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ABSTRACT 

Software has been developed which constructs mathematical models and 
simulations of chemical engineering problems. It uses a generic description of 
each problem domain, e.g. a flash problem consists of mass and heat balances, 
vapour-liquid equilibrium relationships, etc, and a set of global constants, such 
as Antoine coefficients. The fixed variables must be supplied for each instance of 
the problem. 

The first step in producing a simulation is the assignment of an equation to 
be solved for each variable in the problem; these may be design variables or 
others whose values are required. This assignment is found by the use of a flow 
maximisation technique. Next the equations are partitioned into their minimal 
solvable subsets by a depth first search algorithm. Following partitioning, the 
smallest set of variables such that, knowing their values, the rest can be calculated 
is identified, a guess is made for their starting values, and a computer program is 
written to solve the equations. This program uses the Newton Raphson method 
with analytical derivatives to solve simultaneous equation sets; the values of 
these derivatives are found without explicit differentiation using an extension of 
a method due to Ponton [75] for torn systems. Finally the results of computation 
are reported to the user. 

Critërea are presented for the comparison of models and simulations, and 
qualitative definitions of merit are presented. The structural analysis of equation 
sets is discussed in detail, and common methods are described and contrasted. 
Throughout the thesis these topics are treated graph theoretically since many of 
the concepts considered are visualised most easily in this way. In particular one 
set of theorems appears which relate graphs, digraphs and their properties to the 
structure of equation sets, another shows how a flow maximisation technique can 
be used to solve the assignment problem, and yet another proves how and why 
the decomposition technique chosen works. Whilst the first two sets of results are 
well known, no proof has been located of them in the form in which they appear. 
No statement or proof for the last set of theorems has been found. 

Finally some improvements to the software are proposed. These are concerned 
both with its structural detail, and with its ability to reason. 
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Rules and models destroy genius and art. 
William Hazlitt, On Taste 

Chapter 1 

The Requirements of a Modelling System 

1.1 Introduction 

In general, the computation of the answer to a numerical problem is a two stage 

process: firstly a mathematical model is formed, and then it is solved. Although 

there are many techniques available for the latter task, there is a dearth of theory 

which deals with the former. The production of a mathematical model can be 

troublesome, and both skill and experience may be necessary to construct one. 

Perhaps the first text to address itself to this impediment was Polya's [74] classic 

book, but this was a prescription for solving general mathematical problems 

rather than the production of models. This problem has been recognised on 

a wider scale [7] and it has prompted Aris [6] to publish a textbook on the 

fundamentals of mathematical modelling. Although this text addresses itself to a 

wider audience, it draws all of its substantial examples from the field of chemical 

engineering. 

1 
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This thesis is more specific than Aris's text in that it is an investigation of some 

of the more important principles and practifrés of the mathematical modelling 

of chemical engineering problems, rather than models in general. The domain 

of application is even more restricted than this, because we will deal only with 

modelling single plant items and the physical and thermal changes which take 

place within them, not in the simulation of entire chemical plants; the problems 

associated with this larger scale modelling have been addressed by Hutton [47]. 

We will see how the formulation and interpretation of mathematical models can 

be decomposed into several areas - ranging from the selection of equations of the 

appropriate type to checking the results supplied by a computer program - and 

an account will appear of the problems associated with each of these tasks, and 

of the attempts made to address them. In § 1.2 the terms mathematical model 

and simulation are defined and contrasted, and a discussion of how examples 

of these may be compared appears in § 1.3.1. A modeller's toolkit is described 

in § 1.5. This must allow for the formulation of a model; its development to a 

simulation; the realisation of this simulation as a computational program; and a 

check and report of its results. Finally, § 1.5 indicates which of the problems in 

the preceding section have been addressed, and where their solutions appear. 

1.2 Fundamental Aspects of Mathematical Modelling 

This section details the elements of a good mathematical model, and the 

simulations which may be derived from it. Before proceeding with this discussion 

it is necessary to define these terms. 
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The journals of mathematics and the philosophy of science are littered with 

definitions of the term "model" [52], [5]. The most useful definition for 

our purposes is provided by Smith [87], who regards a model as a generic 

mathematical description of a problem. The adaptation of a model to describe 

a specific problem he terms a simulation. Thus one might model an exothermic 

reactor by writing down the differential and algebraic equations which describe it 

and simulate it by specifying what the reactants are to be, their inlet temperature 

and the fractional conversion of the key component, etc.. The solution to the 

problem is found by manipulating the simulation in such a way that the values of 

its dependent variables are determined. Throughout this thesis the term "model" 

is used in Smith's sense but the term "simulation" is extended slightly to cover 

the order in which information is to be used. Thus two models of the same 

problem differ if they use different sets of mathematical equations and different 

simulations of the same model can be produced by rearranging the information 

or the values of some of the constants used within it. 

1.3 The Comparison of Models and Simulations 

1.3.1 What is a Good Model? 

What is it that makes one formulation of a problem superior to another? The 

contention that the accuracy and superiority of models are synonymous is vitiated 

by considering a model of a reciprocating compressor. The most accurate 
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model of this system which can be imagined involves a description of how the 

molecules within the piston react with those on the cylinder walls and those 

within the entrained fluid. A large number of algebraic, differential and statistical 

expressions would be required to represent the system, and comprehension of 

such a model is unlikely to be easy. However, it is improbable that an engineer 

would require such a detailed description of the problem; it is fax more likely that 

he would be interested only in the macroscopic properties of the system, and 

so he may well be content to model the compressor by using some relatively 

straightforward thermodynamic relationships and a simplified version of the 

Navier Stokes equations. 

The important point to grasp is that the more accurate model contains too much 

information. The provision of this extra information is an inefficient use of the 

modeller's time, a barrier to a clear appreciation of the more salient aspects of 

the model, and an impedimentts(so1ution. This is a patho logical case, but it 

demonstrates the possibility of excessive rigour. This possibility exists, even for 

less extreme examples, when the data to be used are known to be inaccurate. If 

this is so then there may be little point in producing a finely detailed model since 

the results which it will yield will be of questionable value. The obverse of this 

is that a model which uses the ideal gas law may be insufficiently accurate for 

the engineer and thus one which uses, say, the Peng-Robinson equation [71] may 

be preferred. The obvious, but none the less vital, point to be stressed is that a 

'good' model is one which uses only as much information as is necessary. Thus it 

is necessary to define one's level of interest before writing a mathematical model. 

This argument demonstrates the difficulty of defining optimality in the context 

of mathematical modelling. It is tempting to define optimality in terms of the 
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amount of effort required to solve the problem - the faster the solution, the 

better the formulation, but this is unsuccessful. Not only does this definition 

fail to account for the appropriate accuracy of the model, but so too it neglects 

the amount of effort required to set the model up. It is impossible to provide 

a precise definition of optimality which encompasses all three of these points 

because it is difficult to define a meaningful estimate of the effort required to 

produce a mathematical model, and it is difficult to define a general measure of 

accuracy. 

Despite these difficulties, some definition of optimality is required, albeit a fuzzy 

one, in order to allow at least a qualitative discussion of the relative merits of 

different models. Thus we will define a good formulation of a problem to be 

one which requires minimal overall effort to set up and solve whilst providing a 

suitably correct answer with sufficient clarity for the modeller to understand it. 

It may be possible to discriminate between models which satisfy the above 

conditions. Consider, for example, a distillation column which is used to separate 

a feed of N components into S different streams. In order to avoid redundancy, 

any model which describes this system may contain at most N + S + 1 of the 

possible N + S +2 mass balance equations. Suppose that during the formulation 

of the model N + S of the mass balance equations have been used and that one 

of the remaining two is required to complete the description of the column. If, 

for instance, the two remaining mass balance equations were 

i=N 

Ezi 
	

(1.1) 

i=s 
WjX = FZk 	 (1.2) 

j=1 

where Zk is the mole fraction of the kt" component in the feed stream F, W, 



Chapter 1. The Requirements of a Modelling System 	 6 

is the j A  product stream and X,k  is the mole fraction of the k 1component in 

the j1h  product stream', then either equation could be used without prejudice to 

the final overall knowledge contained within the model. This is so because any 

N + S + 1 of the mass balance equations may be used to derive the other. 

Although the two models contain the same information, implicitly if not explicitly, 

they are different because of the equations used. It may be that neither model 

appears to be any better or worse than the other but important differences in their 

structure may come to light when the models are extended to become simulations. 

For instance, equation 1.1 would, in general, be easier to rearrange to give a new 

subject than would equation 1.2. Further, the first equation is linear whereas the 

second is likely to contain a number of bilinear 2  and, in most of its rearranged 

forms, non-linear terms; since, generally, linear equations are easier to solve than 

non-linear equations it may well be that a simulation which uses equation 1.1 is 

superior to that which uses equation 1.2. If the choice for the last mass balance 

equation had been between equation 1.1 and the mole fraction balance on the jth 

stream 
i=N 

Xj i  = 1 
	

(1.3) 

then it would not be possible to select the better equation cannot by reference 

to equation form alone. However, the general heuristic is that one ought to use 

linear equations in preference to others wherever possible. 

Lastly, one may compare simulations by the order in which they use information. 

For example, if the equations are to be solved by a Gauss-Seidel iteration, then 

the order in which variables are updated may determine the course of the solution. 

In. 6. 'k' in equation 1.2 is used for generality. It would have to have been set to some 
particular value at this point. 

2 a bilinear term is a linear expression such as a * ,8 where both a and /3 are variables 
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Further, if some of the variables are to be torn so that at each pass the values of 

some of the variables in the problem are determined by the solution of a 'kernel' 

problem, and the others found by direct substitution, different tearing strategies 

would produce different simulations. The solutions to these formulations would 

proceed in different ways and so they may exhibit distinct rates and stability of 

convergence. 

It has been demonstrated that it is very difficult to provide precise, practical 

rules for discriminating between models and simulations, but that they may be 

contrasted according to inexact criteria. One can postulate the synthesis of an 

optimal simulation by manipulating these criteria in such a way that a score 

is ascribed to each of the above choices, a good choice being assigned a high 

score, and choosing the simulation which scores most highly. This is impractical, 

however, because even if a meaningful score could be given to each choice, the 

decision tree for even a small problem is likely to be very large. Hence, in practise, 

only a qualitative a priori comparison of models and simulations is possible. 

1.4 The Derivation of a Mathematical Model 

In the last section we discussed the nature of a good model. In this section we 

turn our attention to its production. This problem can be decomposed into four 

tasks, namely 

1. Select the appropriate equation set. 
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Manipulate it into the desired form. 

Develop a computational procedure for its solution 3 . 

Solve the problem, check the results and report them. 

A further stage in the process which may be a practical necessity, or at least 

advisable, is the production of an approximation to the required model. We will 

deal with each of these tasks in turn. 

1.4.1 Choosing the Appropriate Equation Set 

The natural inclination of the engineer on encountering a problem is to make a 

diagram to represent it, and to jot down some of the variables associated with 

it. The next thing that he does is write down some of the the relationships 

which exist between these variables, e.g. heat and mass balances, thermodynamic 

relationships, fluid flow equations, etc. There may be little choice involved in the 

selection of some of these equations, e.g. the balance equations, but selecting 

the others may well involve skill and experience; for example, the choice of an 

equation of state and of physical property equations is a complicated enough task 

for expert systems to have been written to tackle it [8]. Having described the 

system in such general terms, the engineer must decide which of these equations 

are to be used in the model. Some expansion and contraction of the equation set 

will be necessary - for instance too many mass balance equations may have been 

3 n. b. in general this is not necessarily a computer program, but we restrict it to this definition 
for the purposes of our discussion. 
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provided and, possibly, some equations will be required whose necessity was not 

evident originally. 

At this stage it is imperative that one be cognizant of the necessity for 

completeness and, as fax as possible, consistency, and that one avoids the perils 

of redundancy. A complete set of equations is one in which there is a one to one 

correspondence between the equations and the variables which appear in them; 

the reasons for this condition are given in § 2.3, and methods for checking it are 

described in § 3.2. The term consistency refers to the assumptions which have 

been made about the system under consideration. In general, these should not 

conflict sharply if meaningful results are to be derived from the model, but this 

is not always the case. 

Redundancy, which was touched on earlier when it was noted that an engineer 

may provide too many mass balance equations in a model, is a much harder 
0 

problem with which tp deal. Any equation set to be solved must be linearly and 

non-linearly independent, i.e. no equation may be expressed as either a linear 

or non-linear combination of some or all of the other equations. The reason for 

this is that if the value of any variable is to be determined it must be done by 

using some statement which has been made about the problem. For instance it 

may be that the temperature rise experienced by a fluid flowing through a heat 

exchanger can be calculated by using the equation 

Q=UALT 
	

(1.4) 

If there are N such variables whose values are to be determined, then N such 

expressions must be provided. Suppose that during the compilation of an 

equation set E, ii equations have been used, and that a candidate for the next 
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equation to be included can be expressed as a combination of ic of the members of 

E. The inclusion of this equation provides no new information about the problem 

and so only ii of the ii +1 members of V, the set of variables which corresponds to 

E, may be solved for. In this case the (v + 1)8t equation is said to be redundant 

and another equation must be selected in its place. Spotting that an equation 

set exhibits redundancy can be hard; determining the set of candidates for the 

redundant equation is extremely difficult. 

1.4.2 Equation Manipulation 

Once it has been established that a set of equations gives a complete, consistent 

and non-redundant description of a problem the next problem is to manipulate 

it into a simulation. Having chosen the values of the constants in the problem, 

there are four ways in which this can be done. 

The form of the equations can be changed, e.g. logs can be taken of both 

sides of an equation which involves exponential terms (this is a standard 

trick in reaction equilibrium problems). 

The equations can be rearranged into some form, e.g. f(x) - b = 0 or 

x=f(x). 

The equations may be reordered, and/or torn. 

The equations can be differentiated analytically. This is necessary when 

a first or second order solution method is used since, in these cases, the 

Jacobian and/or the Hessian of the system is required. 
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For convenience, altering the form of an equation introduces at least one new 

variable and one new equation to the problem; e.g. taking the logs of both sides 

of the reaction equilibrium equation for a single reaction involving ideal gases 

i=N 

K 
= 	

P18 	 (1.5) 

produces the two equations 
i=N 

S=v1logP 	 (1.6) 

	

K=expS 	 (1.7) 

This task involves a few simple rules, H -' E, a -+ blog a, etc, which can wielded 

relatively simply. Differentiating equations is an order of magnitude greater in 

difficulty, principally because there are many more rules involved; chain ruling is 

easy but flattening differentiated expressions can be intricate and troublesome. 

Harder yet is the rearrangement of equations to give them a new subject. It is 

easy to cope with finding an explicit expression for x from 

	

= cos (/) 
	

(1.8) 

but it is harder to derive one from 

and impossible to manipulate 

2; 

1—s 

= x + log x 

(1.9) 

(1.10) 

into the desired form. There are a few popular symbolic algebra packages 

available [77], [76], but although they can perform simple tasks very well, it 

is my experience with Macsyma that it is hard to use, easily confused and bad 

at recovering from a computational disaster. 
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Reordering equations is a simple task but, as we will see in § 3.2, finding 

the rearrangement which satisfies some criteria may require considerable effort. 

Firstly a decision must be taken as to whether the equations are to be partitioned 

into smaller subsets, and if they are to be decomposed or not. Some of the 

the theoretical basis required to answer these questions appears in § 2.5 and 

§ 2.6. Secondly the equations may be solved by successive substitution, by a 

method which requires function values, e.g. the secant method, or one which 

uses derivatives too'. The best method to use is a function of the shape of the 

equations and the starting point for the solution, but even given knowledge of 

these data, it is difficult to discern the best strategy. When a choice of solution 

method has been made some questions remain; e.g., if a derivative method is to 

be used how are the equations to be differentiated?, which decomposition strategy 

is best?, do we have to stay in the feasible region at all times? The first of these 

questions is discussed in § 6.3, and the second is considered both in § 2.6 and 

§ 3.4. 

1.4.3 Program Writing 

Having decided on a solution strategy, e.g. that the problem is to be decomposed 

and that the kernel problem is to be solved using the Newton Raphson 

method, and having rearranged the equations as necessary, the next stage in the 

formulation of the simulation is to produce a computer program which will carry 

out the calculations. This is an algorithmic task. The main computational block 

must be written along with any subroutines that are necessary, the file compiled 

4 Many of these methods are described in appendix D 
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and linked with the system mathematics library and the whole program executed. 

This must be done with care. For example, two points which must be borne in 

mind are: 

In the early stages of the formulation we may be dealing with vectors and 

matrices by referring to their members in general terms. For example, if we 

were modelling a single reaction taking place in an ideal vapour phase, we 

might choose to represent the N vapour phase mole fractions by 

Yi 	 fli°+XlIi 

- E(ni0  + xvi ) 

where nio is the number of moles of the i1h  component originally present 

and x is the extent of reaction. If the values of yi are to be calculated 

simultaneously, a loop must be provided in the program; this requires that 

a new variable be invented for use as a count variable. This count variable 

must be distinct both from that which is used to perform the summation 

in the denominator of equation 1.11, and any other variables, which control 

loops within which that for y1  is nested. Handling matrices requires a simple 

extension of the rules for handling vectors. 

Attention must be paid to the idiosyncrasies of the language in which the 

program is to be written. If it is Fortran, then one must take care not 

to violate the restrictions concerning variable names which are inherent in 

that language; integers must be given names which start with a letter in 

the range I to N inclusive; variables of all other types must be given names 

which begin with a letter otwith this range. When one is writing in C one 

must recall that the language is case sensitive. 
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Generating a computer program automatically is a simple algorithmic task, but 

it may require a great deal of effort if the equations are complicated, and if a 

sophisticated language is used. This point is discussed in greater detail in § 6.7. 

1.4.4 Finding, Checking and Reporting Results 

It is unwise to believe that just because we have translated the mathematical 

description of a problem into a language like Fortran that compiling and running 

the resultant program will provide a correct answer; indeed it is naJve to assume 

even that it will provide an answer. It is important to be able to identify 

the mathematical causes of failure, should it occur, such as divergence from a 

solution or convergence to one which is physically infeasible where, for instance, 

an attempt may be made to find the logarithm of a negative number. Even when 

a program runs successfully the answer which it provides may be incorrect; there 

is no guarantee that an iteration will converge and, even if it does there is no 

guarantee that the solution will lie in the feasible region. Thus the numbers 

provided by a program must be checked to make sure that values lie within their 

logical bounds, e.g. temperatures are positive and mole fractions sum to one. 

1.4.5 Approximation 

In § 1.3.1 we touched on the need to provide a description of a problem at an 

appropriate level, the argument being that there is only so much of interest 
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within it. In this section we expand on the concept of finite description in 

order to establish the desirability and, in some cases, necessity of providing an 

approximate model of a problem. 

The desirability of approximation is shown quite clearly by considering the mass 

balance over a plug flow reactor in which benzene is being hydrogenated to 

cyclohexane. The full mass balance equation is [21] 

ax 	 R 

	

+ (Vu)x + 	= Dt (V 2x) 	 (1.12) Co 

where x is the fractional conversion of benzene, u is the gas velocity, R is the 

reaction rate, Co  is the initial concentration of benzene and D is the effective 

diffusivity of the benzene. Solving this partial differential equation would be 

both difficult and expensive. If, however, we assume that the reactor is running 

at a steady state, and that the reactants and products are well mixed at each 

point along its length, the reactor can be modelled approximately by 

(Vtu)x + B = D, 
02x 

(1.13) 

which is much easier to solve. If we go one step further and assume that the 

radial and angular variation of the velocity is small (remember that it is a packed 

bed) we can reduce the equation to 

t9u 	R 	02x 
(1.14) 

	

49Z - CO 	OZ2 

which is even easier to solve. Equation 1.14 might be used either to replace 1.12 

altogether or to give an initial solution to the problem which can then be used 

as the starting point to find the solution to the more complicated equation. 

This may be an important technique when the equations to be solved are very 

non-linear. Consider, for instance, a model of an oil reservoir. Very detailed 
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vapour liquid equilibria calculations are required for this and so multi-termed 

equations of state must be used. Converging these from an arbitrary starting 

point may be extremely difficult, or even impossible. In this case the solution to 

a linear, or less non-linear, model may be necessary in order to provide a good 

starting point for the less tractable equation set. 

1.5 A Modeller's Toolkit 

Having discussed the definition of a good model and the tasks which are necessary 

to form it, we are able now to describe the tools which must be present in 

a mathematical modelling package. Since, in general, the equations used in a 

mathematical model are not unique, the software must be able to discriminate 

between alternatives in such a way that it produces a complete, non-redundant 

equation set which describes the system being modelled without any significantly 

conflicting assumptions. Having constructed such a set, it should be able to order 

it and to parse and rearrange its members into any desired form. So too it should 

have the ability to differentiate the equations, and identify a tear set from the 

variables if necessary. Lastly it should contain program writing and execution 

facilities, and an interpreter for checking and reporting the results. 

A prototypical mathematical modelling system has been developed which includes 

some of the above features. No attempt has been made to provide an ability for 

qualitative reasoning, i.e. to compare formulations or to check solutions, and so 

only a single strategy is followed. This is described fully in § 6.7, but a brief 

summary of its components, and where they are dealt with in this thesis, is given 
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here. 

Firstly a general set of equations is collated, along with a list of the fundamental 

and specific constants for the problem. These equations are stored in Reverse 

Polish Notation, and this is described in § 6.7. Next a complete subset of 

these equations is selected which will be used for the model, and a one to one 

correspondence between them and the variables in the problem is developed. An 

explanation of this process appears in § 4, and so too does a description of the way 

in which this equation set is partitioned into a sequence of smaller sets. In the 

next stage of the formulation, these sets are decomposed; this is described in § 5. 

Finally a C program is written which solves these equations by using a Newton 

Raphson method to accelerate the convergence of the tear variables. A novel 
*0 

data management technique is usedAfind  the numerical values of the analytical 

derivatives of the tear equations, and this is described in § 6. 

In § 2 the rudiments of graph theory are described and an attempt is made to 

define some conditions on an equation set for it to have a unique solution. So too 

in that chapter the need for the selection of an output set is explained. Further, 

a graph theoretical description of matrix partitioning appears. This is used to 

show that the minimal, solvable subsets of an equation set are independent of 

the output set selected. Lastly, the tearing of equation sets is discussed. In 

particular some definitions of optimality are examined and the effect of tearing 

on the efficiency of some numerical techniques is considered. 

Some of the practical techniques which have been used to examine the structural 

phenomena described in § 2 are reviewed in § 3. First techniques for choosing 

an output set are considered and then our attention is focused on partitioning 
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matrices in order to find their lower triangular form. This work is extended to 

irreducible matrices in order to characterise fill-in in symmetric and asymmetric 

matrices. Finally decomposition strategies and algorithms are discussed. One 

method of each form of analysis - output set selection, partitioning and tearing 

- was selected for use in the modelling software. Their choices are vindicated in 

this chapter. 

In § 4 we justify the decision to find an output set for a problem and then to 

partition the equations. Next the reduction of a general, possibly inconsistent 

model to a consistent and specific form is considered. In this section an 

observation is made about how redundancy in equation sets can be overcome. 

This is followed by a proof that a maximum flow technique can be used to find 

the output set and a statement and discussion of Dinic's maximal flow algorithm 

[20]. The final point dealt with in this chapter is the ordering of the equations 

so that they form minimal, solvable subsets. The depth first search algorithm of 
qq 

Tarjan [] is presented and analysed. 

The search for a minimum cardinality tear set is considered in § 5. First it is 

shown that a minimal cardinality tear set for a signal flowgraph is also one for 

the bipartite digraph from which it was derived. Next we show that a search 

for that tear set can be reduced to the roots of a spanning forest of the signal 

flowgraph. Finally algorithms for forming a signal flowgraph from a bipartite 

digraph, finding its spanning forest and then searching for a minimum cardinality 

tear set are presented and discussed. 

Analytical differentiation is examined in § 6. An extension to torn systems of 

Ponton's method for generating the numerical value of analytical derivatives 
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is described and illustrated in an example. In § 6.7 the construction and 

functionality of the modelling software is described. Details are given of the 

data structures used and the way in which an abstract statement of a problem is 

transformed first into an expanded algebraic form, and how this is then used to 

generate a solution. An example which was solved by the software is provided. 

Lastly a summary of the conclusions djwn from the separate chapters is presented 

in § 8. 

We will restrict ourselves to modelling steady state systems which are described 

by sets of algebraic equations. This condition precludes the necessity of examining 

the specific solution requirements of differential and integral equations. Further, 

the models produced will be for solution on a serial computer. 



Angling may be said to be like the mathematics, that it can 
never be fully learnt 

Izaak Walton, The Compleat Angler 

Chapter 2 

The Graphical Analysis of the Structure of 
Equation Sets 

2.1 Introduction 

In the last chapter it was stated without proof that it was desirable to describe a 

simulation problem using a square equation set, i.e. one in which there are exactly 

as many equations as there are variables within them. Further, it was asserted 

that an output set should be chosen for the equation set, that the equations 

should be permuted into a sequence of smaller subsets where possible and that 

any of these sets which contain two or more equations should be decomposed. 

In this chapter we turn our attention to the justification of these assertions and 

examine some of the ways in which the desired goals may be achieved. 

Considerable use is made of graph theory in this and other chapters and so we 

begin with a summary of the graphical definitions, and the properties of graphs 

20 
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which are germane to our discussion. The desirability of solving square sets of 

equations is addressed in § 2.3 and the need to find a one to one correspondence 

between the variables and the equations in a problem is discussed in § 2.4. 

The way in which the partitioning of matrices and the permutation of their 

rows and columns relate to solving equation sets is described in § 2.5. Here 

vertex elimination from a graph is used as an analogue for the effect of ordering 

equations, and some comments appear about the effect on the rate of convergence 

to a solution of a set of equations of different permutations. § 2.6 contains a 

definition of decomposition and a discussion about the nature of a 'good' tear 

set. An analysis of the effect of decomposition on the amount of effort required at 

each iteration for a range of solution methods appears in § 2.6.2. This range is not 

comprehensive, but it is large enough to show that there is a considerable number 

of numerical methods for which there is no 'structural' advantage in tearing. A 

summary of the conclusions drawn from § 2 appears in § 2.7. 

Prior to discussing graph theory, it is necessary to relate this subject to equation 

solving. Consider the following equation set. 

21 + 222  - 23 =1 

2x - 22 	 = 2 	 (2.1) 

22 + 23 =3 

The graph of equations 2.1 is shown in figure 2.1. Anticipating the terminology 

of § 2.2.1, each variable and equation in 2.1 contributes a node to figure 2.1. 

The line drawn between nodes 21 and F1  indicates that variable xi appears in 

equation F1 . Representing the equation set in this way permits one to reason 

about its structure so that, for instance, one can determine the dependency of 

one variable upon another. 
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Figure 2.1: A Graph of the Equations 

2.2 Graph Theory 

2.2.1 The Elements of a Graph 

Consider two objects, u and v, and a relationship, e, which is defined between 

them. If these 'objects and their relationship are represented pictorially as in 

figure 2.2 then u and v are termed nodes and e is called an arc. These nodes 

U 	V1  

Figure 2.2: A Graph 

may also be called vertices and the arc may be called an edge; these alternatives 

will be used interchangeably throughout the chapter. If the same relationship 

which exists between u and v can be defined between other nodes as well then 

the set of all nodes is called V, the set of all edges is called E and the structure 
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which includes them all is the graph c(V, E). This definition may be extended to 

include a single node, which is the minimal non-null graph. Since there is an edge 

between u and v in figure 2.2, they are said to be adjacent to one another and e 

may be written as the unordered pair (u, v). Later we will return to consider the 

case where (u, v) is an ordered pair. If this edge is traversed from u to v then e 

is said to be incident from u to v. 

A path in (V, E) is a set of vertices p = {vi , v2,• , v,} such that vi E V and 

(v 1 , v1+1) E E, i = 1,2,•. . , k - 1. If v 1  = Vk then p is said to be a cycle or, 

equivalently, a circuit. A path, p, is said to be simple if no vertex, zi, or edge, 

e, appears in it more than once. Similarly, if the initial vertex, v1 , of a cycle, c, 

is the only vertex to appear in it more than once, if this node appears exactlyy 

twice, and if no edge appears in c more than once, then it is a simple cycle. 

If V' C V, E' C E, and u, v E V'V(u, v) E E', then the graph '(V', E') is a 

subgraph of c(V, E). Two vertices vi and v3  are said to be connected if there is 

an undirected path from vi to v1 ; further each vertex is connected to itself. Any 

subgraph '(V', E') of c(V, E) in which each vi E V' is connected to each v1 E V I , 

no vk E V' is connected to any Vm V V', and such that Vv, vj E V'and(v 1 , v3 ) E 

E, (v i , v3 ) E E' is called a component of g(V, E). In the chemical engineering 

literature this is referred to as a partition of the graph. Clearly connection is 

an equivalence relation on vertices, and g(V, E) may be partitioned into a set of 

subgraphs 

(2.2) 

such that the vertices and edges of each g i  are distinct. If each vertex vi  E V 

in a graph g(V, E) is adjacent to every other vertex z.', E V, then (V, E) is 

the complete graph on V.-  The complete graph on some subset V C V, i.e. 
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= {(u,v) u,v E V}, is said to be a clique. In figure 2.3, {v i ,v2 ,zi3 } 

is a simple path and {114, 115, V6,  117, 114} is a simple circuit. This graph has one 

component, namely itself, and vertices 111, 112, and 113 form a clique. 

Figure 2.3: A Single Component Graph 

If the removal of a node vk E V from some graph (V, E) breaks any of the 

circuits in g then vi is said to be an articulation point or a separator of g. A 

set of articulation points, S, such that each cycle in (V, E) has at least one 

node in it, is a separation of ; in chemical engineering texts this is referred to 

as a tear set. If instead of nodes, edges are removed from and the maximum 

number of these is removed which allows all v1 , v, E V which are connected in 

g(V, E) to remain connected in (V, E'), E' C E, then this latter graph is said 

to be a minimum spanning subgraph of g. The minimum spanning subgraph for 

figure 2.3 is (V, E'), where E' = E - lei }. Any connected graph which contains 

no circuits is called a tree. The vertex which is ordered first in this tree is called 

its root, and each connected subgraph which is formed by deleting the root and 

the edges incident from it, such that there is at least one edge in the subgraph, 

is referred to as a branch of the tree. Each of these connected subgraphs is itself 

a tree and, so it too can be said to have a root and, possibly, branches. Any 
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connected subgraph of a tree in which there are no edges, i.e. a single vertex, is a 

leaf of the tree. A forest is a graph in which each component is a tree. It follows 

from these definitions that the minimum spanning subgraph of a connected graph 

is a tree, whereas that for an unconnected graph is a forest. 

We are now in a position to define those classes of graph which are of interest 

to us. Prior to this, however, it is worthwhile relating those properties of graphs 

just described to the equations and variables which they represent. In a graph 

which corresponds to an equation set there is an edge between nodes vi and ui if 

variable vi appears in equation u,. For example, returning to our consideration of 

figure 2.1, the edge between nodes x 3  and F1  indicates that variable x 3  appears in 

the first equation. If two nodes which correspond to variables appear in a simple 

circuit, then the equation used to solve for either requires the value of the other, 

and so these equations must be solved simultaneously or an algebraic substitution 

made of one variable for the other. Developing this argument shows that all of 

the nodes in a circuit which represent equations must be solved simultaneously 

and so a component of a graph represents a subset of the equations which must 

be solved together. A proof of this appears in § 2.3. We proceed now to classify 

the types of graph with which we will deal. 

2.2.2 The Types of Graph of Interest 

Since the equation sets will always be finite, so too will be the graphs used to 

represent them. In most cases the edges in (V, E) will have a particular direction 

associated with them, i.e. (u, v) will be an ordered pair. Such graphs are termed 
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directed graphs, or digraphs, and the strong component is the equivalence class. 

This is defined analogously to the component of an undirected graph in that 

there is a directed path from each node v i  to each other node in the same strong 

component, and a directed path from each of these back to v i ; no such pair of 

paths exist for nodes which belong to different components. The number of strong 

components of a digraph D(V, E) may be greater than the number of components 

of the underlying undirected graph as figure 2.4 shows, but the converse can 

never be true. Here, letting Ci be the set of nodes in the i' strong component, 

14zz 3 V 

 14 1
4 

4 

Figure 2.4: A Digraph which has two Strong Components 

C1  = { vi , v 2 , u1 , u2 } and C2  = { v3 , v4 , u3 , u4 } whereas the underlying undirected 

graph of figure 2.4 has only one component. Analogously to the definitions given 

in 2.2.1, the minimum spanning subdigraph of a connected directed graph is a 

directed tree and that for an unconnected digraph is a directed forest. 

In general there will be no parallel edges, i.e. multiple edges between two nodes 

which are oriented in the same direction. Further, except for one class of graphs, 

no node will direct an edge onto itself, i.e. there will be no self loops. Any graph 

which features neither parallel edges nor self loops is called a simple graph. 

If the vertices of g(V, E), whether is directed or not, can be partitioned into m 
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distinct sets, V, such that there are no edges between any two vertices v, v, € V1, 

then G(V, E) is said to be an m-partite graph. The most important example of 

a graph of this type is the bipartite graph, i.e. m = 2. Lastly, if D(V, E) is a 

bipartite digraph such that V = V U i',, V, fl v,= 0, then the digraph fl(V, E), 

E = {(u,v) I u,v € V,(u,w),(w,v) € E} 	 (2.3) 

is called a signal flowgraph. This digraph can be thought of as a 'condensation' 

of V(V, E) in that its strong components correspond to those of g but that the 

nodes of V, are excluded; W(1',, E'), the signal flowgraph which results from 

excluding the nodes of V, is defined similarly. 

As an example of the graphs discussed above, consider the equation set which is 

used to model an ideal, binary flash problem in appendix B. The undirected graph 

of these equations is shown in figure 2.5, where each numbered node represents an 

equation. This graph shows which variables appear in each equation. Figure 2.6 

Figure 2.5: The Graph of the Flash Equations 

is a directed version of this graph; as will be shown in § 3 this corresponds to 

choosing to rearrange each equation so that it is solved for one of the variables 

within it. In this digraph, an edge is directed from an equation node, ii, onto a 
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variable node, w, if the corresponding equation is to be solved for the variable 

represented by w. Note that both of these graphs are bipartite. Finally, figure 2.7 

Figure 2.6: A Digraph for an Assignment of the Flash Equations 

is the signal flowgraph which corresponds to figure 2.6. This signal fiowgraph 

Figure 2.7: The Signal Flowgraph for the Flash Equations 

demonstrates that, e.g., Y2  and x2  appear explicitly in the equation to be solved 

for K2 . As will be shown in §5, each circuit in a signal flowgraph, fl(V, E), 
corresponds to one in V(V, E), the bipartite digraph from which it is obtained. 
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2.2.3 The Properties of Graphs 

The degree of a vertex, d(v), is the number of edges to which it is connected. If 

D(V, E) is a digraph then 

d(v 1 ) = d+  (vi) + d- (vi) 	 (2.4) 

where d+(v1) is the in-degree of v 1 , i.e. the number of edges directed to it, and 

d_ (vi) is the out-degree of v, the number of edges directed away from this node. 

For instance, the in-degree of node 2 in figure 2.6 is two, whereas its out-degree 

is one. 

An ordering of the nodes in a graph is the assignment of an ordinal number in the 

range 1 - N to each of the N nodes in the graph. We will define a partition of 

the graph to be an ordering such that the ordinals for the nodes in a component 

are contiguous and, for V(V, E) directed, for any pair of vertices vi and v1 which 

belong to different strong components and for which i < j there is no directed 

path from v1  to v. This corresponds to an ordering of the strong components 

of D(V, E) such that, as we will see in theorem 2. 1, the equation subsets which 

they represent can be solved sequentially. 

Consider a subset of edges M C E in the graph (V, E). If the endpoints of 

the members of M are pairwise disjoint, i.e. no vertex is the endpoint of more 

than one edge, then M is said to be a matching in Q. The largest such subset 

possible is called a maximal cardinality matching in c and if each vi  E V is an 

endpoint of one of the edges in M, then it is said to be complete. If the edges of 

c have weights assigned to them then a matching with the largest possible sum 

of weights from E is called a maximum weight matching. It is important to note 
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that a maximal matching in a bipartite graph is a one to one correspondence 

between the items represented by the smaller vertex subset and a subset of items 

represented by the larger set, but this does not imply that each vertex in the 

smaller set appears in the matching. This is a point to which we will return in 

§ 3.2. 

2.2.4 Vertex Elimination 

The process of removing some node ii E V from an unipartite graph or digraph, 

c(V, E), and adding sufficient edges that each path of length 1 > 2 which passed 

through v in (V, E) becomes a path of length i — i in the new (di)graph is called 

vertex elimination. This process short circuits each path in (V, E) in that each 

path {, ii, o-} is replaced by {, o}. If the edges (w, ii) and (v, u) were present 

in 9 (V, E), then the edge (w, o) is present in the new graph; if this edge was 

not in the original graph, then it is said to have filled in. Vertex elimination 

on bipartite digraphs must be defined differently in order to avoid violating the 

condition that no vertex may be adjacent to another in the same partition. In 

this case elimination must be considered on pairs of matched vertices and paths 

of length 1 > 3 which pass through them are replaced by paths of length ,  1— 2 in 

the new digraph. This phenomenon is demonstrated by considering the bipartite 

digraph in figure 2.8. If nodes e 1  and v 1  are eliminated, then the edge (v4 , e2 ) 

fills in. Should this graph be replaced by its corresponding signal flowgraph, then 

vertex elimination in this graph, which is defined as for other unipartite graphs, 

would provide a corresponding fill edge between nodes 4 and 2, regardless of 

the set of vertices on which the signal fiowgraph is based; this phenomenon is 
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Figure 2.8: A Bipartite Directed Graph 

demonstrated in figure 2.9(a), where the broken arc signifies the filled edge. This 

X-1 

1 ' 	 X 	01 
,,_4" 	

X X 01 X  
(a) 	 (b) 

Figure 2.9: Vertex Elimination on a Digraph 

phenomenon can be used to describe the way in which information is chained 

through an equation set. 

If an equation set is represented by a digraph, D(V, E), then each of the variables 

which is represented by a node in a cycle of V(V, E) is dependent on each of 

the others. In general, the first variable is an explicit function of some of those 

ordered later and the second variable is a similar function of later variables and, 

possibly, the first. This pattern is repeated for each variable represented in the 
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cycle. Consider some variable x3  which is an explicit function of some other 

variables. If one of those variables, x 1  say, is ordered before x, then x i  is an 

implicit function of the variables in which x i  is explicit. If eliminating x i  from 

the signal fiowgraph which represents the equation set leads to the addition of any 

edges, then these signify the implicit dependency of some of the variables in the 

problem. Consider, for example, figure 2.9(a), which is the signal flowgraph that 

is derived from the bipartite digraph of figure 2.8. Removing node 1 produces a 

fill edge (4,2), so that the second variable is implicitly dependent on the fourth. 

This is demonstrated most clearly by considering Gaussian Elimination. Here, 

the fill-in pattern produced within the matrix corresponds exactly to the filled 

edges of the graph which represents it. As an example of this, figure 2.9(b) is the 

matrix which corresponds to figure 2.9(a). Here x represents a non-zero in the 

original matrix, and + represents a filled entry. This is explained more fully in 

§2.5. 

2.2.5 Graph 	Representation 	and 	Algorithmic 

Complexity 

In order to relate graph theory to the computer solution of equation. sets, a 

brief description of the matrix representation of a graph and a discussion of 

computational complexity are necessary. An adjacency matrix of a graph is a 

matrix in which each column, k, which has a 1 in the ii" row, corresponds to a 

node, k, for which the edge, ( k, i), exists in (V, E). If (V, E) is undirected this 

matrix is symmetric but if g is directed, then each row j which has a non-zero 

entry in column, 1, represents an edge, (1, j), in 9. Note that in the bipartite 
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case, even when is undirected, if the rows and columns for the nodes in each 

partition are ordered consecutively, each of the entries in both the upper left and 

lower right quadrants is zero. If the other two quadrants are superimposed so 

that each row in the new matrix represents an equation, and so that each column 

corresponds to a variable, then the result is referred to as an incidence matrix. 

This arises from the fact that each non-zero entry in a row represents a variable in 

the corresponding equation. As an example, figure 2.10 is the incidence matrix for 

the graph in figure 2.5. Finally, each column, k, of the adjacency matrix may be 

Z2 Y2  x1  P1  V x2  P P2  K2  L 
lX 

5 	X 

9 	X  

8 	x 	X  

4 	 X 	 X 

3 x 	X  

7 	 x 	x 

10 	 X 	X 

6 	X 	 x 	x 
2 	X 	X 	 X 

Figure 2.10: The Incidence Matrix for the Flash Equations 

rerepresented by Adj(vk) , the adjacency set for node, k. This is the set of vertices 

which lie at the% endpoints of the arcs which emanate from Vk.  For example, in 

figure 2.5, Adj(x 1 ) = 11,8} and the column in the matrix of figure 2.10 which 

corresponds to x 1  has non-zero entries only in the rows labelled one and eight. 
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The complexity of an algorithm is a measure of the number of operations required 

to execute it, and hence of its efficiency. This is expressed by its order, a function 

which relates the time taken for its execution to the size of the problem being 

solved. If for some algorithm this function is &, then the order of the algorithm is 

written as O(b); 0 can be a constant, a polynomial, a factorial or a transcendental 

function. This is an inexact measurement because it assumes that all operations 

take the same time and only its worst case value is calculated. Despite this, used 

with a knowledge of its shortcomings, it is an invaluable tool in the analysis of 

computational algorithms. The following description is restricted to analysing 

graphical algorithms, but the definitions and concepts provided are applicable to 

the entire domain of computation. 

In general, an algorithm is regarded as efficient if its time complexity can 

be expressed as a low order polynomial; e.g. Tarjan's depth first search 

algorithm [94], which is described in § 3.3.3, is O(N + ,r), where there are N 

nodes in the graph and r arcs, and Dijkstra's shortest path algorithm [19] is 

O((r + N)loge N). 

The class of decision problems which can be solved by polynomial time algorithms 

is called P. There is another class of decision problems for which no deterministic 

polynomial time algorithm has been found, but for which the verification of a 

solution lies in F; this class is known as NP.Consider some decision problem 

II,. A polynomial transformation from II I  is a function I which translates any 

instance of II I  into an instance of another problem 11 2  such that the answer to 112 

is 'yes' if and only if the answer to II I  is yes, and such that I can be computed 

efficiently. Any problem IIj which belongs to the subset of NP such that there is 

a polynomial transformation from H i  into each other problem IIj in the subset, 
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and from II, into H, is said to NP-complete. This is a large and important set of 

problems and if a polynomial time algorithm is found for one of these, then, by 

definition, a polynomial time algorithm will have been found for them all. This 

point is raised again in § 3.3.1. 

§ 2.2 has described the most basic and general components of graph theory. 

Some more definitions and concepts are required but they are introduced later as 

required. 

2.3 Conditions for a Unique Solution 

In this section an attempt is made to define those conditions on an equation set 

which are necessary or sufficient for it to have an unique solution. Four properties 

of the equations are examined: 

The number of equations to be solved and the number of variables within 

them. 

The structure of the equation set, i.e. the interdependence of variables and 

equations. 

3. The algebraic structure of the equations. 

4. The degree of nonlinearity of the functions over the domain of the solution. 
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Consider the solution of M equations in N variables. If M is less than N then 

the system is underdetermined in that there are N - M too few constraints on 

the values which the variables can take. There is a set of problems which are 

underdetermined and which can be solved uniquely, but each of these solutions is 

trivial. For example, x 2  + y2  = 0 has a unique solution at x = y = 0. In general, 

however, there may be an infinite number of solutions to an underdetermined 

equation set. If, on the other hand, M is greater than N then there are M - N 

too many constraints on the values which the variables can take. There is no 

guarantee that these superfluous constraints can be satisfied at the same point 

as the N others; such a system is said to be over determined and it may have 

none, one or many solutions. Should M equal N then a unique solution may 

exist because under these circumstances it is possible to provide a one to one 

correspondence between the variables and the items of information provided by 

the equations. Hence there is no condition on the relative sizes of the equation 

set and the set of variables within it, which is either necessary or sufficient for a 

unique solution of the equations to exist. 

Pantelides [68] has indicated that one consequence of Hall's [37] theorem of 

combinatorics is that a necessary condition for a unique, non-trivial solution 

of a system of N equations in N variables by successive substitution, is that 

every subset of k of the N equations must contain at least k variables. Should 

this condition be violated then the system is said to be structurally singular 

For instance, since equations 2.5 are three equations in only two variables, they 

violate this condition. Even if this condition holds there will still be no unique 

solution to the problem if one or more of the equations is redundant, i.e. it 

can be expressed as a combination of 1 of the others. Once more equations 2.5 

provide an example of this; the first and last equations may be multiplied to give 
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the second. Thus another necessary condition on the uniqueness of solution is 

the requirement that the equation set should be non-redundant. Neither of the 

above conditions is sufficient for a unique, non-trivial solution, however, because 

structurally non-singular and algebraically non-redundant equation sets may be 

numerically singular over part of their domain. This occurs when two or more 

equation surfaces become parallel over some region in space. Thus uniqueness of 

solution requires that such regions be avoided. 

x-2x 2 	 = 0 

2x - x 2 x - 4x 1 x + 24 = 0 	 (2.5) 

2x 1 —x2 	 = 0 

Two necessary conditions for an equation set to have a unique solution have been 

established, but no useful sufficient conditions have been found for the solution 

of general, non-linear equation sets. We will return to this problem in § 4.2. 

2.4 The Need to Select an Output Set 

Let E be a set of equations in the variables in the set X and, further, let lEi = lxi. 
Let the set of ordered pairs F, 

P = {(e,xi ) I e1  E E, xi E X,i = 1,2,...,lEl} 	(2.6) 

be a legal one to one correspondence between E and X, i.e. that the i0  equation, 

e, contains at least one occurrence of the jth  variable, x 1 . 1  Then P is said to 

'u.b. The subscript i refers to an ordering of each equation and variable in P, not in E or 
X. 
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be an output set for the problem. Each of the pairs in P represents an equation 

which can be solved for a given variable. One assignment for the flash problem 

of appendix B is 

P = {(1, z2 ), (2, L), (3, x 2), (4, V), (5, y2),  (6, K2 ), (7, Ps), (8, F1 ), (9, Xi), (10, P2 )} 

(2.7) 

As has been indicated above, such an assignment is possible if and only if the 

problem is not structurally singular, and thus the determination of an output set 

may be used as a check on this condition. 

However there are two other reasons for selecting an output set. Firstly, if the 

set of equations is to be solved by successive substitution then each equation 

must be rearranged to an explicit form for a given variable; choosing an output 

set ensures that this is done legally. Although in its simplest form it is a poor 

solution method, this strategy can be developed to others which are of some merit, 

as is shown on page 75. Secondly, if a matrix method, e.g. Newton Raphson, 

is to be used, the selection of an output set must be carried out so that the 

adjacency matrix of the graph of this problem can be permuted to have a zero 

free diagonal; in this case the output set is called a maximum transversal. As 

is shown below, the failure to permute this matrix to this form may cause some 

partitioning algorithms to fail. 

In general an output set for a given problem is not unique. Lemma 2.1 provides 

an upper bound on the number of possible output sets for a set of equations E. 

Lemma 2.1 If E is not structurally singular then, 8, the number of possible 
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output sets is bounded by 

O<S<IEI! 
	

(2.8) 

Proof: The proof of the lower bound is trivial. Let N = I E  I. By definition, in 

order for an output set to exist, there must be an equivalent number of equations 

and variables in the system. Clearly, the greatest number of output sets possible 

occurs when each variable appears in each equation. It is sufficient to show that 

there are N! possible output sets when this condition holds. In this case there 

are N choices for the variable to be solved for by the first equation, N —1 choices 

for the second, N - 2 for the third, and so on until only one choice remains for 

the last equation. Regardless of the choice of variables for the first k equations 

the remaining N - k equations can be assigned to the remaining N - k variables 

in each of the (N - k) ! possible independent ways. Thus the upper bound on 

the number of output sets for an equation set E is I E I !. 0 

As will be described in the next chapter, some of these output sets may be 

preferable to others, but there is no known means by which a set which is known 

a priori to be optimal in any given sense, may be selected. 

2.5 The Nature of Partitioning Matrices 

In this section we will discuss the permutation of incidence matrices. The 

definition of graph partitioning given towards the end of § 2.2 extends naturally to 

the incidence matrices in that the rows and columns of these matrices correspond 
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to the nodes in the graph; reordering the nodes simply reorders the rows and 

columns. In essence there are many forms to which a matrix may be permuted 

but, as we will see in § 3.3, there is only one way to partition a given matrix 

given the strict definition of this term. Of all of the possible forms, only four are 

of interest here: 

Banded matrices. An example of one of the more common banded 

matrices, the tridiagonal matrix, is shown in figure 2.11(a). This form 

is of particular use in the solution of the algebraic equations which arise 

from the discretisation of partial differential equations. 

Lower (Upper) triangular matrices as shown in figure 2.11(b). Permuting a 

matrix to this form allows the exact, non-iterative solution of the equation 

set in the forward (backward) direction. 

Block diagonal form. As shown in figure 2.11(c) all of the blocks which 

straddle the diagonal are square and no non-zero entries appear above these 

blocks. This is a weaker form of (b). 

Bordered Diagonal form. This is a weakening of the structure of (c) as is 

clear from figure 2.11 (d). This form is used frequently, especially when the 

diagonal blocks are of unit size, i.e. when the matrix is of bordered lower 

diagonal form. 

The tridiagonal form will not be dealt with further but the properties of matrices 

of types (b), (c) and (d) will be dealt with after the relationship between the 

strong components of a graph and the structure of the corresponding equation 

set has been established. 
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(a) 

I  \11.0 II I 

(b) 

j-I0101  (d) 

Figure 2.11: Four Desirable Matrix Forms 

Consider the 4 x 4 equation set 2.9. The digraph for one transversal of this 

equation set is shown in figure 2.12. 

x1+x2 	 = 3  

	

- loge() + x3  + x4  = 4 	
(2.9) 

+ x3  - 	= 5 

x 1 —x 2 	 = 1 

The nodes in this digraph which correspond to variables are labelled with the 

name of the variable, and those which correspond to equations are labelled E1, 

according to the order in 2.9. The strong components of this digraph are C1  = 

{X1, x 2 , E1 , E4 } and C2 = {z 3 , x4 , E2 , E3 }. The incidence matrix for this digraph 

appears in figure 2.13(a). 
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Figure 2.12: The Digraph of the 4 x 4 Equation Set 

It  x3  x4  x2  x1 	x2  x3 	x4  

IX 	i T X 
I' 

II 	 I I 

E2  x x x x F.1 1:x 
- 

Xi I 

------ 

I I. ------ I I 

F x x x x x 	x 
------ II 

:x 	x:I 
-- - 

X 	X 
I 	 II 
1 X 	xii ---- I 

(a) 	 (b) 
Figure 2.13: The Incidence Matrix for the 4 x 4 Equation Set 

This matrix can be partitioned into the form of figure 2.13(b), which shows 

that equations E1  and E4  can be solved simultaneously for x 1  and x2  before 

the remaining two equations are solved simultaneously for x 3  and x4 , using the 

exact values of x 1  and x2 . This grouping of variables and equations is called a 

computational sequence for the equation set. This term is defined as an ordering 

of equation subsets such that each is a solvable system of equations of minimal 

size, and such that they may be solved sequentially. Thus no equation may 

be removed from a member of a computational sequence and leave a solvable 
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subset, and no equation may be dependent on a variable which is solved for in a 

subset ordered later in the sequence. As an example, {C1 , C2 } is a computational 

sequence for equations 2.9, but {C2 , C1 ) is not, and neither is {C 1 , C3 , C4 ), where 

C3  U C4  = C2 . 

We wish to show that a computational sequence for an equation set is unique to 

within some well defined, allowable permutations. To do this we will demonstrate 

that it corresponds to an ordering of the strong components of the digraph 

which represents the assigned equation set, in which there are no edges from 

a strong component to another which is ordered before it. By inspection, it can 

be seen that, for equations 2.9, {C 1 , C2) satisfies these conditions, whereas neither 

{C2 , C1) nor {C1 , C3, C4} does. The general case is explained by the following 

remarks, observations, lemmas and theorems. 

We begin with some general observations about the relationship between equation 

sets, graphs and digraphs. As has been noted already, an equation set F(X) can 

be represented by a bipartite, undirected graph (V, E), where V is the union 

of c', which corresponds to the equations, and ', which represents the variables 

within them; each edge (i), Z) E E denotes that CD is one of the unknowns in 

P. This graph contains no information about which equation is to be solved for 

which variable. If a complete matching, M C E, exists for the graph then this 

can be used to form a directed bipartite graph D(V, E) such that there is a one 

to one correspondence between A and E; each (i, CO) € M becomes the directed 

edge (1', ) in V and every other edge in E is directed in the opposite direction 

in the new graph. The interpretation placed upon a directed edge (.0, (D) € A is 

that equation v is to be solved for variable w. 
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We aim to show that the strong components of D(V, E) correspond to the minimal 

equation subsets into which F(X) may be partitioned, and that these strong 

components may be ordered in such a way that they define a computational 

sequence. As a first step we show that the strong components of this digraph 

may be ordered so that there is at least one which has no edges directed onto it 

from another, and at least one from which no edges are directed. Next we show 

that in each strong component, the numbers of nodes from each vertex set are 

equal and that any subset of k nodes from 1' directs exactly k edges onto nodes 

form V. These results are used to show the correspondence between the strong 

components of V(V, E) and a computational sequence for F(X). Lastly we prove 

that this computational sequence is independent of the complete matching used 

to form the directed graph. 

Lemma 2.2 It is always possible to order the strong components of a digraph 

DWI E) so that if there is a path from some vertex ii in the jth  strong component, 

C,, to a vertex w in some other strong component C1, then i < j, and there 

is always at least one strong component in the digraph which has no incoming 

edges, and one from which no edge is directed onto a vertex in another strong 

component. 

Proof: Consider R(X, A), a reduction of D(V, E) in which the i0  strong 

component of the directed graph is represented by a node vi E X and the arc set 

A = {(vj, v1)} such that there is at least one edge in V(V, E) between a node in 

C1 and one in C,. Any path through the vertices of R(X, A) corresponds to a 

path in V(V, E) which passes through at least two strong components and so, by 

definition, R(X, A) must be acyclic. Since V(V, E), and hence R(X, A), is finite, 
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it follows that there must be at least one node in the reduced digraph from which 

no edge is directed. Let such a node be vk. If Ck is ordered as the last strong 

component of D(V, E) then any edge in this digraph which has as one of its termini 

a node in Ck must be directed from a lower to a higher ordered strong component. 

If Pie  and all of the edges incident upon it are deleted from R(X, A) then there 

must be at least one node in the new digraph from which no edges are directed. 

Ordering the strong component of V(V, E) to which it corresponds second last 

retains the forward condition on the arcs of this digraph. This process of ordering 

and deleting can be continued until only one node remains in the reduced digraph. 

This node must represent the first strong component of V(V, E). No edges are 

incident upon this node and so there may be no edges incident upon the first 

strong component of V(V, E). 0 

This result will allow us to show that at least one subset of equations from F(X) 

is independent of the others, and so it can be solved before them. The next lemma 

is required in order to show that a strong component of D(V, E) corresponds to 

a square, solvable subset of equations from F(X). 

Lemma 2.3 If V(V, E) is a bipartite digraph which represents a square, 

structurally non-singular equation set, F(X), such that V is the set of vertices 

which correspond to equations and 1 is the set of vertices which represent 

variables, then the number of nodes in each strong component which are members 

of 1' is equivalent to the number of nodes in this subgraph which are members 

of V. Further each subset of k vertices from this strong component which are 

members of 1' direct exactly k edges onto the nodes in V. 
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Proof: By definition it is possible to trace a circuit through each of the vertices in 

a strong component of the bipartite digraph V(V, E). This digraph is constructed 

in such a way that each ii E ' has exactly one edge directed from it to some 

vertex w E %', and hence any cycle which passes through ii must be extended 

through w. Since, by construction, each w E 1' must be an endpoint of exactly 

one edge directed from some ii E ', these vertices must appear an equal number 

of times in any cycle. Hence there must be exactly as many vertices from ' in 

any strong component of V(V, E) as there are V. Further, since there is exactly 

one edge directed from each ii E 'c', each subset of k nodes from ' must direct k 

edges onto V. 0 

Lemma 2.4 Each strong component of the digraph of lemma 2.3 represents a 

structurally non-singular, solvable subset of equations. 

Proof: This proof requires three observations. 

Each node in a strong component is a member of a circuit in V(V, E) which 

involves all of the other vertices in that strong component. 

There is no circuit in D(V, E) which involves two nodes z' and v, which lie 

in different strong components. 

By lemma 2.3 in each strong component of D(V, E) there is an equal number 

of nodes from each partition of V, and each subset of k nodes from directs 

exactly k edges onto vertices in V. 
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The first of these observations demonstrates the mutual dependency of the 

variables represented in a strong component, and hence the necessity for the 

corresponding equations to be solved simultaneously. The second shows that 

there can be no interdependence between two nodes v and vi,, which represent 

variables x and y respectively, where these lie in different strong components. 

This means that it is unnecessary to solve any other equation simultaneously 

with those represented in a strong component. Thus these equations, and only 

these equations, must be solved simultaneously. The last observation shows that 

their solution is possible since there are exactly as many equations in the system 

as there are unknowns, and each of these may be solved for one of the unknowns. 

0 

Having established the preliminary results we can proceed to provide the formal 

correspondence between the strong components of V(V, E) and a computational 

sequence for F(X). 

Theorem 2.1 Let F(X) be an equation set such that IFI = IXI and 

F(X) 9 F(X),i = 1,2,• .. ,M be a computational sequence for F(X). Then, if 

V(V, E) is the bipartite digraph which represents F(X), the M strong components 

Of D(V,E) correspond to the subsets F(X1). Further, if these strong components 

are ordered so that each arc between two of them is directed from that which is 

ordered lower to that which is ordered higher, then ordering the equation subsets 

in the same way gives a computational sequence for F(X). 

Proof: It is necessary and sufficient to demonstrate the following two properties 

of D(V, E). Firstly, the first strong component corresponds to a square, 
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structurally non-singular subset of F(X). Secondly, all other strong components 

represent structurally non-singular equation subsets in which the number of 

variables is greater than or equal to the number of equations. Where this 

inequality holds, the nodes representing the excess variables belong to strong 

components numbered earlier, and so each strong component represents a square, 

structurally non-singular reduced subset of F(X). 

First Part: By lemma 2.4 the first strong component of D(V, E) represents a 

non-singular subset of equations and, from lemma 2.2, there are exactly as many 

variables in this set as there are equations. 

Second Part: Once more, lemma 2.4 shows that each strong component of D(V, E) 
represents a non-singular subset of equations. In this case, however, there may 

be more variables than equations in the set. If there are K equations in the 

subset then, by lemma 2.3, there are K nodes in the strong component which 

represent variables in these equations. All of the other variables in the subset are 

represented by edges from nodes in other strong components. Lemma 2.2 shows 

that all of these strong components can be ordered before the i' one. Thus the 

value of each of these variables is known when the jth  subset is to be solved, and 

so this represents a square, non-singular, reduced subset of F(X). 0 

This leads us to the following surprising result. 

Theorem 2.2 The computational scheme for an equation set F(X) is 

independent of the output set. 
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Proof: Let the undirected bipartite graph (V, E) represent F(X), and let M 

be a complete matching defined on its vertices. We wish to show that the strong 

components of D(M), the bipartite directed graph formed from (V, E) and M 

in the manner of page 43, are independent of M, and that their order ordering 

which corresponds to a computational sequence for F(X) is unique to within 

some trivial permutations. 

First Part: Recall that M is a complete matching. Another complete matching 

for G(V, E), ict may be generated by removing some edge (i,i) from M, adding 

a new edge (t', u), removing (ô, ü) and so on. Eventually some edge (a, Co) must 

be added to the new matching in order to complete it. If this process is repeated 

it can be used to generate all possible matchings for (V, E). 

Let the bipartite digraph formed from (V, E) and icr be D(icI). Since there is 

a one to one correspondence between the edges of D(k) and those of (V, E), 

and between the edges of D(M) and those of c(V, E), this correspondence exists 

between the edges of the two digraphs. Any edge which is a member of both of 

these matchings, and any which is a member of neither, is directed in the same 

way in D(M) as it is in V(A); any edge which is a member of only one of these 

matchings is oriented in opposite directions in the two digraphs. By construction, 

those edges in only one of the matchings must alternate in a cycle in each of the 

digraphs. Clearly this cycle cannot be extended through some edge (vi, zi) such 

that u and z',  belong to different strong components since there can be no edge 

directed back to the strong component of which v is a member. Thus since each 

modification to M must describe a cycle through 'D(M), the strong components 

of each bipartite digraph formed from a matching in (V, E) and the original 

graph must be the same. 
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Second Part: As has been shown above, the strong components for each complete 

matching in (V, E), and hence for each output set for F(X), are the same, and, 

by theorem 2.1 they may be ordered so that they correspond to a computational 

sequence for the equation set. Further, the edges between strong components in 

each of the bipartite digraphs must be oriented in the same direction because they 

represent the existence of a variable in an equation which can never be solved for 

it. Hence any ordering of the strong components of one of the bipartite digraphs 

which corresponds to a computational sequence is a similar ordering for each of 

the other digraphs. 

If an ordering of the strong components of a bipartite digraph is to correspond to 

a computational sequence for F(X), then it is necessary for each edge between 

vertices in different strong components to be directed from the lower to the higher 

ordered strong component. However, if there is no directed path between two 

strong components C1  and C, in D(M), then either of these may be ordered 

before the other in any computational ordering. Hence, there may be more than 

one ordering of the strong components which satisfies the condition on directed 

paths between them, and hence more than one computational sequence for an 

equation set. 0 

We can extend the results from this proof to show that if an incidence matrix for 

an equation set is partitioned in such a way that the new matrix is block lower 

triangular and the diagonal blocks are irreducible, then the ordering of these 

blocks, and the rows and columns within them, is independent of the output set 

selected for F(X). To do this, we establish that these diagonal blocks correspond 

to the strong components of the bipartite digraph which represents F(X), and 

that they must be ordered in the same way as the strong components for the 
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new matrix to be block lower triangular. Finally, in theorem 2.5 we relate the 

uniqueness of the strong components of the digraph to that of the diagonal blocks. 

Here, a block triangularization of a matrix is a permutation of its rows and 

columns so that there are square, irreducible blocks on the diagonal, no non-zero 

entries above these blocks, and either zero or non-zero entries below them. 

Theorem 2.3 If V(V, E) is the bipartite digraph which represents an equation 

set F(X), and if A0 is the incidence matrix of this digraph, then the strong 

components of D(V, E) correspond to the square diagonal blocks of a block 

triangularisation of A0 . 

Proof: Let the rows of A0 represent the equations in F(X), and the columns the 

variables. Order the rows and columns of A0  so that those which represent nodes 

in the same strong component are contiguous and so that those which appear 

in the first strong component appear before the second, and so on. Lemma 2.3 

shows that, in each strong component, there is an equal number of variable and 

equation nodes. Each of these blocks must have a non-zero entry in its upper 

right entry, and so too it must be irreducible because it reflects the cycle structure 

of one of the strong components. No other permutation of the rows and columns 

within the matrix can produce different irreducible blocks, and so each strong 

component corresponds to a square block in the incidence matrix. 

To see that these blocks are aligned along the diagonal of the matrix, consider 

that which corresponds to the first strong component. As is shown in lemma 2.2, 

the first strong component has no edge incident upon it from another. Hence, 

the block which represents it may have no rows above it nor columns to the 



Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	52 

left of it, and so it lies on the diagonal. The block corresponding to the second 

strong component has its rows immediately below those for the first, and its 

columns immediately to its right; since this block too is square, it must straddle 

the diagonal of Ag. Extending this analysis to the other strong components 

completes the proof. 0 

Theorem 2.4 If A0 is the incidence matrix associated with a square, structurally 

non-singular equation set, F(X), then if it is partitioned so that there are square, 

irreducible blocks along its diagonal, these blocks correspond to a computational 

sequence for F(X). 

Proof: 	Theorem 2.3 shows that these blocks correspond to the strong 

components of D(V, E), the digraph of F(X), and theorem 2.1 shows that these 

strong components represent a computational sequence for this equation set. 0 

Theorem 2.5 The 	rows and columns 	within the 	blocks 	of 

a block triangularization of a structurally non-singular matrix are independent 

of the permutations used to form them. 

Proof: Permuting the rows and columns within a structurally non-singular 

matrix in such a manner that it retains a zero free diagonal corresponds to 

reordering the vertices in the bipartite digraph which represents it, and, if the 

permutations are asymmetric, reorienting some of its edges. Theorem 2.3 shows 

that the diagonal blocks of a block triangularization of a matrix correspond 

to the strong components of this digraph, and theorem 2.2 indicates that the 

nodes within these strong components are independent of the ordering of the 
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vertices, or the orientation of the edges. Thus the rows and columns in any block 

triangularization of a structurally non-singular matrix are independent of the 

permutations used to form them. 0 

This result was anticipated by Steward [92] and proved in a different way by 

Duff [22]. 

The computational blocks may be reordered to some desirable form as will 

be described in 3.3. As they stand, however, these subblocks can be solved 

sequentially, and this ti may effect both the amount of effort and storage which 

are required at each iteration, and the convergence characteristics of the equation 

set. If the equations to be solved are linear, or if they are linearised forms of non-

linear equations, and if some matrix method is to be used to solve them, then 

permuting rows and columns may save fill-in. Minimisation of fill-in in D(V, E) 
during vertex elimination is important regardless of whether the equations being 

solved are linear or non-linear. If the equations are linear, then the explicit 

effect of fill-in is that entries are added to the factor matrices which were zero 

in the original matrix; this leads to an increase in the amount of storage and 

computation required for a solution. There is a similar effect if the equations are 

non-linear, although in this case the effect is implicit. Adding new arcs to the 

graph corresponds to chaining the values of some variables in the set through 

some equations in which, originally, they do not appear explicitly. Minimising 

fill-in minimises this coupling effect and so ought to lead to a more efficient 

solution. Should some gradient numerical method be used, then this chaining 

filters through to the derivatives of the equations; this is true both for linear and 

non-linear equations. As is shown in § 2.6, this has implications for the amount 

of work necessary when the equations are to be torn. 
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Partitioning the equations may have an effect on the convergence characteristics 

of the solution. It is likely that the equations in each of the subsets apart from the 

first will converge more quickly than it would when solved in the unpartitioned 

set. This arises from the fact that, for all connected subsets other than the 

first, partitioning the equations allows some of the erstwhile variables to appear 

as constants, their values having been calculated earlier. This effect is most 

noticeable if the equations to be solved are highly non-linear, since partitioning 

will increase their linearity. Consider, for instance, the solution of equations 2.9. 

The presence of the two transcendental functions causes this equation set to 

appear to be highly non-linear. Should the equation set be partitioned and 

the first and last equations solved simultaneously before the second and third, 

however, then the equation set is translated into the linear reduced system 

X1 + x2 	 = 3 

X1 - x2 	 = 1 
(2.10) 

Cl + 	x3  + x4  = 4 

C2  + x3  - 	= 5 

where C1  = - log() and C2 = exp( FJ) are constants. Equations 2.10 

can be solved exactly, whereas equations 2.9 cannot. Further, removing the 

non-linear terms from the equation set ameliorates the use of any derivative 

information used in an iterative scheme, because it removes the possibility of 

divergence due to the variation in curvature of the equations over the domain of 

the solution. In general, partitioning an equation set will not be as successful in 

reducing the non-linearity of the equations to be solved as it was for the above 

example, but it is reasonable to expect some improvement. Whilst this may be 

of little advantage far away from the solution, its benefit is likely to increase as 

the search approaches it. This argument can be extended to the derivatives of 

the equations. 
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2.6 The Use of Decomposition Techniques 

In the last section the partitioning of digraphs was discussed. Decomposition can 

be seen as an extension of this method which alters the strong components of a 

digraph. The aim of decomposition is the removal of nodes and arcs from some 

digraph D(V, E) in such a way that the modified digraph contains no circuits. 

This practice is known both as tearing and cutting, although the latter has a 

slightly less general meaning than the former. In this text all three terms will be 

used interchangeably and, although the following definition is given in terms of 

node tearing, a similar definition exists for edge cutting. 

Formally, a decomposition strategy seeks to - identify a node separator set, S C V, 

in a digraph, V(V, E), such that every cycle, C,, in D(V, E) has at least one node 

in S such that for 

TE={(u,v) Iu,vE(V—S),(u,v)EE} 	 (2.11) 

D(V - S, ), is acyclic. For figure 2.6, for instance, S = {L}, and each edge which 

is directed to or from L is removed from E to give 77. Different orderings of the 

nodes in S and V - S give rise to different orderings of the rows and columns 

of the incidence matrix of D(V, E) Tf the first node to be torn is placed at the 

end of the order, the next placed in the penultimate position and so on, then the 

incidence matrix thus produced has bordered lower triangular form. There is no 

unique tear set for a digraph and some may be larger than others. As we will see 

in § 3.4 these sets can be grouped into equivalence classes. 

It is not clear whether it is preferable to tear an equation set before or after 

partitioning. Leigh [55] has shown that the number of tears for an unpartitioned 
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digraph is bounded below by the maximum of the minimum size of each of its 

strong components. Intuitively it is preferable to partition and then tear, since 

this exploits the natural structure of the equation set by grouping together those 

equations which are most strongly coupled. However, Sargent [82] provides an 

example in which fewer tears are required if the set is torn before rather after 

partitioning. 

The most obvious benefit of tearing an equation set is that it reduces the number 

of variables whose values have to be guessed before the equations can be solved. 

The second advantage is that it can reduce the amount of computational effort 

required at each iteration during solution; this is a point to which we will return 

in § 2.6.2. It should not be assumed, however, that tearing an equation set is 

always worthwhile, since there is only a small class of numerical methods whose 

performance can be thus improved. Even when methods which lie within this 

class are employed tearing may be undesirable because of the effect which it has 

on the topology of the equations being solved. In order to provide a justification 

for the use of decomposition methods this section is divided into two parts. The 

first of these is a discussion of the nature of tear sets and, in particular, an 

attempt is made to define a 'good' tear set. Secondly we turn our attention to 

classifying those methods whose performance may be improved by decomposing 

the original equation set. 
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2.6.1 Optimal Tear Sets 

As Motard et al. [64] have indicated there are no known optimum criteria for 

choosing tear sets. The most widely used strategies are those which minimise the 

number of torn nodes or edges, the weight of the torn arcs or, in flowsheeting 

problems, the number of recycle parameters, although this is simply a special 

case of the minimum weight approach. The weight of an arc is a value 

assigned to it, possibly in an arbitrary manner. One traditional method for 

assigning weights in flowsheeting problems has been to set them equal to the 

number of parameters associated with the corresponding process stream. Another 

assignment philosophy is described in § 3.2. Minimising the cardinality of the 

separator, 5, is intuitively attractive because at each iteration it seems likely to 

lead to a more exact solution of the problem and a lower effort requirement than 

any larger tear set. Finding the tear set of lowest weight is an attempt to take 

into account the relative desirability of tearing each of the arcs in a digraph. In 

a fiowsheeting environment this will generally correspond to a minimal amount 

of recycle information but in the wider field it may reflect the relative ease of 

solution of the equations; clearly, minimising the size of the separator is a special 

case of minimising its weight. 

Even if an optimal tear set were to be of minimum size, minimising the size of this 

set, hOwever this was defined, would be only a necessary condition for optimality. 

Upadhye and Grens [98] have suggested that the optimal tear set for a graph is 

likely to be nonredundant, i.e. no cycle in the digraph is torn by more than one 

edge or node in the tear set. Their argument is based on a consideration of the 

lag of information flow through the system being modelled by the graph. Their 

argument can be extended to say that, where possible, each cycle should be torn 



Chapter 2. The Graphical Analysis of the Structure of Equation Sets 	58 

the minimum number of times. Consider the two graphs shown in figure 2.14 

where a bar, 1 , on an arc indicates that it is torn. 

(b) 

Figure 2.14: Two Tear Sets for a Dirph 

Two minimum tear sets for these graphs are shown. In the first graph the cycle 

which involves nodes 2, 3, and 4 is torn twice. Here the value for second tear 

is updated without using the information which is available from the object 

represented by node three. In the second graph no cycle is torn more than 

once, and the information from node three is used. This ought to give the second 

iteration a superior rate of convergence because of the less arbitrary variation in 

the torn values. 

As shown above, minimisation of the size of the tear set is insufficient for 

structural optimality. This strategy is also insufficient from an algebraic point 

of view because it takes no account of the effect of tearing on either the untorn 

equations, or those which are used to improve the guesses for the tear variables. 
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If possible, the tear set should be chosen so that it minimises the work done 

overall, i.e. it minimises the product of the number of iterations and the amount 

of work done at each, and so that it avoids singularities and discontinuities in the 

torn problem. Determining such a tear set is impossible at present because there 

is no sufficiently sophisticated method of algebraic analysis which allows this to 

be done efficiently. 

2.6.2 Numerical Techniques Improved by Tearing 

In this section the effect of tearing on the amount of effort required at each 

iteration for the following classes of numerical methods is considered: 

• Direct Substitution. 

• Relaxation Methods. 

• Aitken's Method. 

• Newton Like Methods. 

Each class of numerical method is described fully in appendix 4 and so only 

a minimal description is provided here. In each case it will be assumed that 

lxi = N, that c < N of the elements of x are torn and that each of the first N - c 

equations has been rearranged to give an explicit expression for one of the N - c 

dependent variables. The term 'full problem' will be used to mean the untorn 

form of the equations and, where appropriate, all subtraction operations will be 
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counted as additions, and all divisions as multiplications. The variable r, defined 

ri = xi 
- f 	 (2.12) 

is used to denote the residual of each equation at the ith  iteration. 

Direct Substitution Here the equations are written in a form which uses the 

value of the vector x at the ith  iteration to produce those at the (i + i)uhi iteration, 

i.e. 

X 41= f(x) 	 (2.13) 

If such an equation set is torn the calculations required at each iteration are 

Evaluate the values of the dependent variables. 

Evaluate the values of the independent variables. 

Inspection of points 1 and 2 reveals that the steps involved in solving the torn 

equations are identical to those involved in solving the full problem. Thus there 

is no saving in computational expense or storage requirement associated with 

tearing an equation set if the equations are to be solved in this way. 

Relaxation Methods The general form for calculating x 1  with a relaxation 

method is 

= x t - 	 (2.14) 

where r', the residuals of the equations at the i' iteration, are zero at the solution 

and Wt  is some acceleration factor; n.b. w = 1 corresponds to the method of direct 
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substitution. Three methods of calculating wi  are described. 

Successive Over Relaxation (SOR) The equations are solved in two stages. 

First of all the residuals are calculated and then is updated by 

= - w r 	 (2.15) 

where w > 1. In the torn case, only the torn variables are updated. Since 

is a constant factor, only N - c multiplication/subtraction pairs are saved per 

iteration. This is unlikely to be a significant saving in effort compared with either 

the cost of the function evaluations or the cost of determining the tear set. 

The Secant Method This method accelerates the direct substitution method 

described in equation 2.13. It uses a different acceleration factor for each member 

of x, i.e. 

= Xi + w3  (4 1  - x) 	 (2.16) 

1  

8
,j=1,2,...,N 	 (2.17) 

— 

f(x 11 ) - I 
83 = , j=1,2, ... ,N 	 (2.18) 

Tearing an equation set in this case reduces the computational expense of 

acceleration from 3N multiplications and 5N additions to 3c multiplications and 

5c additions. This saving may be significant, particularly if c <Z N and the 

equations are linear. 

The Dominant Eigenvalue Method (DEM) This method is similar to the 

secant method in that it accelerates the solution to equations 2.13. These are 
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solved successively until the largest change in the elements of x occurs at an 

approximately constant rate. When this occurs an acceleration step 

xi+i - Xi 
=X + 

1 M 	
(2.19) 

— 

is taken, where M is the ratio of the largest change in an element of x at successive 

iterations. At each non-accelerating iteration, tearing the equations saves N - c 

subtractions in finding the largest change in a variable over the course of the 

iteration. On acceleration, N - c divisions and 2 (N - c) additions are saved. 

Neither of these reductions in effort is likely to be significant. 

Aitken's Method Aitken's method operates directly on the variables, and it 

ignores their interaction. Once again the direct substitution equations are solved 

but this time, when the difference in the value of a variable at each iteration 

approaches a geometric series, the acceleration step 

k-i k+1 - (xk)2 	
(2.20) 

Xi  
x 

- 2x - 

is taken. If Aitken's method is used on the full problem, then N equation solutions 

are required per iteration, and at each acceleration step, 4N divisions and 3N 

additions are necessary. When it is used on the torn problem, there are still N 

equation solutions to be found but the work at each acceleration is reduced to 

4c divisions and 3c additions. Given that equation evaluation is more expensive 

than an arithmetic operation this is an insignificant saving in effort. 

Newton Like Methods This class of numerical methods will be represented 

by the Newton R.aphson method. This uses the function values at X  and the 

partial derivatives at this point to find the value of x 1 . If the functions to be 
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solved are of the form 

f(x) = b 	 (2.21) 

they are rewritten as 

f(x)—b=O 
	

(2.22) 

and solved by a truncated Taylor expansion of equation 2.22. The Jacobian, J, 

- 	
ii,k=N 	 22 

is required. The computational scheme required for the full case is 

Evaluate f( x*)_b 

Evaluate J = Vf 

Solve Js' = —f(x) for x' 1  

If some of the variables are torn, this scheme becomes 

Evaluate x = f(x) 

Evaluate f(x(x),  x) 

Evaluate J, = Vc  f, 

Evaluate Jc = Vc  f(x'(x'), x') 

Solve Jx71  = — f(x') for  x?1  

Here Xnc  is the set of dependent variables and x c  is the set of independent (i.e. 

tear) variables. f(x) is the set of equations used to solve explicitly for x,,2  

4n.b. These equations are rearrangements of the first N - c equations. 
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f(x(x), x) is the set of reduced equations which is used to solve for the tear 

set and V c  is the gradient vector for these variables. Jnc  is the Jacobian for the 

dependent equations and J is the Jacobian for the reduced system. 

There are two ways in which each Jacobian may be calculated and these are 

considered in turn. 

Analytical Jacobian In the full case N (N + 1) function evaluations are 

required for the first two steps and, as is shown in appendix A, 0(N3 ) operations 

to solve the Jacobian equation for x(t+1).  If the variables are torn, these 

requirements are reduced to c (N - c) function evaluations for the chained 

derivatives and N (c+ 1) function evaluations for the reduced equations Jacobian, 

and 0(0) operations to solve the reduced Jacobian equation for x+1).  If c << N 
this represents a considerable saving both in operations per iteration and storage 

requirement. 

Numerical Jacobian In order to evaluate the Jacobian it is necessary to 

evaluate the relevant equation set at the current value of the variables, to perturb 

each in turn and then revaluate the equations before resetting the variable to its 

original value. Thus each element of the Jacobian is generated from 

- fI(xk + öXk) - f1(xk) 
J$2 - 
	

(2.24) 
5Xk  

where typically 6Xk = Exk for some small value €. If the Newton Raphson method 

is used on the full equation set this requires N (N + 1) function evaluations. If 

it is used on a torn system, however, (N - c) (c + 1) function evaluations are 

required to calculate the chain rule derivatives and c (c + 1) are necessary for 
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the reduced Jacobian. This amounts to a total number of function evaluations of 

N (c + 1) which is a small saving over the full case. 

Wegstein's Method Wegstein [99] developed the secant method for 

single equations, and his method has been generalised for the solution of 

multidimensional problems. In his method, the new value of x after the (i + 1)1hl 

iteration is found from 

= —B 1f1 	 (2.25) 

where Axi  = x - x + 1 , and the matrix B' is found from 

i+1 	i-i 
bk 

= fj(x') 	
(2.26) 

Whether this is applied to the full or the torn problem, N function evaluations 

are required per iteration. In the full case, however, N multiplications and 2N 

additions are required as well, whereas for a torn equation set this is reduced to c 

multiplications and 2c additions. This is a very small saving, but there is a much 

larger difference in the effort required to solve equation 2.25. For the full case, 

this requires 0(N3 ) operations, but for the torn case only 0(c3 ) are needed. If 

c << N this may be a significant saving. 

Thus, of all of the methods considered here, tearing the equations produces 

significant savings in computational effort at each iteration for only the secant 

method, for the Newton Raphson method and for Wegstein's method. 
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2.7 Summary 

In this chapter it has been shown that whilst that no assurance of the existence 

of a unique solution to an equation set can be gained by an inspection of its 

structure, in the common case, some necessary conditions can be placed upon this. 

Next it was shown that, whatever the solution method, it was desirable to find 

an output set for the equations and the bounds on the number of such sets were 

established. In § 2.5 the equivalence of matrix, graph and equation partitioning 

was demonstrated in that it was shown that diagonal of a partitioned incidence 

matrix for some equation set F(X) corresponded to the strong components of the 

digraph of the assigned equations; these in turn represent a sequence of equation 

sets which can be solved simultaneously. The effect of this partitioning on the 

amount of effort required to solve an equation set, both per iteration and on the 

number of iterations was discussed. Lastly, in § 2.6 it was shown that it is very 

hard to define conditions on the optimality of a tear set for a problem. Further, 

whilst an analysis of the geometric effects of tearing is not possible, it was shown 

that in many cases there was no significant reduction in the operations count per 

iteration for a torn system over the full case. 

We proceed in the next chapter to discuss the most popular methods of selecting 

an output set and partitioning and decomposing equation sets. 



The evil that men do lives after their lives, yet the good is 
oft interred with their bones 

William Shakespeare, Julius Caeser 

Chapter 3 

Literature Review and Selection of Methods 

3.1 Introduction 

In the last chapter we discovered why some structural analysis of equation sets 

is necessary, and why other aspects of this phenomenon are desirable. In this 

chapter we discuss solutions which have been proposed for the problems raised 

in that chapter. In § 3.2 methods for output selection are described. There 

are multifarious formulations of this problem which draw on techniques such as 

graphical analysis and integer programming. In § 3.3 we turn our attention to 

the partitioning of incidence matrices. Here we demonstrate how the structure 

of these matrices determines the pattern of fill in which they experience, and it 

is shown that no deterministic algorithm exists which can predict a minimum 

for this phenomenon. Next methods for permuting the rows and columns of 

these matrices are described, and lastly we consider algorithms which manipulate 

them in different ways. In § 3.4 decomposition techniques are examined. These 

67 
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range from arbitrary strategies, through integer programming methods to those 

which are based on a depth first search of the bipartite digraph which describes 

the matrix. There are some techniques which can be considered common to 

graph partitioning and decomposition. Those which select spikes may be used 

as tearing methods since they identify the effects of circuits within both directed 

and undirected graphs. 

A brief summary of the conclusions drawn from each section is presented in § 3.5. 

3.2 Choosing An Output Set 

Consider an equation set R which involves the variables, X, and which is 

structurally non-singular. If v E X is a variable which appears in u E R then, 

given the values of all of the other variables in u, this equation can be solved for 

x. Thus u and v can be recorded as a pairing and u is said to be assigned to v. 

No ordering is defined on assignment and so, alternatively, v may be said to be 

assigned to u. A set, 5, given by 

S={(u,v)} i=1,2,•.., IRI 	 (3.1) 

in which u i  0 u, i j and vi i6 v, i 0 j, is called a maximal assignment for the 

equation set; equivalently, S may be referred to as an 'output set' or a 'maximum 

transversal'. The first algorithm which appeared explicitly for the purpose of 

identifying an output set was presented by Steward [92]. He was concerned with 

identifying a single output set and then showing that this set could be used 

to generate all others; he showed too that where no such output set exists the 
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equation set is structurally singular. He presents his explanation in terms of the 

incidence matrix of the equation set, but it is clearer to consider the undirected, 

bipartite graph (V, E) which represents it, and D(V, E), the directed bipartite 

graph which corresponds to a particular assignment of variables to equations. 

The first step in his algorithm is an assignment of a variable, v, to an equation, 

Uk, whose node is adjacent to that of v in (V, E). If this node already appears in 

some element, (Uk, wk) e 5, as defined above, then the pair, (Uk, wk), is removed 

from S and replaced by (Uk, v); an attempt is made now to assign a new equation 

node to wk.  Any such assignment may cause other pairs in S to be removed 

and replaced and the process continues until either an equation node, u, is 

encountered which is not in 5, in which case the new assignment is added to this 

set, or there are no more equation nodes which are candidates for assignment to 

the current variable node, w3 . In this case each of this node's predecessors on 

the path is examined to see if it can be assigned to a free equation node. If this 

is possible S is perturbed in the usual way and a fresh search is made for the 

next variable node; if this is not possible then, since no assignment can be found 

which includes each variable, R must be structurally singular. 

Having identified an output set, Steward shows that all others can be found by 

forming a symbolic version of the reachability matrix. This is defined to be the 

Nth power of Adj(R), the incidence matrix for R, where PRI = N; the diagonal 

blocks of this matrix represent all circuits in (V, E) which involve N edges. By 

defining the processes of directed path multiplication and addition he shows that 

in each of the i' powers of Adj(R), all paths in c which involve i edges are 

recorded and that each is recorded i times. His argument is that evaluating all 

of the loops of in this way allows the generation of new output sets simply by 
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reassigning nodes around these loops, possibly recursively. This makes implicit 

use of theorem 2.1, which states that each of these reassignments must take place 

within a strong component of V(V, E). 

Although each of these algorithms is correct neither is very good because each is 

algorithmically inefficient. In the first the lack of a look ahead facility may lead 

to a large waste of effort. Consider the situation when M assignments have been 

made and we wish to assign an equation to the M + 1th variable. In the worst 

case, all paths of length 1 < M in (V, E) which involve the M assigned variables 

may have to be searched before a new assignment is found. Whilst it is difficult 

to express the worst case algorithmic complexity for this method, it is certainly 

very high. In the second it is very expensive to calculate powers of the incidence 

matrix, even when it is stored in packed form. 

A better algorithm based on a depth first search of (V, E) and which includes a 

look ahead facility is that due to Duff [23]. This author defines a cheap assignment 

to be an assignment which is made without resort to a path search. In terms 

of the incidence matrix of (V, E) this corresponds to assigning to the row, i, 

the first column, j, which intersects with it and which is not in the present 

assignment. Staying with this representation of the equation set, the algorithm 

starts by making as many consecutive cheap assignments as possible. Whenever 

this process fails for some row a path search is started, even if a cheap assignment 

is possible for some row later in the matrix. 

Let such a row be i0 . •  The search starts by finding the first non-zero in this row; 

this is in column ji  and it has been assigned to row i 1 . Row i1  is searched now 

and if it contains a free non-zero j', the assignment (i1 ,j1 ) is removed from this 
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set and replaced by the pair of assignments, (i0 ,j1 ) and (i1 ,j'), and the search 

is restarted from the next free row. If i 1  had contained no free column then the 

first column with which it intersects j2, 32 y ji, would have been placed on the 

path and the search continued. This process of extending the path is the depth 

first search and the search for a free column in each row is the look ahead facility. 

If during the search a column has no more candidate rows, the search backtracks 

to the previous row. 

Duff [23] interprets this search by reference to an obscure form of a signal 

fiowgraph. A much clearer interpretation is apparent if one treats it as an 

attempt to establish a maximum matching, A? [36], in an undirected, bipartite 

graph where the vertex partitions, %T,  and V, correspond to equations (rows) and 

variables (columns) respectively. Recall that a matching in a graph is a subset 

of its edges such that no vertex appears in more than one edge. A matching 

of maximum size for a graph is called a maximum cardinality matching; if each 

vertex in the graph is incident on one of the edges in such a matching it is said to 

be complete. Any vertex which is not an endpoint of some edge in the matching 

is said to be free and a path of odd length between two free vertices in the graph, 

such that there is no other free vertex on it, is termed an augmenting path. If 

this path is of length 1 > 1 then the edges of which it consists are alternatively 

in the current matching and outwith it. Let P be such a path, A the set of edges 

which it contains and M0  9 A be the edges in A which are also in M, the current 

matching. Since both terminal vertices in P are free, IA - Mol = IM 0 I + 1, and 

thus the size of the matching may be increased by one by removing each member 

of M0  from M and adding each member of A - M0 . In a finite graph, if no 

augmenting path exists then the current matching is maximum. 
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The search starts by establishing the assignments (vi, vi), ii, E V, zi E 

V, (vi, u,) M the current matching, until no such assignment can be made 

for some vertex vk E V. The search continues along a path, F, as described 

above and the lookahead corresponds to looking for a free vertex, v' E Vs,, which 

is adjacent to the vertex, Vm E V, at the head of P. As Duff [23] indicates, it 

is difficult to define a worst case time complexity for this search, but it would 

appear to be O(nr) where there are n vertices in Q(V, E) and r edges. 

Westerberg and Edie [102], [103] presented an entirely different approach to 

determining an output set for the solution of linear equations. They argued 

that it is not only the structural form of a matrix which is important, but 

also the algebraic and numerical properties of the equations which it is used 

to represent. To this end they presented two strategies for improving the 

convergence characteristics of an equation set which is to be solved by successive 

substitution; they claimed that any strategy which improves the convergence of 

successive substitution is likely to improve the convergence of any other numerical 

method. The method of successive substitution will converge a set of linear 

equations if and only if the largest eigenvalue of its iteration matrix is less than 

one. If the equations to be solved are 

Ax=f 
	

(3.2) 

then, using A = D - B, where D is a diagonal matrix with the same entries as 

the diagonal of A, the method of successive substitution finds x by 

X = DBx + D 1 f 	 (3.3) 

and D 1 Bx is the iteration matrix. These authors show that this value can 

be minimised either by minimising the maximum row sum in this matrix or 

maximising the product of the diagonal coefficients. Either of these goals may be 
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achieved by the application of dynamic programming techniques and an implicit 

enumeration method is presented for each which cuts down the amount of search 

required. 

These techniques can be extended to deal with non-linear equations if an iterative 

solution procedure is used and the ordering method is applied to the Jacobian. 

The authors suggest that the first derivatives of the equations be used and that the 

output set be chosen before the first iteration. Should the solution vector change 

appreciably, then the output set ought to be redetermined. Given the amount of 

effort required in solving a dynamic program to determine each output set, and 

the crudeness of the measure of optimality, this seems unlikely to be of any real 

benefit. 

Sargent [82] proposed that the selection of an output set could be posed as the 

set partitioning problem: 

max E wx 
j=1 

SA. Cx,=i, i=1,2,...,2N 	 (3.4) 

x=Oorl, 	j=1,2...... 

where C is the node-arc incidence matrix for the equation set', {x,} is the set 

of variables and equations and wj is a weight assigned to the jr" arc; this weight 

reflects the desirability of adding the pairing corresponding to the endpoints of 

the j1h  arc to the current matching. In this formulation, each arc in the bipartite 

graph which represents the equation set is assigned a weight and the maximum 

sum of N of these arc weights is chosen within the constraint that each variable 

1 1n this matrix the rows correspond to nodes and the columns to arcs in the bipartite graph. 
The column for edge e has exactly two entries, and these are in the rows which represent its 
termini. 
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and equation is an an endpoint of exactly one arc. Sargent is not explicit about 

the details of this formulation, but he suggests that if one wishes only to identify 

one output set then equations 3.4 might be solved using either the algorithm 

of Edmonds [27] or Hoperoft and Karp [46] but that if one wishes the optimal 

solution then that of Edmonds and Johnson [28] should be used instead. The first 

of these algorithms has a worst case time complexity of 0(NIEI), where there 

are E edges in the graph, and the second has one of 0(N). The third is less 

efficient yet. Even refers to a report by Gabow [33] in which its complexity is 

given as 0(N3 ) and so, since assigning meaningful values to the weights can be 

very difficult, it would appear that there is very little point in finding the optimal 

solution to this problem. Further, as will be shown on page 77, there is a more 

efficient formulation of the output set problem. 

Before describing this formulation it is worth noting that another approach which 

involves the ascription of weights to the arcs is the stable marriage problem. 

Here the point is to find a one to one correspondence between two disjoint vertex 

sets such that there are no two vertices i and j which are assigned to other 

nodes but which have a stronger mutual attraction. Gale and Shapely [34] have 

presented an algorithm which finds a solution to this problem in 0(N 2 ) time 

where there are N vertices in each set. Irving [48] has shown that determining 

the number of solutions to this problem for any value of N is NP-complete and 

so, in the absence of any polynomial time algorithms, it is likely that determining 

the optimal solution for this formulation is also NP-complete. A further problem 

with this technique is that it is difficult to define what one means by the optimal 

solution. Let one of the vertex sets be labelled 'men' and the other 'women' and 

let a good solution be one in which one of the vertex sets has its preferences 

satisfied to a maximal degree. In general an assignment which is man optimal 
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will not be woman optimal and vice versa and so some form of compromise 

must be reached. In terms of equation solving this means that an assignment 

which matches each variable to the equation which is most easily solved for it, 

within the constraints of the problem, is unlikely to match each equation to the 

variable within it for which it is most easily solved. Thus an optimal solution, 

however it is defined, lies somewhere between these two extremes. Even if one 

were able to define the relevant optimality criteria there is no guarantee that this 

would have any real meaning since it ignores the values of the variables. This 

is an unpromising approach and, given the same edge weights as in Sargents 

formulation [82], it gives a suboptimal solution. It would be acceptable only if it 

were much more efficient, but it may be useful for providing a starting point for 

the set partitioning problem. 

Paterson [69] has provided a possible means of circumventing the problem of 

assigning weights to the edges in the graph. He restricted his work to the 

solution of a single equation in a single variable but his results may be extended 

to cover the multidimensional case. His argument is that one ought to rerearrange 

a non-linear equation so that it can be rendered nearly linear by a suitable 

change of variable, e.g. by replacing a squared term by a new variable. This is 

desirable because those numerical methods which have superlinear convergence 

use derivative information which approximates a curved gradient by a straight 

line. A second desirable condition is that the right hand side of the new equation 

should be a weak function of the variable on the left hand side so that the absolute 

value of the gradient will be less than one . The desirability of this condition 

arises from the assurance of the convergence by successive substitution of such 

an equation. 
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This author suggests that when solving an equation by a Newton type method one 

ought to rearrange it so that the equation being solved is a difference between such 

a right and left hand side. Thus if the original equation 1(x) = 0 is rearranged 

so that x = f(x) is a good rearrangement for solution by successive substitution, 

the convergence characteristics of Newton's method for x - f(x) = 0 ought to be 

better than those for f(x) = 0. Paterson [70] extends this idea to providing good 

rearrangements and starting guesses for equations by identifying the dominant 

term in an equation if one exists. Having identified this term, he gets a good 

starting guess for the iteration by approximating the equation to this term and 

solving the approximation analytically. The original equation is then rearranged 

so that, after a change of variable, the dominant term is now the subject of the 

equation. 

Paterson's argument [69] is that these techniques work because they satisfy a 

sufficient condition for convergence, and they perform better than the method of 

successive substitution (MSS) early on in the iteration, and thus better overall. 

As he points out, a sufficient condition for the convergence of this technique for 

the solution of some equation f(x) is that I f(x*)  I < 1, where x is the desired 

solution. Since the value of x*  is unknown, he relaxes this condition to hold on 

the value of x0 , the initial estimate of the solution. This is his justification for 

making the right hand side of an equation a weak function of the left hand side. 

Whilst there is a plausible argument, supported by experience, that the use of 

Paterson's observations are likely to improve the convergence characteristics of 

an equation set, it is not true to say that he has defined a condition which is 

sufficient for this. 

Paterson's techniques extend to cover the multidimensional case in a natural 
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way. Here an equation is rearranged for some variable within it which does 

not yet appear in an assignment and which appears in a term which can be 

used to maximise the linearity of the rearranged equation. It is clear now how 

Paterson's work relates to formulations of the assignment problem in which edges 

are weighted; his analysis of each equation can be used to assign the weightings for 

the edges between variables and equations. Such a weighting could be assigned 

a priori or reviewed once every few iterations. This is likely to be extremely 

expensive, however, because each variable may occur in more than one term in 

each equation, and so many rearrangements and approximate solutions would 

be required to calculate these weights. Ascribing these weights would embody 

the majority of the effort required to produce an assignment. Since the cost of 

solving a stable marriage problem or a dynamic program, probably suboptimally, 

provides the balance, this technique is unlikely to be of practical use. 

The most efficient formulation of the output set problem where no weights are 

taken into account is that of modelling it as a flow network problem. Each edge, 

e, of the bipartite digraph D(V, E) is assigned a capacity, c(e), which is the largest 

amount of flow allowed through it. The purpose of the algorithms presented here 

is to find the maximum possible flow from one partition to the other; the material 

is assumed to flow from an imaginary source, which is connected to each of the 

nodes in one of the partitions, into an imaginary sink which is attached to each 

of the nodes in the other. Prior to describing the formulation in detail we require 

the following definitions. 

A flow function, f, is an assignment of a number, f(e1), to each edge, e,, in a 

graph. Clearly 

0 < f(e) < c(e) 	 (3.5) 
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The total flow, F, through the graph is the net flow from the source to the sink. 

A network, N, is a directed graph which has a source and a sink and for which 

every edge, ej  in N, has a capacity, c(ej. If initially 

f(e) = 0 

c(e) = 1 } 
	

(3.6) 

if the toal flow through each node other than the source and the sink is restricted 

to unity; and if only integer increments are allowed in f(e,), then N is called 

a zero-one network; this is the type of network which is of interest to us. An 

example of such a network is shown in figure 3.1. An edge ej  is said to be useful 

Figure 3.1: An example of a Network 

if it connects two nodes, u and v, where u is closer to the source, i.e. there is a 

shorter path from the sink to u than from the sink to v, and either 

ej = u -+ v and f(e1) <c(e1 ) 	 (3.7) 

or 

= u - v and 0 < f(e1) 	 (3.8) 
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because in either case the net flow of material from the source can be increased by 

forcing flow through e1  towards the relevant bound. A proof that flow augmenting 

techniques can be used to solve the output set selection problem is deferred until 

§ 4.2. 

Possibly the best known algorithm for maximising network flow was provided by 

Ford and Fulkerson [31]. At each stage the search for an augmenting path starts 

at the source and a vertex, v 1 , is sought through which the flow is submaximal. A 

similar vertex, v2 , which is adjacent to v 1  is sought and the process continues until 

the sink is reached; at this point the path has been found and flow is increased 

along it by the maximum amount possible which does not break constraints 3.5. 

When no such augmenting path exists the flow is maximal. This algorithm may 

fail in the general case if c(e1 ) is allowed to be irrational for any ei  E E; hence the 

need to constrain c(e) to integral values. The nature of this algorithm has been 

reviewed by Even [30], and he refers to a breadth first search amendment which 

guarantees that the algorithm will terminate in O(IVI 3 IEI) steps even when c(e1 ) 

is allowed to be irrational. 

A much better method is that due to Dinic [20]. This algorithm uses a breadth 

first search through a network, N, which changes each time that an augmenting 

path has been found. One can show that this algorithm must terminate and that 

it must do so after O(N 2 r3) steps, where there are N nodes and r arcs in the 

network. Even [30] has proved that for a zero-one network this bound is reduced 

to O(r). This algorithm is described fully in § 4.2 and so it will not be discussed 

here, save to say that it appears to be the most efficient method for determining 

an output set for a set of equations. 
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It has been shown here that Steward's [92] seminal algorithms for establishing an 

output set and generating all others from it are highly inefficient, and that they 

have been superseded by most of their modern competitors. Further, attempts to 

define an optimal output set have not produced criteria which are both meaningful 

and efficiently established. Westerberg and Edie's, [102] and [103], methods for 

minimising the maximum eigenvalue of an iteration matrix are meaningful but 

inefficient; Sargent's [82] set partitioning formulation provides an optimal solution 

in O(NIEI) time, but he does not present any method of assigning weights to arcs. 

Regarding assignment as an instance of the stable marriage problem guarantees 

an answer where the equation set is structurally non-singular, but it is both 

difficult and costly to define an optimal solution, even when Paterson's methods, 

[69], [70], are used. Duff's depth first search algorithm with a lookahead facility 

identifies a maximal assignment in O(NIEI) time, and it is easier to implement 

than Sargent's integer program. The most efficient approach which has appeared, 

however, is to treat it as a maximal flow problem in a zero-one network which is 

to be solved by an tlkd application of Dinic's method [20]. 

3.3 Partitioning Matrices 

In this section we will discuss not only methods of partitioning matrices but 

also ways of permuting the rows and columns within diagonal blocks. When 

we are dealing with the solution of non-linear equations, rows and columns 

are permuted within blocks so that they have bordered triangular form (see 

figure 2.11). The variables which correspond to the right hand border are then 

torn; these techniques will be described in § 3.4. When linear equations are being 
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solved, blocks are ordered internally so that fill-in is controlled during Gaussian 

Elimination. 

A spike is a column which has non-zero entries above the diagonal. At first 

sight, since fill-in can occur only in spikes, one might believe that minimising the 

number of spikes would minimise the fill-in in a matrix. Consider, however, the 

two matrices in figures 3.2(a) and (b). These are symmetric permutations of one 

X - non-zero entry  
I X X 1(a) lx 	xl (b) 	0-fill-in 
Ix 	X i 	I xxoI 
L.x x..xJ 	L.x xxi 

Figure 3.2: Two permutations of an Irreducible Matrix 

another and figure 3.2(a) has two spikes whereas figure 3.2(b) has only one. If 

Gaussian Elimination were applied to the matrices then no fill-in would occur in 

the first matrix whereas one entry would fill in the second, despite the fact that 

it has one less spike. Prior to a discussion of how fill-in can occur, it is necessary 

to establish the relationship between different permutations of the same matrix. 

Let A be any matrix of order, N, and let P be some permutation matrix of the 

same order such that P, = 0 or 1, i,j = 1,2,..., N, and there is at least one 

non-zero entry in each row and column. The matrix 

A 1 =PA 
	

(3.9) 

has the same elements as A but its rows appear in a different order. 
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Postmultiplying A 1  by the transpose of P to give 

A 2  = A 1 Pt  (= PAP) 	 (3.10) 

permutes the columns of A 1  in the same way as its rows. As shown by theorem 2.5 

the diagonal blocks of A, A 1  and A 2  are permutations of each other and hence all 

matrices 

4= RAilt 
	

(3.11) 

such that A is block lower diagonal, form an equivalence class for all permutation 

matrices R. 

If A 1  is postmultiplied by some permutation matrix Q 54 PI to give 

A 3 = FAQ 
	

(3.12) 

then the columns of A s  are permuted in a different way to the rows of A. If 

A had non-zeros in every diagonal position ,  to begin with then A 3  belongs to 

the same equivalence class as RARt,  Duff [22]. The graphical interpretation 

of equation 3.11 is that it reorders the nodes in the digraph of A whereas 

equation 3.12 reorders the nodes and reorients some of its edges. 

3.3.1 A Characterisation of Matrix Partitioning 

Rose and Bunch [79] showed that permuting an irreducible matrix never saves 

arithmetic operations, regardless of whether this is performed symmetrically 

or asymmetrically, although it can lower storage requirements. In order to 

demonstrate this, they cited the solution by Gaussian Elimination of the 
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equations 

Mx = k 	 (3.13) 

where M is an N x N coefficient matrix and x and k are 1 x N vectors. Performing 

a Gaussian Elimination on the first m rows of M can be regarded as finding a 

partial LU decomposition of this matrix, and this can be written as 

M= 
	0 	U1  L 1 	

(3.14) 
I 	0 z 

where L 1  and U1  are m x m matrices, B is an N - m x m matrix and C is an 

m x N - m matrix. Since M is irreducible, so too is every permutation of it and 

hence R can never be the zero matrix. If the graph is not strongly connected, 

then B = 0 is possible, and both storage and arithmetic requirements may be 

reduced. Rose [78] defined a perfect elimination undirected graph to be one whose 

nodes are ordered so that, on elimination of some node, x,, no new edges have to 

be added to the graph so that all paths of length, 1> 1, which pass through x 

in the original graph (V, E) become paths of length 1— 1 in the new graph, 

Not all graphs may be ordered in this way and not every ordering of one which 

can is a perfect elimination ordering. 

This definition is important in the study of the solution of equation sets. Let the 

rows and columns of the N x N symmetric incidence matrix, A(g), be ordered in 

the same way as the nodes of (V, E). Then the elimination of the jth  node from 

g(V, E) corresponds to pivoting on the i' row and column of A(c). In general, 

pivoting leads to fill-in, and this corresponds to adding new edges to the reduced 

graph. In order to relate this fill-in to Gaussian Elimination, Rose [78] made use 

of the following definitions. 
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The deficiency of Vi E V, D(v 1 ), is defined as 

D(v 1 ) = {(v,,vk) I v3 , vi € Adj(v1), vi gAdj(vk), vk gAdj(v,)} 	(3.15) 

i.e. 	the set of edges whose addition to E would make the vertex 

subset Adj(v1) U {v1} a clique. 	The elimination graph of Vk in c is 
j=k 

cr,, (V - U vk, ), where 
j=1 

= (E - {(v,vi) I Vi e UAdi(v,)}) UD(v 3 ) 	 (3.16) 
j=1 	 j=1 

which is the graph obtained by deleting the vertex vk from the (k - i)uhi reduced 

graph 
k..1 and adding those edges in its deficiency. In figure 3.3, the graphs of 

figures 3.2 (a) and (b), the first graph has a null deficiency, whereas the second 

has D(E3 ) = {x4 }. The arc (E3 , X4),  which is shown as a dotted line, is added 

to the edge set when E3  is eliminated. According to Rose, the (possibly filled) 

submatrix, A(c), which results from pivoting on the k 1 row and column of A 

is the incidence matrix of the graph cVk.  To see this one need note only that 

pivoting on this vertex involves the deletion of each entry in the k" column of 

A which lies beneath the k 1row, and the modification of the non-zero entries in 

each affected row which lies to the right of the k 1  column. A row is affected if 

and only if it corresponds to a node in the adjacency set of vj; each entry in the 

row is affected if and only if it corresponds to a node in Adj(vk) or Adj(v1). If 

some entry, (i,j), is affected such that vi E Adj(vk) but v, Adj(vk), then a new 

non-zero entry is made in A. This corresponds to the creation of a new arc in 

between node vi and node v; no such new arc results from the case v3  E Adj(v1), 

v Adj(vk). Each new arc is a member of D(vk) and it is easy to see that each 

member of D(vk) contributes a new arc to cVk.  Thus cVk  is the graph of the 

submatrix of A which results from pivoting on the kthl  diagonal element of A. 

It follows that if F is the set of new arcs added to 9 as each node is eliminated 
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(a) 

(a) 
Figure 3.3: Graphs for the Matrices of figure 3.2 

in turn, i.e. F = U D(v,) then F corresponds exactly to the set of filled entries 
j=1 

which occur during vertex elimination on A. Further, cF(V,  E U F) is the graph 

of the matrix L + LT, where L is the Cholesky factor of A 2  [51]. It is important 

to minimise the size of F so as to minimise both the storage requirements and 

the number of arithmetic operations necessary at each iteration. Ideally IFI = 0 

is sought, and Rose shows that if this is to be achieved, then it is necessary for 

ç(V, E) to be the transitive closure of itself, i.e. 

(v 1 , v) E E and (v1, vk) E E * (v1, vk) E E 	(3.17) 

Any graph which displays this property is said to be chordal [11]. This term is 

2 n.b. This refers to the logical Cholesky factorisation - no numerical values are assumed. 
This generalises Rose's argument to the solution of linear and non-linear equations. 
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used because each path in the graph of three vertices has a subpath between its 

termini. 

Haskins and Rose [39] showed that fill-in may occur in the same way in 

unsymmetric matrix by relating this to vertex elimination in digraphs. They 

demonstrated that if there is a path in a graph D(V, E) from some vertex v, to 

another vertex v,  which passes through one or more vertices which are ordered 

before z' and vi,, then if (vi,  v) V E, this edge fills in when z', the highest ordered 

vertex on this path such that it is ordered before u, and v i,, is eliminated; the 

edge is directed in the same way as the path. More formally, if there exists a 

bijection 

	

a: V4-4 {1,2,...,IVI} 	 (3.18) 

which orders the nodes in 	then for any path, p, 

(3.19) 

which contains at least one node Vj1  such that 

a 1 (v 1 ) < min(a 1 (v), a 1 (v)) 	 (3.20) 

then either (z', zi,) E E or (V, E) is not a perfect elimination digraph. They 

extend their analysis by providing three necessary conditions for the perfect 

elimination condition on (V, E): 

1. V Vi, z', E V at least one of these vertices, say u 1  is such that V 11k, VI E V 

which separate vi and v, v, does not separate vk and vj. 

2. V v 1 , vi € V at least one of these vertices, say v, is such that V vk, vi E V 

which separate v1  and i's, every set r of n > 2 vertices contains a subset 
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IF of n - 1 vertices such that any path from uk to vI  through vi  whose 

elements are exactly those of r has a subpath from vk to hg whose elements 

are exactly those of T. 

3. For any set r of n > 2 vertices there exists a subset J1  of n - 1 vertices such 

that any cycle on r has a cycle on T. 

The authors conjectured that the first two of these conditions might be sufficient 

to ensure that D(V, E) is a perfect elimination digraph, but Kleitman [50] showed 

that this is not the case. The third condition is tantamount to saying that g(V, E) 

must be chordal. 

Rose and Tarjan [80] extended these concepts and produced an algorithm which 

computes the fill-in for any ordering, and one which will find a perfect elimination 

ordering for a digraph should one exist; each of these algorithms can be executed 

in O(Nr) time, where there are N nodes and 'r arcs in the digraph. They also 

presented an algorithm which, starting from any fill set, F, will reduce it and 

reorder the digraph until it finds a minimal fill set, Fo ; this algorithm works 

in O(N2 (r + IFI)) time. More theoretically, they showed that since there is a 

polynomial transformation which converts the Satisfiability Theorem of Calculus 

into the problem of computing the minimum fill-in for D(V, E), the latter problem 

is NP-complete. Yannakakis [106] has provided a similar proof for undirected 

graphs, based on Berge's observation [11] that any perfect elimination graph is 

chordal. The problem of computing the minimum fill-in may be formulated as 

a calculation of the minimum number of edges which must be added to G(V, E) 

in order to make it chordal. He shows that the NP-complete Optimal Linear 
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Rearrangement Problem is a reduction of this task'. 

Schreiber [84] extended the analysis of vertex ordering in undirected graphs 

by examining the structure of the graph which corresponds to the Cholesky 

factorisation of a symmetric matrix A. He defined col(j) and next(j) for the 

th vertex to be 

C01(j) = {i > j I ii.,  0 O} 	 (3.21) 

next(j) = min{k I k E col(j)} 	 (3.22) 

Obviously col(j) is the set of nodes ordered after j to which it is connected by an 

arc in the filled graph, and next(j) is the lowest numbered such node. Schreiber 

shows that, as a direct consequence of these definitions, 

col(k) C col(next(k)) U {next(k)} 	
(3.23) 

col(n) = 0 

He uses these definitions to form the elimination tree, T(V, N(L)), for the filled 

graph, where 

N(L) = {(j, next(j)) € E 11 < 	n - 1} 	 (3.24) 

This is an ordered tree rooted at v,, the last node in the ordering. If row(j) is 

defined as 

row(j) = {k <i I 1,i 	O}, 1 <j < n 	 (3.25) 

i.e. the set of vertices whose removal effects the jtl  node, then it can be seen that 

Trow(j)u{ j } is an ordered tree rooted at node j. Further, col(j) is the set of nodes 

on the path from the j node in T(V, N(L)) to the root of this tree. From this it 

'An arrangement of the nodes in a graph G(V, E) is an ordering ir of the nodes within it. With 
each edge e = (Y, w) E E in this graph is associated the value ö(e,ir) = (7r- '(V) - (ir'(w)), 
and the cost of the arrangement is defined as c(7r) = F, e E Eö(e, ir). The Optimal Linear 
Rearrangement problem is the question "For an integer k, is there an arrangement of the nodes 
in (V, E) such that its cost c(7r) <k?". 
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can be seen that orderings which minimise the depth and maximise the breadth 

of the elimination tree tend to minimise the fill-in in the incidence matrix. 

It is important to note that it is the structure of the elimination tree which 

determines the fill-in during vertex elimination, not the number of spikes in the 

incidence matrix. To show this Liu [58] followed the same line of reasoning as 

Schreiber [84], and he demonstrated that the fill-in in a graph can be characterised 

by the leaf nodes of its elimination tree. This result follows from the proof of a 

theorem which states that vertex vj is a leaf in the row subtree rooted at vi if and 

only if (v i , v,) E E and there is no descendent of v3 , Vk,  such that (v 1 , vk) E E. 

The same author [60] showed that the set of orderings which preserve the order 

of the nodes in T(V, N(L)) is a subset of the set of orderings which preserve the 

set of filled edges; this, in turn, is a subset of the orderings which preserve the 

number of edges added to G(V, E). He uses this reasoning to show how sparsity 

can be maintained when reordering some of the vertices in g(V, E). 

No characterisation of directed graphs in terms of an elimination tree has 

appeared as yet, but some progress in this direction has been made. Aho et 

al. [1] define the transitive reduction of a digraph to be the smallest graph D1 t 

which has the same transitive closure as D(V, E). V1t  need not be a subgraph 

of V(V, E), but it has the same number of nodes and its strong components, 

each of which is a simple cycle, are comprised of the same vertices as those of the 

larger graph; if there are one or more arcs between strong components in D(V, E), 
these are represented by a single arc in V1t.  Should D(V, E) be acyclic then V 1 ' 

is unique. Otherwise there will be more than one transitive reduction of V(V, E) 
and the relationship between the transitive reduction and the transitive closure of 

V(V, E) is the same as the relationship between the leaves of T(V, N(L)) and the 
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structure of the filled undirected graph from which it it constructed. Sahni [81] 

defines the minimal equivalent digraph of a digraph, V(V, E) to be its minimal 

subgraph V2  which has the same transitive closure as D(V, E). He shows that 

finding this subgraph is an NP-complete problem. 

3.3.2 Symmetric Permutations 

Harary [38] presented a technique for partitioning the incidence matrix which 

uses the reachability matrix for a graph. He uses a slightly different definition of 

this matrix to that given on page 69. In his terms, this matrix is the kt  power 

of the incidence matrix and its (i, j)th  element is non-zero if there is a path of 

length 1, 1 < k from node i to node j. If the incidence matrix of V has rank N 

then the (N - 1)1h reachability matrix contains all of the paths which exist within 

the graph. Each strong component can be found by checking along each row i to 

see if for each non-zero intersection with a column j, (j, i) is also non-zero; the 

set of all such non-zero entries defines the set of nodes which appear in the same 

strong component as i. Having deleted each row and column which corresponds 

to this strong component the search can continue; n.b. this does not order the 

strong components in any meaningful way. In the worst case, i.e. each node is in 

a different strong component, N(N-1)  checks are necessary to identify them and, 

if no packed form is used, (N - 1)N3  multiplications are necessary in order to 

compute the reachability matrix. 

A similar but different definition of the reachability matrix was used by 

Himmleblau [43]. This author defined the non-zero entries of the k°' power of 
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the incidence matrix with zeros on the diagonal to correspond to node pairs such 

that there is a path of exactly length k between these nodes. The reachability 

matrix is then the summation of each of these matrices from 1 to N - 1; the 

final matrix has the same form as that of Harary [38] but Himmleblau defined 

Boolean multiplication and addition differently. If R*  is the above mentioned 

sum then the set of non-zero entries in the i1h  row of R*(R*)t  contains all of the 

nodes which are in the same strong component as i. Once again this does not 

order the strong components of the graph. 

Steward's algorithm [93] begins by finding a maximum transversal of A, the 

incidence matrix of the equation set, and forming fl, the signal flowgraph of the 

digraph based on the 'equation' nodes which represents the transversal. All of the 

sources for this fiowgraph are eliminated, although none of the sinks is, and then 

its loops are identified by a depth first search. Not all of the loops are identified 

explicitly, but node j is collapsed into the supernode I if it is in a loop with any 

vertex k E I (a supernode is simply a loop which is treated as a node). This 

process is repeated until no new loops are found and the stack is then popped 

with each supernode containing a strong component of fl. As we will see in § 5.2 

these are also the strong components of V(V, E). 

None of these algorithms is very efficient because the first two require several 

powers of the incidence matrix to be evaluated and the second restarts each 

search for a loop from the start of the graph. Perhaps the most popular method 

is that due to Walker and Tinney [97], which Rose [78] called the minimum 

degree ordering. This algorithm was developed for use with symmetric matrices 

and it selects as the next node to be ordered that which has the lowest degree 

in the current reduced graph; n.b. this is a symmetric version of Markowitz's 
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[61] algorithm. Many authors have addressed themselves to improving the 

performance of this technique and their efforts are reviewed by George and Liu 

[35]. 

3.3.3 Asymmetric Permutations 

Sargent and Westerberg [83] addressed the problem of partitioning within the 

context of precedence ordering of the calculations in a process flowsheet. Implicit 

in their approach is the assignment of a direction for each arc in the graph. 

This is implicit because there is a natural direction associated with an arc in a 

digraph which represents a chemical process, namely the direction of material 

flow. Therefore, prior to use of this algorithm for ordering equation sets, a search 

for a maximum transversal is necessary. They proposed a depth first search (DFS) 

algorithm which selects an arbitrary start vertex and searches backwards along 

the edges incident upon it in order to identify cycles of the digraph. When a loop 

is encountered the nodes associated with it are grouped together and treated as 

a single node; any edge which was incident upon one of the constituent nodes is 

held to be incident upon the supernode and likewise those edges incident from 

any of these vertices is incident from the group. Having encountered and formed 

a supernode the search is continued as before. Should a new node be in a loop 

with a supernode already on the stack then those nodes are merged, along with 

any others between them on the stack. 

If at some point in the search all of the incoming edges for a node have been 

searched and it is found to be in no cycle with any other node then this node is 



Chapter 3. Literature Review and Selection of Methods 	 93 

popped from the stack (it must be at the top) and added to the list of strong 

components. This is the case regardless of whether the vertex is simple or a 

supernode. Should an edge from such a vertex to a node on the stack be identified 

later no action is taken since such a path implies the existence only of a path, 

not a circuit. These authors seek to permute the rows and columns within the 

blocks of the incidence matrix which correspond to these strong components so 

that they are in bordered block diagonal form. The borders of these blocks are 

formed by minimising the weight of the spikes in each block using a dynamic 

programming technique similar to that used by Westerberg and Edie [102]. The 

amount of search within each block is minimised by the use of graph reduction 

and an implicit enumeration technique. 

Christensen and Rudd [16] proposed a similar scheme to that above, but they 

allowed nodes to be permuted to the end of a sequence as well as to the beginning. 

They too proposed a method of node merging to reduce the size of the digraph. 

Forder and Hutchison [32] took a similar approach, but they enumerated all of the 

cycles in the graph by a depth first search, and employed a complicated flagging 

system in order to identify the first node in a strong component on the stack. The 

blocks of the incidence matrix are generated in reverse order by this algorithm. 

Each of the above algorithms has some theoretical merit but each is inefficient in 

practice. The first two methods suffer from an excess of superfluous relabelling 

whilst the third traces each loop in the graph which, although potentially useful, 

is, as we shall see in § 3.4.3, also potentially very expensive. Johns [49] proposed 

a method which obviated these problems but an even better solution was given 

by Tarjan [94]. His DFS method maintains a path and a stack. Each node is 

added exactly once to both structures and each edge is traversed at most twice. 
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Thus the time complexity for this algorithm is O(N + r) where there are N 

vertices in the graph and r edges. The strong components of the digraph are 

identified by maintaining a pointer for each node which points to the lowest node 

on the stack to which this node is connected. On backtracking, any node which 

has its lowlink pointing to itself forms a strong component with all of the other 

nodes which appear above it in the stack. Duff and Reid [24] have published a 

Fortran implementation of this algorithm in which they use an improved method 

of assigning the lowlink pointer. If some node v8  is the start vertex for an 

arc which ends on a node v, which is below it on the stack, then rather than 

assigning zi to the lowlink of v, the lowlink of vj is assigned to this value 

directly. The same authors [25] compared this code with an implementation of 

Sargent and Westerberg's [83] algorithm and found the former to perform better 

in practice. Duff et al. [26] have proposed another amendment which improves 

the performance of this algorithm on undirected graphs. This amendment and 

other improvements to the algorithm are described in § 5.2. 

An entirely different approach is embodied in the preassigned pivot procedure, 

P3 , developed by Hellerman and Rarick [40]. This is an hierarchical partitioning 

algorithm which is applied to the whole matrix, whether it is reducible or not, 

and it requires the concepts of spiked columns, which was introduced in § 3.3, 

and an active matrix. This is the section of the matrix which contains the rows 

and columns which are candidates for the next pivotal, i.e. diagonal, position. 

Initially this is the entire matrix, but the active section shrinks at each iteration. 

In the first step, a search is made for a row, i, which has a single entry in some 

column, j. Such a row is called a singleton, and this pair is moved to the first 

position of the permuted matrix, and they are deleted from the active matrix. 

This is called forward triangularisation and it is repeated on the active matrix 
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until no more such intersections are located. At this point a similar procedure, 

backward triangularisation, is performed in which any pair (k, 1) such that the 

entry in column 1 is in row k is permuted to the last vacant entry in the ordering; 

again this is repeated until there are no more candidates. 

The remaining active matrix is either irreducible or its diagonal blocks are of size 

greater than unity, and it is to be permuted to bordered block diagonal form. P3  

requires a tally to be maintained of the number of non-zero entries to be found 

in each row and column. This is necessitated by the desire to produce as many 

row singletons as possible at each iteration. At each step, if the minimum row 

count is greater than one, a spike column is transferred from the active matrix 

to the border. The spike chosen is the column which intersects maximally with 

the set of rows of minimum row count. In the event of a tie the column with the 

greatest column count is chosen; if this fails to produce a single candidate the 

choice is made arbitrarily from amongst the set of columns which satisfy the first 

two criteria. If the minimum row count is one, and if i is the only row with this 

count, then then row i and the column with which it intersects are ordered next. 

If there are k> 1 rows with unit row count, and if all of these intersect with the 

same column, then a diagonal block of size k is formed in the active matrix. The 

first row of unit row count is paired with the column with which it intersects, 

and this pairing is ordered first in the new block. The remaining k - 1 rows are 

paired with the last Ic - 1 columns to be identified as spikes, and the complete 

k x k block is removed from the active matrix and ordered in the first available 

position in the new matrix. 

Whenever a new pairing has been added to the new matrix the algorithm returns 

to forward and backward triangularisation, and this process continues until 
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the entire matrix has been processed. Removing spikes from the border and 

adding them to diagonal blocks reduces the amount of fill-in experienced during 

elimination, but it can lead to structurally singular diagonal blocks in matrices 

which are not themselves structurally singular. Erisman et al [29] cite an example 

due to Westerberg, a private communication, which exhibits this behaviour. This 

example is shown in figure 3.4 where it can be seen that the 3 x 3 diagonal block 

xx 
X  

I 	xx 
I 	xx 
I 	'xx:x 

I 	xxxx 
L_ 	xxxx 

Figure 3.4: Westerberg's P3  Example 

chosen by P3  is singular; swapping rows seven and eight shows that this matrix 

is not singular. Erisman et al [29] have diagnosed the reason for this, and they 

have prescribed a modification to the algorithm which corrects this fault. Their 

algorithm, the precautionary partitioned preassigned pivot procedure, or F5 , is 

described below. 

Effectively P3  transforms an incidence matrix, A, into one, A, which is of bordered 

block diagonal form. By bringing spikes back from the border into the active 

matrix it produces subblocks along the diagonal of A, and these may be defined 

hierarchically. Further, each spike extends at least as fax above the lading 

diagonal as each of the others to its left. This property limits fill-in to those 

rows in each spike below its first entry. P3  was used by the same authors to order 



Chapter 3. Literature Review and Selection of Methods 	
0 
 97 

the rows and columns within the irreducible blocks found by the partitioned 

preassigned pivot procedure, P4  [41]. In this algorithm a maximum transversal 

is identified and some start node, v, is chosen randomly. All paths from this 

node are traced and the set of all successors of v1 , Si, is found. This is the set 

of all nodes which are reachable from v 1 . Similarly the set of predecessors of v, 

i.e. those nodes from which vi is reachable, P8  is found. The intersection of these 

two sets gives C1, the set of nodes in the same strong component as v8 . The set 

P = P, - C1 i e set of all nodes which must lie in strong components which 

precede C1 and 3 = Si - C1 is the set of all nodes which lie in strong components 

which follow it. If V is the set of all nodes then V = V - P - - C1 is the 

set of all nodes which lie in a disconnected portion of V(V, E). The algorithm is 

repeated recursively on P, 3 and V. 

Erisman et al [29] showed that structurally singular blocks can be produced by 

P3  and P4  because of the way in which spikes are removed from the border and 

used to form a diagonal block. As an example, when P3  tries to identify a fifth 

pivot in figure 3.4, the minimum active row count is two and yet removing a 

spike reduces three rows to singletons, each of which has its entry in thcsame 

column. In this case, only the first two columns of the new diagonal block can 

be guaranteed pivots, although fill-in may provide the third. This problem arises 

because the last spike, i.e. column 7, was moved to the border when searching 

for a previous pivot, and hence it was not essential that it contained an entry in 

any of the rows in the 3 x 3 block. If the last spike removed from the border had 

contained a non-zero in either the fifth or sixth rows, but not the seventh, then 

row# swaps within this block would have given a structurally non-singular block 

without destroying the overall structure imposed by P3. 
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In order to obviate this difficulty Erisman et al [29] proposed that the size of the 

diagonal block be bounded above by the minimum row count when the search 

for a pivot begins. In this case, regardless of the number of row singletons which 

are produced by the removal of the last spike, each row is guaranteed a pivotal 

entry in the new block. In fact the new block must be entirely dense. This is 

because only rows of minimum row count are retained in the search space when 

a spike has been removed, and so each spike which has been added to the border 

since the beginning of the search for a new pivot must contain an entry in each 

singleton produced. Hence the effects of this modification to P4  are that every 

diagonal block in the matrix is dense and, because P5  leaves some spikes in the 

border which would have been moved forward by F4 , the border of the matrix 

will be at least as large as that produced by the original algorithm, and possibly 

larger. The authors show that fill-in must occur in the border to allow a pivot 

for any row paired with a spike, but which has a zero intersection with it, and 

hence P5  provides a stable factorisation of a non-singular matrix. 

Lin and Mah [57] showed that structural singularity can be avoided by choosing 

both a spike row and a spike column. Consider some block, A, in which a row 

spike, r3 , and a column spike, c9 , have a zero intersection. Let r3  = [A, 0] and 

c8t = [o, O]. Then elimination on A can be viewed as the matrix product EA = A, 

i.e., 

A 1 	0 	A 1  o- 	I 	Aior 

= 	 (3.26) 
_AtA 1 	1 	A 0 	0 _AtA 1  

If A is structurally nonsingular, and so too is A 1 , then the determinants of E and 

A must be nonzero. Hence the determinant of A must be nonzero and thus so 

too must be _AtAicr.  Since A is defined to be structurally non-singular, and a 

transversal has been identified for A 1 , these conditions have been satisfied. 
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Using this result, the authors extended the ideas in P3  and P4  by trying to 

minimise the size of the diagonal blocks in order to minimise fill-in. If ni is the 

number of rows in the i1h  diagonal block then they define the performance index, 

P, to be 
i=K 

P = En, (3.27) 

where there are K blocks and at each stage they seek to choose a spike row, r3 , 

and a spike column, c8 , so as to minimise P. The partitioning problem may then 

be formulated as the integer programming problem 

minP(r8 , c8 ) 

r, c8  (3.28) 

The authors present an exclusion theorem which greatly reduces the search 

space for c8  and r8  at each stage. The algorithm starts by finding a maximum 

transversal and applying P4  to partition the matrix; each block is placed on a 

stack. At each stage a block is popped from the stack, a spike column is chosen 

according to P3  and the block is forward triangularised. If this partitions the 

entire block then the last row is the row spike; if not then a row spike is chosen 

analogously to the column spike and the block is backwards triangularised. The 

remaining subblock is precedence ordered and P(r3 , c3 ) is evaluated. This index 

is minimised by searching for row and column swaps with the present row and 

column spikes which reduce it. The only candidates for these row swaps are the 

members of the minimum spanning row set, , which contains all of the non-zeros 

- in the set of active columns which do not intersect with the spike row' r8 ; the 

column candidates are defined similarly. When Pmjn has been found precedence 

ordering continues until the block has been fully reduced. 

This algorithm is complicated and computationally expensive. Since, as the 

4 i. e. if 7?. is the set of all rows with entries in these columns then V C 1?. is the smallest 
subset of these rows such that each column covered by 1?. is also covered by 1?. 
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authors themselves point out [57], the measure of optimality that is used is 

crude, they present two more simple criteria for spike selection. The first of 

these restricts the search for column spikes to those which intersect with rows of 

minimum row count and the second simply accepts the row and column spikes 

chosen by P3 . All of these algorithms were shown to reduce fill-in and operations 

count for a problem when compared with P4 . However, these improvements were 

gained at the cost of a significant increase in the run time for ordering. Stadtherr 

and Wood [90] reported a further development of the idea of spike selection. 

They extended Lin and Mali's simplification by ignoring some possible column 

interchanges and they presented two new algorithms, SPK1 and SPK2. The 

former is similar to P3  except that spike selection starts by identifying the row 

with minimum row count and pivoting in this row on the column which intersects 

with it, which has minimum column count. All other columns which intersect 

with this row are stacked as possible spikes, in order of decreasing column count. 

The matrix is now forward triangularised with more columns added to the spike 

stack as necessary. Should a zero row count occur at any time then a spike is 

popped and assigned to it. 

The second algorithm is similar to SPK1 but the tie breaking strategy is different. 

In SPK1 if there is more than one row of minimum row count then the row for 

which the sum of column counts is maximised is selected since this reduces the 

degree of the nodes left in the graph by the maximal amount. In SPK2 the 

row chosen is that for which column deletion leads to the maximum number of 

minimum row counts. This is more likely to lead to forward triangularisation. 

In summary, although P3  and its variants are very popular, both P3  and P4  can 

lead to zero pivots. Erisman et al [29] prescribe a simple solution, F5 , which 
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requires an amendment to the spike selection algorithm. Lin and Mah [57] show 

that no zero pivot is possible, in a structurally non-singular matrix, if one chooses 

both row and column spikes. They use this observation to develop a range 

of partitioning algorithms, although these are inefficient, and their optimality 

criteria are poor. Their approach was extended and simplified by Stadtherr and 

Wood [90] who developed the SPK1 and SPK2 algorithms. 

Soylemez and Seider [88] focused on the structural properties of the equations 

rather than on that of their incidence matrix. They suggested that equations 

ought to be arranged in order of increasing non-linearity and that symbolic 

forward substitution method be used to recast the problem. When a set of 

sufficiently non-linear equations has been identified they suggested that they be 

solved as a block. Whilst this approach has some intuitive appeal it is of little 

practical use because it takes no account of the numerical values of the variables 

and, further, the classification of non-linearity is very crude. 

A more sophisticated approach was proposed by Stadtherr et al. [89] who 

introduced the concept of an allowable subset. This is a set of equations which 

can be solved exactly, e.g. a pair of linear or quadratic equations, without 

resort to iteration. They contended that such equations might occur when the 

values of some variables became known or assumed (torn) when the equations 

are precedence ordered. They presented an algorithm which attempts to identify 

minimal subsets of equations and so check these for 'allowability'. On recognition 

of such a subset it is permuted to the next vacant entries at the front of the matrix 

and partitioning continues. Westerberg [101] has warned against this approach 

(and indeed against hierarchical partitioning in general) since, in his experience, 

it produces linearly dependent reduced subsets within a significant number of 
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structurally nonsingular problems. 

Perhaps the most widely used permutation algorithm is that due to Markowitz 

[61]; this is popular with those who solve linear equations. At each iteration a 

pivot is chosen which satisfies, 

min C=(p1-1)(y,-1) 	
(3.29) 

s.t. 	(i,j) 0 0 

where p1  is the number of non-zeros in row i and -ji is the number of non-zeros in 

the j column. This is a strategy of local minimisation of fill-in and C is used 

rather than C' = p,'yj in order to force the selection of row and column singletons. 

This method is used as the basis of Duff's MA28 algorithm [25] and it has been 

shown to be very successful in practice. 

3.3.4 Summary 

Rose and Bunch [79] showed that partitioning both reducible and irreducible 

matrices can be advantageous, and Rose [78] demonstrated how fill-in is related 

to node order in a symmetric graph; Yannakakis [106] proved that finding the 

minimum amount of fill for any graph is an NP-complete problem. Haskins and 

Rose [39] attempted to prepare the ground for similar results on digraphs, which 

so fax has proved fruitless, and Rose and Tarjan [80] showed that computing the 

minimum fill-in for a directed graph is NP-complete. Schreiber [84] demonstrated 

how fill-in in undirected graphs is determined by the ordering of the nodes, and 

his results were extended by Liu [58], who proved that fill-in can be characterised 

by the leaves of an elimination tree. 
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Harary [38] and Himmleblau [43] both used a symmetric matrix multiplication 

technique to partition an incidence matrix; both of these methods is 

algorithmically inefficient. Steward [93] adopted a more efficient approach in 

which he found a maximum transversal for the matrix, and then ordered it using 

a depth first search. Even more successful, and considerably more popular, is the 

minimum degree ordering algorithm due to Walker and Tinney [97] which orders 

next the node of minimum degree in the signal flowgraph of the incidence matrix. 

Sargent and Westerberg [83] were the first authors to present a depth first search 

method which partitions the rows and columns of a matrix asymmetrically. Both 

their method and that of Christensen and Rudd [16] are effective but each suffers 

from a surfeit of relabelling. Forder and Hutchison [32] presented a different 

approach in which each cycle in the digraph which represents the asymmetric 

matrix is identified; this search is very expensive. Johns [49] described a much 

more efficient depth first search, but even better was that due to Tarjan [94]. 

This algorithm has a time complexity which is linear in the number of nonzero 

entries in the matrix, which is the lowest possible theoretical bound for this task. 

Hellerman and Rarick [40] took an entirely different approach to partitioning a 

matrix in which they did not attempt to identify its block triangular structure. 

Rather they tried to minimise the number of 'spikes' in the matrix, columns which 

had superdiagonal non-zero elements. They extended their ideas, Hellerman 

and Rarick [41], by applying the same technique to the diagonal blocks of a 

lower triangularisation of a matrix. Their techniques have enjoyed some success, 

but they are prone to producing zero pivots. This problem was diagnosed and 

obviated by Erisman et al [29] by a modification to the number of spikes which 

can be reintroduced to the active matrix when zero rows are identified. Lin 
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and Mah [57] also offered solutions to this problem, but their algorithms are 

highly inefficient and it is based upon a questionable optimality criterion, as they 

themselves indicate. Stadtherr and Wood extended their analysis and produced 

two algorithms, but neither of these has the theoretical rational of Hellerman 

and Raricks' techniques. Yet another, and much simpler, approach was taken 

by Markowitz who's algorithm minimises the product of the row and column 

count for the next pivot to be chosen. This technique has been in vogue for a 

considerable number of years. 

3.4 Methods Of Decomposition 

Whilst the chemical engineering literature is replete with decomposition methods, 

it seems that considerably less attention has been paid to this subject in the wider 

field. The techniques available can be classified into four different groups 

Ad hoc Strategies. 

Graph reduction methods. 

Explicit loop breaking techniques. 

Depth first search methods. 

This classification is inexact in that some decomposition algorithms contain 

elements of more than one approach. In the following discussion both node and 
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edge tearing strategies will be described, and each of the above groups of methods 

is dealt with in turn. 

3.4.1 Ad hoc Decomposition Methods 

Lee, Christensen and Rudd [53] proposed a minimum node tearing strategy based 

on an exhaustive search. Their argument was based on the observation that the 

minimum number of tears necessary is bounded below by the minimum in-degree 

of an 'equation' node in a strongly connected digraph. Let this minimum be 

i + 1. In their method all possible combinations of c tear nodes are tested to 

see if they decompose the digraph entirely. If they do, success is reported and 

the search is discontinued. If failure is encountered then an attempt is made 

to find a tear set of size x + 1 and so on until a node separator set for the 

digraph is determined. In its most basic state this is an expensive algorithm 

which is prone to combinatorial explosion. It is possible that some improvement 

on performance might be achieved by ordering candidate tear sets according to 

the relative success of their ancestors, or by using a branch and bound search 

method. No such extensions to this technique have been reported. 

Himmleblau [43] and [44], presented two separate decomposition algorithms. In 

the first [43] he proposed tearing the edge between the first vertex vi E V in 

the digraph D(V, E) and v1 , the highest ordered node to which it is connected. 

Following this the nodes in the digraph are reordered and the process is repeated 

until no more cycles remain. This algorithm has the advantages of simplicity 

and low complexity but it ignores entirely the structure both of the incidence 
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matrix for the problem and the equations themselves. In his second algorithm 

[44] the nodes are grouped according to their degree before an attempt is made 

to determine a node separator set; as in [53], if the minimum degree of any node 

is Ic +1 then the minimum possible number of tears required is ic. The algorithm 

starts by selecting a node from the set of minimum degree and ordering this first. 

Nodes of equal degree are appended to the ordered set in turn such that only 

one new node is connected to that just added. If no such node can be added 

then another node of higher degree is ordered next if this is connected to only 

one node not in the ordered set. If no such node is found then a new sequence is 

started; this introduces at least c new tears. This process continues until all of the 

nodes of minimum degree have been ordered whereupon the ordering continues 

using the new set of nodes of least degree and so on until the entire graph has 

been ordered. Himmleblau does not indicate how the ordered sequences should 

themselves be ordered but it would seem appropriate to arrange them in the order 

in which they were generated. It is difficult to assess the algorithmic complexity 

of this approach, but the possible requirement for an extensive search for the 

next node to be added to a sequence implies that it is unlikely to be a low order 

polynomial. 

Liu [59] provided an algorithm which starts with some separator, S, which 

separates (V, E) into two subgraphs, U and V, and then removes nodes from this 

separator until it is of minimal size. This is achieved by using a flow technique 

which identifies a subset, So  c S, which has an adjacency set in either U or V 

which is smaller than So itself. He defines an adjacency set in a subgraph, ', for 

the set of nodes, S07  as 

Adj ç,(So) = {v1  I v 2  E Adj(v 3 ),v, E S0} 	 (3.30) 

and he notes that if some separator S. separates c(v, E) into two subgraphs U 
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and V, and if Y C S, then S = (S - Y) U Adj(Y, U) separates U - Adj(Y, U) 

and V+Y. If I Adj(Y,U)  1< I Y Ithen clearly I S  1<  I SI.  An adjacency set 

like Y is identified by establishing a maximum matching, M, between S and the 

larger of U and V, say U. In this case, if there is a set of nodes S € S such that 

no z.' € S is a terminus of an edge in M, then by definition I Adj(S, U) I < 13 I, 
and so (S -5) U Adj(S, U) is a smaller separator for the graph than S. If such a 

subset is located it is exchanged with S and the process continues. Liu does not 

provide any complexity measure for this algorithm, but he notes that the minimal 

separator set is sensitive to the original choice of S. He notes that the minimum 

degree ordering [97] provides a good starting point, and that in this case most of 

the computational effort is expended in obtaining this ordering. Although it was 

developed for use with undirected graphs, Liu's algorithm is equally applicable 

to those which are directed. 

3.4.2 Graph Reduction Methods 

Graph reduction methods seek to reduce the search space for tear sets by 

eliminating some, or all, of the candidates which can never lead to optimality, 

however this is defined. In general this is achieved by merging or deleting edges of 

the digraph and it is a technique which enjoys considerable success, particularly 

when the edges of the graph are weighted. These weights are assigned according 

to some predefined criria. For instance, in process simulation, an edge might be 

assigned a weight which is equivalent to the number of variables associated with 

the process stream which it represents. In the equation solving context, a weight 

might describe the desirability of solving an equation for a particular variable. 
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Christensen and Rudd [16] pointed out that if parallel edges occur between two 

nodes then either neither or both must be members of the tear set. Based on this 

observation they proposed that such edges be combined to make one simple edge 

which, if the edges are weighted, should be assigned a weight equal to the sum 

of its constituents. Further, they cite the reduction of two-way edges proposed 

by Sargent and Westerberg [83] which removes such a pair from the digraph and 

adds one of them to the tear set if the edges are unweighted; should they be 

weighted then the pair is replaced by a single directed edge which is assigned the 

difference between their weights and the edge of lower weight is added to the tear 

set. Christensen and Rudd also introduced the concept of the ineligible edge. Let 

u and v be two nodes in V(V, E) connected by a single edge, e, and let the weight 

of this edge be w,. If the sum of the weights of all of the edges incident upon u is 

w+ and those incident from v is w- then if either w+ :5 w,,, or WV- w, edge 

e can never be a member of a tear set of minimum weight. This is so because it is 

always the case that some combination of either the edges incident on u or those 

incident from v may be torn to the same effect as e but with a lower weight. 

Christensen and Rudd [16] used these reductions and the concept of index nodes 

to find a minimum weight tear set. They defined an index node to be a vertex 

each of whose incoming or outgoing edges, or both, is eligible. The first step in the 

algorithm is the reduction of the digraph using the concepts defined above. If the 

whole digraph is reduced then the minimum weight tear set has been identified. 

If an irreducible digraph remains then an index node is torn which minimises the 

increase in the weight of the tear set. The process of edge reduction and node 

tearing continues recursively until the whole digraph has been reduced. The 

node tearing strategy which is employed takes into account only the local effect 

of tearing a vertex, i.e. it increases the weight of the tear set by the minimal 
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amount possible at each iteration, and so this algorithm cannot guarantee to 

identify a global minimally weighted tear set. 

Figure 3.5: An Arbitrary Bipartite Cyclic Graph 

As an example of graph reduction, consider figure 3.5, in which there is one pair 

of parallel edges, and two pairs of two-way edges. Using the graph reduction 

techniques this is reduced to figure 3.6 and three tears are necessary 5 . 

Figure 3.6: A Reduction of figure 3.5 

5 n.b. either (a, d) or (d, a) could have been removed from figure 3.5, and similarly either 
(6, d) or (d, b) could have been added to the tear set 
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Another graph reduction technique is due to Barkley and Motard [9]. Their 

algorithm operates on an irreducible signal flowgraph, fl(V, E), and so all of the 

sources and sinks of D(V, E) are removed as a first stage. Next fl is reduced 

to a set of what the authors call intervals. Each of these is a tree, and the set 

constitutes a spanning forest for fl(V, E). These trees are identified by use of 

the concept of a predecessor. If any node vi in fl has only one input edge, and 

that edge is directed from v 1 , then v3  is said to be the predecessor of v. In this 

case vi  is deleted from fl and added to the interval which is 'headed' by this 

node; each edge which was incident from v i  to some other node vk is removed and 

replaced by an edge (v,, Vk)  in the reduced signal flowgraph. Should some node 

vi be identified as the predecessor of a node Vm which heads some interval, then 

v1  becomes the new header node for this interval. 

This process continues until either all of the nodes in the flowgraph are contained 

in a single interval, in which case the header node is the only tear variable, or 

there are no more predecessors in the current subgraph. In the latter case a check 

is made to see if there are any self loops in fl, i.e. if any node vi  is a predecessor 

of itself. Any such loop must be torn since this is the only way in which the 

digraph can be rendered acyclic. Should any self loops be identified then that 

which has the highest degree is torn. Ties are broken arbitrarily and the process 

of interval reduction is restarted. 

Two other conditions may be met. If there are no predecessors or self loops in a 

reduced signal flowgraph then the set of node pairs, N, is found. This is defined 

on the vertices of g(V, E) such that 

N= {(v1,v,) I Vi, Vj E V,(v 1 ,v,),(v1,V i ) E E} 	 (3.31) 
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and exactly one node from each element of H must be torn since this is the only 

way in which these minimal cycles can be broken. If H is non-empty then that 

node which appears in more pairs than any other is torn, since this minimises 

the number of tears. Should there be two or more nodes in a maximal number 

of pairs then the node from this set which has highest degree is torn; if this 

does not resolve the conflict then a tear node is selected arbitrarily from the 

set of candidates with the highest degree. If none of the above conditions are 

encountered then a tear node is chosen either according to degree or arbitrarily. 

In contrast to Christensen and Rudd's technique [16], Barkley and Motard's 

method reduces the graph of figure 3.5 to that shown in figure 3.7; it can be 

seen from this graph that only two edges need be torn to decompose the entire 

graph. An analysis of the properties and the complexity of this algorithm appear 

Figure 3.7: The Barkley Motard Reduction of figure 

in § 5.2. 

Murthy and Hussain [66] proposed a similar approach to that of Barkley and 

Motard. They assigned a weight to each edge of the digraph and identified the 

net 'flow' through each node, i.e. the difference between the sum of the weights of 

the edges incident upon the node and the sum of the weights of the edges incident 
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from it. In their algorithm, any node which had zero or negative flow through it 

was replaced by its predecessor and the graph was further reduced by using the 

original predecessor relationship and cutting all self loops. This approach may 

well tend to minimise the size of the tear set, but there is no guarantee that it 

will reach or even approximate the global minimum. 

3.4.3 Explicit Loop Breaking Strategies 

Upadhye and Grens [98] formulated the decomposition problem as the set covering 

problem so that any tear set chosen would be nonredundant (see § 2.6.1). Taking 

this approach necessitates the use of a cycle matrix, C, such that C1 . = 1 if the 
th  node appears in the j1h  cycle. If there are N nodes and M cycles in (V, E) 

and if x, represents the j" node, then the set covering problem can be posed as 

3=N i=M 

min E 
3=1 i=1 

s.t. E C,,x1 ~ 1, 
3=1 

x1 = 0 or 1, 

i=1,2,...,M (3.32) 

where the first constraint ensures that each cycle is broken at least once. The 

authors give no advice about the method used to solve this problem, and it is 

possible that identifying one which is both successful and efficient is problematic. 

For the set partitioning problem each loop would be broken exactly once and so 

the > condition would be replaced by equality. The partitioning problem is the 

preferred formulation, but it may have no solution in many cases, and it is likely 

that it is always difficult to solve. 
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The first step in any algorithm which solves the decomposition problem in this 

way is the identification of all of the circuits in a digraph. Tiernan [96] attempted 

to do this by searching for all of the circuits which exist in each subgraph of 

g(V, E) . In his method the search starts with the initial vertex in the digraph 

and a path is constructed through the members of V. If any attempt is made to 

extend the path by adding the initial vertex, a circuit has been identified and so 

it is recorded. When all of the edges from a node have been searched it becomes 

blocked so that no further search is made through this node during the current 

phase. When a node becomes blocked the search backtracks to the node which 

was responsible for placing it on the path and the search continues until the 

initial vertex is removed. At this point the next vertex is used to start the path 

and all of the other vertices become unblocked. The search continues as before 

except that any attempt to extend the path by adding a vertex which was used as 

the start vertex in a previous phase is illegal; this ensures that all of the circuits 

are traced only once. Whilst this algorithm will identify all of the circuits in a 

digraph it will examine (N - j)! paths for the complete digraph on N 

vertices. 

A more efficient algorithm is that due to Weinblatt [100]. In this case is reduced 

to an irreducible subgraph V and each arc of this graph is searched only once. 

As in Tiernan's method [96], a path is maintained and a depth first search is 

performed on D', but in this case a vertex is added to the path once only. Should 

an arc exist from the vertex at the end of the path P to any already on it then 

that cycle is recorded. When all of the arcs from a vertex vi  have been searched 

it is removed from P. Should an earlier vertex Vk on P be connected to vi then 

each circuit C, already found to contain vi is examined to see if portions of it and 

any other circuit can be combined to form a new set of circuits C' which contain 
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vk or any vertex before it on the path. It is difficult to assess the computational 

complexity of this algorithm but the examination of previously identified circuits 

is very costly. 

Tarjan [95] presented an algorithm for identifying the elementary cycles of a 

digraph which is linear in the number of circuits, but which has a worst case 

time complexity which is exponential in the number of vertices. It uses a depth 

first search which starts from each vertex in turn and a circuit is detected by an 

attempt to extend the path by placing the current start vertex on the stack. Like 

Tiernan's algorithm [96] this circuit avoids retracing circuits by never exploring 

an arc whose terminus is a vertex numbered lower than that of the initial vertex 

on the path. Tarjan's algorithm derives its efficiency from the use of a flagging 

system which avoids searching paths which are known a priori to be circuit free. 

Each time a vertex, v, is added to the stack it is 'marked'. When it is removed, 

this mark is removed if a circuit has been detected through it; if no such circuit 

has been found then the node remains marked. If subsequently some node, u, 

below it in the stack tries to place it back onto the path then this flag is inspected. 

If v is still marked then no new circuits can be traced through it and so the next 

member of u's adjacency list is inspected; otherwise a new set of elementary 

circuits may have been detected. 

No linear or low polynomial time algorithm for tracing circuits has been reported. 

Having identified the cycles which have to be torn, the next step is to decide 

on the set of nodes or arcs which must be removed in order to tear them. Lee 

and Rudd [54] provided an algorithm for this which works by identifying those 

arcs which must be torn and choosing the others so that either the size or the 
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weight of the tear set is minimised. Their algorithm is based on the following 

observations: 

All self-loops must be broken and the arc added to the tear set. In general 

these self-loops will occur as a result of a graph reduction and they manifest 

themselves as a single row entry in the cycle matrix. If column k is the single 

entry in a some row i, then arc ek is called an essential arc. 

If arc ei  appears in every loop in which node ei appears and if wj, the weight 

of arc e1  is less than or equal to w1 , the weight of arc e3 , then e3  can never 

be selected as a tear stream in preference to e. Arc e1 is said to be strictly 

contained within ei  and it is deleted from the loop matrix. This definition 

can be extended to allow an arc to be contained within a set of others. If 

the arcs are not weighted then the condition is relaxed so that all that is 

taken into account is loop membership; this is called containment. 

These authors form the loop matrix for V(V, E) and they use these rules to reduce 

it as far as possible. The next step is the formation of the disjoint set of arcs for 

each cycle, i.e. the set of arcs which do not appear in the loop. Clearly, if arc e 

does not appear in cycle C, then this loop can never be broken by tearing only 

the i' arc. A tear set of minimum size is the smallest set whose members cannot 

be generated as a subset of any disjoint set and which covers each cycle in the 

graph. Lee and Rudd present some rules for restricting the search space for these 

sets, but their arguments seem to be based on an ability to inspect the initial 

reduced cycle matrix by eye. They present a version of the algorithm which finds 

a tear set of minimum weight, but this too requires a large search. In each case a 

tie breaking strategy based on the number of loops in which an arc occurs is used; 
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this removes the guarantee that any tear set is of minimal size or weight. Forder 

and Hutchison [32] used a similar method to Lee and Rudd, but they allowed the 

user to select some tears a priori, based on physical intuition or experience. In 

this case the optimisation of the tear set is constrained. 

Pho and Lapidus [73] used a signal fiowgraph to determine the edge tear set 

of minimum weight for the corresponding digraph. They used the concepts of 

essential arcs and strict containment described above and they introduced the 

analogous idea of row containment. Here, if each arc in cycle C3  appears in some 

other cycle Ck then row k of the cycle matrix can be removed since any tear 

which breaks C5 must also break cycle k. The first step in the algorithm is the 

reduction of the cycle matrix as fax as possible, using the concepts above and 

removing self-loops. If this fails to tear all of the circuits then the set of two way 

edges is inspected (see § 3.4.2). If some arc ei is involved in two way edges with 

the arcs in the set SN = {ei , e2 , . . , CN}, then either ej  or each member of SN 

must be torn. If the combined weight of the arcs in SN is less than that of e, 

then each of these is torn; otherwise ei belongs to the tear set. If some cycles 

remain unbroken after the reduction of two way edges then a branch and bound 

method is used to minimise the weight of the remaining tears. 

Although it is not a formulation of the set covering problem, Montagna and 

Iribarren [63] describe a similar iterative procedure which transforms the original 

digraph into one which is undirected, and then defines a new direction for each 

of the arcs such that the tear set for the new digraph is of either minimal weight 

or size. First all of the cycles in the directed graph are identified. Next each arc 

e2  has associated with it two variables, x31  and x,2 , which are used to determine 

the orientation of this arc in the final graph. At the solution, exactly one of 
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these variables must be one and the other zero. They formulated this problem 

in a flowsheeting environment and they interpreted x 31  to mean that information 

flow was in the direction of material flow through the process; in the equation 

solving environment this would be interpreted as the original relationship holding 

between an equation and a variable. If the weight of the i'' arc is p,, and if pj  is 

one if e3  is torn, and zero otherwise, the minimisation of the weight of a tear set 

may be formulated as the integer program 

mm 

s.t. x,1 +x,2 =l j=1,2,...,M 	 (3.33) 

x=Oor1 	i=1,2 

where there are M arcs in the graph. To find the tear set of minimum size each 

weight is set to one. This integer program is solved within constraints which arise 

from the necessity to tear each loop in V(V, E) at least once, so that each arc 

can have a unique direction and each node be correctly connected 6 . 

The solution to this integer program may direct some of the edges of the new 

digraph so as to form new cycles and so the program must be reformulated 

and solved repeatedly until no new circuits are encountered. As evidence of the 

efficacy of this method, the authors present a new solution to the Cavett [15] 

problem which has only one torn edge. However, they give no indication of the 

difficulties involved in solving the integer program. Whereas a global solution to 

this program is a minimum tear set for the digraph in question, there may be 

no guarantee that such a solution will be found. Further, no report is given of 

the difficulty of setting up the constraints in this formulation, and it may well be 

that this requires a significant amount of work. Thus, although their work is of 

6 e.g. a countercurrent heat exchanger must have two inputs and two outputs whereas a 
mixer has more than one input but only one output. 
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considerable theoretical interest, it is unknown whether Montagna and Iribarren's 

[63] approach is likely to be of any practical use. 

3.4.4 Depth First Search Decomposition 

Motard and Westerberg [65] extended the concept of Upadhye and Grens's [98] 

decomposition families by defining an exclusive tear set (ETS) to be one which 

tears each loop in D(V, E) exactly once. They proved that if and only if such 

a tear set exists then the nonredundant decomposition family of Upadhye and 

Grens is unique, and that each member of it is an ETS. In this case the circuits 

in the digraph can be ordered as a tree and each ETS can be generated in turn by 

using the replacement rule round each cycle. The authors presented an algorithm 

which finds an ETS for a digraph if one exists but, if it does not, it generates a 

tear set which minimises the maximum number of times that any single circuit is 

broken; amongst the tear sets of minimum multiplicity that of minimum weight 

is chosen. 

The algorithm operates on the edges and cycles in the digraph. Each edge has 

assigned to it a weight and an edge efficiency, which is the number of loops which 

will be broken per unit weight of the edge; this is not necessarily a whole number. 

The edges are ordered according to their efficiency and weight, those of highest 

efficiency first and, within a given level of efficiency, those of lowest weight first. 

A depth first search of these ordered edges is used to find the tear set. At each 

stage the next edge in the ordering is added to the current tear set until all of 

the loops have been broken. At this point the weight of the tear set is calculated 
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along with its multiplicity, the maximum number of times that a cycle has been 

torn. If the multiplicity of this tear set is lower than the current minimum, or 

if they are equal but its weight is lower, then this tear set replaces the previous 

best. Regardless of whether the current tear set is currently optimal or not, the 

last edge added to it is then removed and the next candidate is added. 

In order to prevent forming and checking each possible tear set for optimality, 

Motard and Westerberg [65] provide an implicit enumeration technique which 

minimises the search space. If some edge, e, cannot be added to a tear set 

without violating the optimality conditions then this edge is rejected and the 

next candidate is checked for eligibility. The authors provide an example where 

this branch and bound technique works well. However, it is not clear that theirs 

is a practical example and so no conclusions can be drawn as to its practical use. 

It is clear, however, that complete enumeration would be prohibitively expensive 

for all but the smallest of problems. 

Cordoba [17] has devised a linear time algorithm which identifies a nonredundant 

tear set for a digraph. It is based on Tarjan's depth first search algorithm [94]. 

If during the search a back edge from u, the node at the top of the stack, to v, 

some node below it, is encountered, then this edge must be the last in a cycle 

which is rooted at v. If the edge to be torn in a cycle is selected always to be the 

last, then the tear set produced must be nonredundant, although no statement 

can be made about its minimality. If a forward edge to some node previously on 

the stack is encountered, then no action is taken. No action is necessary because 

the only new cycles which can be traced through this edge must be subcycles of 

those already found and so, since the last edge in each cycle is torn, they must 

have been broken already. 
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3.4.5 Summary 

The ad hoc strategies espoused by the pioneers of decomposition strategies were 

inefficient in the amount of effort required to identify a solution, and they involved 

no conditions on optimality. Sargent and Westerberg [83] provided a better 

approach by introducing the concept of graph reduction. By unifying parallel 

edges and replacing each circuit of two edges with a single edge, their technique 

can reduce the search space for a solution considerably. Christensen and Rudd 

[16] augmented this strategy by finding a minimum weight edge set which spans 

the cycles in a digraph. A tear edge of minimum weight is chosen from this set 

and the digraph is reduced; this process continues until no more cycles remain. 

This approach guarantees a local minimisation of the weight of a tear set, but 

this does not imply that this is a global minimum. Barkley and Motard [9] also 

described a graph reduction technique, but this makes use of a spanning forest of 

the signal fiowgraph of the original directed graph. It identifies all cycles in the 

flowgraph which are of length 1 < 2 and tears these accordingly. However, any 

cycle which is longer than this is torn in an arbitrary fashion. Hence this cannot 

guarantee that the tear set which it produces is of a minimum size. Murthy and 

Hussain [66] employed a similar technique on the original digraph, but whilst 

their rules are simpler and less costly to implement, so too they are less rigorous 

and there is no guarantee of nonredundancy. 

Perhaps the most elegant formulation of the tearing problem is as the set covering 

or partitioning problem, but this can be difficult to solve. Lee and Rudd [54] 

developed a similar approach in which a minimum weight cover is found for 

the cycles in a digraph, and a minimum weight tear set is identified using a 

combinatorial method. Once again no optimality can be guaranteed because the 
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technique involves an arbitrary tie breaking strategy. The same criticisms can 

be made of Forder and Hutchison's [32] algorithm which is closely related to 

that of Lee and Rudd. Montagna and Iribarren [63] reported another integer 

programming formulation which is based on the cycle structure of the digraph. 

The success of their formulation is at the mercy of the solution method used, 

but it is likely that identifying a tear set will always be an expensive task, and 

manipulating a problem into the desired form is very difficult. 

Motard and Westerberg [65] defined an exclusive tear set to be one which tears 

each cycle in a digraph exactly once. They provided an algorithm which identifies 

such a tear set if it exists and, if not, one which minimises the maximum number 

of times that any cycle is broken. This is a desirable goal, but their technique is 

based on a combinatorial method which may be prone to explosion. A much more 

efficient approach is the linear time algorithm devised by Cordoba [17]. This is 

based on the depth first search method of Tarjan [94] and, whilst it makes no 

attempt to produce a tear set of minimal size, it will always identify one which 

is nonredundant. 

It has been shown that many of the effective techniques available for decomposing 

digraphs are inefficient in their exposition, or prone to combinatorial explosion. 

The only definite condition on optimality for a tear set is that it should be 

nonredundant, but, from a pragmatic point of view, it is desirable to minimise its 

cardinality. Using these criteria it appears that the graph reduction method for 

producing a nonredundant tear set of minimum size due to Barkley. and Motard 

[9] is the best available. 
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3.5 Conclusions 

It has been demonstrated that it is difficult to define any measure of optimality 

for the selection of an output set for a given problem. Given this, the best method 

to be used is that which has the best worst case time complexity; this is Dinic's 

algorithm [20]. No such problem exists for matrix partitioning, however, and the 

most efficient algorithm is that due to Tarjan [94]. These algorithms have been 

developed for use in the mathematical modelling software, and they are described 

in § 4. The provision of optimality criteria for a decomposition strategy is as 

troublesome as that for an output set, but it is known that nonredundant tear 

sets are likely to be more efficient than those which are redundant. Cognizant of 

this it was decided that the best algorithm available for decomposition was that 

which identified a nonredundant tear set of minimal size and which did so in a 

relatively efficient way. Barkley and Motard's algorithm [9] best satisfies these 

criteria, and its use is described in § 5. 



If we take in our hand any volume; of divinity or school 
metaphysics, for instance; let us ask, Does it contain any 
abstract reasoning concerning quantity or number? No. 
Does it contain any experimental reasoning, concerning 
matter of fact and existence? No. Commit it then to the 
flames: for it can contain nothing but sophistry and illusion. 
David Hume, An Enquiry Concerning Human 
Understanding 

Chapter 4 

Matching and ordering Variables and 
Equations 

4.1 Introduction 

The arguments for finding an assignment for an equation set, and also for 

partitioning it, were seen in § 2, and methods for achieving these ends were 

discussed in § 3. It was decided that, in the modelling software, an assignment 

for the equations would be determined by using a modified version of Dinic's 

algorithm [20], and that, following this, these equations would be partitioned 

with Tarjan's depth first search procedure. This order is vindicated in § 4.2, 

where so too it is shown how these algorithms can be used to find a solvable 

subset of equations from one which is initially overdetermined, and in particular 

123 
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how they can be used to replace a redundant equation in a set; the pertinence of 

these results is demonstrated in § 6.7. A proof of the applicability of maximal flow 

algorithms to the assignment problem appears in § 4.3 along with a statement of 

the improved version of Dinic's algorithm. We turn our attention to partitioning 

in § 4.4, where Tarjan's algorithm is presented and interpreted within the context 

of equation solving. A short summary of the conclusion drawn from the chapter 

appears in § 4.5. 

Four algorithms are presented in this chapter. Each is stated as a procedure in 

pseudocode which is a fictitious computer programming language. Only the main 

operations are shown in order to maximise clarity of presentation. Further, code 

is shown for only the most important procedures. 

4.2 Analysing an Overdetermined Equation Set 

4.2.1 The Order of Analysis 

Let g(V, E) be the undirected bipartite graph which describes a square equation 

set f(x) for which no assignment has been found. It was explained in § 2.4, 

that the determination of an output set for 1(x) transforms (V, E) into a 

directed bipartite graph D(V, E), and, as is shown in § 2.5, identifying the strong 

components of this digraph corresponds to partitioning the equation set into a 

computational sequence. Theorem 2.2 states that the strong components of this 
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digraph are independent of the assignment used to form it from (V, E); thus the 

structure which results from partitioning an equation set once an output set has 

been determined is independent of that output set. Partitioning an equation set 

before an assignment has been found identifies the components of g(V, E), which 

may not be the same as the strong components of D(V, E). Hence, if partitioning 

precedes assignment, a further analysis of the newly directed components of 

g(V, E) may be necessary in order to identify its finest grained structure. For 

this reason, it is better to assign and then partition. 

4.2.2 Finding the Minimal Equation Subsets 

Any physical problem, II, has associated with it a set of equations, 'I', which 

describe it. These equations may be mass and thermal balances, physical and 

chemical equilibrium relationships, equations of state, etc. In general there will 

be more of these equations than are required in order to model II; some of them 

may conflict and others may be extraneous. Let the set of all of the variables 

which appear in these equations be & Then the equation set iIi() may be 

represented by the undirected bipartite graph '(V', E'). We will show here how 

any instance of a generic problem is modelled by some equation set f(x) such 

that f g 'I' and x , and that (V, E), the undirected bipartite graph which 

describes f(x), is a subgraph of 9. We use this result to show how f(x) can 

be generated from a general description of the family of problems to which it 

belongs. 

In any instance, fl, of a generic problem II, some of the variables in D will be 
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known. These may be fundamental or. observed constants, or they may be the 

fixed variables. For instance, if a catalytic reactor is to be modelled then for this 

problem, the universal gas constant is a fundamental constant, the diffusivity of 

the bulk gas may be an observed constant, and the yield of one of the products 

may be a fixed variable. If the set of these knowns, K, is removed from 4D in 

order to leave the set 0, the unknowns for the problem, then the equation set 

which describes it is reduced to '11 (0). 

In general, we are interested only in the values of r ç 0, the set of design 

variables. Staying with our reactor problem, it may be that the bulk gas 

temperature is a member of I', but that the temperature of the surface of the 

catalyst is not. In order to calculate the values of the members of r, we need 

to identify a subset of i11 which satisfies the necessary conditions for a unique 

solution which were given in § 2.3. In general, it will not be possible to find 

• subset of these equations which involve only the members of r. Rather, 

• set of additional variables, A will appear in the equation subset too. For 

instance, in our reactor problem, the specific heat capacity of each gas may have 

to be calculated in order to determine the reaction temperature. The task of 

formulating a mathematical model is then the process of identifying a solvable 

subset of '11 in which only members of r and A appear, and such that it embodies 

no significantly contradictory assumptions. 

The problem of contradictory assumptions was addressed briefly in § 1 and it is 

not considered further here. In order to see how the equation subset is chosen 

we return to considering 9 , the graph of 'Ii(). Each node in this graph which 

represents a constant or a fixed variable in 4 can be deleted from it, along with 

each arc of which it is an endpoint, since no equation is required to be solved 
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for it. Further, we assume that contradictory equations have been removed from 

'Ii() so that, e.g., only one equation of state remains within it. This is a non-

trivial task which requires qualitative reasoning. Following this process we are 

left with a bipartite, undirected graph 0 in which the nodes, 1', are partitioned 

into 1, the 'variable' nodes, and 1, the 'equation nodes'. If the problem has a 

solution, then 11 J, and it must be possible to devise a maximum matching, 

M, such that each node which corresponds to some ii E r is an endpoint of one 

of its edges. 

If such a matching is found then 0 can be transformed into the directed graph 

in the way described on page 43. We wish to find V(V, E), a subgraph of 

which corresponds to 1(x), and so we can place the following conditions on it: 

It must contain an equal number of nodes from 1 and 1. 

Each subset of ic 'equation' vertices in D(V, E) must be adjacent to exactly 

ic of the 'variable' vertices. 

For each edge (v, w) in t such that WE 1 and W is in D(V,E), i' is also in 

D(V,E). 

These conditions ensure that the strong components of D(V, E) represent solvable 

equation subsets. This follows from theorem 2.1 and the fact that no variable 

which is not represented in D(V, E) can influence the solution of any of the 

equations which are. There may be many subgraphs of t which satisfy these 

conditions, but as a result of the third, each strong component of V(V, E) must 

be a strong component of , and so we can search for D(V, E) by examining the 

strong components of the larger digraph. We seek a subgraph of t in which each 
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strong component, C1, contains at least one node which corresponds to a design 

variable, or there is a path from C1  to one which does. This is because there must 

be a path from each node, ii in D(V, E), which represents a member of A, to at 

least one vertex which corresponds to a variable in r, i.e. the value of at least 

one design variable is dependent on ii. However, No such path may exist for any 

node belonging to a strong component of t which fails to satisfy the connection 

condition. 

It should be noted that, given a maximum matching M in 0 , D(V, E) is unique. 

However, if the matching is not complete, the number and membership of the 

strong components of D(V, E) is dependent upon M. As an example of this, 

consider the undirected bipartite graph shown in figure 4.1. The digraphs which 

Figure 4.1: An Undirected Bipartite Graph 

correspond to two maximum matchings in this graph are shown in figure 4.2. In 

the first of these there are two strong components, whereas in the second there are 

three. This observation shows how the existence of a redundant equation, Er , in 

a set can be overcome. If the equation set f(x) is formed as described above, and 

if there is one or more equation which is not involved in a maximum matching, 

then if the node which represents Er is removed from g(v, E), along with all of 

the arcs incident upon it, then a new matching can be found for (V, E), and 
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Figure 4.2: Two Directed Versions of figure 4.1 

thus a new equation set AX). 

Thus we have seen that given a general, overdetermined equation set which is a 

generic description of a problem, II, a square subset of it can be identified which 

can be used to solve a particular instance of II. In the next section we will discuss 

how an assignment for the larger equation set can be established, and in § 4.4 we 

will see how a depth first search can be used to find the required equation subset. 
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4.3 Finding an Output Set 

Recalling the definition of a zero-one network which appears in § 3.2, we use the 

following two lemmas to show that the assignment problem may be treated as 

an instance of a maximal flow problem. First we require the well known max. 

flow mm. cut theorem, which states that the maximum flow through a network 

is equivalent to the capacity of its minimum cut. A cut for a graph is a set of 

edges whose removal disconnects it; the set of minimum capacity which satisfies 

this definition is the minimum cut. Any minimal cardinality edge set, Cmsn, 

which disconnects a bipartite graph must be a maximum matching for it. This 

is because each cut for the graph is .a matching, but there can be no edge, e0 , in 

the graph which connects two nodes in different partitions such that neither is 

the endpoint of an edge in the cut and and e0  V Cmjn . Further, no subset of Cmjn 

disconnects the graph and hence no subset of it can be a maximum matching. 

Having shown that assignment in an equation set can be formulated a flow 

maximisation problem, we describe the algorithm used in the modelling software. 

It is a modification of an algorithm due to Dinic [20], and it appears as 

algorithm 4.1. Here layer(L, Paths) constructs a set of augmenting paths through 

the network. The nodes at the start of these paths are removed from the 

adjacency set for the sink by altersinkadj (L, Paths) and the matching is updated 

by augment(Paths). 

At each stage in the algorithm a network, A/, is constructed from (V, E) and the 

current, possibly submaximal,matching J1 for it. As described above, a source 

node, s, and a sink node, t are added to (V, E). A diedge is added from a to 
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Algorithm 4.1 The Maximal Flow Algorithm 

Procedure max flow 

L =Adj(s) 

while(layer('L, Paths) == 1) 
alter sink adj(L, Paths) 
augment(Paths) 

end 

end 

each ii E V. such that v is not an endpoint of any edge in .i4; likewise an edge 

is added from each w E f7, which is not a terminus of an edge in the matching 

to t. If the maximal flow through Af..1 was then F may be greater than 

this only if flow is channeled through some of these edges. Each useful edge, e, in 

i.e. one for which the potential flow is unity, is assumed to direct flow in the 

direction from s to t. The network is then said to be layered, which means that 

the nodes in the j layer, L1, are each reachable from s in j edges, i.e. there is 

a path of j useful diedges from s to these vertices. 

For each edge (v, w) in 9 (V, E) such that z' is a variable node and wis an equation 

node, then if (v, w) is in .A1, so too it must be a directed edge in A1. If it is not 

in the current matching then either ii E Lk and w E Lk+1, or this edge is not in 

the network. This follows from the fact that w is reachable from s by a shorter 

path than any which passes through v. 

The zeroth layer in the ith network is L0  = {s}, and the edges from this layer are 

E0  = {( s, v)Iv E 1, (v, w) V M, (w, v) V M}. In Ni,  all edges are oriented from 
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s to t, and thus flow is in this direction alone. This is not true for .N, i> 1. In this 

case, L 2 , the second layer, is defined as L 2  = { vf (w, ii) E E1 } and, immediately 

following its construction, each vertex, w, in it must have exactly two edges 

incident upon it with unit flow. This violates the zero-one condition on the flow 

through each node, and so one of these flows must be reversed. If the flow through 

the 'new' edge, e1  = (vi, w), is pushed back, then it can never reach the sink 

because each node adjacent to Ui must have flow channeled through it already. 

If instead flow is returned along the 'old' edge, € 2 = ( I'2, w), then it may make its 

way to the sink since no such condition exists on the adjacency set of U2. Thus we 

define the edges in the second layer to be E2 = {(" C)I" E L2,(,() E E,C L i }; 

n.b. each edge in E2  must have been an edge of E1  in the previous network. 

The definitions of L 2  and E2 , generalised for each layer other than L0  and E0 , 
are Lj = {vI(w,zi) E E2 _ 1  and E, = {("() I" E L2 ,(,C) E E,C V Lk,k <j}. 

The condition k <j is necessary in order to ensure that any augmenting paths 

found in the network are of minimal length. The process of identifying new layers 

continues until one of two conditions is met. 

If some node w e Lr, where r is an odd number, is found such that it is free, 

i.e. flow has never reached this node previously, then the only edge from this 

vertex must be directed onto the sink, t; a set of augmenting paths has been 

found. The last layer is identified as the set of all free vertices in L, and the 

layering stops. Note that each augmenting path is of length 1 = r + 1, and that, 

since the search was breadth first, they must be the shortest such paths in .IV. 

The other condition is that the edge set for the k" layer is empty, i.e. there are 

no useful edges from the nodes in Lk.  In this case no augmenting paths exist in 

the network, and so the flow must be at a maximum for the original graph; the 
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search is halted. 

In the original algorithm, once the layering has identified a set of free vertices, 

the next step is a depth first search through these layers for the augmenting 

paths, starting from each node ii E L 1  in turn. In our formulation, however, a 

set of these paths is constructed on backtracking. This requires the use of the 

set parents(v), for each node in the network. This is defined to be the set of 

nodes, w, such that ii E Adj() in the current network, and they all lie in the 

same layer, Lk,  as C , the node which led to the addition of v to layer Lk+1. 

The layering is identified by Layer(L o, F0), which is shown as algorithm 4.2. Here 

L 0  is the set of nodes in the current layer, and the adjacency set for each v E L0  

is inspected. 

Algorithm 4.2 The Layering Algorithm 

Procedure Layer(L o , F0 ) 

while(pop(v, L 0) == 1) 
blocked(v) = 1 
cop y(Temp, Adj(zi)) 
while(pop(w, Temp) == 1) 

== t) then 
rest paths(Lo, P0) 

push(v, F0) 

return (1) 
else 

if (blocked (,) < 1) then 
if (blocked (w) == 0) then 

push(w, L 1) 
blocked(w) = -1 

else push(v, parents('w)) 
end 
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end 
end 

end 
end 

8UCCS8 = Layer(Li , F1) 

if (success == 1) then 
while(pop(Path, F1 ) == 1) 

phead = head(Path) 
while (pop(u, parents (phead)) == 1) 

if (blocked (u) 3& 0) then 
push(u, Path) 
push(Path, F0) 

blocked(u) = 0 
pop all(parents(phead)) 

end 
end 

end 
end 

return (success) 

end 

Fal 

If the sink, t, is found in one of these adjacency sets, then the set of nodes 

Po = {vlv E L0 , t E Adj(zi)} is identified by the procedure rest paths(Lo , P0 ), and 

the search backtracks. Otherwise, the next layer, L 1 , is constructed as described 

above, and Layer, is called recursively. On return, success = 0 if flow is a 

maximum for the original graph, 9 (V, E); otherwise it is unity. In the latter case 

P1  is the set of potentially augmenting paths of minimum length in the current 

network. Each of these paths, Path, is popped in turn, and its head, phead, 

identified. The set parents(phead) is examined to see if it contains some node, u, 

such that no path has been extended throu 6h it in the current network. If such a 



Chapter 4. Matching and ordering Variables and Equations 	 135 

node is found then its parents set is cleared, Path is extended through this node 

and the the path is added to P0 , the set of potentially augmenting paths which 

pass through nodes in V0; should no such node be identified then the path is 

discarded. This modification has the same worst case time complexity as Dinic's 

original formulation, but it ought to be more efficient on average. 

When the layering procedure has unwound, alter sink adj(L, Paths) removes 

the vertex at the head of each augmenting path from L, the set of free variable 

nodes, and augment(Paths) changes the matching. This process continues until 

either L is empty or there are no more augmenting paths, i.e. the matching is 

maximum. 

The procedure for augmenting the matching is shown in algorithm 4.3. 

Algorithm 4.3 The Matching Augmentation Algorithm 

Procedure augment(Paths) 

while (pop (F, Paths) == 1) 
while (pop pair(A, B, P) == 1) 

if(equation(A) 54 1) then 
match(A) = B 
remove (B, Adj(A)) 

end 
push(A, Adj(B)) 
push(B, P) 

end 
end 

end 

0 

At first sight this seems to be unnecessarily cumbersome, but this formulation was 



Chapter 4. Matching and ordering Variables and Equations 	 136 

necessitated by its implementation in Prolog. This is an object oriented language 

in which it is not possible to index the elements of a list directly. Although a more 

elegant formulation of this procedure is possible and expressible in Prolog, e.g. 

using linked lists of structures, their use is less efficient than algorithm 4.3 because 

Prolog is interpreted rather than compiled, and manipulating its database can 

be costly. In our implementation, each consecutive pair of nodes on a path is 

examined. If the first of these, A, is a variable node, then B is matched with it 

and, since the edge (B, A) must appear in the next network, B is removed from 

Adj(A). In either case A must be adjacent to B in the next network since either 

(A, B) is a member of the new matching, or (B, A) is a member of the current 

one. 

As an example of the algorithm in use, consider the initial network for the 

ideal binary flash equations from appendix B, which is shown in figure 4.3. 

If the first phase of the matching algorithm were to establish the matching 

{(x i ,2), (z2 , 3), (V,4), ( 6 ,y2), (Ps , 7), (F1 , 9), (F2 , 10)}, then the second network 

would be that shown in figure 4.4. 

Let each pass through the while loop of algorithm 4.1 be called a phase; this 

term was defined originally by Even [30]. The maximum number of matchings 

possible in G'(V', E') is i' = inin(IV/I, IVi) :5 IV'I/2, and at least one of these 

must be found in each phase. Thus there may be at most y phases. Further, 

each edge in E' is examined at most twice in Layer(L o , F0), once when V1  is 

being constructed, and then again when Po  is built. In the worst case only one 

node is removed from L by alter sink adj(L, Paths) and each edge in Paths is 

searched exactly once by augrnent(Paths). Hence, each phase of algorithm 4.1 

requires at most O(IE'I) operations. Thus the algorithm has an overall worst 
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Figure 4.3: The Initial Network for the Flash Equations from Appendix B 

Figure 4.4: The Second Network for the Flash Equations from Appendix B 

case complexity of O('yJE'f). 
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4.4 Selecting and Ordering the Equation Set 

The equation set, f(x), is selected from its superset by the procedure 

get design(r), which uses the depth first search developed by Tarjan [94]. His 

algorithm has been adapted by taking into account a suggestion by Duff and Reid 

[24] which improves its efficiency; a modification which takes into account the 

bipartite nature of D(V, E) ;  and the facts that S I1 and we are searching 

for a subgraph of t on V C V. In the algorithm, a stack, S, is maintained 

which accumulates the strong components of D(V, E), and so too is a path '7, 

which directs the search. P is maintained implicitly since the depth first search 

procedure is defined recursively. 

Two separate orderings are associated with the search, one for the nodes and 

the other for the strong components. The nodes are ordered as they are added 

to the stack so that the first to be pushed onto S is ordered first; the strong 

components are ordered in the reverse order to which they are popped from S. A 

lowlink, w = low(v), is maintained for each node v during the search. This value 

is the the lowest ordered node on the stack such that there is a directed path 

from ii to w and one from w to z.', i.e. the lowest ordered node which is strongly 

connected to ii; in this case w and v are said to be reachable from one another. 

This is the modification proposed by Duff and Reid [24]. In his original statement 

of the algorithm, Tarjan [94] defined w = low(v) to be the lowest ordered node 

such that there was an arc (v, w ) E E. Using Duff and Reid's suggestion saves 

some arithmetic operations. A statement of the depth first search procedure is 

given as algorithm 4.4. Here, push(v, 8) pushes the node v onto the stack 8, and 

pop(v, 8) pops this vertex. If pop(v, 8) = 0, then no vertex is popped because 
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the stack is empty. 

At each stage, a node, z.', is added both to P and 8, and each node w in its 

adjacency set, Adj(v), is examined. If low(w) = 0, then w has never been 

examined before and so it is placed on the stack and the path and DFS is called 

recursively. If, however, low(w) 54 0, then either w is on the stack, or it has been 

at some point In either case, low(v) is set to the lower of its current value and 

U = low(w). The reason for this is that if u is strongly connected to W , then there 

must be a directed path from ii to this vertex; if it is lower on the path than ii, 

then there must also be a directed path from u to v, and so they are in the same 

strong component. 

When each member of Adj(v) has been inspected, the node is popped from 1', 

and low(u) is compared with i.'; If (a = low(v)) < ii then these nodes must 

belong to the same strong component and so v is left on the stack. If, on the 

other hand, low(v) = ii, then ii is not in a strong component with any node 

ordered before it on S. Further, each node above it must be in the same strong 

component as this vertex since it has been left on the stack. Lastly, no node, 

f9 , which has been on the stack and popped from it, either before or after z' was 

pushed onto 8, may be a member of this strong component since otherwise z' 

would have been reachable from these vertices, which clearly it is not. Hence, v 

and each of the vertices above it on the stack and the edges between them form 

a strong component of D(V, E). These nodes are popped from S and stored as a 

set. 

The strong components of D(V, E) must be ordered in the reverse order to that 
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Algorithm 4.4 The Partitioning Algorithm 

Procedure DFS(v, S) 

cop y(Temp, Adj(v)) 

while(pop(, Temp) == 1) 
if(low(w) 3k 0) then 

low(v) = miñ(low(v), low(cs.)) 
else 

low(w) = 
push(w, 5) 
DFS(w, S) 
low(v) = min(low(zi) , low(w)) 

end 
end 
if(low(v) == ii) then 

pop stack(v, 5, C) 
end 

end 

0 

in which they were popped from S. To see this, consider C1, a strong component 

of V(V, E) which has just been popped from S. If this was not the only strong 

component whose vertices were on the stack at that point, then there must be 

a path from each vertex, y,  on S to each of the nodes in C1 , and hence C,, 

the strong component to which y  belongs, must be ordered before C1. Further, 

by construction, there can be no directed path from a vertex in some strong 

component, Ck,  which was popped from S before it to C1. Hence either C'1 and 

Ck are disconnected or there is a path from each of the vertices in C1 to each of 

those in Ck.  In either case, ordering C1 before Ck maintains the condition that 

each edge between strong components in V(V, E) is directed from that ordered 

lower to that which is ordered higher. As was shown by theorem 2.1 this means 

that the ordering corresponds to a computational sequence for f(x). 
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In the context of equation solving, when a variable node, ii, is at the head of the 

path and some equation node, w € Adj(u), is pushed onto 8,. this implies that 

v appears in this equation. When this relationship is reversed, i.e. the equation 

node w is at the head of 7 and i' is pushed onto the stack, it implies that W is 

to be solved for v. Hence in the latter case, w and i' must belong to the same 

strong component, and thus low(v) :5 w. There are many ways of ensuring that 

this is the case but, for reasons which will be explained in § 6.7, w is added to 

Adj(v), even though it is not adjacent to it in D(V, E). 

Finally we show how the strong components of V(V, E) satisfy the conditions set 

out on page 127. If the matching in 0 which is used to form f' is complete, then, 

by the arguments of theorems 2.1 - 2.3 this must be the case. Consider now the 

case where 11 I 0  I I and thus the maximum matching is not complete. No 

v € V, which is not matched with a node in V can ever be pushed onto 8, and 

hence it can never be identified as belonging to a strong component of 0 . The 

same is not true for any excess equation node, however, because any variable 

which appears in this equation can cause it to be added to S. However, there is 

no way in which the depth first search can be extended through this node, and 

so it must be popped immediately. This is identified easily by pop .stack(v, 8, C), 

since this is the only occasion on which a strong component of only one node can 

be popped from S. In this case the node is discarded and the depth first search 

continues. 

Having dealt with the depth first search procedure, we can turn our attention to 

get design(r), which is shown as algorithm 4.5. 
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Algorithm 4.5 Identify D(V, E) from b 

Procedure assign(r) 

while(pop(v, r) == 1) 
push(v, 5) 
DFS(ZI, 5) 

end 

end 

At each stage a seed node for the depth first search, ii, is popped from r, the 

set of design variables. This vertex is pushed onto the stack and the depth first 

search begins. When a strong component is popped from S by pop .stack(v, 5, C), 

each W E IF which is popped from the stack is removed from I' too. Thus, when 

the stack is empty, either r is empty, in which case V(V, E) has been identified, 

or a new depth first search is required. Continuing in this way until r is empty 

concludes the search. 

Each node may be pushed onto S at most once in get design(r), and each edge 

in the digraph can be examined once only. Hence the worst case algorithmic 

complexity for this procedure is O(,QI + r), where there are 'r edges in t. 

4.5 Summary 

It was shown in this chapter that a square, solvable subset of equations, f(x), 

which describes a particular instance of a generic problem, can be identified by 
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a bidentate strategy of establishing a maximum matching in the graph which 

describes the equation superset, using this and the original graph to form a 

new directed graph, t, and then selecting and ordering a subset of its strong 

components. An algorithm for the matching which operates in O('yE'I) time, 

where 'y = min(IV'I, IWI) :5 IU was presented. This is a modified version of 

Dinic's [20] maximal flow algorithm. So too a depth first search algorithm which 

finds a subgraph of t, such that it represents f(x), was presented; this operates 

with a worst case time complexity of O(II + IEI). Lastly, it was shown how 

those equations not involved in a maximum matching can be used to overcome 

the incidence of a redundant equation in a simulation. 



The great tragedy of Science - the slaying of a beautiful 
hypothesis by an ugly fact. 

T. H. Huxley, Biogenesis and Abiogenesis 

Chapter 5 

Finding the Minimum Tear Sets 

5.1 Introduction 

Consider an equation set, (X), for which an output set, M, has been obtained. 

may be represented by an undirected, bipartite graph (V, E), which is 

transformed into the directed graph V(V, E) by M; this process was described 

in § 3. fl(V, E) is the signal flowgraph for D, defined on the 'variable' vertices. 

We aim to show that each separator in fl corresponds exactly to one in 1), and 

hence that S, a minimum cardinality non-redundant tear set for fl is also one 

for D. Further it will be shown that the structure of fl can be represented by 

the roots of the trees in the spanning forest, F, of fl and the adjacency sets for 

these trees, and that hence the search for S may be restricted to a subset of the 

flowgraph. These proofs appear in § 5.2. 

As was indicated in § 3.4, the decomposition algorithm to be used is that due to 

144 
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Barkley and Motard [9]. In their paper, these authors present only a sketch of 

this algorithm, and so a fuller statement and description of it appears in § 5.3.2. 

In § 5.3.1 we show that their algorithm identifies a tear set for a problem, but 

that an arbitrary tie breaking rule within it casts doubt upon its minimality; this 

process has an algorithmic complexity of O(1X1 4 ). Two example decompositions 

are presented in § 5.4, and, lastly, a summary of the contents of the chapter 

appears in § 55. 

5.2 The Signal Flowgraph of a Digraph 

Algorithm 5.2 below identifies a tear set of minimum cardinality for the signal 

flowgraph which is derived from the bipartite digraph which corresponds to a 

given output set for the problem. In this section we show that this tear set is also 

a minimally sized separator for the bipartite digraph. So too we demonstrate that 

each of the nodes which is a candidate for tearing must be the root of a directed 

tree in the spanning forest' for the signal flowgraph, and that a reduction of the 

signal flowgraph in which only these roots appear can be used to determine the 

tear set. The membership of these trees is unique but, in general, their ordering 

is dependent on the matching used to form the signal fiowgraph, and so too is the 

direction of the arcs between them. This effects the cycle structure of the signal 

flowgraph and hence the membership and minimum cardinality tear set for each 

output set. 

'This term is defined in § 2.2.2 
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Theorem 5.1 A minimally sized tear set for a signal flowgraph fl is also one 

for the bipartite digraph V(V, E) from which it was formed. 

Proof: Let the vertices in V be partitioned as V =v, fl V, and let fl be formed 

from the vertex set V. Then each path of length 1 in V which begins in V, and 

such that 1 is an even number, corresponds to a path of length i in fl which has 

the same termini. Since each cycle in D(V, E) must be of an even length, each of 

these must correspond to a cycle in fl. 

Consider one such pair of corresponding cycles, C E V and O E fl. Each vertex 

vi E O is a member of V, and so too it is a member of C; each i', E C such that 

v3  is a member of V must appear in O. Hence any Z'/ which separates 0 must 

also separate C. This follows from the fact that each cycle through an equation 

node must pass through the variable node with which it is matched. Since there 

is a one to one correspondence between the cycles in the bipartite digraph and its 

signal flowgraph, any separator for fl must be a separator for V. The converse 

is true, and so any minimum cardinality tear set for fl must be one for V. 0 

Having shown that a signal flowgraph can be used to determine the tear sets for 

the bipartite digraph to which it corresponds, we proceed to demonstrate how 

the search within it can be restricted to a subset of its vertices. In what follows, 

each directed tree in F, the spanning forest of the reduced signal flowgraph, is 

denoted by TA,  where .A is the root of this tree. 

Theorem 5.2 A subset of the roots of the trees in a spanning forest .F of a signal 

flowgraph fl yields a minimum tear set for it. 
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Proof: Recall that the spanning forest of a signal flowgraph, fl, is a set of 

directed trees such that each node in the fiowgraph appears in exactly one of 

them, and each tree edge is an edge in the flowgraph. The jth  tree in this forest 

comprises of a root' node v2  and each node which lies on a path which starts at 

v3 , and such that it has only one edge incident upon it. An adjacency set can be 

defined for each of these trees. If V3  is the set of vertices in the tree, then its 

adjacency set, Adj(T,), is defined as 

Adj(T,) = {u I u E Adj(v1),; € V3 } - ( V2  - { z.'}) 	(5.1) 

n.b. if z', the root of 7',, appears in Adj(T), then it must not be removed so that 

self loops can be identified. Any cycle in the flowgraph which passes through 

some node 1'k E Ti, 11k 0 v1  must also pass through v1. Hence each cycle in fl 

must contain the roots of at least two trees from its spanning forest. 

Consider a cycle, C, in fl, in which the edge (vi, ii,) appears. Either both vi and v1 

are members of the same tree in .1 or v1 must be the root of the j" tree T,. If the 

latter condition is satisfied then a new digraph, R., can be produced by replacing 

the edge (vi, v,) with (i'a , v1 ), where v1 € Ta , and vi is not necessarily distinct from 

Pa. Since C must pass through there must be a one to one correspondence 

between the cycles in the two digraphs. If this process is repeated for all directed 

edges between two trees in the spanning forest in such a way that only one of a 

set of parallel edges is added to R., and if each subpath, p, in .a cycle, such that 

each node in p belongs to the same tree, T,3, say, is replaced by the root of the 

tree, v, then each of the cycles in the new digraph must correspond exactly to 

one of those in H. 
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Any node which tears a cycle in 1Z. must also tear the corresponding cycle in the 

original flowgraph; conversely any root node which tears a cycle in fl must tear 

the corresponding cycle in 1Z. Since each cycle in W contains at least two root 

nodes, the search for a minimum tear set for this fiowgraph can be restricted to 

those nodes. 0 

Note that the signal fiowgraph for a bipartite digraph is neither independent of 

the matching used to form it, and nor is a tear set for one matching is necessarily 

valid for the other. This is because, in general, the edges between nodes will be 

directed in different ways and hence the cycle structures of the signal fiowgraphs 

will be different. Consider for example the bipartite graph and two alternative 

matchings for it which are shown in figure 5.1. The signal fiowgraph and its 

spanning forest for each of these digraphs are shown in figure 5.2. These signal 

flowgraphs have different cycle structures and, as is shown, they have different 

minimum cardinality tear sets. That for figure 5.1(a) is {B, D}, whereas that for 

figure 5.1(b) is {B}. 

5.2.1 Deriving a Signal Flowgraph from a Bipartite 

Digraph 

Recall that for a bipartite digraph, g(V,E), with the properties 

v=vxnvv . 

• There is a complete matching M E E between these vertex sets. 
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(a) 

1,A 
2,B 

(b) 
$,E 

1,A 
4,B 

(c) 
5,E 

Figure 5.1: A Bipartite Graph and two Alternative Matchings for it 

• Each edge f € M is directed from iç to V, and each € € E, € V M is 

oriented in the other direction. 

the signal fiowgraph which corresponds to it is defined to be fl(V, E), where 

E = {(z', 	u, € V, (zi,w,), (wj, v 3 ) E E} 

The proof that a minimum cardinality tear set for fl is also a tear set for (V, E) 

is given by theorem 5.1. Here we show that this flowgraph can be derived by a 

breadth first search of V which has a time complexity of O(IEI). 
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I J B 
 

(a) 	 [&D 

Figure 5.2: The Spanning Forests for the Digraphs of figure 	) 

The 	 breadth 	 first 	 search 

appears in pseudocode as the procedure make .signal(vertzces, sigrow ,  , sigcol) 

in algorithm 51. Here, vertices is an array which holds the members of V, and 

both .sigrow and sigcol are double subscript arrays which contain a version of 

the reduced signal flowgraph. sigcol(i) is the set of nodes which direct edges onto 

the i' vertex in V; sigrow(i) is the set of vertices which are the endpoints of 

edges directed from the i' node. 

Each node, ii, is popped from vertices in turn, and the members of its adjacency 

set, Adj(v), are examined. When w is popped from Adj(v), the node with which 

it is matched in V(V, E), C
, 
is added to sigrow(v), and v is pushed onto sigcol(C); 

n.b. only sigcol or si grow is required to determine the signal flowgraph, but both 
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are used for efficiency in the implementation of the decomposition algorithm. 

Each node in V is examined exactly once, as is each edge in E of which it is the 

initial vertex. Hence both sigrow and sigcol contain the signal flowgraph which 

corresponds to the input digraph, and the algorithm has a time complexity of 

O(IEI). 

Algorithm 5.1 Form a Signal Flowgraph 

Procedure make signal (vertices, sigrow, sigeol) 

while(pop('v, vertices) 0 0) 
'cop y(Temp, Adj(v)) 
while(pop(w, Temp) 34 0) 

pop(C, Adj(w)) 
push('C, Temp) 
push('v, sigcol(')) 
push(C, sigrow(v)) 

end 
end 

end 

5.3 The Decomposition Algorithm 

5.3.1, The Rules for Decomposition 

Barkley and Motard [9] presented an hierarchy of rules which attempts to find 

which nodes belong to a minimum cardinality tear set. These are 
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Each node in the flowgraph which has a self loop must be torn. 

If there is a cycle of length two in the flowgraph, then it is necessary to 

tear at least one of the nodes in it. If either node in the cycle is involved in 

more cycles of this form than the other, then tearing it breaks more cycles
K3 At 

of length two than if the other were torn. )We that whilst this may lead to 

a smaller tear set there is no guarantee that it will. 

If there are no self loops or cycles of length two in an irreducible signal 

flowgraph, then the node of highest out degree is torn. 

If this fails to identify a unique next node to tear, then one of the candidates 

of highest degree is torn arbitrarily. 

Rules 3 and 4 can be used to resolve the conflict between a set of nodes, each of 

which satisfy either of rules 1 or 2. 

The justification for the first of these rules is that each self loop may be cut only 

by tearing the node on which it is defined. Likewise, if a node appears in more 

than one cycle of length two, then either it must be torn, or each of the other 

nodes in these cycles must be torn. Hence, tearing the node which appears in 

more two edge cycles than any other minimises the size of the tear set. If it is 

necessary to tear both nodes in one of these cycles then the tear set is no longer 

nonredundant. The last rules attempt a local minimisation of the size of the tear 

set, but they cannot guarantee its global optimisation. 
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5.3.2 A Description of the Algorithm 

The decomposition algorithm appears as algorithm 5.2. The first steps are the 

derivation of the signal flowgraph from the bipartite digraph; the identification 

of the spanning forest of the flowgraph; and production of the reduced signal 

flowgraph based on the roots of the trees in this forest. At each stage after this 

a single tear variable, r, is identified and eliminated from the reduced flowgraph, 

fl, along with each edge directed from or onto it, and this fiowgraph is reduced 

again. The process continues until the reduced flowgraph is empty. At this point 

a tear set, S, for the bipartite digraph has been identified, and the other vertices 

have been ordered so that, other than edges directed from torn nodes, all edges 

in the digraph are directed in the forward direction. 

At each pass through the algorithm, even if more than one node which must 

be torn is identified, only one of these is eliminated from the reduced signal 

fiowgraph. The reason for this is that removing nodes simultaneously may isolate 

some untorn node, v, i.e. reduce its in-degree to zero, in which case it cannot 

be assigned membership of any tree in the spanning forest; the position of such 

a node in the ordering of the torn digraph is indeterminate. 

Each tree in, Jr, the spanning forest of the newly reduced signal fiowgraph, 1?., 

must be either a tree in the spanning forest for the input reduced fiowgraph, fl, 

or it must be comprised of subtrees which were. This is because no new edges 

are added to fl other than those which replace directed paths, and only edges 

between trees can be removed; should some tree, Ti, have only one edge incident 

upon it, (v1 , u3 ) say, following the elimination of z.', then T, becomes a subtree of 
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Ti in the new version of F. The trees in this forest are not stored explicitly, but 

the vertices within them are stored linearly, subject to a weak ordering, within 

a link array, link. If two vertices, v. and vb, are both in some tree, Ta, and if 

there is a path from z' to i/b,  then v0  is ordered before vb. The head of each list 

in link is either a node in R. or it is a tear variable. If a node, vp , is to be added 

to a tree Ta2 , then the entry for v,, in link is inspected. If link(a) = 0, then this 

entry is set to P. Otherwise, if link(a) = y, then link(-y) is examined, and so on, 

until some entry link(6) is found to be zero; then link(6) is set to 

Algorithm 5.2 The Tearing Algorithm 

Procedure tear signal (vertices) 

make signal (vertices, sigrow, sigcol) 
reduce graph(vertices, link) 

while (not (empty(vertices)) 
if (self loop (sigrow, r) == 0) then 

if (double edge (sigrow, r) == 0) then 
tear largest (sigcol, r) 

end 
end 
remove tear('vertices, 'i') 
push(T, S) 
reduce graph(vertices, link) 

end 
print tears (S , link) 

end 

Fol 

In tear signal(vertices), vertices is the list of nodes in the reduced signal 

flowgraph, sigrow(i) is the adjacency set for vi in this digraph, and sigcol(i) 

is the set of vertices which direct edges onto this node. The procedure 

2 n.b. up may be the root of a tree Tp in which case the whole of Tp becomes a branch of 
Ta. 
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self loop(vertices, r) searches for self loops on the vertices of fl, and 

double edge (vertices, r) looks for cycles of only two edges. If both of these fail, 

then tear largest (vertices r) tears one of the nodes of maximum out-degree. In 

each case, r is the tear node identified. This vertex is eliminated from fl by the 

procedure remove tear(vertices, r), and it is pushed onto S, the stack of torn 

nodes. The fiowgraph is reduced to R. by reduce graph(verticea, link), which 

updates link as necessary. Finally, when a tear set for the flowgraph has been 

identified, print tears(S, link) prints out the vertices in their new order. 

Searching for self loops is a simple computational task, but the procedure used has 

a worst case complexity of 0 (IVI 2 ). Determining the node of highest out-degree 

is easy too, and it has a worst case complexity of O(IVI). 

Identifying cycles of length two requires a great deal of effort, and an algorithm for 

this appears as algorithm 5.3. The adjacency set for each node, v, in the fiowgraph 

is examined in turn. If the adjacency set for any node w € .sigrow(v) contains ii, 

then one of these cycles has been identified. The number of these cycles in which 

u appears is calculated and it is compared with the highest number found so far. 

If ii appears in the same number of cycles as the previous maximum, then this 

node is added to dbls, the stack of variables which appear in the largest number 

of two edge cycles. If it appears in more cycles than this, then it becomes the 

only candidate for tearing. 

In the worst case, the first while loop may be executed IVI times, and the 

adjacency set for each vertex may contain all of the other IV I - 1 nodes. Thus 

double edge(vertices, ii) has a worst case time complexity of 0(IVI3). 
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Algorithm 5.3 Find two way edges 

Procedure double edge (vertices, r) 

max pairs = 0 
while(pop(zi, vertices) 0 0) 

while(pop(i, sigrow('v)) 34 0) 
if (member (ii , sigrow(w)) then 

pairs = pairs+1 
end 

end 
if (pairs == max pairs) then push(v, dbls) 
else 

if (pairs > max pairs) then 
max pairs = pairs 
popall(dbls) 
push(zi, dbls) 

end 
end 

end 
if(sizeof(dbls) > 0) then 

if(sizeof(dbls) == 1) then 
pop(,r, dbls) 

else 
find max adj('r, dbls) 

end 
end 

end 

The spanning forest for the reduced signal flowgraph is found by 

reduce graph (vertices). Each node in the fiowgraph, 1', is inspected in turn. 

If it has only one edge incident upon it, and this is directed from w, then ii must 

belong to the same tree in the spanning forest of fl as w; indeed, by construction, 

w must be the root of this tree, T. Each node which is the endpoint of an edge 

directed from v is added to the adjacency set for ; i' is appended to the list of 

nodes in T and then eliminated from the flowgraph. 
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Algorithm 5.4 Reduce the Graph 

Procedure reduce graph(vertices, link) 

while (pop (v, vertices) 34 0) 
= single entry(sigcol(v))) > 0) then 

merge rows ('sigrow(v), sigrow()) 
replace row index ('sigrow(v), w, sigcol) 
add link(v, w, link) 
reduce graph (vertices, link) 

else 
reduce graph(vertices, link) 
push(zi, vertices) 

end 
end 

end 

FE-1 

The algorithm for this appears as algorithm 5.4. 

Merging the two adjacency sets in merge rows(sigrow(v), sigrow(w)) requires at 

most O(IVI) operations, but replacing v with w in each array in sigeol may take 

O(IVI 2 ) operations; adding ii to T has a worst case complexity of O(IVl). Hence, 

merge rows(sigrow(v), sigrow(,.,)) has worst case time complexity of Q(IVI2). 

Each of the main tasks in the algorithm has been examined, and the most 

expensive of these, for moderate or large IVI, is double edge(vertices, ii), which 

has a worst case time complexity of O(IVI) 3 . Since this may be called IV  - 1 

times, the overall worst case time complexity for the decomposition algorithm is 

O(IVl)4. 
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5.4 Two Examples 

Consider the binary ideal flash problem described in appendix B. The graph of 

this equation set is shown in figure 2.5, and the digraph for an assignment of these 

equations appears in figure 2.6. The signal flowgraph which corresponds to the 

irreducible section of this digraph is displayed in figure 5.3, and its spanning forest 

Figure 5.3: Part of the Signal Flowgraph for the Ideal Flash Equations 

is shown in figure 5.4, where the broken arcs indicate back edges within trees, and 

cross edges between them. The structure of this spanning forest indicates that the 

signal flowgraph can be reduced to the digraph shown in figure 5.5. Here we see 

that there is a self loop on node L, and so this must be torn. Eliminating this node 

breaks the two edge cycle between L and x 2 , and the digraph has been rendered 

acyclic. The correct ordering of the nodes is then {L, V, x 2 , K2 , PT,  F2 , F1 , x 1 }. 

A more difficult example is the 6 x 6 equation set for which the digraph for the 

output set {(1, A), (2, B), (3, C), (4 )  D), (5, E), (6, F)} is shown in figure 5.6. The 

signal flowgraph for this equation set based on the 'variable' nodes is shown in 

figure 5.7, and its spanning forest appears in figure 5.8. The decomposition 
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Figure 5.4: The Spanning Forest for the above Signal Flowgraph 

- - e - - - - - 

00% 
--- 

4-  

Figure 5.5:5.5: The Reduced Signal Flowgraph 

algorithm would reduce figure 5.7 to the digraph shown in figure 5.9, where there 

are self loops on both of its vertices. The algorithm would tear one of these 

and then the other, so that the minimum cardinality tear set for the problem is 

S = {B, E}. Note that this tears one of the cycles in figure 5.6 twice. One of the 

minimum cardinality tear sets which avoids a double tear is $ = { B, D, F}. 
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Figure 5.6: A Digraph for a 6 x 6 Equation Set 

Figure 5.7: A Signal Flowgraph for figure5.6 

5.5 Summary 

In this chapter we have seen that a minimum cardinality tear set, 8, for a reduced 

signal flowgraph, fl, is also a separator of minimal size for the bipartite digraph, 

V, from which it was derived, and that the search for the members of this set 

can be restricted to the roots of the directed trees in Jr, the spanning forest of 

W. Further, it was demonstrated that the size and membership of this tear set 

is not necessarily unique for the undirected bipartite graph, which underlies 
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Figure 5.8: The Spanning Forest of the Signal Flowgraph 

orw 
Figure 5.9: The Reduced Signal Flowgraph 

V. In § 5.2.1 an algorithm was presented which will derive fl from V in O(IEI) 
operations, where there are IEI arcs in the bipartite digraph. The rules for the 

decomposition procedure were presented in § 5.3, and algorithms for its more 

important sections were stated. Lastly, it was shown that this process has an 

algorithmic complexity of O(IVI) 4 , where V is the vertex set in W. 



0! Thou hast damnable iteration, and art, indeed, able to 
corrupt a saint 

William Shakespeare, Henry IV, Part 1 

Chapter. 6 

The Generation of Analytical Derivatives and 
their use in an Equation Solver 

6.1 Introduction 

There are many techniques available for accelerating the convergence of non-linear 

equations, and some of them are described in appendix D. It was decided that 

the Newton Raphson method would be used to solve the equations generated by 

the mathematical modelling software, and that the Jacobian would be generated 

analytically. These derivatives are calculated simultaneously with the functions, 

using a data management technique for torn systems which was developed from 

one due to Ponton [75] and which is described in § 6.3. This method avoids 

differentiating and flattening expressions, and so too it minimises the number of 

times which transcendental functions must be calculated, but these advantages 

are tempered by the fact that the equations are interpreted, rather than evaluated 

in the normal way. So too this method fails to address the surfeit of calculation 

162 
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associated with evaluating derivatives which can be seen, a priori, to be zero 

everywhere. The rules for an algorithm which obviates this difficulty are outlined 

in § 6.6. 

6.2 The Newton Raphson Method 

Consider the solution of 1: 1R' _+ N, a set of N non-linear equations in N 

variables. At each iteration of the Newton Raphson method, these equations are 

approximated by a set of linear equations which have the same values as f at 

the current point x, and identical derivatives. The solution of this approximate 

model, x, is given by 

(6.1) 

where J is the Jacobian for the system. This process is repeated until f 0. 

If some of the variables in the system have been torn, then a different 

computational scheme is required. Let the c torn variables be 1 and the others 

be t, so that x = [t, Each of the first N - c equations are rearranged to give 

an explicit expression for one of the members of 1 . Let these equations be f. The 

remaining c equations, the kernal equations f, are to be solved simultaneously as 

a set of reduced equations, i.e. the solution of j(t(1), ) = 0 is sought. If Vt 

is the rate of change of the dependent variables with respect to the independent 

variables, if VJ is the rate of change of the kernal equations with respect to 

the dependent variables, and if vJ is the rate of change of these equations with 

respect to the independent variables, then the computational scheme for this is 
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Guess i. 

Calculate 1(1) and V±. 

Find J(±(), ): if I I I 	0 then stop. 

Evaluate J = Vj x Vt + VJ 

Set 	.- J-1j. 

6.3 The Generation of Analytical Derivatives 

It is a simple task to write down the rules for differentiating equations in infix 

form, and to code these as a computer program. In practice, however, this can 

lead to the generation of an excessive number of terms in a derivative. Consider, 

for example, the equation 

I = 3 - 
	

+ 
x2 	b - c 	

(6.2) 
2x —a ax 

Differentiating this using the usual rules would generate the expression 

di =- (2x - a)2x - x22 + axO - (b— c)a 	
(6.3) 

2 dx 	 2 ( x—a) 	 (ax) 

in which there is one zero term and several which can be combined to reduce 

the size of the equation. Removing this zero term and modifying the others is 

called flattening, and it is not necessarily unique. For example, equation 6.3 can 

be flattened to give either 

df 2x 	x 	b — c 
TX 2x - a ('  - 2x - a 	ax2 	

(6.4) 
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or 
df 	2x(x—a) b — c 
TX 	_. a 2 	ax2 	 (6.5) 

x  

Generating either of these forms of the derivative of equation 6.2 requires the 

comparison of many terms within equation 6.3, and this can be an operose 

process, even a for relatively simple equation such as that above. 

Ponton [75] has shown that these problems may be obviated if the equations are 

stored and evaluated in Reverse Polish Notation (R.PN). This is a form of postfix 

notation in which an equation is represented as a string of symbols, each operator 

appearing after its operands. The RPN representation of an infix equation can 

be generated by parsing it with the rules 

Term ParsedForm 

Left = Right Right Left = 

Left Op Right Left Right Op 

Left Op Left Op 

Op Left Left Op 

where the second refers to binary operators, the third postfix unary operators 

and the last to prefix operators of unit arity; here Op is the reverse form of Op, 

e.g. the - in a term —a would become the reverse subtraction operator i-. Using 

these rules, equation 6.2 becomes the string 

3xxx2l2xxa—/—bc—axx/+f= 	 (6.6) 

In order to evaluate a RPN string, 5, it is manipulated in conjunction with a 

calculation stack, C. Each symbol is popped from S in turn. If it is a variable or 

a constant, its value is pushed onto C; if it is an operator, the relevant number 

of elements are popped from the calculation stack, they are operated on, and 
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the result is pushed back onto C. This process continues until the next symbol 

popped from S is the variable whose value is sought. At this point the only 

element in S is this value and so it is popped and assigned accordingly. 

Ponton [75] showed that for a single equation in only one unknown, the value of 

the analytical derivative of this equation can be calculated simultaneously with 

that of the equation itself. This requires that a derivative stack, D, be maintained 

and manipulated in the same way as the function stack. As an operand is pushed 

onto the function stack, so too the value of its derivative is pushed onto D. If 

the operand is a constant, then this value must be zero; if it is the variable in the 

equation, then it must be one. When values are popped from C and operated 

on, the corresponding elements of D are manipulated, possibly with those from 

C, according to the usual rules of differentiation. For instance, if ii and w are the 

top two elements of C, and if 1'd  and Wd are the top two elements of D, then if 

the multiplication operator, x, is popped from 5, ii and w are popped from C 

and the value of v x w is pushed onto this stack; simultaneously i'd and wd are 

popped from D and replaced by i'd X w + wd x v. 

Whilst this approach is wasteful in that it may involve a number of additions 

or multiplications involving zero, it is beneficial in that it is no longer necessary 

to differentiate the equations explicitly and hence no expression flattening is 

required.. Further it can save effort in calculating expensive terms such as 

transcendental functions. For instance, the derivative of 

f =er2? 	 (6.7) 

is 
df 	X2 

= 2x& - eZ 	 (6.8) 
dx 
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Evaluating equation 6.7 and its derivative in the traditional way requires four 

calculations of the exponential function, whereas in Ponton's method, only two 

are necessary. 

6.4 Application to Torn Systems 

As .Ponton noted, this technique can be extended to allow the differentiation 

of f(x) : RN .. N with respect to each of its variables by manipulating a 

derivative stack for each variable. This was extended to account for the occurence 

of both dependent and independent variables in a problem. Here the three sets of 

derivatives described in § 6.2 are required, but one set of derivative stacks, that 

for the dependent variables, suffices. The values of Vt are calculated by pushing 

a 1 onto the relevant derivative stack each time a tear variable is pushed onto 

the calculation stack, and a 0 otherwise; when the value of a dependent variable 

is popped from C, its derivative with respect to each of the tear variables is 

popped from the derivative stacks. The values of vJ are calculated as before. 

No explicit calculation is required for Vf, however, since all that is required is 

that each time the value of some variable xi E 2 is added to the calculation stack, 

its derivative with respect to each tear variable x,, 
dzi-, is pushed onto the correct 

derivative stack. 
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6.5 An Example Problem 

Consider the solution of the 3 x 3 equation set 

Si 	 - 253  = 1 

- 3x2 	=2 
	

(6.9) 

2 + 353 =3 

In accordance with the computational scheme described in § 6.2, this is solved as 

1 2 x3  x +Xi = 

x2 - 3152 = 	
(6.10) 

X23 - 3153 - fi = 
where the value of x 3  has been torn. 

Let the guess for 53 be 1, and let S be the function stack, and D be the derivative 

stack. The calculation of x 1  is shown in figure 6.1. Firstly 1 is pushed onto S 

and, since this is a constant, 0 is pushed onto D. 2 and its derivative are pushed 

	

1 	1 

	

(a) 2 	0 	(b) 2 	2 	 (c) 

	

1 	0 	 1 	1 	 3 	2 

• S 	D 	S 	D 	S •D 
Figure 6.1: The Calculation of x 

onto the stacks, and then this is repeated for the value of 53. The next element in 

the input string is the multiplication operator, and hence the top two elements in 
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each stack are popped and combined'. Since the addition operator appears next 

on the input, the two elements of each stack are popped and summed, and the 

result is pushed back; there are no more arithmetic operations and so the value 

of x 1  is popped from S, and that of is popped from D. 

The calculation Of  x2  proceeds in a similar manner, as is demonstrated in 

figure 6.2, and so too does that of fl ; this calculation is shown in figure 6.3. 

(a) 2 	0 	 (b) 3 	
0 

2 	 1 	2 	(c) 	
213 

S D 	S D 	S D 
Figure 6.2: The Calculation of x 1  

(a) 	0 	(b) 3 	
0 

113 	2/3 	 -8/3 	2/3 

S D 	S D 

1 	1 
" -8/9 	2/9 	/ - 17/9 	-7/9 

S D 	S D 
Figure 6.3: The Calculation of x 1  

'nb 	L— du 
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6.6 A Recommendation for Future Development 

It has been shown that generating the numerical values of the analytical 

derivatives of an equation set using an interpretive method is desirable in that it 

precludes algebraic manipulations. However, like most other methods which are 

available, it suffers from an inherent algorithmic inefficiency, i.e. the derivative of 

each dependent variable and each reduced equation is found with respect to each 

independent variable, whether it can be seen a priorito be zero or not. Consider, 

for example, the binary ideal flash problem described in appendix B, using the 

assignment 

 K2x2 = 	Y29 K2  

 P2 /P = K2 , P 

3.Px2  =P2 , P2  

 Pi+P2 = 	Pg , Pi  

 Pj'xi  = P1 , x i  

6.L+V =1, L 

7. Lx 1  + Vy 1  = Fz1 , V 

8. Lx 2  +Vy2 = 	Fz2 , x2 
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A computational scheme for this problem is 

K2  = !/21x2 

P = 

P2  =P2 x2  

P1  = Pt —P2  

= 

L =F—V 

fi = (Fzi  - Lx i ) Yi - V 

12 = (Fz2—Vy 2)/L—x 2  

If Jacobi iteration is used, then each variable value is updated at the end of an 

iteration, and the elements of the reduced Jacobian are 

dV - OV 

dx2 	
(6.11) 

ta - J8LJ.a 
dV - 8LSVmOV 

JL 	PA 
da2 	8X2 

Since the partial derivative of L with respect to V is the only derivative of 

a dependent variable required, most of the effort expended in calculating the 

derivatives using the above method would be wasted. If Gauss-Seidel iteration is 

used instead, then the reduced Jacobian becomes 

11
=  

dV 	8LOV aV 

= 	± 	± dx2 	8 i 8V 	OL 8V 	8X2 	 (6.12) 
A = dV 	8LSV ØV 

= dz2 	8L 8X2 	42 8Z2 8X2 

Once again slavish adherence to the algorithm described for calculating the 
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analytical derivatives leads to a waste of effort in that only the values of L and 

X2 are dependent on that of V. 

In order to determine the minimal set of derivatives required for a solution, one 

may use an inheritance graph for the equation set; that for the binary flash 

example is shown in figure 6.4. This digraph is a layered reordering of the signal 

0 
I 

I 
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S 
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S 

Figure 6.4: The Inheritance graph for the flash problem 

flowgraph for the variables in the problem where the torn nodes are ordered first. 

Those nodes which represent variables which are dependent only on tear variables 

are ordered next; n.b. there must be at least one of these. The rest of the nodes 

are ordered in similar fashion, i.e. node w is ordered in the j° layer of the graph 

if it represents a variable whose value is dependent only on variables which have 
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been ordered before it, at least one of which corresponds to a vertex in the j - 

layer. The back edges in this digraph, which are depicted in figure 6.4 as broken 

arcs, show the dependency of the tear variables on the dependent variables; the 

cross edges depict the interdependency of the tear variables. This dependency is 

the key to the interpretation of the digraph. 

The use of Jacobi iteration requires the derivatives of only those dependent 

variables which are explicit functions of independent variables, and which appear 

explicitly in one or more of the tear equations. More precisely, is required 

if, and only if, ii is a tear variable but w is not, and if there is a diedge (ii, w) 

and another directed edge (w, o) in the signal flowgraph for the variables in the 

problem, where v is a tear variable, but v and o are not necessarily distinct. 

These derivatives can be identified by a depth first search of the inheritance 

graph for the equation set. So too the other derivatives which are required, i.e. 

the rate of change of each of the the tear equations with those torn variables which 

appear explicitly within it, can be identified from a search of this digraph. The 

necessary condition on their inclusion is that there exists a directed edge, (ii, w), 

in the digraph between two torn nodes i' and w; in this case the derivative with 

respect to v of the tear equation which is matched with w must be calculated. 

The rules for identifying the necessary derivatives for use with Gauss-Seidel 

iteration are more complicated, and it is from these that the above graph takes 

its name. If there is an edge (a,,6) in the inheritance graph then 8 is an 

implicit function of each of the variables which determine the value of cx. If 

these variables are restricted to those which are independent, then, using this 

relationship recursively, and the fact that the nodes in the first layer of the graph 

are torn, it can be seen that /3 is a function of all of the tear variables in the 
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union of the of the sets of tear variables of those nodes which direct edges onto 

it. If 9 is itself a torn variable, then the derivative of the equation which is 

matched with it, fp, must be found with respect to each variable which directs 

either a back edge or a cross edge onto P. Further, if there is a non-trivial path 

from some node y, not necessarily distinct from 3, which corresponds to a tear 

variable, x,,, and which passes only through vertices which represent dependent 

variables, then the derivative of each of these variables with respect to x 1  must 

be calculated; n.b. this does not imply that each of these appears in a term in 

J = vJ x Vt + vJ. Each path of this type which passes from a node 77,  which 

represents the tear node x,,, through a node ic, which represents the dependent 

variable XK implies that the value of is required for the solution of the reduced 

equations. 

The justification for these observations is that these paths show how the variables 

in the equation set vary with each other, and hence which will have nonzero 

derivatives with respect to each other. Returning to the problem of figure 6.4, it 

is seen that the values of 8K2 8L 8L La } must I. 8z' 8X  8Z  8X 8X  82?3  W 1 av 8 3  8V 8X2 

be calculated. 

The above observations have been used to analyse a number of examples, but so 

far no attempt has been made to develop them algorithmically. 
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6.7 Summary 

It was decided that the Newton Raphson method should be used to accelerate 

the tear equations and that the numerical values of the analytical derivatives 

of these equations would be calculated along with the equations themselves. 

As was shown in § 6.3 this can be done by adapting Ponton's [75] to torn 

systems. Although this was developed successfully it suffers from the defect that 

each dependent variable must be differentiated with respect to each independent 

variable, regardless of whether it is a function of it or not, and the same is true 

for the tear equations. The rules for a graphical analysis which circumscribes 

this difficulty were introduced in § 6.6, but they have not been developed as an 

algorithm. 

In the next chapter we describe how this solution technique, and the assignment, 

partitioning and tearing algorithms of chapters § 4 and § 5, have been 

implemented as part of a mathematical modeller. 



I must Create a System, or be enslav'd by another Man's; 
I will not Reason and Compare: my business is to Create. 

William Blake, Jerusalem 

Chapter 7 

The Software Implementation 

7.1 Introduction 

In chapter 1, it is shown that the task of producing and solving a mathematical 

model can be decomposed into six subtasks: 

Find the generic statement of the problem and the data specific to the 

current problem. 

Identify the necessary equations. 

Partition the equations into a computational sequence for the problem. 

Tear and order the equations in each partition. 

Produce a computer program to solve the equations. 

176 
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6. Solve the equations and report the results. 

The theoretical basis for these features was developed in chapters 4, 5, and 6. 

In this chapter the practical details of implementation, such as the languages 

used and the maintenance and manipulation of data structures, are presented. 

The reason for the use of Prolog and C are given in § 7.2. A statement of 

the controlling algorithm for the modeller is presented in appendix E, and this is 

discussed along in § 7.3. The functionality of the software and the data structures 

which it manipulates sre discussed in this section too. In § 7.4 a sample modelling 

session is presented which illustrates the points discussed in § 7.3, and a summary 

of the chapter is presented in § 7.6. 

7.2 Introduction 

The modelling software was developed in a mixture of Prolog and C. All of 

the symbolic computation, such as equation parsing and rearrangement, was 

written in Prolog. This is an interpreted language and consequently it is very 

slow. Further, it possesses very poor numerical processing capabilities and so 

those tasks which are computationally intensive, i.e. the decomposition and the 

solving routines, were coded in C. In the following section we will discuss the 

fundamental features of Prolog which are necessary for the rest of the chapter; 

for a more comprehensive introduction to this language see [91]. 
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7.2.1 Programming in Prolog 

Prolog, Programming in Logic, is an interpreted, object orientated language. It is 

used to test the truth of simple or compound statements such as "A is a member 

of list B", "C is a leaf of tree D and has a value E", etc. It tests for this truth 

by comparing data structures to see if they match. If they are equal then the 

statement being tested is true; otherwise it is false. These data structures may 

be formed dynamically, or they may be contained in rules and facts which have 

been asserted to the Prolog database. A compound statement of rules and facts 

is called a goal. 

There are three basic data types in Prolog - atoms, structures and variables. 

Atoms are constants such as integer and real numbers, or strings. For example, 

1, 6.2 and 'foo' are all atoms. Structures, or predicates, are compound terms 

consisting of a name and a number of arguments. For example, in the predicate 

'member(a, B)', 'member' is its name and 'a' and 'B' are its arguments. Two 

common types of structure are the list and the tree. Finally, variables have no 

value and so they can share, i.e. assume the value, of any atom or structure with 

which they are compared. 

A Prolog program is a depth first search (DFS) of a subset of the rules and facts 

in the Prolog database in order to verify a series of statements; this allows one to 

develop massively recursive code. In general this DFS consumes a large amount 

of the heap assigned to the program. If a match is obtained; then very little of 

this memory is returned for future use; if none is found, however, the majority of 

this space is made available once more. Thus large Prolog programs ought to be 
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written so that most of their enquiries fail, rather than succeed. 

7.3 A Description of the Modelling Software 

The modelling software is constructed as a series of tasks which are consulted 

by Prolog and asserted to its database. These are retracted sequentially and an 

attempt is made to complete them. When no tasks remain the program stops. 

This consultation and manipulation is controlled by the modelling interpreter. 

This is defined by the predicate program which is shown in appendix F. Here 

the character '!' is referred to as the cut, and it commits the program to all 

choices made when control backtracks beyond it. As well as directing the flow 

of information within the system, this program cleans up the database as facts, 

rules and other data structures become obsolete. 

Figure 7.1 is a logic flow diagram for the modelling software. Each problem type 

is represented by a set of equations which describe, e.g., the mass and thermal 

balances over the system. It was shown in § 4.2.2 that this equation set may 

be very large and that it may contain redundant and conflicting equations. In 

the present system, however, each system is small and none of the equations are 

contradictory. Also associated with each instance of a problem type is a set of 

constants, e.g. Wilson equation parameters, fixed values and design variables; 

these too are described in § 4.2.2. Together these sets make up the abstract 

representation of a problem and they are grouped together in a file. 
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Abstract 
Problem 
Statement 

Parsed an 
Expanded 
Equations 

Equation I 	I Equation 
Variable 	I Set 
Matching 	 I Partition 

Problem 
Decompo- 
sition 

Program I 	Program 
GeneratioiI 	 Execution 

Results 
Reporting 

Figure 7.1: A Logic Flow Diagram for the Modelling Software 
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As a first step these equations and constants are consulted by Prolog and inserted 

into the database. In order to facilitate equation manipulation, they are then 

transformed from their infix form to Reverse Polish Notation; this representation 

was described in § 6.3. Note that there may be two types of equation present, 

scalar and vectorial. A scalar equation is one in which each term is a scalar; a 

vectorial equation is one in which at least one of the terms is a vector. Vectorial 

equations, i.e. a single term is used to denote more than one like defined scalar 

terms, or they may represent a number of like defined scalar equations. Regardless 

of their form, all vectorial equations in the database are expanded to their scalar 

equivalent prior to manipulation. This requires that the user be prompted for 

the maximum value of each index, and that vectorial unknowns and constants be 

replaced by their components. 

At this point it is necessary to determine which unknowns appear in each 

equation, and in which equations each unknown appears. This is achieved by 

a depth first search of the parsed equation and the data are maintained as two 

trees, eqn_uns and vars respectively. These trees are 23-trees, i.e. there are 

either two or three branches from each node within them. Using this form of 

balanced tree allows one to access any of the N leaves within the tree in between 

log3  N and 1092N  operations. This requires that one record the lowest values 

accessible in the branches from one internal node and addition and deletion from 

the tree are non-trivial operations. For a detailed discussion of this data structure 

see [2]. 

It was seen in § 4 that a matching has to be derived between the variables in 

the system and the equations in which they appear. This is constructed by 

satisfying the goal match, and it is stored within Prolog as a set of facts of the 
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form match (V,E), where Vis a variable and E is an equation. Once this has been 

established it is used by the goal tarjan to identify the minimal, solvable equation 

subsets for the problem. These sets are maintained as a list of lists in which appear 

the variables associated with each subproblem and cursors for the equations to 

be solved for them; n.b. these sublists are ordered so that they correspond to a 

computational sequence. Lastly, a tear set for each equation subset is determined 

by calling the operating system for the program bark.xnot.c. This requires that 

the variables in the subsets be mapped onto an array of integers and the inverse 

mapping is used when the results are consulted by the modelling software. The 

torn subsets are recorded as a list of structures of the form t ear( Var8, Tear). Here 

Vars is the set of dependent variables and Tear is the set of those which are 

independent. 

Having analysed the equation set and thus derived a computational sequence 

for it, the next step is to solve the equations. This is achieved by writing two 

computer programs; compiling them; linking them with precompiled code and 

executing the object file. A logic diagram for the solving software appears in 

figure 7.2. 

In this system the minimal equation sets are solved sequentially. If only one 

equation is to be solved for its solitary unknown, then this is evaluated explicitly. 

If, however, more than one equation is to be solved, then the solution method 

described in § 6.4 is employed. In either case, the equations for each subset 

are contained in a separate subroutine in the file pol_eval.c. A pointer to each 

routine which contains more than one equation is passed in turn to n..raph.c 

which attempts to converge the equations within it. If the attempt is successful 

then the next subroutine is called; otherwise an error message is written and 
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Main 

pol_init.c 	 n_raph.c 

Results I I pol_eval 

Figure 7.2: A Logic Flow Diagram for the Modelling Software 

computation stops. If all the subroutines have been evaluated successfully, the 

solution is written to a results file. In order to minimise the amount of storage 

required for this computation, only as much memory as is necessary is accessed 

by the program. The logic for this is contained within poL.init.c. In particular 

this assigns a pointer to each subroutine in poLinit.c and it requisitions the space 

for the list of tear variables in each of them. So too this file contains the values 

of the constants, fixed variables and the initial guesses for the tear variables. 

Finally, if the object code has been executed successfully the results are consulted 

by the modelling software, asserted to the Prolog database and then displayed to 

the user. 
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7.4 An Example Modelling Session 

In order to illustrate the features described above, we will follow a modelling 

session in which a model is constructed and solved for a ternary flash problem. 

The components are methanol, ethanol and water, and the vapour liquid 

equilibrium conditions are calculated using Wilson's equations [105]. The physical 

property data used for the calculations are 

Component Zi C,, Hbase Delhv 

Water 0.300 75.3 -242000 40683 

Ethanol 0.300 97.1 -234960 38770 

Methanol 	0.400 80.4 -201300 35278 

where z is the mole fraction of each component in the feed stream, C,, is the 

specific heat capacity at constant pressure for each liquid in kJ kmol 1K' , Hbase 

is the specific enthalpy of formation of each component at 298K in kJkrnol 1  and 

Delhv is the latent heat of vapourization of each liquid, also in kJkmol 1 ; n.b. 

the values of C,, and Delhv vary with temperature, but they have been treated 

as constants here. 

The Wilson equation constants, A,,, for each of these components are 

Component 	 A,, 

Water 	1.00000 0.81564 0.94934 

Ethanol 	0.20022 1.00000 0.60908 

Methanol 	0.43045 1.35386 1.00000 
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Lastly, the feed rate to the flash drum is assumed to be 10OKmolhr 1  and the 

feed temperature is 298K. The flash is to take place at 348.5K and the liquid 

phase mole fraction of water is to be 0.422. 

The physical data were gleaned from Perry [72] and Sinnot [85] and the Wilson 

constants were taken from [45]. The results were checked against those obtained 

from PPDS. 

7.4.1 The Physical and Thermodynamic Equations 

Consider the flash drup represented by figure 7.3 

A Prolog representation of the equations used to solve for the equilibrium 

conditions within it appears in figure 7.4. The structure known_c qn(E) represents 

an equation and stat known is either a constant or a fixed variable. The structure 

all_uns is a list of the design variables. 

/* The mass balance equations */ 

known_eqn (f=fliq+v). 

knowu_eqn(f*z(i)=fliq*x(i)+v*y(i)). 

known...eqn(sum(y(i) ,i)=i). 

known_eqn(sum(z(i) , 
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v, 3  

qreq 
Figure 7.3: A Flash Drum 

/* The basic equilibrium equation */ 

known_eqn(pt*y(i)=gamma(i)*x(i)*pstar(i)). 

/* The enthalpy balance equations */ 

known_eqn (f *h± eedf 1 iq*hl iq+v*hvap+qreq). 

known_eqn(hteed=suin(h±(i)*z(i) ,i)). 

186 
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knowu_eqn(hliq=sum(hl(i)*x(i) ,i)). 

known_eqn(hvap=sum(hv(i)*y(i) ,i)). 

known_eqn(hf(i)=hbase(i)+cp(i)*(tfeed-tbase)). 

known_eqn(hl(i)=hbase(i)+cp(i)*(temp-tbase)). 

known....eqn(hv(i)=hl(i)+delhv(i)). 

1* Lastly Antoine's equation. Gives Pstar in mm Hg using */ 

/* Sinnot's values if T is in Kelvin. 

known_eqn(log(pstar(i))=anta(i)_antb(i)/(temp+tc(j))). 

1* And now the Wilson equation *1 

known_eqn(log(gaiiuna(i)*w_suxn(i))=w_coeff(j)). 

known_eqn(w_coeff(i)=1-swn(x(j)*].ambda(j, i)/w_sum(j),j)). 

known_eqn(w_sum(i)=swn(x(j)*lainbda(j,j) ,j)). 

/* And now for the fundamental constants */ 

stat_known(a.nta(i)). 

stat_known(antb(j)). 

stat_known(antc(j)). 

stat_known(lambda(i,j)). 

stat_known(tfeed). 

stat -known (tbase). 

stat_known(cp(i)). 

stat_known(hbase(j)). 
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stat_known(delhv(j)). 

1* ... and the constants for this problem. *1 

stat_knowrt(f). 

stat_known(z_1) 

stat_known(z...3). 

stat_known(x_1). 

stat_known(temp). 

1* The list of 'required' values *1 

all_uns([qreq, f, fliq, v, z(i), x(i), y(i), temp, pt]). 

/* Lastly, how to interpret the arrays ..... *1 

index_interp(i, "number of components"). 

index_interp(j, "number of components"). 

Figure 7.4: The Abstract Form of the Problem 

7.4.2 Parsing and Expanding the Equations 

Prior to manipulation, these equations must be parsed into Reverse Polish 

Notation. If any of them is a vectorial equation it must be expanded into its 

scalar form(s). The predicate n..pol transforms the equations to the form shown 
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in figure 7.5 and vector-expand finds their expanded 

eqn(eqn(fliq,v,+) ,f,=) 

eqn(eqn(f,z(i) ,*) ,eqn(eqn(fliq,x(i) ,*) ,eqn(v,y(i) ,*) ,+) ,=) 

eqn(eqn(y(i) ,i,sum) ,1,=) 

eqn(eqn(z(i),i,suin),1,=) 

eqn(eqn(pt,y(i) ,*) ,eqn(eqn(gaznnia(i) ,x(i) ,*) ,pstar(i) ,*) ,=) 

eqn(eqn(f,hfeed,*) ,eqn(eqn(eqn(fliq,hliq,*) ,eqn(v,hvap,*) ,+), 

qreq,+) ,=) 

eqn(eqn(eqn(hf(i) ,z(i) ,*) ,i,sum),hfeed,=) 

eqn(eqn(eqn(hl(i) ,x(i) ,*) ,i,surn) ,hliq,=) 

eqn(eqn(eqn(hv(i) ,y(i) ,*) i ,sum) ,hva.p,=) 

eqn(eqa(eqn(eqn(tfeed,tbase,-) ,cp(i) ,*) ,hbase(i) ,+) ,hf(i) ,=) 

eqn(eqn(eqn(eqn(temp,tbase,-) ,cp(i) ,*) ,hbase(i) ,+) ,hl(i) ,=) 

eqn(.eqn(hl(i) ,delhv(i) ,+) ,hv(i) ,) 

eqn(eqn(pstar(i),_304311,log),eqn(eqn(eqn(temp,antc(j),+), 

a.ntb(i) ,\) ,anta(i) ,<-) ,=) 

eqn(eqn(eqn(gaznma(i) ,w_suin(i) ,'*) ,_304311,log) ,v_coeff (i) ) 

eqn(eqn(eqn(eqn(eqn(x(j),lambda(j ,i) ,*) ,w_sum(j) ,/) ,j ,suin), 

i,<-) ,w_coeff (i) =) 

eqn(eqn(eqn(x(j) ,lambda(i,j) ,*) ,j ,sum) ,w_sum(i) ,=) 

Figure 7.5: The Parsed Equation Set 

form. Note that the predicate eqn has three arguments - an operator and its 

operands. If the operator is unary, e.g. log, then the right operand is a Prolog 

variable. The expanded equations appear in figure 7.6 where, for clarity, they 

appear in infix form. Each vector in the original equations is replaced by its 
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components in the new set. These components have the same root names as the 

vectors but they are suffixed by indices. The vectorial equations are replaced by 

the relevant number of scalar equations. 

w_Bum_3lambda_3_3*x_3+lalnbda_3_2*x_2+ 

lainbda_3_ 1*x_1 

w_suin_2=lainbda_2_3*x_3+lainbda_2_2*x_2+ 

lambda_2_1*x_1 

w_s.um llainbda_ 1_3*x_3+lainbda_ 1_2*x_2+ 

lambda_1_1*x_1 

v_coeff_3=1 - (lambda_ 1_3*x_1 /w_sum_ 1+lambda_2_3*x_2/w_suin_2+ 

lainbda_3_3*x_3/w_suin...3) 

w_coeff_2=1- (lambda_1_2*x_1/w_sum_1+lainbda_2_2*x_2/w_sum_2+ 

lambda_3_2*x_3/w_sum_3) 

w_coeff_1=1- (lambda_1_1*x_1/w_suin_1+lambda_2_1*x_2/w_sum_2+ 

lambda_3_ 1*x_3/w_sum_3) 

w_coeff_3=1og (gamma_3*w_suin_3) 

w_coeff_2=1og (gainma_2*w_suin_2) 

w_coeff..1=log(gamma_1*w_sum_ 1) 

a.nta_3-antb_3/ (temp+antc_3) =log (psta.r_3) 

anta...2-a.ntb_2/ (temp+antc_2)=log(pstar_2) 

anta_1-antb_1/(temp+antc_1)=log(pstar_1) 

hv_3h1_3+delhv_3 

hv_2h1_2+delhv_2 

hv_1h1_1+delhv_1 

hl_3= (temp-tbase) *cp_3+hbase_3 

h1_2= (temp-tbase) *cp_2+hbase_2 
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h1_1(temp-tbase)*cp_1+hbase_1 

hf_3= (tf eed-tbase) *cp_3+hbase_3 

hf_2(tfeed-tbase)*cp_2+hbase_2 

hf_ 1= (tf eed-tbase)*cp_ 1+hbase_ 1 

hvap=hv_3*y_3+hv_2*y_2+hv...1*y_ 1 

hliq=hl_3*x_3+hi_2*x_2+hl_1*x_ 1 

hfeedhf_3*z'_3+hf_2*z_2+hf_ 1*z. 1 

fliq*hl iq+v*hvap+qreq=f*hfeed 

gainma_3*x_3*pstar_3=pt *y_3 

gamma_2*x_2*pstar_2=pt*y_2 

gamlna_ 1 *x_ 1*pstar... lpt *y_l 

1=z_3+z_2+z.. 1 

1y-3+y-2+y_ 1 

f1iq*x_3+v*y_3=f*z_3 

fliq*x_2+v*y_2=f*z...2 

fli.q*x_ 1+v*y_1=f *z_ 1 

ffliq+v 

Figure 7.6: The Expanded form of the Equations 

7.4.3 The Variable/Equation Matching 

Figure 7.7 is the matching defined by match. Note that in each pair the first 

structure is the variable which is to be solved for and a cursor to the matched 

equation; these structures were extracted from the Prolog database. The second 

structure is the infix form of the equation, and it has been inciu4to demonstrate 
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that the matching is legal. 

z_2 29 1z_3+z_2+z_1 

v 31 fliq*x_3+v*y_3=f*z_3 

gamma-3 26 gainma_3*x_3*pstar_3=pt*y_3 

w.coeff_1 6 v_coeff_11-(laiubda_1_1*x_1/w_swn_1+ 

lambda_2_1 *x_2/w_s_2+1bda_3_ 1*x ....3/v_ujn_3) 

v_coeff_2 5 w_coeff_2=1-(lambda_1_2*x_1/w_sujn_1+ 

lambda_2_2*x_2/w_sum_2+lambcja_3_2*x_3/w_gum_3) 

w_coetf_3 4 w_coeff_3=1-(lambda_1_3*x_1/w_sum_1+ 

lambda_2_3*x_2/w_sujn_2+lambda...3_3*x_3/w_ suin_3) 

v. su_ 1 3 w_sum_ llambda_ 1_3*x_3+lambda...1_2*x_2+lanibda_ 1_ 1*x_ 1 

w_sum_2 2 v_ sum_2=lambda_2_3*x_3+lajnbda_2_2*x_2+lainbda_2_ 1*x_ 1 

pstar_3 10 anta_3-antb_3/ (temp+antc_3) =log (pstar_3) 

pstar_2 11 anta_2-antb_2/ (temp+antc_2)=log(pstar_2) 

pstar_1. 12 anta_1-antb_1/(temp+antc_1)=log(pstar_i) 

hf_3 19 hf_3 (tf eed-tbase) *cp_3+hbase_3 

hf_2 20 hf_2= (tf eed-tbase) *cp....2+hbase..2 

x_2 32 fliq*x_2+v*y_2=f*z_2 

fliq 34 ffliq+v 

y_1 33 f].iq*x_1+v*y_1=f*z_1 

x..3 1 w... sum_31ambda_3_3*x_3+1ambda_3_2*x_2+1nbda_3_ 1*x_ 1 

w_sum_3 7 v_coeff_31og(gamma_3*w..suin_3) 

hliq 23 hliqhl_3*x_3+hl_2*x_2+hl_1*x_1 	 - 

Pt 28 gamma_1*x_1*pstar_1=pt*y..1 

gamma-1 9 w_coeff_1=1og(gaxnma_1*w_suin_1) 

hv_3 13 hv_3=hl_3+delhv_3 
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h1...3 16 h1_3= (teinp-tbase) *cp_3+hbase_3 

hv_2 14 hv_2=hi_2+delhv_2 

h1_2 17 h1_2= (temp-tbase) *cp_2+hba8e_2 

y...3 30 iy_3+y_2+y_1 

y_2 27 ganuna_2*x_2*pstar_2=pt*y_2 

gamma-2 8 w_coeff_2=1og(ganuna_2*w_suin_2) 

hvap 22 hvaphv_3*y_3+hv_2*y_2+hv_1*y_1 

hv_1 15 hv_1=hi_1+delhv_1 

hi_i 18 h1_i=(teinp-tbase)*cp_1+hbase_1 

qreq 25 fiiq*hi iq+v*hvap+qreq=f*hfeed 

hfeed 24 hfeedhf_3*z_3+hf_2*z_2+hf_1*z_i 

hf_i 21 hf_1=(tfeed-tbase)*cp_1+hbase_i 

Figure 7.7: The Expanded form of the Equations 

7.4.4 The Equation Subsets 

The list of minimal, solvable equation subsets is stored under the name 

components in the parts sector of the Prolog database. For the flash problem, it 

is that shown in figure 7.8. 

I ?- recorded(dfs, components(I), _). 

I=[[hf_1,21] , [hf_2,2o] , [hf_3,19] , [hl_1,18] , [hi_2,i7] , [hi_3,i6], 

[hv_i,15] ,[hv_2,14], [hv_3,13] ,[pstar_i,12J ,[psta.r_2,il], 
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[pstar_3,1O] , [z_2,29] , [hfeed,24] , [w_suln_2,2,v_suin_1,3,v_coeff_3, 

4,ganima_2,8,w_coeff_2,5,gainma_1 ,9,w_coeff_1 ,6 ,x_3, 1 ,w_sum_3,7,. 

gamma_3,26,pt ,28,y_1 ,33,fliq,34,v,31,y_3,30,y_2,27,x_2,32], 

[hvap,22] , [hliq,23], [qreq,25]] 

Figure 7.8: The Minimal Solvable equation Sets 

7.4.5 The Decomposed equation Subsets 

Each minimal, solvable equation subset is decomposed using the Barkley and 

Motard algorithm [65]. The results of this tearing are stored as a list, partitions, 

of structures of the form tear( Vars, Tear). Here, Vars is the set of dependent 

variables and Tear is the set of those which are torn; n.b. if no variables are torn 

then Tear is the empty list, fl. In our example, only one of the minimal, solvable 

subsets is decomposed with a non-empty tear set. The structure stored in the 

Prolog database for the flash problem is displayed in figure 7.9. 

I 7- recorded(parts, pa.rtitions(I), J. 

I=[tear([25,qreq] , D),tear([23,hliqj , D),tear([22,hvap] , C]), 

tear([x_3,fliq,y_1,v..sum_2,w_sum_1,w_coeff..1,gamma.1,pt, 

w_coeff_2,galnma_2,y_2,y_3,v_coeff_3,ganuna_31, [x_2,v,w_suin_3]), 

tear( [24,hfeed] [] ) ,tear( [29 ,z_2] [] ) ,tea.r( [10 ,pstar_3] , []) 

tear([11,pstar_2] , []) ,tear([12,pstar_1] , []) ,tear([13,hv...3],[]), 

tear([14,hv_21 , []),  tear( [15,hv_1] , []),tear([16,hl_3] , C]), 
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tear([17,hl_21, []),tea.r([18,h1_1], []),tear([19,hf_3] , 

tear([20,hf_21 , []),tear([21,hf_1), [])] 

Figure 7.9: The Decomposed Variable Subsets 

7.5 Solving the Equations 

7.5.1 Program Generation 

A listing of the file pol_init.c which was written to initialise each subroutine in 

poL.eval.c appears in appendix F. The first routine in this file declares the number 

of subroutines in pol..eval.c, i.e. the number of equation subsets to be solved, and 

the number of constants and variables which appear in them. Next it declares 

the names of the routines in pol_eval.c, assigns a pointer to each of them and 

declares space for the array of values. Finally the values of the constants and 

fixed variables are set, along with the initial guesses for the tear variables. In the 

next subroutine a switch is declared. For each case, the number and keys of the 

tear variables are declared. 

A listing of pol..eval.c appears in appendix F. The equations to be solved appear 

in this file. Each solvable subset is assigned to a different subroutine and there 

are different forms for single an multiple equations. When a single equation is to 

be solved it is written in infix form and calculated explicitly. Multiple equations 
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are written in Reverse Polish Notation and interpreted. The memory required 

for their evaluation is requisitioned at the start of the routine and returned to 

main memory at its end. 

7.5.2 Reporting the Results 

If the attempt to solve the equations has failed, e.g. they have failed to converge, 

then an appropriate message is printed for the user and computation stops. 

Otherwise, the results are read back into Prolog and they are reported on the 

terminal screen. The value of each design variable, constant and unknown is 

reported in that order. The results for our problem are contained in figure 7.10. 

Variable 	 Value 

========= == = ===== === === == = = 

temp 348.5 lambda-1-1 1 

X-1 0.422 lambda-1-2 0.81564 

z_3 0.4 lambda-1-3 0.94934 

Z-1 0.3 lambda-2-1 0.20022 

100 lambda-2-2 1 

delhv_1 40683 lambda-2-3 0.60908 

delhv_2 38770 lambda-3-1 0.43045 

delhv_3 35278 lambda-3-2 1.35386 

hbase_1 -242000 lambda-3-3 1 

hbase_2 -234960 antc_i -46.13 
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hbase_3 -201300 antc_2 -41.68 

cp_1 75.3 antc_3 -34.29 

cp_2 97.1 antb_1 3816.44 

cp_3 80.4 antb_2 3803.98 

tbase 298 antb_3 3626.55 

tfeed 298 anta_1 18.3036 

z_2 0.3 anta_2 18.9119 

y...3 0.461756 anta_3 18.5875 

0.311098 hvap -179160 

Y- 1  0.227146 hv_3 -161962 

x_3 0.296584 hv_2 -191286 

x_2 0.281416 hv_1 -197514 

w_sum_3 0.859232 hiiq -223759 

w_suxn_2 0.546552 h1_3 -197240 

w_sum_1 0.933093 h1_2 -230056 

w_coeff_3 -0.0881325 hi_i -238197 

w_coeff_2 -0.351091 hfeed -223608 

w_coeff_1 0.296069 hf_3 -201300 

v 62.611 hf_2 -234960 

qreq -2.77727e+06 hf_i -242000 

Pt 785.701 gamma-3 1.06565 

pstar_3 1147.91 gamma-2 1.28793 

pstar_2 674.395 gainina...1 1.44097 

pstar_1 293.49 fliq 37.389 
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Figure 7.10: The Solution of the Equations 
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7.6 Summary 

In this chapter we discussed the way in which the modelling software transforms 

an abstract statement of a problem, i.e. a generic set of equations and variables, 

into a computer program which it executes in order to solve it. This is done 

by parsing and expanding the equations, finding a matching between them and 

the unknowns and then partitioning the equation set into its minimal, solvable 

subsets. Next it finds a tear set of the variables for each subset of size greater 

than one. Lastly, it constructs and executes a computer program to solve the 

equations, and reports the results to the user. 



Life is the art of drawing sufficient conclusions from 
insufficient premises 

Samuel Butler 

Chapter 8 

Conclusions and Recommendations for Future 
Work 

8.1 Recommendations for Future Work 

Prolog is an interpreted language and thus its execution is very slow; the rate 

of model production would be improved by rewriting all of the algorithmic 

tasks such as parsing and matching in a procedural language such as C. Four 

further technical improvements are desirable. Firstly its scope for problem 

formulation would be enhanced greatly by the ability to use and solve differential 

equations. These may be maintained in a database in the same way that 

algebraic equations are at present, although some new system definitions would 

be necessary. Secondly, the software should be made more user friendly. One way 

in which this might be achieved is by supplying a menu and icon driven graphical 

interface which the user could manipulate instead of writing a file. 
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Thirdly, an intelligent front end should be written which can, in conjunction with 

the graphical interface proposed above, construct the abstract problem statement. 

This should be a frame based system in which the top level slots are used to define 

the types of equation to be solved; these equations ought to be maintained in a 

data base. As an example, if a user were to wish to solve a reactor problem then 

clicking on a reactor icon should prompt the system to enquire as to the type of 

reactor, its heat transfer characteristics, the reaction order, etc. As these slots 

are filled the corresponding equations ought to be retrieved from the database 

and collated in an 'active' file, thus constructing the abstract problem statement. 

Such an approach would provide the opportunity to make approximations, e.g. by 

assuming the specific heat capacities were constant over a range of temperatures, 

and to relate these to the more exact model. 

Lastly, in its current state, the modelling system makes no use of the knowledge 

contained in other software. This should be changed so that, it can consult other 

databases and external programs, e.g., PPDS for physical properties, or an expert 

system for a choice of equation of state. 

8.2 Conclusions 

The requirements of a mathematical modelling system were investigated in § 1. 

Some definitions of model optimality were considered but it was shown that, 

although a qualitative comparison may be made between formulations, it is not 

possible to provide a meaningful, precise definition of optimality. 
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In § 2 it was shown that, in the general case, we can place some necessary 

conditions on an equation set for it to have a unique, non-trivial solution. Next 

the desirability of establishing an output set was established, and the equivalence 

of graph, matrix and equation partitioning was demonstrated. Choosing an 

output set is a check on structural singularity and a step towards partitioning 

an equation set; the strong components of a directed graph correspond to the 

minimal diagonal blocks of a block lower triangular matrix and the minimal, 

solvable subsets of an equation set. Lastly optimality was considered once more, 

with respect to the selection of tear sets. A good definition for this proved elusive 

and so too it was shown that, for many numerical methods, the reduction in effort 

required per iteration for a torn system is insignificant. 

Techniques for output selection, matrix partitioning and decomposition were 

examined in § 3. Dinic's maximal flow algorithm [20] is the best available 

method for output selection and Tarjan's depth first search [94] is the optimal 

formulation for matrix partitioning. No comprehensive characterisation of fill-in 

in unsymmetric matrices has been developed, but that for symmetric matrices is 

well understood; establishing the minimum fill-in for either type of matrix is an 

NP-complete problem. Barkley and Motard's algorithm [] is the best available 

for decomposition. 

It was demonstrated in § 4 that a square, solvable subset of equations which 

describes a particular instance of a generic problem can be identified by finding 

a maximum matching between the variables and equations and then partitioning 

the equation set. This can be achieved most efficiently by using the techniques 

selected in § 3. Further, those equations which are not matched with a variable 

may be candidates for replacing any redundant equations which are identified in 
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the formulation of the specific problem. 

A minimum cardinality separator for, a reduced signal fiowgraph is also one for 

the bipartite digraph from which it was derived; this result appears in § 5. The 

signal fiowgraph can be formed in time which is linear in the number of arcs in the 

digraph; the tear set can be found in time which is quartic in the number of its 

nodes. The numerical values of the analytical derivatives of the reduced equations 

in a torn system can be calculated simultaneously with those of the reduced 

equations. Rules for these calculations are presented in § 6 and a prescription for 

an improvement to the method is given. 

Software has been developed which transforms an abstract problem statement 

into a mathematical model, and then realises this as a simulation. This has 

been demonstrated on a sample problem but some improvements are possible. 

In particular, greater power would be achieved by supplying an intelligent front 

end which can formulate the problem statement interactively with the user; by 

rewriting the algorithmic tasks in a procedural language such as C; adding a user 

friendly interface; and broadening the range of application of the software by 

enabling it to solve differential equations. 
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Appendix A 

The Operations Count for LU Decomposition 

Consider some N x N matrix A and its factors, L and U, defined by 

A = L U 
	

(A.1) 

and such that L is a lower triangular matrix with ones on its diagonal and U 
is upper triangular. Let there be y j  nonzeros below the first diagonal element 
of A and Pi  non-zero elements to the right of it in the first row. In order to 
calculate the elements in the first column of L, -t i  divisions are necessary and 
at most another -y * Pi entries in A must be altered. Each of these alterations 
requires one subtraction and one multiplication. Let A 1  be the matrix formed by 
these operations, and extend this notation so that A/C  is the matrix formed by 
the first k - 1 sets of operations, 7k  is the number of non-zero entries below the 
Ph diagonal entry in ARC,  and Pk  is the number of non-zeros to the right of this 
element. The total number of operations required to form the elements of L and 
U is thus 

k=N 

daum  =E 7k Divisions 
k=1 
k=N 

m aum  =E 's/k Pk Multiplications 
k=1 

k=N 

aaum  =E 7k Pk Additions 
k=1 
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In the worst case, i.e. A is full or becomes so, -y, = Pk = N - k and so 0(N3 ) 

operations are required in all. 



Appendix B 

A Binary Ideal Flash Problem 

Consider the flash drum shown in figure B.1. The feedrate of the binary mixture 
into the drum is F, the vapour rate produced is V and the liquid flowrate out 
of the drum is L. The mole fraction of the i1h  component is zi in the feed, y1  in 
the vapour product and xi in the liquid product. The vapour pressure of pure 
component i at the system temperature T is F, and its partial pressure is P,. 
K1 is the Henry's Law constant for the i1h  component at T and P, the system 
presure. 

The overall mass balance on the drum is 

F=L+V 
	

(B.1) 

the balance on each component is 

F; = Lx1 + Vy1 	 (B.2) 

and the definitions of x,, yj and zi give 

1 1 x1=1 	 (B.3) 

 

 

212 



Appendix B. A Binary Ideal Flash Problem 	 213 

V. V. 

L,x. 
Figure B.1: A Flash Drum 

The total pressure of the system is the sum of the partial pressures of the 
components 

P1+P2=Pt 	 (B.6) 

and the partial pressure of each component is related to its pure vapour pressure 
at the system temperature by 

Pi = 	 (B.7) 

The Henry's Law constant for each component relates its mole fraction in a vapour 
phase to that in a liquid phase with which it is in equilibrium 

yj = K1x, 	 Ma 
This constant is a function of temperature and pressure and it is defined by 

- 

PS 

If 	$ (B.9) 

If T and Yi  are known, then specifying F and z1  allows one to solve for all of 
the other variables. There are ten unknowns in the equation set and so ten 
of the equations above must be used to provide their values; n.b. only five of 



Appendix B. A Binary Ideal Flash Problem 	 214 

equations B.1- B.5 may be used. One legal assignment for this problem is 

 z1+z2 = 	1, z 2  

 Lx i  +Vyi = 	Fz1 , L 

 Lx 2  + V!,'2 = 	Fz2 , x 2  

 L+V =1, V 

 Y1 +Y2 = 	1, !/2 

 K2x2 = 	Y21 K2  

7 P2*/P = K2 , Pt 

 Pi+P2 = 	Pt , Pi  

 Pxi  = 	F1 , x i  

 Px2 	= P2 , F2  

where the variable after each equation is the variable for which it is to be solved. 



Appendix C 

The Dissociation of Water 

The equilibrium constant, K, for a reaction in an ideal gas mixture is a function 
of temperature, T, alone. If there are M such competing reactions, then the M 
equilibrium constants K1 are given by 

K5 = F(T), j = 1,2,... , M 	 (C.1) 

Alternatively, the equilibrium constants can be calculated from the partial 
pressures of the gases in the mixture. If there are N components, each of 
which has a partial pressure F1, taking part in these reactions, and if v,5 is the 
stoichiometric coefficient of the i1h  component in the j" reaction, then, K, may 
be found from 

1=M 

K, = fJ P", j = 1,2,...,M 	 (C.2) 

The partial pressure of each component is the product of its mole fraction in the 
mixture, y,  and the total pressure, P, 

P1 = Py1, i=1,2,.-. ,N 	(C.3) 

In turn, the ith  mole fraction is the ratio, of the number of moles of component i, 
n, to the total number of moles, n t, 

ni 
1,2,...,N 	 (C.4) 

and nj  is defined by 
i=N 

= 	
(C.5) 
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If n 0  is the number of moles of compound i present initially, and if ç, is the 
extent of the j°' reaction [42], then 

i=N 

vilci i=1,2,...,N 	 (C.6) 

The conservation of mass in a reacting system requires that, in the absence of 
radioactive decay, the initial and final amounts of each element present be equal. 
Thus, if cr,k is the number of moles of element k in component i, and if there are 
R elements present, then 

1k(fl10-fl1)=O, k=1,2,...,R 	 (C.7) 

The total pressure and the temperature of the system, its volume, V, and the 
total number of moles of gas present are related by the ideal gas equation of state 

PgV=ntRT 	 (C.8) 

where R is the universal gas constant. If the system is closed and the initial 
mass of each component is known, then Duhem's Theorem [86] states that its 
equilibrium state is specified by fixing the values of two independent variables; 
n.b. these variables may be intensive or extensive. 

When water dissociates at high temperature, four independent reactions take 
place, 

	

1120 	H2-4-O2 	 (C.9) 

	

H20 	H2+OH 	 (C.10) 

	

H2 	2H 	 (C.11) 

	

02 	20 	 (C.12) 

If the gases are at high temperature but low pressure, the compression factor for 
the mixture is almost unity [12], and so the mixture can be assumed to be ideal. 
Backsubstitution of equations C.4 - C.2 shows that altering the system pressure 
at any temperature alters the equilibrium distribution of products, i.e. 

	

i=N 	

i=N 

	

K1 = {(_1.)i=i 	} 1-I nr', j = 1,2, ... ,M 	(C.13) 
flg 	1=1 

If the initial amount of each of the six components is known, fixing 
the temperature and pressure of the system specifies its equilibrium 
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Figure C.1: The Graph of the Dissociation Equations 

state. 	Then, following the solution of equation C.1 for each reaction, 
equations C.5, C.7and C.13 can be solved simultaneously and the results 
substituted forward to give the equilibrium conditions. The graph of this equation 
set is shown in figure C.1. Here equations Ii  and f2  are the molar balances on 
monotonic oxygen and hydrogen respectively, f3  is the overall molar balance, 
and the remaining four are the equilibrium equations for the reactions. Variables 
X1, x2  and x3  are the equilibrium molar amounts of water, molecular hydrogen 
and molecular oxygen and x 5 , x6  and x7  are those hydroxyl ions, and atomic 
hydrogen and oxygen respectively; x 4  is the total number of moles present at 
equilibrium. The incidence matrix for one ordering of the equations is shown in 
figure C.2. 

-& x3 x ' x2 x5-& 

fsIx 	x x xl 

I xx 	x 	xl 
f71 X 	 x 

X x 	xl 
f2  lx 	x x x 

filx x x 	x 
f3 [x X '  X x x x 

Figure C.2: The Incidence Matrix for the Dissociation Equations 
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If instead the equations are to be solved without algebraic substitution, then the 
incidence matrix for one ordering of these equations and variables is shown in 
figure C.3. Here the generic equations have been expanded in the order in which 
they appear above, and the variables are mapped onto the array s by 

PH2O ) X1 YH20 	X7 nH 2o -' X3 P -+ 

PH2 .' 	X2 YH2 X8 72112 X14 	?2 	 - 

P02  - 	 X3 Y0 2  - 	X9 n02 -+ 	X15 

POH' I 	X4  YOH - 	X10 720H -' 	S16 

PH ) 	 X5 YH I x1i nH X17 

P0 X6 Y0 X12 no + 	18 
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1 P2 1!5P4 1 P6YlY2Y3Y4Y5Y6flhI3fl$fl5I6 .ntele2 e3 
lX 

2 	x 
3 	x 
4 	x 
5x 	xxx 
6 x 	X 	x 
7 	x 	x 	x 
8 	x 	x 	x 
9 	x 	 x 
10 	 x 	 x 
11 	 x 	 x 
12 	 x 	 x 
13 	 x 	 x 
14 	 x 	 x 
15 	 x 	 x 	 x 
16 	 x 	 x 	x 
17 	 x 	 x 	x 
18 	 x 	 x 	x 
19 	 x 	 x x 
20 	 x 	 X  
21 	 . 	xxxxxxx 
22 	 . 	 xxxxxx 
23 	 xxxxxx 
24 	 x 	x 
25 	 x 	x 
26 	 x 	x 
27 	 . 	 x 	x 
28 	 x 	x 

Figure C.3: The Incidence Matrix for the Dissociation Equations 



Appendix D 

Methods for Convergence Acceleration 

D.1 Derivative Methods 

D.1.1 Methods with an Analytical Jacobian 

The general form for any method in which the correction to the solution vector 
at the i' iteration, ax', is a linear transformation of the residual vector function, 
f1 , is 

= —a'B'f 
	

(D.1) 

where 0 < a ~ 1, 1i1 
= 1f11 = m, and B is an m x m non-singular matrix. If 

the Jacobian of f* is J', then 
B' = (Ji)-1 	 (D.2) 

corresponds to equation D.1 being the Newton-Raphson method; if instead 

B' = (ji)_T 	 (D.3) 
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is used, it is the method of steepest descent [42]. If Bt  is taken to be a linear 
combination of (J1 ) -1  and (J1)_T, 

F = (Ji)-T((Ji)-T(Ji)_1 + A(J')_'), 0 < A'< 1 	(D.4) 

then equation D.1 corresponds to a method attributed both to Levenberg [56] 
and Marquardt [62]. 

D.1.2 Methods which Use Function Values 

If the Jacobian is either difficult or expensive to calculate analytically, then it 
may be approximated numerically by perturbing each component of the solution 
vector in turn. Then F = {b k} becomes 

Ti 

jk 	
hk 

JJ + hkek) fi(xi) 
0 	 j, k = 1,2,.. , m 	(D.5) 

where f is the j' component of f, ek is the ktI  column of 'm  and hk is some 
number much smaller than one. 

Wegstein [99] developed the secant method for solving single variable problems, 
and his method has been generalised to the simultaneous solution of m equations. 
In his method, initial guesses are required for x0  and x1  and then at each iteration 

i 	fJ(x71)—fj(x) 	
(D.6) bjk

- 	x +1  - 

Here the variables are regarded as independent of one another and the functions 
f' are approximated by the linear equations which intersect with them at 4 and 

i+1 
Xk 

D.2 Quasi-Newton' Methods 

A different approach is for F in D.1 to be an approximation to the Jacobian 
which is improved after each iteration. B° can be chosen to be an arbitrary 
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matrix, but more usually it is selected as either Im  the identity matrix for lRtm, 
or the Jacobian of f(x°). Whatever the choice of B°, equation D.1 is generally 
not satisfied. Instead, the update to B' is chosen so that 

B'1Ax = fi 	 (D.7) 

where Lf' = f:+1 - f• Since B'+' is chosen to reflect the change in the value of 
f along the direction of Ax', the modification to B' need only be of rank one. 
Thus the general form for the change in the iteration matrix is 

B 1  = B' + UV 	 (D.8) 

where u and vare column vectors. Substituting this equation into D.7 gives 

{B'  + uvT} Lxx' = Afi 	 (D.9) 

from which it can be deduced that u must lie in the direction of 1fi - B 1 x 1 , 
i.e. 

- f'—B'Ex'  
VX'. 

	
(D .10 ) 

The vector vT  has been chosen in different ways. Barnes [10], chose it to be 
orthogonal to each Ax', j < i, wheras Broyden [13], [14] chose it to be Ax' in 
order to preserve the positive definiteness of the iteration matrix. 

D.3 Dominant Eigenvalue Methods 

Consider the linear equation set 
Ax=b 
	

(D.11) 

where x is the vector of unknowns, A is the unsymmetric matrix of real coefficients 
and b is the vector of right hand sides. Equation D.11 can be solved exactly as 
x = A'b, or iteratively if A is modified in some way. Without loss of generality, 
let A be of dimension rn x m, and rewrite it as A = B - C where B = {b,,} and 
bij = a,, i = 1,2.. , m, j <i. Then D.11 may be transformed into the iterative 
scheme 

xk.41  = rx' + u 	 (D.12) 
where r = B 1 C and ii = B 1 b; n.b. I' is independent of xk.  If x is the solution 
of D.11, then 

(D.13) 

Rearranging this for ii and substituting the result into D.12 gives 

xk+1 - = 	- x*) 	 (D.14) 
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Clearly, r is a linear operator which relates the error in x 	to that in x. Writing 
equation D.14 for k = 0 gives 

- = I'(x° - x*) 

and so, following the next iteration, 

- = 	- x) 

Repeated application of r shows that after the n' iteration, 

X  - = r(x° - x*) 

or, setting & = - 

e' = 1'°e°  

 

 

 

 

If A, )'2," , Am, the eigenvalues of F, are real and distinct, then ii e , the 
set of the eigenvectors of F, is orthogonal to each other member of this set. 
Further, each of these vectors can be scaled so that ; = 	- , i = 1 1 2,. . . , m 
is an orthonormal basis for ntm,  and the vector e0  can be written as a linear 
combination of these scaled vectors. Hence 

e° —az 	 (D.19) 

Premultiplying D.19 by z1, 1 < j :5 m, and using the orthonormality of the 
eigenvectors gives 

ai = zre° 	 (D.20) 

Substituting this expression into D.19, and the result into D.18 gives 

= r 	' >ze°z 	 (D.21) 

However, for each eigenvector z of F and the coresponding eigenvalue A1, 

= A1z1 	 (D.22) 

and so D.21 becomes 

= 	
z"e°Az 1 	 (D.23) 

If the eigenvalues of F are ranked in order of decreasing absolute value, i.e. 
IA11 > 1A 2 1 > 	> lA m  I, then the error vector after the kt 1' iterate is 

ek = A{zTe °zi + 
2 

z "e°(.!.) z} 	 (D.24) 
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A sufficient but not necessary condition for this iterative scheme to converge is 
that the modulus of ) should be less than unity. Whether this holds or not, if 
IA1 I >> I.A 2 1, then the first term in this equation will tend to dominate. In this 
case the approximation 

urn elC =(D.25) 
k—ioo 

holds and the difference between this approximation and the true value of e' 
follows a decreasing geometric series. \ is then said to be the dominant 
eigenvalue of r. 

The derivation of an approximation for the error in the solution at the k°' iteration 
depended on the symmetry of A. Should A be unsymmetric, however, then the 
detail of this derivation changes, but not so the essence. In this case the left and 
right hand eigenvectors of r should each form an orthonormal basis for 1R.  This 
requires that 

w3TZi
1 i=j 

= 	 (D.26) 
0 ij 

where w3  is the j" left hand eigenvector of r, and the left and right hand 
eigenvectors are ordered in the same way. Further, if A is unsymmetric then 
wT replaces z' in equation D.21. Should the first absolute values of the first 
/3 eigenvalues of r be similar, then the first /3 terms of the summation must be 
included in equation D.25. If r has one or more multiple eigenvalues, then the 
above treatment still holds if there exists some non-singular matrix H such that 

H-1rH = diag(A 1 ) (D.27) 

where diag(A 1 ) is a diagonal matrix whose non-zero entries are the eigenvalues 
of r. In this case the eigenvectors which correspond to equivalent eigenvalues 
are non-unique, but an orthonormal subset of them which spans R7 can still be 
chosen. If the dominant eigenvalue is not unique, then the convergence of D.25 
is reduced. Further, if some of the eigenvalues are complex conjugate pairs' then 
the corresponding terms in D.23 oscillate and this impairs the rate of convergence 
of D.25. 

The above analysis can be extended to the stationary, iterative solution of non-
linear equations. In this case, equation D.18 becomes 

= F!ce!_l 	 (D.28) 

where r' may change at each iteration. However, if the ratio of successive errors 
begins to follow a geometric progression, it may be that the functions over the 

n. 6. since A is real so too is r, and thus because det(r) = Ai, for any complex eigenvalue 

of r, ) j1, there must exist also Ai2 = Ail 
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domain defined by these iterations is sufficiently linear for rc to be regarded as 
independent of k. Then the acceleration steps described in § D.4 may be used to 
promote convergence. 

D.4 Application to Convergence Acceleration 

Aitken, [4] noted that since both the error in x and its change at each iteration 
follow a geometric series whose common ratio is A 1 , then his acceleration method 
for the calculation of eigenvalues [3] could be used to accelerate the convergence 
of linear equations. Let the change in x over the k 11' iteration be 

AX  = 	- 	 (D.29) 

Then Aitken's observation may be written as 

(D.30) 

If equations D.18 and D.29 are substituted into D.30, the result may be rearranged 
to give an as approximation to the x', the solution of the equations, 

* 	xk_1 xk+1  - (xk)2  
X 

- 2xk - xk+1 	 (D.31) 

Rather than waiting until the approximation D.30 is sufficiently small, the author 
advocates testing the change in the value of each component of x until this 
approaches a geometric series and then taking an acceleration step 

- (xk) 2  

X .
1  —2x - 	

(D.32) 

where x is the i1h  component of XC.  This accelerates each component of x 
by a different amount and, because it ignores the effect of interaction between 
variables, it can lead to oscillation. 

Orbach and Crowe [67] estimate the modulus of the dominant eigenvalue as the 
ratio of absolute value of the change in x over successive iterations, and determine 
its sign by comparing the elements of x between them. Their application of 
dominant eigenvalue methods is for the solution of nonlinear equations and the 
convergence of flowsheets and they assume that D.25 holds when the condition 

ILx ~ 1 I 1—< ~ 1+ 	 (D.33) 
IxI 
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is satisfied, whereis the maximum change of any component of x over the 
k Ih  iteration, and c is some small number. Assuming that k is close enough to 
the limit in equation D.25 for the equality to hold, these authors extrapolated 
the solution to the equations to 

x*=xk+cr 	 (D.34) 
1— A1  

where 0 <a <, and this variable is included in order to supress oscillation of the 
solution. 

This method is called the Dominant Eigenvalue Method, and it is least effective 
when there are more than one eigenvalues close to unity, and which dominate 
the rate of convergence. Crowe and Nishio [18] sought to alleviate this problem 
by taking account of the ii greatest eigenvalues of the iteration matrix A, where 
ii may be estimated in different ways. Their argument is based on the use of 
the Caley-Hamilton theorem [104] which states that a matrix behaves its own 
characteristic equation. They order the eigenvalues of A in descending order, 
and they use the relationship 

AX k (D.35) 

to form the approximation 

i=k,k+1 9 ...,, 	 (D.36) 

where Aj is an approximation to the jth coefficient in the characteristic equation 
of A, and Po = 0. The coefficients in D.36 can be made to approximate the 
values of the true eigencoefficients by minimising the Euclidian norm of the left 
hand side of this equation. The current estimate of the solution, can be 
extrapolated to a new estimate, 1°°, by rearranging D.36 to give 

(j=i+l

\ 
 J 

00 X  	
1=0 / 	

(D.37) 

EAj 
i=0  

Crowe and Nishio call this the General Dominant Eigenvalue Method and they 
show that it reduces to the same form as the Dominant Eigenvalue Method [67] 
for ii = 1. The authors [18] report that using the same criteria as Orbach and 
Crowe for determining when to take a promoting step resulted in too infrequent 
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acceleration. Instead they recommend that a promotion step be taken when the 
sum of the differences between the components of °° estimated at successive 
iterations is less than some small value e. Whilst this criterion is redolent of 
Aitken's [4], Crowe and Nishio's acceleration procedure is superior to-his in that 
their's takes account of both the interaction between -variables and a larger subset 
of the dominating eigenvalues in the iteration matrix. 



Appendix E 

The Modelling Interpreter 

1* 

Program : prob_interp 

Author 	A. T. Doig 

Date 	: 19th February 1990 

Purpose In order to minimise the problem a of memory exhaustion and 

excessive search times the model producing software is 

written so that each predicate fails rather than succeed. In 

228 
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order to add flexibility to our approach a general interpreter 

is provided which can be used to control any set of predicates. 

This interpreter is the predicate program/0 and it consists of 

three separate rules 

Assert to the database the name of the file which contains 

the program description, that is the list of tasks to be 

performed and the files which contain the predicates 

necessary to complete them. At the same time assert the 

list of predicates which are necessary only for setting 

the system up - these will be retracted from the database 

immediately after use. 

Call each task in turn and on completion of this task 

remove all of the predicates which are no longer of any 

use. 

Leave Prolog. 

Obviously this program is not the most concise description of 

the problem which is possible using predicate calculus. It has 

the advantage, however, of combining a relatively high degree 

of conciseness with both simplicity of implementation and 

clarity. 
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program/0 is the interpreter. Assert the information about set up to the 

database and then fail so as to free the heap. Next call each task in turn 

and then leave Prolog. 

*1 

program: -  

consult (prob_descrip), 

initialise-system. 

program:- 

call-tasks. 

program:- 

halt. 

call-tasks/0 uses the predicate repeat/O to force backtracking each time 

that next_task/O fails. The last time that next_task/O is called it 

succeeds (there are no more tasks to be fulfilled), and the cut-fail 

combination is used to disable repeat/O and cause call-tasks/0 to fail. 

call-tasks:- 

repeat, 

next-task, 

!, fail. 

/* 
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next_task/O retracts from the database the name of the next task (the 

predicate to be called), and the names of the files which contain the 

code necessary for its completion. When the task has been completed 

complete-task/2 fails and so the next call to next_task/O is made. This 

call identifies the set of predicates which are no longer of any use 

and these are retracted from the database by house-keep/l. This last 

predicate also fails on completion and so, because of the cut, next_task/O 

fails completely, returning control to call-tasks/0 on backtracking. 

Eventually next_task/O is called when no structures of the form 

task-list/2 or pred_set/1 remain in the database. In this case next_task/O 

succeeds. 

next_task:- 

not(recorded(preds, task_list(_, _), _)), !. 

next-task:-  

my_retract (preds, task_list (Files, Task)), 

complete_task(Files, Task). 

next-task:-  

house-keep. 

complete-task/2 uses its arguements in two seperate clauses. First of all 

the list of files which is its first arguement is consulted and then 

the task defined by its second arguement is called. Both consult_all/i 
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and the task called fail. 

*1 

coniplete_task(Files, _) :- 

consult_all (Files). 

complete_task(_, Task):- 

call(Task). 

/* 

consult-all/1 reconsults the file at the head of the list which is its 

first arguement and then makes a call to reconsult all of those in the 

tail. 

consult_all([HIT]) :- 

!, reconsult(H), 

consult_all (T). 

consult-all(El) :-fail. 

house-keep/0 removes all of the redundant clause from the database. It 

does this by calling abolish/2 for each of these clauses in turn. The 

first arguementis the functor of the clause to removed and the second 

is its arity. 
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*1 

house-keep: -  

repeat, 

not(kiU_pred), 

fail. 

kill_pred: - 

• retract(dead_pred(P, A)), 

abolish(P, A). 



Appendix F 

The Initialization File for the Flash Problem 

This is a copy Of the file poL.init.c which is written by the modelling software. As was 

explained in § 7.5.1 this file contains the logic necessary for declaring the subroutines 

of poLeval.c for main, for initialising pointers to those subroutines and for storing the 

values of the constants and guesses for the tear variables. It also contains a switch 

which is used to access the tear variables for each subroutine. 

char em,JiocQ• 

char*free(); 

iniiia1ieprob(vaii, hers, Nprobs, V pir, valsiae) 

234 
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double *vale; 	/e The unknowns and constant, in the problem. 	•j 
mt 5 Iter.; 	/' The array of Iteration, required for each partition. •I 
ins 'Nprob.; 	/' The number of partitions in the problem. 

Ins (9ptrO)Q; I' The array of pointers to the evaluation function. 'f 
int 5vai.ise; 	/ The number of variables/ known. 	- 

ins part'num = 18; 

mt prob.ize = 68; 

ins evallQ; 

ins evai2Q; 

Ins eval'30; 

mt eval4Q; 

mt eval5Q; 

mt eval6Q; 

mt evallO; 

int'eval8O; 

ins oval 9Q 

in, eva110Q; 

ins evaillO; 

Ins oval 120; 

mt eval 130; 
inS eva1'14Q; 

mt eval 150; 

ins eva116Q; 

ins evaill(); 

mt oval 180; 

fptr[1] = evall; 

fptr[2] oval 2; 

fptr(3] = oval 3; 

fptr4] = .va1*4; 

fptr(5) = ovals; 

fptr(61 = eval6; 

F ptr(7'J = eval?; 

F ptr[8] = ovalS; 

fptr[9] = eva19; 

iptr[10] = evallO; 

fptr(11J = evalil; 

F pir12) = eval12; 

fptr(131 = oval 13; 

fptr(141 = eval14; 

F ptr[15J = eval15; 

V psr(16J evalI6; 

fpsr[17] = evalli; 

Vpsr[18] = eval18; 

valsize = 68; 

I.  
Set up the arrays and initialise them. Recall that the +1 bit I. necessary 

because C arrays stars at subscript 0, rather than 1. 

8/ 
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valC  = (double ') malloc((uneigned) (va1eie+1) eieeof(double)); 

9iere 	(ml ) utelloc((un.igued) (partnum+1) * sizeof(ini)); 

**vale 	probsize; 

55 ltere = p&rtnum; 

Nprob = p*rtnum; 

*((Ovals) + 1) = 348.5; 

*((Val.) + 2) = 0.422; 

((vale) + 3) = 0.4; 

((val.) + 4) = 03; 

5(( 5val0 + 5) = 100.0; 

*((*v.) + 6) = 40683.0; 

'(('vale) + 7) - 38770.0; 

'(('vale) + 8) = 35278.0; 

'(('vale) + 9) = .242000.0; 

"(('vale) + 10) = -234960.0; 

'(('vale) + 11) = -201300.0; 

*((*vale) + 12) = 75.3; 

'(('Va) + 13) = 97.1; 

'(('vale) + 14) = 80.4; 

'(('vale) + 15) = 298.0; 

'(('vale) + 16) = 298.0; 

*(('vale) + 17) = 1.0; 

'(('vale) + 18) = 0.81564; 

'(('vale) + 19) = 0.94934; 

'(('vale) + 20) = 0.20022; 

'(('vale) + 21) = 1.0; 

'(('vale) + 22) = 0.60908; 

'(('vale) +23) = 0.43045; 

'(('vale) + 24) = 1.35386; 

'(('vale) +25) = 1.0; 

'((vale) + 26) 	-46.13; 

'(('vale) +27) = -41.68; 

'(('vale) +28) = -34.29; 

'(('vale) +29) = 3816.44; 

'(('vale) +30) = 3803.98; 

'(('vale) +31) = 3628.55; 

'(('vale) + 32) = 18.3036; 

'(('vale) + 33) = 18.9119; 

'(('vale) + 34) = 18.5875; 

'(('vale) + 40) = 0.25; 

'(('vale) + 47) = 60.0; 

'(('vale) +41) = 0.6; 

geteval/3 uses a switch to assign the function pointer V ptr correctly 

and to eel up Icarus:. 

'I 
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geteval(Prob, tearliet) 

lot Prob; 	/ The current partition 

ins 	iearliss; 	/ The list of tear variables. 

/ 	Flip the switch 	/ 

•wiich(Prob) — 

case 1: 

'tearliet = (mt ') malloc((unsigned) 1 • eizeof(int)); 

'(('tearlist)) 	0; 

break; 

case 2: 

'tearlist = (jot ') inafloc((un.igned) 1 * aizeof(int)); 

0; 

break; 

case 3: 

'tearliet = (jot ') malloc((unsigned) I * sizeof(int)); 

(('tearlist)) = 0; 

break; 

case 4: 

'tearliet 	(jot ') mafloc((unsigned) 1 * .iaeof(inl)); 

'(('tearlist)) = 0; 

break; 

case 5: 

'tearlist = (ins ') malloc((unsigned) I • sizeof(int)); 

'(('tearlist)) = 0; 

break; 

case 6: 

'tearlist = (lot ') malloc((uosigned) I 	sizeof(int)); 

'(('tear list)) = 0; 

break; 

case 

•tearIist = (lot ') inalloc((unsigned) 1 	•izeof(int)); 
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•((*eariist)) = 0; 

break; 

case 8: 

Ctearliu i = (ins 	) maUoc((uneigned) 1 	eizeof(ini)); 

C((Ctearlist)) = 0; 

break; 

case 9: 

'tearilet = (ins 	) mafloc((uneigned) 1 	eizeof(int)); 

'(('tearlist)) = 0; 

break; 

case 10: 

*tearIiBt = (ins C)  mafloc((uneigned) 1 * .izeof(int)); 

C((Ctearliut)) = 0; 

break; 

case 11: 

*jearljet = (ins ') mal.loc((unaigned) 1 s aizeot(int)); 

*((*teariist)) = 0; 

break; 

case 12: 

*tearIjej = (ins C)  malloc((uneigned) 1 * sizeoi(int)); 

*((*teariisi)) M  0; 

break; 

case 13: 

tearlie$ = (ins S)  mafloc((unaigned) 1 .izeoi(int)); 

*((*tearliss)) 	0; 

break; 

case 14: 

tearliut = (ins ) mafloc((uneigned) 1 eizeof(ins)); 

((tearIi.st)) = 0; 

break; 

case 15: 

'tearliet = (ins •) malloc((nneigned) 4 • sizeof(int)); 
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(('tear list)) = 3; 

S((etearlist) + 1) = 40; 

*((*teariiet) + 2) = 47; 

*((tearlist) + 3) = 41; 

break; 

case 16: 

5 tearIjst = (mt ) mafloc((un.igned) I s  .izeof(int)); 

*((Stearliss)) = 0; 

break; 

case 17: 

etearliet = (mt ) rnafloc((uneigned) 1 * .ieeof(int)); 

(( 5teariiat)) = 0; 

break; 

- case 18: 

*tearliat = (ins *) mailoc((unsigned) 1 ' •ieeof(int)); 

*((*teartjs$)) = 0; 

break; 

default 

printf("%s"n"n", 'No partitions - computation abandoned"); 

exit(-I); 

break; 



Appendix G 

The Subroutines for the Flash Problem 

*include "con8*s.h" 

#include "ariih.h" 

int puhQ; 

double popO; 

240 
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char SmallocO; 

char*free(); 

ins eval'I(vale) 

double vaiafl; 

vah[64]=(vaJ6(l61.va1s(151)val$(l21+val5(9); 

jot eval2(vale) 

double valiD; 

vaa1631=(vaie[ 18].vala[151)5va11[13]+vale[1O]; 

lot eval3(-vaJs) 

double valiD; 

va1e(623=(va1.t16I.va1e(15])val$(141+vale[1Ij; 

ins eval4(vale) 

double valsfl; 

vala(601=(vali[lJ.vas(15])vala(13J+yala(91; 

ins evai5(vala) 

double valafl; 

va1ef59J=(vae( 1J.vali( 15 )vaJe[ 13]+ vale (1O); 

ins eval6(vals) 

double va.fl; 

vaJet58J=(vah[1J.vala(151) 5vaje[141+ Vale (IjJ; 

in, eval7(vala) 

double valifl; 

vala[56]=vale[601+valef6]; 

ins evai8(vale) 

double valiD; 

vala(551=va1s(59+vaia(1; 

ins eval9(vals) 

double valafl; 

vah[54] va1st58+va1e(8J; 
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ins evailO(vals) 

double valsD; 

vas(521=exp(vaIs[32].vais29J/(vals[l]4vals[261)); 

mt evaIll(vals) 

double valsD; 

vaJt511exp(vals[331.vamsL30 /(vats(lj+vams( 271)); 

jut evai12(vals) 

double vaisfl; 

vals[50J=exp(vals(341.vals[31]/(vals(lj+vals(281)); 

ins evai13(vals) 

double valaD; 

vala(351= l.O.vals[4).vals[3]; 

mt eval14(vals) 

double valsfl; 

va5(61j =val(621*val5 (31 va 63J*val5[35] val5(641sva5[4J 

InS oval 15(vala, f, jacobian) 

double valsfl; 	/0 The unknowns and constants In the problem. 0/ 

double flJ; 	/ The array of function values. 

double 60jacoblan; /° The jacobian for the tear set. 

double *stack; /0 The stack 	 0/ 

double 	°sdash; / 	The derivative stacks 

double 	chain; /° The analytical derivatives 

double **unit; / 	The identity matrix (Dx/Dx) 

double popO; /° The popping junction 

double °srow; / 	An array of zeros 	 Cl 

int °sptr; f 	A pointer to the head of the stack 	/ 

ins C; /0 The number of tear variables 	Cl 

int dep; / 	The number of dependent variables Cl 

int exitflag = 1; / 	Flag unused at the moment 	Cl 

int i, j; /* Count variables 	 C, 

dep = 14; 
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C = (lot) jacobian; 

stack = (double ) mafloc((uneigned) (MAXPTR+1) * eizeof(double)); 

*'dash = (double ) mafloc((unsigned) (MAXPTR+1) .izeof(double C)); 

chain 	(double SC)  znafloc((unsigned) (dep+1) sieof(donble )); 

unit = (double ) meiloc((unsigned) (C+l) • sizeot(double C)); 

Crow = (double C)  maflo((uneigned) (C+1) *izeof(double)); 

for(i=l; i j= C; i++) - 

srow(i] = 0.0; 

unit[i] 	(double *) mailoc((uneigned) (C+1) • eizeof(double)); 

for(j=l; j ;= C; i++) 

*(*(unit + i)  + ) = 0.0; 

*(*(unit + i)  + i) = 1.0; 

ior(i=1; i i= MAXPTR; i++) - 

sda4h(iJ = (double C)  mafloc((uneigned) (C+1) 'eizeof(double)); 

ior(i1; I ; dep; i++) - 

chain[i] = (double C)  rnauoc((unsigned) (C+1) C  eizeof(double)); 

for(j=1; j ;= C; i++) 

*(*(chain + I) + j) 0.0; 

= (double ) malboc((unsigned) eizeof(double)); 

*chain = (double ) mafloc((uneigned) eizeof(double)); 

•Ufljt = (double C)  maUoc((uneigned) sizeof(double)); 

stack(0] = val*(0); 

5row(0) = *Cjobjan; 

cpu = (jot ) maJloc((uneigned) .izeof(inu)); 

CCsdah = 401; 
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('sptr) = 0; 

push(vals(41], unit(3], stack, sdaah, sptr); 

push(vaIs(231, scow, stack, sdash, sptr); 

push(vais[2], stow, stack, .dash, sptr); 

myttmes(stack, •dash, 5 plc); 

minua(stack, sdaah, sptr); 

push(vals(241, srow, stack, sdash, sptr); 

push(vals(401, unit(1), stack, sdaah, .ptr); 

mytimes(stack, sdash, sptr); 

minus(stack, sdash, sptr); - 

push(vais(251, srow, stack, sdash, sptr); 

divide(stack, sdash, sptr); 

vais[39] = pop(1, stack, sdash, chain, sptr); 

pnsh(vals(51, srow, stack, sdash, sptr); 

push(vals[473, unii(2], stack, adash, sptr); 

minui(stack, sdash, spir); 

valsL681 	pop(2, stack, sdash, chain, spit); 

push(vals(51, stow, stack, sdaah, sptr); 

push(vals(41, scow, stack, sdaah, eptr); 

myiimes(stack, sdaah, sptr); 

push(vals(681, chainf2j, stack, sdaah, sptr); 

push(vals(21, stow, stack, sdaah, sptr); 

myiimee(stack, sdash, spit); 

minus(stack, sdash, sptr); 

push(vals(47J, unit(21, stack, sdash, spit); 

divide(siack, sdash, spit); 

vals(381 = pop(3, stack, sdash, chain, spir); 

push(vats(221, scow, stack, sdash, spit); 

push(vala(391, chainhl],.stack, sdaah, sptr);-

myiimes(stack, adash, spit); 

push(valsL211, stow, stack, sdash, sptr); 

push(va191401, unitil), stack, sdash, spit); 

rnytimes(stack, sdaah, spit); 

plus(stack, sdash, spit); 

push(vsis(20, scow, stack adash, spit); 

push(vals(21, stow, stack, sdash, spit); 

myt&mes(stack, sdash, sptr); 

plus(siack, sdash, spit); 

va18142l = pop(4, stack, adash, chain, sptr); 

push(vals[19], 8row, stack, sdash, spit); 

push(va1s(39, chain[1), stack, idash, spIt); 

mytimes(stack, sdaah, spit); 

push(vals(181, stow, stack, sdazh, sptt); 

push(vals(401, unit(1J, stack, sdash, spit); 

mytimes(stack, sdash, spit); 

plus(stack, sdash, sptr); 

push(vils[I71, stow, stack, sdash, spit); 
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push(vals(2), stow, stack, sdash, sptr); 

mytlmes(stack, sdaah, sptr); 

plus(stack, sdaah, sptr); 

vals(431 = pop(5, stack, adash, chain, sptr); 

push(1.0, Crow, stack, sdaeh, sptr); 

push(vals(171, stow, stack, *'dash, sptr); 

push(vais(21, srow, stack, sdash, sptr); 

mytirnes(stack, sdaah, sptr); 

push(vals(431, chain[51, stack sdaah, sptr); 

divide(stack, sdash, s'ptr); 

push(vais(201, slow, stack, sdaah, sptr); 

push(vals(401, unittli, stack, sdaah, spsr); 

mytimes(stack, sdah, sptr); 

push(vale(421, chain(41, stack, sda.h, sptr); 

divide(stack, sdash, sptr); 

plus(stack, sda.h, sptr); 

push(vais(231, srow, stack, sdaah, sptr); 

push(vais(391, chain(1], stack, sda.h, sptr); 

niysimes(stack, sdaah, sptr); 

push(vais[411, unitt31, stack, sdash, sptr); 

divide(stack, sdash, sptr); 

plus(stack, sdaah, sptr); 

minus(stack, *'dash, sptr); 

vab46J = pop(6, stack, sdash, chain, iptr); 

push(vais(461, chainL6J, stack, sdash, sptr); 

expon(stack, sdash, sptr); 

push(vals(431, chain(5], stack, sdaah, sptr); 

divide(stack, sdaah, sptr); 

vais[67] = p09(7, stack, sdash, chain, sptr); 

push(vals(67], chaintlk stack, sdaah, sptr); 

pusk(vals(2J, stow, stack, sdaah, sptr); 

mytimes(stack, sdaah, sptr); 

push(vals(52], stow, stack, sdaah, sptr); 

mytimes(stack, sdaah, iptr); 

push(vats[38], chain(31, stack, sdash, sptr); 

divide(stack, sdaah, sptr); 

vals(491 = pop(8, stack, sdaah, chain, sptr); 

push(1.0, stow, stack, sdaah, sptr); 

push(vais(18), stow, stack, sdaah, sptr); 

push(vals(21, s'row, stack, sdaah, sptr); 

mytimes(stack, sdaah, sptr); 

push(vala(431, chain(5), stack, s'daah, sptr); 

divida(stack, sdash, sptr); 

push(vals(21], srow, stack, sdash, sptr); 

push(vaLs(401, unit(1], stack, sdash, sptr); 

mytimes(stack, sdaah, sptr); 

push(vats(421, chain[4J, stack, sdaah, sptr); 

divide(stack, sdash, sptr); 
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plus(stack, sdash, sptr); 

push(vais(24I, srow, stack, sdaah, .ptr); 

push(vais(391, chain(i), stack, •daah, .ptr); 

my'timea(ssack, adaah, sptr); 

push(vals(411, unit(31, stack, 6 dash, .ptx); 

divide(stack, s dash, sptr); 

pIns(stack, • dash, spsr); 

minus(stack, dash, •ptr); 

vai81451 = pop(9, stack, sdash, chain, eptr); 

pulh(valsL45], chain(91, stack, sdash, sptr); 

expon(stack, sdash, sptr); 

pnsh(vals(421, chain[4], stack, sdash, sptr); 

divide(stack, sdash, sptr); 

valst681 = pop(1O, stack, sdash, chain, sptr); 

push(vais(683, chain[10, stack, adash, s'ptr); 

push(vals(401, unit[1], stack, sdash, sptr); 

mytimes(stack, sdash, sptr); 

push(vals[51], srow, stack, sdash, sptr); 

- mytimeø(stack, sdash, sptr); 

push(vals[49], chain(81, stack, sda.h, sptr); 

divide(stack, sdash, sptr); 

vaIst371 	pop(ii, stack, .dash, chain, sptr); 

push(i.O, srow, stack, sdash, sptr); 

push(vals(38J, chain(31, stack, s'dash, sptr); 

minus(stack, sdash, sptr); 

push(vah[371, chainill], stack, sdash, •ptr); 

minus(stack, •dash, spir); 

vals(361 = pop(12, stack, sdash, chain, &ptr); 

push(i.O, Crow, stack, sdash, sptr); 

push(vala(191, srow, stack, sdash, sptr); 

push(valsf2], Crow, stack, sdash, sptr); 

my'times(stack, edash, sptr); 

push(vals[431, chain[5], stack, sdash, sptr); 

divide(stack, sdash, s'ptr); 

push(va19I221, srow, stack, sdash, eptT); 

push(vaIs(40), unittli, stack, sdash, sptr); 

mytimes(stack, sdash, sptr); 

push(vals(421, chain(41, stack, sdash, sptr); 

divide(stack, sdaah, s'ptr); 

plus(atack, adash, sptr); 

push(vals(251, srow, stack, sdash, sptr); 

pu.h(vals(391, chain(1J, stack, sdash, s'ptr); 

mytimes(stack, sdash, sptr); 

push(va1s1411, unit(3J, stack, sdash, sptr); 

divide(stack, sdash, sptr); 

ptus(stack, sdash, spsr); 

mians(stack, sdaah, sptr); 
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vals(441 	pop(13, stack, sdaah, chain, sptr); 

push(vals(491, chain(8J, stack, sdaab, sptr); 

push(vals(361, chain(121, stack, sdash, spsr); 

mytisnes(stack, sdasb, sptr); 

pnsh(va1s501, stow, stack, s'daah, s'ptr); 

divide(stack, *'dash, s'ptr); 

push(valst391, chain(iJ, stack, sdash, sptr); 

divide(stack, sdaah, sptr); 

valst65J = pop(14, stack, edash, chain, sptr); 

push(vals(51, Crow, stack, sdash, sptr); 

push(vals(351, scow, stack, sdash, sptr); 

mytimes(stack, sdaah, sptr); 

push(vaIs471, unit(2), stack, sdaah, sptr); 

pusb(va1s37], chain(1iJ, stack, sdash, sptr); 

mytixnes(stack, sdaah, sptr); 

minus(stack, s'dash, spIt); 

push(vals(681, chainL21, stack, adash, spit); 

divide(stack, sdash, sptc); 

push(vals(401, unit[i], stack, sdash, sptr); 

minus(stack, *dash, spit); 

f[i] = pop(i, stack, sdash, jacobian, spit); 

push(vais(51, stow, stack, sda.h, sptr); 

push(va.is(3, scow, stack, sdash, sptr); 

mytimes(stack, sdaeh, spit); 

push(vals[68], chain(2], stack, sdash, spIt); 

push(vals(39J, chain(iJ, stack, sdash, spit); 

mytimes(stack, sdash, spit); 

minus(stack, sdash, sptr); 

push(valst361, chainj12j, stack, sdaah, sptr); 

divide(stack, sdash, spIt); 

push(va1s(47), unit(2), stack, sdash, sptr); 

miaus(stack, sdash, spit); 

f121 = pop(2, stack, sdaah, jacobian, sptr); 

push(valst44], chain[131, stack, sda.h, sptr); 

expon(stack, sdaah, sptr); 

pusb(vaIsL651, chain(141, stack, sdash, spit); 

divide(stack, sdash, spit); 

push(vaIs(41, unit(31, stack, sdash, sptt); 

minus(stack, sdash, spit); 

f(3) = pop(3, stack, sdaah, jacobian, spit); 

for(i=O; i ;= MAXPTR; i++) 

free((char 5)  sdasb(iJ); 

for(i0; i ;= dep; i++) 

free((char ) chain[iJ); 
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for(i=O; I ;= C; i++) 

free((char ) unit(i]); 

free((chsr ') clack); 

free((char ) chain); 

free((cbar ) cdaah); 

free((char ) unit); 

return(exitflag); 

jut eval16(valc) 

double valiD; 

vaL5t531= vale L54I*va.L36I+vast561svaJc[31+vat.t56*vaJa(38J; 

lot eva11(va1s) 

double valiD ;  

Val5[5 73=Vala[58Jvalc(391+valct591va1cL401+vels[60]vale[2]; 

lot evau18(vala) 

double valsU; 

vaic(481va11(5Jvalc(611.(valsf68JCvala(51+vaj$[47]*vals(53j); 


