
1



Memory Stability and Synaptic Plasticity

Guy Billings

Doctor of Philosophy

Institute for Adaptive and Neural Computation

School of Informatics

University of Edinburgh

2008





Abstract
Numerous experiments have demonstrated that the activity of neurons can alter the

strength of excitatory synapses. This synaptic plasticity is bidirectional and synapses

can be strengthened (potentiation) or weakened (depression). Synaptic plasticity of-

fers a mechanism that links the ongoing activity of the brain with persistent physical

changes to its structure. For this reason it is widely believed that synaptic plasticity

mediates learning and memory.

The hypothesis that synapses store memories by modifying their strengths raises

an important issue. There should be a balance between the necessity that synapses

change frequently, allowing new memories to be stored with high fidelity, and the

necessity that synapses retain previously stored information. This is the plasticity sta-

bility dilemma. In this thesis the plasticity stability dilemma is studied in the context

of the two dominant paradigms of activity dependent synaptic plasticity: Spike tim-

ing dependent plasticity (STDP) and long term potentiation and depression (LTP/D).

Models of biological synapses are analysed and processes that might ameliorate the

plasticity stability dilemma are identified.

Two popular existing models of STDP are compared. Through this comparison it is

demonstrated that the synaptic weight dynamics of STDP has a large impact upon the

retention time of correlation between the weights of a single neuron and a memory. In

networks it is shown that lateral inhibition stabilises the synaptic weights and receptive

fields.

To analyse LTP a novel model of LTP/D is proposed. The model centres on

the distinction between early LTP/D, when synaptic modifications are persistent on

a short timescale, and late LTP/D when synaptic modifications are persistent on a long

timescale. In the context of the hippocampus it is proposed that early LTP/D allows the

rapid and continuous storage of short lasting memory traces over a long lasting trace

established with late LTP/D. It is shown that this might confer a longer memory re-

tention time than in a system with only one phase of LTP/D. Experimental predictions

about the dynamics of amnesia based upon this model are proposed.

Synaptic tagging is a phenomenon whereby early LTP can be converted into late

LTP, by subsequent induction of late LTP in a separate but nearby input. Synaptic

tagging is incorporated into the LTP/D framework. Using this model it is demonstrated

that synaptic tagging could lead to the conversion of a short lasting memory trace into

a longer lasting trace. It is proposed that this allows the rescue of memory traces that

were initially destined for complete decay. When combined with early and late LTP/D

iii



synaptic tagging might allow the management of hippocampal memory traces, such

that not all memories must be stored on the longest, most stable late phase timescale.

This lessens the plasticity stability dilemma in the hippocampus, where it has been

hypothesised that memory traces must be frequently and vividly formed, but that not

all traces demand eventual consolidation at the systems level.
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Chapter 1

Synaptic plasticity and memory

When an axon of cell A is near enough to excite cell B and repeatedly
or persistently takes part in firing it, some growth process or metabolic

change takes place in one or both cells such that A’s efficiency, as one of
the cells firing B, is increased

Donald Hebb, The Organisation of Behavior 1949.

Neuroscience suggests that experience of the world evokes patterns of activity in the

brain. This causes changes to synaptic efficacy by means of activity dependent synaptic

plasticity. Once altered, synaptic efficacies lay dormant until a subsequent experience

reactivates the synapses. The idea that this process embodies the encoding, storage and

recall of memory, has been referred to as the synaptic plasticity and memory hypothesis

(SPM) (Morris et al., 2003). This hypothesis is often introduced by a statement of

Hebb’s famous postulate, quoted above.

There have been major advances in support of our understanding of Hebb’s pre-

scient postulate and the SPM; such as the discovery that synapses can be modified

with long term potentiation (LTP) (Bliss and Gardner-Medwin, 1973; Bliss and Lomo,

1973; Malenka and Bear, 2004) and spike timing dependent plasticity (STDP) (Levy

and Steward, 1983; Markram et al., 1997; Bi and Poo, 1998), the discovery of evidence

that links synaptic modification to memory in the intact animal (Steele and Morris,

1999; Moser and Morris, 1998; Pastalkova et al., 2006; Whitlock et al., 2006) and the

observation of replayed activity in neural ensembles (Lin et al., 2007).

LTP and STDP are the current dominant paradigms for activity dependent long

term synaptic modification. It is widely believed that if the SPM holds then the encod-

ing and storage of memory is mediated by processes such as LTP and STDP. In this

chapter an overview of the biology underlying the SPM is reviewed.

The hippocampus occupies a pivotal position in memory research. Most theories
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2 Chapter 1. Synaptic plasticity and memory

of hippocampal function, while disagreeing upon the details of processing, do agree

that somewhere in the hippocampus patterns of synaptic efficacy are laid down and

stored in a memory trace. Both LTP and STDP have been observed in hippocampal

neurons, strengthening the implied role of these process in memory storage via synap-

tic modification. The memory trace can thus be defined as a set of synaptic efficacies,

laid down by processes such as STDP and LTP, whose precise values are relevant to

some cognitive process such as episodic memory. In this chapter major theories of hip-

pocampal function are briefly reviewed with the aim of demonstrating that the notion

of a memory trace is implicit in all of them.

The rest of the thesis is devoted to studying the dynamics of the memory trace in

various contexts, assuming that it is mediated by STDP or LTP, while making minimal

assumptions about the neural code. If the elements of memory are encoding, storage

and retrieval, the work in this thesis aims to contribute to our understanding of storage:

How memory traces can be retained within a population of plastic synapses when those

synapses must accommodate ongoing learning.

1.1 Long term potentiation

Long Term Potentiation is the phenomenon whereby synapses can be strengthened

for an extended period when the neurons they connect are made to fire at particular

frequencies (Bliss and Lomo, 1973; Bliss and Gardner-Medwin, 1973). Long term po-

tentiation has been extensively studied in the hippocampus. Typically, stimulation pro-

tocols are applied to either the synapses between the Schaffer collateral-commissural

axons and the apical dendrites of CA1 pyramidal cells, or synapses between the mossy

fibre terminals of dentate granule cells and the dendrites of CA3 granule cells. Ex-

periments are performed on slice preparations in vitro or using chronic implants in

behaving animals.

Classically, repetitive high frequency stimulation (HFS) is required for LTP induc-

tion. This protocol hits the ’sweet spot’ of NMDA receptor activation by ensuring that

there is sufficient coincidence of post-synaptic depolarization and pre-synaptic glu-

tamate input for potentiation to occur. Broadly speaking, potentiation is induced by

elevated calcium levels in the cell, resulting from NMDA receptor activation (Kauer,

Malenka, and Nicoll, 1988). Analogously, LTD can be induced by producing low but

sustained intracellular calcium levels which can result from low frequency stimulation

(LFS).
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Figure 1.1: Schematic of a transverse slice through the Hippocampus. This preparation

is typically used in Hippocampal LTP experiments. LTP or LTD can be induced in the

Schaffer colateral pathway running from the CA3 region to the CA1 region. Inputs S1

and S2 show possible locations for stimulating electrodes used to apply the protocols

in Tables 1.1+1.2. The recording electrode is placed near to cell bodies in the CA1

region. In tagging protocols both inputs S1 and S2 are used to apply plasticity protocols

to separate synaptic inputs. Figure obtained from Roger Redondo.

Right from the early days of LTP research it seemed clear that the persistence of

LTP was variable, lasting from hours to days up to weeks in chronically implanted

freely behaving animals (Bliss and Gardner-Medwin, 1973; Abraham, 2003). It has

since become apparent that there are at least two phases of LTP, late-LTP (lLTP) and

early-LTP (eLTP) where lLTP can be induced by applying more cycles of HFS to a

preparation than are required to induce eLTP. An important distinction between these

phases, which are phenomenologically differentiated by the extreme persistence of late

lLTP up to many weeks, is that lLTP requires protein synthesis whereas eLTP does not

(Malenka and Bear, 2004). Application of an mRNA translation inhibitor, anisomycin,

completely blocks late LTP (Sajikumar and Frey, 2003).

One of the questions that this thesis addresses is: Why are there different decay

timescales of LTP/D? It shall be argued later that having more than one decay timescale

of LTP/D might confer benefits upon the storage of the memory trace.
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1.1.1 LTP induction protocols and decay timescales

Both the magnitude and the timescale of decay of LTP/D is dependent upon the stimu-

lation protocol. Furthermore, when looking at the data one notices that the magnitude

of synaptic modification and the decay timescale are to some extent independent, de-

pending upon the protocol. Similar magnitudes of potentiation can be elicited but

with differing decay timescales. This is seen again and again in the literature (Tables

1.1+1.2). There are vast numbers of experimental studies dealing with LTP. Studies

included here were selected with the following criteria:

1. Produced electrophysiological data measured in terms EPSP slope

2. Performed in hippocampal slice preparations from rats

3. Concerned synapses between CA3 and CA1, Fig. 1.1

4. Produced data where the timecourse of decay could be estimated (i.e. where

measurements of the EPSP slope after induction were taken on a timescale of at

least the order of an hour).

Early LTP is typically elicited with one burst of HFS (60-100Hz) and lasts on the

order of hours. Of the studies surveyed in Table 1.1 the typical induction time1 for

early LTP with HFS was 30s-120s. Early LTD is obtained with LFS (1-10Hz). Early

LTD appears to have a similar decay timecourse as early LTP although the induction

times are generally much larger (partly as a result of the time required to deliver many

pulses at 1Hz) and range from 450s to 21min, Table 1.2.

Late LTP can be elicited with HFS by repeating stimulation bursts with some in-

terval between them, often 3-5 bursts with a 10min interburst interval. Due to the

interburst interval, late LTP administered in this fashion takes 30-50 mins to induce.

Late LTD can be elicited with a lengthy duration of very low frequency stimulation

such as 1Hz for 15 mins. Late LTD seems to exhibit similar persistence as does late

LTP. The induction time for late LTD with these protocols is 15-20mins.

1The induction time was taken as the minimum time of LTP/D induction as extracted from the graphs
in the respective studies. Often the minimum time that could be measured was simply the time interval
between one data point prior to the application of a protocol and another data point after application of
the protocol. Typically the distance between data points was several minutes. This time is of relevance
because it is used to match the LTP models in chapter 6 to the data, such that the same rate of LTP is
achieved as in experiments. However the conclusions are not dependent upon a precise knowledge of
the induction timescale.
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The LTP protocols mentioned above take a relatively long period to apply, often

around 10 mins. Furthermore, the volleys of activity in standard protocols are biolog-

ically atypical. Another type of protocol named Θ burst stimulation (TBS) has been

developed that succeeds in creating more rapid potentiation with a biologically plausi-

ble pattern of bursts (Larson and Lynch, 1986; Staubli and Lynch, 1987). TBS consists

of many volleys of short high frequency stimulation with interburst intervals of hun-

dreds of milliseconds. TBS is highly effective at eliciting LTP with induction times of

the order of seconds rather than minutes.

1.1.1.1 Depotentiation

Depotentiation is the removal of recently induced potentiation by application of low

frequency stimulation (LFS). There is evidence that both early and late LTP can be

depotentiated (Bashir and Collingridge, 1994; Sajaykumar and Frey, 2004). The dis-

tinction between depotentiation and early LTD is that depotentiation can be elicited

with LFS that has no effect on the synaptic weight when applied to synapses that have

not recently undergone potentiation. However if the synapses have recently been po-

tentiated, the LFS reverses that potentiation, returning the measured EPSP slope back

to its original baseline value. LTP induced with TBS can be reversed by applying a low

frequency 2Hz stimulation protocol with a duration of around 35s (Staubli and Chun,

1996), a shorter duration than required to achieve LTD.

1.1.1.2 LTP decay timescales

In confirmation of previous reviews, the papers summarised in Table 1.1 imply that it

is reasonable to take the timescale of decay of early LTP to be of the order of one hour.

The timescale of late LTP cannot be definitively identified because it is often larger

than the duration of the experiments. However the experiments in which slices have

been maintained over a long period indicate that it is in excess of 10 hours. In vivo

studies demonstrate the maintenance of LTP for longer than this, for time periods of

weeks or months (Abraham, 2003; Bliss and Gardner-Medwin, 1973). Thus we can

conservatively consider late LTP as having a decay timescale that is at least an order

of magnitude greater than early LTP. This is assumed in chapters 6 and 7.
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Table 1.1: A summary of LTP induction protocols taken from studies investigating CA1 of

hippocampal slices in rats. The results of LTP experiments are remarkably reproducible.

The key points demonstrated by the experiments in this table are that: 1) there are 2

clear timescales of synaptic modification, early phase LTP and late phase LTP. 2) The

same degree of potentiation can be achieved regardless of whether late or early LTP are

induced. Therefore, the timescale of persistence of LTP can be varied independently of

the magnitude of that change in synaptic efficacy. In this thesis, the implications of this

for memory storage are explored.



1.1. Long term potentiation 7

St
ud

y
LT

D
in

du
ct

io
n

pr
ot

oc
ol

LT
D

in
du

ct
io

n
tim

e
LT

D
de

ca
y

tim
e

LT
D

m
ag

ni
tu

de

D
ud

ek
19

92
90

0
pu

ls
es

@
10

H
z

5m
in

10
m

in
70

%

90
0

pu
ls

es
@

3
H

z
5m

in
>

45
m

in
65

%

90
0

pu
ls

es
@

1H
z

15
m

in
>

45
m

in
60

%

D
ud

ek
19

93
90

0
pu

ls
es

@
1H

z
15

m
in

>
45

m
in

50
%

B
as

hi
r1

99
4

de
po

te
nt

ia
tio

n:
45

0s
@

2H
z

45
0s

-
-

W
oo

20
07

de
po

te
nt

ia
tio

n:
48

0s
@

3H
z

48
0s

-
-

Sa
jik

um
ar

20
05

90
0

tr
ai

ns
of

3
bu

rs
ts

@
20

H
z

21
m

in
>

54
0m

in
50

%

90
0

pu
ls

es
@

1H
z

21
m

in
18

0m
in

70
%

de
po

te
nt

ia
tio

n:
25

0
pu

ls
es

@
1H

z

St
au

bl
i1

99
6

15
0x

30
m

s
tr

ai
ns

@
10

0H
z

(2
00

m
s

in
te

rt
ra

in
)

-
-

-

Table 1.2: A summary of early and late LTD and depotentiation induction protocols

taken from studies investigating synaptic connections within CA1 of hippocampal slices

taken from rats. This table demonstrates that LTD has similar properties to LTP: Its

magnitude and persistence can be varied independently.
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1.1.2 Mechanisms of LTP induction and maintenance

The hypothesis that the efficacy of synapses determine memory storage and that changes

to those efficacies are mediated by plasticity, demands that we consider how synaptic

efficacy is regulated. The arrival of the action potential triggers an increase in Ca2+ in

the presynaptic terminal and results in the release of neurotransmitter into the synaptic

cleft. Glutamaturgic synapses are responsible for the behavior seen in the plasticity ex-

periments reviewed in Tables 1.1+1.2. In these synapses AMPA receptors (AMPAR)

are bound by glutamate that has crossed the synaptic cleft. This leads to conforma-

tional changes to the AMPAR protein subunits such that they flux positively charged

ions, predominantly Na+, which depolarises the postsynaptic cell. When the cell is

sufficiently depolarised such that the membrane potential crosses a critical threshold

(typically around −50mV ), the post synaptic cell fires an action potential (spike).

When the strength of a synapse is increased by LTP, it is more effective at depo-

larizing the post-synaptic cell and allows more positive charge in to the post synaptic

cell upon activation of the synapse. There are many possible ways of increasing the

AMPA current. One possibility is the modification of AMPARs such that more posi-

tive charge is permitted to enter. It is known that the GluR1 and GluR2 subunits of the

AMPA receptor can be phosphorylated by CaMKII and PKA. Furthermore, phospho-

rylation of GluR1 alters the channel properties (Roche et al., 1996; Lee et al., 2000;

Chung et al., 2000; Malenka and Siegelbaum, 2001).

Phosphorylation may also play a role in the maintenance of late LTP. An important

protein in the stabilisation of AMPARs in the synapse is PSD 95. It has been found

that PSD 95 can be phosphorylated and that this leads to the accumulation of PSD 95

resulting in more persistent retention of AMPARs (Kim et al., 2007).

In this thesis it is assumed that LTP/D on long timescales is the result of postsy-

naptic modifications. Postsynaptic AMPAR regulation processes inspire the models

LTP/D in chapters 6-8. Next, this literature is briefly reviewed.

1.1.2.1 AMPA receptor regulation

There is evidence that potentiation of synapses in the cerebellum leads to the insertion

of AMPAR (Shigemoto, 2006). Furthermore, synaptic boutons enlarge subsequent to

protein synthesis dependent lLTP (Malenka and Bear, 2004; Harris, Fiala, and Ostroff,

2003) suggesting that more proteins are incorporated into the spine after potentiation.

There are three putative processes that enable the number of post-synaptic AMPARs



1.1. Long term potentiation 9

to be regulated. These are; endo/exo cytosis of receptors, association of AMPARs with

proteins in the post-synaptic density and lateral diffusion of AMPAR receptors.

Endo/Exocytosis: Experiments exploiting immunoflourescence tagging of AMPA

receptors have shown that they are internalized from the plasma membranes of hip-

pocampal cells in vitro via endocytosis and that AMPAR inside endosomes within the

cell can be inserted in to the membrane via exocytosis (Park et al., 2004). AMPA

receptor internalisation is dynamin dependent suggesting endocytosis as the mech-

anism of internalisation. Blocking AMPAR exocytosis leads to rapid synaptic run-

down suggesting that it is necessary to maintain synaptic potentiation (Lin et al., 2000;

Man et al., 2000; Carroll et al., 2001).

The half life of decay of the ratio of internal florescence to total fluorescence for

labeled AMPA receptors in cultured hippocampal cells was found to be of the order of

10 minutes in basal conditions (Lin et al., 2000). This figure was obtained by labeling

AMPAR receptors with a PH sensitive dye. The dye is inactivated when AMPAR are

endocytosed allowing the fraction of AMPAR that remain in the whole cell membrane

to be measured as a function of time. The observed fluorescence decay timeconstant

is very rapid in comparison to the lifetime of early and late LTP. Although these re-

sults apply to the whole cell membrane as opposed to the post synaptic zone, the high

AMPAR turnover rate suggests that the maintenance of LTP is dynamic: That is to say

that rather than merely ’sticking’ in synapses, receptors are perpetually inserted and

removed and that the balance between these processes is what gives rise to the long

term synaptic efficacy.

Interestingly the AMPAR turnover rate was reduced to around 3 minutes in the case

that AMPA was applied, suggesting that activation of the synapse increases AMPAR

turnover rate. Some evidence implies that NMDA dependent calcium influx can be

responsible for AMPA receptor internalisation through the activation of the calcium

dependent enzyme calcineurin (Beattie et al., 2000).

The studies cited above show that endo/exocytosis directly controls the number

of AMPA receptors in the plasma membrane. Thus it is likely that these processes

would be capable of exerting an influence on the number of AMPA receptors present

in the post-synaptic apparatus. Thus LTP might result from the exocytosis of AMPA

receptors directly into the synapse and LTD might result from their internalisation. At

any given time the weight of a synapse would be determined by the balance of addition

and removal of AMPA receptors in to the plasma membrane at that synapse.

The machinery of endocytosis is the endocytotic pit in which clatharin pinches off
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sections of membrane to create vesicles containing AMPARs. Such pits are observed

primarily outside of the synaptic zone (Triller and Choquet, 2005). Furthermore vesi-

cles containing AMPAR, presumably the precursor to exocytosis or the consequence

of endocytosis, have not been observed directly beneath the PSD. In fact they have

only been observed in the periphery of synapses (Choquet and Triller, 2003)2. These

observations point to the need for more than endo/exocytosis alone in regulation of

AMPARs at the synapse.

Endo/Exocytosis regulates the number of AMPA receptors in the whole plasma

membrane, but the observations mentioned above do not prove that these processes

alone account for changes in the number of receptors within the postsynaptic mem-

brane of a single spine. If the number of AMPARs is globally regulated by the cell,

are there other mechanisms that could account for local regulation of the number of

AMPAR in each spine?

’Slot’ proteins: The cell membrane contains freely and semi confined diffusing

AMPAR (Borgdoff and Choquet, 2002; Choquet and Triller, 2003; Tardin et al., 2003;

Triller and Choquet, 2003; Groc et al., 2004; Triller and Choquet, 2005) that are added

and removed at sites away from the synapse. There is evidence to suggest that the PSD

performs the role of providing a substrate for ’slot’ proteins that stabilise AMPARs by

binding to their cytoplasmic elements (Turrigiano, 2000). This might allow the PSD

to regulate the rate of loss and capture of AMPA receptors in the synapse from the

surrounding plasma membrane, removing the need for endo and exocytosis within the

spine.

It is known that each GluR AMPAR subunit has specific interactions with vari-

ous proteins (Bredt et al., 2004; Duprat et al., 2003; Sheng and Lee, 2003). These

interactions play a role in both dynamic regulation of receptor cycling (for example

PICK/GRIP1 and Stargazin) but may also allow the retention of AMPARs at synaptic

sites depending upon their subunit composition. The PSD might provide this function-

ality with PSD95 as the protein that seems a likely candidate for the role of being a

slot due to its interaction with Stargazin and hence indirectly, AMPARs (Bredt et al.,

2004).

AMPAR lateral diffusion: If AMPA receptors are regulated by capture and release

2In order to extract specific proteins, cells are often centrifuged, destroying nearly all structure. How-
ever, one element that does survive is the post synaptic density, resembling a tiny coin (Dimitri Kullman,
personal communication). Any exocytosis of AMPAR directly into the synapse would necessitate that
large proteins (the AMPAR) should penetrate the PSD. But under the conditions of centrifuge the PSD
is clearly a very solid structure in cellular terms.
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at the PSD, then there must a transport process to and from the synaptic site. AMPA

receptor diffusion has been directly observed on the surface of hippocampal cells using

both latex beads and single molecule fluorescence microscopy. (Borgdoff and Choquet,

2002; Tardin et al., 2003; Groc et al., 2004). These studies have discovered that within

sub µm2 domains of extra-synaptic space the mean squared displacement (MSD) of the

random AMPAR movements observed scales linearly with time, as is characteristic of

Brownian motion.

Experiments suggest that the cell membrane incorporates a patch work of ’picket

fences’ composed from proteins anchored to the cytoskeleton. These fences are not

fixed but can provide reconfigurable confinement of freely diffusing membrane pro-

teins. We can regard the AMPARs within sub-domains of these corrals to be freely

diffusing, accounting for the observed MSD of extra-synaptic AMPARs (Triller and

Choquet, 2003). Confinement of AMPARs to synaptic domains is most likely ac-

counted for by interactions of AMPARs with the PSD and trans-membrane proteins

(Triller and Choquet, 2005).

Finally, a particularly intriguing aspect of diffusion of AMPARs is that the mobility

of AMPARs in the cell membrane may be altered by calcium concentration (Borgdoff

and Choquet, 2002). Chelation of Ca2+ with BAPTA leads to more than a two-fold

increase in AMPAR mobility in cultured hippocampal neurons while UV uncaging

of Ca2+ leads to an almost complete obliteration of AMPAR diffusion that subsides

around 100s later. This points to the possibility that AMPAR diffusion is altered during

the induction of LTP/LTD, thus allowing the number of AMPA receptors to be changed

and causing modification of the synaptic efficacy.

1.2 Synaptic tagging and capture

As stated above, experiments have suggested that late LTP is protein synthesis de-

pendent and that it persists for a long period of time, while early LTP is not protein

synthesis dependent and decays more rapidly. This raises the question of how the pro-

teins required for synaptic weight stabilisation are targeted to the correct synapse when

that synapse undergoes late LTP.

One explanation would be that the plasticity related proteins (PRPs) required for

eLTP to become lLTP are manufactured locally to the synapse, thus negating the tar-

geting problem. This solution seems unlikely since it would require protein synthesis

within dendritic spines. Alternatively, the cell might operate an indexing system of
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some sort, allowing proteins to be precisely targeted by means of a sophisticated trans-

port system.

While investigating the targeting of PRPs, Frey and Morris (Frey and Morris, 1997)

found an interesting result that cannot be explained by either of the mechanisms men-

tioned above. Late LTP of one pathway (eg. input S1, Fig. 1.1) in hippocampal slice

preparations could be induced even after blockade of protein synthesis with anisomycin

provided that late LTP had been previously induced on a second, anatomically nearby

pathway (eg. input S2, Fig. 1.1). This implies that the induction of late LTP triggers

a release of PRPs that is widespread enough for other synapses to capture them. This

finding is not consistent with either of the above explanations for the specificity of PRP

uptake, since neither of these explanations can explain the paradoxical transformation

of early LTP into late LTP on the second pathway.

The discovery of paradoxical late LTP, induced under protein synthesis blockade,

gave way to the possibility that early LTP might be converted to late LTP under other

circumstances. Another experimental result showed that indeed this is the case. After

inducing lLTP on one input (S1) using strong HFS, subsequent weak HFS applied

to a second nearby input (S2) leads to the induction of lLTP at that input (S2) also

(Frey and Morris, 1997; Frey and Morris, 1998). Weak stimulation that would have

otherwise only induced eLTP in S2 instead induces lLTP due to the strong stimulation

of another input (S1).

Paradoxical late LTP can be explained with the hypothesis that strong HFS does

two things: Firstly it triggers some global process of transcription and translation (in-

volving the polyribosomes of the particular dendritic branch or throughout the whole

cell), secondly, the strong HFS sets a marker or ’tag’ on the synapse to indicate that

new proteins should be used to stabilise the synaptic weight. In addition it is hypoth-

esised that weak HFS sets a tag but does not activate protein synthesis. Paradoxical

late LTP can now be explained because the second input (S2) is able to sequester PRPs

that were manufactured due to the strong stimulation of the first input (S1), leading to

stabilisation. This is the synaptic tagging hypothesis, Fig. 1.2.

It should be emphasised that tagging can allow the consolidation of early LTP after

a considerable time elapse, as shown in experiments where first strong HFS is admin-

istered to input S1 followed 35mins later by a dose of Anisomycin to block protein

synthesis. Performing strong HFS at another input S2 after a further 25mins provokes

lLTP despite ablation of protein synthesis. Thus PRPs are capable of being retained

for some time.
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Figure 1.2: The Synaptic tagging hypothesis. Each diagram is a schematic of a cell

body attached to a dendrite having two synapses. In experiments, these cells are lo-

cated in the CA3 region of the hippocampus. When late LTP is induced in one of the

synapses (left), then the synapse is potentiated, a tag is set and protein synthesis (PS)

is activated. The protein synthesis produces plasticity related proteins (triangles) that

stabilise the synaptic modification. The tag captures plasticity related proteins. Subse-

quently, early LTP is induced in a second synapse (right). Early LTP does not activate

protein synthesis, but does set a tag. The tag captures plasticity related proteins that

are still present due to prior protein synthesis from late LTP. Thus the synaptic modifi-

cation induced by early LTP is stabilised, converting early LTP in to late LTP. This figure

was taken from Frey Morris 1998.

Further interesting results suggest that the above phenomenon also holds for LTD.

Again lLTD requires protein synthesis and is blocked by Anisomycin. It is possible

to convert eLTD into lLTD with a strong low frequency stimulus (LFS) applied to

another input within a time window of the order of 80mins. More exotically, ’cross-

tagging’ can be induced, whereby strong LFS in one input can allow another input

to display lLTP after application of weak high frequency stimulation (HFS) and visa-

versa (Sajaykumar and Frey, 2004).

As previously mentioned, LTP experiments that use the hippocampus typically

stimulate many afferent fibres. In doing so it is likely that in addition to the fibres be-

ing targeted, dopamine inputs are also stimulated. There is evidence that this dopamine

release and subsequent activation of D1/D5 receptors is necessary for lLTP and late as-

sociativity (Li et al., 2003; Sajaykumar and Frey, 2004).

The molecular identities of the tag and the PRPs are as yet unknown. It is plausi-

ble that the tag is the result of phosphorylation of some synaptic molecule that would

enable the synapse to incorporate PRPs. This is a difficult idea to test experimentally

because phosphorylation of molecules is a ubiquitous process in synaptic plasticity.

Non specific pharmacological blockade of phosphorylation simply blocks plasticity it-
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self (Malenka, 1994). In theory it might be possible to find a drug that can specifically

block phosphorylation of the substrate molecule (this would isolate the tag) but this is

at least as hard as finding a needle in a haystack. The identity of the PRPs is also un-

certain. It has been suggested that they are not incorporated into the synapses at all, but

that rather they are enzymes allowing alteration of the composition of the postsynaptic

density. (Sajikumar and Frey, 2004).

1.3 The Hippocampus and declarative memory

It has long been known that loss of the hippocampus leads to terrible memory deficits

in human beings. Most famously in 1953 the patient H.M. underwent bilateral re-

moval of his hippocampus in order to cure intractable epilepsy. Although his epilepsy

improved, the procedure rendered H.M. unable to retain new memories (anterograde

amnesia) (Schoville and Milner, 1957; Corkin, 2002). H.M. can no longer learn new

episodic or semantic memories (declarative memories), although his recall of earlier

events, language and facts is undisrupted (Corkin, 2002). This evidence strongly sup-

ports the idea that the hippocampus is required in order to retain incoming declarative

memories, but that it is not the repository of long term declarative memory. Subsequent

lesioning studies in animals (Squire and Zola-Morgan, 1991; Alvarez, Zola-Morgan,

and Squire, 1995), pharmacological investigation by blockade of NMDA receptors

with AP5 (Steele and Morris, 1999) and electrophysiological intervention in the hip-

pocampus (Moser and Morris, 1998) all lend credence to this hypothesis.

Each individual experiment always suffers from confounding factors. For example

in vitro studies of hippocampal tissue can be more tightly controlled but are atypical of

conditions in vivo, while in vivo studies are more realistic, but any intervention with the

hippocampus, be it surgical or pharmacological must have effects on other parts of the

brain. Despite these caveats, the sheer weight and diversity of convergent evidence that

the hippocampus is a short - or perhaps more accurately variable - term memory store

that is important for formation of declarative memories is overwhelmingly persuasive.

The first detailed computational model of the hippocampus was developed by David

Marr (Marr, 1971). In Marr’s scheme the hippocampus is regarded as a temporary con-

tent addressable memory store. In this model, the hippocampus stores incoming infor-

mation by modifying the synaptic weight between two or three layers of simple binary

units (both configurations were investigated) such that upon subsequent presentation of

an incomplete version of the pattern, the original pattern is reproduced. The argument
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is made that it would be inefficient for the neocortex to store all of the new information

that the animal encounters. For this reason Marr postulates that the hippocampus is a

non specific memory store, retaining new information until its usefulness can be as-

sessed. Marr’s model has been hugely influential, however the validity of assumptions

that were made about the anatomy and hence the solidity of Marr’s conclusions have

since been questioned (Willshaw and Buckingham, 1990).

Later theories built upon Marr’s model by proposing specific functions for sub-

hippocampal regions within a more developed theoretical framework. The importance

of correlations stored within an associative matrix mediated by the numerous recur-

rent connections in CA3 was emphasized by McNaughton and Morris (McNaughton

and Morris, 1987) and built upon the previous development of the theory of associa-

tive networks (Willshaw, Buneman, and Longuet-Higgins, 1969). Also centering upon

the possible importance of CA3 as an associative network, a large body of theoretical

work was undertaken by Treves and Rolls (Rolls, 1996; Rolls and Treves, 1998). In

this model of the hippocampus, CA1 is taken to be a relay centre from CA3 to the wider

brain. As part of this relay process CA1 is hypothesized to recode neural activity in

CA3. Representing conjunctions of firing cell assemblies in CA3 (episodic memories)

as the firing of a single cell assembly in CA1, where the number of neurons used to

represent the recoding is larger in CA1 and leads to reduction in ’density’ of the orig-

inal code (sparsification). Calculations showed that this process requires associatively

modifiable synapses between CA3 and CA1 in the Shaffer collateral pathway.

The notion that the hippocampus functions to associate information across modal-

ities is pervasive, but there are still many undecided details as to how structure relates

to function and how function relates to behavior. One important idea incorporated into

the hippocampal model of O’Reilly and McClelland (O’Reilly and McClelland, 1994)

is that incoming patterns, from the ethorinal cortex to CA3 should be orthogonalised

by the dentate gyrus in order to minimise the overlap of synaptic activation. This max-

imises representational efficiency. In this case the hippocampus can be regarded as not

only having the ability for pattern completion (as an autoassociative network) but also

the ability for pattern separation (by orthogonalisation of inputs). There is evidence

that both CA1 and CA3 are capable of pattern completion and separation (Guzowski

and Knierim, 2004), although recent functional imaging data suggests that CA1 is con-

cerned with pattern completion, while CA3 and the dentate gyrus are concerned with

pattern separation (Bakker et al., 2008). This dual function of the hippocampus could

allow orthogonalised CA3 patterns to be re-associated with the ethorinal inputs that
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gave rise to them such they can be indexed by the cortex.

The above discussion has made no mention of the other functions of the hippocam-

pus. The models above all cast the hippocampus as primarily a device for the acquisi-

tion of declarative memory. However there are numerous observations that spatial lo-

cation is coded by activity of cells in the hippocampus (O’Keefe and Dostrovsky, 1971;

O’Keefe and Conway, 1978; O’Keefe and Burgess, 1996). In place field research, the

role of the hippocampus in spatial learning and memory is investigated. Place coding

in hippocampal function, while important in its own right, is also probably relevant to

the acquisition of declarative memories in that it provides a method to bind multimodal

memories together with an appropriate que 3. However, the influence of place cells is

not the domain of the models of LTP to be discussed in this thesis. For the purposes

of what is to come it is only necessary for us to acknowledge that in making memories

the hippocampus utilises a memory trace, and that the modification of synaptic effica-

cies acts in a manner that has some functional relationship to input and output activity.

Therefore it is the arrangement of synaptic efficacies that provides the substrate for

recall of information. To this end we note that all major theories of hippocampal func-

tion agree on this point although they might disagree upon the mechanisms at play and

the precise nature of the memories mediated. Furthermore, the synapses between CA3

and CA1 are good candidates for the location of memory traces, although the existence

of memory traces is by no means necessarily limited to this synaptic population.

1.4 Spike Timing Dependent Plasticity

The LTP/D induction protocols mentioned previously activate large numbers of synapses,

creating a large synaptic drive in a non specific manner. In these protocols there is no

specific structure in the time intervals between individual presynaptic and postsynap-

tic spikes. Alternatively, it is reasonable to wonder how synapses behave when there

is a particular sequence of timings between presynaptic and postsynaptic spikes. In

several systems it has been demonstrated that the precise spike timing has a large ef-

fect on the outcome of synaptic plasticity (Levy and Steward, 1983; Bell et al., 1997;

Markram et al., 1997; Bi and Poo, 1998; Sjöström, Turrigiano, and Nelson, 2001;

Froemke and Dan, 2002; Dan and Poo, 2006). Importantly, at a fixed low frequency,

3This is perhaps of most importance in episodic memory for which ’where’ is one of the tripartite
elements of its definition: Where, what, when. However it can also be relevant for semantic memory,
as attested to by memory techniques that boost ones acquisition of facts by association with previously
learned spaces, such as the interior of a familiar house.
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the exact ordering of pre and postsynaptic events can determine whether the synapse

undergoes potentiation or depression. This phenomenon is known as Spike Timing

Dependent Plasticity (STDP). The relationship of STDP to classical LTP is still not

understood, although it is often presumed that STDP ’learning rules’ give rise to clas-

sical LTP behavior in the limit of a large number of spikes.

Spike timing dependent plasticity can be induced between cortical layer 5 pyra-

midal neurons in slice preparations. Individual pre-synaptic spikes (leading to post-

synaptic EPSPs) cause synaptic potentiation when paired with post-synaptic spikes,

provided that the post synaptic spikes follow the EPSPs in time (Markram et al., 1997).

Later experiments in cultures of hippocampal pyramidal neurons, established that the

weight modification obtained by the spike-pairing is dependent upon the timing be-

tween those spikes in such a fashion so as to mark out a ’plasticity window’. Should

the post-synaptic spike follow the EPSP then synaptic modification is large and posi-

tive. Conversely if the order of EPSP and spike is reversed, the synaptic modification

becomes negative, Fig. 1.3, and in between these limits the magnitude of synaptic

modification is continuously graded (Bi and Poo, 1998; Bi and Poo, 2001).

Upon first sight, the plasticity window implies that when some pre synaptic spike

train interacts with a post synaptic spike train, then the total resulting synaptic modifi-

cation is some combination of the modifications from individual spike interactions as

determined by the single pairing STDP window. In the simplest case this is the linear

sum of all of the individual possible contributions. It is now known that this simplest

scenario of linear interaction of the modifications due to each spike paring, does not

occur (Bi and Poo, 1998; Froemke and Dan, 2002; Wang et al., 2005). This can be

tested by performing ’higher order’ probes of spike pairing, where instead of inducing

a pre spike and then a post spike, other spikes are introduced. For example, one might

probe with spike triplets, in which case a protocol such as pre-post-pre might be per-

formed. If the spike timing intervals interact in a linear fashion one would expect that

a pre-post-pre protocol where there is a 10ms gap between the first paring (pre-post)

and an equal 10ms gap between the second paring (post-pre) should lead to no over-

all change, and indeed this appears to be the case (Wang et al., 2005). On the other

hand the alternative protocol post-pre-post, should also lead to no overall change due

to an identical argument. In this case however, significant LTP was observed. Thus

there cannot be a simple summation of the influences of extra spikes. A similar result

was obtained in protocols consisting of four spikes, showing asymmetrical activation

of LTP and LTD processes where a linear summation model would predict equal acti-
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Figure 1.3: Spike timing dependent plasticity in cultured hippocampal pyramidal cells.

Two cells were selected that made synaptic contact with one another. A spike is then

induced in the pre-synaptic cell. After a time elapse a spike is induced in the post

synaptic cell. This protocol is repeated and the average plotted. When the time elapse

is negative ∆t < 0 the synapse is depressed. When the time is positive ∆t > 0 then the

synapse is potentiated. Figure reproduced from Bi & Poo 1998.
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vation of LTP and LTD. Evidence for the non-linear summation of spike interactions

has been obtained by other authors including the case of natural spike trains in vivo

(Froemke and Dan, 2002).

1.4.1 Theories of spike interactions

From a theoretical perspective, the issue of summation of individual STDP spike pair

contributions is complex. There is no one model yet that can provide a general solution

to this problem. Some models permit heuristic calculations based upon rules about

which spike pairs can interact (Burkitt, Meffin, and Grayden, 2004; Izhikevich and

Desai, 2003). Spike triplet data can be modeled (Pfister and Gerstner, 2006) but already

the data tell us that the complexity does not stop with the third spike. Perhaps most

relevantly, bursts of spikes and naturalistic spike trains can be modelled in a simple

model that takes into account the previous synaptic weight change (Froemke and Dan,

2002; Froemke et al., 2006). This approach is perhaps the most promising, for while

it might satisfy theoreticians, there is little point in exerting disproportionate effort in

deriving a model that can account for spike interactions that are highly unlikely to

occur in vivo (as is the implicit aim of solving for a completely arbitrary spike train).

Still another approach is to build a specific system of equations based upon pro-

posed dynamics of cellular chemicals such as calcium. This has met with some success

but generates models of high complexity (Rubin et al., 2005). One model proposes a

more general solution, and indeed the model is capable of qualitatively reproducing

much of the observed phenomenology. But it is mathematically intense and as yet

untested against real data (Appleby and Elliott, 2006; Appleby and Elliot, 2005). In

the STDP investigation in this thesis, these complexities are not considered. Instead

two popular models of STDP that are directly based upon experimental data are inves-

tigated (van Rossum, Bi, and Turrigiano, 2000; Song, Miller, and Abbott, 2000) (see

chapter 4).

1.4.2 STDP in the visual cortex

STDP has been successfully elicited in slice preparations of visual cortex (Sjöström,

Turrigiano, and Nelson, 2001), suggesting that it might be physiologically relevant to

visual development. There is also indirect evidence that STDP occurs in the adult vi-

sual cortex in vivo. It has been found that the optimum response angle of orientation

selective cells in V1 of the cat can be shifted by repetitive presentation of stimuli that
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cause neighboring columns to fire (Yao and Dan, 2001). When the stimuli are ap-

propriately timed a window like function, similar to that discovered by Bi and Poo in

hippocampal neurons can be plotted, relating the magnitude of the shift in optimum

angle of the orientation column, to the relative timing between shift inducing stimuli.

In the same study the authors demonstrate an analogous psychophysical effect in hu-

mans. One possible explanation for this data is that STDP is occurring in the lateral

excitatory connections between adjacent columns. Subsequent high level modelling

work reproduced the effect (Yao, Shen, and Dan, 2004). All together this was taken to

suggest that STDP is potentially relevant to computation within V1 in vivo.

Recently there has been further evidence of the existence of STDP in the visual

system. Upon retinal lesion the receptive fields of the visual cortex can reorganise. In

cats, this reorganisation is highly convergent; receptive fields move in to plug the gap

in the area having low activity. It has been shown that this convergent reorganisation

process is compatible with a model that takes causal spike interactions in to account

(i.e. STDP) but is incompatible with a model based purely upon correlations in spiking

activity (Young et al., 2007). This again suggests that STDP might play a role in the

adult visual cortex in-vivo.

1.5 Summary

In this chapter the key elements of the synaptic plasticity and memory hypothesis

(SPM) have been set out. The elements are:

1. Synaptic plasticity underlies the initial encoding of the memory trace

2. Memory traces are stored as the values of an ensemble of synaptic weights

3. Memories are directly mediated by memory traces

Memory is an aspect of cognition and therefore touches upon a large proportion of the

areas of the brain. For this reason the discussion of memories was mainly restricted

to the hippocampus, which plays a pivotal role in the formation and initial storage of

declarative memories. If the SPM holds then the processes that are responsible, at the

low level, for the formation of memory are processes of synaptic plasticity such as

STDP, LTP and LTD.

At the biophysical level changes to synaptic efficacy are mediated by a variety

of processes. It is possible that these processes give rise to the multiple dynamic
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timescales of LTP/D that are observed in experiments. In this thesis two processes

are considered to allow direct potentiation or depression of the synapse: 1) The addi-

tion or removal of AMPAR: Processes such as exocytosis and capture of AMPAR by

the PSD could increase the number of AMPAR in the postsynaptic zone. Conversely

AMPAR endocytosis and disassociation of AMPAR from the PSD could lead to a de-

crease in the number of AMPAR in the postsynaptic zone. 2) Retention of AMPAR for

longer periods: Consolidation (or deconsolidation) of synaptic weights is considered

to be due to the addition or removal of PSD protein ’slots’. The effect of these slots

is to capture and hold on to AMPAR receptors that are freely moving in the plasma

membrane. This extends the lifetime of synaptic potentiation.

The aim of this thesis is to explore the stability of biological synaptic plasticity. To

do this, a number of models of synaptic plasticity are analysed. Before this however,

chapter 2 more clearly defines the problem to be considered: The plasticity stability

dilemma. Chapter 3 discusses the mathematical methods used in attacking the prob-

lem as defined in chapter 2. In chapter 4 the stability of memory traces in two popular

models of STDP is considered. Chapter 5 extends chapter 4 to STDP in recurrent net-

works whose function resembles orientation selectivity in V1, where there is evidence

that STDP plays a role.

Novel models of hippocampal LTP/D are formulated and analysed in chapters 6

and 7. In chapter 6 the implications of multi-timescale LTP/D for the memory trace

are demonstrated. In chapter 7 amnesia is induced in the models, leading to prediction

of a novel phenomenon. Using the framework developed in chapters 3, 6 and 7, a novel

model of synaptic tagging is formulated and presented in chapter 8. Finally, chapter 9

discusses the results and suggests future work.





Chapter 2

The plasticity stability dilemma

In the previous chapter the synaptic plasticity and memory hypothesis (SPM) was in-

troduced (Martin and Morris, 2002). In the SPM it is proposed that the encoding of

memory is mediated by synaptic plasticity via processes such as long term potentiation

(LTP) and spike timing dependent plasticity (STDP) and that the storage of memories is

mediated by the synaptic efficacy. One system that has been heavily studied within the

SPM paradigm is the hippocampus. We saw how the hippocampus might be regarded

as an associative memory device, where memories are stored as relationships between

synaptic efficacies connecting the hippocampal layers. This implies that synapses must

be used for both learning, (when modified by ongoing experience) and for storage

(when required to retain a previously learned memory trace). These dual functions are

antagonistic, giving rise to the ’plasticity versus stability dilemma’ (Grossberg, 1987;

Abraham and Robins, 2005): A trade off between strong learning that creates an easily

detectable memory trace (thus modifying many of the synapses ) and long term storage

(through protection of previously modified synapses).

One form of the plasticity stability dilemma can be understood intuitively with

the following analogy. Imagine that we were to write a dairy upon a single sheet of

paper by writing entries at random locations on the sheet. The entries are written

with permanent pen and so cannot be removed. When the first entry is written, it

is completely readable. As further entries are added however the probability that a

new entry overlaps an old entry grows. Depending upon the size of the paper and

the length of the entries there will come a point where less and less of the diary is

readable. Furthermore, new entries will be unreadable and so our memories ’decay’

instantly. At this stage the diary is completely useless. An implication of the SPM

is that an identical situation might apply in the hippocampus, with synaptic weights

23
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as the page and memory traces as entries in the diary. This raises the question of

how synapses should behave such that they can both store old information and accept

incoming information.

Interesting in its contrast to the biological problem, is the engineering solution:

Indexing. For example, digital computers use indexes (or ’filesystems’) to enable files

to be stored on a disk such that their bits do not interfere. This allows the computer

to lay down new information while retaining a perfect copy of the old information.

This method works very well until the capacity of the disk is reached. At this point

it completely fails. There is of the order of 106 cells in the hippocampus each having

order 104 synapses (Rolls, 1996; Megias et al., 2001). Assuming that synapses are

binary and that they are all used in memory storage, this equates to a storage capacity

of approximately 1.25 Gigabytes.1 However ’capacity’ in this sense, refers to the

maximum possible size of one single binary pattern (or some concatenation of multiple

patterns). Our intuitions about the brain imply that it operates in a different regime, in

which random collections of synapses are used to store information with an occasional

overlap with old information. This explains why we do not observe human memory

becoming full, but we do observe a gradual degradation in some previously acquired

information (forgetting). Thus in the context of the brain, a more natural measure of

capacity is the maximum amount of time until a memory can no longer be retrieved,

given the ongoing storage of new information.

In this chapter the plasticity stability dilemma, is introduced. First, previous work

aimed at ameliorating the plasticity stability dilemma (sometimes referred to as catas-

trophic forgetting) in neural networks is reviewed. Next it is argued that synaptic

weight evolution in models of synaptic plasticity can be regarded as a stochastic pro-

cess. This allows stability to be studied in terms of the statistics of the stochastic

process. Existing models that adopt this viewpoint are reviewed. Finally the problem

to be addressed by this thesis is stated.

1The Shannon information content of such a disc is proportional to the probability of obtaining a
particular disk rather than the number of bits on the disc. Therefore just because a disc is big, it is
not guaranteed to be informative. This is because by reading every bit on a 1.25Gb disc, we can only
be as surprised as the number of possible discs we could have been given (i.e. many of the bits might
be redundant). Alternatively, the algorithmic information measures the information of the instance of a
single disk, but is not guaranteed to be computable!
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2.1 Catastrophic forgetting

In the cognitive science and neural networks literature the stability plasticity dilemma

has been recognised for some time. It is often referred to as catastrophic forgetting

in this context. There are two meanings that are attributed to catastrophic forget-

ting: Catastrophic forgetting of the first kind occurs when an artificial neural network

(typically a back propagation network) suffers very rapid performance reduction on a

previously learned task when new data occurs. For example a multilayer perceptron

might be trained to classify some set of patterns A1. The learning algorithm terminates

when a certain level of classification error is reached. The network is now presented

with a new set of patterns to learn A2. After learning of A2 is complete, members

of A1 are presented to the network and it is found that the network can no longer

classify or recognise patterns in A1. This forgetting is catastrophic because it typi-

cally involves removal of all memory of A1, it occurs rapidly, and A2 need not be a

large set of patterns (French, 1999). Training a connectionist network on only one

or two novel patterns still completely disrupts the initial memory (Grossberg, 1987;

French, 1999). This is a significant problem because catastrophic forgetting does not

appear to occur in experiments (French, 1999). For example, it is not the case that

learning a new word leads to the complete disruption of one’s vocabulary!

Catastrophic forgetting of the second kind occurs when patterns are stored in a

neural network (typically a Willshaw or Hopfield network) when the storage capacity

of the network has been exhausted. In this case we subject the network to on going

learning of patterns. When the capacity is breached the network forgets its previously

learned patterns rapidly.

If neural networks are to be regarded as models of memory then catastrophic for-

getting is an embarrassing problem. Solutions to the problem of catastrophic forgetting

are now summarised.

2.1.1 Adaptive resonance

If the neural network is trained with all examples that it must learn and then the weights

are frozen, no catastrophic forgetting can occur. However this strong demarcation be-

tween training and learning phases is unbiological, a point that was forcefully made by

Grossberg (Grossberg, 1987). There are areas of the brain, particularly those involved

in memory that must continue learning at some useful rate. If this were not the case,

our memories would be static. The solution proposed by Grossberg is the principle
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of adaptive resonance whereby the network first assess the novelty of new input be-

fore any learning occurs (Grossberg, 1987; Carpenter and Grossberg, 2003). Should

there be a high degree of similarity (or resonance) between the established coding

implemented in the network and the novel input, then the pattern is learned by modi-

fication of existing weights. On the other hand if the pattern appears highly dissimilar

to learned patterns then it is incorporated into the memory store via the recruitment

of new nodes. Thus the previously learned weights are not catastrophically disrupted

by new learning. This method of addressing the problem of catastrophic forgetting

requires that the network be composed of different sub networks performing differ-

ent roles, such as novelty detection. It also requires that memory traces themselves

are stored in different parts of the network. The ART networks and derived models

fall into a category of so called ’localist’ approaches that aim to address the stabil-

ity plasticity dilemma by storing learned representations within different parts of the

neural network, hence strongly reducing the potential overlap of patterns to be stored

(French, 1999).

2.1.2 Rehearsal and psuedorehearsal

Catastrophic forgetting of the first kind can be significantly reduced with the applica-

tion of another method known as rehearsal (French, 1999; Robbins, 2004). Rehearsal

mixes previously learned patterns with new patterns to be learned, by holding several

old patterns with each new pattern in a ’rehearsal buffer’. The network (typically a

backpropagation network) is then taught the patterns held in the rehearsal buffer. Intu-

ition as to how this works can be gained by first remembering that a backpropagation

network fits a function to the input/output mapping in some high dimensional space.

When relearning is induced without rehearsal, the learned function is globally adjusted

to fit the new data, even if only one new data point is presented. The repeated learned

patterns have the effect of preventing a global remapping of the function encoded by

the weights. Instead the new item leads to a local change to the input/output mapping.

Continuous presentation of new patterns with rehearsal thus prevents disruption of the

previously learned memory. Rehearsal is effective but suffers from the problem that

all of the previous memories must be held such that they can be randomly selected and

added to the rehearsal buffer. This requires that all input patterns be stored somewhere

for later use. Biologically this seems implausible, but worse still, it begs the question

of how the memories are stored and retained in the buffer. Psuedorehearsal removes
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this caveat (Robbins, 2004). Since the network encodes the mapping between inputs

and outputs that is to be preserved, inputs that are randomly generated and passed

through the weights result in input/output pairs characterising the existing mapping.

Thus rehearsal items can be generated by the network, requiring no additional storage

of input patterns.

2.1.3 Associative memory networks

The models of hippocampal function described in chapter 1, all rely heavily on asso-

ciative and autoassociative networks. In an autoassociative network (Hopfield nets)

with N units and Hebbian learning, catastrophic forgetting of the second kind oc-

curs when the number of patterns stored reaches the region of 0.14N, whereupon

the network quickly degenerates into meaningless ’spin glass’ activity states (Amit,

Gutfreund, and Sompolinsky, 1985). Catastrophic forgetting of the second kind also

occurs in associative networks (Willshaw nets). The point at which this occurs de-

pends upon many details of the network, such as the degree of connectedness of the

units, the sparseness of the coding and the readout scheme (Dayan and Willshaw, 1991;

Sterratt and Willshaw, 2008). Catastrophic forgetting can be prevented in both Will-

shaw and Hopfield networks by allowing the weights to decay to some baseline point

over time whereupon the network functions as a palimpsest (Nadal et al., 1986; Ster-

ratt and Willshaw, 2008). In this case old memories fade gradually, ensuring that there

is always capacity for new memories and that the network never suffers catastrophic

forgetting. This is identical to the diary example stated at the beginning of this chapter

if the ink were to fade with time. The palimpsest solution is at the expense of the num-

ber of patterns that can be stored and reliably recalled, which is reduced for standard

learning rules.2

One way to mitigate against catastrophic forgetting of the second kind is to sparsify

the input pattern coding (Dayan and Willshaw, 1991; Golomb, Rubin, and Sompolin-

sky, 1990). This can be achieved by casting the input pattern in a higher dimensional

space than its initial description. For example binary patterns consisting of 10 bits

might be stored in a network having 10000 binary synapses. This reduces the proba-

bility that stored patterns overlap. This can be combined with a process of orthogo-

2There is an exception to this caveat for Hopfield networks. A high capacity learning rule has been
formulated by Storkey that gives a 0.25N capacity for a palimpsest-like network. This learning rule
selectively decays patterns that interfere with recall rather than forcing all old patterns to decay. This is
in contrast to typical Hebb like rules which deliver a capacity of only 0.05N in the palimpsest regime
(Storkey and Valabregue, 1997).
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nalisation that recodes the patterns such that they interfere with each other to the min-

imum extent possible. Both of these processes have been suggested as storage strate-

gies that might be employed by the hippocampus (O’Reilly and McClelland, 1994;

Guzowski and Knierim, 2004). The combination of sparsification and orthogonalisa-

tion much reduce the overlap of stored patterns and so lessen the interference between

them. Hence more patterns can be stored before forgetting occurs. Returning to our

diary analogy: Sparsification would reduce the size of the text (or perhaps code it in

a new alphabet such that each entry is shorter). Orthogonalisation would ensure that

entries are arranged on a grid on the paper, thus preventing overlap of the writing.

2.2 The stability plasticity dilemma of stochastic bio-

physical synapses

Neural activity is both stochastic, and as we saw in chapter 1, is capable of modify-

ing synapses. Thus synaptic modification in-vivo is stochastic. The origins of this

stochasticity are myriad, some important contributions are: Neural activity is stochas-

tic. Stimuli triggering activity leading to potentiation and depression events is likely to

occur with a degree of randomness in the natural environment. Synaptic transmission

at central synapses is highly stochastic with low quantal content (Stevens and Wang,

1995), meaning that ’failures’ to transmit a spike often occur. Therefore, in the central

nervous system even if all other conditions permit, pre and post synaptic activity do not

necessarily coincide at every possible opportunity, because the synaptic transmission

can fail, preventing excitation of the post synaptic neuron by that particular spike.

Furthermore, there is evidence that synapses do not hold continuous real values,

but rather are potentiated by all or none events (Petersen et al., 1998; O’Connor, Wit-

tenberg, and Wang, 2005). This implies that the synaptic weight has discrete val-

ues. Assuming discrete synapses and random neural activity, synapses jump randomly

from weight state to weight state with time. If there are a finite number of states

then the synapses must at some point form a steady state distribution across those

states3. Individual synapses fluctuate between these states and this gives rise to the

3Assuming that the timescale of equilibration of the weights is not longer than the lifetime of the
organism. It is possible that for some synaptic populations, equilibration might never be achieved:
Consider a ’Taj Mahal ensemble’ in my brain. Being an Englishman, I might only ever see the Taj
Mahal once in my lifetime. However, in principle I could visit it an infinity of times, each time viewing
it in a subtly different way. For example, on some occasions it might be undergoing maintenance work
and be underneath scaffolding. Would the synapses representing my memory trace of the Taj Mahal be
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decay of the memory trace. This viewpoint is in contrast to many approaches in arti-

ficial neural networks, where synapses typically have one or several of the following

properties: Continuous valued, unbounded, no hidden variables (i.e. there is only a

single real number representing ’weight’) (Amit and Fusi, 1992; Amit and Fusi, 1994;

Fusi, Drew, and Abbott, 2005; Fusi and Senn, 2006).

Once a set of synaptic states has been defined, the state based approach assumes

that the transitions between the synaptic states are stochastic and governed by transi-

tion probabilities. The transition probabilities are dependent on the neural model, the

’learning rule’ and the stimulus. The evolution of the synaptic weight thus defined is

assumed to be a Markov process (i.e. memoryless, see chapter 3). Viewing synapses

in a Markovian light demands a distinction between equilibrium and non equilibrium

regimes.

2.2.1 The stationary and non stationary stability plasticity dilemma

Two forms of the plasticity stability dilemma can be defined: The stationary plasticity

stability dilemma (SPS) and the non stationary plasticity stability dilemma (NPS).

In the SPS, the system is taken to be at equilibrium. The probability distribution

amongst the states can be denoted by a vector p(t0+t). After an infinite time t0 →∞ the

equilibrium state p∞ is established. In this case the mean synaptic weight is constant

on average. In the case that synaptic modification is activity dependent, this implies

that the activity is also stationary and hence the transition probabilities between the

synaptic states are constant.

In the NPS the transition probabilities between the states are permitted to be chang-

ing, giving rise to synaptic weights that are not stationary. Alternatively, the transition

probabilities may be constant but p(t) 6= p∞ so that the mean weight is not constant.

The NPS also encompasses situations in which changing concentrations of neuromod-

ulators or drugs are effecting the internal processes in cells, thus altering plasticity.

Situations in which the input ensemble is constant, and the synaptic weights are

governed by stationary processes are examples of the SPS. In this case, the degradation

of memory is due to ongoing stochastic transitions in the weights around the ensem-

ble equilibrium point. A palimpsest associative network with uniform stored pattern

statistics, that has reached the steady state (i.e. when the mean weight and variance of

the weight are constant) and that is subject to ongoing learning belongs to the SPS.

different in the standard me (who has only seen it once) as compared to the infinite me (who has seen it
under an infinity of conditions)?
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Alternatively, situations in which the variance or mean of the synaptic weights is

varying, belong to the NPS. The NPS applies to a Willshaw network with ongoing

learning, no depression and no weight decay, because the mean weight is always in-

creasing. The number of potentiated weights shall inexorably increase until the learn-

ing either stops or the memory fails.

2.2.2 State based synaptic models

In the previous literature dealing with state based models it has typically been assumed

that the Markov process has attained equilibrium and that the transition probabilities

are constant (Amit and Fusi, 1992; Amit and Fusi, 1994; Fusi, Drew, and Abbott, 2005;

Fusi and Abbott, 2007; Ben Dayan Rubin and Fusi, 2007; Leibold and Kempter, 2008).

The resulting Markov process is stationary. Thus the SPS applies.

In state based models, the memory trace can be quantified with the ’ideal observer’

approach (Fusi, Drew, and Abbott, 2005; Ben Dayan Rubin and Fusi, 2007). It is

imagined that we measure the weights directly after equilibrium has been established.

The memory trace is then the ratio of the ’signal’, proportional to the sum of weights

modified at any instant, to the noise (see chapter 3 for more detail). The signal to noise

ratio (SNR) is a measure of the detectability of the memory trace,

S(t0 + t)
N

=
|µI(t0 + t)−µN |√

1
2(σ2

N +σ2
I )

(2.1)

where µI is the mean value of the input (for example the current out of a cell, or the

inner-product of inputs and weights) upon presentation of some stored pattern I and

µN is the mean value of the input upon presentation of some unstored random pattern,

having identical statistics to I. The variances in the signal and the noise are denoted σ2
I

and σ2
N respectively and are assumed constant. The memory capacity can be profiled

by considering the initial SNR, S0/N0 = S(t = 0)/N(t = 0) calculated with Eq. (2.1)

at the instant of memory storage t = 0 and the timescale, tmax over which the signal to

noise falls to 1. When the signal to noise ratio falls to 1, the signal is deemed unde-

tectable and the memory trace has been forgotten. Although a standard technique, this

is somewhat arbitrary4. There are alternatives, for example an information theoretic

approach5. Below, existing state based models of synaptic plasticity are reviewed and

4Use of the signal to noise tacitly assumes that fluctuations are uncorrelated and Gaussian.
5Adam Barrett & Mark van Rossum (2008) pre-print
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the findings stated, a complete discussion of the analysis techniques is left until chapter

3.

2.2.2.1 2 state model (Fusi, Drew, and Abbott, 2005):

We first consider the simplest case: The synapse can occupy 2 states having synaptic

efficacy w ∈ {0,1}, Fig. 2.1. The synapse is potentiated with the transition w = 0 →
w = 1 (by LTP) with probability α per unit time and depressed, w = 1 → w = 0 with

probability α per unit time (LTP and LTD are balanced). It is assumed that the system

has evolved for an infinite time such that equilibrium has been established and there

is no longer any change to the mean weight with time. (The 2 state model is analysed

in full chapter 3 and in chapter 6, but a sketch is provided here that follows Fusi and

Abbott 2005 (Fusi, Drew, and Abbott, 2005).)

The initial signal scales with the probability that the synapse is modified α, multiplied

by the total number of synapses in the ensemble Ω, S0 v αΩ. Ongoing storage tends

to overwrite preexisting memory traces by flipping the state of synapses at random

relative to their current state. This leads to exponential decay in the initial memory

signal, S(t) = S0exp(−t/τ). The noise is constant and is proportional to the standard

deviation of the binomial distribution, N v
√

Ω. Thus the initial signal to noise ratio

scales as the square root of the number of synapses for some fixed transition rate α,

S0/N0 v α
√

Ω. The signal to noise ratio is,

S
N

v α
√

Ωexp(−2αt) (2.2)

and decays exponentially with τ = 1/2α. Importantly, Eq. (2.2) demonstrates the link

between the initial signal α
√

Ω and the rate of decay of the memory trace, τ. Increasing

α increases plasticity thus enhancing the initial detectability of the memory (because

more synapses are changed when a pattern is stored). However this is at the expense

of a decreased SNR decay timescale, i.e. the memory is less stable. This is the essence

of the SPS.

Let tmax be the time that it takes for the SNR to reach 1, at which point the memory

is irretrievable. Taking the logarithm of Eq.(2.2) reveals that tmax ∼ ln(α
√

Ω)/2α,

and the maximum memory lifetime scales as the logarithm of the number of synapses

recruited into the memory trace.

The 2 state process illustrates two worrying points from the point of view of mem-

ory storage: 1) The SPS introduces a strict and antagonistic correspondence between

the strength of the memory trace S0/N0 and the amount of time that the memory trace
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Figure 2.1: Existing state based models of synaptic plasticity. A: The simplest 2 state

binary case consists of a depressed state (1) and a potentiated state (2). The arrows

are transitions between the states. Each arrow has a transition rate associated with it.

B: The linear bounded model has many states, each with a different value of synaptic

weight, ranging from a lower bound (1) to a higher bound (5). C: The multistate model,

is a binary model where there are many potentiated (p) and depressed states (d), but

synapses can only be depressed or potentiated in the top level p1 and d1 states. D: The

cascade model is a binary multistate model but every potentiated or depressed state

can transition to the top level state (d1 or p1) in the opposite cascade. In the model of

Fusi and Abbott, the transition probabilities were arranged such that as synapses move

deeper to higher state numbers in the p and d cascades, the probability of making

transitions further down the cascade or to the top level of the opposite cascade, is

reduced.
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can persist for, tmax. 2) The maximum lifetime of the memory scales as the logarithm

of the number of synapses. Thus, in the long term adding more and more synapses to

the memory trace does very little to make it more distinguishable. This is a pity since

the one thing that we potentially have at our disposal is a large number of synapses.

The memory lifetime tmax can be extended by reducing the value of the transition

probability α. The value of α that maximises tmax is α = e/
√

Ω (Fusi, Drew, and

Abbott, 2005). By introducing this scaling between the transition probability and the

number of synapses, the memory lifetime can now be significantly improved, tmax ∝
√

Ω. However the initial signal to noise ratio becomes independent of the number of

synapses meaning that the detectability of the memory cannot be improved by adding

more synapses.

The initial signal to noise ratio can be maximised by setting α = 1. In this case

the initial signal to noise ratio scales with the square root of the number of synapses

SNR0 ∝
√

Ω. Thus, in this regime, memories can be made more vivid by modifying

additional synapses. Unfortunately the maximum memory lifetime now only scales

with the logarithm of the number of synapses tmax ∝ ln(Ω). Thus all memories are

rapidly forgotten even if huge numbers of synapses are recruited.

2.2.2.2 Linear bounded model (Fusi and Abbott, 2007):

In the case of synapses with many weight states, linked in linear increments, the signal

decay timescale can be improved relative to the initial signal. However the decay

process of the signal is still exponential and so the logarithmic scaling with Ω remains.

Let the synapse occupy one of ζ states, each having a differing efficacy, w ∈
{x1,x2,x3, ...,xζ}, Fig. 2.1B. Plasticity events occur at some rate r and some fraction of

these events f+ lead to potentiation while some fraction f− lead to depression. When a

potentiation or depression event occurs the weight is modified with w→w+q+(w) for

potentiation and w → w− q−(w) for depression. In the simplest case, the magnitude

of the weight updates are independent of the current weight q+ = q− = α. Bound-

ary conditions are arranged such that any transition that would potentiate the synapse

above xζ or depress the synapse below x1 is truncated (hard bounds). The number of

potentiation and depression events can be balanced, f+ = f− or unbalanced, f+ 6= f−.

When potentiation and depression events are balanced the initial signal to noise

scales with α in the same way as the 2 state case S0/N0 ∝ α and the memory retention

time scales as tmax ∝ 1/α2. Thus the initial detectability of the memories remains the

same, but the addition of weight states improves the signal decay time. In the case that
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LTP and LTD are unbalanced, the signal to noise ratio becomes independent of α.

Alternatively soft bounds can be imposed. Whereas hard bounds explicitly forbid

potentiation and depression outwith a particular range, soft bounds arise when potenti-

ation and depression force weights toward a central point. Soft bounds can be achieved

by setting q+(w) = α(1−w) and q−(w) = αw. Now, on average, the synaptic weights

all ’collapse’ on to a single point at 〈w〉 = f+/( f+ + f−). In this case S0/N0 ∝
√

α

while tmax ∝ 1/α. This scaling is independent of whether LTP and LTD are unbal-

anced.

Generalised softbounds can be imposed on the model by raising the weight de-

pendence of the potentiation and depression to some power γ, q+(w) = α(1−w)γ and

q−(w) = αwγ. Again, in this case it is found that tmax ∝ 1/α while the initial signal to

noise ratio S0/N0 ∝
√

α, regardless of the balance between LTP and LTD.

2.2.2.3 Multistate model (Amit and Fusi, 1994):

In the multistate model the synapses are again binary w ∈ {0,1}, Fig. 2.1C. Now

however there is a chain of states where for half of the states w = 0 and for the other

half w = 1. Synapses that are potentiated or depressed can transition deeper and deeper

down this chain, however synapses can only make the transition w = 0 → w = 1 or

w = 1 → w = 0 when at the top of the chain. Hence synapses can diffuse away from

the weight changing transition. In the chain there are many distinguishable states that

do not effect the weight, these are the metaplastic states. In the language of Markov

models, the metaplastic states are hidden states.

In the multistate model, the initial SNR is similar to the 2 state case, but is reduced

S0/N0 ∝ 1/ζ as the number of states in the chain, ζ are increased. This is a result of

the synapses now being spread across the whole chain, rather than being concentrated

in the states that are capable of modifying the weight. In return for this reduced signal,

the memory lifetime is increased, tmax ∝ 1/ζ2 (Amit and Fusi, 1994; Ben Dayan Rubin

and Fusi, 2007).

2.2.2.4 Cascade model (Fusi, Drew, and Abbott, 2005):

The linear bounded model demonstrates that by adding more weight states, modest

improvements to the scaling between S0/N0 and tmax can be obtained. The multi-

state model can extend tmax by a potentially significant margin but S0/N0 is still re-

duced. This goes some way to addressing the stationary plasticity stability dilemma,
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but does nothing to improve the scaling of the memory trace lifetime with the number

of synapses Ω.

In both the multistate and the linear bounded models, the maximum memory life-

time scales as tmax ∝ ln(
√

Ω). The cascade model of synaptic plasticity, developed by

Fusi & Abbot (Fusi, Drew, and Abbott, 2005) overcomes this problem and provides a

memory decay timecourse that is close to optimal in that it combines performance that

is nearly as good as the best initial signal and the best memory retention time offered

by the 2 state model. In the cascade model, synapses are binary w ∈ {0,1}. Again

there is a chain of metaplastic states having w = 0 or w = 1. However in contrast to the

multistate model, the synapses are allowed to undergo the transition w = 0→ w = 1 in

all states having w = 0 and w = 1 → w = 0 in all states having w = 1. The probability

of potentiation or depression depends upon the current state of the synapse. Should a

synapse be potentiated or depressed many times, then it will transition to a state that is

’deeper’ in the cascade, making subsequent modification less likely, thus the plasticity

is consolidated, Fig. 2.1D.

In the simple 2 state model described above, the best initial signal to noise ratio that

can be obtained scales as the square root of the number of synapses S0/N0 v
√

Ω, but

this is at the expense of a maximum memory lifetime tmax ∝ ln(
√

Ω) that only scales as

the logarithm of the number of synapses. Alternatively the memory decay can be made

long, such that tmax ∝
√

Ω but this is at the expense that the initial signal is independent

of the number of synapses recruited.

These problems with the 2 state model are caused by the presence of the expo-

nential function. Thus the strict antagonism between the initial signal strength and

the maximum memory lifetime can be attacked by removing the exponential decay

timecourse of the 2 state model. The introduction of multiple synaptic states into the

cascade model allows many exponential processes, all with differing timescales, to

be superimposed. When the transition probabilities in the model - and hence each of

the exponential timescales - are suitably adjusted, an overall decay timecourse that

is a powerlaw can be achieved. This is enormously advantageous because the sig-

nal to noise now decays as S/N ∝
√

Ωt−k having a maximum memory lifetime of

tmax ∝ Ω1/2k. When the transition probabilities are arranged appropriately, the cascade

model comes to within a logarithmic factor of obtaining the best scaling possible for

a binary synapse. The initial signal improves as synapses are added, S0/N0 v
√

Ω

and the memory lifetime improves as synapses are added tmax ∝
√

Ω (Fusi, Drew, and

Abbott, 2005).
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2.3 Summary

The synaptic plasticity and memory hypothesis demands that synapses change in order

that new memories are created. However the same synapses are required to store those

memories. This introduces a trade off between the need for synapses to be plastic and

the need for synapses to be stable. This trade off is the plasticity stability dilemma

(Grossberg, 1987; Abraham and Robins, 2005).

The plasticity stability dilemma was first explicitly formulated by authors studying

connectionist neural networks. As discussed, in this context it is also often referred

to as catastrophic forgetting. Catastrophic forgetting occurs when a connectionist net-

work is trained to do some task, for example a classification task. After the task has

been learned the network is presented with novel data. If the connections in the net-

work are still able to change, i.e. if plasticity is present in the synapses both before

and after the initial learning, then the performance of the network in the learned task

is rapidly disrupted. Methods of dealing with this problem in connectionist neural

networks (rehearsal and adaptive resonance) were reviewed. These solutions prevent

the global remapping of the learned weights by new data instances (French, 1999;

Robbins, 2004).

Although adaptive resonance and rehearsal address the problem of catastrophic

forgetting, it is not clear how fundamental catastrophic forgetting is in the context of

biological networks. In the connectionist literature we commonly see catastrophic for-

getting in back propagation networks. In fact the fundamental cause of catastrophic

forgetting, the global remapping of the input-output function learned by the neural net-

work, is a result of the chosen neural net paradigm. There is no empirical evidence that

back propagation networks are of direct biological relevance. Thus, while catastrophic

forgetting is certainly a problem for cognitive modelers, it is not clear whether it is

a biophysical problem for the brain. In this chapter it was argued that by regarding

biological synapses as stochastic processes, we find the stability plasticity dilemma is

potentially a problem confronted by biological synapses as well.

In the state based approach, the plasticity stability dilemma is cast in terms of

the detectability (initial signal to noise) of a memory trace (stochastic process) and

the amount of time that the memory trace takes to decay (for example, the time for the

SNR to reach 1). In the 2 state model we find that increasing the initial signal decreases

the decay time of that signal and visa versa. The cascade model allows a high initial

signal to be achieved with a long decay time course, where both the decay time course
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and the initial signal scale favorably with the number of synapses participating in the

memory trace (Fusi, Drew, and Abbott, 2005; Ben Dayan Rubin and Fusi, 2007).

Viewed from the state based perspective, the plasticity stability dilemma has two

forms. When the transition probabilities are constant (when for example, the inputs to

be learned are statistically uniform) and when the weights have attained equilibrium,

the stationary plasticity stability dilemma applies. This is the situation sometimes

referred to as ’ongoing learning’. Alternatively, if the transition probabilities are able

to change or if the weights are not at equilibrium the non-stationary plasticity stability

dilemma applies.

Previous state based models have studied the initial signal to noise and time for

initial signal to noise to fall to 1 when a memory trace is stored at equilibrium, by a

spontaneous fluctuation in the equilibrium state. Therefore these models have been

concerned with the stationary plasticity stability dilemma. In order to overcome the

SPS, these models have studied the memory strength and lifetime of memories as a

function of the steady state distribution of synapses amongst the states. The best per-

formance can be achieved by optimising the steady state itself, by means of adjustment

of the transition probabilities between states.

This thesis explores the plasticity stability dilemma from the perspective of biolog-

ically motivated state based models of synaptic plasticity. The aim is not to ’solve’ the

problem and predict an optimal solution to the SPS in terms of the steady state, but

rather to build models based upon experimental data and then asses the impact of the

plasticity stability dilemma. To achieve this, transition probabilities are not optimised

but instead are constrained by data.

How do models constrained against experiment perform from the point of view

of the SPS and the NPS? We shall find that exploration of this question points to

some possible solutions that nature may deploy in ameliorating the plasticity stabil-

ity dilemma in biological synapses.





Chapter 3

Methods of solution of state based

models

In order to study the plasticity and stability dilemma, one approach is to regard the

dynamics of the synaptic weight as being the result of a discrete stochastic process

across some set of states. The lifetime of the memory trace can then be quantified by

calculating properties of the time evolution of this process. In this chapter the analysis

techniques used to calculate the memory trace lifetime are discussed. Firstly methods

of solution for state based models are explained, which allow the evolution of the

probability density with time to be found. Once the system is solved in this manner,

the initial signal of a typical memory trace can be found and the timescale of decay of

the signal can be extracted by calculating the autocorrelation. Finally the relationship

between these abstract measures of the memory trace and the observable dynamics of

synapses (typically quantities related to the mean synaptic conductance) is discussed.

3.1 Methods of solution of state based models of synap-

tic plasticity

The models treated in this thesis are Markovian. Markovian systems are said to be

’memoryless’. More accurately: In a Markovian system, the probability of a change

to the stochastic variable is dependent only upon the current state of the system and is

independent of the history of the process. Thus for a set of samples of the stochastic

variable xn at successive times tn;n ∈ {1,2, ...} the Markov condition states that

P(xn, tn|x1, t1; ...;xn−1, tn−1) = P(xn, tn|xn−1, tn−1) (3.1)

39
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illustrating that in Markovian systems the conditional probability density at time tn is

dependent on the value xn−1 at time tn−1 only (van Kampen, 1992).

Markovian systems are of such utility because they allow the probability density of

a stochastic process in the next time instant to be completely specified by a probability

density at the current time instant and the conditional probability of moving between

the states. Consider a non-Markovian stochastic process with some initial realisation x1

at t1. Given the joint probability density for this initial realisation we wish to calculate

the joint probability densities for all successive future realisations, thus obtaining the

evolution of the system. We can extract the sequence of probability distributions

P(x1, t1,x2, t2) = P(x1, t1)P(x2, t2|x1, t1) (3.2)

P(x1, t1,x2, t2,x3, t3) = P(x1, t1,x2, t2)P(x3t3|x1t1,x2, t2) (3.3)

P(x1, t1, ...,xn, tn) = P(x1, t1, ...,xn, tn)P(xn, tn|x1, t1, ...,xn−1, tn−1). (3.4)

We see that a complete description of the system demands that we know a joint prob-

ability density and a joint conditional probability for every sample point of the system

in terms of all previous sample points. However the picture is considerably simplified

in a Markovian system by application of the Markov condition in Eq. (3.1)

P(x1, t1,x2, t2,x3, t3) = P(x1, t1,x2, t2)P(x2, t2|x1, t1) (3.5)

and so

P(x1, t1,x2, t2,x3, t3) = P(x1, t1)P(x2, t2|x1, t1)P(x3, t3|x2, t2). (3.6)

We only need knowledge of the initial probability density and the conditional proba-

bility for moving between states. Conditional probabilities such as those in Eq. (3.6)

are referred to as transition probabilities.

3.1.1 Numerical integration of Markov models of synaptic plastic-

ity

State based LTP models can be described as Markov chains, which are Markov pro-

cesses across a finite number of discrete states at discrete points in time. In the case of

a Markov chain with ζ states the probability density at time T ∈ {1,2, ...} is a ζ com-

ponent vector p(T ) and the transition probabilities are expressed as an ζ×ζ stochastic

matrix M whose components 0 ≤ Mi j ≤ 1 are independent of time and are the transi-

tion probabilities of jumping from state j to i during 1 timestep. The Markov property
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in this case implies that the transition probability between any two successive proba-

bility vectors goes as the transition matrix raised to the power of the timestep, T (van

Kampen, 1992). Thus

p(T ) = MT p(0) (3.7)

allowing the Markov chain to be iteratively calculated with knowledge of only the

initial condition p(0) and the transition matrix. Eq. (3.7) provides a robust and fast

method of integrating the evolution of the models1.

In this thesis the theory of Markov chains is applied to the storage of patterns (mem-

ories) within an ensemble of synaptic weights governed by a transition matrix. The

interval ∆t between each timestep T can therefore be interpreted as the time between

the storage of each pattern, and probabilities in the matrix M are then probabilities of

each transition occurring within this interval. It is assumed that only one memory stor-

age ’trial’ occurs in each pattern storage interval. Thus it is assumed that the system

can only jump between adjacent states in the chain when each pattern is stored. All

of the transitions occurring within each storage interval are assumed to contribute to

the storage of that pattern, i.e. all plasticity is meaningful, but patterns will interfere

between intervals.

3.1.2 Method of Eigenvectors: General solution of state based mod-

els

Under certain conditions a solution can be constructed directly from the transition

matrix. In this section we briefly outline a method for obtaining solutions for the

model that is semi-analytic, in that we can anticipate the form of the solutions, although

eigenvectors and eigenvalues must be numerically computed.

One approach for obtaining solutions for the time dependent probability densities

of stochastic systems is to first formulate a master equation. The master equation is

a gain-loss equation for the probability densities of each state. The rate of change of

probability of occupancy of each state can be expressed as a sum of the outgoing and

incoming flow of probability to and from the other states, where the total probability

(i.e. sum of probability of occupancy of all states) is conserved. In the discrete, case

the probability density is pi,i ∈ {1, ...,ζ} and the master equation has a particularly

1The theorem of Perron & Frobenius proves that this converges to the steady state solution for all well
formed stochastic matrices. Perron & Frobenius is a more general result than the method of eigenvectors
in §3.1.2 which is why this method is more robust.
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simple form (van Kampen, 1992)

d pi(t)
dt

= n∑
i

(
Mi j pi(t)−M ji p j(t)

)
(3.8)

where every second n = 1/∆t patterns are stored and the elements of M are now the

probabilities of making transitions from i to j per pattern storage interval ∆t. We shall

assume from now on that 1 pattern is stored in the weights per second, and so n = 1s−1,

∆t = 1s without loss of generality, since this is equivalent to scaling the transition rates.

If a higher rate of storage were required, then the rate constants would be uniformly

increased. Alternatively if a lower rate were required then the rates would be uniformly

decreased. Define the matrix R:

Ri j = n

(
Mi j−δi j

(
∑
l 6= j

Ml j

))
(3.9)

so that the index l runs over all rows in column j excepting row j and consequently,

Ri j ≥ 0 for i 6= j

Ri j < 0 for i = j (3.10)

such that the columns of R sum to zero. Each element Ri j has units s−1 and is the rate

of the transitions from state i to j. Since the columns sum to zero the number of states

in the system is conserved. Now we can rewrite Eq. (3.8)

dp(t)
dt

= Rp(t) (3.11)

having solution,

p(t) = eRtp(0). (3.12)

Without placing conditions on R, Eq.(3.12) can be manipulated no further. In gen-

eral R need not be diagonalisable, but if it is then Eq.(3.12) can be used to find a

solution in terms of the eigenvalues and eigenvectors of R (under the condition that

the eigenvalues are not degenerate). In practice R may not be symmetric but remains

diagonalisable if it describes a state diagram that possesses the property of detailed

balance (van Kampen, 1992). We shall examine detailed balance in due course, but

for now we assume that R satisfies this condition and hence is diagonalisable. We also

assume that the eigenvalues of R are not degenerate (we deal with the degenerate case

in §3.1.2.1). Eigenvectors of R satisfy

RΦk =−λkΦk (3.13)



3.1. Methods of solution of state based models of synaptic plasticity 43

where λk is the eigenvalue associated with the kth eigenvector Φk. Assuming that

the state diagram of the process contains no isolated disconnected regions (i.e. is ir-

reducible) and that there are no degenerate eigenvalues, we shall find one eigenvalue

λ0 = 0 corresponding to the eigenvector Φ0 that when normalised gives the steady state

probability distribution and ζ−1 other eigenvalues and eigenvectors.

For diagonalisable R with non-degenerate λk the spectral decomposition of the ma-

trix is,

R = V DV−1 (3.14)

where V is the eigenvector matrix, having Φk on each column and D has the eigenval-

ues λk along the diagonal with all other elements 0. We assume that V is invertible. It

follows from Eq.(3.14) that

p(t) = eV DV−1tp(0). (3.15)

From the matrix exponential identity eXY X−1
= XeY X−1, we find

p(t) = VeDtV−1p(0). (3.16)

From Eq.(3.16) it follows that the general solution to Eq. (3.11) is

p(t) = ∑
k

ckΦkexp(λkt) (3.17)

where the eigenvectors Φk are sometimes referred to as eigenmodes of the probability

distribution. The eigenmodes are the characteristic forms that when linearly combined

can describe the approach to steady state from any initial distribution.

The timecourse associated with each eigenmode is dependent upon the correspond-

ing eigenvalue. For some initial condition p(0) it is therefore necessary to choose the

constants ck such that

p(0) = ∑
k

ckΦk. (3.18)

i.e. the ck are the column vector V−1p(0) appearing in Eq.(3.16).

Once the evolution of the probability density has been determined, other quantities

can be derived from it, for example the mean weight 〈w(t)〉= ∑i wi pi(t), where w is a

vector containing the weight value wi for each state i.

The property of detailed balance is sufficient to ensure that the Φk are complete and

can thus provide solutions for any initial condition (van Kampen, 1992). Thus, once

we have defined the matrix R we can solve for the temporal evolution of the model as

follows: First we extract the eigenvalues and eigenvectors of the matrix R numerically.
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We shall find one 0 eigenvalue with a corresponding eigenvector that has the form of

the steady state distribution p∞ of synapses amongst the states, in the limit t → ∞.

The solution, p(t) is then constructed according to Eq. (3.17) and consists of a

superposition of the equilibrium eigenvector and ζ− 1 exponentially decaying eigen-

modes. If each eigenvalue is non-degenerate, the solution can in principle display

ζ− 1 timescales. However in practice, depending upon degeneracy and the precise

initial condition, some of these timescales may not be visible and some subset of them

will dominate.

3.1.2.1 The degenerate case

So far we have assumed that the eigenvalues of R are non degenerate. If this is not the

case then the spectral decomposition of R need not lead to a complete set of solutions

because the eigenvectors of R are not guaranteed to form a basis. In this case we

require a decomposition of R that supplies a complete set of eigenvectors even under

degeneracy of the eigenvalues. Take the Jordan normal form of R,

R = QJQ−1 (3.19)

where J is a Jordan matrix and Q is a matrix of generalized eigenvectors of R. Solution

of Eq. (3.19) now proceeds as before, giving

p(t) = QeJtQ−1p(0). (3.20)

The Jordan matrix J can be expressed as the sum of a diagonal matrix containing the

eigenvalues of R and a nilpotent matrix2 N, J = D+N. This gives,

p(t) = Qe(D+N)tQ−1p(0). (3.21)

A nilpotent matrix is a matrix for which Nq = 0 given some positive integer q.

Here N is a matrix that is everywhere zero excepting those superdiagonal elements,

corresponding to the superdiagonal elements of the Jordan blocks of J. The matrix

exponential of this nilpotent matrix can be expressed as a series,

eN = I +N +
1
2!

N2 +
1
3!

N3 + ...+
1

(q−1)!
Nq−1 (3.22)

2Strictly speaking N is not nilpotent for arbitrary J. This is due to the fact that the Jordan matrix can
have superdiagonal elements that are 0 whereas a nilpotent matrix is defined as having all superdiagonal
elements set to unity. However Eq. 3.23 still applies in this case all be it with a smaller value of q (i.e.
if the nilpotent matrix has some superdiagonal elements that are not 1 then its q value is reduced).
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where I is the identity matrix having identical dimensions to R. From this it follows

that

p(t) = QeDt [I +Nt +
1
2!

(Nt)2 +
1
3!

(Nt)3 + ...+
1

(q−1)!
(Nt)q−1]Q−1p(0). (3.23)

Eq. (3.23) implies that solutions in the degenerate case can contain terms that are

polynomial in time. For the degenerate state based models of LTP in chapters 6 and

7 it was found that these terms were negligible in practice and that Eq. (3.23) gives

solutions that are numerically very nearly identical to those given by application of

the non degenerate method3. This is because the eigenvalues are small. The value

of q is also low, because the models have only a small number of states. However in

state based models having degeneracy one cannot discount the possibility of particular

cases exhibiting a departure from pure exponential dynamics of the probability density;

although this is not important in practice for any model proposed in this thesis using

the parameter values explored.

3.1.2.2 Detailed balance

Previously it was stated that the model should obey detailed balance in order to guaran-

tee that the solution method applies. Systems are often not symmetric, in the sense that

the probability of making a transition between two states in one direction is not always

equal to the probability of making the reverse transition. However, closed isolated

physical systems are symmetric in the sense of microscopic reversibility. Microscopic

reversibility states that after equilibrium has been established, no transition should oc-

cur more frequently in one direction than in the opposite direction (van Kampen, 1992).

Thus if there are asymmetries in the transition probabilities, they must be compensated

by the equilibrium probability density. Detailed balance can be stated as:

Mi j p∞
j = M ji p∞

i (3.24)

where p∞ is the probability density of the equilibrium state after infinite time has

elapsed and Eq. (3.24) must apply to each pair of transition probabilities.

In state based models that have no closed loops other than those formed by precise

reverse transitions (i.e. that are one dimensional) it turns out that detailed balance

automatically applies. Thus detailed balance applies to all of the state based models

that were mentioned in chapter 2 excepting the cascade model. In the case of the
3The model of synaptic tagging in chapter 8, does not obey detailed balance and so these methods

were not applied there and the numerical method alone was employed.
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cascade model, explicit irreversible transitions are introduced meaning that Eq. (3.24)

cannot hold.

For topologies containing closed loops, such as ring structures, detailed balance

does not always hold for an arbitrary choice of transition rates, even after the steady

state has been established. This can be intuited by envisaging that a closed loop in a

state diagram can be at a steady state in which there are constant or oscillating flows

around the loop.

Consider N states arranged in a ring. Detailed balance requires that the product of

the transition probabilities going in one direction around the ring must be equal to the

product of the transition probabilities when cycling in the opposite sense (Hille, 2001;

Colquhoun et al., 2004), in this case set one transition probability in terms of the others

in the ring:

M12M23...MN1 = M21M32...M1N (3.25)

M12 =
M21M32...M1N

M23...MN1
. (3.26)

Eq. (3.26) must apply to each closed cycle for detailed balanced to apply. The

application of detailed balance to specific models is discussed further in chapter 6.

3.2 The memory trace

An effective approach to study the stability of the memory trace is to adopt the ’ideal

observer’ viewpoint (Fusi, Drew, and Abbott, 2005). We do not consider the specifics

of encoding or decoding of memories stored in synapses. This simplifies the problem

because in specific schemes of memory storage and retrieval the appropriate measure

of the memory trace is dependent upon the chosen encoding scheme. Rather, we imag-

ine that some encoding process alters the weights such that their values at that time

instant denote the information to be stored. We also permit that some decoding pro-

cesses subsequently examines the weights and extracts the stored information. In this

thesis the signal to noise ratio is taken to be the measure of possible extraction of infor-

mation from the memory trace. We make minimal assumptions about the process used

to retrieve information from the weights, only that their values somehow store that in-

formation. Therefore the memory trace is based upon how rapidly the values of the

weights are erased by ongoing storage after initial storage of the desired information.
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3.2.1 The autocorrelation

To measure the lifetime of the memory trace we wish to quantify how long the precise

arrangement of synaptic weights can persist. For this the autocorrelation of the synap-

tic weights is a suitable measure. Imagine that a memory is stored by weight transitions

of the synapses. At the instant of storage, t0, we take a snapshot of the weights. Next,

let the weights evolve for some further time t. After this time the weights still reside in

the equilibrium distribution but individual weights have moved due to random plastic

state transitions. Now, another snap-shot of the weights is taken; there are now two

lists of weights. The normalised autocorrelation of the weights is defined as

κ(t0, t0 + t) =
〈w(t0)w(t0 + t)〉−〈w(t0)〉〈w(t0 + t)〉√

σ2
w(t0)σ2

w(t0 + t)
(3.27)

where the average, indicated by the angular brackets, is over all realisations of plastic-

ity and σ2
w is the variance of the weights. Sometimes the unnormalised 〈w(t0)w(t0 + t)〉

autocorrelation, is useful. In this thesis, ’autocorrelation’ refers to the normalised ver-

sion, for which κ(t0, t0) = 1. When the unnormalised version is referred to, this shall

be made explicit.

Of special interest is the equilibrium autocorrelation, calculated when t0 → ∞.

Assume that the system settles into a steady state having σ2
w(t0 + t) = σ2

w,0 = σ2
w,∞

and 〈w(t0 + t)〉= 〈w0〉= 〈w∞〉, where 〈w0〉 indicates the mean weights at t = 0, 〈w∞〉
indicates the mean of the weights when t → ∞ and σ2

w,∞ indicates the variance of the

weights when t → ∞. The equilibrium autocorrelation is defined as

κ∞(t0, t0 + t) =
〈w(t0)w(t0 + t)〉−〈w0〉2

σ2
w,0

. (3.28)

The value of κ(t0, t0 + t) gives us a measure of how much of the original trace remains

after the elapsed time t and can be considered as the strength of the memory that the

system has of its initial state at time t0. The autocorrelation function is typically a

sum of exponentials, with one exponential decaying the slowest. The timescale of

this slowest decay is the measure of the memory trace retention time. For brevity we

shall henceforth drop explicit inclusion of t0. From now we assume that the system is

already in the steady state at t = 0 unless otherwise stated.

One method for calculating the autocorrelation function follows from the Markov

formalism. The weight is discretised into ζ states, wi, i ∈ {1,2, ...,ζ} of width δw

allowing the unnormalised autocorrelation 〈w0w(t)〉 to be expressed as, (where we
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adopt the notation 〈w0w(t)〉=〈w(t0)w(t)〉)

〈w0w(t)〉= ∑
i j

wi(t = 0)w j(t)p(i, t = 0)p( j, t|i, t = 0). (3.29)

In the case of binary weights wi ∈ {0,1}. As we have seen, the probability of

occupancy of each state pi given some initial condition can be expressed as a linear

combination of the eigenvectors of the rate matrix,

p( j, t|i, t = 0) = ∑
k

eλktCiks(k)
j (3.30)

where ∑k Ciks(k)
j = δi j, and s(k)

j is the k-th eigenvector of R (i.e. C is the inverse of the

eigenvector matrix). Rearranging we find that

〈w0w(t)〉= ∑
k

eλkt

(
∑

i
p(i, t = 0)Cikwi

)(
∑

j
s(k)

j w j

)
(3.31)

from which the normalised version κ(t) is easily calculated. To find the equilibrium

autocorrelation one can insert p(i,0) = s(1)
i /∑s(1)

i , where s(k)
i is the eigenvector with

zero eigenvalue (the steady state). The longest timescale of the survival of correlations,

Eq. (3.31) is the reciprocal of the subdominant eigenvalue4 of Ri j.

3.2.2 The Signal to Noise Ratio

The signal to noise ratio has been used by other authors in the study of pattern storage

in neural networks (Dayan and Willshaw, 1991; Sterratt and Willshaw, 2008). As

mentioned in chapter 2 it has also been used in the study of memory trace survival

within state based plasticity models (Fusi, Drew, and Abbott, 2005; Fusi and Abbott,

2007).

In state based models of synaptic plasticity, the aim of learning is to store a pattern

Y presented to the inputs x using the weights w. Patterns are retrieved from the weights

by later presenting the stored pattern on the inputs xY and examining the signal (calcu-

lated from the the inner product of the weights and the pattern). The signal is elevated

for stored patterns as compared to unstored random patterns N, presented on the inputs

in an identical manner, xN .

When the pattern to be stored xY is presented to the weights at t = 0, we assume

that all of the stochastic transitions between potentiated and depressed states happen

so as to increase the inner product of the pattern to be stored xY and the synaptic
4In cases where degeneracy has little impact and R is diagonalisible.
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weights at the instant after storage, w0. It is assumed that patterns are uncorrelated.

Therefore storage of subsequent patterns causes random transitions with respect to

the initial pattern xY . Hence these patterns are considered noise patterns xN and they

degrade the signal due to the original pattern. The maximum capacity of a memory

system thus defined is the longest time for which memory of the initial pattern xY can

be distinguished from xN .

The memory trace can be quantified by considering the separation of the signal

values (obtained upon presentation of xY ) from the noise values (obtained upon pre-

sentation of xN). The signal to noise ratio is used for this purpose,

S
N

=
|µY −µN |√
1
2(σ2

Y +σ2
P)

(3.32)

where µY is the mean of the signal distribution upon presentation of the stored pattern

xY and µN is the mean of the noise distribution upon presentation of some unstored

noise pattern xN . The variances of signal and noise distributions are denoted by σ2
Y and

σ2
N respectively. We shall asssume that xY and xN are drawn from a single statistically

uniform ensemble. In this thesis, signal to noise analysis is applied to models with

binary synapses. In this case the mean values of the signal and noise distributions are

given by the overlap between the binary input vector and the binary weight vector,

namely µY (t) = Ω〈xY w(t)〉 and µN(t) = Ω〈xN〉〈w(t)〉 for an ensemble of Ω synapses,

giving
S
N

=
Ω |〈xY w(t)〉−〈xN〉〈w(t)〉|√

1
2(σ2

N(t)+σ2
Y (t))

(3.33)

where σ2
Y (t) = Ω〈xY w(t)〉(1−〈xY w(t)〉) and σ2

N(t) = Ω〈xN〉〈w(t)〉(1−〈xN〉〈w(t)〉)
since we are dealing with binary weights. It is assumed that the noise and the weights

are uncorrelated. Often the SNR is reduced to the case in which the patterns and

the weights have the same mean 〈xY 〉 = 〈xN〉 = 〈w〉 and the same constant variance

σ2
Y = σ2

N = σ2
w . It is also typically assumed that the weights have equilibrated, such

that 〈w(t)〉= 〈w∞〉. In this case

S
N

=
Ω |〈xY w(t)〉−〈w〉〈xN〉|

σY
. (3.34)

The initial signal is defined as

S0 = Ω |〈xY w0〉−〈xY 〉〈w0〉| (3.35)

which is simply the absolute covariance of the weights and the stored pattern, scaled

by the number of weights.
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As mentioned above, when the pattern is stored, it is assumed that some process

causes the random transitions of the weights to act so as to reflect the pattern as closely

as possible, i.e. they cause the weights and pattern to become correlated. Thus 〈xY w0〉
is expressible in terms of the probability that synapses move into potentiated states

and the probability that synapses move into depressed states during the time interval of

pattern storage. To calculate this we define two matrices5; one matrix M+ contains the

transition probabilities for potentiating transitions, for which w = 0 → w = 1, while

the other matrix M− contains the transition probabilities for depressing transitions for

which w = 1 → w = 0. These matrices are recovered from the transition matrix M as

follows: Define the projection matrix, Γ which is everywhere zero excepting diago-

nal elements corresponding to potentiated states, and the projection matrix Γ′ which

is everywhere zero except for states corresponding to depressed states. Using these

matrices, M+ = ΓMΓ′ and M− = Γ′MΓ, where for each state s, Γss = 1 if ws = 1 and

Γ = 0 otherwise and Γ′ss = 1 if ws = 0 and Γ′ = 0 otherwise. For example in a 4 state

model where state 2 and state 3 are potentiated states, Γ would be a matrix that is ev-

erywhere zero except for Γ22 = 1 and Γ33 = 1 and Γ′ would be everywhere 0 except

Γ′11 = 1 and Γ′44 = 1.

The inner product of the weights w0 just after pattern storage with the pattern that

was stored x0, is composed of an uncorrelated component that arises due to coincidence

between the weights and the pattern, 〈xY 〉〈w0〉 and a component due to the transitions

of the weights,

〈xY w0〉= wT M+p∞ +wT M−p∞ + 〈xY 〉〈w0〉 (3.36)

where p∞ is a column vector representing the steady state probability distribution and

w is column vector of the synaptic weight for each state. From Eq.(3.36) the signal is

calculated,

S0 = Ω+ +Ω− (3.37)

where Ω+ = Ω(wTM+p0) and Ω− = Ω(wTM−p0). The initial signal to noise ratio

S0/N0 is found by calculating the initial noise N0

N0 =

√
1
2
(σ2

Y,0 +σ2
N,0). (3.38)

In the case that the variances of the signal distribution and the noise distribution are

equal, the initial signal to noise is
S0

N0
=

ΩS0√
µY (1−µY )

. (3.39)

5Note that the probabilities and not the rates are used to calculate the SNR.
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3.2.3 Relationship between the autocorrelation and the SNR

It is useful to know the link between the autocorrelation Eq. (3.27) and the SNR. Recall

that when a pattern is stored the synaptic weight transitions act so as to increase the

correlation between the weights and the patterns. We assume that all of the transitions

act so as to increase the correlation, i.e. all transitions occurring at that instant lead to

synaptic weights that match the binary values of the corresponding input bits. In the

limit that all of the weights are permitted to change, this would lead to a perfect copy

of the input pattern in the weights. However in useful models, all weights are usually

not permitted to change because this causes very fast forgetting. Rather the weights

are governed by the transition rates of R and so only a subset of them are permitted to

change at the instant when the pattern is stored (on average). This is what gives rise to

the link between the initial signal and the transition rates, Eq. (3.37).

Since the pattern stored at instant t = 0, x0 is fixed for all time, the covariance of the

weights with the pattern is just a scaled version of the autocovariance of the weights,

because the weights w0 are an imperfect ’copy’ of the pattern x0. Hence,

〈xY w(t)〉−〈xY 〉〈w(t)〉= η(〈w0w(t)〉−〈w0〉〈w(t)〉) (3.40)

with η the constant of proportionality between cov(w0,w(t = 0)) and cov(x0,w(t = 0)).

Rearranging Eq. (3.33) and making use of Eqs. (3.40+3.27) gives,

S
N

=
Ω

∣∣∣η√σ2
w,0σ2

w(t)κ(t)+ 〈w(t)〉(〈xY 〉−〈xN〉)
∣∣∣√

1
2(σ2

Y (t)+σ2
N(t))

. (3.41)

At t = 0, κ(t)=1, 〈w(t)〉= 〈w0〉, S/N = S0/N0, σ2
Y (t) = σ2

Y,0, σ2
N(t) = σ2

N,0, σ2
w(t) =

σ2
w,0, therefore

η =
1

σ2
w,0

(
S0

Ω
−〈w0〉(〈xN〉−〈xY 〉)

)
. (3.42)

Assuming that the system is initially in the steady state state such that 〈w(t)〉 = 〈w∞〉
and σ2

w,0 = σ2
w,∞, and assuming 〈xY 〉= 〈xN〉, Eq. (3.41) reduces to

S
N

=
Ωησ2

w,∞κ(t)√
1
2(σ2

Y +σ2
N)

(3.43)

with

η =
S0

Ωσ2
w,∞

. (3.44)
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From this it follows that at equilibrium,

S
N

=
S0

N0
κ(t) (3.45)

the signal to noise ratio is the autocorrelation function scaled by the initial signal.

3.3 Relationship of the memory trace to observable synap-

tic timescales

The signal to noise ratio and the autocorrelation would be extremely difficult to ob-

tain from an ensemble of synapses by experiment. Thus we must consider how they

relate to quantities that are experimentally observable. As was noted in chapter 1,

contemporary LTP experiments typically measure the EPSP slope. This is thought to

be proportional to the synaptic conductance (weight , w(t)). Since these experiments

sample from a large population of synapses simultaneously and are usually averaged

over several trials, this can be thought of as a time dependent ensemble average of

the weight w across the synaptic population 〈w(t)〉. Therefore in state based models

of synaptic plasticity, abstract memory trace measures can be related to experimental

observations by relating the autocorrelation of the models Eq. (3.27) to the synaptic

dynamics, or the response, 〈w(t)〉.
For synaptic state diagrams that observe detailed balance, the timescales of the

synaptic dynamics calculated by finding the eigenvalues of the transition matrix ap-

ply to both the response functions and the unnormalised autocorrelation functions.

This does not rule out the possibility that state diagrams that do not obey detailed

balance as defined by Eq. (3.24) can still have matching response and autocorrela-

tion timescales. For example, this is presumably the case in the cascade model be-

cause spectral methods can be used in its analysis (Fusi, Drew, and Abbott, 2005;

Leibold and Kempter, 2008), and is likely to be due to the high degree of symmetry

in the cascade model. One model analysed in chapter 6 also falls into this category

because its deviation from detailed balance is sufficiently small that it makes little nu-

merical difference.

When the timescales of the response and unnormalised autocorrelation match, then

both the response functions and the unnormalised autocorrelation functions are super-

positions of the same timescales. However the mixture of timescales in this superposi-

tion is not identical unless the system obeys the fluctuation dissipation theorem.
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3.3.1 The Fluctuation Dissipation theorem

In §§3.3.1-3.3.3 mention of the autocorrelation refers to the unnormalised autocorre-

lation.

The fluctuation dissipation theorem (FDT) relates the microscopic state transitions

of a system at static equilibrium, to the macroscopic dynamics of the same system

when it is close to equilibrium (Weber, 1956; Kubo, 1966; Berman, 1975; Felderhoff,

1978; Kubo, Toda, and Hashitsume, 1998). Here ’close’ means that the system is close

enough to its equilibrium that its dynamics can be considered as a linear perturbation

from the equilibrium point of the system. In practice this means that the equations

governing the perturbed system must be identical to the equations governing the system

at equilibrium6.

The idea behind the FDT is that the same processes that bring the ensemble aver-

aged quantities of a stochastic system to equilibrium, are also responsible for the decay

of any specific microscopic equilibrium state. Intuitively this can be understood by vi-

sualising an array of binary 2 state synapses (see chapter 2). At time t = 0 we initialise

the bistable synapses in some state other than the steady state. For example (assuming

that LTP and LTD are balanced) we may choose to initialise 11/20 of the synapses to

be in the depressed state w = 0. Given infinite averaging and random transitions we

shall then observe that the mean weight tends back to a value of 〈w〉= 1/2. Consider

how this occurs: The rate at which the ensemble mean can approach the equilibrium

value of 〈w〉= 1/2 is limited by the rate at which individual synapses are permitted to

make the transition w = 0→w = 1. Hence the macroscopic properties of the ensemble

cannot move faster than the underlying microscopic transition rates between the states.

Now after equilibrium has been established, we record a specific state of the sys-

tem at some time instant t = t0 by writing down the state of each synapse. As time

unfolds we make a note of the state of the system at each step. By calculating the

correlation of the system at each timestep with itself at the initial time t0 we determine

the autocorrelation, Eq. (3.28). In the same manner that the macroscopic properties

of the system can only move as fast as the underlying microscopic transitions, so too

the system can only decorrelate with itself as fast as the microscopic transitions. Thus

there is a fundamental link between the near equilibrium dynamics of the system and

6Often in the physical world taking some system far from equilibrium introduces significant addi-
tional dependencies between variables, or variations in what were previously considered to be constants.
Thus the assumptions that held in the equations at equilibrium are violated, even if the form of the equa-
tions remains valid (which it may not) when additional dependencies are taken into account.
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the autocorrelation decay timescale 7. In this section the link between the response and

the autocorrelation is made more explicit for synaptic ensembles at equilibrium.

Assume that we observe a state based ensemble of synapses having some time

independent transition matrix that has come to equilibrium such that the probability

density is stationary, p(t) = p∞. We are interested in the evolution of the mean weight

with time (or response) after some small equilibrium fluctuation due to the storage of a

memory at t = t0. The response is governed by the underlying dynamics of the proba-

bility density as determined by the master equation, Eq. (3.8). Since the expectation of

the number of synapses in each state is ni(t) = Ωpi(t), where i ∈ 1, ...,ζ, the evolution

of the number of synapses in each state is,

ṅ(t) = Rn(t)+g(t) (3.46)

where n is a ζ element column vector, and R is the ζ×ζ rate matrix defining the synap-

tic model. Since we are dealing with an observable within a finite stochastic system,

fluctuations are present. To model the fluctuations we apply the Langevin assumption

and add the noise term g(t) which is a column vector containing independent Gaussian

noise processes gi(t)(Berman, 1975; van Kampen, 1981). It is assumed that the total

number of synapses Ω is constant. Thus, there is a conservation law ∑
ζ

i=1 ni = Ω. Now

the system of equations represented by Eq. (3.46) reduces to ζ−1 equations, namely

ṅi(t) =
ζ−1

∑
j=1

Ri jni(t)+Riζ

(
1−

ζ−1

∑
j=1

n j(t)

)
+gi(t) for i ∈ {1, ..,ζ−1}. (3.47)

To establish a link between the response and the autocorrelation it is necessary to

recast Eq. (3.47) in frequency space by Fourier transforming ni(t). At the moment

however this is not possible because the ni(t) are not square integrable8. This situation

arises because of the conservation law that applies to Ω. It is not possible for ni(t) to

decay to zero. This situation can be remedied by forcing Eq. (3.47) to be homogeneous

by subtracting Riζ from the right hand side. This has the effect of shifting the equations

7This example provides an opportunity to describe why the FDT only applies when close to equi-
librium. Imagine that the transition probabilities are not really constant, but that they depend upon 〈w〉.
However when at equilibrium, 〈w〉 is constant. In this situation it is valid to make calculations about the
system under the assumption that 〈w〉 is constant and consequently the transition rates are constant. It is
not valid however to extrapolate this assumption about the system to the non-equilibrium case (when 〈w〉
is no longer constant). In this example it might be that 〈w〉 and the rates of the transition, depends upon
postsynaptic firing rate. If this were the case then if the system is perturbed to the extent that the post-
synaptic firing rate is altered, then the link between the dynamics of the mean and the autocorrelation
breaks down.

8That is to say that their integrals over all time are not finite.
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Eq. (3.47) such that when ṅi(t) = 0, ni(t) = 0 rather than some fraction of the total

number of synapses,

ṅ′i(t) = ṅi(t)−Riζ. (3.48)

Now Eqs. (3.48) can be Fourier transformed with n′i(t) =
� +∞

−∞
n′i(ω)eiωtdω and gi(t) =

� +∞

−∞
gi(ω)eiωtdω, yielding

iωn′i(ω) =
ζ−1

∑
j=1

Ri jn′j(ω)−Riζ

ζ−1

∑
j=1

n′j(ω)+gi(ω). (3.49)

The simultaneous equations, Eqs. (3.49) can be solved by standard methods. The

set of solutions n′i(ω) thus obtained represents the frequency spectrum of the variations

of the occupancies of the states. The power spectral density of the synaptic weight

fluctuations at equilibrium is

Φ(ω) =
∣∣∑nk(ω)

∣∣2 for k ∈ X (3.50)

where X are the states i for whom w = 1. By the Wiener-Khinchine theorem, the

inverse Fourier transform of Eq. (3.50) yields the unnormalised weight autocorrelation,

〈w0w(t)〉= F −1[Φ(ω)]. (3.51)

To demonstrate the FDT we wish to compare the autocorrelation 〈w0w(t)〉, Eq.

(3.51), to the response of the system 〈w(t)〉 to a small perturbation. To find the re-

sponse a similar strategy is employed but now the Laplace transform of Eqs. (3.47) is

used, n′i(t) =
� +∞

0 ni(s)eisds yielding

sn′i(s) =
ζ−1

∑
j=1

Ri jn′j(s)−Riζ

ζ−1

∑
j=1

n′j(s)+n′i,0 (3.52)

Note that there is no noise term because we wish to obtain the precise weight evo-

lution in the case of an average over an infinite ensemble subject to the perturbation.

The term n′i,0 is the small perturbation to be applied. Solving Eqs. (3.52) simultane-

ously yields the Laplace transformed dynamics of the occupancies of the states, n′i(s).

Now, the inverse Laplace transform of the n′i(s) for the states having w = 1, X , yields

the dynamics of the synaptic weight after the perturbation,

〈w′(t)〉= L−1[∑
k

n′k(s)] for k ∈ X (3.53)

where 〈w′(t)〉 denotes that this is the transformed synaptic weight, centered on 〈w〉= 0.

When the FDT applies, and as n′i,0 → 0 (or alternatively, as the ni,0 → ni,∞ tend to the

steady state) then the timecourse of 〈w′(t)〉 converges with the timecourse of 〈w0w(t)〉.
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If the synaptic ensemble is in the steady state then the normalised autocorrelation

κ(t) has an identical timecourse to 〈w0w(t)〉 because the mean and variance are un-

changing. If the system is not at the steady state, then this correspondence does not

necessarily occur, and κ(t) also includes the timescales of variation in the mean and

variance.

3.3.2 When does the fluctuation dissipation theorem apply?

There are several conditions that must apply to a state based model for the FDT to

apply:

• Linear dynamics: The equations governing the evolution of the probability den-

sity should be linear, such as Eq. (3.8). In physical systems this can often be

assumed when the system is near equilibrium, but does not necessarily apply

when it is far from equilibrium.

• Close to equilibrium: The conditions at t0 appear in the Laplace transform of the

dynamics Eq. (3.52). Thus for arbitrary initial conditions the superposition of

timescales obtained in the solution to the dynamics (the inverse Laplace trans-

form, Eq. (3.53)) does not necessarily match the superposition of timescales in

the autocorrelation (although the values of the timescales themselves do match).

It is only when the initial conditions tend towards the steady state that the two

mixtures of timescales tend toward each other (assuming all other conditions

apply). However, some systems maintain correspondence between the response

and the autocorrelation even if they are away from the equilibrium state.

• Additive noise: If this is not the case then the Langevin assumption cannot be

made (van Kampen, 1981) and this assumption is the basis of Eq. (3.46).

• Mean weight evolution must be Markovian: The observable (for example the

mean weight) whose response and autocorrelation is being calculated must be

Markovian. Although we have stipulated that the evolution of the probability

density is Markovian, this does not imply that the evolution of some observable,

linearly coupled to the probability density, is Markovian. Often in state based

models the mean weight is found with a linear projection of the total probability

density onto a subspace (for example when the mean weight is directly propor-

tional to the sum of the number of synapses occupying some subset of states).
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This potentially introduces non-Markovian behavior into the evolution of the

mean weight, because the value of the weight can be determined by other hidden

variables (Kubo, Toda, and Hashitsume, 1998)9. In general this breaks the direct

correspondence between the autocorrelation and the response, although versions

of the FDT can be found (Berman, 1975).

If the FDT applies then the memory trace decay timecourse at the steady state is iden-

tical to the decay timecourse of a small perturbation to the mean synaptic weight. In

principle this might allow experimental measurements of small disturbances to the

weights, to uncover the timescales present in the decay of the memory trace. In prac-

tice it is difficult to measure subtle disturbances to the synaptic weight experimentally.

More fundamentally, it seems doubtful that biological synapses would obey the FDT.

This is due to the fact that the values of biological weights depend upon many hidden

variables, that cannot be extracted by the experimenter and so manifest themselves as

non-markovian behaviors.

Nevertheless the FDT is a useful tool in reasoning about models of synaptic plas-

ticity. If a model does not obey it then we should not expect the decay timescales of the

response to carry directly over into the decay timescales of correlations or the signal to

noise.

The methods outlined above are often not analytic for complex state based mod-

els, usually because either the inverse Fourier transform or inverse Laplace transform

cannot be found. In this situation the model can be solved numerically for very small

random perturbations about the steady state. When the FDT applies, the response to

the perturbation and the equilibrium autocorrelation are identical under some linear

rescaling.

Finally, linear bounded state based models having no hidden states (see chapter

2) all obey the FDT (subject to the other conditions above) (Berman, 1975). Thus any

model of synaptic plasticity that can be expressed in this form implies that small pertur-

bations to the synaptic weight should have an identical decay profile to the equilibrium

autocorrelation (we shall examine this further in the next chapter).

3.3.3 Application to the 2 state model

As an example of the FDT we shall demonstrate its application to the simple 2 state bi-

nary model. The FDT is particularly straightforward here because there are no hidden

9This is metaplasticity.
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states. It is also applicable to the models of STDP in chapters 4+5 for the same reason

and more generally to any linear bounded model with no hidden states, such as those

mentioned in chapter 2.

In the bistable model with the depressed state labelled 1 and the potentiated state

labelled 2 the rate matrix is

R =

(
−r12 r21

r12 −r21

)
(3.54)

Eq. (3.49) yields one equation for the frequency spectrum of the number of synapses

in the potentiated state,

iωn′2(ω) =−r12n′2(ω)− r21n′2(ω)+g2. (3.55)

Since this is the only potentiated state, the power spectral density, Eq. (3.50) is simply

the Lorentzian

Φ(ω) =
g2

2
ω2 +(r12 + r21)2 (3.56)

which is sometimes termed ’telegraph noise’. When Fourier transformed Eq. (3.56)

provides the autocorrelation function for an ensemble of bistable weights at equilib-

rium, Eq. (3.51)

〈w0w(t)〉=
g2

2
(r12 + r21)

e−(r12+r21)t (3.57)

for t > 0. The autocorrelation (and indeed the signal) therefore decay with timeconstant

τ = 1/(r12 + r21). For an ensemble of Ω bistable synapses in which Ω+ synapses have

w = 1 at t = 0, 〈w0w(0)〉= Ω+. Hence g2
2 = Ω+/τ and the autocorrelation is simply,

〈w0w(t)〉= Ω+e−(r12+r21)t . (3.58)

The rate matrix Eq. (3.54) yields the Laplace transformed dynamics, Eq. (3.52),

sn′2(s) =−r12n′2(s)− r21n′2(s)+n′2,0 (3.59)

having solution,

n′2(s) =
n′2,0

s+ r12 + r21
(3.60)

which by Eq. (3.53) provides the decay of the perturbation

〈n′2(t)〉= n′2,0e−(r12+r21)t (3.61)

as expected this is a single exponential. We see that the timescale of the autocorrela-

tion is identical to the timescale of decay of the perturbation. The bistable model has
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the property that so long as r12 and r21 are constant, the correspondence between the

equilibrium autocorrelation and response function holds regardless of the initial state

of the system. This is for the simple reason that if only one timescale exists, there can

be only one member of the set of possible superpositions.

3.4 Summary

In this chapter the technical underpinnings of what is to follow were explained. The

evolution of probability densities of all of the models in this thesis is Markovian. This

allows the evolution of the models to be expressed in closed form as a master equation.

To solve the master equation, a number of techniques can be used. In this thesis, the

main technique deployed is the ’method of eigenvectors’ or eigenvector decomposition

as it is sometimes known. This is a useful technique when it applies because it allows

us to think about the evolution of the probability density as a linear superposition of its

eigenmodes.

To explore the plasticity stability dilemma it is necessary to extract information

about the memory trace from the models of synaptic plasticity. Once a solution to

the evolution of the probability density is within our grasp, the memory trace can be

quantified by calculating the autocorrelation. In itself, the autocorrelation informs us

about the survival time of correlations between synapses directly after memory storage

(the initial time) and subsequent states of the synapses. The signal to noise ratio is

directly related to the autocorrelation and tells us about the detectability of the memory.

We saw that if the synapses are at equilibrium then the signal to noise ratio is simply

the autocorrelation scaled by the initial signal to noise ratio. In chapter 2 we saw that

in state based models the stability plasticity dilemma is manifest as a trade off between

the initial signal and the memory survival time. This is quantified by calculating the

initial signal of the model and the time taken for the SNR to fall to 1.

One aim of this thesis is to link the abstract measures of the memory trace, the

autocorrelation and the SNR, which cannot be experimentally probed, to quantities

that can be easily experimentally probed. One quantity that is often measured in in-

vitro experiments is the EPSP slope, which is assumed to be proportional to the mean

weight of the synaptic ensemble. To relate these quantities in the models we must

understand the relationship between the mean weight of the ensemble 〈w(t)〉 and the

autocorrelation κ(t). The fluctuation dissipation theorem predicts that if the conditions

outlined in §3.3.2 are obeyed then the response precisely matches the autocorrelation:



60 Chapter 3. Methods of solution of state based models

i.e. the decay of the memory trace is identical to the timecourse of decay of LTP/LTD

itself. In biology it is unlikely that this is the case however. It is more plausible that

the palette of timescales available to the decay of induced LTP/D and the decay of

the memory trace is similar. This would mean that the decay of LTP/D as induced in

the lab displays some subset of the timescales available to the memory trace decay10.

However it should be borne in mind that in a system such as a synapse, which is an

open system that is able to use energy liberated by the cell, that there is no necessary

correspondence between the timescales visible in the weight decay and those at play in

the memory trace. This is dictated by the principle of detailed balance. Despite these

caveats, this thesis explores the memory trace under the assumption that the timescales

of synaptic dynamics discussed in chapter 1 are representative of the timescales of

synaptic dynamics that are employed by the memory trace in vivo.

10I believe that this is the most common implicit assumption



Chapter 4

Spike Timing Dependent Plasticity in

single units

As was described in chapter 1, spike timing dependent plasticity (STDP) is the name

given to the observation that synapses change their efficacy depending on the precise

timing difference between presynaptic and postsynaptic spikes (Levy and Steward,

1983; Markram et al., 1997; Bi and Poo, 1998; Sjöström, Turrigiano, and Nelson,

2001). STDP has been observed in many systems (Abbott and Nelson, 2000) including

cultured hippocampal cells and cortical slices (Bi and Poo, 1998; Tsukada et al., 2005;

Aihara et al., 2007) and has been argued to be crucial for receptive field development

(Young et al., 2007; Mu and Poo, 2006), and adult visual plasticity (Yao and Dan, 2001;

Dan and Poo, 2006).

The stability plasticity dilemma is pertinent to STDP because STDP implies that

individual spike pairings are capable of modifying the synaptic weight. Since neu-

ral activity is stochastic it thus follows that under STDP, synaptic weights are always

fluctuating due to random pre-post spike pairings. In this chapter the plasticity stabil-

ity dilemma is analysed in the case of spike timing dependent plasticity (STDP) with

isolated neurons.

The argument was made in Chapter 1 that regardless of the details of the imple-

mentation of memory within the hippocampus, one idea that is almost universal is that

the modification of excitatory synaptic weights mediates the memory trace. In this

chapter the memory trace within a single homogenous synaptic population implement-

ing STDP is examined. Firstly, the STDP models to be investigated are justified and

introduced. Next it is shown using simulations that even when synapses are calibrated

to have constant mean and intensity of fluctuation, the precise dynamics of the STDP

61
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learning rule has an enormous impact upon the stability of the memory trace. Specifi-

cally, under otherwise identical conditions, we see that bistable weight dynamics lead

to greater robustness of the memory trace in the face of the ongoing fluctuations pre-

dicted by STDP. Once the computational results have been presented, analytic results

regarding the memory trace retention times are given. One method of analysing STDP

is to regard it as a linear bounded state based model such as that discussed in chapter

2. Using this analysis the large difference in memory trace retention time in the two

STDP learning rules is explained.

Material from this chapter appeared at SfN 2006 in abstract form (Billings and van

Rossum, 2006) and is currently under review for publication.

4.1 Models of STDP

Models of STDP describe how timing differences between pre and post synaptic spikes

map on to synaptic modifications. Most of these models achieve this by means of a

’learning rule’, a deterministic function that directly returns synaptic weight changes

from pre and post synaptic spike timing differences (Gerstner et al., 1996; Song, Miller,

and Abbott, 2000; Song and Abbot, 2001; van Rossum, Bi, and Turrigiano, 2000;

Kistler, 2002; Pfister and Gerstner, 2006; Toyoizumi et al., 2007). Alternatively other

authors have considered spike timing dependent plasticity as a stochastic switching

process (Appleby and Elliot, 2005; Appleby and Elliott, 2006).

An early STDP model proposed a learning rule that is a literal interpretation of data

from Bi and Poo (Bi and Poo, 1998), modifying the synaptic weight as an exponen-

tial function of the time difference of pre and post synaptic spikes alone, independent

of the synaptic weight itself (Song, Miller, and Abbott, 2000). This rule is hence-

forth referred to as non-weight-dependent STDP (nSTDP). For random pre and post

synaptic spike trains, nSTDP leads to divergent weights and so requires that upper and

lower bounds be imposed preventing unlimited potentiation or depression. When hard

bounds are imposed and pre and post synaptic spike trains are Poisson like, nSTDP

causes strong competition between inputs to a neuron, which is reflected in a bimodal

synaptic weight distribution (Rubin, Lee, and Sompolinsky, 2001). nSTDP thus selects

certain inputs above others even in the absence of large degrees of correlation between

input spike trains.

In the nSTDP rule, the weight change due to a pre-synaptic and post-synaptic spike
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pairing is

∆w =

{
A+ exp(−smn/τ+)

−A− exp(smn/τ−)

smn > 0

smn < 0
(4.1)

where smn = t(m)
post − t(n)

pre is the time difference between post and pre synaptic spikes

with times labeled m and n, Fig. 4.1A. The constants A+ and A− set the amount of

potentiation and depression, respectively, while τ+ and τ− set the duration of the po-

tentiation and depression plasticity windows. The plasticity windows are exponential

with τ+ = τ− = 0.02s unless otherwise stated. Furthermore, we set A+ = 1pS and

take a slightly larger value A− = A+(1 + ε), where ε = 0.05. These parameters were

calculated by Song, Abbott and Miller to match the Bi and Poo data (Song, Miller, and

Abbott, 2000). The bounds are imposed at a minimum value of 0pS and a maximum

value of wm = 200pS.

In contrast, a different learning rule, also based upon the data of Bi and Poo, in-

corporates the observation that strong synapses have been observed to be harder to

potentiate than weak ones (Bi and Poo, 1998; Debanne, Gähwiler, and Thompson,

1996; Debanne, Gähwiler, and Thompson, 1999; Montgomery, Pavlidis, and Madi-

son, 2001). This learning rule is henceforth referred to as weight-dependent STDP

(wSTDP). The weight dependence of wSTDP gives rise to weight dynamics that are

not divergent, having a central fixed point. Thus in the case of wSTDP, no hard bounds

need to be imposed. The wSTDP weight distribution closely matches the weight

distributions observed experimentally (O’Brien et al., 1998; Turrigiano et al., 1998;

Song et al., 2005) and thus wSTDP is perhaps more realistic, although this should be

qualified by the consideration that a bimodal distribution could appear unimodal if it

is sampled from a population of synapses having a stochastic upper bound, especially

if the measuring technique has a limited resolution for small synaptic weights.

Since it has a stable fixed point to which all synaptic weight trajectories flow (on

average), wSTDP in its raw form has no competition between weights. This is in

contrast to the strong competition between weights in nSTDP. The dichotomy between

nSTDP and wSTDP is not strict and intermediate models have been proposed that

combine stronger competition with stable learning (Gutig et al., 2003; Meffin et al.,

2006; Toyoizumi et al., 2007; Morrison, Aertsen, and Diesmann, 2007). One way of

achieving this is to raise the weight dependence in Eq. (4.2) to some arbitrary power

(Gutig et al., 2003; Meffin et al., 2006; Morrison, Aertsen, and Diesmann, 2007),

although conclusive experimental justification for this is left wanting and so these rules

are neglected in this thesis.
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Figure 4.1: Illustration of the nSTDP and wSTDP learning rules with the parameter

values stated in the text. A: In nSTDP the weight is modified as a function of the

pre/post synaptic spike timing difference alone. B: In wSTDP, the magnitude of the

exponential depression plasticity window is modulated by the synaptic weight such that

large synapses are depressed more than weak synapses.
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There is a number of ways to introduce weight dependence into STDP. One could

arrange for both potentiation and depression to depend upon the synaptic weight, a

scheme that is termed ’multiplicative’ (Kepecs et al., 2002). Alternatively, potentia-

tion (depression) could be made to depend upon the synaptic weight while depression

(potentiation) does not, a scheme that is termed ’mixed’. (The situation in which nei-

ther depends upon the synaptic weight, as is the case for nSTDP, is termed ’additive’).

In STDP experiments it has been observed that the potentiation as a fraction of the

total weight is less for strong synapses, while depression shows no such dependence

(Bi and Poo, 1998; Montgomery, Pavlidis, and Madison, 2001; Debanne, Gähwiler,

and Thompson, 1999). Bi and Poo found a linear dependence between the potentiation

and the synaptic weight such that ∆w+ ∝ (1−w), but no dependence of the depres-

sion on the synaptic weight. This implies that STDP is mixed. Furthermore, since

∆wtotal = ∆w+−∆w− this is equivalent to introducing a linear dependence between

depression and the synaptic weight such that ∆w− ∝ w. This leads to the weight de-

pendent STDP rule (wSTDP), Fig. 4.1B, (van Rossum, Bi, and Turrigiano, 2000),

∆w =

{
a+ exp(−smn/τ+)

−a−wexp(smn/τ−)

smn > 0

smn < 0
. (4.2)

Here the potentiation increment is taken as a+ = 1pS and the dimensionless depression

constant is a− = 0.0114. Since we wish to compare nSTDP and wSTDP, these values

of a+ and a− were chosen such that the mean weight is identical for wSTDP and

nSTDP (93pS). This is essential to ensure that the nSTDP and wSTDP learning leads

to the same postsynaptic firing rate, νpost .

Controlling the mean alone is not sufficient to ensure a fair comparison between

nSTDP and wSTDP, because the mean weight of wSTDP can be set independently

of the absolute plasticity step size, since 〈w∞〉 = a+τ+/a−τ− (Burkitt, Meffin, and

Grayden, 2004) (see also §4.3.1). It is therefore necessary to ensure that the weight

fluctuations are comparable between nSTDP and wSTDP. These values of a+ and a−
ensure that the numerically determined modification rate,

〈
νpost |∆w|

〉
of the synaptic

weights is equal for nSTDP and wSTDP (7×10−3 pSs−1) as well as the mean weight.

Matching the nSTDP and wSTDP processes in this way is equivalent to constraining

their initial signal to noise ratios to be equal. In this case, the equilibrium autocorrela-

tion allows a direct comparison of the memory retention time at the steady state.

As mentioned in Chapter 1, to implement the STDP rules one needs to specify how

multiple spikes interact. There is a large variety of possible rules, e.g. nearest pre

and post synaptic spikes only, all possible pre and post synaptic spike pairs, or some
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heuristic choice of spikes, such as; all pre synaptic spikes between the last two post

synaptic spikes interact with the last post synaptic spike (Sjöström, Turrigiano, and

Nelson, 2001; Froemke and Dan, 2002; Burkitt, Meffin, and Grayden, 2004; Wang et

al., 2005; Pfister and Gerstner, 2006). Here the situation in which all spike pairings

contribute to the change in synaptic weight is considered.

Even though nSTDP and wSTDP are relatively simple learning rules, they can be

seen as limiting cases of unimodal and bimodal STDP and so understanding them is

important. In this chapter, the properties of nSTDP and wSTDP and hence bimodal

and unimodal STDP are compared from the point of view of the plasticity stability

dilemma.

4.1.1 Single neuron simulations

So far we have taken the existence of pre and post synaptic spike trains for granted.

In the simulations presented here, post synaptic spike trains are generated by a leaky

integrate and fire (LIF) neuron with membrane potential V (t) dynamics governed by:

τm
dV (t)

dt = −V (t) +Vr + RinI(t), where I(t) is the input current to the neuron, Fig.

4.2A. The neuron fires when the membrane potential reaches a threshold value Vthr

and upon firing resets to its resting value Vr. The parameters are: Membrane time con-

stant τm = 20ms, threshold potential Vthr = −54mV , resting potential Vr = −74mV ,

input resistance Rin = 100MΩ. The neuron receives current inputs through 800 ex-

citatory synapses. These excitatory AMPA-like synapses have an exponential time

course with a time constant of 5ms and a reversal potential V0 = 0mV . The input to

the neuron at any time is the sum of the current contributions from all of the inputs

I(t) = ∑i wigi(t)(V0 −V (t)), where gi(t) is an exponential function representing the

synaptic time constant and wi is the synaptic weight.

The pre synaptic spike trains inputing the LIF neuron have Poisson statistics. Each

input has a firing rate drawn from a Gaussian distribution of (10± 4)Hz. At the end

of a random time interval, drawn from an exponential distribution with a mean of

τc = 20ms, the rates are re-drawn from the Gaussian distribution. This ensures that the

correlation between any two inputs νi(t) and ν j(t ′) is proportional to exp(−|t− t ′|/τc).

This correlation was chosen in a previous study in rough analogy with input to the

visual system (Song and Abbot, 2001).
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4.2 Retention of the memory trace

In order to compare the retention time of synaptic weights with nSTDP and wSTDP, a

single integrate-and fire neuron receiving stationary Poisson inputs was simulated. Af-

ter an initial period, the synaptic weights reach an equilibrium distribution, Fig.4.2B+C,

in which individual weights fluctuate, Fig.4.2D+E, while the overall distribution re-

mains stationary. As has been shown previously, nSTDP and wSTDP give rise to

two very different equilibrium weight distributions (Song, Miller, and Abbott, 2000;

van Rossum, Bi, and Turrigiano, 2000).

In Fig. 4.2F+G the autocorrelation κ(t) of the weights of a single neuron with 800

Poisson inputs is plotted for nSTDP and wSTDP learning. For nSTDP learning the

autocorrelation decays exponentially at large timescales with a time constant of 18

hours. Under comparable conditions, the wSTDP autocorrelation falls rapidly with

a time constant of 29s, Fig. 4.2G. For comparison, the nSTDP autocorrelation has

been replotted on this timescale in Fig. 4.2G, emphasizing the difference; the nSTDP

autocorrelation decay is more than 2000 times slower than the wSTDP decay. Thus

learning dynamics giving rise to bistability in the weights provides a much longer

memory trace retention time than dynamics with no bistability but identical intensity

of weight modification. Analysis of the autocorrelation timescales (see section §4.4)

for nSTDP and wSTDP match the simulations well, Fig. 4.2F+G.

4.2.1 Forgetting and the autocorrelation timescale

Intuitively, the autocorrelation seems a reasonable measure of the memory trace life-

time, and in chapter 3 we saw how it relates to the signal to noise ratio. However in

this section the effect of fluctuations upon a stored pattern is explicitly demonstrated.

To show this, patterns are instantaneously embedded within the STDP weights of a

LIF neuron that has reached equilibrium. First, a pattern is stored where a group of

10 weights is set to 200pS (about twice the mean weight) using one LIF unit. Next,

in a separate simulation, 10 weights are set to 0, Fig. 4.3A+B (the case where weights

are set to 200ps is illustrated in the upper graphs with one small group of weights at

200ps, while the lower graphs illustrate the case when the weights are set to 0pS).

After the intervention the simulation is continued with random inputs and the evo-

lution of the mean values of these depressed and potentiated groups of weights is

tracked. To retrieve this simple ’memory’ we measure the mean weight of each group,

which can be considered as the signal mean. Over time the signal mean decays expo-



68 Chapter 4. Spike Timing Dependent Plasticity in single units

Figure 4.2: Weight distributions and weight persistence in nSTPD and wSTDP. A: Dia-

gram of the single neuron simulation. B: The equilibrium weight distribution of nSTDP.

C: As B but for wSTDP. D: The evolution of nSTDP weights sampled at random from

the distribution in B. E: As D but for wSTDP. F: The equilibrium autocorrelation κ(t) of

the nSTDP weights. The solid line is the simulation. The line labelled double well is

an approximate calculation found by considering nSTDP as diffusion in a double well

potential. The curve labeled one step is an approximate calculation of the autocorre-

lation based upon approximating nSTDP with a linear bounded state based model. G:

The autocorrelation of the wSTDP weight vector versus time. The solid line is the simu-

lated autocorrelation for wSTDP synapses. The nSTDP simulation data is replotted on

this timescale (curve labelled nSTDP); the wSTDP autocorrelation decays 2235 times

more rapidly. Also included on the graph is the analytical autocorrelation function (curve

labelled theory).
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Figure 4.3: The relationship between the retention timescale for a stored pattern and

the autocorrelation timescale. A: In nSTDP, 10 weights are set to either hard bound in

two separate simulations as shown in the inset plots of the feedforward weights. The

undisturbed weights are in grey while the small groups of perturbed weights are black

and highlighted. The temporal evolution of the mean values of the subgroups of weights

was tracked in the two separate simulations and then plotted on the same axis (solid

black lines). Included on the plot are two exponentials with the autocorrelation timescale

(dashed lines). B: Same as A, but for wSTDP. C: The case that all of the weights are

disturbed but the mean weight is kept the same by balancing the pattern with equal

potentiation and depression. The inset graph shows the pattern stored in the weights.

The evolution of the mean value of both of these groups of weights is plotted (solid black

lines). Also included on the plot are two exponentials with the autocorrelation timescale

(dashed lines). D: The identical case to C, but for wSTDP. E: Storing a pattern that

causes a large deviation to the mean weight in nSTDP weights. The evolution of the

mean value of this group of weights is plotted (solid black lines). An exponential with

the autocorrelation timescale is also plotted. F: The same as E, but for wSTDP.
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nentially back to the baseline, which can be considered the noise mean. Also plotted

are exponentials with their timescales extracted from the autocorrelation for nSTDP

and wSTDP determined above.

For both nSTDP and wSTDP, the timescale of relaxation of the means back to

the equilibrium value matches the autocorrelation timescale. In the case of wSTDP,

the analysis in §4.4.1 shows that the timescale of evolution of the mean weight is

identical to the autocorrelation timescale, and this is also demonstrated by Fig. 4.3B.

In the nSTDP case and at the longest timescales, nSTDP can be considered as a 2 state

switching process which obeys the fluctuation dissipation theorem (chapter 3), §4.4.2.

This explains the correspondence between the evolution of the signal mean (which in

this case is a response function) and the autocorrelation.

4.2.2 Large Perturbations

The fluctuation dissipation theorem tells us to expect that when patterns are stored in

the weights at steady state, the resulting small perturbation to the mean of the ensemble

dies out at the autocorrelation timescale. This raises the question of what happens if

the perturbations are larger. To test this, consider a single LIF unit in which all weights

are changed during the imposed learning process by placing half of the weights at

200pS and the other half of the weights at 0ps, so that the mean weight and output

firing frequency is maintained. Despite this large perturbation of the weight distribu-

tion, the pattern retention timescale again matches the autocorrelation timescale, Fig.

4.3C+D. In the case of nSTDP, there is an initial rapid decay in the memory strength,

which is caused by the weights diffusing near the hard bounds (a similar effect can be

observed in Fig. 4.2F). However, at later times the retention time is again dominated

by the process of weights jumping between the upper and lower bounds; as we have

seen this timescale is long. In the case of wSTDP, the decay matches the exponential

autocorrelation decay very well.

The resistance of the LIF unit with STDP to large perturbation by balanced patterns

is a special case property of this combination of models and is not to be expected in

general. The intuitive reason for this behavior is that the neuron model in this case

is not affected by variation in the higher moments of the synaptic weight distribution.

Rather, the LIF output firing is dominated by the mean weight.



4.2. Retention of the memory trace 71

4.2.3 Unbalanced patterns

Finally, Figs. 4.3E+F show the result when half the weights only are set to 200pS.

In this case the mean weight is not preserved by the learning process. Consequently

the output firing frequency increases and as expected the retention timescale no longer

matches the equilibrium autocorrelation timescale, but the decay is faster, in particular

right after the storage. If in contrast, the pattern reduces the mean weight (and the

output firing frequency), the pattern retention timescale is longer than the autocorre-

lation timescale (not shown). By allowing the mean weight and firing frequency to

change, the system is in a regime where there is coupling between the output firing

frequency and the rate of change of the weight. This disrupts correspondence between

the equilibrium autocorrelation and the response (see §4.4.3.2).

4.2.4 Retention time and the plasticity windows

So far we have examined cases for which the depression and potentiation plasticity

windows are equal. However, experiments suggest that the STDP depression time

window is approximately twice as long as the potentiation time window, e.g. τ− =

34±13ms and τ+ = 17±9ms (Bi and Poo, 1998). This raises the question of how the

timewindow alters the pattern retention time. Given the experimental data, of partic-

ular importance is the case where τ− is changed while τ+ is kept fixed. For wSTDP

learning, the dependence of the autocorrelation time on τ− is given by Eq. (4.23). How-

ever, changing the time window τ− also changes the mean steady state weight w∞ =

τ+a+/τ−a− (see §4.3.1 and (Burkitt, Meffin, and Grayden, 2004)), which changes the

output firing frequency, thus affecting the autocorrelation timescale, Eq. (4.23). In this

case, as τ− is increased, the weights are ’cooled’ leading to an overall increase in the

autocorrelation timescale, Fig. 4.4B. Alternatively, this effect can be compensated by

scaling a+ by the same factor, as τ− is varied. The simulation results match the the-

ory well Eq. (4.23), Fig. 4.4D and we find that when compensation is provided, the

autocorrelation timescale decreases with increasing τ−.

In contrast to wSTDP, the dependence of the retention time on the parameters in

nSTDP learning is more complicated as the shape of the nSTDP weight distribution

changes as τ− is varied. As τ− is reduced, potentiation dominates, and the weights

cluster at the upper bound and the output firing rate saturates, Fig. 4.4A (inset graphs

show variation in the mean and output firing rate). In this case the bi-modality of

the nSTDP weight distribution is completely lost and the autocorrelation timescale
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Figure 4.4: The consequences of changing the size of the depression window τ−, while

the potentiation window was kept at τ+ = 0.02s. A: The autocorrelation timescale as

τ− is varied for nSTDP. Insets show the mean weight and firing frequency in the same

simulations. The balanced scenarios are highlighted by the circle. The triangle is the

autocorrelation timescale of the equivalent wSTDP weights. B: The autocorrelation

timescale in the wSTDP case when the mean weight is not conserved by compensating

a+ (see text). In this case the mean weight and output firing frequency are reduced as

τ− is increased, leading to an overall increase in the autocorrelation timescale. C:

The autocorrelation timescale for nSTDP as τ− is varied and A− is compensated. D:

The wSTDP case when a+ is compensated. The change in autocorrelation timescale

as determined by simulation (points) is well matched by the change in autocorrelation

timescale as predicted by Eq. (4.23) (dashed curve). Here νpost = 25Hz was taken to

be the average output firing frequency.
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becomes short, Fig. 4.4A. The weight distribution has become unimodal, resulting in

the fast de-correlation also seen in the wSTDP case.

Conversely, as τ− is increased, depression dominates and the synaptic weights con-

gregate near the zero bound. However, at a certain time post synaptic firing ceases, thus

freezing the weights. At that point, the distribution is still somewhat bimodal but has

more weights at the zero bound than the upper bound, Fig. 4.4A. The autocorrelation

timescale is longer than for the balanced case, but only at the expense of a strongly

decreased output firing rate.

The strong dependence of the autocorrelation timescale upon the output firing fre-

quency can be compensated for in the nSTDP case, by reducing (increasing) A− by

the same factor that increases (reduces) τ−. By compensating changes in τ− by ad-

justing A− so that τ−A− is constant, the synaptic weight distribution remains bimodal.

In this case, the mean weight and output rate are fixed, and as a result the retention

time varies much less as τ− is changed (although the dependence is still substantial)

Fig. 4.4C. These results show that while bistable dynamics in nSTDP lead to a longer

memory retention time, the parameters of the plasticity must be precisely tuned such

that approximately half of the synapses are in the upper stable state and approximately

half of the synapses are in the lower stable state.

4.3 Synaptic weight dynamics in nSTDP and wSTDP

In the last section simulations demonstrated that the dynamics of nSTDP and wSTDP

differ markedly, and that this exerts a large effect upon the memory trace retention

time. In this section the dynamics of wSTDP and nSTDP are analysed. Specifically,

the dynamics refers to how the average weight of a large ensemble of synapses evolves

over time. In all cases the analysis here concerns STDP in which all spike pairs are

included and where uncorrelated Poisson spike trains are provided as input.

4.3.1 Weight dynamics in the wSTDP case:

For wSTDP and in the all to all spike implementation case we can consider the dynam-

ics of the synaptic weights as being contributed to by a potentiation process w+ and a

depression process w−. Each time a pre synaptic spike occurs, variable w+ is updated

by addition of the potentiation constant a+. Conversely, each time a postsynaptic spike

occurs variable w− is updated by addition of the depression constant multiplied by the
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current synaptic weight a−w(t). While this process is ongoing with the activity of the

inputs and the LIF unit, the potentiation variable w+ decays with timeconstant τ+ and

the depression variable w− decays with timeconstant τ−. In this case the dynamics of

the mean values of these variables are

d 〈w+(t)〉
dt

=− 1
τ+
〈w+(t)〉+νprea+ (4.3)

d 〈w−(t)〉
dt

=− 1
τ−
〈w−(t)〉+νposta− 〈w(t)〉 (4.4)

where νpre and νpost are the pre and post synaptic firing rates. The rate of change of

the synaptic weight at any given time is the difference of these variables gated by the

post and pre synaptic firing rates

d 〈w(t)〉
dt

= νpost 〈w+(t)〉−νpre 〈w−(t)〉 (4.5)

implying,

d 〈w(t)〉
dt

= νiν j[τ+c+− τ−c− 〈w(t)〉]+νiτ−
d 〈w+(t)〉

dt
−ν jτ+

d 〈w−(t)〉
dt

. (4.6)

Eq.(4.6) describes the macroscopic behavior of wSTDP with Poisson inputs and all-

to-all spike implementation. We refer to this expression for d〈w(t)〉
dt as the drift. At

equilibrium with constant input frequency d〈w+(t)〉
dt = 0 and d〈w−(t)〉

dt = 0 and conse-

quently the drift reduces to νiν j[τ+c+−τ−c− 〈w(t)〉]. Thus we find that the fixed point

of the dynamics (occurring where the drift is equal to zero) is w∞ = τ+c+
τ−c−

, a result that

has been obtained previously by a differing route (Burkitt, Meffin, and Grayden, 2004).

At equilibrium the evolution of the weights is governed by,

d 〈w(t)〉
dt

= νiν j[τ+c+− τ−c− 〈w(t)〉] (4.7)

having solution

〈w(t)〉= (w0−w∞)exp
(
−t
τ

)
+w∞ (4.8)

where τ = 1/(νiν jτ−c−). Thus for any initial condition w0 the mean weight decays

back toward the steady state value with timescale τ, Fig. 4.3B.

4.3.2 Weight dynamics in the nSTDP case:

The non weight dependent rule is harder to deal with analytically because the bound-

aries are somewhat ill defined. One way in which the boundaries can be explicitly in-

troduced is to discretise the weight and express nSTDP as a linear bounded state based
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model. The system can then be solved with the method of eigenvectors introduced in

chapter 3.

This method exploits the idea that nSTDP can be described by the Fokker-Planck

formalism. The Fokker-Planck equation is,

∂P(w, t)
∂t

=−∂[A(w)P(w, t)]
∂w

+
1
2

∂2[B(w)P(w, t)]
∂w2 (4.9)

where P(w, t) is the probability density of the synaptic weight distribution. Fokker-

Planck equations provide an approximation to the full solution of a system governed

by some master equation and can be thought of intuitively as diffusion equations for

probability. Fokker-Planck equations express the evolution of a probability distribu-

tion P(w, t) in terms of two processes: Firstly a drift process that determines the move-

ment of the centroid of the probability distribution, A(w). (This process is identical

to the drift equation described above provided that the fluctuations are taken as in-

dependent of the synaptic weight (van Kampen, 1981; Risken, 1996); an assumption

that is adopted here because the variation in the fluctuations as a function of weight

is small.) Secondly, in addition to the drift there are fluctuations that give rise to a

diffusive process, B(w) which tends to flatten the probability distribution.

To solve the nSTDP dynamics Eq. (4.9), discretise w into ζ states, wi, i∈{1,2, ...,ζ}
of width δw. After this discretisation has been applied the nSTDP is formally equiva-

lent to a linear bounded state based model (chapter 2), Fig. 4.5B, and the tools devel-

oped in chapter 3 can be applied (see also §4.4.2). The right hand side of Eq.(4.9) is

now expressed as

∂A(wi)P(wi, t)
∂w

=
1

δw
[A(wi +δw)P(wi +δw, t)−A(wi)P(wi, t)] (4.10)

for the drift, and similarly

∂2B(wi)P(wi, t)
∂w2 =

1
2(δw)2 [B(wi−δw)P(wi−δw, t)

+B(wi +δw)P(wi +δw, t)−2B(wi)P(wi, t)] (4.11)

for the diffusion. For each weight state wi, the rate of change of the occupancy of

that state in terms of the drift and diffusion into the nearest neighboring states, wi+1 =

wi +δw and wi−1 = wi−δw is calculated with Eqs. (4.10+4.11). The rate of change of

occupancy of wi due to flow into states that are more than one step away is set to zero.

Furthermore, flow contributions into wi from states that are more than one step away
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are also set to zero. Thus the rate of change of the probability of occupancy of states

away from the boundaries is

∂P(wi, t)
∂t

=

− 1
δw

(A(wi+1)P(wi+1, t)−A(wi)P(wi))

+
1

2(δw)2 (BP(wi−1)+BP(wi+1)−2BP(wi)) (4.12)

while for states at the boundaries where i = 1 and i = ζ, the rate of change of occupancy

is

∂P(w1, t)
∂t

=
1

2(δw)2 (BP(w2)−2BP(w1))

∂P(wζ, t)
∂t

=
1

2(δw)2

(
BP(wζ−1)−2BP(wζ)

)
(4.13)

where at the boundaries we take A(w) = 0 since the weights experience no drift in

either direction when in the lowest or highest states. The diffusion process is taken to

be independent of the weight, B(w) = B . In light of Eqs. (4.12+4.13) the rate matrix

Ri j can now be defined,

Ri j = − 1
δw

A(wi)+
1

2(δw)2 B for j=i+1

=
1

2(δw)2 B for j=i-1

=
1

δw
A(wi)−

1
(δw)2 B for j=i (4.14)

for states, i, away from the boundaries. For states at the boundaries,

Rkblb = − 1
(δw)2 B

Rkblb =
1

(δw)2 B (4.15)

where b ∈ {1,2} is one of two boundaries so that {k1 = 1, l1 = 2} or {k2 = ζ, l2 = ζ−
1}. The matrix is constructed such that the total probability is conserved, i.e. ∑ j Ri j =

0. Defining the state vector of the system as p(t) =
{

p(w1, t), p(w2, t), ..., p(wζ, t)
}

we

can therefore write the evolution of the system in the standard way as ṗ = Rp(t). The

mean value of the weight in this case is given by, 〈w(t)〉= ∑i wi p(wi, t). As desired we

can expand the evolution of the probability distribution in terms of the eigenvectors of

R , and from this the evolution of the mean weight is found to be multiexponential
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〈w(t)〉= ∑
i

wi ∑
k

ckΦkexp(−t/λk). (4.16)

The drift and diffusion terms, A(w) and B , can be calculated by virtue of a Taylor

expansion of the master equation. What follows is a sketch of the derivation due to van

Rossum (van Rossum, Bi, and Turrigiano, 2000). The master equation can be written

as

1
ρin

∂P(w, t)
∂t

=−ppP(w, t)− pdP(w, t)+ ppP(w−wp, t)+ pdP(w+wd, t). (4.17)

Eq.(4.17) sums the losses of synapses flowing from some particular weight value w

with the gains of synapses flowing into w from the adjacent states, just below w−wp

and just above w+wd . ρin is the input firing frequency. The wp and wd are the magni-

tudes of the potentiation and depression steps respectively. To simplify, we assume that

the synapse is potentiated by a fixed amount wp = A+ if a post synaptic spike follows

a pre synaptic spike within a fixed time window of tw. The same assumption applies

to depression and it is assumed that if a pre synaptic spike follows a post synaptic

spike within tw then the synapse is depressed by wd = A−. If the spikes fall outside

tw, then the synapse is not modified. This assumption thus removes the exponential

nature of the plasticity window and is justified because the average behavior of the

synaptic weight will depend upon the total cumulative depression and potentiation. In

calculations tw = τ+ = τ− since this choice preserves the area underneath the plasticity

windows.

The Fokker-Planck equation is easily obtained from Eq. (4.17) by Taylor expand-

ing P(w−wp, t) and P(w+wd, t) up to second order, yielding

1
ρin

∂P(w, t)
∂t

=−∂[A(w)P(w, t)]
∂w

+
1
2

∂2[B(w)P(w, t)]
∂w2 (4.18)

where A(w) and B can be approximated by

A(w) = pd(w/Wtot − ε)A−

B(w) = 2pdA2
− (4.19)

where pd = ρintw is the probability of depression. The total ’drive’ of the plasticity

is described by Wtot = tW ρinΩ〈w〉 (van Rossum, Bi, and Turrigiano, 2000). The drive

accounts for the fact that if the the number of inputs Ω, or the mean synaptic weight,

or the input firing frequency increases, then the number of spikes falling within tw also

increases. Alternatively if tw is increased, then the number of spikes falling within
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the window is also increased. When the number of spikes falling within the plasticity

window changes, then the overall accumulation of potentiation and depression also

changes. Thus the magnitude of the drift depends crucially upon the balance between

depression and potentiation, ε and the total drive, Wtot .

The fixed points of the rate of change of the average weight occur at the points

where the drift is zero. These points occur at w = w1, w = wζ and at w = A−εWtot/pd .

As long as ε > 0 then dw
dt is negative at w = w2 and is positive at w = wζ−1. Thus

weights that stray from these boundaries are driven back and consequently the fixed

points at the boundaries are stable. When w = A−εWtot/pd , the drift is negative in

the direction of decreasing weight and positive in the direction of increasing weight.

Hence synaptic weights are repelled from this point and it is thus an unstable fixed

point of the dynamics.

4.4 Autocorrelation functions in nSTDP and wSTDP

The autocorrelation of the synaptic weights is the chosen measure of the lifetime of

the memory trace in this chapter (see chapter 3). In this section the autocorrelation

functions for wSTDP and nSTDP are calculated.

4.4.1 Autocorrelation for the weight dependent case:

We can easily analyse the weight dependent case in order to determine the autocorre-

lation timescale explicitly. Weights implementing STDP can be regarded as stochastic

processes approximated by the Fokker-Planck and Langevin treatments. To calcu-

late the autocorrelation of wSTDP we shall make use of the Langevin approach, from

which we obtain an approximation to the time evolution of a particular realisation

of the stochastic process underlying wSTDP (van Kampen, 1992), rather than a de-

scription of the time evolution of the mean of the whole ensemble (as was the topic

in §4.3.1). This is achieved by assuming that the macroscopic dynamics which gov-

ern the evolution of the mean, also apply microscopically to individual weights. Thus

the macroscopic equation, Eq.(4.6) is added to microscopic fluctuations in the form

of a term that successively samples from a constant Gaussian distribution (this is the

’white noise’ assumption). Although, in general, the noise term of wSTDP is weight

dependent (van Rossum, Bi, and Turrigiano, 2000), we assume here that the noise is

constant because for the choice of parameters in our simulations and at the scale of
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synaptic weight under consideration, the fluctuation term varies only negligibly with

the weight as compared to the drift. Thus wSTDP with Poisson inputs and an all to all

spike implementation can be approximated with the following Langevin equation,

w(t +dt) = w(t)+α[w∞−w(t)]dt +N(0,1)
√

cdt (4.20)

where the drift is identical to Eq. (4.6), but for brevity we write the drift term as

α[w∞−w(t)] with w∞ = τ+a+
τ−a−

and α = (τ−a−νiν j). Here α is the gradient of the drift

with respect to weight. In Eq.(4.20) N(0,1) denotes a Gaussian distribution with zero

mean and unit variance and c denotes the variance of the white noise.

To extract the autocorrelation from Eq. (4.20), we first multiply by the weight at

time zero w0 and take the ensemble average,

〈w0w(t +dt)〉= 〈w0w(t)〉+α[〈w0〉w∞−〈w0w(t)〉]dt (4.21)

where we note that 〈w0〉= 〈w∞〉 since we are asserting that the system is at equilibrium

in the initial state. The diffusion constant c has no direct impact here because the

Gaussian distribution averages to zero 〈N(0,1)〉= 01. Consequently we find that

d 〈w0w(t)〉
dt

= α[w2
∞−〈w0w(t)〉] (4.22)

having the solution 〈w0w(t)〉= σ2 exp(−αt)+w2
∞. Hence the autocorrelation is given

by

κ(t) =
1

σ2

[
〈w0w(t)〉−〈w2〉

]
= exp(−τ−a−νiν jt) (4.23)

The autocorrelation decays exponentially with a time constant τ = 1/(τ−a−νiν j) which

is the reciprocal of the gradient of the drift with respect to weight. Using values for

the parameters from the simulation we find the time-constant to be 29s (solid curve in

Fig. 4.2G). We see from Eq. (4.8) and Eq. (4.23) that the autocorrelation timescale

and the timescale of the response are identical for wSTDP. This is due to the linearity

of Eq. (4.20) and is an example of the fluctuation dissipation theorem. However, if the

linearity of Eq.(4.21) is disrupted by a varying output frequency this correspondence

will no longer hold.

1This is perhaps quite surprising, but is verified when tested with simulations. The decay timescale
of the autocorrelation of wSTDP with a single LIF neuron is invariant if Gaussian noise is added to the
weights. This is due to the fact that addition of noise increases the dispersion of the unimodial wSTDP
synaptic weight distribution. Therefore, although the weights are ’hotter’ they are spread over a larger
weight range.



80 Chapter 4. Spike Timing Dependent Plasticity in single units

4.4.1.1 Dependence of the memory trace retention upon the plasticity parame-

ters

Although Eq. (4.23) seems independent of τ+ and a+, it does depend on them indi-

rectly via the post synaptic firing rate νpost . To understand this we make use of the

relationship between the autocorrelation timescale and the rate of change of the mean

weight (drift). We assume that we change τ+ or a+ but make a compensatory change

to the complimentary potentiation constant a+ or τ+ such that νpost (i.e. the mean

steady state weight 〈w∞〉) is unchanged. Alternatively, we can compensate with the

depression constants a− or τ− such that 〈w∞〉 and νpost are unchanged. The weights

are taken to be at equilibrium, having mean value 〈w∞〉.

When we make these changes to the plasticity constants, then if the drift is un-

changed by them, so too is the autocorrelation timescale because the autocorrelation

timescale is the reciprocal of the gradient of the drift. Since νpre and νpost are constant,

the variation in the gradient of the drift is determined by [τ+a+− τ−a−〈w∞〉]. Con-

sider the case where we alter the potentiation constants, but demand that 〈w∞〉 remains

unaltered. It is clear that if we multiply τ+ (a+) by some factor ∆ and we compensate

by multiplying a+ (τ+) by 1/∆ then there will be no change to the drift, and hence the

autocorrelation timescale is also unaltered. If however the compensation is made with

the depression constants by altering τ− or a− then the drift is altered and therefore

the autocorrelation timescale is also altered (but 〈w∞〉 is maintained). Thus we realise

that non-trivial alterations to the potentiation constants (i.e. alterations made to τ+ or

a+that are not compensated by a reciprocal change to a+or τ+ ) do in fact exert an

effect upon the autocorrelation either through the output firing frequency (which shall

be changed if no compensation is applied) or through necessary changes to τ− or a− if

the mean weight is to be maintained at 〈w∞〉.

4.4.2 Autocorrelation for the non-weight dependent case:

One method for calculating the autocorrelation function for nSTDP follows from the

Markov formalism. As in §4.3.1 the weight is discretised into ζ states, wi, i∈{1,2, ...,ζ}
of width δw. As mentioned previously, this turns nSTDP into a linear bounded state

based model whose transition matrix is calculated from the Fokker Planck equation.

The method of calculating the autocorrelation of a state based model was derived in
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Figure 4.5: The two methods of solving the nSTDP dynamics and autocorrelation.

A: Diffusion within a double well potential. The equilibrium distribution of nSTDP (left)

can be regarded as arising due to diffusion in a quadratic potential (right, red dashed

line). The boundaries of the quadratic are not closed, making solution difficult. The

problem is solvable if the quadratic is approximated by a quartic (right, black solid line).

B: The ’one step’ approximation. nSTDP can be discretised into some number of weight

states. The evolution of the plasticity is then a stochastic process across these states.

The transition rates between the weight states are estimated using the diffusion B and

drift A(w) terms in the Fokker Planck equation for nSTDP, Eq. (4.19). nSTDP thus

described is a linear bounded state based model (chapter 2).



82 Chapter 4. Spike Timing Dependent Plasticity in single units

chapter 3 and can thus be directly applied here

〈w0w(t)〉= ∑
k

eλkt

(
∑

i
p(i, t = 0)Cikwi

)(
∑

j
s(k)

j w j

)
(4.24)

where ∑k Ciks(k)
j = δi j, and s(k)

j is the k-th eigenvector of R (i.e. C is the inverse of the

eigenvector matrix). Since we are investigating the equilibrium case, one can insert

p(i, t = 0) = s(1)
i /∑s(1)

i , where s(k)
i is the eigenvector with zero eigenvalue. The longest

timescale of Eq. (3.31) is the reciprocal of the subdominant eigenvalue of Ri j and this

is the autocorrelation timescale, ’one step’ in Fig. 4.2F.

4.4.3 ’Double well’ approximation: nSTDP as a 2 state switching

process

An alternative way to approximate the nSTDP autocorrelation timescale exploits the

fact that in nSTDP weights congregate near 0 and wmax. At long timescales this means

that the autocorrelation depends on how quickly the weights randomly move from one

side to the other. Thus nSTDP can be regarded as a stochastic escape process and can

therefore be recast in terms of diffusion within a potential, Fig. 4.5A. Definition of an

appropriate potential allows us to approximate the hard boundaries. In the case that the

Fokker-Planck equation for a stochastic process has an asymptotic steady state solution

p∞(x), the potential for that process is (Miguel and Toral, 1997)2

V (x) =−σ2

Z
ln(p∞(x)) (4.25)

where σ2 is the variance of the fluctuations and Z normalises p∞(x). If we imagine

some particle diffusing in a potential then Eq.(4.25) says the particle will tend to have

peaks in its steady state displacement distribution whose locations are determined by

the minima of the potential of its motion. For nSTDP the equilibrium weight distri-

bution is described by p∞(w) = Z exp[(−εw + 1
2w2/Wtot)/A−] (van Rossum, Bi, and

Turrigiano, 2000). Thus

V (w) =
σ2

A−
(εw− 1

2
w2/Wtot) (0 < w < wm) (4.26)

= ∞ (otherwise) (4.27)

where σ2 = B = 2pdA2
−. Outside the limits the potential is infinitely high due to the

imposition of hard bounds.
2For this to be true the process must obey microscopic reversibility and must be closed and isolated.

This is indeed the case here.
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The potential in Eq. (4.26) can be approximated with a quartic ’double well’ poten-

tial, Fig. 4.5A, whose minima coincide with 0 and wmax and that provides a potential

barrier between the two stable points, of the same height as the original potential.

To achieve this we fit the quartic according to the conditions that Vaprx(0) = V (0),

Vaprx(wm) = V (wm), Vaprx(wD0) = V (wD0), where wD0 is the point at which the drift

vanishes and V ′
aprx(0) = 0, V ′

aprx(wm) = 0. This potential is,

Vaprx(w) =
σ2

2w2
mA−Wtot

[
w2(4w2−6wwm +w2

m−4εwWtot +6εwmWtot)
]
. (4.28)

Under the assumption that the potential is symmetric (i.e. LTP and LTD are balanced)

and the barrier between the wells is sufficiently high so as to separate the timescale

of diffusion within the well from the timescale of diffusion between wells (so that the

system is not critical), the mean first passage time (MFPT) of a diffusing particle across

the centre of the double well potential can be approximated as (van Kampen, 1992)

τX =
2π√

V ′′
aprx(X)

∣∣V ′′
aprx(B)

∣∣exp
(

Vaprx(B)−Vaprx(X)
σ2

)
(4.29)

where B is the central maximum of the potential and X is either of the minima of the

potential A or C. If we follow a weight at either A or C then the MFPT tells us how long

we need to wait on average to see the weight ’switch’ to the other well. Thus a course

grained description of nSTDP is created in which the weights are switching between

two stable states with some rate. The autocorrelation function for such a random two-

state ’telegraph noise’ system is A(t) = exp [−t/τA− t/τB] where 1/τA and 1/τB are

the transition rates between A and B and B and A respectively (this was derived in

chapter 3). The autocorrelation time is thus given by

τc =
τAτB

τA + τB
(4.30)

this gives τc = 20hrs for the values of parameters taken in the simulation, ’double

well’ in Fig. 4.2F. In this course grained description the continuous nSTDP weights

are behaving as simple binary 2 state weights.

On long timescales the autocorrelation will be exponential and dominated by this

switching process as long as the distribution is strongly bimodal. Hence at this longest

timescale, when the nSTDP synapses are behaving like 2 state binary synapses, we

would expect the fluctuation dissipation theorem to apply.



84 Chapter 4. Spike Timing Dependent Plasticity in single units

4.4.3.1 The influence of the depression constant

The effects of altering the depression step size A− upon the autocorrelation timescale

are sufficiently simple as to permit an analytical treatment. We assume the balanced

case where the double well approximation holds. This is ensured by the imposed

scaling between A− and A+ (§4.1). We regard all other parameters as constants and

assume that the nSTDP potential is balanced so that τA = τB = τ and τc = τ/2 where

τ is the MFPT associated with crossing from one well to the other. We express the

double well potential as Vaprx(w) = σ

2w2
mA−Wtot

φ(w) . Since we have asserted that

everything other than A− is constant, the function φ(w) is also constant. Defining

α =
√

φ′′(A)φ′′(B) =
√

φ′′(C)φ′′(B) and β = φ(B)−φ(A) = φ(B)−φ(C), the autocor-

relation timescale is

τc =
πw2

mWtot

pdA−α
exp
(

β

2A−w2
mWtot

)
(4.31)

which is good agreement with the one-step calculation method. Eq. (4.31) shows

that in the LTP-LTD balanced regime, the size of the plasticity step size very strongly

influences the memory retention time.

4.4.3.2 Unbalanced pattern decay

Violation of the correspondence between the autocorrelation timescale and the re-

sponse timescale can be understood using the two state approximation to nSTDP in

which weights are always at either of the nSTDP boundaries. We can construct a lin-

ear equation with a timescale of evolution that is identical to the longest timescale of

the autocorrelation. This is the case because the two state approximation to nSTDP im-

plied by calculating the rate of transfer between potential wells, has linear dynamics if

the wells are well separated (i.e. the potential barrier is high), and the rates of transfer

are constant in time. The nSTDP must be approximately balanced for the double well

description to work well. In this case we can write a stochastic differential equation

for the number of weights in the well at w = 0, as

dn0(t)
dt

=−n0(t)
τc

+
nT

τB
+Γ(t) (4.32)

where n0 is the number of weights in the well near w = 0, and we define nwm as the

number of weights near w = wm and nT = n0 + nwm = const is the total number of

weights. Γ(t) is the Gaussian noise process3. The rate at which weights jump from w0

3It is well known that the Gaussian noise process as stated here, within a differential equation, is
mathematically pathological (it is not differentiable). However here it is intended as short hand for
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to wm is 1/τA, while the rate of jumping from wm to w0 is 1/τB and τc = 1/τA +1/τB,

Eq. (4.30). We can extract both the autocorrelation timescale and the macroscopic

timescale (in the limit of nT → ∞) from Eq. (4.32) and they are of course identical to

τc. However, as with wSTDP, the linearity of Eq. (4.32) is disrupted if the output firing

frequency varies and hence τA and τB are no longer constant. Then we should expect

to see a pattern retention timescale that differs markedly from the equilibrium autocor-

relation timescale. In Fig. 4.3E we see this disruption when we store an unbalanced

pattern and the rates of transfer between the two stable states are no longer constant

but depend on the output firing rate.

4.5 Discussion

In this chapter it has been demonstrated that for single LIF neurons with plastic synapses,

the memory trace retention time for wSTDP is orders of magnitude shorter than for

equivalent nSTDP. Thus there are orders of magnitude difference in the ability of the

weights implementing these learning rules to retain patterns, under otherwise identical

conditions. This difference is attributable to the bimodal weight distribution of nSTDP.

The bimodal synaptic weight distribution engendered by nSTDP can retain cor-

relations between successive realisations of the weights for long periods of time, as

has been suggested by other authors (Rubin, Lee, and Sompolinsky, 2001). The long

retention time of the weights is dependent on this bi-modality and hence the balance

between potentiation and depression. This behavior generalizes to the case where we

measure a memory signal based upon some subset of the weights as long as the mem-

ory only weakly perturbs the ensemble mean weight. This is a result of the fluctuation

dissipation theorem (see chapter 3).

In the linear bounded models of chapter 2 we saw that the values of the transition

probabilities between the weight states exert an effect upon the resulting steady state

distribution amongst the states and upon the memory lifetime. There are some parallels

between the linear bounded models and wSTDP/nSTDP. It was shown that nSTDP and

wSTDP can be regarded as linear bounded models, where the transition probabilities

between the states are determined by the drift and diffusion terms of their Fokker-

Planck equations. We saw that nSTDP gives rise to a bimodal weight distribution that

out performs the unimodal wSTDP weight distribution as a memory store. Finally, it

the equivalent forward Langevin equation. Since the equation is not manipulated, this form makes the
argument clearer conceptually.
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should be noted that memory traces in both nSTDP and wSTDP decay exponentially.

Thus the scaling of the maximum memory lifetime as the logarithm of the number of

synapses (see chapter 2) occurs in both of these models.

Previous investigations of the stability of spike timing dependent plasticity have

concentrated upon the dynamic stability of the synaptic weights rather than upon the

memory retention time (van Rossum, Bi, and Turrigiano, 2000; Song, Miller, and Ab-

bott, 2000; Izhikevich and Desai, 2003; Burkitt, Meffin, and Grayden, 2004). As we

have seen it is possible for distributions to be stable but provide radically different

autocorrelation times under identical conditions. For this reason a more complete un-

derstanding of the learning rule requires that we also study the correlation properties of

the weights (or perform a signal to noise analysis, which is equivalent at equilibrium).

Recently it has been shown that optimality considerations lead naturally to a spike

timing dependent plasticity like learning rule (Toyoizumi et al., 2007). This learning

rule gives a unimodal distribution and hence unstable memory traces when there is little

correlation between inputs. However when the correlations are strong the learning

rule gives rise to a bimodal weight distribution that provides retention times of the

memory trace of the order hours when the training correlations are removed. The

greater the degree of correlations, the greater the bimodality and the more effectively

the memory trace is stored. While Toyoizumi et al differs from this work in that the

authors considered the memory stability under a change of stimulus statistics (i.e. they

were studying the non-stationary rather than the stationary plasticity stability dilemma)

it nevertheless supports the idea that bistability might be important for the long term

storage of memory traces.

In this chapter a number of assumptions have been made. Firstly, the STDP rules

used an all-to-all spike implementation, i.e. all spikes are included in the synaptic

modifications and the contributions from each spike pairing sum linearly. However, as

mentioned in chapter 1 there is evidence that non-linear corrections exist (Sjöström,

Turrigiano, and Nelson, 2001; Froemke and Dan, 2002; Wang et al., 2005). Some

of this data has been modeled heuristically (Pfister and Gerstner, 2006), but a unified

model is still lacking, making it difficult to give more general predictions about the

memory lifetime of STDP. However the nSTDP and wSTDP rules provide limiting ex-

amples of the bimodality of the synaptic weight distribution. The differences between

these cases are so great that whatever the details of the underlying rule, the distinction

will likely remain important. Furthermore it is important to understand the stability of

nSTDP and wSTDP in their own right because they are still widely used as working
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approximations to STDP. An important recent study showed that receptive field plas-

ticity in adult cats is compatible with STDP rather than with non-causal covariance

based learning (see chapter 1) (Young et al., 2007). This study assumes nSTDP in

synaptic connections.

The second important approximation is that the temporal and correlation structure

of actual input and output spike trains is likely much more complicated than assumed

here, i.e. this chapter deals almost exclusively with the stationary plasticity stability

dilemma. The more general non-stationary case is more difficult to deal with, not least

because the number of possible scenarios becomes infinite. Nevertheless the case of

random spike trains studied here is important because it is generally understood that

neurons are stochastic and thus spike with random statistics when at rest, giving rise to

so called ’background activity’. It is therefore reasonable to wonder how weight traces

that have been learned previously are affected when subjected to background activity

and this is the question that was addressed here.





Chapter 5

Spike timing dependent plasticity in

networks

In the previous chapter it was shown that isolated single neurons with weight depen-

dent STDP synapses forget their weights rapidly in comparison to units with nSTDP

synapses. This rapid forgetting occurs due to the lack of bistable weight dynamics.

Another way to phrase this is that because the wSTDP learning rule is not competi-

tive, weights are not segregated into two stable groups. In this chapter the stability of

nSTDP and wSTDP within spiking networks is examined. Despite its lack of competi-

tion in the single unit, wSTDP networks can perform input selection when neurons are

linked by lateral inhibition. Thus interactions between neurons can introduce compe-

tition and stabilise weights that otherwise use unstable learning.

Material from this chapter appeared at SfN 2006 in abstract form (Billings and van

Rossum, 2006) and is currently under review for publication.

5.1 Network model

In this chapter we study a single layer network with all to all lateral inhibitory con-

nections and plastic feed-forward excitatory connections that receive the input spike

trains. This model can be interpreted as a simple model for orientation selectivity

if each output unit is considered as operating in analogy to a tuned cell within an

orientation selective cortical column, (Ben-Yishai, Bar-Or, and Sompolinsky, 1995;

Song and Abbot, 2001; Shapley, Hawken, and Ringach, 2003; Yao, Shen, and Dan,

2004). The network consists of one layer of 60 integrate and fire neurons with pa-

rameters as above. The network has periodic boundary conditions to eliminate edge

89
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effects and ensure that all neurons operate under comparable conditions. The neurons

receive feed-forward input from a layer of 600 Poisson inputs through STDP synapses

and receive all-to-all inhibition through lateral connections. The neurons do not self-

inhibit. In this case the dynamics of the membrane potential of each neuron receives

two current contributions: τm
dV (t)

dt =Vr−V (t)+Rin(Iff(t)− Iinhib(t)) where Iff(t) is the

feed-forward input current and Iinhib(t) is the inhibitory current. Feed-forward excita-

tory synapses are identical to the single neuron case in chapter 4. In all simulations

the feedforward weights are intialised to be uniformly distributed at random between

0pS and 200pS. Inhibitory synapses (conductance-based) are exponential with a time

constant of 5ms and have a reversal potential of -74mV. The inhibitory synapses are

not plastic and are uniform across the inhibitory population.

Inputs to the network are again Poisson trains, but the firing rate is spatially mod-

ulated as follows: input a has a rate νa = ν0 + ν1(e−(s−a)2/2σ2
+ e−(s+λ−a)2/2σ2

+

e−(s−λ−a)2/2σ2
), where the stimulus is centered at input s, the background rate is

ν0 = 10Hz and peak rate ν1 = 80Hz, λ is the width of the network, and σ is the width

of the stimulus set to be one tenth of the number of inputs. The 2nd and 3rd term ensure

the periodic boundary conditions. The center of the stimulus was randomly chosen at

time intervals drawn from an exponential distribution with a mean of 20ms, Fig. 5.1A.

This input structure was chosen to be comparable to a previous study of nSTDP in

which receptive fields formed successfully (Song and Abbot, 2001).

In one set of simulations, the stability of the receptive fields when a blank stim-

ulus is presented is tested. In this case the input stimulus consists of unstructured,

uncorrelated Poisson spike trains, i.e. νa = ν0.

5.1.1 Receptive field stability

Receptive fields of the neurons in the network are quantified as follows: At given

times the synaptic weights are frozen and the same input stimulus as described above

is swept across the inputs. The tuning curve of each neuron is measured at m = 24

stimulus locations (25 stimuli around each location; response measured for 20ms). The

tuning curve is plotted in a polar plot and the vector average is calculated. Thus the

receptive field of each neuron is characterized by the two dimensional vector defined as

p = { 1
m ∑

m
i=k νk sin(2πk

m ), 1
m ∑

m
l=k νk cos(2πk

m )}, where k indicates the stimulus location,

and νk is the average firing rate at that location.

The autocorrelation is one measure of the memory trace retention (chapter 3). In
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chapters 3 and 4 the autocorrelation measured how long weight correlations last. Now,

a similar measure is defined to quantify retention of the receptive fields using the recep-

tive field vectors. For a network with N neurons p is a 2N component vector {px
n, py

n}
where n = {1, ...,N}. The autocorrelation of this vector is calculated in exactly the

same way as for the weight vector. If the autocorrelation is one, the receptive fields

have not changed from their initial state and have remained in their initial locations.

If, in contrast, the autocorrelation is zero, their receptive field locations have become

independent of their initial positions.

In addition to measuring the persistence of the receptive fields it is useful to quan-

tify how peaked they are around the optimal stimulus. The selectivity S of a neuron

is calculated as, S = 1− 1
mνmax

∑
m
l=1 νl , where νmax is the maximum firing rate of the

neuron (occurring at the optimal stimulus position) (Bienenstock, Cooper, and Munro,

1982). In the case that the tuning curve is flat we find a selectivity of 0. If the tuning

curve is more peaked, the selectivity increases. In the limit that the tuning curve is a

delta function, we find a selectivity of S = 1.

5.2 Receptive fields in STDP networks

While the development of input selectivity in a network using a non-competitive learn-

ing rule (wSTDP) is surprising, the formation of receptive fields in competitive nSTDP

networks has been demonstrated previously. It was found that neurons develop re-

ceptive fields even in the absence of recurrent connections (Song and Abbot, 2001;

Delorme et al., 2001). This is the result of the strong competition intrinsic to the

nSTDP rule in the single unit, which selects one group of inputs above another, the

winner being determined by the initial conditions. Since the initial weights are ran-

dom, the map of the receptive fields is also random. When local recurrent excitatory

connections are added, all neurons in the network become selective for the same area

of the input range (like a single column). When, in addition, all to all inhibition is

included, a map forms in which the receptive fields of the neurons tile the input in a

locally continuous manner. In nSTDP networks with lateral inhibition only, disordered

maps develop.

To compare receptive field development in wSTDP and nSTDP networks, the net-

works were trained from random initial conditions on the input stimulus shown in Fig.

5.1A (and see §5.1). One group of networks has lateral inhibitory connections while

the other has no lateral inhibition. As in previous studies receptive fields form read-
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Figure 5.1: Receptive field development in nSTDP and wSTDP networks (with 60 units

and 600 inputs) A: Raster plot of a short sample of input to the network. B: Tuning

curves for two neurons in the nSTDP network, before (dashed line) and after (solid line)

training. C: Same as B but for the wSTDP network with lateral inhibition. D+E: His-

togram of the selectivities of the neurons after training with no inhibition (left) and with

7nS lateral inhibitory connections (right). For the wSTDP network inhibition is essential

to develop selectivity. F: The leftmost nSTDP tuning curve of panel B is plotted along

with the feed-forward weights. Inset is the weight distribution for this neuron. G: Same

as F but for wSTDP. wSTDP forms receptive fields that are similar to nSTDP receptive

fields when sufficient lateral inhibition is present, although the underlying weights are

more centrally distributed.
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Figure 5.2: The development of selectivity in nSTDP and wSTDP networks as a func-

tion of the lateral inhibitory connection strength. A: In the nSTDP networks, receptive

fields always form regardless of inhibitory connection strength although increasing in-

hibition leads to a sharpening of receptive fields. B: In contrast, for wSTDP networks,

inhibition is necessary for receptive fields to form. Additional inhibition sharpens the

selectivity.

ily in the absence of lateral inhibition in the nSTDP network, Fig. 5.1D. The average

selectivity increases from around 0 to 0.65 during training in the nSTDP network.

In the wSTDP case without inhibition there is no receptive field development and

no increase in the mean selectivity of the neurons in the network, Fig. 5.1E. However,

with inhibition present, input selectivity does also develop in the wSTDP network,

Fig. 5.1E. The receptive fields sharpen and in some cases receptive fields develop

where there was little initial structure. The mean selectivity increases from 0.65 to

0.8 during training, a change that is as pronounced as it is for the nSTDP network

(Fig. 5.1D+E), where the mean selectivity increases from around 0.65 to 0.85. This

demonstrates that the development of selectivity that is intrinsic to the nSTDP learn-

ing rule, but that is absent from the wSTDP learning rule, can nevertheless occur in

wSTDP networks with lateral inhibition.

Note that in both networks some selectivity already exists before training. This is

due to the random initial conditions of the feedforward weights §5.1. However these

initial receptive fields are generally different from those obtained after training: 1)

They are small; the peak firing rate is typically less than 1/3 of the final one for wSTDP

learning (the difference is even larger for nSTDP learning). 2) The tuning curves often

have multiple peaks and are irregular. In contrast, after training the receptive fields
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are smooth with only one peak and the receptive fields tend to evenly distribute across

input space, Fig. 5.1B+C.

The underlying structure in the feed-forward weights is shown in Fig. 5.1F+G.

Associated with the receptive fields in nSTDP networks is a region of weights at the

maximum weight value, while all other weights are zero, Fig. 5.1F. The characteristic

bimodal distribution of nSTDP is still present, but the weights are spatially inhomoge-

neous. This is a result of the strong competitive behavior of nSTDP explored in chapter

4, driving elevation of the correlated input group at the stimulus location. In wSTDP

networks however the underlying feed-forward weight structure corresponding to the

receptive fields remains unimodal, Fig. 5.1G.

Having established that receptive fields can form in wSTDP networks, the strength

of the lateral inhibition is now varied Fig. 5.2. As stated above, neurons in nSTDP

networks are selective after training, regardless of the inhibitory connection strength.

Nevertheless, the tuning curves sharpen with increasing inhibition. In contrast, wSTDP

does not form receptive fields, unless the lateral connections reach a critical value

in the region of 2nS, Fig. 5.2B. A further increase of the inhibition, leads to further

sharpening and selectivities that are comparable to those formed by nSTDP.

In all cases the mean excitatory input current to each unit is around 0.5pA (av-

eraged during 20s over both selective and non-selective stimuli). As the inhibitory

conductance is increased from 0nS to 10nS, the mean inhibitory current rises from

0pA to 0.25pA, around 50% of the average excitatory input. This inhibition does not

have to be unrealistically strong to stabilize the receptive fields, instead the inhibition

is of the same order of magnitude as the excitation.

An analytic treatment of the formation of receptive fields in wSTDP networks is

difficult. However the underlying processes of the formation of the receptive fields in

wSTDP networks and the relationship of their development to lateral inhibition can

be described. Recall that wSTDP can be defined in terms of separate depression w−

and potentiation w+ processes (chapter 4). Mathematically the equations governing

w− and w+ resemble the description of a filter. The dynamics of wSTDP with an all

to all implementation can thus be regarded as a combination of two filters acting upon

the input and output frequencies of the neuron. In chapter 4 it was shown that the

dynamics of the mean weight of wSTDP with the all to all spike implementation for a

single unit can be expressed as

d 〈w(t)〉
dt

= νiν j[τ+c+− τ−c− 〈w(t)〉]+νiτ−
d 〈w+(t)〉

dt
−ν jτ+

d 〈w−(t)〉
dt

(5.1)
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where the variable 〈w−(t)〉 is a filtered version of the mean input firing frequency and

the variable 〈w+(t)〉 is a filtered version of the mean output firing frequency of the

neuron multiplied by the mean weight. Clearly, at equilibrium the last two terms of

Eq.(5.1) are zero and this is the situation for the single unit simulations studied in

chapter 4. However when the input stimulus is varying the last two terms in Eq. (5.1)

can be non-zero, thus allowing a modification to the dynamics of the mean weight.

Thus a persistently varying input stimulus leads to a persistently varying mean weight.

In the network studied here, the stimulus is varying and this allows the last two terms

of Eq.(5.1) to be non-zero and thus opens the possibility that the mean weight can vary

with time even after training.

As we have seen the development of receptive fields in wSTDP networks is de-

pendent upon the presence of lateral inhibition. If the mean weight is fluctuating due

to the process described above, there is no reason for that fluctuation to lead to the

persistent elevation or depression of the feedforward weights for any one neuron in

the network. Thus input selectivity shall not arise. Instead the output firing frequen-

cies of the neurons fluctuate randomly (for random input stimulus statistics). However

if lateral inhibition is introduced, competition between neurons can occur. Dominant

neurons are now able to suppress the firing of other neurons with smaller input from

their feedforward weights. In the case that suppressed neurons stop firing all together,

their weight evolution freezes completely. This allows any variations in the weights

that have accumulated due to the varying input stimulus to be retained. Since such

weight variations can be retained between stimulus presentations, neurons then mutu-

ally reinforce their differences. This process introduces competition and leads to the

structure in the feedforward weights shown in Fig. 5.1.

5.2.1 Receptive field stability in STDP networks

Having established that receptive fields can develop in wSTDP networks, the stability

of those receptive fields is now quantified. The network is presented again with the

stimulus of Fig. 5.1A. As in the single neuron case of chapter 4, there is no separate

learning and testing phase, instead we measure the persistence under the continued

stimulation with the same stimulus ensemble. We track the receptive fields of the neu-

rons, by plotting the tuning curves on a polar plot and taking the vector sum of the

responses as described in §5.1.1. The direction of this receptive field vector gives a

measure of the preferred direction, while its length depends on both the selectivity and
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Figure 5.3: The stability of receptive fields in nSTDP and wSTDP networks. A: Recep-

tive fields for the nSTDP network with no lateral inhibitory connections. B: The same

as A but for a wSTDP network with 7nS lateral inhibitory connections. C: The auto-

correlation of the receptive field for wSTDP and nSTDP networks with 0nS (black) and

7nS (grey) lateral inhibition strength. The receptive fields in nSTDP networks are sta-

ble even when there is no lateral inhibition. The receptive fields in wSTDP networks

are less stable but their stability can be varied by altering the lateral inhibition. D: The

receptive field retention time in the wSTDP network as a function of lateral inhibition.
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the firing rate. The nSTDP receptive fields form an unordered map, i.e. neighbor-

ing cells don’t necessarily have neighboring receptive fields (Song and Abbot, 2001),

Fig. 5.3A. In wSTDP an unordered map forms as well provided that there is sufficient

lateral inhibition, Fig. 5.3B, but the selectivity of the neurons is more variable.

To measure the stability of the receptive fields the autocorrelation of the receptive

fields is calculated. If the receptive field autocorrelation is one, the receptive fields

have not moved. If the receptive field autocorrelation falls to zero, the receptive fields

have no relation to their initial locations. The nSTDP network with no lateral inhibition

gives rise to a receptive field autocorrelation that decays with a timescale of 11 hrs, Fig.

5.3C. With inhibition this increases to 93 hrs but an accurate fit is difficult in this case

because the very slow decay means that an enormous simulation time would be needed

to see substantial decay of the memory.

The wSTDP receptive fields de-correlate quickly in comparison to the nSTDP net-

work. Importantly however, the de-correlation timescale depends on the strength of

the lateral inhibitory connections: When lateral connection strength is zero, no stable

receptive field vectors exist (because, as we have seen, no receptive fields form) and

the correlation time is simply that of filtered noise. However, as the strength of the

inhibitory connections is increased, and the receptive fields sharpen, the correlation

timescale of the receptive field vectors increases, Fig. 5.3D. Thus the stability of the

receptive fields in wSTDP networks can be varied by altering the level of lateral inhi-

bition. When the inhibition is sufficiently large, the receptive fields remain correlated

with their initial positions for more than one hour. Although this is shorter than for the

nSTDP network, the persistence in the network is much longer than the wSTDP sin-

gle neuron persistence which is only 29s. Although in the nSTDP network inhibition

also stabilizes the receptive fields, the improvement is much less dramatic than in the

wSTDP case.

These results show that lateral inhibition introduces competition in the wSTDP net-

work. This inhibition can be varied, hence varying the competition and the readiness

with which receptive fields form in the network. Conversely strong competition is al-

ready present in the nSTDP learning rule itself. Thus while inhibition does sharpen the

receptive fields, its absence does not prevent them from forming.
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Figure 5.4: Untraining receptive fields in nSTDP and wSTDP networks with lateral in-

hibition. After the completion of training and formation of receptive fields, the networks

are presented with a blank stimulus where all inputs fire at a uniform rate of 50Hz. A:

The autocorrelation of the receptive field vectors for both wSTDP and nSTDP, when the

blank stimulus is presented. B+C: The weights and tuning curve for a neuron in the

wSTDP and nSTDP network. Top: Example receptive fields before and after untraining.

B: The receptive field from a neuron in the nSTDP network before and after presenta-

tion of the blank stimulus. In the nSTDP case the peak firing rate of the receptive fields

is equally reduced for all neurons. C: A receptive field from the wSTDP network before

and after presentation of the blank stimulus, from a neuron that fires relatively rapidly

at ∼ 10Hz during presentation of the blank stimulus. In the wSTDP case, receptive

fields of rapidly firing neurons such as this one are wiped out, while the receptive fields

of more slowly firing neurons take much longer to be forgotten. Bottom: The weights

underlying the receptive fields plotted above before and after untraining.
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5.2.2 Forgetting of receptive fields

So far, we have considered a situation in which there is no distinction between the

learning phase and the test phase, as an identical stimulus ensemble was presented

throughout and learning was ongoing. Thus we were considering the stationary stabil-

ity plasticity dilemma (chapter 2). The non stationary case poses the equally important

question of how quickly the learned receptive fields are forgotten when a different

stimulus is presented. If the stimulus is absent altogether, no pre- or post-synaptic

spikes are generated and the weights are maintained indefinitely. Therefore forgetting

was assessed using an unstructured Poisson stimulus with the same firing rate for all

inputs (νa = ν0, §5.1). The forgetting is strongly dependent on the firing rate. When

all inputs fire at the 10Hz background rate, no significant post-synaptic firing results

in either the nSTDP or wSTDP network (νpost < 0.5Hz), and the receptive fields are

retained for a very long period.

For an input of νa = ν0 = 50Hz the postsynaptic firing rate in the nSTDP net-

work with lateral inhibition is about 4Hz, and the receptive fields do not decorrelate

appreciably, Fig. 5.4A. The locations of the receptive fields remain fixed, because the

depressed weights are so weak that they cannot drive the target neuron and the com-

petitive property of nSTDP ensures strong inputs remain strong. Eventually the weak

weights can become strong by chance but this takes place on a very long timescale

comparable to the nSTDP single unit autocorrelation timescale at νpost = 4Hz.

In the case of the wSTDP network with 7nS lateral inhibitory connections, a 50Hz

stimulus leads to some forgetting as reflected in the quick initial decay of the corre-

lation, on a timescale of ∼ 50s Fig. 5.4A. Note however, that the correlation does not

decay to zero. The reason is heterogeneity in the firing rates: some neurons fire at

high rates (∼10Hz) and these neurons forget the receptive field quickly, e.g. Fig. 5.4C,

while other neurons fall silent in response to the unstructured stimulus, and hence re-

tain their weights. The rapid and substantial de-correlation of wSTDP receptive fields

is due to the loss of selectivity in the fastest firing neurons. Note that this effect does

not occur when the network is stimulated with the original training input, Fig. 5.3. In

that case, none of the neurons falls completely silent, Fig. 5.3C and the autocorrelation

falls to 0.

When lateral inhibition is removed and the stimulus is set to be a uniform firing

rate of 50Hz, the receptive fields in the wSTDP network are rapidly destroyed, Fig.

5.5. Removal of inhibition removes the suppression of firing of weakly driven neu-
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Figure 5.5: Untraining of receptive fields in nSTDP and wSTDP networks as in Fig. 5.4,

but with acute removal of lateral inhibition. The wSTDP (solid line) network experiences

a rapid loss of receptive fields. The nSTDP (dashed line) network retains its receptive

fields.

rons, by strongly driven neurons. In this case all neurons loose their receptive fields

and the structure in the weights of all neurons evolves in an identical fashion to Fig.

5.4C. The nSTDP network does not rapidly loose its receptive fields. This is because

the existence of receptive fields in nSTDP networks does not depend upon lateral in-

hibition. When the blank stimulus is presented, the nSTDP weights gradually evolve

toward their equilibrium distribution when the input is unstructured. This is identical

to the single unit distribution discussed in chapter 4. Hence the reason that the nSTDP

receptive fields survive even when lateral inhibition is removed is that the synaptic

weights are intrinsically bistable.

5.3 Discussion

In this chapter, the study of the plasticity stability dilemma in STDP was extended to

the case of networks where the neurons interact via lateral inhibition. This reveals two

ways in which receptive fields in a network can be stabilised in the face of ongoing

learning. 1) Synaptic plasticity with a high degree of intrinsic stability (nSTDP) gen-
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erates receptive fields with a similarly high level of stability. 2) Lateral inhibition can

stabilise receptive fields in a network with synaptic plasticity that is not intrinsically

stable (wSTDP).

The intrinsic stability of nSTDP allows it to produce receptive fields that are far

more stable than those in the wSTDP network. However, relearing the nSTDP recep-

tive fields would require that the intrinsic stability of the learning rule be temporarily

reduced, either by large increases in the firing rates of neurons or by transient alter-

ations to the parameters of the plasticity (for example the step size). While neuro-

modulation might account for such changes, we saw in contrast that wSTDP is able to

forget (and hence relearn) receptive fields as a result of simple variation in the level of

lateral inhibition in the network.

Although receptive fields in wSTDP networks are less stable than those in nSTDP

networks, the addition of lateral inhibition vastly slows down the decorrelation of the

receptive fields, such that they remain correlated with their initial positions on a be-

haviorally relevant timescale of the order of an hour. This represents a substantial

improvement over the correlation time of 29s for the weights in the single unit case.

Thus in the context of the stationary plasticity stability dilemma, the lateral inhibition

can increase the timescale of decorrelation of the receptive fields.

The networks were also tested in the context of the non stationary plasticity sta-

bility dilemma when an unstructured stimulus was presented. When lateral inhibition

was present both nSTDP and wSTDP retained the previously learned structure. When

lateral inhibition is removed, the wSTDP network suffers a rapid loss of the previously

learned receptive fields, where all receptive fields were destroyed within 200s. Thus

the lateral inhibition protected wSTDP against the substantial background firing rates

of the ’blank’ stimuli.

Several experimental studies suggest that spike timing dependent plasticity plays

a role in plasticity in the visual cortex of various animals (Yao and Dan, 2001; Mu

and Poo, 2006; Young et al., 2007; Dan and Poo, 2006). Modeling studies predict that

spike timing dependent plasticity can lead to the development of input selectivity in

populations of spiking neurons (Song and Abbot, 2001; Wenisch, Noll, and van Hem-

men, 2005). In this chapter it was shown that wSTDP too can lead to the development

of receptive fields.

Interestingly a recent study in rat auditory cortex demonstrated a process resem-

bling the dependence of wSTDP receptive fields on lateral inhibition seen here (Froemke,

Merzenich, and Schreiner, 2007). The nucleus basalis was stimulated, leading to re-
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lease of acetylcholine into primary auditory cortex. The stimulation of the nucleus

basalis was paired with tones to activate selective cells. It was found that the release of

acetylcholine rapidly reduced the inhibitory input to the activated cells in the auditory

cortex, leading to a period of large excitatory input. After a period of around 30 mins

the auditory receptive fields had shifted to prefer the paired input. This shift coin-

cided with a return of the inhibition to pre-pairing levels over a timecourse of around 2

hours. The results in this chapter suggest that one way in which this inhibition related

remapping might be achieved is by using synaptic plasticity lacking strong intrinsic

correlation stability.



Chapter 6

State based models of Long Term

Potentiation

It is the prevailing paradigm in neuroscience that memories are stored by patterns of

efficacy within populations of excitatory synapses. As discussed in chapter 2, this

raises the possible risk that synapses will forever overwrite their previous learning due

to ongoing changes. In chapter 4 this scenario was analysed in the case of two popular

models of STDP. It was found that the dynamics of the learning rule determines the

effect of fluctuations on the autocorrelation of the synaptic weights. In this chapter,

the implications of synapses that vary on more than one timescale is analysed using a

novel model of LTP.

Long term potentiation is the process whereby synapses increase and maintain their

efficacies over long periods. Conversely long term depression enables synapses to de-

crease their efficacies over similarly extended timescales. In hippocampal slice prepa-

rations several decay timescales of LTP/D have been observed (Bliss and Lomo, 1973;

Dudek and Bear, 1992; Frey and Morris, 1997; Bashir and Collingridge, 1994; Abra-

ham, 2003; Alpermann et al., 2006; Reymann and Frey, 2007) (see chapter 1). These

decay timescales are associated with different ’phases’ of LTP/D. Changes to synapses

that decay within a timescale on the order of tens of minutes or several hours are typ-

ically referred to as early phase. With more sustained stimulation the synapse can be

made to retain changes on a far longer timescale, on the order of days, and even longer.

This longer lasting form of LTP/LTD is termed late phase and is protein synthesis de-

pendent (Otani et al., 1989; Frey and Morris, 1997). Interestingly the magnitude of

the synaptic weight change can be similar for early and for late LTP and the synaptic

dynamics observed in LTP experiments typically appear multi-exponential.
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Previous authors have explored the persistence of memory traces within a pool of

synapses that are taken to occupy a discrete number of states (Fusi, Drew, and Abbott,

2005; Fusi and Senn, 2006; Fusi and Abbott, 2007). The state based approach is a

promising new method to construct models of synaptic plasticity. Its graphical basis

allows for intuitive reasoning to produce models that can be easily transformed into

standard equations. As mentioned in chapters 1&2, there have been notable models

using the state based approach to calculate the effects of spike interaction in STDP

(Appleby and Elliott, 2006) and calculate memory trace lifetimes in ensembles of

synapses (Fusi, Drew, and Abbott, 2005; Senn and Fusi, 2005; Fusi and Senn, 2006;

Fusi and Abbott, 2007).

In this chapter models of Long Term Potentiation and Depression are developed

that are based on postulated synaptic states. Electrophysiological measurements are

assumed to represent the ensemble mean of a large pool of synapses each making

stochastic transitions between the postulated states. These electrophysiological mea-

surements are used to determine the transition rates between the states within the

model. Firstly the general modeling approach is outlined and assumptions stated.

Next, the methods used for calculating with the models and evaluating the memory

trace lifetime are explained. This allows 2, 4 and 8 state models to be described and

justified. Finally, the models are compared to experimental data and are used to cal-

culate the memory trace strength and lifetime in an ensemble of putative hippocampal

CA1 synapses.

6.1 Modeling approach

There have been experimental observations suggesting that synapses are capable of dis-

crete state transitions (Petersen et al., 1998; O’Connor, Wittenberg, and Wang, 2005).

Although these experiments await further confirmation, they support the state based

modeling approach that was introduced in chapter 2.

One way that synapses might change state is by altering their molecular composi-

tion. Addition or removal of a synaptic component (such as an AMPAR), or the phos-

phorylation of some synaptic component (such as CAMKII), are two plausible candi-

date mechanisms whereby the synapses might change state. In this chapter, synapses

are assumed to occupy one of a small number of discrete states. These states are based

upon the subcellular machinery as identified in the literature discussed in chapter 1.

Synapses are permitted to move between these states with some probability.
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It is assumed that the fundamental difference between early and late LTP/LTD

is that AMPAR receptors are more firmly anchored within the postsynaptic mem-

brane of synapses that have undergone a late phase change. Experiments suggest that

the mobility of AMPARs is linked to how readily the AMPARs associate with the

post synaptic density (PSD) (Choquet and Triller, 2003; Triller and Choquet, 2003;

Bredt et al., 2004; Triller and Choquet, 2005; Kim et al., 2007). For this reason it is

assumed that the maintenance of LTP/D is postsynaptic and is regulated by the associ-

ation between receptors and the PSD.

Binary synapses having capacity for a single ’unit’ of AMPA receptors to be ac-

commodated are considered. The synaptic weight w ∈ {0,1} is 0 when receptors are

absent and 1 when they are present. Synaptic stability is mediated by a postsynaptic

’slot’ structure which is a simplified form of the ’hyperslot’ suggested in a recent qual-

itative model (Lisman and Raghavachari, 2006). When the slot variable s ∈ {0,1} is 0,

the AMPARs are not anchored and have a short lived occupancy in the post synaptic

membrane. On the other hand, when the slot variable is 1, the AMPARs are anchored

and remain in the synapse for a longer duration.

We already met the simplest model, the 2 state binary model, in chapter 2 and in

chapter 3. In the 2 state model, there is only one variable w associated with the synapse,

giving only two possible states, Fig. 6.1A. In the other models here, the synapses are

associated with both the weight variable w and the slot variable s. In this case, the

possible combinations of AMPAR and slot in the synapses is, Fig. 6.1B:

1. Empty (w = 0, s = 0): The synapse contains neither AMPARs nor the apparatus

for stabilising them. Thus the weight is depressed and the synapse will not retain

AMPAR receptors should they be placed in the synapse.

2. Unanchored (w = 1, s = 0): The synapse contains AMPAR receptors, but no

apparatus required to anchor the receptor. Thus the weight is potentiated but

liable to switch back to w = 0 rapidly.

3. Anchored (w = 1, s = 1): The synapse contains both an AMPAR receptor and

the underlying apparatus required to anchor that receptor to the PSD. Thus the

weight is potentiated and stable1

4. Depleted (w = 0, s = 1): The synapse contains apparatus for stabilising the AM-

PAR receptor, but no receptor. Thus the weight is depressed but will be both
1Stable in the sense that the fluctuations of a weight in this state are comparatively small and so the

correlation timescale of a synapse in this state is longer than other states.
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potentiated and stable should an AMPAR receptor be placed in the synapse.

Each of these combinations defines a state. States will be referred to using the numbers

listed here. Two, four and eight state models are presented. The two state model con-

sists of states {1,2} only, Fig. 6.1A. The four state model utilises states {1,2,3,4}, Fig.

6.1B. The eight state model is formed by the addition of a switch variable, h ∈ {0,1}
that determines whether the synapses are potentiated or depressed on long timescales.

The switch could be a process such as autophosphorylation of CAMKII which has been

shown to be a plausible bistable switch (Hayer and Bhalla, 2005). The 8 state model

thus incorporates: The states {1,2,3,4} with h = 0 for which the transition probabili-

ties between the states are arranged so that synapses tend to ’flow’ towards the empty

state (1), Fig. 6.1C (front ring). In addition the states {5,6,7,8} are identical to the

four states described above, but with h = 1 which switches the transition probabilities

such that synapses tend to flow toward the anchored state (7), Fig. 6.1C (rear ring).

Synapses are able to move between the states in each model with probabilities as-

sociated with the respective transitions as shown in Fig. 6.1. Synapses cannot undergo

transitions between states that are not adjacent. For example transitions cannot oc-

cur that alter both the weight and the slot variable simultaneously because no single

transition between adjacent states allows this to happen in Fig. 6.1. This ’one-step’

constraint simplifies the analysis of the model and amounts to the assumption that the

system can only make one transition within a memory storage interval. The models

are completely specified by a transition matrix containing the transition probabilities

between the states.

The induction of plasticity is modelled as a temporary change to the transition

probabilities. This causes synapses to change their states and leads to a deflection in

the mean weight of the ensemble. The dynamics of the deflection can be matched

to electrophysiological data. In this chapter the models are matched to unpublished

experimental data obtained by Roger Redondo in Edinburgh. This data has decay

timescales of early and late LTP that are comparable to those quoted in chapter 1. The

following interpretations of the experimental data are made:

• To prevent anomalous results, slices should be left for several hours so that bio-

chemical equilibrium is attained. Typically slices are left for at least 4 hours

(Sajikumar and Frey, 2004). It is assumed that at the start of classical LTP ex-

periments, the ensemble of synapses in the hippocampal slice is in the steady

state. We shall refer to this as the steady state and the transition probabilities in
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Figure 6.1: State based models of the synapse. Each transition, marked with an arrow

has an associated probability that the synapse undergoes the transition from one state

to the other in the direction of the arrow. The thickness of the arrows indicates the

magnitude of the transition probability: Thin arrows represent transitions that occur

seldomly, while thick arrows represent transitions that occur frequently. A: Simple two

state model in which the synapse can be potentiated or depressed. B: A four state

model in which the synapse can be potentiated or depressed. In addition to this, the

receptors can be anchored. C: The 8 state model consists of two ring diagrams such

as in B, where one ring (front) has its transition probabilities configured such that at

equilibrium the synapses tend to congregate in the empty state (1) while the second

ring (rear) has transition probabilities configured such that at equilibrium the synapses

tend to congregate in the anchored potentiated state (7). In this framework late phase

LTP/LTD corresponds to changing the switch variable causing a transition between the

two rings. Late phase LTP is the transition of synapses from the depressed ring into the

potentiated ring. Late phase LTD is the transition of synapses from the potentiated ring

into the depressed ring.
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this state as the baseline transition probabilities. The steady state gives rise to

the stable weight trace that is often referred to as ’baseline’ in the experimental

literature. In the models presented here, baseline occurs when the model is at

equilibrium and the probability density across the states is stationary.

• It is assumed that the synaptic ensemble within an equilibrated hippocampal

slice is governed by a process for which all transition probabilities are constant

in time. When an early LTP/D or late LTP/D protocol is applied to the slice, then

the probability of AMPAR insertion is altered during the duration of the proto-

col. It is assumed that the transition probabilities are constant for the duration

of induction protocols. When the protocol ends it is assumed that the transi-

tion probabilities for AMPAR and slot insertion return to their constant baseline

values.

• When an early LTP induction protocol is applied to a hippocampal slice, bio-

chemical processes are activated that lead to an increase in the synaptic efficacy

by insertion of additional AMPARs. This can be interpreted as a temporary in-

crease in the probability of AMPAR insertion. After the LTP induction protocol

is complete we assume that the probability of AMPAR insertion instantaneously

returns to the baseline probability as it was before the application of the protocol.

• When a late LTP protocol is applied, biochemical processes are activated that

lead to an increase in the probability of insertion of AMPARs and the insertion

of slots that stabilise those AMPARs. When the protocol ends, the transition

probabilities instantaneously return to their initial baseline values. Again, the

synaptic weight trace is deflected and then decays. However it decays at a rate

that is far slower than in the early LTP case, because the synapses that contain

slots have a lower probability that their AMPARs are removed.

• It is assumed that LTP and LTD are symmetric. Thus early or late LTD cor-

responds to the exact opposite of early or late LTP, having identical induction

timescales and decay timescales.

First the state based models are specified and matched to the decay and induction

timescales of LTP protocols (the decay of a perturbation from equilibrium). Then the

models shall be used to calculate the lifetime of a memory trace within a synaptic

ensemble conforming to the experimentally observed synaptic dynamics (in an SPS

sense: The equilibrium autocorrelation/SNR).
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6.2 Description of the models

The methods discussed in Chapter 3 are used to analyse the state based models in

this chapter. In particular the dynamics of the models is solved using Eq. (3.7) and

expansion in eigenfunctions Eq. (3.17). The memory trace is quantified in terms of the

signal to noise ratio Eq. (3.32).

6.2.1 Plasticity induction in state based models

In Markov models of synapses, individual synaptic weights are stochastic processes

described by a master equation derived from the transition matrix specifying the model

(see chapter 3). Regardless of the initial condition, the ensemble of synapses will reach

some fixed point of the dynamics (provided that the model satisfies the constraints

mentioned in chapter 3). In the homogeneous case, the transition probabilities do not

vary. Thus once the mean synaptic weight of the ensemble has reached the fixed point

it fluctuates about that point for all time.

The models proposed in this thesis assume that the dynamics of synapses during

LTP can be described using the transition rates between states. In this case, although

individual synapses shall undergo random fluctuations, it is very unlikely that large

numbers of synapses shall undergo any one transition simultaneously at equilibrium.

Thus a large deflection to the mean synaptic weight as observed in LTP experiments

requires that the transition rates be altered2. For this reason, it is proposed that LTP

induction changes the transition rates between the synaptic states and that the model

describing this process is therefore an inhomogeneous Markov process.

In an inhomogeneous process the transition probabilities can alter over time. In the

state based models, plasticity is induced by making changes to the transition probabili-

ties, Fig. 6.2. We shall consider the case that changes to the transition probabilities are

piecewise, i.e. at some instant in time the matrix of transition probabilities in the model

is replaced by a new matrix, that remains constant for some duration. In this case the

model remains solvable as described above but in a piecewise sense: The initial condi-

tion for each segment is the final state of the preceding segment at the preceding time

instant.

Consider the case in which the model is intialised at t0 with a transition matrix

M and the probability vector associated the stable state of the matrix, p∞. At a later

2Given that the model has linear dissipative dynamics and that the fluctuations are Gaussian. For
non-linear dynamics or more exotic noise sources, this would not necessarily be the case.
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time t1 > t0 an instantaneous substitution of the initial transition matrix M for a new

matrix E is made. The matrix E remains for some duration of time ∆t = t2− t1, t2 > t1.

The set of probabilities E imply a different steady state pE for the system and so for

the duration ∆t the system follows a trajectory toward pE . At t2 the original transition

matrix M is substituted back into the model causing a relaxation toward p∞ along some

trajectory.

6.2.2 Two state model

The solution to the dynamics of the two state model shown in Fig. 6.1A can be found

easily. The dynamics of the mean synaptic weight of the ensemble is governed by a

single exponential having timescale

τ =
1

R12 +R21
(6.1)

where R12 and R21 are the transition rates between the states. When R12 and R21 are

the baseline transition rates, this is the timescale of decay of LTP. On the other hand,

when the baseline transition matrix has been replaced by a protocol matrix such that

R12 = Rprotocol
12 and R21 = Rprotocol

21 representing the altered rates of AMPAR receptor

insertion and removal respectively, Eq.(6.1) would be the timescale associated with the

induction of the protocol. The fixed point of the dynamics is

〈w〉=
R12

R12 +R21
. (6.2)

For any initial condition the mean weight of the ensemble converges upon the fixed

point in Eq. (6.2) with an exponential weight trajectory having timeconstant Eq. (6.1).

As was demonstrated in chapter 3, the 2 state model has an unnormalised autocor-

relation timescale that is identical to its response timescale regardless of the initial

condition, Eq. (6.1). Thus, in the two state model with constant transition rates at

equilibrium, there is only ever one timescale of weight relaxation and signal decay

(the autocorrelation timescale). (However this timescale does change when the transi-

tion rates are altered during LTP induction protocols.)

Consider the strength of a memory trace that is stored at the steady state of the

2 state model when p(t) = p∞. The magnitude of the strength of the signal is pro-

portional to the number of synaptic weights that transition in the memory storage

interval ∆t (chapter 3). The initial signal of a memory trace stored within an en-

semble of 2 state synapses is calculated with Eq. (3.37) (chapter 3). For the 2 state
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Figure 6.2: Plasticity induction protocols in state based models. Red arrows indicate

transitions where rates are altered by application of the protocol. The size of the red

arrows indicates the magnitude of the rate during the application of the protocol. A: LTP

and LTD in the 2 state model. In the two state model there can only be one timescale

of LTP/D. B: LTP and LTD in the 4 state model. In the 4 state model, separate protocols

are defined which lead to the decay of the weight change on two possible timescales,

early LTP/D and late LTP/D. C: LTP and LTD in the 8 state model. Late LTP causes

synapses to be transferred between rings due to elevation of 3 → 7 , while late LTD

causes synapses to transfer via 5→ 1.
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model S0 = Ω(wTM+p∞ + wTM−p∞) = Ω(M12 p1 + M21 p2), since M+ = ΓMΓ′ and

M− = Γ′MΓ, where Ω is the number of synapses in the ensemble. There are only

2 states and so p1 = 1− p2 = 〈w〉. At the steady state p2 = R12/(R12 + R21) =

∆tM12/[∆t(M12 + M21)], where ∆t = 1s is the pattern storage interval and 1 pattern

is stored per second (chapter 3). Hence

S0

Ω
=

2M12M21

M12 +M21
. (6.3)

where the transition probabilities M12 and M21 are the baseline transition probabilities

of the model. Eq. (6.3) gives an estimate of the number of synaptic weight transitions

expressed as a fraction of the total number of synapses, as a function of the transition

probabilities between the states, when the model is at the steady state.

In Eq. (6.3) we see the important ingredient of the stationary plasticity stability

dilemma, namely that we cannot boost the initial signal of the memory trace by in-

creasing M12 or M21 without a concomitant reduction to the memory lifetime in Eq.

(6.1).

Since there is only one timescale in the two state model there cannot be both

early and late phase potentiation and depression. We shall take the decay timescale

of LTP/LTD in the two state model to be 4800s. This is the decay timescale of a single

exponential fit to the averaged experimental data in Fig. 6.5A obtained by Roger Re-

dondo 3 from CA1-CA3 synapses in acute hippocampal slices and is compatible with

values in the literature (see chapter 1).

LTP is performed in the two state model by increasing R12 relative to R21, Fig.

6.2A. We take the early LTP induction timescale found from the data in Fig. 6.5A of

150s for 150% potentiation. In the experiments producing this data, plasticity was in-

duced by means of a theta burst protocol of 4 pulses at 100Hz with 200ms interpulse in-

terval. Assuming that if LTP were saturated, 99% of the synapses would be potentiated,

rates corresponding to this induction timescale can be found by solving the synaptic

weight increase during induction with a single exponential, yielding RLT P
12 = 0.0044s−1

and RLT P
21 = 8.97×10−5s−1. The choice of what proportion of synapses should be po-

tentiated if LTP were saturated, makes no difference to the results presented here and

is relevant only so that LTP and LTD in the models can be induced at approximately

the same rate as the data (i.e. so that the initial condition prior to LTP decay matches

the initial weight before LTP decay in the experiment).

LTD is induced by increasing R21 relative to R12. As stated previously it is assumed

3Morris lab Edinburgh, unpublished data
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that LTD is symmetric with LTP. Thus LTD is induced in the two state model with

RLT D
21 = 0.0044s−1 and RLT D

12 = 8.97×10−5s−1.

To further constrain the transition rates, 〈w〉 must also be fixed. Assuming that

w ∈ {0,1} and if half of the synapses are potentiated and half are depressed at baseline

such that 〈w〉 = 1/2, then the magnitude of EPSP slope increase upon LTP should be

identical to the magnitude of EPSP slope decrease upon saturation of LTD, i.e. the

asymptotes of LTP and LTD should be symmetric. The data on this issue are a little

unclear, some studies show an asymmetry in the LTP and LTD asymptotes (O’Connor,

Wittenberg, and Wang, 2005) while in other studies they appear to be symmetrical

(Dudek and Bear, 1992). Here, in all models it is assumed that 〈w〉 = 1/2, this being

the simplest option from the point of view of analysing the models. This implies

R12 = R21 = 1.04×10−4s−1.

Since patterns are stored at the rate of 1 per second the transition probabilities

during the memory storage interval are M12 = M21 = 1.04×10−4. Therefore the values

of the rate constants and the transition probabilities are equal. This is the case for the

rest of this chapter. But what are the implications for other values of the number

of patterns stored per second?: If n > 1s−1 the pattern storage interval ∆t would be

reduced. Thus the rates R would be increased and the decay timescale of LTP would

be reduced. To match the decay timescale of LTP/D to data, the rates R would need

to be readjusted to their previous values. However this would require a reduction in

the transition probabilities M. This would lead to a decrease in the initial signal of a

pattern stored at the steady state. Thus in the state based models here, more patterns

could be stored per second in the steady state, but this would be at the expense of their

initial signal if the decay timescales of LTP/D are constrained against the data.

6.2.3 Four state ring model

The 2 state model is useful in order to illustrate the principle of state based models

and as a benchmark against the performance of more complex models. However it is

poorly suited to being a model of early and late phase LTP because it has only one

weight decay timescale. Thus to produce a model that can be utilised to explore the

effect of early and late LTP upon the memory trace, another timescale of the weight

decay must be introduced. One way of doing this is to introduce more states into

the state diagram taking into account more of the synaptic variables stated in §6.1.

To achieve this a four state model is proposed whose states enumerate the possible
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combinations of the AMPAR variable w and post-synaptic slot variable s.

The 4 state model is arranged in a ring because this is a simple structure that is capa-

ble of reproducing the phenomenology of LTP/D. Specifically, the typical sequences of

LTP/D induction are themselves cyclic: early LTP occurs prior to late LTP, suggesting

that in order to reach the stable potentiated state, the synapse must pass through an un-

stable potentiated state; once late LTP is established, early LTD temporarily depresses

the synapse such that it returns to the previous elevated baseline; further depression of

the synapse induces late LTD, which returns the synapse to its initial strength.

For arbitrary transition probabilities, the dynamics of the four state ring in Fig.

6.1B cannot be found by analysis. If detailed balance is imposed on the ring using

Eq. (3.26) (see chapter 3) then solution is possible, however the solutions are lengthy.

Manageable solutions can be obtained in the case that simplifying assumptions are

made. It is again assumed that in the steady state, half of the synapses in the ensemble

are potentiated and that half are depressed and that early LTP and early LTD are sym-

metric. Thus about half of the synapses should be in state 1 and half in state 3 (because

the empty and anchored states are the most stable states), Fig. 6.1B. Hence the transi-

tions {1 → 2,2 → 1} should be as likely as {3 → 4,4 → 3}. We shall assume that at

baseline it is extremely unlikely that postsynaptic slots are added and removed. Hence

the transition probabilities for transitions {1 → 4,3 → 2} must be small. We can sat-

isfy these constraints and impose detailed balance by specifying R34 = R12, R43 = R21

and R14 = R41 = R23 = R32 = ε where ε is the rate of slot addition and removal. The

rate matrix for the four state model thus specified has four eigenvalues, three of which

are non-zero. The non-zero eigenvalues are,

λ1 =−2ε

λ2 =−R12−R21

λ3 =−2ε−R12−R21

(6.4)

where the timescales of weight decay are τ1 = −1/λ1, τ2 = −1/λ2 and τ3 = −1/λ3.

The asymptotic steady state is given by the eigenvector associated with the zero eigen-

value,

p∞ = Z
{

ε+R21

ε+R12
,1,

ε+R21

ε+R12
,1
}

(6.5)

where Z = 1/[2(1+ ε+R21]
ε+R12

) ensures ∑i pi = 1. Thus starting from some arbitrary initial

distribution, the ensemble of synapses approaches the steady state with weight dynam-

ics that is a linear combination of exponentials each having a timescale chosen from

Eqs. (6.4). Since ε is small only two of these timescales are distinct by a large mar-
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gin (τ1 and τ2/3) and so there are two timescales in practice. These two timescales

are the timescales associated with the decay of early LTP/D, τ2/3 and late LTP/D, τ1.

The precise mixture of exponentials Eq. (3.17) (chapter 3) having these timescales

is determined by the initial condition. For certain initial conditions - such as those

straight after an induction protocol - the weight dynamics might display only a single

timescale.

For the four state model a formula for the initial signal in terms of the steady state

and the decay timescale can be derived. In the four state model, the initial signal

is S0 = Ω(p1M12 + p2M21 + p3M34 + p4M43) = 2(p1M12 + p2M21) due to symmetry.

Substituting from Eq. (6.5) gives4.

S0

Ω
=

3M12M21 +ρ(2M12 +M21)
2(2ρ+M12 +M21)

(6.6)

where ρ = ε∆t.

The restrictions made upon the transition probabilities mean that there is only one

independent occupancy at baseline in Eq. (6.5), since 1 = 2p1 + 2p2. Thus the base-

line distribution amongst the states is completely described by p2 = 1/[2(1 + ε+R21
ε+R12

)],

implying

M12 =
ρ+4ρp2 +2p2M21

2p2−1
. (6.7)

Since ε is small we assume τ3 = τ2 = τ and match τ to the eLTP timescale. From

Eq. (6.4), τ = ∆t/(M12 +M21), substituting for M12 from Eq. (6.7) yeilds,

M21 =
∆t−2p2∆t−ρτ

τ
. (6.8)

Substituting Eqs. (6.7+6.8) into Eq. (6.6) gives,

S0

Ω
=

3p2∆t−6p2
2∆t−ρτ+ρp2τ

τ
. (6.9)

Since the addition of slot proteins is very improbable and ε is small, take ρ = 0,

S0

Ω
=

∆t(3p2−6p2
2)

τ
. (6.10)

Eq. (6.10) cannot be negative because we have asserted that the transition probabilities

between states 1 and 2 and states 3 and 4 are symmetric (M34 = M12, M43 = M21). This

implies that 0≤ p2 ≤ 1/2. Another consequence of the simplifying assumptions made

4Again, recall that R = nM with n = 1s−1,∆t = 1/n (chapter 3).
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about the transition probabilities is that the four state model has a mean weight that is

always 〈w〉= 1/2. This follows from 〈w〉= p2 + p3, giving

〈w〉=
ε+R21
ε+R12

2
[
1+ ε+R21

ε+R12

] +
1

2
[
1+ ε+R21

ε+R12

] =
1
2
.

Despite the independence of the mean weight 〈w〉 and the transition rates in the 4 state

model, the initial signal is dependent on the transition rates according to Eq. (6.10). In

order to compare the four state model with the 8 state model, the transition probabilities

are set such that the initial signal of the four state model is identical to the that of the 8

state model, S(4)
0 = S(8)

0 with an eLTP timeconstant τ2 = 4800s .

From a single exponential fit to data from Roger Redondo in which late LTP was

induced in CA1 of hippocampal slices, the late LTP decay timescale is taken to be

3×105s (83 hours). Thus ε = 1.7×10−6s−1. When the initial signal of the four state

model is matched to that of the 8 state model (see next section) by using Eq.(6.10)

and for an early LTP/LTD decay timescale of 4800s, R21 = R43 = 1.9× 10−4s−1 and

R12 = R34 = 1.3×10−5s−1.

Early LTP is performed in the four state model by switching the direction of flow

of states between state 1 and 2 such that synapses tend to make transitions toward the

two states having w = 1, Fig. 6.2B. To match the eLTP induction timescale of 150s for

150% potentiation set ReLT P
12 = 0.0044s−1 and ReLT P

21 = 8.97×10−5s−1 where we take

the same probabilities as in the two state case by virtue of the smallness of ε (i.e. ε has

little effect upon early LTP induction). In order that detailed balance be preserved it

is also necessary to set ReLT P
43 = ReLT P

12 and ReLT P
34 = ReLT P

21 . This has no impact upon

the number of synapses occupying states {3,4} although it does increase their flux, but

this is of no consequence in this study.

Late LTP is performed in the four state model by setting RlLT P
12 > RlLT P

21 but in

addition RlLT P
23 is larger than R23, causing a flow of synapses into state 3, Fig. 6.2B.

Detailed balance is preserved by setting RlLT P
14 = RlLT P

23 , RlLT P
41 = RlLT P

32 . Thus in order

to preserve detailed balance synapses flow from state 1 to state 4 in addition to flowing

from state 2 to state 3. In the case of late LTD we set RlLT D
34 > RlLT D

43 and in addition

RlLT D
32 is larger than R32 where again RlLT D

14 = RlLT D
23 , RlLT D

41 = RlLT D
32 .

Late LTP was induced in area CA1 of acute hippocampal slices by Roger Redondo

using a theta burst stimulation protocol consisting of 3 trains of 100 pulses at 100 Hz

with a 200ms intertrain interval, Fig. 6.5B. This yields ∼ 180% potentiation in 150s.

The data can be matched by setting RlLT P
43 = RlLT P

12 = 0.0071s−1, RlLT P
34 = RlLT P

21 =
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1.45× 10−4s−1 and RlLT P
23 = 0.0071s−1 for lLTP and RlLT D

21 = RlLT D
34 = 0.0071s−1,

RlLT D
12 = RlLT D

43 = 1.45×10−4s−1 and RlLT D
32 = 0.0071s−1 for lLTD. The application of

late LTP/D causes not only the redistribution of synapses amongst the weight states but

also redistributes them amongst slot states, Fig. 6.2B. Thus the decay of late LTP/D

has a significant component that decays with the slow timescale τ1.

6.2.4 Eight state model

The four state model has only one stabilisation process, AMPARs are either anchored

to the post synaptic density or not. As we have seen, the four state model has only

two distinct decay timescales in practice. However, as discussed in chapter 1, there

are several candidate stabilisation processes at the synapse. In particular it seems that

phosphorylation plays an important role in LTP, complimenting the synthesis and reg-

ulation of structural proteins. For example knockout mice have shown that activation

of ERK pathway due to activity dependent phosphorylation is necessary for late LTP

in the hippocampus (Kelleher et al., 2004) and models have shown that it is plausible

that persistent CAMKII autophosphorylation could act as a molecular switch at the

synapse (Hayer and Bhalla, 2005). Thus in addition to structural changes, persistent

phosphorylation might change the biochemical conditions of synapses for long peri-

ods.

To model the role of an additional stabalisation process such as phosphorylation,

the 8 state model consists of two rings such as those in the four state model, Fig. 6.1B

that are joined at the vertices. One ring, consisting of states {1,2,3,4} has transition

probabilities set such that synapses in that ring tend to occupy state 1 (the empty state).

This is the depressed ring. Synapses in the depressed ring lack activation of some

underlying persistent phosphorylation (the switch variable is not set). The effect of this

is that synapses tend to be empty of AMPAR due to a low rate of production/insertion

of AMPAR or PSD slots, or perhaps due to a reduction in the strength of interaction

between AMPARs and the PSD (Kim et al., 2007).

The other ring, consisting of states {5,6,7,8} has its transition probabilities set

such that synapses tend to occupy state 7. This is the potentiated ring. In the potentiated

ring, phosphorylation leads to the activation of biochemical processes such that the

quantity of associated slots and AMPARs in the synapse is upregulated. Hence the

synapses tend to be potentiated.

At baseline the transitions between the vertices of these rings are made small. Thus
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synapses within each ring remain within that ring for a long period of time. In the 8

state model, late LTP is a process whereby a bistable biochemical switch is flipped

leading to the alteration of transition rates such that synapses are potentiated by the

addition of stable slots and AMPARs.

Solving the eight state model in Fig. 6.1C can be achieved in the case that we

specify two four state rings as above but join their vertices with allowed transitions.

However, as we shall see, this yields a model that is not suitable. Justifications for the

eight state model are thus forced to be somewhat more heuristic since solutions repre-

senting dynamics of interest in this study cannot be compactly dealt with analytically.

6.2.4.1 Detailed balance

In order to ensure that detailed balance applies in the 8 state model it is necessary

to enforce it for every possible cycle within the state diagram. In a state diagram

such as Fig. 6.1C this can be achieved by adjusting one transition probability from

five of the six cycles surrounding each face of the cube, using an equation such as

Eq.(3.25) (Colquhoun et al., 2004). We first choose transition probabilities for the

depressed ring and set detailed balance in that ring according to the transition proba-

bilities {M12,M21,M23,M32,M34,M43,M41} with,

M14 = M41
M12M23M34

M21M32M43
. (6.11)

Transition probabilities in the potentiated ring are determined by transition proba-

bilities in the depressed ring because we are assuming symmetry of plasticity as stated

previously,
M78 = M12 M87 = M21

M85 = M23 M58 = M32

M56 = M34 M65 = M43

M67 = M41 M76 = M41
M12M23M34
M21M32M43

.

(6.12)

Next, impose detailed balance upon top ring in Fig. 6.1C choosing the transition 2→ 6,

M26 = M62
M23M37M14

M32M73M41
(6.13)

where M62 is a free probability. Next the left most ring in Fig. 6.1C is balanced,

M15 = M51
M12M26M65

M21M62M56
(6.14)

where M51 is another free probability. Finally the bottom ring is balanced,

M48 = M84
M15M41M32

M51M14M23
(6.15)
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where M84 is a free probability. Calculation verifies that the right most ring in Fig.

6.1C now also obeys detailed balance as would be expected for the final ring of an 8

state cube model (Colquhoun et al., 2004).

The following assumptions are made:

1. In order that the magnitude of late LTP and late LTD be symmetric, an equal

number of synapses should occupy the depressed ring as occupy the potenti-

ated ring when the ensemble is at equilibrium. Thus the transition probabilities

from the depressed ring to the potentiated ring should be equal to the transition

probabilities from the potentiated ring to the depressed ring.

2. The transition probabilities between the depressed and potentiated rings should

all be individually equal to one constant value at equilibrium. If we permit

unequal transition probabilities between rings, we typically find that synapses

within the depressed ring at steady state do not tend to occupy the empty state

or that synapses within the potentiated ring at steady state do not tend to occupy

the anchored state. In other words the coupling between the rings changes the

desired steady state within each ring. This disrupts the model.

Requirement 1 implies that
M15 = M51

M26 = M62

M37 = M73

M48 = M84

(6.16)

and so if Eqs. (6.16) are imposed, requirement 2 follows trivially if we set M51 =

M62 = M73 = M84. From 6.16 it follows that,

M12M65

M21M56
=

M23M14

M32M41
= 1 (6.17)

reducing to
M12M43

M21M34
=

M23M14

M32M41
= 1 (6.18)

by substitution from Eqs. (6.12). Eq. (6.18) is identical to the balance condition for the

four state ring model as described in the previous section. Thus we find (as we would

intuitively expect) that two four state rings as specified previously that are joined at

each vertex by transitions that are equally likely in either direction automatically obey

detailed balance. In this case both the depressed and potentiated rings behave in an

identical way to the four state model. Half of the synapses occupying each ring are
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potentiated, in states {2,3,6,7} or depressed, in states {1,4,5,8} and there is no dif-

ference in mean weight between the rings. Consequently, although the small transition

probabilities separating the rings potentially introduce another decay timescale in to

the model, this timescale is not strongly expressed in the dynamics of the synaptic

weight and so cannot be a timescale of early or late LTP/D. Thus, this form of the eight

state model would add nothing over the 4 state model and so detailed balance cannot

be imposed upon a suitable model obeying requirements 1 and 2.

6.2.4.2 Transition probabilities in the 8 state model

In order to create an eight state model that we can fit well to the data, and that dis-

plays an additional timescale of decay we must set the transition probabilities in a

more heuristic fashion, described below. Unfortunately this violates detailed balance.

In practice however, we find that as long as detailed balance holds in the depressed and

potentiated rings individually and that as long as the transition probabilities between

the rings Eq.(6.16) are kept small, then the real part of the solution in terms of eigen-

functions matches the numerical solution extremely closely. Thus in effect the system

remains solvable in terms of eigenvectors. This can be understood intuitively by real-

ising that as long as the transition probabilities between the rings are small, then each

of the joined rings is a weakly perturbed version of an identical single ring. Since the

single ring obeys detailed balance and can be solved with the method of eigenvectors,

then so too the joined ring should be approximated by the single ring solutions.

The eight state model is adjusted such that the behavior of the model matches the

electrophysiological probes of LTP/D. Qualitatively this can be done by altering the

balance of flux into and out of each state. For a quantitative match it is then necessary

to be able to vary the magnitudes of the transition rates. Unfortunately there are many

possible configurations of parameter values in the eight state model. One approach

is to attempt to vary the transition rates using only a small number of parameters.

This can be achieved by introducing a scaling law determining the scaling between the

transition probabilities.

Intuitively it seems likely that if one were to measure the reaction rates of biochem-

ical processes in the cell one could plot a graph of the transition rates versus the rank

order of their magnitudes, i.e. fastest rates to slowest rates. The form of that graph de-

termines how reactions that occur frequently relate to reactions that occur infrequently:

This is the scaling law of the transition rates. For example, the scaling law could be

linear, in which case as we look at reactions in turn from the most frequently occurring
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to the most infrequently occurring, we would find that the transition rates are related

to their rank by some linearly decreasing function. Searching the literature reveals no

data regarding what this function should be, but one possibility is that it should be a

power law. Another possibility is that it might be exponential. Both possibilities were

tested and it was found that a power law gave a better fit to data. For the purposes of

the 8 state model, we imagine that we take four rates from this powerlaw scaling, from

most frequently occurring to least frequently occurring {1,2,3,4}. The rates are,

Ri j = αx−γ (6.19)

for x ∈ {1,2,3,4}. The scaling parameters are α and γ. Elements of R consequently

adopt one of 4 values {a,b,c,ε}, Fig. 6.4. The magnitude of the transition rates can

be adjusted by altering α while their spacing can be adjusted by altering γ, Fig. 6.3. In

fitting the model we are interested primarily in the the spacing between the timescales

of early and late LTP/D and in their absolute values. The purpose of introducing the

power law scaling is to enable us to vary both the absolute size and relative spacing of

the transition probabilities by varying only two parameters.

Fig. 6.3A demonstrates that by increasing the power of the scaling law the timescales

in the weight dynamics become more separated. The absolute values of the timescales

also increase greatly, growing approximately exponentially for this range of γ. The

fixed points for the depression and potentiation rings are plotted in Fig. 6.3C, the up-

per curve shows the fixed point weight of the depression ring as γ is increased and

the lower curve shows the fixed point weight of the potentiation ring as γ is increased.

The sum of these two fixed points is the mean weight for the whole ensemble and this

always remains constant at 1/2. The significance of the fixed point for each separate

ring is that this is the value of weight at which a group of synapses would sit if they

were all transferred in to either ring. Thus as γ increases and these two fixed points

diverge, the ensemble of synapses is becoming more polarised in to a depressed and a

potentiated group5.

To match the timescales of decay of late and early LTP/LTD seen in the experimen-

tal data, a power law of α = 0.01s−1, γ = 6.1 is taken, Fig. 6.3A. Fig. 6.4 contains

5This may seem a puzzling statement given that the synapses in this model are binary. However the
synapses can become more polarised in terms of the amount of time they spend occupying the stable
states. In a population of synapses where the fixed points of the depressed and potentiated rings were
identical, synapses would spend equal amounts of time in equivalent states in each ring. If however the
stable states in each ring are very different then synapses in each ring will spend significant amounts of
time in non-equivalent states, for example depressed states in one ring or potentiated states in the other.
Thus a temporal average would reveal significant polarity between rings.
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Figure 6.3: The effect of changing the transition rates of the 8 state model according to

a scaling law Eq. (6.19). A: The timescales (1/λk) of the equilibrium rate matrix plotted

as a function of the power of the scaling law on a logarithmic scale. Although there

are 7 eigenvalues, 3 of them are degenerate (grey dashed lines) due to symmetries in

the transition matrix. Increasing the power of the scaling law has the effect of causing

the timescales to grow nearly exponentially and to become more spaced apart. The

powerlaw chosen in this chapter, where α = 0.01s−1 and γ = 6.1 is shown on a log-

log plot (inset). B: The timescales of the baseline matrix plotted as a function of the

maximum rate, α. Alteration of α allows all of the timescales to be varied without

changing their relative spacing. C: The effect of changing the power of the scaling law,

γ upon the mean steady state weight of each ring where the bottom line is the depressed

ring and the top line is the potentiated ring. Note that the sum of their average values

is always 0.5, so the mean of the whole ensemble remains constant at 0.5. Increasing

the power of the scaling law increases the polarity of the synapses in the ensemble.

D: Altering the minimum rate has no effect upon the fixed points of the depression and

potentiation rings. E: Late LTP/D (solid lines) and early LTP/D (dashed lines) for scaling

laws of power γ = 8 (black lines) and of power γ = 4 (grey lines). F: Late LTP/D (solid

lines) and early LTP/D (dashed lines) for scaling laws with minimum rate α = 0.04s−1

(black lines) and α = 0.08s−1 (grey lines).
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a visualisation of the baseline rate matrix of the eight state model. The entries in the

matrix marked β are set with Eqs.(6.11+6.12) so that detailed balance holds within the

depressed and potentiated rings. Since detailed balance is not set in every ring how-

ever, the model does not obey detailed balance overall but in practice this does not

matter for small transition rates between rings.

6.2.4.3 Applying plasticity protocols

In addition to the baseline rate matrix for the eight state model R, four other matrices

are defined, each one allowing the model to approximate an experimental protocol.

The protocol matrices are; early LTP (EP), early LTD (ED), late LTP (LP) and late LTD

(LD). Each of the protocol matrices is identical to the baseline rate matrix, Fig. 6.4,

but for the modification of certain transition rates such that experimentally observed

plasticity induction times can be matched, Fig. 6.2C.

In the case of the {EP,ED,LP,LD} matrices, the precise transition rates that are

altered are analogous to the four state model, but for the fact that late phase LTP and

LTD increases the transition rates 3 → 7 and 5 → 1 in LP and LD respectively, Fig.

6.2C. The timescales for induction of early and late LTP/D are taken to be the same

values as stated previously. The modifications to the baseline transitions are listed

for each protocol matrix: (in all cases, detailed balance is set by adjusting transitions

1→ 4 and 7→ 6 according to Eqs. (6.11+6.12).)

• EP: ReLT P
12 = 0.0055s−1, ReLT P

21 = 1×10−7s−1, ReLT P
23 = 1×10−4s−1

• ED: ReLT D
78 = 0.0055s−1, ReLT D

67 = ReLT D
87 = 1×10−7s−1, ReLT D

85 = 1×10−4s−1

• LP : RlLT P
12 = 0.0055s−1,RlLT P

21 = RlLT P
41 = 1×10−7s−1,RlLT P

23 = RlLT P
37 = 0.1s−1

• LD: RlLT D
78 = 0.0055s−1, RlLT D

87 = RlLT D
67 = 1×10−7s−1, RlLT D

85 = RlLT D
51 = 0.1s−1

Plasticity protocols are applied to the model as described in §6.2.1: The model begins

in the equilibrium state of the baseline rate matrix. At the beginning of the protocol,

the baseline rate matrix is instantaneously substituted for one of the protocol matrices

{EP,ED,LP,LD}. The system now moves toward the steady state of the protocol ma-

trix, Fig. 6.2C. Since the protocol matrices are constructed so as to give rise to steady

states that have a very different synaptic weight, this causes a deflection in the mean

weight of the ensemble (i.e. depression or potentiation). After the duration of the pro-

tocol, the baseline matrix is instantaneously substituted back in place of the protocol
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Figure 6.4: The baseline transition rates for the 8 state model. Each value in the matrix

is the transition rate from the state on the horizontal scale to the state on the vertical

scale. Each value in the rate matrix is one of {a,b,c,ε,0} chosen from a powerlaw (see

text). All elements have been assigned a greyscale value. Black denotes a, while white

denotes 0. Diagonal elements have been set to 0 for clarity although they are defined

according to Eq. (3.9). The transitions marked β are set such that detailed balance

holds within the depressed and potentiated rings.

matrix, Fig. 6.1. At this point the system is not in a steady state of the baseline matrix

and it relaxes back to that steady state (i.e. this is the decay phase of potentiation or

depression). The relaxation occurs at some timescale that is dependent upon where the

protocol drove the synaptic ensemble to in the state diagram, i.e. early or late LTP can

result depending upon the induction protocol.

6.3 Synaptic dynamics and the memory trace

Early LTP can modeled in the 2, 4 (black dashed line, identical solution for 2 and 4 state

models) and 8 state (solid black line) models by substitution of transition probabilities
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Figure 6.5: Early and late phase LTP/LTD in state based models. A: 2,4 and 8 state

models fitted to experimental data from Roger Redondo (grey circles). The experimen-

tal data is an average EPSP slope from synapses in CA1 of acute hippocampal slice

preparations in which early LTP has been elicited. The experimental data has been

linearly rescaled such that it ranges from a baseline of 0.5 to 1 (rather than 100% to

200%) for direct comparison to the models. The 2 and 4 state models give rise to early

LTP curves that completely overlap (black dashed line). The 8 state model is the thick

black line. B: Same as A but for slices in which late LTP has been elicited. The 2 state

model is plotted with a thin black line for comparison but cannot incorporate late LTP. C:

LTP and LTD in the 2, 4 and 8 state models on an extended timescale. In this chapter

it is assumed that LTD is precisely symmetric to LTP. Both early (dashed lines) and late

(solid line) LTP and LTD is plotted for the 4 state (grey lines) and 8 state (black lines)

models. Early LTP in the 2 state model overlaps precisely with that in the 4 state model

(grey dashed line).
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as previously described for a duration of 150s, Fig. 6.5A. Also plotted is experimental

data from Roger Redondo showing the average of 12 records of the EPSP slope of a

population of synapses in CA1 over the course of early LTP induction. The experi-

mental data has been rescaled for comparison to the output of the models. Late LTP

can be modeled in the 4 and 8 state models, Fig. 6.5B, where the experimental data

(grey circles) is an average of 6 induction trials. In Fig. 6.5C early and late LTP/D

is plotted on a longer timescale. The 2 state model only accommodates one timescale

(which here we have set to be the timescale of eLTP). Both the 4 and 8 state models

can represent early and late phase LTP in a manner consistent with the data.

6.3.1 Depotentiation of early LTP

Depotentiation is the name given to the observation that recently induced synaptic

potentiation can be removed by application of low frequency stimulation soon after

initial induction. Crucially, low frequency stimulation is of a magnitude such that it

would have little or no effect on a synapse that has not been recently modified. Typ-

ically low frequency stimulation consists of a stimulus at 2Hz for 250s-500s (Bashir

and Collingridge, 1994; Sajikumar et al., 2005). Depotentiation of early LTP has been

observed in hippocampal slice preparations (Sajaykumar and Frey, 2004). Fig. 6.6A

is a reproduction of depotentiation of early LTP in CA1 of Hippocampal slices from

Sajaykumar & Frey 2004. We see that early LTP has a ’memory’. If LFS is applied

soon after the induction of early LTP, 5 mins in this case, then the potentiation is

obliterated. If however the gap is longer, for example 15 mins, then the initial poten-

tiation recovers transiently before decaying away. Depotentiation of late LTP has also

been observed and operates in much the same way (Bashir and Collingridge, 1994;

Staubli and Chun, 1996; Woo and Nguyen, 2002).

Depotentiation only occurs in synapses that have undergone recent modification. In

the case of early LTP this implies that depotentiation removes excess AMPAR (relative

to the steady state), that were added by the early LTP induction protocol. In the 4 and

8 state models this corresponds to causing synapses that occupy state 2 (AMPAR but

no slot), to decay rapidly back to state 1 (no AMPAR, no slot). This AMPAR removal

can be achieved by increasing the transition rates from state 2 to 1. Note that if no

previous early LTP induction has been applied, then increasing the rate of transition

2→ 1 has a negligible effect on the synaptic weight because at the steady state there is

only a small number of synapses in state 2.
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Figure 6.6: Depotentiation of early LTP. A: Reproduction of Fig. 1 b+d from Sajaykumar

& Frey (Sajaykumar and Frey, 2004). In the left most graph a synaptic pathway con-

necting with synapses in CA1 of the hippocampal slice is first potentiated with an early

LTP inducing protocol (WTET) and then subjected to low frequency stimulation (LFS) 5

mins later (black filled circles). The control pathway is also shown (open circles). In the

rightmost graph the experiment is repeated except LFS is now delivered 15mins after

the induction of early LTP. B: The state diagrams illustrate the LFS protocol in the 4 and

8 state models. C: LFS delivered to naive synapses that have not experienced eLTP

has little effect on the synaptic weight in the 8 state model (red) or 4 state model (black)

(top panel). Early LTP can be obliterated by LFS in the 8 state (red) and 4 state (black)

models when the LFS follows only 300s after the LTP (bottom panel). D: However if

early LTP is followed by LFS 6000s (100 mins) later there is a partial recovery of the

early LTP in the 8 state model (red line) but not in the 4 state model (black line).
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In the 4 state model, AMPAR removal is modelled with a low frequency stimulation

(LFS) protocol matrix. This opposes early LTP by increasing R21 only, Fig. 6.6B. This

is not the same as early LTD because early LTD increases the rate of 3→ 4, and 2→ 1.

To perform LFS in the 4 state model set RLFS
21 = 0.01s−1.

In the 8 state model an LFS matrix, F , is defined. In F the transition rates of the

transition 2→ 1 and 3→ 4 are elevated, Fig. 6.6B. Thus set RLFS
21 = RLFS

34 = a, RLFS
43 = b

and RLFS
41 = ε, Fig. 6.6B. LFS in the 8 state model thus forces all synapses in the w = 1

states 2 and 3 in the front (depressed) ring, Fig. 6.1, into states 1 and 2 having w = 0.

Note that analogously with the 4 state case, LFS in the 8 state model is not the same

as early LTD. Early LTD increases the probability of 7 → 8 in the potentiated ring.

LFS increases the probability of 2 → 1 and 3 → 4 in the depressed ring. LFS was

not quantitatively matched to data. For this reason the rates in F were sampled from

the same set of probabilities composing R rather than being matched to experimentally

observed rates.

Upon substitution of the LFS protocol matrix for the baseline matrix, depotentia-

tion of early LTP can be elicited in the 8 state model, but not in the four state model,

Fig. 6.6D. Firstly we verify that LFS does not greatly effect the synaptic weight of

an ensemble when applied to the 8 state model when it has not previously undergone

eLTP (i.e. is in the steady state), Fig. 6.6C. When LFS is similarly applied to the naive

4 state model the weight deflection is even smaller, only around 1%.

In both the 8 state and the 4 state models, application of LFS rapidly, 300s after

eLTP obliterates the potentiation, Fig. 6.6C. However if the gap is more significant at

6000s then the 8 state model gives rise to a partial recovery of the initial potentiation

that does not occur regardless of the time gap in the 4 state model. The four state model

is not able to accommodate the late and partial recovery of the synaptic weight after

depotentiation of early LTP.

Depotentiation of early LTP in the 8 state model occurs due to the presence of

two separate potentiation pathways. One of these pathways is the addition of AMPAR

only (transition 1 → 2). The other pathway is the association of slots with AMPAR

(transition 4 → 3). The LFS protocol in the 8 state model has no effect upon synapses

that are protected by the phosphorylation process (i.e. synapses that occupy state 7 in

the second ring). Thus LFS has little effect upon the weight of synapses that have not

recently undergone LTP.

In 8 state synapses that have undergone recent early LTP however, there is a surplus

of receptors associated with slot proteins (in state 3) provided that sufficient time has
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elapsed after application of the eLTP protocol and synapses have had time to diffuse

into state 3. In this case the LFS protocol does significantly reduce the synaptic weight.

There is a subsequent rebound because at baseline there is a tendency for receptors to

reassociate with slots (i.e. flow of states is from state 4 to state 3). But on a longer

timescale these receptors are depleted by synapses flowing back in to state 1 (i.e. the

overall flow is from state 4 to state 1, but this flow is slower than that from state 4 to

state 3). In contrast, when early LTP is induced in the 4 state model there is only one

state transition involved, the addition of AMPAR via 1 → 2. Reversal of this single

process can only lead to the permanent removal of the potentiation regardless of the

time elapse.

6.3.2 The memory trace lifetime

We have seen that remarkably simple models that are designed to exhibit multi-timescale

behavior can reflect early LTP, early LTD and depotentiation of early LTP (in the 8

state case). Having constrained the models against experimentally observed synap-

tic dynamics we now use them to estimate the lifetime of a memory trace within the

synaptic population from which the data was gathered, assuming that the synapses

occupy the steady state.

Fig. 6.7A shows the steady state distributions across the synaptic states of the three

models in this chapter. In the steady state, synapses fluctuate between the states (anal-

ogously to the STDP weights in chapter 4). We can calculate the autocorrelation of

the synaptic weight of the ensemble for each model with Eq.(3.31). As expected, the

autocorrelation of the 2 state model is a single exponential with a timescale identi-

cal to that of eLTP as extracted from the data (4800s) grey line Fig. 6.7B. For our

choice of parameters, based upon matching the experimentally observed 〈w(t)〉 decay

timescales, the autocorrelation of the 8 state model falls more rapidly initially than the

autocorrelation of the 4 state model (solid and dashed black lines respectively). Thus

the signal to noise ratio of the 8 state model is always below the signal to noise ratio

of the 4 state model for an identical initial signal to noise.

Ideally we should like a high initial strength and a slow timecourse of decay. To

quantify this we calculate the initial signal to noise ratio with Eq. (3.37) (see chapter

3). Since the synapses are binary, the variance in the number of synapses that are po-

tentiated at any one time is σ2 = ΩPw=1(1−Pw=1) , where Pw=1 is the total probability

that a synapse is a potentiated state once the system has reached the asymptotic steady
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Figure 6.7: State based models of LTP in the steady state. A: The steady state distri-

butions across the states for the 2, 4 and 8 state models. B: The steady state autocor-

relation functions for the 2 (grey line), 4 (dashed line) and 8 state (solid line) models.

C: The signal to noise ratio of the memory trace for the 2, 4 and 8 state models using

30,000 synapses
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state. It is assumed that pattern storage does not alter the variance of the weights. As

discussed in chapter 3, the SNR is the autocorrelation scaled by the initial signal to

noise ratio, calculated for one cell based upon 30,000 excitatory synapses in Fig. 6.7C.

There are around 4.6×106 cells in CA1 of humans (Rolls, 1996). Again, assuming

30,000 excitatory synapses per cell and if we permit all of the cells in the CA1 region

to participate in the ensemble then Ω = 3.8× 1011. In this case the initial signal to

noise ratio is 32.5. Conventionally a signal is assumed to be undetectable when the

SNR reaches 1. This occurs after 267 hours for the 4 state model. For the 8 state

model, the signal to noise ratio falls to 1 after around 167 hours. In contrast it takes

only 6.9 hours for the SNR to reach 1 in the 2 state model.

In chapter 2 we discussed the antagonism between initial SNR and the memory

decay timescale engendered by the plasticity stability dilemma. This trade off also ap-

plies to these models. Eq. (6.10) derived in §6.2, shows that the signal can be boosted

in the 4 state model while keeping the timescale constant. Plotting the quadratic de-

pendence of the initial signal on the equilibrium state of the 4 state model (i.e. the

occupancy of p2) reveals that the initial signal is optimised when the occupancy of

p2 is 0.25. This implies that when the ring is in the diffuse state (i.e. all 4 states are

equally likely), then the initial signal is at its highest possible value, while the decay

timescale is still 4800s, Fig. 6.8C. However there is a cost: The diffuse state amounts

to removing the distinction between early LTP and late LTP and reduces all timescales

to a single degenerate timescale of 4800s. In this case the autocorrelation function

decays at the early LTP timescale alone, Fig. 6.8E and the four state model looses its

extended memory trace lifetime in comparison to the binary model. Further to this,

the 4 state model would no longer match experimental observations by exhibiting both

early LTP and late LTP.

The same considerations apply to the 8 state model. Decreasing the decay timescales

leads to an increase in the initial signal (although at the expense of loss of agreement

with the data). Since the eigenvectors of the 8 state model are independent of α, the

steady state can be held constant while the timescale is varied by altering α, Fig. 6.8B.

All four distinct timescales are affected identically when α is scaled. Unfortunately

it is not possible to analytically find combinations of α and γ that preserve the decay

timescales of the 8 state model while simultaneously altering the steady state. At-

tempts at this result in transcendental equations. However the initial signal to noise

can be calculated as the scaling parameter γ is varied, Fig. 6.8D. In this case both

the decay timescales and the steady state are simultaneously altered. We find that the
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Figure 6.8: Effects of altering the decay timescale and steady state on the initial SNR.

A: 4 state model: The early LTP timescale is varied as the steady state distribution is

held constant. The triangle marks the initial signal to noise ratio for the 8 state model

as in Fig. 6.7. This is identical to the initial signal of the 8 state model when the early

LTP timescale is 4800. B: 8 state model: Initial signal to noise ratio as a function of one

of the four separate decay timescales. To vary the timescale, the powerlaw is adjusted

so as to preserve the steady state (i.e. α is varied). C: The initial signal to noise ratio

as a function of the steady state of the four state model as indicated by the probability

of occupancy of state 2, p2, see (Eq. 6.10). The triangle is the initial signal of the 4

state model D: Initial signal to noise ratio of the 8 state model as γ is varied. E: The

autocorrelation of the four state model when the steady state is highly polarised (i.e.

p2 ≈ 0) (dashed line) and when the steady state is diffuse (p2 ≈ 0.25) (solid line). The

thin line is the autocorrelation of the four state model when it is matched to experimental

data.
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initial signal to noise ratio of the 8 state model falls exponentially as γ is increased. In

contrast we saw in Fig. 6.3A that the timescales of decay of the memory trace increase

exponentially as γ is increased. Thus, as we have come to expect from the plastic-

ity stability dilemma, in the 8 state model too, there is direct antagonism between the

initial signal and the memory lifetime.

6.4 Discussion

In this chapter, two multitimescale models of long term potentiation were proposed

and compared to the simple single timescale 2 state model. Assuming that synaptic

plasticity as elicited in experimental hippocampal slice preparations can be considered

as piecewise homogeneous, the two state model is unable to account for even the most

basic observations relating to LTP: Namely the existence of early and late LTP. The ad-

dition of biologically motivated hidden states in the 4 and 8 state models allows early

LTP and late LTP to be accommodated within the framework of the piecewise ho-

mogenous Markov process. These models were adjusted so as to be compatible with

the experimentally observed dynamics of an ensemble of weights in CA1 of hippocam-

pal slice preparations. Once the timescales of the models had been thus constrained

the signal to noise ratio of a memory trace stored at equilibrium within the synaptic

ensemble was found for each model. The 8 state model incorporates both timescales of

addition and removal of AMPAR and slots and a timescale associated with a bistable

phosphorylation switch. The 4 state model incorporates only timescales associated

with the addition and removal of AMPAR and slot proteins. It was found that, due to

the presence of more timescales, the 8 state model can qualitatively account for the

depotentiation of early LTP. However the 4 state model provides a longer time for the

signal to noise to reach 1, and thus performs better as a memory store.

Here the approach was to formulate a state based model of LTP based upon ex-

perimental observations and then to infer the memory trace lifetime in those synapses

assuming that the dynamics observed experimentally are an accurate reflection of the

in vivo synaptic timescales (this being the widespread assumption). Previous work

has been more abstract that this, with little attempt being made to link the models

to the dynamics of synapses as observed electrophysiologicaly (Amit and Tsodyks,

1992; Amit and Fusi, 1994; Fusi, Drew, and Abbott, 2005; Senn and Fusi, 2005;

Fusi and Senn, 2006; Fusi and Abbott, 2007; Ben Dayan Rubin and Fusi, 2007;

Leibold and Kempter, 2008). Furthermore, no previous state based model of the mem-



134 Chapter 6. State based models of Long Term Potentiation

ory trace6 has been of the class of models examined in this chapter, i.e. models con-

taining rings of bidirectional state transitions.

It was assumed that synaptic plasticity as elicited in slice experiments can be de-

scribed as a piecewise Markov process. This implies that the synapses are Markovian,

that plasticity protocols lead to discrete alterations to the transition rates of biochem-

ical processes and that such discrete transitions can be made in a near instantaneous

manner. If one were to watch a synapse within a brain as its owner moved around

the world, then there is reason to doubt that it would appear Markovian, because we

could not hope to have knowledge of all variables influencing its evolution. For the

models here however, that consider synapses in the far more controlled conditions of

the laboratory, it appears that it is reasonable to assume that synapses are Markovian

because plasticity protocols, when applied with the correct controls, give reproducible

behavior.

It is unlikely that the application of plasticity protocols gives rise to instantaneous

discrete changes to the values of rate constants of processes within cells. Indeed it is

known that LTP is composed of a gradual cascade of biochemical processes that can

still be ongoing days or weeks after the initial plasticity event (Abraham and Williams,

2003). Nevertheless at the level of the synaptic weight it seems that the observed

dynamics can be adequately explained with piecewise changes to the rate constants.

This implies that processes having a direct impact upon the synaptic weight (rather

than, say, an ultrastructural role) do indeed vary on a timescale that is short compared

to the decay of early and late LTP. It is also possible that changes in gene expression

that have been observed on longer timescales after plasticity induction, have some role

in maintaining particular configurations of rates of biochemical process rather than

having a direct impact upon the synaptic efficacy.

Detailed balance was imposed on the models containing rings. There is no reason

to suppose that synapses obey detailed balance, being as they are not closed isolated

systems. Thus detailed balance is imposed not for biological realism but for reasons

of mathematical simplicity. It is easier to understand the behavior of the 8 state model

in particular if we can think in terms of a superposition of eigenfunctions. For this to

be the case detailed balance (or weakly distorted detailed balance) must apply. Since

the models can match experimental data well when detailed balance is obeyed, there is

little reason not to impose it at this stage.

6There are interesting state based models of subcellular plasticity dynamics (Shouval, Bear, and
Cooper, 2002; Smolen, 2007) but these do not directly consider the memory trace.
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In order to make the 8 state model tractable, a power law scaling was introduced

between the transition rates. The parameters of the power law were then adjusted

until the weight decay matched the experimental data. This worked surprisingly well.

Nevertheless the models could be improved by formally extracting the magnitudes of

the timescales present in the decay of early and late LTP given some assumptions about

factors such as the number of timescales present. The expansion in eigenvectors could

then be matched to the empirically determined timescales.





Chapter 7

Amnesia and synaptic overload

The hippocampus is crucial to the initial formation of episodic memories (Schoville

and Milner, 1957; Morris et al., 2003). Evidence, primarily from hippocampal lesions,

shows that destruction of the hippocampus prevents the formation of new declarative

memories but does not disrupt existing long term memories (Alvarez, Zola-Morgan,

and Squire, 1995; Teng and Squire, 1999; Corkin, 2002). This implies that after some

time consolidation permits a subset of hippocampal traces to be completely mediated

by circuits elsewhere in the cortex, forming a long term memory (chapter 1).

The hippocampus contains several subregions that are implicated in learning and

memory. There are theoretical and anatomical reasons to believe that the hippocam-

pus achieves its function of association of neocortical memory traces by means of

a multilayer associative network across layers CA3-CA1 (Marr, 1971; Rolls, 1996;

McNaughton and Morris, 1987; Rolls and Treves, 1998). Furthermore, rapidly ac-

quired spatial learning has been shown to be highly dependent upon the dentate gyrus,

which is a different sub network of the hippocampus (Moser et al., 1995).

Whatever the mechanistic details of hippocampal function, many of which are still

not clear, it seems that the purpose of the hippocampus is to allow rapid, automatic

storage of traces linking other neuronal groups such that the traces are either discarded

or transferred to neocortex at a later stage. Perhaps the best possible explanation

for the encoding and storage of memory traces in the hippocampus is by modifica-

tion of ensembles of excitatory synapses on pyramidal neurons (Morris et al., 2003;

Martin and Morris, 2002). If we assume this to be the case, then the stability plasticity

dilemma is pertinent to hippocampal memory traces for the following reasons: 1) The

population of cells and hence synapses is comparatively restricted. For example, there

are 2.5×105 cells in CA1 in rats and 4.6×106 in humans (Rolls, 1996), each having

137
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around 3×104 excitatory synapses1 (Megias et al., 2001). 2) There is a necessity for a

high initial strength of all memory traces (because all of them might be consolidated).

3) It must be possible for traces to be retained for long enough such that they can be

transferred to long term storage should they be deemed to be of behavioral relevance

after their initial formation.

The synaptic plasticity and stability hypothesis predicts that saturation of LTP in

the hippocampus should lead to the disruption of learning in-vivo because the number

of weights available for modification (and hence learning) would be restricted. Exper-

iments where LTP was induced in the dentate gyrus of rats have been performed and

resulted in behavioral amnesia (McNaughton et al., 1986; Castro et al., 1989), although

the results were mixed with several labs unable to reproduce these findings (Suther-

land, Dringenberg, and Hoesing, 1993; Jeffery and Morris, 1993; Cain et al., 1993;

Barnes et al., 1994). More recent studies suggest that as long as the degree of satura-

tion is sufficient then amnesia can be provoked (Moser and Moser, 1999; Moser and

Morris, 1998). In this chapter, amnesia by saturated LTP induction is demonstrated in

the state based models of LTP.

Firstly, amnesia inducing protocols are simulated. We imagine that a memory trace

is stored in the equilibrium state of the system at t = t0 and the memory trace is tracked.

At a later time t1 > t0 early or late LTP is induced and its impact upon the memory

trace is observed. This tests the extent to which LTP disrupts the memory trace. As

is suggested by experiment, it is found that the extent of amnesia is dependent upon

the extent of saturation of the LTP. Furthermore, these simulations show that early LTP

induction leads to reversible disruption of the original memory trace. This implies that

early LTP might allow temporary modification of synapses, such that a new memory

trace can be stored without complete disruption of the original trace.

The observation that early LTP might allow the coexistence of memory traces su-

perimposed upon different timescales is referred to as ’synaptic overload’ here, but

has been discussed by other authors (Gardner-Medwin, 1989; Rolls, 1996; Morris et

al., 2003). In light of this, simulations were carried out in which multiple memories

were stored within one population of synapses using the two different timescales of

LTP. This is achieved by first storing a memory trace in the synapses by using the late

LTP/D protocols defined in chapter 6. After this initial storage, further patterns are

stored using early LTP/D protocols. The recall of both the initial pattern, stored with

1In his classic paper, David Marr assumes of the order of 1×104 synapses per pyramidal cell and he
assumes 1×104 pyramidal, or ’output’ cells (Marr, 1971; Willshaw and Buckingham, 1990).
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late LTP/D and the subsequent patterns, stored with early LTP/D is then assessed.

If we consider hippocampal LTP as serving the function of ’automatic recording

of experience’ (Morris and Frey, 1997; Morris et al., 2003), then synaptic overload

might alleviate the plasticity stability dilemma in the hippocampus by allowing rapid

formation of new, strong memory traces without permanent destruction of pre-existing

traces. This might allow both the rapid storage of high signal memories and the reten-

tion of previous, important memories for long enough that they can be consolidated at

the systems level.

7.1 Amnesia and saturated LTP in the hippocampus

The dentate gyrus is an area of the hippocampus that has been shown to be crucial for

spatial learning (Moser et al., 1995). Thus it follows from the synaptic plasticity and

memory hypothesis, that it might be possible to disrupt spatial learning by preventing

modification of the synapses between the perforant path and the dentate gyrus mossy

fibres. One way of achieving this experimentally is to saturate LTP in the efferent

synapses of the perforant path. By doing this it is supposed that any memory trace in

the dentate gyrus is also saturated, thus preventing useful storage of information.

The effects of LTP induction upon memory can be studied from two perspectives.

Firstly saturation of a synaptic population in vivo by induction of LTP within the den-

tate gyrus, can destroy previously learned memories, either by disrupting the memory

trace or by preventing it from being retrieved. We refer to the case that a previously

learned memory trace is disrupted as retrograde amnesia. Alternatively it might be

that saturation of synapses prevents the acquisition of new memories. This is referred

to as anterograde amnesia. Later in this chapter retrograde and anterograde amnesia

are studied in state based models of synapses where LTP is saturated.

Experimental studies investigating disruption of memory by LTP typically record

from within the dentate gyrus and stimulate the perforant path of the hippocampus. At

least two groups of rats are used in each study: In the control group, only recording

takes place and no LTP is induced. In the test group, LTP is induced to the maximum

attainable level. Retrograde amnesia can be studied by training both groups of rats on

a navigation task (after the synaptic baseline has been established) and then subjecting

the test group of rats to LTP. A comparison of the control and test groups allows an

assessment of the extent of retrograde amnesia. To test anterograde amnesia, both

groups of rats are trained on a navigation task after, or during, a period in which the
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test group receives LTP.

There is evidence that saturation of LTP in vivo readily leads to anterograde am-

nesia (Castro et al., 1989; McNaughton et al., 1986), disrupting the acquisition of new

learning. Furthermore, retrograde amnesia can be produced provided that LTP is in-

duced within hours of learning (McNaughton et al., 1986). However, four of the seven

commonly cited studies of amnesia and LTP induction found no effects of LTP in-

duction on learning (Sutherland, Dringenberg, and Hoesing, 1993; Cain et al., 1993;

Jeffery and Morris, 1993; Barnes et al., 1994). In light of the study by Moser and Mor-

ris, it seems likely that this is because the outcome of these experiments is dependent

upon the level of saturation attained by the LTP protocol (Moser and Morris, 1998;

Moser and Moser, 1999).

In this chapter, synaptic saturation with LTP is simulated in the state based models.

Retrograde amnesia is assessed by tracking the signal to noise ratio and autocorrela-

tion of a memory trace when the trace is initially stored in the steady state of the model

prior to application of the LTP. Anterograde amnesia is assessed by tracking the signal

to noise ratio and autocorrelation of a memory trace stored in a non-steady state of the

model, just after the application of the LTP protocol. In light of the experiments men-

tioned above, it is expected that the models should exhibit anterograde and retrograde

amnesia in a manner that is dependent upon the level of saturation of the synapses.

In experiments, the time elapse between LTP induction and initial training (i.e.

memory trace formation) is at least of the order of minutes. Here we shall assume that

the memory is stored at the first time instant after the completion of LTP induction. It

is also assumed that the memory trace is formed in a ’one-shot’ manner. This is not the

case in experiments, where training occurs over many trails. However if we imagine

an ethically dubious experiment, where we are allowed to average over many rats, we

would predict an improvement in the spatial memory task even after the first trial. The

results here are equivalent to this imaginary experiment.

In chapter 6 and chapter 4 the memory trace was studied from the equilibrium

perspective (the stationary plasticity stability dilemma). The synapses were settled

into the equilibrium state and modifications to the synapses comprising the memory

trace were therefore fluctuations around equilibrium, Fig. 7.1A. In this case a natural

interpretation of those fluctuations (i.e. random transitions between weight states) is

that they occur as a consequence of memory storage.

This picture must be expanded slightly when we wish to consider the effects of

large perturbations (i.e. the induction of LTP) on the memory trace (the non-stationary
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plasticity stability dilemma). Firstly, we must understand the effect of disruption of the

steady state on a memory trace that was at first stored at equilibrium (in the retrograde

case). Secondly we must consider the case where a memory trace is stored away from

the steady state as is the case when memory is acquired directly after LTP induction

(in the anterograde case), Fig. 7.1B. We shall find that when memories are stored away

from the steady state, our intuitions must be modified.

Study of anterograde amnesia raises the possibility of a memory storage regime,

in which individual synapses are not at the steady state2. In this case memories are

not considered as resulting from spontaneous fluctuations near equilibrium. Rather,

memory results from large LTP/D potentiation and depression events involving sub-

sets of the synaptic ensemble. From this viewpoint, small fluctuations of the synapses

governed by the transition probabilities between states are no longer the cause of the

memory trace3. Now the memory trace is composed of large displacements of groups

of synapses in weight space, and the dynamics of the trace are governed directly by the

dynamics of eLTP/D and lLTP/D, Fig. 7.1C. We shall see that in this regime the dis-

tinct decay timescales of early and late phase plasticity could be beneficial to memory

storage.

7.2 Calculation of the memory timecourse

Previously in chapter 6 the autocorrelation and signal to noise ratio (SNR) of the synap-

tic ensemble was used to measure the decay timecourse of the memory trace when the

synapses were at equilibrium for all time. In this chapter we are interested in the evo-

lution of the memory trace in two non-equilibrium cases: 1) The case that a memory

trace is initially stored in the equilibrium state of the synaptic ensemble, but where

the synapses are subsequently subject to LTP, inducing a non-equilibrium state. This

tests retrograde amnesia. 2) The case that a memory trace is stored in the ensemble

straight after LTP is induced when the mean weight is elevated. This tests anterograde

amnesia.

In the models here LTP is induced in an identical fashion to chapter 6, by substitu-

tion of the baseline matrix for the LTP protocol matrix for some duration of time. We

shall investigate amnesia as a function of the extent of saturation of the synapses (i.e.

2That is to say that the probability that a synapse occupies each state is a function of time.
3But such fluctuations are still crucial because they give rise to the decay timescales of eLTP and

lLTP. However from this perspective the fluctuations are not seen as being usefully correlated with events
in the outside world, but rather as the consequence of cellular metabolism.
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the duration of substitution of the protocol matrix) and the timescale of decay of the

LTP (i.e. whether LTP is early phase or late phase). The mean value of the synaptic

weights in the ensemble with the baseline matrix or during the application period of a

protocol is calculated by expansion in eigenvectors (chapter 3+4),

〈w(t)〉= ∑
i

wi ∑
k

c(k)
i Φ

(k)
i exp(−t/λk) (7.1)

with

pi(t0) = ∑
k

c(k)
i Φ

(k)
i (7.2)

where Φ(k) are the eigenvectors of the baseline or protocol rate matrices of the model

and where pi(t0) is the initial occupancy of each state. The expansion is always

checked against the direct numerical method of raising the transition matrix to a power

(chapter 3). Both methods agree as would be expected for models with detailed bal-

ance.

7.2.1 Case 1: Retrograde amnesia

To test retrograde amnesia we require the autocorrelation in the case that the transition

probabilities change during the duration of interest (case 1 above). If the synaptic

ensemble begins in some state p(wi, t0) at t0 then as time evolves the autocorrelation

follows (chapter 3),

〈w(t0)w(t ′)〉= ∑
i j

w j(t ′)p( j, t ′|i, t0)wi(t0)p(i, t0). (7.3)

We now intervene at some time t1, where t0 < t1 < t ′ and instantaneously substitute

the baseline rate matrix for one of the LTP protocol matrices {EP,LP}. In this case the

two point autocorrelation becomes〈
w(t0)w(t ′)

〉
= ∑

i jk
wk(t ′)p(wk,t ′|w j, t1)p(w j, t1|wi, t0)wi(t0)p(wi, t0) (7.4)

where a new index and conditional probability must be introduced at the time when we

intervene. Index i runs over the initial weight state at t0, index j runs over the weight

state at the point in time that the LTP is initiated (t1) and index k runs over the weight

state at the present moment in the time (t ′). After some time interval ∆t = t2− t1, t1 <

t2 < t ′ the transition rates are returned to their baseline values. The weight deflection

caused by the application of LTP now decays away. The autocorrelation proceeds〈
w(t0)w(t ′)

〉
= ∑

i jkl
wl(t ′)p(wl, t ′|wk, t2)p(wk,t2|w j, t1)p(w j, t1|wi, t0)wi(t0)p(wi, t0)

(7.5)
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where the index k now runs over the weight state at the time that the LTP protocol

is removed and the baseline weight matrix is replaced at t2. Provided that we make

no further intervention and as t ′ → ∞, then 〈w(t)〉 → 〈w∞〉 and 〈w(t0)w(t ′)〉 → 〈w2
∞〉.

Eq.(7.5) describes that the autocorrelation now depends upon the initial state p(wi, t0),

the protocol matrix, the baseline matrix, the time at which we applied the plasticity

protocol t1, its duration ∆t and the present moment in time t ′. Thus the overall process

is non Markovian by virtue of its dependence upon t1 and ∆t, however the autocorre-

lation is piecewise Markovian because at all times in between the instants when we

perform the plasticity protocols, it is Markovian. This procedure can be repeated for

cases where multiple interventions are made, for example if LTP is induced twice or

more (see §§7.4.1+7.5). Thus, given the values of the various transition matrices and

the times when the transition matrices are substituted, the autocorrelation can be recur-

sively calculated. Eq. (7.5) is normalised

κ(t) =
〈w(t0)w(t)〉−〈w(t0)〉〈w(t)〉√

σ2
w(t0)σ2

w(t)
(7.6)

such that the autocorrelation ranges between 0 and 1. From the autocorrelation the

signal to noise can be found,

S
N

=
Ω

∣∣∣η√σ2
w,0σ2

w(t)κ(t)+ 〈w(t)〉(〈xY 〉−〈xN〉)
∣∣∣√

1
2(σ2

Y (t)+σ2
N(t))

. (7.7)

where σ2
Y (t) = Ω〈xY w(t)〉(1−〈xY w(t)〉) and σ2

N(t) = Ω〈xN〉〈w(t)〉(1−〈xN〉〈w(t)〉).
In the signal to noise calculations here it is assumed that the mean of the signal and

noise distributions are identical to the steady state mean weight. That is to say that

〈xY 〉= 〈xN〉= 〈w〉∞. This amounts to the following 2 assumptions: 1) That when there

is no intervention, whatever patterns are stored by the animal have similar statistics to

the steady state statistics of the weights (assuming binary weights and inputs) and 2)

when LTP is induced, this does not alter the statistics of the patterns that are presented

to the dentate gyrus, i.e. LTP does not alter the patterns of activity encountered by the

weights. In the case of retrograde amnesia the system is initially in the steady state,

σ2
w,0 = σ2

w,∞ and Eq. (7.7) becomes

S
N

=
Ωη

√
σ2

w,∞σ2
w(t)κ(t)√

1
2(σ2

Y (t)+σ2
N(t))

(7.8)
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from the initial condition at t = t0,

η =
S0√

σ2
w,∞σ2

w,0Ω

(7.9)

giving
S
N

=
S0σw(t)

σw,0

√
1
2(σ2

Y (t)+σ2
N(t))

κ(t) (7.10)

where we note that at the time t = t0, σw(t) = σw,0 and σY (t) = σY,0, σN(t) = σN,0

such that the steady state relation is recovered, i.e. the SNR is the autocorrelation

scaled by the initial SNR. This is to be desired for retrograde amnesia since the steady

state condition should be recovered before any intervention is made.

The initial signal for the 2 and 4 state models was derived in chapter 6, recall that

for the 2 state model the initial signal is

S0 = Ω(M12 p1 +M21 p2) (7.11)

where M12 is the transition probability from the depressed state (state 1) to the poten-

tiated state (state 2) and M21 is the transition probability from the potentiated to the

depressed state. In the initial state the probability of occupancy of state 1 is p1 and for

state 2 is p2. In the balanced case where M12 = M21 = r this reduces to S0 = Ωr and

the initial signal is independent of the initial state.

For the 4 state model, the initial signal is

S0 = Ω(p1M12 + p4M43 + p2M21 + p3M34) (7.12)

which reduces to S0 = 2Ω(p1M12 + p2M21) under the detailed balance conditions

stated in chapter 6.

In the case of the 8 state model, the initial signal is calculated from the transition

matrix with S0 = Ω(wT M+p∞ + wT M−p∞) which is simply the fundamental formula

from which Eqs. (7.11+7.12) originate (chapter 3). As in chapter 6, Ω = 3.8×1011.

7.2.2 Case 2: Anterograde amnesia

Chapter 6 made use of the autocorrelation of the synaptic weights as they evolve from

an initial state (which was taken to be the equilibrium state) with constant transition

rates. To test anterograde amnesia we shall use this again, but now the initial state is not
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the equilibrium state. The un-normalized autocorrelation, Eq. (7.3) can be expressed

as (chapter 3),

〈w(t0)w(t)〉= ∑
k

eλkt

(
∑

i
p(i, t0)Cikwi

)(
∑

j
Φ

(k)
j w j

)
(7.13)

where C is the inverse of the eigenvector matrix of the baseline rate matrix. Again, Eq.

(7.13) is normalised such that the autocorrelation ranges between 0 and 1. In the case

of anterograde amnesia σ2
w,0 6= σ2

w,∞. Now Eq. (7.7) becomes

S
N

=
S0σw(t)

σw,∞

√
1
2(σ2

Y (t)+σ2
N(t))

κ(t) (7.14)

where we note that at the time t = ∞, σw(t) = σw,∞ and σY (t) = σY,∞, σN(t) = σN,∞

such that the steady state relation is recovered. Again, this should occur because in the

case of anterograde amnesia the steady state should be recovered in the limit t → ∞

when all influence of the induced LTP is lost.

7.3 Effects of LTP induction on the memory trace in

state based models

7.3.1 2 state model

The evolution of the memory trace is calculated when LTP is applied to the ensemble

of synapses using the methods discussed in the previous section. To illustrate the effect

of LTP on the memory trace, we first consider the 2 state model. We assume that at

t = t0, the ensemble of synapses is in the steady state and that at this instant a memory

is stored (memory 1 in Fig. 7.2A). Some time later at t = t1 LTP is induced. When LTP

is saturated by applying the protocol for 1000s, the initial memory trace is completely

destroyed and the SNR and autocorrelation of memory 1 goes to 0, Fig. 7.2B. However

if the protocol is applied for a shorter duration of 100s, the memory is only partially

disrupted, having a reduced SNR and autocorrelation after induction. Hence in the 2

state model, retrograde amnesia is induced by application of the LTP protocol.

Anterograde amnesia is also studied. At t = t2, when LTP induction is at its peak

value, we assume that another memory is stored (memory 2 in Fig. 7.2A). Memory

2 differs from memory 1 in that the ensemble of synapses is no longer at the steady

state when the memory is stored. The timecourse of the SNR of memory 2 is identical
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to the SNR timecourse in the case that no LTP is induced. Thus in the 2 state model

anterograde amnesia does not occur if we consider the strength of the memory to be

determined by the SNR. However if a memory decoder were reading the normalised

autocorrelation, then anterograde amnesia would be experienced.

This disparity between the SNR and the autocorrelation might seem puzzling in

light of the analysis of the 2 state model presented in chapter 3. The 2 state model

obeys the fluctuation dissipation theorem (FDT). Furthermore we found that there is

only one timescale of the un-normalised autocorrelation and the mean weight evolution

regardless of the initial condition. But the autocorrelation timescale now appears to

differ depending upon the initial condition, Fig. 7.2C. This is because the normalised

autocorrelation is plotted here. Let 〈w(t0)w(t)〉 ∝ φ(t). From the FDT we know that

〈w(t)〉 ∝ φ(t) also holds. Since we have binary synapses σ2
w(t) ∝ φ(t)(1−φ(t)). Thus

the normalised autocorrelation, Eq.(7.6) gives4 κ(t) ∝
√

φ(t)/
√

(1−φ(t)). In contrast

to the autocorrelation, the SNR Eq. (7.14) does directly reflect φ(t), since

SNR ∝

√
φ(t)(1−φ(t))

√
φ(t)√

(1−φ(t))
∝ φ(t). (7.15)

Finally, the initial signal of the 2 state model Fig. 7.2C is decreased by a small

amount when LTP is saturated. While the initial signal S0 is not greatly effected by LTP

induction in the 2 state model, the signal and noise standard deviations, σY (t),σN(t)

and the standard deviation of the weight σw(t) are altered during induction. Thus the

signal to noise ratio is slightly modified.

7.3.2 4 & 8 state models

To test the 4 and 8 state models, an identical procedure to Fig. 7.2 is used. We imagine

that at t = t0 a memory is stored in the steady state of the system. Some time later at

t = t1 LTP is induced. At the peak of the LTP at t = t2 another memory is stored. The

SNR and the autocorrelation of both memories is calculated.

The behavior of the 4 and 8 state models is richer than the 2 state model and so

five levels of saturation of early LTP and late LTP were induced in the models, Fig.

7.3A+B, top row, (grey levels, from light for low saturation to dark for higher satu-

ration, heavy black line is the mean weight when LTP is saturated). In the remaining

4The normalised autocorrelation will not take this form if the variance and the mean are constant,
i.e. if the system is at the steady state. In this case the normalised autocorrelation κ(t) has an identical
timecourse as the un-normalised autocorrelation 〈w(t0)w(t)〉.
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Figure 7.1: Three regimes of memory storage. A: Memory storage at equilibrium.

Synaptic weights make stochastic transitions once equilibrium has been established.

It is assumed that all of the instantaneous transitions contribute to the memory trace.

On average the steady state distribution of the number of potentiated synapses is pre-

served at all times during storage and recall. This is an example of the SPS. B: Mem-

ory storage after saturation of LTP. An LTP protocol is applied such that the maximum

number of potentiated synapses is achieved. At the instant that the protocol ceases a

memory is stored and the distribution of the number of potentiated synapses relaxes

back to the steady state distribution. As a result of this there are many synaptic weight

transitions at the instant after LTP induction. This is an example of the NPS. C: Memory

storage by driving the synaptic weights to non-steady state target values (top row). LTP

(blue synapses) and LTD (red synapses) is applied such that all synapses participate

in the pattern. This creates two distributions of the number of potentiated synapses,

while the overall mean remains constant. If there is no further intervention these dis-

tributions relax back to the steady state distribution and the timescale of this relaxation

determines the timecourse of the SNR.
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Figure 7.2: Retrograde and anterograde amnesia in the 2 state model. A: The effect

of LTP induction on the synaptic weight. The heavy black line is the case where LTP

is saturated and the protocol is applied for 1000s. The thinner grey line is the case

where LTP is not saturated and the protocol is applied for only 100s. The dashed line is

the mean weight of the undisturbed system. The time axis is a time line for the whole

experiment. At t0 = 0s the synapses are in the equilibrium state and a memory is stored.

The red box labelled ’Memory 1’ shows the duration of testing of recall of this memory.

At t1 = 5000s LTP is induced. When LTP induction is complete at t2 a second memory

is stored in the synapses. The blue box labelled ’Memory 2’ indicates the duration of

testing of this memory. B: Recall of memory 1. LTP at t2 disrupts the memory leading

to a reduction in the SNR and autocorrelation associated with memory 1 (retrograde

amnesia). The dashed lines are the SNR and autocorrelation in the case the the system

is undisturbed and remains at equilibrium. C: Recall of memory 2. Previous induction

of LTP causes the autocorrelation to decay rapidly (anterograde amnesia), although the

SNR is almost undisturbed.
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panels of Fig. 7.3, red indicates maximum saturation in case of memory 1, blue indi-

cates maximum saturation in case of memory 2.

Finally, note that in the case that LTP is saturated, the protocol matrix is applied

for long enough that the model achieves the equilibrium point of the protocol matrix.

This does not necessarily imply that all weights are saturated at w = 1. Thus even if

the maximal LTP is achieved all of the weights are not saturated and in any case, they

are still free to fluctuate upon removal of the protocol.

7.3.2.1 Case 1: Retrograde amnesia

Calculation of the autocorrelation, Fig. 7.3B (bottom row), reveals that late LTP leads

to a progressively greater degradation of the correlations in the memory trace as the

synapses are taken to higher levels of saturation. Maximum saturation of late LTP

leads to very large disruption of the memory trace, with the correlation decaying away

rapidly. The same is true during the induction period of early LTP when it is induced to

progressively greater levels of saturation, Fig. 7.3A (bottom row). After the induction

period of early LTP however, the behavior of the autocorrelation is quite different than

in the late LTP case, compare Fig A+B (bottom row). Rather than mono-phasically

decaying to zero, the autocorrelation first rebounds, increasing before it falls. Thus af-

ter induction of early LTP, the synapses are again correlated with their previous values

prior to LTP induction. This is in contrast to the late LTP case where the correlation

with the initial pattern is removed for all time. In all cases, the rebound returns the

autocorrelation to the timecourse that it would have taken if no LTP had been induced.

The behavior of the signal to noise is dominated by the autocorrelation, which is

driven towards zero and hence strongly attenuates the signal Eq. (7.10). The detectabil-

ity of the memory is therefore dramatically reduced during the induction of both late

LTP and early LTP.

7.3.2.2 Case 2: Anterograde amnesia

Anterograde amnesia in the state based models corresponds to the case in which the

SNR of the memory trace is calculated from just after the completion of the induction

of LTP at t = t2, Fig. 7.3A+B (top row). For early LTP, the anterograde memory trace

is plotted in Fig. 7.3C, while for late LTP the anterograde memory trace is plotted in

Fig. 7.3D.

In the anterograde case, the initial memory trace is stored in a non stationary state
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of the system. For this reason the autocorrelation of the memory trace decays more

rapidly than in the steady state case when either early LTP or late LTP are induced,

Fig. 7.3C+D bottom row. Interestingly the autocorrelation decays equally rapidly

regardless of whether early or late LTP are induced in the four state model. In the eight

state model the autocorrelation of the new memory trace decays more rapidly when

early LTP was induced prior to its formation. In all cases the rate of decay of the new

memories is more rapid when the initial saturation of the LTP induction is increased.

The difference between the signal to noise and the autocorrelation now becomes

important. These measures are equivalent at equilibrium in the sense that the SNR can

be thought of as a scaled version of the autocorrelation (chapter 3). When the system

is not at equilibrium however, this is no longer the case because the timecourse of the

mean and the variance of the weights have differential effects upon the autocorrela-

tion and the SNR, as we saw previously in the case of the 2 state model, Eq. (7.14).

Furthermore, the 4 and 8 state models do not obey the FDT because they incorporate

hidden states, and therefore the autocorrelation 〈w(t0)w(t)〉 does not have the same

timecourse as the response 〈w(t)〉. Thus the SNR and the normalised autocorrelation

κ(t) can have more complex behavior because more mixtures of timescales are possi-

ble, Fig. 7.3C+D.

Another consideration is that away from the steady state, the initial signal S0 is no

longer constrained by the steady state p∞ but varies largely. This means that even if the

choice of initial state causes the weight autocorrelation to decay quickly, the memory

trace can still remain detectable for a long period of time as long as the initial signal

is large. This might look like we are getting something for nothing, but we are not.

This is a consequence of the fact that if we are not constrained to be at equilibrium, the

signal distribution can be a long way away from the noise distribution. Thus the signal

can be detectable regardless of the temporal weight correlation. The price we pay is

that if we try to store another non-equilibrium memory in this manner, by moving the

signal distribution again, then we are in danger of obliterating the previous memory

instantaneously. In §7.5 we examine this scenario.

In the case of early LTP, the initial signal of a memory trace stored just after in-

duction increases as the saturation increases, Fig. 7.3C. This can be understood by

realising that the effect of early LTP is to move an ever greater fraction of synapses

that are initially in state 1 into state 2, of both the 4 state model and the 8 state model.

Thus synapses are moved from a state having a low rate of potentiation to a state having

a high rate of depression. This allows more synapses to make depressing transitions,
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which still represents a change relative to the noise distribution, all be it a negative one.

But in principle this change can be detected also (and this is why the signal is defined

in terms of the absolute difference between signal and noise means in chapter 3).

In the case of late LTP, the initial signal at first increases as a function of the satu-

ration. This is due to the fact that partial late LTP causes early LTP and so the initial

signal increases for the reason stated previously. However when late LTP is saturated,

this implies that the synapses that were occupying state 1 in the 4 state model are

moved to state 4. In the 8 state model it implies that the synapses that were occupying

state 1 are moved to state 7. Depression transitions from state 4 in the 4 state model

and state 7 in the 8 state model are equally as likely as the potentiation transitions from

the initial states in both models (this is a result of the symmetry in the transition rates

that was enforced in chapter 6). Thus when late LTP is saturated, we would expect that

the initial signal be nearly equal to the initial signal at equilibrium. Indeed this is the

case, Fig. 7.3D (bottom row).

There is another aspect to the SNR in Fig. 7.3D that deserves mention. It appears to

increase after the initial storage time when the late LTP is saturated. This is observed in

both the 4 state and 8 state models. This occurs because the model is not at equilibrium

and the average number of potentiated synapses is changing. Thus the variances of the

signal and noise distributions, σ2
Y , σ2

N shrink, leading to a transient increase in the

signal to noise ratio.

In conclusion both the 4 state and 8 state models show anterograde amnesia when

viewed from the point of view of the autocorrelation of the weights. However in gen-

eral the SNR does not follow this trend. In fact LTP induction can lead to an increase

in the memory strength of newly acquired memories when measured with the SNR.

Only early LTP saturation in the 4 state model leads to anterograde amnesia. Thus we

find that whether or not anterograde amnesia is observed depends upon the saturation

of the LTP, the phase of the LTP and the state space of the model. Therefore there

are in fact several non-trivial behaviors that are possible. On the other hand retrograde

amnesia can be provoked more robustly.
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Figure 7.3: The autocorrelation and the SNR of weights in the 4 state (left) and 8 state

(right) models during and after induction of LTP. A: Memory 1 is stored at t = t0 while

the system is at the steady state. Early LTP is induced at t = t1 (top row). Each line

is shaded with a differing grey level denoting the degree of saturation of LTP from light

grey to black. The heavy black trace is maximum saturation. The dashed lines indicate

the steady state. The red line indicates the timecourse of memory 1, when LTP is

saturated. The SNR behaves in an analogous manner (middle row). B: Same as A,

but in the case of late LTP is applied. C: Memory 2 is stored directly after induction of

LTP is complete at the peak of LTP induction t = t2 (when the system is in a non-steady

state). The blue line indicates the timecourse of memory 2 when LTP is saturated. D:

Same as C, but in the case that late LTP was induced.
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7.4 Memory traces in the recognition unit with state

based synapses

In the previous section it was demonstrated that after the induction of early LTP in an

ensemble of state based synapses, the correlation of those synapses with their initial

state can ’rebound’ following the decay trajectory that would otherwise be followed

if no LTP had been induced. This is a result of there being more than one timescale

in the synaptic dynamics. Changes made to the synapses on the short timescale can

completely decay, while changes made on more slowly decaying timescales remain.

Next, it is demonstrated that this allows the memory traces to be superimposed. To

show this, we first consider a perceptron. The aim of this is not to study the perceptron

itself, or the perceptron learning rule. Indeed the perceptron learning rule is not used.

Rather the aim is to demonstrate that in principle multitimescale synapses might be

useful in a system performing a simple classification task. Implementation of this

in a more sophisticated system is beyond the scope of this thesis, but is an obvious

extension to this work.

The linear threshold unit (or Perceptron) can be used to classify two clusters within

some data set (Hertz, Krogh, and Palmer, 1991) and has been used previously by other

authors investigating the survival of memories in state based synapses (Fusi and Senn,

2006; Baldassi et al., 2007). Here we apply the perceptron to investigate memory

storage using synapses implementing the state based LTP models.

The aim of the linear threshold unit is to classify patterns into two classes C1 and

C2 by labelling each input pattern x with output f (a) ∈ {0,1} such that f (a) = 0 for

class C1 and f (a) = 1 for class C2. As input the linear thresholder is passed a pattern

vector xi ∈{0,1}, i∈{1, ...,Ω}. In standard perceptrons using the percepetron learning

algorithm, the weights are adjusted in the case of both positive and negative examples.

Here the perceptron learning algorithm is not used. Instead, weights of the per-

ceptron are only adjusted in the case of positive examples. The perceptron is used to

classify patterns as unseen (C1) or seen (C2) and the weights are only adjusted when a

pattern is to be stored in C1. The perceptron has stochastic binary weights, where the

probability of the weights being 0 or 1 is controlled by a state based model of LTP. To

store an input pattern in the seen class, LTP and LTD is performed on the weights. If

an input pattern is in the unseen class, then no change is made to the weights.
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In order to perform a classification, the activation is first calculated

a(x) = ∑
i

wixi−φ (7.16)

where φ is the bias. The activation is then passed through the step function

f (a) =

{
1

0

a > 0

a < 0.
(7.17)

The linear thresholder can only separate patterns that are linearly separable. The

decision between attributing a given input vector to class C1 or to class C2 occurs

when a(x) = 0. This criterion is satisfied by an Ω−1 dimensional hyperplane within

input space. This surface is the decision boundary of the classification. The bias φ

determines the displacement of the decision boundary from the origin.

To understand how the decision boundary relates to the weight vector w giving rise

to it, consider two locations on the decision boundary x1 and x2. Since a(x1) = a(x2) =

0 it is the case that wT(x1− x2) = 0 which can only be satisfied if the displacement

from x1 to x2 is orthogonal to the weight vector (Bishop, 2006). Thus, components of

the weight vector associated with some decision boundary are identical to the compo-

nents of the normal to the decision boundary in input space.

In general, linear threshold units are permitted to have negative weights, although

biological synapses cannot contain negative conductances. Inhibitory synapses contain

positive conductances for hyperpolarising currents and these could be considered as

being negative weights. However no known synapse is capable of being both excitatory

and inhibitory as would be implied if we were to permit negative weights in the linear

thresholder. In the present study we shall neglect inhibition and assume that only

excitatory synapses are permitted. This is a necessary assumption because the synaptic

model under investigation is a model of excitatory synapses.

7.4.1 Pattern storage

Allowing only positive weights limits the behavior of the linear threshold unit because

now there are many decision boundaries that cannot be constructed (any hyperplane

that implies a negative weight component). The linear thresholder without negative

weights can only score patterns upon the basis of their total input (i.e. the total number

of bits for which the weight and the input are both 1).

For each pattern to be stored, a decision boundary can be constructed by adjusting

the weights to be equal to the pattern vector itself. This amounts to directing the norm
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of the decision boundary toward the target pattern in input space, thus constructing a

plane that is perpendicular to the line between the origin and the target pattern. Weights

in the state based models are stochastic and so rather than directly setting each weight

to be deterministically zero or one, the probabilities that the weights are zero or one

are adjusted.

To match the pattern to be stored, some weights are potentiated with early or

late LTP, and some are depressed with early or late LTD applied for a duration of

600s (causing the maximum possible potentiation or depression of the weights). The

scheme here leads to operation of the linear thresholder that is similar to that of a

simple matched filter (Turin, 1960).

The inputs to the perceptron are binary patterns drawn from three possible groups,

learned patterns x(L)
i , unlearned patterns x(U)

j and test patterns x(T )
k . The learned pat-

terns are patterns that have previously been stored, unlearned patterns are patterns that

have not been stored and test patterns are patterns that we wish the recognition unit

to classify. The mean values of these patterns is always equal to the mean weight

〈x(L)
i 〉 = 〈x(U)

j 〉 = 〈x(T )
k 〉 = 〈w〉, i.e. LTP and LTD are always balanced. The weights

of the perceptron w are binary and are set to one with probability p. For the balanced

models in this thesis 〈w〉= 0.5 prior to the storage of any patterns. Each pattern in the

unlearned group x(U)
i has inputs that are 0 and inputs that are 1. Therefore some of the

weights w, those that fall within the LTP group, must be potentiated such that w → 1.

The other group of weights are in an LTD group and must be depressed, w → 0. This

is done simultaneously so that on average the mean weight of the whole ensemble,

including both LTP and LTD weights, remains 〈w〉= 0.5. When multiple random pat-

terns are stored, there are unique potentiation and depression groups for each pattern.

Thus some weights will first undergo LTP, then perhaps LTD, then LTD again, and so

on. For random patterns, as the number of inputs increases, the number of unique his-

tories required rapidly converges on the number of inputs. For example, storing many

100 input patterns at random requires that 100 unique weight trajectories are calculated

(at least it is very improbable indeed that two trajectories would happen to be identical

as the number of patterns stored becomes large). Here, just two patterns are stored,

giving four possible individual weight trajectories 〈w(t)〉, Fig. 7.4B.
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7.4.2 Pattern recognition

The distributions of the total number of inputs and weights that are coincidentally

1 are binomial distributions of mean Ω

〈
x(L)

i w
〉

for learned patterns, Ω

〈
x(U)

j w
〉

for

unlearned patterns and Ω

〈
x(T )

k w
〉

for test patterns. These quantities are identical in

form to the mean of the signal distribution in chapter 3 and of course Ω

〈
x(L)

i w
〉

is the

mean of the signal distribution for a learned pattern in this case, but for the time being

we consider the probability that the output unit is 1.

The probability that the unit gives an output O = 1 is the probability that the input

exceeds threshold, ∑i wixi > φ. Since the inputs and weights are discrete this amounts

to the probability that some minimum number of weights and their corresponding in-

puts are both 1. This probability is found directly from the binomial distribution. Thus

the probability that the threshold of the output unit is exceeded is

P(O = 1, t) =
i=Ω

∑
i=b

Ω!
(Ω− i)!i!

[
〈

x(Γ)
i w(t)

〉
]i[1−

〈
x(Γ)

i w(t)
〉
]Ω−i (7.18)

where Γ ∈ {L,U,T} provides the probability that the unit fires in response to a learned

pattern, an unlearned pattern or a test pattern respectively, and b is the minimum num-

ber of inputs and weights that must both be 1 in order for the unit to output 1. Note that

P(O = 1, t) is time dependent due to the weight decay in the state based model used

to calculate the weight trajectories 〈w(t)〉. The optimum value of b was set by plotting

a receiver operator curve for the perceptron and minimising the total number of errors

such that false positives equals the number of false negatives (Fawcett, 2006).

7.4.3 Super-imposing two patterns

Patterns can be stored on more than one timescale in the 4 and 8 state models. When

a pattern is first stored using late LTP/D another pattern can be stored over the top

of the first pattern using early LTP/D. This is in contrast to the 2 state model where

patterns can only be stored on one timescale. Initially the synaptic weights are random

at t = t0, Fig. 7.4B+C. The first pattern, pattern A is stored at t = t1 by applying late

LTP/D to the synapses. Pattern B is stored at t = t2, but this time weights are depressed

or potentiated by applying early LTP/D. Since pattern B was stored with early phase

transitions it decays away after approximately 5000s and the weights appear disordered

again for a short time, t = t3 (when the probability that they are potentiated is around

0.5). Eventually at t = t4 pattern A returns and the perceptron responds clearly upon

presentation of the original pattern A, but not to pattern B.
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Figure 7.4: Pattern ’A’ (red) is stored on the long timescale. Pattern ’B’ (blue) is stored

on the short timescale. A: The synapses use either the 4 state or the 8 state model. B:

The weights implement the state based models of LTP/D and the patterns are stored

with eLTP or lLTP for a duration of 500s. Each of the 90 synapses follows one of four

possible histories. Solid black line: Late LTP followed by early LTP. Black dashed line:

Late LTD followed by early LTP. Solid grey line: Late LTP followed by early LTD. Dashed

grey line: Late LTD followed by early LTP. C: (Top) probability that the recognition unit

with the 8 state model, recognises the stored patterns. Boxes contain diagrams of the

values of the weights at several points of the 8 state simulation. Initially the weights are

random. Pattern A is then stored in the weights with late LTP/D. After some time pattern

B is stored in the weights using early LTP/D. Some time later pattern B has decayed.

Finally there is a recovery of pattern A. On the plot is the response of the unit to random

patterns (labeled ’noise’). The thin line is the response of the unit to pattern A in the

event that pattern B is not stored. (Bottom) as C but for the 4 state model.
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Each synapse has a trajectory that falls into one of four groups, Fig. 7.4A. Before

any pattern is stored, the thresholder only very rarely fires for either of the patterns A

or B or for patterns drawn at random, Fig. 7.4B+C. (Recall that patterns A and B are

statistically identical to the random ensemble themselves.)

These results demonstrate that recognition of pattern B could be stored on top of the

prior recognition of pattern A. This causes temporary disruption of pattern A, however

on the long timescale, recognition of pattern A returns. This is a result of the ability to

superimpose early LTP on late LTP.

7.5 Synaptic overload

The example in the previous section raises the possibility that patterns could be se-

quentially stored in the synaptic weights on a short timescale, while a previous pattern

stored with more slowly decaying late phase plasticity is retained but partially ob-

scured. The possibility that early phase LTP might allow the storage of a memory trace

on a short timescale superimposed over a memory trace stored on a long timescale (i.e.

stored with late LTP) has been suggested in non quantitative terms before (Morris et

al., 2003; Rolls, 1996). Storage of memories with weights using dual timescales has

also been shown to improve storage capacity in Willshaw networks (Gardner-Medwin,

1989). In this section, superposition of memory traces is demonstrated with state based

models of LTP/D and the perceptron. We are still considering recognition, but we eval-

uate the case where many patterns are stored at random in an ongoing manner. In this

section we return to signal to noise analysis.

In this section the SNR is calculated directly from the simulations of the synaptic

weights. This is in contrast to §7.2 where the SNR is calculated from the transition

matrix of the model via the autocorrelation. The reason for this difference is that in this

section we are specifying the patterns to be stored in the weights and then driving the

weights strongly toward those values with LTP/D, Fig. 7.1C, where as §7.2 assumed

that unspecified patterns were stored in the stochastic fluctuations of the weights, Fig.

7.1A+B.

The signal to noise for binary weights is (chapter 3)

S
N

=
Ω |〈xY w(t)〉−〈xN〉〈w(t)〉|√

1
2(σ2

N(t)+σ2
Y (t))

(7.19)

where w(t) is the synaptic weight vector, xY is the pattern to be classified as seen or

unseen, 〈xN〉 is the mean of the unstored (noise) patterns. The simulations proceed
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in an analogous way to §7.4.1: The first pattern to be stored is drawn at random and

is stored with late LTP/D by driving the weights towards the values of the inputs (0

or 1). This produces a large increase in the SNR for that pattern. After some time

interval drawn from an exponential distribution with mean µs another pattern is drawn

at random and stored in the weights with early phase LTP/D. The SNR for this pattern

now increases by a large amount, but decays away more quickly than for the first

pattern. Next, another pattern is drawn at random and stored with early LTP/D. All

subsequent patterns are stored at random intervals using early LTP/D.

7.5.1 Ongoing storage of patterns with early LTP

Random patterns x having 〈x〉 = 0.5 are stored at random intervals. The LTP/D in-

duction time (i.e. the duration over which the protocol matrix is applied) was 300s.

Reasonable choices of induction time do not strongly effect the conclusions. This

timescale is chosen to be compatible with the induction times seen in experiments.

The first pattern was stored with late LTP/D and all subsequent patterns are stored

with early LTP/D (this assumption is removed in §7.5.2). 60 patterns were stored in

a perceptron with 100 inputs. Each weight has an individual weight history, two ex-

amples are plotted in Fig. 7.5A. Storage of the first pattern leads to a slowly decaying

deflection in the weight due to the fact that it was stored with late phase transitions.

Subsequent patterns were stored with early LTP/D leading to more rapidly decaying

deflections to the weight, Fig. 7.5A. The different timescales of pattern decay in the

weights have a direct impact upon the dynamics of the SNR. We see that the SNR for

the response of the recognition unit to pattern 1, stored with late phase transitions, de-

cays slowly in comparison to the SNR for a subsequent pattern stored with early phase

transitions Fig. 7.5B.

The average SNR over 6 isolated perceptrons for response to the initial pattern

stored with late LTP/D, and storage intervals between subsequent patterns of µs =

7500s and µs = 22500, is shown in Fig. 7.5C in the 2, 4 and 8 state cases. In the 2

state case (thin black line) the initial pattern is rapidly lost and the SNR falls below 1

in less than 5000s (84 mins). In the 4 and 8 state models (heavy grey and black lines

respectively), despite the disruption to the weights engendered by ongoing storage of

patterns, the average SNR for the initial pattern is elevated above 1 for 55hrs when

µs = 22500s. Further spacing of the storage of early phase patterns by increasing µs

does not lengthen the decay of the initial pattern. Once the early phase patterns are
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sufficiently spaced out such that the decay of the initial pattern is similar to the decay

time in the case that no early phase patterns are stored, then there can be no further

increase in the decay time of the initial pattern. This limit is reached when the decay

time of the initial pattern is comparable to the decay time of late LTP itself. This makes

intuitive sense, because it is the timescale of intrinsic decay of late LTP that ultimately

limits the evolution of the mean of the signal distribution.

Now we consider patterns stored after the first pattern using early LTP. In the 2

state case the SNR of the patterns overlaps completely with the 4 state case, Fig. 7.5D.

In the 4 and 8 state cases we see that in addition to retention of the first pattern (stored

with late LTP, 7.5C) there is also a recognition signal for subsequent patterns (stored

with early LTP), Fig. 7.5D. This demonstrates that indeed a response to both the initial

pattern and newly stored patterns can be obtained simultaneously on average in the

4 and 8 state models, but not in the 2 state model. Thus one pattern has been stored

on the late LTP timescale, while other patterns can be stored on the shorter early LTP

timescale in an ongoing manner. The signal of the early phase patterns remains above

1 for 1050s (17.5 mins) when µs = 7500 and 2250s (37.5 mins) when µs = 22500. Over

the duration taken for the SNR of the initial pattern to fall to 1, around 20 sequential

temporary patterns can be stored and subsequently decay. Finally, note that these sim-

ulations use only Ω = 100 synapses. The time taken for the signal to fall to 1 increases

as ln
√

Ω.

7.5.2 Sparse coding and synaptic overload

Synaptic overload might be useful for memory storage because it allows the simulta-

neous storage of patterns on a long timescale and patterns on a short timescale 5. This

increases storage capacity as compared to a 2 state model having only one available

timescale. However, in the last section it was assumed that the initial pattern storage

is through late LTP but that all subsequent events are mediated by early LTP. Unfortu-

nately, if the second pattern is not stored with early LTP, but rather with late LTP, then

the initial pattern will be instantaneously wiped out. Furthermore, in order to obtain

the maximum decay time of the initial memory of 55hrs, the average spacing between
5Why is this useful? You may wish to remember where you put your cup of tea without permanently

erasing your memory of an important meeting that morning. The memory of the meeting needs to be
retained for longer than the memory about the cup of tea. But although the cup of tea memory only
needs to be retained for 20mins (or for as long as it takes to drink it), it has to be formed close to the
time that you put your cup down. The memory of the meeting needs to be retained for long enough that
it can be consolidated at the systems level, but does not nessecarily have to be perfectly accessible as
you drink your tea.
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Figure 7.5: Patterns stored at random using the recognition unit. A: Two example synap-

tic weight histories from the 8 state model. The synaptic group initially undergoes lLTP

(top) or lLTD (bottom). Subsequent patterns are stored with early phase transitions.

The 4 state model is similar. B: The SNR of two stored patterns in the 8 state model.

The top graph is the SNR for the response of the unit to the first pattern, stored with

late phase LTP/D. The second graph shows the SNR in the case that a subsequent

pattern (pattern 32) is stored with early phase LTP/D. The early phase SNR decays

more rapidly than in the case that the pattern was stored with a late phase transition.

The dashed line indicates SNR=1. C: The average of the SNR when µs = 7500s (top

panel) and µs = 22500s (lower panel). The black line indicates the 8 state model, the

grey line indicates the 4 state model. The thin black line is the 2 state model. D: As C

but the average SNR is for patterns that were stored with early phase transitions for the

two values of the mean storage interval.
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storage events has to be in excess of 20000s. For memory to be useful, the spacing

between storage events should ideally be much shorter. In this section we see how

both of these problems are reduced in the limit of sparse coding.

7.5.2.1 Sparse codes

The coding fraction of an assembly of neurons f is the ratio of the number of neurons

that are active during some information processing step to the total number of neurons

(Barlow, 1989; Laurent, 2002; Földiák, 2002; Földiák and Endres, 2008). If the coding

fraction is high, for instance 0.5, then the code is a dense code. Dense codes repre-

sent information using the combinatorial activity of many neurons simultaneously. On

the other hand, a low coding fraction, implies a sparse code. Sparse codes represent

information using the activity of only a small fraction of the population of available

neurons. In the limit of very low coding ratios, such that only individual neurons are

active, the code is local. The notion of the ’grandmother cell’, a cell that is only active

when one recognises one’s grandmother, is the classic example of local coding.

The hippocampus, early visual system and cerebellum are all brain organs that

have been hypothesised as coding incident information in a sparse code (Marr, 1971;

Willshaw and Buckingham, 1990; Olshausen and Field, 1996). In caricature, this is

achieved by re-representing the incoming activity within a larger population of neurons

than at the initial stage 6. Although sparse codes are less efficient than dense codes -

X binary neurons can represent 2X codewords in the limit of a dense code, but only X

codewords in the limit of local codes - they prove to be far easier to use for the purposes

of unsupervised learning and processing (Olshausen and Field, 1997). Furthermore,

since the number of codewords increases exponentially with the coding ratio, sparse

codes do not need to have high coding ratios in order to gain significant increases in

representational capacity as compared to a local code.

Sparse codes have been shown to be highly beneficial to the preservation of mem-

ory traces because they can minimise the overlap between modified synapses (Dayan

and Willshaw, 1991; Leibold and Kempter, 2008). Sparse coding applies to memory

traces when the number of synapses involved in the memory trace is much less than

the total available. In the treatment of the state based models of LTP in chapter 6 it

was assumed that all synapses participate in the memory trace. It is this assumption

6There is much more to it than this. For the code to useful we must also ensure that it represents as
much of the input information as possible, i.e. the code should be as complete as possible. However this
does not impact on this discussion.
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that gives rise to the logarithmic dependence of the maximum memory lifetime on the

number of synapses in the ensemble. As was discussed in chapter 2, adding more

synapses to the linear bounded, multistate and 2 state models increases the initial sig-

nal, but this only logarithmically increases the maximum memory lifetime (Ben Dayan

Rubin and Fusi, 2007). If we permit the memory trace to be sparse, this is no longer

the case (Amit and Fusi, 1994). This can be understood by seeing that the probability

that a synapse is modified is proportional to the coding ratio. A low coding ratio im-

plies a long timescale of decay of the memory trace. Therefore, adding more synapses

in this case directly increases the timescale of decay itself and therefore breaks the

logarithmic dependence of memory lifetime on the number of synapses.

Recently the interaction between sparse coding and state based synaptic models of

synaptic plasticity, such as the multistate and cascade models has been explored (Lei-

bold and Kempter, 2008). It was found that the linear dependence of the maximum

memory lifetime upon the number of synapses allowed by the sparse code, outweighed

the sublinear power-law dependence provided by the cascade model. Furthermore mix-

ing state based synapses with sparse codes merely leads to a reduction in the efficacy

of the sparse code. Sparse codes imply that relatively few synapses are activated upon

recall. Hence, under sparse coding complex state based synapses perform poorly rela-

tive to the simplest 2 state model, because the initial signal scales less favorably with

the number of synapses. This initial signal reduction occurs because all of the avail-

able states are more thinly spread in phase space. An example of this is the multistate

model examined in chapter 2, where adding states increased the memory lifetime, but

’diluted’ the initial signal.

The conflict between synapses with complex state diagrams and sparse coding re-

sults from constraining the synaptic population to be at equilibrium. If the memory can

be stored away from equilibrium however, then the initial SNR can be more steeply

proportional to the square root of the number of synapses, i.e. LTP events can tend to

drive synapses toward saturation Fig. 7.5A. Another way of stating this is that away

from equilibrium, by definition, we can choose where in state space the synapses lie.

Therefore we can choose to place the synapses in a location that gives a high initial

signal.

7.5.2.2 Sparse codes improve the performance of synaptic overload

In this section the effect of sparse coding on the performance of synaptic overload

in the 4 and 8 state models of LTP is considered. When a target pattern is stored, a
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randomly selected fraction of f synapses undergoes plasticity, Fig. 7.6A. This is in

contrast to §7.5.1, where all synapses underwent plasticity to store patterns. We shall

find that this improves the performance of synaptic overload such that the lifetime of

patterns stored with early and late phase plasticity approaches the lifetimes of eLTP

and lLTP in a single trial, despite rapid ongoing storage of other patterns.

To asses the improvement in memory storage as sparsity is increased, we first store

a pattern with saturated late LTP. Subsequently, patterns are stored at intervals drawn

from a exponential distribution having a mean value of µs = 750s, where 1% of the

patterns are late phase and all other patterns are stored with early phase plasticity. This

is an order of magnitude shorter than the interval between patterns in §7.5.1. The

induction time of the plasticity used to store subsequent patterns was 300s, and so

plasticity was not saturated7. The time taken for the SNR of the initial stored pattern

to reach one is the measure of memory trace survival time.

The initial SNR of patterns stored with early and late LTP in the state based models

scales as
√

Ω, as we would expect from the definition of the SNR (chapter 2). Storage

of a pattern with saturated LTP/D and no sparse coding leads to a steep scaling of the

initial signal to noise with the number of synapses,

SNR0 =

√
Ω(pin− p2

in)√
pin(1− pin)

(7.20)

where pin is the probability that a bit is on in the input patterns and noise patterns, Fig.

7.6B where pin = 0.5. This steep scaling occurs because the saturated plasticity causes

the strongest memory trace possible. When plasticity is not saturated the scaling is not

so steep and depends upon the level of saturation, Fig. 7.6B (black open circles). This

was the case for patterns stored after the first pattern.

Increasing the sparsity of the patterns (where sparsity is (1− f )) leads to a decrease

in the SNR. In the case of saturated LTP/D (as is the case for the first pattern stored

here), the relationship between the signal to noise and sparsity is approximated by

SNR0 = (a f +b)
√

f Ω (7.21)

where a = 0.4 and b = 0.1 are constants that were found by fitting a line to SNR0/
√

f Ω

for 50 values of f between 0 and 1 with Ω = 200, Fig. 7.6C (sold black circles).

Patterns stored with non-saturated LTP/D respond identically, but have a uniformly

reduced SNR (open black circles).
7If plasticity is saturated the results presented here still hold, however a linearly greater degree of

sparsification is required.
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Figure 7.6: Scaling of the memory lifetime with sparse coding. A: Sparse coding uses

only a fraction of the synapses. Grey synapses represent those not used by the storage

of the target pattern: 1,0,1. B: The initial SNR of patterns stored. Solid black circles

are patterns stored with saturated plasticity. The dashed line is SNR0 = 0.5
√

Ω, Eq.

(7.20). Open circles are unsaturated. C: SNR0 decreases with sparsity (1− f ). Black

filled circles are saturated patterns and black open circles are unsaturated. The dashed

line is SNR0 = (0.4 f −0.1)
√

f Ω, Eq. (7.21). The initial signal can be held constant by

increasing the number of synapses Ω: Filled red circles for saturated patterns, open red

circles for unsaturated patterns. D: The initial signal is held constant and the sparseness

is increased. The time for SNR of the first pattern to reach 1 increases for both the 4

state (squares) and 8 state (triangles) model. E: Examples of the average SNR as a

function of time for the first pattern stored with late phase plasticity in the 4 state model

for µs = 750s. Black line is the case where sparseness=0 (20 synapses). Grey line is

the case where sparseness=0.9 (296 synapses). Dashed line is the case where only

one pattern is stored (i.e. the unperturbed case) but the initial signal is identical. F: As

E, but for the early phase patterns. Precisely the same phenomenon occurs in the 8

state model, but the increase in the time for the SNR to reach 1 scales more gradually

with sparsity.
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We have seen that the initial signal of a pattern stored increases with an increasing

number of synapses but decreases with increasing sparseness. Thus it is possible to

compensate for the reduced signal due to sparseness by increasing the total number of

synapses in the system. This can be achieved by scaling the synapses Ω′ such that,

Ω
′ =

S2
0

(a f −b)2 f
(7.22)

which follows from rearrangement of Eq.(7.21), with S0 the desired initial signal of the

memory. Now the initial signal is independent of the sparseness, Fig. 7.6C (solid red

circles). Patterns stored with non-saturated plasticity also have a constant (although

smaller) SNR when the compensation is applied, Fig. 7.6C (open red circles).

Increasing the sparsity of the patterns while compensating the number of synapses

such that the initial signal remains fixed leads to an increase in the survival time of

the first pattern, Fig. 7.6D+E in both the 4 and 8 state models and an increase in the

survival time of the patterns stored with early phase LTP, Fig. 7.6F8. Each data point

in Fig. 7.6C is the time for the SNR to reach 1 for the first pattern stored averaged

across 20 simulations where each point is a separate sparsity of {0, 0.1, 0.2, 0.3, 0.4,

0.5, 0.6, 0.7, 0.8, 0.9} respectively, where the number of synapses was determined by

the condition that the initial signal be constant and was Ω′ = 20 for f = 1, Eq.(7.22).

The increased survival time in Fig. 7.6D results from the decreasing interference

between memory traces due to the sparse code, Fig. 7.6E+F. The marked increase in

the memory lifetime seen in Fig. 7.6D only continues until the lifetime of the sparsely

coded trace approaches the intrinsic decay time of early and late LTP/D, Fig. 7.6E+F

(dashed lines). After this point the lifetime of the memory trace again scales as the

logarithm of the number of synapses (chapter 2) due to intrinsic synaptic decay.

Sparse coding allows the survival time of patterns stored with late and early LTP/D

to be increased such that they decay on the maximum possible timescale of the intrin-

sic decay of the LTP/D. This allows synaptic overload, even when the storage interval

is small and when some subsequent patterns are late phase (1% in this case). The

compensation regime above allows the interval between pattern storage to be arbitrar-

ily small and the initial signal to be arbitrarily large as long as sufficient synapses are
8For this to occur in the 8 state model, the early phase plasticity protocols must be slightly adjusted

from the form quoted in chapter 6. In chapter 6 early LTP(D) only affects transition rates in the front
(rear) ring. Specifically LTP leads to the elevation of {ReLT P

12 ,ReLT P
23 } and the reduction of ReLT P

21 in the
front ring. For overload to function when the interval between pattern storage < early LTP/D decay
time, the rates in the rear ring {ReLT P

58 ,ReLT P
87 } must be elevated and ReLT P

78 must be lowered. This step of
making the rear ring symmetric with the front ring during LTP induction must also be applied to early
LTD. This has no effect on any of the results quoted previously where the plasticity was never applied
with an interval below that of the early LTP/D decay time.
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available. This means that in principle an initial pattern, stored with late phase plastic-

ity can survive for nearly as long as the plasticity itself even while other patterns are

stored in the same synaptic population in an ongoing fashion. We have seen this pro-

vides the possibility of storing many short lived patterns temporarily on the timescale

of early LTP/D, while retaining an initial pattern stored with late phase plasticity.

7.6 Discussion

In this chapter retrograde and anterograde amnesia by saturation of synaptic weights

was reproduced in the 4 and 8 state models of LTP/D. It was found that previous

memory traces are disrupted both by induction of early and late LTP in both models.

The degree of disruption however is dependent upon the degree of saturation of the

weights and whether early or late phase LTP is induced. Anterograde amnesia of the

correlation with a pattern stored just after plasticity induction was observed. In this

case correlations decay away more rapidly than they do in the steady state, because the

memory traces are stored in an unstable state of the system. The rate of decay of newly

stored correlations increases as the degree of saturation of the weights increases and is

similar regardless of whether early or late LTP was previously induced. However since

the initial signal can be increased when a memory is stored away from equilibrium, the

signal to noise of the memory traces is not always harmed in the anterograde case.

Interestingly, there are differences in the dynamics of retrograde amnesia in both

the 4 and 8 state models depending upon whether early or late LTP is induced. If late

LTP is induced then the memory trace is permanently degraded until, when maximum

saturation of the weights is achieved, the memory trace is completely obliterated. If

instead early LTP is induced then the degradation of the memory trace recovers to the

level of SNR that would have existed if the intervention had never taken place, even

when maximum saturation is induced. This recovery occurs on a timescale that is

identical to the timescale of decay of early LTP.

The above result supports the idea that different memory traces might exist on dif-

fering timescales within one synaptic population by virtue of the different phases of

LTP (Gardner-Medwin, 1989; Rolls, 1996; Morris et al., 2003). To test this, recogni-

tion memories were stored using a Perceptron. It was found that providing that long

term traces, stored with late phase LTP/D, are stored relatively infrequently, recogni-

tion memories survive while new memories are superimposed upon them with early

phase LTP/D. Thus the perceptron can, on average, perform recognition of both the



168 Chapter 7. Amnesia and synaptic overload

original stored pattern and new stored patterns. For a single perceptron, this occurs

at the cost of temporary disruption of recall of the initial long term trace. This could

provide a mechanism by which neural ensembles in the hippocampus meet the need

of having both long lasting traces (those awaiting consolidation) and strong immediate

traces (of non-specific incoming information, i.e. ’automatic recording’). It was found

that for this to be feasible with the models proposed in this thesis, the coding of the

memory trace would have to be sparse. If this is not the case, a useful rate of memory

storage and a long time period of retention of memories stored with late phase synaptic

plasticity cannot be achieved with these models.

The results obtained with the state based models in this chapter lend further cre-

dence to the idea that disrupting the synaptic weights in the hippocampus should dam-

age memory (Moser and Moser, 1999) if those memories are dependent upon correla-

tions amongst synapses. However, the results also indicate that the signal to noise ratio

is not necessarily harmed by LTP induction, because the initial state can in principle

lead to a higher signal. In experimental terms this means that although the hippocam-

pal synapses are saturated by LTP, this does not prevent them from changing, and in

fact may even facilitate changes. It should be noted that the imperviousness of the

SNR to anterograde amnesia in this chapter results from the definition of the SNR, in

which depression transitions are counted as contributing to the signal (i.e. the absolute

change is important). If this definition is changed such that, for example only potenti-

ation events are viewed as contributing to the memory signal, then the SNR would be

harmed by saturation of LTP. In this case however, the SNR would be augmented by

saturation of LTD. Thus if only potentiation events were important to the initial signal

this would predict that saturating LTD should improve memory.

The state based models add the theoretical development, outlined above, that the

timescale of decay of induced LTP could affect the dynamics of retrograde amnesia.

This predicts that if weights could be saturated in vivo, but in a manner where two

distinct timescales of decay of that saturation are visible, early LTP and late LTP like

timescales, then this should have an impact on the behaving animal. In such circum-

stances we would expect that saturation of early LTP should allow the recovery of

previously stored hippocampal memory traces.

An extension to the above point follows from the result obtained in the perceptron

model. As described above, the 4 and 8 state models predict that multi-timescale

synaptic dynamics should permit synaptic overloading. If this were the case in-vivo, it

should be possible to cause reversible retrograde amnesia of a previous hippocampal
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memory trace that was formed with protein synthesis dependent synaptic modification,

with some sudden intense learning. Observation of this new effect would hinge on two

factors: 1) It should somehow be ensured that the overlap in the population of synapses

storing both the old and new memory is high, 2) it must be ensured that the new trace

from the new learning is not itself composed of protein synthesis dependent synaptic

modifications. Point 1. might be challenging because there is evidence to suggest that

the hippocampus sparsifies and orthogonalises memory traces (Guzowski and Knierim,

2004; Bakker et al., 2008). Point 2. might be ensured by blocking protein synthesis

pharmacologically.

The state based modeling approach suggests that there might be benefits to multi-

timescale synaptic dynamics within the hippocampus in alleviating the plasticity sta-

bility dilemma. The cascade model is another state based model that also suggests

benefits of multi-timescale dynamics from the point of view of memory trace strength

and stability (Fusi, Drew, and Abbott, 2005). However, the state based models de-

scribed in this thesis and the cascade model are very different. The cascade model is

aimed at explaining the forgetting dynamics of familiarity of visual scenes. In this phe-

nomenology, human beings demonstrate a remarkable capacity to recall having seen

a picture after a long time elapse even if the picture was only seen on one occasion

(Standing, Conezio, and Haber, 1970; Standing, 1973), and was one of an ensemble of

many thousands. As discussed in chapter 2, the cascade model suggests that by opti-

mising the steady state distribution of the synapses, such that the maximum memory

lifetime is no longer a logarithmic function of the number of synapses, the stationary

stability plasticity dilemma can be over come in large enough ensembles of synapses.

It is thus suggested that synapses in the visual system might be able to learn and re-

tain very long term one-shot familiarity traces by using an optimisation of their steady

state.

The approach in this chapter largely explored the NPS and differs from the ap-

proach taken by the models encountered in chapter 2. Firstly there has been no attempt

to optimise the steady state in terms of memory lifetime and initial signal. Here the

transition rates have been set so as to be compatible with experimental data and the

maximum memory lifetime still scales as a logarithm in the number of synapses9. Sec-

ondly the target system is different: The argument made here is that early LTP/D and

late LTP/D allow synapses to superimpose memory traces at differing timescales thus

9It is possible that logarithmic scaling is less of a problem in the hippocampus where memory traces
can be potentially off loaded to a slow learning (and hence relatively fluctuation resistant) neocortex.
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affording the hippocampus with the ability to store episodic memory traces in an on-

going manner, while preserving important memory traces for a sufficient amount of

time so as to allow them to be consolidated at the systems level. In chapter 8 it shall

be shown that eLTP , lLTP and synaptic tagging could combine to allow the rescue of

memory traces that would otherwise decay.



Chapter 8

A state based model of synaptic

tagging

Throughout this thesis, the difference between early and late phase LTP has been em-

phasised. It has been suggested that memory traces might be stored more effectively in

synapses with more than one timescale of synaptic plasticity and that this is the reason

for the existence of more than one phase of LTP/D. If there is to be any such utility

in the distinction between early and late LTP however, then the cell should have some

mechanism for correctly targeting synapses that are to be consolidated. If late LTP is

protein synthesis dependent and occurs at specific synapses, then how do the required

proteins ’know’ which synapse to go to? As was described in chapter 1 experiments

have shown that plasticity related proteins (PRPs) are manufactured locally to the den-

dritic branch upon which the synapse is located. The production of PRPs is triggered

by the induction of late LTP. The theory of synaptic tagging predicts that synapses that

have recently undergone plasticity such as early LTP or late LTP are ’tagged’. The tag

allows the PRPs to stabilise that synapse. Since synapses that have undergone early

LTP are tagged (but do not trigger the production of PRPs themselves) they can nev-

ertheless be stabilised by PRPs triggered by induction of late LTP in another synapse.

Thus early LTP can be converted into late LTP if late LTP is induced in a nearby

synapse within some time period. This is the process of synaptic tagging.

It has been suggested that synaptic tagging might have a cognitive corollary (Frey

and Morris, 1997; Frey and Morris, 1998): Association between weak stimuli, that

only elicit early LTP and strong stimuli that cause late LTP might mediate associations

between emotionally ’weak’ and emotionally ’strong’ experiences. For example one

might remember the colour of the shirt worn on the day of PhD thesis hand-in. This

171
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process requires that memory traces that might otherwise have decayed are somehow

rescued when a stronger long lasting memory trace is created. In the last chapter we

saw that the state based models of LTP allow the superposition of rapidly decaying

eLTP memory traces on top of slowly decaying lLTP memory traces. In this chapter it

is demonstrated that synaptic tagging could in principle allow the on-line conversion

of weak eLTP memory traces into strong lLTP traces.

In this chapter a state based model of synaptic tagging is proposed. The model is

used to reproduce the electrophysiological manifestation of synaptic tagging. Next the

model is used in conjunction with the perceptron model to show that synaptic tagging

can lead the transformation of a fast decaying memory trace signal in to a slower

decaying signal. This supports the idea that in principle the combination of early LTP,

late LTP and synaptic tagging could account for association of weak stimuli with strong

stimuli in episodic memories (flashbulb memories), if we assume that these processes

apply to hippocampal memory traces mediating episodic memories.

8.1 The model

The experiments demonstrating synaptic tagging suggest that when a stimulation pro-

tocol is applied, there is an ordered sequence of events in time (chapter 1). Firstly the

synapse undergoes early LTP and a tag is set, perhaps by virtue of phosphorylation of

some synaptic molecule. Next, as the stimulation is continued, late LTP is induced and

protein synthesis is engaged. A course grained description can be applied to this se-

quence by assuming that there are 6 basic stability states: stable depressed, early LTP

tagged, late LTP protein synthesis, stable potentiated, early LTD tagged and late LTD

protein synthesis, Fig. 8.1. It is again assumed that the synapses are binary. These

states are arranged in a ring and application of a late LTP protocol can be considered

as driving synapses around this ring from the stable depressed to the stable potentiated

state. In this scheme one synapse (during the induction of late phase LTP/D) passes

through the PRP state and if the other synapse happens to be in a tagged state (after

induction of early LTP/D), this causes it to collapse into the stable potentiated (de-

pressed) state if the synapse is in the potentiated (depressed) tagged state. However

if this synapse is not in a tagged state having had no recent early LTP/D then it is

unaffected.

It could be argued that a simpler arrangement of states is linear, progressing from

depressed → tagged → protein synthesis → potentiated. However the nature of the tag
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Figure 8.1: Schematic of the arrangement of the stability states in the synaptic tagging

model. The filled circles represent states that are potentiated. This structure is moti-

vated by the observation that in going from a depressed state to a potentiated state, a

synapse must transition through states of being tagged and activation of protein syn-

thesis.

state determines whether the synapse expresses late LTP or late LTD when plasticity

related proteins are encountered. This choice between depression and potentiation in

the tagged synapse is independent of whether the late LTP/D synapse is potentiated

or depressed (Sajikumar et al., 2005). Hence the potentiated tagged and depression

tagged states are distinct.

In the simplest model based on Fig. 8.1, the synaptic weight would depend directly

on each of the 6 states. Experiments in which a synaptic tag was set by induction

of early LTP but followed by low frequency stimulation, depotentiating the synapse,

showed that given sufficient time elapse the tag remained, even though the weight had

changed (Sajaykumar and Frey, 2004). For this reason each of the stability states is

permitted to be in either a w = 0 or w = 1 weight state, but the baseline transition rates

are arranged such that potentiated synapses (grey circles in Fig. 8.1) spend nearly all

of their time in the w = 1 state (and visa versa). Thus, for every stability state there

are two weight states {0,1}, forming a bistable pair, Fig. 8.2A. The stability state in

Fig. 8.1 determines the equilibrium probability density over these binary weight states.

Therefore the states are arranged as follows: (odd numbers are the w = 0 states and

even numbers are w = 1 states)
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• Stable depressed (states {1,2}): The synapse tends to occupy weight state, w = 0.

Thus the overall flow of states is from state 2 to state 1, Fig. 8.2A when at

equilibrium.

• Potentiated, tagged (states {3,4}): The synapse has undergone potentiation and

is tagged.

• Potentiated, PRP (states {5,6}): The synapse has undergone potentiation and has

been tagged. Protein synthesis has also been activated and PRPs are present.

• Stable potentiated (states {7,8}): The synapse tends to occupy weight state, 8.

Thus the overall flow is from 7 to 8.

• Depressed, tagged (states {9,10}): The synapse has undergone depression and

is tagged.

• Depressed, PRP (states {11,12}): The synapse has undergone depression, has

been tagged and PRPs are present.

At equilibrium the transition rates are configured such that about half of the synapses

congregate in the stable depressed state (state 1) and about half congregate in the stable

potentiated state (state 8). As was the case in the 8 state model in chapter 5, transition

rates Ri j from state i to state j, are once again chosen by means of a powerlaw,

Ri j = αx−γ (8.1)

for x ∈ {1,2,3,4}. The powerlaw is adjusted such that the decay of early LTP and late

LTP in the tagging model, match the experimental data, Fig. 8.5 giving γ = 6.1 and

α = 0.1s−1. The transition rates thus calculated are inserted into the baseline transition

matrix, Fig. 8.3. The highest transition rate thus chosen (x = 1) is deemed to be the rate

of transition from tagged states to PRP states when a tagged synapse is consolidated

via the tagging interaction. This rate must be high in order that the tagging interaction

has a significant effect.

Early LTP/D and late LTP/D can be induced in the model. Early LTP is induced by

increasing the flow of states in to the potentiated state 2, and by increasing the flow of

states toward the tagged states, 3 and 4, Fig. 8.2B. Late LTP is induced in an identical

fashion to early LTP, but now states flow in to the tagged states and then to the PRP

states, 5 and 6, and from there into the stable potentiated weight states, 7 and 8, Fig.
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Figure 8.2: Schematic of the 12 state tagging model. A: The model at equilibrium. The

magnitude of the transition rate is indicated by the thickness of the arrow. Greater thick-

ness represents larger rates. B: The plasticity induction protocols for early phase and

late phase potentiation and depression. Red arrows indicate transition rates that are

altered by the induction protocol. C: During a tagging protocol involving two synapses,

the transition rate from tagged states to PRP states can be elevated in one synapse if

the other synapse is in a PRP state (see text). This diagram illustrates the effect of the

tagging interaction upon the transition rates of the tagged synapse.
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Figure 8.3: The baseline transition matrix of the 12 state model. The grey values repre-

sent values chosen from the power law. White indicates that the matrix element is zero.

Note that the largest transition rate a chosen from the powerlaw Eq.(8.1) when x = 1

does not appear in this matrix because it mediates the tagging interaction and there is

no tagging interaction in the single synapse model. It is present in the transition matrix

for the full model however, Fig. 8.4.



8.1. The model 177

Figure 8.4: The state space is expanded when tagging is taken in to account. A: The

possible states are now made up of all possible combinations of the 12 states allowed

for synapse X and synapse Y. These combine to give 144 individual states of the synap-

tic pair. B: A transition matrix can be constructed for the expanded 2 synapse system.

This matrix governs the evolution of the tagging model.
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8.2B. The early LTD and late LTD protocols operate in precise antagonism to the LTP

protocols, Fig. 8.2B.

In this model synaptic tagging occurs between two synapses. In the state based

framework this requires that at any point in time the state of the system is defined not

only in terms of the state of a single synapse (a 12 dimensional state space) but in

terms of the combination of the states of two synapses (a 144 dimensional state space).

This can be understood by imagining that for every single state of synapse X, there are

twelve possible states of synapse Y, i.e. synapse X might be in state 1, while synapse Y

can be in any one of its 12 allowed states. The 144 state tagging transition matrix, Fig.

8.4, thus contains the 12 state single synapse transition matrix, Fig. 8.3, in 12 blocks.

Each of these blocks describes the transitions of synapse X when the other synapse is

in one of its 12 states.

The tagging interaction is mediated as follows: If synapse Y is in a PRP state then

the 12 state sub-block that specifies the behavior of synapse X, is selected such that

the probability of making a transition from the tag state into the PRP state (and then

on into a consolidated potentiated state) is elevated. The subblock for each PRP state

has an elevated transition rate of tagged → PRP, Fig. 8.2C. The result of this is that if

synapse X happens to be in the tagged state when synapse Y is in a PRP state, then it

is more likely to be consolidated. If synapse X is not in a tagged state however, then

this does not occur, regardless of the state of synapse Y.

Finally, the tagging model does not obey detailed balance. Thus the expansion in

eigenfunctions method was not used to solve the dynamics of the model. Instead the

model was integrated using the direct matrix method introduced in chapter 3.

8.2 Synaptic tagging

Synaptic tagging can be performed in the model in an analogous way to the exper-

iments reviewed in chapter 1 (Frey and Morris, 1997; Sajaykumar and Frey, 2004;

Sajikumar and Frey, 2004). The model was matched to experimental data gathered by

Roger Redondo. In these experiments, late LTP was initially induced with 150s TBS.

After 30 mins, early LTP was induced with HFS. This is emulated in the model by first

matching late LTP and early LTP alone to the data, Fig. 8.5A+B. Next, late LTP is

applied to synapse X. After 30mins early LTP is applied to synapse Y, Fig. 8.5C. The

early LTP decay path is also calculated in the case that no LTP was applied previously.

Early LTP that was preceded by late LTP has a more slowly decaying component than
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early LTP that was not preceded by late LTP. In the terminology used in the literature,

the protocol performed in Fig. 8.5C is termed ’strong before weak’. Alternatively, the

protocol can be ’weak before strong’ in which case the induction of early LTP precedes

the induction of late LTP, in this case synaptic tagging still occurs in the same way, Fig.

8.5D.

8.3 Synaptic tagging rescues a weak pattern in the Per-

ceptron model

Flashbulb memories are formed when an entire snapshot of information is fixed in

memory by a single event, much as an old fashioned flashbulb fixes an entire visual

scene in an instant when the photographer wishes to capture one salient but fleeting

object. In human memory, flashbulb memories are caused when an important event

leads to emotional arousal causing memory of both that important event and a number

of peripheral, seemingly inconsequential events (Brown and Kulik, 1977). In some

ways the analogy to a flashbulb is an unfortunate one, because flashbulb memories can

lead to the retention of information that preceded or followed the event leading to the

’flash’. The classic example of this is to say that everyone remembers where they were

when JFK was shot1.

It is not clear what the behavioral role of flashbulb memories is. They might be

a mechanism for ensuring retention of information about the circumstances leading

up to and directly following an important event. It has been suggested that synaptic

tagging might be a mechanism that mediates flashbulb memories at the low level (Frey

and Morris, 1997; Frey and Morris, 1998). The temporal non-locality of synaptic

tagging, meaning that synapses can alter their course of plasticity depending upon

events that do not happen in strict synchrony, is the key feature that might enable this.

The slowing of the decay of the signal of a memory stored with early phase transitions

due to the storage of a late phase memory can be demonstrated using the model of

synaptic tagging and the perceptron.

In the expanded state space of the tagging model, plasticity protocols can be applied

to one or other of the synapses separately, by adjusting the transition rates for that

synapse without altering the transition rates governing the other synapse. Specifically,

alterations can be made to the transition rates in any subblock of the full 144 state
1Clearly, this does not apply to me because I was not alive when this Earth-shaking event occurred.

The events of September 11th 2001 provide a tragic contemporary example.
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Figure 8.5: Synaptic tagging in the model, compared to experimental data. A: Early

LTP alone is elicited in synapse X. The experimental data is indicated by the circles,

while the behavior of the model is indicated by the solid black line. B: late LTP alone is

elicited in synapse Y. C: Result of applying a tagging protocol. Late LTP is induced in

synapse Y first (black solid line), then followed after 30mins with early LTP in synapse X

(red solid line). The dashed black line is the decay of early LTP in synapse X in the case

that the tagging interaction is removed from the model. Experimental data for the initial

induction of late LTP (open circles), the subsequent rescue of early LTP via tagging

(filled red circles) and control early LTP with no tagging (open triangles) is plotted for

comparison. The decay of early LTP in synapse X is slowed by the initial induction of

late LTP. D: As C, but early LTP is first elicited in synapse X and is followed after 30mins

by late LTP in synapse Y. This leads to an identical rescue of early LTP.
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Figure 8.6: Pattern rescue in the synaptic tagging model. A: The inputs to the percep-

tron are divided into two groups of synapses, each storing a separate random input

pattern. Although the patterns stored are independent, the two synaptic groups share

a common state space such that their plasticity transitions can interact. B: The first pat-

tern is stored with late LTP/D in group 1 leading to a slowly decaying SNR (black line).

The red dashed line is SNR=1. In the second group of synapses the second pattern

is stored 2600s later with early LTP/D (red line). The decay of the SNR of the second

pattern is slower than the case where everything is identical, but the tagging transitions

are turned off (black dashed line). Both groups contain 100 synapses. C: The second

pattern is stored after late LTP in an identical fashion to B, but now 10000 synapses are

in each group. The initial signal is higher and the difference in time for the SNR to reach

1 of the pattern stored with tagging and the pattern stored without tagging increases to

30,000s (8.3 hrs).
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matrix without altering any other transition rates. Thus plasticity protocols can be

applied independently to the two synapses. Here the inputs to the perceptron model

are divided in to two groups each composed of 100 synapses, Fig. 8.6A, where each

group is independently subjected to either early LTP/D or late LTP/D. After 2000s a

random pattern is stored in group 1 with late phase transitions, in precisely the same

way as patterns were stored in chapter 7. After a further 2600s another pattern, random

with respect to the first, is stored with early phase transitions in the synapses of group 2,

Fig. 8.6B. We see that the timecourse of decay of the SNR of the second pattern, stored

with early phase transitions, is extended in comparison to the control case where the

tagging interaction was removed from the transition matrix. Although the SNR decay

timecourse is slowed by the tagging interaction, the absolute difference in time for the

SNR to reach 1 is increased by only 3200s (53 mins).

The time-gap between the time for the SNR to reach 1 in the case with tagging as

against the case where there is no tagging, can be improved by increasing the number

of synapses within each of the subgroups. This increases the initial signal and raises

the SNR decay curve. This allows the more slowly decaying tail of the curve to deter-

mine the time taken for the SNR to reach 1. With 10,000 synapses (around 1/3 of the

synapses available to pyramidal neuron) the time-gap is increased to around 30,000s

(8.3 hrs). Clearly this time difference is not long enough to allow the rescued memory

(group 2) to persist for a lifetime, as is the case in typical examples of flashbulb mem-

ories. However, lasting for an extra 8 hours might be long enough to enable a memory

trace to be consolidated at the systems level.

8.4 Discussion

In this chapter the state based modeling approach was extended to synaptic tagging.

Using the model the electrophysiological hallmark of synaptic tagging - the rescue

of rapidly decaying early LTP by the induction of late LTP in a separate input - was

qualitatively reproduced. It was then shown that the synaptic tagging model can lead

to the heterosynaptic interaction of the persistence of memory traces, where a single

trace is stored within a subgroup of synapses on one neuron. The degree of rescue of

the weak memory trace depends upon the number of synapses in the subgroups. In this

model, and when the number of synapses in each subgroup is a significant proportion

of the total synapses on a pyramidal neuron, the lifetime of the weak memory can be

extended by around 8 hours when synaptic tagging is present. This is only a factor
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2 extension to the memory lifetime. Thus if this model were to mediate flashbulb

memories, it would have to be the case that a modest increase in memory lifetime

could make the difference between a memory trace being consolidated or not, at the

systems level.

There are many biological details of synaptic tagging that are not yet understood,

for example the biochemical identity of the tag and plasticity related proteins. This

means that in formulating a state based model, there were many uncertainties and so

many assumptions were made. In particular, there is not much to constrain the topology

of the state diagram. The state diagram chosen was the simplest that could be found

that allowed the basic reproduction of electrophysiological synaptic tagging.

In this model and all other models that were explored in arriving at this one, it

was found that the extent to which early LTP could be rescued by late LTP fell far

short of the level that has been observed in experiment (Sajaykumar and Frey, 2004;

Sajikumar and Frey, 2004). However, state based models that relax one of the key

assumptions of this thesis, that plasticity is modelled by the instantaneous piecewise

substitution of the transition matrix, are able to reproduce larger magnitudes of rescue

of early LTP (Barrett et al., 2007). In models of this type, the transition probabilities of

the Markov process underlying synaptic plasticity are free to vary as some continuous

function of time. It makes some sense that this should be the case: The timescales of

the dynamics of the biochemical processes underlying synaptic tagging are probably

not small compared to the decay timescale of the plasticity itself. We can see this

from experiments that measured the time interval that must elapse before synaptic

tagging cannot be abolished. It was found that the time interval over which the tag

is established is of the order of 10mins (Sajaykumar and Frey, 2004). Alternatively

to introducing continuously varying transition rates, the Markovian property can be

restored, but only at the expense of increasing the size of the state space such that state

transitions are modeled that again happen on a timescale that is short as compared

to the decay timescale of LTP itself. For this reason this model of synaptic tagging

would need to be extended such that transitions between tag and PRP states consist of

cascades of state transitions, rather than a single transition.





Chapter 9

Conclusion

In this chapter results are summarised and placed within the context of previous work.

Finally, questions raised by the thesis that are open to further research are stated. This

thesis assessed the plasticity stability dilemma in several biologically plausible models

of synaptic plasticity, including novel models of long term potentiation and depression

and synaptic tagging. This investigation led to the prediction of several ways that the

brain might overcome the plasticity stability dilemma in principle.

9.1 Conclusions and the contribution made by this work

The key motivating influences behind the approach taken in this thesis were the ideas

that synaptic plasticity can be abstracted into a stochastic process (Amit and Fusi,

1992; Amit and Fusi, 1994; Fusi, Drew, and Abbott, 2005; Senn and Fusi, 2005; Fusi

and Abbott, 2007) and that statistical models can be combined with experimental data

to model those processes (van Rossum, Bi, and Turrigiano, 2000). The tools of this

approach were extended such that in addition to existing calculations of the steady

state, the autocorrelation can be also calculated, allowing a characterisation of the

’stability’ of correlation between the weights and a previously stored pattern.

9.1.1 Spike Timing Dependent Plasticity

Two existing models of STDP, non-weight dependent STDP (nSTDP) (Song, Miller,

and Abbott, 2000) and weight dependent STDP (wSTDP) were cast in the stochas-

tic processes framework. This explicitly revealed the long autocorrelation timescale

present in nSTDP. It was found that nSTDP has an autocorrelation timescale that is

185
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several orders of magnitude greater than the autocorrelation timescale of wSTDP for

single units under comparable conditions. The origin of this striking difference is that

the synaptic weight dynamics of nSTDP are bistable, whereas there is no bistability

inherent in wSTDP. This strongly segregates weights into to two groups, allowing only

slow diffusion between the two groups and hence endowing the autocorrelation with

a slow timescale. It was demonstrated that this can be regarded as analogous to the

stochastic escape problem, a process that is well known for producing long correlation

times. Therefore this result applies more generally to any stochastic synapse having

a linear bounded state space: In this case bistable dynamics provide resistance of the

memory trace to fluctuations. This element of the thesis therefore provides an increase

in our understanding about the chosen models of STDP, but also slightly extends the

comments of Fusi and Abbott (Fusi and Abbott, 2007), who did not explore linear

bounded models having bistable dynamics.

Another important factor in the memory trace survival time in the models of STDP

was revealed by exploring the behavior of STDP in simple networks of neurons. It

was found that while wSTDP in networks with lateral inhibition still gives rise to more

unstable receptive fields than nSTDP, that those receptive fields can nevertheless re-

main correlated with their previous locations for a significant amount of time, of the

order of hours, if the lateral inhibition is sufficiently strong. Thus the strength of inhi-

bition in the network modifies the behavior of the plasticity rule as studied in the single

unit case. The modulation of inhibition in the wSTDP model allowed the stability of

the receptive fields to be varied. When inhibition was removed entirely, the receptive

fields were rapidly destroyed by ongoing activity. Thus inhibition might offer a mech-

anism by which cortical processing can alter its stability depending upon the demands

of the environment. This is a novel property of wSTDP in networks that has not been

documented previously.

9.1.2 State based models of LTP/D

Previous authors had demonstrated that state based modeling can be applied to synaptic

plasticity and that this allows calculation of steady state synaptic weight distributions

(van Rossum, Bi, and Turrigiano, 2000) and the signal to noise ratio of the memory

trace (Fusi, Drew, and Abbott, 2005; Fusi and Abbott, 2007). In this thesis the same

approach was applied in order to directly model long term potentiation and depression.

Experimental data was used to constrain the decay timescales of early and late LTP/D
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in these models. These models are the first state based models that have been directly

linked to experimental data in this way. This is an initial attempt to calculate the steady

state memory trace survival time from the decay timescales of early and late LTP/D

observed in experiment.

In the context of the stationary plasticity stability dilemma (SPS), memory traces

are synaptic fluctuations within the steady state of the synaptic ensemble. In the SPS,

it was found that the addition of the late phase timescale to the LTP models increased

the memory trace lifetime to around 200 hours as compared to only 7 hours for the

simple 2 state binary model at the same initial signal.

The memory trace was also studied in the non stationary plasticity stability dilemma

(NPS). Two scenarios were explored: Firstly, the disruption to memory traces stored

with synaptic fluctuations, when an LTP protocol is applied to the synapses. This

mimicked amnesia experiments that have been performed on rats using in-vivo induc-

tion of LTP. It was found that the induction of amnesia, as measured by the degree to

which the autocorrelation and signal to noise ratio of the memory trace was harmed

depended upon the degree of saturation of the weights, and whether early or late LTP

was induced.

The degree of retrograde amnesia was found to depend upon whether late LTP or

early LTP was induced. Saturation of late LTP leads to the complete destruction of the

memory trace. However saturation of early LTP leads only to a transient disruption of

the trace, with the memory signal returning to the decay trajectory that it would have

followed, had there been no intervention.

Anterograde amnesia was more difficult to induce robustly in the model. While the

autocorrelation of the memory trace was harmed both by induction of early and late

LTP, the signal to noise ratio was not necessarily disrupted. This is as a result of the fact

that although correlations of a memory trace stored in a non-equilibrium state of the

synaptic ensemble die away more rapidly than at the steady state, the initial signal can

be larger due to increased fluctuations. This result does not carry directly over into the

biological case since the encoding of memories in the brain is likely far more complex

than the inner product scheme employed in chapter 7. However, it does indicate that

in the NPS, even in this simple case and with a simple encoding scheme, disruption of

the weights does not automatically imply an analogous disruption to memory. Indeed

as was mentioned in chapter 7, the experimental results regarding the induction of

anterograde amnesia have been mixed.

The second NPS scenario that was explored was the situation in which memory
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traces are not stored in the steady state of the baseline synapses, but rather are stored by

large LTP/D events. This has the advantage that the initial signal of the memory trace

can now be very large, potentially scaling steeply with the square root of the number

of synapses. However this is at the cost that the memories tend to be short lived, for

two reasons: Firstly, the signal to noise can decay more rapidly than at the steady

state. Secondly incoming memories overwrite existing memories instantly, a scenario

that was demonstrated using the simple 2 state model. However, these problems can be

alleviated by two factors: Firstly synaptic overload allows the superposition of memory

traces formed using early phase plastic transitions on top of memory traces stored

with late phase synaptic transitions. This means that information can be stored in

an ongoing manner for a temporary time while the initial memory trace is retained

for a long period. This would be suited to a function such as the hippocampus is

thought to perform: The automatic recording of experience, where only a fraction of

the information need be retained for a long period, but where it must all be initially

stored. Secondly, even with synaptic overload, the memory lifetime of the state based

models in the NPS was severely limited by the rate of storage of the late phase memory

traces. It was demonstrated that sparse coding could in principle alleviate this situation.

9.1.3 Synaptic tagging

In chapter 8, a state based model of synaptic tagging was proposed and matched to

experimental data. While the model was not in precise numerical agreement with the

experimental data, it was able to reproduce the phenomenology of synaptic tagging.

Using the same non-steady state storage scheme as defined in chapter 7, the model

was used to demonstrate the conversion of a rapidly decaying memory trace stored

with early LTP/D, in to a more slowly decaying trace via the tagging interaction. It

was found that with a realistic number of synapses in each group, the difference in

memory trace decay time between an early phase memory trace with no tagging, and

an identical trace with tagging was 8.3 hours. It would be necessary for this modest

time increase to allow systems level consolidation of the memory trace.

Recall that synaptic overload allows memory traces to be stored on a temporary

basis initially, without disrupting a previous trace stored with late phase transitions.

When combined with synaptic overload, synaptic tagging might allow the conversion

of superimposed, rapidly decaying, memory traces into more slowly decaying mem-

ory traces. Importantly, this conversion could take place before or after the storage of
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the short term memory trace and depend upon whether or not a separate population

of synapses has caused the production of PRPs. Since conversion of an early phase

memory trace into a late phase memory trace causes late LTP, this process would par-

tially harm any pre existing memory trace relying on late LTP. However sparse coding

could alleviate this problem for identical reasons to its usefulness in protecting long

term memory traces during memory storage with synaptic overload.

9.1.4 Summary of conclusions

The principle contribution of this thesis is the demonstration that biological synapses

might combat the plasticity stability dilemma in the following ways:

• The dynamics of the learning rule, or rather the drift term in the Fokker Planck

formalism, greatly influences the stability of correlations stored within the synapses

of a single unit. It was found that a bistable linear bounded learning rule con-

ferred resistance to steady state fluctuations.

• Lateral inhibition might have a large influence on the stability of plastic feedfor-

ward weights and the stability of processing in networks. Here it was found that

in the case of the weight dependent STDP learning rule the receptive fields of the

output units could be stabilised against steady state fluctuations by increasing the

magnitude of lateral inhibition. Furthermore, the inhibition could also modulate

the presence of receptive fields in the network. Thus, removal of inhibition leads

to the rapid obliteration of receptive fields in the wSTDP network. Replacing

inhibition would allow a new set of receptive fields to be learned.

• In a model of early LTP and late LTP it was found that the presence of more than

one timescale in the synaptic dynamics conferred considerable benefits upon

memory trace retention. Thus it is reasonable that synaptic components such as

the PSD or phosphorylating switches might increase memory retention time by

providing hidden synaptic variables that are not modified by all regimes of ac-

tivity. Crucially, we saw in chapter 6 that this can be achieved while maintaining

an initial signal that is as high as a 2 state model having no additional variables.

• In principle the state based models of LTP/D allow memory traces to be stored

away from the steady state of individual synapses. It was shown that this NPS

scenario gives a very large initial signal, although at the cost of memory longevity.
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Memory longevity can be partially restored by employing synaptic overload and

sparse coding.

• Synaptic overload provides a function supporting synaptic tagging, which allows

short term memory traces to have their decay timescale lengthened in an online

manner. Synaptic overload removes the necessity for all memory traces to be

stored on the longest timescale of plasticity and hence might aid the automatic

recording of experience.

9.2 Predictions

Processes similar to those stated in §9.1.4 predict:

• Receptive field stability can be directly related to the strength of inhibition in

the network. If receptive fields display stability characteristics that are heavily

dependent upon inhibition then it suggests that the underlying synaptic dynam-

ics is not intrinsically stable, in the sense that correlations are rapidly lost. This

situation would be compatible with a learning rule that is not bistable such as

wSTDP. On the other hand, synapses that are each plastic but that operate ac-

cording to a learning rule having a high degree of intrinsic stability, should lead

to a network whose processing can also be very stable (again in the sense of the

survival of correlations). This behavior would be compatible with the bistable

nSTDP learning rule studied here.

• It should be possible to cause reversible retrograde amnesia of recently formed

memories by inducing early LTP in the hippocampus, and this effect should be

more robust than anterograde amnesia induction.

• If a process such as synaptic overload occurs, whereby memory traces can be

stored on more than one timescale, then it might be possible to reversibly disrupt

prior learning with intense novel learning under the conditions stated in chapter

7.

9.3 Further Work

The matching of the state based models to experimental data here was somewhat in-

formal. This was primarily due to time constraints, but also as a result of a lack of
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a sufficient quantity of raw experimental data. It would be useful to devise a scheme

whereby models could be automatically selected as a function of an electrophysiolog-

ical data set, i.e. the likelihood of the data could be maximised with respect to the

number of states, the transition rates and possibly even the topology of the model.

In synaptic overload, the direct superposition of early LTP/D and late LTP/D oc-

curs. This superposition means that the synaptic weight can be altered on the short

term without altering the long term weight. Intuition gained from working with vari-

ous state based models of LTP/D suggests that this superposition of timescales is made

possible by the ring topology of the state diagram (for piecewise homogeneous mod-

els). Is this true? This raises the question of how the topology of state diagrams relates

to the dynamic characteristics of the synaptic weight: Are there more general classes

of state based model categorised according to topology? This amounts to understand-

ing how the structure of the graph in the state diagram relates to the superposition of

eigenvectors in the solutions (at least in the case that detailed balance is obeyed).

The implementation of the state based models in this thesis was extremely sim-

ple. It would be very interesting to embed state based models within neural networks

performing processing. In this more complex case do the conclusions in §9.1.4 still

apply? Can synaptic overload operate in more sophisticated networks?

There is still much work to be undertaken to understand how the interaction be-

tween learning rules and network dynamics operates. This is a difficult problem be-

cause the dynamics of the weights determine the output activity, which in turn affects

the dynamics of the weights. This applies most directly to chapter 5 of this thesis, but

is an issue that is relevant to any plasticity process be it LTP or STDP.

Finally, to better match data, the synaptic tagging model in this thesis suggests that

either more states must be introduced in order to mediate the tagging interaction, or the

underlying Markov process should be inhomogeneous. It would be interesting to at-

tempt to model the biochemical pathways underlying tagging in more detail and hence

to expand the state space of the model. This would have the advantage that the model

could be directly mapped on to transition rates of putative biochemical transitions. An

alternative approach is to derive the properties of the inhomogeneous model from the

supposed biochemical cascade. If a system could be devised that allows this process

to be carried out rapidly, then the consequences of many alternative predictions about

the mechanism of synaptic tagging could be explored.
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