1) 

(2.54) 
T> M 0 yn 	3T 

and the coefficients up to order M = 4 are b0  = 1, b1  = — 10.282, b2  = 8.18025, 

b3 = — 19.8368, b4 = 9.19475, Co = 1, c1 = — 6.08282, b2 = 28.151, b3  = — 29.8471, and 

C4 = — 18.8328. 

2.3.2 The S = 1/2 kagomé antiferromagnet 

The theoretical search for the properties of the S = 1/2 kagomé antiferromagnet started 

with Elser's paper [64] on the interpretation of heat capacity measurements of 3 11e 

atoms physisorbed on graphite [73, 79]. Elser suggested that only part of the spins in 

this system would form dimers (pair into spin-singlets) and that at T = 0 this dimer 

pairing would be static. Over the last 18 years a large number of different theoretical 

approaches have been applied to the problem of the S = 1/2 kagomé antiferromagnet, 

and all of them confirm that this system cannot have a Néel type long range ordered 

state. Finite-size scaling analysis of exact diagonalisation results on small clusters [218, 

238, 42, 119, 113] suggest that even in the thermodynamic limit the triplet (S 0  = 

1) states are gapped, with an energy of the order J/20. This means that physical 

realisations should have a non-magnetic quantum spin liquid ground state [98] A 

puzzling aspect of the exact diagonalisation results is the quasi-continuous spectrum 

of singlet states above the ground state. These singlet states are found to fill the 

singlet-triplet gap with non-magnetic excitations [218]. 

Finite temperature series expansions for the S = 1/2 kagomé antiferromagnet for 

N -i oo do not yield information on the ground state, but for finite temperatures 

these results [191, 65] confirm the correct convergence [190, 18, 137] of the finite size 

scaling of exact diagonalisation results. Using a hybrid approach combining the two 

techniques [137] alarger singlet-triplet gap was found, of order J110. This evidence in 

favour of a Stot = 0 ground state consisting pairs of spins coupled into valence bonds 
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has motivated a number of investigations which focus on the 5t0t = 0 subspace alone, 

using quantum dimer models [132, 140, 141, 139]. 

Even quantum liquids can have broken symmetries. In the case of superfluid 4 He 

and superconductors for example, this is the quantum mechanical phase of the wave 

function [9] which becomes uniform for all particles involved, while the Hamiltonian 

is of course invariant on such a phase. Similar symmetry breakings (Gauge symmetry 

breaking) are thought to occur in the quantum spin liquid ground state of frustrated 

spin systems [222, 179, 141, 139]. Due to interference effects of the uniform phase of the 

wave function, the properties of such systems are dependent on the surface on which the 

lattice is defined, i.e. the periodic boundary conditions. Hence, these systems are called 

topologically ordered phases [139]. A concrete example of this interference due to the 

topology of the system is the superconducting quantum-interference device, or SQUID 

ring [9] (see also section 3.4). In this state the elementary excitations are thought to be 

de-confined spinons. Spinons are pairs of S = 1/2 quasi-particles [179] which appear• 

as a S = 1 excitation when a singlet bond is broken. In the quantum disordered phase 

these spinons are not bound together in the way they are in for example a valence bond 

crystal. They can independently travel through the lattice as defects in the dimerisation 

pattern. This is why they are called "deconfined spinons". 

A large number of papers discuss the heat capacity of the S = 1/2 kagomé antifer-. 

romagnet [218, 190, 16, 241, 137, 139, 142, 166]. It is generally agreed that the heat 

capacity follows a power law as the temperature approaches zero; Cv = yTa where 

1 < a < 2, although it has been said that even a < 1 cannot be excluded on theoretical 

grounds [142]. It is also clear that a singlet-triplet gap should be evident as a shoul-

der in the heat capacity at J110 [137] corresponding to a peak in dS/dT = Cv/T. 

The application of an external field is expected to have a negligible effect on the heat 

capacity [190]. 

This is the theoretical evidence in favour of a quantum spin-liquid ground state. 

However, many questions remain open. For example whether or not the quantum 
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mechanical Stot = 0 ground state is degenerate. Furthermore, no general consensus has 

been reached on the conclusiveness of the above results [142]. Some researchers suggest 

the ground state is a valence bond crystal, i.e. statically ordered dimers [126, 87, 146, 39] 

or a critical non-gapped spin liquid with gap-less spinons [87, 166]. In the light of the 

observations in chapter 5 some studies on the effects of decoherence effects in frustrated 

lattices should also be mentioned [217, 181, 130]. 

2.3.3 Experimental realisations 

The first and the most well-known Mott insulator modelling the low-spin kagomé an-

tiferromagnet is SrCr 9 Ga12_9O 1 9 (SCGO) [151, 163]. In this system S = 3/2 Cr3  

ions are located in [111] slabs of the spinel structure, consisting of two kagomé layers 

sandwiching a layer with a triangular lattice [163]. The Weiss temperature (Ow ) of 

this system is between -500 and -200 K depending on the Cr concentration [163, 185] 

- the Cr sites on the kagomé lattice are prone to substitutions with Ga 3 . An in-

dication of the large degree of frustration in this system is that it does not freeze 

down to Tg  = 4.5(1.5) K [151, 163, 185]. At T. the magnetic susceptibility peaks, and 

develops a splitting in the field-cooled zero-field cooled susceptibility [185]. 1iSR mea-

surements have shown that below T. the Cr2+  spin fluctuations gradually slow down, 

but 'even at 1 K no long-range order is found and the ground state remains mainly 

dynamic [36, 37, 114, 27]. For this reason SCGO was long considered the most likely 

material to have a spin-liquid ground state. However, no sign of a singlet-triplet gap 

has been found [121], and using Ga NMR Limot et al. [121] have shown that the glassy 

characteristics are intrinsic to the system, rather than a consequence of Ga3+  substi-

tutions of the- Cr3+  ions on the kagomé lattice. This was confirmed by a comparative 

study of SCGO with the isostructural compound Ba2Sn2ZnCr7Ga12_7O22 [28] which 

shows a spin-glass ordering at even lower temperatures, but again does not show any 

signature of a singlet-triplet splitting. 
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It may be that SCGO is a topological spin glass [171] due to the presence of a small 

magnetic anisotropy which is evidenced by an anisotropy in the magnetic susceptibil-

ity [185]. This is in agreement with the heat capacity [164] which follows the power 

law Cv cx T2  for low temperatures [171]. The heat capacity was found to be almost 

completely independent of external magnetic fields up to 10 T [164]. 

Better physical realisations of the kagomé antiferromagnet are the jarosite com-

pounds, AM 3 (OH) 6 (SO 4 ) 2 , where A is typically a monovalent cation and M trivalent 

Al, Ga, Fe, Cr or V. In chapter 4 iron jarosite is discussed. In this system the kagomé 

sites are occupied by Fe 3  ions with strongly antiferromagnetically coupled S = 5/2 

spins. The Weiss temperature is 750 K, and consistent with strong geometric frus-

tration, the system only freezes at 65 K. The ground state is long-range ordered, with 

a q = 0 magnetic unit cell. A small number of studies exists on the chromium and 

vanadium analogues of iron jarosite, with S = 3/2 and S = 1 respectively. Chromium 

jarosite has a Weiss temperature of -60(10) K. This system orders into a long-range 

ordered structure with a q = 0 unit cell below - 1.7 K [105, 115]. The ordered local 

moment at T = 0.4 K was found to be only 0.4(1)8 [115, 96] with S = 3/2. 

Vanadium jarosite (S 1) has a Weiss temperature of '-S.'  50 K [82, 155, 80], in-

dicative of ferromagnetic exchange within the kagomé layers. Due to weaker antifer-

romagnetic interplane interactions the material still acts like an antiferromagnet. The, 

effective magnetic moment as found from the high temperature magnetic susceptibility 

is significantly lower than that of S = 1 spins, which suggests that, there is significant 

orbital angular momentum. The ferromagnetic exchange in vanadium jarosite is ex-

plained by the fact that for V 3  only the 3d and 3d orbitals are occupied, and these 

orbitals can only form it symmetry bonds with the connecting oxygen ligands [80]. 

The recently discovered compounds Nd- and Pr-langasites (R3Ga 5 Si014 with R = 

Nd or Pr) [29] improve on iron jarosite as models of the classical kagomé antiferromagnet 

with magnetic moments of J = 9/2 and J = 4 respectively. In these lanthanide magnets 

the magnetic shell is the 4f shell which retains almost all the orbital angnlar momentum 
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of the free ion. The large orbital angular momentum is also shown to give rise to a large 

magneto crystalline anisotropy. The Weiss temperature of Nd-langasite is Ow = 52 K, 

while the system remains strongly fluctuating down to 2 K. Diffuse neutron-scattering 

experiments have revealed short-ranged spin-spin correlations at 2 K, which is direct 

evidence that Nd-langasite is a cooperative paramagnet [172]. 

Another recently discovered compound is Y 05Ba05 CaC04 O7  [187]. This material 

is a very beautiful example of a S = 3/2 kagomé antiferromagnet. The S = 3/2 Co 2  

spins are located on well separated kagomé layers. The Weiss temperature in this 

system is -2200 K, indicative of strong antiferromagnetic exchange. This has allowed 

the experimental characterisation of the ground state down to very low T/J, revealing 

very strong dynamical spin-spin correlations with a periodicity of to two times the 

x unit cell below 40 K [187]. It was shown that the diffuse neutron magnetic 

scattering is in excellent agreement with classical Monte Carlo simulations. 

A number of compounds have so far been considered as model systems of the S = 

1/2 kagomé antiferromagnet. Of these materials volborthite (Cu2V30 7 (OH)22H20) 

probably comes closest to the ideal. Using NMR it has been shown that the vanadium 

ions are in a non-magnetic state [90], resulting in well separated kagomé layers of 

antiferromagnetically coupled S = 1/2 spins. However, not all nearest neighbour bonds 

on the kagomé lattice are symmetry equivalent, and it is therefore possible that the 

system is governed by two different in-plane exchange constants. The magnetisation, 

heat capacity and NMR measurements do not show any sign of a magnetic freezing, 

but EPR results suggest the onset of short-range correlations below 5 K [153]. yUSR 

measurements [19, 741 have shown that below 5 K the spin fluctuations slow down. At 

1 K the muon spin relaxation rate due to the slowly fluctuating electronic S = 1/2 

moments peaks with A = 0.37 p 1 • On dilution of the magnetic structure with Zn [74] 

the muon relaxation rate decreases until at 60% Cu2+  coverage of the kagomé lattice, 

well past the percolation limit, A 0 at 50 mK [74]. 

Other systems which should be mentioned are 
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• The copper coordination compound [Cu3(titmb) 2 (0C0CH3)6].6H20, which has 

been found to be ferromagnetic [93, 1451. 

• -Cu3V2 02  on which the kagomé lattice is folded into a buckled staircase with 

different nearest-neighbour exchange interactions [174]. This compound orders 

magnetically at 75 K, while the Weiss constant is —135 K, which is an indication 

that the anisotropic exchange has lifted the geometric frustration [174]. 

• Cs2 Cu3ZrF 1 2 has Cu2+  ions on perfect kagomé layers. However, below 210 K 

a structural transition occurs leading to a distorted kagomé lattice below this 

temperature [198], and at 30 K a weak ferro-magnetic moment develops. 

In August 2005 Shores et al. identified the x = 1 phase of zinc paratacamite 

of general stoichiometry ZnCu4_(OH)6Cl2 as a perfect realisation of the S = 1/2 

kagomé antiferromagnet. This material will be discussed in chapter 5. 



Chapter 3 
Experimental 

Diffraction methods have been instrumental in revealing the structure of condensed 

matter. A sample is illuminated with a beam of light or particles with a wavelength 

smaller than the structure which is to be revealed. The intensity of the waves projected 

onto a large sphere around the sample equals the power spectrum (the Fourier transform 

times its complex conjugate) of the wave field at the sample surface. In the single 

scattering limit, i.e. when the mean scattering length in the sample is larger than the 

sample thickness, the diffraction pattern can be taken as the power spectrum of the 

spatial structure of the sample. To reveal the atomic structure of crystals, waves with 

a wavelength of the order of 1 to 2 A are needed. This means either X-rays with an 

energy of at least 2 KeV or thermal neutrons, with an energy of 20 to 81 meV. The first 

three sections in this chapter will deal with X-ray and neutron diffraction, and a general 

derivation of the above statement will be given. In principle any particle with the right 

wavelength could be used. However, charged particles such as electrons and muons 

interact much more strongly. Hence, electrons are generally used to study surfaces or 

very thin samples. Muons of the energy as typically generated from neutron collisions, 

stop in the sample within a mm from the sample surface. Once in the sample, they can 

act as local probes for the magnetic fields and fluctuations in magnetic fields in their 

direct environment. This technique was used to prove that the spins do not freeze even 
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at 50 mK in the x = 1 phase of zinc paratacamite. The experimental details will be 

discussed in section 3.2. 

3.1 Diffraction methods 

The Huygens-Fresnel principle [30] states that a wave iJi  (r, t) emanating from a single 

point source ö(r - r o ) will be perfectly spherical 1 , and the wave field from any source 

can be described by the interference of the spherical waves from all the point sources in 

the sample together. Let's consider the sample as a collection of point "sources" g(r) 

illuminated by an incoming wave f(r), which in general is given by 

1(r) = jd9 f (g),i (gr- 	 (3.1) 

where c is the propagation speed of the wave and ic = ji. In the case that no energy 

transfer occurs between the incoming wave and the sample, the wave field at the sample 

surface iP o (r) of structure g(r) can now be written as 

W o (r, t) = g(r) 
j 

 d9 &),i(gr- Kd), 	 (3.2) 

and the interference of all sources g(r) at r, t is given by 

iIJ(r,t) -  fdr' W
o (r',t - 11c) 

(3.3) 
- 

where I = Ir - r'I. Inserting 3.2 into 3.3 yields 

	

'I' (r, t) = 	f d9 J() fdr' g(r)l' 

fdif(i) fd rf g (r) ei'(T_')_?) 

	

= 	fdj() eth(r_) fdrg(r) ei(_l)r' 	 (3.4) 

'It is a Green's function 	the solution of the wave-equation for a point-source. 
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where we used that I r - F r' for r > r' 2  For a monochromatic incoming wave 

J(k) = 6(k - ) the momentum transfer q by the sample is given by q = k - kF, where 

it should be noted that kF is the outgoing wave vector (k'). Using these definitions, 

the wave field on a sphere of radius r > r' around the sample is given by 

e (T_t) 

Pr(q,t) = 	(q) 	 (3.5) 
r 

where (q) is the Fourier transform of g(r'). The angle corresponding to q is given 

by Bragg's law: in the case of powder diffraction the diffraction angle 0 is given by 

q = 2k sin(0), as can be deduced from diagram 3.1. 

Hence, a one to one linear transformation relates the microscopic structure of the 

sample to the wave field of the diffracted waves over a large sphere around the sample. 

However, it is not straiglitforwards to measure the phase of the wave field, and most of 

the time the quantity of interest is the time-averaged intensity 

1(q) = (I'Pr (q, t)12)  oc §*(q)(q) 	 (3.6) 

where 	is the complex conjugate of (q). In the case of powder samples this reduces 

to 1(q). Hence, some information is lost, but both 1(q) and 1(q) do have a physical 

meaning. With the use of the convolution theorem; 

1(q) oc §*(q)§(q) 	/dr[fdxg(x)g(x + r)] _iqry 

= 

	

fdr(g(x)g(x  + r)) e r. 	 (3.7) 

This demonstrates that 1(q) is the Fourier transform of the spatial correlation function 

C(r) = (g(x)g(x + r)) , also called the Patterson function. 

2I11 the case of Fraunhofer diffraction as discussed here, only the first order term of the Taylor series 
expansion of! = - r'l = /r 2  - 2rr' + r'2  in r' is taken into account. 

principle the inner integral over d.r should be carried out of the area of the sample which is 
illiniminated by time incoming wave. Hence, to obtain an accurate measurement of G(r), the footprint of 
the beam on the sample, or the sample itself, must be much larger than the average correlation length. 
For smaller samples, spiky random variations on top of G(q) are observed. These are called speckle, 
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Figure 3.1: The Ewald construction illustrating Bragg's law. q is a lattice vector of the 
reciprocal lattice (q), k the incoming wave vector and k' the outgoing wave vector. 

The formulation in terms of Fourier transforms as given above is equivalent to the 

quantum mechanical formulation, using Fermi's Golden Rule, 

(q) = fdrg(r) ei(k—k').r = I dr 
(eiktr)tg(r)e 	

= (k'Jg(r)k). 	(3.8) 

where g(r) is now the scattering potential. 

3.1.1 X-ray diffraction and Rietveld refinement 

The powder samples used in the experiments described here were characterised us-

ing the Centre for Science at Extrenie Conditions (CSEC) Bruker AXS D8 powder 

diffractometer. Samples were mounted in a fiat plate geometry and irradiated with Cu 

K radiation (8.0 KeV). The powder diffraction patterns were Rietveld analysed using 

the general structure analysis package (GSAS) [111] and the EXPGUI graphical inter-

face [203]. The Rietveld refinement method [169] is a least squares algorithm which 

optimises the calculated diffraction pattern from a trial crystallographic structure to 

the measured diffraction pattern. This method can also deal with (partially) overlap-

ping diffraction peaks (yj)  all assigned a weight w. The quality of the fit between the 

and can for example be seen when a laser beam reflects from a piece of white paper. Such a pattern 
is never observed for neutrons because the time and spatial averages are much larger, and thermal 
neutrons are only correlated with themselves, not with other neutrons. 
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data and the model crystal structure is expressed in the x2  and Rwp , which is defined 

as 	
1 

- fwj[yj(obs)_yj(ca1c)] 2 l 2  
p - 
	w(y(obs))2 	J 	(.) 

The analysis of the diffraction pattern is helped by the fact that the unit cell, 

spanned by the three vectors a, b and a, as parametrised by a, b, c, c, and 'y, is defined 

by the positions of the diffraction peaks - the structure factor. The positions and shapes 

of the atoms within the unit cell determine the intensities of these peaks - the form 

factor. The width of the diffraction peaks is determined by factors such as the quality 

of the crystal, i.e. the stoichiometry, the crystallinity, vacancies and dislocations, but 

also by the scattering geometry and the convergence and size of the incoming X-ray 

beam. The program GSAS [111] takes all these factors into account. The X-ray non-

resonant atomic scattering cross section increases more or less linearly with the number 

of electrons per atom. In some situations this provided insufficient scattering contrast 

to allow a complete characterisation of our samples. When this was the case, neutron 

powder diffraction measurements were carried out. 

3.1.2 Neutron diffraction 

The nuclear neutron scattering cross section varies more or less randomly with the 

atomic number. This allows the determination of the positions of hydrogen (deuterium) 

atoms, or the distinction between copper and zinc. The diffracted neutron intensity 

I(q, E) at a detector covering the solid angle AQ with energy resolution LE is written 

in terms of the partial differential neutron scattering cross-section 

d2 cr 
I(q,E) = 	 (3.10) 

QdE 

where 1 is the total incoming neutron flux. The interactions between neutrons and 

the nuclear structure is weak and, in general, samples of a few grammes are required. 

As long as powder diffraction provides enough information this is an advantage. The 
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neutron flight path does not need to be high-vacuum such as is the case for soft X-rays, 

and the sample can easily be cooled to very low temperatures, because the neutrons 

easily pass through the walls of a cryostat. 

The average thermal neutron (corresponding to a neutron reactor moderator tern-

perature of 293 K) has a wavelength A = 1.798 A and an energy of E = 81.81/A2  = 

25.3 meV. This is the wavelength typically needed to probe the atomic structure of 

materials. The corresponding energy is at the same time of the order of the energy 

of elementary excitations in the solid state. Hence, in addition to spatial correlations, 

time correlations within the sample can be studied using inelastic neutron diffraction - 

there is energy transfer between the sample and the incoming and outgoing neutrons, 

as well as momentum transfer. The energy transfer between the neutrons and the 

sample is often expressed as E = hw, where w is the oscillation frequency of the state 

composed of the superposition of the ground state and the excited state accessed in the 

transition. 

In addition neutrons have a spin moment of S = 1. Hence neutrons also probe 

the magnetic structure (unpaired electrons). The cross sections for nuclear and mag-

netic. scattering are of a similar order. For this reason neutrons have played a very 

important role in the study of magnetism. For example, using neutron diffraction Shull 

and Smart [189] were able to prove Néel's idea that the unpaired spins in insulating 

antiferromagnets ordered in two oppositely aligned magnetic sub-lattices. 

The magnetic interaction between the neutron and a single unpaired electron is 

/\ 	

I 
Hei(R) = 	Ln2BU v 	xR 	l j3 xR

x 	
R 3  ) + h R3 	

(3.11) 

the dipole-dipole interactions and the magnetic force due to the motion of the neutron. 

The Fourier transform of the term between brackets yields 	( x  (. x  ) - 	x j3) qh 

where q = k' - k. 

In systems with classically localised electrons (indexed as i), such as the Mott 

insulators, the magnetic differential scattering cross-section for the potential 3.11 is 
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given by [123] 
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where M(q) =el x [MS(fl(q) x ] and M(r) = MS(r) + ML(r) is the total 

magnetisation density. 

Within an ion the spin and orbital magnetic moment are of course 100% correlated. 

Even in covalent systems the spin and orbital magnetic moment distribution per mag-

netic species is usually approximated using Hartree-Fock Slater-type wave functions. 

These ionic moment densities have been calculated by Clementi and Roetti [47], and 

Brown [38] has tabulated the magnetic form factors 1(q),  which are the Fourier trans-

form of the calculated ionic moment densities. The only variable is the degree to which 

the orbital angular momentum contributes to the total moment J = 28 + L; 

f(q) = (jo)(q) + (1 - 
2 

 -)(j)(q) 	 (3.13) 
g 

where g is the effective gyromagnetic ratio and (jo)  and (32)  are the form factors from 

the spin-moment and and orbital-moment distributions. It is now possible to deal with 

the correlations of discrete localised moments 

G(t) 
- (S0 (t)S(t)) 

(3.14) 
- 8(8+1) 
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In the case of powder diffraction the scattering plane can be chosen to be the x - y 

plane, so that S1 = S. In the absence of an external magnetic field, the magnetic 

scattering cross-section for powder samples with antiferromagnetic correlations can now 

be written as 

dmag - 	
2 	

(So(0)Sj(t))j(qrj_wt) 	
(3.15) 

dadE - (
ro)2 k'

k (2  
 i BgJJf(q)) 	jdt 

S(S +1) 
z 

This part of the neutron scattering cross section can be isolated from the nuclear and 

nuclear spin incoherent neutron scattering signals with the aid of neutron polarisation 

analysis. When the spin-flip (SF) and non spin-flip (NSF) neutron diffraction patterns 

are measured for neutrons polarised initially along the positive x, y and z directions, 

the magnetic neutron scattering signal can be extracted using [183] 

IA2 	\ 
LO mag  IA2 	\ 	 /,J2 22(Ut7Z (hYx 

)NSF dldE ) NSF  . dudE)NSF dudE  \\dudE  NSF 
/ A2 	\ / ,j2 	\ 

°•Z 
/ A2 / A2 ('-0mag 	

—2 2 -2' ° ' 316 
\dcidE)SF '%dQdE)SF \dcldE)SF dudE)SF 

and 
d2amag - (&Umag 	+ (d2Umag\ 	

(3.17) 
dadE - \ d2dE ) NSF 	dldE I SF 

Neutron polarisation analysis is particularly useful for the measurement of magnetic 

structures with only short ranged correlations. 

3.1.3 Neutron instrumentation 

Neutrons are generated from either a nuclear reactor such as at the Institut Laue 

Langevin (ILL) in Grenoble, France, or in a collision of high-energy protons on a 

heavy-metal target (spallation) ISIS in the United Kingdom and SINQ at the Paul 

Scherrer Institute (PSI) in Switzerland are spallation sources. Most often tungsten is 

4With "spin-flip" a 1800 rotation of the neutron spin is meant, i.e. the spin of a neutron polarised 
along the positive x (or y or z) axis can be rotated due to the interaction with the magnetic structure 
to point along the negative x (or y or z) axis. - 



3.1. DIFFRACTION METHODS 	 55 

used as a spallation target, but other heavy metals such as tantalum and mercury can 

be used too. The high-energy protons required for spallation sources are generated 

using a proton synchrotron 5 . For either method of neutron generation the energr of 

the neutron beam is attenuated with the use of moderators, typically a water tank at 

room temperature. ISIS is a pulsed neutron source operating at 50 Hz, while SINQ is 

a continuous source. 

DMC, PSI - powder diffraction 

The DMC powder diffractometer at PSI was used to study the temperature dependence 

of a number of magnetic Bragg reflections in natural jarosite single crystals 4.4.2. This 

is a cold-neutron 2-axis powder diffractorneter, with one axis for the monocliromator 

and one for the sample. The monochromator is a pyrolytic graphite single crystal. 

Figure 3.2 illustrates the typical set-up of a 2-axis powder diffractometer. 

Sample 	20 

Collimators 

Detector bank 

Neutron beam 	
Monochromator crystal 

Figure 3.2: A schematic layout of the DMC 2-axis cold-neutron powder diffractorneter at PSI. 
20 is the scattering angle, and Q is the sample rotation in the scattering plane. 

Rotax, ISIS - diffraction 

The instrument Rotax at ISIS, which was used for the measurement of antisite dis-

order between Cu2+  and  Zn2+  ions in zinc paratacamite, is a time-of-flight neutron 

The protons are obtained by the hydrolysis of water. 
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diffractometer [108]. Due to the pulsed nature of the neutron beam at ISIS, the en-

ergy (speed) of the a neutron can be deduced from its time-of-flight; flw = mv 2  = 

5.227• 10 6 (1/tToF) 2  eV where I is the flight path of 15 m, and tTOF  is the time be-

tween the creation of the neutron and its detection. The energy resolution is in this 

case limited by the pulse duration of the neutron source, for Rotax this is 30 ms. Due 

to the large range of neutron energies generated, each detector over a range of 0/29 

angles measures a large section of the diffraction pattern by recording the time of each 

count, and a very wide range of d spacings can be accessed 0.2 < d < 50 A. 

1N4, ILL - spectroscopy 

The spectrometer 1N4 at the ILL carries out time of flight analysis, but this time to 

measure the energy of inelastically scattered neutrons [195]. The neutron source of 

ILL is continuous, and a single neutron energy is selected with a focussing crystal 

monochromator. Just before the monochromated neutrons enter the sample the beam 

is chopped into short pulses using a so called Fermi chopper. The monochromated 

neutrons will all arrive at the sample at the same time, and the time-of-flight analysis 

is carried out to measure the energy transfer between the sample and the diffracted 

neutrons as a finction of momentum transfer q. Due to the variable length of k', which 

in the case of an energy transfer A E is given by k' = k ± ( E/2.072) , the Bragg 

condition changes to 

q2  = k2  + k - 2kk'cos(20) 	 (3.18) 

where 20 marks the position of individual detectors. 

D7, ILL - polarisation analysis 

D7 is a cold-neutron (long wavelength) diffractometer which allows for neutron po-

larisation analysis [58]. By measuring the spin flipped and non spin flipped neutrons 

diffracted at each q for incoming neutrons subsequently polarised along the positive x, y 

and z axis, the short-ranged magnetic correlations in disordered magnetic phases can 
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be separated from diffuse scattering due to nuclear disorder and due to nuclear-spm 

incoherent scattering using equations 3.16 and 3.17. Because within each magnetic ion 

the magnetic structure will be 100% correlated, only the first and sometimes also the 

second Brillouin zones are of interest. Hence, low-energy neutrons can be used, with a 

wavelength of typically 3 to 6 A. Figure 3.3 illustrates the layout of D7. The incoming 

neutrons are monochromated using a pyrolytic graphite focussing monochromator. By 

passing the neutrons through a gas chamber filled with polarised 3 He the neutron beam 

is polarised [173]. The neutron polarisation is then rotated to the desired direction us-

ing a Mezei flipper [118] and electromagnetic (oils around the sample. The polarisation 

analysis of the diffracted beani is done using polarising super mirrors which only reflect 

neutrons of a particular polarisation onto the detectors. Optionally a Fermi-chopper 

can be inserted in the beam before the sample, in order to allow for neutron time-of-

flight analysis to measure the energy transfer of the diffracted neutrons. This goes at 

the cost of a factor 50 in neutron intensity. 

Neutron detectors 

The collision of thermal neutrons with nuclei can cause the nuclei to fragment, with the 

release of a large number of electrons in the case of 3 He gas detectors, and release of 

photons in the case of a Li-glass scintillation detector. Electrons are easily detected us-

ing a cathode and anode in the compressed 3 He gas chamber, and the photons produced 

in scintillation detectors are counted using photo-multiplier tubes. 

3.2 Muon-spin relaxation spectroscopy (pSR) 

Muons are generated by passing a high energy proton beam, readily available in neutron 

spallation sources such as ISIS and PSI, through a sheet of carbon. When a high energy 

(.-.- 800 MeV) proton collides with a light nucleus, a free pion is created. This particle, 

which is a boson which glues the nuclei within a nucleus together, has a half life of only 

26 ns. On decay of positively and negative charged pions, muons of the same charge 
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are produced, in addition to a neutrino. A typical reaction leading to a positive muon 

() is [621 

p + p 	p + n + 

L+ + Z', 
	 (3.19) 

The pion is normally brought to rest in the so-called production target so that it decays 

when at rest in the laboratory reference frame and creates a muon of well-defined energy. 

The muon is a S - 1/2 particle with a mass of 139.6 MeV 200x the electron mass. 

In process 3.19 the spin moment of the muon is aligned along the propagation direction 

of the muon. 

'S 
'S 

'S 
I' 

'S 
'S 
I, 

I' 

' S 

sampIe 

Of  

e+N 

+ e detectors 

Figure 3.4: An illustration of the muon spin relaxation (iiSR) spectroscopy technique. The 
grey area illustrates the angular distribution of positron decay in the case of a forwards polarised 
muon. 

In a muon-spin relaxation (/1SR) experiment positive muons are made incident on 

the sample, where they stop most often near a negative ion within 2 mm from the 

surface. Once at rest, each muon will precess in the local magnetic fields, until it 

decays into a positron and two neutrinos after on average 2.2 his. The decay process is 

- e + Ve + Pp 	 (3.20) 
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and the positron momentum is preferentially along the magnetic orientation of the muon 

spin at the time of decay. This situation is illustrated in figure 3.4. The asymmetry 

between forwards and backwards emitted positrons as a function of time is given by 

A(t) - 
- B(t) - aF(t) 

(3.21) 
 B(t) + aF(t)' 

where a is a calibration constant, correcting for misalignments of the sample and dif-

ferences in detector efficiencies. A(t) can be recorded over a time window of typically 

10 ps and the distribution of precession frequencies obtained from A(t) is a direct mea-

sure of the distribution of magnetic fields at the muon sites. In [205] an outline of the 

relaxation functions encountered in different situations is given. 

The sample environment is surrounded by electromagnets which can generate mag-

nct.ic fields transverse and longitudinal to the initial muon polarisation. A transverse 

field is used to calibrate the instrument and obtain a. A longitudinal field of the order 

of 100 Gauss is used to decouple the dipole interactions with nuclear spins, which are 

of the order of 10 Gauss. In this way the muons can only be relaxed by electronic mo-

ments which are of the order of 2000 Gauss. Samples are usually pressed into pellets of 

2 mm thickness and 2 cm diameter and attached to a Cu or Ag saniple plate. The 

experiments described in section 5.4 were carried out at the LTF and GPS instruments 

at PSI, and later at the instrument MUSR at ISIS. LTF has a dilution-fridge sample 

environment which can be used to cool the sample to 20 mK. 1iSR can also be equipped 

with a dilution fridge, with a minimum temperature of 40 mK. Further characteristics 

of these instruments are discussed in section 5.4. 

3.3 X-ray spectroscopy 

In non-resonant X-ray diffraction all electrons are probed. This can be beneficial but 

it is very exceptional that the obtained electron density has a resolution of one or less 

electrons. A solution can be to tune to particular X-ray absorption lines involving 
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the atomic shells or bands of interest. In this way the X-ray scattering cross-section 

for the shells of interest can be increased by orders of magnitude. For the first-row 

transition-metal compounds the shell of most importance for the determination of the 

electronic structure is the 3d shell. Unfortunately, the highest-energy dipole-allowed 

transition 2p —3d lies at an energy ranging from 452.2 eV for Ti to 1011.7 eV for Zn. 

The corresponding wavelengths are well above 10 A, too long to resolve atomic and 

antiferromagnetic structures. X-rays within this energy range are called soft X-rays, 

which is probably because even in air the absorption length is of the order of a few 

millimetre. As a consequence an ultra-high-vacuum (UHV) beamline and experimental 

set-up is required, and at most the top 100 nm of the sample surface are probed. 

This means that the application of X-rays for the magnetic characterisation of 

transition-metal compounds is mostly restricted to spectroscopy. This turns out to be 

a very powerful technique, since it is possible to obtain detailed information on the 

magnetic state of the ions and their anisotropy, in particular when the X-ray polarisa-

tion dependent spectra are measured on single crystals. Where neutrons are often ideal 

for finding out what happens at the atomic scale, X-ray absorption spectroscopy of the 

2p —3d absorption edges can help to find out why something is happening. This is 

exemplified by amongst many other experiments the X-ray absorption study described 

in section 4.5. The details of the interpretation of the absorption spectra will be de-

scribed in the following paragraph, and the subjects of Hartree-Fock calculations and 

determinants was briefly touched in section 2.2.2. 

3.3.1 The interpretation of X-ray spectra 

The 2p core hole created by the promotion of a 2p electron to the 3d shell by the 

absorption of an X-ray photon modifies the 3d wave-functions in the final state. This is 

the reason why in the 2p6d -p  2p5d' dipole transition the absorption cross-section 

I(hw) cannot be interpreted as the square of the density of states of unoccupied 3d 

levels in the ground state. For ferromagnets and magnetically soft materials, in which 
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all the magnetic moments can be aligned with the application of an external field, the X-

ray magnetic circular dichroism (XMCD) and X-ray magnetic linear dichroism (XMLD) 

sum-rules can be applied to obtain expectation values for the orbital angular momentum 

and the magneto-crystalline anisotropy respectively. In the case of the jarosites it is 

not possible to align the magnetic moments using an external field, because the large 

energy scale of the antiferromagnetic interactions (9 800K). Hence, the only way 

to obtain accurate information about the relevant expectation values is by explicitly 

calculating 
(bgI q  k1'e ) (bel iq kbg) 

f(E ,q)  
E—E—iF/2 

where f is the resonance amplitude between the ground state ,b9  and the excited state 

061 1q is the electric dipole operator for X-rays with polarisation state q and F is the 

life-time broadening which is treated as a fitting parameter. Experimentally obtained 

X-ray spectra can now be used to find good approximations for b9  (and The Hilbert 

space for IO (k'e)) is spanned by determinants of the lowest atomic JLS configurations 

of 12p6 3d") (2p53d')). If needed, also I2p6 3d 1k) (I 2p53d 2k)) configurations are 

included, where L denotes a ligand hole. The fitting procedure consists of finding the 

correct perturbations to the 3d valence shell of the free ion arising from crystal- and 

ligand-field effects, which split the degenerate orbital angular momentum states into 

the irreducible representations of the symmetry group of the local crystal field. In 

addition the spin-orbit coupling between single-electron states is taken into account, in 

the otherwise non-relativistic calculation. Comparison between experiment and theory 

has also shown that the Slater integrals for the Coulomb interactions and spin-orbit 

couplings need to be reduced to 70 - 80 % of the free ion values to account for solid-state 

effects. 

This approach is of course of very general applicability. The power of core-level 

spectroscopies is that the energy and orbital angular momentum states of the core-

levels are very well defined, and hence well known. In optical experiments only 3p -p 3d 

transitions can be probed. To treat them it would be necessary to integrate over a 
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number of possible initial states arising from the widening of the 3p energy bands and 

the partial quenching of the orbital angular momentum due to crystal fields. This 

blurs the effect of the optical selection rules arising from the conservation of angular 

momentum. It is the strict applicability of the optical selection rules which make 

polarisation-resolved X-ray absorption spectroscopy such a powerful technique for the 

study of magnetic materials. 

3.3.2 Soft X-ray beamlines 

Soft X-rays are generated at synchrotron facilities such as the SRS in Daresbury and the 

ESRF in Grenoble in France. The electrons making their orbit through the synchrotron 

are passed through a straight section with an array of undulating magnets, called 

anundnlator. The undulators make the electrons oscillate with the frequency needed 

for the generation of X-rays of a particular energy. For the generation of X-rays with 

a tunable polarisation, i.e. well defined orbital angular momentum, two undulators 

which make an angle of 900  degrees with each other are used. By shifting one undulator 

with half a phase with respect to the other, the X-ray polarisation can be tuned from 

horizontal, to left- or right-hand circular and to vertical. In this way the APPLE II 

undulator at 1D08 at the ESRF achieves 100% X-ray polarisation of any orientation, 

with a negligible loss in beam alignment between polarisation changes. 

The beamline consists of a spherical grating monochromator 6  with a pattern of 1200 

lines per mm. The X-rays are incident on this grating in a grazing angle and reflect 

a "rainbow" of frequencies of which one is selected using a narrow slit. The resulting 

energy resolution is E/E = 5 10 at E = 850 eV. A vertical focussing mirror is used 

to focus the beam onto the sample, resulting in a spot size of h x v = 1 mmx40 /tm. 

The beamline to station 5U.1 in Daresbury is of a similar design. 

6 Note that a single crystal Bragg reflection monocliromnator does not work, because the wavelength 
of soft X-rays is too long. 
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3.3.3 Sample environment at 1138, ESRF 

For experiments at 1D8 at the ESRF the high-field magnet end-station was used. The 

sample chamber in this instrument has a vacuum of 10- 10  mbar. This is achieved with-

out bake-out which has the advantage that delicate samples are not damaged prior to 

the experiment. The samples can be mounted onto a cryostat via a load lock mech-

anism, and cooled down to below 10 K. The sample can also be rotated in order to 

align the correct crystal faces to the beam. Especially when measurements are done 

at temperatures below 100 K, it is important that the vacuum is in the 10_1  mbar 

range, because only a very thin layer of ice frozen to the sample surface will absorb 

X-rays. Even with this pressure, it turned out to be impossible to measure the oxygen 

K edge at low temperatures, due to water ice freezing onto the sample. 

Al sample holder 

vertical 	3.2 mm 

0.7 mm 

horizontal 

_-carbon tip 

silver epoxy 

tA ® C axis
x-rays  

\ synthesised iron 
jarosite single crystal 

Figure 3.5: The oriented iron jarosite single crystal was suspended on a carboll tip below the 
standard 1D8, ESRF sample plates, using silver epoxy. In this way good thermal and electrical 
contact was ensured, while the background noise from photo electron currents from the sample 
holder were iiiininñsed. 

The experiments described in section 4.5 were carried out using synthesised potas-

siuin iron jarosite single crystals. The largest single crystals were 0.7 mm in diameter. 

The crystals were aligned using a Bruker APEX-IT single-crystal X-ray diffractometer. 

A number of factors needed to be taken into consideration with mounting the samples. 

The X-ray absorption spectrum is obtained by measuring the photo-electron replace-

ment current from the sample, hence it must be ensured that the sample makes good 
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electrical contact with the sample holder, as well as good thermal contact. This was 

achieved using a UHV compatible silver-filled epoxy and silver paint. An additional 

complication was that due to the strongly insulating nature of iron jarosite the signal 

from the sample was small compared to the signal from the metallic sample holder, 

even at the Fe L2,3 edges, and in a normal set-up it was impossible to avoid X-rays 

hitting the sample holder because the beam was larger than the sample. Hence, the 

single crystal was suspended below the sample plate using a carbon tip glued to the 

bottom of the sample holder, as illustrated in figure 3.5. Carbon is a good thermal 

and electrical conductor, but does not give a large photo-electron current from incident 

X-rays. The samples were mounted with the c axis perpendicular to the X-ray beam, 

so that the X-ray absorption spectra could be measured with the X-ray polarisation 

parallel to the c axis and perpendicular to the c axis by rotating the polarisation of the 

incoming X-ray beam. 

Further measurements were carried out on a 16 mg single crystal from a natural 

source (Chihuahua, Mexico), as described in 4.4. Due to the shape of these crystals 

with large [001] and [001] surfaces they were mounted in a different geometry; a plate 

shaped crystal was glued on the sample plate with silver paint. The beam was incident 

on the [001] surface at a grazing angle of 30°. With horizontally polarised X-rays 

the polarisation made an angle of 60° with the [001] surface, measuring 1600. 'ab 

was measured using vertically polarised X-rays. The X-ray absorption spectrum with 

polarisation parallel to the c axis was calculated using I = Iôo° - 'ab, using 600  = 

cos (60) ab + sin (60)P, where is the X-ray polarisation vector and hence I 0C II 2 . 

The isotropic spectrum ('iso = § Iab + I) and the X-ray linear dichroism spectrum 

('xid = Ic - lab) can be calculated using respectively 1 so = Jab + I6O0 and 'xld 

(160° - lab). 
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3.3.4 Sample environment at 5U.1 at the SRS 

For the experiments at station 5U.1 at the SRS the instrument schematically illustrated 

in figure 3.6 (later called Mark I, before it being cannibalised for other experiments) 

was built. This instrument was designed to measure the isotropic soft X-ray absorption 

spectra of powder samples at temperatures down to 25 K. To minimise the number 

of vacuum bakes needed , several samples were mounted on a single sample plate at 

the end of the cold finger of a liquid He cryostat. The hydronium and potassium iron 

jarosite powder samples were either pressed into pellets mixed with carbon powder, or 

stuck onto carbon tape which is a vacuum compatible double-sided adhesive tape. 

Cold finger to/from 
LHe transfer line 

Power supply 
heater element 

Thermocouple 
read outs 

Drain current  
to pico-am meter 

window flange 
with X-ray phosphor 	-' 

central 6-way cross 
of vacuum chamber 

P = 2e-9 mbar 

Vertical translation 
using bellows 

Cu sample holder 
ith 4 samples 

incoming X-rays 

V 	valve 

To mass spec. 
and turbo pump 

Figure 3.6: A schematic layout of the purpose built end-station for soft X-ray spectroscopy 
measurements at temperatures down to 25 K at station 5U.1 at the SRS in Daresbury. 

At the top of figure 3.6 the liquid He transfer line is inserted into the cold finger. The 

tower in which the cold finger is inserted is topped with a differentially pumped rotary 

feed through, which allowed for rotation of the samples around the vertical axis. Using 

a vertical translation stage with vacuum bellows just below the rotary feed through, the 

7When a IJHV instrument is exposed to air, the instrument must he heated to approximately 160° 
Celsius for 12 hours while evacuated. In this way all water evaporates and a vacuum of better than 
10 mbar can be achieved 
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samples could be moved to height of the incoming X-ray beam, at the 6-way cross at 

the centre of the figure. The vertical alignment of the samples was achieved by sliding 

a thick Al base plate (not shown), on which the 6-way cross was mounted, with respect 

to the instrument platform. The vacuum chamber is pumped with a turbo pump which 

is connected below the central 6-way cross, through a hole in the Al base plate. A mass 

spectrometer was inserted just above the turbo pump for diagnostics on the vacuum. 

A T-valve coming out of the central cross leading to a swagelock connection was used 

to vent the instrument with nitrogen before opening. The base pressure achieved after 

a vacuum bake was 2 - iO mbar. This was good enough to allow for the measurement 

of the absorption spectrum at the Fe L2,3 edges at 25 K. The oxygen K edge was 

found to change with time when the cryostat was cold, which was interpreted as due 

to the increasing volume of water ice freezing onto the sample surface. 

The sample plate at the end of the cold finger is electrically isolated from the cold 

finger by a sapphire disk, to allow for accurate measurement of the drain current from 

the sample. The drain current is measured using a pico-Ampère meter connected via 

the a well shielded co-axial cable connected to one of the electrical feed throughs at the 

top of the instrument. Other feed throughs were used for thermocouples and a heating 

element at the sample plate. 

3.4 DC SQUID magnetometry 

The magnetic susceptibility of a material X is defined as x = 	Iii=o = limH_.o .  The 

common way to measure the magnetic susceptibility as a function of temperature is with 

a Superconducting QUantum Interference Device (SQUID) magnetometer [178, 103], 

using fields of typically H = 100 Gauss. The measurements presented in chapter 5 

and 4 have been measured using the Quantum Design Magnetic Properly Measurement 

System (QD-MPMS) [129]  installed in CSEC. 

In the QD-MPMS a uniform magnetic field H is applied to the sample using a large 

superconducting magnet. The sample is normally contained in a gelatine capsule in a 
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plastic drinking straw, and suspended in that uniform magnetic field on a long rod. The 

material of the capsule and the straw is chosen for its negligible magnetic susceptibility. 

A superconducting pick-up coil is wound around the sample in the fashion illustrated in 

the left side of figure 3.7, with two clockwise and two anti-clockwise windings, so that 

any changes in the uniform applied magnetic field H does not induce any current in it. 

When the sample, magnetised by the external field H, is moved up and down through 

the pick-up coils it will generate a magnetic induction current., because the field from 

the sample is only local, or at least, not uniform over the distance of the counter-wound 

pick-up coils. 

Pick—up coil 	i 	SQUID ring 

Figure 3.7: A schematic illustration of the principle of a operation of the QD-MPMS SQUID 
magnetometer. The actual measurement using the SQUID ring is separated from the sample 
environment. The field from the sample induces a current in the pick-up coil, which in turn 
produces a field at one of the Josephson junctions (J1 ) in the superconducting ring. 

This induction current is measured using a SQUID ring otherwise electromagneti-

cally separated from the superconducting magnet. The SQUID ring [25] as illustrated 

on the right side of figure 3.7 is a superconducting loop with two weak links - Joseph-

son junctions [102]. The Cooper pair wave function in the superconducting ring is a 
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standing wave with an integer number n of phases fitting in the ring, 

I(x) =e ik.x with k = 
2n 
	 (3.22) 

and d is the diameter of the ring 8  At the points of the weak links the wave function 

tunnels through the thin layer of insulating material giving rise to a phase lag in the 

wave function [102]. In zero applied field the phase lag of the junctions on both sides 

of the ring is equal. When a small magnetic field is applied to one of the junctions (J 1 ) 

due to a current from the pick-up coil, a current is induced in the SQUID ring, so that 

total wave function remains of the form 3.22. 

When an additional current 'AB  is applied between the points A and B, the total 

current through the ring reaches the critical current at I = IAB + I, and a voltage 

will build up between A and B. At this point Ir  is given by I - 'AB• Hence, by 

measuring 'r  as a function of time, i.e. as a function of displacement of the magnetised 

sample through the pick-up coils, the magnetic moment of the sample can be deduced 

with a very high accuracy. 

3.5 Heat capacity measurements 

Heat capacity measurements were carried out on the Quantum Design Physical Prop-

erty Measurement System (QD-PPMS) [159] available in CSEC. With this instrument 

the heat capacity can be measured in applied magnetic fields up to 9 T. With the use 

of the PPMS Helium-3 Refrigerator System temperatures down to 0.35 K could be 

reached. For each temperature scan the sample was first cooled in zero field, and data 

was taken from low to high temperatures. The system measures the temperature of 

the sample platform during the input of a well defined quantity of thermal energy, and 

8Note that according to the theorem given in section 2.1.1 the periodic rotational symmetry of the 
ring restricts the wave functions to eigenfunctions which translate as c(x + ird) = e ° (x) where 9 is 
an arbitrary phase. The kind of order, or symmetry breaking exhibited in . (x) where 0 can be set to 
zero for all cooper-pairs in the ring, is called topological order or gauge-symmetry breaking, which is 
characteristic for superconducting and superfluid phases. - 
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during the release of this energy. Using this data, the system extracts both the sample's 

heat capacity and the thermal conductivity between the sample and the sample plat-

form, by numerically solving the coupled differential equations for the heating/cooling 

curves of the platform and the sample. 



Chapter 4 
Iron jarosite 

The sulfates of the alunite group of minerals with general formula AM 3 (OH) 6 (SO 4 )2 

provide the basis for a large number of compounds. The A site can host a wide range of 

monovalent cations such as Kt Na+,  Rbt  Ag+, H3 0+ and NHt.  [224] and even diva-

lent ions. This structure with Rm symmetry is the basis for a number of experimental 

kagomé antiferromagnets, this time with trivalent ions like Fe 3  (3d5 ) [ 105, 224, 81], 

Cr3  (3d3 ) [204, 105, 96] and V 3  (3d2 ) [ 155, 801 at the Al site. All three ions have a 

high-spin ground state S = 5/2, S = 3/2 and S = 1 respectively, and they are antifer-

romagnetically coupled within the kagomé planes via shared oxygen atoms of hydroxy 

groups. The M site resides at the centre of 06 octahedra of D4h symmetry, forming 

kagomé nets as shown in figure 4. la. The kagomé layers are stacked in an ABC manner 

and are well separated, with the shortest pathway being from one layer to the next via 

the sulfate group, shown as pyramids in figure 4.1b. 

In nature the A- and Al-site in AM 3 (OH) 6 (SO 4 )2 are most commonly occupied by 

potassium and trivalent iron respectively. This is the jarosite mineral, named after the 

location in which it was first found, the Barranco Jaroso in the Sierra de Almagrera, 

Spain. Single crystals of up to a few mm in diameter have been found with this 

composition. Now the entire group of minerals is commonly referred to as the jarosites. 

A large number of varieties of the jarosite mineral have been found as weathering 
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products in mines, and polluted sites where it takes up heavy metals. Iron jarosite has 

been found in places as far away as the planet Mars [66]. 

Figure 4.1: The jarosite structure viewed perpendicular to the c axis (left picture) and along 
the c axis (right picture). The M0 6  octahedra, forming the kagomé layers, are drawn in brown, 
SO4  tetrahedra in yellow, with oxygen in red, the A site in purple, and hydrogen in pink. 

Here potassium iron jarosite (KFe 3 (OH) 6 (SO4 ) 2 ) which can be seen as representa-

tive for the analogues with A = Na', Rb+, Ag+ and NHt  and hydronium iron jarosite 

(H30Fe3(OH) 6 (SO4 ) 2 ) are studied. With their large S = 5/2 spin moment these sys-

tems were until very recently [172] the best physical realisations of the classical kagomé 

antiferromagnet. Despite their similarity and the fact that they appear such well-suited 

model systems, they have very different ground states. Potassium iron jarosite freezes 

into a long range ordered 1200  spin structure at 65 K, while hydronium iron jarosite 

becomes glassy below 17 K, with only short-range 2D correlations. Frustration is 

often quoted as an essential ingredient for a glassy ground state. This raises the ques-

tion whether for some reason one is a better realisation of the theoretical model than 

the other? It is also possible that because of the large ground state degeneracy of the 

Heisenberg Hamiltonians in frustrated geometries, additional terms in the magnetic 

Hamiltonians play a decisive role. Inevitably, these will vary from system to system. 
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For the iron jarosites this leaves us with an interesting question which will be addressed 

using a combination of experimental and numerical tecirniques. 

This chapter describes the synthesis of single crystals, magnetic susceptibility mea-

surements, a single crystal neutron diffraction measurement and an x-ray spectroscopy 

experiment which took up a large part of this PhD. In the next two sections the relevant 

literature is reviewed. 

4.1 Potassium jarosite 

4.1.1 The magnetic ground state 

Based on Mossbauer measurements it was first suggested by Takano [197] that potas-

sium iron jarosite orders in a triangular magnetic structure at low temperatures, which 

was confirmed by Townsend [204] using neutron diffraction at 4 K. Wills et al. [224, 225] 

have studied the whole series with Al = Fe and A = K, Na, Rb, Ag, H30 and NH4 . Us-

ing neutron diffraction they found that all but the hydronium jarosite analogue, which 

will be discussed separately, order into a q = 0 structure with positive chirality around 

50 K. This is a three sub-lattice ordering where the magnetic unit cell coincides with 

the crystallograpluc unit cell, as shown in figure 4.2. 

Figure 4.2: The three sub-lattice q = 0 structure with positive chirality. 

Along the c axis the crystallographic unit cell is doubled which could mean that the 

kagomé layers with a net moment are coupled antiferromagnetically. Such a situation 

could arise in a so-called umbrella structure where the spins are canted out of the 

kagomé planes, as was also suggested by Inami et al. [97, 147]. These experiments were 
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all carried out using powder samples synthesised using a solvothermal method [60]. A 

known problem with the solvothermal synthesis method is that a variable fraction of 

the A site cations is substituted with H 3 0 and the occupancy of the Al site is only 

around 90% [224, 148]. As a result the transition temperature found in these samples 

lies between 48 and 56 K. Recently a method to synthesise single crystals of potassium 

iron jarosite has been published [83] using a redox process. Samples grown using this 

redox method are stoichiometrically pure, and the phase transition occurs at a higher 

temperature, with 65(1) K quoted for the potassium analogue [83]. 

These synthetic single crystals have provided a wealth of information, mostly de-

scribed in [83, 81] and [127]. The structural parameters of potassium jarosite crystals 

syntliesised using this new method are listed in table 4.1. Neutron diffraction measure-

ments on these single crystals have confirmed the q = 0 spin structure with a uniform 

positive chirality pointing along the c axis [81]. The canting angle of the umbrella struc-

ture was found to be very small, only 0.65(6)° at 40 K. This is also been confirmed 

in a polarisation resolved neutron diffraction experiment on a large single crystal from 

a natural source, which shows that the ordered out-of-plane magnetic moment is less 

than 0.19B  [86]. Surprisingly, on application of strong magnetic fields (H > 5 T) along 

the c axis, a transition to a phase with staggered chirality occurs [81]. Furthermore, 

spin fluctuations were found to be primarily confined to the xy plane coinciding with 

the kagomé layers even above TN. Synthetic single crystals [81] as well as single crystals 

from a natural source ([157] and section 4.4.1) also reveal that at low temperatures the 

magnetic response is strongly anisotropic. At the transition temperature the suscepti-

bility along the c axis shows a sharp peak, while the susceptibility along the ab axis has 

a rounded peak. This suggests that a magnetic anisotropy plays a role in the formation 

of the long range ordered ground state. The field-cooled and zero-field cooled suscep-

tibilities are found to diverge at 53 K well below the transition temperature at 64 K. 

This has prompted speculations about a second transition [223], but further neutron 
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Table 4.1: Atomic coordinates of KFe 3 (OH) 6 (SO4 ) 2 . From Grohol et al. [81]. 

atom x y z U150 /A2  
Fe 0.3333 0.1667 0.1667 0.07(1) 
S 0 0 0.3087(2) 0.07(1) 
01 0 0 0.3936(4) 0.010(2) 
02 0.2203(7) 0.1102(3) 0.2795(2) 0.011(1) 
03 0.1276(3) 0.2553(7) 0.1329(2) 0.09(1) 
K 0 0 0 0.014(1) 

Space group R3m, a = 7.3044(7)A, c = 17.185(2)A, a = 900, 'y = 120 0  

diffraction nieasurements on natural single crystals (section 4.4) and powders has not 

revealed any further changes in the magnetic structure. 

In table 4.3 a number of physical parameters, such as the Weiss temperature 

Curie constant C and exchange interaction J are given along with some crystallographic 

characteristics, for both the potassium and the hydronium analogs. 

4.1.2 The role of a magnetic anisotropy in the transition 

It has been shown [43] that due to an order from disorder effect [216], the classical 

kagomé antiferrornagnet approaches a nematically ordered state with T - 0. However, 

the Heisenberg Hamiltoriian is invariant on the simultaneous local rotations of the spins, 

and hence the ground state of the classical system has a corresponding degeneracy. Even 

in the case of a symmetry-breaking transition to a spin-nematic, the nematic plane can 

be aligned in any direction, and does not need to coincide with the kagomé plane. This 

has been illustrated in section 2.3.1. 

A magnetic anisotropy is needed to couple the spin-space to the lattice-space. This 

can happen in two ways; via the dipole-dipole interaction, which in transition metal 

compounds is much weaker than the super-exchange interaction, and via the spin-orbit 

(LS) couping. 7ILS = Z\LS. The possibility that the former plays a role in the jarosites 

has been investigated, but this was found to be unlikely [55]. By elimination this leaves 

an anisotropy arising from the LS-coupling, despite the fact that there is no orbital 

momentum and ..\ = 0 in the half-filled shell (3d5 ) of time Fe3+  ion. Figure 4.3 illustrates 
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Figure 4.3: A half-filled 3d shell in the free ion (left) and in a tetragonal crystal field (right). 
The grey arrows are unoccupied states. The levels in the shaded areas are degenerate in an 
octahedral (cubic) crystal field. 

the occupation of the angular-momentum states of the 3d shell in the case of half-filling. 

It should be clear from this diagram that as long as no low-spin or 3d 6  configurations 

become occupied, there is no net orbital angular momentum, regardless of the way the 

orbital angular monwntum states are re-arranged due to crystal fields and other terms. 

D 
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Figure 4.4: The orientation of the Fe0 6  octahedra with local coordinates x', y', z' with respect 
to the global coordinates x, y, z where x coincides with the a axis and z with the c axis. 0 is 
the canting angle of the octahedra with respect to the c axis. Figure taken from [148]. 

Inami et at. [147] suggested that the q = 0 ground state is selected due to an 

easy-plane single-ion anisotropy due to the canting of the local anisotropy axis, the z 

axis of the slightly trigonally distorted Fe06 octahedra, as shown in figure 4.4. El- 

hajal et at. [63] suggested that the the Dzyaloshinsky-Moriya interaction (DM1) [144] 
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may play an important role in the jarosites, as it does in hematite [144] because it 

arises in first order of both LS-coupling and magnetic exchange J, while the single-ion 

anisotropy arises only in second order perturbation theory from the already weak LS-

coupling. Moriya estimated that the strength of the DM1 is of the order ög/g, while 

the single-ion anisotropy is of the order - gj). The DM1 is therefore much more 

likely to play a major role. Elhajal et al. have shown that this type of antisymmet-

nc (and anisotropic) super-exchange is allowed in the geometry of the kagomé lattice, 

and that for the jarosites it can give rise to a q = 0 magnetic structure with positive 

chirality as defined with equation 2.53. Spin-wave measurements on single crystals can 

be fitted with both a combination of either DM1 or single-ion anisotropy, with further 

neighbour interactions. The fit results from the literature [81, 127, 234, 48] are shown 

in table 4.1.2. Matan et al. also find that fits with DM1 give a slightly better correspon-

dence with the experimental data, and the general consensus in [63, 81, 127, 234, 48] 

is that the Dzyaloshinsky-Moriya provides the most plausible explanation of low tem-

perature magnetic properties in most iron jarosites apart from the hydronium analog. 

Table 4.2: Fit results of spin-wave analysis of inelastic neutron scattering data on potassium 
iron jarosite, using a model with single-ion anisotropy flCF = DS, - E(S, - S,) where x', y' 

and z' are the axes of the local Fe0 6  crystal-field symmetry, and ?iDM = bij . x 

Coomer et al. [48] /meV Matan et al. [127] /meV 
J 	 3.50(3) 	 3.34(9) 

J. 	 - 	 0.12(2) 
D 	 0.47(2) 	 0.428(5) 
E 	 0.038(2) 	 0.0316(3) 
J 3.33(5) 	 3.18(5) 
Jnnn - 	 0.11(1) 

0.21(1) 	 0.196(4)a 

0.10(2) 	 0.197(2) 

a  The sign given in [127] and [48] is arbitrary, as long as the order in which the sum over all nearest-
neighbour spin interactions is evaluated is not explicitly stated, since 9i x 93  = - Sj x S. This is the 
reason why the DM1 contribution must be zero when the Fe-O-Fe bonds possess inversion symmetry. 

The literature values for the magnetic moments as obtained from the paramagnetic 

susceptibility are listed in table 4.3. Both the values obtained using mean-field theory 

and from the Padé series expansion are larger than the free-ion Fe3+  value of 5.85/23, 
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which corresponds to J = S = 5/2. It is normally assumed that crystal fields quench the 

orbital angular momentum, while in the present case the opposite seems to happen. The 

presence of a DM1 and a single-ion anisotropy are both consistent with the observation 

that L > 0 and hence g > 2.01, but how this orbital angular momentum arises still 

needs to be clarified. This question is not unique to iron jarosite either, it arises in other 

salts with 3d5  cations. An introduction to the present literature on this subject will 

be given at the beginning of 4.5, where an X-ray spectroscopy experiment is described, 

which has provided an explanation in both qualitative and quantitative terms. 

Table 4.3: A comparison of structural and magnetic parameters. 

potassium iron jarosite a  hydronium iron jarosite b 

formula KFe3  (OH) 5  (SO4)2 H3 OFe3  (OH) 5  (SO4)2 
synthesis Redox Solvothermal 
Fe3 	0cc. > 99% 97% 
R(Fe-O)1ap  0.964 0.977 
L(Fe-O-Fe) 133.60  133.60  
0° 19.20  21.1 0  

6.7(2) 6.2(1) /-B 

-800(30) -1200(200) K 

I-eff 	
e 6.3(2) 6.6(2) /2B 

J/kB e 44(2) 40(2) K 
TN,Tg  65(1) 17(1) K 

00 19(2) A 
Source: Grohol and Nocera et at. [83, 149, 811. 

b Source: Wills et at. [229, 228]. 
C  9 is defined in figure 4.4. 
d  As obtained from the by fitting with the Curie-Weiss law. 

As obtained by fitting the Fade series expansion for the susceptibility of the kagomé lattice. 

4.2 Hydronium iron jarosite 

Hydronium iron jarosite is clearly a spin glass. Inelastic polarised neutron scattering 

experiments reveal increasing short-range spin-spin correlations between 140 K and 

2 K in the magnetic scattering channel [231]. Susceptibility measurements also show 

the hallmark characteristics of a spin-glass [230, 228], with a large field-cooled- zero-

field-cooled splitting below the spin-glass freezing transition at 18 K and a strong 
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frequency-dependent dissipative component in the ac-susceptibility. As in the geomet-

rically frustrated S = 3/2 compound SCGO [165] the heat capacity approaches zero 

following a T 2  power law [229]. 

The central question is now whether the spin-glass magnetic ground state in hy-

dronium iron jarosite arises due to disorder or if it is a ground state of a structurally 

perfectly ordered lattice topology which frustrates the magnetism [229, 230, 228, 231]. 

The classical kagomé antiferromagnet is expected to remain disordered even at T = 0. 

This does not mean that the magnetic properties in hydronium jarosite are closer to 

the theoretically expected behaviour, which is spin-liquid and not spin-glass. This can 

be seen as follows; A non-frustrated 2D system with 4 nearest neighbours is not ex-

pected to show long range order for any T> 0. Since in a frustrated system the ground 

state degeneracy is much higher than in a non-frustrated system it can only show less 

freezing. XY spins on a 2D square lattice with z = 4 show a transition to a state with 

increased viscosity, the Kosterlitz-Thouless transition. For XY spins in a frustrated 

geometry there is evidence of a Kosterlitz-Thouless like ground state [171, 43]. It also 

opens up the possibility of a more glassy ground state, and an easy-plane anisotropy 

has for this reason been suggested as the explanation for the glassy ground state in 

hydronium jarosite [228]. However, regarding a magnetic anisotropy the arguments as 

presented for potassium jarosite are of equal application in hydronium jarosite. No one 

has managed so far to grow hydronium jarosite crystals larger than 100 micron. Hence 

it is difficult to measure directly the extent to which magnetic anisotropy is present. 

Bisson and Wills [24] report of correlation between the trigonal distortion of the Fe06 

octahedra and the transition temperature. This cannot be taken as evidence of a causal 

relationship between the two. It is most likely that both effects have a common under-

lying cause, which could be the potassium/hydronium occupation of the A-site. The 

evidence presented later in this chapter is in support of the presence of a single ion 

anisotropy which varies with the strength of the trigonal distortion in the crystal field. 
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Table 4.4: Atomic coordinates of H 3 0Fe3 (OH) 6 (SO 4 ) 2 . From Wills et al. [229]. 

atom x y z U 50/A2  f 
Fe 0.3333 0.1667 0.1667 0.0105(6) 0.97 
S 0 0 0.3055(3) 0.09(1) 1.00 
01 0 0 0.3937(2) 0.0162(5) 1.00 
02 0.2247(1) -0.2247(1) -0.0544(1) 0.0162(5) 1.00 
03 0.12789(15) -0.12789(15) -0.1345(1) 0.0162(5) 1.00 
04 0.0 0.0 -0.0108(5) 0.0047(14) 0.50 
Hi -0.07244 0.07244 -0.0272(5) 0.169(8) 0.50 
H2 0.1934(3) -0.1934(3) 0.1075(2) 0.0322(9) 1.00 

Space group 113m, a = 7.32457(12)A, c = 16.9153(4)A, c = 900 , 'y = 1200  

In section 4.5 the X-ray absorption spectra of powder samples of the two salts are 

compared, for evidence that the very small differences in the Fe3+  ligand fields give 

rise to differences in the magnetic anisotropy or super-exchange interaction between 

adjacent iron sites. 

Apart from the presence of an H30+  ion instead of K+,  there is at first sight 

little difference in the structural parameters of the two analogues, as can be seen from 

comparison of tables 4.1 and 4.4. It should be noted that the 04 and Hi atoms 

belonging to the hydronium group have been refined with a fractional occupation of 

0.5. From the refinement as stated in table 4.1 it may not be immediately clear that 

reason that the occupation f must be 0.5 is that the site symmetry 3m is not compatible 

with the symmetry of the hydronium ion. The central oxygen 04 of the hydronium 

group in table 4.4 will be copied to -d when it is placed dz along the z axis away 

from the unit cell origin. The same happens to the Hi which due to the 3m symmetry 

operator will have a multiplicity of 6 instead of 3. The result is a (non-existent) H60 

group centred on the origin of the unit cell. With a fractional occupancy f of 0.5 for 

these two sites the charge balance and the number of atoms is correct. Stricty speaking 

the symmetry is no longer R3m but R3 with twice as many atoms in the asymmetric cell 

as those presented in table 4.4, when the K is substituted with H30. For the neutron 

refinement this is not thought to make a difference, but there is still uncertainly about 
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which H30+  orientations are favoured. To address this issue a structure optimisation 

using ab-initio calculations has been attempted. The starting point of these calculations 

was the structure as shown in table 4.5. The atomic coordinates in this table are based 

on Wills' refinement [229], but the disorder arising from the structural degeneracy 

needed to be modelled in a slighity different way. Clearly, strictly a-priori one can not 

say that hydronium jarosite is what has been termed "a topological spin glass" [228]; 

a system with a glassy ground state in the absence of structural disorder. 

Grohol et al. [83] have suggested that the spin-glass behaviour arises due to proton 

transfer from the hydronium (H 3  0+) group to the hydroxy (OH) groups which mediate 

the super-exchange interaction. The altered charge balance on the hydroxy-turned 

water ligands would change the super-exchange coupling between neighbouring F e3+ 

ions, introducing a random-bond effect. Of course this can only lead to a glassy state 

if sufficiently strong further neighbour interactions are present, since a 2D system with 

up to 4 nearest neighbours orders at best at T = 0. A problem with this explanation is 

that the magnetic exchange coupling J increases by up to 50% when the potassium is 

substituted for hydronium. Rather, it suggests that the H30+  group mediates an inter-

plane magnetic interaction, or increases the strength of further neighbour interactions. 

In that case it is a system in which the glassy magnetic ground state arises from an 

interplay between geometric frustration of two different kinds; a structural degeneracy 

and magnetic frustration. 

4.3 Synthesis and single-crystal growth 

4.3.1 Hydronium jarosite 

The original solvothermal synthesis method [60, 223] for the jarosites was used for the 

preparation of H 3 0Fe3 (OH) 6 (SO4 )2. In this preparation 6.6 g (22 mmol) of Fe2 (SO 4 ) 3 .5H2O 

was dissolved in 50 mL water. This solution was transferred to a 125 mLi PTFE liner 

of a stainless steel bomb. The solution was heated in the bomb to 140°C for 12 hours. 
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Table 4.5: Atomic coordinates in R3, of H3 OFe3 (OH) 6 (SO 4 ) 2  based on Wills et al. [229]. 

atom 	x 	y 	z U 0 /A2  f 
Fe 	-0.16667 -0.33333 	0.16667 	0.0105 	1 
S 	0.33333 -0.33333 -0.27783 	0.09 	1 
S 	-0.33333 	0.33333 0.27783 	0.09 	1 
01 	0.33333 -0.33333 0.60406 	0.0162 	1 
Olm -0.33333 0.33333 -0.60406 	0.0162 	1 
02 	0.22471 -0.22471 -0.54370 	0.0162 	1 
02m -0.22471 0.22471 0.54370 	0.0162 	1 
03 	0.12789 -0.12789 	0.13452 	0.0162 	1 
03m -0.12789 	0.12789 -0.13452 	0.0162 	1 
Hi 	-0.19342 	0.19342 -0.10751 	0.0322 	1 
Him 	0.19342 -0.19342 0.10751 	0.0322 	1 
04 	0.0 	0.0 -0.10760 	0.0047 0.5 
H2 	-0.72440 0.72440 0.27160 	0.170 0.5 
04m 	0.0 	0.0 0.10760 	0.0047 0.5 
H2m 	0.72440 -0.72440 -0.27160 	0.170 0.5 

Space group R3 (146), a = 7.32457(12)A, c = 16.9153(4)A, a = 90°, 'y = 120° 

During the reaction hydronium jarosite precipitated. This precipitate was washed, 

filtered and dried in air, yielding 0.27 g of product. 

Only very small (< 20 m) crystallites of hydronium jarosite were obtained in 

this way. The crystal size could be increased by using a pyrex liner inside the bomb, 

which provides fewer nucleation centres than the rough PTFE liner. Another source 

of nucleation centres is the surface area of the solution exposed to air in the reaction 

vessel. Hence, the shape of the glass liner was adapted to reduce this area to 0.8 cm 2 . 

The largest crystallites, perfect cubes of between 50 and 100 jim across were obtained 

when the oxygen content of the solution in the pyrex liner was reduced by bubbling 

dry nitrogen gas through the solution for a few minutes, and the bomb was sealed in.a 

nitrogen filled glove bag. Though this was an improvement, the. crystallites were still 

too small to use for oriented single crystal magnetic susceptibility measurements. 
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4.3.2 Potassium jarosite 

KFe3(OH)6(SO4)2 can be obtained following a similar approach as described above for 

hydronium jarosite [157] but the best results are achieved with a reduction-oxidation 

method as described in [83]; 4.88 g (28.0 mmol) of K2SO 4  and 2.2 mL (40 mmol) of 

H2SO4 were dissolved in 50 rnL of distilled water, and transferred into a 125 mL PTFE 

liner of a stainless steel bomb. A 0.56 g length (10 mmol) of iron wire with a diameter 

of 2 mm diameter was added to the solution. The bomb was placed in an oven at 202° C 

for 4 days, and then cooled-down to room temperature at a rate of 0.3°C/mm. The 

precipitate was washed, filtered and dried, yielding 0.37 g which is 22% based on Fe. 

This reaction is reported to yield large single crystals with a volume of 1 cm 3  [83], 

but it is important that the surface area of the solution exposed to air inside the vessel 

is minimised. This was achieved using a glass container which fitted inside the PTFE 

liner, with only a small hole at the top. The temperature is also a very important 

parameter, and it must be accurate to one degree. The temperature of our precision 

box-furnace had to be calibrated using a mercury thermometer and a thermocouple. 

The largest crystals obtained in this way were approximately 1 mm 3  in size. 

4.4 Jarosite crystals from a natural source 

Even with the best crystal-growing efforts, our synthesised crystals are much smaller 

than potassium jarosite crystals from natural sources. Large crystals are needed for 

single-crystal neutron diffraction experiments, and with large crystals magnetic-susceptibility 

measurements can be carried out in lower fields, revealing field cooled zero-field cooled 

splittings. Large single crystals were also expected to simplify polarised X-ray spec-

troscopy experiments, which are discussed in section 4.5. A number of natural single 

crystals were carefully characterised using single crystal X-ray diffraction, optical po-

larisation analysis and susceptibility measurements. 
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Figure 4.5: Clusters of synthesised potassium iron jarosite. The largest crystals in this picture 
are about 600 tim. 

The crystals used in the following experiments were obtained by Keith Pettigrew [157] 

from Dr. P. Goodell of the University of Texas at El Paso and came from the Chihuahua 

region in Mexico. They were plate shaped, and tl1e largest specimen, used for a neu-

tron diffraction experiment, was 32 mg. Other experiments were carried out on an 

8.2 mg sample. X-ray diffraction confirmed that these samples were reasonably single 

crystalline. The large area top and bottom surfaces of the plate-shaped crystals were 

indexed as the [001] and [001] faces. 

4.4.1 Magnetic susceptibility 

The magnetic susceptibility of a 8.2 mg single crystal of potassium jarosite was mea-

sured between 4.5 and 340 K on a Quantum Design MPMS magnetometer. The plate-

shaped single crystal was oriented with the field in the ab plane, and along the c axis by 

clamping it between the walls of the gelatine capsule containing the sample. The results 

from measurements in a 200 Gauss field are shown in figure 4.6. The open and filled 

squares give the zero-field cooled susceptibility in the ab plane and along the c axis re-

spectively. The circles give the field-cooled susceptibility. The cusp in the out-of-plane 
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susceptibility (along the c axis) indicates that the transition temperature to long range 

order in this sample is 61.0(5) K. This is slightly lower than the reported transition 

temperature on the best synthesised single crystals of 64 K. Samples synthesised using 

the solvothermal method have an iron occupancy of around 90%, and their transition 

temperature lies around 50 K. We estimate that the iron occupancy in the natural 

single crystal used here is likely to be > 95%. Comparison of data taken in 50, 100 

and 200 G fields showed that the sample does have a remanent magnetic moment up to 

340 K. This rernanence, which is not present in synthesised powder samples, probably 

arises from spurious iron oxide phases present in the sample. Since above 150 K the 

magnetic response from potassium iron jarosite is purely paramagnetic, the remanence 

along each axis from the field-dependence of the susceptibility can be calculated and 

subtracted from our data. 

Table 4.6: Fit results from oriented single crystal susceptibility 

Function 11 	c I c Lit. value units 
Curie-Weiss 	C 5.65(10) 5.55(10) 5.6(2) emu K mol' 

\/ 6.72 6.66 6.7 PB 

O 906(10) 893(10) 800(30) K 
Padé series- 	J 42(2) 42(2) 45(2) K 

expansion 	neff 5.5(1) 5.4(1) 6.3(2) [LB 

The corrected in-plane and out-of-plane susceptibilities are almost identical above 

150 K. but the susceptibility along the c axis diverges at the transition temperature at 

61 K. Table 4.6 gives the results of the Curie-Weiss fit and the Padé series expansion 

(equation 2.54) for the kagomé lattice [84] along both axes. The errors given here are 

estimated from comparison of the results for different samples, and in the case of the 

Padé expansion, the results also depend on the temperature range fitted, increasing the 

error. It is clear however, that per sample the high-temperature susceptibility along the 

c axis is larger. In principle this difference can be indicative of both an easy-axis along 

the c axis, or an easy-plane anisotropy in the ab plane. Since the ground state is almost 

perfectly co-planar, even above 150 K there is probably still a weak preference for the 
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spins to align in-plane, making it relatively easy for a field along the c axis to pull the 

spins out of that plane. From fits with the Padé approximant the value found for P,ff 

is considerably smaller than the spin-only value of I1eff = 5.85i, and also smaller than 

the value found in our Curie-Weiss fit. The latter corresponds well with the values 

reported by Grohol et al. [81]. Grohol used a Padé approximant which included further 

neighbour interactions, which we have omitted in our fit. This explains the different 

value obtained here, and it is a reminder that the values obtained with this kind of 

analysis strongly depend on the model the theory is based on. In this sense the most 

reliable fit is obtained with the mean-field theory result. 
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Figure 4.6: The rnagIetic susceptibility of a potassium iron jarosite single crystal froin a 
natural source, in the ab plane (open symbols) along the c axis (filled symbols), in zero-field 
cooled (squares) and field cooled (circles). The right axis (red) gives the inverse susceptibility 
along the c axis (filled symbols) and in the ab plane (open symbols). 

4.4.2 Neutron diffraction with a natural crystal 

The divergence of the magnetic susceptibility at the transition temperature suggests 

that the transition to long-range order is a critical phase transition. In this neutron 

diffraction experiment, at the cold neutron powder diffractometer DMC at the Paul 
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Scherrer Institute, the initial aim was to measure the critical scattering at the phase 

transition. In a symmetry-breaking transition like the onset of N6el order in a con-

ventional antiferromagnet, the spin-spin correlation length increases with temperature 

following a power law oc (T - T) (where 77 > 0 is the critical exponent of the cor -

relation length), as the system approaches the transition temperature T. However, 

no critical scattering could be observed, simply because of a lack in intensity from the 

sample used here. The experiment was started with a 46 mg single crystal, but during 

mounting the sample broke. Both pieces were used for the experiment, but the neu-

tron diffraction pattern showed that the relative orientation within the ab plane of the 

two crystal pieces was lost. Another limitation in this experiment was that a two axis 

powder diffractometer was used, missing the azimuthal rotation needed to optimally 

align the c axis in the scattering plane. 
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Figure 4.7: Indexed single-crystal neutron diffraction pattern integrated over all saniple on-
entatious with the [110] axis (which corresponded with the [210] axis for the second crystallite) 
perpendicular to the scattering plane, at 65 K (thick line) and at 15 K (red line). The pattern 
contains both [111] peaks and [211] peaks because the crystal broke in two before mounting, and 
the relative orientation within the ab plane was lost. The asterisk indicates a powder peak from 
the Al sample holder. The inset shows the temperature dependence of some nuclear reflections; 
[003] (open circles), [0091/10 (filled circles, [212] (filled triangles) and [21] (open triangles). 
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Figure 4.7 shows the single-crystal diffraction patterns integrated over all sample 

orientations with the [1101 axis ([210] axis for the second crystallite) perpendicular 

to the scattering plane, at 15 K and at 65 K measured with a neutron wavelength 

A = 2.568 A. The presence of [111], [211] reflections and a [011] reflections shows that 

the orientation of the ab axes between the two crystal pieces was lost, one being aligned 

with the [111] axis in the scattering plane, and one accidentally with the [211] axis more 

or less aligned in the plane. From the positions of the most intense nuclear reflections 

the lattice parameters a = 7.29(4) A and c = 17.10(2) A are obtained. In addition 

to the nuclear reflections, new reflections appeared at [11], [11], [11w], [21], [21k] 

and [21] when the sample was cooled below 64 K. All these magnetic reflections are 

consistent with a q = 0, 0, 3/2 magnetic unit cell. The temperature dependence of 

these reflections was measured in steps of 10 K down to 5 K. The result is shown in 

figure 4.8, where the integrated intensity of the magnetic reflections was normalised to 

the intensity of the [009] reflection at each temperature. The inset in figure 4.7 shows 

the temperature dependence of a number of nuclear peaks, from which it is clear that 

the intensity of the [009] reflection is representative. 

Figure 4.8 indicates that within the experimental error the intensities of all the 

magnetic reflections increase, as is characteristic for magnetic reflections below a Ned 

transition, and is as previously reported for the [11 3/2] reflection [81]. Hence, there 

is no evidence of further magnetic (or structural) transitions. The current experiment 

also confirms the quality of these large natural single crystals. The magnetic character-

istics measured with neutron diffraction are identical to those measured on the largest 

synthesised samples. 

4.5 Polarised soft X-ray spectroscopy 

The remaining issue which has yet to be addressed is the deviation of the magnetic 

moment and the g-factor from the free-ion values. It is well known that the fine- 

structure splittings in many paramagnetic salts with Mn2+  and  Fe3+  are much larger 
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Figure 4.8: Temperature dependence of the magnetic reflections [11 [ ( black circles), 1-1 1 ] 
(white circles), [11J (white squares) Eli ] ( black squares), [11] (black triangles) and [II j 

(white triangles) in the left panel, and [ I  ] (black circles), [11] (white squares) [ I  ] (white 
circles), F2 I] (white triangles) and [ I] (white triangles) in the left panel. All intensities 
are normalised to the strongest non-magnetic reflection [009]. 

than expected [221, 3], even when admixtures of higher-energy configurations with the 

ground state are taken into account. Watanabe [2201 has shown that only fourth-

fifth- and sixth-order perturbations of crystal field, spin-orbit coupling and spin-spin 

interactions split the electronic levels and produce a g-factor deviation from its free 

electron value. For Fe3+  he estimates that 6g = —0.0003, and a spin-orbit coupling 

constant of.\ = 440 cm 1 , much smaller than the values needed to account for the 

anisotropy in potassium jarosite with g 0.12 [127]. 

Using unrestricted Hartree-Fock (UHF) calculations on atomic Fe and Mn, Wood 

and Pratt [232] have shown that the large spin moment in the 3d shell can split the 

up-spin and down-spin levels in closed shells. These calculations are in good agreement 

with the experimentally observed hyperfine structure of atomic Mn arising from the 

resulting s symmetry net spin density at the nucleus and the Mn nuclear magnetic 

moment. This exchange polarisation effect will also affect p-symmetry core levels, and 

create a net orbital angular momentum in these levels. In theory this will give rise 

to a multiplet structure, but it is unlikely to cause a magneto crystalline anisotropy. 
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The fine structure calculated using the method for atomic Fe agreed less well with 

experiment. Since the binding energies of core-electrons will be affected. X-ray spec-

troscopy is the ideal method to investigate the importance of the exchange polarisation 

in Fe, which does not have a nuclear moment and hence does not show liyperfine split-

tings. Comparison of X-ray spectra with calculations [68, 67] show however, that this 

property of the free ion is diminished in solids. This is mainly due to crystal-field ef-

fects and/or covalent mixing- and charge-transfer from the ligands, which are crucial in 

the understanding of the core-level to 3d X-ray absorption spectra in transition metal 

compounds [53]. 

Transition metal 2p- and oxygen is X-ray spectroscopy studies have played a key 

role in the understanding of electronic structure in transition metal compounds [235, 

211, 51, 521. It is now well established that many transition metal oxides are not 

ionic, but strongly covalent compounds. In one X-ray spectroscopy study it was found 

that covalency effects can even alter the orbital angular momentum states in a rare-

earth ion [134]. In this section X-ray spectroscopy experiments to measure the degree 

and nature of the covalency in potassium and hydroniurn jarosite will be described. By 

comparison with accurate atomic multiplet calculations, taking into account ligand-field 

effects and multiple ionic configurations, we obtain estimates for the orbital angular 

momentum and magnetic anisotropy in both salts. 

The X-ray magnetic circular dicliroism (XMCD), i.e. the difference in absorption 

between left- and right circularly polarised X-rays, can be used to measure directly the 

expectation value for the orbital angular momentum in a solid, simply by integrating 

the circular dichroism spectrum [201]. However, jarosite is strongly antiferromagnetic, 

and hence does not exhibit any circular dichroism. What can be measured is the linear 

X-ray dichroism [210] which can be used as a direct measure of the in-plane out-of-plane 

charge anisotropy of the iron 3d shells. 
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4.5.1 XAS on hydronium- and potassium jarosite. 

Experimental details 

Powder saniples of hydronium and potassium jarosite were synthesised following the 

method as described in section 4.3. The samples were mixed with graphite powder and 

pressed into pellets. Like many transition-metal oxides, jarosite is a strong insulator, 

which inhibits the replacement of photoelectrons emitted from the sample surface due 

to X-ray absorption. This can give rise to a charging of the sample surface which can 

potentially distort the peak shape. By mixing the finely powdered sample with graphite, 

sufficient electron transport is warranted. The X-ray absorption spectra around the iron 

L 2 ,3  edges and the oxygen K edge on powder samples were measured at station 5U.1 

at the SRS in Daresbury (for details on the beamline see 3.3.2). For the iron L2,3 edges 

the total electron yield was recorded over the energy range from 690 to 750 eV, and for 

oxygen K edge between 525 and 550 eV. A purpose-built UHV apparatus as described 

in section 3.3 was used as sample environment, with a base pressure of 2 10 Torr. 

The samples were mounted on a cryostat and could be cooled down to approximately 

30 K. The electron replacement current from the sample was recorded using a pico-

ampere meter. The signal normalised for the incident X-ray intensity is proportional 

to the X-ray absorption cross section of the sample. 

Discussion 

Figure 4.9 shows energy scans around the Fe 2p 6 3d5  —+2p5 3d6  transition for both potas-

sium jarcsite (black dots) and lkydronium jarosite (crosses). Due to the 2p-3d spin-orbit 

coupling of the 2p core-hole in the 2p 5 3d6  final state the edge is split into two features. 

The transition around 710 eV (the L 3  edge) gives rise to a 2P3/2  core-hole, while the 

transition around 722 eV (the L 2  edge) gives rise to a 2P1/2  core-hole. In the inset the 

temperature dependence of the isotropic X-ray absorption at the L3  edge in potassium 

jarosite is shown. There is some change in the peak shape with temperature, which is 

reproduced in the data taken at the ESRF on single crystals. On close examination 
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it is just apparent that the niain L3 peak consists of two closely spaced lines. In the 

data taken at the ESRF this feature is more clearly resolved, while otherwise the peak 

shape obtained at the two beamlines were practically identical. 
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Figure 4.9: The isotropic XAS around the Fe L 23  edges of hydrouium- (red) and potassium 
jarosite (black) at 300 K. The inset shows the L3 edge in potassium jarosite at 300 K (black) 
and at 30 K (blue). 

It was also observed that the spectra from hydroniumjarosite and potassium jarosite 

are identical. This implies that the ligand-field and covalency in both systems is identi-

cal, and that the slightly larger canting angle 0 of the octahedra in hydronium jarosite 

(21° compared to 19° in potassium jaroeite) has no effect on the degree of covalent 

mixing between the Fe3+  ions and the OH-  ligands. As mentioned earlier, the Weiss 

temperature of hydronium jarosite is 1200 K, 50% larger than for potassium jarosite. 
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The data shown here rules out the possibility that the higher encr' scale of the anti-

ferromagnetic couplings can be attributed to stronger super-exchange between neigh-

bouring Fe3+  ions. A significant substitution of OH -  with H20 as suggested by Grohol 

et al. [83] can also be expected to affect the Fe 2p absorption spectra. Unfortunately 

we do not have a low-temperature spectrum of hydronium jarosite. This sample did 

not survive the vacuum bake which is needed before the cryostat can be cooled down 

to 30 K without getting large amounts of ice freezing onto the sample surface. 
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- Hydronium jarosite 
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/ 
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Figure 4.10: The isotropic oxygen K-edge absorption spectra taken at room temperature on 
hydroniurn jarosite (red) and potassium jarosite (black). 

The oxygen is X-ray absorption spectra of both hydronium- and potassium jarosite 

are shown in figure 4.10. Here some differences are visible, but this will be at least in 

part due to the extra H30+  group in hydronium jarosite. The spectra shown here have 

been taken at room temperature. Additional spectra were taken at 30 K, but despite 

the low base pressure of the chamber it was found that any change in peak shape at 
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this temperature could not be separated from the change due to the growth of ice on 

the sample surface. 

Conservation of angular- and spin momenta requires that the electronic states in-

volved in an X-ray absorption process have zL = ±1 and AS = 0. Hence, the edge 

structure in the oxygen is spectrum arises from transitions to states with oxygen 2p 

character. Systematic study of the oxygen edge in 3d transition metal compounds has 

shown [54] that the feature at the onset of the edge at 530 eV arises from "empty 

oxygen orbitals created by ground-state hybridisation between 3d-transition-metal and 

oxygen 2p orbitals" [212]. This feature consists of two peaks, corresponding to t29  and 

e9  hybridised oxygen 2p electrons, in 7r and a bonds respectively. Their separation in 

energy is equal to the crystal-field splitting, 1.3(1) eV for iron jarosite. Their relative 

intensity is more difficult to interpret [54] and in the case of 3d 5  and above large cluster 

calculations would be needed [2121. For the fitting of our spectra with calculations we 

will therefore focus on the Fe L2,3 edges. 

It is clear from the oxygen K edge spectra in figure 4.10 that, as with most 

transition-metal oxides, the ground state configuration of the (nominally) Fe3+  ion 

in the jarosites is best described by a 3d5 ) + 0 3d6L), where L stands for a oxygen 2p 

hole, and a, 0 are yet to be determined. There is a very small difference in the shape of 

the t2g and e9  peaks between the two salts, but it cannot be established whether this is 

due to different oxygen 2p - transition metal t 29  hybridisation, due to the presence of 

water, or due to the H30+  ion. The higher energy structure arises from hybridisat.ion of 

oxygen 2p states with metal 4s and 4p states. The 1130+  group in hydronium jarosite 

gives rise to a clear difference in the shape of this feature. 

4.5.2 Polarised XAS on potassium jarosite single crystals 

Polarised X-ray absorption spectra on potassium iron jarosite single crystals were mea- 

sured at ID 8 at the European Synchrotron Radiation Facility (ESRF) in Grenoble. 
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ID 8 is a grazing angle grating monochromat.or heaniline with helical undulators (sec-

tion 3.3.2). This beamline can produce (coherent) circularly and linearly polarised 

X-rays over an energy range from 400 to 1500 eV. The high-field magnet end-station 

[15] was used. 

The best spectra were obtained from a synthesised potassium jarosite single crystal 

with a diameter of 0.6 mm. mounted on a graphite tip as described in section 3.3.3. 

Figure 4.11 shows the resulting spectra with the X-ray polarisation parallel and per -

pendicular to the c acis, at 290 K. The isotropic spectrum and linear dichroism were 

calculated from the spectra taken in these two orientations using Ij 0  = Iab + II, and 

'xld = 'ab - I. Scans were made with alternating horizontal and vertical polarisation, 

and for each polarisation averages were taken over at least 8 scans. A small number of 

scans were excluded because they would increase rather than reduce the total standard 

deviation to the average. In this manner spectra were taken at 290, 200, 80, 60 and 

40 K. Figures 4.12 and 4.13 show the temperature dependence of the isotropic spec-

trum and the linear X-ray dicliroism respectively. The spectra in figure 4.13 were also 

integrated in order to obtain the quadrupole moment of the 3d shell [210, 209, 208]. 

For the data taken at 290, 200 and 80 K, as shown in figure 4.13 the charge quadrupole 

moment of the 3d shell (Pab - Pc)/Piso = 0.05(2), where pi is the integral of I. This 

may be interpreted as that the Fe 3d shell has between 3 and 7% net x2 - or xy 

character. For the linear dichroism spectrum taken at 40 K the integral is zero within 

the experimental error. 

The linear dichroism spectrum only changes slightly at lower temperatures and 

gains in intensity as the temperature is lowered, as could be expected when the spins 

align. More clearly visible is the change in the isotropic line shape, in particular at 

the L3 edge. Comparison with the powder-spectra discussed in the previous section 

suggests that this change is real, and not an artefact arising from misalignrnents or 

charging effects. To gain a better understanding of the cause for the change of shape 

of the isotropic spectrum figure 4.14 shows the unprocessed spectra, measured along 
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Figure 4.12: The temperature dependence of the isotropic X-ray absorption at the Fe L 2 , 3  

edges, from a syntliesised potassium iron jarosite single crystal. 

the c axis and perpendicular to the c axis at 40 K and at 290 K. This figure reveals 

the remarkable detail with which this absorption spectrum has been obtained due to 

the continuous improvements in photon flux, X-ray polarisation, energy resolution and 

stability of the beam, realised at the facilities made available to us for this experiment. 

It is clear that the change in peak shape does not arise merely from a change in the 

relative intensities of the spectra obtained with different. X-ray polarisation, but that 

the line shape of 'ab  and I change individually. These features have turned out to be 

crucial in the interpretation of the spectra. 
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Figure 4.13: The temperature dependence of the X-ray linear dichroisin spectrum (I, I) 
to scale with 4.12, from a synthesised potassium iron jarosite single crystal. 

We have long been suspicious of the change in the peak shape of the isotropic L 3  

edge because in the data taken on natural crystals this feature is not well reproduced, 

as can be seen in figure 4.15. The linear dichroism spectra obtained from a single 

crystal from natural source are identical to those measured for the synthesised sample. 

However no temperature dependence was observed and will not be reproduced here. 

The isotropic spectra in one of the runs varied randomly with temperature (left panel 

in figure 4.15), while in another run (right panel in figure 4.15), possibly due a better 

alignment of the beam, the same effect is seen as in the isotropic spectra in figure 4.12, 

but much less clearly. We now believe that this is likely to be due to a lower quality of 
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Figure 4.14: The unprocessed spectra with the X-ray polarisation along the c axis (thick lines) 
and in the ab plane (thin lines) at 290 K (red) and at 40 K (black). 

the natural single crystal used. Soft X-rays probe only the first 100 nm of the sample 

surface, and very small volumes of impurity phases or crystal defects at the surface can 

therefore have a large effect on spectrum. The quality of the natural single crystal was 

thoroughly checked with single crystal X-ray diffraction, while the size of the natural 

specimen used here precludes accurate X-ray characterisation. In addition to this the 

geometry used for the measurements on natural crystals was more complicated and did 

not allow independent measurement of I. For these reasons we keep confidence in the 

data taken on the synthesised single crystal as shown in figures 4.12 and 4.13. 
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Figure 4.15: Comparison of the temperature dependence of the isotropic X-ray absorption 
at the L 3  edge measured in two different runs using a 16 mg potassium iron jarosite single 
crystal from the Chihuahua region in Mexico. In the left panel the peak shape varies randoml y  
with temperature, while in the right panel there is behaviour reminiscent, of the temperature 
dependence as shown in figure 4.12. 

4.6 Ligand-field multiplet calculations 

Numerical procedure 

The radial basis functions of the 2p6 3d5  and 2p53d"' configurations of the free Fe3+ 

ion were calculated using R. D. Cowan's program [49]. The results were used as input 

for the program Hilbert++ written by Alessandro Mirone [136, 135], which calculates 

the polarisation-dependent X-ray absorption spectra taking into account crystal- and 

ligand field effects and spin-orbit coupling. This program can deal with crystal fields 

of arbitrary geometry and returns spin- and orbital angular momentum expectation 

values. The lowest 15 JLS configurations were used in the computations, and 3d-3d 
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and 2p-3d Slater integrals were both reduced by a factor 0.8 as is common for this type 

of calculations. 

Results 

First attempts were made to fit the spectra in the most conventional way, using only 

Fe3+ states. A Boltzmann average was taken over all found configurations in order to 

simulate the pararnagnetic state of the sample at 290 K. The first spectrum in figure 

4.16 shows the calculated L 2 , 3  edges of the free Fe3+  ion with reduced Slater-Koster 

integrals (dots). The second trace (broken line) shows the influence of an octahedral 

crystal field of 1.3 eV, as is consistent with the value obtained from the oxygen K-edge 

spectrum. In the third trace a trigonal distortion of 0.2 eV is introduced, amounting to 

an elongation of the octahedron along the c axis. The Fe L 2 , 3  edges in hematite resemble 

the spectrum in the third trace. An important difference with the situation in hematite 

is that is has a long-range ordered ground state, which can be modelled by adding a 

Zeeman term to the Hamiltonian. In the present case a paramagnetic system with 

no particular alignment of the spins is simulated. It is clear however that a crystal-

field alone cannot account for the spectra as observed experimentally. Even larger 

trigonal distortions will eventually split the main L 3  peak, but this does not improve 

the overall fit. In addition there is no motivation for such a large trigonal distortion 

in the electrostatic crystal field, given that in potassium jarosite the elongation of the 

octahedra along the c axis is only ' 5%. 

Much better results were obtained when I2p63d') (Fe2+L)  configurations were 

allowed to mix in, as shown in figure 4.17. Here different fitting parameters are used, 

and electrostatic crystal-field effects are deliberately left out. The system is now mod-

elled as a charge-transfer conipound where higher ionic states of the cation become 

occupied not as a result of electron hopping between cations, but due to charge trans-

fer from the oxygen ligands' 2p shells to the cation. The relevant Coulomb repulsion 

energy in this case is the charge-transfer gap z.j. This energy is determined by the 
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Figure 4.16: Calculated crystal field multiplet spectra for Fe 31  with reduced Slater-Koster 
integrals (dots), in a Oh crystal field with lODq = 1.3 eV (broken line), as previous with a 
trigonal distortion of 0.2 eV added (thin line) and the spectra measured at 290 K (thick line). 
The bottom two traces are the corresponding linear dichroism spectra, where present. 
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Hubbard U and the ener' of the oxygen 2p electrons relative to the valence electrons 

in the Fe3  ground st.ate configuration LL from &,j = nU - L. In Hilbert++ AL 

can be varied, and in combination with the parameters for the degree of a- and ir- sym-

metry bonding (hopping) determines the spectral weight of Fe2+L  configurations. The 

best fit between experimentally obtained data as shown in figure 4.11 and the spectra 

calculated using Hilbert++, were obtained with AL 39 eV, which corresponds to 

pd 6 eV, a common value in transition metal oxides [53. 52, 2191. The ligand field 

is now modelled by the positions of the oxygen atoms around the central cation. In 

the top trace of figure 4.17 (the dotted line) the oxygens along the (local) c axis are 

moved 10% further from the cation (Reqjap  = 0.91), resulting in a trigonally distorted 

octahedron. Due to the trigonal distortion there is also a linear dichroism spectrum as 

shown in the third trace from below (another dotted line). Clearly this does not de-

scribe the situation well. The second trace (broken line) shows the spectruni calculated 

for Oh  symmetry but with a strongly anisotropic hybridisation between the oxygen 2p 

orbitals and the iron 3d orbitals, mainly of a character. The Slater-Koster transfer 

integrals for a and 7r hopping (V0 . V,,) were set to 3 and 0.3 respectively, compared to 

2 for both of them for the spectrum in the top trace. The resulting spectrum starts to 

show some resemblance to the experimental spectra now. Because the Harniltonian is 

in this case of Oh  symmetry no linear dichroism is present in the paramagnetic state. 

When in addition to the anisotropic hybridisation a trigonal distortion is introduced, 

the computed isotropic and linear dichroism spectra (thin lines) closely resemble the 

experimentally obtained spectra. 

The main L3 peak is now split in two, but the trigonal distortion is a bit toO 

large here, giving rise to too large a splitting. The best results were obtained with 

Reqap  = 0.935, an elongation of the octahedron along the local c axis of 7% compared 

to 5% for the actual nuclear structure. The computed spectra obtained this way are 

shown in figure 4.18, along with the spectra measured at room temperature. The 
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Figure 4.17: Calculated ligand field mu.ltiplet spectra. Isotropic hybridisation, i.e. equal a-
and ir-type bonding in a trigonally distorted octahedron (D4h) (dotted lines), in Oh,  ligand field 
with strong cr-type bonding (broken lines), in D4h symmetry with strong cr-type bonding (thin 
line) and the measured spectra (thick lines). Where present the corresponding linear dichroism 
spectra are shown in the lowest three traces. 
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expectation values of S2 , ms,  L 2 , LS and the number of 3d electrons on the Fe (n) of 

the lowest energy levels are given in table 4.7. 

Table 4.7: Some expectation values of interest for the lowest energy levels as obtained from 
the fit of experimental data with ligand-fleld inultiplet calculations (A = 6.5 eV, Va = 3.0 eV, 

= 0.3 eV, with a 7% trigonal distortion from Oh  of the ligand field.). The first column gives 
the approximate corresponding free-ion configuration. 

E (S 2 ) (SZ ) (L 2 ) (LS) (n) 
6 S 	535.42439 7.85 ±0.467 1.95 0.035 5.325 

2 

535.42448 7.85 ±1.40 1.95 0.034 5.324 
535.42468 7.85 ±2.34 1.95 0.031 5.323 

8F1 	537.11788 3.93 ±0.26 12.1 -0.0063 5.424 

8F 	537.11964 3.97 ±0.35 11.9 -0.073 5.425 

Following the expectation values throughout the fitting process it can be seen that 

according to expectation no anisotropy nor orbital angular momentum arises in calcula-

tions where only the crystal-field is taken into account. With the moderate crystal-field 

as present in the jarosites, and iron oxides in general, the low-spin Fe3+  configuration 

lies more than 2 eV higher in energy and does not mix into the ground state in any 

degree. Relatively strong trigonal distortions do not change this situation. When the 

energy of the 2p electrons at the oxygen ligands is increased to AL = 39 eV (pd = 6 eV) 

approximately 30% Fe2+ character mixes in as a result of the hybridisation of the Fe 

3d orbitals with the oxygen 2p orbitals. Remarkably, the spin-orbit coupling induces 

nearly the maximum orbital angular momentum possible due to the additional 3d elec-

tron weight.. Since the orbital angular momentum is induced by the spin-orbit coupling 

alone, it does not give rise to additional multiplet structure as it would in the free ion. 

Strong a-type bonding further increases the spin-orbit coupling, and when a trigonal 

distortion is introduced the additional electron weight becomes niainly of x2 - y 2  char-

acter, which is consistent with the result obtained using the XLD sum-rule. At this 

point the system also has an easy-plane anisotropy of 4 meV. 

So far the spectra in the paramagnetic state have been compared by taking a Boltz- 

mann average. This has resulted in excellent agreement between experimentally and 
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Figure 4.18: s 
ample measured at the SRS.] The measured room temperature spectra from a powder sample 
measured at the SRS (broken blue line), and isotropic and linear dichroisin spectra measured 
on a single crystal of potassium jarosite at the ESRF (black lines), compared with the best 
fitting calculated spectrum as detailed in table 4.7 (red line). The lifetime broadeninigs of the 
states at the L 3  and L 2  peaks were taken as 0.25 and 0.5 eV. 

theoretically obtained spectra, and the advantage is that no assumptions needed to 

be made about the orientation of the magnetic moments, or how the magnetic super-

exchange should be modelled in the calculation. This is an important advantage, be-

cause even the isotropic spectrum depends strongly on the strength of an additional 

Zeeman term, which is often used to model the magnetic super-exchange as well as 

external magnetic fields. In practise this means another fitting parameter. Figure 4.19 

shows the calculated spectra where the single-ion ground state Ims  ±) (the thick 

black line) is approached gradually from higher temperatures. As the temperature is 

lowered the left side of the main (split) peak in the L3 edge increases relative to the 
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Figure 4.19: The temperature dependence of the calculated spectra. The two top traces 
correspond to the isotropic spectra simulated at 300 K and for the ground state (T = 0) 
compared with the experimentally obtained spectrum measured at 40 K, shown in red. The 
bottom traces give the corresponding linear dichroisrn spectra. 
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right side and the shoulders at either side of the L3  edge become more pronounced, 

and the smaller peak before main peak also increases. All these effects are observed in 

the spectrum as measured at 40 K (red line), but it is clear that the experimentally 

obtained linear dichroism spectrum does not correspond to the single- ion ground state. 

It is also clear that the main L3 peak is also more strongly split in the experiniental 

spectrum measured at 40 K. In this case a slightly better fit can be obtained with 

Rap = 0.92. These are the kind of considerations which lead to the error bars in the 

final solution as listed in table 4.8. 

The linear dichroism spectra in the bottom traces of figure 4.19 do not correspond 

well with the experimental low temperature linear dichroism spectrum, though some 

features become slightly more pronounced. All that can be concluded from this is that 

although some alignment of the spins sets in, as is evident from the observed increase in 

the experimentally obtained linear dichroism and from the likewise change in isotropic 

line shape of computed and experimental spectra, the actual magnetic ground state 

does not correspond to the free-ion ground state. It should also be noted that the local 

z axis (z') of the Fe0 6  octahedra are canted away from the crystallographic c axis by an 

angle of 20° as was illustrated in figure 4.4. This is a small angle and still 96% of the 

linear dichroism is recovered. However, it means that if the magnetic ground state is a 

co-planar structure, the spins are not aligned in the easy-planes of the Fe0 6  octahedra. 

The observed temperature dependence can then be interpreted as an indication that 

the single-ion anisotropy is unlikely to be the only factor in the determination of the 

magnetic ground state. 

Table 4.8 lists the final solution, the best fit between experimental and theoretical 

spectra, obtained from comparison of a large number of combinations of the fitting 

parameters around the values listed in the caption of table 4.7. Fits were made between 

theoretical and experimental spectra in the paramagnetic state. In addition, their 

temperature dependence was taken into account. It was found that J = L + S = 3.3(1) 

and that the effective magnetic moment Peff = / tBYJV'J(J + 1) = 6 . 46 (7).iB, usrng 
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Table 4.8: The results from fits of the measured polarisation resolved Fe L 2 , 3  spectra of 
synthesised potassium iron jarosite single crystals, with ligand-field multiplet calculations using 
Hilbert+ + [135]. The left side of the table lists all fitting parameters which have varied in the 
fitting procedure. The right side gives the resulting expectation values. 

Fit parameters Expectation values 

A /eV 6.5(10) D /meV 0.4(1) 

Reqiap 0.925(5) (S 2 ) 7.85(15) 

V 3.0(1) (L 2 ) 1.95(10) 

V71. 0.3(1) (LS) 0.04(2) 

(n) 5.35(7) 

ILeff//B 6.46(7) 

the expectation values of S 2  and L 2 . This value is in good correspondence with the 

values obtained from analysis of the paramagnetic susceptibility, 6.7(2)jtB and 6.3(2)/tB, 

from fits with the Curie-Weiss law (this work and [81]) and the Padé series expansion 

including further neighbour interactions [81] respectively. Furthermore, the energy of 

the easy-plane single-ion anisotropy, of D = 0.4(1) meV, is in excellent agreement with 

the values found by Matan et al. [127] and Coomer et al. [48] in their spin-wave analysis 

of inelastic neutron data from single crystals, as shown in table 4.1.2. This is strong 

evidence that an easy-plane anisotropy, along with further neighbour interactions, are 

the explanation for the magnetic ground state in potassium iron jarosite, even though 

previously this toption has be deemed unlikely by most researchers. 

The Fe spectra from hydronium jarosite are similar to those of potassium jarosite. 

Considering the dependence of the orbital angular momentum and magnetic anisotropy 

on the ligand-field in our calculations, a similar amount of orbital angular momentum 

can be expected for hydronium jarosite as for potassium jarosite. Hence the DM1 

should be present to the same degree as in potassium jarosite. Because the trigonal 

distortion of the ligand-field in hydronium jarosite is slightly weaker, the easy-plane 

anisotropy will be slightly weaker, but still within the error bars as given in table 4.8, 

i.e. 0.3 eV. 
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A last, and interesting, point is the interpretation of the additional electron weight 

on the Fe3+  ions. A crucial step in the modelling of our cluster was to increase the 

energy of the oxygen 2p electrons to about 6 eV below the Fe 2  state. This 6 eV is a 

common value for the charge-transfer gap (Ld), which in more than half-filled 3d shells 

takes the role of the Hubbard U. In the current case Apd  is small enough (and the o 

hopping large enough) for a partial spin-singlet to form; Some of the Fe 3  spin moment 

is cancelled-out due to the more than half-filled x2 - y 2  shell. Is this what is meant 

by a quantum fluctuation with which the classical spin must be renormalised [206, 

176]? With its half-filled shell Fe 3  lies at the boundary between what are called Mott 

insulators with direct hopping between the cations (with 3dTh,3d 	3d',3d' charge 

fluctuations), and charge-transfer insulators with 3d 	3dTH4L charge fluctuations. It 

seems there is fundamental difference between the two, in the way they are measured in 

an X-ray absorption measurement. The excitation of a core electron to probe the (albeit 

altered by the core-hole) empty density of states is a local measurement, upon which any 

singlet in the Mott-Hubbard sense will be destroyed. In the case of the charge-transfer 

insulators to which our system at least in part belongs, as can independently be verified 

from the oxygen K-edge spectrum, the question remains whether the renormalisation 

of the Fe3  spin is a result of the lattice topology as is widely assumed, or whether it 

only depends on U (or in this case Apd) and t. A better experimental setting to develop 

these ideas would be a 3d9  system like a copper(II) salt, e.g. paratacamite, ideally in 

comparison with a 3d1  system. 

4.7 Conclusion 

Due to the technological advances in the generation of monochromatic polarised soft 

X-rays, it has been possible to measure the absorption spectra around the iron L 2 , 3-

and oxygen K-edges in hydronium and potassium jarosite with an accuracy previously 

unseen for an iron oxide. Close reproduction of even the detailed features in the spec-

tra is achieved with ligand-field multiplet calculations based on a minimum number of 
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fitting parameters; the charge-transfer gap LIpd, the degree of a and ir hopping, and the 

trigonal distortion in the close to octahedral ligand-field. For potassium iron jarosite 

we find that an admixture of approximately 30% Fe2+  character mixes into the ground 

state due to charge-transfer from the oxygen ligands. The resulting spin and orbital 

angular momenta arising from the admixture are listed in table 4.8 and are in excellent 

agreement with the literature values of the magnetic moment derived from the para-

magnetic susceptibility. Having constructed an effective model of the Fe3+  ion and its 

local environment it was also found that the single ion has an easy-plane anisotropy 

D of the order of 0.4 meV. The temperature dependence of the spectra confirms that 

the actual magnetic ground state, arising from the cooperative behaviour of the sys-

tem, does not coincide with the single-ion ground state. However, there is excellent 

agreement between the obtained value for D and estimates from spin-wave analysis of 

inelastic neutron data (D = 0.428(5) meV [127]). This is a strong indication that a 

locally canted easy-plane anisotropy, in combination with further neighbour exchange 

interactions, lie at the origin of the particular magnetic ground state observed in potas-

sium iron jarosite. The additional presence of a DM1 term cannot be excluded, but a 

DM1 is not needed to explain the experimental observations. 

For hydronium iron jarosite it is likely that the single-ion anisotropy is slightly 

weaker than for potassium iron jarosite, but we cannot say whether this explains the 

absence of a long range ordered ground state. Given the much larger Weiss constant of 

the hydronium analogue and the degeneracy in the orientation of the hydronium ions, 

the most likely explanation for the glassy magnetic ground state may be a random 

interplane exchange mediated by the hydronium ions. 



Chapter 5 
Zinc paratacamite 

Despite the fact that the mineral group of the paratacamites and the Zn-doped ver-

sion, zinc paratacamite (Zn X Cu(4 _X )(OH)6Cl2 with x < 1) has been known for a 

while [72, 158, 31] it was only very recently pointed out that the x = 1 phase possesses a 

perfect kagorné lattice of antiferromagnetically coupled Cu 2  (S = 1/2) ions [188]. The 

parent compound of this material, clinoatacarnite, is polymorphous with two other 

naturally occurring phases with stoichiometry Cu2(OH)3C1; atacarnite which is or-

thorhombic and botallackite which is monoclinic. Clinoatacamite is also monoclinic, 

but has three symmetry inequivalent Cu sites, two of which are strongly Jahn-Teller 

distorted, while the third Cu site is only weakly angle distorted. The latter of these 

sites is particularly susceptible to substitutions with divalent ions such as Ni 2+, Co2+, 

Fe2+ and the diamagnetic ions Z n2+. Ca2+ and  Cd2+.  One of the reasons Zn-doped 

clinoatacamite is so interesting, is that it allows us to move between different magnetic 

lattices with different connectivity and symmetries in a continuous manner, by replacing 

the magnetic (S = 1/2) Cu2+  ions with diamagnetic Zn2+  ions. For Zn concentrations 

x > 0.3 the angle distortion of the (partially) Zn-substituted site is lifted and a new 

phase with rhombohedral symmetry stabilises, called zinc paratacamite. In the result-

ing structure the remaining Cu2+  sites become equivalent and form 2D kagomé planes. 

At the composition x = 1.0 the Cu2+  to  Zn2+  replacement of the now undistorted (Oh) 
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inter-plane site (the "Zn-site" from now on) is complete, yielding well decoupled planes 

of S = 1/2 Cu2  ions at the vertices of a kagomé lattice (see figures 5.1 and 5.4). In 

2004 x = 1 zinc paratacamite was also recognised as a mineral species of its own, called 

I-Ierbertsmithite [31], based on the characteristic IR spectra of natural crystals. 
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Figure 5. 1: The structure of x = 1 zinc parat acaiuite, seu airing t hr cib axis (left panel) and 
along the c axis (right panel). The C10 4  octahedra ligating the Cu 2  ions are drawn in grey. 
Three octahedra share a common Cl (large black). The oxygens (smaller black) are part of OH 
groups with hydrogen drawii in white. The left panel also illustrates the inter-plane Zn sites 
(grey), and in the right panel the stacked kagorné planes are visible. 

Magnetic susceptibility measurements by Shores et al. [188] show no indication of 

freezing for the x = 1 phase down to 1.8 K. The response remains paramagnetic at least 

down to the lowest measured temperature and the field-cooled and zero-field-cooled 

susceptibilities are almost identical, both of which are promising indications that this 

material may be the best physical realisation of the S = 1/2 kagomé antiferromagnet 

known so far. The parent compound clinoatacamite undergoes two magnetic transi-

tions on cooling. Below 18 K a splitting between the field-cooled and zero-field cooled 

susceptibility sets in, and at 6.5 K a weak ferromagnetic moment emerges. Muon spin 

relaxation spectroscopy measurements on clinoatacaniite have shown that despite the 

weak ferromagnetic moment the ground state remains disordered and strong spin fluc-

tuations persist [240, 2391. Shores' susceptibility results for intermediate Zn contents 

with x = 0.3,0.5,0.66 and 0.8 show that the transition at 18 K disappears between 
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o < x < 0.3, while the formation of the weak ferromagnetic moment shifts to lower 

temperatures and gradually vanishes before x = 1. The reported Weiss temperature at 

x = 1 is —300 ± 40K indicative of reasonably strong antiferromagnetic super exchange 

between the Cu 2  ions linked by hydroxy groups. 

Theory predicts that the electronic ground state of the S = 1/2 kagomé antifer-

romagnet is non-magnetic. To check whether this is the case for the x = 1 phase, 

and if so, at which point x a quantum critical phase transition occurs to the magnetic 

ground state as found for x = 0 [240], zinc paratacamite samples with Zn stoichiometry 

x = 0.15, 0.22, 0.5, 0.66, 0.8, 0.9, 1.0 have been synthesised and studied. In addition 

the synthesis of samples with x > 1 has been attempted. Details of the chemical syn-

thesis are described in section 5.1. The magnetic susceptibility, muon spin relaxation 

spectroscopy and heat capacity of these samples are discussed in sections 5.3, 5.4 and 

5.5 respectively. The muon spin relaxation spectroscopy measurements were carried 

out in collaboration with Philippe Mendels' group at the Université Paris Sud, Orsay. 

Winfried Kockelmann of the ISIS facility has taken accurate neutron powder diffraction 

data on an x = 1 sample at temperatures down to 10 K. The structure refinement of 

this data reveals the H positions, and the Cu/Zn partitioning is discussed in section 5.2. 

Inelastic neutron scattering measurements on the x = 1 phase of zinc paratacamite are 

discussed in section 5.7. 

5.1 The chemical synthesis of zinc paratacamite 

5.1.1 From clinoatacamite to Herbertsmithite (x < 1). 

zinc paratacamite samples with Zn contents between x = 0.15 and x = 1 were synthe-

sised using the method as described by Shores [188]. In this method a 23 mL PTFE 

bomb liner was filled with 10 mL distilled water, 0.662 g of Cu2(OH)2CO3, anhydrous 

ZnC1 and CuC121120 from Aldrich. The mass ratio of the amount of the two chlorides 

determines x as shown in the upper panel of table 5.1. The liner was then sealed in a 
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Parr acid digestion bomb, heated to 210°C for 24 hours in a box furnace, and cooled 

down slowly, at a rate of 0.1°C/mm. The precipitate was filtered and dried in air, 

yielding between 0.7 and 0.8 g of product, a hydrophobic blue/green powder. 

Deuterated x = 1 samples for neutron diffraction experiments were prepared using 

99% DO, and Cu2 (OD) 2  CO3 which was obtained by heating commercially bought ba-

sic copper(II)carbonate (Aldrich) in a bomb filled with D 2 0 at 75°C overnight. The 

bombs were filled inside a nitrogen filled glove-bag, the precipitate was filtered in the 

glove-bag and the product was vacuum dried. Using this method we obtained deuter-

ation levels of 98%. On exposure to air the deuteration level dropped to 92% in a few 

days. 

The sample quality was verified with X-ray powder diffraction. Because the X-ray 

scattering cross sections of Cu and Zn are almost equal it is not possible to infer the Cu 

and Zn occupancies from X-ray diffraction. For this reason the Zn/Cu ratios of all sam-

ples were measured using Inductively Coupled Plasma Auger Electron Spectroscopy, 

with an accuracy of ±2% in Zn content. It should be noted that ICP-AES does not 

give an indication of the Cu/Zn partitioning (or antisite disorder) between the different 

sites. This issue will be addressed in section 5.2, where accurate neutron diffraction 

measurements on a deuterated x = 1 sample are discussed. 

Historically a different method is used for the synthesis of zinc paratacamite [72, 158, 

31]; x = 1 zinc paratacamite (or Herbertsmithite) can be obtained by boiling 1 g of basic 

copper(II)carbonate with 20 mL (excess) of 1 M aqueous zinc chloride for 24 hours [32]. 

This reaction can be carried out at temperatures as low as room temperature, but the 

reaction will take a few weeks to complete at such low a temperature. Unfortunately, 

powder X-ray diffraction showed that samples synthesised using this method had much 

broader diffraction peaks than samples made using the high temperature synthesis. 
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Table 5.1: The used mass in gram of all ingredients to be added to lOinl of water in a 23 
ml bomb liner, to obtain zinc paratacamite with Zn content x. 	The values for x < 1 are 
interpolated from Shores' data [188]. The values for x > 1 (diluted kagomé) are as found in 
this study, using 2Z11CO 3 '3Zn(OH) 2  . nH2 0 (in the table noted as ZnCO 3  ... ). 

Z11Cu2 	CuC1'2H20 ZnCO3... 	x(±0.03) Cu2(OH)2CO3 
0.0 	0.426 0.662 0.0 	0.0 

0.062 	0.348 0.662 0.0 	0.15 
0.136 	0.257 0.662 0.0 	0.30 
0.204 	0,170 0.662 0.0 	0.50 
0.271 	0.085 0.662 0.0 	0.66 
0.287 	0.050 0.662 0.0 	0.80 
0.292 	0.037 0.662 0.0 	0.85 
0.300 	0.024 0.662 0.0 	0.90 
0.310 	0.0 0.662 0.0 	1.0 

	

0.310 	0.0 	 0.640 	0.024 	1.10 

	

0.310 	0.0 	 0.574 	0.096 	1.40 

5.1.2 zinc paratacamite with x> 1, a diluted kagomé lattice. 

As is clear from table 5.1 for x < 1 the Zn content is increased by adding less CuC1'2H20 

and more ZnCl to the reaction mixture. To get x = 1 zinc paratacamite no CuCl2H2() 

should be added. At that point the Zn content cannot be increased further by adding 

more ZnCl. this will only result in a lower yield. This is fortunate because as long 

as the ZiìCl concentration is more or less right, and no CuCl'2H20 is added to the 

reaction mixture, one can be confident that the Zn:Cu ratio is 1:3. However, to obtain 

samples with x > 1 clearly a different approach is needed. The approach of replacing 

some of the basic copper(II)carbonate with zinc(II)carbonate hydroxide hydrate with 

the same molar concentration in Zn has been explored'. For example, x = 1.4 zinc 

paratacamite was obt.ained by adding 0.31 g of ZnC1, 0.574 g of C112(OH)2CO3 and 

0.031 g of 2ZnCO 3 '3Zn(OH)2 ' nH 2 () to 10 mL water in a 23 mL bomb liner. The 

rest of the reaction is as described in the previous paragraph. The masses used in 

table 5.1 can be interpolated and extrapolated up to x 1.7 but above x = 1.4 

some impurity phases start to appear in the powder XRD patterns. In the resulting 

1  Though we chose here to replace a the Cu ions with the same iiumbcr of Zn ions, the important 
paraneter is probably the pH of the solution, which is detcrmined by the molar ratio of CO and 
01-1 ions added. 
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material the kagomé lattice of antiferromagnetically coupled S 	1/2 spins is doped 

with diamagnetic sites. 
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Figure 5.2: The X-ray diffraction patterii (black x) for x = 1.40 ± 0.02 zinc paratacainite, 
with structure refinement (red) and the difference (blue). 

The diffraction pattern for an x = 1.4 sample is shown in figure 5.2. The pattern was 

Rietveld analysed using the General Structure Analysis Program [111], with residuals 

= 2.6, R 13.32% and R = 10.28%. We found lattice parameters a = 6.85 1(0)A 

and c = 14.132(6)A compared to the reported values of a = 6.8342(3)A and c = 

14.0320(12)A [188] respectively. 

The refinement is clearly of poorer quality than the refinements of diffraction data 

of x = 1 samples (with typically )( 2  = 2.2, R = 7.3% and R = 5.4%). It is likely that 

on substituting the Jahn-Teller distorted Cu sites in the C110402  octahedra with Zn 

3d'° . which is not Jahn-Teller active, the distortion in these sites is at least partially 

lifted. For sufficient levels of doping this will give rise to disorder in the material. 
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A similar effect may play a role in x < 1 samples, in which part of the °h  Zn sites 

are substituted with Cu and become weakly distorted away from Oh  symmetry. As 

mentioned earlier, for x <0.3 this even gives rise to a structural transition. 

5.2 Neutron powder diffraction 

Neutron powder diffraction measurements were carried out on the ROTAX neutron 

time-of-flight diffractometer at the ISIS Facility, United Kingdom. A 4 g nominally x = 

1 sample of 96% deuterated zinc paratacamite was used. The exact Zn stoichiometry 

of this sample as measured with ICP-AES is x = 0.98(2). Most of the data was collected 

at 10 K. and shorter scans were made at 150 K and 285 K. All powder diffraction 

patterns were Rietveld analysed using GSAS [111, 203]. Figure 5.3 and table 5.2 

presents the data obtained at 10 K and the corresponding refinement results. Apart 

from an expansion of the lattice between 10 K and 285 K of 0.1% along the a,b axis and 

0.3% along the c axis, the refinement results at 150 K and 285 K were in good agreement 

with the results shown in table 5.2. The residues were larger for the 150 K and 285 K 

data, X2=  2.1, R = 3.9%. R p  = 3.2% and x2 = 1.91, R = 3.7%, R = 3.1% 

respectively, compared to X 2 13.95, R = 2.83%, R,,p  = 2.73% for the 10 K data. 

Table 5.2: The results of the Rietveld refinement of neutron powder diffraction data taken at 
10 K at ROTAX, ISIS on ZnCu 3 (OH) 6 C12 . 

atom x y z U 0 /A 2  f 
Zn 0.0000 0.000() 0.0000 0.0038(10) 0.73(3) 
Cu 0.3333 0.1667 0.1667 0.0048(6) 0.91(3) 
0 0.1278(2) 0.2555(4) 0.1052(16) 0.0068(4) 1 
D 0.2023(2) 0.4045(4) 0.07598(15) 0.011(4) 0.948(2) 
H 0.2023(2) 0.4045(4) 0.07598(15) 0.011(4) 0.052(2) 
Cl 0.0000 0.0000 0.30427(15) 0.011(4) 1 
Cu 0.0000 0.0000 0.0000 0.0038(10) 0.27(3) 
Zn 0.3333 0.1667 0.1667 0.0048(6) 0.09(3) 

Space group Rm, a = 6.83054(6) A, c = 14.0479(2) A, a = 90°, ' = 1200, 
V = 567.613(9) A3 , Residuals x2 = 13.95, R = 2.83%, R = 2.73%. The error bars are 

based on 2o as returned by GSAS. 
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For all datasets the degree of antisite disorder refined to 9(3)% Zn2+  ions on the 

Cu site, with a corresponding 27(3)% fraction of the Zn sites occupied by Cu 2  ions. 

The inset in figure 5.3 shows the dependence of X 2  of the refinements at 10, 150 and 

285 K, as a function of the antisite disorder. In all cases the minimum in x2  lies around 

a 30% fraction of Zn sites occupied by Cu2+  ions, and the minimum is the sharpest in 

the data taken at 10 K. 

It is important to note that in these refinements the occupancies of the Cu and Zn 

sites with either Cu2+  or  Zn2+  ions were fixed at 100%. A further constraint imposed 

on the refinement was that the Zn:Cu ratio should stay 1:3. The Zn:Cu ratio was 

measured independently using ICP-AES, and was later confirmed with niuon spin-

relaxation spectroscopy. This information had to be added to the refinement to obtain 

reproducible values for the antisite disorder. Subsequent relaxation of the constraints 

on the site occupancies and Zn:Cu ratio did not lead to large changes in the refinement; 

the Zn/Cu site occupancy went from 100% to 96(2)%, and there was only a very small 

further reduction of the residues. However, GSAS could no longer put error bars on 

the refinement because the obtained results were amongst a large manifold of possible 

solutions outside the subspace defined by the constraints discussed above. Given the 

high quality of the data and the refinement It appears reasonable to require that the 

structure solution is unique within the subspace of physically possible solutions. We 

believe that the relaxation of any of these constraints equates to ignoring relevant data 

on the one hand, and on the other hand to over-interpretation of the remaining data. 

The large degree of antisite disorder is disappointing news for a material which 

has been heralded as the first perfect S = 1/2 kagomé antiferromagnet.. it is not so 

surprising from a chemical point of view; in the previous section it was shown that 

even the strongly Jalin-Teller distorted Cu sites can host Zn ions, resulting in Zn 

stoichiometries of x> 1. The degree of antisite disorder found here corresponds to an 

energy of 1300 K between a Cu2+  ion on the Cu site and on the Zn site, given that 

the synthesis was carried out at 500 K. The energy of the Jahn-Teller distortion is 
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probably larger than 1000 K, but it is likely that Zn sites hosting a Cu 2  ion become 

locally weakly angle-distorted, which reduces the effective energy difference between 

the sites. Following through this line of thought a low-temperature synthesis would 

be preferential. Unfortunately the presently known low-temperature synthesis yields 

samples of a lower overall crystallinity. In the remainder of this chapter the importance 

of this imperfection will be assessed. From muon spin-relaxation spectroscopy [131] it 

is clear that despite this imperfection for x = 1 the spins do not freeze even at 50 rnK, 

and there is no doubt that zinc paratacamite is still a material of outstanding interest. 

0 •• • 

Figure 5.4: Two kagoiné layers of Cu2Th  ions (black) sandwiching the interplane Z112  sites 
(light grey) in x = 1 zinc paratacamite. The oxygen, chlorine and hydrogen atoms are omitted 
for clarity. 

5.3 Magnetic susceptibility 

The magnetic susceptibility of zinc paratacamite samples with x = 0.15, 0.22, 0.5, 0.66, 

0.8, 0.9, 1.00, 1.1, 1.16, 1.4 and 1.5 has been measured with a Quantum Design MPMS 

magnetometer. The field cooled and zero-field cooled susceptibilities were measured 

in an applied field of 100 G between 1.8 and 340 K. Figures 5.5 and 5.6 show the 

field-cooled (open symbols) and zero-field cooled (filled symbols) susceptibilities for 

x = 0.15, 0.22, 0.5 and x = 0.66, 0.9, 1.0 respectively. It is clear from these figures that 
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Figure 5.5: The low-temperature magnetic susceptibility for x = 0.15 (black circles), x = 0.22 
(red squares) and x = 0.5 (blue triangles) phases. The open and filled synibols correspond to 
the zero-field cooled and field-cooled susceptibilities respectively. 

the remanence which is present in clinoatacamite (x = 0) below 6.5 K vanishes with 

the Cu2+  occupation of the °h  Zn site. 

Table 5.3 gives the Curie (C) and Weiss (Ow ) constants against. Zn stoichiometry x, 

obtained from the high temperature susceptibility T> 150 K. The Curie constant found 

for all concentrations, and those extracted manually from data published by Shores [188] 

is 0.58(8) emu K/mol. The analysis as presented in the chapter on the jarosites suggests 

that the mean-field estimate for the effective magnetic moment can be relied on. In 

this case it would be 2.1ILB. which corresponds to (L 2 ) = 0.70(7). It should be stressed 

that this orbital angular momentum is induced by the spin-orbit coupling alone, and 

hence does not induce multiplet effects. The total magnetic moment Hubert space 

remains two dimensional, corresponding to the S = 1/2 spin. While the connectivity 

of the magnetic lattice goes down with increasing x, the Weiss temperature becomes 

more negative. The x = 1 phase, which should be the best approximation to the 
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kagomé lattice, has a Weiss temperature of 300(40) K. Hence the Cu 2  spins on the 

kagomé lattice are coupled with a strong antiferromagnetic superexchange of 300 K. 

The lower Weiss temperature found as x is lowered suggests that populating the Zn 

sites with Cu2+  spins introduces weak ferromagnetic interactions. These could be the 

exchange pathways linking the kagomé layers via a Zn site occupied by a C u2+ ion, or 

the direct interactions between Cu2+  ions on inter-plane Zn sites. It is therefore natural 

to associate the magnetic remanence found for 0.6 < x < 1.0 and the ferromagnetic 

moment found for 0 < x < 0.6 with the Cu2+  spins on the inter-plane Zn site. For 

this reason the susceptibilities in figures 5.5, 5.6, 5.7 and 5.8 have been given per 

formula unit, which equates the susceptibility per Zn site. In table 5.3 the magnetic 

remanence/ferromagnetic moment are given as a fraction of the Cu2+  spins on the Zn 

site, nively calculated as (1 - x). 

0.16 

C 
:3 

- 0.12 
:3 

0 
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0.08 

0.04 

4 	8 	12 	16 	20 	24 
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Figure 5.6: The low-temperature magnetic susceptibility for x = 1 (black circles), x = 0.9 (red 
squares) and x = 0.66 (blue triangles) phases. The open and filled symbols correspond to the 
zero-field cooled and field-cooled susceptibilities respectively. 
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Theory predicts that the magnetic ground state of the S = 1/2 kagorné ant.iferro-

magnet is non-magnetic, i.e. that its susceptibility vanishes for T - 0. As is clear 

from figure 5.6 even for x = 1 this does not happen. In figure 5.7 and 5.8 the magnetic 

susceptilibity of samples with 0.8 < x < 1.4 are plotted against the inverse temperature 

(T -1 ). Figure 5.7 also shows the susceptibility from a fraction of 6% of the total number 

Cu2+ spins per formula unit of free spins in a 100 C field, given by equation 2.49. The 

resemblance of the low-temperature susceptibility with the Curie susceptibility suggests 

that there is a contribution from weakly coupled (almost free) spins, which are likely to 

be the antisite spins making up a fraction of up to 9% of the total number of Cu2+  spins. 

Most of the low-temperature magnetic susceptibility can thus be accounted for. It is 

however not possible to do this with such an accuracy as to prove that the contribution 

to the susceptibility from the Cu2+  spins on the kagomé layer vanishes. The mean-field 

susceptibility at 1.8 K, (T = 1.8 K) = C/(1.8 - e) C/ - 0.005 emu/mol 

formula unit, which is small compared to the total susceptibility measured at 1.8 K. 

Unfortunately it is exactly the matter of whether the Cu2+  spins in the kagomé layers 

contribute to the magnetic susceptibility, or whether they are bound in a non-magnetic 

resonating valence bond-like ground state, that is a central question in this study. 

The x = 1 sample shown in figure 5.7 is the deuterated sample for which the neutron 

powder diffraction data discussed in the previous section was taken. It seems that the 

splitting between the field-cooled and zero-field-cooled susceptibility is somewhat larger 

in deuterated samples than in hydrogenated samples. This should not be a cause of 

concern; muon spin relaxation measurements [131] confirm that the spin-dynamics in 

this sample are typical for x = 1 samples. This was further confirmed in specific heat 

measurements. One possible explanation for the observed variation in the magnetic 

susceptibility of samples with the same Zn stoichiometry x is antisite disorder between 

the chlorine and oxygen ions. If such an antisite disorder is included in the refinement 

of the neutron powder data, it refines to 3%. 
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be further diluted with diamagnetic Zn-ions. Are the values found with IcP-AE 

unreliable because of the presence of a non-crystalline phase rich in Zn?. The low-

temperature magnetic susceptibilities as shown in figure 5.8 are an indication i Itt 

dilution of the kagomé lattice has been successful. In all samples with x > I I It 

magnetic remanence is zero. Again the susceptibility per formula unit is shown against 

T'. At first the susceptibility per formula unit decreases, and it even decreases per 

Cu2+ unit up to x = 1.16. The susceptibility for x = 1.4 per Cu2+  unit is much larger, 

while per formula unit it is again approximately equal to the x = 1 susceptibility. 

For x = 1.5 even the susceptibility per formula unit is much larger, despite a lower 

concentration of Cu 2  spins. This trend can be explained as initially a reduction in 

antisite spins, which make-up the majority of the susceptibility at low-temperatures, 
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Figure 5.7: The magnetic susceptibility of x = 0.8 (black circles), 0.9 (red squares) and 
1.0 (blue triangles) samples measured in 100 G, against 11T. The open and closed symbols 
correspond to the field-cooled and zero-field cooled susceptibilities respectively. 
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Figure 5.8: The magnetic susceptibility of x = 1.5 (black circles), 1.4 (red squares), 1.16 (red 
triangles), 1.1 (blue crosses) and 1.0 (black dotted line) samples measured in 10() G, against lIT. 
The open and closed symbols correspond to the field-cooled and zero-field cooled susceptibilities 
respectively. 

and a general opening-up of the magnetic lattice for larger Zn concentrations, with x > 

1.4. The Curie and Weiss constants obtained from the high-temperature susceptibility 

are very noisy, and do not give a clear trend. Even though the susceptibility data can 

be rationalised by assunhing that dilution of the kagomé lattice has been successful, this 

issue will be revisited in the next two sections. 

5.4 Muon spin relaxation spectroscopy 

Muon spin rotation/relaxation spectroscopy was carried out at the GPS and LTF facil-

ities at PSI, and at the pSR station at ISIS. A dilution refrigerator was used for mea-

surements below 1.5 K on samples with x > 0.6. Positive muons were stopped in pellet-

pressed samples of zinc paratacamite of 1 ' 2 mm thickness, with Zn stoicliiometries 

x = 0.15, 0.33, 0.5, 0.66, 1.0 and I.I. The asymmetry (A) in the forwards/backwards 



128 	 CHAPTER 5. ZINC PARATA CA MITE 

emitted positrons arising from the muon decay were background corrected, using the 

characteristic nuclear relaxation signal which was observed for all samples at sufficiently 

high temperatures, in the paramagnetic phase where the electronic spin moments fluc-

tuate too fast to be picked up by the muons. The background corrected polarisation 

given by P(t) = (A(t) - B.G.)/A(t = 0) is analysed here. The muon facility at PSI 

works with single-muon events, which allows for a better time resolution than the pulsed 

muon source at ISIS. However, in most samples studied here the muon spin-relaxation 

from the electronic spins is very slow compared to the muon lifetime of 2.2 jis. At iSR 

the muon intensity per pulse is much higher, and the muon spin relaxation signal could 

be followed up to 16 ps at this instrument. Hence, most of the data shown here were 

taken at the jtSR facility. The spectra for x = 0.33 where the spin relaxation due to 

the electronic spins is much faster, as well as some of the x = 0.66 data, were measured 

at LTF and GPS at PSI. 

1 
	 x = 1 .00(3),T = 50 mK 
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Figure 5.9: The muon polarisation in a hydrogenated sample (red) and a deuterated sample 
(black) at 50 mK, in zero field (filled circles) and longitudinal fields H = 20 G (open circles), 
80 G (filled squares) and 160 C (open squares). The blue lines give fits to the data as discussed 
in the text. 
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Figure 5.9 gives the muon polarisation (P) in fields up to 160 G for an x = 1 

sample at 50 inK. The zero-field signals shown in red filled circles for hydrogenated 

zinc paratacamite and black filled circles for deuterated zinc paratacamite ( 96%), are 

typical for what is observed in samples of all Zn stoichiometries in the paramagnetic 

state. i.e. T> 20 K. This oscillatory signal is explained by the formation of coherently-

bouiid states between the muon and the OH groups in zinc paratacamite, forming 

muonium hydroxide (OH )u) [122, 50]. To obtain accurate fits of the muon relaxation, 

an additional Gaussian Kubo-Toyabe term (KT) [205] accounting for muon relaxation 

from randomly oriented static nuclear spins at the Cl-site was included. 

P(t) = (1 - fc1 )P0H e_(-y..oiit)2 / 2 
 + fciKTc(t) 	 (5.1) 

with y1 = 13.554 x 27r kHz/G, 

1 	WOHt 
= 	

\ 
POH 	+ 1 
	/w0t\  - 	cos 	

2 ) 
+ cOS(W 	

f 
OHt) + cos 	

2 ) 

and 

12 
KTi(t) = + (1 - wit2)eCIt/2 

Excellent agTeement was obtained for the relaxation in the hydrogenated sample. For 

the muonium site HOH = 7.8(4) G with a field-distribution of AOH = 2.4(4) C. Ap- 

proximately 15% of the signal can be attributed to the Cl site (fci 	0.15), with a 

field distribution of 	1.8 G. The deuterium nuclear moment is much smaller, with 

= 0.153 resulting in a slower muon precession WOD WOH10.153. The broken 

blue curve in figure 5.9 is the muon relaxation expected for a deuterated sample, based 

on the parameters as found for hydrogenated samples. but with a larger value for the 

field distribution at the Cl site. It should be noted that for samples with x > 1 these 

signals are recorded even at 50mK and below. Apparently, the x = 1 sample remains 
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fully paramagnetic down to these very low temperatures, so that the only magnetic 

moments "seen" by the muons are the randomly distributed static nuclear moments. 

x= 1.00(3), H=80G 	x = 1.16(3), H80G 

1 

0.8 

0.6 
a- 

0.4 
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Figure 5.10: The muon polarisation in a longitudinal field of 80 G for x = 1.00(3) (left panel), 
and x = 1.15(3) (right panel) at T = 40 mK (filled circles), 800 mK (open circles), 5 K (filled 
squares) and 20 K (open triangle). The red dots in the right panel show the 100 mK data for 
x = 1.00(3) for comparison. The lines through the data points give the fits with a compressed-
exponential decay. The obtained relaxation rate (A) is given in the inset as a function of 
temperature for 0.66(3) (stars), x = 1.00(3) (open red circles) and x = 1.15(3) (filled black 
squares). 

A longitudinal field of 80 G (full black squares in figure 5.9) was sufficient to decouple 

the muons from the nuclear moments, which as we have just found, are up to 8 C. 

Much larger fields, up to 2500 C. were needed to decouple the muons from the electronic 

spins. Hence the muon relaxation in a longitudinal field of 80 C is a measure of the 

remaining fast spin fluctuations which can be picked up by the muons. Figure 5.10 

shows the muon polarisation in 80 C at different temperatures for an x = 1.16(3) sample 

and for x = 1 at 40 mK in red. The slow relaxation from the fast fluctuating spins 

evident here can be fitted with a compressed-exponential decay et)°  with c = 1.4. 
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In most cases a = 1 and in the case of dilute-alloy spin glasses a = 0.5 and even 

a = 1/3 have been found [205, 41, 106]. Stretched exponential decay can be explained 

by rapid relaxation of muons close to magnetic sites, and slower relaxation from muons 

further away in dilute magnetic systems. It also occurs in glassy systems with a random 

energr landscape resulting in a wide distribution of relaxation times. That the muon 

relaxation is different in the present case may be evidence that the relaxation does not 

arise from "defects" in the lattice alone, and hence, that the t ime-correlat ions of the 

Cu2+ spins in the kagomé lattice in a magnetic ground state are probed. Compressed 

exponential relaxations have been found for gel and sponge phases [12, 69, 75], and the 

implications of this particular muon decay in the case of a co-operative paramagnet 

may be the subject of future investigation. In the "classical" kagomé antiferromnagnet 

iron jarosite there is also some evidence of compressed exponential muon relaxation 121 

at higher temperatures. 

For the moment the muon decay is treated plienomenologically. The relaxation is 

found to increase slightly below T < 1 2 K, indicative of some slowing down of the 

spins. This effect is more pronounced for samples with a higher Cu2+  contents (lower x), 

and becomes very weak for samples with x > 1. In theory this compressed-exponential 

decay is also present in the zero-field muon spin relaxation as shown in figure 5.9. For 

samples with x > 1 the inclusion of the compressed-exponential in equation 5.1 does 

not affect the fit. For x = 0.66 on the other hand, the relaxation rate due to electronic 

spin fluctuations is much stronger, as is clear from figure 5.11. In this case equation 5.1 

must be multiplied with the compressed-exponential decay to obtain a good agreement. 

With increasing Cu2+  contents the zero-field muon relaxation rate gradually in-

creases, and for x < 0.6 the dynamics become more spin-glass like. The zero-field 

muon polarisation signals at 1.5 K are shown in figure 5.11. For samples with 

x < 0.6 there is a gradual transition from the slow precession indicative of muonium 

hydroxide formation, to a faster decay, in the case of x = 0.33 relaxing to almost 1/3, 

as is typical for a random distribution of static electronic spins. For all samples with 
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x <0.6 this transition takes place between 3 and 6 K. For x = 0.15. (not shown here 2 ) 

an oscillation indicative of a weak ordered moment emerges, reminiscent of the muon 

relaxation in the parent compound clinoat.acamite [240]. 

Muons can also be used as local probes of the magnetic susceptibility, by measuring 

the muon Knight shift [184]. Ofer et al. [152] claim to have measured the bulk suscep-

tibility this way, and conclude that the bulk of the system has a magnetic ground state. 

However, our data does not show any measurable shift in the Larmor frequency of the 

implanted muons away from w = 'yp, j..toHext . This issue still needs to be resolved. 

In conclusion, the muon data shows that for x > 0.66 the magnetic ground state 

is dynamic, i.e. mainly paramagnetic. For x < 0.66 spin fluctuations are slower and 

more glass-like. No ordered moment is present until x 0.15. A crucial question 

is now "Is the electronic ground state for x = 1 paramagnetic or non-magnetic, i.e. 

RVB-like?". On cooling the x = 1 sample no transitions are observed, but this does 

not exclude that at some temperature a transition occurs from paramagnetic to RVB. 

Exact diagonalisation studies of the Heisenberg Hamiltonian on the spin 1/2 kagomé 

antiferromagnet show that there is only a gradual onset of triplet states in a contin-

uurn of singlet states. This means that no discrete transition can be expected. The 

increasing relaxation rate at very low temperatures would suggest that rather than 

being bound into spin singlets, the spins are fluctuating. As was shown in previous sec-

tions, some disorder is present in the material. It is therefore possible that the material 

is inhomogeneous, containing regions of higher Cu2+  concentration and connectivity. 

The muon relaxation could arise from a slowing down of the dynamics in these regions, 

while in other regions the spins are bound into singlet states and hence invisible to the 

muons. However, it could be argued that in this scenario an exponent a < 1 could be 

expected. To resolve this issue the exponent found here, of a = 1.4 should be explained. 

An inhomogeneous sample would also be the only explanation that no quantum phase 

2Technically this is clmoatacanute because between x = 0.15 and x = 0.3 a structural transition 
occurs from rhombohedral to monodinic symmetry, where the Zn site becomes angle distorted away 
from Oh. 
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transition is observed as a function of Zn stoichiometry x, while if we assume that the 

bulk of the spin in the Ir = 1 phase are bound in singlets, clearly one must have taken 

place somewhere between x = 0 and x = 1. So far the most straightforward explana-

tion of the observed behaviour is that fluctuations remain throughout the system, and 

become gradually faster as the Zn stoichiometry and the temperature are increased. 

Some of this data was first analysed by Fabrice Bert and Philippe Mendels, and has 

been published in [131]. 

5.5 Heat capacity 

Heat-capacity measurements were carried out using a Quantum Design PPMS system, 

on ' 5 mg dye-pressed pellets of ZnCu4_(OH)6Cl2 powder samples with x = 0.8, 0.9, 

1.1 and 1.4 in 0 T and 9 T, and in 0 T only for x 0.5. Temperatures down to 0.4 K 

were reached using the PPMS He 3  refrigerator. For one x = 1.00(3) sample the heat 

capacity was in addition measured in 1,2,3,5 and 7 T. Here the low-temperature heat 

capacity, up to 30 K will be discussed. At higher temperatures there is no difference 

in heat capacity between fields up to 9 T, and the response is dominated by phonon 

contributions which could not be fitted well with the Debye heat. capacity. This could 

be due to OH bending modes [231. 

5.5.1 Zinc paratacamite with 0.5 < x < 1. 

Figure 5.12 presents the heat capacities of samples with x = 0.8,0.9 and x = 1 in 0 

and 9 T and for x = 0.5 in 0 T. The heat capacity of an x = 1 sample for intermediate 

fields is shown in figure 5.13. We could reproduce the heat capacity for x = 1 in 0, 1, 

3. 5. 7 and 9 T fields as reported by Helton et al. [89]. The shoulder gradually moves 

to higher temperatures while the total entropy below 24 K remains constant. 

In order to separate the field-dependent part of the heat capacity, for each Zn 

stoichiometry the difference was taken between the interpolated heat-capacity curves 

measured in different fields. The inset, in figure 5.12 shows the difference between the 
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Figure 5.12: The heat capacity in 0 T ( lines and filled symbols) and 9 T (broken lines, open 
symbols) of samples with 0.5 (blue vertical lines), x = 0.8 (x and +), x = 0.9 (thick red ) 
and x = 1 (o). The error bars are given for x = 1 only. The inset displays A CvIT for the 
x = 0.8 (red x) and x = 1 (o) and their respective fits, the red and black lines. 
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o and 9 T heat capacity curves ACVIT = [Cv(O T) - Cv(9 T)]/T for x = 0.8 (red 

crosses) and for x = 1 (black circles). To the eye, the field dependence of the heat 

capacity observed here is similar to the Schottky anomaly arising from defects in Zn-

doped Y2 BaNiO 5  and [Ni(C2 H8N2 ) 2 (NO2 )]C104  (NENP) [162], and we have applied 

a similar analysis as described in [162]. /Cv/T was fitted with an expression of the 

form 

f[C(E1 ) - C(LE2 )]/T, 	 (5.2) 

where f is the fraction of spins S per unit cell (or their spectral weight). C ='72(E) 

is the heat capacity from a S 1/2 spin with a level splitting AE given by 

/ A u'\ 2 

c C "2 
( L 

-- 

exp(E/) 

(exp(E/r) + 1)2 
(5.3) 

The heat capacity of S 1 (triplet) and S = 3/2 systems were evaluated numerically. 

We found that the field-dependent part of the heat capacity is best modelled by a 

small number of zero-field split doublets, i.e. interacting spins or quasi particles with 

a spin S = 1/2. The energy difference (SE) between the levels increases with the 

application of an external magnetic field, following the energy of the Zeernan splitting, 

E eeman  = g/LBH with g = 2.2, as shown in the inset of figure 5.16. The shoulder in the 

heat capacity in zero-field, which corresponds to a zero-field splitting of the doublets 

of AE 1.7 K (0.15 meV) indicates that the levels involved are part of an interacting 

system, and cannot be ascribed to a paramagnetic impurity phase. The best agreement 

with experiment was obtained when a small Gaussian spread o in level splittings AE 

was taken into account, indicated as the error bars in the inset of figure 5.14. 

For the x = 1 sample all 21 combinations of magnetic fields were fitted using 

formula 5.2. For example, figure 5.14 shows the difference between the heat capacity 

in 1 T and in 3 T (circles), and 1 T and 9 T (squares) for an x = 1 sample. The 

lines through the data points are the fit results for S = 1/2 where equation 5.2 could 

be fitted with a single value for f and for /.E(H = 1 T) for both curves. In the 
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Figure 5.13: The heat capacity of x = 1 zinc paratacamite on a log-log scale fields of 0 T (filled 
circles), 1 T (open circles), 2 T (filled triangles), 3 T (open triangles), 5 T (filled diamonds), 
7 T (open diamonds) and 9 T (open squares). 

case of S = 1 the agreement was less good, and for S = 3/2 the fit results for the 

Cv(H = 1 T) - Cv(H = 3 T) curve (the fit is the broken line through this curve) for 

f and E(H = 1 T) could not he used to fit the Cv(H = 1 T) - C(H = 9 T) curve. 

Even the best fit with S = 3/2 spins where all parameters except the spin were left free, 

shown in figure 5.14 as the broken line through the Cv(H = 1 T)—Cv(H = 9 T) data 

points, is poor. The lines through the data points in the inset of figures 5.12 and 5.14 

are the fit results for x = 0.8 and x = 1 respectively. We find that f = 0.21(1),0.22(1) 

and 0.19(1) for x = 0.8,0.9 and 1.0 respectively. For x = 1, with three Cu 2  ions per 

unit cell, this accounts on average for 6.3(3)% of all C u2+. 

As a result of the spin gap the heat capacity is expected to show a shoulder at J/10 

corresponding to the population of the lowest magnetic (Stot = 1) levels [190, 16, 1371 

In our data a shoulder is evident in zero field. However, a model with a triplet of S = 1 

levels results in a slightly poorer fit with the data. That multiplets with Stot > 1 are 
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Figure 5.14: Two of the 21 heat-capacity differences, [Cv(1T) - Cv(3T)J/T (circles) and 
[Cv(1T) - Cv( 9T)]/T (squares) on a Cv/T scale. The red and blue lines through the data 
points are the mutually consistent fits with formula 5.2 using S = 1/2 spins, yielding f 0.19. 
The broken hues give less successful fits with S = 3/2 unultiplets. The inset shows the obtained 

E against H for two samples. The broken red line in the inset gives the Zeeman splitting 
with g = 2.2. 

involved [190] can be ruled out from the fits with S = 3/2 heat capacities as shown in 

figure 5.14. From the field dependence of the shoulder in our data, it can also be ruled 

out that the corresponding zero-field splitting is a singlet-triplet gap; if the ground state 

were non-magnetic, then the application of a magnetic field should shift some magnetic 

levels to lower energies, until a quantum-critical phase transition to a magnetic ground 

state is reached. In the present data all the spectral weight shifts to higher energies 

with the application of a magnetic field, as is also evident in the inset of figure 5.16. 

Hence, we conclude that the lowest energy level of the system must correspond to a 

magnetic state, i.e. either St,,t  > 0 or Stot  is not a good quantum number. In samples 

with x = 0.8 and x = 0.9 no quantum-critical phase transition is observed, as would 
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be indicated by a competition of phases or a down-shift of part of the spectral weight. 
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Rather, similar behaviour as in .r = 1 is observed. Hence, the magnetic ground state 

in these samples is essentially identical to the ground state in the x = 1 phase, which 

is also reflected in the total entropy per spin recovered at 24 K. as shown in table 5.4. 

The only difference, as made evident by the muon results [131] and the appearance of 

a magnetic hysteresis, is that the spin fluctuations gradually slow down with increased 

connectivity of the magnetic lattice. 

Table 5.4: The estimated iiumber of antisite spins (f), the corresponding Cu2+  occupancy of 
the kagome lattice (c = 4- x - f), the total entropy from the antisite spins (Sj), the measured 
total entropy (St(,t)  up to 24 K, the percentage of the entropy recovered per spin and the 
percentage of the entropy recovered per spill in the kagomé lattice. The entropy is given in 
units of R = NakB = 8.314 JKniole formula unit. 

x 

±0.02 

f 
±0.010 

c 

(4-x-f) 

Sf /R 

(1 hi(2)) 

S0 /1 

(T = 24 K 
(4-xIn(2) 

1% 

S1-S1 

1% 
0.51 0.51(2)° 3.0 0.346(8) 1.061(12) 43.9(8) 34.4(11) 
0.80 0.210 2.97(3) 0.146(6) 0.993(11) 44.7(8) 41.1(13) 
0.90 0.219 2.87(3) 0.151(6) 0.959(9) 44.8(7) 40.6(13) 
1.00 0.189 2.81(3) 0.131(7) 0.933(9) 44.8(7) 41.1(14) 
110b 0.183 2.74(3) 0.127(7) 0.933(9) 46.1(7) 42.4(14) 
1•406 0.153 2.44(3) 0.106(6) 0.877(9) 48.9(7) 45.6(14) 

Here f was not measured experimentally, it was assumed that c = 3.0 (full occupancy) and hence 
f=x. 
b  This data is discussed in the next section. 

From the magnetic susceptibility of samples with 0 < x < 1 as published in [188] 

and also shown in table 5.3, it is clear that the exchange interaction between the Cu 2  

spins on the interplane Zn sites, and between the Cu2+  spins on the Zn sites and the 

spins kagorné lattice is much weaker than the exchange interactions within the kagomé 

lattice. This suggest that the fraction f of zero-field split doublets, which models the 

field-dependence in the heat capacity for 0.8 < x < 1, are wealdy-coupled S = 1/2 

spins from Cu2+  ions residing on inter-plane Zn sites (antisite spins) as also suggested 

in [166]. For x = 1 an identical fraction f of Zn2+  ions must occupy Cu sites on the 

kagomé lattice. Oiice f is known for each x (fr) the Cu2+  coverage e of the three 

Cu sites per unit cell is given by c = 4 - x 
- f. An important assumption in our 

argunient is that the heat capacity of a slightly diamagnetically doped kagomé lattice 
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is field independent, which is reasonable as long as 91LBH <O [165, 190]. For the 

deuterated x = 1 sample of the neutron-diffraction measurements it follows that the 

antisite disorder is 6.3(3)% in Cu 2  or 19.0(9)% in Zn 2t By treating the zero-field 

splitting of the antisite spins as the Weiss temperature, an estimate for the susceptibility 

of the antisitc spins XA  0.58f/(T+1.7) for T>. 1.7 K is obtained. If A  is subtracted 

from the total susceptibility for x = 1, the susceptibility corresponding to the kagomé 

layers levels out to 1.1(1) 10 emu mol 1  Cu2  for 20 < T < 100 K, as shown in 

figure 5.15. The correction of the susceptibility for contribution of the antisite spins 

also leads to a considerably larger estimate of the Weiss temperature for the kagomé 

lattice, of ' 500 to 600 K. 
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Figure 5.15: The magnetic susceptibility (open circles), the susceptibility corrected for the 
antisite spins (filled) circles and the corresponding inverse susceptibilities (red) against the 
right-hand axis. 

Comparing the heat-capacity data of several x = 1 samples, all synthesised at a 

temperature of 484 K, an average antisite disorder of '-'-j  6.0(6)% in Cu2+  is derived. 

From a simple counting argument it can be seen that the chemical potential p = 
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E(Z n2+ on Zn site) - E(Cu2  on Zn site) behind the Cu2+/Zn2+  partitioning can be 

deduced using 

1 - 	
- exp(—u/kBT) 

(5.4) 
- exp(—[L/kBT) + 3 

For samples synthesised at 484 K it was found that f 	0.18, from which it can 

be estimated that z 	1250 K. This is a plausible value given that most likely the 

Zn site becomes locally slightly angle-distorted, if occupied by an otherwise orbitally 

degenerate Cu2+  ion. This distortion will lower the energy difference between the Cu 

and the Zn sites. It would also introduce an additional energy scale for the orbital 

ordering of the Cu2+  ions on the Zn site, which may explain the lattice fluctuations 

below 125 K observed in 63 Cu and 35 Cl NMR [95]. The results for x = 0.8 and x = 0.9 

are given in table 5.4. The Cu sites on the kagomé lattice are energetically favoured 

by the Cu2+  ions, and there is only a slow increase of the Cu2+  occupancy on the Zn 

sites until the Cu2+  occupancy of the kagoiné lattice (c in table 5.4) is almost complete. 

We observe that from a structura' point of view samples with 0.8 < x < 1 model the 

kagomé antiferromagnet equally well. This is consistent with our observation that no 

quantum-critical phase transition occurs within this range of Zn stoichiometries. 

Table 5.4 also compares the total entropy S(T) JT idt in all saniples at 

T = 24 K. This temperature was chosen to he above the point where no relative changes 

in S(T) between samples were observed, and at a temperature where the contribution 

from structural degrees of freedom can still be expected to be small. On average 45% of 

the total magnetic entropy given by (4— x)R ln(2) is recovered at 24 K. This value goes 

down slowly as the Cu2+  contents and the connectivity of the lattice increase. The last 

column in table 5.4 gives the entropy which remains when the total entropy from the 

antisit.e spins is subtracted, as a percentage of the remaining Cu2+  spins which must 

reside on the kagomé lattice. The numbers in this column show a similar trend as the 

previous colunm. 

sThe entropy of the system is constant for a givell x, hence it is not necessary to find the minimum 
of the Hehnholtz free energy in the present situation. 
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Figure 5.16: The field-independent part of the heat capacity as obtained from the 0 T (lines 
or filled circles) and 9 T (broken line or open circles) data of samples with x = 0.8 (black lines), 
x = 0.9 (thick red hues). x = 1 (black circles with error bars). The dotted blue lines give fits 
to the corrected heat capacity for x = 1 with -yT with a = 1.3 and 1.7. 

The heat capacity of the kagomé lattice can be estimated by subtracting time heat 

capacity from the Cu2+  spins on the Zn sites. The result for the data with 0.8 

x < 1 is shown in figure 5.16. For all x, the curves obtained from the 0 and 9 T 

data are identical within the experimental error. This is not an additional proof of 

the validity of our model, but follows from the quality of the fit as described in the 

previous paragraphs. This part of the heat capacity most likely corresponds to weakly-

coupled kagorné layers. In particular the shoulder in the heat capacities as shown in 

figure 5.16, which corresponds to a peak in Cv/T = dS/dT around 2.5 K, is likely due 

to the entropy release when the fluctuations in neighbouring kagomé layers decouple. 

For larger x this peak becomes smaller, and the remaining entropy approaches an 

exponential temperature dependence, 0.1T JK'mol 1  form. unit, with a = 1.3(1) 
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up to 10 K. However, it cannot be ruled out that at 10 K phonon and OH-bending 

modes already play a role. 

5.5.2 Zinc paratacamite with 1 <x < 1.4. 

In figure 5.17 the heat capacity divided by temperature (Cv/T) of samples with x = 1.1 

and 1.4 is given, along with the x = 1 data for comparison. The x = 1.1 curve is 

identical to the x = 1 curve, while the x = 1.4 curve can be scaled to overlap with 

the other two curves. Nevertheless the analysis as carried out for x < 1 has been 

applied here too, and the results are given in table 5.4. Not surprisingly, the heat 

capacity which can not be accounted for by the antisite spins is also identical to the 

heat capacity remaining for x = 1. It could be expected that the further reduction of 

the Cu2+  occupancy of the kagomé layers should result in a further reduction of the 

peak in C/T at 2.5 K. This does not happen, which suggests that samples with x> 1 

are not pure. Though some extra dilution of the lattice is likely, most of the extra zinc 

may be present as a non-crystalline impurity phase. 

5.6 Transport properties and doping 

In general first row transition metal compounds are insulators. As a rule of thumb it 

can be said that for those with a bright colour there is no need to measure the transport 

properties, since there will not be any significant conductivity. Compounds which are 

black or with a very dark shade on the other hand, often do have a significant con-

ductivity. At the other end of the spectrum is the shine of metallic compounds, which 

can be attributed to the dielectric properties of good conductors. Zinc paratacamite is 

bright green/blue. regardless of the Zn stoichiometry. Nevertheless, the conductivity of 

a small pellet-pressed powder sample with x 1 has been measured between 1.8 K and 

300 K in a Quantum Design PPMS. This measurement confirmed that the resistivity 

p> 10 MIkm. It would be interesting to see whether the material can be doped with 

ions which take another electron from the Cu2+  ions, or donate an electron to the Cu2+ 
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Figure 5.17: Cv/T = dS/dT in 0 T (full lines and filled symbols) and 9 T (broken lines and 
open symbols) of samples with x = 1 (red circles), x = 1.1 (thick black lines) and x = 1.4 (thin 
blue lines). 

band. In theory the sample should in that case become conducting, and it would be 

very interesting to study the magnetic ground state in this situation. 

5.7 Inelastic and polarised neutron scattering 

Inelastic neutron diffraction allows for a direct measurements of the time and q de-

pendent excitation spectrum S(q, w), typically with w > 5 . 10 11  s. A singlet-triplet 

or spin gap should be evident as a gap in the magnetic part of the neutron excitation 

spectrum. The first inelastic neutron scattering measurements on the x = 1 phase 

of zinc paratacamite were carried out at the pulsed-neutron time-of-flight instrument 

MART at the ISIS facility UK. 12 g of a. deuterated powder sample was used and 

spectra were taken with incident neutron energies of 8 meV and 50 meV. Data were 
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collected for 24 hours at each energy, which proved to be too short to see any Inag-

netic excitations. At OSIRIS. ISIS an inelastic neutron spectrum was measured with 

3 meV neutrons probing excitations between 0.2 meV and 2 meV. Also in this region 

the inelastic neutron spectrum was featureless. 

Q /A 

Figure 5.18: Inelastic neutron spectrum from a 20 g powder sample of Z11Cu 3 (0D) 6 C12  at the 
1N4 neutron spectrometer with 69.35 meV (1.086 A) neutrons. The sample temperature is 2 K. 
The right axis corresponds to the red line, which gives the neutron magnetic form factor for 
Cu2+, obtained using the constants from [38]. The upper marks the Brillouin zone boundaries 
along the a axis. The magnetic Brillouirt zone is twice the crystallographic zone along this axis. 

Further spectra were obtained by Ross Stewart. at the direct geometry time-of-flight 

spectrometer 1N4 at the Institute Laue Langevin, France, using 20 g of deuterated 

sample. The spectra obtained with incident, neutron energy hw = 69.35 meV at a 

temperature of 2.2 K is shown in figure 5.18. The horizontal features observable here all 

get weaker for lower q following the phonon form factor. No distinct features are visible 

at low wave-vector transfer, while the magnetic form factor for Cu2+  ions (from [38]) 
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which is also shown here, remains relatively large for most of the q range probed with 

69.35 meV neutrons. 
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Figure 5.19: Inelastic neutron spectrum from a 20 g powder sample of ZnCu 3 (OD) 6 C12  at the 
1N4 neutron spectrometer with 17.21 rneV (2.18 A) neutrons. The sample temperature is 2 K. 

The spectra obtained with incident neutrons of 17.21 meV at 2 K (figure 5.19) and 

at 60 K (figure 5.20) show a very weak feature around q = 1.2 A and hw = 7 meV. 

The intensity of this feature does not change with temperature while the intensity of 

the phonon modes at higher q clearly increes with temperature. From figure 5.21 

it is can be seen that the feature around q = 1.2 A' becomes more distinguished at 
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Figure 5.20: Inelastic neutron spectrum from a 20 g powder sample of ZnCu3(0D)6C12 at the 
1N4 neutron spectrometer with 17.21 meV (2.18 A) neutrons. The sample temperature is 60 K 

low temperatures 4 . There is a maximum around 7 meV and the FWHM is at least 

1.5 meV. However, below 4 meV the intensity is dominated by the inelastic line, and 

it is not immediately clear whether or not the spectrum is gapped. 

That this feature corresponds to the magnetic density of states was confirmed in 

a polarisat ion- resolved diffuse neutron scattering experiment at the cold-neutron spec-

trometer D7. at the ILL. This instrument allows for XYZ-polarisation analysis of the 

scattered neutrons. The nuclear coherent, spin incoherent, isotope incoherent and mag-

netic scattering cross sections can then be separated from each other by analysing the 

4 The neutron scattering cross section has in this experiment not been calibrated. The intensity 
scale given in figure 5.21 was obtained by comparison of the energy integrated spectrum with the 
energy integrated spectra of the same sample obtained at D7. Hence, the values given in 5.21 are only 
approximate 
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spin flip/non spin flip neutrons polarised along the X,Y and Z axes (see section 3.1.3). 

This enables a quantitative analysis of the magnetic correlations. 

).005 

0.004 

Figure 5.21: Cuts of the inelastic spectrum obtained with 17.21 meV neutrons. The left panel 
shows the intensity integrated over 1 < q < 1.5 A' for spectrum obtained at 2 K (full black 
circles) and at 60 K (red crosses), and the spectrum integrated over 1.6 < q < 2 A 1  (open 
black circles). The right panel shows cuts along q integrated over energy, —1 < hw < 1 meV 
(blue line with crosses), 6 < hw < 8 rneV at 2 K (black circles) and 6 < hw < 8 meV at 60 K 
(full red circles). 

A 20 g powder sample of x = 1 zinc paratacamite was mounted in an Al can inside a 

dilution refrigerator with a low pressure of 4 He transfer gas to optimise thermal contact 

between the powder sample and the cryostat. Polarised neutrons with an energy of 

8.51 meV were used. The diffracted intensity in the magnetic scattering channel was 

insufficient for time-of-flight analysis, and for this reason only the approximate 5  energy-

integrated magnetic structure factor was obtained. Data was taken for 24 h at each 

of the temperatures 0.5, 2, 4, 10 and 60 K. Below 4 K the magnetic scattering signal 

seemed to vanish at all q, and even become slightly negative at low q, but this was 

due to condensation of the 4 He transfer gas in the sample can below 4 K. There is no 

5 1n principle the energy of the diffracted neutrons is required to calculate the actual wave-vector 
transfer Q at a given diffraction angle. Hence, giving up in energy resolution comes with the additional 
cost of a (slight) loss in q resolution. 
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observable change with temperature in the data taken at 4. 10 and 60 K. To improve the 

statist.ics the data taken at 4, 10 and 60 K have been combined. The result, shown in 

figure 5.22, corresponds well with the spectra obtained at 1N4 with 17.21 meV neutrons, 

and confirms that the weak feature around 7 meV corresponds to magnetic excitations. 

From comparison of figures 5.21 (right) and 5.22 it is clear that the magnetic signal at 

energy transfers above 4 meV make up only a very small part of the total magnetic 

scattering cross section. Hence, it can be ruled out that this feature corresponds with 

a singlet-triplet gap. 

After [194, 123] and [193] the powder-averaged magnetic scattering cross section is 

given by 

(ri) 	yro ) 2 J ° S(q,w)d(hw) = 
ma 	

2(.)2 (gjiaf(q)) 2  J(J + 1) 
	 eiqRN 

where '-yro = 	= 5.39 10-15  rn is the strength of the dipolar interaction between 
me 

the neutron and the electron, and (So'RN)  is the normalised instantaneous spin-spin 

correlation function. In the case of short-range correlations this can be made explicit 

following [194]. 

)mag 
= 0.0496 (gjf (q) ) 2  J(J+ 1) 

I 
 1 + (o 1 )N1

sin(qRi) 
 + 	 (5.5) 

where the sum is over near-neighbour shells with coordination number N and distance 

R from S0. This function could be made to fit to the data approximately using only one 

shell of the nearest neighbour spins within the kagomé plane, at a distance of 3.415 A, 

yielding a very small nearest-neighbour correlation coefficient ('oS) = —0.025. The 

result is shown as the thick line in figure 5.22. Inclusion of further neiglibours did 

not improve the quality of the fit. The effective spin magnitude corresponding to the 

magnetic scattering cross section found here is S = 0.1, 20% of the S = 1/2 moment. 
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In conclusion, the magnetic diffuse scattering at temperatures 	reveals only weak 

near-neighbour correlations, characteristic of a liquid. 
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Figure 5.22: The instantaneous magnetic structure factor, averaged over data taken at 4, 10 
and 60 K. The thin red line shows the total Cu2+  magnetic forin factor. The thick black line 
gives the fit with equation 5.5 as discussed in the text. 

The inelastic neutron spectra measured at 1N4 show that the magnetic scattering 

is not entirely semi elastic. From the energy profile with 1.0 < q < 1.5 A, as shown in 

figure 5.21, it is clear that at least part of the spatial correlations occur in a broad peak 

with an energy offset of - 7 meV. This excitation is not necessarily a singlet-triplet 

gap. In real liquids, broad phonon modes appear alongside the quasi-elastic scattering, 

and with increasing glassiness the quasi-elastic line becomes smaller [236]. For classical 

spin-liquids (i.e. cooperative paramagnets) and spin-glasses we could expect a similar 

behaviour. If the magnetic ground state in the x = 1 phase is cooperative paramagnetic, 

i.e. a collection of fast-fluctuating localised S = 1/2 spins, the quasi-elastically scattered 

neutron intensity in the magnetic channel should be strong, where the uniform magnetic 

susceptibility (T) can be calculated from Sq o,o(T) [123]. The other possibility is 
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that the magnetic form factor vanishes entirely at w = 0, corresponding with a bulk 

susceptibility Xbulk = 0. This would mean that the ground state is of spin-singlet 

character, a quantum spin liquid. The lowest elementary excitations probed by neutrons 

are in this case thought to be the formation of pairs of deconfined spinons [104]. These 

are two delocalised S = 1/2 excitations created at an energy corresponding to the 

singlet-triplet (or spin) gap. Another measurement at D7 would be needed, taking data 

over long periods of time at low temperature with time-of-flight analysis, to measure 

the quasi-elastic line shape as has previously done for GeCu03 [192]. However, the first 

priority in a future neutron experiment would be to measure the inelastic spectrum of 

an x = 0.8 sample. The heat capacity data suggests that such a sample would model the 

S = 1/2 kagomé antiferromagnet equally well above the energy scale where the C u2+ 

spins on the interplane Zn site start to play a role, which is, the entire energy range 

probed with neutrons in zero external magnetic field. The neutron data as shown here 

suggests that the inelastic features for an x = 0.8 sample are stronger, and therefore 

more easy to study. 

Helton et al. [89] have measured the inelastic neutron spectrum at low energy/Q in 0 

and 13.5 Tesla. They find a single weakly-dispersive band at an energy corresponding 

to the Zeeman splitting, and with an intensity corresponding to ' 3% of the Cu2  

spins. In zero field no band was observed but it could be hidden in the quasi elastic 

line. This field-dependent band in the neutron spectrum must be of the same origin 

as the field dependence of the heat capacity. Helton et al. interpret this feature as 

evidence of deconfined spinons, and point out that the dispersion of this band does 

not follow the neutron magnetic form factor for the C u2+ ion. We suggest that this 

band corresponds to the up/down level splitting of the C u2+ spins on the interplane 

Zn sites due to antisite disorder. In that case the dispersion arising from these C u2+ 

spins does not need to follow the neutron magnetic C u2+ form-factor, as it should for 

paramagnetic spins, since at low temperatures the Cu2+  spins randomly distributed 

over the Zn sites are ferromagnetically ordered in a field of 13.5 Tesla. 
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5.8 Discussion 

Remarkably, the inelastic neutron spectrum of clinoatacamite [226] shows a similar, 

but much more intense, feature around q 1.2 A 1  and hw -' 7 meV as observed in 

figure 5.19 and 5.20. The neutron spectrum in clinoatacamite also shows a dispersionless 

line at 1.4 meV below the magnetic transition temperature at 6 K [227]. It seems 

likely that the low-energy feature corresponds to the Cu2+  spins on the Zn sites, and 

the high-energy feature to the much more strongly coupled Cu2+  spins on what is 

for clinoatacamite a distorted kagomé lattice, because of the different energy scales 

of the magnetic coupling on those sites. This is consistent with the picture which 

emerged from the analysis of the heat capacity data, where the contributions to the heat 

capacity from the weakly coupled Cu2+  spins on the Zn sites can be separated from the 

heat capacity corresponding to the kagomé layers. Regardless of whether the different 

components of the system can be separated, it is clear that there is only a gradual 

change in the characteristics of the system, over the entire range of Zn stoichiometries 

from x = 0 to x = 1. This suggests that x does not influence the characteristics 

of the system on a microscopic level, consisting of weakly-coupled spins (doublets) 

between the kagomé layers, and more strongly-coupled doublets within the kagomé 

lattice. A quantum spin liquid or resonating valence bond state is a qualitatively 

different state of matter from a spin-glass with magnetic remanence such as, for zinc 

paratacamite with 0.3 < x < 0.66, or a phase with a weak ferromagnetic moment. 

such as for x < 0.3. Hence, if the x = 1 phase possessed a quantum spin liquid 

ground state, necessarily a quantum phase transition should occur at some x. This 

transition can be blurred by. an inhomogeneous material composition. However, the 

heat capacity should still show a shift of some of the spectral weight to lower energies 

as the quantum critical point is approached. This is not observed. The neutron powder-

diffraction data for x = 1 and the heat capacity of samples with 0.5 < x < 1 shows 

that due to the antisite disorder, samples with Zn stoichiometries 0.8 < x < 1 model 

the S = 1/2 kagomé antiferromagnet equally well. For x = 0.8 the magnetic hysteresis 



5.8. DISCUSSION 	 153 

is too large to be ascribed to impurities or local variations in Zn stoichiometry [188]. 

Since only approximately one in five inter-plane Zn sites is occupied for x = 0.8, this 

hysteresis is ascribed to the higher connectivity of the lattice. This is mainly due to a 

higher connectivity within the kagomé planes (see table 5.4). This is in support of a 

growing consensus [95, 170, 142] that the ground state of this model S = 1/2 kagomé 

antiferromagnet is magnetic. In the present situation, we see no reason why the S = 1/2 

spins on the kagomé lattice should behave differently from the Cu 2  spins on the Zn 

sites. The ground state may be best described as co-operatively paramagnetic, such 

as found in Tb2Ti2 O 7  [77]. In other words, neither 5tot  nor Jt0t  seem good quantum 

numbers. In the present theoretical framework [5] 5tot  ceases to be conserved when 

a symmetry breaking transition to a Néel -like long-range ordered state occurs. The 

muon data presented in this chapter shows that according to expectation there is no 

symmetry-breaking transition to a magnetically ordered, or spin-glass state, for systems 

with x> 0.6. Even before a symmetry breaking transition of the magnetic degrees of 

freedom has occurred the system has a magnetic ground state. 

One explanation for the absence of a quantum-critical phase transition to a non-

magnetic, quantum spin liquid ground state is that the antisite spins are a source of 

quantum mechanical dissipation, causing the quantum mechanical ground state to de-

cohere to a classical state. With decoherence is meant the loss of the phase relationship 

between the wave-functions of the constituents of the system. Once the phase relation-

ship between the wave-functions is lost, the typically quantum mechanical interference 

effects disappear giving rise to classical behaviour. This is what happens if a system 

is strongly coupled to a heat bath [117, 177]. As the excitation spectrum of a system 

narrows with increasing system size, the system becomes increasingly susceptible to 

this kind of dissipation. This is what happens in a symmetry-breaking transition such 

as the onset of Néel order in antiferromagnets [6, 9], and it is also the reason the Born-

Oppenheimer approximation can be used for many systems. What is so special about 

the kagomé antiferromagnet, is that theory predicts that even in the thermodynamic 
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limit, there is a large energy gap (of the order J110 [137]) to the states (S t,,t  = 1 states) 

which need to mix with the ground state (St. t  = 0 states) to create a classical system 

of apparently localised spins as encountered in the Néel ground state of many antifer-

romagnets. The kagomé lattice antiferromagnet has been suggested to be topologically 

protected from quantum mechanical decoherence, making it of interest in the design 

of quantum computers [99, 139]. For zinc paratacamite the exchange interaction has 

been estimated at J/kB = 170 K [89], and hence the singlet-triplet gap should be of 

the order of 10 K. Because of the many-body nature of the problem, it is difficult to 

say what is the effect of perturbations of an energy scale corresponding to 2 K. 

The observation of "weakly-coupled" S = 1/2 spins sounds like a paradox; if these 

spins are coupled to the sandwiching kagomé layers, they should form higher-level 

multiplets. As was shown in section 5.5 the antisite spins can be identified as as 

interacting two-level systems, or localised S = 1/2 spins. The presence of localised 

but nevertheless interacting spins without forming higher level multiplets has been 

observed directly in the heat capacity of other localised spin systems [162, 124]. Ran et 

al. [166] suggest it could happen in the case of the Cu 2  spins on Zn sites in zinc 

paratacamite, where they speculate that "Kondo-like moments" are coupled to the 

deconfined spinons of the kagomé lattice. We believe this scenario is very unlikely since. 

the exchange interaction strenght and the spectral weight of the doublets increase as the 

Cu2+ concentration increases, and gives rise to hysteresis, a phenomenon which cannot 

co-exist with a non-magnetic ground state. The presence of. a magnetic hysteresis 

suggests that at least for the antisite spins we have to do with a phase described by 

a local state-dependent Hamiltonian.It is clearly a symmetry-broken phase where 5tot 

is no longer a good quantum number [6, 9, 120]. One could then ask whether this 

Hamiltonian describes only the antisite spins or all the spins in the system, including 

those of the kagomé layers. 
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5.9 Conclusion 

Powder samples of zinc paratacamite with Zn stoichiometry x = 0... 1 have been pre-

pared. Muon spin relaxation spectroscopy shows that for 0.6 <x < 1 the spins do not 

freeze, not even at 50 mK. For the x = 1 phase there is even at 50 mK only a very 

slow muon relaxation, indicative of very fast fluctuating spins. For increasing Cu con-

tent the fluctuations gradually slow down, and for x <0.3 the muon signal approaches 

the static relaxation as was found previously for clinoatacamite [240]. Also some sam-

ples for which x > 1 have been synthesised, and an even slower muon relaxation was 

found. However, there are indications that that samples with x> 1 are not sufficiently 

phase pure, and it cannot be said with certainty what is the actual Cu/Zn ratio in the 

crystalline phase. 

On the basis of neutron powder-diffraction data for x = 1 and heat-capacity mea-

surements in a range of magnetic fields on zinc paratacamite for 0.5 < x < 1, it can 

be concluded that Cu/Zn antisite disorder is present, corresponding to 6.3(3)% in Cu 

or 18.9(10)% in Zn in the x = 1 phase. The Cu spins residing on a Zn interplane 

site are only weakly coupled to the lattice, which explains the upturn in the magnetic 

susceptibility as T -f 0, though it is not likely that all the low-temperature magnetic 

susceptibility can be accounted for in this way. The heat capacity of the antisite spins 

could be modelled with very high accuracy, where the only underlying assumption was 

that the heat capacity of the kagomé system is independent of a relatively small exter-

nal field. In this way the heat capacity corresponding to the kagomé layers was derived, 

revealing a power law Cv oc T 13  temperature dependence below 10 K. 

It is also demonstrated that due to the antisite disorder samples with Zn stoichiom-

etry 0.8 < x < 1 model the S = 1/2 kagomé antiferromagnet equally well. However, 

within this range of stoichiometries a large magnetic hysteresis develops, betraying a 

magnetic ground state. This situation is quite unique for a S = 1/2 system: No sym-

metry breaking is observed in the magnetic degrees of freedom, and yet, the ground 

state is magnetic. Furthermore, it is clear from muon data, heat capacity data, and 
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neutron spectroscopy data that no quantum critical phase transition occurs within the 

range x = 0... 1. Hence, the x = 1 phase is at best close to a quantum-critical gap 

less spin-liquid, but evidently, it must be at the classical side of the quantum critical 

point. The disagreement with the existing theory not only of the S = 1/2 kagomé 

antiferromagnet, but of quantum antiferromagnetism in general becomes even more 

pressing when it is recalled that the antisite spins could be modelled as doublets, but 

not as higher-level multiplets. The antisite spins were found to be localised dOublets 

(S = 1/2 spins) which nevertheless interact with the spins on the kagomé lattice. This 

means that the total spin quantum number Stot  is not a conserved quantity, while Stot 

commutes with the Heisenberg Hamiltonian. Since no symmetry breaking transition 

has occurred in the magnetic degrees of freedom, the effective magnetic Hamiltonian 

must be of a lower symmetry than the Heisenberg Hamiltonian. 



Chapter f 
Discussion 

The experiments on zinc paratacamite discussed in the previous chapter demonstrate 

that the observed magnetic properties at low temperature are not adequately described 

by the quantum mechanical solutions of the Heisenberg Hamiltonian. The ground state 

of the kagomé layers is not a macroscopic quantum state, and has a non-vanishing mag-

netic susceptibility. This has been confirmed independently using 'O NMR [154]. Low 

temperature magnetic susceptibility measurements in the presence of high fields [20] 

also confirm the interpretation of the heat capacity results given here, of weakly-coupled 

S = 1/2 spins arising from antisite disorder. Furthermore, the results on zinc parat-

acamite do not stand on themselves. A number of other low-spin antiferromagnets 

which model the kagomé antiferromagnet to some degree are known in the litera-

ture [115, 121, 19, 74, 187]. Most of these systems remain fluctuating at very low 

temperatures, and all of them seem to have a magnetic ground state. These systems, 

of which zinc paratacamite comes closest to the theoretical model, are all narrow-band 

charge-transfer insulators. All experimental evidence suggests that on a microscopic 

scale the magnetism in these systems is similar. What these materials have in common 

is that the 3d electrons have localised, they are Mott insulators. Though in the x = 1 

phase of zinc paratacamite no symmetry breaking occurs in the spin rotational degrees 
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of freedom, for the system to be magnetic clearly some symmetry breaking must have 

occurred [70]. 

6.1 On macroscopic quantum phases in Mott insulators. 

That a singlet magnetic ground state is theoretically expected should not be understood 

as an electronic state described by a single determinant where all available orbitals are 

doubly occupied. The localised unpaired electrons in the 3d shell are thought to be 

entangled in the same way as a pair of photons in the well-known Einstein-Podolsky -

Rosen experiment [14, 180]. In that way the singlet states can even have a spatial 

structure, unlike a single determinant. It should be clear that such entangled states are 

very susceptible to decoherence effects which enter even in the case of the well-controlled 

experiments which are carried out to test the Bell-inequality using photons [34]. The 

presence of super conductivity in many metals and in some copper oxides tells us that 

such macroscopic quantum states can emerge in the symmetry-broken state of matter 

which is the solid state 1 . In the Mott insulating state even the valence electrons are 

said to be localised albeit obviously a finite hopping t remains. Though this is currently 

not universally accepted, a natural interpretation of this localisation would be that the 

electrons are still hopping, but now in a classical sense rather than in the quantum 

mechanical "everywhere-at-once" sense. In such a picture the residual hopping is a 

Goldstone mode giving rise to (quantum) fluctuations which occur even at T = 0. In 

this symmetry-broken and strongly fluctuating electronic state one cannot expect a-

priory a macroscopic quantum state for the electronic spins. On the other hand, one 

can probably not exclude that they do exist. 

Very recently a paper was published in Nature Materials reporting inelastic neutron 

spectroscopy data on zinc paratacamite with 0 < x < 1 [116]. A weakly dispersive 

'The broken symmetry is in this case the translational symmetry of the nuclei, which in the solid are 
localised. In the case of the nuclei the localisation is so strong that in general the nuclear spins do not 
interact through super-exchange. Exceptions are 2D systems of condensed 3He [641 and Bose-Einstein 
condensates in general. 
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neutron excitation around Q = 1.341 A- ' and E = 7 meV is reported for x = 0, but not 

for x = 1 as reported here in section 5.7. In [116], the weakly dispersive mode at 7 meV 

is interpreted as a singlet-triplet excitation of a valence bond solid ground state. At first 

sight, the fact that the system is magnetic at all temperatures seems to be ignored, while 

at the time of publication this was already a well established experimental fact for x = 

0 [240, 239]. It may be that the authors have assumed, without saying so, that one can 

not expect a macroscopic quantum (magnetic) state in a Mott insulator. i.e. the singlets 

are constantly broken due to decoherence, leading to antiferromagnetic correlations. 

Something similar has been observed in the 1D linear chain system KCuF3 [200] in 

which the inelastic neutron spectrum reveals spinon excitations in agreement with exact 

solutions of the S = 1/2 Heisenberg Hamiltonian for the linear chain, despite the fact 

that the ground state also shows a Néel type correlations. Note however, the situation 

in the 1D chain is very different from the present case; The 1D chain does not have 

a spin gap, 5tot = 0 and 8tot = 1 states have become degenerate, which is thought 

to be required for a Néel -type ordering to be possible. In the interpretation of the 

neutron data as described in [116] the Stot  = 0 and St,,t  = 1 states are not degenerate, 

the St, t  = 1 state lies 7 meV higher. In this case the effects of decoherence must be 

much stronger than in the case of the 1D linear chain to explain the magnetic ground 

state. The interpretation given by [116] may be correct, but even then we should be 

careful not to see the presence of a singlet-triplet gap in the neutron spectrum as a 

confirmation of the present theory. A successful theoretical description of the zinc 

paratacamites should rationalise all observables, including the magnetic susceptibility 

and any magnetic correlations in the ground state. Furthermore, it is, as mentioned 

earlier, presently by no means universally agreed that the Mott insulating state is a 

fluctuating symmetry-broken electronic state. 

We believe that strong correlation, which should not be taken for strong exchange-

correlation integrals in ab-initio calculations, gives rise to classical order and accom-

panying quantum fluctuations. This provides a natural explanation for the paradox 
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highlighted in section 2.2.5, as to what is the interpretation of the residual hopping t 

when the electrons are localised - as a Goldstone mode. Super-exchange then arises 

naturally from these quantum fluctuations. In the case that there is disagreement on 

this point we strongly believe that the experiments on zinc paratacamite can add to 

this debate. The central point being that the phase with x = 1 has a finite magnetic 

susceptibility, even though no symmetry breaking occurs in the spin rotational degrees 

of freedom. There are two possible interpretations of the data, but in both interpre-

tations the ground state should be described as a classical ensemble of pure quantum 

states, in a density matrix. 

• The Mott insulating state is a symmetry broken state, in which the residual 

electron hopping t is a Goldstone mode which is also the origin of super-exchange. 

In that case the excitation at 7 meV could be interpreted as a singlet-triplet gap 

while the majority of spins are not bound into singlets, as is done in [116]. 

• There are unpaired spins because the system has no spin-gap. i.e. the St. t  = 0 and 

St ,,t  = 1 states are degenerate, and the 7 meV feature in the neutron spectrum 

arises from some other effect. These two states becoming degenerate may be 

a symmetry breaking in itself. Then the emergence of a state dependent local 

Hamiltonian for x < 1 is also explained. 



Chapter 7 
Conclusion & Outlook 

The approach as outlined in the introduction has been successful. For both iron jarosite 

and zinc paratacamite the symmetry of the underlying Hamiltonian has been deter-

mined, in both cases with a surprising outcome. 

Iron jarosite has a weak easy-plane anisotropy and freezes into a three sub-lattice 

Néel state at 65 K. Using polarised x-ray absorption spectroscopy of the 2p - 3d Fe 

L2,3-edges in combination with ligand-field multiplet calculations [135], an accurate 

model of the Fe spins and their local environment is constructed. This has yielded ac-

curate values for the actual spin, orbital angular momentum, and single-ion anisotropy 

in the nominally Fe3+  ions which do not possess any orbital angular momentum even 

as free ions. Hence we have explained the magnetic anisotropy, and the spin-wave 

spectrum in the frozen state as previously observed by several groups. 

We assert that zinc paratacamite with Zn stoichiometry within x = 0.8... 1.0 rep-

resents the best physical realisation of the S = 1/2 kagomé antiferromagnet known at 

present, despite the Cu/Zn antisite disorder which was for x = 1 found to be 6.3(3)% 

in Cu or 18.9(1.0)% in Zn. It was found that in agreement with theoretical predictions 

the system does not freeze, not even at 50 mK. No qualitative change in the (very 

weak) muon relaxation at low temperatures is observed for samples with 0.6 < x < 1, 
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and in the heat capacity for samples 0.8 < x < 1, while these samples are clearly mag-

netic and for x < 1 develop a magnetic hysteresis. Even when we take into account 

that a considerable contribution to the magnetic susceptibility comes from the antisite 

spins, we do not need to say how large this contribution is to conclude on a strictly 

experimental basis that: 

• The ground state is magnetic. 

• No quantum critical phase transition occurs as a function of Zn stoichiometry 

between x = 0 and x = 1, nor as a function of magnetic field. 

• The ground state can not be described by a single stationary wave function. It 

must be written as a classical ensemble of wave functions, as a density matrix. 

From a detailed analysis of the field-dependence of the heat capacity for samples 

with x = 0.8,0.9 and 1.0, it is found that the antisite spins behave as weakly coupled 

doublets, which is surprising but not completely without precedent [92]. It seems that 

St,,t  is not a conserved quantity. Since S t,t  commutes with the Heisenberg Hamiltonian 

on the kagomé lattice, the actual effective magnetic Hamiltonians must be of a lower 

symmetry than the Heisenberg Hamiltonian. 

From an experimental point of view it can not be ruled out that the ground state is 

magnetic simply because S t.t  = 0 and 8tot = 1 states have become degenerate, though 

this would still leave open the question of what is the effective Hamiltonian in the case 

of the S = 1/2 kagomé antiferromagnet. However, we believe that a successful theory of 

the magnetism in transition metal compounds should embrace the idea that the Mott 

insulating state is a symmetry broken state; a localised electron is not described by a 

Bloch wave, and hence, the discrete translational symmetry of the lattice is broken. The 

residual hopping of the electrons is then a symmetry-restoring fluctuation, or Goldstone 

mode, responsible for super-exchange. In such a fluctuating system, a macroscopic 

quantum mechanical ground state for the electron spins cannot be taken for granted. 
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