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Abstract
An image of a scene can be described by the shape, pose and appearance of the objects

within it, as well as the illumination, and the camera that captured it. A fundamental

goal in computer vision is to recover such descriptions from an image. Such rep-

resentations can be useful for tasks such as autonomous robotic interaction with an

environment, but obtaining them can be very challenging due the large variability of

objects present in natural scenes.

A long-standing approach in computer vision is to use generative models of images in

order to infer the descriptions that generated the image. These methods are referred to

as “vision as inverse graphics” or “inverse graphics”. We propose using this approach

to scene understanding by making use of a generative model (GM) in the form of

a graphics renderer. Since searching over scene factors to obtain the best match for

an image is very inefficient, we make use of convolutional neural networks, which

we refer to as the recognition models (RM), trained on synthetic data to initialize the

search.

First we address the effect that occlusions on objects have on the performance of pre-

dictive models of images. We propose an inverse graphics approach to predicting the

shape, pose, appearance and illumination with a GM which includes an outlier model

to account for occlusions. We study how the inferences are affected by the degree

of occlusion of the foreground object, and show that a robust GM which includes

an outlier model to account for occlusions works significantly better than a non-robust

model. We then characterize the performance of the RM and the gains that can be made

by refining the search using the robust GM, using a new synthetic dataset that includes

background clutter and occlusions. We find that pose and shape are predicted very well

by the RM, but appearance and especially illumination less so. However, accuracy on

these latter two factors can be clearly improved with the generative model.

Next we apply our inverse graphics approach to scenes with multiple objects. We

propose using a method to efficiently and differentiably model self shadowing which

improves the realism of the GM renders. We also propose a way to render object oc-

clusion boundaries which results in more accurate gradients of the rendering function.

We evaluate these improvements using a dataset with multiple objects and show that

the refinement step of the GM clearly improves on the predictions of the RM for the

latent variables of shape, pose, appearance and illumination.
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Finally we tackle the task of learning generative models of 3D objects from a collection

of meshes. We present a latent variable architecture that learns to separately capture

the underlying factors of shape and appearance from the meshes. To do so we first

transform the meshes of a given class to a data representation that sidesteps the need

for landmark correspondences across meshes when learning the GM. The ability and

usefulness of learning a disentangled latent representation of objects is demonstrated

via an experiment where the appearance of one object is transferred onto the shape of

another.
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Lay summary

A fundamental problem in computer vision is to infer detailed descriptions of the ob-

jects in an image, such as their shape, pose, and appearance. This is important for

instance in robot navigation tasks. However, due to the high complexity of objects and

scenes, this is very challenging. The main approach we follow to solve this task is to

use our knowledge of the physical process of how an image is generated from objects

of the scene (generative model). This is typically done by searching over many pos-

sible object and scene configurations and choosing the one that results in a generated

image that best describes the image of interest. Since this search process is often very

slow, our framework combines it with a faster, but more inaccurate estimation method

(recognition model), to speed up this search.

First we explore the benefits of using our framework when objects are modelled to

have heavy occlusions. We show how we are able to better recover the appearance and

illumination of an object in a cluttered scene when using the generative model. We

also show we can also precisely infer which parts of the objects are occluded by other

objects in the image.

We then explore the problem when images have multiple objects of interest. First we

propose a more realistic shadowing model and show that this improves the inference

of objects appearance and illumination of the scene. Second, we explore better ways

of rendering the objects (around their edges) using the generative model and show in

the experiments this improves the estimation of their shape and pose.

Finally, we focus on generative models of complex objects (such as faces and cars).

We propose a method that, given a collection of existing examples of an object type, it

can learn to generate new configurations of shape and appearances (such as a new car

that was not in the collection), and to also swap the colours and shapes between two

different objects (such as a blue pick-up car and a red sports car).
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Introduction
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2 Chapter 1. Introduction

1.1 Detailed scene understanding

Humans are able to easily understand and reason about the objects in a scene (e.g. a

kitchen, a living room, etc.) at a very high level thanks to our ability to represent the

world in 3D. Understanding a scene involves having the knowledge of the 3D structures

and objects in the scene, as well as the way they are positioned with respect to each

other. But a complete description is not only about the 3D shapes, it also relates to the

ability to describe the appearance of the objects and how the light sources illuminate

them. Equipping a computer system with such representations opens a vast number of

possibilities for interaction. Such a system can plan a path through the scene, interact

with the objects, and even infer higher level functional descriptions from them. Indeed,

for autonomous robotic tasks, having these descriptions is a crucial element to their

success. It is not surprising that since the early days of computer vision, recovering the

detailed 3D information of a scene from a single image has been one of its fundamental

and most challenging goals.

Figure 1.1: The relationship between the world and images.

The representational gap from image pixels to 3D objects is very large. As illustrated

in Fig. 1.1, our goal is ultimately to invert the process that generated an image. This

is an extremely ill-posed problem since many possible configurations can give rise to

a single image. Even the human visual system can make mistakes due to inference

ambiguities as is shown in the Ames Room illusion (Ittelson, 1952). Another exam-

ple in computer vision is the Bas-Relief Ambiguity (Belhumeur et al., 1999) wherein

more than one 3D structure explains an image taken under certain lighting and camera

assumptions. To make matters more difficult, objects can show a very rich variability
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in classes of shapes and appearances.

A long-standing approach to inferring the 3D world from an image is precisely to use

our prior knowledge of objects and the physical process that generates the image. The

idea is to use this in order to constrain and cope with the ill-posed nature of vision. In

machine learning this falls under the category of inference using probabilistic genera-

tive models (GM). In computer vision these are usually referred to as “vision as inverse

graphics”, or “inverse graphics” for short (Baumgart, 1974),

Perhaps it is also interesting to consider that inverse graphics may be at the core of the

best visual system we know of. Clark (2013) gives a review of the compelling amount

of evidence that suggests that the forward and backwards flow of information in neural

representations of biological visual systems may correspond to a Bayesian inference

framework. The key idea is that the brain learns neural representations by predicting

sensory signals, and that action, recognition and inference are driven by prediction

error minimization. Yuille and Kersten (2006) refer to this theoretical framework as

“analysis-by-synthesis”. The authors make references to recent examples from the

computer vision literature that suggest that probability distributions on structured rep-

resentations are capable of modelling the complexity of natural images and, as such,

encourage further experimental studies with regards to the predictive capability of such

models in the human visual system.

It is clear that we have all the parts of a complete generative model at our disposal:

the physical process of image formation is very well defined and there exist efficient

libraries that implement it in various ways. We also have access to large datasets of 3D

models of objects, see e.g. Chang et al. (2015). Thus, the aim of this thesis is to explore

the use of the generative model in the form of a graphics renderer, in order to infer the

shape and appearance of objects, illumination and camera parameters. Inference under

these generative models, however, typically involves a hard search problem over an

intractably large number of scene configurations, which is why generative modelling

is often considered to be only one part of the full picture. A general purpose vision

solution must take into account many different aspects. To give some context, let us

first define the standard tasks in computer vision according to the Pascal VOC 2010

Challenge (Everingham et al., 2010):

• Object classification, or object class recognition, is the task of classifying an

object instance of an image according to its class (e.g. classify a picture of a cat
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as “cat”).

• Object detection is the task of inferring if a particular class of object is present

in an image and localizing it. This is done by estimating a bounding box that

includes all the pixels related to each object in the class.

• Object segmentation is the task of assigning regions of pixels to the class of

objects in the image. That is, one labels pixels according to their class, or as part

of the background.

Thanks to a number of research breakthroughs, the advent of deep learning and avail-

ability of large scale labelled datasets being among the most prominent ones, we have

seen great advances towards solving these tasks and shrinking the gap with human

level performance (Russakovsky et al., 2015). These improvements allow researchers

to tackle increasingly more complex problems regarding richer scene descriptions. It

is clear that a robust object classification and detection will be a pillar to any full-

fledged computer vision system. As such we make use of these advances as part of our

proposed methods. We will refer to the methods that are learned discriminatively, i.e.

which take as input an image and produce different estimates of interest (e.g. detection

of objects, estimates of their shape, pose, etc.) as the recognition models (RM).

This thesis is focused on the combination of generative and recognition models of

images as illustrated in Fig. 1.2. We explore different architectures when combining

them and address various obstacles in the process. To sum up, in this thesis we focus

on the problem of obtaining a detailed description of a scene from a single image

using the vision as inverse graphics framework. We will refer to detailed, in-depth, or

fine-grained1 scene descriptions interchangeably.

We can summarize some of the high-level insights regarding the relative merits of gen-

erative and discriminative models in the framework of probabilistic modelling:

1. Encoding our prior knowledge of how the images are formed is done naturally in

generative models, also allowing us to generate samples in order to get a sense of

how the model describes the images. In addition, these models usually require

less training data as more knowledge is incorporated.

2. Generative models are often computationally slower during inference due to the

1Note that in computer vision literature, fine-grained scene understanding can have a different mean-
ing, which consists of the task of intra-class classification of closely-related object categories, e.g. recog-
nition of different classes of flowers (Nilsback and Zisserman, 2008).
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complexity of the search problem in the latent space.

3. Discriminative models often perform better for specific tasks (e.g. object classifi-

cation) since the features learned by these models are usually highly informative

and specialized for the task at hand. A crucial element to their performance is

the availability of a large and sufficiently varied training datasets to avoid over

or under-fitting.

4. An important advantage of generative models is that they can deal with weak

and no labelling (unsupervised learning), so a large amount of training resources

are more readily available.

We consider that a recognition model plays an important role for an efficient solution

to inverse graphics, as noted e.g. by Williams et al. (1997). Indeed, finding ways to

combine these two approaches offers interesting possibilities and has been a topic of

research up to this date.

An important benefit of generative models is that they have not only been devised as

inference models, but also as a way to synthesize data in order to train computer vision

models with the goal of coping with the common lack of sufficient real world fully

labelled data (Hejrati and Ramanan, 2014; Zia et al., 2013; Shotton et al., 2013). In

this thesis we also make use of synthetic image data in order to train our recognition

models.

Another interesting application of generative models has also been to generate novel

scenes and object configurations for different applications. Examples of these include

stochastic arrangements of indoor (Fisher et al., 2012; Liu et al., 2014) and outdoor

(Yeh et al., 2012) scenes, as well as creating novel object shapes from the parts of

objects in a dataset (Kalogerakis et al., 2012; Averkiou et al., 2014).
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3D Models

Image

Recognition model

Generative model

Figure 1.2: Vision as inverse graphics example in which images are interpreted by

means of a recognition model, and a generative model is used to synthesize new im-

ages. In this case, the object being analysed is the teapot.

1.2 Thesis outline

This thesis focuses on using the inverse graphics approach for detailed scene under-

standing tasks. The remainder of this document has the following structure:

In Chapter 2 we motivate our approach and give a brief overview of the scene re-

construction literature and particularly the existing work that makes use of generative

models. Finally we describe the overall architecture of the generative models and the

recognition models used throughout this thesis.

In Chapter 3 we analyse the benefits of using inverse graphics when applied to the case

of images where objects are partially occluded. We quantify the gains in refinement

using a GM which has been designed to be robust to outliers. The experiments, which

are carried out using a new image dataset based on our synthetic indoor scene gener-

ator, show that while the recognition models can accurately predict pose and shape,

they struggle with appearance and illumination. Furthermore, using the robust GM

significantly improves the appearance and illumination prediction across all levels of

occlusion. This work is published in the following paper:
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• Moreno, P., L., Williams, C. K. I., Nash C. and Kohli, P. (2016). Overcoming Occlu-

sion with Inverse Graphics. In Computer Vision-ECCV 2016 Workshops Proceedings

Part III, eds. H. Gang and H. Jegou, Springer LNCS 9915 pp 170-185

In Chapter 4 we turn our attention to scenes with multiple objects. We describe a

novel architecture of the recognition models used to perform robust predictions of

object and global latent variables when an image presents multiple objects. In this

chapter the generative model is improved in two ways: (i) we propose the inclusion of

a method for efficient modelling of self shadows that results in more realistic renders,

(ii) the rendering implementation is improved to address the occlusion boundaries of

objects in order to get more accurate derivatives of the rendering function. Thanks to

inclusion of (i), experiments show that illumination and appearances are significantly

improved. Results also show that the changes in (ii) lead to improved predictions on

the variables of shape and pose. Finally we do a qualitative experiment using real

images that suggests that our inverse graphics models generalize to the real domain.

This work is published in the following paper:

• Romaszko, L., Williams, C. K. I., Moreno, P., and Kohli, P. (2017). Vision-as-

inverse- graphics: Obtaining a rich 3d explanation of a scene from a single image. In

2017 IEEE International Conference on Computer Vision Workshops, ICCV Work-

shops 2017, Venice, Italy, October 22-29, 2017, pp 940948

In Chapter 5 we address the aspect of inverse graphics related to modelling the shape

and appearance of 3D objects. We are interested in learning a GM from a collection

of meshes of a given object class. To do so we use a representation of the meshes

that sidesteps the need of finding corresponding landmark points across meshes. We

propose a latent variable architecture that separately captures the underlying factors

of shape and appearance from these representations. The ability and usefulness of

learning a disentangled latent representation of objects is shown via an experiment

where the appearance of one object is transferred onto the shape of another.

Finally, in Chapter 6 we summarize the contributions and results of this thesis and

give a final overview of the state of art in scene understanding. We conclude with a

number of interesting directions for future work.





Chapter 2

Background

Scene reconstruction is closely related to our goal of detailed scene understanding in

that one of its main aims (and challenges) is the estimation of the 3D geometry of

a scene. In Sec. 2.1 we give a brief overview of the different scene reconstruction

paradigms in the literature. Using a generative model to reconstruct a scene is the

approach we investigate in this thesis. Sec. 2.2 introduces the idea of a probabilistic

generative model for vision and defines the key components used throughout this the-

sis. In Sec. 2.3 we motivate the use of a recognition model, based on a deep learning

architecture, as an essential element to our inverse graphics solution for the task of

detailed scene understanding.

2.1 Scene reconstruction

Since the early days of computer vision, the problem of general purpose vision has

been acknowledged as being ill-posed: multiple scene configurations can give rise

to the same image, and there is no straightforward mechanism to invert the physical

generative process. Furthermore, visual data has a high number of factors of variability

(viewpoint, lighting, shape and appearance and so on) and often has missing data due

to occlusion and measurement noise.

As in many artificial intelligence domains, prior knowledge tends to be useful, if not

essential, to being able to find good predictive models. As expected, there are different

and sometimes opposing views of how to specify our prior knowledge.

9
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One line of research considers using dense pointwise (or pixelwise) models of how im-

ages are formed based on physics and optics, and attempt to recover surface properties

of the objects by assuming certain smoothness and isotropy regularities. Examples of

this include Marr’s 2.5D sketch (Marr and Nishihara, 1978) and Tenenbaum’s intrinsic

images (Barrow and Tenenbaum, 1981). These intermediate representations, such as

surface depth, orientation and material properties, are subsequently used to interpret

higher level scene configurations. An important drawback of this approach is that the

assumed regularities might not always hold, and hence lead to incorrect interpretations

(Pentland, 1986).

A different line of research uses 3D geometry of the object models instead. Different

ways of representing the 3D geometry include CAD models (Lowe, 1985; Grimson and

Lozano-Perez, 1984), and parametric parts-based representations such as generalized

cylinders (Binford, 1971) and superquadrics (Pentland, 1986). Brooks’ ACRONYM

(Brooks, 1983) and Dickinson’s OPTICA (Dickinson et al., 1992) are examples of

vision systems that use these generic part-based representations. The approach of us-

ing models of the objects’ shape is commonly known as model-based vision. The

long-standing goal of recovering the 3D structure of a scene is known as scene recon-

struction.

The mapping from images to models is known as the representational gap and is one of

the central issues in computer vision (Keselman and Dickinson, 2001). We can group

most of the strategies that attempt to narrow this gap as coming from either a bottom-up

or a top-down approach, or a combination of both. On one hand, bottom-up approaches

rely on features (i.e. functions that map image pixels to structures useful for different

vision tasks) that are predictive of the variables of interest while remaining invariant to

nuisance variables as much as possible. In the context of inverse graphics we refer to

these as the recognition models. The top-down view uses generative models of images

or image features, where inference consists of a search problem over the unknown and

high dimensional parameter space for hypotheses that match the image according to

the generative model.

Inspired by theories of human vision (Koffka, 2013), some researchers advocated for

features based on non-accidental groupings of the image pixels such as collinearity,

endpoint proximity, parallelism, and symmetry (Lowe, 1985). Unfortunately, these

grouping strategies, also known as perceptual organization, have been shown not to

be a reliable basis for recognition due to the issue of not detecting them with enough
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frequency or stability (Lowe, 1999). Instead, better success has been achieved by

extracting collections of appearance-based local features.

Combining both approaches in order to take advantage of their relative strengths is

the central theme of this thesis. These hybrid architecture have a long history in the

research community. For instance, in the SUCCESSOR system (Binford et al., 1987)

scene description hypotheses are voted or selected according to the correspondences

between generative model observables and image features (bottom-up). In general,

a stage of verification or refinement is performed to improve the scene description

hypotheses. This is done by generating or synthesizing images (or observables) using

the model, and maximizing the match between these and the real image.

We can see how scene reconstruction and vision as inverse graphics are closely related.

While in scene reconstruction the goal is specifically to recover the 3D shape of the

objects in a scene, an inverse graphics task might not solely consist of recovering

the latent variables of shape, but also in recovering scene descriptions such as the

appearances or various attributes of the objects, the illumination, etc.

The difficulty of dealing with the representational gap between the image features and

a 3D model of the world led to a shift in computer vision research towards models

that focus on lower levels of image representation (i.e. models that represent objects as

description of their appearance and 2D shape) which in turn has led to a great success

in many vision tasks. However, some researchers believe this trend has begun to swing

back to some of these model-based ideas, due in part to having cheaper and faster

computers, but also due to having a better understanding and improved techniques in

computer vision, computer graphics and machine learning. See (Dickinson, 2009) for

a comprehensive historical account of the different approaches in the computer vision

community to bridge such representational gap.

The bottom-up and top-down views can be cast into the commonly-known discrim-

inative and generative machine learning frameworks respectively, see Bishop (2006,

Chapter 1.5.4) for an overview of the relative merits of each approach. Most of the

research in recent years has focused on the discriminative approach due to its ability

to efficiently specialize its learned features for a desired task. In this framework, deep

learning techniques have lead to significant progress in solving many vision tasks as

further described in Sec. 2.3. However, we notice that there has been a rise in research

interest in generative models as well as hybrid architectures. In the next sections we
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describe our choices of generative and recognition models, and give an overview of

related work.

2.2 Generative models for vision

From a Bayesian perspective, a generative model is modelled by prior probabilities

over latent variables and a likelihood function that determines the probability densities

of the observed variables given the latent variables. Inference then consists of estimat-

ing the posterior probabilities of the latent variables. In the context of computer vision,

the latent variables represent the scene configuration such as the objects’ shape and ap-

pearance, the illumination and the camera parameters, as illustrated in Fig. 2.1.

Some research has focused on using generative models to infer pixel-wise latent vari-

ables related to the object’s surface (e.g. depth, albedo and orientation) and illumina-

tion of a scene. Above we mentioned a number of early examples that follow this 2.5D

approach (Marr and Nishihara, 1978; Barrow and Tenenbaum, 1981). A more recent

example is Tang et al. (2012), in which they model pixel-wise reflectances under a

Lambertian reflectance assumption and use such a model to recover the illumination

and shape (in the form of surface normal vectors per pixel) of the image. A similar

approach is to carry out probability density estimation to capture the statistical regu-

larities of specific classes of objects (Tang et al., 2013) without assuming a specific

reflectance model. While these are not full generative models of images (i.e. they do

not encode the generative process starting from high level 3D representations of the

Shape Appearance Light Pose Camera Occluders

Figure 2.1: Example of a generative model of an indoor image in which the object of

interest is a teapot.
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objects shapes and appearances), they might be useful for certain applications. While

it is not clear whether obtaining these intermediate representations is essential for 3D

scene understanding (that is, if we are able to infer the full 3D structure of a scene,

having these 2.5D representations might not provide additional useful information),

these techniques can be used as part of the pipeline to infer the 3D structures, as done

for instance in the recent work of Wu et al. (2017).

Since we are interested in the 3D information of the scene, the focus of this thesis is to

model the scene in 3D instead of 2.5.D However, the difficulty of training and doing in-

ference with these models have sometimes limited their success. Hence, these models

have usually been constrained to a low dimensionality on the latent variable space or

used “poor” models of 3D shape and appearance (Zia et al., 2013; Fidler et al., 2012;

Gupta et al., 2010; Hejrati and Ramanan, 2012; Mansinghka et al., 2013). Alterna-

tively, they have relied on extra cues such as depth maps (Shotton et al., 2013).

Recently, there has been a surge of interest in using graphics engines as part of the

generative model. This view consists of treating the rendering process as a black box

(e.g. a graphics renderer) and subsequently perform sampling techniques to recover the

most likely scene parameters (Gupta et al., 2010; Mansinghka et al., 2013; Kulkarni

et al., 2014; Jampani et al., 2015). We believe this to be a flexible framework as it

makes no assumptions about the types of scenes it can render. Our generative method

of choice is very similar in that we also use a graphics renderer. The main difference

is that we don’t treat the model just as a black-box since we are able to obtain deriva-

tives from it. In Sec. 2.2.1 we explain the rendering process in detail and how these

derivatives are computed.

One of the key aspects of the above pieces of work is the use of data-driven Monte

Carlo Markov Chain (DD-MCMC) proposals (Tu and Zhu, 2002) in order to more

efficiently explore the space of parameters. For instance (Jampani et al., 2015) clus-

ter Histogram of Gradients (HOG) features to estimate the density over the parameter

space using kernel density estimation. Kulkarni et al. (2014) propose a similar tech-

nique but instead use Deformable Parts Models (DPM) as the data-driven features.

These “informed” proposals can also be seen as recognition models, which in general

have an important role in this thesis.

Given that a practical graphics renderer cannot produce fully realistic images, often the

likelihood function is replaced by a score function that operates on an image feature
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space of the real and rendered images (Kulkarni et al., 2014; Zia et al., 2013; Mans-

inghka et al., 2013). It can also be the case that instead of producing pixel intensities, a

generative model directly predicts a set of features (i.e. predicted observables). Then,

the likelihood function is defined in terms of a score (e.g. distance function) between

these generated features and the features of the image. While these types of models

avoid having to do complete rendering of images, see e.g. Hoiem et al. (2008), they do

not define a proper likelihood of the image data and hence cannot be considered to be

principled generative models of images.

2.2.1 The rendering pipeline

Lighting

Projection RasterizationGeometry

Illumination

zp

Pose

Shape

zc

Camera

za

Appearance

Imagezs

I

zℓ

Figure 2.2: The main steps of the rendering pipeline of our generative model.

The main component of our generative model is the graphics renderer. In Fig. 2.2 we

show the steps of the rendering pipeline (Akenine-Moller et al., 2008) that are relevant

to our research project. The following subsections describe how these different steps

are implemented in our inverse graphics solution.

2.2.1.1 Modelling the geometry

As with most graphics engines, the geometry of a scene is modelled using triangular

meshes. Throughout this thesis, we represent an object i in the scene by a list of

triangular faces fi, vertices vi, vertex normals ni and vertex colours vci. There are

different ways we can obtain and generate meshes.
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One approach is to simply have a large library of rigid CAD models for each class

along with their appearance descriptions, see e.g. Tan et al. (1998) in the case of ve-

hicle recognition and localization. Then, reconstruction consists of finding the model

parameters that maximize some similarity measure with the object in the image. How-

ever, this simple strategy might most often fail to work well with novel shape and

appearance configurations of objects, unless the class of object has a low degree of

variability.

A further step has been to hand-craft a parametrization for a specific class of object

(e.g. vehicle), which can then be instantiated to match the object in an image (Koller

et al., 1994; Haag and Nagel, 1999). In a similar fashion, Jampani et al. (2015) use a

rich, learned model of the articulated human body for their shape and pose parameters.

These are examples of using domain specific knowledge to represent the models of

objects. The problem with these strategies is precisely their reliance on engineered

models which makes it time-consuming to models new classes.

A third alternative is to learn a deformable geometry representation from a set of cor-

responding mesh landmark points, e.g. using Principal Component Analysis (PCA).

That is, one can obtain the main modes of shape variation on the vectors of 3D coordi-

nates. Novel shapes can then be obtained as a linear combination of these components

plus a mean wireframe (Blanz and Vetter, 1999; Zia et al., 2013). In order to achieve

further expressiveness, Blanz and Vetter (1999) compute these modes of variation in-

dependently for different regions (parts) of the meshes. In order to do so, the meshes

need to be segmented previously according to the different parts. Sometimes there is a

further step required to blend the resulting meshes in order to form the complete object

(Choi et al., 1991). More recent examples of parts-based shape models are e.g. Nash

and Williams (2017); Huang et al. (2015a).

The shape models we use throughout this thesis are based on meshes obtained from

CAD datasets. In Chapter 3 we use the third method, a deformable model of a teapot

trained from a set of teapot meshes. In Chapter 4 we use a collection of different mug

objects instead of learning a parametrized shape model. We refer to the shape latent

variables by zs. The orientation and position of the objects are referred to as the pose

latent variables zp. In this thesis we model the appearances of each object by an RGB

colour za. Examples of richer descriptions of appearance useful for inverse graphics

models include using different colours per vertex (e.g. via a PCA representation of

colours such as the one used for faces (Blanz and Vetter, 1999)), or by using textures
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mapped to the rendered object meshes. In Chapter 5 we propose learning a generative

model from a collection of meshes that captures the factors of variation in its latent

representation.

2.2.1.2 Illumination model

In computer graphics, the rendering equation (Kajiya, 1986) is the mathematical for-

mula that describes the reflected radiance on the surface of an object as a function of

the incoming illumination, the surface properties, and the reflectance model. In its

general form we can write the reflected light on a surface point x as an integral over

the whole sphere S:

L(x,ωo) = Le(x,ωo)+
∫

S
r(x,ωi,ωo)L(x,ωi)cos(θi)dωi, (2.1)

where ωo is the direction of output reflectance, Le(x,ωo) is the light that the object

intrinsically emits, r(x,ωi,ωo) is the bidirectional reflectance distribution function

(BRDF), and L(x,ωi) defines the light arriving into x from direction ωi = (θi,φi). Fig.

2.3 illustrates such illumination model on a surface.

Surface
xi

ωi

ni

ωo

Camera

Light

Surface
normal Hemisphere 

S 
 

Figure 2.3: Illumination model of a light source on a surface point.

In this thesis we make some simplifying assumptions. First, we assume objects do not

have intrinsic illumination and drop Le(x,ωo). The BRDF we use is the Lambertian

reflectance which models the diffuse aspect of objects. Thus, the illumination does not

depend on ωo. Lambertian reflectance is a diffuse surface property where the resulting

RGB reflectance r(xi) of an incoming light to a point xi on the surface is given by

r(xi) = za max(ni ·ωi,0), (2.2)
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where za is the RGB albedo, ωi is the incoming light direction and ni is the vertex

normal at point xi. As is typically in computer graphics, we compute the reflectance

at each vertex of our mesh. In order to compute the reflectance in any point within a

triangle we interpolate the reflectances at each of its vertices 0, 1 and 2:

r(xi) = b0(xi)r(x0)+b1(xi)r(x1)+b2(xi)r(x2), (2.3)

where b0(xi), b1(xi) and b2(xi) are the barycentric coordinates of each triangle vertex

relative to the sampled point and b0(xi)+b1(xi)+b2(xi) = 1. Barycentric coordinates

can be computed from the vertex positions thus:

b0(xi) =
1

2|T |nT × (x2−x1)(xi−x1),

b1(xi) =
1

2|T |nT × (x0−x2)(xi−x2),

b2(xi) =
1

2|T |nT × (x1−x0)(xi−x0),

(2.4)

where |T | is the area of the triangle and nT the triangle normal vector.

Photorealistic or global illumination methods such as path tracing approximate the in-

tegral in Eq. 2.1 via Monte Carlo which generally is very expensive to compute. If

we assume a finite set of light sources (e.g. a single directional light source), and as-

sume that light rays do not bounce across objects, then the integral turns into a discrete

sum over these sources and illumination becomes more simple to compute. Simi-

larly, some representations of illumination such as Spherical Harmonics (Ramamoor-

thi, 2006, pp. 385–424) can be used efficiently to model complex scene lighting as

we use them in Chapter 3. Whether we model illumination using spherical harmonic

coefficients (as in Chapter 3), or a directional light source plus uniform ambient illu-

mination (as in Chapter 4), we denote the light latent variables by z`. For example, for

a single light source assumed to be at an infinite distance, z` = (ωi, l) where ω is the

light incidence angle and l is its intensity. In such case, the integral of Eq. 2.1 becomes∫
S r(x,ωi,ωo)L(x,ωi)cos(θi)dωi = r(x,ωi,ωo) · l.

2.2.1.3 Camera projection

The camera of a scene defines the mapping between the object points from 3D to

2D that subsequently forms the image. The positions of the mesh vertices are ini-
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Figure 2.4: Projection of a point x̃ onto the image plane using a pinhole camera.

tially defined in the world coordinate frame. The camera extrinsic parameters de-

fine the transformation of the point from the world coordinate frame to the camera

space. This can be written as x̃ = R(zr)(x−zt), where zt defines the center position of

the camera and R(zr) is a rotation matrix as a function of the camera latent variables

zr = (zθ,zφ). That is, we assume the camera cannot roll (in the pitch, roll, yaw conven-

tion), we can parametrize R using the azimuth zθ and elevation zφ angular variables as

R = RZ(zθ)RX(zφ), where

Rz(zθ) =


cos(zθ) −sin(zθ) 0

sin(zθ) cos(zθ) 0

0 0 1

 ,Rx(zφ) =


1 0 0

0 cos(zφ) −sin(zφ)

0 sin(zφ) cos(zφ)

 . (2.5)

Throughout this thesis we assume a basic pinhole model for the camera as shown in

Fig. 2.4. Once the objects have been transformed to the camera (or view) space, i.e.

x̃ = R(zr)(x− zt), the final projection is given by the matrix of intrinsic parameters,

also known as the camera calibration matrix:


ux

uy

1

=
1
z′


x′

y′

z′

 , where (2.6)


x′

y′

z′

=


f 0 px

0 f py

0 0 1

 x̃, (2.7)
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where f is the focal length, ux and uy are the image coordinates of the point x. Instead

of the focal length, the field-of-view ω can be parametrized using the relationship

f =
a0

2
tan(

ω

2
), (2.8)

where a0 is the sensor size which is assumed to be known. We denote the camera

latent variables as zc = {zt ,zr}, although alternative parametrizations can be used. For

a more detailed description of the pinhole and other types of camera models we refer

the reader to Hartley and Zisserman (2004, Ch. 6).

2.2.1.4 Rasterization

The final step in the rendering pipeline is to produce an image out of the projected

scene. Rasterization is one of the most common methods for discretizing the contin-

uous representation of the 3D scene. The core algorithm involves looping over each

triangle (or more generally referred to as polygon or primitive) in the scene and figur-

ing out which pixels are covered by it. Different surfaces can be projected such that

they overlap the area of a pixel, so the triangles are ordered by their distance to the

camera and the closest surface point is used to compute the resulting pixel colour as

illustrated in Fig. 2.5.

Triangle 

Image

Triangle 

Camera

Figure 2.5: Process of rasterization of a triangular surfaces. Image squares represent

the pixels of the rasterized image.

Very efficient parallel implementations exist to compute such pixel coverage (Pineda,

1988). When multiple surfaces (or triangle primitives in our case) intersect with the
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area of a pixel, a choice must be made regarding how this is handled. For instance, the

simplest method would be to take the colour of the surface point at the center of the

pixel. This strategy can lead to aliasing effects and can have negative results in the final

render. More importantly, a small change in the geometry can also produce a sudden

change in the rasterized image. For instance, if the orange triangle in Fig. 2.5 shifts

to the right at some point the orange pixels become blue due to them becoming only

covered by the blue triangle. In the next section we describe the rendering function and

how derivatives are obtained from this function. It is clear that special care needs to be

taken to handle derivatives of the image with respect to the rasterization step.

To sum all the steps up, the final image I is formed by taking the image point coordi-

nates U that resulted from the rasterization step, and assigning to them the correspond-

ing color intensities L that result from interpolating the surface reflectances as per Eq.

2.3.

2.2.2 Model refinement via gradient-based search

A key idea in this thesis is that of gradient based local search to find the latent variables

that maximize the likelihood of an image under the GM. As we will see throughout

the experiments in this thesis, having derivatives plays a key role in the optimization

process. For this we need gradients of the rendering function with respect to these

latent variables. Let us denote by I the image as a matrix D× 3 of pixel colours; V

is an N× 3 matrix of the N scene vertices, U is the N× 2 matrix of 2D coordinates

of the projected vertices (as per Eq. 2.6), and finally L is the N× 3 matrix of colour

reflectances. The computational graph of the rendering function and its derivatives is

shown in Fig. 2.6.

Every step of this graph, with the exception of rasterization, is defined analytically as

shown in the subsections above and is differentiable. The use of an auto-differentiation

framework1 allows us to code the forward rendering process starting from the latent

variables, and then derivatives are numerically evaluated by applying the chain rule

to each of the steps of our rendering pipeline. This is a convenient setup as it gives

us the flexibility to model each node of our computational graph differently without

having to re-derive the gradient functions each time. For instance, to compute ∂L
∂z`

one

needs to compute the derivative of the chosen reflectance function (e.g. Lambertian

1https://github.com/mattloper/chumpy

https://github.com/mattloper/chumpy
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Figure 2.6: Computational graph of the rendering function and the partial derivatives of

its different steps.

function) with respect to the illumination latent variables (e.g. intensity and angle of

incidence for a single light source at an infinite distance). This derivative can be easily

analytically computed for each of the N×3 color reflectance in L.

The derivatives ∂I
∂U relate to how the pixel colours change as vertices shift in the image,

and as noted by Loper and Black (2014) this is non-differentiable due to the rasteri-

zation step. The closest covering triangle to the camera is sampled to obtain the final

colour of a pixel. When the meshes are transformed (e.g. scaled, shifted, etc.), the

coverage of the triangles on each pixel can vary resulting in sharp changes in the pixel

colours. This issue arises predominantly on object boundary pixels that are covered by

non-contiguous triangles.

Loper and Black (2014) propose Open Differentiable Renderer (OpenDR), a renderer

that uses approximate derivatives of ∂I
∂U . The essential idea is to replace ∂I

∂Ux
and ∂I

∂Uy

by finite-differences using a Sobel filter 1
2 [−1,0,1] and 1

2 [−1,0,1]T . This is the frame-

work for gradient based search we use in chapters 3 and 4. Approximating the step ∂I
∂U

with finite differences has the advantage that it needs to be computed once and can be

re-used when the relevant image derivatives are computed (e.g. ∂I
∂zs

, ∂I
∂zc

, etc.). In con-

trast, an end-to-end finite difference approximation of ∂I
∂z requires evaluating the finite

difference for every variable of interest in z = {zc,zs,za,zp,z`}, which becomes more

computationally inefficient as the number of variables grow, as Loper and Black (2014)

empirically show. In Sec. 4.3.4 we analyze the consequences of different rasterization

strategies have on the way gradients are approximated.

In general we are interested in minimizing an error function E(IGT , IR) of a ground
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truth image IGT and the GM output IR, or equivalently, maximizing a likelihood func-

tion:

z∗ = argmax
z

p(IGT |IR(z)). (2.9)

Now that we have ∂IR(z)
∂z , we can differentiate the error function and perform gradient

based search using any gradient based optimizer. In this thesis we explore different

likelihood functions. Note that if we assume a prior over the latent variables p(z) then

we can estimate the maximum a posteriori probability (MAP), i.e.

z∗ = argmax
z

p(z|IGT ), (2.10)

where p(z|IGT ) ∝ p(IGT |IR(z))p(z).

Alternative strategies to gradient-based search are possible. As mentioned above, one

way is by finite differences through the renderer, e.g. Eslami et al. (2016) use them

to obtain gradients used in an end-to-end unsupervised auto-encoder in which the de-

coder is a renderer. A different approach is to define an error function E(IGT , IR) and

analytically obtain the gradients while taking special care on the object boundaries

(de La Gorce et al., 2008). The advantage of the OpenDR (and our) approach is that

by directly differentiating the rendering function, one has the flexibility to define any

desired error or likelihood function for different models or tasks. Rhodin et al. (2015)

propose a completely different image formation model that directly addresses the dif-

ferentiability of the visibility function using a translucent medium modelled by Gaus-

sian distributions. While their solution handles occlusion in an analytical and smooth

way, their image representation cannot accurately model detailed shape and textures

of objects. Finally, a recent piece of work on 3D face reconstruction uses a photo-

metric loss function defined per projected vertex (instead of per pixel) which sidesteps

the issue of surface occlusion. However, such an approach does not model the whole

image since the error is only defined on those pixels near which a vertex of the face is

projected.

2.3 Discriminative models for vision

Discriminative strategies use features of the images that rely on being informative for

a given task, yet invariant to nuisance factors such as the object viewpoint, intra-class

variability, and the illumination of a scene.
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Well known examples of these features are the Scale-invariant feature transform (SIFT)

(Lowe, 1999) and Histogram of Oriented Gradients (HOG) descriptors (Dalal and

Triggs, 2005). The key idea is that these features capture the gradients of pixel in-

tensities in a discrete set of orientations, which are then pooled (local neighbourhoods

of features are grouped together) into histograms which are further normalized in order

to achieve invariance to local lighting, viewpoint and translation, as well as improving

the robustness to noise. In order to achieve scale invariance, these features are usually

extracted at multiple scales in what is called a pyramid representation.

Inspired by techniques in the text domain, one way to use these features is by grouping

them into orderless vectors known as bag-of-features. These feature vectors are usu-

ally quantized and converted into codebooks (e.g. using clustering techniques) in order

to achieve an efficient representation (Zhang et al., 2007). When analysing an image,

it is typical to only represent an image as a sparse set of these codewords, also called

keypoints. Finally a statistical classification technique, such as Support Vector Ma-

chines (SVM), is used to determine the object category based on the extracted image

features (Zhang et al., 2007). It is important to note that every step of the classifica-

tion procedure is important to achieve a good performance. For instance, using more

powerful encoding techniques (which lose less information than standard histograms

of quantized local features) such as Fisher vectors (Perronnin et al., 2010) allows these

techniques to significantly improve their object detection performance (Cinbis et al.,

2013).

Instead of using bag-of-features, an alternative approach is to use descriptors that are

spatially aligned in the image. That is, image predictions are scored by computing

linear functions of the features extracted from the image (Dalal and Triggs, 2005).

These type of techniques are commonly referred to as template-based. In the context

of template-based techniques, the best recent results for object detection come from

heavily engineered methods known as Deformable Parts Model (Felzenszwalb et al.,

2010). These models use a coarse global template and a set of fine-grained templates

(which represent different object parts) that can lead to efficient object recognition

systems. One drawback of these systems is their use of exhaustive scanning over the

image in order to match the templates. This procedure is also known as sliding win-

dows, see e.g. (Rowley et al., 1998), and usually limits the type of features to those

that can be efficiently computed.

The techniques described above do not explicitly exploit the 3D structure of objects
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(e.g. the fact that the appearance and shape remain similar under small viewpoint

changes). Instead of using many view-point dependent classifiers, variants of such

methods have been devised that efficiently integrate this multi-view property (Thomas

et al., 2006). Hence, learned object representations can be transferred across different

viewpoints requiring less training data and improving detection on novel viewpoints.

These discriminative techniques are also used for more fine-grained image interpreta-

tion which is the main task of interest in this thesis. For instance, Lopez-Sastre et al.

(2011) use a mixture of DPM components to represent discrete set of viewpoints and

Pepik et al. (2012) use a 3D parts displacement model (instead of 2D) for pose es-

timation. The use of Computer-aided Design (CAD) models can provide geometric

information to better initialize and train these models (Glasner et al., 2011; Hejrati and

Ramanan, 2014; Lim et al., 2014; Zia et al., 2013). In this thesis we also make use

of CAD models (and synthetic data in general) as an effective strategy when there is

insufficient labelled real data.

Finally, there are alternative ways to the template based approach when combining im-

age features in order to improve the robustness of the final prediction. Random sample

consensus (RANSAC, (Fischler and Bolles, 1981)) iteratively uses subsets of the fea-

tures to generate and test prediction hypotheses in a robust way. For instance, Lim et al.

(2013) and Brachmann et al. (2014) use RANSAC for pose estimation. Alternatively,

features can cast votes directly on a discretized (binned) space of the parameters and

then the hypotheses for which enough evidence has been accumulated are selected.

This technique is known as Hough transform (Duda and Hart, 1972) and different vari-

ants are used also for pose estimation (Glasner et al., 2011) and reconstruction (Hejrati

and Ramanan, 2014). An idea inspired by the Hough transform is used and described

in more detail in the recognition models of Chapter 4.

2.3.1 Deep learning in computer vision

Recently, state-of-the-art performance has been achieved by deep learning methods

that learn image features from large amount of training data. In contrast to most hand-

crafted or linear features explained above, these neural network models are trained in

a supervised fashion to minimize the error of an objective function. While neural net-

works have been used for much longer, it has mostly been in the last five years, thanks

to the increasing abundance of data and processing power, that these deep represen-
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tations have been very successful for many vision tasks including object recognition

(Krizhevsky et al., 2012; Szegedy et al., 2015), detection and localization (Sermanet

et al., 2013; Girshick et al., 2014), attribute modelling (Zhang et al., 2014) and pose

estimation (Tompson et al., 2014; Toshev and Szegedy, 2014). The architectures of

these networks usually require a large number of parameters, but techniques have been

designed to exploit the spatial structure of images in order to make more efficient use

of the parameters (namely convolutional neural networks or CNN).

An important idea in these models is that of searching in the right regions of images.

Class-agnostic selective search techniques (van de Sande et al., 2011) that output re-

gion proposals is usually seen as an essential step when the memory or computational

requirements would otherwise be prohibitive. Other examples use these region propos-

als before feeding them into convolutional neural networks (CNNs) (Girshick et al.,

2014), or apply CNNs in consecutive stages to refine the estimation of recognition and

localization (Sermanet et al., 2013; Toshev and Szegedy, 2014). Some solutions also

jointly learn not only what to extract but also where to extract. Examples of this ap-

proach are Fixation Neural Autoregressive Distribution Estimator (Zheng et al., 2014),

and Auto-masking Neural Networks (Yang et al., 2014).

Due to their powerful ability to learn complicated mappings, the architectures of our

recognition models throughout this thesis are based on variants of CNNs.
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3.1 Introduction

In this chapter we propose an inverse graphics solution to extract detailed descriptions

of an object in an indoor scene. These descriptions (or factors) are the shape, appear-

ance and pose of the object, and the illumination of the scene.

One of the factors that negatively affects the performance of object detectors is the oc-

clusion of the objects of interest in images, see e.g. (Hoiem et al., 2012). Other factors

include the size and localization of the object, as well as novel (unseen) variations in

the shape and appearance of objects. It is clear that these factors can have an even

greater impact on more detailed scene understanding tasks than on object detection.

Here we study the effect that occlusions have on the performance of scene understand-

ing and propose a combination of RM and GMs to overcome them. Our approach is

illustrated in Fig. 3.1 and explained in detail in Sec. 3.3. In general, we refer to the

process of optimizing some parameters or latent variables of a generative model as the

fitting of the model (i.e. maximization of the probability of the data given those param-

eters or latent variables); and we will refer to the process of fitting the model’s latent

variables, with those latent variables initialized with a point estimate (e.g. given by the

recognition models), as the refinement process.

Recent work has made some exploration of the combination of generative and recog-

nition models for scene understanding, see e.g. Yildirim et al. (2015). However, the

experiments to date have typically been made on “clean” scenes which do not contain

occluding objects and background clutter. From a high level, the motivation to com-

bine recognition and generative models is to leverage the strengths of each of these

approaches jointly. Some of most important properties are discussed in Sec. 1.1 of the

introduction chapter. In this chapter we explore the benefits of combining a recogni-

tion model with a generative model when inferring scene descriptions with images that

have occlusions. Our contributions are:

• We study how the inferences are affected by the degree of occlusion of the fore-

ground object, and show that a robust generative model which includes an out-

lier model to account for occlusions works significantly better than a non-robust

Gaussian model.

• We characterize the performance of the recognition model and the gains that

can be made by refining the search using a generative model. We find that pose
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and shape are predicted very well by the RM, but appearance and especially

illumination less so. However, accuracy on these latter two factors can be clearly

improved with the generative model.

• Production of a new synthetic dataset with which one can evaluate the perfor-

mance of the models with variation across pose, shape, appearance, complex

illumination (extracted from a collection of indoor environment maps), a diverse

set of indoor scene backgrounds, and with the foreground object being partially

occluded. This goes beyond prior work (Yildirim et al., 2015) which only ex-

plores shape, appearance and limited lighting variation.

The structure of the chapter is as follows: we first provide an overview of related work

on the issue of occlusions, scene understanding and recent work on inverse graphics

(see Sec. 3.2). In Sec. 3.3 we describe the generative model as a differentiable ren-

derer. The idea is to make use of approximate gradients that describe how the image

intensities change with respect to the scene factors, leading to efficient search over

these. The robust and Gaussian likelihood models are also explained here. The recog-
nition model (see section 3.4) is trained discriminatively to predict the scene factors

of interest. In order to do this we have created a synthetic dataset of indoor scenes in

which we can generate novel instantiations of object classes of interest, as explained

in Sec. 3.5. The experimental setup and results are given in Sec. 3.6.
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Shape

Light

Appearance

Pose

Latent variables: z

Input image I Backprojection Ir(z)

Recognition Render

Model fit

z∗ = arg max
z

p(I|Ir(z))

Figure 3.1: Illustration of our inverse graphics solution. Given an image, the recognition

models of shape, lighting, appearance and pose initialize the latent variables. Then,

the differentiable renderer generates an image which is refined by optimizing over the

latent variables z that best match the input image, i.e. z∗ = arg max
z

p(IGT |Ir(z)). The

detected occlusion mask is illustrated with red pixels.

3.2 Related work

3.2.0.1 Effect of occlusions in computer vision

The occlusion of objects in images is a factor that is often overlooked when design-

ing computer vision methods. Hoiem et al. (2012) analyze the performance of dif-

ferent object detectors in the PASCAL VOC 2007 (Everingham et al., 2007) and find

that misdetection often happens for occluded or small objects. Unfortunately, the way

standard computer vision benchmarks are set up does not encourage improvement on

some of these aspects (such as robustness to occlusion) as these may have little impact

on the overall average precision. Thus they conclude that specific analysis is essential

for progress in overcoming such factors. The PASCAL VOC 2008 (Everingham et al.,

2008) included an “occluded” flag to the labels of objects with significant occlusion.

While this is a good step in the direction of more detailed analyses regarding occlusion,

it still lacks a more fine-grained quantification of occlusion, thus limiting the extent to

which one can analyze such factor.
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A number of works that address occlusion do so by proposing part-based representa-

tions as features for the discriminative predictors. This way, if a part of the object is

occluded, the model can still produce robust predictions, see e.g. Wang et al. (2009);

Wu and Nevatia (2007). Instead of hand-crafting the features one can also design a

dataset that includes occluded images. This approach is well suited for deep learn-

ing techniques that learn the features from scratch. For instance, Chandler and Min-

golla (2016) show improved object recognition performance compared to identical net-

works that have been trained without occlusion in the training set. Sez-Trigueros et al.

(2017) analyze the parts of faces that are highly discriminative and design a training

set such that the network evenly learns discriminative features from all regions of the

face.

These pieces of work, however, rely on augmenting the dataset with low-level artificial

occlusions (e.g. corrupting or adding noise to pixels of the image) which follow a very

different pixel distribution compared to real occlusions. Our work differs from the

above methods in two ways: first we provide a dataset in which occlusions are exactly

quantified (due to having a synthetic scene generator) and are generated in a way one

would find with objects embedded in indoor scenes (instead of artificial noise). Second,

we study the benefit of using an inverse graphics approach to handling occlusions, as

opposed to modifying a RM for this purpose.

3.2.1 Hybrid generative-discriminative architectures.

The problem of inferring the physical world that gave rise to a given image is a long-

standing and fundamental problem in computer vision. One recent example of this

reconstructive paradigm is the work of Barron and Malik (2015) where depth maps,

reflectance maps, and illumination models are recovered from an input image by opti-

mizing a data fit criterion and making use of prior distributions. Another nice example

is the work of Loper and Black (2014) as applied to the problem of fitting an articulated

human body model to Kinect data.

In the above papers the search over the latent factors of variation is made directly us-

ing gradient-based optimization methods. However, it is also possible to make use

of a recognition model to predict these factors bottom-up. One example is the algo-

rithm behind Kinect (Shotton et al., 2013), which is shown to be a key component of

efficiently estimating human pose.
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The work of Jampani et al. (2015) and Kulkarni et al. (2014) makes use of bottom-

up sampling probability distribution proposals to get an approximation of the posterior

probability of the latent variables more efficiently for black-box renderers. Both papers

show improved sampling performance using these data-driven proposals.

Krull et al. (2015) work on estimating 6D pose from RGB-D images. Rather than ex-

plicitly modelling occlusions they learn an energy function that compares the rendered

model and the input image (which may contain occlusions) using a convolutional neu-

ral network. At inference time a search is carried out in 6D pose space to minimize the

energy function. Note that this work is restricted to inference of pose, while we also

address object shape, appearance and illumination factors.

Perhaps the most closely related work to ours is that of Yildirim et al. (2015), which

makes use of both a recognition model and a generative model. They use the mor-

phable face model (Blanz and Vetter, 1999) and explore variation in shape, texture,

pose, and lighting direction. In our work we make use of more complex illumination

(extracted from a collection of indoor environment maps), and also include scene back-

grounds and foreground occlusions. We also analyze the performance of the recogni-

tion model with respect to the different factors. A further difference is that Yildirim

et al. (2015) make use of MCMC methods for inference, while we use local search

using a differentiable renderer.

The Picture framework of Kulkarni et al. (2015a) provides a general probabilistic

programming framework for specifying scene understanding problems and general-

purpose inference machinery, and applies it to a number of example problems. Rather

than generating pixels it uses a “representation layer” of features to assess the match of

an input image and the rendered scene, using a likelihood-free method. Note, however,

that this means there is a choice of representation that needs to be made (by hand) in

order to use the framework. Also, Picture does not explicitly handle occlusions, nor

complex lighting.

3.2.2 Learning the generative model.

Another piece of related work is to use a deep learning auto-encoder model for both

the recognition model (encoder) and generative model (decoder), as in Kulkarni et al.

(2015b). This Deep Convolutional Inverse Graphics Network (DC-IGN) model does
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not make use of an explicit 3D graphics model, but rather learns a mapping from

the graphics code layer (hidden units) to images in the decoder. This gives a lot of

freedom to the model as to how it wishes to represent variation in shape, illumination

etc. However, it also means that the effect of e.g. pose variation has to be learned

specifically for an object class, rather than being generic geometric knowledge. The

ability of DC-IGN to generalize to novel images (e.g. under different rotations) seems

to be limited if one looks at the visual quality of its renders. Experiments are again

conducted with respect to shape, texture, pose, and simple lighting direction variation,

without scene backgrounds and foreground occlusions. Note also that the auto-encoder

architecture means that there is no scope for refinement of the code predicted by the

recognition model, in contrast to our work and that of Yildirim et al. (2015).

The work of Dosovitskiy et al. (2015) is somewhat similar to the DC-IGN model in

that it learns a “decoder” network from variables representing shape class, pose and

other transformations (e.g. in-plane rotation, colour transformations), although there

is no corresponding encoder network. Their network shows impressive generalization

over the chair class, but is not used to address issues of scene understanding.

3.3 Generative model

We first describe how the foreground object is modelled, and then discuss the rendering

process and our likelihood models.

3.3.1 Object model

In this work, the factors that characterize a visual object are the pose, shape, appear-

ance, and the incident illumination. The choice parametrization of a scene is a trade-off

between its ability to model complex scenes and having a compact representation for

efficient search over the latent variables. In this work we use the following parametriza-

tion:

Shape (10D): We model the shape of a given object class using a deformable mesh

characterized by a linear latent variable model, similar to the work of Blanz and Vetter

(1999) for modelling faces. The training of the teapot shape model was carried out

by my colleague Charlie Nash. More specifically, a Probabilistic Principal Component
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Analysis (PPCA) model was trained on landmark point positions for a dataset of teapot

CAD meshes. The corresponding landmark point positions were obtained by deform-

ing a set of template points using a variant of non-rigid iterative closest point (ICP)

(Amberg et al., 2007). We use 10 latent dimensions so as to capture 90% of the vari-

ability in the dataset. Landmark points can be generated from the model by sampling

the latent variables, then applying the learned linear transformation and adding noise.

Given a set of sampled landmark points, we compute regularized affine transforma-

tions that map the template points to the sampled points. The template mesh vertices

are deformed by a weighted sum of the nearest-neighbour landmark point transforma-

tions. This can be thought of as an embedded deformation (Sumner et al., 2007) in

which the nodes of the deformation graph are the landmark points. Mathematically the

generated object vertices X are given by:

X = T (W T
s zs +bs), (3.1)

where Ws are the principal components and bs are the mean landmark positions and

T is the 3N×D “nearest-neighbour” transformation matrix that maps the D landmark

points to the N×3 vertex coordinates. The shape latent variables are thus the 10 PPCA

components that explain the most variance.

Pose (2D): We assume the camera viewing direction is centered at the foreground

object and positioned at a fixed distance with variable azimuth and elevation angles.

While having a camera centered at a fixed distance may seem to be a restrictive setup

if we consider how objects are usually seen in real images, it allows us to focus on

the issues of interest of this chapter. In Chapter 4 we address the more general case of

having multiple objects in scenes in which the camera is sampled at varying distance

and focal lengths. The pose is represented by zp = (zθ,zφ) as per the equations 2.5 and

2.6.

Appearance (3D): A global RGB color for all object vertices. We will also refer to

this as the albedo as defined in Eq. 2.2, with the reflectance function assumed to be

Lambertian.

Illumination (9D): Inverse illumination is known to be an ill-posed problem (Ra-

mamoorthi and Hanrahan, 2001b, Ch. 6), with the additional issue that real illumina-

tion can be very complex (thus modelled poorly by single directional light sources). We

are interested in representations that are practical for our inverse graphics framework.
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One of the most natural representations is to project lighting to basis functions such

as Spherical Harmonics, see Ramamoorthi (2006), a technique which is also widely

used in computer graphics for efficient approximate rendering of lighting. Other rep-

resentations include Haar wavelets (Reinhard et al., 2010), as well as basis images of

the object class illuminated from different light conditions (Belhumeur and Kriegman,

1998). We use Spherical Harmonics (SH) due to its compact representation and the ef-

ficiency at which re-lighting is computed when rotating the light or changing the shape

and pose of the modelled objects. Following the notation of (Ramamoorthi, 2006), the

Lambertian reflection in the SH basis as a function of the illumination latent variables

zlm
` (where ` denotes lighting) is given by

rlm = ΛlAlzlm
` , (3.2)

where Λl =
√

4π/(2l +1) and Al is the Lambertian transfer function in the SH repre-

sentation:

Al = 2π

∫ π

2

0
Yl0(θ

′
i)cosθ

′
i sinθ

′
idθ
′
i. (3.3)

Here Ylm are the different SH basis functions based on the associated Legrende poly-

nomials where −l ≥ m ≥ l for different orders l (for our 9 coefficients we set l = 3).

Note that Al has a closed form solution (Ramamoorthi, 2006). Fig. 3.2 illustrates the

nine SH basis functions used. We can see for instance how the first SH basis function

only captures a constant function, i.e. uniform lighting in the scene, and subsequent ba-

sis functions capture more detailed directional illumination intensities over the whole

sphere. Thus, for instance, the first illumination latent variable zl=0m=0
` models the

intensity of uniform lighting, and e.g. zl=1m=0
` models the intensity of lighting exactly

coming from the object. Finally, we can compute the reflectance by

r(α,β) =
∞

∑
l=0

l

∑
m=−l

rlmYlm(α,β). (3.4)

Note how r(α,β) is a function of α and β, which are the angles of rotation of the normal

vector n at the surface point of which we are evaluating the irradiance. This follows

the relationship n = (sinαcosβ,sinαsinβ,cosα). Importantly, any vertex normal is

also a function of the shape latent variable zs since the matrix of vertex normals N of a

mesh is computed from the matrix of vertices X defined in Eq. 3.1.
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Yl=0,m=0

Yl=1,m=−1 Yl=1,m=0 Yl=1,m=1

Yl=2,m=−2 Yl=2,m=−1 Yl=2,m=0 Yl=2,m=1 Yl=2,m=2

Figure 3.2: Illustration of the SH basis functions defined over the full sphere. Here,

red colours indicate positive values and blue colours negative values (and white colour

values closer to zero).

Spherical Harmonics form an orthogonal basis that can be used to approximate com-

plex illumination. For Lambertian reflectance, it can be shown that only 9 components

(l = 3) can approximate images of a convex object by at least 99.22% (Basri and Ja-

cobs, 2003). Even though real world objects have cast shadows, specularities, and

other non-Lambertian factors, our assumption is that a Lambertian approximation is

sufficient for a large variety of tasks in inverse graphics. While in this work we do

not explicitly use a prior probability distribution over z` when refining the GM to an

image, one way to model a prior would be to capture the distribution of SH coefficients

found in real scenes1.

To sum up, our object representation has a total of 24 latent variables: 10 for shape, 2

for pose, 3 for colour and 9 for illumination. Fig. 3.3 shows a few examples of samples

and variabilty in the teapot model.

1For instance, we could use the SH coefficients dataset from real environment maps, described in
Sec. 3.5, that are used to generate our synthetic dataset.
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Figure 3.3: Samples from the generative model.

3.3.2 Renderer

As we described in Sec. 2.2.1, we use a graphics renderer as a generative model that

takes as input a set of object meshes (which include information of their vertex co-

ordinates, normal vectors, textures and colors) and then generates the renders using

OpenGL. Our renderer implementation is based on OpenDR: Differentiable Renderer

(Loper and Black, 2014). However, we have completely re-implemented the renderer

to make it capable of rendering multiple objects and textures in a simple way (while

still remaining differentiable). It still uses the Chumpy2 auto-differentiation framework

as it allows to seamlessly define the complete differentiable scene model from the la-

tent variables to the generated pixels. Our implementation uses the modern version of

OpenGL back-end (i.e. OpenGL v3.0 or greater), as opposed to the older fixed func-

tion pipeline3, in order to support modern graphics features and hardware-accelerated

rendering. One of the modern OpenGL features we take advantage of in Chapter 4 is

the ability to use shaders as programmable software.

The main advantage of the OpenDR framework is that it provides approximate deriva-

tives of the image with respect to the latent variables or any variable of interest. The

approximation stems from the fact that the rendering function is non-differentiable due

to self-occlusion and occlusion across objects. Having derivatives plays a key role

in the efficiency of the optimization process as the dimensionality of our latent space

increases.

We can think of the cost function of our generative process (i.e. the reconstruction er-

ror) in terms of a likelihood function. In this work we explore two possible models over

the pixel intensities. Since we are modelling one foreground object, all the rendered

pixels that lie outside the object mask are considered as background and modelled by

a uniform distribution. Given an image I, the likelihood of the foreground pixel (fg)

2https://github.com/mattloper/chumpy
3https://www.khronos.org/opengl/wiki/Fixed_Function_Pipeline

https://github.com/mattloper/chumpy
https://www.khronos.org/opengl/wiki/Fixed_Function_Pipeline
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intensities are modelled as follows:

• Gaussian model: The simplest case is a Gaussian distribution on the pixel in-

tensities:

p(ci|z, fg) = N (ci;µi(z),σ
2I) (3.5)

where ci is the RGB color at pixel i, µi(z) is the RGB color output of the ren-

derer given scene latent variables z, σ2 is the spherical variance (assumed to be

the same for all pixels), and N denotes the Gaussian distribution. In terms of the

optimization landscape, this is equivalent to using a squared error cost function.

• Robust model: We want our model to tolerate foreground occlusions by using

outlier statistics as in Williams and Titsias (2004)

p(ci|z, fg) = αN (ci;µi(z),σ2I)+(1−α)U(ci)), (3.6)

where α is the mixing probability of a pixel being unoccluded, and U is the

uniform distribution. We can learn α from our training set by e.g. taking the

average of the proportion of unoccluded pixels. We can compute this quantity

using the fully labelled training set we also use to train the recognition models.

Note that the label of whether a pixel is f g or bg is given by the generative model,

thus depends on z (i.e. we implement it in the generative model by rendering a

pixel mask of presence or absence of objects). For simplicity we have dropped

the dependence on z in the notation.

Thus, the overall log-likelihood of an image given the scene latent variables z is given

by

L = ∑
i∈ f g

log p(ci|z, f g)+ ∑
j∈bg

logU(c j). (3.7)

The pixel-wise outlier model as used above does not impose spatial priors on regions

of occlusion. One could enhance this e.g. using Markov random field models on the

occlusion labels, see e.g. (Fransens et al., 2006), at the cost of greater complexity in

inference. One could also consider more complex occlusion models that learn the

structure of occlusions from data, see e.g. Gao et al. (2011). While Black and Ran-

garajan (1996) propose robust statistical techniques for a number of vision tasks, the

advantage of the latent variable formulation of our robust model is that it allows us to
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explain occlusions by using the posterior probabilities of the foreground/outlier pixel

segmentation.

Estimating the latent variables of interest is obtained by initializing the OpenDR input

with the estimates of the latent variables given by the recognition model, followed by

locally improving its fit (i.e. refinement) using the likelihood function, Eq. 3.7, subject

to the constraint that the PCA coefficients of the shape model lie within ±3 standard

deviations of the mean. This is why it is essential that the predictions of the recognition

model should lie within the basin of attraction of the generative model. We explain

further details of the optimization procedure in Sec. 3.6.1.2.

3.4 Recognition model

The choice of architecture of the recognition models depends on the task domain and

the scene factors we want to infer. For instance, the model can output a single point

estimate or take a probabilistic approach; in this work we focus on the former case.

Predicting a point estimate is easier in the sense that one does not have to define a

probability distribution; however a point estimate comes with no information regarding

the uncertainty of the prediction (which we would have if we predicted a probability

distribution). Having the latent variables probability distribution from the recognition

model could for instance be used to obtain multiple samples, and subsequently perform

the fitting process to each of them, potentially leading to a better final fitted prediction

of the latent variables. Again, we want the estimates of the bottom-up predictions to

lie within the basin of attraction of the generative model.

Using the right feature representation of the images is also key to good discrimina-

tive performance. After experimenting with a diverse set of features for each type of

parameter (e.g. Histogram of Gradients for pose prediction, and different basis expan-

sions for illumination) we found that learning the features from raw images gave the

best prediction performance. Therefore, we make use of convolutional neural networks

(CNNs), implemented using the Theano library (Theano Development Team, 2016), to

predict each of the different groups of latent variables (shape, appearance, pose, colour

and illumination). CNNs have been key to the success for many computer vision tasks

in recent years, see e.g. Krizhevsky et al. (2012). The loss function used for networks

is the mean squared error (MSE) of the ground truth and predicted values of the la-
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tent variables. To train the angular variables we first convert the angles to their sine

and cosine representation (and predict both values) to avoid the wrap-around effect.

The architecture of choice is almost the same in all cases as it showed a good gen-

eralization capability (in the sense that the validation errors where very similar to the

training errors, with validation error being only slightly worse): three convolutional

layers (64 5x5 filters) with max-pooling and two dense hidden layer (with 256 and 32

hidden units respectively). The input to the networks are the RGB images, except in

the case of pose and shape CNNs, in which the input is assumed to be gray-scale. A

dropout rate of 0.5 was used, and the Nesterov Accelerated Gradient descent with 0.9

momentum was the optimizer used.

The CNNs were trained on 90% of the 10,000 images of our synthetic dataset which we

describe in the following section. From the training set, 20% of the images were used

as a validation set to choose the hyperparameters. These hyperparameters include the

number of convolutional and fully connected layers, and their corresponding number

of channels or hidden units.

3.5 Synthetic ground truth dataset

Synthetic datasets have been used for a variety of computer vision tasks. For instance,

Shotton et al. (2013) generate hundreds of thousands synthetic depth images to train

randomized decision forests. Zia et al. (2013) synthetize views of 3D CAD models of

chairs to discriminatively learn the 2D to 3D mapping from rendered images.

In the inverse graphics literature, Jampani et al. (2015) perform different synthetic

experiments which include human body shape reconstruction; Kulkarni et al. (2015b)

propose an encoder/decoder architecture and is evaluated on synthetic face and chair

data sets; Dosovitskiy et al. (2015) use synthetic data for both training and generation

of chair and car models.

In our work we use fully rendered synthetic images in which the object of interest is

instantiated in randomly generated and plausible scenes. The purpose of our dataset is

to train the RMs and to carry out the quantitative evaluation.

In order to generate synthetic data we use an indoor scene generator based on the

dataset of Fisher et al. (2012). This 3D dataset consists of roughly 10,000 CAD models

they collected and stochastically arranged together to form different plausible indoor
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scenes. Here, we use over 80 different indoor scenes generated from their dataset.

Fig. 3.4 shows two samples of the indoor scenes used as part of the dataset genera-

tion.

Figure 3.4: Example of 3D arrangement of scenes from Fisher et al. (2012) used in our

dataset image generation.

In this chapter we focus on the teapot object class. The reason for choosing teapots is

that it is a common type of object in indoor scenes and has a good degree of variability.

However, our stochastic scene generation is not limited to only one type of object,

and many different object models can be collected from sources such as the Princeton

ModelNet (Wu et al., 2015) and easily embedded into the scenes.

We use the deformable teapot model explained in Sec. 3.3.1 to generate random in-

stantiations of the teapot in terms of shape and colour.

To generate the scenes with complex and varied illumination settings, we collected

over 70 complex indoor environment maps (also known as light probes) from different

sources, see e.g. Debevec (1998). An environment map is the projection of the incident

illumination on a point of a scene into an equirrectangular image. Fig. 3.5a shows one

such environment maps projected into an image.

The ground truth of each sample in the dataset is generated by instantiating the teapot

object in one of the indoor scenes. We first manually tagged a large number of possi-

ble surface points in all the scenes where a teapot can be instantiated such that they are

placed plausibly on a surface such as a table, etc. The position of a teapot is thus cho-

sen uniformly at random from all these surface points and all the scenes. This involves

sampling the shape parameters from the shape prior, as well as a uniformly sampled

object rotation around the Z-axis (up axis). The camera’s angles of azimuth and el-

evation are randomly sampled with a uniform distribution on the upper hemisphere

and it is placed at a fixed distance from the object. The scene is then illuminated by
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one of the environment maps which is rotated uniformly along the Z-axis4. In total,

we produced 10,000 images, 10% of which are reserved as test images for evaluation

purposes.

We distinguish two versions of the data set. The first is based on the scenes rendered

using the photorealistic ray tracer Cycles5, which makes use of the environment maps

for illumination. The second data set is composed of renders generated using the same

rendering pipeline as per the GM as described in Sec. 2.2.1. In this version, we use the

collected environment maps to render illumination by using their Spherical Harmonics

(SH) representation. Since the Lambertian reflectance function acts as a low-pass filter,

it effectively removes high-frequency information (Basri and Jacobs, 2003), hence the

resulting illuminated objects are perceptually well approximated compared to using

the actual environment maps. In Fig. 3.5 we can see the resulting approximation of

one of the environment maps (first image) using Spherical Harmonics of different or-

ders. One can see for instance how the first coefficient captures the mean illumination.

Since it is not a global illumination model, it does not render cast shadows across or

within objects. We refer to the second one as the OpenGL data set as the rendering is

implemented using OpenGL.

(a) GT environment map (b) SH with 1 coefficient

(c) SH with 4 coefficients (d) SH with 9 coefficients

Figure 3.5: Example of illumination modelled by an indoor environment map (first im-

age). The remaining images represent the approximations with 1, 4 and 9 Spherical

Harmonics coefficients.

4By rotating the environment maps along the up axis, we significantly augment the number of ground
truth illuminations in a way that these still represent illuminations from plausible scenes (just with
different orientations).

5http://www.blender.org/manual/render/cycles/introduction.html
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Rendering with Cycles takes roughly three orders of magnitude of time longer com-

pared to the OpenGL method. We use the first type as the out-of-sample test set in our

experiments and the second type is used to train and validate our recognition models

(which requires many more images). As explained in Sec. 3.6, we evaluate our models

with both OpenGL and Cycles versions to determine the change in performance of our

models when images have realistic illumination.

The width and height of images are set to 150 by 150 pixels. Since each image is com-

posed of a teapot randomly instantiated in the scene, the object is often occluded by

other objects that are present in the indoor scenes. We can quantify the level of occlu-

sion of the foreground object by the percentage of pixels that are shown in the image

relative to the full object mask. Fig. 3.6 shows a few examples rendered with Cycles.

Fig. 3.6 (c) shows the histogram of occlusion levels in our dataset, note how there are

occlusions of all levels up to 90% (it is not useful to have images with occlusions near

100% for the purpose of training or evaluation).

We believe the data set can be a useful resource to the community as a test bed for scene

understanding tasks. Our scene generator and dataset are available online and can be

accessed in the following project repository: https://github.com/polmorenoc/

inversegraphics.

(a) 8% Occl. (b) 21% Occl.
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Figure 3.6: Examples of our synthetic data set in which the object of interest is randomly

instantiated. (c) shows the histogram of the levels of occlusion of all 10,000 images.

https://github.com/polmorenoc/inversegraphics
https://github.com/polmorenoc/inversegraphics
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3.6 Experiments

3.6.1 Experimental setup

In the following experiment we use a test set which consists of 1000 test samples from

our synthetic dataset. Using images from our synthetic dataset gives us the ground

truth scene latent variables which are used to quantify the performance of our models.

However, the images used for training the recognition models are rendered using the

method explained in Sec. 3.5 which uses Lambertian reflectances and does not follow a

photorealistic illumination method. In order to evaluate the generalization performance

of our models we instead render these images using the an unbiased photorealistic ray-

tracer Cycles. For reference, we provide results using both rendering methods.

We are interested in understanding the performance of our models (recognition, Gaus-

sian and robustified) as the occlusion level is increased. As a metric of reference, we

also provide a baseline prediction based on the mean values of the different factors on

the training set (which we call mean baseline). The evaluation metrics and optimiza-

tion procedure for this experiment are explained below.

3.6.1.1 Evaluation metrics.

Evaluating predictions of the fine-grained scene latent variables (e.g. pose, shape, ap-

pearance, illumination) is difficult due to a lack of labelled datasets, but here we have

the advantage of having a synthetic dataset in which all these factors are designed to

have a rich variability. One way to evaluate the performance of our method is the

log-likelihood on the test set. However, that does not give us an easily interpretable

quantity. Instead, evaluation is carried out with respect to the predictive performance

of the latent variables we are modelling, which have a more intuitive and physical

interpretation. We also evaluate how well the un-occluded foreground pixels are pre-

dicted.

Choosing the evaluation metric for each of these factors is not necessarily straightfor-

ward. For pose azimuth and elevation, we define the errors to be the absolute angular

difference for each angle (azimuth and elevation variables range 360 and 90 degrees

respectively).

Special care needs to be taken to measure the appearance and illumination attributes
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as they interact with each other multiplicatively, see equation 2.2. For the appearance

error ei
a, we convert the colour representation to Lab space6 which is more perceptually

uniform, and omit the luminance L to give

ei
a =

√
(ai

pred−ai
gt)

2 +(bi
pred−bi

gt)
2, (3.8)

where ai
pred and bi

pred correspond to the predicted color dimensions of the Lab repre-

sentation, and ai
gt and bi

gt to the ground truth values for test image i.

For the illumination error we use the mean squared error (MSE) of the Spherical Har-

monics coefficients. It is known that estimating the illumination from a single view

can be potentially ill-conditioned (Ramamoorthi and Hanrahan, 2001a) so it is possi-

ble that the ground truth illumination cannot be recovered exactly. It is easy to see

that our metric is equivalent to the MSE of the incident SH illumination projected on

a sphere. Note that we use a scale-invariant version of this metric in order to account

for the fact that appearance and illumination interact with each other multiplicatively.

A similar evaluation metric is used in the work of Barron and Malik (2015). The

scale-invariant sMSE of a predicted x̂ and ground truth x? has the form:

sMSE = min
α
‖αx̂−x?‖2

2 , (3.9)

where α has a closed-form solution:

α =
x̂T x?

x̂T x̂
. (3.10)

Finally, we evaluate shape reconstruction by using the mean Euclidean distance be-

tween the vertices of the ground truth and predicted meshes, both aligned to a canonical

pose.

The occlusion predictions from the robust model are evaluated thus: for the robustified

GM, we use the posterior over the pixel-wise outlier (i.e. binary) latent variables to

compute the mask. That is, the outlier latent variable of pixel i, zi
o has a probability

distribution given by

p(zi
o = 1|ci,z, fg) =

N (ci;µi(z),σ2I)
αN (µi(z),σ2I)+(1−α)U(ci))

. (3.11)

We use a threshold of p(zi
o = 1|ci,z, fg) >= 0.5 to define a pixel as belonging to the

object.

6https://en.wikipedia.org/wiki/Lab color space
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These are then compared to the ground truth un-occluded foreground pixels using the

segmentation accuracy as defined e.g. in Everingham et al. (2010), where the number

of true positives is divided by the sum of the true positives plus false positives plus

false negatives. For the recognition model (without iterative refinement), we assume

that all of the predicted foreground pixels are un-occluded.

3.6.1.2 Optimization procedure.

For the robust model we explored different optimization strategies since convergence

is sensitive to the choice of the likelihood variance. If we use a pixel variance that is too

large, then occlusions and background clutter will affect the optimization negatively.

On the other hand, if the variance is too small, the robust model tends to ignore large

parts of the image including those which are important for a correct optimization. We

jointly optimize the latent variables of pose, shape, appearance and illumination using

a standard deviation of σ = 0.03 of the pixel likelihood. Note that the pixel color for

each RGB channel ranges between 0 and 1. Also, we clamp shape parameters to be

less than three standard deviations from the prior mean: it is much more likely that the

optimization has gone wrong than it is having an input image with an unreasonably

large (or small) deformation of the mesh.

We explored different minimization methods including gradient descent (with and

without momentum and decay), nonlinear conjugate gradient (CG)7, dogleg CG (as

used in the OpenDR work), and the Broyden–Fletcher–Goldfarb–Shanno (BFGS) al-

gorithm (Fletcher, 1987). Overall, nonlinear CG consistently converged to better min-

ima in our tests hence we use it in our experiments. It is not surprising that these meth-

ods often converge differently since the optimization landscape is non-convex and the

derivatives are approximate.

3.6.2 Results

3.6.2.1 Effect of occlusion on accuracy.

Fig. 3.7 shows the median cumulative predictive performance as a function of the per-

centage occlusion when evaluating on the photorealistic test images. Note that in pan-

7http://learning.eng.cam.ac.uk/carl/code/minimize/
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els (a)-(e) lower error is better, while in panel (f) higher scores are better. We also

provide confidence intervals for the estimation of the cumulative median to have a

notion of its variability, and the significance of this evaluation. These are computed

by bootstrapping (re-sampling with replacement subsets of the measured errors) and

using the percentiles of the bootstrap distribution, which is known as the percentile

bootstrap method (Davison et al., 1997, p. 203). Comparing the recognition network

to the recognition network plus robust refinement, we see very similar performance

for azimuth, elevation and shape factors, but marked improvements with refinement

for appearance, illumination and occlusion. Pose and shape are predicted very well

by the recognition model, which suggests that it is good at inferring latent variables

for which there are clear and localized cues (e.g. for pose, the locations of tip of the

spout, the handle, etc.), even under high levels of occlusion. Subsequent refinement of

azimuth and shape factors on average shows little to no improvement, but we do see an

improvement for elevation. The small gains in refinement for pose are progressively

diminished and we see for the very large occlusion levels that the predicted perfor-

mance reverts back to the performance of the RM predictions. We also see how the

recognition model has not learned to predict the illumination and that occlusion has

a strong effect on the prediction. This agrees with the intuition that the other factors

can be more easily inferred by having a smaller portion of the object be un-occluded.

The recognition models generally either do very well at predicting some of the latent

variables (e.g. pose, shape) as shown by the low errors or really badly (such as for illu-

mination). For those variables that are well predicted, like pose, it seems that the RMs

have learned to predict the pose from subset of image features reliably (this is the ad-

vantage of bottom-up methods), so it does fairly well across most occlusion levels. For

illumination on the other hand, performance does degrade as occlusion increases but

the predictions by the RM were generally bad even for low level of occlusions (perfor-

mance is similar to that of the baseline), so there isn’t that much room to degrade more

from. The biggest effect of occlusion on performance is reflected in the segmentation

accuracy, where we clearly see it worsen from 80 to 60% as we increase the occlusion

level.

3.6.2.2 Refinement results.

It is noticeable that the Gaussian model performs much worse than the robust model

for elevation, appearance, and illumination. Indeed it sometimes performs worse after
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refinement than the recognition model itself, which is most likely explained by the fact

that the Gaussian model does not handle occlusion and background clutter well. Plots

of the mean performance rather than the median show similar trends to those in Fig.

3.7, except that the elevation angular error of the robust fit becomes worse than the

recognition model over the occlusion range (increasing from 6 to 8 degrees). Analysis

shows that this is due to some large errors that arise particularly at higher occlusion

levels.

Table 3.1 summarizes the plots by showing the median prediction errors for the base-

line, the recognition model prediction, and the Gaussian and robust fits for up to 75%

occlusion. (So, for example the performance at 75% occlusion is obtained from all test

cases with this much occlusion or less.) The table shows results for both the photoreal-

istic images (left columns) and OpenGL images (right columns). The 90% confidence

intervals of the median are also provided for the 75% cumulative occlusion. We notice

how for the latent variable predictions for which we saw a clear gain after refinement

(i.e. color and illumination errors, and segmentation accuracy), their median error

estimates are indeed significantly different.

3.6.2.3 Effect of illumination model on accuracy.

Computer vision researchers ultimately wish to create models that can be applied

to real images. Our recognition models are trained on synthetic dataset with non-

photorealistic illumination. Similarly, our generative model uses the same rendering

assumptions (non-global illumination). Thus, it is interesting to investigate the effect

that real world illumination may have on the performance of the models. Fig. 3.8

shows the median plots in which we compare the errors of our models when tested on

photorealistic (solid lines) vs OpenGL (dashed lines) images. We notice how the rela-

tive improvements after refinement are similar in both Cycles and OpenGL cases, but

the OpenGL experiments have lower errors (for both RM and RM+fit), as is expected.

Interestingly, the prediction of the appearance latent variable seems to be affected the

most, while the illumination and shape prediction performance does not change re-

gardless of the illumination model.

Table 3.1 shows that using the RM estimates followed by robustified model refinement

is consistently the best method for all variables and illumination models.



3.6. Experiments 49

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

101

102

A
n

gu
la

r
er

ro
r

Mean Baseline

Recognition

Gaussian Fit

Robust Fit

(a) Azimuth errors

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

A
n

gu
la

r
er

ro
r

Mean Baseline

Recognition

Gaussian Fit

Robust Fit

(b) Elevation errors

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

A
p

p
ea

ra
n

ce
er

ro
r

Mean Baseline

Recognition

Gaussian Fit

Robust Fit

(c) Appearance errors

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

0.000

0.005

0.010

0.015

0.020

0.025

Il
lu

m
in

at
io

n
er

ro
r

Mean Baseline

Recognition

Gaussian Fit

Robust Fit

(d) Illumination errors

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

100

4× 10−1

6× 10−1

S
h

ap
e

ve
rt

ic
es

er
ro

r

Mean Baseline

Recognition

Gaussian Fit

Robust Fit

(e) Shape vertices errors

0 10 20 30 40 50 60 70 80 90
Occlusion (%)

0.0

0.2

0.4

0.6

0.8

S
eg

m
en

ta
ti

on
ac

cu
ra

cy

Recognition

Robust Fit

(f) Segmentation accuracy (higher is better)

Figure 3.7: Median errors for azimuth, elevation, appearance, illumination, shape; figure

(f) is the segmentation accuracy. Shaded areas indicate the lower and upper bounds of

the 90% confidence intervals of the median.
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Figure 3.8: Comparison of performance when evaluating on non-photorealistic vs Cy-

cles rendered test images. Median errors for azimuth, elevation, appearance, illumina-

tion, shape; Fig. e) is the segmentation accuracy.
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Photorealistic OpenGL

Baseline RM Gaussian Robust RM Gaussian Robust

Azimuth° 92.14 11.71 14.52 11.17 10.68 17.18 8.55
88.62,98.11 10.80,12.66 13.18,16.14 10.30,12.37 9.72,11.40 15.76,18.64 7.39,9.66

Elevation° 14.44 5.58 8.19 5.02 4.94 7.57 3.67
14.03,15.15 5.20,6.11 7.62,8.69 4.71,5.32 4.58,5.36 6.75,8.14 3.27,4.05

Appearance 0.140 0.048 0.056 0.032 0.036 0.055 0.014
0.133,0.147 0.045,0.051 0.052,0.060 0.023,0.035 0.035,0.039 0.050,0.059 0.012,0.014

Illumination 0.021 0.023 0.024 0.019 0.022 0.024 0.019
0.020,0.023 0.021,0.024 0.022,0.026 0.018,0.020 0.020,0.023 0.022,0.026 0.018,0.021

Shape 1.005 0.541 0.560 0.511 0.525 0.599 0.479
0.985,1.075 0.527,0.555 0.534,0.576 0.501,0.527 0.501,0.540 0.575,0.622 0.462,0.494

Segmentation 0.659 0.778 0.670 0.828
0.645,0.678 0.764,0.790 0.658,0.688 0.819,0.837

Table 3.1: Median prediction errors for the latent variables for levels of occlusion up to

75%. Higher is better for segmentation evaluation. Lower and upper bounds of the 90%

confidence intervals of the median are given in the rows below the median values.
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3.6.2.4 Qualitative evaluation.

Given a point estimate of the latent variables we can compute the segmentation mask

of the teapot projected on the image as per Eq. 3.11.

Fig. 3.9 shows examples of how the robust model explains away the occlusion rather

impressively for different levels of occlusion, which is something difficult to achieve

with only bottom-up techniques.

In Fig. 3.10 we visually compare changes in the prediction of the RM and RM plus

refinement with the robustified GM. These examples illustrate how the illumination

(here represented as an environment map) is refined to capture the main directional

sources of illumination in complex indoor illumination settings, even with multiple

light sources. Note that all the scene latent variables were predicted and refined in

this experiment. In general, the robust model seems much more capable of captur-

ing fine-grained descriptions such as illumination, appearance and occlusions than the

recognition model. The last two examples show failure cases when the object is oc-

cluded to the extent that the resulting fit becomes completely wrong.
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Images Segmentation Images Segmentation

Figure 3.9: Examples of occlusion inference using the posterior of the robust pixel

probabilities



54 Chapter 3. Overcoming Occlusion with Inverse Graphics

Input Recogn. Fit Input Recogn. Fit

Figure 3.10: Examples of how refinement with the robust model captures the correct

illumination whereas RM is unable to do so. For each example image we show at the

bottom the corresponding illumination map (in terms of the projection of the 9 Spherical

Harmonics coefficients to an equirrectangular image).
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3.7 Discussion

Above we have investigated the combined use of vision as inverse graphics with recog-

nition models for a target object embedded in background clutter and subject to occlu-

sions. A great advantage of using data generated by computer graphics is that it allows

us complete access to the underlying scene parameters, and hence the ability to ex-

plore these systematically. Our synthetic data set includes a large number of factors

of variation including pose, shape, appearance, illumination and occlusion, and can

complement datasets of real images for scene understanding tasks.

Our results show that some of the latent variables like pose and shape are well-predicted

by the recognition network, while others such as illumination, appearance and occlu-

sion benefit from subsequent refinement by fitting a robust generative model. Our

results also show that the robustified model of Eq. 3.6 clearly outperforms a Gaussian

likelihood, and provides a way to detect occlusions even in complicated cases.

Explicitly modelling occlusion in the GM allows us to infer the object segmentation of

an image in the presence of complex occlusion as we saw in the some examples of our

test set.

We believe the insights gained in our systematic study of RM vs RM+GM when pre-

dicting different factors of variability (i.e. RM works well with pose and shape, and

GM significantly improves appearance and illumination) can help the research com-

munity design methods tailored to the relevant factors specific to many scene under-

standing tasks.

Future directions for research include investigating: detecting if the fitting process has

fallen into improbable basins of attraction, and the use of multi-modal predictions in

the recognition network (as per Jacobs et al. (1991) or Guzman-Rivera et al. (2014)).

We believe that improving the realism of the synthetic dataset as well as GM with

richer reflection variations (see e.g. Barron and Malik (2015); Hara et al. (2005)) is

also an interesting direction for future work.
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4.1 Introduction

In the previous chapter we studied the effects of occlusion when modelling a single

centered object. A more general purpose solution cannot assume that a single object

of interest has been detected and positioned exactly at the center of the field of view

of the camera. In this chapter we apply our inverse graphics solution in scenes where

multiple objects are not centered. While the effect of occlusion is the main focus

of Chapter 3, here we are interested in addressing the challenges of modelling and

fitting (i.e. refining) a generative model to scenes with multiple objects. Intuitively, the

predictive performance of a generative model is improved when more elements of the

underlying process are accounted for, both in terms of the objects in the scene as well as

the realism of the rendering (e.g. presence of shadows and different types of reflectance

functions). This is joint work with my PhD colleague Lukasz Romaszko and the details

can be found in the conference article Vision-as-inverse-graphics: Obtaining a rich 3d

explanation of a scene from a single image (Romaszko et al., 2017). To clarify the

extent of our contributions:

• I provided the initial script for generating synthetic images in which multiple

objects are instantiated randomly in a scene using the Blender (Blender Online

Community, 2017) software. Similarly to our ground truth dataset in Chapter

4, these scenes serve as data to train the recognition models as well as a test set

to quantitatively evaluate alternative solutions. Lukasz significantly improved

the scene generation code to include randomized images of indoor scenes as

background (actual 3D indoor scenes are not used here), a plane on which the

objects lie, as well as improvements in the specification of the scene geometry

and efficiency of the objects random instantiations.

• The main focus in Romaszko et al. (2017) is a novel method to aggregate pre-

dictions from object-dependent recognition models when predicting global vari-

ables such as the extrinsic parameters of the camera. This work was carried out

by Lukasz. In Section 4.3, we explain the architecture of these models.

• The article shows qualitative results when refining both synthetic and real im-

age scenes with our inverse graphics solution. This was my main contribution

to the work and we have extended these experiments with a quantitative evalu-

ation, which is the main focus of this chapter. A number of key changes in our

generative model and refinement process are proposed in order to improve the
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estimation of the latent variables of these scenes. We explain them in detail in

sections 4.3.4 and 4.3.3.

Specifying a scene with multiple objects involves a series of technical changes in terms

of the geometry and layout of the objects with respect to the camera. In Sec. 4.2, we

specify in detail the scene generator used to train our recognition models in a super-

vised learning framework. In Sec. 4.3, we describe the recognition and generative

models used as well as the strategy for refining the latent variables of the scenes given

the estimates of the recognition model. In Sec. 4.4, a test set of held-out images is

used for quantitative evaluation of the performance of our proposed inverse graphics

solution. We also provide a qualitative evaluation on real images with multiple ob-

jects.

4.2 Stochastic scene generation

The new scenes generated for this work are significantly different from Chapter 3. To

begin with, the object class used here is mug and not teapot, partly because mugs are

more often seen in varying number of quantity, and also because their reduced size

makes it easier to instantiate a larger number of them in a single scene. We do not use

a parametric shape model like previously, but instead a discrete representation of 15

different mugs obtained from ShapeNet5 (Chang et al., 2015).

Instead of using 3D indoor scenes as in the previous chapter for increased realism in

background and clutter, real indoor scene images from NYU Depth V2 dataset are used

as backgrounds. Mugs are randomly placed on top of a rectangular (ground or table)

plane. The object and plane colours are sampled from a uniform distribution on each of

the RGB channels. Random texture patterns are also used to increase the richness in the

appearance of the objects. Thus, the object-dependant latent variables are the objects’

position on the plane, size (mug’s diameter), rotation around the up axis relative to the

camera (i.e. object azimuthal rotation), and their RGB color values.

The camera parameters and illumination are referred to as the global latent variables

of the scene. The camera is always placed at the origin of the XZ plane at a height

Y = h. The camera’s tilt α is the angle of elevation, and the focal length is denoted by

f . Fig. 4.1 illustrates the camera setting relative to the objects in the scene. In Figure

4.2 we show examples of images generated. Finally, illumination is modelled as a
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uniform light and directional light source from an infinite distance, which is composed

of the directional light intensity, and the azimuth and elevation angles of incidence

into the scene. Scenes are rendered into 256x256 images using Bender, including

Lambertian and specular shading, as well as cast shadows. Note that these scenes

are not rendered with photorealistic illumination using Blender Cycles but with the

approximate renderer of Blender Internal. The reason Blender Internal is used here

is to produce more realistic scenes than our GM since it models self shadows and

shadows cast across objects, as well as specular illumination. These scenes are not

fully photorealistic in that it is not a path-tracing method like Cycles, thus it is faster

to render a large quantity of images needed to train the recognition models.

The camera parameters are sampled within the following ranges: field-of-view ω ∈
[20,60] (which relates to the focal length as per Eq. 2.8), camera elevation α ∈ [0,90],

and camera height h∈ [0,150] cm. The uniform light has a strength within the range of

[0,1] and the directional light intensity within [0,3]. Up to seven objects are sampled

sequentially using one out of the 15 types of shapes, a diameter sampled uniformly

within the range of [8.0,10.4] cm, and RGB intensity values uniformly sampled be-

tween [0,1]. For each mug, a random texture is chosen from a collection of 200 gray-

scale texture patterns (e.g. stripes, marbled, etc.). This texture is multiplied with the

object colours to produce the final colour of the mug. When a scene is sampled, we

reject the sample if certain plausibility conditions are not met (i.e. if sampled mugs

collide with each other, or if a mug is occluded or only partially visible by less than

50% of its projection on the image).

Figure 4.1: Illustration of our scene set up.
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Figure 4.2: Examples of our dataset rendered with the scene generator.

4.3 Scene models

Here, we follow the same inverse graphics method of using a recognition model to give

us a point estimate of the scene latent variables, followed by local search to improve

the fit using the generative model as in Chapter 3. In the next section we briefly explain

the recognition models used, which are an improvement on the purely Convolutional

Neural Network (CNN) architecture in order to obtain more accurate estimates of the

latent variables when multiple objects are present. Again, our modern implementation

of OpenDR is used as a graphical renderer under the same assumption of a Lambertian

reflectance function. Improvements in the rendering of the scene are proposed and we

explain them in Section 4.3.2.

4.3.1 Recognition models

To train the recognition models explained below, a total of 7,000 images from our

stochastic scene generator are used. The recognition model follows the pipeline of ob-
ject detection to obtain confidence maps of the regions where objects are found, non-

maximum suppression (NMS) to reduce the set of detection to a sparse set, followed

by applying global and object latent variable predictors on the resulting patches of

the sparse set. The details of these two stages are as follows:

Object detector. A per-class object detector is trained in a sliding-window fashion.

This object detector is trained to predict the probability of the class of the object (in
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Figure 4.3: Probabilistic HoughNets framework. A patch with a detected object is fed

to a CNN. The representation of its last layer, along with the image position (x,y) and

size s of the detected patch is then used as the input to the PHN. Each PHN casts a

vote on the camera Hough space (α,h) (conditioned on ω) via a mixture of Gaussians

(dots represent their means and circles their standard deviation). Finally, when multiple

objects are detected in an image, each of these PHN predictions are combined to pro-

duce a robust prediction of the scene camera parameters. Figure from Romaszko et al.

(2017).

this case, mug) present in the window patch. To do so we divide the training set into

half positive and half negative (random crops without the object class present) training

examples. Furthermore the detector also predicts the projection scale (the pixel-wise

extent of the object relative to the image). The resulting probability heat map is pro-

cessed via NMS, and the sparse set of detected patches, along with their predicted

projection scales are fed into the latent variable predictors as explained below.

Latent variable predictors. Here we distinguish two types of architectures: the Prob-

abilistic HoughNets (PHN) used to predict camera latent variables of height, elevation

angle, and focal length; and CNNs to predict the remaining latent variables, including

the class of the 15 shapes of mugs. A novel architecture, referred to as the Probabilistic

HoughNet, is proposed in order to estimate global variables of the camera. In general,

predicting both the camera distance from an object and the focal length is a difficult

problem.

The thin lens equation is 1
od

+ 1
id
= 1

f , where od is the object distance, and id is the

image distance. Due to this focal length – camera distance ambiguity, any RM that

predicts these variables are prone to produce inaccurate estimates. PHNs address this

problem by robustly aggregating votes on camera parameter hypotheses from each of

the objects detected in the image, as is typically done with the Hough transform. In
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the Hough transform, multiple voting elements cast a vote in a binned (i.e. discretized)

space. Here the bins are represented probabilistically using a Gaussian mixture model

(GMM), where a Gaussian probability distribution is fixed in the center of each bin.

The output of the PHN is thus the mixture coefficients probabilities of the GMM.

Figure 4.3 illustrates the PHN framework to produce robust camera predictions. The

global variable predictions per object are combined by taking the product of the GMM

coefficients along each component, and the component with a maximum density is

chosen via hill-climbing search. The main advantage of producing independent pre-

dictions per object in the scene is two-fold. First, the final prediction is more robust

to outliers (e.g. implausible camera estimation). Second, it is a natural way to design

a recognition model architecture that can generalize to arbitrary number of objects in

an image, since the voting procedure acts on a set of any size. For the remaining ob-

ject latent variables as well as illumination variables, standard CNNs are used with the

following architecture.

All of the CNN architectures are based on the VGG-16 (Simonyan and Zisserman,

2015). The first 13 convolutional layers are used and kept fixed without the last two

max-pooling layers to preserve more spatial information. Three convolutional layers

are learned on top of the 13th layer followed by a fully connected layer and the output

layer. These layers are not shared for different object latent variable predictions. The

prediction of a color of an object is done with a 3 layer CNN. The hyperbolic tangent

function tanh is used as the nonlinearity of all the networks. Again, the dataset de-

scribed in Sec. 4.2 was used for training all the networks (but for the latent variable

predictors, we use the detected patches cropped at 4245 pixels pixels from the center

of the detection).

4.3.2 Generative models

Given the recognition model estimates, we instantiate a scene using our generative

model with the plane, illumination, camera and object latent variables. The purpose

of this work is to enable generative models to be a practical inverse graphics tool for

images with multiple objects. This involves having a generative model that matches

the ground truth generative processes (e.g. real images or images generated with other

graphics engines like Blender) as much as possible.

Our initial model does not account for cast shadows and specular illumination. Cast
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shadows can significantly affect the rendered pixel colors especially when objects are

strongly concave, such as mugs. We propose a pre-processing step of the 3D meshes

that captures the self shadows within the objects, and include it in the generative model.

This method is described in Sec. 4.3.3.

As we saw in the previous chapter, derivatives with respect to the shape, pose and

position of objects are not exact when using the OpenDR framework and often do not

work very well. Since we perform gradient based local refinement, having accurate

derivatives is a crucial step. We analyse the problem that arises with these derivatives

and propose improvements in the rendering function that make them more accurate.

These improvements are described Sec. 4.3.4.

4.3.3 Modelling object self shadows

A visual inspection of our generated scenes in Fig. 4.2 suggests that shadows are an

important factor in the final appearance of the images as well as strong cues of the

directional lights. Thus, a model that generates an image without any shadows can

limit its ability to accurately fit to a scene.

Correct rendering of illumination and shadowing requires ray tracing algorithms that

take into account the global scene geometry as light rays travel through the scene.

These methods are rarely used when the speed of computation is a priority, such as in

video-games as well as in the case of inverse graphics. For instance, proper rendering

of a cast shadow depends on the position of the light source, the object onto which the

shadow is cast, and the objects that lie in between. Instead, efficient but approximate

shadowing techniques are widely used in computer graphics, such as shadow mapping

(Williams, 1978) and shadow volume (Crow, 1977). However, these techniques require

re-computing shadowing when the scene geometry/lighting changes, and are also non-

differentiable.

We propose using an existing method, Precomputed Radiance Transfer (PRT Sloan

et al., 2002), which does most of the illumination computation in a pre-processing step

and provides approximately differentiable shadows when rendering. To our knowl-

edge, PRT had not been used in the context of applying generative model of images

for the task of inverse graphics in the literature except for the recent independent work

of Schneider et al. (2017).
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For each vertex i in the mesh, there is an implicit binary function of both the incoming

light source angles of azimuth φ and elevation and θ, as well as the object shape zs,

i.e. si = fi(φ,θ,zs). For a given shape, this function is 1 if the geometry is not in

the way between the vertex and the light source and 0 otherwise. Fig. 4.4 illustrates

this function where green rays are set to 1 and red set to 0. The idea is to project this

spherical function si to a Spherical Harmonic (SH) basis giving us N coefficients (in our

case N = 9) per vertex in the mesh. With these coefficients we can efficiently compute

a continuous and differentiable shadow variable for any given light source direction.

For each mesh with V vertices we then have a V ×9 matrix of SH coefficients. Thus,

this method can be seen as a special case of PRT in which we assume a directional light

instead of also modelling the incoming illumination with a SH basis in combination

with fi (as in the general PRT method).

Schneider et al. (2017) take this idea a step further by learning a linear mapping from

shape parameters to the pre-computed coefficients (also known as the transfer ma-

trix Ti) which enables efficient computation of new PRT coefficients when the shape

changes. Their work can thus be seen as an extension of the same idea, and can be in-

cluded in our solution when modelling objects with deformable geometry (e.g. faces).

Note that PRT is used here to model self shadowing, so it is not a complete general

purpose shadow model as it does not compute shadows across different objects (e.g.

the shadow of the mug onto the plane). That said, it is particularly well suited for

heavily concave objects such as mugs.

Fig. 4.5 compares the images from our dataset with the corresponding renders with and

without our SH model of self shadows. The shadows within the mugs are noticeably

more similar to the ground truth images, even if they do not capture the exact sharp

shadow transitions due to the SH representation with 9 coefficients. One could improve

the accuracy of the representation by using a larger number of coefficients when pre-

computing the coefficients as well as rendering the shadows at inference time, however

that would come at the expense of computation time.

4.3.4 Improving the render function gradients

Having approximate gradients can hinder the refinement process for variables that

modify the position of the meshes in the 3D space. We saw this occur in Chapter

3 with the shape and pose latent variables of the teapot model. We could try using
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Figure 4.4: For each vertex (e.g. yellow dot) we uniformly evaluate spherical directions

and store whether each direction intersects with a part of the mesh (red lines) or not

(green lines). This binary function is projected to a Spherical Harmonics basis in a

pre-processing step.

alternative methods instead of gradient-based local search. For example, we can use

approximate Bayesian computation (ABC) to produce posterior samples of a scene

as in Mansinghka et al. (2013), or use different combination of proposal distributions

when searching the posterior space with Markov Chain Monte Carlo (Jampani et al.,

2015). In the optimization literature there are also global optimization methods such

as particle swarm optimization (Kennedy and Eberhart, 1995) and Bayesian Optimiza-

tion (Mockus, 1974) that can be used. Most of these methods often do not scale well to

scenes with a large numbers of latent variables (e.g. when there are many objects). In

any case, we should note that these methods are not mutually exclusive with the local

refinement method used here and can be included to strengthen the overall solution.

Before we consider including these methods, however, we identify the issues of the

approximate gradients and propose ways to overcome some of their limitations.

The main questions we want to answer are: how much do the approximate gradients of

a cost function differ from the analytical gradients, and what causes such differences?

Given that the cost function we use is defined in a pixel-wise basis, we can focus this

analysis on the gradients of a single channel (e.g. red or RGB) of a given pixel of the

image. As we expect, the main sources of errors happen in those pixels at the edges

of objects (i.e. where objects start occluding other objects and sharp changes in image
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(a) GT image (b) No shadows (c) Self shadows

(d) GT image (e) No shadows (f) Self shadows

(g) GT image (h) No shadows (i) Self shadows

(j) GT image (k) No shadows (l) Self shadows

Figure 4.5: Examples of images modelled with and without cast shadows.
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intensities arise). The cost function at pixel i can be seen as the likelihood function

of the ground truth image (IGT ) and the render (IR). For the sake of simplicity we

consider the squared error cost function as an example, i.e. Ei = (IR
i − IGT

i )2. The main

quantity of interest is thus the residual Ri = IGT
i − IR

i . The gradient then becomes

∂Ei

∂z
= 2(IR

i − IGT
i ) · ∂IR

i
∂z

The first source of error comes from the fact that the cost function is defined in the

discretized image domain instead of the underlying continuous domain, i.e. only one

intensity is chosen for the whole area of a given pixel, which happens during the raster-

ization step of the rendering process as we described in Sec. 2.2.1.4. If the residual is

0 (e.g. the foreground object in the render and GT image have the same intensity) then

there will be no gradient signal for that pixel. Fig. 4.6 shows the default rasterization

strategy of choosing the intensity of the sample in a triangle (which could be part of

a larger mesh) that lies in the center of the pixel. Note that this would not happen in

the continuous domain since the cost function would integrate over the whole pixel

region. We propose and compare using two alternative rasterization methods of IR to

overcome this issue. The first is to average the intensities over multiple sampled po-

sitions of the pixels. This is similar to Monte Carlo estimate of integral of the overall

pixel intensity of the pixel. Figure 4.6b illustrates this method. This method can be

implemented very easily and efficiently as it is a well known anti-aliasing technique

known as multisample antialiasing (MSAA)1; most modern graphics libraries such as

OpenGL provide it.

The second source of inaccuracy is closely related and is due to the discrepancy be-

tween the way the rendered pixel intensity (and thus the residual) changes as a triangle

shifts across the pixel, which could be the result of a change in some latent variable

z. A small change of this variable ∆z should also have a small change in the intensity

of the pixel and ideally should correspond with ∂IR
i

∂z in the limit where ∆z→ 0. With

the first rasterization method explained above, the intensity will have a discontinuous

change when the triangle crosses the centre. With MSAA this effect is still discontin-

uous but has a set of smaller transitions (i.e. bumps) when the triangle intersects with

each sampled position. Inspired by the technique proposed in (de La Gorce et al., 2011,

sec. 4.7.3), we propose using an antialiasing technique in which sampled points are

weighted by their projected distance to the 2D edge of the triangle that intersects the

1https://www.khronos.org/opengl/wiki/Multisampling

https://www.khronos.org/opengl/wiki/Multisampling
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pixel. The main differences with their work is that we do not operate with analytical

gradients of an error function (instead we apply this antialiasing only when rendering

the pixel intensity), and we make use of the distance-to-edge weights in a simpler and

more efficient way by implementing them with OpenGL GPU shaders. In other words,

we retain the flexibility and efficiency of OpenDR while overcoming some of the main

issues of approximate gradients. Samples closer to the edge will have progressively

less weight which makes the transition completely smooth, as illustrated in Figure 4.7.

We call this method Distance Sample antialiasing (DSAA). In the computer graphics

domain, similar anti-aliasing techniques that use triangle edge intersection have been

used, e.g. Persson (2011).

Figure 4.7 empirically shows the changes in pixel intensity as a triangle (with intensity

of 0.3) is shifted until it fully overlaps with the pixel. There is no built-in function in

OpenGL for this type of custom anti-aliasing, but we take advantage of our modern

OpenGL implementation of OpenDR which allows us to write programmable shaders

(which by default run in GPU) from which these sub-pixel samples are retrieved and

the distances computed. To retrieve these values we use the special OpenGL function

texelFetch2.

To understand how these different rasterization techniques affect the gradients, we

show in Fig. 4.8 how the negative log-likelihood (NLL) of an image of our dataset

changes as the size of one mug is changed from its ground truth value (green line).

Notice how without any edge antialiasing the NLL is noisier and the gradients (arrows)

often point in the wrong direction. This last observed issue can severely affect the

performance of the inverse graphics framework since incorrect image gradients makes

the refinement process (which uses gradient-based local search) result in sub-optimal

solutions.

A simple example of a failure case is shown in Fig. 4.9, in which a square fails to

be fitted into its original size, (a), starting from (b), using our generative module due

to incorrect gradients when not using antialiasing (c). Using either of the proposed

antialising techniques correctly overcomes this issue as shown in (d) and (e). When

using MSAA the gradients directions are generally correct and when using the DSAA

method the function is even smoother due to having continuous pixel intensity transi-

tions. In Sec. 4.4 we evaluate whether these improvements have a quantitative effect

when refining the latent variables to the images of a test set.

2https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/texelFetch.xhtml

https://www.khronos.org/registry/OpenGL-Refpages/gl4/html/texelFetch.xhtml
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(a) No AA (b) MSAA (c) DSAA

Figure 4.6: Antialiasing strategies when rendering the color of a pixel. Red dots indi-

cate the position in the pixel where color is sampled with respect to the mesh triangle

intersected. In (b), the colors at the sample points are averaged. In (c) the average

is weighted according to the distances to the triangle edge. Throughout this work we

chose to use 8 samples for the multi-sample strategies as it is well supported by modern

GPUs and no further advantage was found when using more (e.g. 16 samples).
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Figure 4.7: Pixel intensity changes as a foreground object (with intensity of 0.3) shifts

into the pixel.
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(a) Ground Truth (b) No AA (c) MSAA (d) DSAA
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Figure 4.8: Evaluation of the whole image NLL as a function of the 3D scale of the object

marked in red for OpenDR renders with different antialiasing methods. The ground

truth value of the scale is the green vertical line. Arrows show the direction OpenDR

gradients of the log-likelihood as per the different anti-aliasing methods (magnitudes of

the gradients are normalized).
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(a) Ground Truth (b) Initial image (c) Fit w. No AA (d) Fit w. MSAA (e) Fit w. DSAA

Figure 4.9: Simple failure case of refining without antialiasing. The GT cube is rendered

to image (a), and we maximize a pixel-wise Gaussian likelihood function with respect to

a rendered image initialized in (b). Final results after refinement using different methods

as shown in (c), (d) and (e).

4.3.5 Optimization strategy

When fitting (i.e. refining) the GM to the images there are a number of design choices

that need to be made as we established in Sec. 3.6. Most of the procedure we use here

is the same as when fitting the scenes with a single object. Even though accounting for

occlusion is not the focus here, we still compare the Gaussian with the robust likelihood

functions. There are still good reasons to use the robust likelihood function. First, the

robust function can help not only in the presence of unexplained occluding objects (as

in Chapter 3), but also when certain aspects of the image generation process are not

modelled systematically (e.g. cast shadows across objects, or textures).

We use the same setting of 0.9 mixture probability of the Gaussian and uniform com-

ponents of the robust model. The standard deviation of the pixel-wise Gaussian is

again set to 0.1 (pixel intensities range between [0,1]) throughout all the refinement

procedure. The choice of these settings was made by evaluating the fit on a validation

set.

Block coordinate descent also worked better than optimizing all the latent variables

at once. In other words, different groups of object latent variables are fit in turn to

minimize the negative log likelihood (NLL). The main reason why such an approach

works well is that the latent variables across objects are to a certain extent independent

(with the exception of cases in which some objects are occluding others). Furthermore,

latent variables that relate to surface appearance (object colors and illumination) and

those that affect vertex positions (i.e. size, rotation and position of objects as well as

camera height and elevation) are also minimized in separate steps. Combining exact

gradients (due to appearance and illumination) and approximate gradients (due to ver-
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tex changes) does not work well with the optimization methods we have tried.

For the minimization method of the NLL, we use the Truncated Netwon Method (Nash,

1984) as empirically it optimized the shape latent variables better on the validation

set.

To sum up, the RM predictions plus GM refinement pipeline for one scene is the fol-

lowing:

1. Initialize scene with the object detection and recognition model predictions.

2. Refine global variables of uniform illumination and ground plane colour.

3. For each object:

(a) Refine object RGB parameters

(b) Refine object object size, pose and position.

4. Final refinement of all illumination variables inc. directional light.

5. Refine camera variables of height and elevation.

Note that focal length is not part of the optimization process as it is a difficult parameter

to fit as its effect on the image is difficult to disentangle from the physical distance of

the objects with respect to the camera. We thus fix same focal length as given by the

prediction of the recognition model.

At the end of a refinement step, a scene configuration can be found to be implausible

or simply farther from the ground truth than the initial estimates. Since we are not

specifying a perfect generative model of images there may be some corner cases, such

as in the presence of strong shadows or highly specular reflectance, in which worse

values of latent variables can give better NLL. When such cases happen, it is desirable

(if possible) to detect them and revert the latent variables back to the initial estimate (as

given by the recognition models) and assume that to be the better hypothesis. We can

use our knowledge of the latent 3D structure to detect some of these failure cases.

To do so we use various thresholds on the deviation from the initial predictions ∆z =

zRec− zFit that we found to be suitable based on a validation set. These are obtained

empirically and used to detect when refinement has most probably gone wrong. More

specifically, for the refinement of objects we use a threshold value of 10 cm for 3D

position (i.e. if the object has been moved for more than 10 cm in any axis), 0.5 of

the scale in each axis, 25 degrees for azimuth rotation, and 0.5 for each RGB channel

of the object color. For illumination we use a threshold of 15 degrees of azimuth and
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elevation, and 0.5 for directional intensity and uniform light. For camera variables we

use thresholds of 10 degrees for elevation and 10 cm for height. Finally, having mugs

be very close to each other so that they intersect is also detected and used to revert the

changes in the latent variables of the object that intersected.

4.4 Experiments

We wish to quantify the gains in predictive performance when refining the models to

the scenes. To do so we use 157 images of the test set for our quantitative evaluation.

Both the robust and Gaussian likelihood models are tested as we did in the previous

chapter but we also compare the effects of our proposed improvements to the genera-

tive modelling of the scenes. We will refer to Gaussian (DSAA) and Robust (DSAA) as

the methods that use the pre-computed self shadows and the distance based antialiasing

method. Robust (no self shadow) also uses DSAA but it is the only method in which

self shadows are not modelled. Significance tests are also carried out in order to find

the statistical significance of these results. Finally, we show qualitative results on real

images to test our complete inverse graphics system.

4.4.1 Error metrics

The NLL alone does not give us a sense of how well our models infer the scene latent

variables. The desired error metrics should be informative of how much the ground

truth and predicted scenes match in latent variable space. Error metrics that directly

operate on absolute 3D position and shape values of objects are difficult to use as these

are highly entangled with camera position relative to the objects. Thus, the main metric

we use to measure the 3D match is by computing the projected intersection over union

(which we refer as Projected IoU, which is the sum of the pixels that belong to the

predicted object, divided by the sum of the union of pixels that belong to the object

and the pixels that belong to the ground truth object) of the 2D segmentations of the

ground truth and rendered objects. Note that it is the only metric we report in which

higher is better, where 1 indicates perfect overlap, and 0, none. This metric naturally

accounts for position, scale and pose of the objects relative to the camera.

We also report a unified metric to measure illumination in a scene: a 3D sphere is
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sampled in the center of the scene and the scale-invariant MSE (see Eq. 3.9) of the

incoming illumination (uniform plus directional) into all its vertices is computed. We

refer to this metric as MSE of illumination sphere (MSE-IS). For the colors of the plane

and objects we use the scale-invariant Euclidean norm of the RGB channels. As we

noted in Chapter 3, the multiplicative interaction between illumination and appearance

when modelling the reflectance of objects introduces a problem when evaluating them

separately; using scale-invariant metrics is one way to overcome this issue. Note that

the values of RGB range between [0,1]. For unintuitive physical quantities like the

MSE-IS and colour errors defined above, we also provide baselines to be used as ref-

erence. For illumination, we compute the MSE-IS of the ground truth values against

a sphere illuminated with (0.7 uniform intensity) and a single directional light source

coming from above with 0.8 light intensity; the idea is to assume a fixed generic light-

ing condition. For the color of objects baseline we compare the ground truth with a

fixed gray color (RGB values of 0.5).

We report the absolute value of the angular difference for the latent variables of object

azimuthal rotation as well as the elevation of the camera (the units shown are in angles

and not radians). The camera height error is simply the absolute error of predicted and

ground truth height values. Note that false detections of the object detection stage are

ignored (we don’t use them in these experiments).

4.4.2 Results and discussion

Table 4.1 shows the median errors for the object latent variables, while the global latent

variables errors are shown in Table 4.2.

The first noticeable result in Table 4.1 is that the there is a very clear improvement in

the projected IoU of objects when using either antialiasing technique, going up from

0.65 to 0.76 when refining using the Robust (DSAA) method. This indicates that there

is a clear improvement when refining the positions and scales of the objects. The ap-

pearances of objects also show a clear improvement with respect to the recognition

model predictions. The only latent variable that seems to have no improvements re-

gardless of the choice of the refinement method is the object azimuthal rotation. As we

saw in the previous chapter, the azimuth rotation error is not easily captured when com-

paring pixel-wise likelihoods of the GT and predicted objects. Most of the azimuthal

information on a mug is in its handle, which indicates that the basin of attraction is
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very tight.

For the global latent variables errors, we see in Table 4.2 an improvement when re-

fining illumination and especially plane colour (which is one of the easiest variables

to fit). However, similarly to what we see when refining the azimuthal rotation of ob-

jects, the camera extrinsic parameters of height and elevation seem to remain largely

unchanged.

Projected IoU (%) Obj Azimuth° Obj Color

Baseline - - 0.301

Recognition 0.65 21.52 0.092

Gaussian (DSAA) 0.77 21.57 0.090

Robust (DSAA) 0.76 21.41 0.057

Robust (DSAA) Simplex 0.76 22.68 0.060

Robust (MSAA) 0.74 22.35 0.060

Robust (no AA) 0.68 21.70 0.070

Robust (no self shadow) 0.75 22.19 0.056

Table 4.1: Object variables evaluation (median) with Truncated Newton optimizer

Illumination Plane Color Cam El° Cam Height (m)

Baseline 0.0458 0.248 - -

Recognition 0.0096 0.042 3.11 0.158

Gaussian (DSAA) 0.0089 0.020 3.31 0.158

Robust (DSAA) 0.0074 0.008 3.22 0.158

Robust (DSAA) Simplex 0.0092 0.017 3.30 0.158

Robust (MSAA) 0.0083 0.007 3.34 0.158

Robust (no AA) 0.0084 0.007 3.42 0.152

Robust (no self shadow) 0.0091 0.008 3.26 0.158

Table 4.2: Global variables evaluation (median) with Truncated Newton optimizer

In Fig. 4.10 we see the gains per object. In Fig. 4.11 we can individually compare

the gains per scene for the global variables. Points below the diagonal line indicate

better performance after refinement (except for the Projected IoU metric). It is clear

that illumination is a difficult variable to infer and optimize as seen by the variability of



4.4. Experiments 77

positive and negative gains with respect to the recognition model prediction. Fig. 4.11a

shows that, while on average a large number of scenes show an improved illumination

(points below the black line), there are also a number of scenes in which illumination

is worse. Plane and object colours are clearly improved after refinement as seen in Fig.

4.11b and 4.10c. In terms of camera parameters, it is clear that these are rarely changed

after the refinement step, which is a similar case with the azimuthal rotation of objects.

However, the rest of the 3D object latent variables clearly show an improvement when

refining as we can see from the Projected IoU scatter plot in Fig. 4.10a.
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Figure 4.10: Comparison of the errors between recognition model prediction (X axis)

vs. refined (Y axis) of the object latent variables. Each dot represents one object in one

of the scenes. Points above the diagonal line indicate improvement after refining for the

Projected IoU, whereas points below the line indicate improvements for the azimuthal

rotation and color errors.

In order to establish the significance of the gains (i.e. decrease in error) after refinement

we perform a statistical test on paired differences known as the Wilcoxon signed-rank

test (Wilcoxon, 1945). It is a more robust version of the paired T-test, which is suitable

when reporting the median average of errors. The idea is to compare the difference

between the errors both before refinement (i.e. recognition model predictions) and

after refinement to find if the null hypothesis that there is no difference in the results

should be rejected. We report both the p-value and the effect size. The effect size s is

computed as s = z/
√

N where z is the z-score of the Wilcoxon test and N is the number

of observations. We use the criteria of Cohen (1988) where the effect size is interpreted

as follows: 0.1 = small effect, 0.3 = medium effect and 0.5 = large effect.

Table 4.3 shows the object latent variables significance tests. To indicate for which

latent variables we see a significant gain, we use the following criteria: the columns

in which (a) the error differences are statistically significant (i.e. p-value < 0.05), (b)
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Figure 4.11: Comparison of the errors between recognition model prediction (X axis)

vs. refined (Y axis) of the global latent variables. Each dot represents one scene in

the test set. Any point below the diagonal line indicates a positive improvement after

refinement.

have an effect size ≥ 0.1, and (c) show improvement for at least 55% or more of the

samples. These columns are marked in bold. As expected, the IoU gain is both statis-

tically significant and has a large effect size. A total of 76 % of observations showed

improvement. These results suggest that there properly handling the occlusion edges in

images is important. It is also encouraging to see that by using these improvements we

can use our general purpose pixel-wise likelihood functions, instead of having to rely

on commonly used multi-scale error functions based on pyramid representations, as

used for instance by Loper and Black (2014). Finally, object colours are also improved

with medium effect on 65% of the samples.

In Table 4.4 we can see how the improvements of illumination are statistically signif-

icant but have a small effect size, whereas the effect size is large for the plane colour.

The camera parameter gains are either statistically not significant or have a very small

effect size, which is not surprising given how little they change.
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Projected IoU Obj Azimuth° Obj Color

Wilcoxon p-value <0.001 0.001 <0.001
Effect size 0.639 0.130 0.324
Improved samples (%) 76 % 48 % 65 %

Table 4.3: Object variables evaluation (median) with Truncated Newton optimizer

Illumination Plane Color Cam El° Cam Height

Wilcoxon p-value 0.004 <0.001 0.581 0.229

Effect size 0.115 0.405 0.022 0.068

Improved samples (%) 59 % 94 % 49 % 50 %

Table 4.4: Global variables refinement effect size and significance using the robust

model with DSAA

We are also interested in establishing the difference between the performance with and

without the contributions proposed. In Table 4.5 we see a very significant benefit of us-

ing antialiasing compared to refinement without using any antialiasing in terms of the

projected IoU, though it does not affect the performance with respect to the other vari-

ables. If we compare both antialiasing techniques (MSAA vs DSAA) we see a small

to medium improvement when using DSAA that is also statistically significant.

If we compare the refinement errors when not modelling self shadows, we see that self

shadows improves refinement of object colors. As for the global latent variables, we

notice in Table 4.6 that using antialiasing only shows a small benefit when modelling

illumination. There seem to be no significant effects when comparing the antialiasing

techniques. However, it is clear that modelling self shadows helps better capture the

illumination (although an effect size of 0.178 is not very large). This is again consistent

with what we expect: modelling self shadows has the main advantage of improved

estimation of the illumination as well as object colors.

Fig. 4.12 shows a few examples of the refinement of all the latent variables using the

Robust (DSAA) model. We can see how in general, the colors, the objects positions

and sizes are noticeably improved to match the ground truth scenes. There are, how-

ever, failure cases in which the generative model is not able to obtain a better scene

description (or change at all) as seen in the examples 4.12g to 4.12j. In these cases
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Projected IoU Obj Azimuth° Obj Color

No AA vs DSAA

Wilcoxon p-value <0.001 0.135 0.132

Effect size 0.657 0.085 0.085

Improved samples (%) 71 % 52 % 53 %

MSAA vs DSAA

Wilcoxon p-value <0.001 0.791 0.696

Effect size 0.226 0.015 0.030

Improved samples (%) 55 % 46 % 47 %

Including self shadows

Wilcoxon p-value 0.234 0.933 <0.001
Effect size 0.067 0.005 0.221
Improved samples (%) 51 % 48 % 63 %

Table 4.5: Object variables evaluation (median) with Truncated Newton optimizer

we notice how the background and mugs have similar colours, hence “confusing” the

generative model. This seems to be a common failure case.

In the first scene of Fig. 4.13 we can see how using DSAA, as opposed to no antialias-

ing, is key to having the green and pink mugs fitted properly. A similar situation arises

in the second example with a drop of the IoU from 0.71 to 0.52 if antialiasing is not

used. We observe similar problems when self shadows are not modelled and the in-

sides of the mugs are not properly darkened, as seen in the first example of Fig. 4.14.

We can also see in the example of Fig. 4.14c-4.14d how the illumination is captured

better when modelling self shadows since these shadows are affected by the direction

and intensity of the directional illumination. This is especially relevant when there is a

strong directional lighting in the scene as we see in this test image.

Finally, in Fig. 4.15 we provide a qualitative evaluation of the refinement performance

on unlabelled real images using the Robust (DSAA) model. These examples show

the ability of our full inverse graphics solution to infer fine-grained descriptions from

real images for which it has not been trained. Occasionally, a mug is hallucinated in

the scene, or it can miss detecting a mug, but overall it seems to work robustly across

different types of real scenes. The main benefits of refinement in these samples come
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Illumination Plane Color Cam El° Cam Height

No AA vs DSAA

Wilcoxon p-value 0.040 0.546 0.547 0.944

Effect size 0.116 0.034 0.034 0.007

Improvement (%) 59 % 55 % 51 % 47 %

MSAA vs DSAA

Wilcoxon p-value 0.982 0.788 0.716 0.594

Effect size 0.001 0.015 0.021 0.030

Improvement (%) 49 % 50 % 48 % 50 %

Including self shadows

Wilcoxon p-value 0.002 0.129 0.767 0.614

Effect size 0.179 0.086 0.017 0.029

Improved samples (%) 62 % 60 % 50 % 55 %

Table 4.6: Global variables refinement effect size and significance using the robust

model with DSAA

from improving the object and ground plane colors as well as the position and sizes

of the objects. The refinement step can sometimes make mistakes as evidenced in

the examples of Fig. 4.15i and 4.15j. Again, we notice how this mistake is caused

by having a background colour very similar to the foreground object (black mug). In

general, we observe small to medium level of improvements when refining most of the

latent variables. While the recognition models have been shown to provide good initial

predictions (based on the qualitative analysis provided, as well as on the comparison of

the performance with respect to the provided baselines), the improvements obtained by

refinement have been shown to be statistically significant, and can be important when

the interaction with the environment requires fine-grained precision with regards to the

3D understanding of the position and shape of the objects relative to the scenes (e.g.

robotic arm having to operate with delicate objects).

In Fig. 4.16 we show the benefits of inferring a complete scene representation. Given

an input image 4.16a, we can render the scene with a more photorealistic renderer such

as Blender Cycles as seen in 4.16b. We can infer the depth map as shown in 4.16c, or

change the camera, illumination, and object LVs as shown in 4.16d-4.16f.
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Ground Truth Render

(a) Recognition. IoU=0.53

Fit−→

Ground Truth Render

(b) Fit. IoU=0.75

Ground Truth Render

(c) Recognition. IoU=0.65

Fit−→

Ground Truth Render

(d) Fit. IoU=0.81

Ground Truth Render

(e) Recognition. IoU=0.54

Fit−→

Ground Truth Render

(f) Fit. IoU=0.88

Ground Truth Render

(g) Recognition. IoU=0.89

Fit−→

Ground Truth Render

(h) Fit. IoU=0.05

Ground Truth Render

(i) Recognition. IoU=0.73

Fit−→

Ground Truth Render

(j) Fit. IoU=0.57

Figure 4.12: Examples of refinement using the robust model with DSAA. For each row

we show the GT image next to the rendered scene as given by the recognition model

prediction, followed by the corresponding images after refinement. To better visualize

the match between GT and predictions, we also overlay the GT images with the white

edges of the inferred mugs in the scene.
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Ground Truth Render

(a) Fit (w. DSAA). IoU=0.82

Ground Truth Render

(b) Fit (no AA). IoU=0.65

Ground Truth Render

(c) Fit (w. DSAA). IoU=0.71

Ground Truth Render

(d) Fit (no AA). IoU=0.52

Figure 4.13: Examples comparing the refined scenes when using the DSAA for an-

tialiased rendering (left) vs. using no antialiasing (right).

Ground Truth Render

(a) Fit (w. self shadows). IoU=0.86

Ground Truth Render

(b) Fit (no self shadows). IoU=0.69

Ground Truth Render

(c) Fit (w. self shadows). IoU=0.81

Ground Truth Render

(d) Fit (no self shadows). IoU=0.59

Figure 4.14: Examples comparing the refined scenes when modelling scenes with self

shadows (left) vsṅot using self shadows (right).
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Ground Truth Render

(a) Recognition.

Fit−→

Ground Truth Render

(b) Fit.

Ground Truth Render

(c) Recognition.

Fit−→

Ground Truth Render

(d) Fit.

Ground Truth Render

(e) Recognition.

Fit−→

Ground Truth Render

(f) Fit.

Ground Truth Render

(g) Recognition.

Fit−→

Ground Truth Render

(h) Fit.

Ground Truth Render

(i) Recognition.

Fit−→

Ground Truth Render

(j) Fit.

Figure 4.15: Qualitative examples of refinement using the robust model with DSAA on

real images.
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(a) Image (b) Predicted scene (c) Depth map

(d) Changing camera (e) Changing illumination (f) Changing objects

Figure 4.16: Applying different transformations to a detailed scene description inferred

from an image. In the last image we show how we modify the object latent variables for

all mugs as well as the table plane colour.
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4.5 Conclusions

In this chapter we have studied the ability of our framework to handle scenes with

multiple objects. We have addressed an issue with the generative model in terms of

its mismatch with real images. Namely, we proposed ways to pre-compute and ef-

ficiently render self shadows. Furthermore, we have proposed improvements in the

approximate gradients that result in significantly more accurate derivatives as well as

smoother rendering changes as a function of the latent variables. Both of these im-

provements were shown to be key to having an effective refinement method for most

of the latent variables while maintaining the simplicity and flexibility of the OpenDR

framework.

Similarly to the self shadow model, future work involves adding rendering features

such as specularity and textures that improve the realism of the generative model in

an efficient and differentiable way. We are also interested in analysing the limitations

of our current refinement method for the camera latent variables as well as object

variables such as the object azimuth rotation. In this regard, an interesting direction of

future work is in using features of the GT and rendered images that can better capture

the discrepancies with respect to these latent variables. Finally, we want to extend these

results to a larger variety of object classes and types of scenes (not just indoor).
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Modelling the 3D shape and

appearance of objects
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5.1 Introduction

In this chapter we propose a deep generative model (the disentangled variational au-

toencoder, DVAE) that learns a disentangled representation in which the 3D shape

and appearance of the objects can be interpreted and manipulated independently. The

model can be trained from arbitrary 3D mesh datasets without requiring corresponding

landmark points across the mesh collection. We demonstrate the ability of the model

to generate novel meshes by transferring the disentangled shape and appearance rep-

resentations between pairs of meshes of a given object class. We evaluate our model

on the object classes of cars and faces, and show that it is able to generate high quality

samples of these classes.

A key component in inverse graphics solutions is the use of 3D generative models

that describe the underlying shape variability and appearance variability of different

object classes. In Chapter 3 we used a deformable mesh model with a simple appear-

ance model based on a global RGB colour. The same appearance model was used in

Chapter 4 for the different shapes of mugs. Our focus in this chapter is on modelling

the 3D shape and appearance of objects using a disentangled representation that sep-

arates the shape and appearance factors of variation. Such models can be combined

with more knowledge-based aspects of vision such as the geometry of object pose and

scene lighting to reason jointly about these factors of variation in images. Such mod-

els are important, for example, for vision-as-inverse-graphics or analysis-by-synthesis

approaches, see e.g. Grenander (1976, 1978); Kulkarni et al. (2015a).

Recent developments in unsupervised machine learning have produced powerful meth-

ods such as Variational Autoencoders (VAEs) Kingma and Welling (2014); Rezende

et al. (2014) and Generative Adversarial Networks Goodfellow et al. (2014). These

could be applied directly to 3D shape and appearance data. However, there is an im-

portant disentangled aspect of the data that this would miss; for a given shape, it is

possible to have different appearances—e.g. consider a car of fixed shape but differ-

ent body colourings. A disentangled representation allows shape and appearance to be

interpreted and manipulated independently. It has also been shown that systems that

operate with disentangled representations perform better on novel tasks, as in zero-shot

learning Higgins et al. (2016).

Our main contribution in this chapter is the introduction a VAE architecture that is

designed to learn a disentangled representation of shape and appearance which can be
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applied to a large variety of object classes. We also exploit a “hedgehog” representation

of shape and appearance (see Sec. 5.2.1) that avoids the need for point correspondences

across the objects in the 3D dataset.

The structure of the chapter is as follows: in Sec. 5.2 we describe the hedgehog rep-

resentation of 3D meshes and the architecture of the disentangled variational autoen-

coder. Sec. 5.5.2 covers the datasets used, and we evaluate the ability of the model to

obtain a disentangled representation. We also show qualitative results of these models

based on its samples of 3D objects in Sec. 5.5.4. We discuss the main findings of this

work in Sec. 5.6 and provide some interesting directions of future work.

5.2 Methods

We begin in Sec. 5.2.1 with the hedgehog representation, then discuss in sections 5.3.1

and 5.3.2 the disentangled variational autoencoder. In Sec. 5.4 we discuss the related

work.

5.2.1 Data representation

(a)

Surface contour

ray i

x
i

d

x
i
n

object
center

(b)

Figure 5.1: (a) The process of taking a mesh (LHS), and turning it into a “hedgehog” rep-

resentation of distances xd , surface normals xn and colour maps xa. For visualization

purposes the image of normal vectors In on the RHS is computed as In = 0.5(xn +1).

On the right are the equirectangular representations (image) where the X and Y axis

correspond to equally distributed azimuth and elevation respectively. (b) An illustration

in 2D of how the distance xi
d and ray normals xi

n is computed for the ray i shown in red.
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Figure 5.2: Processing meshes into hedgehog representation. On the left we have an

input mesh, which is processed using a number of rays sufficient to capture a desired

level of detail. On the right we have the hedgehog projection.

The input data for our model consists of meshes having shape and appearance (colour)

information. We assume that the meshes are aligned to have the same orientation and

origin in x-y-z space, with scaling to similar sizes. Such data can be obtained e.g. from

the ShapeNet dataset Chang et al. (2015).

Meshes have an arbitrary number of vertices, and the first step in most shape mod-

elling is to reduce this to a fixed-dimensional representation. Here we use a spherical

ray-based representation in which shape is encoded by the distance of R rays which

are projected from the centre of the object onto the mesh surface. We create the ray

arrangement using a grid of points in azimuth-elevation space.1 We will refer to it as

the hedgehog representation. This representation is well suited for convex objects and

can efficiently capture the outer surface to a high degree of accuracy. See e.g. (Ballard

and Brown, 1982, sec. 9.2.3) for more details of this representation, also referred to as

the direction-magnitude representation. Fig. 5.1a illustrates the process of converting a

mesh into the hedgehog representation using a face from the Basel Face Model (BFM)

Paysan et al. (2009). Fig. 5.1b shows how one would compute such representation

of a 2D contour surface instead of a 3D mesh. Similarly, Fig. 5.2 shows the result

of projecting a car from the ShapeNet dataset Chang et al. (2015) into the hedgehog

representation and rendering the resulting mesh.

In addition to the distance of the ray to the intersecting surface, we also encode the unit

surface normal vectors, and the RGB colour of the point in the mesh triangle which

the ray intersects. As the normal vectors lie in 3 dimensions2 and the colour is also

1Other arrangements are possible, e.g. a triangulated sphere. But the azimuth-elevation choice means
it is easy to define spherical convolutions with standard rectangular filters, rather than more exotic
arrangements.

2We do not explicitly model the unit vector constraint, but this will be learned approximately by the
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3D (RGB), the data vector for each ray has 7 dimensions. Modelling the normal vec-

tors serves two purposes, first they improve the quality of reconstruction of a surface

mesh from a set of points using methods such as Poisson reconstruction (Kazhdan

et al., 2006). Second, both vertex positions and normals, as well as vertex colours and

normals are tightly correlated and thus act as a bridge when modelling the shape and

appearance of the objects. For instance, the transition between a car’s windscreen and

roof has sharp changes in both the colour and normal vectors.

In this chapter we depart from table-top type of objects and focus on two well known

object classes in computer vision: faces and cars. Both are classes of high importance

and also happen to be a suitable type for the hedgehog representation.

The hedgehog representation is not the only possible choice—one common choice is

the use of landmark points, as used e.g. in 2D with Active Appearance Models (AAMs)

Cootes et al. (2001), and in 3D with 3D Deformable Models that have been widely

used for many tasks such as face modelling (Blanz and Vetter, 1999), and to model

cars (Leotta and Mundy, 2011). But a major challenge for this line of work is finding

landmark correspondences across objects; this is an active research topic and solutions

can be quite involved, see e.g. the work of Huang et al. (2015b). A discussion of how

the AMM relates to the hedgehog representation is in sec. 5.2.1.1 of the supp. material.

Another alternative is to use a volumetric representation, by discretizing the space of

the mesh vertices using voxels. This type of representation has gained interest from

the research community as it is also well suited to deep learning methods that make

use of 3D convolutions, e.g. Wu et al. (2015). However, voxel based representations

are high dimensional and inefficient due to most voxels not intersecting the object. For

example Wu et al. (2015) use only a 30× 30× 30 grid, which leads to a very coarse

shape representation.

5.2.1.1 Analysis of the hedgehog representation

A hedgehog object is represented by R ray vectors. For each ray i we have the ray

distance xi
d and the 3D surface normal xi

n. By the shape variables xi
s we will refer to

the concatenation of both: xi
s = (xi

d,(x
i
n)

T )T . The appearance variable of the ray xi
a is

the 3D colour of the mesh at the point of intersection.

Let us first analyze the relationship between xi
s and the vertices v0, v1 and v2 that define

model.
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the triangle intersected by the ray i. When the vertices move, xi
s will change (a) based

on the position of v0, v1 and v2, (b) the ray starts intersecting a different triangle. Here

we analyze the case (a). The distance of the ray from its origin xO to the triangle can

be calculated via the well known line-plane intersection formula for the plane in which

the triangle is embedded:

xi
d =−nT

v xO +D
nT

v ri , (5.1)

where nv is the plane normal vector defined by v0, v1 and v2, and D is the constant of

the plane (defined by Ax+By+Cz+D = 0) where (A,B,C) = nT
v , and ri is the ray

direction in Cartesian coordinates. In fact it is possible to solve for xi
d without explicitly

solving for the normal – one can use e.g. the Möller-Trumbore (MT) algorithm (Möller

and Trumbore, 2005). To see the direct relationship with the vertices we can substitute

nT
v using nT

v = (v1− v0)× (v2− v2). Note how v0, v1 and v2 appear in the top and

bottom of the equation for xi
d (notice that D also depends on v1,v2,v3), so this is in

fact a nonlinear computation.

If we model the vertex locations using a Gaussian distribution, it is clear from 5.1

that this will have a nonlinear (non-Gaussian) effect on xi
d . In other words, even for

the case of the Basel Face Model, which uses a Probabilistic Principal Component

Analysis (PPCA) model of vertex positions, the resulting hedgehog distance variables

will have a non-Gaussian distribution. This motivates the non-linear DVAE introduced

in the paper.

As well as asking about the distance along the ray, we can also ask about the appear-

ance xi
a. We assume that each vertex has a colour, and we obtain the colour of a point

in the triangle by linear interpolation in terms of barycentric coordinates. We can see

that the normalizing factor T (area of the triangle) in the computation of the barycentric

coordinates also introduces a non-linear function with respect to v0, v1 and v2. This

is separate to the variation we can get by having a distribution on the colours of the

vertices.

As for the variation of xi
a with respect to a distribution over the mesh colours, we

can see that appearance variability will have a linear effect on the ray colour as the

barycentric coordinates linearly combine to form define the colour at the intersected

point.
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5.3 Methods

5.3.1 Shape and Appearance Disentangled Generative Model

xs xa

zs za

N

(a) Faces graphical model

xs xa

zs za

z`s z`a

zc

N

(b) Cars graphical model

Figure 5.3: (a) The graphical model of the disentangled autoencoder used to model

faces. The latent representation is split up into shape variables zs and appearance

variables za. (b) The graphical model for the disentangled VAE used to model cars.

This model consists of a two-level hierarchy of latent variables: first level z`s, z`a models

the high level (coarse) structure of the car, and and the intermediate level zs, za models

the finer detail. The variables zc model a latent distribution of the object colours that

the object can take. The regions of the car in which these colours are “painted” are

modelled by the appearance style variables za.

We first consider the directed acyclic graphical model (DAG) shown in Fig. 5.3a, where

zs and za are the latent variables (LVs). Note the connection from zs to xa: this is due

to the fact that if the appearance LVs of the generative model were fixed but the latent

variables of shape changed, then the appearance xa would need to change correspond-

ingly. See e.g. (Prince, 2012, Sec. 17.7) for a discussion of this point with respect to

landmark-based models and warping. The fact that there is no connection between

za and xs forces the zs units to model shape. In other words, the independence of xs

from za is imposed architecturally by ensuring that pathways for zs do not connect

with xa variables, while the za variables can see both xs and xa. This graphical model

resembles the probabilistic version of the well known Canonical Correlation Analysis

(CCA)Bach and Jordan (2005), where zs would correspond to the variable that captures

the joint correlation between both observed variables; however in our model xa has ex-

tra latent variables that do not connect with zs, whereas in CCA the latent variables are
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connected to both vectors of observed variables.

The simplest version of the model shown in Fig. 5.3(a) is to use linear mappings be-

tween the latent and visible variables. If we allowed full connectivity between observed

and latent variables, such a network would be equivalent to doing PCA when training

with a squared-error reconstruction loss, as per Baldi and Hornik (1989).

In the previous section we established the existence of nonlinear effects between the

mesh and the hedgehog representation. Despite such nonlinearity, we are still inter-

ested in investigating to what extent a linear model can capture the shape and appear-

ance structure of the objects. As we will see in the experiments of Sec. 5.5.2, a linear

architecture turns out to be a good model for the face class in the hedgehog repre-

sentation. This is perhaps due to the underlying linear (PCA) structure of the BFM

meshes.

5.3.2 The Disentangled Variational Autoencoder
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Figure 5.4: Autoencoder architecture of the DVAE for cars. The encoder on the LHS

outputs the approximate distributions for the latents. The decoder on the RHS models

the probabilistic generative model. Note that xs = (xd,xn)

The linear model described above may not be suitable for some object classes. A lin-

ear combination of shape and appearance latent variables, for instance, cannot properly

handle the complex interaction between the shape and the colour of the different parts
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of cars (i.e. the sharp appearance transitions between colours of different parts of the

object such as windows, headlights, etc.). The samples in Fig. 5.9 of the linear model

described above trained on the cars dataset clearly show that it cannot properly capture

the car structure. We have experimented with a larger number of latent dimension-

ality and, while reconstructions do look increasingly better, the samples remain quite

implausible (especially with regards to the generated appearances of the cars).

We propose a number of changes to the generative model (GM) defined in Fig. 5.3(a),

and define the model to be a hierarchical latent variable model as shown in Fig. 5.3b.

The network architecture we propose that implements this GM structure is shown in

Fig. 5.4. While Fig. 5.3b is more complicated than Fig. 5.3(a), it still follows the

same principle of disentangling shape and appearance in its latent representation. We

first describe the generative model architecture below, which we refer to as the Dis-

entangled Variational Autoencoder (DVAE), and then give the training details in Sec.

5.3.4.

5.3.3 Model architecture

At the highest level of the latent structure we have z`s, z`a which model the global

structure of shape and appearance. We set the LVs to be normally distribution (zero

mean and diagonal unit variance). Next we have the conditional distribution of the

intermediate variables zs, za that depend on the high level LVs. We can think of such

high-level to intermediate-level structure as a coarse-to-fine sampling process. Note

that it is in the conditional probability p(za|zs,z`a) where the shape and appearance la-

tent representations are combined. Conceptually, zs contains all the shape information

(distances and normals), while za models the latent distribution of appearance.

We propose modelling the intermediate LVs using a PixelCNN (van den Oord et al.,

2016) distribution. PixelCNN is a nonlinear auto-regressive probabilistic model in the

form of a CNN that has been proven to be a powerful image model that can produce

realistic samples, making it a suitable model for our intermediate (fine-grained) repre-

sentation. A key feature of PixelCNN is the use of convolutional layers that can take

advantage of the local structure of the hedgehog rays. Gulrajani et al. (2017) also pro-

pose a generative model with a PixelCNN as the distribution model of its latent space

in order to model natural images.
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The auto-regressive probability distributions for zs and za take the form:

p(zs|z`s) =
R

∏
i=1

p
(

zi
s|z1

s , ...,z
i−1
s ,FC(z`s)

)
, (5.2)

p(za|zs,z`a) =
R

∏
i=1

p
(

zi
s|z1

a,z
1
s . . . ,z

i−1
a ,zi−1

s ,FC(z`a)
)
, (5.3)

where the ordering 1, ..., i− 1 of rays is top to bottom and left to right starting from

the ray at the top and left of the hedgehog representation. This is the order followed

in most implementations of PixelCNN, due to the way that convolutions in CNNs are

implemented, without loss of generality since PixelCNN models the joint distribution

of the pixels as a product of conditionals. These conditional probabilities depend on

the high level LVs via FC(z`s) and FC(z`a), where FC denotes fully connected linear

mappings from the LVs to feature maps which are fed to the PixelCNN. Each condi-

tional probability is a multi-modal distribution modelled with a mixture of Gaussian

distributions, with both the means and variances predicted by the CNN.

In the shape decoder, the LVs zs are mapped to the output distribution p(xs|zs) via

deconvolutional layers which up-sample the latent representation to the spatial dimen-

sionality of xs. The outputs of the deconvolutional layers are the mean and variance of

a diagonal Gaussian distribution per ray i.

In order to describe how the appearance variables xa are generated, we first introduce

the concept of a palette of colours, and the associated LVs of colour zc. Cars, as for

many other classes, are usually composed of only a few different colours. We model

this by explicitly setting the colour of one ray as a convex combination of a palette

of K colours (and each object has an associated palette). A similar idea, known as

probabilistic index maps, is applied to models of images (Jojic et al., 2004).

Our palette of colours can be seen as a 3D version of a probabilistic index map, and

serves as an inductive bias to encourage the model to further disentangle the latent

representation: z`s and zs model the shape (e.g. large pick-up car), z`a and za model the

appearance style (e.g. the type or layout of the windows of the pick-up, the shape of

the headlights, whether it has stripes, etc.) and zc models the colouring of those parts

of the car (e.g. red body, dark windows, blue stripes, etc.). The latent variable zc is

a Dc dimensional vector that can be modelled by a Gaussian distribution. Although

different possible mappings can be used, the mapping from zc to the palette colours we
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experimented is further explained in Sec. 5.3.4.

The model for the appearance variables p(xa|za,zc) needs to take into account that

colours and textures obtained from mesh datasets are often discretized (each RGB

channel usually take one value between [1,256]). Hence we model the appearance

variables xa by a discretized logistic distribution as used e.g. by Salimans et al. (2017)

(although they use a mixture distribution while we use a uni-modal one).

Overall, z`s and zs model the shape (e.g. large pick-up car), z`a and za model the ap-

pearance style (e.g. the type or layout of the windows of the pick-up, the shape of the

headlights, whether it has stripes, etc.) and zc models the colouring of those parts of

the car (e.g. red body, dark windows, blue stripes, etc.).

We train the model as a variational autoencoder (VAE) Kingma and Welling (2014);

Rezende et al. (2014). In the general form, given observed variables x, there is an

approximate posterior distribution q(z|x,φ) which depends on the encoder parameters

φ. This is usually modelled as a Gaussian with a diagonal covariance matrix. In our

encoder both the Gaussian mean and variances of all the latent variables are a function

of the input. The architecture of the encoder-decoder disentangled VAE (DVAE) is

shown in Fig. 5.4.

The encoder is defined by three different bottom-up streams from visible to the latents

as shown in the LHS of Fig. 5.4. Each stream is composed of the following elements:

(1) Conv denotes a sequence of convolutional layers that map the input to a hidden

feature map representation. In the case of zs, za these feature maps represent the pa-

rameters of the Gaussian distributions q(zs|xs) and q(za|xa). (2) The last hidden layer

feature map is linearly projected to produce the parameters for the Gaussian distribu-

tions of q(z`s|xs), q(z`a|x) and q(zc|x).

Note how we impose a constraint in the encoder so that zs does not have access to xa

(red stream of the encoder in Fig. 5.4). The purpose of this constraint is that if the shape

latent variables are not informed by xa when encoding, the decoder is encouraged to

learn to properly use zs when generating xa, instead of simply compressing appearance

information in za. A similar idea is shown to be useful in unsupervised learning by

cross-channel predictions (Zhang et al., 2017) as it forces the network to learn the

the underlying structure instead of simply compressing the visible signals in its latent

representation. The appearance stream and colour stream are shown in green and blue,

and have access to all the latent variables.
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The encoder and decoder networks are trained to maximize the evidence lower bound

(ELBO) on the true log-likelihood:

L(x,θ,φ) = Eqφ(z|x)[log pθ(x|z)]−DKL
(
qφ(z|x)||p(z)

)
, where (5.4)

qφ(z|x) = qφ(zs|xs)qφ(z`s|xs)qφ(za|x)qφ(z`a|x)qφ(zc|x),
pθ(x|z) = pθ(xs|zs)pθ(xa|za,zc),

pθ(z) = pθ(z`s)pθ(z`a)pθ(zc)pθ(zs|z`s)pθ(za|z`s,z`a),

and θ denotes the parameters of the decoder network. In the general case the lower

bound is intractable, so it is approximated using a Monte-Carlo estimator, and opti-

mized using stochastic gradient ascent (Kingma and Welling, 2014; Rezende et al.,

2014).

5.3.4 Architecture and training details

Above we described the high level view of the DVAE architecture. A number of dif-

ferent hyperparameters were tried on the training and validation sets and the following

configuration worked well for cars:

• We set z`s, and z`a as two 100-D normally distributed vectors, zc to be a 30-D

vector. The intermediate latent variables and zs and za are set to be a tensor of

16×16 with 16 channels each.

• To implement Eq. 5.2 we use the PixelCNN++ implementation (Salimans et al.,

2017) in which we apply a residual convolutional layer, followed by one downscale-

upscale convolutional layer as a way to augment the effective receptive field of

the model. We refer to the work of (Salimans et al., 2017) for further details.

Each conditional of Eq. 5.2 is parametrized by a mixture of 10 Gaussians (where

the means, variances and mixture coefficients are all predicted by the PixelCNN).

• The Conv component of the encoder illustrated in Fig. 5.4 is composed of two

4× 4× 64 convolutional layers and stride [2,2] filters (which halves the spatial

resolution twice), followed by two residual convolutional layers which outputs

the means and variances for the intermediate latent variables. A residual layer

is defined as hl+1 = ReLu(Convolution(hl))+hl , if rectified linear units (ReLu)

for the nonlinear activation functions are used.

• Conversely, the Deconv component of the decoder is composed of two residual
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convolutional layers (with 4× 4× 128 filters) and two deconvolutional layers.

We define a deconvolutional layer to be a nearest-neighbour 2×2 up-scaling of

the input feature maps followed by a convolutional layer (with 4×4×64 filters).

The output of this component is [ha,sc] = Deconv(za), where sc is the log-scale

variable used to compute the variance of the discretized logistic model, and ha

is used to compute the corresponding mean parameters µa as explained below.

• Palette of colours. As explained above, we choose to model the mapping be-

tween zc to xa using a key-value type of decomposition. While we could have

instead predicted the colour of each ray directly, our decomposition allows the

DVAE to encode the semantic meaning of each ray in the keys (e.g. same ray

keys naturally segment same parts of the object) from their values (colours).

The colour at index m of the palette of a car is given by:

cm = σ(W m
c zc +bm

c ), (5.5)

where σ(x) is the sigmoid function which constrains the colours to be between

0 and 1. Wc is a 3×Dc weight matrix and bc is the bias vector. Each colour m

of the K colours in the palette has an associated global “colour key” gm which is

used for the generative model to “pick” the colour for each ray. This key-value

mechanism is often used as a way to define a differentiable dictionary (see an

example of its use in the work of Pritzel et al. (2017)). The mean appearance

for a ray i is computed by combining the ray predicted colour keys hi
a, which

is the output of the appearance stream in the decoder, i.e. hi
a = Deconv(za), and

the K×3 palette C by a weighted combination of its colours:

µi
a =

K

∑
m=1

wi
mcm, (5.6)

where wm is the weight of colour m computed using the normalized similarity

between the predicted keys hi
a and the palette keys:

wi
m =

k(gm,hi
a)

∑
K
j=1 k(g j,hi

a)
. (5.7)

There are different types of similarity measures we can use, but a squared expo-

nential kernel worked well in our case:
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k(gm,hi
a) = exp

(
−

3

∑
j=1

(g j
m−h j,i

a )2

)
. (5.8)

We found that K = 10 colours to be a sensible number for cars, as well dimension

3 for the key vectors. Note that the key vectors of the palette are global for all

cars. The keys of the palette are randomly initialized with zero-mean Gaussian

and σ2 = 0.01, and learned during training process.

• No dropout or batch norm are used, and all the non-linear activation funtions are

rectified linear units (ReLu). The Adam optimizer (Kingma and Ba, 2015) is

used with a learning rate of 0.0002.

Auxiliary losses. We include in the cost function two auxiliary losses (te and ta) which

relate specifically to the palette. First we want each of the colours in the palette to

represent a final colour, but if a ray’s blending weights of Eq. 5.7 are not concentrated

into a single colour, these will be blended to produce the colour of a ray of the mesh.

We can encourage the weights to become more peaked by adding the auxiliary term te
to the ELBO:

te =
R

∑
i=1

K

∑
m=1

wi
m log(wi

m) (5.9)

where again R is the number of rays. The weight of this term is annealed from 0 to

10 in the first 100 epochs. Barron and Malik (2015) use a similar prior term for their

GM referred to as “parsimony”. The authors use such term to encourage their model

to globally use a small number of colours for the whole image, while we use it to

encourage each ray to ideally only take from one colour in the palette.

The second auxiliary term is added to enforce consistency in the use of the palette

across objects. Since we use powerful nonlinear encoders and decoders in our DVAE,

the training network might not converge to a palette usage that is consistent across

cars (e.g. the first colour of the palette might model the upper body of one car, and the

lower body of another). To encourage such consistency, we add to the ELBO an extra

reconstruction term for xn
a for each car n in a mini-batch: tn

a = log p(xn
a|x̃n

a), where x̃n
a

is the output of the decoder under latent variables zn
s , zm

a and zn
c . By using an appear-

ance style representation from a different car in the training set, zm
a , we encourage the

decoder to make use of zn
s independently from its appearance style when generating x̃n

a

(i.e. similarly shaped cars should produce similar output appearances)3. The weight of

3While this is one way to initially make the network learn to generate xa using zs and zc alone, there
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this term is annealed from 0.5 to 0.01 in 100 epochs. This is because if the weight of

this term was not annealed to 0 or a very small number, the decoder would never learn

to use the appearance style variables z`a and za.

Object class symmetry. In addition to the above configuration, we take into account

the hedgehog representation as a spherical structure in our architecture as follows.

First, we include an additional input to the encoder which is an R× 3 dimensional

“image” composed of the angle information of each ray (i.e. sin and cos of the azimuth

angle as well as the elevation angle). Having this extra input allows lower level filters in

the convolutional layers to more quickly specialize its features with respect to different

areas of the cars. Note that we do not model these extra variables (they are assumed

fixed), but rather condition the model on them.

Stack

Car xa

x
left
a

x
right
a

Horizontal flip

Figure 5.5: Handling the symmetry property of object classes such as cars. The right

side image of xa is first flipped horizontally to match the left side. Note that the same

process is applied to xd and xn. This allows the network convolutional filters to capture

the symmetrical structure while still having the flexibility to model different shapes and

appearance structures in its left and right sides.

Furthermore, we note that cars (and many other categories such as faces) have a sym-

metry property which we take advantage of. We exploit this property by a careful han-

dling of x as shown in Fig. 5.5. Note that we concatenate the symmetric sides for both

xs and xa. Furthermore, we use reflective padding in the convolutional layers so that

filters have access to the contiguous ray near the edges of hedgehog images. Without

can be other ways of achieving the same effect. We could for example use the average of the encoded
appearances za instead of using a random appearance of another car zm

a when computing this auxiliary
loss term
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these two modifications the generated samples sometimes produced non-symmetrical

samples with visual artifacts along the boundaries.

5.4 Related work

We have covered much of the related work above, e.g. on active appearance models

(AAMs) and their 3D generalizations and volumetric models.

While AAMs have been shown to be very useful models, often it is difficult to obtain

the landmark data necessary to train these for an arbitrary class. In this work we

are interested in models that learn these factored representations from data directly.

The importance of disentangling factors of variation was emphasized by Bengio et al.

(2013).

An interesting approach to learning factored representations is by means of bi-linear

(or multi-linear) generative models (Tenenbaum and Freeman, 2000; Grimes and Rao,

2005; Tang et al., 2013). The key idea is that by allowing multiplicative interactions

of the latent representations, these are able to capture notions of style (e.g. font of a

digit) and content (e.g. class of a digit) separately. While these works focus on models

of different image domains (e.g. digits, letters, faces, etc.), we are interested in models

of 3D meshes.

Perhaps a closer work to ours with regards to learning representations from data is

that of Kulkarni et al. (2015b). The authors addressed learning disentangled represen-

tations, e.g. of facial shape/texture, pose and lighting. However, because they were

tackling the hard problem of using images as input, it was necessary to signal to the

neural network which factor was being varied, and which were being held fixed. Also

they used a neural network as a differentiable graphics renderer, which meant that the

effect of e.g. pose variation has to be learned specifically for an object class, rather

than being generic geometric knowledge.

To our knowledge, the most similar work to ours is the recent work of Wang and

Gupta (2016) on Style and Structure Generative Adversarial Networks. They separate

the generation of structure (a surface normal map) from style (texture and illumination)

in a two-stage process similar to Fig. 5.3a. However, note that their structure map for

our task would need to model both object shape and pose variability, and the style map

would need to model both object appearance and lighting variation. Also the planar
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surface normal map representation they use is not useful for modelling the full viewing

sphere of shape and appearance variation. However, their results are impressive when

dealing with the wide range of variation that arises from scenes containing multiple

objects.

5.5 Evaluation

Having defined our models for faces and cars, we are interested in evaluating their

learned representations and the quality of their samples. In Sec. 5.5.1 we describe the

cars and faces data used in our experiments. In Sec. 5.5.2 we describe how to evaluate

the ability of the GMs to transfer the appearances between two objects, and Sec. 5.5.3

gives the results of these transfer experiments. In Sec. 5.5.4 we give a qualitative

evaluation of the samples from the disentangled GMs.

5.5.1 Data

We focus on two classes that are of significant importance to the computer vision re-

search community: cars and faces. These classes also have the desirable property of

generally having a convex shape thus being well suited for the hedgehog representa-

tion.

5.5.1.1 Cars dataset

We use ShapeNet (Chang et al., 2015, v1) as the source of 3D car meshes. To date

the ShapeNetCore subset provides over 51,300 unique, clean, categorized and aligned

models for 55 common object categories. We extract 6,648 meshes from all different

sub-categories and isolate the main body of the car by removing the wheels using the

part-segmentations provided by the recent work of Yi et al. (2016). The availability

of such large-scale part-segmentation extends the range of possible classes to which

we can apply our methods, i.e. non-convex objects can be decomposed into convex-

like parts (e.g. the body of a car and the wheels are jointly more non-convex than

if modelled separately). While the car meshes are already provided normalized, after

isolating the main body of the car we place the center of the bounding box of the object
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at the origin. We found that a ray grid of 128 azimuth and 64 elevation angles (8,192

in total) was a sufficiently accurate representation of the original meshes.

5.5.1.2 Faces dataset

For the face class we obtain the 3D shapes and appearances from the Basel Face Model

(BFM) Paysan et al. (2009). This model produces high-resolution meshes and textures

using 199 principal components trained from real scans of faces. While this model

allows us to generate as many faces as we want, we use 10,000 randomly generated

faces out of which 90% are used as training and validation sets – we keep the number

of faces to a similar magnitude as the number of objects of most classes in ShapeNet.

Since the meshes generated by the BFM are all aligned we simply apply a global

scaling by normalizing them to max unit distance.

When projecting the spherical rays into the mesh, we must handle the rays that do not

intersect with the mesh. Non-intersecting rays are a rare occurrence in cars as they

usually have a mesh surface defined over all possible directions from the origin. How-

ever, when a ray does not intersect we instead project the ray in the opposite direction

and encode it as a negative distance. If the ray does not intersect on either direction we

set the distance to zero. For the BFM faces however, a large portion of the sphere is

not covered by the face mesh. Thus, we crop the azimuth-elevation representations to

the smallest equirectangular subset that includes the rays that did intersect (note that

such subset may include non-intersecting rays). For a non-intersecting ray within that

subset, we set its distance, normal vector and colour to be the average ray values that

did intersect across the rest of the meshes (i.e. mean imputation).

Since faces have important smaller details than cars, we increased the spherical ray

resolution to a ray grid of 256×128 azimuth-elevation angles. The subset of rays after

cropping, as explained above, are 172×94 = 16,168 dimensions.

5.5.2 Evaluating shape and appearance transfer

One of the most exciting aspects of our model is that it allows us to independently

transfer the shape and appearance between two meshes. A model that can successfully

disentangle appearance from shape can thus be used to swap appearances (or shapes)

between different objects. For example in computer graphics this would allow us to
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enhance the number of models available by creating new ones.

The evaluation metric we use for the experiments below is the mean squared error

(MSE) between a ground truth and predicted hedgehog representations. For instance,

the appearance error for objects A and B is given by:

Ea(A,B) =
1
R

R

∑
i=1

3

∑
c=1

(xA,i,c
a − xB,i,c

a )2, (5.10)

where xA,i,c
a denotes the ith ray and cth colour of object A, R denotes the number of

rays per object, the number 3 refers to the RGB channels of colour. The shape error is

defined equivalently but applied to the 4 elements of shape instead. The metrics used

for the transfer experiment are described below.

For the face experiment we quantitatively evaluate our models with an appearance

transfer experiment as follows. Given two faces A, and B from the BFM, we generate

the ground truth combination face C (C for Combined) by using the latent BFM repre-

sentations of the 3D Deformable Model for the shape of A and the appearance of B to

obtain (xC
s ,xC

a ).

A naı̈ve way of transferring the appearance of B onto the shape of A is simply to

combine (xA
s ,xB

a ). This suffers from the issue that xB
a has not taken into account the

fact that the shape of A is different from the shape of B, and thus that the appearance

should have adjusted to take this into account. Thus we define the naı̈ve transfer error

Ea(xC
a ,xB

a ) as MSE Transfer X. In contrast, rather than naı̈ve transfer using the visible

representations x, we should carry out transfer in the latent space of our GM, to predict

the new face from (zA
s ,zB

a ) instead. The corresponding error is denoted MSE Transfer

Z.

For the experiments we generate a test set of ground truth triplets xA, xB and xC using

the BFM face generator as explained above and projecting them into the hedgehog

representation. The experiment is carried out using 100 randomly generated triplets.

Using this dataset we compare two linear face models, both with 100 latent components

for shape and appearance. The first GM models the shape and appearance completely

separately (i.e. independent PPCA models), while the second GM is the disentangled

linear model. The first GM is used as a reference to assess the improvement when

using our disentangled model.

Unfortunately for the cars experiment, we do not have ground truth (GT) meshes

with transferred appearances. We address this by manually segmenting two regions of
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cars: the body and the roof. Ideally we would segment all the possible parts of the

cars but the body and the roof colours can already give a good sense of the transfer

ability of our models. With these car segmentations we can swap the colours of any

of the Ntest segmented test cars (where Ntest = 15). We define the ground truth triplet

as follows: Given two cars A, and B, we generate the ground truth C by transferring

the colours of the segmented roof and body of car B into car A. As with the face

experiment, we compute the MSE Transfer X as Ea(xC
a ,xB

a ). For the DVAE model, we

compute the MSE Transfer Z as the error between xC
a and the appearance generated

from (z`,As ,z`,Aa ,zB
c ).

Note that the sum in Eq. 5.10 is only defined over the rays that we have manually

segmented for the cars (those that belong to either roof or body) since we do not have

control over the appearance transfer of the other regions. We use a total of 56 randomly

selected pairwise combinations of the segmented cars. As baselines we compare the

DVAE with two linear models (separate and disentangled) that have the same number

of LVs as the high-level LVs of the DVAE (i.e. 100 for shape and 130 for appear-

ance).

5.5.3 Transfer Results

We first analyze the results using the faces test set. Table 5.1 first shows the reconstruc-

tion MSE of the shape and appearance variables separately (without any transfer), then

the two transfer error metrics described above. As expected the disentangled model

has lower shape and appearance reconstructions (due to having zs→ xa connections).

We also see (as expected) how the disentangled model results in clear gains when

comparing MSE Transfer X with MSE Transfer Z.

Fig. 5.6 shows the results in transfer the experiment of two test faces. The first three

columns show faces A, B and C. We can see how the Transfer Z face (synthesized from

(zA
s ,zB

a )) properly captures the shape of face A and appearance of B. In addition to the

synthesized faces following the processes Transfer Z and Transfer X, we also show two

plots that visualize the corresponding errors with respect to the GT appearance of C.

Dark gray in the faces indicate no change, and the magnitude of the red colour encodes

the degree of error (i.e. squared difference from the GT). It is interesting to notice how

the main sources of errors in MSE Transfer X are in the parts of the appearance that

change the most when the shape changes (i.e. eyes, lips, nose and ears).
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Table 5.1: Faces reconstruction and transfer errors with 95% confidence intervals.

MSE Shape MSE Appear. MSE Transfer Z MSE Transfer X

Linear Separate 0.0441 ±0.0001 0.0085 ±0.0011 0.0113 ±0.0009 0.0105 ±0.0010

Linear Disentangled 0.0380 ±0.0010 0.0048 ±0.0001 0.0076 ±0.0005 0.0105 ±0.0010

For the cars experiment, Table 5.2 shows that the linear models have quite a high

MSE of shape and appearance compared to the DVAE. But the more interesting aspect

is the gains we see when comparing MSE Transfer X and MSE Transfer Z. For the

disentangled linear model we see no improvement, which suggests that car meshes

are perhaps too complicated to be linearly modelled. On the other hand we see a

significant improvement of the DVAE model with a 0.039 error of the MSE Transfer

Z, compared to 0.172 for Transfer X. This suggests that the shape and colours of the

cars are properly disentangled in the DVAE.

Fig. 5.7 shows the transfer of the appearance for two test examples. Indeed, we can

see how the DVAE model captures the correct way in which shape and colour are

structured compared to the linear model. There is still room of improvement however

in its ability to capture some of the finer detail (e.g. sometimes the colour of the lights

and windows are not transferred properly).

MSE Shape MSE Appear. MSE Transfer Z MSE Transfer X

Linear Separate 0.144 ±0.020 0.046 ±0.006 0.122 ±0.032 0.172 ±0.039

Linear Disentangled 0.141 ±0.019 0.047 ±0.005 0.126 ±0.031 0.172 ±0.039

DVAE 0.038 ±0.005 0.025 ±0.006 0.039 ±0.012 0.172 ±0.039

Table 5.2: Cars reconstruction and transfer errors with 95% confidence intervals.

5.5.4 Sampling

A standard way to evaluate the quality of a GM is by looking at its samples. Fig.

5.8 shows samples from the disentangled linear model for faces, and how they change

when we only sample from either of the shape or appearance latent variables. What is

interesting to notice is how the shape component has learned to capture the fine-grained

features that depend mostly on the structure of the face mesh, while the appearance

variables capture the global colour information across the whole face. This effect is
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A B C Transfer Z Err. Transf. Z Transfer X

Err. Transf.

X

Figure 5.6: Transfer of face appearances. from left to right we show the original models

A and B, the GT combination C, the result of the Transfer Z process using the linear

disentangled model, the errors visualization for the Transfer Z, the result for Transfer X,

and the error visualization for Transfer X.

evidenced by comparing the errors of the third and fifth columns; notice how the high

error regions in the third column (when we sample zs) the high error regions happen in

the nose, mouth and eyebrows which is the regions in which colour change the most

as the shape of a face changes.

In Fig. 5.9 we can see a number of samples from the disentangled linear car model

which clearly show that the model is not able to capture the structure of cars well. Fig.

5.10 shows four samples from the DVAE via ancestral sampling. These samples indeed

look much sharper and well defined, even though they may sometimes have artifacts

and may lack some of the rich variability in styles from the training set. What is more

interesting is that it seems that the model has learned to segment the appearance of the

cars in terms of different semantic parts (roof, body, windows, lights) without having

any explicit segmentations in the data.

Sampling from the prior can sometimes give rise to improbable samples if the learned

model does not fully exploit the latent space (e.g. if there is still manifold structure in

there). A sensible alternative is to make use of the “aggregated posterior” (see Yang

et al. (2012) for a definition), which in our case would give rise to a latent distribution

of 1
N ∑

N
i=1 q(z|xi), where q(z|x) is the distribution produced by the encoder network,

as described in Sec. 5.3.2. This is a mixture distribution centered around each of the

training examples. We carry out “aggregated posterior” sampling for the higher-level
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A B C DVAE Transf. Z Linear Transf. Z Transf. X

Figure 5.7: Transfer of car appearances. From left to right: the original models A and B,

the GT combination C, the result of the Transfer Z process using the DVAE, the result

of the Transfer Z process using the linear model, and the result for Transfer X.

latent variables and, conditioned on those, we sample from the intermediate (via Pixel-

CNN) and observed variables via the GM. Fig. 5.11 shows a number of samples using

this method. We can see how sampling the intermediate appearance variables changes

the fine-grained details (second column) while sampling from the palette latent vari-

ables properly changes the whole colours of the car (third column). In Fig. 5.12 we

perform the same sampling procedure, but instead show two samples of zc that exhibit

the variability captured in the colour model.

Finally, in Fig. 5.13 we demonstrate the fact that with our learned model we can sample

a 3D mesh which can be embedded in any 3D scene. Two cars generated using the

“aggregated posterior” sampling method. We also include wheels for an improved

visual effect.
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x∼ p(zs,za) x∼ p(z̃s,za) Error (z̃s,za) x∼ p(zs, z̃a) Error (zs, z̃a)

Figure 5.8: Samples from the disentangled linear model. From left to right: for every

sample in the first column, we first fix the appearance and re-sample shape, then show

the error in appearance with respect to the initial sample. Alternatively, we fix the shape

and re-sample the appearance, and show the error with respect to the initial sample.

Car 1 side Car 2 side Car 3 side Car 4 side

Car 1 front Car 2 front Car 3 front Car 4 front

Figure 5.9: Samples from the car disentangled linear model.
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Car 1 side Car 2 side Car 3 side Car 4 side

Car 1 front Car 2 front Car 3 front Car 4 front

Figure 5.10: Samples of the car DVAE model.
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Side x∼ p(zs,za,zc) Side x∼ p(zs, z̃a,zc) Side x∼ p(zs,za, z̃c)

Front x∼ p(zs,za,zc) Front x∼ p(zs, z̃a,zc) Front x∼ p(zs,za, z̃c)

Side x∼ p(zs,za,zc) Side x∼ p(zs, z̃a,zc) Side x∼ p(zs,za, z̃c)

Front x∼ p(zs,za,zc) Front x∼ p(zs, z̃a,zc) Front x∼ p(zs,za, z̃c)

Figure 5.11: Aggregated posterior sampling of the car DVAE model. The first column

is the training set reconstruction. Columns two and three show how sampling from

different groups of latent variables change the cars. Sampled cars are shown from the

side and front views.
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Side x∼ p(zs,za,zc) Side x∼ p(zs, z̃a,zc) Side x∼ p(zs,za, z̃c)

Front x∼ p(zs,za,zc) Front x∼ p(zs, z̃a,zc) Front x∼ p(zs,za, z̃c)

Side x∼ p(zs,za,zc) Side x∼ p(zs, z̃a,zc) Side x∼ p(zs,za, z̃c)

Front x∼ p(zs,za,zc) Front x∼ p(zs, z̃a,zc) Front x∼ p(zs,za, z̃c)

Figure 5.12: Aggregated posterior sampling of the car DVAE model. The first column is

the training set reconstruction. Columns two and three show how different samples from

the colour zc while leaving the remaining fixed as per the posterior sample. Sampled

cars are shown from the side and front views.
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Car 1 Car 1 (sampled app.)

Car 2 Car 2 (sampled app.)

Figure 5.13: Samples visualized with Cycles. These are generated using aggregated

posterior sampling of z`s and z`a (first column), and conditioned on those, sampling from

the palette and intermediate layers (second column).
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5.6 Discussion

In this chapter we addressed two challenges to obtaining 3D generative models of

shape and appearance of objects. The first relates to using the under-explored “hedge-

hog” representation of the data to avoid the need for the complicated process of ob-

taining mesh landmark correspondences. In this regard we investigated the use of a

representation that had not yet been fully exploited in the literature as a model of both

shape and appearances of objects. The “hedgehog” representation is well suited for

a number of classes, among which are the faces and cars. We also provided an anal-

ysis of the functional relationship of the hedgehog representation with respect to 3D

meshes.

The second is the notion of disentangled representations. Our appearance transfer

experiments (both quantitative and qualitative) showed the ability of a disentangled

model to factor out shape and appearance. For faces a linear model gave good perfor-

mance, but for the more complex cars class the nonlinear DVAE was superior.

For cars and other complicated classes of objects, we proposed an auto-encoder archi-

tecture with the ability to learn high level structure (e.g. the coarse shapes of cars) and

intermediate level variability (e.g. fine detail in shape and appearance) in a disentangled

way. Our inclusion of a palette model acts as an inductive bias for the GM to segment

the cars in its different semantic parts, as we saw when sampling from the different

latent variables. Another important aspect of the architecture is the use of convolu-

tions in order to take advantage of the local structure of the hedgehog representation.

The appearance transfer quantitative experiments on a test set of manually segmented

cars suggest that the learned car representations can be used to produce novel cars by

combining the latent shape and appearances factors of different cars.

One of the most popular deep learning approaches to modelling 3D shapes uses vol-

umetric representations as an alternative way to avoid finding landmark correspon-

dences. As we mentioned before, these representations are computationally and memory-

wise inefficient. An additional issue with the voxel approach is that the conversion

from voxels to a data structure that can be rendered usually involves a procedure such

as Marching Cubes (Lorensen and Cline, 1987), whereas in our case the ray distance

representation directly maps to a mesh. The benefits of the voxel representation, how-

ever, is its flexibility to model any kind of shape. Tatarchenko et al. (2017) address the

inefficiency of voxels with novel ways of modelling the volumetric representations us-
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ing Octrees. Another recent work (Soltani et al., 2017) generates 3D shapes by taking

as input multi-view images, depth maps and silhouettes of objects instead of voxels.

To our knowledge none of these recent pieces of work include appearance informa-

tion when modelling objects, leaving out an essential aspect of the description of an

object.

There are a number of improvements that can be made to the DVAE. It will be inter-

esting to try different ways of modelling the high-level latent representations. For in-

stance, a straightforward improvement would be to allow multi-modal representations

in the prior latent variables (e.g. mixture of Gaussians) to better capture the different

clusters of shapes in cars.

An interesting possibility for classes that are not always as convex as faces or cars

would be to independently model each of the parts with a hedgehog representation, and

have a higher level model of the combination of these parts. In this regard, the work of

Yi et al. (2016) can be used to obtain some of these object part segmentations.

We should also not lose aim of the central task of thesis. Our initial motivation for this

work was to obtain richer models of 3D objects to be ultimately used in an analysis-

by-synthesis framework. An interesting line of future work therefore involves applying

these models of faces and cars on a scene understanding task (e.g. reconstruction of the

shape and appearance of cars in an image).
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The methods we have investigated in this thesis are designed to tackle the task of de-

tailed scene understanding. We are, in other words, interested in obtaining representa-

tions from images in their most natural form: the set of physical elements that describe

the underlying process that generated the image. In computer graphics this is often

referred to as a scene graph, see e.g. Angel (2003, Sec. 9.8). That is, a data structure

that encodes the 3D objects, illumination components, and one or multiple cameras in

the scene. This scene graph representation, for instance, enables a user to interactively

and intuitively modify its components and generate different scene arrangements, as

we saw in Fig. 4.16. It is also an adequate representation for subsequent computer

vision methods that carry out higher level reasoning about the scene in order to make

complex decisions.

Given how broad the discipline of computer vision is, a large number of areas are

outside the scope of consideration in this thesis (for instance, structure from motion

methods have shown to be very effective for scene reconstruction and pose estimation,

but rely on having multiple input images). The most relevant methods to our work are

those that make inferences by taking a single image as input. Some of the most re-

cent successful methods are based on data-hungry discriminative learning techniques.

While in recent years we have seen great progress with respect to some of these meth-

ods, as we reviewed in Sec. 2.3, the task of detailed 3D understanding remains an

active research area.

In one of the earlier works in the inverse graphics literature, Baumgart (1974, Sec. 6.3)

compares different approaches to solving the general scene understanding problem and

states that “[...] however, alone the statistical abstraction of world features in the pres-

ence of occultation, rotation and illumination seems as hopeless as the abstraction of a

man’s personality from the pattern of tea leaves in his cup”. Over three decades later,

perhaps it seems less hopeless now in the light of the success of deep learning of image

features. Having said that, the increasing number of works based on inverse graphics

in recent years, including the ones presented in this thesis, supports the notion that such

an approach offers useful and principled methods to solving many scene understanding

problems. I believe that it is the combination of deep learning methods with generative

models of images that will enable scalable solutions to real world vision tasks.
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6.1 Summary of contributions

In Chapter 3 we described an inverse graphics solution to recovering the shape, pose,

appearance and illumination from an object embedded in a scene. In order to train

the recognition models and systematically evaluate the performance of our models

we introduced a synthetic dataset which has rich variability of indoor scenes, object

shape via a deformable shape model, and varying illumination obtained from environ-

ment maps of real scenes. In addition to making the dataset available, we provide the

stochastic scene generator which allows researchers to produce different scenes with

the object classes of their choice. We proposed a type of likelihood function that ex-

plicitly handles occlusion with a pixel-wise latent variable of occlusion. We showed

that the gains of refinement using the robustified GM are consistently significant, up

to a very large level of occlusion for the appearance and illumination latent variables.

Furthermore, having the occlusion-aware GM allows us to make inference with regards

to the probabilities of pixels being occluded, thus giving us fine-grained assessment of

which parts of the objects are visible.

In Chapter 4 we proposed enhancements to the GM that helped improve the refine-

ment of all the scene latent variables. The scene dataset used in this task contains

multiple objects per image, thus making the inference task a more interesting and

challenging one. The recognition model architecture used to predict the camera latent

variables, i.e. the Probabilistic HoughNet (PHNs), is designed to aggregate individual

elements in order to robustly predict the intrinsic and extrinsic parameters of the cam-

era. The combined global camera predictions given by the PHNs, and the illumination

and object latent variables given by the CNNs are then fed to a generative model that

iteratively optimizes over all the latent variables. We proposed using a method of pre-

computing self shadows in order to more accurately model the scenes. Results support

the idea that a GM is more effective at fitting (refining) a scene if it is able to more

accurately model the scene. We also analyzed the effect of rasterization with regards

to image derivatives and proposed sampling methods that improved the gradient-based

refinement results.

In Chapter 5 we focused on obtaining richer 3D models of objects. For inverse graph-

ics to be a useful framework for scene understanding, the GM should be able to capture

the complex variability of objects in real images, while also separately modelling the

underlying factors of shape and appearance of the objects in a scene. The main con-
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tribution of the chapter is a generative model structure that learns to disentangle shape

from appearance in its latent representation. We also propose a way to quantitatively

evaluate such disentanglement via the appearance transfer experiment. Results also

show the usefulness of the “hedgehog” representation of 3D meshes as a way to over-

come the limitations of other approaches (such as the landmark based approach and

the volumetric representation).

We wish to emphasize that all the methods we have investigated are designed to be

flexible and applicable to a large variety of scene and object domains. The use of a

general purpose differentiable graphics renderer as the core of our GM in chapters 3

and 4 means it can take any type of object as long as it is represented as a 3D mesh.

Nowadays, we can easily obtain 3D meshes from a large variety of object classes from

datasets such as ShapeNet (Chang et al., 2015).

6.2 Future work

We conclude with an overview of what we believe are some interesting research ques-

tions with respect to inverse graphics. Some of the directions described below follow

from the work presented in this thesis, while other ideas are based on a more general

assessment of the state-of-the-art methods at the moment of writing.

The ideal way to handle occlusions when using a GM would be to actually model all

the objects in the scene (in which case we would not need to explain it away with an

occlusion model). Reconstructing all the objects in a scene, however, might not always

be a realistic goal. It therefore seems that strong occlusion models are an important

part of a practical solution. While our RMs in Chapter 3 are occlusion-aware in the

sense that the images used to train them have rich and plausible occlusions, they do

not explicitly predict the occlusion mask. Predicting the occlusion mask can in turn be

used to initialize the occlusion latent variables for the GM. The recent work of Yildirim

et al. (2017) train RMs of faces with images containing explicit occlusions (like we do)

while also predicting these occlusions. Similarly, Li et al. (2017) propose a sophisti-

cated CNN architecture (also trained on synthetic images) to predict the 3D keypoints

distribution as well as visibility (which includes occlusion) information. There are also

interesting directions of work with regards to designing GMs with occlusion models.

For instance, Egger et al. (2018) go beyond pixel-wise outlier models by integrating a
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Markov Random Field segmentation model into the GM. The success of these different

techniques encourage the combination of richer occlusion-aware architectures both in

RMs and GMs in order to effectively handle complex occlusions in real images.

In Sec. 3.7 we concluded that detecting when the GM iterative refinement has fallen

into an improbable basin of attraction is an interesting research problem. In chapters 3

and 4 we treated the GM latent variables as fixed but unknown quantities during infer-

ence. A sensible idea is to model these variables with probability distributions based on

prior knowledge, or by estimating these distributions from data (i.e. empirical Bayes).

This in turn can help to avoid falling into unlikely regions of the latent space. Search in

a probabilistic latent variable model when using a complex generative process such as

a graphics renderer usually involves sampling-based methods such as Markov Chain

Monte Carlo (Kulkarni et al., 2015a; Jampani et al., 2015) and approximate Baysian

computation (ABC) (Mansinghka et al., 2013; Kulkarni et al., 2014) in the likelihood-

free case. Perhaps the combination of data-driven proposals and gradient-based search

e.g. Hamiltonian Monte Carlo (for which we can use the OpenDR derivatives) can lead

to an efficient search over regions closer to the global optimum. Having estimates of

the posterior distributions can also give us information about the uncertainty of the

estimates, which can be useful in subsequent decision making.

In this thesis we have made heavy use of synthetic data. This is a trend in recent

work in which RMs are trained to make fine-grained predictions from images, partly

due to the lack of labelled real image datasets. Our dataset with photorealistic illu-

mination and plausible indoor scenes with clutter and occlusions attempt to close the

gap between synthetic and real images. There is still, however, a number of interesting

possibilities to further improve the performance of these models on real images. An

important area of research is thus overcoming the domain adaptation performance gap

(when models trained on synthetic images need to be applied to real images). A com-

mon way to do so is, for instance, to train the machine learning models (such as neural

networks) to predict the variables of interest with large quantities synthetic data, and

once trained use the smaller real image (and labelled) dataset to fine-tune the model’s

parameters in order to reduce the domain adaptation gap. However, more careful com-

bination of real and synthetic datasets seem to be key to getting the benefits from both

domains when training RMs, see e.g. Wu et al. (2017, 2016), in which real data and

synthetic data are used to train different components of the models in the spirit of

weakly labeled regimes.
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In Chapter 5 we presented a generative model of 3D objects learned from datasets of

meshes. The idea mentioned above of combining synthetic data with real data to ob-

tain richer models is also relevant in this case. For example the collection of meshes

we used to train cars or faces, as described in Sec. 5.5.1, might not cover all the vari-

ability seen in real cases. An interesting line of work is thus combining models of

objects learned from such collections of meshes with techniques that learn the shapes

and appearances directly from real images. See the works of Rezende et al. (2016);

Kanazawa et al. (2018) for examples of learning shapes and textures of objects directly

from images.

One of the long term aims of scene understanding is to develop methods that can be ap-

plied to complex scenes with a wide range of objects and variability, such as the scenes

that people interact with on a daily basis. Methods that attempt to tackle the complexity

of scenes with multiple objects of different classes need specific techniques to remain

computationally efficient. There are interesting research directions with respect to the

interaction between RMs and GMs in the context of attention based-mechanisms. The

PHN architecture we used in Sec. 4.3.1 is an interesting way to handle a variable num-

ber of objects in parallel while robustly aggregating each of their predictions. One can

alternatively process the objects in an image following a sequential attention-based

process. Eslami et al. (2016) propose a neural architecture that sequentially combines

an encoder (RM) and decoder (GM) architecture in order to parse the complete im-

age. It will be interesting to see if the computer vision research community can draw

more useful ideas (such as that of attention) from the bottom-up and top-down flows

of information seen in biological neural mechanisms.
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