Mathematical Modelling Techniques in Process Design

Andrew T. Doig

Master of Philosophy
University of Edinburgh
1991

DECLARATION

The work described in this Thesis is the original work of the author and was
carried out without the assistance of others, except where explicit credit is given
in the text. It has not been submitted, in whole or in part, for any other degree
at any University.

Andrew T. Doig

il

ABSTRACT

Software has been developed which constructs mathematical models and
simulations of chemical engineering problems. It uses a generic description of
each problem domain, e.g. a flash problem consists of mass and heat balances,
vapour-liquid equilibrium relationships, etc, and a set of global constants, such
as Antoine coefficients. The fixed variables must be supplied for each instance of
the problem.

The first step in producing a simulation is the assignment of an equation to
be solved for each variable in the problem; these may be design variables or
others whose values are required. This assignment is found by the use of a flow
maximisation technique. Next the equations are partitioned into their minimal
solvable subsets by a depth first search algorithm. Following partitioning, the
smallest set of variables such that, knowing their values, the rest can be calculated
is identified, a guess is made for their starting values, and a computer program is
written to solve the equations. This program uses the Newton Raphson method
with analytical derivatives to solve simultaneous equation sets; the values of
these derivatives are found without explicit differentiation using an extension of
a method due to Ponton [75] for torn systems. Finally the results of computation
are reported to the user.

Criterea are presented for the comparison of models and simulations, and
qualitative definitions of merit are presented. The structural analysis of equation
sets is discussed in detail, and common methods are described and contrasted.
Throughout the thesis these topics are treated graph theoretically since many of
the concepts considered are visualised most easily in this way. In particular one
set of theorems appears which relate graphs, digraphs and their properties to the
structure of equation sets, another shows how a flow maximisation technique can
be used to solve the assignment problem, and yet another proves how and why
the decomposition technique chosen works. Whilst the first two sets of results are
well known, no proof has been located of them in the form in which they appear.
No statement or proof for the last set of theorems has been found.

Finally some improvements to the software are proposed. These are concerned
both with its structural detail, and with its ability to reason.

iii

Acknowledgements

This work has been possible only due to the efforts of many people whose help
I am delighted to be able to acknowledge. I am grateful to my supervisors
Dr. Ken M°Kinnon and Professor Jack Ponton, and my industrial sponsors, B.P..
So too immeasurable thanks are due to my parents, Andy and Rena Doig, and
my brother, David, for their support during my studies, particularly during my
period of illness. I am indebted to Carleen Robertson and Martin Fallon, for
buying the beers and providing a calming influence. Last, but by no means least,
I wish to thank my friends and colleagues in both the Department of Chemical
Engineering and Pollock Halls for their help and advice.

Contents

1 The Requirements of a Modelling System

1.1 Imtroduction
1.2 Fundamental Aspects of Mathematical Modelling
1.3 The Comparison of Models and Simulations
4 13.1 W_haJ: is a Good Model 7 et e

1.4 The Derivation of a Mathematical Model
1.4.1 Choosing the Appropriate Equation Set
1.4.2 Equation Manipulation
1.4.3 Program Writing
1.4.4 Finding, Checking and Reporting Results
1.4.5 Approximation

1.5 A Modeller’s Toolkit 'une...

2 The Graphical Analysis of the Structure of Equation Sets

21 Imtroduction S
22 Graph Theory e
2.2.1 The Elementsofa Graph

v

10

12

14

14

16

CONTENTS

v
2.2.2 The Types of Graph of Interest 25

2.2.3 The Properties of Graphs 29

2.2.4 Vertex Elimination 30

2.2.5 Graph Representation and Algorithmic Complexity 32

2.3 Conditions for a Unique Solution 35
2.4 The Need to Select an Qutput Set 37
2.5 The Nature of Partitioning Matrices. 39
2.6 The Use of Decomposition Techniques 55
2.6.1 Optimal TearSets 57

2.6.2 Numerical Techniques Improved by Tearing 59

2.7 Summary R T T T 66

3 Literature Review and Selection of Methods 67
3.1 Introduction, 67
3.2 Choosing An Qutput Set 68
3.3 Partitioning Matrices 80
3.3.1 A Characterisation of Matrix Partitioning L. 82

3.3.2 Symmetric Permutations 90

3.3.3 Asymmetric Permutations 92

334 Summary e e e e e 102

CONTENTS

vi

3.4.1 Ad hoc Decomposition Methods 105

3.4.2 Graph Reduction Methods 107

3.4.3 Explicit Loop Breaking Strategies 112

3.4.4 Depth First Search Decomposition e e e . 118

345 Summary L. 120

35 Conclusions ittt e 122

4 Matching and ordering Variables and Equations 123
41 Introduction 123
4.2 Analysing an Overdetermined Equation Set 124
4.2.1 TheOrderof Analysis 124

4.2.2 Finding the Minimal Equation Subsets 125

4.3 Findingan OQutputSet 130
4.4 Selecting and Ordering the Equation Set 138
4.5 Summary it e e e e e e e e e e e e e e e e e 142

| 5 Finding the Minimum Tear Sets 144
5.1 Introduction 144
5.2 The Signal Flowgraph ofa Digraph 145
5.2.1 Deriving a Signal Flowgraph from a Bipartite Digraph . . 148

5.3 The Decomposition Algorithm 151

CONTENTS . vii

5.3.1 The Rules for Decomposition 151
5.3.2 A Description of the Algorithm 153
54 Two Examples00 uenee.. 158
5.5 Summary e e e e e e e e e e e e e e e e 160

6 The Generation of Analytical Derivatives and their use in an

Equation Solver 162
6.1 Introduction, 162
6.2 The Newton Raphson Method 163
6.3 The Generation of Analytical Derivatives . « . . . o oo\ . .. 164
6.4 Applicationto Torn Systems 167
6.5 An ExampleProblem, 168
6.6 A Recommendation for Future Development 170
6.7 Summary e e e e e e e e e e e e e e 175
7 The Software Implementation 176
7.1 Imtroduction, 176
7.2 Introduction iveien. o 177
7.2.1 ProgramminginProlog. 178

7.3 A Description of the Modelling Software, 179
7.4 An Example Modelling Session 184

7.4.1 The Physical and Thermodynamic Equations 185

CONTENTS viii
7.4.2 Parsing and Expanding the Equations 188

7.4.3 The Variable/Equation Matching 191

744 The Equation Subsets 193

7.4.5 The Decomposed equation Subsets 194

7.5 Solving the Equations 195
7.5.1 Program Generation 195

7.5.2 ReportingtheResults 196

7.6 Summaryt v it e e e e e e e e e e 198

8 Conclusions and Recommendations for Future Work 199
8.1 Recommendations for Future Work 199
82 Conclusions it ittt 200
A The Operations Count for LU Decomposition 210
B A Binary Ideal Flash Problem 212
C The Dissociation of Water 215
D Methods for Convergence Acceleration 220
D.1 Derivative Methods 220
D.1.1 Methods with an Analytical Jacobian 220

D.1.2 Methods which Use Function Values 221

CONTENTS

D.2 Quasi-Newton Methods
D.3 Dominant Eigenvalue Methods

D.4 Application to Convergence Acceleration

E The Modelling Interpreter

F The Initialization File for the Flash Problem

ix

221

222

225

228

234

List of Figures

2.1
2.2
2.3
24
2.5

| 2.6‘
2.7
2.8
2.9
2.10
2.11
2.12
2.13

2.14

3.1

3.2

A Graph of the Equations 22
AGraph o e e e e e e 22
A Single Component Graph, 24
A Digraph which has two Strong Components 26
The Graph of the Flash Equations 27
‘Al Diéraph fof a.n Assiénment;. of the Flash Equations 28
'The Signal Flowgraph for the Flash Equations 28
A Bipartite Directed Graph, .. 31
Vertex Eliminationon a Digraph 31
The Incidence Matrix for the Flash Equations 33
Four Desirable Matrix Forms. 41
The Digra.ph of the4 x4 Equation Set 42
The Incidence Matrix for the 4 x 4 Equation Set L. 42
Two Tear SetsforaDiraph 58
An exampleof aNetwork 78
Two permutations of an Irreducible Matrix 81

Rules and models destroy genius and art.
William Hazlitt, On Taste

Chapter 1

The Requirements of a Modelling System

1.1 Introduction

In general, the computation of the answer to a numerical problem is a two stage
process: firstly a mathematical model is formed, and then it is solved. Although
there are many techniques available for the latter task, there is a dearth of theory
which deals with the former. The production of a mathematical model can be
troublesome, and both skill and experience may be necessary to construct one.
Perhaps the first text to address itself to this impediment was Polya’s [74] classic
book, but this was a prescription for solving general mathematical problems
rather than the production of models. This problem has been recognised on
a wider scale [7] and it has prompted Aris [6] to publish a textbook on the
fundamentals of mathematical modelling. Although this text addresses itself to a
wider audience, it draws all of its substantial examples from the field of chemical

engineering.

Chapter 1. The Requirements of a Modelling System 2

This thesis is more specific than Aris’s text in that it is an investigation of some
of the more important principles and practiﬁas of the mathematical modelling
of chemical engineering problems, rather than models in general. The domain
of application is even more restricted than this, because we will deal only with
modelling single plant items a.nd the physical and thermal changes which take
place within them, not in the simulation of entire chemical plants; the problems
associated with this larger scale modelling have been addressed by Hutton [47].
We will see how the formulation and interpretation of mathematical models can
be decomposed into several areas - ranging from the selection of equations of the
appropriate type to checking the results supplied by a computer program - and
an account will appear of the problems associated with each of these tasks, and
of the attempts made to address them. In § 1.2 the terms mathematical model
aﬁd simulation are defined and contrasted, and a discussion of how examples
of these may be compared appears in § 1.3.1. A modeller’s toolkit is described
in § 1.5. This must allow for the formulation of a model; its development to a
simulation; the realisation of this simulation as a computational program; and a
check and report of its results. Finally, § 1.5 indicates which of the problems in

the preceding section have been addressed, and where their solutions appear.

1.2 Fundamental Aspects of Mathematical Modelling

This section details the elements of a good mathematical model, and the
simulations which may be derived from it. Before proceeding with this discussion

it is necessary to define these terms.

Chapter 1. The Requirements of a Modelling System 3

The journals of mathematics and the philosophy of science are littered with
definitions of the term “model” [52], [5]. The most useful definition for
our purposes is provided by Smith [87], who regards a model as a generic
mathematical description of a problem. The adaptation of a model to describe
a specific problem he terms a simulation. Thus one might model an exothermic
reactor by writing down the differential and algebraic equations which describe it
and simulate it by specifying what the reactants are to be, their inlet temperature
and the fractional conversion of the key component, etc.. The solution to the
problem is found by manipulating the simulation in such a way that the values of
its dependent variables are determined. Throughout this thesis the term “model”
is used in Smith’s sense but the term “simulation” is extended slightly to cover
the order in which information is to be used. Thus two models of the same
problem differ if they use different sets of mathematical equations and different
simulations of the same model can be produced by rearranging the information

or the values of some of the constants used within it.

1.3 The Comparison of Models and Simulations

1.3.1 What is a Good Model ?

What is it that makes one formulation of a problem superior to another? The
contention that the accuracy and superiority of models are synonymous is vitiated

by considering a model of a reciprocating compressor. The most accurate

Chapter 1. The Requirements of a Modelling System : 4

model of this system which can be imagined involves a description of how the
molecules within the piston react with those on the cylinder walls and those
within the entrained fluid. A large number of algebraic, differential and statistical
expressions would be required to represent the system, and comprehension of
such a model is unlikely to be easy. However, it is improbable that an engineer
would require such a detailed description of the problem; it is far more likely that
he would be interested only in the macroscopic properties of the system, and
so he may well be content to model the compressor by using some relatively
straightforward thermodynamic relationships and a simplified version of the

Navier Stokes equations.

* The important point to grasp is that the more accurate model contains too much
information. The provision of this extra information is an inefficient use of the
modeller’s time, a barrier to a clear appreciation of the more salient aspects of
the model, and an impedimentlﬁtsllsolution. This is a pa.thoi,logica.l case, but it
demonstrates the possibility of excessive rigour. This possibility exists, even for
less extreme examples, when the data to be used are known to be inaccurate. If
this is so then there may be little point in producing a finely detailed model since
the results which it will yield will be of questionable value. The ébverse of this
is that a model which uses the ideal gas law may be insufficiently accurate for
the engineer and thus one which uses, say, the Peng-Robinson equation [71] may
be preferred. The obvious, but none the less vital, point to be stressed ié that a
‘good’ model is one which uses only as much information as is necessary. Thus it

is necessary to define one’s level of interest before writing a mathematical model.

This argument demonstrates the difficulty of defining optimality in the context

of mathematical modelling. It is tempting to define optimality in terms of the

Chapter 1. The Requirements of a Modelling System 5

amount of effort required to solve the problem - the faster the solution, the
better the formulation, but this is unsuccessful. Not only does this definition
fail to account for the appropriate accuracy of the model, but so too it neglects
the amount of effort required to set the model up. It is impossible to provide
a precise definition of optimality which encompasses all three of these points
because it is difficult to define a meaningful estimate of the effort required to
produce a mathematical model, and it is difficult to define a general measure of

accuracy.

Despite these difficulties, some deﬁnition of optimality is required, albeit a fuzzy
one, in order to allow at least a qualitative discussion of the relative merits of
" different models. Thus we will define a good formulation of a problein to be
one which requires minimal overall effort to set up and solve whilst providing a

suitably correct answer with sufficient clarity for the modeller to understand it.

It may be possible to discriminate between models which satisfy the above
conditions. Consider, for example, a distillation column which is used to separate
a feed of N components into S different streams. In order to avoid redundancy,
any model which describes this system may contain at most N + S + 1 of the
possible N + S + 2 mass balance equations. Suppose that during the formulation
of the model N + S of the mass balance equations have been used and that one
of the remaining two is required to complete the description of the column. If,

for instance, the two remaining mass balance equations were

=N

z: zi=1 (1.1)
i=1
=S
S Wiz, = Fzx (1.2)
i=1

where z; is the mole fraction of the k** component in the feed stream F, W;

Chapter 1. The Requirements of a Modelling System 6

is the j** product stream and z;, is the mole fraction of the k** component in
the j** product stream?, then either equation could be used without prejudice to
the final overall knowledge contained within the model. This is so because any

N + S 41 of the mass balance equations may be used to derive the other.

Although the two models contain the same information, implicitly if not explicitly,
they are different because of the equations used. It may be that neither model
appears to be any better or worse than the other but important differences in their
structure may come to light when the models are extended to become simulations.
For instance, equation 1.1 would, in general, be easier to rearrange to give a new
subject than would equation 1.2. Further, the first equation is linear whereas the
“second is likely to contain a number of bilinear? and, in most of its rearranged
forms, non-linear terms; since, generally, linear equations are easier to solve than
non-linear equations it may well be that a simulation which uses equation 1.1 is
superior to that which uses equation 1.2. If the choice for the last mass balance
equé,tion had been between equation 1.1 and the mole fraction balance on the j**

stream
=N

2zi=1 (1.3)

=1

then it would not be possible to select the better equation cannot by reference
to equation form alone. However, the general heuristic is that one ought to use

linear equations in preference to others wherever possible.

Lastly, one may compare simulations by the order in which they use information.
For example, if the equations are to be solved by a Gauss-Seidel iteration, then

the order in which variables are updated may determine the course of the solution.

1n.b. ‘k’ in equation 1.2 is used for generality. It would have to have been set to some
particular value at this point.
2a bilinear term is a linear expression such as a * 3 where both a and 3 are variables

Chapter 1. The Requirements of a Modelling System 7

Further, if some of the variables are to be torn so that at each pass the values of
some of the variables in the problem are determined by the solution of a ‘kernel’
problem, and the others found by direct substitution, different tearing strategies
would produce different simulations. The solutions to these formulations would
proceed in different ways and so they may exhibit distinct rates and stability of

convergence.

It has been demonstrated that it is very difficult to provide precise, practical
rules for discriminating between models and simulations, but that they may be
contrasted according to inexact criteria. One can postulate the synthesis of an
optimal simulation by manipulating these criteria in such a way that a score
is ascribed to each of the above choices, a good choice being assigned a high
score, and choosing the simulation which scores most highly. This is impractical,
however, because even if a meaningful score could be given to each choice, the
decision tree for even a small problem is likely to be very large. Hence, in practise,

only a qualitative a priori comparison of models and simulations is possible.

1.4 The Derivation of a Mathematical Model

In the last section we discussed the nature of a good model. In this section we
turn our attention to its production. This problem can be decomposed into four

tasks, namely

1. Select the appropriate equation set.

Chapter 1. The Requirements of a Modelling System 8

2. Manipulate it into the desired form.
3. Develop a computational procedure for its solution3.

4. Solve the problem, check the results and report them.

A further stage in the process which mé,y be a practical necessity, or at least
advisable, is the production of an approximation to the required model. We will

deal with each of these tasks in turn.

1.4.1 “Chobsihg the Ap-pro.priate Equation Set

The natural inclination of the engineer on encountering a problem is to make a
diagram to represent it, and to jot down some of the variables associated with
it. The next thing that he does is write down some of the the relationships
which exist between these variables, e.g. heat and mass balances, thermodynamic
relationships, fluid flow equations, etc. There may be little choice involved in the
selection of some of these equations, e.g. the balance equations, but selecting
the others may well involve skill and experience; for example, the choice of an
equation of state and of physical property equations is a complicated enough task
for expert systems to have been written to tackle it [8]. Having described the
system in such general terms, the engineer must decide which of these equations
are to be used in the model. Some expansion and contraction of the equation set

will be necessary - for instance too many mass balance equations may have been

3n.b. in general this is not necessarily a computer program, but we restrict it to this definition
for the purposes of our discussion.

Chapter 1. The Requirements of a Modelling System 9

provided and, possibly, some equations will be required whose necessity was not

evident originally.

At this stage it is imperative that one be cognizant of the necessity for
completeness and, as far as possible, consistency, and that one avoids the perils
of redundancy. A complete set of equations is one in which there is a one to one
correspondence between the equations and the variables which appear in them;
the reasons for this condition are given in § 2.3, and methods for checking it are
described in § 3.2. The term consistency refers to the assumptions which have
been made a.bout. the system under consideration. In general, these should not
conflict sharply if meaningful results are to be derived from the model, but this

| is.'no-t a.lWayé the case.

Redundancy, which was touched on earlier when it was noted that an engineer
may provide too many mass balance equations in a model, is a much harder
problem with which tg deal. Any equation set to be solved must be linearly and
non-linearly independent, i.e. no equation may be expressed as either a linear
or non-linear combination of some or all of the other equations. The reason for
this is that if the value of any variable is to be determined it must be done by
using some statement which has been made about the problem. For instance it
may be that the temperature rise experienced by a fluid flowing through a heat

exchanger can be calculated by using the equation
Q = UAAT (1.4)

If there are N such variables whose values are to be determined, then N such
expressions must be provided. Suppose ‘that during the compilation of an

equation set E, v equations have been used, and that a candidate for the next

Chapter 1. The Requirements of a Modelling System 10

equation to be included can be expressed as a combination of k£ of the members of
E. The inclusion of this equation provides no new information about the problem
and so only v of the »+1 members of V, the set of variables which corresponds to
E, may be solved for. In this case the (v + 1) equation is said to be redundant
and another equation must be selected in its place. Spotting that an equation
set exhibits redundancy can be hard; determining the set of candidates for the

redundant equation is extremely difficult.

1.4.2 Equation Manipulation

Once it has been established that a set of equations gives a complete, consistent
and non-redundant description of a problem the next problem is to manipulate
it into a simulation. Having chosen the values of the constants in the problem,

there are four ways in which this can be done.

1. The form of the equations can be changed, e.g. logs can be taken of both
sides of an equation which involves exponential terms (this is a standard

trick in reaction equilibrium problems).

2. The equations can be rearranged into some form, e.g. f(z) — b=0or
z = f(z).

3. The equations may be reordered, and/or torn.

4. The equations can be differentiated analytically. This is necessary when
a first or second order solution method is used since, in these cases, the

Jacobian and/or the Hessian of the system is required.

Chapter 1. The Requirements of a Modelling System . 11

For convenience, altering the form of an equation introduces at least one new
variable and one new equation to the problem; e.g. taking the logs of both sides

of the reaction equilibrium equation for a single reaction involving ideal gases

=N
K, =[] p* (1.5)
=1
produces the two equations
=N
S=>" vilogP; (1.6)
=1
K, =expS (1.7)

This task involves a few simple rules, [[= 3, a® — bloga, etc, which can wielded
relatively simply. Differentiating equations is an order of magnitude greater in
difficulty, principally because there are many more rules involved; chain ruling is
easy but flattening differentiated expressions can be intricate and troublesome.
Harder yet is the rearrangement of equations to give them a new subject. It is

easy to cope with finding an explicit expression for z from

y = cos(vZ) (18)

but it is harder to derive one from

(1.9)
and impossible to manipulate
y=z+logz | (1.10)

into the desired form. There are a few popular symbolic algebra packages
available [77], [76], but although they can perform simple tasks very well, it
is my experience with Macsyma that it is hard to use, easily confused and bad

at recovering from a computational disaster.

Chapter 1. The Requirements of a Modelling System 12

Reordering equations is a simple task but, as we will see in § 3.2, finding
the rearrangement which satisfies some criteria may require considerable effort.
Firstly a decision must be taken as to whether the equations are to be partitioned
into smaller subsets, and if they are to be decomposed or not. Some of the
the th@reticd basis required to answer these questions appears in § 2.5 and
§ 2.6. Secondly the equations may be solved by successive substitution, by a
method which requires function values, e.g. the secant method, or one which
uses derivatives too?. The best method to use is a function of the shape of the
equations and the starting point for the solution, but even given knowledge of
these data, it is difficult to discern the best strategy. When a choice of solution
method has been made some questions remain; e.g., if a derivative method is to
be used how are the equations to be differentiated?, which decomposition strategy
is best?, do we have to stay in the feasible region at all times? The first of these
questions is discussed in § 6.3, and the second is considered both in § 2.6 and

§ 3.4.

1.4.3 Program Writing

Having decided on a solution strategy, e.g. that the problem is to be decomposed
and that the kernel problem is to be solved using the Newton Raphson
method, and having rearranged the equations as necessary, the next stage in the
formulation of the simulation is to produce a computer program which will carry
out the calculations. This is an algorithmic task. The main computational block

must be written along with any subroutines that are necessary, the file compiled

4Many of these methods are described in appendix D

Chapter 1. The Requirements of a Modelling System 13

and linked with the system mathematics library and the whole program executed.
This must be done with care. For example, two points which must be borne in

mind are:

1. In the early stages of the formulation we may be dealing with vectors and
matrices by referring to their members in general terms. For example, if we
were modelling a single reaction taking place in an ideal vapour phase, we
might choose to represent the NV vapour phase mole fractions by

yi = n + xv;
i (0 + xv))

(1.11)

where n,° is the number of moles of the i** component originally present
and x is the extent of reaction. If the values of y; are to be calculated
simultaneously, a loop must be provided in the program; this requires that
a new variable be invented for use as a count variable. This count variable
- must be distinct both from that which is used to perform the summation
in the denominator of equation 1.11, and any other variables which control
loops within which that for y; is nested. Handling matrices requires a simple

extension of the rules for handling vectors.

2. Attention must be paid to the idiosyncrasies of the language in which the -
program is to be written. If it is Fortran, then one must take care not
to violate the restrictions concerning variable names which are inherent in
that language; integers must be given names which start with a letter in
the range I to N inclusive; variables of all other types must be given names
which begin with a letter %\ﬁtbv\;?:‘h this range. When one is writing in C one

must recall that the language is case sensitive.

Chapter 1. The Requirements of a Modelling System 14

Generating a computer program automatically is a simple algorithmic task, but
it may require a great deal of effort if the equations are complicated, and if a

sophisticated language is used. This point is discussed in greater detail in § 6.7.

1.4.4 Finding, Checking and Reporting Results

It is unwise to believe that just because we have translated the mathematical
description of a problem into a language like Fortran that compiling and running
the resultant program will provide a correct answer; indeed it is naive to assume
even that it will provide an answer. It is important to be able to identify
the mathematical causes of failure, should it occur, such as divergence from a
solution or convergence to one which is physically infeasible where, for instance,
an attempt may be made to find the logarithm of a negative number. Even when
a program runs successfully the answer which it provides may be incorrect; there
is no guarantee that an iteration will converge and, even if it does there is no
guarantee that the solution will lie in the feasible region. Thus the numbers
provided by a program must be checked to make sure that values lie within their

logical bounds, e.g. temperatures are positive and mole fractions sum to one.

1.4.5 Approximation

In § 1.3.1 we touched on the need to provide a description of a problem at an

~ appropriate level, the argument being that there is only so much of interest

Chapter 1. The Requirements of a Modelling System 15

within it. In this section we expand on the concept of finite description in
order to establish the desirability and, in some cases, necessity of providing an

approximate model of a problem.

The desirability of approximation is shown quite clearly by considering the mass
balance over a plug flow reactor in which benzene is being hydrogenated to

cyclohexane. The full mass balance equation is [21]
oz t R _ o2
5%t (Viu)z + Co = D¥(V?z) (1.12)

where z is the fractional conversion of benzene, u is the gas velocity, R is the
reaction rate, Cp is the initial concentration of benzene and D is the effective
diffusivity of the benzene. Solving this partial differential equation would be
both difficult and expensive. If, however, we assume that the reactor is running -
at a steady state, and that the reactants and products are well mixed at each

point along its length, the reactor can be modelled approximately by
0%z

* 022

(Viu)z + R

c =P

(1.13)

which is much easier to solve. If we go one step further and assume that the
radial and angular variation of the velocity is small (remember that it is a packed

bed) we can reduce the equation to

Ou, R 0%z
e L

(L14)

which is even easier to solve. Equation 1.14 might be used either to replace 1.12
altogether or to give an initial solution to the problem which can then be used

as the starting point to find the solution to the more complicated equation.

This may be an important technique when the equations to be solved are very

non-linear. Consider, for instance, a model of an oil reservoir. Very detailed

Chapter 1. The Requirements of a Modelling System 16

vapour liquid equilibria calculations are required for this and so multi-termed
equations of state must be used. Converging these from an a.rbitfary starting
point may be extremely difficult, or even impossible. In this case the solution to
a linear, or less non-linear, model may be necessary in order to provide a good

starting point for the less tractable equation set.

1.5 A Modeller’s Toolkit

Having discussed the definition of a good model and the tasks which are necessary
to - form it, we are able now to describe the tools which must be present in
a mathematical modelling package. Since, in general, the equations used in a
mathematical model are not unique, the software must be able to discriminate
between alternatives in such a way that it produces a complete, non-redundant
equation set which describes the system being modelled without any significantly
conflicting assumptions. Having constructed such a set, it should be able to order
it and to parse and rearrange its members into any desired form. So too it should
have thé ability to differentiate the equations, and identify a tear set from the
variables if necessary. Lastly it should contain program writing and execution

facilities, and an interpreter for checking and reporting the results.

A prototypical mathematical modelling system has been developed which includes
some of the above features. No attempt has been made to provide an ability for
qualitative reasoning, i.e. to compare formulations or to check solutions, and so
only a single strategy is followed. This is described fully in § 6.7, but a brief

summary of its componenfs, and where they are dealt with in this thesis, is given

Chapter 1. The Requirements of a Modelling System 17

here.

Firstly a general set of equations is collated, along with a list of the fundamental
and specific constants for the problem. These equations are stored in Reverse
Polish Notation, and this is described in § 6.7. Next a complete subset of
these equations is selected which will be used for the model, and a one to one
correspondence between them and the variables in the problem is developed. An
explanation of this process appears in § 4, and so too does a description of the way
in which this equation set is partitioned into a sequence of smaller sets. In the
next stage of the formulation, these sets are decomposed; this is described in § 5.
Finally a C program is written which solves these equations by using a Newton
Raphson method to accelerate the convergence of the tear variables. A novel
data management technique is used /find the numerical values of the analytical

derivatives of the tear equations, and this is described in § 6.

In § 2 the rudiments of graph theory are described and an attempt is made to
define some conditions on an equation set for it to have a unique solution. So too
in that chapter the need for the selection of an output set is explained. Further,
a graph theoretical description of matrix partitioning appears. This is used to
. show that the minimal, solvable subsets of an equation set are independent of
the output set selected. Lastly, the tearing of equation sets is discussed. In
particular some definitions of optimality are examined and the effect of tearing

on the efficiency of some numerical techniques is considered.

Some of the practical techniques which have been used to examine the structural
phenomena described in § 2 are reviewed in § 3. First techniques for choosing

an output set are considered and then our attention is focused on partitioning

Chapter 1. The Requirements of a Modelling System , 18

matrices in order to find their lower triangular form. This work is extended to
irreducible matrices in order to characterise fill-in in symmetric and asymmetric
matrices. Finally decomposition strategies and algorithms are discussed. One
method of each form of analysis - output set selection, partitioning and tearing
- was selected for use in the modelling software. Their choices are vindicated in

this chapter.

In § 4 we justify the decision to find an output set for a problem and then to
partition the equations. Next the reduction of a general, possibly inconsistent
model to a consistent and specific form is considered. In this section an
observation is made about how redundancy in equation sets can be overcome.
This is followed by a proof that a maximum flow technique can be used to find
the output set and a statement and discussion of Dinic’s maximal flow algorithm
[20]. The final point dealt with in this chapter is the ordering of the equations
so that they form minimal, solvable subsets. The depth first search algorithm of
Tarjan [(;jf is presented and analysed.

The search for a minimum cardinality tear set is considered in § 5. First it is
shown that a minimal cardinality tear set for a signal flowgraph is also one for
the bipartite digraph from which it was derived. Next we show that a search
for that tear set can be reduced to the roots of a spanning forest of the signal
flowgraph. Finally algorithms for forming a signal flowgraph from a bipartite
digraph, finding its spanning forest and then searching for a minimum cardinality

tear set are presented and discussed.

Analytical differentiation is examined in § 6. An extension to torn systems of

Ponton’s method for generating the numerical value of analytical derivatives

Chapter 1. The Requirements of a Modelling System 19

is described and illustrated in an example. In § 6.7 the conmstruction and
functionality of the modelling software is described. Details are given of the
data structures used and the way in which an abstract statement of a problem is
transformed first into an expanded algebraic form, and how this is then used to
generate a solution. An example which was solved by the software is provided.
Lastly a summary of the conclusions dpwh from the separate chapters is presented

in § 8.

We will restrict ourselves to modelling steady state systems which are described
by sets of algebraic equations. This condition precludes the necessity of examining
the specific solution requirements of differential and integral equations. Further,

the models produced will be for solution on a serial computer.

Angling may be said to be like the mathematics, that it can
never be fully learnt
Izaak Walton, The Compleat Angler

Chapter 2

The Graphical Analysis of the Structure of
Equation Sets

2.1 Introduction

In the last chapter it was stated without proof that it was desirable to describe a
simulation problem using a square equation set, i.e. one in which there are exactly
as many equations as there are variables within them. Further, it was asserted
that an output set should be chosen for the equation set, that the equations
should be permuted into a sequence of smaller subsets where possible and that
any of these sets which contain two or more equations should be decomposed.
In this chapter we turn our attention to the justification of these assertions and

examine some of the ways in which the desired goals may be achieved.

Considerable use is made of graph theory in this and other chapters and so we

begin with a summary of the graphical definitions, and the properties of graphs

20

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 21

which are germane to our discussion. The desirability of solving square sets of
equations is addressed in § 2.3 and the need to find a one to one correspondence
between the variables and the equations in a problem is discussed in § 24
The way in which the partitioning of matrices and the permutation of their
rows and columns relate to solving equation sets is described in § 2.5. Here
vertex elimination from a graph is used as an analogue for the effect of ordering
equations, and some comments appear about the effect on the rate of convergence
to a solution of a set of equations of different permutations. § 2.6 contains a
definition of decomposition and a discussion about the nature of a ‘good’ tear
set. An analysis of the effect of decomposition on the amount of effort required at
each iteration for a range of solution methods appears in § 2.6.2. This range is not
comprehensive, but it is large enough to show that there is a considerable number
of numerical methods for which there is no ‘structural’ advantage in tearing. A

summary of the conclusions drawn from § 2 appears in § 2.7.

Prior to discussing graph theory, it is necessary to relate this subject to equation

solving. Consider the following equation set.

Ty + 2z — z3 =1
2z, — =z =2 (2.1)

2 + z3 =3

The graph of equations 2.1 is shown in figure 2.1. Anticipating the terminology
of § 2.2.1, each variable and equation in 2.1 contributes a node to figure 2.1.
The line drawn between nodes z, and F; indicates that variable z; appears in
equation Fj. Representing the equation set in this way permits one to reason
about its structure so that, for instance, one can determine the dependency of

one variable upon another.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 22

(&) (B)
&
() Q"Q

Figure 2.1: A Graph of the Equations

(B)

2.2 Graph Theory

2.2.1 The Elements of a Graph

Consider two objects, u and v, and a relationship, e, which is defined between
them. If these objects and their relationship are represented pictorially as in

figure 2.2 then u and v are termed nodes and e is called an arc. These nodes

)=

Figure 2.2: A Graph

may also be called vertices and the arc may be called an edge; these alternatives
will be used interchangeably throughout the chapter. If the same relationship
which exists between u and v can be defined between other nodes as well then

the set of all nodes is called V, the set of all edges is called E and the structure

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 23

which includes them all is the graph G(V, E). This definition may be extended to
include a single node, which is the minimal non-null graph. Since there is an edge
between u and v in figure 2.2, they are said to be adjacent to one another and e
may be written as the unordered pair (u,v). Later we will return to consider the
case where (u,v) is an ordered pair. If this edge is traversed from u to v then e

is said to be incident from u to v.

A path in G(V, E) is a set of vertices p = {vy,vs,--+,v;} such that v; € V and
(vi,vi1) € Eyi = 1,2,---k — 1. If v; = v then p is said to be a cycle or,
equiva.léntly, a circuil. A path, p, is said to be simple if no vertex, v;, or edge,
e, appears in it more than once. Similarly, if the initial vertex, v, of a cycle, c,
is _the only vertex to appear in it more than once, if this node appears exactly ¢’

twice, and if no edge appears in ¢ more than once, then it is a simple cycle.

V' CV,E CE, and u,v € V¥(u,v) € E', then the graph ¢/(V', E') is a
subgraph of G(V, E). Two vertices v; and v; are said to be connected if there is
an undirected path from v; to v; ; further each vertex is connected to itself. Any
subgraph G'(V’, E') of G(V, E) in which each v; € V" is connected to each v; € V",
no vk € V' is connected to any v,, € V', and such that Vv;,v; € V'and(v;,v;) €
E, (vi,v;) € E' is called a component of G(V,E). In the chemical engineering
literature this is referred to as a partition of the graph. Clearly connection is
an equivalence relation on vertices, and G(V, E) may be partitioned into a set of
subgraphs

G —{61,G2,--,Gu} (2.2)

such that the vertices and edges of each G; are distinct. If each vertex v; € V
in a graph G(V, E) is adjacent to every other vertex v; € V, then G(V,E) is

the complete graph on V. The complete graph on some subset V C V, i.e.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 24

G(V,E), E = {(u,v) | u,v € V}, is said to be a cligue. In figure 2.3, {11, v2, v3}
is a simple path and {v4,vs,ve, 7,14} is a simple circuit. This graph has one

component, namely itself, and vertices 14, vz, and v; form a clique.

v - (V) ¥

—®

Figure 2.3: A Single Component Graph

If the removal of a node vy € V from some graph G(V, E) breaks any of the
circuits in G then v; is said to be an articulation point or a separator of G. A
set of articulation points, S, such that each cycle in G(V, E) has at least one
node in it, is a separation of G; in chemical engineering texts this is referred to
as a tear set. If instead of nodes, edges are removed from G and the maximum
number of these is removed which allows all v;,v; € V which are connected in
- G(V, E) to remain connected in G(V, E’), E' C E, then this latter graph is said
to be a minimum spanning subgraph of G. The minimum spanning subgraph for
figure 2.3 is G(V, E’), where E' = E — {e,}. Any connected graph which contains
no circuits is called a tree. The vertex which is ordered first in this tree is called
its root, and each connected subgraph which is formed by deleting the root and
the edges incident from it, such that there is at least one edge in the subgraph,
is referred to as a branch of the tree. Each of these connected subgraphs is itself

a tree and, so it too can be said to have a root and, possibly, branches. Any

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 25

connected subgraph of a tree in which there are no edges, i.e. a single vertex, is a
leaf of the tree. A forestis a graph in which each component is a tree. It follows
from these definitions that the minimum spanning subgraph of a connected graph

is a tree, whereas that for an unconnected graph is a forest.

We are now in a position to define those classes of graph which are of interest
to us. Prior to this, however, it is worthwhile relating those properties of graphs
just described to the equations and variables which they represent. In a graph
which corresponds to an equation set there is an edge between nodes v; and u; if
variable v; appears in equation u;. For example, returning to our consideration of
figure 2.1, the edge between nodes z3 and F} indicates that variable z3 appears in
the first equation. If two nodes which correspond to variables appear in a simple
circuit, then the equation used to solve for either requires the value of the other,
and so these equations must be solved simultaneously or an algebraic substitution
made of one variable for the other. Developing this argument shows that all of
the nodes in a circuit which represent equations must be solved simultaneously
and so a component of a graph represents a subset of the equations which must
be solved together. A proof of this appears in § 2.3. We proceed now to classify

the types of graph with which we will deal.

2.2.2 The Types of Graph of Interest

Since the equation sets will always be finite, so too will be the graphs used to
represent them. In most cases the edges in G(V, E) will have a particular direction

associated with them, i.e. (u,v) will be an ordered pair. Such graphs are termed

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 26

directed graphs, or digraphs, and the strong component is the equivalence class.
This is defined analogously to the component of an undirected graph in that
there is a directed path from each node »; to each other node in the same strong
component, and a directed path from each of these back to »;; no such pair of
paths exist for nodes which belong to different components. The number of strong
components of a digraph D(V, E) may be greater than the number of components
of the underlying undirected graph as figure 2.4 shows, but the converse can

never be true. Here, letting C; be the set of nodes in the i** strong component,

OARORO=O
Oa0R0=0

Figure 2.4: A Digraph which has two Strong Components

Cy = {v1,v2,u1,uz} and C; = {vs, v4, u3, us} whereas the underlying undirected
graph of figure 2.4 has only one component. Analogously to the definitions given
in§ 2.2.1, the minimum spanning subdigraph of a connected directed graph is a

directed tree and that for an unconnected digraph is a directed forest.

In general there will be no parallel edges, i.e. multiple edges between two nodes
which are oriented in the same direction. Further, exbept for one class of graphs,
no node will direct an edge onto itself, i.e. there will be no self loops. Any graph

which features neither parallel edges nor self loops is called a simple graph.

If the vertices of G(V, E), whether G is directed or not, can be partitioned into m

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 27

distinct sets, V;, such that there are no edges between any two vertices v;,v; € Vi,
then G(V, E) is said to be an m-partite graph. The most important example of
a graph of this type is the bipartite graph, i.e. m = 2. Lastly, if D(V,E') is a
bipartite digraph such that V =V UV,, V., NV, = 0, then the digraph H(V, E),

E = {(u,v) | u,v € V,, (u, w), (w,v) € E} (2.3)

is called a signal flowgraph . This digraph can be thought of as a ‘condensation’
of D(V, E) in that its strong components correspond to those of G but that the
nodes of V, are excluded; H(V,, E’), the signal flowgraph which results from

excluding the nodes of V,, is defined similarly.

As an example of the graphs discussed above, consider the equation set which is
used to model an ideal, binary flash problem in appendix B. The undirected graph
of these equations is shown in figure 2.5, where each numbered node represents an

equation. This graph shows which variables appear in each equation. Figure 2.6

Figure 2.5: The Graph of the Flash Equations

is a directed version of this graph; as will be shown in § 3 this corresponds to
choosing to rearrange each equation so that it is solved for one of the variables

within it. In this digraph, an edge is directed from an equation node, v, onto a

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 28

variable node, w, if the corresponding equation is to be solved for the variable

represented by w. Note that both of these graphs are bipartite. Finally, figure 2.7

Figure 2.6: A Digraph for an Assignment of the Flash Equations

is the signal flowgraph which corresponds to figure 2.6. This signal flowgraph

Figure 2.7: The Signal Flowgraph for the Flash Equations

demonstrates that, e.g., y2 and z, appear explicitly in the equation to be solved
for K,. As will be shown in §5, each circuit in a signal flowgraph, H(V, E’),
corresponds to one in D(V, E), the bipartite digraph from which it is obtained.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 29

2.2.3 The Properties of Graphs

The degree of a vertex, d(v), is the number of edges to which it is connected. If

D(V, E) is a digraph then
dv) = dew) +d-(w) (2.)

where dy(v;) is the in-degree of v;, i.e. the number of edges directed to it, and
d_(v;) is the out-degree of v;, the number of edges directed away from this node.
For instance, the in-degree of node 2 in figure 2.6 is two, whereas its out-degree

is one.

An ordering of the nodes in a graph is the assignment of an ordinal number in the
range 1 — N to each of the N nodes in the graph. We will define a partition of
the graph to be an ordering such that the ordinals for the nodes in a component
are contiguous and, for D(V, E) directed, for any pair of vertices v; and v; which
belong to different strong components and for which ¢ < j there is no directed
path from v; to v;. This corresponds to an ordering of the strong components
of D(V, E) such that, as we will see in theorem 2.1, the équation subsets which

they represent can be solved sequentially.

Consider a subset of edges M C E in the graph G(V, E). If the endpoints of
the members of M are pairwise disjoint, i.e. no vertex is the endpoint of more
than one edge, then M is said to be a matching in G. The largest such subset
possible is called a mazimal cardinality matching in G and if each v; € V is an
endpoint of one of the edges in M, then it is said to be complete. If the edges of
G have weights assigned to them then a matching with the largest possible sum

of weights from E is called a mazimum weight matching. It is important to note

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 30

that a maximal matching in a bipartite graph is a one to one correspondence
between the items represented by the smaller vertex subset and a subset of items
represented by the larger set, but this does not imply that each vertex in the
smaller set appears in the matching. This is a point to which we will return in

§ 3.2.

2.2.4 Vertex Elimination

The process of removing some node v € V from an unipartite graph or digraph,
G(V, E), and adding sufficient edges that each path of length ! > 2 which passed
through v in G(V, E) becomes a path of length I —1 in the new (di)graph is called
vertez elimination. This process short circuits each path in G(V, E) in that each
path {w,v,c} is replaced by {w,c}. If the edges (w,v) and (v,0) were present
in G(V, E), then the edge (w,o) is present in the new graph; if this edge was
not in the original graph, then it is said to have filled in. Vertex elimination
on bipartite digraphs must be defined differently in order to avoid violating the
condition that no vertex may be adjacent to another in the same partition. In
this case elimination must be considered on pairs of matched vertices and paths
of length ! > 3 which pass through them are replaced by paths of length I — 2 in
the new digraph. This phenomenon is demonstrated by considering the bipartite
digraph in figure 2.8. If nodes e, and v, are eliminated, then the edge (vs,ez)
fills in. Should this graph be replaced by its corresponding signal flowgraph, then
vertex elimination in this graph, which is defined as for other unipartite graphs,
would provide a corresponding fill edge between nodes 4 and 2, regardless of

the set of vertices on which the signal flowgraph is based; this phenomenon is

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 31

(& (&) (9 (&

» ® ® O

Figure 2.8: A Bipartite Directed Graph

demonstrated in figure 2.9(a), where the broken arc signifies the filled edge. This

M 54|
M b

o
INOQNl

(b)

Figure 2.9: Vertex Elimination on a Digraph

phenomenon can be used to describe the way in which information is chained

through an equation set.

If an equation set is represented by a digraph, D(V, E), then each of the variables
which is represented by a node in a cycle of D(V, E) is dependent on each of
the others. In general, the first variable is an explicit function of some of those
ordered later and the second variable is a similar function of later variables and,

possibly, the first. This pattern is repeated for each variable represented in the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 32

cycle. Consider some variable z; which is an explicit function of some other
variables. If one of those variables, z; say, is ordered before zj, then z; is an
implicit function of the variables in which z; is explicit. If eliminating z; from
the signal flowgraph which represents the equation set leads to the addition of any
edges, then these signify the implicit dependency of some of the variables in the
problem. Consider, for example, figure 2.9(a), which is the signal flowgraph that
is derived from the bipartite digraph of figure 2.8. Removing node 1 produces a
fill edge (4,2), so that the second variable is implicitly dependent on the fourth.
This is demonstrated most clearly by considering Gaussian Elimination. Here,
the fill-in pattern produced within the matrix corresponds exactly to the filled
edges of the graph which represents it. As an example of this, figure 2.9(b) is the
matrix which corresponds to figure 2.9(a). Here x represents a non-zero in the

original matrix, and + represents a filled entry. This is explained more fully in

§2.5.

2.2.5 Graph Representation and Algorithmic

Complexity

In order to relate graph theory to the computer solution of equation.sets, a
brief description of the matrix representation of a graph and a discussion of
computational complexity are necessary. An adjacency matrix of a graph is a
matrix in which each column, k, which has a 1 in the ** row, corresponds to a
node, k, for which the edge, (k,), exists in G(V, E). If G(V, E) is undirected this
matrix is symmetric but if G is directed, then each row j which has a non-zero

entry in column, I, represents an edge, (I,7), in G. Note that in the bipartite

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 33

case, even when G is undirected, if the rows and columns for the nodes in each
partition are ordered consecutively, each of the entries in both the upper left and
lower right quadrants is zero. If the other two quadrants are superimposed so
that each row in the new matrix represents an equation, and so that each column
corresponds to a variable, then the result is referred to as an incidence matriz.
This arises from the fact that each non-zero entry in a row represents a variable in
the corresponding equation. As an example, figure 2.10 is the incidence matrix for

the graph in figure 2.5. Finally, each column, &, of the adjacency matrix may be

2z, X1 Vx; P P,K, L

1| x

5 X

9 X X

8 X X X

4 X X
3|x x X X

7 X X
10 X

6 X X
2 X X X

Figure 2.10: The Incidence Matrix for the Flash Equations

rerepresented by Adj(vi), the adjacency set for node, k. This is the set of vertices
which lie at theff endpoints of the arcs which emanate from v;. For example, in
figure 2.5, Adj(z1) = {1,8} and the column in the matrix of figure 2.10 which

corresponds to z; has non-zero entries only in the rows labelled one and eight.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 34

The complezity of an algorithm is a measure of the number of operations required
to execute it, and hence of its efficiency. This is expressed by its order, a function
which relates the time taken for its execution to the size of the problem being
solved. If for some algorithm this function is 1, then the order of the algorithm is
written as O(4); ¥ can be a constant, a polynomial, a factorial or a transcendental
function. This is an inexact measurement because it assumes that all operations
take the same time and only its worst case value is calculated. Despite this, used
with a knowledge of its shortcomings, it is an invaluable tool in the analysis of
computational algorithms. The following description is restricted to analysing
graphical algorithms, but the definitions and concepts provided are applicable to

the entire domain of computation.

In general, an algorithm is regarded as .efﬁcient if its time complexity can
be expressed as a low order polynomial; e.g. Tarjan’s depth first search
algorithm [94], which is described in § 3.3.3, is O(N + 7), where there are N
nodes in the graph and 7 arcs, and Dijkstra’s shortest path algorithm [19] is
O((T + N)log.N).

The class of decision problems which can be solved by polynomial time algorithms
is called P. There is another class of decision problems for which no deterministic
polynomial time algorithm has been found, but for which the verification of a
solution lies in P; this class is known as INP.Consider some decision problem
II;. A polynomial transformation from II; is a function F which translates any
instance of II; into an instance of another problem II, such that the answer to Il
is ‘yes’ if and only if the answer to II, is yes, and such that F can be computed
efficiently. Any problem II; v.vhich belongs to the subset of NP such that there is

a polynomial transformation from II; into each other problem II; in the subset,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 35

and from II; into II;, is said to NP-complete. This is a large and important set of
problems and if a polynomial time algorithm is found for one of these, then, by
definition, a polynomial time algorithm will have been found for them all. This

point is raised again in § 3.3.1.

§ 2.2 has described the most basic and general components of graph theory.
Some more definitions and concepts are required but they are introduced later as

required.

2.3 Conditions for a Unique Solution

In this section an attempt is made to define those conditions on an equation set
which are necessary or sufficient for it to have an unique solution. Four properties

of the equations are examined:

1. The number of equations to be solved and the number of variables within

them.

2. The structure of the equation set, i.e. the interdependence of variables and

equations.
3. The algebraic structure of the equations.

4. The degree of nonlinearity of the functions over the domain of the solution.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 36

Consider the solution of M equations in N variables. If M is less than N then
the system is underdetermined_ in that there are N — M too few constraints on
the values which the variables can take. There is a set of problems which are
underdetermined and which can be solved uniquely, but each of these solutions is
trivial. For example, z? + y% = 0 has a unique solution at z = y = 0. In general,
however, there may be an infinite number of solutions to an underdetermined
equation set. If, on the other hand, M is greater than N then there are M — N
too many constraints on the values which the variables can take. There is no
guarantee that these superfluous constraints can be satisfied at the same point
as the N others; such a system is said to be over determined and it may have
none, one or many solutions. Should M equal N then a unique solution may
exist because under these circumstances it is possible to provide a one to one
correspondence between the variables and the items of information provided by
the equations. Hence there is no condition on the relative sizes of the equation
set and the set of variables within it, which is either necessary or sufficient for a

unique solution of the equations to exist.

Pantelides [68] has indicated that one consequence of Hall’s [37] theorem of
combinatorics is that a necessary condition for a unique, non-trivial solution
of a system of N equations in N variables by successive substitution, is that
every subset of k£ of the N equations must contain at least k variables. Should
this condition be violated then the system is said to be structurally siﬁgular .
For instance, since equations 2.5 are three equations in only two variables, they
violate this condition. Even if this condition holds there will still be no unique
solution to the problem if one or more of the equations is redundant, i.e. it
can be expressed as a combination of ! of the others. Once more equations 2.5

provide an example of this; the first and last equations may be multiplied to give

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 37

the second. Thus another necessary condition on the uniqueness of solution is
the requirement that the equation set should be non-redundant. Neither of the
above conditions is sufficient for a unique, non-trivial solution, however, because
structurally non-singular and algebraically non-redundant equation sets may be
numerically singular over part of their domain. This occurs when two or more
equation surfaces become parallel over some region in space. Thus uniqueness of

solution requires that such regions be avoided.

z? — 2232 =0
223 — 2022 — 42123+ 223 = 0 (2.5)
2101 — T2 = 0

Two necessary conditions for an equation set to have a unique solution have been
established, but no useful sufficient conditions have been found for the solution

of general, non-linear equation sets. We will return to this problem in § 4.2.

2.4 The Need to Select an Output Set

Let E be a set of equations in the variables in the set X and, further, let |E| = | X|.

Let the set of ordered pairs P,
P={(e.',$,‘)le;EE,x.‘GX,i=1,2,“',IE|} (26)

be a legal one to one correspondence between E and X, i.c. that the i** equation,

ei, contains at least one occurrence of the i** variable, z;.! Then P is said to

1n.b. The subscript i refers to an ordering of each equation and variable in P,not in E or
X.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 38

be an output set for the problem. Each of the pairs in P represents an equation
which can be solved for a given variable. One assignment for the flash problem

of appendix B is

P ={(1,2),(2,L),(3,22),(4, V), (5,92), (6, K2), (7, Fx), (8, Pr), (9, 21), (10,)}

(2.7)
As has been indicated above, such an assignment is possible if and only if the
problem is not structurally singular, and thus the determination of an output set

may be used as a check on this condition.

However there are two other reasons for selecting an output set. Firstly, if the
set of equations is to be solved by successive substitution then each equation
must be rearranged to an explicit form for a given variable; choosing an output
set ensures that this is done legally. Although in its simplest form it is a poor
solution method, this strategy can be developed to others which are of some merit,
as is shown on page 75. Secondly, if a matrix method, e.g. Newton Raphson,
is to be used, the selection of an output set must be carried out so that the
adjacency matrix of the graph of this problem can be permuted to have a zero
free diagonal; in this case the output set is called a maximum transversal. As
is shown below, the failure to permute this matrix to this form may cause some

~ partitioning algorithms to fail.

In general an output set for a given problem is not unique. Lemma 2.1 provides

an upper bound on the number of possible output sets for a set of equations E.

Lemma 2.1 If E is not structurally singular then, S, the number of possible

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 39

output sets is bounded by
0<S<|E|! (2.8)

Proof: The proof of the lower bound is trivial. Let N = | E |. By definition, in
order for an output set to exist, there must be an equivalent number of equations
and variables in the system. Clearly, the greatest number of output sets possible
occurs when each variable appears in each equation. It is sufficient to show that
there are N! possible output sets when this condition holds. In this case there
are N choices for the variable to be solved for by the first equation, N — 1 choices
for the second, N — 2 for the third, and so on until only one choice remains for
the last equation. Regardless of the choice of ‘variables for the first k equations
the remaining NV — k equations can be assigned to the remaining N — k variables
in each of the (N — k) ! possible independent ways. Thus the upper bound on

the number of output sets for an equation set Eis | E |!. O

As will be described in the next chapter, some of these output sets may be
preferable to others, but there is no known means by ‘Which a set which is known

a priori to be optimal in any given sense, may be selected.

2.5 The Nature of Partitioning Matrices

‘In this section we will discuss the permutation of incidence matrices. The
definition of graph partitioning given towards the end of § 2.2 extends naturally to

the incidence matrices in that the rows and columns of these matrices correspond

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 40

to the nodes in the graph; reordering the nodes simply reorders the rows and
columns. In essence there are many forms to which a matrix may be permuted
but, as we will see in § 3.3, there is only one way to partition a given matrix
given the strict definition of this term. Of all of the possible forms, only four are

of interest here:

1. Banded matrices. An example of one of the more common banded
matrices, the tridiagonal matrix, is shown in figure 2.11(a). This form
is of particular use in the solution of the algebraic equations which arise

from the discretisation of partial differential equations.

2. Lower (Upper) triangular matrices as shown in figure 2.11(b). Permuting a
matrix to this form allows the exact, non-iterative solution of the equation

set in the forward (backward) direction.

3. Block diagonal form. As shown in figure 2.11(c) all of the blocks which
straddle the diagonal are square and no non-zero entries appear above these

blocks. This is a weaker form of (b).

4. Bordered Diagonal form. This is a weakening of the structure of (c) as is
clear from figure 2.11 (d). This form is used frequently, especially when the
diagonal blocks are of unit size, i.e. when the matrix is of bordered lower

diagonal form.

The tridiagonal form will not be dealt with further but the properties of matrices
of types (b), (c) and (d) will be dealt with after the relationship between the
strong components of a graph and the structure of the corresponding equation

set has been established.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 41

(b)

© @
| - |

] — o

Figure 2.11: Four Desirable Matrix Forms

Consider the 4 x 4 equation set 2.9. The digraph for one transversal of this

equation set is shown in figure 2.12.

1+ T2 = 3
z} —loge(2) + 23+ 24 = 4 (2.9)
e:cp"(”f'”‘/m +z3—x4 = 5
Ty — T2 =1

The nodes in this digraph which correspond to variables are labelled with the
name of the variable, and those which correspond to equations are labelled E;,
according to the order in 2.9. The strong components of this digraph are C; =
{z1,72, Er, E4} and Cy = {z3,24, E,, E3}. The incidence matrix for this digraph
appears in figure 2.13(a). |

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 42

¥ X3 X4 Xy X1 X3 X3 X4
_ _— F ' —
X X 1 X X1

] 1

' :

1X X

& a8 M
Mo
M
Mo
o

g 58 .

@) ' (b)
Figure 2.13: The Incidence Matrix for the 4 x 4 Equation Set

This matrix can be partitioned into the form of figure 2.13(b), which shows
f;hat equations E; and F4 can be solved simultaneously for z; and z, before
the remaining two equations are solved simultaneously for z3 and z4, using the
exact values of z; and z;. This grouping of variables and equations is called a
computational sequence for the equation set. This term is defined as an ordering
of equation subsets such that each is a solvable system of equations of minimal
size, and such that fhey may be solved sequentially. Thus no equation may

~ be removed from a member of a computational sequence and leave a solvable

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 43

subset, and no equation may be dependent on a variable which is solved for in a
subset ordered later in the sequence. As an example, {C;,C;} is a computational
sequence for equations 2.9, but {C3, C1} is not, and neither is {C}, C3,C4}, where
C3UCy = C,.

We wish to show that a computational sequence for an equation set is unique to
within some well defined, allowable permutations. To do this we will demonstrate
that it corresponds to an ordering of the strong components of the digraph
which represents the assigned equation set, in which there are no edges from
a strong component to another which is ordered before it. By inspection, it can
be seen that, for equations 2.9, {C;, C,} satisfies these conditions, whereas neither
{C2,C1} nor {C1,C3,C,} does. The general case is explained by the following

remarks, observations, lemmas and theorems.

We begin with some general observations about the relationship between equation
sets, graphs and digraphs. As has been noted already, an equation set F(X) can
be represented by a bipartite, undirected graph G(V, E), where V is the union
of V, which corresponds to the equations, and V, which represents the variables
within them; each edge (0,&) € E denotes that @ is one of the unknowns in
v. This graph contains no information about which equation is to be solved for
which variable. If a complete matching, M C E, exists for the graph then this
can be used to form a directed bipartite graph D(V, E) such that there is a one
to one correspondence between A and E; each (#,&) € M becomes the directed
edge (7,@) in D and every other edge in F is directed in the opposite direction
in the new graph. The interpretation placed upon a directed edge (7,&) € A is

that equation v is to be solved for variable w.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 44

We aim to show that the strong components of D(V, E) correspond to the minimal
equation subsets into which F(X) may be partitioned, and that these strong
components may be ordered in such a way that they define a computational
sequence. As a first step we show that the strong components of this digraph
may be ordered so that there is at least one which has no edges directed onto it
from another, and at least one from which no edges are directed. Next we show
that in each strong component, the numbers of nodes from each vertex set are
equal and that any subset of ¥ nodes from V-directs exactly k edges onto nodes
form V. These results are used to show the correspondence between the strong
components of D(V, E) and a computational sequence for F(X). Lastly we prove
that this computational sequence is independent of the complete matching used

to form the directed graph.

Lemma 2.2 It is always possible to order the strong components of a digraph
D(V, E) so that if there is a path from some vertez v in the i** strong component,
Ci, to a vertez w in some other strong component C;, then i < j, and there
is always at least one strong component in the digraph which has no incoming
edges, and one from which no edge is directed onto a vertez in another strong

component.

Proof: Consider R(X,A), a reduction of D(V,E) in which the i** strong
component of the directed graph is represented by a node v; € X and the arc set
A = {(v:,v;)} such that there is at least one edge in D(V, E) between a node in
Ci and one in C;. Any path through the vertices of R(X, A) corresponds to a
path in D(V, E) which passes through at least two strong components and so, by
definition, R(X, A) must be acyclic. Since D(V, E), and hence R(X, A), is finite,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 45

it follows that there must be at least one node in the reduced digraph from which
no edge is directed. Let such a node be vx. I Cj is ordered as the last strong
component of D(V, E) then any edge in this digraph which has as one of its termini
a node in Cj must be directed from a lower to a higher ordered strong component.
If v and all of the edges incident upon it are deleted from R(X, A) then there
must be at least one node in the new digraph from which no edges are directed.
Ordering the strong component of D(V, E) to which it corresponds second last
retains the forward condition on the arcs of this digraph. This process of ordering
and deleting can be continued until only one node remains in the reduced digraph.
This node must represent the first strong component of D(V, E) No edges are
incident upon this node and so there may be no edges incident upon the first

strong component of D(V, E). O

This result will allow us to show that at least one subset of equations from F(X)
is independent of the others, and so it can be solved before them. The next lemma
is required in order to show that a strong component of D(V, E) corresponds to

a square, solvable subset of equations from F(X).

Lemma 2.3 If D(V, E) is a bipartite digraph which represents a square,
structurally non-singular equation set, F(X), such that V is the set of vertices
which correspond to equations and V is the set of wertices which represent
variables, then the number of nodes in each strong component which are members
of V is equivalent to the number of nodes in this subgraph which are members
of V. Further each subset of k vertices from this strong component which are

members of V direct ezactly k edges onto the nodes in V.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 46

Proof: By definition it is possible to trace a circuit through each of the vertices in
a strong component of the bipartite digraph D(V, E). This digraph is constructed
in such a way that each v € V has exactly one edge directed from it to some
vertex w € V, and hence any cycle which passes through v must be extended
through w. Since, by construction, each w € V must be an endpoint of exactly
one edge directed from some v € V, these vertices must appear an equal number
of times in any cycle. Hence there must be exactly as many vertices from V in
any strong component of 'D(V,E) as there are V. Further, since there is exactly
one edge directed from each v € V, each subset of k nodes from V must direct &

edges onto V. O

Lemma 2.4 Each strong component of the digraph of lemma 2.3 represents a

structurally non-singular, solvable subset of equations.
Proof: This proof requires three observations.

1. Each node in a strong component is a member of a circuit in D(V, £) which

involves all of the other vertices in that strong component.

2. There is no circuit in D(V, E) which involves two nodes v, and vy which lie

in different strong components.

3. By lemma 2.3 in each strong component of D(V, E) there is an equal number
of nodes from each partition of V, and each subset of k nodes from V directs

exactly k edges onto vertices in V.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 47

The first of these observations demonstrates the mutual dependency of the
variables represented in a strong component, and hence the necessity for the
corresponding equations to be solved simultaneously. The second shows that
there can be no interdependence between two nodes v, and v,, which represent
variables z and y respectively, where these lie in different strong components.
This means that it is unnecessary to solve any other equation simultaneously
with those represented in a strong component. Thus these equations, and only
these equations, must be solved simultaneously. The last observation shows that
their solution is possible since there are exactly as many equations in the system

as there are unknowns, and each of these may be solved for one of the unknowns.

0

Having established the preliminary results we can proceed to provide the formal -
correspondence between the strong components of D(V, E) and a computational

sequence for F(X).

Theorem 2.1 Let F(X) be an equation set such that |F| = |X| and
Fi(Xi) € F(X),i=1,2,---,M be a computational sequence for F(X). Then, if
D(V,E’) is the bipartite digraph which represents F(X), the M strong components
of D(V,E’) correspond to the subsets F;(X;). Further, if these strong components
are ordered so that each arc between two of them is directed from that which is
ordered lower to that which is ordered higher, then ordering the equation subsets

in the same way gives a computational sequence for F(X).

Proof: It is necessary and sufficient to demonstrate the following two properties

of D(V,E). Firstly, the first strong component corresponds to a square,

Chapter 2. The Graphical Analysis of the Structure of Equation Sets ‘ 48

structurally non-singular subset of F'(X). Secondly, all other strong components
represent structurally non-singular equation subsets in which the number of
variables is greater than or equal to the number of equations. Where this
inequality holds, the nodes representing the excess variables belong to strong
components numbered earlier, and so each strong component represents a square,

structurally non-singular reduced subset of F(X).

First Part: By lemma 2.4 the first strong component of D(V, E) represents a
non-singular subset of equations and, from lemma 2.2, there are exactly as many

variables in this set as there are equations.

Second Part: Once mbre, lemma 2.4 shows that each strong component of D(V, E)
represents a non-singular subset of equations. In this case, however, there may
be more variables than equations in the set. If there are K equations in the it
subset then, by lemma 2.3, there are K nodes in the strong component which
represent variables in these equations. All of the other variables inlthe subset are
represented by edges from nodes in other strong components. Lemma 2.2 shows
that all of these strong components can be ordered before the i** one. Thus the
value of each of these variables is known when the i*? subset is to be solved, and

so this represents a square, non-singular, reduced subset of F(X). O

This leads us to the following surprising result.

Theorem 2.2 The computational scheme for an equation set F(X) is

independent of the output set.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 49

Proof: Let the undirected bipartite graph G(V, E) represent F(X), and let M
be a complete matching defined on its vertices. We wish to show that the strong
components of D(M), the bipartite directed graph formed from G(V,E) and M
in the manner of page 43, are independent of M, and that their order ordering
- which corresponds to a computational sequence for F(X) is unique to within

some trivial permutations.

First Part: Recall that M is a complete matching. Another complete matching
for G(V, E), M may be generated by removing some edge (¥,&) from M, adding
a new edge (¥, 4), removing (4, %) and so on. Eventually some edge (&,@) must
be added to the new matching in order to complete it. If this process is repeated

it can be used to generate all possible matchings for G(V, E).

Let the bipartite digraph formed from G(V, E) and M be D(M). Since there is
a one to one correspondence between the edges of D(M) and those of G(V, E),
and between the edges of D(M) and those of G(V, E), this correspondence exists
between the edges of the two digraphs. Any edge which is a member of both of
these matchings, and any which is a member of neither, is directed in the same
way in D(M) as it is in D(M); any edge which is a member of only one of these
matchings is oriented in opposite directions in the two digraphs. By construction,
those edges in only one of the matchings must alternate in a cycle in each of the
digraphs. Clearly this cycle cannot be extended through some edge (v, v,) such
that v; and v, belong to different strong components since there can be no edge
directed back to the strong component of which v, is a member. Thus since each
modification to M must describe a cycle through D(M), the strong components
of each bipartite digraph formed from a matching in G(V, E) and the original

- graph must be the same.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 50

Second Part: As has been shown above, the strong components for each complete
matching in G(V, E), and hence for each output set for F/(X), are the same, and,
by theorem 2.1 they may be ordered so that they correspond to a computational
sequence for the equation set. Further, the edges between strong components in
each of the bipartite digraphs must be oriented in the same direction because they
represent the existence of a variable in an equation which can never be solved for
it. Hence any ordering of the strong components of one of the bipartite digraphs
which corresponds to a computational sequence is a similar ordering for each of

the other digraphs.

If an ordering of the strong components of a bipartite digraph is to correspond to
a computational sequence for F(X), then it is necessary for each edge between
vertices in different strong components to be directed from the lower to the higher
ordered strong component. However, if there is no directed path between two
strong components C; and C; in D(M), then either of these may be ordered
before the other in any computational ordering. Hence, there may be more than
one ordering of the strong components which satisfies the condition on directed
paths between them, and hence more than one computational sequence for an

equation set. O

We can extend the results from this proof to show that if an incidence matrix for
an equation set is partitioned in such a way that the new matrix is block lower
triangular and the diagonal blocks are irreducible, then the ordering of these
blocks, and the rows and columns within them, is independent of the output set
selected for F(X). To do this, we establish that these diagonal blocks correspond
to the strong components of the bipartite digraph which represents F(X), and

that they must be ordered in the same way as the strong components for the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 51

new matrix to be block lower triangular. Finally, in theorem 2.5 we relate the
uniqueness of the strong components of the digraph to that of the diagonal blocks.
Here, a block triangularization of a matrix is a permutation of its rows and
columns so that there are square, irreducible blocks on the diagonal, no non-zero

entries above these blocks, and either zero or non-zero entries below them.

Theorem 2.3 If D(V, E’) is the bipartite digraph which represents an equation
set F(X), and if Ag is the incidence matriz of this digraph, then the strong
components of D(V, E) correspond to the square diagonal blocks of a block

triangularisation of Ag.

Proof: Let the rows of Ag represent the equations in F/(X), and the columns the
variables. Order the rows and columns of Ag so that those which represent nodes
in the same strong component are contiguous and so that those which appear
in the first strong component appear before the second, and so on. Lemma 2.3
shows that, in each strong component, there is an equal number of variable and
equation nodes. Each of these blocks must have a non-zero entry in its upper
right entry, and so too it must be irreducible because it reflects the cycle structure
of one of the strong components. No other permutation of the rows and columns
within the matrix can produce different irreducible blocks, and so each strong

component corresponds to a square block in the incidence matrix.

To see that these blocks are aligned along the diagonal of the matrix, consider
that which corresponds to the first strong component. As is shown in lemma 2.2,
the first strong component has no edge incident upon it from another. Hence,

the block which represents it may have no rows above it nor columns to the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 52

left of it, and so it lies on the diagonal. The block corresponding to the second
strong component has its rows immediately below those for the first, and its
columns immediately to its right; since this block too is square, it must straddle
the diagonal of Ag. Extending this analysis to the other strong components

completes the proof. O

Theorem 2.4 If Ag is the incidence matriz associated with a square, structurally
non-singular equation set, F(X), then if it is partitioned so that there are square,
irreducible blocks along its diagonal, these blocks correspond to a computational

sequence for F(X).

Proof: Theorem 2.3 shows that these blocks correspond to the strong
components of D(V, E), the digraph of F(X), and theorem 2.1 shows that these

strong components represent a computational sequence for this equation set. O

Theorem 2.5 The rows and columns within the blocks of
a block triangularization of a structurally non-singular matriz are independent

of the permutations used to form them.

Proof: Permuting the rows and columns within a structurally non-singular
matrix in such a manner that it retains a zero free diagonal corresponds to
reordering the vertices in the bipartite digraph which represents it, and, if the
permutations are asymmetric, reorienting some of its edges. Theorem 2.3 shows
that the diagonal blocks of a block triangularization of a matrix correspond
to the strong components of this digraph, and theorem 2.2 indicates that the

nodes within these strong components are independent of the ordering of the

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 53

vertices, or the orientation of the edges. Thus the rows and columns in any block
triangularization of a structurally non-singular matrix are independent of the

permutations used to form them. O

This result was anticipated by Steward [92] and proved in a different way by
Duff [22].

The computational blocks may be reordered to some desirable form as will
be described in §3.3. As they stand, however, these subblocks can be solved
sequentially, and this t}i8 may effect both the amount of effort and storage which
are required at each itera,t-ion, and the convergence characteristics of the equation
set. If the equations to be solved are linear, or if they are linearised forms of non-
linear equations, and if some matrix method is to be used to solve them, then
pérmuting rows and columns mé.y save fill-in. Minimisation of fill-in in D(V, E)
during vertex elimination is important regardless of whether the equations being
solved are linear or non-linear. If the equatioﬂs are linear, then the explicit
effect of fill-in is that entries are added to the factor matrices which were zero
in the original matrix; this leads to an increase in the amount of storage and
computation required for a solution. There is a similar effect if the equations are
non-linear, although in this case the effect is implicit. Adding new arcs to the
graph corresponds to chaining the values of some variables in the set through
some equations in which, originally, they do not appear explicitly. Minimising
fill-in minimises this coupling effect and so ought to lead to a more efficient
solution. Should some gradient numerical method be used, then this chaining
filters through to the derivatives of the equations; this is true both for linear and
non-linear equations. As is shown in § 2.6; this has implications for the amount

of work necessary when the equations are to be torn.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 54

Partitioning the equations may have an effect on the convergence characteristics
of the solution. It is likely that the equations in each of the subsets apart from the
first will converge more quickly than it would when solved in the unpartitioned
set. This arises from the fact that, for all connected subsets other than the
first, partitioning the equations allows some of the erstwhile variables to appear
as constants, their values having been calculated earlier. This effect is most
noticeable if the equations to be solved are highly non-linear, since partitioning
will increase their linearity. Consider, for instance, the solution of equations 2.9.
The presence of the two transcendental functions causes this equation set to
appear to be highly non-linear. Should the equation set be partitioned and
the first and last equations solved simultaneously before the second and third,

however, then the equation set is translated into the linear reduced system

I + o = 3
T — = 1

' ? (2.10)
Cl + T3 + T4 = 4

Cz+$3—$4=5

where C; = z? — log.(2) and C; = ezp~(*1-V72) are constants. Equations 2.10
can be solved exactly, whereas equations 2.9 cannot. Further, removing the
non-linear terms from the equation set ameliorates the use of any derivative
information used in an iterative scheme, because it removes the possibility of
divergence due to the variation in curvature of the equations over the domain of
the solution. In general, partitioning an equation set will not be as successful in
reducing the non-linearity of the equations to be solved as it was for the above
example, but it is reasonable to expect some improvement. Whilst this may be
of little advantage far away from the solution, its benefit is likely to increase as
the search approaches it. This argument can be extended to the derivatives of

the equations.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets " 55

2.6 The Use of Decomposition Techniques

In the last section the partitioning of digraphs was discussed. Decomposition can
be seen as an extension of this method which alters the strong components of a
digraph. The aim of decomposition is the removal of nodes and arcs from some
digraph D(V, E) in such a way that the modified digraph contains no circuits.
This practice is known both as tearing and cutting, although the latter has a
slightly less general meaning than the former. In this text all three terms will be
used interchangeably and, although the following definition is given in terms of

node tearing, a similar definition exists for edge cutting.

Formally, a decomposition strategy seeks toidentify a node separator set, S C V,
in a digraph, D(V, E), such that every cycle, Cj, in D(V, E) has at least one node
in S such that for

E= {(w,v) [u,v € (V- 5),(u,v) € E} (2.11)

D(V -8, E), is acyclic. For figure 2.6, for instance, S = {L}, and each edge which
is directed to or from L is removed from E to give E. Different orderings of the
nodes in S and V — S give rise to different orderings of the rows and columns
of the incidence matrix of D(V, E). 1 the first node to be torn is placed at the
end of the order, the next placed in the penultimate position and so on, then the
incidence matrix thus produced has bordered lower triangular form. There is no
unique tear set for a digraph and some may be larger than others. As we will see

in § 3.4 these sets can be grouped into equivalence classes.

It is not clear whether it is preferable to tear an equation set before or after

partitioning. Leigh [55] has shown that the number of tears for an unpartitioned

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 56

digraph is bounded below by the maximum of the minimum size of each of its
strong components. Intuitively it is preferable to partition and then tear, since
this exploits the natural structure of the equation set by grouping together those
equations which are most strongly coupled. However, Sargent [82] provides an
example in which fewer tears are required if the set is torn before rather after

partitioning.

The most obvious benefit of tearing an equation set is that it reduces the number
of variables whose values have to be guessed before the equations can be solved.
The second advantage is that it can reduce the amount of computational effort
required at each iteration during solution; this is a point to which we will return
in § 2.6.2. It should not be assumed, however, that tearing an equation set is
always worthwhile, since there is only a small class of numerical methods whose
performance can be thus improved. Even when methods which lie within this
class are employed tearing may be undesirable because of the effect which it has
on the topology of the equations being solved. In order to provide a justification
for the use of decomposition methods this section is divided into two parts. The
first of these is a discussion of the nature of tear sets and, in particular, an
attempt is made to define a ‘good’ tear set. Secondly we turn our attention to
classifying those methods whose performance may be improved by decomposing

the original equation set.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 57

2.6.1 Optimal Tear Sets

As Motard et al. [64] have indicated there are no known optimum criteria for
choosing tear sets. The most widely used strategies are those which minimise the
number of torn nodes or edges, the weight of the torn arcs or, in flowsheeting
problems, the number of recycle pa.ra.méters, although this is simply a special
case of the minimum weight approach. The weight of an arc is a value
assigned to it, possibly in an arbitrary manner. One traditional method for
assigning weights in flowsheeting problems has been to set them equal to the
number of parameters associated with the corresponding process stream. Another
assignment philosophy is described in § 3.2. Minimising the cardinality of the
separator, S, is intuitively attractive because at each iteration it seems likely to
lead to a more exact solution of the problem and a lower effort requirement than
any larger tear set. Finding the tear set of lowest weight is an attempt to take
into account the relative desirability of tearing each of the arcs in a digraph. In
a flowsheeting environment this will generally correspond to a minimal amount
of recycle information but in the wider field it may reflect the relative ease of
solution of the equations; clearly, minimising the size of the separator is a special

case of minimising its weight.

Even if an optimal tear set were to be of minimum size, minimising the size of this
set, however this was defined, would be only a necessary condition for optimality.
Upadhye and Grens [98] have suggested that the optimal tear set for a graph is
likely to be nonredundant, i.e. no cycle in the digraph is torn by more than one
edge or node in the tear set. Their argument is based on a consideration of the
lag of information flow through the system being modelled by the graph. Their

argument can be extended to say that, where possible, each cycle should be torn

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 58

the minimum number of times. Consider the two graphs shown in figure 2.14

where a bar, |, on an arc indicates that it is torn.

® (D Q’é‘ﬂ‘@ &)

Figure 2.14: Two Tear Sets for a Di]?éph

Two minimum tear sets for these graphs are shown. In the first graph the cycle
which involves nodes 2, 3, and 4 is torn twice. Here the value for second tear
is updated without using the information which is available from the object
represented by node three. In the second graph no cycle is torn more than
once, and the information from node three is used. This ought to give the second
iteration a superior rate of convergence because of the less arbitrary variation in

the torn values.

As shown above, minimisation of the size of the tear set is insufficient for
structural optimality. This strategy is also insufficient from an algebraic point
of view because it takes no account of the effect of tearing on either the untorn

equations, or those which are used to improve the guesses for the tear variables.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 59

If possible, the tear set should be chosen so that it minimises the work done
overall, i.e. it minimises the product of the number of iterations and the amount
of work done at each, and so that it avoids singularities and discontinuities in the
torn problem. Determining such a tear set is impossible at present because there
is no sufficiently sophisticated method of algebraic analysis which allows this to

be done efficiently.

2.6.2 Numerical Techniques Improved by Tearing

In this section the effect of tearing on the amount of effort required at each

iteration for the following classes of numerical methods is considered:

e Direct Substitution.
¢ Relaxation Methods.
e Aitken’s Method.

o Newton Like Methods.

Each class of numerical method is described fully in appendix 4 and so only
a minimal description is provided here. In each case it will be assumed that
|z] = N, that ¢ < N of the elements of z are torn and that each of the first N —¢
equations has been rearranged to give an explicit expression for one of the N — ¢
dependent variables. The term ‘full problem’ will be used to mean the untorn

form of the equations and, where appropriate, all subtraction bperations will be

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 60

counted as additions, and all divisions as multiplications. The variable r;, defined
by
rs =T; — f,' (212)

is used to denote the residual of each equation at the :* iteration.

Direct Substitution Here the equations are written in a form which uses the
value of the vector x at the i** iteration to produce those at the (i +1)* iteration,
t.e.

! = f(z') (2.13)

If such an equation set is torn the calculations required at each iteration are

1. Evaluate the values of the dependent variables.

2. Evaluate the values of the independent variables.

Inspection of points 1 and 2 reveals that the steps involved in solving the torn
equations are identical to those involved in solving the full problem. Thus there
is no saving in computational expense or storage requirement associated with

tearing an equation set if the equations are to be solved in this way.

Relaxation Methods The generai form for calculating z*+! with a relaxation
method is
Tt =g — W (2.14)

where r*, the residuals of the equations at the :** iteration, are zero at the solution

and w' is some acceleration factor; n.b. w = 1 corresponds to the method of direct

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 61

substitution. Three methods of calculating w* are described.

Successive Over Relaxation (SOR) The equations are solved in two stages.

First of all the residuals are calculated and then z* is updated by
gl =z —wr (2.15)

where w > 1. In the torn case, only the torn variables are updated. Since w
is a constant factor, only N — ¢ multiplication/subtraction pairs are saved per
iteration. This is unlikely to be a significant saving in effort compared with either

the cost of the function evaluations or the cost of determining the tear set.

The Secant Method This method accelerates the direct substitution method

described in equation 2.13. It uses a different acceleration factor for each member

of x, i.e.
2t =o' +w; (23t - gi) (2.16)
1 .
0= Topd =12 N (2.17)
() — fi(z') .
5; = 5 a,-".+1) = ﬁ() j=1,2....N (2.18)

J 2

Tearing an equation set in this case reduces the computational expense of
acceleration from 3N multiplications and 5N additions to 3¢ multiplications and
5c additions. This saving may be significant, particularly if ¢ < N and the

equations are linear.

The Dominant Eigenvalue Method (DEM) This method is similar to the

secant method in that it accelerates the solution to equations 2.13. These are

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 62

solved successively until the largest change in the elements of occurs at an
approximately constant rate. When this occurs an acceleration step

X t+1 _ .8
.’B* = .'z:' + .x_l-——j\; (2.19)

is taken, where M is the ratio of the largest change in an element of z at successive
iterations. At each non-accelerating iteration, tearing the equations saves N — ¢
subtractions in finding the largest change in a variable over the course of the
iteration. On acceleration, N — ¢ divisions and 2 (/N — ¢) additions are saved.

Neither of these reductions in effort is likely to be significant.

Aitken’s Method Aitken’s method operates directly on the variables, and it
ignores their interaction. Once again the direct substitution equations are solved
but this time, when the difference in the value of a variable at each iteration

approaches a geometric series, the acceleration step

k-1_k+1 k\2
z;~z —(zF)
k-1 k k+1

Z; - 23'" —Z;

~o

*
T

(2.20)
is taken. If Aitken’s method is used on the full problem, then N equation solutions
are required per iteration, and at each acceleration step, 4N divisions and 3N
additions are necessary. When it is used on the torn problem, there are still N
equation solutions to be found but the work at each acceleration is reduced to

4c divisions and 3c additions. Given that equation evaluation is more expensive

than an arithmetic operation this is an insignificant saving in effort.

Newton Like Methods This class of numerical methods will be represented
by the Newton Raphson method. This uses the function values at z* and the

partial derivatives at this point to find the value of z*+1. If the functions to be

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 63

solved are of the form
flz)=20 : (2.21)
they are rewritten as
flz)—b=0 (2.22)

and solved by a truncated Taylor expansion of equation 2.22. The Jacobian, J,

Ofi yik=N

Bmk i,k=1

J={ (2.23)

is required. The computational scheme required for the full case is

1. Evaluate f(z*) — b
2. Evaluate J =V f

3. Solve Jzt! = — f(z*) for '
If some of the variables are torn, this scheme becomes

1. Evaluate :ci,c = fnc(zi)

2. Evaluate f{(z},(zc), 2%)

3. Evaluate J,. = V. foc

4. Evaluate J. = V. fI(z}.(z}), z})

5. Solve J.zit! = — f7(z}) for ziH!

‘Here z,. is the set of dependent variables and z. is the set of independent (i.e.

tear) variables. fn.(z.) is the set of equations used to solve explicitly for z,.,2

2n.b. These equations are rearrangements of the first N — ¢ equations.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 64

fi(@nc(ze), z.) is the set of reduced equations which is used to solve for the tear
set and V., is the gradient vector for these variables. J,, is the Jacobian for the

dependent equations and J, is the Jacobian for the reduced system.

There are two ways in which each Jacobian may be calculated and these are

considered in turn.

Analytical Jacobian In the full case N (N + 1) function evaluations are
required for the first two steps and, as is shown in appendix A, O(N?) operations
to solve the Jacobian equation for z(*+}). If the variables are torn, these
requirements are reduced to ¢ (N — c) function evaluations for the chained
derivatives and N (c+1) function evaluations for the reduced equations Jacobian,
and O(c?) operations to solve the reduced Jacobian equation for z{(+1). If ¢ < N
this represents a considerable saving both in operations per iteration and storage

requirement.

Numerical Jacobian In order to evaluate the Jacobian it is necessary to
evaluate the relevant equation set at the current value of the variables, to perturb
each in turn and then revaluate the equations before resetting the variable to its

original value. Thus each element of the Jacobian is generated from

_ filzx + 6zi) — fi(zx)

Jij 5 Tk

(2.24)

where typically 6zx = ez for some small value e. If the Newton Raphson method
is used on the full equation set this requires N (N + 1) function evaluations. If
it is used on a torn system, however, (N — ¢) (¢ + 1) function evaluations are

required to calculate the chain rule derivatives and ¢ (¢ + 1) are necessary for

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 65

the reduced Jacobian. This amounts to a total number of function evaluations of

N (c+ 1) which is a small saving over the full case.

Wegstein’s Method Wegstein [99] developed the secant method for
single equations, and his method has been generalised for the solution of
multidimensional problems. In his method, the new value of z after the (i + 1)*
iteration is found from

Az’ = —B'f (2.25)

where Az’ = z — z**1, and the matrix B is found from

it =t

1
ik =™ T p 7 =1\
7 fi(z?

Whether this is applied to the full or the torn problem, N function evaluations

(2.26)

are required per iteration. In the full case, however, N multiplications and 2N
additions are required as well, whereas for a torn equation set this is reduced to ¢
multiplications and 2¢ additions. This is a very small saving, but there is a much
larger difference in the effort required to solve equation 2.25. For the full case,
this requires O(N?) operations, but for the torn case only O(c®) are needed. If
¢ < N this may be a significant saving.

Thus, of all of the methods considered here, tearing the equations produces
significant savings in computational effort at each iteration for only the secant

method, for the Newton Raphson method and for Wegstein’s method.

Chapter 2. The Graphical Analysis of the Structure of Equation Sets 66

2.7 Summary

In this chapter it has been shown that whilst that no assurance of the existence
of a unique solution to an equation set can be gained by an inspection of its
structure, in the common case, some necessary conditions can be placed upon this.
Next it was shown that, whatever the solution method, it was desiré,ble to find
an output set for the equations and the bounds on the number of such sets were
established. In § 2.5 the equivalence of matrix, graph and equation partitioning
was demonstrated in that it was shown that diagonal of a partitioned incidence
matrix for some equation set F(X) corresponded to the strong components of the
digraph of the assigned equations; these in turn represent a sequence of equation
sets which can be solved simultaneously. The effect of this partitioning on the
amount of effort required to solve an equation set, both per iteration and on the
number of iterations was discussed. Lastly, in § 2.6 it was shown that it is very
hard to define conditions on the optimality of a tear set for a problem. Further,
whilst an analysis of the geometric effects of tearing is not possible, it was shown
that in many cases there was no significant reduction in the operations count per

iteration for a torn system over the full case.

We proceed in the next chapter to discuss the most popular methods of selecting

an output set and partitioning and decomposing equation sets.

The evil that men do lives after their lives, yet the good is
oft interred with their bones '
William Shakespeare, Julius Caeser

Chapter 3

Literature Review and Selection of Methods

3.1 Introduction

In the last chapter we discovered why some structural analysis of equation sets
is necessary, and why other aspects of this phenomenon are desirable. In this
chapter we discuss solutions which have been proposed for the problems raised
in that chapter. In § 3.2 methods for output selection are described. There
are multifarious formulations of this problem which draw on techniques such as
graphical analysis and integer programming. In § 3.3 we turn our attention to
the partitioning of incidence matrices. Here we demonstrate how the structure
of these matrices determines the pattern of fill in which they experience, and it
is shown that no deterministic algorithm exists which can predict a minimum
for this phenomenon. Next methods for permuting the rows and columns of
these matrices are described, and lastly we consider algorithms which manipulate

them in different ways. In § 3.4 decomposition techniques are examined. These

67

Chapter 3. Literature Review and Selection of Methods 68

range from arbitrary strategies, through integer programming methods to those
which are based on a depth first search of the bipartite digraph which describes
the matrix. There are some techniques which can be considered common to
graph partitioning and decomposition. Those which select spikes may be used
as tearing methods since they identify the effects of circuits within both directed

and undirected graphs.

A brief summary of the conclusions drawn from each section is presented in § 3.5.

3.2 Choosing An Output Set

Consider an equation set R which involves the variables, X, and which is
structurally non-singular. If v € X is a variable which appears in u € R then,
given vthe values of all of the other variables in u, this equation can be solved for
z. Thus v and v can be recorded as a pairing and u is said to be assigned to v.
No ordering is defined on assignment and so, alternatively, v may be said to be

assigned to u. A set, S, given by
S = {(ui,»)} i=1,2,---, |R| (3.1)

in which u; # uj,¢ # j and v; # v;,¢ # j, is called a maximal assignment for the
equation set; equivalently, S may be referred to as an ‘output set’ or a ‘maximum
transversal’. The first algorithm which appeared explicitly for the purpose of
identifying an output set was presented by Steward [92]. He was concerned with
identifying a single output set and then showing that this set could be used

to generate all others; he showed too that where no such output set exists the

Chapter 3. Literature Review and Selection of Methods 69

equation set is structurally singular. He presents his explanation in terms of the
incidence matrix of the equation set, but it is clearer to consider the undirected,
bipartite graph G(V, E) which represents it, and D(V, E), the directed bipartite

graph which corresponds to a particular assignment of variables to equations.

The first step in his algorithm is an assignment of a variable, v, to an equation,
uk, whose node is adjacent to that of v in G(V, E). If this node already appears in
some element, (ux, wi) € S, as defined above, then the pair, (ux, w;), is removed
from S and replaced by (ux,v); an attempt is made now to assign a new equation
node to wx. Any such assignment may cause other pairs in S to be removed
and replaced and the process continues until either an equation node, u;, is
encountered which is not in S, in which case the new assignment is added to this
set, or there are no more equation nodes which are candidates for assignment to
the current variable node, w;. In this case each of this node’s predecessors on
the path is examined to see if it can be assigned to a free equation node. If this
is possible S is perturbed in the usual way and a fresh search is made for the
next variable node; if this is not possible then, since no assignment can be found

which includes each variable, R must be structurally singular.

Having identified an output set, Steward shows that all others can be found by
forming a symbolic version of the reachability matrix . This is defined to be the
N* power of Adj(R), the incidence matrix for R, where |R| = N; the diagonal
blocks of this matrix represent all circuits in G(V, E) which involve N edges. By
defining the processes of directed path multiplication and addition he shows that
in each of the i** powers of Adj(R), all paths in G which involve i edges are
recorded and that each is recorded : times. His argument is that evaluating all

of the loops of G in this way allows the generation of new output sets simply by

Chapter 3. Literature Review and Selection of Methods 70

reassigning nodes around these loops, possibly recursively. This makes implicit
use of theorem 2.1, which states that each of these reassignments must take place

within a strong component of D(V, E).

Although each of these algorithms is correct neither is very good because each is
algorithmically inefficient. In the first the lack of a look ahead facility may lead
to a large waste of effort. Consider the situation when M assignments have been
made and we wish to assign an equation to the M + 1** variable. In the worst
case, all paths of length | < M in G(V, E) which involve the M assigned variables
may have to be searched before a new assignment is found. Whilst it is difficult
to express the worst case algorithmic complexity for this method, it is certainly
very high. In the second it is very expensive to calculate powers of the incidence

matrix, even when it is stored in packed form.

A better algorithm based on a depth first search of G(V, E) and which includes a
look ahead facility is that due to Duff [23]. This author defines a cheap assignment
to be an assignment which is made without resort to a path search. In terms
of the incidence matrix of G(V, E) this corresponds to assigning to the row, ¢,
the first column, j, which intersects with it and which is not in the present
assignment. Staying with this representation of the equation set, the algorithm
starts by making as many consecutive cheap assignments as possible. Whenever
this process fails for some row a path search is started, even if a cheap assignment

is possible for some row later in the matrix.

Let such a row be 2. The search starts by finding the first non-zero in this row;
this is in column j; and it has been assigned to row ;. Row ¢, is searched now

- and if it contains a free non-zero j’, the assignment (21, 1) is removed from this

Chapter 3. Literature Review and Selection of Methods 71

set and replaced by the pair of assignments, (%0,71) and (41,5’), and the search
is restarted from the next free row. If 7; had contained no free column then the
first column with which it intersects jq, jo # j1, would have been placed on the
path and the search continued. This process of extending the path is the depth
first search and the search for a free column in each row is the look ahead facility.
If during the search a column has no more candidate rows, the search backtracks

to the previous row.

Duff [23] interprets this search by reference to an obscure form of a signal
flowgraph. A much clearer interpretation is apparent if one treats it as an
attempt to establish a maximum matching, M [36], in an undirected, bipartite
graph where the vertex partitions, V; and V;, correspond to equations (rows) and
variables (columns) respectively. Recall that a matching in a graph is a subset
of its edges such that no vertex appears in more than one edge. A matching
of maximum size for a graph is called a maximum cardinality matching; if each
vertex in the graph is incident on one of the edges in such a matching it is said to
be complete. Any vertex which is not an endpoint of some edge in the matching
is said to be free and a path of odd length between two free vertices in the graph,
such that there is no other free vertex on it, is termed an augmenting path. If
this path is of length ! > 1 then the edges of which it consists are alternatively
in the current matching and outwith it. Let P be such a path, A the set of edges
which it contains and My C A be the edges in A which are also in M, the.current
matching. Since both terminal vertices in P are free, |4 — Mp| = |Mp| + 1, and
thus the size of the matching may be increased by one by removing each member
of My from M and adding each member of A — M,. In a finite graph, if no

augmenting path exists then the current matching is maximum.

Chapter 3. Literature Review and Selection of Methods 72

The search starts by establishing the assignments (v;,v;), v; € V,,v; €
Vz, (vi,v;) € M the current matching, until no such assignment can be made
for some vertex vx € V,. The search continues along a path, P, as described
above and the lookahead corresponds to looking for a free vertex, v’ € V,, which
is adjacent to the vertex, v,, € V,, at the head of P. As Duff [23] indicates, it
is difficult to define a worst case time complexity for this search, but it would

appear to be O(n7) where there are n vertices in G(V, E) and 7 edges.

Westerberg and Edie [102], [103] presented an entirely different approach to
determining an output set for the solution of linear equations. They argued
that it is not only the structural form of a matrix which is important, but
'a.lsb the algebraic and numerical properties of the equations which it is used
to represent. To this end they presented two strategies for improving the
convergence characteristics of an equation set which is to be solved by successive
substitution; they claimed that any strategy which improves the convergence of
successive substitution is likely to improve the convergence of any other numerical
method. The method of successive substitution will converge a set of linear
equations if and only if the largest eigenvalue of its iteration matrix is less than

one. If the equations to be solved are
Az = f (3.2)

then, using A = D — B, where D is a diagonal matrix with the same entries as

the diagonal of A, the method of successive substitution finds z by
z=D"'Bz+ D7'f (3.3)

and D~'Bz is the iteration matrix. These authors show that this value can
be minimised either by minimising the maximum row sum in this matrix or

maximising the product of the diagonal coefficients. Either of these goals may be

Chapter 3. Literature Review and Selection of Methods 73

achieved by the application of dynamic programming techniques and an implicit
enumeration method is presented for each which cuts down the amount of search

required.

These techniques can be extended to deal with non-linear equations if an iterative
solution procedure is used and the ordering method is applied to the Jacobian.
The authors suggest that the first derivatives of the equations be used and- that the
output set be chosen before the first iteration. Should the solution vector change
appreciably, then the output set ought to be redetermined. Given the amount of
effort required in solving a dynamic program to determine each output set, and
the crudeness of the measure of optimality, this seems unlikely to be of any real

benefit.

Sargent [82] proposed that the selection of an output set could be posed as the
set partitioning problem:
| =N
max z w;Z;

j=1
=1

st. 3. Cyzj=1, i=1,2,---,2N (3:4)

i=1

zgi=00rl, j=12,---,7

- where C is the node-arc incidence matrix for the equation set!, {z;} is the set
of variables and equations and w; is a weight assigned to the j** arc; this weight
reflects the desirability of adding the pairing corresponding to the éndpoints of
the j** arc to the current matching. In this formulation, each arc in the bipartite
graph which represents the equation set is assigned a weight and the maximum

sum of N of these arc weights is chosen within the constraint that each variable

In this matrix the rows correspond to nodes and the columns to arcs in the bipartite graph.
The column for edge e has exactly two entries, and these are in the rows which represent its
termini.

Chapter 3. Literature Review and Selection of Methods . 74

and equation is an an endpoint of exactly one arc. Sargent is not explicit about
the details of this formulation, but he suggests that if one wishes only to identify
one output set then equations 3.4 might be solved using either the algorithm
of Edmonds [27] or Hopcroft and Karp [46] but that if one wishes the optimal
solution then that of Edmonds and Johnson [28] should be used instead. The first
of these algorithms has a worst case time complexity of O(N|E|), where there
are E edges in the graph, and the second has one of O(N?%). The third is less
efficient yet. Even refers to a report by Gabow [33] in which its complexity is
given as O(N?®) and so, since assigning meaningful values to the weights can be
very difficult, it would appear that there is very little point in finding the optimal
solution to this problem. Further, as will be shown on page 77, there is a more

efficient formulation of the output set problem.

Before describing this formulation it is worth noting that another approach which
involves the ascription of weights to the arcs is the stable marriage problem.
Here the point is to find a one to one correspondence between two disjoint vertex
sets such that there are no two vertices ¢ and j which are assigned to other
nodes but which have a stronger mutual attraction. Gale and Shapely [34] have
presented an algorithm which finds a solution to this problem in O(N?) time
where there are N vertices in each set. Irving [48] has shown that determining
the number of solutions to this problem for any value of N is NP-complete and
so, in the absence of any polynomial time algorithms, it is likely that detérmining
the optimal solution for this formulation is also NP-complete. A further problem
with this technique is that it is difficult to define what one means by the optimal
solution. Let one of the vertex sets be labelled ‘men’ and the other ‘women’ and
let a good solution be one in which one of the vertex sets has its preferences

satisfied to a maximal degree. In general an assignment which is man optimal

Chapter 3. Literature Review and Selection of Methods 75

will not be woman optimal and vice versa and so some form of compromise
must be reached. In terms of equation solving this means that an assignment
which matches each variable to the equation which is most easily solved for it,
within the constraints of the problem, is unlikely to match each equation to the
variable within it for which it is most easily solved. Thus an optimal solution,
however it is defined, lies somewhere between these two extremes. Even if one
were able to define the relevant optimality criteria there is no guarantee that this
“would have any real meaning since it ignores the values of the variables. This
is an unpromising approach and, given the same edge weights as in Sargents
formulation (82], it gives a suboptimal solution. It would be acceptable only if it
were much more efficient, but it may be useful for providing a starting point for

the set partitioning problem.

Paterson [69] has provided a possible means of circumventing the problem of
assigning weights to the edges in the graph. He restricted his work to the
solution of a single equation in a single variable but his results may be extended
to cover the multidimensional case. His argument is that one ought to rerearrange
a non-linear equation so that it can be rendered nearly linear by a suitable
change of variable, e.g. by replacing a squared term by a new variable. This is
desirable because those numerical methods which have superlinear convergence
use derivative information which approximates a curved gradient by a straight
line. A second desirable condition is that the right hand side of the new edua,tion
should be a weak function of the variable on the left hand side so that the absolute
value of the gradient will be less than one . The desirability of this condition
arises from the assurance of the convergence by successive substitution of such

an equation.

Chapter 3. Literature Review and Selection of Methods 76

This author suggests that when solving an equation by a Newton type method one
ought to rearrange it so that the equation being solved is a difference between such
a right and left hand side. Thus if the original equation f(z) = 0 is rearranged
so that £ = f(z) is a good rearrangement for solution by successive substitution,
the convergence characteristics of Newton’s method for £ — f(z) = 0 ought to be
better than those for f(z) = 0. Paterson [70] extends this idea to providing good
rearrangements and starting guesses for equations by identifying the dominant
term in an equation if one exists. Having identified this term, he gets a good
starting guess for the iteration by approximating the equation to this term and
solving the approximation analytically. The original equation is then rearranged
so that, after a change of variable, the dominant term is now the subject of the

equation.

Paterson’s argument [69] is that these techniques work because they satisfy a
sufficient condition for convergence, and they perform better than the method of
successive substitution (MSS) early on in the iteration, and thus better overall.
As he points out, a sufficient condition for the convergence of this technique for
the solution of some equation f(z) is that | f(z*) | < 1, where z* is the desired
solution. Since the value of z* is unknown, he relaxes this condition to hold on
the value of z°, the initial estimate of the solution. This is his justification for
making the right hand side of an equation a weak function of the left hand side.
Whilst there is a plausible argument, supported by experience, that thé use of
Paterson’s observations are likely to improve the convergence characteristics of
an equation set, it is not true to say that he has defined a condition which is

sufficient for this.

Paterson’s techniques extend to cover the multidimensional case in a natural

Chapter 3. Literature Review and Selection of Methods 77

way. Here an equation is rearranged for some variable within it which does
not yet appear in an assignment and which appears in a term which can be
used to maximise the linearity of the rearranged equation. It is clear now how
Paterson’s work relates to formulations of the assignment problem in which edges
are weighted; his analysis of each equation can be used to assign the weightings for
the edges between variables and equations. Such a weighting could be assigned
a priori or reviewed once every few iterations. This is likely to be extremely
expensive, however, because each variable may occur in more than one term in
each equation, and so many rearrangements and approximate solutions would
be required to calculate these weights. Ascribing these weights would embody
the majority of the effort required to produce an assignment. Since the cost of
~ solving a stable marriage problem or a dynamic program, probably suboptimally,

provides the balance, this technique is unlikely to be of practical use.

The most efficient formulation of the output set problem where no weights are
taken into account is that of modelling it as a flow network problem. Each edge,
e, of the bipartite digraph D(V, E) is assigned a capacity, c(e), which is the largest
amount of flow allowed through it. The purpose of the algorithms presented here
is to find the maximum possible flow from one partition to the other; the material
is assumed to flow from an imaginary source, which is connected to each of the
nodes in one of the partitions, into an imaginary sink which is attached to each
of the nodes in the other. Prior to describing the formulation in detail we» require

the following definitions.

A flow function, f, is an assignment of a number, f(e;), to each edge, e;, in a

graph. Clearly
0< fle) < ele) (3.5)

Chapter 3. Literature Review and Selection of Methods 78

The total flow, F, through the graph is the net flow from the source to the sink.
A network, N, is a directed graph which has a source and a sink and for which

every edge, e; in NV, has a capacity, c(e;). If initially

fle)=0

o Vi (3.6)

if the toal flow through each node other than the source and the sink is restricted
to unity; and if only integer increments are allowed in f(e;), then NV is called
a zero-one network; this is the type of network which is of interest to us. An

example of such a network is shown in figure 3.1. An edge e; is said to be useful

(&)

Figure 3.1: An example of a Network

if it connects two nodes, u and v, where u is closer to the source, i.e. there is a

shorter path from the sink to « than from the sink to v, and either
ei=u—v and f(e) < c(e;) (3.7)

or

ei=u+—v and 0< f(e) ‘ (3.8)

Chapter 3. Literature Review and Selection of Methods 79

because in either case the net flow of material from the source can be increased by
forcing flow through e; towards the relevant bound. A proof that flow augmenting

techniques can be used to solve the output set selection problem is deferred until

§ 4.2.

Possibly the best known algorithm for maximising network flow was provided by
Ford and Fulkerson [31]. At each stage the search for an augmenting path starts
at the source and a vertex, vy, is sought through which the flow is submaximal. A
similar vertex, vy, which is adja.cexit to v; is sought and the process continues until
the sink is reached; at this point the path has been found and flow is increased
along it by the maximum amount possible which does not break constraints 3.5.
When no such augmenting path exists the flow is maximal. This algorithm may
fail in the general case if c(e;) is allowed to be irrational for any e; € E; hence the
need to constrain c(e;) to integral values. The nature of this algorithm has been
reviewed by Even [30], and he refers to a breadth first search amendment which
guarantees that the algorithm will terminate in O(|V || E|) steps even when c(e;)

is allowed to be irrational.

A much better method is that due to Dinic [20]. This algorithm uses a breadth
first search through a network, A, which changes each time that an augmenting
path has been found. One can show that this algorithm must terminate and that
it must do so after O(N?}) steps, where there are N nodes and 7 arcs in the
network. Even [30] has proved that for a zero-one network this bound is reduced
to O(7%). This algorithm is described fully in § 4.2 and so it will not be discussed
here, save to say that it appears to be the most efficient method for determining

an output set for a set of equations.

Chapter 3. Literature Review and Selection of Methods 80

It has been shown here that Steward’s [92] seminal algorithms for establishing an
output set and generating all others from it are highly inefficient, and that they
have been superseded by most of their modern competitors. Further, attempts to
define an optimal output set have not produced criteria which are both meaningful
and efficiently established. Westerberg and Edie’s, [102] and [103], methods for
minimising the maximum eigenvalue of an iteration matrix are meaningful but
inefficient; Sargent’s [82] set partitioning formulation provides an optimal solution
in O(N|E|) time, but he does not present any method of assigning weights to arcs.
Regarding assignment as an instance of the stable marriage problem guarantees
an answer where the equation set is structurally non-singular, but it is both
difficult and costly to define an optimal solution, even when Paterson’s methods,
(69], [70], are used. Duff’s depth first search algorithm with a lookahead facility
identifies a maximal assignment in O(N|E|) time, and it is easier to implement
than Sargent’s integer program. The most efficient approach which has appeared,
however, is to treat it as a maximal flow problem in a zero-one network which is

to be solved by an th€ application of Dinic’s method [20].

3.3 Partitioning Matrices

In this section we will discuss not only methods of partitioning matrices but
also ways of permuting the rows and columns within diagonal blocks. When
we are dealing with the solution of non-linear equations, rows and columns
are permuted within blocks so that they have bordered triangular form (see
figure 2.11). The variables which correspond to the right hand border are then

torn; these techniques will be described in § 3.4. When linear equations are being

Chapter 3. Literature Review and Selection of Methods : 81

solved, blocks are ordered internally so that fill-in is controlled during Gaussian

Elimination.

A spike is a column which has non-zero entries above the diagonal. At first
sight, since fill-in can occur only in spikes, one might believe that minimising the
number of spikes would minimise the fill-in in a matrix. Consider, however, the

two matrices in figures 3.2(a) and (b). These are symmetric permutations of one

X X X X X - non-zero entry
xx | @ |xx x| ® O.fillin

X XX XXO0 -

L xxx|] @ Lxxx

Figure 3.2: Two permutations of an Irreducible Matrix

another and figure 3.2(a) has two spikes whereas figure 3.2(b) has only one. If
Gaussian Elimination were applied to the matrices then no fill-in would occur in
the first matrix whereas one entry would fill in the second, despite the fact that
it has one less spike. Prior to a discussiou of how fill-in can occur, it is necessary

to establish the relationship between different permutations of the same matrix.

Let A be any matrix of order, V, and let P be some permutation matrix of the
same order such that P;; = 0 or 1,,5 = 1,2,.--, N, and there is at least one

non-zero entry in each row and column. The matrix
A1 = PA (3.9)

has the same elements as A but its rows appear in a different order.

Chapter 3. Literature Review and Selection of Methods 82

Postmultiplying A; by the transpose of P to give
Ay = AlP' (= PAPY) (3.10)

permutes the columns of A, in the same way as its rows. As shown by theorem 2.5
the diagonal blocks of A, A; and A; are permutations of each other and hence all
matrices

A= RAR | (3.11)

such that A is block lower diagonal, form an equivalence class for all permutation

matrices K.

If A is postmultiplied by some permutation matrix @ # P* to give
A3 = PAQ (3.12)

then the columns of As are permuted in a different way to the rows of A. If
A had non-zeros in every diagonal position to begin with then A3 belongs to
the same equivalence class as RAR', Duff [22]. The graphical interpretation
of equation 3.11 is that it reorders the nodes in the digraph of A whereas

equation 3.12 reorders the nodes and reorients some of its edges.

3.3.1 A Characterisation of Matrix Partitioning

Rose and Bunch [79] showed that permuting an irreducible matrix never saves
arithmetic operations, regardless of whether this is performed symmetrically
or asymmetrically, although it can lower storage requirements. In order to

demonstrate this, they cited the solution by Gaussian Elimination of the

Chapter 3. Literature Review and Selection of Methods - 83

equations

Mz =k (3.13)

where M is an N X N coefficient matrix and z and k are 1 x N vectors. Performing
a Gaussian Elimination on the first m rows of M can be regarded as finding a

partial LU decomposition of this matrix, and this can be written as

L, of|U L?
M= (3.14)
RUM I 0 A

where L; and U; are m x m matrices, R is an N — m X m matrix and C is an
m X N —m matrix. Since M is irreducible, so too is every permutation of it and
hence R can never be the zero matrix. If the graph is not strongly connected,
then R = 0 is possible, and both storage and arithmetic requirements may be
reduced. Rose [78] defined a perfect elimination undirected graph to be one whose
nodes are ordered so that, on elimination of some node, z;, no new edges have to
be added to the graph so that all paths of length, ! > 1, which pass through z;
in the original graph G(V, E) become paths of length ! —1 in the new graph, G,,.
Not all graphs may be ordered.in this way and not every ordering of one which

can is a perfect elimination ordering.

This definition is important in the study of the solution of equation sets. Let the
rows and columns of the N x N symmetric incidence matrix, A(G), be ordered in
the same way as the nodes of G(V, E). Then the elimination of the i** node from
G(V, E) corresponds to pivoting on the i** row and column of A(G). In general,
pivoting leads to fill-in, and this corresponds to adding new edges to the reduced
graph. In order to relate this fill-in to Gaussian Elimination, Rose [78] made use

of the following definitions.

Chapter 3. Literature Review and Selection of Methods 84

The deficiency of v; € V, D(v;), is defined as
D(vi) = {(vjs vi) | vj,vx € Adj(vi), v; & Adj(vx), vk € Adj(v;)} (3.15)

i.e. the set of edges whose addition to E would make the vertex

subset Adj(v;) U {vi} a clique. = The elimination graph of v, in G is

i=k
Gu (V — ka, E), where
i=k =k
E=(E—{(vj,w)|we L_J1 Adj(v;)}) L_JID(vj) (3.16)

which is the graph obtained by deleting the vertex vi from the (k — 1)** reduced
graph G,,_, and adding those edges in its deficiency. In figure 3.3, the graphs of
figures 3.2 (a) and (b), the first graph has a null deficiency, whereas the second
has D(E3) = {z4}. The arc (E3,z4), which is shown as a dotted line, is added
to the edge set when Ej is eliminated. According to Rose, the (possibly filled)
submatrix, A(G), which results from pivoting on the k** row and column of A
is the incidence matrix of the graph G,,. To see this 0;16 need note only that
pivoting on this vertex involves the deletion of each entry in the k** column of
A which lies beneath the k** row, and the modification of the non-zero entries in
each affected row which lies to the right of the k** column. A row is affected if
and only if it corresponds to a node in the adjacency set of vj; each entry in the

z’th

row is affected if and only if it corresponds to a node in Adj(vx) or Adj(v;). If
some entry, (4, j), is affected such that v; € Adj(vx) but v; & Adj(v), then a new
non-zero entry is made in A. This corresponds to the creation of a new arc in G,,
between node v; and node vj; no such new arc results from the case v; € Adj(v;),
v; &€ Adj(vi). Each new arc is a member of D(v;) and it is easy to see that each

member of D(vi) contributes a new arc to Gv,- Thus G,, is the graph of the

submatrix of A which results from pivoting on the k** diagonal element of A.

" 1t follows that if F is the set of new arcs added to G as each node is eliminated

Chapter 3. Literature Review and Selection of Methods 85

Figure 3.3: Gra,phs for the Matrices of figure 3.2

in turn, i.e. F = JU D(v;) then F corresponds exactly to the set of filled entries
which occur durinJg:;ertex elimination on A. Further, GF(V, EUF) is the graph
of the matrix L + LT, where L is the Cholesky factor of A? [51]. It is important
to minimise the size of F' so as to minimise both the storage requirements and
the number of arithmetic operations necessary at each iteration. Ideally |F| =0

is sought, and Rose shows that if this is to be achieved, then it is necessary for

G(V, E) to be the transitive closure of itself, i.e.
(vi, v;) € E and (vi, vx) € E = (v;, vx) €E (3.17)

Any graph which displays this property is said to be chordal [11]. This term is

2n.b. This refers to the logical Cholesky factorisation - no numerical values are assumed.
This generalises Rose’s argument to the solution of linear and non-linear equations.

Chapter 3. Literature Review and Selection of Methods 86

used because each path in the graph of three vertices has a subpath between its

termini.

Haskins and Rose [39] showed that fill-in may occur in the same way in
unsymmetric matrix by relating this to vertex elimination in digraphs. They
demonstrated that if there is a path in a graph D(V, E) from some vertex », to
another vertex v, which passes through one or more vertices which are ordered
before v, and vy, then if (v, v,) & E, this edge fills in when v, the highest ordered
vertex on this path such that it is ordered before v, and v,, is eliminated; the
edge is directed in the same way as the path. More formally, if there exists a
bijection

a: Ve {12V} (3.18)

which orders the nodes in G¢, then for any path, p,
P = VnyVig, Vigy+* s Vi, Uy (3.19)
which contains at least one node v;; such that
o~ (vy;) < min(e” (), o (1)) (3.20)

then either (v;, v,) € E or G(V, E) is not a perfect elimination digraph. They
extend their analysis by providing three necessary conditions for the perfect

elimination condition on G(V, E):

1. Vy;,v; € V at least one of these vertices, say v; is such that V vz, y, € V

which separate v; and v;,v; does not separate v, and v.

2. YV v;,v; € V at least one of these vertices, say v; is such that V v, 1, € V

which separate v; and v;, every set T of n > 2 vertices contains a subset

Chapter 3. Literature Review and Selection of Methods 87

U of n — 1 vertices such that any path from vx to v through v; whose
elements are exactly those of I' has a subpath from v} to v; whose elements

are exactly those of W.

3. For any set I' of n > 2 vertices there exists a subset ¥ of n — 1 vertices such

that any cycle on I' has a cycle on W.

The authors conjectured that the first two of these conditions might be sufficient
to ensure that D(V, E) is a perfect elimination digraph, but Kleitman [50] showed
that this is not the case. The third condition is tantamount to saying that G(V, E)
must be chordal.

Rose and Tarjan [80] extended these concepts and produced an algorithm which
computes the fill-in for any ordering, and one which will find a perfect elimination
ordering for a digraph should one exist; each of these algorithms can be executed
in O(NT) time, where there are N nodes and 7 arcs in the digraph. They also
presented an algorithm which, starting from any fill set, F, will reduce it and
reorder the digraph until it finds a minimal fill set, Fp; this algorithm works
in O(N?(+ |F])) time. More theoretically, they showed that since there is a
polynomial transformation which converts the Satisfiability Theorem of Calculus
into the problem of computing the minimum fill-in for D(V, E), the latter problem
is NP-complete. Yannakakis [106] has provided a similar proof for undirected
graphs, based on Berge’s observation [11] that any perfect elimination graph is
chordal. The problem of computing the minimum fill-in may be formulated as
a calculation of the minimum number of edges which must be added to G(V, E)

in order to make it chordal. He shows that the NP-complete Optimal Linear

Chapter 3. Literature Review and Selection of Methods : 88

Rearrangement Problem is a reduction of this task®.

Schreiber [84] extended the analysis of vertex ordering in undirected graphs
by examining the structure of the graph which corresponds to the Cholesky
factorisation of a symmetric matrix A. He defined col(j) and nezt(j) for the

jt* vertex to be
col(j) = {i >j | li; # 0} | (3.21)
next(j) = min{k | k € col(5)} (3.22)
Obviously col(j) is the set of nodes ordered after j to which it is connected by an
arc in the filled graph, and nezt(j) is the lowest numbered such node. Schreiber
shows that, as a direct consequence of these déﬁnitions,
col(k) C col(next(k)) U {next(k)}
col(n) =0

(3.23)

He uses these definitions to form the elimination tree, T'(V, N(L)), for the filled
graph, where
N(L)={(j,next(j)) € E[1<j<n-1} (3.24)
This is an ordered tree rooted at vy, the last node in the ordering. If row(y) is
defined as
row(j)={k<j|lLxr#0}, 1<j<n (3.25)

i.e. the set of vertices whose removal effects the j** node, then it can be seén that
Trou(j)us) is an ordered tree rooted at node j. Further, col(7) is the set of nodes

on the path from the j** node in T(V, N(L)) to the root of this tree. From this it

3An arrangement of the nodes in a graph G(V, E) is an ordering 7 of the nodes within it. With
each edge ¢ = (v,w) € E in this graph is associated the value é(e,7) = (z~1(v) — (7~ 1(w)),
and the cost of the arrangement is defined as ¢(7) =) e € Eé(e, 7). The Optimal Linear
Rearrangement problem is the question “For an integer k, is there an arrangement of the nodes
in G(V, E) such that its cost ¢(7) < k?”.

Chapter 3. Literature Review and Selection of Methods 89

can be seen that orderings which minimise the depth and maximise the breadth

of the elimination tree tend to minimise the fill-in in the incidence matrix.

It is important to note that it is the structure of the elimination tree which
determines the fill-in during vertex elimination, not the number of spikes in the
incidence matrix. To show this Liu [58] followed the same line of reasoning as
Schreiber [84], and he demonstrated that the fill-in in a graph can be characterised
by the leaf nodes of its elimination tree. This result follows from the proof of a
theorem which states that vertex v; is a leaf in the row subtree rooted at v; if and
only if (v;, v;) € E and there is no descendent of v;, vk, such that (v;, v;) € E.
The same author [60] showed that the set of orderings which preserve the order
of the nodes in T'(V, N(L)) is a subset of the set of orderings which preserve the
set of filled edges; this, in turn, is a subset of the orderings which preserve the
number of edges added to G(V, E). He uses this reasoning to show how sparsity

can be maintained when reordering some of the vertices in G(V, E).

No characterisation of directed graphs in terms of an elimination tree has
appeared as yet, but some progress in this direction has been made. Aho et
al. [1] define the transitive reduction of a digraph to be the smallest graph D;*
which has the same transitive closure as D(V, E). D;' need not be a subgraph
of D(V, E), but it has the same number of nodes and its strong components,
each of which is a simple cycle, are comprised of the same vertices as those of the
larger graph,; if there are one or more arcs between strong components in D(V, E),
these are represented by a single arc in D;*. Should D(V, E) be acyclic then D;*
is unique. Otherwise there will be more than one transitive reduction of D(V, E)
and the relationship between the transitive reduction and the transitive closure of

D(V, E) is the same as the relationship between the leaves of T(V, N(L)) and the

Chapter 3. Literature Review and Selection of Methods - 90

structure of the filled undirected graph from which it it constructed. Sahni [81]
defines the minimal equivalent digraph of a digraph, D(V, E) to be its minimal
subgraph D, which has the same transitive closure as D(V, E). He shows that

finding this subgraph is an NP-complete problem.

3.3.2 Symmetric Permutations

Harary [38] presented a technique for partitioning the incidence matrix which
uses the reachability matrix for a graph. He uses a slightly different definition of
this matrix to that given oﬁ page 69.. Iﬁ his terms, this matrix is the kt* power
of the incidence matrix and its (i,)* element is non-zero if there is a path of
length [, | < k from node ¢ to node j. If the incidence matrix of D has rank N
then the (N —1)** reachability métrix contains all of the paths which exist within
the graph. Each strong component can be found by checking along each row 7 to
see if for each non-zero intersection with a column j, (7,7) is also non-zero; the
set of all such non-zero entries defines the set of nodes which appear in the same
strong component as :. Having deleted each row and column which corresponds
to this strong component the search can continue; n.b. this does not order the
strong components in any meaningful way. In the worst case, i.e. each node is in
a different strong component, Mﬁz-'—ll checks are necessary to identify them and,
if no packed form is used, (N — 1) N3 multiplications are necessary in order to

compute the reachability matrix.

A similar but different definition of the reachability matrix was used by

Himmleblau [43]. This author defined the non-zero entries of the k** power of

Chapter 3. Literature Review and Selection of Methods 91

the incidence matrix with zeros on the diagonal to correspond to node pairs such
that there is a path of exactly length k& between these nodes. : The reachability
matrix is then the summation of each of these matrices from 1 to N — 1; the
final matrix has the same form as that of Harary [38] but Himmleblau defined
Boolean multiplication and addition differently. If R* is the above mentioned
sum then the set of non-zero entries in the i** row of R*(R*)! contains all of the
nodes which are in the same strong component as :. Once again this does not

order the strong components of the graph.

Steward’s algorithm [93] begins by finding a maximum transversal of A, the
incidence matrix of the equation set, and forming H, the signal flowgraph of the
digraph based on the ‘equation’ nodes which represents the tra,nsve_rsa.l. All of the
sources for this flowgraph are eliminated, although none of the sinks is, and then
its loops are identified by a depth first search. Not all of the loops are identified
explicitly, but node j is collapsed into the supernode I if it is in a loop with any
vertex k € I (a supernode is simply a loop which is treated as a node). This
process is repeated until no new loops are found and the stack is then popped
with each supernode containing a strong component of H. As we will see in § 5.2

these are also the strong components of D(V, E).

None of these algorithms is very efficient because the first two require several
powers of the incidence matrix to be evaluated and the second restarts each
search for a loop from the start of the graph. Perhaps the most popular method
is that due to Walker and Tinney [97], which Rose [78] called the minimum
degree ordering. This algorithm was developed for use with symmetric matrices
and it selects as the next node to be ordered that which has the lowest degree

in the current reduced graph; n.b. this is a symmetric version of Markowitz’s

Chapter 3. Literature Review and Selection of Methods 92

[61] algorithm. Many authors have addressed themselves to improving the

performance of this technique and their efforts are reviewed by George and Liu

[35].

3.3.3 Asymmetric Permutations

Sargent and Westerberg [83] addressed the problem of partitioning within the
context of precedence ordering of the calculations in a process flowsheet. Implicit
in their approach is the assignment of a direction for each arc in the graph.
This is implicit because there is a natural direction associated with an arc in a
digraph which represents a chemical process, namely the direction of material
flow. Therefore, prior to use of this algorithm for ordering equation sets, a search
for a maximum transversal is necessary. They proposed a depth first search (DFS)
algorithm which selects an arbitrary start vertex and searches backwards along
the edges incident upon it in order to identify cycles of the digraph. When a loop
is encountered the nodes associated with it are grouped together and treated as
a single node; any edge which was incident upon one of the constituent nodes is
held to be incident upon the supernode and likewise those edges incident from
any of these vertices is incident from the group. Having encountered and formed
a supernode the search is continued as before. Should a new node be in a loop
with a supernode already on the stack then those nodes are merged, along with

any others between them on the stack.

If at some point in the search all of the incoming edges for a node have been

searched and it is found to be in no cycle with any other node then this node is

Chapter 3. Literature Review and Selection of Methods 93

popped from the stack (it must be at the top) and added to the list of strong
components. This is the case regardless of whether the vertex is simple or a
supernode. Should an edge from such a vertex to a node on the stack be identified
later no action is taken since such a path implies the existence only of a path,
not a circuit. These authors seek to permute the rows and columns within the
blocks of the incidence matrix which correspond to these strong components so
that they are in bordered block diagonal form. The borders of these blocks are
formed by minimising the weight of the spikes in each block using a dynamic
programming technique similar to that used by Westerberg and Edie [102]. The
amount of search within each block is minimised by the use of graph reduction

and an implicit enumeration technique.

Christensen and Rudd [16] proposed a similar scheme to that above, but they
allowed nodes to be permuted to the end of a sequence as well as to the beginning.
They too proposed a method of node merging to reduce the size of the digraph.
Forder and Hutchison [32] took a similar approach, but they enumefated all of the
cycles in the graph by a depth first search, and employed a complicated flagging
system in order to identify the first node in a strong component on the stack. The

blocks of the incidence matrix are generated in reverse order by this algorithm.

Each of the above algorithms has some theoretical merit but each is inefficient in
practice. The first two methods suffer from an excess of superfluous relabelling
whilst the third traces each loop in the graph which, although potentially useful,
is, as we shall see in § 3.4.3, also potentially very expensive. Johns [49] proposed
a method which obviated these p1:oblems but an even better solution was given
by Tarjan [94]. His DFS method maintains a path and a stack. Each node is

added exactly once to both structures and each edge is traversed at most twice.

Chapter 3. Literature Review and Selection of Methods 94

Thus the time complexity for this algorithm is O(N + 7) where there are N
vertices in the graph and 7 edges. The strong components of the digraph are
identified by maintaining a pointer for each node which points to the lowest node
on the stack to which this node is connected. On backtracking, any node which
has its lowlink pointing to itself forms a strong component with all of the other
nodes which appear above it in the stack. Duff and Reid [24] have published a
Fortran implementation of this é,lgorithm in which they use an improved method
of assigning the lowlink pointer. If some node v; is the start vertex for an
arc which ends on a node v; which is below it on the stack, then rather than
assigning v; to the lowlink of »;, the lowlink of v; is assigned to this value
directly. The same authors [25] compared this code with an implementation of
Sargent and Westerberg’s [83] algorithm and fouﬁd the former to perform better
in practice. Duff et al. [26] have proposed another amendment which improves
the performance of this algorithm on undirected graphs. This amendment and

other improvements to the algorithm are described in § 5.2.

An entirely different approach is embodied in the preassigned pivot procedure,
P3, developed by Hellerman and Rarick [40]. This is an hierarchical partitioning
algorithm which is applied to the whole matrix, whether it is reducible or not,
~and it requires the concepts of spiked columns, which was introduced in § 3.3,
and an active matrix. This is the section of the matrix which contains the rows
and columns which are candidates for the next pivotal, i.e. diagonal, position.
Initially this is the entire matrix, but the active section shrinks at each iteration.
In the first step, a search is made for a row, i, which has a single entry in some
column, j. Such a row is called a singleton, and this pair is moved to the first
position of the permuted matrix, and they are deleted from the active matrix.

This is called forward triangularisation and it is repeated on the active matrix

Chapter 3. Literature Review and Selection of Methods : 95

until no more such intersections are located. At this point a similar procedure,
backward triangularisation, is performed in which any pair (k,1) such that the
entry in column [is in row k is permuted to the last vacant entry in the ordering;

again this is repeated until there are no more candidates.

The remaining active matrix is either irreducible or its diagonal blocks are of size
greater than unity, and it is to be permuted to bordered block diagonal form. P3
requires a tally to be maintained of the number of non-zero entries to be found
in each row and column. This is necessitated by the desire to produce as many
row singletons as possible at each iteration. At each step, if the minimum row
count is greater than one, a spike column is transferred from the active matrix
to the border. The spike chosen is the column which intersects maximally with
the set of rows of minimum row count. In the event of a tie the column with the
greatest column count is chosen; if this fails to produce a single candidate the
choice is made arbitrarily from amongst the set of columns which satisfy the first
two criteria. If the minimum row count is one, and if ¢ is the only row with this
count, then then row 7 and the column with which it intersects are ordered next.
If there are k > 1 rows with unit row count, and if all of these intersect with the
same column, then a diagonal block of size k is formed in the active matrix. The
first row of unit row count is paired with the column with which it intersects,
and this pairing is ordered first in the new block. The remaining k — 1 rows are
paired with the last £ — 1 columns to be identified as spikes, and the complete
k x k block is removed from the active matrix and ordered in the first available

position in the new matrix.

Whenever a new pairing has been added to the new matrix the algorithm returns

to forward and backward triangularisation, and this process continues until

Chapter 3. Literature Review and Selection of Methods 96

the entire matrix has been processed. Removing spikes from the border and
adding them to diagonal blocks reduces the amount of fill-in experienced during
elimination, but it can lead to structurally singular diagonal blocks in matrices
which are not themselves structurally singular. Erisman et al [29] cite an example
due to Westerberg, a private communication, which exhibits this behaviour. This

example is shown in figure 3.4 where it can be seen that the 3 x 3 diagonal block

X}, XX
X _ XX
X., XX
] |___xx
'x:'xx 'X
XX !X
X X_ X
XXXXx

__ XXXxX

Figure 3.4: Westerberg’s P3 Example

chosen by P? is singular; swapping rows seven and eight shows that this matrix
is not singular. Erisman et al [29] have diagnosed the reason for this, and they
have prescribed a modification to the algorithm which corrects this fault. Their
algorithm, the precautionary partitioned preassigned pivot procedure, or P53, is

described below.

Effectively P2 transforms an incidence matrix, A, into one, A, which is of bordered
block diagonal form. By bringing spikes back from the border into the active
matrix it produces subblocks along the diagonal of A, and these may be defined
hierarchically. Further, each spike extends at least as far above the lgéding
diagonal as each of the others to its left. This property limits fill-in to those

rows in each spike below its first entry. P® was used by the same authors to order

Chapter 3. Literature Review and Selection of Methods 97

the rows and columns within the irreducible blocks found by the partitioned
preassigned pivot procedure, P* [41]. In this algorithm a maximum transversal
is identified and some start node, v;, is chosen randomly. All paths from this
node are traced and the set of all successors of v;, S;, is found. This is the set
of all nodes which are reachable from v;. Similarly the set of predecessors of v;,
i.e. those nodes from which v; is reachable, P; is found. The intersection of these
two sets gives Cj, the set of nodes in the same strong component as v;. The set
P =P - C; };ehe set of all nodes which must lie in strong components which
precede C; and S = S; — C; is the set of all nodes which lie in strong components
which follow it. If V is the set of all nodes then V = V — P — § — C; is the
set of all nodes which lie in a disconnected portion of D(V, E)- The algorithm is

repeated recursively on P, S and V.

Erisman et al [29] showed that structurally singular blocks can be produced by
P3 and P* because of the way in which spikes are removed from the border and
used'to form a diagonal block. As an example, when P? tries to identify a fifth
pivot in figure 3.4, the minimum active row count is two and yet removing a
spike reduces three rows to singletons, each of which has its entry in the¢same
column. In this case, only the first two columns of the new diagonal block can
be guaranteed pivots, although fill-in may provide the third. This problem arises
because the last spike, i.e. column 7, was moved to the border when searching
for a previous pivot, and hence it was not essential that it contained an entry in
any of the rows in the 3 x 3 block. If the last spike removed from the border had
contained a non-zero in either the fifth or sixth rows, but not the seventh, then
rowg swaps within this block would have given a structurally non-singular block

without destroying the overall structure imposed by P3.

Chapter 3. Literature Review and Selection of Methods 98

In order to obviate this difficulty Erisman et al [29] proposed that the size of the
diagonal block be bounded above by the minimum row count-when the search
for a pivot begins. In this case, regardless of the number of row singletons which
are produced by the removal of the last spike, each row is guaranteed a pivotal
entry in the new block. In fact the new block must be entirely dense. This is
because only rows of minimum row count are retained in the search space when
a spike has been removed, and so each spike which has been added to the border
since the beginning of the search for a new pivot must contain an entry in each
singleton produced. Hence the effects of this modification to P* are that every
diagonal block in the matrix is dense and, because P® leaves some spikes in the
border which would have been moved forward by P4, the border of the matrix
will be at least as large as that produced by the original algorithm, and possibly
larger. The authors show that fill-in must occur in the border to allow a pivot
for any row paired with a spike, but which has a zero intersection with it, and

hence P°% provides a stable factorisation of a non-singular matrix.

Lin and Mah [57) showed that structural singularity can be avoided by choosing
both a spike row and a spike column. Consider some block, A, in which a row
spike, r,, and a column spike, c,, have a zero intersection. Let r, = [A,0] and
¢,! = [0,0]*. Then eliminationon A can be viewed as the matrix product EA = A,

t.e.,
A7t 0 A o I Ale
' T = ' (3.26)
—/\tAl—l 1 A 0 0 —/\tAl—IO'
If A is structurally nonsingular, and so too is A,, then the determinants of £ and
A must be nonzero. Hence the determinant of A must be nonzero and thus so

too must be —AtA;~o. Since A is defined to be structurally non-singular, and a

transversal has been identified for A,, these conditions have been satisfied.

Chapter 3. Literature Review and Selection of Methods 99

Using this result, the authors extended the ideas in P® and P* by trying to
minimise the size of the diagonal blocks in order to minimise fill-in. If n; is the

number of rows in the i** diagonal block then they define the performance index,

P, to be
i=K
P = anz (3.27)

=1

where there are K blocks and at each stage they seek to choose a spike row, r,,
and a spike column, c,, so as to minimise P. The partitioning problem may then

be formulated as the integer programming problem

min P(r,, c;) (3.28)

Ter Co
The authors present an exclusion theorem which greatly reduces the search
space for ¢, and r, at each stage. The algorithm starts by finding a maximum
transversal and applying P“ to partition the matrix; each block is placed on a
stack. At each stage a block is popped from the stack, a spike column is chosen
according to P® and the block is forward triangularised. If this partitions the
entire block then the last row is the row spike; if not then a row spike is chosen
analogously to the column spike and the block is backwards triangularised. The
remaining subblock is precedence ordered and P(r,, c,) is evaluated. This index
is minimised by searching for row and column swaps with the present row and
column spikes which reduce it. The only candidates for these row swaps are the
members of the minimum spanning row set, R, which contains all of the non-zeros
in the set of active columns which do not inters;ect with the spike row* r,; the
column candidates are defined similarly. When P,p;, has been found precedence

ordering continues until the block has been fully reduced.

This algorithm is complicated and computationally expensive. Since, as the

“i.e. if R is the set of all rows with entries in these columns then B C R is the smallest

subset of these rows such that each column covered by R is also covered by R

Chapter 3. Literature Review and Selection of Methods 100

authors themselves point out [57], the measure of optimality that is used is
crude, they present two more simple criteria for spike selection. The first of
these restricts the search for column spikes to those which intersect with rows of
minimum row count and the second simply accepts the row and column spikes
chosen by P3. All of these algorithms were shown to reduce fill-in and operations
count for a problem when compared with P4. However, these improvements were
gained at the cost of a significant increase in the run time for ordering. Stadtherr
and Wood [90] reported a further development of the idea of spike selection.
They extended Lin and Mah’s simplification by ignoring some possible column
interchanges and they presented two new algorithms, SPK1 and SPK2. The
former is similar to P> except that spike selection starts by identifying the row
with minimum row count and pivoting in this row on the column which intersects
wifh it, which has minimum column count. All other columns which intersect
with this row are stacked as possible spikes, in order of decreasing column count.
The matrix is now forward triangularised with more columns added to the spike
stack as necessary. Should a zero row count occur at any time then a spike is

popped and assigned to it.

The second algorithm is similar to SPK1 but the tie breaking strategy is different.
In SPK1 if there is more than one row of minimum row count then the row for
which the sum of column counts is maximised is selected since this reduces the
degree of the nodes left in the graph by the maximal amount. In SPK2 the
row chosen is that for which column deletion leads to the maximum number of

minimum row counts. This is more likely to lead to forward triangularisation.

In summary, although P® and its variants are very popular, both P® and P* can

lead to zero pivots. Erisman et al [29] prescribe a simple solution, P°, which

Chapter 3. Literature Review and Selection of Methods 101

requires an amendment to the spike selection algorithm. Lin and Mah [57] show
that no zero pivot is possible, in a structurally non-singular matrix, if one chooses
both row and column spikes. They use this observation to develop a range
of partitioning algorithms, although these are inefficient, and their optimality
criteria are poor. Their approach was extended and simplified by Stadtherr and

Wood [90] who developed the SPK1 and SPK2 algorithms.

Soylemez and Seider [88] focused on the structural properties of the equations
rather than on that of their incidence matrix. They suggested that equations
ought to be arranged in order of increasing non-linearity and that symbolic
forward substitution method be used to recast the problem. When a set of
sufficiently non-linear equations has been identified they suggested that they be
solved as a block. Whilst this approach has some intuitive appeal it is of little
practical use because it takes no account of the numerical values of the variables

and, further, the classification of non-linearity is very crude.

A more sophisticated approach was proposed by Stadtherr et al. [89] who
introduced the concept of an allowable subset. This is a set of equations which
can be solved exactly, e.g. a pair of linear or quadratic equations, without
. resort to iteration. They contended that such equations might occur when the
values of some variables became known or assumed (torn) when the equations
are precedence ordered. They presented an algorithm which attempts to identify
minimal subsets of equations and so check these for ‘allowability’. On recognition
of such a subset it is permuted to the next vacant entries at the front of the matrix
and partitioning continues. Westerberg [101] has warned against this approach
(and indeed against hierarchical partitioning in general) since, in his experience,

it produces linearly dependent reduced subsets within a significant number of

Chapter 3. Literature Review and Selection of Methods : 102

structurally nonsingular problems.

Perhaps the most widely used permutation algorithm is that due to Markowitz
[61]; this is popular with those who solve linear equations. At each iteration a

pivot is chosen which satisfies,
min O = (pi—1)(7; - 1)
st. (3,7)#0

where p; is the number of non-zeros in row ¢ and +; is the number of non-zeros in

(3.29)

the j* column. This is a strategy of local minimisation of fill-in and C is used
rather than C' = p;7; in order to force the selection of row and column singletons.
This method is used as the basis of Duff’s MA28 algorithm [25] and it has been

shown to be very .successful in practice.

3.3.4 Summary

Rose and Bunch [79] showed that partitioning both reducible and irreducible
matrices can be advantageous, and Rose [78] demonstrated how fill-in is related
to node order in a symmetric graph; Yannakakis [106] proved that finding the
minimum amount of fill for any graph is an NP-complete problem. Haskins and
Rose [39] attempted to prepare the ground for similar results on digraphs, which
so far has proved fruitless, and Rose and Tarjan [80] showed that computing the
minimum fill-in for a directed graph is NP-complete. Schreiber [84] demonstrated
how fill-in in undirected graphs is determined by the ordering of the nodes, and
his results were extended by Liu [58], who proved that fill-in can be characterised

by the leaves of an elimination tree.

Chapter 3. Literature Review and Selection of Methods 103

Harary [38] and Himmleblau [43] both used a symmetric matrix multiplication
technique to partition an incidence matrix; both of these methods is
algorithmically inefficient. Steward [93] adopted a more efficient approach in
which he found a maximum transversal for the matrix, and then ordered it using
a depth first search. Even more successful, and considerably more popular, is the
minimum degree ordering algorithm due to Walker and Tinney [97] which orders

next the node of minimum degree in the signal flowgraph of the incidence matrix.

Sargent and Westerberg [83] were the first authors to present a depth first search
method which partitions the rows and columns of a matrix asymmetrically. Both
their method and that of Christensen and Rudd [16] are effective but each suffers
from a surfeit of relabelling. Forder and Hutchison [32] presented a different
approach in which each cycle in the digraph which represents the asymmetric
matrix is identified; this search is very expensive. Johns [49] described a much
more efficient depth first search, but even better was that due to Tarjan [94].
This algorithm has a time complexity which is linear in the number of nonzero

entries in the matrix, which is the lowest possible theoretical bound for this task.

Hellerman and Rarick [40] took an entirely different approach to partitioning a
matrix in which they did not attempt to identify its block triangular structure.
Rather they tried to minimise the number of ‘spikes’ in the matrix, columns which
had superdiagonal non-zero elements. They extended their ideas, Hellerman
and Rarick [41], by applying the same technique to the diagonal blocks of a
lower triangularisation of a matrix. Their techniques have enjoyed some success,
but they are prone to producing zero pivots. This problem was diagnosed and
obviated by Erisman et al [29] by a modification to the number of spikes which

can be reintroduced to the active matrix when zero rows are identified. Lin

Chapter 3. Literature Review and Selection of Methods 104

and Mah [57] also offered solutions to this problem, but their algorithms are
highly inefficient and it is based upon a questionable optimality criterion, as they
themselves indicate. Stadtherr and Wood extended their analysis and produced
two algorithms, but neither of these has the theoretical rational of Hellerman
and Raricks’ techniques. Yet another, and much simpler, approach was taken
by Markowitz who’s algorithm minimises the product of the row and column
count for the next pivot to be chosen. This technique has been in vogue for a

considerable number of years.

3.4 Methods Of Decomposition

Whilst the chemical engineering literature is replete with decomposition methods,
it seems that considerably less attention has been paid to this subject in the wider

field. The techniques available can be classified into four different groups

1. Ad hoc Strategies.
2. Graph reduction methods.

3. Explicit loop breaking techniques.

4. Depth first search methods.

This classification is inexact in that some decomposition algorithms contain

elements of more than one approach. In the following discussion both node and

Chapter 3. Literature Review and Selection of Methods 105

edge tearing strategies will be described, and each of the above groups of methods

is dealt with in turn.

3.4.1 Ad hoc Decomposition Methods

Lee, Christensen and Rudd [53] proposed a minimum node tearing strategy based
on an exhaustive search. Their argument was based on the observation that the
minimum number of tears necessary is bounded below by the minimum in-degree
of an ‘equation’ node in a strongly connected digraph. Let this minimum be
x + 1. In their method all possible combinations of x tear nodes are tested to
see if they decompose the digraph entirely. If they do, success is reported and
the search is discontinued. If failure is encountered then an attempt is made
to find a tear set of size x + 1 and so on until a node separator set for the
digraph is determined. In its most basic state this is an expensive algorithm
which is prone to combinatorial explosion. It is possible that some improvement
on performance might be achieved by ordering candidate tear sets according to
the relative success of their ancestors, or by using a branch and bound search

method. No such extensions to this technique have been reported.

Himmleblau [43] and [44], presented two separate decomposition algorithms. In
the first [43] he proposed tearing fhe edge between the first vertex v; € V in
the digraph D(V, E) and v;, the highest ordered node to which it is connected.
Following this the nodes in the digraph are reordered and the process is repeated
until no more cycles remain. This algoriﬁhm has the advantages of simplicity

- and low complexity but it ignores entirely the structure both of the incidence

Chapter 3. Literature Review and Selection of Methods 106

matrix for the problem and the equations themselves. In his second algorithm
[44] the nodes are grouped according to their degree before an attempt is made
to determine a node separator set; as in [53], if the minimum degree of any node
is £+ 1 then the minimum possible number of tears required is x. The algorithm
starts by selecting a node from the set of minimum degree and ordering this first.
Nodes of equal degree are appended to the ordered set in turn such that only
" one new node is connected to that just added. If no such node can be added
then another node of higher degree is ordered next if this is connected to only
one node not in the ordered set. If no such node is found then a new sequence is
started; this introduces at least x new tears. This process continues until all of the
nodes of minimum degree have been ordered whereupon the ordering continues
using the new set of nodes of least degree and so on until the entire graph has
been ordered. Himmleblau does not indicate how the ordered sequences should
themselves be ordered but it would seem appropriate to arrange them in the order
in which they were generated. It is difficult to assess the algorithmic complexity
of this approach, but the possible requirement for an extensive search for the
next node to be added to a sequence implies that it is unlikely to be a low order

polynomial.

Liu [59] provided an algorithm which starts with some separator, S , which
separates G(V, E) into two sﬁbgraphs, U and V, and then removes nodes from this
separator until it is of minimal size. Tilis is achieved by using a flow technique
which identifies a subset, So C S, which has an adjacency set in either U or V
which is smaller than Sy itself. He defines an adjacency set in a subgraph, G', for

the set of nodes, Sp, as
Adjgi(So) = {vi | vi € Adj(v;),v; € So} (3.30)

and he notes that if some separator S separates G(V, E) into two subgraphs U

Chapter 3. Literature Review and Selection of Methods 107

and V, and if Y C S, then S = (S — Y) U Adj(Y,U) separates U — Adj(Y,U)
and V +Y. If | Adj(Y,U) | < | Y | then clearly | § | < | S |. An adjacency set
like Y is identified by establishing a maximum matching, M, between S and the
larger of U and V, say U. In this case, if there is a set of nodes S € S such that
no v € § is a terminus of an edge in M, then by definition | Adi(S,U) |<| 8|,
and so (S — 5) U Adj(S5,U) is a smaller separator for the graph than S. If such a
subset is located it is exchanged with S and the process continues. Liu does not
provide any complexity measure for this algorithm, but he notes that the minimal
separator set is sensitive to the original choice of S. He notes that the minimum
degree ordering [97] provides a good starting point, and that in this case most of
the computational effort is expended in obtaining this ordering. Although it was
developed for use with undirected graphs, Liu’s algorithm is equally applicable

to those which are directed.

3.4.2 Graph Reduction Methods

Graph reduction methods seek to reduce the search space for tear sets by
eliminating some, or all, of the candidates which can never lead to optimality,
however this is defined. In general this is achieved by merging or deleting edges of
the digraph and it is a technique which enjoys considerable success, particularly
when the edges of the graph are weighted. These weights are assigned according
to some predefined crigeria. For instance, in process simulation, an edge might be
assigned a weight which is equivalent to the number of variables associated with
the process stream which it represents. In the equation solving context, a weight

might describe the desirability of solving an equation for a particular variable.

Chapter 3. Literature Review and Selection of Methods 108

Christensen and Rudd [16] pointed out that if parallel edges occur between two
nodes then either neither or both must be members of the tear set.' Based on this
observation they proposed that such edges be combined to make one simple edge
which, if the edges are weighted, should be assigned a weight equal to the sum
of its constituents. Further, they cite the reduction of two-way edges proposed
by Sargent and Westerberg [83] which removes such a pair from the digraph and
adds one of them to the tear set if the edges are unweighted; should they be
weighted then the pair is replaced by a single directed edge which is assigned the
difference between their weights and the edge of lower weight is added to the tear
set. Christensen and Rudd also introduced the concept of the ineligible edge. Let
u and v be two nodes in D(V, E) connected by a single edge, e, and let the weight
of this edge be wy,. If the sum of the weights of all of the edges incident upon u is
wy+ and those incident from v is wy- then if either wy+ < wy, or wWy- < wy, edge
e can never be a member of a tear set of minimum weight. This is so because it is
always the case that some combination of either the edges incident on u or those

incident from v may be torn to the same effect as e but with a lower weight.

Christensen and Rudd [16] used these reductions and the concept of index nodes
to find a minimum weight tear set. They defined an index node to be a vertex
_each of whose incoming or outgoing edges, or both, is eligible. The first step in the
algorithm is the reduction of the digraph using the concepts defined above. If the
whole digraph is reduced then the minimum weight tear set has been identified.
If an irreducible digraph remains then an index node is torn which minimises the
increase in the weight of the tear set. The process of edge reduction and node
- tearing continues recursively until the whole digraph has been reduced. The
node tearing strategy which is employed takes into account only the local effect

of tearing a vertex, i.e. it increases the weight of the tear set by the minimal

VCbapter 3. Literature Review and Selection of Methods : 109

amount possible at each iteration, and so this algorithm cannot guarantee to

identify a global minimally weighted tear set.

Figure 3.5: An Arbitrary Bipartite Cyclic Graph

As an example of graph reduction, consider figure 3.5, in which there is one pair
of parallel edges, and two pairs of two-way edges. Using the graph reduction

techniques this is reduced to figure 3.6 and three tears are necessary®.

aa:
ool

Figure 3.6: A Reduction of figure 3.5

Sn.b. either (a,d) or (d,a) could have been removed from figure 3.5, and similarly either
(b,d) or (d,) could have been added to the tear set

Chapter 3. Literature Review and Selection of Methods 110

Another graph reduction technique is due to Barkley and Motard [9]. Their
algorithm operates on an irreducible signal flowgraph, H(V, E), and so all of the
sources and sinks of D(V, E) are removed as a first stage. Next H is reduced
to a set of what the authors call intervals. Each of these is a tree, and the set
constitutes a spanning forest for H(V,). These trees are identified by use of
the concept of a predecessor. If any node v; in M has only one input edge, and
that edge is directed from v;, then v; is said to be the predecessor of v;. In this
case v; is deleted from H and added to the interval which is ‘headed’ by this
node; éa,ch edge which was incident from v; to some other node vy is removed and
replaced by an edge (v;,vx) in the reduced signal flowgraph. Should some node
v; be identified as the predecessor of a node v,, which heads some interval, then

v; becomes the new header node for this interval.

This process continues until either all of the nodes in the flowgraph are contained
in a single interval, in which case the header node is the only tear variable, or
there are no more predecessors in the current subgraph. In the latter case a check
is made to see if there are any self loops in H, i.e. if any node v; is a predecessor
of itself. Any such loop must be torn since this is the only way in which the
digraph can be rendered acyclic. Should any self loops be identified then that
which has the highest degree is torn. Ties are broken arbitrarily and the process

of interval reduction is restarted.

Two other conditions may be met. If there are no predecessors or self loops in a
reduced signal flowgraph then the set of node pairs, N, is found. This is defined
on the vertices of G(V, E) such that

N = {(vi,v;) | vi,v; € V, (v;,v;5), (vj,v:) € E} (3.31)

Chapter 3. Literature Review and Selection of Methods 111

and exactly one node from each element of A" must be torn since this is the only
way in which these minimal cycles can be broken. If A is non-empty then that
‘node which appears in more pairs than any other is torn, since this minimises
the number of tears. Should there be two or more nodes in a maximal number
of pairs then the node from this set which has highest degree is torn; if this
does not resolve the conflict then a tear node is selected arbitrarily from the
set of candidates with the highest degree. If none of the above conditions are
encountered then a tear node is chosen either according to degree or arbitrarily.
In contrast to Christensen and Rudd’s technique [16], Barkley and Motard’s
method reduces the graph of figure 3.5 to that shown in figure 3.7; it can be
seen from this graph that only two edges need be torn to decompose the entire

graph. An analysis of the properties and the complexity of this algorithm appear

Figure 3.7: The Barkley Motard Reduction of figure

in § 5.2.

Murthy and Hussain [66] proposed a similar approach to that of Barkley and
Motard. They assigned a weight to each edge of the digraph and identified the
net ‘flow’ through each node, i.e. the difference between the sum of the weights of

the edges incident upon the node and the sum of the weights of the edges incident

Chapter 3. Literature Review and Selection of Methods 112

from it. In their algorithm, any node which had zero or negative flow through it
was replaced by its predecessor and the graph was further reduced by using the
original predecessor relationship and cutting all self loops. This approach may
well tend to minimise the size of the tear set, but there is no guarantee that it

will reach or even approximate the global minimum.

3.4.3 Explicit Loop Breaking Strategies

Upadhye and Grens [98] formulated the decomposition problem as the set covering

probiem so that any teai seLt chosen would be nonredundant (see § 2.6.1). Taking

this approach necessitates the use of a cycle matrix, C, such that Ci; =1 if the

j** node appears in the i** cycle. If there are N nodes and M cycles in G(V, E)

and if z; represents the j** node, then the set covering problem can be posed as
i=N i=M

min). Y Cyjz;

j=1 i=1
=N

st. Y Cyz;>1, i=1,2,--- .M (3.32)

j=1

z;j=00r1, j=1,2,---,N
where the first constraint ensures that each cycle is broken at least once. The
authors give no advice about the method used to solve this problem, and it is
possible that identifying one which is both successful and efficient is problematic.
For the set partitioning problem each loop would be broken exactly once and so
the > condition would be replaced by equality. The partitioning problem is the
preferred formulation, but it may have no solution in many cases, and it is likely

that it is always difficult to solve.

Chapter 3. Literature Review and Selection of Methods 113

The first step in any algorithm which solves the decomposition problem in this
way is the identification of all of the circuits in a digraph. Tiernan [96] attempted
to do this by searching for all of the circuits which exist in each subgraph of
G(V,E) . In his method the search starts with the initial vertex in the digraph
and a path is constructed through the members of V. If any attempt is made to
extend the path by adding the initial vertex, a circuit has been identified and so
it is recorded. When all of the edges from a node have been searched it becomes
blocked so that no further search is made through this node during the current
phase. When a node becomes blocked the search backtracks to the node which
was responsible for placing it on the path and the search continues until the
initial vertex is removed. At this point the next vertex is used to start the path
and all of the other vertices become unblocked. The search continues as before
except that any attempt to extend the path by adding a vertex which was used as
the start vertex in a previous phase is illegal; this ensures that all of the circuits
are traced only once. Whilst this algorithm will identify all of the circuits in a
digraph it will examine Ej::f’—l (N — j)! paths for the complete digraph on N

vertices.

A more efficient algorithm is that due to Weinblatt [100]. In this case G is reduced
to an irreducible subgraph 7’ and each arc of this graph is searched only once.
As in Tiernan’s method [96], a path is maintained and a depth first search is
performed on 7, but in this case a vertex is added to the path once only. Should
an arc exist from the vertex at the end of the path P to any already on it then
that cycle is recorded. When all of the arcs from a vertex v; have been searched
it is removed from P. Should an earlier vertex vx on P be connected to v; then
each circuit C; already found to contain v; is examined to see if portions of it and

any other circuit can be combined to form a new set of circuits C’ which contain

Chapter 3. Literature Review and Selection of Methods 114

Uk or any vertex before it on the path. It is difficult to assess the computational
complexity of this algorithm but the examination of previously identified circuits

is very costly.

Tarjan [95] presented an algorithm for identifying the elementary cycles of a
.digraph which is linear in the number of circuits, but which has a worst case
time complexity which is exponential in the number of vertices. It uses a depth
first search which starts from each vertex in turn and a circuit is detected by an
attempt to extend the path by placing the current start vertex on the stack. Like
Tiernan’s algorithm [96] this circuit avoids retracing circuits by never exploring
an arc whose terminus is a vertex numbered lower than that of the initial vertex
on the path. Tarjan’s algorithm derives its efficiency from the use of a flagging
system which avoids searching paths which are known @ priori to be circuit free.
Each time a vertex, v, is added to the stack it is ‘marked’. When it is removed,
this mark is removed if a circuit has been detected through it; if no such circuit
has been found then the node remains marked. If subsequently some node, u,
below it in the stack tries to place it back onto the path then this flag is inspected.
Ifv fs still marked then no new circuits can be traced through it and so the next
member of u’s adjacency list is inspected; otherwise a new set of elementary

circuits may have been detected.
No linear or low polynomial time algorithm for tracing circuits has been reported.

Having identified the cycles which have to be torn, the next step is to decide
on the set of nodes or arcs which must be removed in order to tear them. Lee
and Rudd [54] provided an algorithm for this which works by identifying those

arcs which must be torn and choosing the others so that either the size or the

Chapter 3. Literature Review and Selection of Methods 115

weight of the tear set is minimised. Their algorithm is based on the following

observations:

1. All self-loops must be broken and the arc added to the tear set. In general
these self-loops will occur as a result of a graph reduction and they manifest
themselves as a single row entry in the cycle matrix. If column k is the single

entry in a some row ¢, then arc e; is called an essential arc.

2. If arc ¢; appears in every loop in which node e; appears and if w;, the weight
of arc e; is less than or equal to wj, the weight of arc e;, then e; can never
be selected as a tear stream in preference to e;. Arc e; is said to be strictly
contained within e; and it is deleted from the loop matrix. This definition
can be extended to allow an arc to be contained within a set of others. If
the arcs are not weighted then the condition is relaxed so that all that is

taken into account is loop membership; this is called containment.

These authors form the loop matrix for D(V, E) and they use these rules to reduce
it as far as possible. The next step is the formation of the disjoint set of arcs for
each cycle, i.e. the set of arcs which do not appear in the loop. Clearly, if arc ¢;
‘does not appear in cycle C; then this loop can never be broken by tearing only
the 7** arc. A tear set of minimum size is the smallest set whose members cannot
be generated as a subset of any disjoint set and which covers each cycle in the
graph. Lee and Rudd present some rules for restricting the search space for these
sets, but their arguments seem to be based on an ability to inspect the initial
reduced cycle matrix by eye. They present a version of the algorithm which finds
a tear set of minimum weight, but this too requires a large search. In each case a

tie breaking strategy based on the number of loops in which an arc occurs is used;

Chapter 3. Literature Review and Selection of Methods : 116

this removes the guarantee that any tear set is of minimal size or weight. Forder
and Hutchison [32] used a similar method to Lee and Rudd, but they allowed the
user to select some tears a priori, based on physical intuition or experience. In

this case the optimisation of the tear set is constrained.

Pho and Lapidus [73] used a signal flowgraph to determine the edge tear set
of minimum weight for the corresponding digraph. They used the concepts of
essential arcs and strict containment described above and they introduced the
analogous idea of row containment. Here, if each arc in cycle C; appears in some
other cycle Cj then row k of the cycle matrix can be removed since any tear
which breaks C; must also break cycle k. The first step in the algorithm is the
reduction of the cycle matrix as far as possible, using the concepts above and
removing self-loops. If this fails to tear all of the circuits then the set of two way
edges is inspected (see § 3.4.2). If some arc ¢; is involved in two way edges with
the arcs in the set Sy = {e;,ez,--+,en}, then either e; or each member of Sy
must be torn. If the combined weight of the arcs in Sy is less than that of e;,
then each of these is torn; otherwise e; belongs to the tear set. If some cycles
remain unbroken after the reduction of two way edges then a branch and bound

method is used to minimise the weight of the remaining tears.

Although it is not a formulation of the set covering problem, Montagna and
Iribarren [63] describe a similar iterative procedure which transforms the original
digraph into one which is undirected, and then defines a new direction for each
of the arcs such that the tear set for the new digraph is of either minimal weight
or size. First all of the cycles in the directed graph are identified. Next each arc
e; has associated with it two variables, z;; and z;;, which are used to determine

the orientation of this arc in the final graph. At the solution, exactly one of

Chapter 3. Literature Review and Selection of Methods 117

these variables must be one and the other zero. They formulated this problem
in a flowsheeting environment and they interpreted z;; to mean that information
flow was in the direction of material flow through the process; in the equation
solving environment this would be interpreted as the original relationship holding
between an equation and a variable. If the weight of the i** arc is pj, and if p; is
one if e; is torn, and zero otherwise, the minimisation of the weight of a tear set

may be formulated as the integer program

=M
min > pip;

j=1

st z; +z5,,=1 3=1,2,.--,.M (3-33)
z;, = Oorl 1=1,2

where there are M arcs in the graph. To find the tear set of minimum size each

weight is set to one. This integer program is solved within constraints which arise

from the necessity to tear each loop in D(V, E’) at least once, so that each arc

can have a unique direction and each node be correctly connected®.

The solution to this integer program may direct some of the edges of the new
digraph so as to form new cycles and so the program must be reformulated
and solved repeatedly until no new circuits are encountered. As evidence of the
efficacy of this method, the authors present a new solution to the Cavett [15]
problem which has only one torn edge. However, they give no indication of the
difficulties involved in solving the integer program. Whereas a global solution to
this program is a minimum tear set for the digraph in question, there may be
no guarantee that such a solution will be found. Further, no report is given of
the difficulty of setting up the constraints in this formulation, and it may well be

that this requires a significant amount of work. Thus, although their work is of

6e.g. a countercurrent heat exchanger must have two inputs and two outputs whereas a
mixer has more than one input but only one output.

Chapter 3. Literature Review and Selection of Methods 118

considerable theoretical interest, it is unknown whether Montagna and Iribarren’s

[63] approach is likely to be of any practical use.

3.4.4 Depth First Search Decomposition

Motard and Westerberg [65] extended the concept of Upadhye and Grens’s [98]
decomposition families by defining an exclusive tear set (ETS) to be one which
tears each loop in D(V, E) exactly once. They proved that if and only if such
a tear set exists then the nonredundant decomposition family of Upadhye and
Grens is unique, and that each member of it is an ETS. In this case the circuits
in the digraph can be ordered as a tree and each ETS can be generated in turn by
using the replacement rule round each cycle. The authors presented an algorithm
which finds an ETS for a digra.ph if one exists but, if it does not, it generates a
tear set which minimises the maximum number of times that any single circuit is
broken; amongst the tear sets of minimum multiplicity that of minimum weight

is chosen.

The algorithm operates on the edges and cycles in the digraph. Each edge has
assigned to it a weight and an edge efficiency, which is the number of loops which
will be broken per unit weight of the edge; this is not necessarily a whole number.
The edges are ordered according to their efficiency and weight, those of highest
efficiency first and, within a given level of efficiency, those of lowest weight first.
A depth first search of these ordered edges is used to find the tear set. At each
stage the next edge in the ordering is added to the current tear set until all of

the loops have been broken. At this point the weight of the tear set is calculated

Chapter 3. Literature Review and Selection of Methods 119

along with its multiplicity, the maximum number of times that a cycle has been
torn. If the multiplicity of this tear set is lower than the current minimum, or
if they are equal but its weight is lower, then this tear set replaces the previous
best. Regardless of whether the current tear set is currently optimal or not, the

last edge added to it is then removed and the next candidate is added.

In order to prevent forming and checking each possible tear set for optimality,
Motard and Westerberg [65] provide an implicit enumeration technique which
minimises the search space. If some edge, e;, cannot be added to a tear set
without violating the optimality conditions then this edge is rejected and the
next candidate is checked for eligibility. The authors provide an example where
this branch and bound technique works well. However, it is not clear that theirs
is a practical example and so no conclusions can be drawn as to its practical use.
It is clear, however, that complete enumeration would be prohibitively expensive

for all but the smallest of problems.

Cordoba [17] has devised a linear time algorithm which identifies a nonredundant
tear set for a digraph. It is based on Tarjan’s depth first search algorithm [94].
If during the search a back edge from u, the node at the top of the stack, to v,
some node below it, is encountered, then this edge must be the last in a cycle
which is rooted at v. If the edge to be torn in a cycle is selected always to be the
last, then the tear set produced must be nonredundant, although no statement
can be made about its minimality. If a forward edge to some node previously on
the stack is encountered, then no action is taken. No action is necessary because
the only new cycles which can be traced through this edge must be subcycles of
those already found and so, since the last edge in each cycle is torn, they must

- have been broken already.

Chapter 3. Literature Review and Selection of Methods : 120

3.4.5 - Summary

The ad hoc strategies espoused by the pioneers of decomposition strategies were
inefficient in the amount of effort required to identify a solution, and they involved
no conditions on optimality. Sargent and Westerberg [83] provided a better
approach by introducing the concept of graph reduction. By unifying parallel
edges and replacing each circuit of two edges with a single edge, their technique
can reduce the search space for a solution considerably. Christensen and Rudd
[16] augmented this strategy by finding a minimum weight edge set which spans
the cycles in a digraph. A tear edge of minimum weight is chosen from this set
and the digraph is reduced; this process continues until no more cycles remain.
This approach guarantees a local minimisation of the weight of a tear set, but
this does not imply that this is a global minimum. Barkley and Motard [9] also
described a graph reduction technique, but this makes use of a spanning forest of
the signal flowgraph of the original directed graph. It identifies all cycles in the
flowgraph which are of length ! < 2 and tears these accordingly. However, any
cycle which is longer than this is torn in an arbitrary fashion. Hence this cannot
guarantee that the tear set which it produces is of a minimum size. Murthy and
Hussain [66] employed a similar technique on the original digraph, but whilst
their rules are simpler and less costly to implement, so too they are less rigorous

and there is no guarantee of nonredundancy.

Perhaps the most elegant formulation of the tearing problem is as the set covering
or partitioning problem, but this can be difficult to solve. Lee and Rudd [54]
developed a similar approach in which a minimum weight cover is found for
the cycles in a digraph, and a minimum weight tear set is identified using a

combinatorial method. Once again no optimality can be guaranteed because the

Chapter 3. Literature Review and Selection of Methods 121

technique involves an arbitrary tie breaking strategy. The same criticisms can
be made of Forder and Hutchison’s [32] algorithm which is cloéely related to
that of Lee and Rudd. Montagna and Iribarren [63] reported another integer
programming formulation which is based on the cycle structure of the digraph.
The success of their formulation is at the mercy of the solution. method used,
but it is likely that identifying a tear set will always be an expensive task, and

manipulating a problem into the desired form is very difficult.

Motard and Westerberg [65] defined an exclusive tear set to be one which tears
each cycle in a digraph exactly once. They provided an algorithm which identifies
such a tear set if it exists and, if not, one which minimises the maximum number
of times that any cycle is broken. This is a desirable goal, but their technique is
based on a combinatorial method which may be prone to explosion. A much more
efficient approach is the linear time algorithm devised by Cordoba [17]. This is
based on the depth first search method of Tarjan [94] and, whilst it makes no
attempt to produce a tear set of minimal size, it will always identify one which

is nonredundant.

It has been shown that many of the effective techniques available for decomposing
digraphs are inefficient in their exposition, or prone to combinatorial explosion.
The only definite condition on optimality for a tear set is that it should be
nonredundant, but, from a pragmatic point of view, it is desirable to minimise its .
cardinality. Using these criteria it appears that the graph reduction method for
producing a nonredundant tear set of minimum size due to Barkley and Motard

[9] is the best available.

Chapter 3. Literature Review and Selection of Methods 122

3.5 Conclusions

It has been demonstrated that it is difficult to define any measure of optimality
for the selection of an output set for a given problem. Given this, the best method
to be used is that which has the best worst case time complexity; this is Dinic’s
algorithm [20]. No such problem exists for matrix partitioning, however, and the
most efficient algorithm is that due to Tarjan [94]. These algorithms have been
developed for use in the mathematical modelling software, and they are described
in § 4. The provision of optimality criteria for a decomposition strategy is as
troublesome as that for an output set, but it is known that nonredundant tear
sets are likely to be more efficient than those which are redundant. Cognizant of
this it was decided that the best algorithm available for decomposition was that
which identified a nonredundant tear set of minimal size and which did so in a
relatively efficient way. Barkley and Motard’s algorithm [9] best satisfies these

criteria, and its use is described in § 5.

Chapter 4

If we take in our hand any volume; of divinity or school
metaphysics, for instance; let us ask, Does it contain any
abstract reasoning concerning quantity or number? No.
Does it contain any experimental reasoning, concerning
matter of fact and existence? No. Commit it then to the
flames: for it can contain nothing but sophistry and illusion.
David Hume, An Enquiry Concerning Human
Understanding

Matching and ordering Variables and

Equations

4.1 Introduction

The arguments for finding an assignment for an equation set, and also for

partitioning it, were seen in § 2, and methods for achieving these ends were

discussed in § 3. It was decided that, in the modelling software, an assignment

for the equations would be determined by using a modified version of Dinic’s

algorithm [20], and that, following this, these equations would be partitioned

with Tarjan’s depth first search procedure. This order is vindicated in § 4.2,

where so too it is shown how these algorithms can be used to find a solvable

subset of equations from one which is initially overdetermined, and in particular

123

Chapter 4. Matching and ordering Variables and Equations 124

how they can be used to replace a redundant equation in a set; the pertinence of
these results is demonstrated in § 6.7. A proof of the applicability of maximal flow
algorithms to the assignment problem appears in § 4.3 along with a statement of
the improved version of Dinic’s algorithm. We turn our attention to partitioning
in § 4.4, where Tarjan’s algorithm is presented and interpreted within the context
of equation solving. A short summary of the conclusion drawn from the chapter

appears in § 4.5.

Four algorithms are presented in this chapter. Each is stated as a procedure in
pseudocode which is a fictitious computer programming language. Only the main
operations are shown in order to maximise clarity of presentation. Further, code

is shown for only the most important procedﬁres.

4.2 Analysing an Overdetermined Equation Set

4.2.1 The Order of Analysis

Let G(V, E) be the undirected bipartite graph which describes a square equation
set f(z) for which no assignment has been found. It was explained in § 2.4,
that the determination of an output set for f(z) transforms G(V,E) into a
directed bipartite graph D(V, E), and, as is shown in § 2.5, identifying the strong
components of this digraph corresponds to partitioning the equation set into a

computational sequence. Theorem 2.2 states that the strong components of this

Chapter 4. Matching and ordering Variables and Equations 125

digraph are independent of the assignment used to form it from G(V, E); thus the
structure which results from partitioning an equation set once an output set has
been determined is independent of that output set. Partitioning an equation set
before an assignment has been found identifies the components of G(V, E), which
may not be the same as the strong components of D(V, E) Hence, if partitioning
precedes assignment, a further analysis of the newly directed components of
G(V, E) may be necessary in order to identify its finest grained structure. For

this reason, it is better to assign and then partition.

4.2.2 Finding the Minimal Equation Subsets

Any physical problem, II, has associated with it a set of equations, ¥, which
describe it. These equations m#y be mass and thermal balances, physical and
chemical equilibrium relationships, equations of state, etc. In general there will
be more of these equations than are required in order to model II; some of them
may conflict and others may be extraneous. Let the set of all of the variables
which appear in these équations be ®. Then the equation set ¥(®) may be
represented by the undirected bipartite graph G'(V’, E'). We will show here how
any instance of a generic problem is modelled by some equation set f(z) such
that f C ¥ and z C @, and that G(V, E), the undirected bipartite graph which
describes f(z), is a subgraph of G’. We use this result to show how f(z) can
be generated from a general description of the family of problems to which it

belongs.

In any instance, II, of a generic problem II, some of the variables in ® will be

Chapter 4. Matching and ordering Variables and Equations 126

known. These may be fundamental or. observed constants, or they may be the
fixed variables. For instance, if a catalytic reactor is to be modelled then for this
problem, the universal gas constant is a fundamental constant, the diffusivity of
the bulk gas may be an observed constant, and the yield of one of the products
may be a fixed variable. If the set of these knowns, K, is removed from @ in
order to leave the set ©, the unknowns for the problem, then the equation set

which describes it is reduced to ¥(0©).

In general, we are interested only in the values of I' C ©, the set of design
variables. Staying with our reactor problem, it may be that the bulk gas
temperature is a member of I', but that the temperature of the surface of the
~ catalyst is not. In order to calculate the values of the members of I', we need
to identify a subset of ¥ which satisfies the necessary conditions for a unique
solution which were given in § 2.3. In general, it will not be possible to find
a subset of these equations which involve only the members of I'. Rather,
a set of additional variables, A will appear in the equation subset too. For
instance, in our reactor problem, the specific heat capacity of each gas may have
to be calculated in order to determine the reaction temperature. The task of
formulating a mathematical model is then the process of identifying a solvable
subset of ¥ in which only members of " and A appear, and such that it embodies

no significantly contradictory assumptions.

The problem of contradictory assumptions was addressed briefly in § 1 and it is
not considered further here. In order to see how the equation subset is chosen
we return to considering G', the graph of ¥(®). Each node in this graph which
represents a constant or a fixed variable in @ can be deleted from it, along with

- each arc of which it is an endpoint, since no equation is required to be solved

Chapter 4. Matching and ordering Variables and Equations 127

for it. Further, we assume that contradictory equations have been removed from
U(®) so that, e.g., only one equation of state remains within it. This is a non-
trivial task which requires qualitative reasoning. Following this process we are
left with a bipartite, undirected graph G in which the nodes, V, are partitioned
into V,, the ‘variable’ nodes, and V., the ‘equation nodes’. If the problem has a
solution, then |V,| < |V4|, and it must be possible to devise a maximum matching,
M, such that each node which corresponds to some » € I is an endpoint of one

of its edges.

If such a matching is found then G can be transformed into the directed graph
D in the way described on page 43. We wish to find D(V, E), a subgraph of D

which corresponds to f(z), and so we can place the following conditions on it:

1. It must contain an equal number of nodes from V, and V,.

2. Each subset of x ‘equation’ vertices in D(V, E) must be adjacent to exactly

k of the ‘variable’ vertices.

3. For each edge (v,w) in D such that w € V, and w is in D(V,E), v is also in
D(V, E).

These conditions ensure that the strong components of D(V, E) represent solvable
equation subsets. This follows from theorem 2.1 and the fact that no variable
which is not represented in D(V,E) can influence the solution of any of the
equations which are. There may be many subgraphs of D which satisfy these
conditions, but as a result of the third, each strong component of D(V, E) must
be a strong component of D, and so we can search for D(V, E) by examining the

strong components of the larger digraph. We seek a subgraph of D in which each

Chapter 4. Matching and ordering Variables and Equations 128

strong component, Cj, contains at least one node which corresponds to a design
variable, or there is a path from C; to one which does. This is because there must
be a path from each node, v in D(V, E), which represents a member of A, to at
least one vertex which corresponds to a variable in T', i.e. the value of at least
one design variable is dependent on ». However, No such path may exist for any
node belonging to a strong component of D which fails to satisfy the connection

condition.

It should be noted that, given a maximum matching M in G, D(V, E) is unique.
However, if the matching is not complete, the number and membership of the
strong components of D(V, E) is dependent upon M. As an example of this,

copsidér the undirected bipartite graph shown in figure 4.1. The digraphs which

Figure 4.1: An Undirected Bipartite Graph

correspond to two maximum matchings in this graph are shown in figure 4.2. In
the first of these there are two strong components, whereas in the second there are
three. This observation shows how the existence of a redundant equation, E,, in
a set can be overcome. If the equation set f(z) is formed as described above, and
if there is one or more equation which is not involved in a maximum matching,
then if the node which represents E, is removed from G(V, E), along with all of

the arcs incident upon it, then a new matching can be found for G(V, E), and

Chapter 4. Matching and ordering Variables and Equations 129

(a)

Figure 4.2: Two Directed Versions of figure 4.1

thus a new equation set f(z).

Thus we have seen that given a general, overdetermined equation set which is a
generic description of a problem, II, a square subset of it can be identified which
" can be used to solve a particular instance of II. In the next section we will discuss
how an assignment for the larger equation set can be established, and in § 4.4 we

will see how a depth first search can be used to find the required equation subset.

Chapter 4. Matching and ordering Variables and Equations » 130

4.3 Finding an Output Set

Recalling the definition of a zero-one network which appears in § 3.2, we use the
following two lemmas to show that the assignment problem may be treated as
an instance of a maximal flow problem. First we require the well known maz.
flow min. cut theorem, which states that the maximum flow through a network
is equivalent to the capacity of its minimum cut. A cut for a graph is a set of
edges whose removal disconnects it; the set of minimum capacity which satisfies
this definition is the minimum cut. Any minimal cardinality edge set, Cpin,
which disconnects a bipartite graph must be a maximum matching for it. This
. is because each cut for the graph is.a matching, but there can be no edge, ¢, in
the graph which connects two nodes in different partitions such that neither is
the endpoint of an edge in the cut and and ey € Cpnin. Further, no subset of Cp;n

disconnects the graph and hence no subset of it can be a maximum matching.

Having shown that assignment in an equation set can be formulated a flow
maximisation problem, we describe the algorithm used in the modelling software.
It is a modification of an algorithm due to Dinic [20], and .it appears as
algorithm 4.1. Here layer(L, Paths) constructs a set of augmenting paths through
the network. The nodes at the start of these paths are removed from the
adjacency set for the sink by altersinkadj(L, Paths) and the matching is updated
by augment(Paths).

At each stage in the algorithm a network, A, is constructed from G(V, E) and the
current, possibly submaximal, matching M for it. As described above, a source

node, s, and a sink node, ¢ are added to G(V, E). A diedge is added from s to

Chapter 4. Matching and ordering Variables and Equations 131

Algorithm 4.1 The Maximal Flow Algorithm

Procedure max flow
L =Adj(s)

while (layer(L, Paths) == 1)
alter sink adj(L, Paths)
augment(Paths)

end

end

o

each v € V, such that v is not an endpoint of any edge in M; likewise an edge
is added from each w € V, which is not a terminus of an edge in the matching
to t. If the maximal flow through N;_; was F;_;, then F; may be greater than
this only if flow is channeled through some of these edges. Each useful edge, e, in
N, i.e. one for which the potential flow is lunity, is assumed to direct flow in the
direction from s to ¢. The network is then said to be layered, which means that
the nodes in the j** layer, L;, are each reachable from s in j edges, i.e. there is

a path of j useful diedges from s to these vertices.

For each edge (v,w) in G(V, E) such that v is a variable node and w-is an equation
node, then if (v,w) is in M, so too it must be a directed edge in N;. If it is not
in the current matching then either v € Ly and w € Lg4,, or this edge is not in
the network. This follows from the fact that w is reachable from s by a shorter

path than any which passes through v.

The zeroth layer in the i** network is Lo = {s}, and the edges from this layer are

Eo = {(s,v)|v € V,,(v,w) € M, (w,v) € M}. In M, all edges are oriented from

Chapter 4. Matching and ordering Variables and Equations 132

s to t, and thus flow is in this direction alone. This is not true for Aj,2 > 1. In this
case, L3, the second layer, is defined as L; = {v|(w,v) € E,} and, immediately
following its construction, each vertex, w, in it must have exactly two edges
incident upon it with unit flow. This violates the zero-one condition on the flow
through each node, and so one of these flows must be reversed. If the flow through
the ‘new’ edge, e; = (11,w), is pushed back, then it can never reach the sink
because each node adjacent to 1, must have flow channeled through it already.
If instead flow is returned along the ‘old’ edge, e; = (v2,w), then it may make its
way to the sink since no such condition exists on the adjacency set of v;. Thus we
define the edges in the second layer to be E; = {(v,{)|v € L;,(v,{) € E,{ € L };

n.b. each edge in E; must have been an edge of E; in the previous network.

The definitions of L, and E,, generalised for each layer other than Lo and FE,,
are L = {v|(w,v) € Ej—y and B; = {(()lv € Lj, () € E,C & Lk < 5.
The condition k < j is necessary in order to ensure that any augmenting paths
found in the network are of minimal length. The process of identifying new layers

continues until one of two conditions is met.

If some node w € L,, where r is an odd number, is found such that it is free,
i.e. flow has never reached this node previously, then the only edge from this
vertex must be directed onto the sink, ¢; a set of augmenting paths has been
found. The last layer is identified as the set of all free vertices in L,, and the
layering stops. Note that each augmenting path is of length [= r + 1, and that,
since the search was breadth first, they must be the shortest such paths in MNV;.
The other condition is that the edge set for the k** layer is empty, i.e. there are
no useful edges from the nodes in L. In this case no augmenting paths exist in

the network, and so the flow must be at a maximum for the original graph; the

Chapter 4. Matching and ordering Variables and Equations 133

search is halted.

In the original algorithm, once the layering has identified a set of free vertices,
the next step is a depth first search through these layers for the augmenting
paths, starting from each node v € L, in turn. In our formulation, however, a
set of these paths is constructed on backtracking. This requires the use of the
set parents(v), for each node in the network. This is defined to be the set of
nodes, w, such that v € Adj(w) in the current network, and they all lie in the

same layer, L, as (, the node which led to the addition of v to layer L,;.

The layering is identified by Layer(Lo, Po), which is shown as algorithm 4.2. Here
Ly is the set of nodes in the current layer, and the adjacency set for each v € Lg

is inspected.

Algorithm 4.2 The Layering Algorithm

Procedure Layer(L,, P)

while (pop(v, Ly) == 1)
blocked(v) = 1
copy(Temp, Adj(v))
while (pop(w, Temp) == 1)
if(w ==1t) then
rest paths(Lo, Po)
push(v, P)
return(1)
else
if (blocked(w) < 1) then
if (blocked(w) == 0) then
push(w, L)
blocked(w) = -1
else push(v, parents(w))
end

Chapter 4. Matching and ordering Variables and Equations 134

end
end
end
end

success = Layer(L,, P,)

if (success == 1) then
while (pop(Path, P,) == 1)
phead = head(Path)
while (pop(u, parents(phead)) == 1)
if (blocked(u) # 0) then
push(u, Path)
push(Path, P,)
blocked(u) = 0
pop all(parents(phead))
end
end
end
end

return(success)

end

If the sink, ¢, is found in one of these adjacency sets, then the set of nodes
Po = {v|v € Lo,t € Adj(v)} is identified by the procedure rest paths(Lo, PBy), and
the search backtracks. Otherwise, the next layer, L,, is constructed as described
above, and Layer, is called recursively. dOn return, success = 0 if flow is a
maximum for the original graph, G(V, E); otherwise it is unity. In the latter case
P, is the set of potentially augmenting paths of minimum length in the current
network. Each of these paths, Path, is popped in turn, and its head, phead,
identified. The set parents(phead) is examined to see if it contains some node, u,

such that no path has been extended through it in the current network. If such a

Chapter 4. Matching and ordering Variables and Equations 135

node is found then its parents set is cleared, Path is extended through this node
and the the path is added to Py, the set of potentially augmenting paths which
pass through nodes in Vp; should no such node be identified then the path is
discarded. This modification has the same worst case time complexity as Dinic’s

original formulation, but it ought to be more efficient on average.

When the layering procedure has unwound, alter sink adj(L, Paths) removes
the vertex at the head of each augmenting path from L, the set of free variable
nodes, and augment(Paths) changes the matching. This process continues until
either L is empty or there are no more augmenting paths, i.e. the matching is

maximum.

The procedure for augmenting the matching is shown in algorithm 4.3.

Algorithm 4.3 The Matching Augmentation Algorithm

Procedure augment(Paths)

while (pop(P, Paths) == 1)
while (pop pair(A, B, P) == 1)
if (equation(A) # 1) then

match(A) = B
remove(B, Adj(A))
end
push(A, Adj(B))
push(B, P)
end
end
end
a

At first sight this seems to be unnecessarily cumbersome, but this formulation was

Chapter 4. Matching and ordering Variables and Equations | 136

necessitated by its implementation in Prolog. This is an object oriented language
in which it is not possible to index the elements of a list directly. Although a more
elegant formulation of this procedure_ is possible and expressible in Prolog, e.g.
using linked lists of structures, their use is less efficient than algorithm 4.3 because
Prolog is interpreted rather than compiled, and manipulating its database can
be costly. In our implementation, each consecutive pair of nodes on a path is
examined. If the ﬁfst of these, A, is a variable node, then B is matched with it
and, since the edge (B, A) must appear in the next network, B is removed from
Adj(A). In either case A must be adjacent to B in the next network since either
(A, B) is a member of the new matching, or (B, A) is a member of the current

one.

As an example of the algorithm in use, consider the initial network for the
ideal binary flash equations from appendii B, which is shown in figure 4.3.
If the first phase of the matching algorithm were to establish the matching
{(1,2), (22,3),(V,4),(6,y2), (P, 7), (P1,9), (P,10)}, then the second network
would bé that shown in figure 4.4.

Let each pass through the while loop of algorithm 4.1 be called a phase; this
term was defined originally by Even [30]. The maximum number of matchings
possible in G'(V', E’) is v = min(|V.'|,|V,’]) < |V'|/2, and at least one of these
must be found in each phase. Thus there may be at most 4 phases. Further,
each edge in E’ is examined at most twice in Layer(Lo, P), once