
Mathematical Modelling Techniques in Process Design

Andrew T. Doig

Master of Philosophy
University of Edinburgh

1991

1

DECLARATION

The work described in this Thesis is the original work of the author and was
carried out without the assistance of others, except where explicit credit is given
in the text. It has not been submitted, in whole or in part, for any other degree
at any University.

Andrew T. Doig

11

ABSTRACT

Software has been developed which constructs mathematical models and
simulations of chemical engineering problems. It uses a generic description of
each problem domain, e.g. a flash problem consists of mass and heat balances,
vapour-liquid equilibrium relationships, etc, and a set of global constants, such
as Antoine coefficients. The fixed variables must be supplied for each instance of
the problem.

The first step in producing a simulation is the assignment of an equation to
be solved for each variable in the problem; these may be design variables or
others whose values are required. This assignment is found by the use of a flow
maximisation technique. Next the equations are partitioned into their minimal
solvable subsets by a depth first search algorithm. Following partitioning, the
smallest set of variables such that, knowing their values, the rest can be calculated
is identified, a guess is made for their starting values, and a computer program is
written to solve the equations. This program uses the Newton Raphson method
with analytical derivatives to solve simultaneous equation sets; the values of
these derivatives are found without explicit differentiation using an extension of
a method due to Ponton [75] for torn systems. Finally the results of computation
are reported to the user.

Critërea are presented for the comparison of models and simulations, and
qualitative definitions of merit are presented. The structural analysis of equation
sets is discussed in detail, and common methods are described and contrasted.
Throughout the thesis these topics are treated graph theoretically since many of
the concepts considered are visualised most easily in this way. In particular one
set of theorems appears which relate graphs, digraphs and their properties to the
structure of equation sets, another shows how a flow maximisation technique can
be used to solve the assignment problem, and yet another proves how and why
the decomposition technique chosen works. Whilst the first two sets of results are
well known, no proof has been located of them in the form in which they appear.
No statement or proof for the last set of theorems has been found.

Finally some improvements to the software are proposed. These are concerned
both with its structural detail, and with its ability to reason.

111

Acknowledgements

This work has been possible only due to the efforts of many people whose help
I am delighted to be able to acknowledge. I am grateful to my supervisors
Dr. Ken McKinnon and Professor Jack Ponton, and my industrial sponsors, B.P..
So too immeasurable thanks are due to my parents, Andy and Rena Doig, and
my brother, David, for their support during my studies, particularly during my
period of illness. I am indebted to Carleen Robertson and Martin Fallon, for
buying the beers and providing a calming influence. Last, but by no means least,
I wish to thank my friends and colleagues in both the Department of Chemical
Engineering and Pollock Halls for their help and advice.

Contents

1 The Requirements of a Modelling System 	 1

	

1.1 	Introduction1

1.2 Fundamental Aspects of Mathematical Modelling2

1.3 The Comparison of Models and Simulations3

1.3.1 What is a Good Model ? 3

1.4 The Derivation of a Mathematical Model7

1.4.1 Choosing the Appropriate Equation Set8

1.4.2 Equation Manipulation10

1.4.3 Program Writing12

1.4.4 Finding, Checking and Reporting Results14

1.4.5 Approximation14

1.5 A Modeller's Toolkit16

2 The Graphical Analysis of the Structure of Equation Sets 	20

	

2.1 	Introduction20

	

2.2 	Graph Theory22

2.2.1 The Elements of a Graph22

iv

	

CONTENTS
	

V

2.2.2 The Types of Graph of Interest25

2.2.3 The Properties of Graphs29

2.2.4 Vertex Elimination30

2.2.5 Graph Representation and Algorithmic Complexity 32

2.3 Conditions for a Unique Solution35

2.4 The Need to Select an Output Set37

2.5 The Nature of Partitioning Matrices39

2.6 The Use of Decomposition Techniques55

2.6.1 Optimal Tear Sets57

2.6.2 Numerical Techniques Improved by Tearing59

	

2.7 	Summary66

3 Literature Review and Selection of Methods 	 67

	

3.1 	Introduction 67

3.2 Choosing An Output Set68

3.3 Partitioning Matrices80

3.3.1 A Characterisation of Matrix Partitioning82

3.3.2 Symmetric Permutations90

3.3.3 Asymmetric Permutations92

	

3.3.4 	Summary102

3.4 Methods Of Decomposition . 104

CONTENTS
	

vi

3.4.1 Ad hoc Decomposition Methods105

3.4.2 Graph Reduction Methods107

3.4.3 Explicit Loop Breaking Strategies112

3.4.4 Depth First Search Decomposition118

3.4.5 Summary120

	

3.5 	Conclusions122

4 Matching and ordering Variables and Equations 	 123

	

4.1 	Introduction123

4.2 Analysing an Overdetermined Equation Set124

	

4.2.1 	The Order of Analysis124

4.2.2 Finding the Minimal Equation Subsets 125

4.3 Finding an Output Set130

4.4 Selecting and Ordering the Equation Set138

4.5 Summary142

5 Finding the Minimum Tear Sets 	 144

	

5.1 	Introduction144

5.2 The Signal Flowgraph of a Digraph145

5.2.1 Deriving a Signal Flowgraph from a Bipartite Digraph . . 148

5.3 The Decomposition Algorithm151

CONTENTS 	 vii

5.3.1 The Rules for Decomposition151

5.3.2 A Description of the Algorithm153

5.4 	Two Examples 158

5.5 	Summary 160

6 The Generation of Analytical Derivatives and their use in an
Equation Solver 	 162

6.1 	Introduction162

6.2 The Newton Raphson Method163

6.3 The Generation of Analytical Derivatives164

6.4 Application to Torn Systems167

6.5 An Example Problem168

6.6 A Recommendation for Future Development170

6.7 	Summary175

7 The Software Implementation 	 176

7.1 	Introduction176

7.2 	Introduction177

7.2.1 Programming in Prolog178

7.3 A Description of the Modelling Software179

7.4 An Example Modelling Session184

7.4.1 The Physical and Thermodynamic Equations185

CONTENTS 	 viii

7.4.2 Parsing and Expanding the Equations188

7.4.3 The Variable/Equation Matching191

7.4.4 The Equation Subsets193

7.4.5 The Decomposed equation Subsets194

7.5 Solving the Equations 195

	

7.5.1 	Program Generation195

7.5.2 Reporting the Results196

7.6 	Summary198

8 Conclusions and Recommendations for Future Work 	199

8.1 Recommendations for Future Work199

8.2 	Conclusions200

A The Operations Count for LU Decomposition 	 210

B A Binary Ideal Flash Problem 	 212

C The Dissociation of Water 	 215

D Methods for Convergence Acceleration 	 220

D.1 Derivative Methods220

D.1.1 Methods with an Analytical Jacobian220

D.1.2 Methods which Use Function Values221

CONTENTS
	

ix

D.2 Quasi-Newton Methods221

D.3 Dominant Eigenvalue Methods222

D.4 Application to Convergence Acceleration225

E The Modelling Interpreter 	 228

F The Initialization File for the Flash Problem 	 234

List of Figures

2.1 A Graph of the Equations22

2.2 A Graph22

2.3 A Single Component Graph24

2.4 A Digraph which has two Strong Components26

2.5 The Graph of the Flash Equations27

2.6 A Digraph for an Assignment of the Flash Equations28

2.7 The Signal Flowgraph for the Flash Equations28

2.8 A Bipartite Directed Graph31

2.9 Vertex Elimination on a Digraph31

2.10 The Incidence Matrix for the Flash Equations33

2.11 Four Desirable Matrix Forms41

2.12 The Digraph of the 4 x 4 Equation Set42

2.13 The Incidence Matrix for the 4 x 4 Equation Set42

2.14 Two Tear Sets for a Diraph58

3.1 An example of a Network78

3.2 Two permutations of an Irreducible Matrix81

x

Rules and models destroy genius and art.
William Hazlitt, On Taste

Chapter 1

The Requirements of a Modelling System

1.1 Introduction

In general, the computation of the answer to a numerical problem is a two stage

process: firstly a mathematical model is formed, and then it is solved. Although

there are many techniques available for the latter task, there is a dearth of theory

which deals with the former. The production of a mathematical model can be

troublesome, and both skill and experience may be necessary to construct one.

Perhaps the first text to address itself to this impediment was Polya's [74] classic

book, but this was a prescription for solving general mathematical problems

rather than the production of models. This problem has been recognised on

a wider scale [7] and it has prompted Aris [6] to publish a textbook on the

fundamentals of mathematical modelling. Although this text addresses itself to a

wider audience, it draws all of its substantial examples from the field of chemical

engineering.

1

Chapter 1. The Requirements of a Modelling System 	 2

This thesis is more specific than Aris's text in that it is an investigation of some

of the more important principles and practifrés of the mathematical modelling

of chemical engineering problems, rather than models in general. The domain

of application is even more restricted than this, because we will deal only with

modelling single plant items and the physical and thermal changes which take

place within them, not in the simulation of entire chemical plants; the problems

associated with this larger scale modelling have been addressed by Hutton [47].

We will see how the formulation and interpretation of mathematical models can

be decomposed into several areas - ranging from the selection of equations of the

appropriate type to checking the results supplied by a computer program - and

an account will appear of the problems associated with each of these tasks, and

of the attempts made to address them. In § 1.2 the terms mathematical model

and simulation are defined and contrasted, and a discussion of how examples

of these may be compared appears in § 1.3.1. A modeller's toolkit is described

in § 1.5. This must allow for the formulation of a model; its development to a

simulation; the realisation of this simulation as a computational program; and a

check and report of its results. Finally, § 1.5 indicates which of the problems in

the preceding section have been addressed, and where their solutions appear.

1.2 Fundamental Aspects of Mathematical Modelling

This section details the elements of a good mathematical model, and the

simulations which may be derived from it. Before proceeding with this discussion

it is necessary to define these terms.

Chapter 1. The Requirements of a Modelling System 	 3

The journals of mathematics and the philosophy of science are littered with

definitions of the term "model" [52], [5]. The most useful definition for

our purposes is provided by Smith [87], who regards a model as a generic

mathematical description of a problem. The adaptation of a model to describe

a specific problem he terms a simulation. Thus one might model an exothermic

reactor by writing down the differential and algebraic equations which describe it

and simulate it by specifying what the reactants are to be, their inlet temperature

and the fractional conversion of the key component, etc.. The solution to the

problem is found by manipulating the simulation in such a way that the values of

its dependent variables are determined. Throughout this thesis the term "model"

is used in Smith's sense but the term "simulation" is extended slightly to cover

the order in which information is to be used. Thus two models of the same

problem differ if they use different sets of mathematical equations and different

simulations of the same model can be produced by rearranging the information

or the values of some of the constants used within it.

1.3 The Comparison of Models and Simulations

1.3.1 What is a Good Model?

What is it that makes one formulation of a problem superior to another? The

contention that the accuracy and superiority of models are synonymous is vitiated

by considering a model of a reciprocating compressor. The most accurate

Chapter 1. The Requirements of a Modelling System 	 4

model of this system which can be imagined involves a description of how the

molecules within the piston react with those on the cylinder walls and those

within the entrained fluid. A large number of algebraic, differential and statistical

expressions would be required to represent the system, and comprehension of

such a model is unlikely to be easy. However, it is improbable that an engineer

would require such a detailed description of the problem; it is fax more likely that

he would be interested only in the macroscopic properties of the system, and

so he may well be content to model the compressor by using some relatively

straightforward thermodynamic relationships and a simplified version of the

Navier Stokes equations.

The important point to grasp is that the more accurate model contains too much

information. The provision of this extra information is an inefficient use of the

modeller's time, a barrier to a clear appreciation of the more salient aspects of

the model, and an impedimentts(so1ution. This is a patho logical case, but it

demonstrates the possibility of excessive rigour. This possibility exists, even for

less extreme examples, when the data to be used are known to be inaccurate. If

this is so then there may be little point in producing a finely detailed model since

the results which it will yield will be of questionable value. The obverse of this

is that a model which uses the ideal gas law may be insufficiently accurate for

the engineer and thus one which uses, say, the Peng-Robinson equation [71] may

be preferred. The obvious, but none the less vital, point to be stressed is that a

'good' model is one which uses only as much information as is necessary. Thus it

is necessary to define one's level of interest before writing a mathematical model.

This argument demonstrates the difficulty of defining optimality in the context

of mathematical modelling. It is tempting to define optimality in terms of the

Chapter 1. The Requirements of a Modelling System 	 5

amount of effort required to solve the problem - the faster the solution, the

better the formulation, but this is unsuccessful. Not only does this definition

fail to account for the appropriate accuracy of the model, but so too it neglects

the amount of effort required to set the model up. It is impossible to provide

a precise definition of optimality which encompasses all three of these points

because it is difficult to define a meaningful estimate of the effort required to

produce a mathematical model, and it is difficult to define a general measure of

accuracy.

Despite these difficulties, some definition of optimality is required, albeit a fuzzy

one, in order to allow at least a qualitative discussion of the relative merits of

different models. Thus we will define a good formulation of a problem to be

one which requires minimal overall effort to set up and solve whilst providing a

suitably correct answer with sufficient clarity for the modeller to understand it.

It may be possible to discriminate between models which satisfy the above

conditions. Consider, for example, a distillation column which is used to separate

a feed of N components into S different streams. In order to avoid redundancy,

any model which describes this system may contain at most N + S + 1 of the

possible N + S +2 mass balance equations. Suppose that during the formulation

of the model N + S of the mass balance equations have been used and that one

of the remaining two is required to complete the description of the column. If,

for instance, the two remaining mass balance equations were

i=N

Ezi
	

(1.1)

i=s
WjX = FZk 	 (1.2)

j=1

where Zk is the mole fraction of the kt" component in the feed stream F, W,

Chapter 1. The Requirements of a Modelling System 	 6

is the j A product stream and X,k is the mole fraction of the k 1component in

the j1h product stream', then either equation could be used without prejudice to

the final overall knowledge contained within the model. This is so because any

N + S + 1 of the mass balance equations may be used to derive the other.

Although the two models contain the same information, implicitly if not explicitly,

they are different because of the equations used. It may be that neither model

appears to be any better or worse than the other but important differences in their

structure may come to light when the models are extended to become simulations.

For instance, equation 1.1 would, in general, be easier to rearrange to give a new

subject than would equation 1.2. Further, the first equation is linear whereas the

second is likely to contain a number of bilinear 2 and, in most of its rearranged

forms, non-linear terms; since, generally, linear equations are easier to solve than

non-linear equations it may well be that a simulation which uses equation 1.1 is

superior to that which uses equation 1.2. If the choice for the last mass balance

equation had been between equation 1.1 and the mole fraction balance on the jth

stream
i=N

Xj i = 1
	

(1.3)

then it would not be possible to select the better equation cannot by reference

to equation form alone. However, the general heuristic is that one ought to use

linear equations in preference to others wherever possible.

Lastly, one may compare simulations by the order in which they use information.

For example, if the equations are to be solved by a Gauss-Seidel iteration, then

the order in which variables are updated may determine the course of the solution.

In. 6. 'k' in equation 1.2 is used for generality. It would have to have been set to some
particular value at this point.

2 a bilinear term is a linear expression such as a * ,8 where both a and /3 are variables

Chapter 1. The Requirements of a Modelling System 	 7

Further, if some of the variables are to be torn so that at each pass the values of

some of the variables in the problem are determined by the solution of a 'kernel'

problem, and the others found by direct substitution, different tearing strategies

would produce different simulations. The solutions to these formulations would

proceed in different ways and so they may exhibit distinct rates and stability of

convergence.

It has been demonstrated that it is very difficult to provide precise, practical

rules for discriminating between models and simulations, but that they may be

contrasted according to inexact criteria. One can postulate the synthesis of an

optimal simulation by manipulating these criteria in such a way that a score

is ascribed to each of the above choices, a good choice being assigned a high

score, and choosing the simulation which scores most highly. This is impractical,

however, because even if a meaningful score could be given to each choice, the

decision tree for even a small problem is likely to be very large. Hence, in practise,

only a qualitative a priori comparison of models and simulations is possible.

1.4 The Derivation of a Mathematical Model

In the last section we discussed the nature of a good model. In this section we

turn our attention to its production. This problem can be decomposed into four

tasks, namely

1. Select the appropriate equation set.

Chapter 1. The Requirements of a Modelling System 	 8

Manipulate it into the desired form.

Develop a computational procedure for its solution 3 .

Solve the problem, check the results and report them.

A further stage in the process which may be a practical necessity, or at least

advisable, is the production of an approximation to the required model. We will

deal with each of these tasks in turn.

1.4.1 Choosing the Appropriate Equation Set

The natural inclination of the engineer on encountering a problem is to make a

diagram to represent it, and to jot down some of the variables associated with

it. The next thing that he does is write down some of the the relationships

which exist between these variables, e.g. heat and mass balances, thermodynamic

relationships, fluid flow equations, etc. There may be little choice involved in the

selection of some of these equations, e.g. the balance equations, but selecting

the others may well involve skill and experience; for example, the choice of an

equation of state and of physical property equations is a complicated enough task

for expert systems to have been written to tackle it [8]. Having described the

system in such general terms, the engineer must decide which of these equations

are to be used in the model. Some expansion and contraction of the equation set

will be necessary - for instance too many mass balance equations may have been

3 n. b. in general this is not necessarily a computer program, but we restrict it to this definition
for the purposes of our discussion.

Chapter 1. The Requirements of a Modelling System 	 9

provided and, possibly, some equations will be required whose necessity was not

evident originally.

At this stage it is imperative that one be cognizant of the necessity for

completeness and, as fax as possible, consistency, and that one avoids the perils

of redundancy. A complete set of equations is one in which there is a one to one

correspondence between the equations and the variables which appear in them;

the reasons for this condition are given in § 2.3, and methods for checking it are

described in § 3.2. The term consistency refers to the assumptions which have

been made about the system under consideration. In general, these should not

conflict sharply if meaningful results are to be derived from the model, but this

is not always the case.

Redundancy, which was touched on earlier when it was noted that an engineer

may provide too many mass balance equations in a model, is a much harder
0

problem with which tp deal. Any equation set to be solved must be linearly and

non-linearly independent, i.e. no equation may be expressed as either a linear

or non-linear combination of some or all of the other equations. The reason for

this is that if the value of any variable is to be determined it must be done by

using some statement which has been made about the problem. For instance it

may be that the temperature rise experienced by a fluid flowing through a heat

exchanger can be calculated by using the equation

Q=UALT
	

(1.4)

If there are N such variables whose values are to be determined, then N such

expressions must be provided. Suppose that during the compilation of an

equation set E, ii equations have been used, and that a candidate for the next

Chapter 1. The Requirements of a Modelling System 	 10

equation to be included can be expressed as a combination of ic of the members of

E. The inclusion of this equation provides no new information about the problem

and so only ii of the ii +1 members of V, the set of variables which corresponds to

E, may be solved for. In this case the (v + 1)8t equation is said to be redundant

and another equation must be selected in its place. Spotting that an equation

set exhibits redundancy can be hard; determining the set of candidates for the

redundant equation is extremely difficult.

1.4.2 Equation Manipulation

Once it has been established that a set of equations gives a complete, consistent

and non-redundant description of a problem the next problem is to manipulate

it into a simulation. Having chosen the values of the constants in the problem,

there are four ways in which this can be done.

The form of the equations can be changed, e.g. logs can be taken of both

sides of an equation which involves exponential terms (this is a standard

trick in reaction equilibrium problems).

The equations can be rearranged into some form, e.g. f(x) - b = 0 or

x=f(x).

The equations may be reordered, and/or torn.

The equations can be differentiated analytically. This is necessary when

a first or second order solution method is used since, in these cases, the

Jacobian and/or the Hessian of the system is required.

Chapter 1. The Requirements of a Modelling System 	 11

For convenience, altering the form of an equation introduces at least one new

variable and one new equation to the problem; e.g. taking the logs of both sides

of the reaction equilibrium equation for a single reaction involving ideal gases

i=N

K
= 	

P18 	 (1.5)

produces the two equations
i=N

S=v1logP 	 (1.6)

	

K=expS 	 (1.7)

This task involves a few simple rules, H -' E, a -+ blog a, etc, which can wielded

relatively simply. Differentiating equations is an order of magnitude greater in

difficulty, principally because there are many more rules involved; chain ruling is

easy but flattening differentiated expressions can be intricate and troublesome.

Harder yet is the rearrangement of equations to give them a new subject. It is

easy to cope with finding an explicit expression for x from

	

= cos (/)
	

(1.8)

but it is harder to derive one from

and impossible to manipulate

2;

1—s

= x + log x

(1.9)

(1.10)

into the desired form. There are a few popular symbolic algebra packages

available [77], [76], but although they can perform simple tasks very well, it

is my experience with Macsyma that it is hard to use, easily confused and bad

at recovering from a computational disaster.

Chapter 1. The Requirements of a Modelling System 	 12

Reordering equations is a simple task but, as we will see in § 3.2, finding

the rearrangement which satisfies some criteria may require considerable effort.

Firstly a decision must be taken as to whether the equations are to be partitioned

into smaller subsets, and if they are to be decomposed or not. Some of the

the theoretical basis required to answer these questions appears in § 2.5 and

§ 2.6. Secondly the equations may be solved by successive substitution, by a

method which requires function values, e.g. the secant method, or one which

uses derivatives too'. The best method to use is a function of the shape of the

equations and the starting point for the solution, but even given knowledge of

these data, it is difficult to discern the best strategy. When a choice of solution

method has been made some questions remain; e.g., if a derivative method is to

be used how are the equations to be differentiated?, which decomposition strategy

is best?, do we have to stay in the feasible region at all times? The first of these

questions is discussed in § 6.3, and the second is considered both in § 2.6 and

§ 3.4.

1.4.3 Program Writing

Having decided on a solution strategy, e.g. that the problem is to be decomposed

and that the kernel problem is to be solved using the Newton Raphson

method, and having rearranged the equations as necessary, the next stage in the

formulation of the simulation is to produce a computer program which will carry

out the calculations. This is an algorithmic task. The main computational block

must be written along with any subroutines that are necessary, the file compiled

4 Many of these methods are described in appendix D

Chapter 1. The Requirements of a Modelling System 	 13

and linked with the system mathematics library and the whole program executed.

This must be done with care. For example, two points which must be borne in

mind are:

In the early stages of the formulation we may be dealing with vectors and

matrices by referring to their members in general terms. For example, if we

were modelling a single reaction taking place in an ideal vapour phase, we

might choose to represent the N vapour phase mole fractions by

Yi 	 fli°+XlIi

- E(ni0 + xvi)

where nio is the number of moles of the i1h component originally present

and x is the extent of reaction. If the values of yi are to be calculated

simultaneously, a loop must be provided in the program; this requires that

a new variable be invented for use as a count variable. This count variable

must be distinct both from that which is used to perform the summation

in the denominator of equation 1.11, and any other variables, which control

loops within which that for y1 is nested. Handling matrices requires a simple

extension of the rules for handling vectors.

Attention must be paid to the idiosyncrasies of the language in which the

program is to be written. If it is Fortran, then one must take care not

to violate the restrictions concerning variable names which are inherent in

that language; integers must be given names which start with a letter in

the range I to N inclusive; variables of all other types must be given names

which begin with a letter otwith this range. When one is writing in C one

must recall that the language is case sensitive.

Chapter 1. The Requirements of a Modelling System 	 14

Generating a computer program automatically is a simple algorithmic task, but

it may require a great deal of effort if the equations are complicated, and if a

sophisticated language is used. This point is discussed in greater detail in § 6.7.

1.4.4 Finding, Checking and Reporting Results

It is unwise to believe that just because we have translated the mathematical

description of a problem into a language like Fortran that compiling and running

the resultant program will provide a correct answer; indeed it is naJve to assume

even that it will provide an answer. It is important to be able to identify

the mathematical causes of failure, should it occur, such as divergence from a

solution or convergence to one which is physically infeasible where, for instance,

an attempt may be made to find the logarithm of a negative number. Even when

a program runs successfully the answer which it provides may be incorrect; there

is no guarantee that an iteration will converge and, even if it does there is no

guarantee that the solution will lie in the feasible region. Thus the numbers

provided by a program must be checked to make sure that values lie within their

logical bounds, e.g. temperatures are positive and mole fractions sum to one.

1.4.5 Approximation

In § 1.3.1 we touched on the need to provide a description of a problem at an

appropriate level, the argument being that there is only so much of interest

Chapter 1. The Requirements of a Modelling System 	 15

within it. In this section we expand on the concept of finite description in

order to establish the desirability and, in some cases, necessity of providing an

approximate model of a problem.

The desirability of approximation is shown quite clearly by considering the mass

balance over a plug flow reactor in which benzene is being hydrogenated to

cyclohexane. The full mass balance equation is [21]

ax 	 R

	

+ (Vu)x + 	= Dt (V 2x) 	 (1.12) Co

where x is the fractional conversion of benzene, u is the gas velocity, R is the

reaction rate, Co is the initial concentration of benzene and D is the effective

diffusivity of the benzene. Solving this partial differential equation would be

both difficult and expensive. If, however, we assume that the reactor is running

at a steady state, and that the reactants and products are well mixed at each

point along its length, the reactor can be modelled approximately by

(Vtu)x + B = D,
02x

(1.13)

which is much easier to solve. If we go one step further and assume that the

radial and angular variation of the velocity is small (remember that it is a packed

bed) we can reduce the equation to

t9u 	R 	02x
(1.14)

	

49Z - CO 	OZ2

which is even easier to solve. Equation 1.14 might be used either to replace 1.12

altogether or to give an initial solution to the problem which can then be used

as the starting point to find the solution to the more complicated equation.

This may be an important technique when the equations to be solved are very

non-linear. Consider, for instance, a model of an oil reservoir. Very detailed

Chapter 1. The Requirements of a Modelling System 	 16

vapour liquid equilibria calculations are required for this and so multi-termed

equations of state must be used. Converging these from an arbitrary starting

point may be extremely difficult, or even impossible. In this case the solution to

a linear, or less non-linear, model may be necessary in order to provide a good

starting point for the less tractable equation set.

1.5 A Modeller's Toolkit

Having discussed the definition of a good model and the tasks which are necessary

to form it, we are able now to describe the tools which must be present in

a mathematical modelling package. Since, in general, the equations used in a

mathematical model are not unique, the software must be able to discriminate

between alternatives in such a way that it produces a complete, non-redundant

equation set which describes the system being modelled without any significantly

conflicting assumptions. Having constructed such a set, it should be able to order

it and to parse and rearrange its members into any desired form. So too it should

have the ability to differentiate the equations, and identify a tear set from the

variables if necessary. Lastly it should contain program writing and execution

facilities, and an interpreter for checking and reporting the results.

A prototypical mathematical modelling system has been developed which includes

some of the above features. No attempt has been made to provide an ability for

qualitative reasoning, i.e. to compare formulations or to check solutions, and so

only a single strategy is followed. This is described fully in § 6.7, but a brief

summary of its components, and where they are dealt with in this thesis, is given

Chapter 1. The Requirements of a Modelling System 	 17

here.

Firstly a general set of equations is collated, along with a list of the fundamental

and specific constants for the problem. These equations are stored in Reverse

Polish Notation, and this is described in § 6.7. Next a complete subset of

these equations is selected which will be used for the model, and a one to one

correspondence between them and the variables in the problem is developed. An

explanation of this process appears in § 4, and so too does a description of the way

in which this equation set is partitioned into a sequence of smaller sets. In the

next stage of the formulation, these sets are decomposed; this is described in § 5.

Finally a C program is written which solves these equations by using a Newton

Raphson method to accelerate the convergence of the tear variables. A novel
*0

data management technique is usedAfind the numerical values of the analytical

derivatives of the tear equations, and this is described in § 6.

In § 2 the rudiments of graph theory are described and an attempt is made to

define some conditions on an equation set for it to have a unique solution. So too

in that chapter the need for the selection of an output set is explained. Further,

a graph theoretical description of matrix partitioning appears. This is used to

show that the minimal, solvable subsets of an equation set are independent of

the output set selected. Lastly, the tearing of equation sets is discussed. In

particular some definitions of optimality are examined and the effect of tearing

on the efficiency of some numerical techniques is considered.

Some of the practical techniques which have been used to examine the structural

phenomena described in § 2 are reviewed in § 3. First techniques for choosing

an output set are considered and then our attention is focused on partitioning

Chapter 1. The Requirements of a Modelling System 	 18

matrices in order to find their lower triangular form. This work is extended to

irreducible matrices in order to characterise fill-in in symmetric and asymmetric

matrices. Finally decomposition strategies and algorithms are discussed. One

method of each form of analysis - output set selection, partitioning and tearing

- was selected for use in the modelling software. Their choices are vindicated in

this chapter.

In § 4 we justify the decision to find an output set for a problem and then to

partition the equations. Next the reduction of a general, possibly inconsistent

model to a consistent and specific form is considered. In this section an

observation is made about how redundancy in equation sets can be overcome.

This is followed by a proof that a maximum flow technique can be used to find

the output set and a statement and discussion of Dinic's maximal flow algorithm

[20]. The final point dealt with in this chapter is the ordering of the equations

so that they form minimal, solvable subsets. The depth first search algorithm of
qq

Tarjan [] is presented and analysed.

The search for a minimum cardinality tear set is considered in § 5. First it is

shown that a minimal cardinality tear set for a signal flowgraph is also one for

the bipartite digraph from which it was derived. Next we show that a search

for that tear set can be reduced to the roots of a spanning forest of the signal

flowgraph. Finally algorithms for forming a signal flowgraph from a bipartite

digraph, finding its spanning forest and then searching for a minimum cardinality

tear set are presented and discussed.

Analytical differentiation is examined in § 6. An extension to torn systems of

Ponton's method for generating the numerical value of analytical derivatives

Chapter 1. The Requirements of a Modelling System 	 19

is described and illustrated in an example. In § 6.7 the construction and

functionality of the modelling software is described. Details are given of the

data structures used and the way in which an abstract statement of a problem is

transformed first into an expanded algebraic form, and how this is then used to

generate a solution. An example which was solved by the software is provided.

Lastly a summary of the conclusions djwn from the separate chapters is presented

in § 8.

We will restrict ourselves to modelling steady state systems which are described

by sets of algebraic equations. This condition precludes the necessity of examining

the specific solution requirements of differential and integral equations. Further,

the models produced will be for solution on a serial computer.

Angling may be said to be like the mathematics, that it can
never be fully learnt

Izaak Walton, The Compleat Angler

Chapter 2

The Graphical Analysis of the Structure of
Equation Sets

2.1 Introduction

In the last chapter it was stated without proof that it was desirable to describe a

simulation problem using a square equation set, i.e. one in which there are exactly

as many equations as there are variables within them. Further, it was asserted

that an output set should be chosen for the equation set, that the equations

should be permuted into a sequence of smaller subsets where possible and that

any of these sets which contain two or more equations should be decomposed.

In this chapter we turn our attention to the justification of these assertions and

examine some of the ways in which the desired goals may be achieved.

Considerable use is made of graph theory in this and other chapters and so we

begin with a summary of the graphical definitions, and the properties of graphs

20

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	21

which are germane to our discussion. The desirability of solving square sets of

equations is addressed in § 2.3 and the need to find a one to one correspondence

between the variables and the equations in a problem is discussed in § 2.4.

The way in which the partitioning of matrices and the permutation of their

rows and columns relate to solving equation sets is described in § 2.5. Here

vertex elimination from a graph is used as an analogue for the effect of ordering

equations, and some comments appear about the effect on the rate of convergence

to a solution of a set of equations of different permutations. § 2.6 contains a

definition of decomposition and a discussion about the nature of a 'good' tear

set. An analysis of the effect of decomposition on the amount of effort required at

each iteration for a range of solution methods appears in § 2.6.2. This range is not

comprehensive, but it is large enough to show that there is a considerable number

of numerical methods for which there is no 'structural' advantage in tearing. A

summary of the conclusions drawn from § 2 appears in § 2.7.

Prior to discussing graph theory, it is necessary to relate this subject to equation

solving. Consider the following equation set.

21 + 222 - 23 =1

2x - 22 	 = 2 	 (2.1)

22 + 23 =3

The graph of equations 2.1 is shown in figure 2.1. Anticipating the terminology

of § 2.2.1, each variable and equation in 2.1 contributes a node to figure 2.1.

The line drawn between nodes 21 and F1 indicates that variable xi appears in

equation F1 . Representing the equation set in this way permits one to reason

about its structure so that, for instance, one can determine the dependency of

one variable upon another.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	22

Figure 2.1: A Graph of the Equations

2.2 Graph Theory

2.2.1 The Elements of a Graph

Consider two objects, u and v, and a relationship, e, which is defined between

them. If these 'objects and their relationship are represented pictorially as in

figure 2.2 then u and v are termed nodes and e is called an arc. These nodes

U 	V1

Figure 2.2: A Graph

may also be called vertices and the arc may be called an edge; these alternatives

will be used interchangeably throughout the chapter. If the same relationship

which exists between u and v can be defined between other nodes as well then

the set of all nodes is called V, the set of all edges is called E and the structure

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	23

which includes them all is the graph c(V, E). This definition may be extended to

include a single node, which is the minimal non-null graph. Since there is an edge

between u and v in figure 2.2, they are said to be adjacent to one another and e

may be written as the unordered pair (u, v). Later we will return to consider the

case where (u, v) is an ordered pair. If this edge is traversed from u to v then e

is said to be incident from u to v.

A path in (V, E) is a set of vertices p = {vi , v2,• , v,} such that vi E V and

(v 1 , v1+1) E E, i = 1,2,•. . , k - 1. If v 1 = Vk then p is said to be a cycle or,

equivalently, a circuit. A path, p, is said to be simple if no vertex, zi, or edge,

e, appears in it more than once. Similarly, if the initial vertex, v1 , of a cycle, c,

is the only vertex to appear in it more than once, if this node appears exactlyy

twice, and if no edge appears in c more than once, then it is a simple cycle.

If V' C V, E' C E, and u, v E V'V(u, v) E E', then the graph '(V', E') is a

subgraph of c(V, E). Two vertices vi and v3 are said to be connected if there is

an undirected path from vi to v1 ; further each vertex is connected to itself. Any

subgraph '(V', E') of c(V, E) in which each vi E V' is connected to each v1 E V I ,

no vk E V' is connected to any Vm V V', and such that Vv, vj E V'and(v 1 , v3) E

E, (v i , v3) E E' is called a component of g(V, E). In the chemical engineering

literature this is referred to as a partition of the graph. Clearly connection is

an equivalence relation on vertices, and g(V, E) may be partitioned into a set of

subgraphs

(2.2)

such that the vertices and edges of each g i are distinct. If each vertex vi E V

in a graph g(V, E) is adjacent to every other vertex z.', E V, then (V, E) is

the complete graph on V.- The complete graph on some subset V C V, i.e.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	24

= {(u,v) u,v E V}, is said to be a clique. In figure 2.3, {v i ,v2 ,zi3 }

is a simple path and {114, 115, V6, 117, 114} is a simple circuit. This graph has one

component, namely itself, and vertices 111, 112, and 113 form a clique.

Figure 2.3: A Single Component Graph

If the removal of a node vk E V from some graph (V, E) breaks any of the

circuits in g then vi is said to be an articulation point or a separator of g. A

set of articulation points, S, such that each cycle in (V, E) has at least one

node in it, is a separation of ; in chemical engineering texts this is referred to

as a tear set. If instead of nodes, edges are removed from and the maximum

number of these is removed which allows all v1 , v, E V which are connected in

g(V, E) to remain connected in (V, E'), E' C E, then this latter graph is said

to be a minimum spanning subgraph of g. The minimum spanning subgraph for

figure 2.3 is (V, E'), where E' = E - lei }. Any connected graph which contains

no circuits is called a tree. The vertex which is ordered first in this tree is called

its root, and each connected subgraph which is formed by deleting the root and

the edges incident from it, such that there is at least one edge in the subgraph,

is referred to as a branch of the tree. Each of these connected subgraphs is itself

a tree and, so it too can be said to have a root and, possibly, branches. Any

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	25

connected subgraph of a tree in which there are no edges, i.e. a single vertex, is a

leaf of the tree. A forest is a graph in which each component is a tree. It follows

from these definitions that the minimum spanning subgraph of a connected graph

is a tree, whereas that for an unconnected graph is a forest.

We are now in a position to define those classes of graph which are of interest

to us. Prior to this, however, it is worthwhile relating those properties of graphs

just described to the equations and variables which they represent. In a graph

which corresponds to an equation set there is an edge between nodes vi and ui if

variable vi appears in equation u,. For example, returning to our consideration of

figure 2.1, the edge between nodes x 3 and F1 indicates that variable x 3 appears in

the first equation. If two nodes which correspond to variables appear in a simple

circuit, then the equation used to solve for either requires the value of the other,

and so these equations must be solved simultaneously or an algebraic substitution

made of one variable for the other. Developing this argument shows that all of

the nodes in a circuit which represent equations must be solved simultaneously

and so a component of a graph represents a subset of the equations which must

be solved together. A proof of this appears in § 2.3. We proceed now to classify

the types of graph with which we will deal.

2.2.2 The Types of Graph of Interest

Since the equation sets will always be finite, so too will be the graphs used to

represent them. In most cases the edges in (V, E) will have a particular direction

associated with them, i.e. (u, v) will be an ordered pair. Such graphs are termed

Chapter 2. The Graphical Analysis of the Structure 7 of Equation Sets 	26

directed graphs, or digraphs, and the strong component is the equivalence class.

This is defined analogously to the component of an undirected graph in that

there is a directed path from each node v i to each other node in the same strong

component, and a directed path from each of these back to v i ; no such pair of

paths exist for nodes which belong to different components. The number of strong

components of a digraph D(V, E) may be greater than the number of components

of the underlying undirected graph as figure 2.4 shows, but the converse can

never be true. Here, letting Ci be the set of nodes in the i' strong component,

14zz 3 V

 14 1
4

4

Figure 2.4: A Digraph which has two Strong Components

C1 = { vi , v 2 , u1 , u2 } and C2 = { v3 , v4 , u3 , u4 } whereas the underlying undirected

graph of figure 2.4 has only one component. Analogously to the definitions given

in 2.2.1, the minimum spanning subdigraph of a connected directed graph is a

directed tree and that for an unconnected digraph is a directed forest.

In general there will be no parallel edges, i.e. multiple edges between two nodes

which are oriented in the same direction. Further, except for one class of graphs,

no node will direct an edge onto itself, i.e. there will be no self loops. Any graph

which features neither parallel edges nor self loops is called a simple graph.

If the vertices of g(V, E), whether is directed or not, can be partitioned into m

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	27

distinct sets, V, such that there are no edges between any two vertices v, v, € V1,

then G(V, E) is said to be an m-partite graph. The most important example of

a graph of this type is the bipartite graph, i.e. m = 2. Lastly, if D(V, E) is a

bipartite digraph such that V = V U i',, V, fl v,= 0, then the digraph fl(V, E),

E = {(u,v) I u,v € V,(u,w),(w,v) € E} 	 (2.3)

is called a signal flowgraph. This digraph can be thought of as a 'condensation'

of V(V, E) in that its strong components correspond to those of g but that the

nodes of V, are excluded; W(1',, E'), the signal flowgraph which results from

excluding the nodes of V, is defined similarly.

As an example of the graphs discussed above, consider the equation set which is

used to model an ideal, binary flash problem in appendix B. The undirected graph

of these equations is shown in figure 2.5, where each numbered node represents an

equation. This graph shows which variables appear in each equation. Figure 2.6

Figure 2.5: The Graph of the Flash Equations

is a directed version of this graph; as will be shown in § 3 this corresponds to

choosing to rearrange each equation so that it is solved for one of the variables

within it. In this digraph, an edge is directed from an equation node, ii, onto a

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	28

variable node, w, if the corresponding equation is to be solved for the variable

represented by w. Note that both of these graphs are bipartite. Finally, figure 2.7

Figure 2.6: A Digraph for an Assignment of the Flash Equations

is the signal flowgraph which corresponds to figure 2.6. This signal fiowgraph

Figure 2.7: The Signal Flowgraph for the Flash Equations

demonstrates that, e.g., Y2 and x2 appear explicitly in the equation to be solved

for K2 . As will be shown in §5, each circuit in a signal flowgraph, fl(V, E),
corresponds to one in V(V, E), the bipartite digraph from which it is obtained.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	29

2.2.3 The Properties of Graphs

The degree of a vertex, d(v), is the number of edges to which it is connected. If

D(V, E) is a digraph then

d(v 1) = d+ (vi) + d- (vi) 	 (2.4)

where d+(v1) is the in-degree of v 1 , i.e. the number of edges directed to it, and

d_ (vi) is the out-degree of v, the number of edges directed away from this node.

For instance, the in-degree of node 2 in figure 2.6 is two, whereas its out-degree

is one.

An ordering of the nodes in a graph is the assignment of an ordinal number in the

range 1 - N to each of the N nodes in the graph. We will define a partition of

the graph to be an ordering such that the ordinals for the nodes in a component

are contiguous and, for V(V, E) directed, for any pair of vertices vi and v1 which

belong to different strong components and for which i < j there is no directed

path from v1 to v. This corresponds to an ordering of the strong components

of D(V, E) such that, as we will see in theorem 2. 1, the equation subsets which

they represent can be solved sequentially.

Consider a subset of edges M C E in the graph (V, E). If the endpoints of

the members of M are pairwise disjoint, i.e. no vertex is the endpoint of more

than one edge, then M is said to be a matching in Q. The largest such subset

possible is called a maximal cardinality matching in c and if each vi E V is an

endpoint of one of the edges in M, then it is said to be complete. If the edges of

c have weights assigned to them then a matching with the largest possible sum

of weights from E is called a maximum weight matching. It is important to note

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	30

that a maximal matching in a bipartite graph is a one to one correspondence

between the items represented by the smaller vertex subset and a subset of items

represented by the larger set, but this does not imply that each vertex in the

smaller set appears in the matching. This is a point to which we will return in

§ 3.2.

2.2.4 Vertex Elimination

The process of removing some node ii E V from an unipartite graph or digraph,

c(V, E), and adding sufficient edges that each path of length 1 > 2 which passed

through v in (V, E) becomes a path of length i — i in the new (di)graph is called

vertex elimination. This process short circuits each path in (V, E) in that each

path {, ii, o-} is replaced by {, o}. If the edges (w, ii) and (v, u) were present

in 9 (V, E), then the edge (w, o) is present in the new graph; if this edge was

not in the original graph, then it is said to have filled in. Vertex elimination

on bipartite digraphs must be defined differently in order to avoid violating the

condition that no vertex may be adjacent to another in the same partition. In

this case elimination must be considered on pairs of matched vertices and paths

of length 1 > 3 which pass through them are replaced by paths of length , 1— 2 in

the new digraph. This phenomenon is demonstrated by considering the bipartite

digraph in figure 2.8. If nodes e 1 and v 1 are eliminated, then the edge (v4 , e2)

fills in. Should this graph be replaced by its corresponding signal flowgraph, then

vertex elimination in this graph, which is defined as for other unipartite graphs,

would provide a corresponding fill edge between nodes 4 and 2, regardless of

the set of vertices on which the signal fiowgraph is based; this phenomenon is

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	31

Figure 2.8: A Bipartite Directed Graph

demonstrated in figure 2.9(a), where the broken arc signifies the filled edge. This

X-1

1 ' 	 X 	01
,,_4" 	

X X 01 X
(a) 	 (b)

Figure 2.9: Vertex Elimination on a Digraph

phenomenon can be used to describe the way in which information is chained

through an equation set.

If an equation set is represented by a digraph, D(V, E), then each of the variables

which is represented by a node in a cycle of V(V, E) is dependent on each of

the others. In general, the first variable is an explicit function of some of those

ordered later and the second variable is a similar function of later variables and,

possibly, the first. This pattern is repeated for each variable represented in the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	32

cycle. Consider some variable x3 which is an explicit function of some other

variables. If one of those variables, x 1 say, is ordered before x, then x i is an

implicit function of the variables in which x i is explicit. If eliminating x i from

the signal fiowgraph which represents the equation set leads to the addition of any

edges, then these signify the implicit dependency of some of the variables in the

problem. Consider, for example, figure 2.9(a), which is the signal flowgraph that

is derived from the bipartite digraph of figure 2.8. Removing node 1 produces a

fill edge (4,2), so that the second variable is implicitly dependent on the fourth.

This is demonstrated most clearly by considering Gaussian Elimination. Here,

the fill-in pattern produced within the matrix corresponds exactly to the filled

edges of the graph which represents it. As an example of this, figure 2.9(b) is the

matrix which corresponds to figure 2.9(a). Here x represents a non-zero in the

original matrix, and + represents a filled entry. This is explained more fully in

§2.5.

2.2.5 Graph 	Representation 	and 	Algorithmic

Complexity

In order to relate graph theory to the computer solution of equation. sets, a

brief description of the matrix representation of a graph and a discussion of

computational complexity are necessary. An adjacency matrix of a graph is a

matrix in which each column, k, which has a 1 in the ii" row, corresponds to a

node, k, for which the edge, (k, i), exists in (V, E). If (V, E) is undirected this

matrix is symmetric but if g is directed, then each row j which has a non-zero

entry in column, 1, represents an edge, (1, j), in 9. Note that in the bipartite

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	33

case, even when is undirected, if the rows and columns for the nodes in each

partition are ordered consecutively, each of the entries in both the upper left and

lower right quadrants is zero. If the other two quadrants are superimposed so

that each row in the new matrix represents an equation, and so that each column

corresponds to a variable, then the result is referred to as an incidence matrix.

This arises from the fact that each non-zero entry in a row represents a variable in

the corresponding equation. As an example, figure 2.10 is the incidence matrix for

the graph in figure 2.5. Finally, each column, k, of the adjacency matrix may be

Z2 Y2 x1 P1 V x2 P P2 K2 L
lX

5 	X

9 	X

8 	x 	X

4 	 X 	 X

3 x 	X

7 	 x 	x

10 	 X 	X

6 	X 	 x 	x
2 	X 	X 	 X

Figure 2.10: The Incidence Matrix for the Flash Equations

rerepresented by Adj(vk) , the adjacency set for node, k. This is the set of vertices

which lie at the% endpoints of the arcs which emanate from Vk. For example, in

figure 2.5, Adj(x 1) = 11,8} and the column in the matrix of figure 2.10 which

corresponds to x 1 has non-zero entries only in the rows labelled one and eight.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	34

The complexity of an algorithm is a measure of the number of operations required

to execute it, and hence of its efficiency. This is expressed by its order, a function

which relates the time taken for its execution to the size of the problem being

solved. If for some algorithm this function is &, then the order of the algorithm is

written as O(b); 0 can be a constant, a polynomial, a factorial or a transcendental

function. This is an inexact measurement because it assumes that all operations

take the same time and only its worst case value is calculated. Despite this, used

with a knowledge of its shortcomings, it is an invaluable tool in the analysis of

computational algorithms. The following description is restricted to analysing

graphical algorithms, but the definitions and concepts provided are applicable to

the entire domain of computation.

In general, an algorithm is regarded as efficient if its time complexity can

be expressed as a low order polynomial; e.g. Tarjan's depth first search

algorithm [94], which is described in § 3.3.3, is O(N + ,r), where there are N

nodes in the graph and r arcs, and Dijkstra's shortest path algorithm [19] is

O((r + N)loge N).

The class of decision problems which can be solved by polynomial time algorithms

is called P. There is another class of decision problems for which no deterministic

polynomial time algorithm has been found, but for which the verification of a

solution lies in F; this class is known as NP.Consider some decision problem

II,. A polynomial transformation from II I is a function I which translates any

instance of II I into an instance of another problem 11 2 such that the answer to 112

is 'yes' if and only if the answer to II I is yes, and such that I can be computed

efficiently. Any problem IIj which belongs to the subset of NP such that there is

a polynomial transformation from H i into each other problem IIj in the subset,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	35

and from II, into H, is said to NP-complete. This is a large and important set of

problems and if a polynomial time algorithm is found for one of these, then, by

definition, a polynomial time algorithm will have been found for them all. This

point is raised again in § 3.3.1.

§ 2.2 has described the most basic and general components of graph theory.

Some more definitions and concepts are required but they are introduced later as

required.

2.3 Conditions for a Unique Solution

In this section an attempt is made to define those conditions on an equation set

which are necessary or sufficient for it to have an unique solution. Four properties

of the equations are examined:

The number of equations to be solved and the number of variables within

them.

The structure of the equation set, i.e. the interdependence of variables and

equations.

3. The algebraic structure of the equations.

4. The degree of nonlinearity of the functions over the domain of the solution.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	36

Consider the solution of M equations in N variables. If M is less than N then

the system is underdetermined in that there are N - M too few constraints on

the values which the variables can take. There is a set of problems which are

underdetermined and which can be solved uniquely, but each of these solutions is

trivial. For example, x 2 + y2 = 0 has a unique solution at x = y = 0. In general,

however, there may be an infinite number of solutions to an underdetermined

equation set. If, on the other hand, M is greater than N then there are M - N

too many constraints on the values which the variables can take. There is no

guarantee that these superfluous constraints can be satisfied at the same point

as the N others; such a system is said to be over determined and it may have

none, one or many solutions. Should M equal N then a unique solution may

exist because under these circumstances it is possible to provide a one to one

correspondence between the variables and the items of information provided by

the equations. Hence there is no condition on the relative sizes of the equation

set and the set of variables within it, which is either necessary or sufficient for a

unique solution of the equations to exist.

Pantelides [68] has indicated that one consequence of Hall's [37] theorem of

combinatorics is that a necessary condition for a unique, non-trivial solution

of a system of N equations in N variables by successive substitution, is that

every subset of k of the N equations must contain at least k variables. Should

this condition be violated then the system is said to be structurally singular

For instance, since equations 2.5 are three equations in only two variables, they

violate this condition. Even if this condition holds there will still be no unique

solution to the problem if one or more of the equations is redundant, i.e. it

can be expressed as a combination of 1 of the others. Once more equations 2.5

provide an example of this; the first and last equations may be multiplied to give

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	37

the second. Thus another necessary condition on the uniqueness of solution is

the requirement that the equation set should be non-redundant. Neither of the

above conditions is sufficient for a unique, non-trivial solution, however, because

structurally non-singular and algebraically non-redundant equation sets may be

numerically singular over part of their domain. This occurs when two or more

equation surfaces become parallel over some region in space. Thus uniqueness of

solution requires that such regions be avoided.

x-2x 2 	 = 0

2x - x 2 x - 4x 1 x + 24 = 0 	 (2.5)

2x 1 —x2 	 = 0

Two necessary conditions for an equation set to have a unique solution have been

established, but no useful sufficient conditions have been found for the solution

of general, non-linear equation sets. We will return to this problem in § 4.2.

2.4 The Need to Select an Output Set

Let E be a set of equations in the variables in the set X and, further, let lEi = lxi.
Let the set of ordered pairs F,

P = {(e,xi) I e1 E E, xi E X,i = 1,2,...,lEl} 	(2.6)

be a legal one to one correspondence between E and X, i.e. that the i0 equation,

e, contains at least one occurrence of the jth variable, x 1 . 1 Then P is said to

'u.b. The subscript i refers to an ordering of each equation and variable in P, not in E or
X.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	38

be an output set for the problem. Each of the pairs in P represents an equation

which can be solved for a given variable. One assignment for the flash problem

of appendix B is

P = {(1, z2), (2, L), (3, x 2), (4, V), (5, y2), (6, K2), (7, Ps), (8, F1), (9, Xi), (10, P2)}

(2.7)

As has been indicated above, such an assignment is possible if and only if the

problem is not structurally singular, and thus the determination of an output set

may be used as a check on this condition.

However there are two other reasons for selecting an output set. Firstly, if the

set of equations is to be solved by successive substitution then each equation

must be rearranged to an explicit form for a given variable; choosing an output

set ensures that this is done legally. Although in its simplest form it is a poor

solution method, this strategy can be developed to others which are of some merit,

as is shown on page 75. Secondly, if a matrix method, e.g. Newton Raphson,

is to be used, the selection of an output set must be carried out so that the

adjacency matrix of the graph of this problem can be permuted to have a zero

free diagonal; in this case the output set is called a maximum transversal. As

is shown below, the failure to permute this matrix to this form may cause some

partitioning algorithms to fail.

In general an output set for a given problem is not unique. Lemma 2.1 provides

an upper bound on the number of possible output sets for a set of equations E.

Lemma 2.1 If E is not structurally singular then, 8, the number of possible

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	39

output sets is bounded by

O<S<IEI!
	

(2.8)

Proof: The proof of the lower bound is trivial. Let N = I E I. By definition, in

order for an output set to exist, there must be an equivalent number of equations

and variables in the system. Clearly, the greatest number of output sets possible

occurs when each variable appears in each equation. It is sufficient to show that

there are N! possible output sets when this condition holds. In this case there

are N choices for the variable to be solved for by the first equation, N —1 choices

for the second, N - 2 for the third, and so on until only one choice remains for

the last equation. Regardless of the choice of variables for the first k equations

the remaining N - k equations can be assigned to the remaining N - k variables

in each of the (N - k) ! possible independent ways. Thus the upper bound on

the number of output sets for an equation set E is I E I !. 0

As will be described in the next chapter, some of these output sets may be

preferable to others, but there is no known means by which a set which is known

a priori to be optimal in any given sense, may be selected.

2.5 The Nature of Partitioning Matrices

In this section we will discuss the permutation of incidence matrices. The

definition of graph partitioning given towards the end of § 2.2 extends naturally to

the incidence matrices in that the rows and columns of these matrices correspond

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	40

to the nodes in the graph; reordering the nodes simply reorders the rows and

columns. In essence there are many forms to which a matrix may be permuted

but, as we will see in § 3.3, there is only one way to partition a given matrix

given the strict definition of this term. Of all of the possible forms, only four are

of interest here:

Banded matrices. An example of one of the more common banded

matrices, the tridiagonal matrix, is shown in figure 2.11(a). This form

is of particular use in the solution of the algebraic equations which arise

from the discretisation of partial differential equations.

Lower (Upper) triangular matrices as shown in figure 2.11(b). Permuting a

matrix to this form allows the exact, non-iterative solution of the equation

set in the forward (backward) direction.

Block diagonal form. As shown in figure 2.11(c) all of the blocks which

straddle the diagonal are square and no non-zero entries appear above these

blocks. This is a weaker form of (b).

Bordered Diagonal form. This is a weakening of the structure of (c) as is

clear from figure 2.11 (d). This form is used frequently, especially when the

diagonal blocks are of unit size, i.e. when the matrix is of bordered lower

diagonal form.

The tridiagonal form will not be dealt with further but the properties of matrices

of types (b), (c) and (d) will be dealt with after the relationship between the

strong components of a graph and the structure of the corresponding equation

set has been established.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	41

(a)

I \11.0 II I

(b)

j-I0101 (d)

Figure 2.11: Four Desirable Matrix Forms

Consider the 4 x 4 equation set 2.9. The digraph for one transversal of this

equation set is shown in figure 2.12.

x1+x2 	 = 3

	

- loge() + x3 + x4 = 4 	
(2.9)

+ x3 - 	= 5

x 1 —x 2 	 = 1

The nodes in this digraph which correspond to variables are labelled with the

name of the variable, and those which correspond to equations are labelled E1,

according to the order in 2.9. The strong components of this digraph are C1 =

{X1, x 2 , E1 , E4 } and C2 = {z 3 , x4 , E2 , E3 }. The incidence matrix for this digraph

appears in figure 2.13(a).

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	42

Figure 2.12: The Digraph of the 4 x 4 Equation Set

It x3 x4 x2 x1 	x2 x3 	x4

IX 	i T X
I'

II 	 I I

E2 x x x x F.1 1:x
-

Xi I

I I. ------ I I

F x x x x x 	x
------ II

:x 	x:I
-- -

X 	X
I 	 II
1 X 	xii ---- I

(a) 	 (b)
Figure 2.13: The Incidence Matrix for the 4 x 4 Equation Set

This matrix can be partitioned into the form of figure 2.13(b), which shows

that equations E1 and E4 can be solved simultaneously for x 1 and x2 before

the remaining two equations are solved simultaneously for x 3 and x4 , using the

exact values of x 1 and x2 . This grouping of variables and equations is called a

computational sequence for the equation set. This term is defined as an ordering

of equation subsets such that each is a solvable system of equations of minimal

size, and such that they may be solved sequentially. Thus no equation may

be removed from a member of a computational sequence and leave a solvable

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	43

subset, and no equation may be dependent on a variable which is solved for in a

subset ordered later in the sequence. As an example, {C1 , C2 } is a computational

sequence for equations 2.9, but {C2 , C1) is not, and neither is {C 1 , C3 , C4), where

C3 U C4 = C2 .

We wish to show that a computational sequence for an equation set is unique to

within some well defined, allowable permutations. To do this we will demonstrate

that it corresponds to an ordering of the strong components of the digraph

which represents the assigned equation set, in which there are no edges from

a strong component to another which is ordered before it. By inspection, it can

be seen that, for equations 2.9, {C 1 , C2) satisfies these conditions, whereas neither

{C2 , C1) nor {C1 , C3, C4} does. The general case is explained by the following

remarks, observations, lemmas and theorems.

We begin with some general observations about the relationship between equation

sets, graphs and digraphs. As has been noted already, an equation set F(X) can

be represented by a bipartite, undirected graph (V, E), where V is the union

of c', which corresponds to the equations, and ', which represents the variables

within them; each edge (i), Z) E E denotes that CD is one of the unknowns in

P. This graph contains no information about which equation is to be solved for

which variable. If a complete matching, M C E, exists for the graph then this

can be used to form a directed bipartite graph D(V, E) such that there is a one

to one correspondence between A and E; each (i, CO) € M becomes the directed

edge (1',) in V and every other edge in E is directed in the opposite direction

in the new graph. The interpretation placed upon a directed edge (.0, (D) € A is

that equation v is to be solved for variable w.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	44

We aim to show that the strong components of D(V, E) correspond to the minimal

equation subsets into which F(X) may be partitioned, and that these strong

components may be ordered in such a way that they define a computational

sequence. As a first step we show that the strong components of this digraph

may be ordered so that there is at least one which has no edges directed onto it

from another, and at least one from which no edges are directed. Next we show

that in each strong component, the numbers of nodes from each vertex set are

equal and that any subset of k nodes from 1' directs exactly k edges onto nodes

form V. These results are used to show the correspondence between the strong

components of V(V, E) and a computational sequence for F(X). Lastly we prove

that this computational sequence is independent of the complete matching used

to form the directed graph.

Lemma 2.2 It is always possible to order the strong components of a digraph

DWI E) so that if there is a path from some vertex ii in the jth strong component,

C,, to a vertex w in some other strong component C1, then i < j, and there

is always at least one strong component in the digraph which has no incoming

edges, and one from which no edge is directed onto a vertex in another strong

component.

Proof: Consider R(X, A), a reduction of D(V, E) in which the i0 strong

component of the directed graph is represented by a node vi E X and the arc set

A = {(vj, v1)} such that there is at least one edge in V(V, E) between a node in

C1 and one in C,. Any path through the vertices of R(X, A) corresponds to a

path in V(V, E) which passes through at least two strong components and so, by

definition, R(X, A) must be acyclic. Since V(V, E), and hence R(X, A), is finite,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	45

it follows that there must be at least one node in the reduced digraph from which

no edge is directed. Let such a node be vk. If Ck is ordered as the last strong

component of D(V, E) then any edge in this digraph which has as one of its termini

a node in Ck must be directed from a lower to a higher ordered strong component.

If Pie and all of the edges incident upon it are deleted from R(X, A) then there

must be at least one node in the new digraph from which no edges are directed.

Ordering the strong component of V(V, E) to which it corresponds second last

retains the forward condition on the arcs of this digraph. This process of ordering

and deleting can be continued until only one node remains in the reduced digraph.

This node must represent the first strong component of V(V, E). No edges are

incident upon this node and so there may be no edges incident upon the first

strong component of V(V, E). 0

This result will allow us to show that at least one subset of equations from F(X)

is independent of the others, and so it can be solved before them. The next lemma

is required in order to show that a strong component of D(V, E) corresponds to

a square, solvable subset of equations from F(X).

Lemma 2.3 If V(V, E) is a bipartite digraph which represents a square,

structurally non-singular equation set, F(X), such that V is the set of vertices

which correspond to equations and 1 is the set of vertices which represent

variables, then the number of nodes in each strong component which are members

of 1' is equivalent to the number of nodes in this subgraph which are members

of V. Further each subset of k vertices from this strong component which are

members of 1' direct exactly k edges onto the nodes in V.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	46

Proof: By definition it is possible to trace a circuit through each of the vertices in

a strong component of the bipartite digraph V(V, E). This digraph is constructed

in such a way that each ii E ' has exactly one edge directed from it to some

vertex w E %', and hence any cycle which passes through ii must be extended

through w. Since, by construction, each w E 1' must be an endpoint of exactly

one edge directed from some ii E ', these vertices must appear an equal number

of times in any cycle. Hence there must be exactly as many vertices from ' in

any strong component of V(V, E) as there are V. Further, since there is exactly

one edge directed from each ii E 'c', each subset of k nodes from ' must direct k

edges onto V. 0

Lemma 2.4 Each strong component of the digraph of lemma 2.3 represents a

structurally non-singular, solvable subset of equations.

Proof: This proof requires three observations.

Each node in a strong component is a member of a circuit in V(V, E) which

involves all of the other vertices in that strong component.

There is no circuit in D(V, E) which involves two nodes z' and v, which lie

in different strong components.

By lemma 2.3 in each strong component of D(V, E) there is an equal number

of nodes from each partition of V, and each subset of k nodes from directs

exactly k edges onto vertices in V.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	47

The first of these observations demonstrates the mutual dependency of the

variables represented in a strong component, and hence the necessity for the

corresponding equations to be solved simultaneously. The second shows that

there can be no interdependence between two nodes v and vi,, which represent

variables x and y respectively, where these lie in different strong components.

This means that it is unnecessary to solve any other equation simultaneously

with those represented in a strong component. Thus these equations, and only

these equations, must be solved simultaneously. The last observation shows that

their solution is possible since there are exactly as many equations in the system

as there are unknowns, and each of these may be solved for one of the unknowns.

0

Having established the preliminary results we can proceed to provide the formal

correspondence between the strong components of V(V, E) and a computational

sequence for F(X).

Theorem 2.1 Let F(X) be an equation set such that IFI = IXI and

F(X) 9 F(X),i = 1,2,• .. ,M be a computational sequence for F(X). Then, if

V(V, E) is the bipartite digraph which represents F(X), the M strong components

Of D(V,E) correspond to the subsets F(X1). Further, if these strong components

are ordered so that each arc between two of them is directed from that which is

ordered lower to that which is ordered higher, then ordering the equation subsets

in the same way gives a computational sequence for F(X).

Proof: It is necessary and sufficient to demonstrate the following two properties

of D(V, E). Firstly, the first strong component corresponds to a square,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	48

structurally non-singular subset of F(X). Secondly, all other strong components

represent structurally non-singular equation subsets in which the number of

variables is greater than or equal to the number of equations. Where this

inequality holds, the nodes representing the excess variables belong to strong

components numbered earlier, and so each strong component represents a square,

structurally non-singular reduced subset of F(X).

First Part: By lemma 2.4 the first strong component of D(V, E) represents a

non-singular subset of equations and, from lemma 2.2, there are exactly as many

variables in this set as there are equations.

Second Part: Once more, lemma 2.4 shows that each strong component of D(V, E)
represents a non-singular subset of equations. In this case, however, there may

be more variables than equations in the set. If there are K equations in the

subset then, by lemma 2.3, there are K nodes in the strong component which

represent variables in these equations. All of the other variables in the subset are

represented by edges from nodes in other strong components. Lemma 2.2 shows

that all of these strong components can be ordered before the i' one. Thus the

value of each of these variables is known when the jth subset is to be solved, and

so this represents a square, non-singular, reduced subset of F(X). 0

This leads us to the following surprising result.

Theorem 2.2 The computational scheme for an equation set F(X) is

independent of the output set.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	49

Proof: Let the undirected bipartite graph (V, E) represent F(X), and let M

be a complete matching defined on its vertices. We wish to show that the strong

components of D(M), the bipartite directed graph formed from (V, E) and M

in the manner of page 43, are independent of M, and that their order ordering

which corresponds to a computational sequence for F(X) is unique to within

some trivial permutations.

First Part: Recall that M is a complete matching. Another complete matching

for G(V, E), ict may be generated by removing some edge (i,i) from M, adding

a new edge (t', u), removing (ô, ü) and so on. Eventually some edge (a, Co) must

be added to the new matching in order to complete it. If this process is repeated

it can be used to generate all possible matchings for (V, E).

Let the bipartite digraph formed from (V, E) and icr be D(icI). Since there is

a one to one correspondence between the edges of D(k) and those of (V, E),

and between the edges of D(M) and those of c(V, E), this correspondence exists

between the edges of the two digraphs. Any edge which is a member of both of

these matchings, and any which is a member of neither, is directed in the same

way in D(M) as it is in V(A); any edge which is a member of only one of these

matchings is oriented in opposite directions in the two digraphs. By construction,

those edges in only one of the matchings must alternate in a cycle in each of the

digraphs. Clearly this cycle cannot be extended through some edge (vi, zi) such

that u and z', belong to different strong components since there can be no edge

directed back to the strong component of which v is a member. Thus since each

modification to M must describe a cycle through 'D(M), the strong components

of each bipartite digraph formed from a matching in (V, E) and the original

graph must be the same.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	50

Second Part: As has been shown above, the strong components for each complete

matching in (V, E), and hence for each output set for F(X), are the same, and,

by theorem 2.1 they may be ordered so that they correspond to a computational

sequence for the equation set. Further, the edges between strong components in

each of the bipartite digraphs must be oriented in the same direction because they

represent the existence of a variable in an equation which can never be solved for

it. Hence any ordering of the strong components of one of the bipartite digraphs

which corresponds to a computational sequence is a similar ordering for each of

the other digraphs.

If an ordering of the strong components of a bipartite digraph is to correspond to

a computational sequence for F(X), then it is necessary for each edge between

vertices in different strong components to be directed from the lower to the higher

ordered strong component. However, if there is no directed path between two

strong components C1 and C, in D(M), then either of these may be ordered

before the other in any computational ordering. Hence, there may be more than

one ordering of the strong components which satisfies the condition on directed

paths between them, and hence more than one computational sequence for an

equation set. 0

We can extend the results from this proof to show that if an incidence matrix for

an equation set is partitioned in such a way that the new matrix is block lower

triangular and the diagonal blocks are irreducible, then the ordering of these

blocks, and the rows and columns within them, is independent of the output set

selected for F(X). To do this, we establish that these diagonal blocks correspond

to the strong components of the bipartite digraph which represents F(X), and

that they must be ordered in the same way as the strong components for the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	51

new matrix to be block lower triangular. Finally, in theorem 2.5 we relate the

uniqueness of the strong components of the digraph to that of the diagonal blocks.

Here, a block triangularization of a matrix is a permutation of its rows and

columns so that there are square, irreducible blocks on the diagonal, no non-zero

entries above these blocks, and either zero or non-zero entries below them.

Theorem 2.3 If V(V, E) is the bipartite digraph which represents an equation

set F(X), and if A0 is the incidence matrix of this digraph, then the strong

components of D(V, E) correspond to the square diagonal blocks of a block

triangularisation of A0 .

Proof: Let the rows of A0 represent the equations in F(X), and the columns the

variables. Order the rows and columns of A0 so that those which represent nodes

in the same strong component are contiguous and so that those which appear

in the first strong component appear before the second, and so on. Lemma 2.3

shows that, in each strong component, there is an equal number of variable and

equation nodes. Each of these blocks must have a non-zero entry in its upper

right entry, and so too it must be irreducible because it reflects the cycle structure

of one of the strong components. No other permutation of the rows and columns

within the matrix can produce different irreducible blocks, and so each strong

component corresponds to a square block in the incidence matrix.

To see that these blocks are aligned along the diagonal of the matrix, consider

that which corresponds to the first strong component. As is shown in lemma 2.2,

the first strong component has no edge incident upon it from another. Hence,

the block which represents it may have no rows above it nor columns to the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	52

left of it, and so it lies on the diagonal. The block corresponding to the second

strong component has its rows immediately below those for the first, and its

columns immediately to its right; since this block too is square, it must straddle

the diagonal of Ag. Extending this analysis to the other strong components

completes the proof. 0

Theorem 2.4 If A0 is the incidence matrix associated with a square, structurally

non-singular equation set, F(X), then if it is partitioned so that there are square,

irreducible blocks along its diagonal, these blocks correspond to a computational

sequence for F(X).

Proof: 	Theorem 2.3 shows that these blocks correspond to the strong

components of D(V, E), the digraph of F(X), and theorem 2.1 shows that these

strong components represent a computational sequence for this equation set. 0

Theorem 2.5 The 	rows and columns 	within the 	blocks 	of

a block triangularization of a structurally non-singular matrix are independent

of the permutations used to form them.

Proof: Permuting the rows and columns within a structurally non-singular

matrix in such a manner that it retains a zero free diagonal corresponds to

reordering the vertices in the bipartite digraph which represents it, and, if the

permutations are asymmetric, reorienting some of its edges. Theorem 2.3 shows

that the diagonal blocks of a block triangularization of a matrix correspond

to the strong components of this digraph, and theorem 2.2 indicates that the

nodes within these strong components are independent of the ordering of the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	53

vertices, or the orientation of the edges. Thus the rows and columns in any block

triangularization of a structurally non-singular matrix are independent of the

permutations used to form them. 0

This result was anticipated by Steward [92] and proved in a different way by

Duff [22].

The computational blocks may be reordered to some desirable form as will

be described in 3.3. As they stand, however, these subblocks can be solved

sequentially, and this ti may effect both the amount of effort and storage which

are required at each iteration, and the convergence characteristics of the equation

set. If the equations to be solved are linear, or if they are linearised forms of non-

linear equations, and if some matrix method is to be used to solve them, then

permuting rows and columns may save fill-in. Minimisation of fill-in in D(V, E)
during vertex elimination is important regardless of whether the equations being

solved are linear or non-linear. If the equations are linear, then the explicit

effect of fill-in is that entries are added to the factor matrices which were zero

in the original matrix; this leads to an increase in the amount of storage and

computation required for a solution. There is a similar effect if the equations are

non-linear, although in this case the effect is implicit. Adding new arcs to the

graph corresponds to chaining the values of some variables in the set through

some equations in which, originally, they do not appear explicitly. Minimising

fill-in minimises this coupling effect and so ought to lead to a more efficient

solution. Should some gradient numerical method be used, then this chaining

filters through to the derivatives of the equations; this is true both for linear and

non-linear equations. As is shown in § 2.6, this has implications for the amount

of work necessary when the equations are to be torn.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	54

Partitioning the equations may have an effect on the convergence characteristics

of the solution. It is likely that the equations in each of the subsets apart from the

first will converge more quickly than it would when solved in the unpartitioned

set. This arises from the fact that, for all connected subsets other than the

first, partitioning the equations allows some of the erstwhile variables to appear

as constants, their values having been calculated earlier. This effect is most

noticeable if the equations to be solved are highly non-linear, since partitioning

will increase their linearity. Consider, for instance, the solution of equations 2.9.

The presence of the two transcendental functions causes this equation set to

appear to be highly non-linear. Should the equation set be partitioned and

the first and last equations solved simultaneously before the second and third,

however, then the equation set is translated into the linear reduced system

X1 + x2 	 = 3

X1 - x2 	 = 1
(2.10)

Cl + 	x3 + x4 = 4

C2 + x3 - 	= 5

where C1 = - log() and C2 = exp(FJ) are constants. Equations 2.10

can be solved exactly, whereas equations 2.9 cannot. Further, removing the

non-linear terms from the equation set ameliorates the use of any derivative

information used in an iterative scheme, because it removes the possibility of

divergence due to the variation in curvature of the equations over the domain of

the solution. In general, partitioning an equation set will not be as successful in

reducing the non-linearity of the equations to be solved as it was for the above

example, but it is reasonable to expect some improvement. Whilst this may be

of little advantage far away from the solution, its benefit is likely to increase as

the search approaches it. This argument can be extended to the derivatives of

the equations.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	55

2.6 The Use of Decomposition Techniques

In the last section the partitioning of digraphs was discussed. Decomposition can

be seen as an extension of this method which alters the strong components of a

digraph. The aim of decomposition is the removal of nodes and arcs from some

digraph D(V, E) in such a way that the modified digraph contains no circuits.

This practice is known both as tearing and cutting, although the latter has a

slightly less general meaning than the former. In this text all three terms will be

used interchangeably and, although the following definition is given in terms of

node tearing, a similar definition exists for edge cutting.

Formally, a decomposition strategy seeks to - identify a node separator set, S C V,

in a digraph, V(V, E), such that every cycle, C,, in D(V, E) has at least one node

in S such that for

TE={(u,v) Iu,vE(V—S),(u,v)EE} 	 (2.11)

D(V - S,), is acyclic. For figure 2.6, for instance, S = {L}, and each edge which

is directed to or from L is removed from E to give 77. Different orderings of the

nodes in S and V - S give rise to different orderings of the rows and columns

of the incidence matrix of D(V, E) Tf the first node to be torn is placed at the

end of the order, the next placed in the penultimate position and so on, then the

incidence matrix thus produced has bordered lower triangular form. There is no

unique tear set for a digraph and some may be larger than others. As we will see

in § 3.4 these sets can be grouped into equivalence classes.

It is not clear whether it is preferable to tear an equation set before or after

partitioning. Leigh [55] has shown that the number of tears for an unpartitioned

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	56

digraph is bounded below by the maximum of the minimum size of each of its

strong components. Intuitively it is preferable to partition and then tear, since

this exploits the natural structure of the equation set by grouping together those

equations which are most strongly coupled. However, Sargent [82] provides an

example in which fewer tears are required if the set is torn before rather after

partitioning.

The most obvious benefit of tearing an equation set is that it reduces the number

of variables whose values have to be guessed before the equations can be solved.

The second advantage is that it can reduce the amount of computational effort

required at each iteration during solution; this is a point to which we will return

in § 2.6.2. It should not be assumed, however, that tearing an equation set is

always worthwhile, since there is only a small class of numerical methods whose

performance can be thus improved. Even when methods which lie within this

class are employed tearing may be undesirable because of the effect which it has

on the topology of the equations being solved. In order to provide a justification

for the use of decomposition methods this section is divided into two parts. The

first of these is a discussion of the nature of tear sets and, in particular, an

attempt is made to define a 'good' tear set. Secondly we turn our attention to

classifying those methods whose performance may be improved by decomposing

the original equation set.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	57

2.6.1 Optimal Tear Sets

As Motard et al. [64] have indicated there are no known optimum criteria for

choosing tear sets. The most widely used strategies are those which minimise the

number of torn nodes or edges, the weight of the torn arcs or, in flowsheeting

problems, the number of recycle parameters, although this is simply a special

case of the minimum weight approach. The weight of an arc is a value

assigned to it, possibly in an arbitrary manner. One traditional method for

assigning weights in flowsheeting problems has been to set them equal to the

number of parameters associated with the corresponding process stream. Another

assignment philosophy is described in § 3.2. Minimising the cardinality of the

separator, 5, is intuitively attractive because at each iteration it seems likely to

lead to a more exact solution of the problem and a lower effort requirement than

any larger tear set. Finding the tear set of lowest weight is an attempt to take

into account the relative desirability of tearing each of the arcs in a digraph. In

a fiowsheeting environment this will generally correspond to a minimal amount

of recycle information but in the wider field it may reflect the relative ease of

solution of the equations; clearly, minimising the size of the separator is a special

case of minimising its weight.

Even if an optimal tear set were to be of minimum size, minimising the size of this

set, hOwever this was defined, would be only a necessary condition for optimality.

Upadhye and Grens [98] have suggested that the optimal tear set for a graph is

likely to be nonredundant, i.e. no cycle in the digraph is torn by more than one

edge or node in the tear set. Their argument is based on a consideration of the

lag of information flow through the system being modelled by the graph. Their

argument can be extended to say that, where possible, each cycle should be torn

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	58

the minimum number of times. Consider the two graphs shown in figure 2.14

where a bar, 1 , on an arc indicates that it is torn.

(b)

Figure 2.14: Two Tear Sets for a Dirph

Two minimum tear sets for these graphs are shown. In the first graph the cycle

which involves nodes 2, 3, and 4 is torn twice. Here the value for second tear

is updated without using the information which is available from the object

represented by node three. In the second graph no cycle is torn more than

once, and the information from node three is used. This ought to give the second

iteration a superior rate of convergence because of the less arbitrary variation in

the torn values.

As shown above, minimisation of the size of the tear set is insufficient for

structural optimality. This strategy is also insufficient from an algebraic point

of view because it takes no account of the effect of tearing on either the untorn

equations, or those which are used to improve the guesses for the tear variables.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	59

If possible, the tear set should be chosen so that it minimises the work done

overall, i.e. it minimises the product of the number of iterations and the amount

of work done at each, and so that it avoids singularities and discontinuities in the

torn problem. Determining such a tear set is impossible at present because there

is no sufficiently sophisticated method of algebraic analysis which allows this to

be done efficiently.

2.6.2 Numerical Techniques Improved by Tearing

In this section the effect of tearing on the amount of effort required at each

iteration for the following classes of numerical methods is considered:

• Direct Substitution.

• Relaxation Methods.

• Aitken's Method.

• Newton Like Methods.

Each class of numerical method is described fully in appendix 4 and so only

a minimal description is provided here. In each case it will be assumed that

lxi = N, that c < N of the elements of x are torn and that each of the first N - c

equations has been rearranged to give an explicit expression for one of the N - c

dependent variables. The term 'full problem' will be used to mean the untorn

form of the equations and, where appropriate, all subtraction operations will be

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	60

counted as additions, and all divisions as multiplications. The variable r, defined

ri = xi
- f 	 (2.12)

is used to denote the residual of each equation at the ith iteration.

Direct Substitution Here the equations are written in a form which uses the

value of the vector x at the ith iteration to produce those at the (i + i)uhi iteration,

i.e.

X 41= f(x) 	 (2.13)

If such an equation set is torn the calculations required at each iteration are

Evaluate the values of the dependent variables.

Evaluate the values of the independent variables.

Inspection of points 1 and 2 reveals that the steps involved in solving the torn

equations are identical to those involved in solving the full problem. Thus there

is no saving in computational expense or storage requirement associated with

tearing an equation set if the equations are to be solved in this way.

Relaxation Methods The general form for calculating x 1 with a relaxation

method is

= x t - 	 (2.14)

where r', the residuals of the equations at the i' iteration, are zero at the solution

and Wt is some acceleration factor; n.b. w = 1 corresponds to the method of direct

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	61

substitution. Three methods of calculating wi are described.

Successive Over Relaxation (SOR) The equations are solved in two stages.

First of all the residuals are calculated and then is updated by

= - w r 	 (2.15)

where w > 1. In the torn case, only the torn variables are updated. Since

is a constant factor, only N - c multiplication/subtraction pairs are saved per

iteration. This is unlikely to be a significant saving in effort compared with either

the cost of the function evaluations or the cost of determining the tear set.

The Secant Method This method accelerates the direct substitution method

described in equation 2.13. It uses a different acceleration factor for each member

of x, i.e.

= Xi + w3 (4 1 - x) 	 (2.16)

1

8
,j=1,2,...,N 	 (2.17)

—

f(x 11) - I
83 = , j=1,2, ... ,N 	 (2.18)

Tearing an equation set in this case reduces the computational expense of

acceleration from 3N multiplications and 5N additions to 3c multiplications and

5c additions. This saving may be significant, particularly if c <Z N and the

equations are linear.

The Dominant Eigenvalue Method (DEM) This method is similar to the

secant method in that it accelerates the solution to equations 2.13. These are

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	62

solved successively until the largest change in the elements of x occurs at an

approximately constant rate. When this occurs an acceleration step

xi+i - Xi
=X +

1 M 	
(2.19)

—

is taken, where M is the ratio of the largest change in an element of x at successive

iterations. At each non-accelerating iteration, tearing the equations saves N - c

subtractions in finding the largest change in a variable over the course of the

iteration. On acceleration, N - c divisions and 2 (N - c) additions are saved.

Neither of these reductions in effort is likely to be significant.

Aitken's Method Aitken's method operates directly on the variables, and it

ignores their interaction. Once again the direct substitution equations are solved

but this time, when the difference in the value of a variable at each iteration

approaches a geometric series, the acceleration step

k-i k+1 - (xk)2 	
(2.20)

Xi
x

- 2x -

is taken. If Aitken's method is used on the full problem, then N equation solutions

are required per iteration, and at each acceleration step, 4N divisions and 3N

additions are necessary. When it is used on the torn problem, there are still N

equation solutions to be found but the work at each acceleration is reduced to

4c divisions and 3c additions. Given that equation evaluation is more expensive

than an arithmetic operation this is an insignificant saving in effort.

Newton Like Methods This class of numerical methods will be represented

by the Newton R.aphson method. This uses the function values at X and the

partial derivatives at this point to find the value of x 1 . If the functions to be

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	63

solved are of the form

f(x) = b 	 (2.21)

they are rewritten as

f(x)—b=O
	

(2.22)

and solved by a truncated Taylor expansion of equation 2.22. The Jacobian, J,

- 	
ii,k=N 	 22

is required. The computational scheme required for the full case is

Evaluate f(x*)_b

Evaluate J = Vf

Solve Js' = —f(x) for x' 1

If some of the variables are torn, this scheme becomes

Evaluate x = f(x)

Evaluate f(x(x), x)

Evaluate J, = Vc f,

Evaluate Jc = Vc f(x'(x'), x')

Solve Jx71 = — f(x') for x?1

Here Xnc is the set of dependent variables and x c is the set of independent (i.e.

tear) variables. f(x) is the set of equations used to solve explicitly for x,,2

4n.b. These equations are rearrangements of the first N - c equations.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	64

f(x(x), x) is the set of reduced equations which is used to solve for the tear

set and V c is the gradient vector for these variables. Jnc is the Jacobian for the

dependent equations and J is the Jacobian for the reduced system.

There are two ways in which each Jacobian may be calculated and these are

considered in turn.

Analytical Jacobian In the full case N (N + 1) function evaluations are

required for the first two steps and, as is shown in appendix A, 0(N3) operations

to solve the Jacobian equation for x(t+1). If the variables are torn, these

requirements are reduced to c (N - c) function evaluations for the chained

derivatives and N (c+ 1) function evaluations for the reduced equations Jacobian,

and 0(0) operations to solve the reduced Jacobian equation for x+1). If c << N
this represents a considerable saving both in operations per iteration and storage

requirement.

Numerical Jacobian In order to evaluate the Jacobian it is necessary to

evaluate the relevant equation set at the current value of the variables, to perturb

each in turn and then revaluate the equations before resetting the variable to its

original value. Thus each element of the Jacobian is generated from

- fI(xk + öXk) - f1(xk)
J$2 -
	

(2.24)
5Xk

where typically 6Xk = Exk for some small value €. If the Newton Raphson method

is used on the full equation set this requires N (N + 1) function evaluations. If

it is used on a torn system, however, (N - c) (c + 1) function evaluations are

required to calculate the chain rule derivatives and c (c + 1) are necessary for

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	65

the reduced Jacobian. This amounts to a total number of function evaluations of

N (c + 1) which is a small saving over the full case.

Wegstein's Method Wegstein [99] developed the secant method for

single equations, and his method has been generalised for the solution of

multidimensional problems. In his method, the new value of x after the (i + 1)1hl

iteration is found from

= —B 1f1 	 (2.25)

where Axi = x - x + 1 , and the matrix B' is found from

i+1 	i-i
bk

= fj(x') 	
(2.26)

Whether this is applied to the full or the torn problem, N function evaluations

are required per iteration. In the full case, however, N multiplications and 2N

additions are required as well, whereas for a torn equation set this is reduced to c

multiplications and 2c additions. This is a very small saving, but there is a much

larger difference in the effort required to solve equation 2.25. For the full case,

this requires 0(N3) operations, but for the torn case only 0(c3) are needed. If

c << N this may be a significant saving.

Thus, of all of the methods considered here, tearing the equations produces

significant savings in computational effort at each iteration for only the secant

method, for the Newton Raphson method and for Wegstein's method.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	66

2.7 Summary

In this chapter it has been shown that whilst that no assurance of the existence

of a unique solution to an equation set can be gained by an inspection of its

structure, in the common case, some necessary conditions can be placed upon this.

Next it was shown that, whatever the solution method, it was desirable to find

an output set for the equations and the bounds on the number of such sets were

established. In § 2.5 the equivalence of matrix, graph and equation partitioning

was demonstrated in that it was shown that diagonal of a partitioned incidence

matrix for some equation set F(X) corresponded to the strong components of the

digraph of the assigned equations; these in turn represent a sequence of equation

sets which can be solved simultaneously. The effect of this partitioning on the

amount of effort required to solve an equation set, both per iteration and on the

number of iterations was discussed. Lastly, in § 2.6 it was shown that it is very

hard to define conditions on the optimality of a tear set for a problem. Further,

whilst an analysis of the geometric effects of tearing is not possible, it was shown

that in many cases there was no significant reduction in the operations count per

iteration for a torn system over the full case.

We proceed in the next chapter to discuss the most popular methods of selecting

an output set and partitioning and decomposing equation sets.

The evil that men do lives after their lives, yet the good is
oft interred with their bones

William Shakespeare, Julius Caeser

Chapter 3

Literature Review and Selection of Methods

3.1 Introduction

In the last chapter we discovered why some structural analysis of equation sets

is necessary, and why other aspects of this phenomenon are desirable. In this

chapter we discuss solutions which have been proposed for the problems raised

in that chapter. In § 3.2 methods for output selection are described. There

are multifarious formulations of this problem which draw on techniques such as

graphical analysis and integer programming. In § 3.3 we turn our attention to

the partitioning of incidence matrices. Here we demonstrate how the structure

of these matrices determines the pattern of fill in which they experience, and it

is shown that no deterministic algorithm exists which can predict a minimum

for this phenomenon. Next methods for permuting the rows and columns of

these matrices are described, and lastly we consider algorithms which manipulate

them in different ways. In § 3.4 decomposition techniques are examined. These

67

Chapter 3. Literature Review and Selection of Methods 	 68

range from arbitrary strategies, through integer programming methods to those

which are based on a depth first search of the bipartite digraph which describes

the matrix. There are some techniques which can be considered common to

graph partitioning and decomposition. Those which select spikes may be used

as tearing methods since they identify the effects of circuits within both directed

and undirected graphs.

A brief summary of the conclusions drawn from each section is presented in § 3.5.

3.2 Choosing An Output Set

Consider an equation set R which involves the variables, X, and which is

structurally non-singular. If v E X is a variable which appears in u E R then,

given the values of all of the other variables in u, this equation can be solved for

x. Thus u and v can be recorded as a pairing and u is said to be assigned to v.

No ordering is defined on assignment and so, alternatively, v may be said to be

assigned to u. A set, 5, given by

S={(u,v)} i=1,2,•.., IRI 	 (3.1)

in which u i 0 u, i j and vi i6 v, i 0 j, is called a maximal assignment for the

equation set; equivalently, S may be referred to as an 'output set' or a 'maximum

transversal'. The first algorithm which appeared explicitly for the purpose of

identifying an output set was presented by Steward [92]. He was concerned with

identifying a single output set and then showing that this set could be used

to generate all others; he showed too that where no such output set exists the

Chapter 3. Literature Review and Selection of Methods 	 69

equation set is structurally singular. He presents his explanation in terms of the

incidence matrix of the equation set, but it is clearer to consider the undirected,

bipartite graph (V, E) which represents it, and D(V, E), the directed bipartite

graph which corresponds to a particular assignment of variables to equations.

The first step in his algorithm is an assignment of a variable, v, to an equation,

Uk, whose node is adjacent to that of v in (V, E). If this node already appears in

some element, (Uk, wk) e 5, as defined above, then the pair, (Uk, wk), is removed

from S and replaced by (Uk, v); an attempt is made now to assign a new equation

node to wk. Any such assignment may cause other pairs in S to be removed

and replaced and the process continues until either an equation node, u, is

encountered which is not in 5, in which case the new assignment is added to this

set, or there are no more equation nodes which are candidates for assignment to

the current variable node, w3 . In this case each of this node's predecessors on

the path is examined to see if it can be assigned to a free equation node. If this

is possible S is perturbed in the usual way and a fresh search is made for the

next variable node; if this is not possible then, since no assignment can be found

which includes each variable, R must be structurally singular.

Having identified an output set, Steward shows that all others can be found by

forming a symbolic version of the reachability matrix. This is defined to be the

Nth power of Adj(R), the incidence matrix for R, where PRI = N; the diagonal

blocks of this matrix represent all circuits in (V, E) which involve N edges. By

defining the processes of directed path multiplication and addition he shows that

in each of the i' powers of Adj(R), all paths in c which involve i edges are

recorded and that each is recorded i times. His argument is that evaluating all

of the loops of in this way allows the generation of new output sets simply by

Chapter 3. Literature Review and Selection of Methods 	 70

reassigning nodes around these loops, possibly recursively. This makes implicit

use of theorem 2.1, which states that each of these reassignments must take place

within a strong component of V(V, E).

Although each of these algorithms is correct neither is very good because each is

algorithmically inefficient. In the first the lack of a look ahead facility may lead

to a large waste of effort. Consider the situation when M assignments have been

made and we wish to assign an equation to the M + 1th variable. In the worst

case, all paths of length 1 < M in (V, E) which involve the M assigned variables

may have to be searched before a new assignment is found. Whilst it is difficult

to express the worst case algorithmic complexity for this method, it is certainly

very high. In the second it is very expensive to calculate powers of the incidence

matrix, even when it is stored in packed form.

A better algorithm based on a depth first search of (V, E) and which includes a

look ahead facility is that due to Duff [23]. This author defines a cheap assignment

to be an assignment which is made without resort to a path search. In terms

of the incidence matrix of (V, E) this corresponds to assigning to the row, i,

the first column, j, which intersects with it and which is not in the present

assignment. Staying with this representation of the equation set, the algorithm

starts by making as many consecutive cheap assignments as possible. Whenever

this process fails for some row a path search is started, even if a cheap assignment

is possible for some row later in the matrix.

Let such a row be i0 . • The search starts by finding the first non-zero in this row;

this is in column ji and it has been assigned to row i 1 . Row i1 is searched now

and if it contains a free non-zero j', the assignment (i1 ,j1) is removed from this

Chapter 3. Literature Review and Selection of Methods 	 71

set and replaced by the pair of assignments, (i0 ,j1) and (i1 ,j'), and the search

is restarted from the next free row. If i 1 had contained no free column then the

first column with which it intersects j2, 32 y ji, would have been placed on the

path and the search continued. This process of extending the path is the depth

first search and the search for a free column in each row is the look ahead facility.

If during the search a column has no more candidate rows, the search backtracks

to the previous row.

Duff [23] interprets this search by reference to an obscure form of a signal

fiowgraph. A much clearer interpretation is apparent if one treats it as an

attempt to establish a maximum matching, A? [36], in an undirected, bipartite

graph where the vertex partitions, %T, and V, correspond to equations (rows) and

variables (columns) respectively. Recall that a matching in a graph is a subset

of its edges such that no vertex appears in more than one edge. A matching

of maximum size for a graph is called a maximum cardinality matching; if each

vertex in the graph is incident on one of the edges in such a matching it is said to

be complete. Any vertex which is not an endpoint of some edge in the matching

is said to be free and a path of odd length between two free vertices in the graph,

such that there is no other free vertex on it, is termed an augmenting path. If

this path is of length 1 > 1 then the edges of which it consists are alternatively

in the current matching and outwith it. Let P be such a path, A the set of edges

which it contains and M0 9 A be the edges in A which are also in M, the current

matching. Since both terminal vertices in P are free, IA - Mol = IM 0 I + 1, and

thus the size of the matching may be increased by one by removing each member

of M0 from M and adding each member of A - M0 . In a finite graph, if no

augmenting path exists then the current matching is maximum.

Chapter 3. Literature Review and Selection of Methods 	 72

The search starts by establishing the assignments (vi, vi), ii, E V, zi E

V, (vi, u,) M the current matching, until no such assignment can be made

for some vertex vk E V. The search continues along a path, F, as described

above and the lookahead corresponds to looking for a free vertex, v' E Vs,, which

is adjacent to the vertex, Vm E V, at the head of P. As Duff [23] indicates, it

is difficult to define a worst case time complexity for this search, but it would

appear to be O(nr) where there are n vertices in Q(V, E) and r edges.

Westerberg and Edie [102], [103] presented an entirely different approach to

determining an output set for the solution of linear equations. They argued

that it is not only the structural form of a matrix which is important, but

also the algebraic and numerical properties of the equations which it is used

to represent. To this end they presented two strategies for improving the

convergence characteristics of an equation set which is to be solved by successive

substitution; they claimed that any strategy which improves the convergence of

successive substitution is likely to improve the convergence of any other numerical

method. The method of successive substitution will converge a set of linear

equations if and only if the largest eigenvalue of its iteration matrix is less than

one. If the equations to be solved are

Ax=f
	

(3.2)

then, using A = D - B, where D is a diagonal matrix with the same entries as

the diagonal of A, the method of successive substitution finds x by

X = DBx + D 1 f 	 (3.3)

and D 1 Bx is the iteration matrix. These authors show that this value can

be minimised either by minimising the maximum row sum in this matrix or

maximising the product of the diagonal coefficients. Either of these goals may be

Chapter 3. Literature Review and Selection of Methods 	 73

achieved by the application of dynamic programming techniques and an implicit

enumeration method is presented for each which cuts down the amount of search

required.

These techniques can be extended to deal with non-linear equations if an iterative

solution procedure is used and the ordering method is applied to the Jacobian.

The authors suggest that the first derivatives of the equations be used and that the

output set be chosen before the first iteration. Should the solution vector change

appreciably, then the output set ought to be redetermined. Given the amount of

effort required in solving a dynamic program to determine each output set, and

the crudeness of the measure of optimality, this seems unlikely to be of any real

benefit.

Sargent [82] proposed that the selection of an output set could be posed as the

set partitioning problem:

max E wx
j=1

SA. Cx,=i, i=1,2,...,2N 	 (3.4)

x=Oorl, 	j=1,2......

where C is the node-arc incidence matrix for the equation set', {x,} is the set

of variables and equations and wj is a weight assigned to the jr" arc; this weight

reflects the desirability of adding the pairing corresponding to the endpoints of

the j1h arc to the current matching. In this formulation, each arc in the bipartite

graph which represents the equation set is assigned a weight and the maximum

sum of N of these arc weights is chosen within the constraint that each variable

1 1n this matrix the rows correspond to nodes and the columns to arcs in the bipartite graph.
The column for edge e has exactly two entries, and these are in the rows which represent its
termini.

Chapter 3. Literature Review and Selection of Methods 	 74

and equation is an an endpoint of exactly one arc. Sargent is not explicit about

the details of this formulation, but he suggests that if one wishes only to identify

one output set then equations 3.4 might be solved using either the algorithm

of Edmonds [27] or Hoperoft and Karp [46] but that if one wishes the optimal

solution then that of Edmonds and Johnson [28] should be used instead. The first

of these algorithms has a worst case time complexity of 0(NIEI), where there

are E edges in the graph, and the second has one of 0(N). The third is less

efficient yet. Even refers to a report by Gabow [33] in which its complexity is

given as 0(N3) and so, since assigning meaningful values to the weights can be

very difficult, it would appear that there is very little point in finding the optimal

solution to this problem. Further, as will be shown on page 77, there is a more

efficient formulation of the output set problem.

Before describing this formulation it is worth noting that another approach which

involves the ascription of weights to the arcs is the stable marriage problem.

Here the point is to find a one to one correspondence between two disjoint vertex

sets such that there are no two vertices i and j which are assigned to other

nodes but which have a stronger mutual attraction. Gale and Shapely [34] have

presented an algorithm which finds a solution to this problem in 0(N 2) time

where there are N vertices in each set. Irving [48] has shown that determining

the number of solutions to this problem for any value of N is NP-complete and

so, in the absence of any polynomial time algorithms, it is likely that determining

the optimal solution for this formulation is also NP-complete. A further problem

with this technique is that it is difficult to define what one means by the optimal

solution. Let one of the vertex sets be labelled 'men' and the other 'women' and

let a good solution be one in which one of the vertex sets has its preferences

satisfied to a maximal degree. In general an assignment which is man optimal

Chapter 3. Literature Review and Selection of Methods 	 75

will not be woman optimal and vice versa and so some form of compromise

must be reached. In terms of equation solving this means that an assignment

which matches each variable to the equation which is most easily solved for it,

within the constraints of the problem, is unlikely to match each equation to the

variable within it for which it is most easily solved. Thus an optimal solution,

however it is defined, lies somewhere between these two extremes. Even if one

were able to define the relevant optimality criteria there is no guarantee that this

would have any real meaning since it ignores the values of the variables. This

is an unpromising approach and, given the same edge weights as in Sargents

formulation [82], it gives a suboptimal solution. It would be acceptable only if it

were much more efficient, but it may be useful for providing a starting point for

the set partitioning problem.

Paterson [69] has provided a possible means of circumventing the problem of

assigning weights to the edges in the graph. He restricted his work to the

solution of a single equation in a single variable but his results may be extended

to cover the multidimensional case. His argument is that one ought to rerearrange

a non-linear equation so that it can be rendered nearly linear by a suitable

change of variable, e.g. by replacing a squared term by a new variable. This is

desirable because those numerical methods which have superlinear convergence

use derivative information which approximates a curved gradient by a straight

line. A second desirable condition is that the right hand side of the new equation

should be a weak function of the variable on the left hand side so that the absolute

value of the gradient will be less than one . The desirability of this condition

arises from the assurance of the convergence by successive substitution of such

an equation.

Chapter 3. Literature Review and Selection of Methods 	 76

This author suggests that when solving an equation by a Newton type method one

ought to rearrange it so that the equation being solved is a difference between such

a right and left hand side. Thus if the original equation 1(x) = 0 is rearranged

so that x = f(x) is a good rearrangement for solution by successive substitution,

the convergence characteristics of Newton's method for x - f(x) = 0 ought to be

better than those for f(x) = 0. Paterson [70] extends this idea to providing good

rearrangements and starting guesses for equations by identifying the dominant

term in an equation if one exists. Having identified this term, he gets a good

starting guess for the iteration by approximating the equation to this term and

solving the approximation analytically. The original equation is then rearranged

so that, after a change of variable, the dominant term is now the subject of the

equation.

Paterson's argument [69] is that these techniques work because they satisfy a

sufficient condition for convergence, and they perform better than the method of

successive substitution (MSS) early on in the iteration, and thus better overall.

As he points out, a sufficient condition for the convergence of this technique for

the solution of some equation f(x) is that I f(x*) I < 1, where x is the desired

solution. Since the value of x* is unknown, he relaxes this condition to hold on

the value of x0 , the initial estimate of the solution. This is his justification for

making the right hand side of an equation a weak function of the left hand side.

Whilst there is a plausible argument, supported by experience, that the use of

Paterson's observations are likely to improve the convergence characteristics of

an equation set, it is not true to say that he has defined a condition which is

sufficient for this.

Paterson's techniques extend to cover the multidimensional case in a natural

Chapter 3. Literature Review and Selection of Methods 	 77

way. Here an equation is rearranged for some variable within it which does

not yet appear in an assignment and which appears in a term which can be

used to maximise the linearity of the rearranged equation. It is clear now how

Paterson's work relates to formulations of the assignment problem in which edges

are weighted; his analysis of each equation can be used to assign the weightings for

the edges between variables and equations. Such a weighting could be assigned

a priori or reviewed once every few iterations. This is likely to be extremely

expensive, however, because each variable may occur in more than one term in

each equation, and so many rearrangements and approximate solutions would

be required to calculate these weights. Ascribing these weights would embody

the majority of the effort required to produce an assignment. Since the cost of

solving a stable marriage problem or a dynamic program, probably suboptimally,

provides the balance, this technique is unlikely to be of practical use.

The most efficient formulation of the output set problem where no weights are

taken into account is that of modelling it as a flow network problem. Each edge,

e, of the bipartite digraph D(V, E) is assigned a capacity, c(e), which is the largest

amount of flow allowed through it. The purpose of the algorithms presented here

is to find the maximum possible flow from one partition to the other; the material

is assumed to flow from an imaginary source, which is connected to each of the

nodes in one of the partitions, into an imaginary sink which is attached to each

of the nodes in the other. Prior to describing the formulation in detail we require

the following definitions.

A flow function, f, is an assignment of a number, f(e1), to each edge, e,, in a

graph. Clearly

0 < f(e) < c(e) 	 (3.5)

Chapter 3. Literature Review and Selection of Methods 	 78

The total flow, F, through the graph is the net flow from the source to the sink.

A network, N, is a directed graph which has a source and a sink and for which

every edge, ej in N, has a capacity, c(ej. If initially

f(e) = 0

c(e) = 1 }
	

(3.6)

if the toal flow through each node other than the source and the sink is restricted

to unity; and if only integer increments are allowed in f(e,), then N is called

a zero-one network; this is the type of network which is of interest to us. An

example of such a network is shown in figure 3.1. An edge ej is said to be useful

Figure 3.1: An example of a Network

if it connects two nodes, u and v, where u is closer to the source, i.e. there is a

shorter path from the sink to u than from the sink to v, and either

ej = u -+ v and f(e1) <c(e1) 	 (3.7)

or

= u - v and 0 < f(e1) 	 (3.8)

Chapter 3. Literature Review and Selection of Methods 	 79

because in either case the net flow of material from the source can be increased by

forcing flow through e1 towards the relevant bound. A proof that flow augmenting

techniques can be used to solve the output set selection problem is deferred until

§ 4.2.

Possibly the best known algorithm for maximising network flow was provided by

Ford and Fulkerson [31]. At each stage the search for an augmenting path starts

at the source and a vertex, v 1 , is sought through which the flow is submaximal. A

similar vertex, v2 , which is adjacent to v 1 is sought and the process continues until

the sink is reached; at this point the path has been found and flow is increased

along it by the maximum amount possible which does not break constraints 3.5.

When no such augmenting path exists the flow is maximal. This algorithm may

fail in the general case if c(e1) is allowed to be irrational for any ei E E; hence the

need to constrain c(e) to integral values. The nature of this algorithm has been

reviewed by Even [30], and he refers to a breadth first search amendment which

guarantees that the algorithm will terminate in O(IVI 3 IEI) steps even when c(e1)

is allowed to be irrational.

A much better method is that due to Dinic [20]. This algorithm uses a breadth

first search through a network, N, which changes each time that an augmenting

path has been found. One can show that this algorithm must terminate and that

it must do so after O(N 2 r3) steps, where there are N nodes and r arcs in the

network. Even [30] has proved that for a zero-one network this bound is reduced

to O(r). This algorithm is described fully in § 4.2 and so it will not be discussed

here, save to say that it appears to be the most efficient method for determining

an output set for a set of equations.

Chapter 3. Literature Review and Selection of Methods 	 80

It has been shown here that Steward's [92] seminal algorithms for establishing an

output set and generating all others from it are highly inefficient, and that they

have been superseded by most of their modern competitors. Further, attempts to

define an optimal output set have not produced criteria which are both meaningful

and efficiently established. Westerberg and Edie's, [102] and [103], methods for

minimising the maximum eigenvalue of an iteration matrix are meaningful but

inefficient; Sargent's [82] set partitioning formulation provides an optimal solution

in O(NIEI) time, but he does not present any method of assigning weights to arcs.

Regarding assignment as an instance of the stable marriage problem guarantees

an answer where the equation set is structurally non-singular, but it is both

difficult and costly to define an optimal solution, even when Paterson's methods,

[69], [70], are used. Duff's depth first search algorithm with a lookahead facility

identifies a maximal assignment in O(NIEI) time, and it is easier to implement

than Sargent's integer program. The most efficient approach which has appeared,

however, is to treat it as a maximal flow problem in a zero-one network which is

to be solved by an tlkd application of Dinic's method [20].

3.3 Partitioning Matrices

In this section we will discuss not only methods of partitioning matrices but

also ways of permuting the rows and columns within diagonal blocks. When

we are dealing with the solution of non-linear equations, rows and columns

are permuted within blocks so that they have bordered triangular form (see

figure 2.11). The variables which correspond to the right hand border are then

torn; these techniques will be described in § 3.4. When linear equations are being

Chapter 3. Literature Review and Selection of Methods 	 81

solved, blocks are ordered internally so that fill-in is controlled during Gaussian

Elimination.

A spike is a column which has non-zero entries above the diagonal. At first

sight, since fill-in can occur only in spikes, one might believe that minimising the

number of spikes would minimise the fill-in in a matrix. Consider, however, the

two matrices in figures 3.2(a) and (b). These are symmetric permutations of one

X - non-zero entry
I X X 1(a) lx 	xl (b) 	0-fill-in
Ix 	X i 	I xxoI
L.x x..xJ 	L.x xxi

Figure 3.2: Two permutations of an Irreducible Matrix

another and figure 3.2(a) has two spikes whereas figure 3.2(b) has only one. If

Gaussian Elimination were applied to the matrices then no fill-in would occur in

the first matrix whereas one entry would fill in the second, despite the fact that

it has one less spike. Prior to a discussion of how fill-in can occur, it is necessary

to establish the relationship between different permutations of the same matrix.

Let A be any matrix of order, N, and let P be some permutation matrix of the

same order such that P, = 0 or 1, i,j = 1,2,..., N, and there is at least one

non-zero entry in each row and column. The matrix

A 1 =PA
	

(3.9)

has the same elements as A but its rows appear in a different order.

Chapter 3. Literature Review and Selection of Methods 	 82

Postmultiplying A 1 by the transpose of P to give

A 2 = A 1 Pt (= PAP) 	 (3.10)

permutes the columns of A 1 in the same way as its rows. As shown by theorem 2.5

the diagonal blocks of A, A 1 and A 2 are permutations of each other and hence all

matrices

4= RAilt
	

(3.11)

such that A is block lower diagonal, form an equivalence class for all permutation

matrices R.

If A 1 is postmultiplied by some permutation matrix Q 54 PI to give

A 3 = FAQ
	

(3.12)

then the columns of A s are permuted in a different way to the rows of A. If

A had non-zeros in every diagonal position , to begin with then A 3 belongs to

the same equivalence class as RARt, Duff [22]. The graphical interpretation

of equation 3.11 is that it reorders the nodes in the digraph of A whereas

equation 3.12 reorders the nodes and reorients some of its edges.

3.3.1 A Characterisation of Matrix Partitioning

Rose and Bunch [79] showed that permuting an irreducible matrix never saves

arithmetic operations, regardless of whether this is performed symmetrically

or asymmetrically, although it can lower storage requirements. In order to

demonstrate this, they cited the solution by Gaussian Elimination of the

Chapter 3. Literature Review and Selection of Methods 	 83

equations

Mx = k 	 (3.13)

where M is an N x N coefficient matrix and x and k are 1 x N vectors. Performing

a Gaussian Elimination on the first m rows of M can be regarded as finding a

partial LU decomposition of this matrix, and this can be written as

M=
	0 	U1 L 1 	

(3.14)
I 	0 z

where L 1 and U1 are m x m matrices, B is an N - m x m matrix and C is an

m x N - m matrix. Since M is irreducible, so too is every permutation of it and

hence R can never be the zero matrix. If the graph is not strongly connected,

then B = 0 is possible, and both storage and arithmetic requirements may be

reduced. Rose [78] defined a perfect elimination undirected graph to be one whose

nodes are ordered so that, on elimination of some node, x,, no new edges have to

be added to the graph so that all paths of length, 1> 1, which pass through x

in the original graph (V, E) become paths of length 1— 1 in the new graph,

Not all graphs may be ordered in this way and not every ordering of one which

can is a perfect elimination ordering.

This definition is important in the study of the solution of equation sets. Let the

rows and columns of the N x N symmetric incidence matrix, A(g), be ordered in

the same way as the nodes of (V, E). Then the elimination of the jth node from

g(V, E) corresponds to pivoting on the i' row and column of A(c). In general,

pivoting leads to fill-in, and this corresponds to adding new edges to the reduced

graph. In order to relate this fill-in to Gaussian Elimination, Rose [78] made use

of the following definitions.

Chapter 3. Literature Review and Selection of Methods 	 84

The deficiency of Vi E V, D(v 1), is defined as

D(v 1) = {(v,,vk) I v3 , vi € Adj(v1), vi gAdj(vk), vk gAdj(v,)} 	(3.15)

i.e. 	the set of edges whose addition to E would make the vertex

subset Adj(v1) U {v1} a clique. 	The elimination graph of Vk in c is
j=k

cr,, (V - U vk,), where
j=1

= (E - {(v,vi) I Vi e UAdi(v,)}) UD(v 3) 	 (3.16)
j=1 	 j=1

which is the graph obtained by deleting the vertex vk from the (k - i)uhi reduced

graph
k..1 and adding those edges in its deficiency. In figure 3.3, the graphs of

figures 3.2 (a) and (b), the first graph has a null deficiency, whereas the second

has D(E3) = {x4 }. The arc (E3 , X4), which is shown as a dotted line, is added

to the edge set when E3 is eliminated. According to Rose, the (possibly filled)

submatrix, A(c), which results from pivoting on the k 1 row and column of A

is the incidence matrix of the graph cVk. To see this one need note only that

pivoting on this vertex involves the deletion of each entry in the k" column of

A which lies beneath the k 1row, and the modification of the non-zero entries in

each affected row which lies to the right of the k 1 column. A row is affected if

and only if it corresponds to a node in the adjacency set of vj; each entry in the

row is affected if and only if it corresponds to a node in Adj(vk) or Adj(v1). If

some entry, (i,j), is affected such that vi E Adj(vk) but v, Adj(vk), then a new

non-zero entry is made in A. This corresponds to the creation of a new arc in

between node vi and node v; no such new arc results from the case v3 E Adj(v1),

v Adj(vk). Each new arc is a member of D(vk) and it is easy to see that each

member of D(vk) contributes a new arc to cVk. Thus cVk is the graph of the

submatrix of A which results from pivoting on the kthl diagonal element of A.

It follows that if F is the set of new arcs added to 9 as each node is eliminated

Chapter 3. Literature Review and Selection of Methods 	 85

(a)

(a)
Figure 3.3: Graphs for the Matrices of figure 3.2

in turn, i.e. F = U D(v,) then F corresponds exactly to the set of filled entries
j=1

which occur during vertex elimination on A. Further, cF(V, E U F) is the graph

of the matrix L + LT, where L is the Cholesky factor of A 2 [51]. It is important

to minimise the size of F so as to minimise both the storage requirements and

the number of arithmetic operations necessary at each iteration. Ideally IFI = 0

is sought, and Rose shows that if this is to be achieved, then it is necessary for

ç(V, E) to be the transitive closure of itself, i.e.

(v 1 , v) E E and (v1, vk) E E * (v1, vk) E E 	(3.17)

Any graph which displays this property is said to be chordal [11]. This term is

2 n.b. This refers to the logical Cholesky factorisation - no numerical values are assumed.
This generalises Rose's argument to the solution of linear and non-linear equations.

Chapter 3. Literature Review and Selection of Methods 	 86

used because each path in the graph of three vertices has a subpath between its

termini.

Haskins and Rose [39] showed that fill-in may occur in the same way in

unsymmetric matrix by relating this to vertex elimination in digraphs. They

demonstrated that if there is a path in a graph D(V, E) from some vertex v, to

another vertex v, which passes through one or more vertices which are ordered

before z' and vi,, then if (vi, v) V E, this edge fills in when z', the highest ordered

vertex on this path such that it is ordered before u, and v i,, is eliminated; the

edge is directed in the same way as the path. More formally, if there exists a

bijection

	

a: V4-4 {1,2,...,IVI} 	 (3.18)

which orders the nodes in 	then for any path, p,

(3.19)

which contains at least one node Vj1 such that

a 1 (v 1) < min(a 1 (v), a 1 (v)) 	 (3.20)

then either (z', zi,) E E or (V, E) is not a perfect elimination digraph. They

extend their analysis by providing three necessary conditions for the perfect

elimination condition on (V, E):

1. V Vi, z', E V at least one of these vertices, say u 1 is such that V 11k, VI E V

which separate vi and v, v, does not separate vk and vj.

2. V v 1 , vi € V at least one of these vertices, say v, is such that V vk, vi E V

which separate v1 and i's, every set r of n > 2 vertices contains a subset

Chapter 3. Literature Review and Selection of Methods 	 87

IF of n - 1 vertices such that any path from uk to vI through vi whose

elements are exactly those of r has a subpath from vk to hg whose elements

are exactly those of T.

3. For any set r of n > 2 vertices there exists a subset J1 of n - 1 vertices such

that any cycle on r has a cycle on T.

The authors conjectured that the first two of these conditions might be sufficient

to ensure that D(V, E) is a perfect elimination digraph, but Kleitman [50] showed

that this is not the case. The third condition is tantamount to saying that g(V, E)

must be chordal.

Rose and Tarjan [80] extended these concepts and produced an algorithm which

computes the fill-in for any ordering, and one which will find a perfect elimination

ordering for a digraph should one exist; each of these algorithms can be executed

in O(Nr) time, where there are N nodes and 'r arcs in the digraph. They also

presented an algorithm which, starting from any fill set, F, will reduce it and

reorder the digraph until it finds a minimal fill set, Fo ; this algorithm works

in O(N2 (r + IFI)) time. More theoretically, they showed that since there is a

polynomial transformation which converts the Satisfiability Theorem of Calculus

into the problem of computing the minimum fill-in for D(V, E), the latter problem

is NP-complete. Yannakakis [106] has provided a similar proof for undirected

graphs, based on Berge's observation [11] that any perfect elimination graph is

chordal. The problem of computing the minimum fill-in may be formulated as

a calculation of the minimum number of edges which must be added to G(V, E)

in order to make it chordal. He shows that the NP-complete Optimal Linear

Chapter 3. Literature Review and Selection of Methods 	 88

Rearrangement Problem is a reduction of this task'.

Schreiber [84] extended the analysis of vertex ordering in undirected graphs

by examining the structure of the graph which corresponds to the Cholesky

factorisation of a symmetric matrix A. He defined col(j) and next(j) for the

th vertex to be

C01(j) = {i > j I ii., 0 O} 	 (3.21)

next(j) = min{k I k E col(j)} 	 (3.22)

Obviously col(j) is the set of nodes ordered after j to which it is connected by an

arc in the filled graph, and next(j) is the lowest numbered such node. Schreiber

shows that, as a direct consequence of these definitions,

col(k) C col(next(k)) U {next(k)} 	
(3.23)

col(n) = 0

He uses these definitions to form the elimination tree, T(V, N(L)), for the filled

graph, where

N(L) = {(j, next(j)) € E 11 < 	n - 1} 	 (3.24)

This is an ordered tree rooted at v,, the last node in the ordering. If row(j) is

defined as

row(j) = {k <i I 1,i 	O}, 1 <j < n 	 (3.25)

i.e. the set of vertices whose removal effects the jtl node, then it can be seen that

Trow(j)u{ j } is an ordered tree rooted at node j. Further, col(j) is the set of nodes

on the path from the j node in T(V, N(L)) to the root of this tree. From this it

'An arrangement of the nodes in a graph G(V, E) is an ordering ir of the nodes within it. With
each edge e = (Y, w) E E in this graph is associated the value ö(e,ir) = (7r- '(V) - (ir'(w)),
and the cost of the arrangement is defined as c(7r) = F, e E Eö(e, ir). The Optimal Linear
Rearrangement problem is the question "For an integer k, is there an arrangement of the nodes
in (V, E) such that its cost c(7r) <k?".

Chapter 3. Literature Review and Selection of Methods 	 89

can be seen that orderings which minimise the depth and maximise the breadth

of the elimination tree tend to minimise the fill-in in the incidence matrix.

It is important to note that it is the structure of the elimination tree which

determines the fill-in during vertex elimination, not the number of spikes in the

incidence matrix. To show this Liu [58] followed the same line of reasoning as

Schreiber [84], and he demonstrated that the fill-in in a graph can be characterised

by the leaf nodes of its elimination tree. This result follows from the proof of a

theorem which states that vertex vj is a leaf in the row subtree rooted at vi if and

only if (v i , v,) E E and there is no descendent of v3 , Vk, such that (v 1 , vk) E E.

The same author [60] showed that the set of orderings which preserve the order

of the nodes in T(V, N(L)) is a subset of the set of orderings which preserve the

set of filled edges; this, in turn, is a subset of the orderings which preserve the

number of edges added to G(V, E). He uses this reasoning to show how sparsity

can be maintained when reordering some of the vertices in g(V, E).

No characterisation of directed graphs in terms of an elimination tree has

appeared as yet, but some progress in this direction has been made. Aho et

al. [1] define the transitive reduction of a digraph to be the smallest graph D1 t

which has the same transitive closure as D(V, E). V1t need not be a subgraph

of V(V, E), but it has the same number of nodes and its strong components,

each of which is a simple cycle, are comprised of the same vertices as those of the

larger graph; if there are one or more arcs between strong components in D(V, E),
these are represented by a single arc in V1t. Should D(V, E) be acyclic then V 1 '

is unique. Otherwise there will be more than one transitive reduction of V(V, E)
and the relationship between the transitive reduction and the transitive closure of

V(V, E) is the same as the relationship between the leaves of T(V, N(L)) and the

Chapter 3. Literature Review and Selection of Methods 	 90

structure of the filled undirected graph from which it it constructed. Sahni [81]

defines the minimal equivalent digraph of a digraph, V(V, E) to be its minimal

subgraph V2 which has the same transitive closure as D(V, E). He shows that

finding this subgraph is an NP-complete problem.

3.3.2 Symmetric Permutations

Harary [38] presented a technique for partitioning the incidence matrix which

uses the reachability matrix for a graph. He uses a slightly different definition of

this matrix to that given on page 69. In his terms, this matrix is the kt power

of the incidence matrix and its (i, j)th element is non-zero if there is a path of

length 1, 1 < k from node i to node j. If the incidence matrix of V has rank N

then the (N - 1)1h reachability matrix contains all of the paths which exist within

the graph. Each strong component can be found by checking along each row i to

see if for each non-zero intersection with a column j, (j, i) is also non-zero; the

set of all such non-zero entries defines the set of nodes which appear in the same

strong component as i. Having deleted each row and column which corresponds

to this strong component the search can continue; n.b. this does not order the

strong components in any meaningful way. In the worst case, i.e. each node is in

a different strong component, N(N-1) checks are necessary to identify them and,

if no packed form is used, (N - 1)N3 multiplications are necessary in order to

compute the reachability matrix.

A similar but different definition of the reachability matrix was used by

Himmleblau [43]. This author defined the non-zero entries of the k°' power of

Chapter 3. Literature Review and Selection of Methods 	 91

the incidence matrix with zeros on the diagonal to correspond to node pairs such

that there is a path of exactly length k between these nodes. The reachability

matrix is then the summation of each of these matrices from 1 to N - 1; the

final matrix has the same form as that of Harary [38] but Himmleblau defined

Boolean multiplication and addition differently. If R* is the above mentioned

sum then the set of non-zero entries in the i1h row of R*(R*)t contains all of the

nodes which are in the same strong component as i. Once again this does not

order the strong components of the graph.

Steward's algorithm [93] begins by finding a maximum transversal of A, the

incidence matrix of the equation set, and forming fl, the signal flowgraph of the

digraph based on the 'equation' nodes which represents the transversal. All of the

sources for this fiowgraph are eliminated, although none of the sinks is, and then

its loops are identified by a depth first search. Not all of the loops are identified

explicitly, but node j is collapsed into the supernode I if it is in a loop with any

vertex k E I (a supernode is simply a loop which is treated as a node). This

process is repeated until no new loops are found and the stack is then popped

with each supernode containing a strong component of fl. As we will see in § 5.2

these are also the strong components of V(V, E).

None of these algorithms is very efficient because the first two require several

powers of the incidence matrix to be evaluated and the second restarts each

search for a loop from the start of the graph. Perhaps the most popular method

is that due to Walker and Tinney [97], which Rose [78] called the minimum

degree ordering. This algorithm was developed for use with symmetric matrices

and it selects as the next node to be ordered that which has the lowest degree

in the current reduced graph; n.b. this is a symmetric version of Markowitz's

Chapter 3. Literature Review and Selection of Methods 	 92

[61] algorithm. Many authors have addressed themselves to improving the

performance of this technique and their efforts are reviewed by George and Liu

[35].

3.3.3 Asymmetric Permutations

Sargent and Westerberg [83] addressed the problem of partitioning within the

context of precedence ordering of the calculations in a process flowsheet. Implicit

in their approach is the assignment of a direction for each arc in the graph.

This is implicit because there is a natural direction associated with an arc in a

digraph which represents a chemical process, namely the direction of material

flow. Therefore, prior to use of this algorithm for ordering equation sets, a search

for a maximum transversal is necessary. They proposed a depth first search (DFS)

algorithm which selects an arbitrary start vertex and searches backwards along

the edges incident upon it in order to identify cycles of the digraph. When a loop

is encountered the nodes associated with it are grouped together and treated as

a single node; any edge which was incident upon one of the constituent nodes is

held to be incident upon the supernode and likewise those edges incident from

any of these vertices is incident from the group. Having encountered and formed

a supernode the search is continued as before. Should a new node be in a loop

with a supernode already on the stack then those nodes are merged, along with

any others between them on the stack.

If at some point in the search all of the incoming edges for a node have been

searched and it is found to be in no cycle with any other node then this node is

Chapter 3. Literature Review and Selection of Methods 	 93

popped from the stack (it must be at the top) and added to the list of strong

components. This is the case regardless of whether the vertex is simple or a

supernode. Should an edge from such a vertex to a node on the stack be identified

later no action is taken since such a path implies the existence only of a path,

not a circuit. These authors seek to permute the rows and columns within the

blocks of the incidence matrix which correspond to these strong components so

that they are in bordered block diagonal form. The borders of these blocks are

formed by minimising the weight of the spikes in each block using a dynamic

programming technique similar to that used by Westerberg and Edie [102]. The

amount of search within each block is minimised by the use of graph reduction

and an implicit enumeration technique.

Christensen and Rudd [16] proposed a similar scheme to that above, but they

allowed nodes to be permuted to the end of a sequence as well as to the beginning.

They too proposed a method of node merging to reduce the size of the digraph.

Forder and Hutchison [32] took a similar approach, but they enumerated all of the

cycles in the graph by a depth first search, and employed a complicated flagging

system in order to identify the first node in a strong component on the stack. The

blocks of the incidence matrix are generated in reverse order by this algorithm.

Each of the above algorithms has some theoretical merit but each is inefficient in

practice. The first two methods suffer from an excess of superfluous relabelling

whilst the third traces each loop in the graph which, although potentially useful,

is, as we shall see in § 3.4.3, also potentially very expensive. Johns [49] proposed

a method which obviated these problems but an even better solution was given

by Tarjan [94]. His DFS method maintains a path and a stack. Each node is

added exactly once to both structures and each edge is traversed at most twice.

Chapter 3. Literature Review and Selection of Methods 	 94

Thus the time complexity for this algorithm is O(N + r) where there are N

vertices in the graph and r edges. The strong components of the digraph are

identified by maintaining a pointer for each node which points to the lowest node

on the stack to which this node is connected. On backtracking, any node which

has its lowlink pointing to itself forms a strong component with all of the other

nodes which appear above it in the stack. Duff and Reid [24] have published a

Fortran implementation of this algorithm in which they use an improved method

of assigning the lowlink pointer. If some node v8 is the start vertex for an

arc which ends on a node v, which is below it on the stack, then rather than

assigning zi to the lowlink of v, the lowlink of vj is assigned to this value

directly. The same authors [25] compared this code with an implementation of

Sargent and Westerberg's [83] algorithm and found the former to perform better

in practice. Duff et al. [26] have proposed another amendment which improves

the performance of this algorithm on undirected graphs. This amendment and

other improvements to the algorithm are described in § 5.2.

An entirely different approach is embodied in the preassigned pivot procedure,

P3 , developed by Hellerman and Rarick [40]. This is an hierarchical partitioning

algorithm which is applied to the whole matrix, whether it is reducible or not,

and it requires the concepts of spiked columns, which was introduced in § 3.3,

and an active matrix. This is the section of the matrix which contains the rows

and columns which are candidates for the next pivotal, i.e. diagonal, position.

Initially this is the entire matrix, but the active section shrinks at each iteration.

In the first step, a search is made for a row, i, which has a single entry in some

column, j. Such a row is called a singleton, and this pair is moved to the first

position of the permuted matrix, and they are deleted from the active matrix.

This is called forward triangularisation and it is repeated on the active matrix

Chapter 3. Literature Review and Selection of Methods 	 95

until no more such intersections are located. At this point a similar procedure,

backward triangularisation, is performed in which any pair (k, 1) such that the

entry in column 1 is in row k is permuted to the last vacant entry in the ordering;

again this is repeated until there are no more candidates.

The remaining active matrix is either irreducible or its diagonal blocks are of size

greater than unity, and it is to be permuted to bordered block diagonal form. P3

requires a tally to be maintained of the number of non-zero entries to be found

in each row and column. This is necessitated by the desire to produce as many

row singletons as possible at each iteration. At each step, if the minimum row

count is greater than one, a spike column is transferred from the active matrix

to the border. The spike chosen is the column which intersects maximally with

the set of rows of minimum row count. In the event of a tie the column with the

greatest column count is chosen; if this fails to produce a single candidate the

choice is made arbitrarily from amongst the set of columns which satisfy the first

two criteria. If the minimum row count is one, and if i is the only row with this

count, then then row i and the column with which it intersects are ordered next.

If there are k> 1 rows with unit row count, and if all of these intersect with the

same column, then a diagonal block of size k is formed in the active matrix. The

first row of unit row count is paired with the column with which it intersects,

and this pairing is ordered first in the new block. The remaining k - 1 rows are

paired with the last Ic - 1 columns to be identified as spikes, and the complete

k x k block is removed from the active matrix and ordered in the first available

position in the new matrix.

Whenever a new pairing has been added to the new matrix the algorithm returns

to forward and backward triangularisation, and this process continues until

Chapter 3. Literature Review and Selection of Methods 	 96

the entire matrix has been processed. Removing spikes from the border and

adding them to diagonal blocks reduces the amount of fill-in experienced during

elimination, but it can lead to structurally singular diagonal blocks in matrices

which are not themselves structurally singular. Erisman et al [29] cite an example

due to Westerberg, a private communication, which exhibits this behaviour. This

example is shown in figure 3.4 where it can be seen that the 3 x 3 diagonal block

xx
X

I 	xx
I 	xx
I 	'xx:x

I 	xxxx
L_ 	xxxx

Figure 3.4: Westerberg's P3 Example

chosen by P3 is singular; swapping rows seven and eight shows that this matrix

is not singular. Erisman et al [29] have diagnosed the reason for this, and they

have prescribed a modification to the algorithm which corrects this fault. Their

algorithm, the precautionary partitioned preassigned pivot procedure, or F5 , is

described below.

Effectively P3 transforms an incidence matrix, A, into one, A, which is of bordered

block diagonal form. By bringing spikes back from the border into the active

matrix it produces subblocks along the diagonal of A, and these may be defined

hierarchically. Further, each spike extends at least as fax above the lading

diagonal as each of the others to its left. This property limits fill-in to those

rows in each spike below its first entry. P3 was used by the same authors to order

Chapter 3. Literature Review and Selection of Methods 	
0
 97

the rows and columns within the irreducible blocks found by the partitioned

preassigned pivot procedure, P4 [41]. In this algorithm a maximum transversal

is identified and some start node, v, is chosen randomly. All paths from this

node are traced and the set of all successors of v1 , Si, is found. This is the set

of all nodes which are reachable from v 1 . Similarly the set of predecessors of v,

i.e. those nodes from which vi is reachable, P8 is found. The intersection of these

two sets gives C1, the set of nodes in the same strong component as v8 . The set

P = P, - C1 i e set of all nodes which must lie in strong components which

precede C1 and 3 = Si - C1 is the set of all nodes which lie in strong components

which follow it. If V is the set of all nodes then V = V - P - - C1 is the

set of all nodes which lie in a disconnected portion of V(V, E). The algorithm is

repeated recursively on P, 3 and V.

Erisman et al [29] showed that structurally singular blocks can be produced by

P3 and P4 because of the way in which spikes are removed from the border and

used to form a diagonal block. As an example, when P3 tries to identify a fifth

pivot in figure 3.4, the minimum active row count is two and yet removing a

spike reduces three rows to singletons, each of which has its entry in thcsame

column. In this case, only the first two columns of the new diagonal block can

be guaranteed pivots, although fill-in may provide the third. This problem arises

because the last spike, i.e. column 7, was moved to the border when searching

for a previous pivot, and hence it was not essential that it contained an entry in

any of the rows in the 3 x 3 block. If the last spike removed from the border had

contained a non-zero in either the fifth or sixth rows, but not the seventh, then

row# swaps within this block would have given a structurally non-singular block

without destroying the overall structure imposed by P3.

Chapter 3. Literature Review and Selection of Methods 	 98

In order to obviate this difficulty Erisman et al [29] proposed that the size of the

diagonal block be bounded above by the minimum row count when the search

for a pivot begins. In this case, regardless of the number of row singletons which

are produced by the removal of the last spike, each row is guaranteed a pivotal

entry in the new block. In fact the new block must be entirely dense. This is

because only rows of minimum row count are retained in the search space when

a spike has been removed, and so each spike which has been added to the border

since the beginning of the search for a new pivot must contain an entry in each

singleton produced. Hence the effects of this modification to P4 are that every

diagonal block in the matrix is dense and, because P5 leaves some spikes in the

border which would have been moved forward by F4 , the border of the matrix

will be at least as large as that produced by the original algorithm, and possibly

larger. The authors show that fill-in must occur in the border to allow a pivot

for any row paired with a spike, but which has a zero intersection with it, and

hence P5 provides a stable factorisation of a non-singular matrix.

Lin and Mah [57] showed that structural singularity can be avoided by choosing

both a spike row and a spike column. Consider some block, A, in which a row

spike, r3 , and a column spike, c9 , have a zero intersection. Let r3 = [A, 0] and

c8t = [o, O]. Then elimination on A can be viewed as the matrix product EA = A,

i.e.,

A 1 	0 	A 1 o- 	I 	Aior

= 	 (3.26)
_AtA 1 	1 	A 0 	0 _AtA 1

If A is structurally nonsingular, and so too is A 1 , then the determinants of E and

A must be nonzero. Hence the determinant of A must be nonzero and thus so

too must be _AtAicr. Since A is defined to be structurally non-singular, and a

transversal has been identified for A 1 , these conditions have been satisfied.

Chapter 3. Literature Review and Selection of Methods 	 99

Using this result, the authors extended the ideas in P3 and P4 by trying to

minimise the size of the diagonal blocks in order to minimise fill-in. If ni is the

number of rows in the i1h diagonal block then they define the performance index,

P, to be
i=K

P = En, (3.27)

where there are K blocks and at each stage they seek to choose a spike row, r3 ,

and a spike column, c8 , so as to minimise P. The partitioning problem may then

be formulated as the integer programming problem

minP(r8 , c8)

r, c8 (3.28)

The authors present an exclusion theorem which greatly reduces the search

space for c8 and r8 at each stage. The algorithm starts by finding a maximum

transversal and applying P4 to partition the matrix; each block is placed on a

stack. At each stage a block is popped from the stack, a spike column is chosen

according to P3 and the block is forward triangularised. If this partitions the

entire block then the last row is the row spike; if not then a row spike is chosen

analogously to the column spike and the block is backwards triangularised. The

remaining subblock is precedence ordered and P(r3 , c3) is evaluated. This index

is minimised by searching for row and column swaps with the present row and

column spikes which reduce it. The only candidates for these row swaps are the

members of the minimum spanning row set, , which contains all of the non-zeros

- in the set of active columns which do not intersect with the spike row' r8 ; the

column candidates are defined similarly. When Pmjn has been found precedence

ordering continues until the block has been fully reduced.

This algorithm is complicated and computationally expensive. Since, as the

4 i. e. if 7?. is the set of all rows with entries in these columns then V C 1?. is the smallest
subset of these rows such that each column covered by 1?. is also covered by 1?.

Chapter 3. Literature Review and Selection of Methods 	 100

authors themselves point out [57], the measure of optimality that is used is

crude, they present two more simple criteria for spike selection. The first of

these restricts the search for column spikes to those which intersect with rows of

minimum row count and the second simply accepts the row and column spikes

chosen by P3 . All of these algorithms were shown to reduce fill-in and operations

count for a problem when compared with P4 . However, these improvements were

gained at the cost of a significant increase in the run time for ordering. Stadtherr

and Wood [90] reported a further development of the idea of spike selection.

They extended Lin and Mali's simplification by ignoring some possible column

interchanges and they presented two new algorithms, SPK1 and SPK2. The

former is similar to P3 except that spike selection starts by identifying the row

with minimum row count and pivoting in this row on the column which intersects

with it, which has minimum column count. All other columns which intersect

with this row are stacked as possible spikes, in order of decreasing column count.

The matrix is now forward triangularised with more columns added to the spike

stack as necessary. Should a zero row count occur at any time then a spike is

popped and assigned to it.

The second algorithm is similar to SPK1 but the tie breaking strategy is different.

In SPK1 if there is more than one row of minimum row count then the row for

which the sum of column counts is maximised is selected since this reduces the

degree of the nodes left in the graph by the maximal amount. In SPK2 the

row chosen is that for which column deletion leads to the maximum number of

minimum row counts. This is more likely to lead to forward triangularisation.

In summary, although P3 and its variants are very popular, both P3 and P4 can

lead to zero pivots. Erisman et al [29] prescribe a simple solution, F5 , which

Chapter 3. Literature Review and Selection of Methods 	 101

requires an amendment to the spike selection algorithm. Lin and Mah [57] show

that no zero pivot is possible, in a structurally non-singular matrix, if one chooses

both row and column spikes. They use this observation to develop a range

of partitioning algorithms, although these are inefficient, and their optimality

criteria are poor. Their approach was extended and simplified by Stadtherr and

Wood [90] who developed the SPK1 and SPK2 algorithms.

Soylemez and Seider [88] focused on the structural properties of the equations

rather than on that of their incidence matrix. They suggested that equations

ought to be arranged in order of increasing non-linearity and that symbolic

forward substitution method be used to recast the problem. When a set of

sufficiently non-linear equations has been identified they suggested that they be

solved as a block. Whilst this approach has some intuitive appeal it is of little

practical use because it takes no account of the numerical values of the variables

and, further, the classification of non-linearity is very crude.

A more sophisticated approach was proposed by Stadtherr et al. [89] who

introduced the concept of an allowable subset. This is a set of equations which

can be solved exactly, e.g. a pair of linear or quadratic equations, without

resort to iteration. They contended that such equations might occur when the

values of some variables became known or assumed (torn) when the equations

are precedence ordered. They presented an algorithm which attempts to identify

minimal subsets of equations and so check these for 'allowability'. On recognition

of such a subset it is permuted to the next vacant entries at the front of the matrix

and partitioning continues. Westerberg [101] has warned against this approach

(and indeed against hierarchical partitioning in general) since, in his experience,

it produces linearly dependent reduced subsets within a significant number of

Chapter 3. Literature Review and Selection of Methods 	 102

structurally nonsingular problems.

Perhaps the most widely used permutation algorithm is that due to Markowitz

[61]; this is popular with those who solve linear equations. At each iteration a

pivot is chosen which satisfies,

min C=(p1-1)(y,-1) 	
(3.29)

s.t. 	(i,j) 0 0

where p1 is the number of non-zeros in row i and -ji is the number of non-zeros in

the j column. This is a strategy of local minimisation of fill-in and C is used

rather than C' = p,'yj in order to force the selection of row and column singletons.

This method is used as the basis of Duff's MA28 algorithm [25] and it has been

shown to be very successful in practice.

3.3.4 Summary

Rose and Bunch [79] showed that partitioning both reducible and irreducible

matrices can be advantageous, and Rose [78] demonstrated how fill-in is related

to node order in a symmetric graph; Yannakakis [106] proved that finding the

minimum amount of fill for any graph is an NP-complete problem. Haskins and

Rose [39] attempted to prepare the ground for similar results on digraphs, which

so fax has proved fruitless, and Rose and Tarjan [80] showed that computing the

minimum fill-in for a directed graph is NP-complete. Schreiber [84] demonstrated

how fill-in in undirected graphs is determined by the ordering of the nodes, and

his results were extended by Liu [58], who proved that fill-in can be characterised

by the leaves of an elimination tree.

Chapter 3. Literature Review and Selection of Methods 	 103

Harary [38] and Himmleblau [43] both used a symmetric matrix multiplication

technique to partition an incidence matrix; both of these methods is

algorithmically inefficient. Steward [93] adopted a more efficient approach in

which he found a maximum transversal for the matrix, and then ordered it using

a depth first search. Even more successful, and considerably more popular, is the

minimum degree ordering algorithm due to Walker and Tinney [97] which orders

next the node of minimum degree in the signal flowgraph of the incidence matrix.

Sargent and Westerberg [83] were the first authors to present a depth first search

method which partitions the rows and columns of a matrix asymmetrically. Both

their method and that of Christensen and Rudd [16] are effective but each suffers

from a surfeit of relabelling. Forder and Hutchison [32] presented a different

approach in which each cycle in the digraph which represents the asymmetric

matrix is identified; this search is very expensive. Johns [49] described a much

more efficient depth first search, but even better was that due to Tarjan [94].

This algorithm has a time complexity which is linear in the number of nonzero

entries in the matrix, which is the lowest possible theoretical bound for this task.

Hellerman and Rarick [40] took an entirely different approach to partitioning a

matrix in which they did not attempt to identify its block triangular structure.

Rather they tried to minimise the number of 'spikes' in the matrix, columns which

had superdiagonal non-zero elements. They extended their ideas, Hellerman

and Rarick [41], by applying the same technique to the diagonal blocks of a

lower triangularisation of a matrix. Their techniques have enjoyed some success,

but they are prone to producing zero pivots. This problem was diagnosed and

obviated by Erisman et al [29] by a modification to the number of spikes which

can be reintroduced to the active matrix when zero rows are identified. Lin

Chapter 3. Literature Review and Selection of Methods 	 104

and Mah [57] also offered solutions to this problem, but their algorithms are

highly inefficient and it is based upon a questionable optimality criterion, as they

themselves indicate. Stadtherr and Wood extended their analysis and produced

two algorithms, but neither of these has the theoretical rational of Hellerman

and Raricks' techniques. Yet another, and much simpler, approach was taken

by Markowitz who's algorithm minimises the product of the row and column

count for the next pivot to be chosen. This technique has been in vogue for a

considerable number of years.

3.4 Methods Of Decomposition

Whilst the chemical engineering literature is replete with decomposition methods,

it seems that considerably less attention has been paid to this subject in the wider

field. The techniques available can be classified into four different groups

Ad hoc Strategies.

Graph reduction methods.

Explicit loop breaking techniques.

Depth first search methods.

This classification is inexact in that some decomposition algorithms contain

elements of more than one approach. In the following discussion both node and

Chapter 3. Literature Review and Selection of Methods 	 105

edge tearing strategies will be described, and each of the above groups of methods

is dealt with in turn.

3.4.1 Ad hoc Decomposition Methods

Lee, Christensen and Rudd [53] proposed a minimum node tearing strategy based

on an exhaustive search. Their argument was based on the observation that the

minimum number of tears necessary is bounded below by the minimum in-degree

of an 'equation' node in a strongly connected digraph. Let this minimum be

i + 1. In their method all possible combinations of c tear nodes are tested to

see if they decompose the digraph entirely. If they do, success is reported and

the search is discontinued. If failure is encountered then an attempt is made

to find a tear set of size x + 1 and so on until a node separator set for the

digraph is determined. In its most basic state this is an expensive algorithm

which is prone to combinatorial explosion. It is possible that some improvement

on performance might be achieved by ordering candidate tear sets according to

the relative success of their ancestors, or by using a branch and bound search

method. No such extensions to this technique have been reported.

Himmleblau [43] and [44], presented two separate decomposition algorithms. In

the first [43] he proposed tearing the edge between the first vertex vi E V in

the digraph D(V, E) and v1 , the highest ordered node to which it is connected.

Following this the nodes in the digraph are reordered and the process is repeated

until no more cycles remain. This algorithm has the advantages of simplicity

and low complexity but it ignores entirely the structure both of the incidence

Chapter 3. Literature Review and Selection of Methods 	 106

matrix for the problem and the equations themselves. In his second algorithm

[44] the nodes are grouped according to their degree before an attempt is made

to determine a node separator set; as in [53], if the minimum degree of any node

is Ic +1 then the minimum possible number of tears required is ic. The algorithm

starts by selecting a node from the set of minimum degree and ordering this first.

Nodes of equal degree are appended to the ordered set in turn such that only

one new node is connected to that just added. If no such node can be added

then another node of higher degree is ordered next if this is connected to only

one node not in the ordered set. If no such node is found then a new sequence is

started; this introduces at least c new tears. This process continues until all of the

nodes of minimum degree have been ordered whereupon the ordering continues

using the new set of nodes of least degree and so on until the entire graph has

been ordered. Himmleblau does not indicate how the ordered sequences should

themselves be ordered but it would seem appropriate to arrange them in the order

in which they were generated. It is difficult to assess the algorithmic complexity

of this approach, but the possible requirement for an extensive search for the

next node to be added to a sequence implies that it is unlikely to be a low order

polynomial.

Liu [59] provided an algorithm which starts with some separator, S, which

separates (V, E) into two subgraphs, U and V, and then removes nodes from this

separator until it is of minimal size. This is achieved by using a flow technique

which identifies a subset, So c S, which has an adjacency set in either U or V

which is smaller than So itself. He defines an adjacency set in a subgraph, ', for

the set of nodes, S07 as

Adj ç,(So) = {v1 I v 2 E Adj(v 3),v, E S0} 	 (3.30)

and he notes that if some separator S. separates c(v, E) into two subgraphs U

Chapter 3. Literature Review and Selection of Methods 	 107

and V, and if Y C S, then S = (S - Y) U Adj(Y, U) separates U - Adj(Y, U)

and V+Y. If I Adj(Y,U) 1< I Y Ithen clearly I S 1< I SI. An adjacency set

like Y is identified by establishing a maximum matching, M, between S and the

larger of U and V, say U. In this case, if there is a set of nodes S € S such that

no z.' € S is a terminus of an edge in M, then by definition I Adj(S, U) I < 13 I,
and so (S -5) U Adj(S, U) is a smaller separator for the graph than S. If such a

subset is located it is exchanged with S and the process continues. Liu does not

provide any complexity measure for this algorithm, but he notes that the minimal

separator set is sensitive to the original choice of S. He notes that the minimum

degree ordering [97] provides a good starting point, and that in this case most of

the computational effort is expended in obtaining this ordering. Although it was

developed for use with undirected graphs, Liu's algorithm is equally applicable

to those which are directed.

3.4.2 Graph Reduction Methods

Graph reduction methods seek to reduce the search space for tear sets by

eliminating some, or all, of the candidates which can never lead to optimality,

however this is defined. In general this is achieved by merging or deleting edges of

the digraph and it is a technique which enjoys considerable success, particularly

when the edges of the graph are weighted. These weights are assigned according

to some predefined criria. For instance, in process simulation, an edge might be

assigned a weight which is equivalent to the number of variables associated with

the process stream which it represents. In the equation solving context, a weight

might describe the desirability of solving an equation for a particular variable.

Chapter 3. Literature Review and Selection of Methods 	 108

Christensen and Rudd [16] pointed out that if parallel edges occur between two

nodes then either neither or both must be members of the tear set. Based on this

observation they proposed that such edges be combined to make one simple edge

which, if the edges are weighted, should be assigned a weight equal to the sum

of its constituents. Further, they cite the reduction of two-way edges proposed

by Sargent and Westerberg [83] which removes such a pair from the digraph and

adds one of them to the tear set if the edges are unweighted; should they be

weighted then the pair is replaced by a single directed edge which is assigned the

difference between their weights and the edge of lower weight is added to the tear

set. Christensen and Rudd also introduced the concept of the ineligible edge. Let

u and v be two nodes in V(V, E) connected by a single edge, e, and let the weight

of this edge be w,. If the sum of the weights of all of the edges incident upon u is

w+ and those incident from v is w- then if either w+ :5 w,,, or WV- w, edge

e can never be a member of a tear set of minimum weight. This is so because it is

always the case that some combination of either the edges incident on u or those

incident from v may be torn to the same effect as e but with a lower weight.

Christensen and Rudd [16] used these reductions and the concept of index nodes

to find a minimum weight tear set. They defined an index node to be a vertex

each of whose incoming or outgoing edges, or both, is eligible. The first step in the

algorithm is the reduction of the digraph using the concepts defined above. If the

whole digraph is reduced then the minimum weight tear set has been identified.

If an irreducible digraph remains then an index node is torn which minimises the

increase in the weight of the tear set. The process of edge reduction and node

tearing continues recursively until the whole digraph has been reduced. The

node tearing strategy which is employed takes into account only the local effect

of tearing a vertex, i.e. it increases the weight of the tear set by the minimal

Chapter 3. Literature Review and Selection of Methods 	 109

amount possible at each iteration, and so this algorithm cannot guarantee to

identify a global minimally weighted tear set.

Figure 3.5: An Arbitrary Bipartite Cyclic Graph

As an example of graph reduction, consider figure 3.5, in which there is one pair

of parallel edges, and two pairs of two-way edges. Using the graph reduction

techniques this is reduced to figure 3.6 and three tears are necessary 5 .

Figure 3.6: A Reduction of figure 3.5

5 n.b. either (a, d) or (d, a) could have been removed from figure 3.5, and similarly either
(6, d) or (d, b) could have been added to the tear set

Chapter 3. Literature Review and Selection of Methods 	 110

Another graph reduction technique is due to Barkley and Motard [9]. Their

algorithm operates on an irreducible signal flowgraph, fl(V, E), and so all of the

sources and sinks of D(V, E) are removed as a first stage. Next fl is reduced

to a set of what the authors call intervals. Each of these is a tree, and the set

constitutes a spanning forest for fl(V, E). These trees are identified by use of

the concept of a predecessor. If any node vi in fl has only one input edge, and

that edge is directed from v 1 , then v3 is said to be the predecessor of v. In this

case vi is deleted from fl and added to the interval which is 'headed' by this

node; each edge which was incident from v i to some other node vk is removed and

replaced by an edge (v,, Vk) in the reduced signal flowgraph. Should some node

vi be identified as the predecessor of a node Vm which heads some interval, then

v1 becomes the new header node for this interval.

This process continues until either all of the nodes in the flowgraph are contained

in a single interval, in which case the header node is the only tear variable, or

there are no more predecessors in the current subgraph. In the latter case a check

is made to see if there are any self loops in fl, i.e. if any node vi is a predecessor

of itself. Any such loop must be torn since this is the only way in which the

digraph can be rendered acyclic. Should any self loops be identified then that

which has the highest degree is torn. Ties are broken arbitrarily and the process

of interval reduction is restarted.

Two other conditions may be met. If there are no predecessors or self loops in a

reduced signal flowgraph then the set of node pairs, N, is found. This is defined

on the vertices of g(V, E) such that

N= {(v1,v,) I Vi, Vj E V,(v 1 ,v,),(v1,V i) E E} 	 (3.31)

Chapter 3. Literature Review and Selection of Methods 	 111

and exactly one node from each element of H must be torn since this is the only

way in which these minimal cycles can be broken. If H is non-empty then that

node which appears in more pairs than any other is torn, since this minimises

the number of tears. Should there be two or more nodes in a maximal number

of pairs then the node from this set which has highest degree is torn; if this

does not resolve the conflict then a tear node is selected arbitrarily from the

set of candidates with the highest degree. If none of the above conditions are

encountered then a tear node is chosen either according to degree or arbitrarily.

In contrast to Christensen and Rudd's technique [16], Barkley and Motard's

method reduces the graph of figure 3.5 to that shown in figure 3.7; it can be

seen from this graph that only two edges need be torn to decompose the entire

graph. An analysis of the properties and the complexity of this algorithm appear

Figure 3.7: The Barkley Motard Reduction of figure

in § 5.2.

Murthy and Hussain [66] proposed a similar approach to that of Barkley and

Motard. They assigned a weight to each edge of the digraph and identified the

net 'flow' through each node, i.e. the difference between the sum of the weights of

the edges incident upon the node and the sum of the weights of the edges incident

Chapter 3. Literature Review and Selection of Methods 	 112

from it. In their algorithm, any node which had zero or negative flow through it

was replaced by its predecessor and the graph was further reduced by using the

original predecessor relationship and cutting all self loops. This approach may

well tend to minimise the size of the tear set, but there is no guarantee that it

will reach or even approximate the global minimum.

3.4.3 Explicit Loop Breaking Strategies

Upadhye and Grens [98] formulated the decomposition problem as the set covering

problem so that any tear set chosen would be nonredundant (see § 2.6.1). Taking

this approach necessitates the use of a cycle matrix, C, such that C1 . = 1 if the
th node appears in the j1h cycle. If there are N nodes and M cycles in (V, E)

and if x, represents the j" node, then the set covering problem can be posed as

3=N i=M

min E
3=1 i=1

s.t. E C,,x1 ~ 1,
3=1

x1 = 0 or 1,

i=1,2,...,M (3.32)

where the first constraint ensures that each cycle is broken at least once. The

authors give no advice about the method used to solve this problem, and it is

possible that identifying one which is both successful and efficient is problematic.

For the set partitioning problem each loop would be broken exactly once and so

the > condition would be replaced by equality. The partitioning problem is the

preferred formulation, but it may have no solution in many cases, and it is likely

that it is always difficult to solve.

Chapter 3. Literature Review and Selection of Methods 	 113

The first step in any algorithm which solves the decomposition problem in this

way is the identification of all of the circuits in a digraph. Tiernan [96] attempted

to do this by searching for all of the circuits which exist in each subgraph of

g(V, E) . In his method the search starts with the initial vertex in the digraph

and a path is constructed through the members of V. If any attempt is made to

extend the path by adding the initial vertex, a circuit has been identified and so

it is recorded. When all of the edges from a node have been searched it becomes

blocked so that no further search is made through this node during the current

phase. When a node becomes blocked the search backtracks to the node which

was responsible for placing it on the path and the search continues until the

initial vertex is removed. At this point the next vertex is used to start the path

and all of the other vertices become unblocked. The search continues as before

except that any attempt to extend the path by adding a vertex which was used as

the start vertex in a previous phase is illegal; this ensures that all of the circuits

are traced only once. Whilst this algorithm will identify all of the circuits in a

digraph it will examine (N - j)! paths for the complete digraph on N

vertices.

A more efficient algorithm is that due to Weinblatt [100]. In this case is reduced

to an irreducible subgraph V and each arc of this graph is searched only once.

As in Tiernan's method [96], a path is maintained and a depth first search is

performed on D', but in this case a vertex is added to the path once only. Should

an arc exist from the vertex at the end of the path P to any already on it then

that cycle is recorded. When all of the arcs from a vertex vi have been searched

it is removed from P. Should an earlier vertex Vk on P be connected to vi then

each circuit C, already found to contain vi is examined to see if portions of it and

any other circuit can be combined to form a new set of circuits C' which contain

Chapter 3. Literature Review and Selection of Methods 	 114

vk or any vertex before it on the path. It is difficult to assess the computational

complexity of this algorithm but the examination of previously identified circuits

is very costly.

Tarjan [95] presented an algorithm for identifying the elementary cycles of a

digraph which is linear in the number of circuits, but which has a worst case

time complexity which is exponential in the number of vertices. It uses a depth

first search which starts from each vertex in turn and a circuit is detected by an

attempt to extend the path by placing the current start vertex on the stack. Like

Tiernan's algorithm [96] this circuit avoids retracing circuits by never exploring

an arc whose terminus is a vertex numbered lower than that of the initial vertex

on the path. Tarjan's algorithm derives its efficiency from the use of a flagging

system which avoids searching paths which are known a priori to be circuit free.

Each time a vertex, v, is added to the stack it is 'marked'. When it is removed,

this mark is removed if a circuit has been detected through it; if no such circuit

has been found then the node remains marked. If subsequently some node, u,

below it in the stack tries to place it back onto the path then this flag is inspected.

If v is still marked then no new circuits can be traced through it and so the next

member of u's adjacency list is inspected; otherwise a new set of elementary

circuits may have been detected.

No linear or low polynomial time algorithm for tracing circuits has been reported.

Having identified the cycles which have to be torn, the next step is to decide

on the set of nodes or arcs which must be removed in order to tear them. Lee

and Rudd [54] provided an algorithm for this which works by identifying those

arcs which must be torn and choosing the others so that either the size or the

Chapter 3. Literature Review and Selection of Methods 	 115

weight of the tear set is minimised. Their algorithm is based on the following

observations:

All self-loops must be broken and the arc added to the tear set. In general

these self-loops will occur as a result of a graph reduction and they manifest

themselves as a single row entry in the cycle matrix. If column k is the single

entry in a some row i, then arc ek is called an essential arc.

If arc ei appears in every loop in which node ei appears and if wj, the weight

of arc e1 is less than or equal to w1 , the weight of arc e3 , then e3 can never

be selected as a tear stream in preference to e. Arc e1 is said to be strictly

contained within ei and it is deleted from the loop matrix. This definition

can be extended to allow an arc to be contained within a set of others. If

the arcs are not weighted then the condition is relaxed so that all that is

taken into account is loop membership; this is called containment.

These authors form the loop matrix for V(V, E) and they use these rules to reduce

it as far as possible. The next step is the formation of the disjoint set of arcs for

each cycle, i.e. the set of arcs which do not appear in the loop. Clearly, if arc e

does not appear in cycle C, then this loop can never be broken by tearing only

the i' arc. A tear set of minimum size is the smallest set whose members cannot

be generated as a subset of any disjoint set and which covers each cycle in the

graph. Lee and Rudd present some rules for restricting the search space for these

sets, but their arguments seem to be based on an ability to inspect the initial

reduced cycle matrix by eye. They present a version of the algorithm which finds

a tear set of minimum weight, but this too requires a large search. In each case a

tie breaking strategy based on the number of loops in which an arc occurs is used;

Chapter 3. Literature Review and Selection of Methods 	 116

this removes the guarantee that any tear set is of minimal size or weight. Forder

and Hutchison [32] used a similar method to Lee and Rudd, but they allowed the

user to select some tears a priori, based on physical intuition or experience. In

this case the optimisation of the tear set is constrained.

Pho and Lapidus [73] used a signal fiowgraph to determine the edge tear set

of minimum weight for the corresponding digraph. They used the concepts of

essential arcs and strict containment described above and they introduced the

analogous idea of row containment. Here, if each arc in cycle C3 appears in some

other cycle Ck then row k of the cycle matrix can be removed since any tear

which breaks C5 must also break cycle k. The first step in the algorithm is the

reduction of the cycle matrix as fax as possible, using the concepts above and

removing self-loops. If this fails to tear all of the circuits then the set of two way

edges is inspected (see § 3.4.2). If some arc ei is involved in two way edges with

the arcs in the set SN = {ei , e2 , . . , CN}, then either ej or each member of SN

must be torn. If the combined weight of the arcs in SN is less than that of e,

then each of these is torn; otherwise ei belongs to the tear set. If some cycles

remain unbroken after the reduction of two way edges then a branch and bound

method is used to minimise the weight of the remaining tears.

Although it is not a formulation of the set covering problem, Montagna and

Iribarren [63] describe a similar iterative procedure which transforms the original

digraph into one which is undirected, and then defines a new direction for each

of the arcs such that the tear set for the new digraph is of either minimal weight

or size. First all of the cycles in the directed graph are identified. Next each arc

e2 has associated with it two variables, x31 and x,2 , which are used to determine

the orientation of this arc in the final graph. At the solution, exactly one of

Chapter 3. Literature Review and Selection of Methods 	 117

these variables must be one and the other zero. They formulated this problem

in a flowsheeting environment and they interpreted x 31 to mean that information

flow was in the direction of material flow through the process; in the equation

solving environment this would be interpreted as the original relationship holding

between an equation and a variable. If the weight of the i'' arc is p,, and if pj is

one if e3 is torn, and zero otherwise, the minimisation of the weight of a tear set

may be formulated as the integer program

mm

s.t. x,1 +x,2 =l j=1,2,...,M 	 (3.33)

x=Oor1 	i=1,2

where there are M arcs in the graph. To find the tear set of minimum size each

weight is set to one. This integer program is solved within constraints which arise

from the necessity to tear each loop in V(V, E) at least once, so that each arc

can have a unique direction and each node be correctly connected 6 .

The solution to this integer program may direct some of the edges of the new

digraph so as to form new cycles and so the program must be reformulated

and solved repeatedly until no new circuits are encountered. As evidence of the

efficacy of this method, the authors present a new solution to the Cavett [15]

problem which has only one torn edge. However, they give no indication of the

difficulties involved in solving the integer program. Whereas a global solution to

this program is a minimum tear set for the digraph in question, there may be

no guarantee that such a solution will be found. Further, no report is given of

the difficulty of setting up the constraints in this formulation, and it may well be

that this requires a significant amount of work. Thus, although their work is of

6 e.g. a countercurrent heat exchanger must have two inputs and two outputs whereas a
mixer has more than one input but only one output.

Chapter 3. Literature Review and Selection of Methods 	 118

considerable theoretical interest, it is unknown whether Montagna and Iribarren's

[63] approach is likely to be of any practical use.

3.4.4 Depth First Search Decomposition

Motard and Westerberg [65] extended the concept of Upadhye and Grens's [98]

decomposition families by defining an exclusive tear set (ETS) to be one which

tears each loop in D(V, E) exactly once. They proved that if and only if such

a tear set exists then the nonredundant decomposition family of Upadhye and

Grens is unique, and that each member of it is an ETS. In this case the circuits

in the digraph can be ordered as a tree and each ETS can be generated in turn by

using the replacement rule round each cycle. The authors presented an algorithm

which finds an ETS for a digraph if one exists but, if it does not, it generates a

tear set which minimises the maximum number of times that any single circuit is

broken; amongst the tear sets of minimum multiplicity that of minimum weight

is chosen.

The algorithm operates on the edges and cycles in the digraph. Each edge has

assigned to it a weight and an edge efficiency, which is the number of loops which

will be broken per unit weight of the edge; this is not necessarily a whole number.

The edges are ordered according to their efficiency and weight, those of highest

efficiency first and, within a given level of efficiency, those of lowest weight first.

A depth first search of these ordered edges is used to find the tear set. At each

stage the next edge in the ordering is added to the current tear set until all of

the loops have been broken. At this point the weight of the tear set is calculated

Chapter 3. Literature Review and Selection of Methods 	 119

along with its multiplicity, the maximum number of times that a cycle has been

torn. If the multiplicity of this tear set is lower than the current minimum, or

if they are equal but its weight is lower, then this tear set replaces the previous

best. Regardless of whether the current tear set is currently optimal or not, the

last edge added to it is then removed and the next candidate is added.

In order to prevent forming and checking each possible tear set for optimality,

Motard and Westerberg [65] provide an implicit enumeration technique which

minimises the search space. If some edge, e, cannot be added to a tear set

without violating the optimality conditions then this edge is rejected and the

next candidate is checked for eligibility. The authors provide an example where

this branch and bound technique works well. However, it is not clear that theirs

is a practical example and so no conclusions can be drawn as to its practical use.

It is clear, however, that complete enumeration would be prohibitively expensive

for all but the smallest of problems.

Cordoba [17] has devised a linear time algorithm which identifies a nonredundant

tear set for a digraph. It is based on Tarjan's depth first search algorithm [94].

If during the search a back edge from u, the node at the top of the stack, to v,

some node below it, is encountered, then this edge must be the last in a cycle

which is rooted at v. If the edge to be torn in a cycle is selected always to be the

last, then the tear set produced must be nonredundant, although no statement

can be made about its minimality. If a forward edge to some node previously on

the stack is encountered, then no action is taken. No action is necessary because

the only new cycles which can be traced through this edge must be subcycles of

those already found and so, since the last edge in each cycle is torn, they must

have been broken already.

Chapter 3. Literature Review and Selection of Methods 	 120

3.4.5 Summary

The ad hoc strategies espoused by the pioneers of decomposition strategies were

inefficient in the amount of effort required to identify a solution, and they involved

no conditions on optimality. Sargent and Westerberg [83] provided a better

approach by introducing the concept of graph reduction. By unifying parallel

edges and replacing each circuit of two edges with a single edge, their technique

can reduce the search space for a solution considerably. Christensen and Rudd

[16] augmented this strategy by finding a minimum weight edge set which spans

the cycles in a digraph. A tear edge of minimum weight is chosen from this set

and the digraph is reduced; this process continues until no more cycles remain.

This approach guarantees a local minimisation of the weight of a tear set, but

this does not imply that this is a global minimum. Barkley and Motard [9] also

described a graph reduction technique, but this makes use of a spanning forest of

the signal fiowgraph of the original directed graph. It identifies all cycles in the

flowgraph which are of length 1 < 2 and tears these accordingly. However, any

cycle which is longer than this is torn in an arbitrary fashion. Hence this cannot

guarantee that the tear set which it produces is of a minimum size. Murthy and

Hussain [66] employed a similar technique on the original digraph, but whilst

their rules are simpler and less costly to implement, so too they are less rigorous

and there is no guarantee of nonredundancy.

Perhaps the most elegant formulation of the tearing problem is as the set covering

or partitioning problem, but this can be difficult to solve. Lee and Rudd [54]

developed a similar approach in which a minimum weight cover is found for

the cycles in a digraph, and a minimum weight tear set is identified using a

combinatorial method. Once again no optimality can be guaranteed because the

Chapter 3. Literature Review and Selection of Methods 	 121

technique involves an arbitrary tie breaking strategy. The same criticisms can

be made of Forder and Hutchison's [32] algorithm which is closely related to

that of Lee and Rudd. Montagna and Iribarren [63] reported another integer

programming formulation which is based on the cycle structure of the digraph.

The success of their formulation is at the mercy of the solution method used,

but it is likely that identifying a tear set will always be an expensive task, and

manipulating a problem into the desired form is very difficult.

Motard and Westerberg [65] defined an exclusive tear set to be one which tears

each cycle in a digraph exactly once. They provided an algorithm which identifies

such a tear set if it exists and, if not, one which minimises the maximum number

of times that any cycle is broken. This is a desirable goal, but their technique is

based on a combinatorial method which may be prone to explosion. A much more

efficient approach is the linear time algorithm devised by Cordoba [17]. This is

based on the depth first search method of Tarjan [94] and, whilst it makes no

attempt to produce a tear set of minimal size, it will always identify one which

is nonredundant.

It has been shown that many of the effective techniques available for decomposing

digraphs are inefficient in their exposition, or prone to combinatorial explosion.

The only definite condition on optimality for a tear set is that it should be

nonredundant, but, from a pragmatic point of view, it is desirable to minimise its

cardinality. Using these criteria it appears that the graph reduction method for

producing a nonredundant tear set of minimum size due to Barkley. and Motard

[9] is the best available.

Chapter 3. Literature Review and Selection of Methods 	 122

3.5 Conclusions

It has been demonstrated that it is difficult to define any measure of optimality

for the selection of an output set for a given problem. Given this, the best method

to be used is that which has the best worst case time complexity; this is Dinic's

algorithm [20]. No such problem exists for matrix partitioning, however, and the

most efficient algorithm is that due to Tarjan [94]. These algorithms have been

developed for use in the mathematical modelling software, and they are described

in § 4. The provision of optimality criteria for a decomposition strategy is as

troublesome as that for an output set, but it is known that nonredundant tear

sets are likely to be more efficient than those which are redundant. Cognizant of

this it was decided that the best algorithm available for decomposition was that

which identified a nonredundant tear set of minimal size and which did so in a

relatively efficient way. Barkley and Motard's algorithm [9] best satisfies these

criteria, and its use is described in § 5.

If we take in our hand any volume; of divinity or school
metaphysics, for instance; let us ask, Does it contain any
abstract reasoning concerning quantity or number? No.
Does it contain any experimental reasoning, concerning
matter of fact and existence? No. Commit it then to the
flames: for it can contain nothing but sophistry and illusion.
David Hume, An Enquiry Concerning Human
Understanding

Chapter 4

Matching and ordering Variables and
Equations

4.1 Introduction

The arguments for finding an assignment for an equation set, and also for

partitioning it, were seen in § 2, and methods for achieving these ends were

discussed in § 3. It was decided that, in the modelling software, an assignment

for the equations would be determined by using a modified version of Dinic's

algorithm [20], and that, following this, these equations would be partitioned

with Tarjan's depth first search procedure. This order is vindicated in § 4.2,

where so too it is shown how these algorithms can be used to find a solvable

subset of equations from one which is initially overdetermined, and in particular

123

Chapter 4. Matching and ordering Variables and Equations 	 124

how they can be used to replace a redundant equation in a set; the pertinence of

these results is demonstrated in § 6.7. A proof of the applicability of maximal flow

algorithms to the assignment problem appears in § 4.3 along with a statement of

the improved version of Dinic's algorithm. We turn our attention to partitioning

in § 4.4, where Tarjan's algorithm is presented and interpreted within the context

of equation solving. A short summary of the conclusion drawn from the chapter

appears in § 4.5.

Four algorithms are presented in this chapter. Each is stated as a procedure in

pseudocode which is a fictitious computer programming language. Only the main

operations are shown in order to maximise clarity of presentation. Further, code

is shown for only the most important procedures.

4.2 Analysing an Overdetermined Equation Set

4.2.1 The Order of Analysis

Let g(V, E) be the undirected bipartite graph which describes a square equation

set f(x) for which no assignment has been found. It was explained in § 2.4,

that the determination of an output set for 1(x) transforms (V, E) into a

directed bipartite graph D(V, E), and, as is shown in § 2.5, identifying the strong

components of this digraph corresponds to partitioning the equation set into a

computational sequence. Theorem 2.2 states that the strong components of this

Chapter 4. Matching and ordering Variables and Equations 	 125

digraph are independent of the assignment used to form it from (V, E); thus the

structure which results from partitioning an equation set once an output set has

been determined is independent of that output set. Partitioning an equation set

before an assignment has been found identifies the components of g(V, E), which

may not be the same as the strong components of D(V, E). Hence, if partitioning

precedes assignment, a further analysis of the newly directed components of

g(V, E) may be necessary in order to identify its finest grained structure. For

this reason, it is better to assign and then partition.

4.2.2 Finding the Minimal Equation Subsets

Any physical problem, II, has associated with it a set of equations, 'I', which

describe it. These equations may be mass and thermal balances, physical and

chemical equilibrium relationships, equations of state, etc. In general there will

be more of these equations than are required in order to model II; some of them

may conflict and others may be extraneous. Let the set of all of the variables

which appear in these equations be & Then the equation set iIi() may be

represented by the undirected bipartite graph '(V', E'). We will show here how

any instance of a generic problem is modelled by some equation set f(x) such

that f g 'I' and x , and that (V, E), the undirected bipartite graph which

describes f(x), is a subgraph of 9. We use this result to show how f(x) can

be generated from a general description of the family of problems to which it

belongs.

In any instance, fl, of a generic problem II, some of the variables in D will be

Chapter 4. Matching and ordering Variables and Equations 	 126

known. These may be fundamental or. observed constants, or they may be the

fixed variables. For instance, if a catalytic reactor is to be modelled then for this

problem, the universal gas constant is a fundamental constant, the diffusivity of

the bulk gas may be an observed constant, and the yield of one of the products

may be a fixed variable. If the set of these knowns, K, is removed from 4D in

order to leave the set 0, the unknowns for the problem, then the equation set

which describes it is reduced to '11 (0).

In general, we are interested only in the values of r ç 0, the set of design

variables. Staying with our reactor problem, it may be that the bulk gas

temperature is a member of I', but that the temperature of the surface of the

catalyst is not. In order to calculate the values of the members of r, we need

to identify a subset of i11 which satisfies the necessary conditions for a unique

solution which were given in § 2.3. In general, it will not be possible to find

• subset of these equations which involve only the members of r. Rather,

• set of additional variables, A will appear in the equation subset too. For

instance, in our reactor problem, the specific heat capacity of each gas may have

to be calculated in order to determine the reaction temperature. The task of

formulating a mathematical model is then the process of identifying a solvable

subset of '11 in which only members of r and A appear, and such that it embodies

no significantly contradictory assumptions.

The problem of contradictory assumptions was addressed briefly in § 1 and it is

not considered further here. In order to see how the equation subset is chosen

we return to considering 9 , the graph of 'Ii(). Each node in this graph which

represents a constant or a fixed variable in 4 can be deleted from it, along with

each arc of which it is an endpoint, since no equation is required to be solved

Chapter 4. Matching and ordering Variables and Equations 	 127

for it. Further, we assume that contradictory equations have been removed from

'Ii() so that, e.g., only one equation of state remains within it. This is a non-

trivial task which requires qualitative reasoning. Following this process we are

left with a bipartite, undirected graph 0 in which the nodes, 1', are partitioned

into 1, the 'variable' nodes, and 1, the 'equation nodes'. If the problem has a

solution, then 11 J, and it must be possible to devise a maximum matching,

M, such that each node which corresponds to some ii E r is an endpoint of one

of its edges.

If such a matching is found then 0 can be transformed into the directed graph

in the way described on page 43. We wish to find V(V, E), a subgraph of

which corresponds to 1(x), and so we can place the following conditions on it:

It must contain an equal number of nodes from 1 and 1.

Each subset of ic 'equation' vertices in D(V, E) must be adjacent to exactly

ic of the 'variable' vertices.

For each edge (v, w) in t such that WE 1 and W is in D(V,E), i' is also in

D(V,E).

These conditions ensure that the strong components of D(V, E) represent solvable

equation subsets. This follows from theorem 2.1 and the fact that no variable

which is not represented in D(V, E) can influence the solution of any of the

equations which are. There may be many subgraphs of t which satisfy these

conditions, but as a result of the third, each strong component of V(V, E) must

be a strong component of , and so we can search for D(V, E) by examining the

strong components of the larger digraph. We seek a subgraph of t in which each

Chapter 4. Matching and ordering Variables and Equations 	 128

strong component, C1, contains at least one node which corresponds to a design

variable, or there is a path from C1 to one which does. This is because there must

be a path from each node, ii in D(V, E), which represents a member of A, to at

least one vertex which corresponds to a variable in r, i.e. the value of at least

one design variable is dependent on ii. However, No such path may exist for any

node belonging to a strong component of t which fails to satisfy the connection

condition.

It should be noted that, given a maximum matching M in 0 , D(V, E) is unique.

However, if the matching is not complete, the number and membership of the

strong components of D(V, E) is dependent upon M. As an example of this,

consider the undirected bipartite graph shown in figure 4.1. The digraphs which

Figure 4.1: An Undirected Bipartite Graph

correspond to two maximum matchings in this graph are shown in figure 4.2. In

the first of these there are two strong components, whereas in the second there are

three. This observation shows how the existence of a redundant equation, Er , in

a set can be overcome. If the equation set f(x) is formed as described above, and

if there is one or more equation which is not involved in a maximum matching,

then if the node which represents Er is removed from g(v, E), along with all of

the arcs incident upon it, then a new matching can be found for (V, E), and

Chapter 4. Matching and ordering Variables and Equations 	 129

Figure 4.2: Two Directed Versions of figure 4.1

thus a new equation set AX).

Thus we have seen that given a general, overdetermined equation set which is a

generic description of a problem, II, a square subset of it can be identified which

can be used to solve a particular instance of II. In the next section we will discuss

how an assignment for the larger equation set can be established, and in § 4.4 we

will see how a depth first search can be used to find the required equation subset.

Chapter 4. Matching and ordering Variables and Equations 	 130

4.3 Finding an Output Set

Recalling the definition of a zero-one network which appears in § 3.2, we use the

following two lemmas to show that the assignment problem may be treated as

an instance of a maximal flow problem. First we require the well known max.

flow mm. cut theorem, which states that the maximum flow through a network

is equivalent to the capacity of its minimum cut. A cut for a graph is a set of

edges whose removal disconnects it; the set of minimum capacity which satisfies

this definition is the minimum cut. Any minimal cardinality edge set, Cmsn,

which disconnects a bipartite graph must be a maximum matching for it. This

is because each cut for the graph is .a matching, but there can be no edge, e0 , in

the graph which connects two nodes in different partitions such that neither is

the endpoint of an edge in the cut and and e0 V Cmjn . Further, no subset of Cmjn

disconnects the graph and hence no subset of it can be a maximum matching.

Having shown that assignment in an equation set can be formulated a flow

maximisation problem, we describe the algorithm used in the modelling software.

It is a modification of an algorithm due to Dinic [20], and it appears as

algorithm 4.1. Here layer(L, Paths) constructs a set of augmenting paths through

the network. The nodes at the start of these paths are removed from the

adjacency set for the sink by altersinkadj (L, Paths) and the matching is updated

by augment(Paths).

At each stage in the algorithm a network, A/, is constructed from (V, E) and the

current, possibly submaximal,matching J1 for it. As described above, a source

node, s, and a sink node, t are added to (V, E). A diedge is added from a to

Chapter 4. Matching and ordering Variables and Equations 	 131

Algorithm 4.1 The Maximal Flow Algorithm

Procedure max flow

L =Adj(s)

while(layer('L, Paths) == 1)
alter sink adj(L, Paths)
augment(Paths)

end

end

each ii E V. such that v is not an endpoint of any edge in .i4; likewise an edge

is added from each w E f7, which is not a terminus of an edge in the matching

to t. If the maximal flow through Af..1 was then F may be greater than

this only if flow is channeled through some of these edges. Each useful edge, e, in

i.e. one for which the potential flow is unity, is assumed to direct flow in the

direction from s to t. The network is then said to be layered, which means that

the nodes in the j layer, L1, are each reachable from s in j edges, i.e. there is

a path of j useful diedges from s to these vertices.

For each edge (v, w) in 9 (V, E) such that z' is a variable node and wis an equation

node, then if (v, w) is in .A1, so too it must be a directed edge in A1. If it is not

in the current matching then either ii E Lk and w E Lk+1, or this edge is not in

the network. This follows from the fact that w is reachable from s by a shorter

path than any which passes through v.

The zeroth layer in the ith network is L0 = {s}, and the edges from this layer are

E0 = {(s, v)Iv E 1, (v, w) V M, (w, v) V M}. In Ni, all edges are oriented from

Chapter 4. Matching and ordering Variables and Equations 	 132

s to t, and thus flow is in this direction alone. This is not true for .N, i> 1. In this

case, L 2 , the second layer, is defined as L 2 = { vf (w, ii) E E1 } and, immediately

following its construction, each vertex, w, in it must have exactly two edges

incident upon it with unit flow. This violates the zero-one condition on the flow

through each node, and so one of these flows must be reversed. If the flow through

the 'new' edge, e1 = (vi, w), is pushed back, then it can never reach the sink

because each node adjacent to Ui must have flow channeled through it already.

If instead flow is returned along the 'old' edge, € 2 = (I'2, w), then it may make its

way to the sink since no such condition exists on the adjacency set of U2. Thus we

define the edges in the second layer to be E2 = {(" C)I" E L2,(,() E E,C L i };

n.b. each edge in E2 must have been an edge of E1 in the previous network.

The definitions of L 2 and E2 , generalised for each layer other than L0 and E0 ,
are Lj = {vI(w,zi) E E2 _ 1 and E, = {("() I" E L2 ,(,C) E E,C V Lk,k <j}.

The condition k <j is necessary in order to ensure that any augmenting paths

found in the network are of minimal length. The process of identifying new layers

continues until one of two conditions is met.

If some node w e Lr, where r is an odd number, is found such that it is free,

i.e. flow has never reached this node previously, then the only edge from this

vertex must be directed onto the sink, t; a set of augmenting paths has been

found. The last layer is identified as the set of all free vertices in L, and the

layering stops. Note that each augmenting path is of length 1 = r + 1, and that,

since the search was breadth first, they must be the shortest such paths in .IV.

The other condition is that the edge set for the k" layer is empty, i.e. there are

no useful edges from the nodes in Lk. In this case no augmenting paths exist in

the network, and so the flow must be at a maximum for the original graph; the

Chapter 4. Matching and ordering Variables and Equations 	 133

search is halted.

In the original algorithm, once the layering has identified a set of free vertices,

the next step is a depth first search through these layers for the augmenting

paths, starting from each node ii E L 1 in turn. In our formulation, however, a

set of these paths is constructed on backtracking. This requires the use of the

set parents(v), for each node in the network. This is defined to be the set of

nodes, w, such that ii E Adj() in the current network, and they all lie in the

same layer, Lk, as C , the node which led to the addition of v to layer Lk+1.

The layering is identified by Layer(L o, F0), which is shown as algorithm 4.2. Here

L 0 is the set of nodes in the current layer, and the adjacency set for each v E L0

is inspected.

Algorithm 4.2 The Layering Algorithm

Procedure Layer(L o , F0)

while(pop(v, L 0) == 1)
blocked(v) = 1
cop y(Temp, Adj(zi))
while(pop(w, Temp) == 1)

== t) then
rest paths(Lo, P0)

push(v, F0)

return (1)
else

if (blocked (,) < 1) then
if (blocked (w) == 0) then

push(w, L 1)
blocked(w) = -1

else push(v, parents('w))
end

Chapter 4. Matching and ordering Variables and Equations 	 134

end
end

end
end

8UCCS8 = Layer(Li , F1)

if (success == 1) then
while(pop(Path, F1) == 1)

phead = head(Path)
while (pop(u, parents (phead)) == 1)

if (blocked (u) 3& 0) then
push(u, Path)
push(Path, F0)

blocked(u) = 0
pop all(parents(phead))

end
end

end
end

return (success)

end

Fal

If the sink, t, is found in one of these adjacency sets, then the set of nodes

Po = {vlv E L0 , t E Adj(zi)} is identified by the procedure rest paths(Lo , P0), and

the search backtracks. Otherwise, the next layer, L 1 , is constructed as described

above, and Layer, is called recursively. On return, success = 0 if flow is a

maximum for the original graph, 9 (V, E); otherwise it is unity. In the latter case

P1 is the set of potentially augmenting paths of minimum length in the current

network. Each of these paths, Path, is popped in turn, and its head, phead,

identified. The set parents(phead) is examined to see if it contains some node, u,

such that no path has been extended throu 6h it in the current network. If such a

Chapter 4. Matching and ordering Variables and Equations 	 135

node is found then its parents set is cleared, Path is extended through this node

and the the path is added to P0 , the set of potentially augmenting paths which

pass through nodes in V0; should no such node be identified then the path is

discarded. This modification has the same worst case time complexity as Dinic's

original formulation, but it ought to be more efficient on average.

When the layering procedure has unwound, alter sink adj(L, Paths) removes

the vertex at the head of each augmenting path from L, the set of free variable

nodes, and augment(Paths) changes the matching. This process continues until

either L is empty or there are no more augmenting paths, i.e. the matching is

maximum.

The procedure for augmenting the matching is shown in algorithm 4.3.

Algorithm 4.3 The Matching Augmentation Algorithm

Procedure augment(Paths)

while (pop (F, Paths) == 1)
while (pop pair(A, B, P) == 1)

if(equation(A) 54 1) then
match(A) = B
remove (B, Adj(A))

end
push(A, Adj(B))
push(B, P)

end
end

end

0

At first sight this seems to be unnecessarily cumbersome, but this formulation was

Chapter 4. Matching and ordering Variables and Equations 	 136

necessitated by its implementation in Prolog. This is an object oriented language

in which it is not possible to index the elements of a list directly. Although a more

elegant formulation of this procedure is possible and expressible in Prolog, e.g.

using linked lists of structures, their use is less efficient than algorithm 4.3 because

Prolog is interpreted rather than compiled, and manipulating its database can

be costly. In our implementation, each consecutive pair of nodes on a path is

examined. If the first of these, A, is a variable node, then B is matched with it

and, since the edge (B, A) must appear in the next network, B is removed from

Adj(A). In either case A must be adjacent to B in the next network since either

(A, B) is a member of the new matching, or (B, A) is a member of the current

one.

As an example of the algorithm in use, consider the initial network for the

ideal binary flash equations from appendix B, which is shown in figure 4.3.

If the first phase of the matching algorithm were to establish the matching

{(x i ,2), (z2 , 3), (V,4), (6 ,y2), (Ps , 7), (F1 , 9), (F2 , 10)}, then the second network

would be that shown in figure 4.4.

Let each pass through the while loop of algorithm 4.1 be called a phase; this

term was defined originally by Even [30]. The maximum number of matchings

possible in G'(V', E') is i' = inin(IV/I, IVi) :5 IV'I/2, and at least one of these

must be found in each phase. Thus there may be at most y phases. Further,

each edge in E' is examined at most twice in Layer(L o , F0), once when V1 is

being constructed, and then again when Po is built. In the worst case only one

node is removed from L by alter sink adj(L, Paths) and each edge in Paths is

searched exactly once by augrnent(Paths). Hence, each phase of algorithm 4.1

requires at most O(IE'I) operations. Thus the algorithm has an overall worst

Chapter 4. Matching and ordering Variables and Equations 	 137

Figure 4.3: The Initial Network for the Flash Equations from Appendix B

Figure 4.4: The Second Network for the Flash Equations from Appendix B

case complexity of O('yJE'f).

Chapter 4. Matching and ordering Variables and Equations 	 138

4.4 Selecting and Ordering the Equation Set

The equation set, f(x), is selected from its superset by the procedure

get design(r), which uses the depth first search developed by Tarjan [94]. His

algorithm has been adapted by taking into account a suggestion by Duff and Reid

[24] which improves its efficiency; a modification which takes into account the

bipartite nature of D(V, E) ; and the facts that S I1 and we are searching

for a subgraph of t on V C V. In the algorithm, a stack, S, is maintained

which accumulates the strong components of D(V, E), and so too is a path '7,

which directs the search. P is maintained implicitly since the depth first search

procedure is defined recursively.

Two separate orderings are associated with the search, one for the nodes and

the other for the strong components. The nodes are ordered as they are added

to the stack so that the first to be pushed onto S is ordered first; the strong

components are ordered in the reverse order to which they are popped from S. A

lowlink, w = low(v), is maintained for each node v during the search. This value

is the the lowest ordered node on the stack such that there is a directed path

from ii to w and one from w to z.', i.e. the lowest ordered node which is strongly

connected to ii; in this case w and v are said to be reachable from one another.

This is the modification proposed by Duff and Reid [24]. In his original statement

of the algorithm, Tarjan [94] defined w = low(v) to be the lowest ordered node

such that there was an arc (v, w) E E. Using Duff and Reid's suggestion saves

some arithmetic operations. A statement of the depth first search procedure is

given as algorithm 4.4. Here, push(v, 8) pushes the node v onto the stack 8, and

pop(v, 8) pops this vertex. If pop(v, 8) = 0, then no vertex is popped because

Chapter 4. Matching and ordering Variables and Equations 	 139

the stack is empty.

At each stage, a node, z.', is added both to P and 8, and each node w in its

adjacency set, Adj(v), is examined. If low(w) = 0, then w has never been

examined before and so it is placed on the stack and the path and DFS is called

recursively. If, however, low(w) 54 0, then either w is on the stack, or it has been

at some point In either case, low(v) is set to the lower of its current value and

U = low(w). The reason for this is that if u is strongly connected to W , then there

must be a directed path from ii to this vertex; if it is lower on the path than ii,

then there must also be a directed path from u to v, and so they are in the same

strong component.

When each member of Adj(v) has been inspected, the node is popped from 1',

and low(u) is compared with i.'; If (a = low(v)) < ii then these nodes must

belong to the same strong component and so v is left on the stack. If, on the

other hand, low(v) = ii, then ii is not in a strong component with any node

ordered before it on S. Further, each node above it must be in the same strong

component as this vertex since it has been left on the stack. Lastly, no node,

f9 , which has been on the stack and popped from it, either before or after z' was

pushed onto 8, may be a member of this strong component since otherwise z'

would have been reachable from these vertices, which clearly it is not. Hence, v

and each of the vertices above it on the stack and the edges between them form

a strong component of D(V, E). These nodes are popped from S and stored as a

set.

The strong components of D(V, E) must be ordered in the reverse order to that

Chapter 4. Matching and ordering Variables and Equations 	 140

Algorithm 4.4 The Partitioning Algorithm

Procedure DFS(v, S)

cop y(Temp, Adj(v))

while(pop(, Temp) == 1)
if(low(w) 3k 0) then

low(v) = miñ(low(v), low(cs.))
else

low(w) =
push(w, 5)
DFS(w, S)
low(v) = min(low(zi) , low(w))

end
end
if(low(v) == ii) then

pop stack(v, 5, C)
end

end

0

in which they were popped from S. To see this, consider C1, a strong component

of V(V, E) which has just been popped from S. If this was not the only strong

component whose vertices were on the stack at that point, then there must be

a path from each vertex, y, on S to each of the nodes in C1 , and hence C,,

the strong component to which y belongs, must be ordered before C1. Further,

by construction, there can be no directed path from a vertex in some strong

component, Ck, which was popped from S before it to C1. Hence either C'1 and

Ck are disconnected or there is a path from each of the vertices in C1 to each of

those in Ck. In either case, ordering C1 before Ck maintains the condition that

each edge between strong components in V(V, E) is directed from that ordered

lower to that which is ordered higher. As was shown by theorem 2.1 this means

that the ordering corresponds to a computational sequence for f(x).

Chapter 4. Matching and ordering Variables and Equations 	 141

In the context of equation solving, when a variable node, ii, is at the head of the

path and some equation node, w € Adj(u), is pushed onto 8,. this implies that

v appears in this equation. When this relationship is reversed, i.e. the equation

node w is at the head of 7 and i' is pushed onto the stack, it implies that W is

to be solved for v. Hence in the latter case, w and i' must belong to the same

strong component, and thus low(v) :5 w. There are many ways of ensuring that

this is the case but, for reasons which will be explained in § 6.7, w is added to

Adj(v), even though it is not adjacent to it in D(V, E).

Finally we show how the strong components of V(V, E) satisfy the conditions set

out on page 127. If the matching in 0 which is used to form f' is complete, then,

by the arguments of theorems 2.1 - 2.3 this must be the case. Consider now the

case where 11 I 0 I I and thus the maximum matching is not complete. No

v € V, which is not matched with a node in V can ever be pushed onto 8, and

hence it can never be identified as belonging to a strong component of 0 . The

same is not true for any excess equation node, however, because any variable

which appears in this equation can cause it to be added to S. However, there is

no way in which the depth first search can be extended through this node, and

so it must be popped immediately. This is identified easily by pop .stack(v, 8, C),

since this is the only occasion on which a strong component of only one node can

be popped from S. In this case the node is discarded and the depth first search

continues.

Having dealt with the depth first search procedure, we can turn our attention to

get design(r), which is shown as algorithm 4.5.

Chapter 4. Matching and ordering Variables and Equations 	 142

Algorithm 4.5 Identify D(V, E) from b

Procedure assign(r)

while(pop(v, r) == 1)
push(v, 5)
DFS(ZI, 5)

end

end

At each stage a seed node for the depth first search, ii, is popped from r, the

set of design variables. This vertex is pushed onto the stack and the depth first

search begins. When a strong component is popped from S by pop .stack(v, 5, C),

each W E IF which is popped from the stack is removed from I' too. Thus, when

the stack is empty, either r is empty, in which case V(V, E) has been identified,

or a new depth first search is required. Continuing in this way until r is empty

concludes the search.

Each node may be pushed onto S at most once in get design(r), and each edge

in the digraph can be examined once only. Hence the worst case algorithmic

complexity for this procedure is O(,QI + r), where there are 'r edges in t.

4.5 Summary

It was shown in this chapter that a square, solvable subset of equations, f(x),

which describes a particular instance of a generic problem, can be identified by

Chapter 4. Matching and ordering Variables and Equations 	 143

a bidentate strategy of establishing a maximum matching in the graph which

describes the equation superset, using this and the original graph to form a

new directed graph, t, and then selecting and ordering a subset of its strong

components. An algorithm for the matching which operates in O('yE'I) time,

where 'y = min(IV'I, IWI) :5 IU was presented. This is a modified version of

Dinic's [20] maximal flow algorithm. So too a depth first search algorithm which

finds a subgraph of t, such that it represents f(x), was presented; this operates

with a worst case time complexity of O(II + IEI). Lastly, it was shown how

those equations not involved in a maximum matching can be used to overcome

the incidence of a redundant equation in a simulation.

The great tragedy of Science - the slaying of a beautiful
hypothesis by an ugly fact.

T. H. Huxley, Biogenesis and Abiogenesis

Chapter 5

Finding the Minimum Tear Sets

5.1 Introduction

Consider an equation set, (X), for which an output set, M, has been obtained.

may be represented by an undirected, bipartite graph (V, E), which is

transformed into the directed graph V(V, E) by M; this process was described

in § 3. fl(V, E) is the signal flowgraph for D, defined on the 'variable' vertices.

We aim to show that each separator in fl corresponds exactly to one in 1), and

hence that S, a minimum cardinality non-redundant tear set for fl is also one

for D. Further it will be shown that the structure of fl can be represented by

the roots of the trees in the spanning forest, F, of fl and the adjacency sets for

these trees, and that hence the search for S may be restricted to a subset of the

flowgraph. These proofs appear in § 5.2.

As was indicated in § 3.4, the decomposition algorithm to be used is that due to

144

Chapter 5. Finding the Minimum Tear Sets 	 145

Barkley and Motard [9]. In their paper, these authors present only a sketch of

this algorithm, and so a fuller statement and description of it appears in § 5.3.2.

In § 5.3.1 we show that their algorithm identifies a tear set for a problem, but

that an arbitrary tie breaking rule within it casts doubt upon its minimality; this

process has an algorithmic complexity of O(1X1 4). Two example decompositions

are presented in § 5.4, and, lastly, a summary of the contents of the chapter

appears in § 55.

5.2 The Signal Flowgraph of a Digraph

Algorithm 5.2 below identifies a tear set of minimum cardinality for the signal

flowgraph which is derived from the bipartite digraph which corresponds to a

given output set for the problem. In this section we show that this tear set is also

a minimally sized separator for the bipartite digraph. So too we demonstrate that

each of the nodes which is a candidate for tearing must be the root of a directed

tree in the spanning forest' for the signal flowgraph, and that a reduction of the

signal flowgraph in which only these roots appear can be used to determine the

tear set. The membership of these trees is unique but, in general, their ordering

is dependent on the matching used to form the signal fiowgraph, and so too is the

direction of the arcs between them. This effects the cycle structure of the signal

flowgraph and hence the membership and minimum cardinality tear set for each

output set.

'This term is defined in § 2.2.2

Chapter 5. Finding the Minimum Tear Sets 	 146

Theorem 5.1 A minimally sized tear set for a signal flowgraph fl is also one

for the bipartite digraph V(V, E) from which it was formed.

Proof: Let the vertices in V be partitioned as V =v, fl V, and let fl be formed

from the vertex set V. Then each path of length 1 in V which begins in V, and

such that 1 is an even number, corresponds to a path of length i in fl which has

the same termini. Since each cycle in D(V, E) must be of an even length, each of

these must correspond to a cycle in fl.

Consider one such pair of corresponding cycles, C E V and O E fl. Each vertex

vi E O is a member of V, and so too it is a member of C; each i', E C such that

v3 is a member of V must appear in O. Hence any Z'/ which separates 0 must

also separate C. This follows from the fact that each cycle through an equation

node must pass through the variable node with which it is matched. Since there

is a one to one correspondence between the cycles in the bipartite digraph and its

signal flowgraph, any separator for fl must be a separator for V. The converse

is true, and so any minimum cardinality tear set for fl must be one for V. 0

Having shown that a signal flowgraph can be used to determine the tear sets for

the bipartite digraph to which it corresponds, we proceed to demonstrate how

the search within it can be restricted to a subset of its vertices. In what follows,

each directed tree in F, the spanning forest of the reduced signal flowgraph, is

denoted by TA, where .A is the root of this tree.

Theorem 5.2 A subset of the roots of the trees in a spanning forest .F of a signal

flowgraph fl yields a minimum tear set for it.

Chapter ö. Finding the Minimum Tear Sets 	 147

Proof: Recall that the spanning forest of a signal flowgraph, fl, is a set of

directed trees such that each node in the fiowgraph appears in exactly one of

them, and each tree edge is an edge in the flowgraph. The jth tree in this forest

comprises of a root' node v2 and each node which lies on a path which starts at

v3 , and such that it has only one edge incident upon it. An adjacency set can be

defined for each of these trees. If V3 is the set of vertices in the tree, then its

adjacency set, Adj(T,), is defined as

Adj(T,) = {u I u E Adj(v1),; € V3 } - (V2 - { z.'}) 	(5.1)

n.b. if z', the root of 7',, appears in Adj(T), then it must not be removed so that

self loops can be identified. Any cycle in the flowgraph which passes through

some node 1'k E Ti, 11k 0 v1 must also pass through v1. Hence each cycle in fl

must contain the roots of at least two trees from its spanning forest.

Consider a cycle, C, in fl, in which the edge (vi, ii,) appears. Either both vi and v1

are members of the same tree in .1 or v1 must be the root of the j" tree T,. If the

latter condition is satisfied then a new digraph, R., can be produced by replacing

the edge (vi, v,) with (i'a , v1), where v1 € Ta , and vi is not necessarily distinct from

Pa. Since C must pass through there must be a one to one correspondence

between the cycles in the two digraphs. If this process is repeated for all directed

edges between two trees in the spanning forest in such a way that only one of a

set of parallel edges is added to R., and if each subpath, p, in .a cycle, such that

each node in p belongs to the same tree, T,3, say, is replaced by the root of the

tree, v, then each of the cycles in the new digraph must correspond exactly to

one of those in H.

Chapter 5. Finding the Minimum Tear Sets 	 148

Any node which tears a cycle in 1Z. must also tear the corresponding cycle in the

original flowgraph; conversely any root node which tears a cycle in fl must tear

the corresponding cycle in 1Z. Since each cycle in W contains at least two root

nodes, the search for a minimum tear set for this fiowgraph can be restricted to

those nodes. 0

Note that the signal fiowgraph for a bipartite digraph is neither independent of

the matching used to form it, and nor is a tear set for one matching is necessarily

valid for the other. This is because, in general, the edges between nodes will be

directed in different ways and hence the cycle structures of the signal fiowgraphs

will be different. Consider for example the bipartite graph and two alternative

matchings for it which are shown in figure 5.1. The signal fiowgraph and its

spanning forest for each of these digraphs are shown in figure 5.2. These signal

flowgraphs have different cycle structures and, as is shown, they have different

minimum cardinality tear sets. That for figure 5.1(a) is {B, D}, whereas that for

figure 5.1(b) is {B}.

5.2.1 Deriving a Signal Flowgraph from a Bipartite

Digraph

Recall that for a bipartite digraph, g(V,E), with the properties

v=vxnvv .

• There is a complete matching M E E between these vertex sets.

Chapter 5. Finding the Minimum Tear Sets 	 149

(a)

1,A
2,B

(b)
$,E

1,A
4,B

(c)
5,E

Figure 5.1: A Bipartite Graph and two Alternative Matchings for it

• Each edge f € M is directed from iç to V, and each € € E, € V M is

oriented in the other direction.

the signal fiowgraph which corresponds to it is defined to be fl(V, E), where

E = {(z', 	u, € V, (zi,w,), (wj, v 3) E E}

The proof that a minimum cardinality tear set for fl is also a tear set for (V, E)

is given by theorem 5.1. Here we show that this flowgraph can be derived by a

breadth first search of V which has a time complexity of O(IEI).

Chapter 5. Finding the Minimum Tear Sets 	 150

I J B

(a) 	 [&D

Figure 5.2: The Spanning Forests for the Digraphs of figure)

The 	 breadth 	 first 	 search

appears in pseudocode as the procedure make .signal(vertzces, sigrow , , sigcol)

in algorithm 51. Here, vertices is an array which holds the members of V, and

both .sigrow and sigcol are double subscript arrays which contain a version of

the reduced signal flowgraph. sigcol(i) is the set of nodes which direct edges onto

the i' vertex in V; sigrow(i) is the set of vertices which are the endpoints of

edges directed from the i' node.

Each node, ii, is popped from vertices in turn, and the members of its adjacency

set, Adj(v), are examined. When w is popped from Adj(v), the node with which

it is matched in V(V, E), C
,
is added to sigrow(v), and v is pushed onto sigcol(C);

n.b. only sigcol or si grow is required to determine the signal flowgraph, but both

Chapter 5. Finding the Minimum Tear Sets 	 151

are used for efficiency in the implementation of the decomposition algorithm.

Each node in V is examined exactly once, as is each edge in E of which it is the

initial vertex. Hence both sigrow and sigcol contain the signal flowgraph which

corresponds to the input digraph, and the algorithm has a time complexity of

O(IEI).

Algorithm 5.1 Form a Signal Flowgraph

Procedure make signal (vertices, sigrow, sigeol)

while(pop('v, vertices) 0 0)
'cop y(Temp, Adj(v))
while(pop(w, Temp) 34 0)

pop(C, Adj(w))
push('C, Temp)
push('v, sigcol('))
push(C, sigrow(v))

end
end

end

5.3 The Decomposition Algorithm

5.3.1, The Rules for Decomposition

Barkley and Motard [9] presented an hierarchy of rules which attempts to find

which nodes belong to a minimum cardinality tear set. These are

Chapter 5. Finding the Minimum Tear Sets 	 152

Each node in the flowgraph which has a self loop must be torn.

If there is a cycle of length two in the flowgraph, then it is necessary to

tear at least one of the nodes in it. If either node in the cycle is involved in

more cycles of this form than the other, then tearing it breaks more cycles
K3 At

of length two than if the other were torn.)We that whilst this may lead to

a smaller tear set there is no guarantee that it will.

If there are no self loops or cycles of length two in an irreducible signal

flowgraph, then the node of highest out degree is torn.

If this fails to identify a unique next node to tear, then one of the candidates

of highest degree is torn arbitrarily.

Rules 3 and 4 can be used to resolve the conflict between a set of nodes, each of

which satisfy either of rules 1 or 2.

The justification for the first of these rules is that each self loop may be cut only

by tearing the node on which it is defined. Likewise, if a node appears in more

than one cycle of length two, then either it must be torn, or each of the other

nodes in these cycles must be torn. Hence, tearing the node which appears in

more two edge cycles than any other minimises the size of the tear set. If it is

necessary to tear both nodes in one of these cycles then the tear set is no longer

nonredundant. The last rules attempt a local minimisation of the size of the tear

set, but they cannot guarantee its global optimisation.

Chapter 5. Finding the Minimum Tear Sets 	 153

5.3.2 A Description of the Algorithm

The decomposition algorithm appears as algorithm 5.2. The first steps are the

derivation of the signal flowgraph from the bipartite digraph; the identification

of the spanning forest of the flowgraph; and production of the reduced signal

flowgraph based on the roots of the trees in this forest. At each stage after this

a single tear variable, r, is identified and eliminated from the reduced flowgraph,

fl, along with each edge directed from or onto it, and this fiowgraph is reduced

again. The process continues until the reduced flowgraph is empty. At this point

a tear set, S, for the bipartite digraph has been identified, and the other vertices

have been ordered so that, other than edges directed from torn nodes, all edges

in the digraph are directed in the forward direction.

At each pass through the algorithm, even if more than one node which must

be torn is identified, only one of these is eliminated from the reduced signal

fiowgraph. The reason for this is that removing nodes simultaneously may isolate

some untorn node, v, i.e. reduce its in-degree to zero, in which case it cannot

be assigned membership of any tree in the spanning forest; the position of such

a node in the ordering of the torn digraph is indeterminate.

Each tree in, Jr, the spanning forest of the newly reduced signal fiowgraph, 1?.,

must be either a tree in the spanning forest for the input reduced fiowgraph, fl,

or it must be comprised of subtrees which were. This is because no new edges

are added to fl other than those which replace directed paths, and only edges

between trees can be removed; should some tree, Ti, have only one edge incident

upon it, (v1 , u3) say, following the elimination of z.', then T, becomes a subtree of

Chapter 5. Finding the Minimum Tear Sets 	 154

Ti in the new version of F. The trees in this forest are not stored explicitly, but

the vertices within them are stored linearly, subject to a weak ordering, within

a link array, link. If two vertices, v. and vb, are both in some tree, Ta, and if

there is a path from z' to i/b, then v0 is ordered before vb. The head of each list

in link is either a node in R. or it is a tear variable. If a node, vp , is to be added

to a tree Ta2 , then the entry for v,, in link is inspected. If link(a) = 0, then this

entry is set to P. Otherwise, if link(a) = y, then link(-y) is examined, and so on,

until some entry link(6) is found to be zero; then link(6) is set to

Algorithm 5.2 The Tearing Algorithm

Procedure tear signal (vertices)

make signal (vertices, sigrow, sigcol)
reduce graph(vertices, link)

while (not (empty(vertices))
if (self loop (sigrow, r) == 0) then

if (double edge (sigrow, r) == 0) then
tear largest (sigcol, r)

end
end
remove tear('vertices, 'i')
push(T, S)
reduce graph(vertices, link)

end
print tears (S , link)

end

Fol

In tear signal(vertices), vertices is the list of nodes in the reduced signal

flowgraph, sigrow(i) is the adjacency set for vi in this digraph, and sigcol(i)

is the set of vertices which direct edges onto this node. The procedure

2 n.b. up may be the root of a tree Tp in which case the whole of Tp becomes a branch of
Ta.

Chapter 5. Finding the Minimum Tear Sets 	 155

self loop(vertices, r) searches for self loops on the vertices of fl, and

double edge (vertices, r) looks for cycles of only two edges. If both of these fail,

then tear largest (vertices r) tears one of the nodes of maximum out-degree. In

each case, r is the tear node identified. This vertex is eliminated from fl by the

procedure remove tear(vertices, r), and it is pushed onto S, the stack of torn

nodes. The fiowgraph is reduced to R. by reduce graph(verticea, link), which

updates link as necessary. Finally, when a tear set for the flowgraph has been

identified, print tears(S, link) prints out the vertices in their new order.

Searching for self loops is a simple computational task, but the procedure used has

a worst case complexity of 0 (IVI 2). Determining the node of highest out-degree

is easy too, and it has a worst case complexity of O(IVI).

Identifying cycles of length two requires a great deal of effort, and an algorithm for

this appears as algorithm 5.3. The adjacency set for each node, v, in the fiowgraph

is examined in turn. If the adjacency set for any node w € .sigrow(v) contains ii,

then one of these cycles has been identified. The number of these cycles in which

u appears is calculated and it is compared with the highest number found so far.

If ii appears in the same number of cycles as the previous maximum, then this

node is added to dbls, the stack of variables which appear in the largest number

of two edge cycles. If it appears in more cycles than this, then it becomes the

only candidate for tearing.

In the worst case, the first while loop may be executed IVI times, and the

adjacency set for each vertex may contain all of the other IV I - 1 nodes. Thus

double edge(vertices, ii) has a worst case time complexity of 0(IVI3).

Chapter 5. Finding the Minimum Tear Sets 	 156

Algorithm 5.3 Find two way edges

Procedure double edge (vertices, r)

max pairs = 0
while(pop(zi, vertices) 0 0)

while(pop(i, sigrow('v)) 34 0)
if (member (ii , sigrow(w)) then

pairs = pairs+1
end

end
if (pairs == max pairs) then push(v, dbls)
else

if (pairs > max pairs) then
max pairs = pairs
popall(dbls)
push(zi, dbls)

end
end

end
if(sizeof(dbls) > 0) then

if(sizeof(dbls) == 1) then
pop(,r, dbls)

else
find max adj('r, dbls)

end
end

end

The spanning forest for the reduced signal flowgraph is found by

reduce graph (vertices). Each node in the fiowgraph, 1', is inspected in turn.

If it has only one edge incident upon it, and this is directed from w, then ii must

belong to the same tree in the spanning forest of fl as w; indeed, by construction,

w must be the root of this tree, T. Each node which is the endpoint of an edge

directed from v is added to the adjacency set for ; i' is appended to the list of

nodes in T and then eliminated from the flowgraph.

Chapter 5. Finding the Minimum Tear Sets 	 157

Algorithm 5.4 Reduce the Graph

Procedure reduce graph(vertices, link)

while (pop (v, vertices) 34 0)
= single entry(sigcol(v))) > 0) then

merge rows ('sigrow(v), sigrow())
replace row index ('sigrow(v), w, sigcol)
add link(v, w, link)
reduce graph (vertices, link)

else
reduce graph(vertices, link)
push(zi, vertices)

end
end

end

FE-1

The algorithm for this appears as algorithm 5.4.

Merging the two adjacency sets in merge rows(sigrow(v), sigrow(w)) requires at

most O(IVI) operations, but replacing v with w in each array in sigeol may take

O(IVI 2) operations; adding ii to T has a worst case complexity of O(IVl). Hence,

merge rows(sigrow(v), sigrow(,.,)) has worst case time complexity of Q(IVI2).

Each of the main tasks in the algorithm has been examined, and the most

expensive of these, for moderate or large IVI, is double edge(vertices, ii), which

has a worst case time complexity of O(IVI) 3 . Since this may be called IV - 1

times, the overall worst case time complexity for the decomposition algorithm is

O(IVl)4.

Chapter 5. Finding the Minimum Tear Sets 	 158

5.4 Two Examples

Consider the binary ideal flash problem described in appendix B. The graph of

this equation set is shown in figure 2.5, and the digraph for an assignment of these

equations appears in figure 2.6. The signal flowgraph which corresponds to the

irreducible section of this digraph is displayed in figure 5.3, and its spanning forest

Figure 5.3: Part of the Signal Flowgraph for the Ideal Flash Equations

is shown in figure 5.4, where the broken arcs indicate back edges within trees, and

cross edges between them. The structure of this spanning forest indicates that the

signal flowgraph can be reduced to the digraph shown in figure 5.5. Here we see

that there is a self loop on node L, and so this must be torn. Eliminating this node

breaks the two edge cycle between L and x 2 , and the digraph has been rendered

acyclic. The correct ordering of the nodes is then {L, V, x 2 , K2 , PT, F2 , F1 , x 1 }.

A more difficult example is the 6 x 6 equation set for which the digraph for the

output set {(1, A), (2, B), (3, C), (4) D), (5, E), (6, F)} is shown in figure 5.6. The

signal flowgraph for this equation set based on the 'variable' nodes is shown in

figure 5.7, and its spanning forest appears in figure 5.8. The decomposition

Chapter 5. Finding the Minimum Tear Sets 	 159

Figure 5.4: The Spanning Forest for the above Signal Flowgraph

- - e - - - - -

00%

4-

Figure 5.5:5.5: The Reduced Signal Flowgraph

algorithm would reduce figure 5.7 to the digraph shown in figure 5.9, where there

are self loops on both of its vertices. The algorithm would tear one of these

and then the other, so that the minimum cardinality tear set for the problem is

S = {B, E}. Note that this tears one of the cycles in figure 5.6 twice. One of the

minimum cardinality tear sets which avoids a double tear is $ = { B, D, F}.

Chapter 5. Finding the Minimum Tear Sets 	 160

Figure 5.6: A Digraph for a 6 x 6 Equation Set

Figure 5.7: A Signal Flowgraph for figure5.6

5.5 Summary

In this chapter we have seen that a minimum cardinality tear set, 8, for a reduced

signal flowgraph, fl, is also a separator of minimal size for the bipartite digraph,

V, from which it was derived, and that the search for the members of this set

can be restricted to the roots of the directed trees in Jr, the spanning forest of

W. Further, it was demonstrated that the size and membership of this tear set

is not necessarily unique for the undirected bipartite graph, which underlies

Chapter 5. Finding the Minimum Tear Sets 	 161

Figure 5.8: The Spanning Forest of the Signal Flowgraph

orw
Figure 5.9: The Reduced Signal Flowgraph

V. In § 5.2.1 an algorithm was presented which will derive fl from V in O(IEI)
operations, where there are IEI arcs in the bipartite digraph. The rules for the

decomposition procedure were presented in § 5.3, and algorithms for its more

important sections were stated. Lastly, it was shown that this process has an

algorithmic complexity of O(IVI) 4 , where V is the vertex set in W.

0! Thou hast damnable iteration, and art, indeed, able to
corrupt a saint

William Shakespeare, Henry IV, Part 1

Chapter. 6

The Generation of Analytical Derivatives and
their use in an Equation Solver

6.1 Introduction

There are many techniques available for accelerating the convergence of non-linear

equations, and some of them are described in appendix D. It was decided that

the Newton Raphson method would be used to solve the equations generated by

the mathematical modelling software, and that the Jacobian would be generated

analytically. These derivatives are calculated simultaneously with the functions,

using a data management technique for torn systems which was developed from

one due to Ponton [75] and which is described in § 6.3. This method avoids

differentiating and flattening expressions, and so too it minimises the number of

times which transcendental functions must be calculated, but these advantages

are tempered by the fact that the equations are interpreted, rather than evaluated

in the normal way. So too this method fails to address the surfeit of calculation

162

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver163

associated with evaluating derivatives which can be seen, a priori, to be zero

everywhere. The rules for an algorithm which obviates this difficulty are outlined

in § 6.6.

6.2 The Newton Raphson Method

Consider the solution of 1: 1R' _+ N, a set of N non-linear equations in N

variables. At each iteration of the Newton Raphson method, these equations are

approximated by a set of linear equations which have the same values as f at

the current point x, and identical derivatives. The solution of this approximate

model, x, is given by

(6.1)

where J is the Jacobian for the system. This process is repeated until f 0.

If some of the variables in the system have been torn, then a different

computational scheme is required. Let the c torn variables be 1 and the others

be t, so that x = [t, Each of the first N - c equations are rearranged to give

an explicit expression for one of the members of 1 . Let these equations be f. The

remaining c equations, the kernal equations f, are to be solved simultaneously as

a set of reduced equations, i.e. the solution of j(t(1),) = 0 is sought. If Vt

is the rate of change of the dependent variables with respect to the independent

variables, if VJ is the rate of change of the kernal equations with respect to

the dependent variables, and if vJ is the rate of change of these equations with

respect to the independent variables, then the computational scheme for this is

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver164

Guess i.

Calculate 1(1) and V±.

Find J(±(),): if I I I 	0 then stop.

Evaluate J = Vj x Vt + VJ

Set 	.- J-1j.

6.3 The Generation of Analytical Derivatives

It is a simple task to write down the rules for differentiating equations in infix

form, and to code these as a computer program. In practice, however, this can

lead to the generation of an excessive number of terms in a derivative. Consider,

for example, the equation

I = 3 -
	

+
x2 	b - c 	

(6.2)
2x —a ax

Differentiating this using the usual rules would generate the expression

di =- (2x - a)2x - x22 + axO - (b— c)a 	
(6.3)

2 dx 	 2 (x—a) 	 (ax)

in which there is one zero term and several which can be combined to reduce

the size of the equation. Removing this zero term and modifying the others is

called flattening, and it is not necessarily unique. For example, equation 6.3 can

be flattened to give either

df 2x 	x 	b — c
TX 2x - a (' - 2x - a 	ax2 	

(6.4)

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver165

or
df 	2x(x—a) b — c
TX 	_. a 2 	ax2 	 (6.5)

x

Generating either of these forms of the derivative of equation 6.2 requires the

comparison of many terms within equation 6.3, and this can be an operose

process, even a for relatively simple equation such as that above.

Ponton [75] has shown that these problems may be obviated if the equations are

stored and evaluated in Reverse Polish Notation (R.PN). This is a form of postfix

notation in which an equation is represented as a string of symbols, each operator

appearing after its operands. The RPN representation of an infix equation can

be generated by parsing it with the rules

Term ParsedForm

Left = Right Right Left =

Left Op Right Left Right Op

Left Op Left Op

Op Left Left Op

where the second refers to binary operators, the third postfix unary operators

and the last to prefix operators of unit arity; here Op is the reverse form of Op,

e.g. the - in a term —a would become the reverse subtraction operator i-. Using

these rules, equation 6.2 becomes the string

3xxx2l2xxa—/—bc—axx/+f= 	 (6.6)

In order to evaluate a RPN string, 5, it is manipulated in conjunction with a

calculation stack, C. Each symbol is popped from S in turn. If it is a variable or

a constant, its value is pushed onto C; if it is an operator, the relevant number

of elements are popped from the calculation stack, they are operated on, and

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver166

the result is pushed back onto C. This process continues until the next symbol

popped from S is the variable whose value is sought. At this point the only

element in S is this value and so it is popped and assigned accordingly.

Ponton [75] showed that for a single equation in only one unknown, the value of

the analytical derivative of this equation can be calculated simultaneously with

that of the equation itself. This requires that a derivative stack, D, be maintained

and manipulated in the same way as the function stack. As an operand is pushed

onto the function stack, so too the value of its derivative is pushed onto D. If

the operand is a constant, then this value must be zero; if it is the variable in the

equation, then it must be one. When values are popped from C and operated

on, the corresponding elements of D are manipulated, possibly with those from

C, according to the usual rules of differentiation. For instance, if ii and w are the

top two elements of C, and if 1'd and Wd are the top two elements of D, then if

the multiplication operator, x, is popped from 5, ii and w are popped from C

and the value of v x w is pushed onto this stack; simultaneously i'd and wd are

popped from D and replaced by i'd X w + wd x v.

Whilst this approach is wasteful in that it may involve a number of additions

or multiplications involving zero, it is beneficial in that it is no longer necessary

to differentiate the equations explicitly and hence no expression flattening is

required.. Further it can save effort in calculating expensive terms such as

transcendental functions. For instance, the derivative of

f =er2? 	 (6.7)

is
df 	X2

= 2x& - eZ 	 (6.8)
dx

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver167

Evaluating equation 6.7 and its derivative in the traditional way requires four

calculations of the exponential function, whereas in Ponton's method, only two

are necessary.

6.4 Application to Torn Systems

As .Ponton noted, this technique can be extended to allow the differentiation

of f(x) : RN .. N with respect to each of its variables by manipulating a

derivative stack for each variable. This was extended to account for the occurence

of both dependent and independent variables in a problem. Here the three sets of

derivatives described in § 6.2 are required, but one set of derivative stacks, that

for the dependent variables, suffices. The values of Vt are calculated by pushing

a 1 onto the relevant derivative stack each time a tear variable is pushed onto

the calculation stack, and a 0 otherwise; when the value of a dependent variable

is popped from C, its derivative with respect to each of the tear variables is

popped from the derivative stacks. The values of vJ are calculated as before.

No explicit calculation is required for Vf, however, since all that is required is

that each time the value of some variable xi E 2 is added to the calculation stack,

its derivative with respect to each tear variable x,,
dzi-, is pushed onto the correct

derivative stack.

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver168

6.5 An Example Problem

Consider the solution of the 3 x 3 equation set

Si 	 - 253 = 1

- 3x2 	=2
	

(6.9)

2 + 353 =3

In accordance with the computational scheme described in § 6.2, this is solved as

1 2 x3 x +Xi =

x2 - 3152 = 	
(6.10)

X23 - 3153 - fi =
where the value of x 3 has been torn.

Let the guess for 53 be 1, and let S be the function stack, and D be the derivative

stack. The calculation of x 1 is shown in figure 6.1. Firstly 1 is pushed onto S

and, since this is a constant, 0 is pushed onto D. 2 and its derivative are pushed

	

1 	1

	

(a) 2 	0 	(b) 2 	2 	 (c)

	

1 	0 	 1 	1 	 3 	2

• S 	D 	S 	D 	S •D
Figure 6.1: The Calculation of x

onto the stacks, and then this is repeated for the value of 53. The next element in

the input string is the multiplication operator, and hence the top two elements in

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver169

each stack are popped and combined'. Since the addition operator appears next

on the input, the two elements of each stack are popped and summed, and the

result is pushed back; there are no more arithmetic operations and so the value

of x 1 is popped from S, and that of is popped from D.

The calculation Of x2 proceeds in a similar manner, as is demonstrated in

figure 6.2, and so too does that of fl ; this calculation is shown in figure 6.3.

(a) 2 	0 	 (b) 3 	
0

2 	 1 	2 	(c) 	
213

S D 	S D 	S D
Figure 6.2: The Calculation of x 1

(a) 	0 	(b) 3 	
0

113 	2/3 	 -8/3 	2/3

S D 	S D

1 	1
" -8/9 	2/9 	/ - 17/9 	-7/9

S D 	S D
Figure 6.3: The Calculation of x 1

'nb 	L— du

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver170

6.6 A Recommendation for Future Development

It has been shown that generating the numerical values of the analytical

derivatives of an equation set using an interpretive method is desirable in that it

precludes algebraic manipulations. However, like most other methods which are

available, it suffers from an inherent algorithmic inefficiency, i.e. the derivative of

each dependent variable and each reduced equation is found with respect to each

independent variable, whether it can be seen a priorito be zero or not. Consider,

for example, the binary ideal flash problem described in appendix B, using the

assignment

 K2x2 = 	Y29 K2

 P2 /P = K2 , P

3.Px2 =P2 , P2

 Pi+P2 = 	Pg , Pi

 Pj'xi = P1 , x i

6.L+V =1, L

7. Lx 1 + Vy 1 = Fz1 , V

8. Lx 2 +Vy2 = 	Fz2 , x2

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation So) verl7l

A computational scheme for this problem is

K2 = !/21x2

P =

P2 =P2 x2

P1 = Pt —P2

=

L =F—V

fi = (Fzi - Lx i) Yi - V

12 = (Fz2—Vy 2)/L—x 2

If Jacobi iteration is used, then each variable value is updated at the end of an

iteration, and the elements of the reduced Jacobian are

dV - OV

dx2 	
(6.11)

ta - J8LJ.a
dV - 8LSVmOV

JL 	PA
da2 	8X2

Since the partial derivative of L with respect to V is the only derivative of

a dependent variable required, most of the effort expended in calculating the

derivatives using the above method would be wasted. If Gauss-Seidel iteration is

used instead, then the reduced Jacobian becomes

11
=

dV 	8LOV aV

= 	± 	± dx2 	8 i 8V 	OL 8V 	8X2 	 (6.12)
A = dV 	8LSV ØV

= dz2 	8L 8X2 	42 8Z2 8X2

Once again slavish adherence to the algorithm described for calculating the

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver172

analytical derivatives leads to a waste of effort in that only the values of L and

X2 are dependent on that of V.

In order to determine the minimal set of derivatives required for a solution, one

may use an inheritance graph for the equation set; that for the binary flash

example is shown in figure 6.4. This digraph is a layered reordering of the signal

0
I

I
I

S
S 	 S

S

I
S

I

P2

PT 	

S
S

S
S

II 	 S
S

'I 	 S
I I 	 S

S
S

p' S S
S

S I 	 S I
I 	 S

S 	 S
5 	 S

S 	 S 	 5
S

S 	 S
S S

S

..
S

S
S

S

Figure 6.4: The Inheritance graph for the flash problem

flowgraph for the variables in the problem where the torn nodes are ordered first.

Those nodes which represent variables which are dependent only on tear variables

are ordered next; n.b. there must be at least one of these. The rest of the nodes

are ordered in similar fashion, i.e. node w is ordered in the j° layer of the graph

if it represents a variable whose value is dependent only on variables which have

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solverl73

been ordered before it, at least one of which corresponds to a vertex in the j -

layer. The back edges in this digraph, which are depicted in figure 6.4 as broken

arcs, show the dependency of the tear variables on the dependent variables; the

cross edges depict the interdependency of the tear variables. This dependency is

the key to the interpretation of the digraph.

The use of Jacobi iteration requires the derivatives of only those dependent

variables which are explicit functions of independent variables, and which appear

explicitly in one or more of the tear equations. More precisely, is required

if, and only if, ii is a tear variable but w is not, and if there is a diedge (ii, w)

and another directed edge (w, o) in the signal flowgraph for the variables in the

problem, where v is a tear variable, but v and o are not necessarily distinct.

These derivatives can be identified by a depth first search of the inheritance

graph for the equation set. So too the other derivatives which are required, i.e.

the rate of change of each of the the tear equations with those torn variables which

appear explicitly within it, can be identified from a search of this digraph. The

necessary condition on their inclusion is that there exists a directed edge, (ii, w),

in the digraph between two torn nodes i' and w; in this case the derivative with

respect to v of the tear equation which is matched with w must be calculated.

The rules for identifying the necessary derivatives for use with Gauss-Seidel

iteration are more complicated, and it is from these that the above graph takes

its name. If there is an edge (a,,6) in the inheritance graph then 8 is an

implicit function of each of the variables which determine the value of cx. If

these variables are restricted to those which are independent, then, using this

relationship recursively, and the fact that the nodes in the first layer of the graph

are torn, it can be seen that /3 is a function of all of the tear variables in the

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation Solver174

union of the of the sets of tear variables of those nodes which direct edges onto

it. If 9 is itself a torn variable, then the derivative of the equation which is

matched with it, fp, must be found with respect to each variable which directs

either a back edge or a cross edge onto P. Further, if there is a non-trivial path

from some node y, not necessarily distinct from 3, which corresponds to a tear

variable, x,,, and which passes only through vertices which represent dependent

variables, then the derivative of each of these variables with respect to x 1 must

be calculated; n.b. this does not imply that each of these appears in a term in

J = vJ x Vt + vJ. Each path of this type which passes from a node 77, which

represents the tear node x,,, through a node ic, which represents the dependent

variable XK implies that the value of is required for the solution of the reduced

equations.

The justification for these observations is that these paths show how the variables

in the equation set vary with each other, and hence which will have nonzero

derivatives with respect to each other. Returning to the problem of figure 6.4, it

is seen that the values of 8K2 8L 8L La } must I. 8z' 8X 8Z 8X 8X 82?3 W 1 av 8 3 8V 8X2

be calculated.

The above observations have been used to analyse a number of examples, but so

far no attempt has been made to develop them algorithmically.

Chapter 6. The Generation of Analytical Derivatives and their use in an Equation So) verl75

6.7 Summary

It was decided that the Newton Raphson method should be used to accelerate

the tear equations and that the numerical values of the analytical derivatives

of these equations would be calculated along with the equations themselves.

As was shown in § 6.3 this can be done by adapting Ponton's [75] to torn

systems. Although this was developed successfully it suffers from the defect that

each dependent variable must be differentiated with respect to each independent

variable, regardless of whether it is a function of it or not, and the same is true

for the tear equations. The rules for a graphical analysis which circumscribes

this difficulty were introduced in § 6.6, but they have not been developed as an

algorithm.

In the next chapter we describe how this solution technique, and the assignment,

partitioning and tearing algorithms of chapters § 4 and § 5, have been

implemented as part of a mathematical modeller.

I must Create a System, or be enslav'd by another Man's;
I will not Reason and Compare: my business is to Create.

William Blake, Jerusalem

Chapter 7

The Software Implementation

7.1 Introduction

In chapter 1, it is shown that the task of producing and solving a mathematical

model can be decomposed into six subtasks:

Find the generic statement of the problem and the data specific to the

current problem.

Identify the necessary equations.

Partition the equations into a computational sequence for the problem.

Tear and order the equations in each partition.

Produce a computer program to solve the equations.

176

Chapter 7. The Software Implementation 	 177

6. Solve the equations and report the results.

The theoretical basis for these features was developed in chapters 4, 5, and 6.

In this chapter the practical details of implementation, such as the languages

used and the maintenance and manipulation of data structures, are presented.

The reason for the use of Prolog and C are given in § 7.2. A statement of

the controlling algorithm for the modeller is presented in appendix E, and this is

discussed along in § 7.3. The functionality of the software and the data structures

which it manipulates sre discussed in this section too. In § 7.4 a sample modelling

session is presented which illustrates the points discussed in § 7.3, and a summary

of the chapter is presented in § 7.6.

7.2 Introduction

The modelling software was developed in a mixture of Prolog and C. All of

the symbolic computation, such as equation parsing and rearrangement, was

written in Prolog. This is an interpreted language and consequently it is very

slow. Further, it possesses very poor numerical processing capabilities and so

those tasks which are computationally intensive, i.e. the decomposition and the

solving routines, were coded in C. In the following section we will discuss the

fundamental features of Prolog which are necessary for the rest of the chapter;

for a more comprehensive introduction to this language see [91].

Chapter 7. The Software Implementation 	 178

7.2.1 Programming in Prolog

Prolog, Programming in Logic, is an interpreted, object orientated language. It is

used to test the truth of simple or compound statements such as "A is a member

of list B", "C is a leaf of tree D and has a value E", etc. It tests for this truth

by comparing data structures to see if they match. If they are equal then the

statement being tested is true; otherwise it is false. These data structures may

be formed dynamically, or they may be contained in rules and facts which have

been asserted to the Prolog database. A compound statement of rules and facts

is called a goal.

There are three basic data types in Prolog - atoms, structures and variables.

Atoms are constants such as integer and real numbers, or strings. For example,

1, 6.2 and 'foo' are all atoms. Structures, or predicates, are compound terms

consisting of a name and a number of arguments. For example, in the predicate

'member(a, B)', 'member' is its name and 'a' and 'B' are its arguments. Two

common types of structure are the list and the tree. Finally, variables have no

value and so they can share, i.e. assume the value, of any atom or structure with

which they are compared.

A Prolog program is a depth first search (DFS) of a subset of the rules and facts

in the Prolog database in order to verify a series of statements; this allows one to

develop massively recursive code. In general this DFS consumes a large amount

of the heap assigned to the program. If a match is obtained; then very little of

this memory is returned for future use; if none is found, however, the majority of

this space is made available once more. Thus large Prolog programs ought to be

Chapter 7. The Software Implementation 	 179

written so that most of their enquiries fail, rather than succeed.

7.3 A Description of the Modelling Software

The modelling software is constructed as a series of tasks which are consulted

by Prolog and asserted to its database. These are retracted sequentially and an

attempt is made to complete them. When no tasks remain the program stops.

This consultation and manipulation is controlled by the modelling interpreter.

This is defined by the predicate program which is shown in appendix F. Here

the character '!' is referred to as the cut, and it commits the program to all

choices made when control backtracks beyond it. As well as directing the flow

of information within the system, this program cleans up the database as facts,

rules and other data structures become obsolete.

Figure 7.1 is a logic flow diagram for the modelling software. Each problem type

is represented by a set of equations which describe, e.g., the mass and thermal

balances over the system. It was shown in § 4.2.2 that this equation set may

be very large and that it may contain redundant and conflicting equations. In

the present system, however, each system is small and none of the equations are

contradictory. Also associated with each instance of a problem type is a set of

constants, e.g. Wilson equation parameters, fixed values and design variables;

these too are described in § 4.2.2. Together these sets make up the abstract

representation of a problem and they are grouped together in a file.

Chapter 7. The Software Implementation 	 180

Abstract
Problem
Statement

Parsed an
Expanded
Equations

Equation I 	I Equation
Variable 	I Set
Matching 	 I Partition

Problem
Decompo-
sition

Program I 	Program
GeneratioiI 	 Execution

Results
Reporting

Figure 7.1: A Logic Flow Diagram for the Modelling Software

Chapter 7. The Software Implementation 	 181

As a first step these equations and constants are consulted by Prolog and inserted

into the database. In order to facilitate equation manipulation, they are then

transformed from their infix form to Reverse Polish Notation; this representation

was described in § 6.3. Note that there may be two types of equation present,

scalar and vectorial. A scalar equation is one in which each term is a scalar; a

vectorial equation is one in which at least one of the terms is a vector. Vectorial

equations, i.e. a single term is used to denote more than one like defined scalar

terms, or they may represent a number of like defined scalar equations. Regardless

of their form, all vectorial equations in the database are expanded to their scalar

equivalent prior to manipulation. This requires that the user be prompted for

the maximum value of each index, and that vectorial unknowns and constants be

replaced by their components.

At this point it is necessary to determine which unknowns appear in each

equation, and in which equations each unknown appears. This is achieved by

a depth first search of the parsed equation and the data are maintained as two

trees, eqn_uns and vars respectively. These trees are 23-trees, i.e. there are

either two or three branches from each node within them. Using this form of

balanced tree allows one to access any of the N leaves within the tree in between

log3 N and 1092N operations. This requires that one record the lowest values

accessible in the branches from one internal node and addition and deletion from

the tree are non-trivial operations. For a detailed discussion of this data structure

see [2].

It was seen in § 4 that a matching has to be derived between the variables in

the system and the equations in which they appear. This is constructed by

satisfying the goal match, and it is stored within Prolog as a set of facts of the

Chapter 7. The Software Implementation 	 182

form match (V,E), where Vis a variable and E is an equation. Once this has been

established it is used by the goal tarjan to identify the minimal, solvable equation

subsets for the problem. These sets are maintained as a list of lists in which appear

the variables associated with each subproblem and cursors for the equations to

be solved for them; n.b. these sublists are ordered so that they correspond to a

computational sequence. Lastly, a tear set for each equation subset is determined

by calling the operating system for the program bark.xnot.c. This requires that

the variables in the subsets be mapped onto an array of integers and the inverse

mapping is used when the results are consulted by the modelling software. The

torn subsets are recorded as a list of structures of the form t ear(Var8, Tear). Here

Vars is the set of dependent variables and Tear is the set of those which are

independent.

Having analysed the equation set and thus derived a computational sequence

for it, the next step is to solve the equations. This is achieved by writing two

computer programs; compiling them; linking them with precompiled code and

executing the object file. A logic diagram for the solving software appears in

figure 7.2.

In this system the minimal equation sets are solved sequentially. If only one

equation is to be solved for its solitary unknown, then this is evaluated explicitly.

If, however, more than one equation is to be solved, then the solution method

described in § 6.4 is employed. In either case, the equations for each subset

are contained in a separate subroutine in the file pol_eval.c. A pointer to each

routine which contains more than one equation is passed in turn to n..raph.c

which attempts to converge the equations within it. If the attempt is successful

then the next subroutine is called; otherwise an error message is written and

Chapter 7. The Software Implementation 	 183

Main

pol_init.c 	 n_raph.c

Results I I pol_eval

Figure 7.2: A Logic Flow Diagram for the Modelling Software

computation stops. If all the subroutines have been evaluated successfully, the

solution is written to a results file. In order to minimise the amount of storage

required for this computation, only as much memory as is necessary is accessed

by the program. The logic for this is contained within poL.init.c. In particular

this assigns a pointer to each subroutine in poLinit.c and it requisitions the space

for the list of tear variables in each of them. So too this file contains the values

of the constants, fixed variables and the initial guesses for the tear variables.

Finally, if the object code has been executed successfully the results are consulted

by the modelling software, asserted to the Prolog database and then displayed to

the user.

Chapter 7. The Software Implementation 	 184

7.4 An Example Modelling Session

In order to illustrate the features described above, we will follow a modelling

session in which a model is constructed and solved for a ternary flash problem.

The components are methanol, ethanol and water, and the vapour liquid

equilibrium conditions are calculated using Wilson's equations [105]. The physical

property data used for the calculations are

Component Zi C,, Hbase Delhv

Water 0.300 75.3 -242000 40683

Ethanol 0.300 97.1 -234960 38770

Methanol 	0.400 80.4 -201300 35278

where z is the mole fraction of each component in the feed stream, C,, is the

specific heat capacity at constant pressure for each liquid in kJ kmol 1K' , Hbase

is the specific enthalpy of formation of each component at 298K in kJkrnol 1 and

Delhv is the latent heat of vapourization of each liquid, also in kJkmol 1 ; n.b.

the values of C,, and Delhv vary with temperature, but they have been treated

as constants here.

The Wilson equation constants, A,,, for each of these components are

Component 	 A,,

Water 	1.00000 0.81564 0.94934

Ethanol 	0.20022 1.00000 0.60908

Methanol 	0.43045 1.35386 1.00000

Chapter 7. The Software Implementation 	 185

Lastly, the feed rate to the flash drum is assumed to be 10OKmolhr 1 and the

feed temperature is 298K. The flash is to take place at 348.5K and the liquid

phase mole fraction of water is to be 0.422.

The physical data were gleaned from Perry [72] and Sinnot [85] and the Wilson

constants were taken from [45]. The results were checked against those obtained

from PPDS.

7.4.1 The Physical and Thermodynamic Equations

Consider the flash drup represented by figure 7.3

A Prolog representation of the equations used to solve for the equilibrium

conditions within it appears in figure 7.4. The structure known_c qn(E) represents

an equation and stat known is either a constant or a fixed variable. The structure

all_uns is a list of the design variables.

/* The mass balance equations */

known_eqn (f=fliq+v).

knowu_eqn(f*z(i)=fliq*x(i)+v*y(i)).

known...eqn(sum(y(i) ,i)=i).

known_eqn(sum(z(i) ,

Chapter 7. The Software Implementation

v, 3

qreq
Figure 7.3: A Flash Drum

/* The basic equilibrium equation */

known_eqn(pt*y(i)=gamma(i)*x(i)*pstar(i)).

/* The enthalpy balance equations */

known_eqn (f *h± eedf 1 iq*hl iq+v*hvap+qreq).

known_eqn(hteed=suin(h±(i)*z(i) ,i)).

186

Chapter 7. The Software Implementation 	 187

knowu_eqn(hliq=sum(hl(i)*x(i) ,i)).

known_eqn(hvap=sum(hv(i)*y(i) ,i)).

known_eqn(hf(i)=hbase(i)+cp(i)*(tfeed-tbase)).

known_eqn(hl(i)=hbase(i)+cp(i)*(temp-tbase)).

known....eqn(hv(i)=hl(i)+delhv(i)).

1* Lastly Antoine's equation. Gives Pstar in mm Hg using */

/* Sinnot's values if T is in Kelvin.

known_eqn(log(pstar(i))=anta(i)_antb(i)/(temp+tc(j))).

1* And now the Wilson equation *1

known_eqn(log(gaiiuna(i)*w_suxn(i))=w_coeff(j)).

known_eqn(w_coeff(i)=1-swn(x(j)*].ambda(j, i)/w_sum(j),j)).

known_eqn(w_sum(i)=swn(x(j)*lainbda(j,j) ,j)).

/* And now for the fundamental constants */

stat_known(a.nta(i)).

stat_known(antb(j)).

stat_known(antc(j)).

stat_known(lambda(i,j)).

stat_known(tfeed).

stat -known (tbase).

stat_known(cp(i)).

stat_known(hbase(j)).

Chapter 7. The Software Implementation 	 IM

stat_known(delhv(j)).

1* ... and the constants for this problem. *1

stat_knowrt(f).

stat_known(z_1)

stat_known(z...3).

stat_known(x_1).

stat_known(temp).

1* The list of 'required' values *1

all_uns([qreq, f, fliq, v, z(i), x(i), y(i), temp, pt]).

/* Lastly, how to interpret the arrays *1

index_interp(i, "number of components").

index_interp(j, "number of components").

Figure 7.4: The Abstract Form of the Problem

7.4.2 Parsing and Expanding the Equations

Prior to manipulation, these equations must be parsed into Reverse Polish

Notation. If any of them is a vectorial equation it must be expanded into its

scalar form(s). The predicate n..pol transforms the equations to the form shown

Chapter 7. The Software Implementation

in figure 7.5 and vector-expand finds their expanded

eqn(eqn(fliq,v,+) ,f,=)

eqn(eqn(f,z(i) ,*) ,eqn(eqn(fliq,x(i) ,*) ,eqn(v,y(i) ,*) ,+) ,=)

eqn(eqn(y(i) ,i,sum) ,1,=)

eqn(eqn(z(i),i,suin),1,=)

eqn(eqn(pt,y(i) ,*) ,eqn(eqn(gaznnia(i) ,x(i) ,*) ,pstar(i) ,*) ,=)

eqn(eqn(f,hfeed,*) ,eqn(eqn(eqn(fliq,hliq,*) ,eqn(v,hvap,*) ,+),

qreq,+) ,=)

eqn(eqn(eqn(hf(i) ,z(i) ,*) ,i,sum),hfeed,=)

eqn(eqn(eqn(hl(i) ,x(i) ,*) ,i,surn) ,hliq,=)

eqn(eqn(eqn(hv(i) ,y(i) ,*) i ,sum) ,hva.p,=)

eqn(eqa(eqn(eqn(tfeed,tbase,-) ,cp(i) ,*) ,hbase(i) ,+) ,hf(i) ,=)

eqn(eqn(eqn(eqn(temp,tbase,-) ,cp(i) ,*) ,hbase(i) ,+) ,hl(i) ,=)

eqn(.eqn(hl(i) ,delhv(i) ,+) ,hv(i) ,)

eqn(eqn(pstar(i),_304311,log),eqn(eqn(eqn(temp,antc(j),+),

a.ntb(i) ,\) ,anta(i) ,<-) ,=)

eqn(eqn(eqn(gaznma(i) ,w_suin(i) ,'*) ,_304311,log) ,v_coeff (i))

eqn(eqn(eqn(eqn(eqn(x(j),lambda(j ,i) ,*) ,w_sum(j) ,/) ,j ,suin),

i,<-) ,w_coeff (i) =)

eqn(eqn(eqn(x(j) ,lambda(i,j) ,*) ,j ,sum) ,w_sum(i) ,=)

Figure 7.5: The Parsed Equation Set

form. Note that the predicate eqn has three arguments - an operator and its

operands. If the operator is unary, e.g. log, then the right operand is a Prolog

variable. The expanded equations appear in figure 7.6 where, for clarity, they

appear in infix form. Each vector in the original equations is replaced by its

Chapter 7. The Software Implementation 	 190

components in the new set. These components have the same root names as the

vectors but they are suffixed by indices. The vectorial equations are replaced by

the relevant number of scalar equations.

w_Bum_3lambda_3_3*x_3+lalnbda_3_2*x_2+

lainbda_3_ 1*x_1

w_suin_2=lainbda_2_3*x_3+lainbda_2_2*x_2+

lambda_2_1*x_1

w_s.um llainbda_ 1_3*x_3+lainbda_ 1_2*x_2+

lambda_1_1*x_1

v_coeff_3=1 - (lambda_ 1_3*x_1 /w_sum_ 1+lambda_2_3*x_2/w_suin_2+

lainbda_3_3*x_3/w_suin...3)

w_coeff_2=1- (lambda_1_2*x_1/w_sum_1+lainbda_2_2*x_2/w_sum_2+

lambda_3_2*x_3/w_sum_3)

w_coeff_1=1- (lambda_1_1*x_1/w_suin_1+lambda_2_1*x_2/w_sum_2+

lambda_3_ 1*x_3/w_sum_3)

w_coeff_3=1og (gamma_3*w_suin_3)

w_coeff_2=1og (gainma_2*w_suin_2)

w_coeff..1=log(gamma_1*w_sum_ 1)

a.nta_3-antb_3/ (temp+antc_3) =log (psta.r_3)

anta...2-a.ntb_2/ (temp+antc_2)=log(pstar_2)

anta_1-antb_1/(temp+antc_1)=log(pstar_1)

hv_3h1_3+delhv_3

hv_2h1_2+delhv_2

hv_1h1_1+delhv_1

hl_3= (temp-tbase) *cp_3+hbase_3

h1_2= (temp-tbase) *cp_2+hbase_2

Chapter 7. The Software Implementation 	 191

h1_1(temp-tbase)*cp_1+hbase_1

hf_3= (tf eed-tbase) *cp_3+hbase_3

hf_2(tfeed-tbase)*cp_2+hbase_2

hf_ 1= (tf eed-tbase)*cp_ 1+hbase_ 1

hvap=hv_3*y_3+hv_2*y_2+hv...1*y_ 1

hliq=hl_3*x_3+hi_2*x_2+hl_1*x_ 1

hfeedhf_3*z'_3+hf_2*z_2+hf_ 1*z. 1

fliq*hl iq+v*hvap+qreq=f*hfeed

gainma_3*x_3*pstar_3=pt *y_3

gamma_2*x_2*pstar_2=pt*y_2

gamlna_ 1 *x_ 1*pstar... lpt *y_l

1=z_3+z_2+z.. 1

1y-3+y-2+y_ 1

f1iq*x_3+v*y_3=f*z_3

fliq*x_2+v*y_2=f*z...2

fli.q*x_ 1+v*y_1=f *z_ 1

ffliq+v

Figure 7.6: The Expanded form of the Equations

7.4.3 The Variable/Equation Matching

Figure 7.7 is the matching defined by match. Note that in each pair the first

structure is the variable which is to be solved for and a cursor to the matched

equation; these structures were extracted from the Prolog database. The second

structure is the infix form of the equation, and it has been inciu4to demonstrate

Chapter 7. The Software Implementation 	 192

that the matching is legal.

z_2 29 1z_3+z_2+z_1

v 31 fliq*x_3+v*y_3=f*z_3

gamma-3 26 gainma_3*x_3*pstar_3=pt*y_3

w.coeff_1 6 v_coeff_11-(laiubda_1_1*x_1/w_swn_1+

lambda_2_1 *x_2/w_s_2+1bda_3_ 1*x3/v_ujn_3)

v_coeff_2 5 w_coeff_2=1-(lambda_1_2*x_1/w_sujn_1+

lambda_2_2*x_2/w_sum_2+lambcja_3_2*x_3/w_gum_3)

w_coetf_3 4 w_coeff_3=1-(lambda_1_3*x_1/w_sum_1+

lambda_2_3*x_2/w_sujn_2+lambda...3_3*x_3/w_ suin_3)

v. su_ 1 3 w_sum_ llambda_ 1_3*x_3+lambda...1_2*x_2+lanibda_ 1_ 1*x_ 1

w_sum_2 2 v_ sum_2=lambda_2_3*x_3+lajnbda_2_2*x_2+lainbda_2_ 1*x_ 1

pstar_3 10 anta_3-antb_3/ (temp+antc_3) =log (pstar_3)

pstar_2 11 anta_2-antb_2/ (temp+antc_2)=log(pstar_2)

pstar_1. 12 anta_1-antb_1/(temp+antc_1)=log(pstar_i)

hf_3 19 hf_3 (tf eed-tbase) *cp_3+hbase_3

hf_2 20 hf_2= (tf eed-tbase) *cp....2+hbase..2

x_2 32 fliq*x_2+v*y_2=f*z_2

fliq 34 ffliq+v

y_1 33 f].iq*x_1+v*y_1=f*z_1

x..3 1 w... sum_31ambda_3_3*x_3+1ambda_3_2*x_2+1nbda_3_ 1*x_ 1

w_sum_3 7 v_coeff_31og(gamma_3*w..suin_3)

hliq 23 hliqhl_3*x_3+hl_2*x_2+hl_1*x_1 	 -

Pt 28 gamma_1*x_1*pstar_1=pt*y..1

gamma-1 9 w_coeff_1=1og(gaxnma_1*w_suin_1)

hv_3 13 hv_3=hl_3+delhv_3

Chapter 7. The Software Implementation 	 193

h1...3 16 h1_3= (teinp-tbase) *cp_3+hbase_3

hv_2 14 hv_2=hi_2+delhv_2

h1_2 17 h1_2= (temp-tbase) *cp_2+hba8e_2

y...3 30 iy_3+y_2+y_1

y_2 27 ganuna_2*x_2*pstar_2=pt*y_2

gamma-2 8 w_coeff_2=1og(ganuna_2*w_suin_2)

hvap 22 hvaphv_3*y_3+hv_2*y_2+hv_1*y_1

hv_1 15 hv_1=hi_1+delhv_1

hi_i 18 h1_i=(teinp-tbase)*cp_1+hbase_1

qreq 25 fiiq*hi iq+v*hvap+qreq=f*hfeed

hfeed 24 hfeedhf_3*z_3+hf_2*z_2+hf_1*z_i

hf_i 21 hf_1=(tfeed-tbase)*cp_1+hbase_i

Figure 7.7: The Expanded form of the Equations

7.4.4 The Equation Subsets

The list of minimal, solvable equation subsets is stored under the name

components in the parts sector of the Prolog database. For the flash problem, it

is that shown in figure 7.8.

I ?- recorded(dfs, components(I), _).

I=[[hf_1,21] , [hf_2,2o] , [hf_3,19] , [hl_1,18] , [hi_2,i7] , [hi_3,i6],

[hv_i,15] ,[hv_2,14], [hv_3,13] ,[pstar_i,12J ,[psta.r_2,il],

Chapter 7. The Software Implementation 	 194

[pstar_3,1O] , [z_2,29] , [hfeed,24] , [w_suln_2,2,v_suin_1,3,v_coeff_3,

4,ganima_2,8,w_coeff_2,5,gainma_1 ,9,w_coeff_1 ,6 ,x_3, 1 ,w_sum_3,7,.

gamma_3,26,pt ,28,y_1 ,33,fliq,34,v,31,y_3,30,y_2,27,x_2,32],

[hvap,22] , [hliq,23], [qreq,25]]

Figure 7.8: The Minimal Solvable equation Sets

7.4.5 The Decomposed equation Subsets

Each minimal, solvable equation subset is decomposed using the Barkley and

Motard algorithm [65]. The results of this tearing are stored as a list, partitions,

of structures of the form tear(Vars, Tear). Here, Vars is the set of dependent

variables and Tear is the set of those which are torn; n.b. if no variables are torn

then Tear is the empty list, fl. In our example, only one of the minimal, solvable

subsets is decomposed with a non-empty tear set. The structure stored in the

Prolog database for the flash problem is displayed in figure 7.9.

I 7- recorded(parts, pa.rtitions(I), J.

I=[tear([25,qreq] , D),tear([23,hliqj , D),tear([22,hvap] , C]),

tear([x_3,fliq,y_1,v..sum_2,w_sum_1,w_coeff..1,gamma.1,pt,

w_coeff_2,galnma_2,y_2,y_3,v_coeff_3,ganuna_31, [x_2,v,w_suin_3]),

tear([24,hfeed] []) ,tear([29 ,z_2] []) ,tea.r([10 ,pstar_3] , [])

tear([11,pstar_2] , []) ,tear([12,pstar_1] , []) ,tear([13,hv...3],[]),

tear([14,hv_21 , []), tear([15,hv_1] , []),tear([16,hl_3] , C]),

Chapter 7. The Software Implementation 	 195

tear([17,hl_21, []),tea.r([18,h1_1], []),tear([19,hf_3] ,

tear([20,hf_21 , []),tear([21,hf_1), [])]

Figure 7.9: The Decomposed Variable Subsets

7.5 Solving the Equations

7.5.1 Program Generation

A listing of the file pol_init.c which was written to initialise each subroutine in

poL.eval.c appears in appendix F. The first routine in this file declares the number

of subroutines in pol..eval.c, i.e. the number of equation subsets to be solved, and

the number of constants and variables which appear in them. Next it declares

the names of the routines in pol_eval.c, assigns a pointer to each of them and

declares space for the array of values. Finally the values of the constants and

fixed variables are set, along with the initial guesses for the tear variables. In the

next subroutine a switch is declared. For each case, the number and keys of the

tear variables are declared.

A listing of pol..eval.c appears in appendix F. The equations to be solved appear

in this file. Each solvable subset is assigned to a different subroutine and there

are different forms for single an multiple equations. When a single equation is to

be solved it is written in infix form and calculated explicitly. Multiple equations

Chapter 7. The Software Implementation 	 196

are written in Reverse Polish Notation and interpreted. The memory required

for their evaluation is requisitioned at the start of the routine and returned to

main memory at its end.

7.5.2 Reporting the Results

If the attempt to solve the equations has failed, e.g. they have failed to converge,

then an appropriate message is printed for the user and computation stops.

Otherwise, the results are read back into Prolog and they are reported on the

terminal screen. The value of each design variable, constant and unknown is

reported in that order. The results for our problem are contained in figure 7.10.

Variable 	 Value

========= == = ===== === === == = =

temp 348.5 lambda-1-1 1

X-1 0.422 lambda-1-2 0.81564

z_3 0.4 lambda-1-3 0.94934

Z-1 0.3 lambda-2-1 0.20022

100 lambda-2-2 1

delhv_1 40683 lambda-2-3 0.60908

delhv_2 38770 lambda-3-1 0.43045

delhv_3 35278 lambda-3-2 1.35386

hbase_1 -242000 lambda-3-3 1

hbase_2 -234960 antc_i -46.13

Chapter 7. The Software Implementation

hbase_3 -201300 antc_2 -41.68

cp_1 75.3 antc_3 -34.29

cp_2 97.1 antb_1 3816.44

cp_3 80.4 antb_2 3803.98

tbase 298 antb_3 3626.55

tfeed 298 anta_1 18.3036

z_2 0.3 anta_2 18.9119

y...3 0.461756 anta_3 18.5875

0.311098 hvap -179160

Y- 1 0.227146 hv_3 -161962

x_3 0.296584 hv_2 -191286

x_2 0.281416 hv_1 -197514

w_sum_3 0.859232 hiiq -223759

w_suxn_2 0.546552 h1_3 -197240

w_sum_1 0.933093 h1_2 -230056

w_coeff_3 -0.0881325 hi_i -238197

w_coeff_2 -0.351091 hfeed -223608

w_coeff_1 0.296069 hf_3 -201300

v 62.611 hf_2 -234960

qreq -2.77727e+06 hf_i -242000

Pt 785.701 gamma-3 1.06565

pstar_3 1147.91 gamma-2 1.28793

pstar_2 674.395 gainina...1 1.44097

pstar_1 293.49 fliq 37.389

197

Figure 7.10: The Solution of the Equations

Chapter 7. The Software Implementation

7.6 Summary

In this chapter we discussed the way in which the modelling software transforms

an abstract statement of a problem, i.e. a generic set of equations and variables,

into a computer program which it executes in order to solve it. This is done

by parsing and expanding the equations, finding a matching between them and

the unknowns and then partitioning the equation set into its minimal, solvable

subsets. Next it finds a tear set of the variables for each subset of size greater

than one. Lastly, it constructs and executes a computer program to solve the

equations, and reports the results to the user.

Life is the art of drawing sufficient conclusions from
insufficient premises

Samuel Butler

Chapter 8

Conclusions and Recommendations for Future
Work

8.1 Recommendations for Future Work

Prolog is an interpreted language and thus its execution is very slow; the rate

of model production would be improved by rewriting all of the algorithmic

tasks such as parsing and matching in a procedural language such as C. Four

further technical improvements are desirable. Firstly its scope for problem

formulation would be enhanced greatly by the ability to use and solve differential

equations. These may be maintained in a database in the same way that

algebraic equations are at present, although some new system definitions would

be necessary. Secondly, the software should be made more user friendly. One way

in which this might be achieved is by supplying a menu and icon driven graphical

interface which the user could manipulate instead of writing a file.

199

Chapter 8. Conclusions and Recommendations for Future Work 	200

Thirdly, an intelligent front end should be written which can, in conjunction with

the graphical interface proposed above, construct the abstract problem statement.

This should be a frame based system in which the top level slots are used to define

the types of equation to be solved; these equations ought to be maintained in a

data base. As an example, if a user were to wish to solve a reactor problem then

clicking on a reactor icon should prompt the system to enquire as to the type of

reactor, its heat transfer characteristics, the reaction order, etc. As these slots

are filled the corresponding equations ought to be retrieved from the database

and collated in an 'active' file, thus constructing the abstract problem statement.

Such an approach would provide the opportunity to make approximations, e.g. by

assuming the specific heat capacities were constant over a range of temperatures,

and to relate these to the more exact model.

Lastly, in its current state, the modelling system makes no use of the knowledge

contained in other software. This should be changed so that, it can consult other

databases and external programs, e.g., PPDS for physical properties, or an expert

system for a choice of equation of state.

8.2 Conclusions

The requirements of a mathematical modelling system were investigated in § 1.

Some definitions of model optimality were considered but it was shown that,

although a qualitative comparison may be made between formulations, it is not

possible to provide a meaningful, precise definition of optimality.

Chapter 8. Conclusions and Recommendations for Future Work 	201

In § 2 it was shown that, in the general case, we can place some necessary

conditions on an equation set for it to have a unique, non-trivial solution. Next

the desirability of establishing an output set was established, and the equivalence

of graph, matrix and equation partitioning was demonstrated. Choosing an

output set is a check on structural singularity and a step towards partitioning

an equation set; the strong components of a directed graph correspond to the

minimal diagonal blocks of a block lower triangular matrix and the minimal,

solvable subsets of an equation set. Lastly optimality was considered once more,

with respect to the selection of tear sets. A good definition for this proved elusive

and so too it was shown that, for many numerical methods, the reduction in effort

required per iteration for a torn system is insignificant.

Techniques for output selection, matrix partitioning and decomposition were

examined in § 3. Dinic's maximal flow algorithm [20] is the best available

method for output selection and Tarjan's depth first search [94] is the optimal

formulation for matrix partitioning. No comprehensive characterisation of fill-in

in unsymmetric matrices has been developed, but that for symmetric matrices is

well understood; establishing the minimum fill-in for either type of matrix is an

NP-complete problem. Barkley and Motard's algorithm [] is the best available

for decomposition.

It was demonstrated in § 4 that a square, solvable subset of equations which

describes a particular instance of a generic problem can be identified by finding

a maximum matching between the variables and equations and then partitioning

the equation set. This can be achieved most efficiently by using the techniques

selected in § 3. Further, those equations which are not matched with a variable

may be candidates for replacing any redundant equations which are identified in

Chapter 8. Conclusions and Recommendations for Future Work 	202

the formulation of the specific problem.

A minimum cardinality separator for, a reduced signal fiowgraph is also one for

the bipartite digraph from which it was derived; this result appears in § 5. The

signal fiowgraph can be formed in time which is linear in the number of arcs in the

digraph; the tear set can be found in time which is quartic in the number of its

nodes. The numerical values of the analytical derivatives of the reduced equations

in a torn system can be calculated simultaneously with those of the reduced

equations. Rules for these calculations are presented in § 6 and a prescription for

an improvement to the method is given.

Software has been developed which transforms an abstract problem statement

into a mathematical model, and then realises this as a simulation. This has

been demonstrated on a sample problem but some improvements are possible.

In particular, greater power would be achieved by supplying an intelligent front

end which can formulate the problem statement interactively with the user; by

rewriting the algorithmic tasks in a procedural language such as C; adding a user

friendly interface; and broadening the range of application of the software by

enabling it to solve differential equations.

Bibliography

A.V. Aho, M.R. Garey, and J.D. Ullman. The transitive reduction of a
directed graph. SIAM. J. Comput., 1(2):131-137, 1972.

A.V. Aho, J.E. Hoperoft, and J.D. Ullman. Data Structures and Algorithms.
Computer Science and Information Processing: Addison-Wesley, 1983.

A. C. Aitken. On Bernoulli's numerical solution of algebraic equations.
Proceedings of the Royal Society of Edinburgh, 46:289-305, 1925.

A. C. Aitken. Studies in Practical Mathematics. V. On the iterative
solution of a system of linear equations. Proceedings of the Royal Society
of Edinburgh, 63:52-60, 1950.

A L. Apostel. Towards the formal study of models in the non-formal
sciences, page 1. Reidel Pub. Co., 1961.

[6]. R. Aris. Mathematical Modelling Techniques. Pitman, 1978.

A X.J.R. Avula, editor. Proceedings of the first International conference on
mathematical modelling. University of Missouri, 1977.

R. Banares-Alcantara and A.W. Westerberg. Development of an expert
system for physical property predictions. Comput. Chem. Eng., 9(2):127-
149, 1985.

R. W. Barkley and R. L. Motard. Decomposition of nets. The Chemical
Engineering Journal, 3:265-275, 1973.

J. G. P. Barnes. An algorithm for solving non-linear equations based on
the secant method. Computer Journal, 8:66-72, 1965.

C. Berge. Some classes of perfect graphs. In F. Harary, editor, Graph
Theory and Theoretical Physics, pages 155-165, London, 1967. Academic
Press.

K. E. Bett, J. S. Rowlinson, and G. Saville. Thermodynamics for Chemical
Engineers, page 137. The Athlone Press, 1975.

C. G. Broyden. A class of methods for solving nonlinear simultaneous
equations. Math. Comp., 19:577-593, 1965.

203

BIBLIOGRAPHY
	

204

C. G. Broyden. Quasi-newton methods and their application to function
minimisation. Math. Comp., 21:368-381, 1967.

R. H. Cavett. Application of numerical methods to the convergence of
simulated processes involving recycle loops. Preprint 04-63, American
Petroleum Institute, May 1963.

J. H. Christensen and D. F. Rudd. Structuring design computations.
A.LCh.E. Journal, 15(1):94-100, 1969.

J. F. Cordoba. A linear algorithm for nonredundant decompositions.
Computers and Chemical Engineering, 12(1):105-107, 1988.

C. M. Crowe and M. Nishio. Covergence promotion in the simulation of
chemical processes - the general dominant eigenvalue method. A.L Ch.E.
Journal, 21(3):528-533, 1975.

E. W. Dijkstra. A note on two problems in connection with graphs.
Numerische Math., 1:269-271, 1959.

E. A. Dinic. Algorithm for solution of a problem of maximum flow in
a network with power estimation. Soviet Math. Doki., 11(5):1277-1280,
1970.

A. T. Doig. Reactors and reaction mechanisms. In The Design of a Chemical
Heat Pipe, Undergraduate Design Report. Dept. Chem. Eng., University of
Edinburgh, 1985.

I. S. Duff. On permutations to block triangular form. J. Inst. Math. Applic.,
19:339-342, 1977.

I. S. Duff. On algorithms for obtaining a maximum traversal. ACM
Transactions on Mathematical Software, 7(3) :315-330, 1981.

I. S. Duff and J. K. Reid. An implemantation of Tarjan's algorithm for the
block triangularization of a matrix. ACM Transactions on Mathematical
Software, 4(2):137-147, 1978.

I. S. Duff and J. K. Reid. Some design features of a sparse matrix code.
ACM Transactions on Mathematical Software, 5(1):18-35, 1979.

I.S. Duff, J.K. Reid, and A.M. Erisman. Direct Methods for Sparse Matrices.
John Wiley, 1988.

J. Edmonds. Paths, trees and flowers. Canadian Journal of Mathematics,
17:449-67, 1965.

J. Edmonds and E. Johnson. Matching: A well solved class of integer linear
programs. In Hmm, editor, Combinatorial Structures and their applications,
pages 89-92, 1970.

BIBLIOGRAPHY
	

205

A.M. Erisman, R.G. Grimes, J.G. Lewis, and W.G Poole, Jr. A structurally
stable modification of Hellerman-Rarick's P4 algorithm for reordering
unsymmetric sparse matrices. SIAM J. Numer. Anal., 22:369-385, 1985.

S. Even. Graph Algorithms. Pitman, 1979.

L.R. Ford, Jr. and D.R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399-404, 1956.

G. J. Forder and H. P. Hutchison. The analysis of chemical plant flowsheets.
Chemical Engineering Science, 24:771-785, 1969.

H. Gabow. An efficient implementation of Edmonds' maximum matching
algorithm. Technical Report Technical Report 31, Stanford University
Computer Science Dept., June 1972.

D. Gale and L. S. Shapley. College admissions and the stability of marriage.
American Mathematical Monthly, 69:9-14, 1962.

A. George and J. W. H. Liu. The evolution of the minimum degree ordering
algorithm. SIAM review, 31(1):1-19, 1989.

A. Gibbons. Algorithmic Graph Theory, chapter 5. Cambridge University
Press, 1987.

P. Hall. On representatives of subsets. J. London Math. Soc., 10:26-30,
1935.

F. Harary. The determinant of the adjacency matrix of a graph. SIAM
Review, 4(3):202-210, 1962.

L. Haskins and D. J. Rose. Toward characterisation of perfect elimination
digraphs. SIAM Journal on Computing, 2(4):217-224, 1973.

E. Hellerman and D. Rarick. Reinversion with the preassigned pivot
procedure. Mathematical Programming, 1:195-216, 1971.

E. Hellerman and D. Rarick. The partitioned preassigned pivot procedure.
In D. J. Rose and R. A. Willoughby, editors, Sparse Matrices and their
Applications, pages 67-76, 1972.

E.J. Henley and E.M. Rosen. Material and Energy Balance Computations,
page 110. Chemical Engineering Outlines. John Wiley, 1969.

D. M. Himmleblau. Decomposition of large scale systems-1. Systems
composed of lumped parameter elements. Chemical Engineering Science,
21:425-438, 1966.

D. M. Himmleblau. Decomposition of large scale systems-2. Systems
containing nonlinear elements. Chemical Engineering Science, 21:883-895,
1966.

BIBLIOGRAPHY

M. Hirata, S. Ohe, and K. Nagamaha. The Computer Aided Data Book
of Vapour-Liquid Equilibria. Kodansha, Elsevier Scientific Publishing
Company, 1975.

J. E. Hoperoft and R. M. Karp. An n 5/2 algorithm for maximum matchings
in bipartite graphs. SIAM Journal on Computing, 2(4):225-231, 1973.

D. Hutton. Knowledge Based Flowsheet Modelling for Chemical Process
Design. PhD thesis, University of Edinburgh, 1990.

R. W. Irving and P. Leather. The complexity of counting stable marraiges.
SIAM Journal on Computing, 15(3):655—, 1986.

W. R. Johns. Mathematical considerations in preparing general-purpose
computer programs for the design or simulation of chemical processes. In
The Use of Computers in the design of Chemical plants, Florence, 1970.

D. J. Kleitman. A note on perfect elimination digraphs. SIAM. J. Comput.,
3(4):280-282, 1974.

E. Kreysig. Advanced Engineering Mathematics, page 807. Wiley, 1979.

A W.H. Leatherdale. The role of analogy, model and metaphor in science.
Elsevier, 1974.

W. Lee, J. H. Christensen, and D. F. Rudd. Design variable selection to
simplify process calculations. A.I.Ch.E. Journal, 12(6):1104-11l0, 1966.

W. Lee and D. F. Rudd. On the ordering of recycle calculations. A.I. G?i.E.
Journal, 12(6):1184-1190, 1966.

M. J. Leigh. A computer flowsheeting programme incorporating algebraic
analysis of the problem structure. PhD thesis, University of London, 1973.

K. Levenberg. A method for the solution of certain non-linear problems in
least squares. Quart. Appl. Math., 2:164-168, 1944.

T. D. Lin and R. S. H. Mali. Hierarchical partition-a new optimal pivoting
algorithm. Mathematical Programming, 12:260-278, 1977.

J. W. H. Liu. A compact row storage scheme for cholesky factors using
elimination trees. ACM Transactions on Mathematical Software, 12(2):127-
148, 1986.

J. W. H. Liu. A graph partitioning problem by node separators. ACM
Transactions on Mathematical Software, 15(3):198-219, 1989.

J.W.H. Liu. Equivalent sparse matrix reordering by elimination tree
rotations. SIAM. J. Stat. Comput., 9(3):424-444, 1988.

H. M. Markowitz. The elimination form of the inverse and its application
to linear programming. Management Science, 3(3):255-269, 1957.

BIBLIOGRAPHY
	

207

D. W. Marquardt. A method for least squares estimation of non-linear
parameters. SIAM Journal, 11:431-441, 1963.

J. M. Montagna and 0. A. Iribarren. Optimal computation sequence in
the simulation of chemical plants. Computers and Chemical Engineering,
12(1):71-79, 1988.

R. L. Motard, M. Shacham, and E. M. Rosen. Steady state chemical process
simulation. A.I.Ch.E. Journal, 21(3):417-436, 1975.

R. L. Motard. and A. W. Westerberg. Exclusive tear sets for fiowsheets.
A .1. Ch.E. Journal, 27(5) :725-732, 1981.

C. L. N. Murthy and A. Hussain. An efficient tearing algorithm based on
minimum sum of weights. Computers and Chemical Engineering, 7(2):133-
136, 1983.

0. Orbach and C. M. Crowe. Convergence promotion in the simulation of
chemical processes with recycle - the Dominant Eigenvalue Method. The
Canadian Journal of Chemical Engineering, 49:509-513, 1971.

C.C. Pantelides. The consistent initialisation of differential-algebraic
systems. SIAM J. Sci. Stat. Comput., 9(2):213-231, 1988.

W. R. Paterson. A new method for solving a class of non-linear equations.
Chemical Engineering Science, 41:1935, 1986.

W. R. Paterson. On preferring iteration in a transformed variable to the
method of successive substitution. Chemical Engineering Science, 41:601,
1986.

Ding-Yu Peng and D. B. Robinson. A new two constant equation of state.
Ind. Eng. Chem (Fundamentals), 15(1):59-64, 1976.

R. H. Perry and C. H. Chilton. The Chemical Engineers' Handbook.
McGraw-Hill, 51h edition, 1974.

T. K. Pho and L. Lapidus. Topics in Computer-Aided Design: Part 1:
An optimal tearing algorithm for recycle streams. A.I.Ch.E. Journal,
19(6):1170-1181, 1973.

George Polya. How to solve it. Penguin, 2 d edition, 1990.

J. W. Ponton. 	The numerical evaluation of analytical derivatives.
Computers and Chemical Engineering, 6:331-333, 1982.

R. H. Rand. Computer Algebra in Applied Mathematics: An Introduction
to Macs yma. Research Notes in Mathematics (94). Pitman, 1984.

Jerry Rayna. REDUCE - A System for Computer Algebra. Springer, 1987.

BIBLIOGRAPHY

D. J. Rose. A graph-theoretic study of the numerical solution of sparse
positive definite systems of linear equations. In R. Read, editor, Graph
Theory and Computing, pages 183-217, New York, 1971. Academic Press.

D. J. Rose and J. R. Bunch. The role of partitioning in the numerical
solution of sparse systems. In D. J. Rose and J. R. Bunch, editors, Sparse
Matrix Computations, 1972.

D. J. Rose and R. E. Tarjan. Algorithmic aspects of vertex elimination on
directed graphs. SIAM J. Appi. Math., 34(1):176-197, 1978.

S. Sahni. Computationally related problems. SIAM. J. Comput., 3(4):262-
279, 1974.

R. W. H. Sargent. The decomposition of systems of procedures and
algebraic equations. In G. A. Watson, editor, Numerical Analysis-
Proceedings, Biennial Conference, Dundee, pages 158-178. Springer-Verlag,
1977. Lecture Notes in Mathematics, 630.

R. W. H. Sargent and A.W. Westerberg. SPEED-UP in chemical
engineering design. Trans. Inst. Chem. Engr8., 42:190-197, 1964.

R. Schreiber. A new implementation of sparse gaussian elimination. ACM
Transactions on Mathematical Software, 8(3):256-276, 1982.

R. K. Sinnot. Chemical Engineering, Volume 6. Pergarnon, 1983.

J. M. Smith and H. C. Van Ness. Introduction to Chemical Engineering
Thermodynamics, page 295. McGraw Hill, 3rd edition, 1981.

J.M. Smith. Models in Ecology. Cambridge University Press, 1974.

S. Soylemez and Seider W, D. A new technique for precedence ordering
chemical process equation sets. A.I.Ch.E. Journal, 19(5):934-942, 1973.

M. A. Stadtherr, W.. A. Gifford, and L. E. Scriven. Efficient solution of
sparse sets of design equations. Chemical Engineering Science, 29:1025-
1034, 1974.

M. A. Stadtherr and E. S. Wood. Sparse matrix methods for equation-
based chemical process flowsheeting-1: Reordering phase. Computers and
Chemical Engineering, 8(1):9-18, 1984.

L. Sterling and E. Shapiro. The Art of Prolog: Advanced Programming
Techniques. MIT Press, 1986.

D. V. Steward. On an approach to techniques for the analysis of the
structure of large systems of equations. SIAM review, 4(4):321-342, 1962.

D. V. Steward. Partitioning and tearing systems of equations. J. SIAM
Numer. Anal. Ser. B, 2(2):345-365, 1965.

BIBLIOGRAPHY
	

209

R. E. Tarjan. Depth-first search and linear algorithms. SIAM Journal on
Computing, 1(2):146-160, 1972.

R. E. Tarjan. Enumeration of the elementary circuits of a directed graph.
SIAM Journal on Computing, 2(3):211-216, 1973.

J. C. Tiernan. An efficient search algorithm to find the elementary circuits
of a graph. Communications of the ACM, 13(12):722-726, 1971.

W.F. Tinney and J.W. Walker. Directy solutions of sparse network
equations by optimally ordered triangular factorization. Proc. IEEE,
55(11):1801-1809, 1967.

R. S. Upadhye and E. A. Grens. Selection of decompositions for chemical
process simulation. A .1. Ch.E. Journal, 21(l):136-143, 1975.

J. H. Wegstein. Accelerating convergence of iterative processes. Comm.
ACM, 1(6):9-13, 1958.

H. Weinblatt. A new search algorithm for finding the simple cycles of a
finite directed graph. ACM Journal, 19(1):43-56, 1972.

A. W. Westerberg. Private communication.

A. W. Westerberg and F. E. Edie. Computer-Aided Design, Part
1: Enhancing convergence properties by the choice of output variable
assignments in the solution of sparse equation sets. Chemical Engineering,
2:9-15, 1971.

A. W. Westerberg and F. E. Edie. Computer-Aided Design, Part 2: An
approach to convergence and tearing in the solution of sparse equation sets.
Chemical Engineering, 2:17-24, 1971.

J. H. Wilkinson. The Algebraic Eigenvalue Method, page 36. Clarendon
Press, 1965.

G. M. Wilson. J. Am. Chem. Soc., 86:127, 1964.

M. Yannakakis. Computing the minimum fill-in is NP complete. SIAM J.
Aig. Disc. Methods, 2(1):77-79, 1981.

Appendix A

The Operations Count for LU Decomposition

Consider some N x N matrix A and its factors, L and U, defined by

A = L U
	

(A.1)

and such that L is a lower triangular matrix with ones on its diagonal and U
is upper triangular. Let there be y j nonzeros below the first diagonal element
of A and Pi non-zero elements to the right of it in the first row. In order to
calculate the elements in the first column of L, -t i divisions are necessary and
at most another -y * Pi entries in A must be altered. Each of these alterations
requires one subtraction and one multiplication. Let A 1 be the matrix formed by
these operations, and extend this notation so that A/C is the matrix formed by
the first k - 1 sets of operations, 7k is the number of non-zero entries below the
Ph diagonal entry in ARC, and Pk is the number of non-zeros to the right of this
element. The total number of operations required to form the elements of L and
U is thus

k=N

daum =E 7k Divisions
k=1
k=N

m aum =E 's/k Pk Multiplications
k=1

k=N

aaum =E 7k Pk Additions
k=1

210

Appendix A. The Operations Count for LU Decomposition 	 211

In the worst case, i.e. A is full or becomes so, -y, = Pk = N - k and so 0(N3)

operations are required in all.

Appendix B

A Binary Ideal Flash Problem

Consider the flash drum shown in figure B.1. The feedrate of the binary mixture
into the drum is F, the vapour rate produced is V and the liquid flowrate out
of the drum is L. The mole fraction of the i1h component is zi in the feed, y1 in
the vapour product and xi in the liquid product. The vapour pressure of pure
component i at the system temperature T is F, and its partial pressure is P,.
K1 is the Henry's Law constant for the i1h component at T and P, the system
presure.

The overall mass balance on the drum is

F=L+V
	

(B.1)

the balance on each component is

F; = Lx1 + Vy1 	 (B.2)

and the definitions of x,, yj and zi give

1 1 x1=1 	 (B.3)

212

Appendix B. A Binary Ideal Flash Problem 	 213

V. V.

L,x.
Figure B.1: A Flash Drum

The total pressure of the system is the sum of the partial pressures of the
components

P1+P2=Pt 	 (B.6)

and the partial pressure of each component is related to its pure vapour pressure
at the system temperature by

Pi = 	 (B.7)

The Henry's Law constant for each component relates its mole fraction in a vapour
phase to that in a liquid phase with which it is in equilibrium

yj = K1x, 	 Ma
This constant is a function of temperature and pressure and it is defined by

-

PS

If 	$ (B.9)

If T and Yi are known, then specifying F and z1 allows one to solve for all of
the other variables. There are ten unknowns in the equation set and so ten
of the equations above must be used to provide their values; n.b. only five of

Appendix B. A Binary Ideal Flash Problem 	 214

equations B.1- B.5 may be used. One legal assignment for this problem is

 z1+z2 = 	1, z 2

 Lx i +Vyi = 	Fz1 , L

 Lx 2 + V!,'2 = 	Fz2 , x 2

 L+V =1, V

 Y1 +Y2 = 	1, !/2

 K2x2 = 	Y21 K2

7 P2*/P = K2 , Pt

 Pi+P2 = 	Pt , Pi

 Pxi = 	F1 , x i

 Px2 	= P2 , F2

where the variable after each equation is the variable for which it is to be solved.

Appendix C

The Dissociation of Water

The equilibrium constant, K, for a reaction in an ideal gas mixture is a function
of temperature, T, alone. If there are M such competing reactions, then the M
equilibrium constants K1 are given by

K5 = F(T), j = 1,2,... , M 	 (C.1)

Alternatively, the equilibrium constants can be calculated from the partial
pressures of the gases in the mixture. If there are N components, each of
which has a partial pressure F1, taking part in these reactions, and if v,5 is the
stoichiometric coefficient of the i1h component in the j" reaction, then, K, may
be found from

1=M

K, = fJ P", j = 1,2,...,M 	 (C.2)

The partial pressure of each component is the product of its mole fraction in the
mixture, y, and the total pressure, P,

P1 = Py1, i=1,2,.-. ,N 	(C.3)

In turn, the ith mole fraction is the ratio, of the number of moles of component i,
n, to the total number of moles, n t,

ni
1,2,...,N 	 (C.4)

and nj is defined by
i=N

= 	
(C.5)

215

Appendix C. The Dissociation of Water 	 216

If n 0 is the number of moles of compound i present initially, and if ç, is the
extent of the j°' reaction [42], then

i=N

vilci i=1,2,...,N 	 (C.6)

The conservation of mass in a reacting system requires that, in the absence of
radioactive decay, the initial and final amounts of each element present be equal.
Thus, if cr,k is the number of moles of element k in component i, and if there are
R elements present, then

1k(fl10-fl1)=O, k=1,2,...,R 	 (C.7)

The total pressure and the temperature of the system, its volume, V, and the
total number of moles of gas present are related by the ideal gas equation of state

PgV=ntRT 	 (C.8)

where R is the universal gas constant. If the system is closed and the initial
mass of each component is known, then Duhem's Theorem [86] states that its
equilibrium state is specified by fixing the values of two independent variables;
n.b. these variables may be intensive or extensive.

When water dissociates at high temperature, four independent reactions take
place,

	

1120 	H2-4-O2 	 (C.9)

	

H20 	H2+OH 	 (C.10)

	

H2 	2H 	 (C.11)

	

02 	20 	 (C.12)

If the gases are at high temperature but low pressure, the compression factor for
the mixture is almost unity [12], and so the mixture can be assumed to be ideal.
Backsubstitution of equations C.4 - C.2 shows that altering the system pressure
at any temperature alters the equilibrium distribution of products, i.e.

	

i=N 	

i=N

	

K1 = {(_1.)i=i 	} 1-I nr', j = 1,2, ... ,M 	(C.13)
flg 	1=1

If the initial amount of each of the six components is known, fixing
the temperature and pressure of the system specifies its equilibrium

Appendix C. The Dissociation of Water 	 217

Figure C.1: The Graph of the Dissociation Equations

state. 	Then, following the solution of equation C.1 for each reaction,
equations C.5, C.7and C.13 can be solved simultaneously and the results
substituted forward to give the equilibrium conditions. The graph of this equation
set is shown in figure C.1. Here equations Ii and f2 are the molar balances on
monotonic oxygen and hydrogen respectively, f3 is the overall molar balance,
and the remaining four are the equilibrium equations for the reactions. Variables
X1, x2 and x3 are the equilibrium molar amounts of water, molecular hydrogen
and molecular oxygen and x 5 , x6 and x7 are those hydroxyl ions, and atomic
hydrogen and oxygen respectively; x 4 is the total number of moles present at
equilibrium. The incidence matrix for one ordering of the equations is shown in
figure C.2.

-& x3 x ' x2 x5-&

fsIx 	x x xl

I xx 	x 	xl
f71 X 	 x

X x 	xl
f2 lx 	x x x

filx x x 	x
f3 [x X ' X x x x

Figure C.2: The Incidence Matrix for the Dissociation Equations

Appendix C. The Dissociation of Water 	 218

If instead the equations are to be solved without algebraic substitution, then the
incidence matrix for one ordering of these equations and variables is shown in
figure C.3. Here the generic equations have been expanded in the order in which
they appear above, and the variables are mapped onto the array s by

PH2O) X1 YH20 	X7 nH 2o -' X3 P -+

PH2 .' 	X2 YH2 X8 72112 X14 	?2 	 -

P02 - 	 X3 Y0 2 - 	X9 n02 -+ 	X15

POH' I 	X4 YOH - 	X10 720H -' 	S16

PH) 	 X5 YH I x1i nH X17

P0 X6 Y0 X12 no + 	18

Appendix C. The Dissociation of Water 	 219

1 P2 1!5P4 1 P6YlY2Y3Y4Y5Y6flhI3fl$fl5I6 .ntele2 e3
lX

2 	x
3 	x
4 	x
5x 	xxx
6 x 	X 	x
7 	x 	x 	x
8 	x 	x 	x
9 	x 	 x
10 	 x 	 x
11 	 x 	 x
12 	 x 	 x
13 	 x 	 x
14 	 x 	 x
15 	 x 	 x 	 x
16 	 x 	 x 	x
17 	 x 	 x 	x
18 	 x 	 x 	x
19 	 x 	 x x
20 	 x 	 X
21 	 . 	xxxxxxx
22 	 . 	 xxxxxx
23 	 xxxxxx
24 	 x 	x
25 	 x 	x
26 	 x 	x
27 	 . 	 x 	x
28 	 x 	x

Figure C.3: The Incidence Matrix for the Dissociation Equations

Appendix D

Methods for Convergence Acceleration

D.1 Derivative Methods

D.1.1 Methods with an Analytical Jacobian

The general form for any method in which the correction to the solution vector
at the i' iteration, ax', is a linear transformation of the residual vector function,
f1 , is

= —a'B'f
	

(D.1)

where 0 < a ~ 1, 1i1
= 1f11 = m, and B is an m x m non-singular matrix. If

the Jacobian of f* is J', then
B' = (Ji)-1 	 (D.2)

corresponds to equation D.1 being the Newton-Raphson method; if instead

B' = (ji)_T 	 (D.3)

220

Appendix D. Methods for Convergence Acceleration 	 221

is used, it is the method of steepest descent [42]. If Bt is taken to be a linear
combination of (J1) -1 and (J1)_T,

F = (Ji)-T((Ji)-T(Ji)_1 + A(J')_'), 0 < A'< 1 	(D.4)

then equation D.1 corresponds to a method attributed both to Levenberg [56]
and Marquardt [62].

D.1.2 Methods which Use Function Values

If the Jacobian is either difficult or expensive to calculate analytically, then it
may be approximated numerically by perturbing each component of the solution
vector in turn. Then F = {b k} becomes

Ti

jk 	
hk

JJ + hkek) fi(xi)
0 	 j, k = 1,2,.. , m 	(D.5)

where f is the j' component of f, ek is the ktI column of 'm and hk is some
number much smaller than one.

Wegstein [99] developed the secant method for solving single variable problems,
and his method has been generalised to the simultaneous solution of m equations.
In his method, initial guesses are required for x0 and x1 and then at each iteration

i 	fJ(x71)—fj(x) 	
(D.6) bjk

- 	x +1 -

Here the variables are regarded as independent of one another and the functions
f' are approximated by the linear equations which intersect with them at 4 and

i+1
Xk

D.2 Quasi-Newton' Methods

A different approach is for F in D.1 to be an approximation to the Jacobian
which is improved after each iteration. B° can be chosen to be an arbitrary

Appendix D. Methods for Convergence Acceleration 	 222

matrix, but more usually it is selected as either Im the identity matrix for lRtm,
or the Jacobian of f(x°). Whatever the choice of B°, equation D.1 is generally
not satisfied. Instead, the update to B' is chosen so that

B'1Ax = fi 	 (D.7)

where Lf' = f:+1 - f• Since B'+' is chosen to reflect the change in the value of
f along the direction of Ax', the modification to B' need only be of rank one.
Thus the general form for the change in the iteration matrix is

B 1 = B' + UV 	 (D.8)

where u and vare column vectors. Substituting this equation into D.7 gives

{B' + uvT} Lxx' = Afi 	 (D.9)

from which it can be deduced that u must lie in the direction of 1fi - B 1 x 1 ,
i.e.

- f'—B'Ex'
VX'.

	
(D .10)

The vector vT has been chosen in different ways. Barnes [10], chose it to be
orthogonal to each Ax', j < i, wheras Broyden [13], [14] chose it to be Ax' in
order to preserve the positive definiteness of the iteration matrix.

D.3 Dominant Eigenvalue Methods

Consider the linear equation set
Ax=b
	

(D.11)

where x is the vector of unknowns, A is the unsymmetric matrix of real coefficients
and b is the vector of right hand sides. Equation D.11 can be solved exactly as
x = A'b, or iteratively if A is modified in some way. Without loss of generality,
let A be of dimension rn x m, and rewrite it as A = B - C where B = {b,,} and
bij = a,, i = 1,2.. , m, j <i. Then D.11 may be transformed into the iterative
scheme

xk.41 = rx' + u 	 (D.12)
where r = B 1 C and ii = B 1 b; n.b. I' is independent of xk. If x is the solution
of D.11, then

(D.13)

Rearranging this for ii and substituting the result into D.12 gives

xk+1 - = 	- x*) 	 (D.14)

Appendix D. Methods for Convergence Acceleration 	 223

Clearly, r is a linear operator which relates the error in x 	to that in x. Writing
equation D.14 for k = 0 gives

- = I'(x° - x*)

and so, following the next iteration,

- = 	- x)

Repeated application of r shows that after the n' iteration,

X - = r(x° - x*)

or, setting & = -

e' = 1'°e°

If A,)'2," , Am, the eigenvalues of F, are real and distinct, then ii e , the
set of the eigenvectors of F, is orthogonal to each other member of this set.
Further, each of these vectors can be scaled so that ; = 	- , i = 1 1 2,. . . , m
is an orthonormal basis for ntm, and the vector e0 can be written as a linear
combination of these scaled vectors. Hence

e° —az 	 (D.19)

Premultiplying D.19 by z1, 1 < j :5 m, and using the orthonormality of the
eigenvectors gives

ai = zre° 	 (D.20)

Substituting this expression into D.19, and the result into D.18 gives

= r 	' >ze°z 	 (D.21)

However, for each eigenvector z of F and the coresponding eigenvalue A1,

= A1z1 	 (D.22)

and so D.21 becomes

= 	
z"e°Az 1 	 (D.23)

If the eigenvalues of F are ranked in order of decreasing absolute value, i.e.
IA11 > 1A 2 1 > 	> lA m I, then the error vector after the kt 1' iterate is

ek = A{zTe °zi +
2

z "e°(.!.) z} 	 (D.24)

Appendix D. Methods for Convergence Acceleration 	 224

A sufficient but not necessary condition for this iterative scheme to converge is
that the modulus of) should be less than unity. Whether this holds or not, if
IA1 I >> I.A 2 1, then the first term in this equation will tend to dominate. In this
case the approximation

urn elC =(D.25)
k—ioo

holds and the difference between this approximation and the true value of e'
follows a decreasing geometric series. \ is then said to be the dominant
eigenvalue of r.

The derivation of an approximation for the error in the solution at the k°' iteration
depended on the symmetry of A. Should A be unsymmetric, however, then the
detail of this derivation changes, but not so the essence. In this case the left and
right hand eigenvectors of r should each form an orthonormal basis for 1R. This
requires that

w3TZi
1 i=j

= 	 (D.26)
0 ij

where w3 is the j" left hand eigenvector of r, and the left and right hand
eigenvectors are ordered in the same way. Further, if A is unsymmetric then
wT replaces z' in equation D.21. Should the first absolute values of the first
/3 eigenvalues of r be similar, then the first /3 terms of the summation must be
included in equation D.25. If r has one or more multiple eigenvalues, then the
above treatment still holds if there exists some non-singular matrix H such that

H-1rH = diag(A 1) (D.27)

where diag(A 1) is a diagonal matrix whose non-zero entries are the eigenvalues
of r. In this case the eigenvectors which correspond to equivalent eigenvalues
are non-unique, but an orthonormal subset of them which spans R7 can still be
chosen. If the dominant eigenvalue is not unique, then the convergence of D.25
is reduced. Further, if some of the eigenvalues are complex conjugate pairs' then
the corresponding terms in D.23 oscillate and this impairs the rate of convergence
of D.25.

The above analysis can be extended to the stationary, iterative solution of non-
linear equations. In this case, equation D.18 becomes

= F!ce!_l 	 (D.28)

where r' may change at each iteration. However, if the ratio of successive errors
begins to follow a geometric progression, it may be that the functions over the

n. 6. since A is real so too is r, and thus because det(r) = Ai, for any complex eigenvalue

of r,) j1, there must exist also Ai2 = Ail

Appendix D. Methods for Convergence Acceleration 	 225

domain defined by these iterations is sufficiently linear for rc to be regarded as
independent of k. Then the acceleration steps described in § D.4 may be used to
promote convergence.

D.4 Application to Convergence Acceleration

Aitken, [4] noted that since both the error in x and its change at each iteration
follow a geometric series whose common ratio is A 1 , then his acceleration method
for the calculation of eigenvalues [3] could be used to accelerate the convergence
of linear equations. Let the change in x over the k 11' iteration be

AX = 	- 	 (D.29)

Then Aitken's observation may be written as

(D.30)

If equations D.18 and D.29 are substituted into D.30, the result may be rearranged
to give an as approximation to the x', the solution of the equations,

* 	xk_1 xk+1 - (xk)2
X

- 2xk - xk+1 	 (D.31)

Rather than waiting until the approximation D.30 is sufficiently small, the author
advocates testing the change in the value of each component of x until this
approaches a geometric series and then taking an acceleration step

- (xk) 2

X .
1 —2x - 	

(D.32)

where x is the i1h component of XC. This accelerates each component of x
by a different amount and, because it ignores the effect of interaction between
variables, it can lead to oscillation.

Orbach and Crowe [67] estimate the modulus of the dominant eigenvalue as the
ratio of absolute value of the change in x over successive iterations, and determine
its sign by comparing the elements of x between them. Their application of
dominant eigenvalue methods is for the solution of nonlinear equations and the
convergence of flowsheets and they assume that D.25 holds when the condition

ILx ~ 1 I 1—< ~ 1+ 	 (D.33)
IxI

Appendix D. Methods for Convergence Acceleration 	 226

is satisfied, whereis the maximum change of any component of x over the
k Ih iteration, and c is some small number. Assuming that k is close enough to
the limit in equation D.25 for the equality to hold, these authors extrapolated
the solution to the equations to

x*=xk+cr 	 (D.34)
1— A1

where 0 <a <, and this variable is included in order to supress oscillation of the
solution.

This method is called the Dominant Eigenvalue Method, and it is least effective
when there are more than one eigenvalues close to unity, and which dominate
the rate of convergence. Crowe and Nishio [18] sought to alleviate this problem
by taking account of the ii greatest eigenvalues of the iteration matrix A, where
ii may be estimated in different ways. Their argument is based on the use of
the Caley-Hamilton theorem [104] which states that a matrix behaves its own
characteristic equation. They order the eigenvalues of A in descending order,
and they use the relationship

AX k (D.35)

to form the approximation

i=k,k+1 9 ...,, 	 (D.36)

where Aj is an approximation to the jth coefficient in the characteristic equation
of A, and Po = 0. The coefficients in D.36 can be made to approximate the
values of the true eigencoefficients by minimising the Euclidian norm of the left
hand side of this equation. The current estimate of the solution, can be
extrapolated to a new estimate, 1°°, by rearranging D.36 to give

(j=i+l

\
 J

00 X 	
1=0 / 	

(D.37)

EAj
i=0

Crowe and Nishio call this the General Dominant Eigenvalue Method and they
show that it reduces to the same form as the Dominant Eigenvalue Method [67]
for ii = 1. The authors [18] report that using the same criteria as Orbach and
Crowe for determining when to take a promoting step resulted in too infrequent

Appendix D. Methods for Convergence Acceleration 	 227

acceleration. Instead they recommend that a promotion step be taken when the
sum of the differences between the components of °° estimated at successive
iterations is less than some small value e. Whilst this criterion is redolent of
Aitken's [4], Crowe and Nishio's acceleration procedure is superior to-his in that
their's takes account of both the interaction between -variables and a larger subset
of the dominating eigenvalues in the iteration matrix.

Appendix E

The Modelling Interpreter

1*

Program : prob_interp

Author 	A. T. Doig

Date 	: 19th February 1990

Purpose In order to minimise the problem a of memory exhaustion and

excessive search times the model producing software is

written so that each predicate fails rather than succeed. In

228

Appendix E. The Modelling Interpreter 	 229

order to add flexibility to our approach a general interpreter

is provided which can be used to control any set of predicates.

This interpreter is the predicate program/0 and it consists of

three separate rules

Assert to the database the name of the file which contains

the program description, that is the list of tasks to be

performed and the files which contain the predicates

necessary to complete them. At the same time assert the

list of predicates which are necessary only for setting

the system up - these will be retracted from the database

immediately after use.

Call each task in turn and on completion of this task

remove all of the predicates which are no longer of any

use.

Leave Prolog.

Obviously this program is not the most concise description of

the problem which is possible using predicate calculus. It has

the advantage, however, of combining a relatively high degree

of conciseness with both simplicity of implementation and

clarity.

Appendix E. The Modelling Interpreter 	 230

program/0 is the interpreter. Assert the information about set up to the

database and then fail so as to free the heap. Next call each task in turn

and then leave Prolog.

*1

program: -

consult (prob_descrip),

initialise-system.

program:-

call-tasks.

program:-

halt.

call-tasks/0 uses the predicate repeat/O to force backtracking each time

that next_task/O fails. The last time that next_task/O is called it

succeeds (there are no more tasks to be fulfilled), and the cut-fail

combination is used to disable repeat/O and cause call-tasks/0 to fail.

call-tasks:-

repeat,

next-task,

!, fail.

/*

Appendix E. The Modelling Interpreter 	 231

next_task/O retracts from the database the name of the next task (the

predicate to be called), and the names of the files which contain the

code necessary for its completion. When the task has been completed

complete-task/2 fails and so the next call to next_task/O is made. This

call identifies the set of predicates which are no longer of any use

and these are retracted from the database by house-keep/l. This last

predicate also fails on completion and so, because of the cut, next_task/O

fails completely, returning control to call-tasks/0 on backtracking.

Eventually next_task/O is called when no structures of the form

task-list/2 or pred_set/1 remain in the database. In this case next_task/O

succeeds.

next_task:-

not(recorded(preds, task_list(_, _), _)), !.

next-task:-

my_retract (preds, task_list (Files, Task)),

complete_task(Files, Task).

next-task:-

house-keep.

complete-task/2 uses its arguements in two seperate clauses. First of all

the list of files which is its first arguement is consulted and then

the task defined by its second arguement is called. Both consult_all/i

Appendix E. The Modelling Interpreter 	 232

and the task called fail.

*1

coniplete_task(Files, _) :-

consult_all (Files).

complete_task(_, Task):-

call(Task).

/*

consult-all/1 reconsults the file at the head of the list which is its

first arguement and then makes a call to reconsult all of those in the

tail.

consult_all([HIT]) :-

!, reconsult(H),

consult_all (T).

consult-all(El) :-fail.

house-keep/0 removes all of the redundant clause from the database. It

does this by calling abolish/2 for each of these clauses in turn. The

first arguementis the functor of the clause to removed and the second

is its arity.

Appendix E. The Modelling Interpreter 	 233

*1

house-keep: -

repeat,

not(kiU_pred),

fail.

kill_pred: -

• retract(dead_pred(P, A)),

abolish(P, A).

Appendix F

The Initialization File for the Flash Problem

This is a copy Of the file poL.init.c which is written by the modelling software. As was

explained in § 7.5.1 this file contains the logic necessary for declaring the subroutines

of poLeval.c for main, for initialising pointers to those subroutines and for storing the

values of the constants and guesses for the tear variables. It also contains a switch

which is used to access the tear variables for each subroutine.

char em,JiocQ•

char*free();

iniiia1ieprob(vaii, hers, Nprobs, V pir, valsiae)

234

Appendix F. The Initialization File for the Flash Problem 	 235

double *vale; 	/e The unknowns and constant, in the problem. 	•j
mt 5 Iter.; 	/' The array of Iteration, required for each partition. •I
ins 'Nprob.; 	/' The number of partitions in the problem.

Ins (9ptrO)Q; I' The array of pointers to the evaluation function. 'f
int 5vai.ise; 	/ The number of variables/ known. 	-

ins part'num = 18;

mt prob.ize = 68;

ins evallQ;

ins evai2Q;

Ins eval'30;

mt eval4Q;

mt eval5Q;

mt eval6Q;

mt evallO;

int'eval8O;

ins oval 9Q

in, eva110Q;

ins evaillO;

Ins oval 120;

mt eval 130;
inS eva1'14Q;

mt eval 150;

ins eva116Q;

ins evaill();

mt oval 180;

fptr[1] = evall;

fptr[2] oval 2;

fptr(3] = oval 3;

fptr4] = .va1*4;

fptr(5) = ovals;

fptr(61 = eval6;

F ptr(7'J = eval?;

F ptr[8] = ovalS;

fptr[9] = eva19;

iptr[10] = evallO;

fptr(11J = evalil;

F pir12) = eval12;

fptr(131 = oval 13;

fptr(141 = eval14;

F ptr[15J = eval15;

V psr(16J evalI6;

fpsr[17] = evalli;

Vpsr[18] = eval18;

valsize = 68;

I.
Set up the arrays and initialise them. Recall that the +1 bit I. necessary

because C arrays stars at subscript 0, rather than 1.

8/

Appendix F. The Initialization File for the Flash Problem 	 236

valC = (double ') malloc((uneigned) (va1eie+1) eieeof(double));

9iere 	(ml) utelloc((un.igued) (partnum+1) * sizeof(ini));

**vale 	probsize;

55 ltere = p&rtnum;

Nprob = p*rtnum;

*((Ovals) + 1) = 348.5;

*((Val.) + 2) = 0.422;

((vale) + 3) = 0.4;

((val.) + 4) = 03;

5((5val0 + 5) = 100.0;

*((*v.) + 6) = 40683.0;

'(('vale) + 7) - 38770.0;

'(('vale) + 8) = 35278.0;

'(('vale) + 9) = .242000.0;

"(('vale) + 10) = -234960.0;

'(('vale) + 11) = -201300.0;

*((*vale) + 12) = 75.3;

'(('Va) + 13) = 97.1;

'(('vale) + 14) = 80.4;

'(('vale) + 15) = 298.0;

'(('vale) + 16) = 298.0;

*(('vale) + 17) = 1.0;

'(('vale) + 18) = 0.81564;

'(('vale) + 19) = 0.94934;

'(('vale) + 20) = 0.20022;

'(('vale) + 21) = 1.0;

'(('vale) + 22) = 0.60908;

'(('vale) +23) = 0.43045;

'(('vale) + 24) = 1.35386;

'(('vale) +25) = 1.0;

'((vale) + 26) 	-46.13;

'(('vale) +27) = -41.68;

'(('vale) +28) = -34.29;

'(('vale) +29) = 3816.44;

'(('vale) +30) = 3803.98;

'(('vale) +31) = 3628.55;

'(('vale) + 32) = 18.3036;

'(('vale) + 33) = 18.9119;

'(('vale) + 34) = 18.5875;

'(('vale) + 40) = 0.25;

'(('vale) + 47) = 60.0;

'(('vale) +41) = 0.6;

geteval/3 uses a switch to assign the function pointer V ptr correctly

and to eel up Icarus:.

'I

Appendix F. The Initialization File for the Flash Problem 	 237

geteval(Prob, tearliet)

lot Prob; 	/ The current partition

ins 	iearliss; 	/ The list of tear variables.

/ 	Flip the switch 	/

•wiich(Prob) —

case 1:

'tearliet = (mt ') malloc((unsigned) 1 • eizeof(int));

'(('tearlist)) 	0;

break;

case 2:

'tearlist = (jot ') inafloc((un.igned) 1 * aizeof(int));

0;

break;

case 3:

'tearliet = (jot ') malloc((unsigned) I * sizeof(int));

(('tearlist)) = 0;

break;

case 4:

'tearliet 	(jot ') mafloc((unsigned) 1 * .iaeof(inl));

'(('tearlist)) = 0;

break;

case 5:

'tearlist = (ins ') malloc((unsigned) I • sizeof(int));

'(('tearlist)) = 0;

break;

case 6:

'tearlist = (lot ') malloc((uosigned) I 	sizeof(int));

'(('tear list)) = 0;

break;

case

•tearIist = (lot ') inalloc((unsigned) 1 	•izeof(int));

Appendix F. The Initialization File for the Flash Problem 	 238

•((*eariist)) = 0;

break;

case 8:

Ctearliu i = (ins) maUoc((uneigned) 1 	eizeof(ini));

C((Ctearlist)) = 0;

break;

case 9:

'tearilet = (ins) mafloc((uneigned) 1 	eizeof(int));

'(('tearlist)) = 0;

break;

case 10:

*tearIiBt = (ins C) mafloc((uneigned) 1 * .izeof(int));

C((Ctearliut)) = 0;

break;

case 11:

*jearljet = (ins ') mal.loc((unaigned) 1 s aizeot(int));

*((*teariist)) = 0;

break;

case 12:

*tearIjej = (ins C) malloc((uneigned) 1 * sizeoi(int));

*((*teariisi)) M 0;

break;

case 13:

tearlie$ = (ins S) mafloc((unaigned) 1 .izeoi(int));

*((*tearliss)) 	0;

break;

case 14:

tearliut = (ins) mafloc((uneigned) 1 eizeof(ins));

((tearIi.st)) = 0;

break;

case 15:

'tearliet = (ins •) malloc((nneigned) 4 • sizeof(int));

Appendix F. The Initialization File for the Flash Problem 	 239

(('tear list)) = 3;

S((etearlist) + 1) = 40;

*((*teariiet) + 2) = 47;

*((tearlist) + 3) = 41;

break;

case 16:

5 tearIjst = (mt) mafloc((un.igned) I s .izeof(int));

*((Stearliss)) = 0;

break;

case 17:

etearliet = (mt) rnafloc((uneigned) 1 * .ieeof(int));

((5teariiat)) = 0;

break;

- case 18:

*tearliat = (ins *) mailoc((unsigned) 1 ' •ieeof(int));

*((*teartjs$)) = 0;

break;

default

printf("%s"n"n", 'No partitions - computation abandoned");

exit(-I);

break;

Appendix G

The Subroutines for the Flash Problem

*include "con8*s.h"

#include "ariih.h"

int puhQ;

double popO;

240

Appendix G. The Subroutines for the Flash Problem 	 241

char SmallocO;

char*free();

ins eval'I(vale)

double vaiafl;

vah[64]=(vaJ6(l61.va1s(151)val$(l21+val5(9);

jot eval2(vale)

double valiD;

vaa1631=(vaie[18].vala[151)5va11[13]+vale[1O];

lot eval3(-vaJs)

double valiD;

va1e(623=(va1.t16I.va1e(15])val$(141+vale[1Ij;

ins eval4(vale)

double valsfl;

vala(601=(vali[lJ.vas(15])vala(13J+yala(91;

ins evai5(vala)

double valafl;

va1ef59J=(vae(1J.vali(15)vaJe[13]+ vale (1O);

ins eval6(vals)

double va.fl;

vaJet58J=(vah[1J.vala(151) 5vaje[141+ Vale (IjJ;

in, eval7(vala)

double valifl;

vala[56]=vale[601+valef6];

ins evai8(vale)

double valiD;

vala(551=va1s(59+vaia(1;

ins eval9(vals)

double valafl;

vah[54] va1st58+va1e(8J;

Appendix G. The Subroutines for the Flash Problem 	 242

ins evailO(vals)

double valsD;

vas(521=exp(vaIs[32].vais29J/(vals[l]4vals[261));

mt evaIll(vals)

double valsD;

vaJt511exp(vals[331.vamsL30 /(vats(lj+vams(271));

jut evai12(vals)

double vaisfl;

vals[50J=exp(vals(341.vals[31]/(vals(lj+vals(281));

ins evai13(vals)

double valaD;

vala(351= l.O.vals[4).vals[3];

mt eval14(vals)

double valsfl;

va5(61j =val(621*val5 (31 va 63J*val5[35] val5(641sva5[4J

InS oval 15(vala, f, jacobian)

double valsfl; 	/0 The unknowns and constants In the problem. 0/

double flJ; 	/ The array of function values.

double 60jacoblan; /° The jacobian for the tear set.

double *stack; /0 The stack 	 0/

double 	°sdash; / 	The derivative stacks

double 	chain; /° The analytical derivatives

double **unit; / 	The identity matrix (Dx/Dx)

double popO; /° The popping junction

double °srow; / 	An array of zeros 	 Cl

int °sptr; f 	A pointer to the head of the stack 	/

ins C; /0 The number of tear variables 	Cl

int dep; / 	The number of dependent variables Cl

int exitflag = 1; / 	Flag unused at the moment 	Cl

int i, j; /* Count variables 	 C,

dep = 14;

Appendix G. The Subroutines for the Flash Problem 	 243

C = (lot) jacobian;

stack = (double) mafloc((uneigned) (MAXPTR+1) * eizeof(double));

*'dash = (double) mafloc((unsigned) (MAXPTR+1) .izeof(double C));

chain 	(double SC) znafloc((unsigned) (dep+1) sieof(donble));

unit = (double) meiloc((unsigned) (C+l) • sizeot(double C));

Crow = (double C) maflo((uneigned) (C+1) *izeof(double));

for(i=l; i j= C; i++) -

srow(i] = 0.0;

unit[i] 	(double *) mailoc((uneigned) (C+1) • eizeof(double));

for(j=l; j ;= C; i++)

((unit + i) +) = 0.0;

((unit + i) + i) = 1.0;

ior(i=1; i i= MAXPTR; i++) -

sda4h(iJ = (double C) mafloc((uneigned) (C+1) 'eizeof(double));

ior(i1; I ; dep; i++) -

chain[i] = (double C) rnauoc((unsigned) (C+1) C eizeof(double));

for(j=1; j ;= C; i++)

((chain + I) + j) 0.0;

= (double) malboc((unsigned) eizeof(double));

*chain = (double) mafloc((uneigned) eizeof(double));

•Ufljt = (double C) maUoc((uneigned) sizeof(double));

stack(0] = val*(0);

5row(0) = *Cjobjan;

cpu = (jot) maJloc((uneigned) .izeof(inu));

CCsdah = 401;

Appendix G. The Subroutines for the Flash Problem 	 244

('sptr) = 0;

push(vals(41], unit(3], stack, sdaah, sptr);

push(vaIs(231, scow, stack, sdash, sptr);

push(vais[2], stow, stack, .dash, sptr);

myttmes(stack, •dash, 5 plc);

minua(stack, sdaah, sptr);

push(vals(241, srow, stack, sdash, sptr);

push(vals(401, unit(1), stack, sdaah, .ptr);

mytimes(stack, sdash, sptr);

minus(stack, sdash, sptr); -

push(vais(251, srow, stack, sdash, sptr);

divide(stack, sdash, sptr);

vais[39] = pop(1, stack, sdash, chain, sptr);

pnsh(vals(51, srow, stack, sdash, sptr);

push(vals[473, unii(2], stack, adash, sptr);

minui(stack, sdash, spir);

valsL681 	pop(2, stack, sdash, chain, spit);

push(vals(51, stow, stack, sdaah, sptr);

push(vals(41, scow, stack, sdaah, eptr);

myiimes(stack, sdaah, sptr);

push(vals(681, chainf2j, stack, sdaah, sptr);

push(vals(21, stow, stack, sdaah, sptr);

myiimee(stack, sdash, spit);

minus(stack, sdash, sptr);

push(vals(47J, unit(21, stack, sdash, spit);

divide(siack, sdash, spit);

vals(381 = pop(3, stack, sdash, chain, spir);

push(vats(221, scow, stack, sdash, spit);

push(vala(391, chainhl],.stack, sdaah, sptr);-

myiimes(stack, adash, spit);

push(valsL211, stow, stack, sdash, sptr);

push(va191401, unitil), stack, sdash, spit);

rnytimes(stack, sdaah, spit);

plus(stack, sdash, spit);

push(vsis(20, scow, stack adash, spit);

push(vals(21, stow, stack, sdash, spit);

myt&mes(stack, sdash, sptr);

plus(siack, sdash, spit);

va18142l = pop(4, stack, adash, chain, sptr);

push(vals[19], 8row, stack, sdash, spit);

push(va1s(39, chain[1), stack, idash, spIt);

mytimes(stack, sdaah, spit);

push(vals(181, stow, stack, sdazh, sptt);

push(vals(401, unit(1J, stack, sdash, spit);

mytimes(stack, sdash, spit);

plus(stack, sdash, sptr);

push(vils[I71, stow, stack, sdash, spit);

Appendix G. The Subroutines for the Flash Problem 	 245

push(vals(2), stow, stack, sdash, sptr);

mytlmes(stack, sdaah, sptr);

plus(stack, sdaah, sptr);

vals(431 = pop(5, stack, adash, chain, sptr);

push(1.0, Crow, stack, sdaeh, sptr);

push(vals(171, stow, stack, *'dash, sptr);

push(vais(21, srow, stack, sdash, sptr);

mytirnes(stack, sdaah, sptr);

push(vals(431, chain[51, stack sdaah, sptr);

divide(stack, sdash, s'ptr);

push(vais(201, slow, stack, sdaah, sptr);

push(vals(401, unittli, stack, sdaah, spsr);

mytimes(stack, sdah, sptr);

push(vale(421, chain(41, stack, sda.h, sptr);

divide(stack, sdash, sptr);

plus(stack, sda.h, sptr);

push(vais(231, srow, stack, sdaah, sptr);

push(vais(391, chain(1], stack, sda.h, sptr);

niysimes(stack, sdaah, sptr);

push(vais[411, unitt31, stack, sdash, sptr);

divide(stack, sdash, sptr);

plus(stack, sdaah, sptr);

minus(stack, *'dash, sptr);

vab46J = pop(6, stack, sdash, chain, iptr);

push(vais(461, chainL6J, stack, sdash, sptr);

expon(stack, sdash, sptr);

push(vals(431, chain(5], stack, sdaah, sptr);

divide(stack, sdaah, sptr);

vais[67] = p09(7, stack, sdash, chain, sptr);

push(vals(67], chaintlk stack, sdaah, sptr);

pusk(vals(2J, stow, stack, sdaah, sptr);

mytimes(stack, sdaah, sptr);

push(vals(52], stow, stack, sdaah, sptr);

mytimes(stack, sdaah, iptr);

push(vats[38], chain(31, stack, sdash, sptr);

divide(stack, sdaah, sptr);

vals(491 = pop(8, stack, sdaah, chain, sptr);

push(1.0, stow, stack, sdaah, sptr);

push(vais(18), stow, stack, sdaah, sptr);

push(vals(21, s'row, stack, sdaah, sptr);

mytimes(stack, sdaah, sptr);

push(vala(431, chain(5), stack, s'daah, sptr);

divida(stack, sdash, sptr);

push(vals(21], srow, stack, sdash, sptr);

push(vaLs(401, unit(1], stack, sdash, sptr);

mytimes(stack, sdaah, sptr);

push(vats(421, chain[4J, stack, sdaah, sptr);

divide(stack, sdash, sptr);

Appendix G. The Subroutines for the Flash Problem 	 246

plus(stack, sdash, sptr);

push(vais(24I, srow, stack, sdaah, .ptr);

push(vais(391, chain(i), stack, •daah, .ptr);

my'timea(ssack, adaah, sptr);

push(vals(411, unit(31, stack, 6 dash, .ptx);

divide(stack, s dash, sptr);

pIns(stack, • dash, spsr);

minus(stack, dash, •ptr);

vai81451 = pop(9, stack, sdash, chain, eptr);

pulh(valsL45], chain(91, stack, sdash, sptr);

expon(stack, sdash, sptr);

pnsh(vals(421, chain[4], stack, sdash, sptr);

divide(stack, sdash, sptr);

valst681 = pop(1O, stack, sdash, chain, sptr);

push(vais(683, chain[10, stack, adash, s'ptr);

push(vals(401, unit[1], stack, sdash, sptr);

mytimes(stack, sdash, sptr);

push(vals[51], srow, stack, sdash, sptr);

- mytimeø(stack, sdash, sptr);

push(vals[49], chain(81, stack, sda.h, sptr);

divide(stack, sdash, sptr);

vaIst371 	pop(ii, stack, .dash, chain, sptr);

push(i.O, srow, stack, sdash, sptr);

push(vals(38J, chain(31, stack, s'dash, sptr);

minus(stack, sdash, sptr);

push(vah[371, chainill], stack, sdash, •ptr);

minus(stack, •dash, spir);

vals(361 = pop(12, stack, sdash, chain, &ptr);

push(i.O, Crow, stack, sdash, sptr);

push(vala(191, srow, stack, sdash, sptr);

push(valsf2], Crow, stack, sdash, sptr);

my'times(stack, edash, sptr);

push(vals[431, chain[5], stack, sdash, sptr);

divide(stack, sdash, s'ptr);

push(va19I221, srow, stack, sdash, eptT);

push(vaIs(40), unittli, stack, sdash, sptr);

mytimes(stack, sdash, sptr);

push(vals(421, chain(41, stack, sdash, sptr);

divide(stack, sdaah, s'ptr);

plus(atack, adash, sptr);

push(vals(251, srow, stack, sdash, sptr);

pu.h(vals(391, chain(1J, stack, sdash, s'ptr);

mytimes(stack, sdash, sptr);

push(va1s1411, unit(3J, stack, sdash, sptr);

divide(stack, sdash, sptr);

ptus(stack, sdash, spsr);

mians(stack, sdaah, sptr);

Appendix G. The Subroutines for the Flash Problem 	 247

vals(441 	pop(13, stack, sdaah, chain, sptr);

push(vals(491, chain(8J, stack, sdaab, sptr);

push(vals(361, chain(121, stack, sdash, spsr);

mytisnes(stack, sdasb, sptr);

pnsh(va1s501, stow, stack, s'daah, s'ptr);

divide(stack, *'dash, s'ptr);

push(valst391, chain(iJ, stack, sdash, sptr);

divide(stack, sdaah, sptr);

valst65J = pop(14, stack, edash, chain, sptr);

push(vals(51, Crow, stack, sdash, sptr);

push(vals(351, scow, stack, sdash, sptr);

mytimes(stack, sdaah, sptr);

push(vaIs471, unit(2), stack, sdaah, sptr);

pusb(va1s37], chain(1iJ, stack, sdash, sptr);

mytixnes(stack, sdaah, sptr);

minus(stack, s'dash, spIt);

push(vals(681, chainL21, stack, adash, spit);

divide(stack, sdash, sptc);

push(vals(401, unit[i], stack, sdash, sptr);

minus(stack, *dash, spit);

f[i] = pop(i, stack, sdash, jacobian, spit);

push(vais(51, stow, stack, sda.h, sptr);

push(va.is(3, scow, stack, sdash, sptr);

mytimes(stack, sdaeh, spit);

push(vals[68], chain(2], stack, sdash, spIt);

push(vals(39J, chain(iJ, stack, sdash, spit);

mytimes(stack, sdash, spit);

minus(stack, sdash, sptr);

push(valst361, chainj12j, stack, sdaah, sptr);

divide(stack, sdash, spIt);

push(va1s(47), unit(2), stack, sdash, sptr);

miaus(stack, sdash, spit);

f121 = pop(2, stack, sdaah, jacobian, sptr);

push(valst44], chain[131, stack, sda.h, sptr);

expon(stack, sdaah, sptr);

pusb(vaIsL651, chain(141, stack, sdash, spit);

divide(stack, sdash, spit);

push(vaIs(41, unit(31, stack, sdash, sptt);

minus(stack, sdash, spit);

f(3) = pop(3, stack, sdaah, jacobian, spit);

for(i=O; i ;= MAXPTR; i++)

free((char 5) sdasb(iJ);

for(i0; i ;= dep; i++)

free((char) chain[iJ);

Appendix G. The Subroutines for the Flash Problem 	 248

for(i=O; I ;= C; i++)

free((char) unit(i]);

free((chsr ') clack);

free((char) chain);

free((cbar) cdaah);

free((char) unit);

return(exitflag);

jut eval16(valc)

double valiD;

vaL5t531= vale L54I*va.L36I+vast561svaJc[31+vat.t56*vaJa(38J;

lot eva11(va1s)

double valiD ;

Val5[5 73=Vala[58Jvalc(391+valct591va1cL401+vels[60]vale[2];

lot evau18(vala)

double valsU;

vaic(481va11(5Jvalc(611.(valsf68JCvala(51+vaj$[47]*vals(53j);

