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ABSTRACT 

This thesis contains the results of a study of various 
sequential strategies for choosing stimulus levels for experiments 
with binary response. 

Several estimators of the ED50 that have been suggested for 
use when an Up and Down rule is operated are compared by means of 
small sample calculation of bias and mean square error and 
calculation of their asymptotic distributions. 	All these 
estimators are asymptotically equivalent to either an estimator 
suggested Dixon and Mood or one suggested by Wetherill. 	Simple 
expressions for asymptotic mean and variance of Dixon and Mood's 
estimator have been known for some time. 	Similar expressions for 
Wetherill's estimator are derived. 	An alternative to Wetherill's 
estimator is suggested which has the same asymptotic bias but lower 
asymptotic variance. 	This last estimator is compared with the 
others using similar calculations. 	An estimator of scale is also 
suggested and its properties investigated. 	Properties of all the 
estimators for larger sample sizes are examined by means of 
simulation and compared with those of maximum likelihood estimates. 

Properties of these estimators when an Up and Down transform 
rule is operated are compared in the same way as before. A 
procedure for estimating the scale parameter by using two Up and 
Down transform rules is examined in detail. An estimator of scale 
that has been suggested for use when this procedure is operated is 
criticised and an alternative is suggested. 

The use of a two interval forced choice procedure is 
discussed. 	This procedure is often used in psychometric studies 
in conjunction with an Up and Down transform rule. Calculation of 
asymptotic distributions of estimates and small sample simulations 
indicate that estimators have large bias and high variability. 

Properties of the Robbins-Monro stochastic approximation 
procedure and various variants upon it are compared by means of 
simulation. An attempt is made to compare these procedures with 
the Up and Down rule. 	Difficulties in making such a comparison 
are discussed. 	Modification of these procedures for estimating 
stimulus levels other than the ED50 are compared. 	The use of 
maximum likelihood estimates is discussed. 	Simulations indicate 
that maximum likelihood estimation is not successful. 	Finally 
Venter's and Anbar's procedures are investigated. Though these 
stochastic approximation procedures give asymptotically fully 
efficient estimators of ED50 they have important defects in small 
samples. 



ACKNOWLEDGEMENTS 

I would like to express my gratitude to Professor D.J. Finney 

who has always given me great encouragement and helpful advice. I 

would also like to thank Dr. I. Nimmo-Smith of the Medical 

Research Council Applied Psychology Unit in Cambridge for first 

introducing me to this topic. 

My thanks are due to the Science and Engineering Research 

Council who provided me with financial support. 

Finally I thank my family and friends who, by their support, 

have helped me a great deal. 



1 • INTRODUCTION 

1 • 1 THE BINARY RESPONSE PROBLEM AND STANDARD MODELS 

In many experiments a stimulus or dose is administered to a 

subject who can respond in only one of two ways • Such responses 

are termed binary or quantal, and the response types can be 

labelled positive and negative. A particularly important example 

of such experiments is in bio-assay in which a dose of a drug is 

administered to a laboratory animal which either dies or survives. 

Many other examples of such experiments exist such as experiments 

for testing detonators of explosive or in psychological experiments 

where a subject gives a yes or no response to a stimulus. 

Suppose that for each subject there exists a tolerance level 

above which a positive response is given and otherwise a negative 

response is given. Variation among subjects is often expressed by 

a probability density function f(x) for the tolerance level. The 

probability that a subject gives a positive response at dose level 

x is then 

f(y)dy. 	 1.1.1 

-00 

The function of x in Formula 1.1.1 is called the response curve and 

is the cumulative distribution function of the tolerance 

distribution. In psychological experiments where the same subject 

is used throughout an experiment a function called the psychometric 



function is often assumed to exist describing the probability of 

positive response as a function of stimulus level • I will from now 

on denote the probability of positive response at level x by F(x). 

In bio-assay if units of log, 	dose are used it is often 

reasonable to assume that the tolerance distribution is normal, the 

response curve then taking the form 

F(x) 	 dy. 	 1.1.2 
- 

Another response curve that is often assumed in such circumstances 

is the logistic where now 

-I 
F(x) = (1.0+exp(-(x-ji)). 	 1.1.3 

This response curve corresponds to a tolerance distribution with 

slightly heavier tails than the normal • In practice there is 

little to choose between the two forms (see Finney (1971), page 49) 

and many observations are required to distinguish between them. 

The logistic curve is often preferred for ease of calculation and 

also to some extent because in non-sequential experiments there are 

two statistics sufficient for the two parameters. These are by no 

means the only forms for response curves that have been studied 

(for example in Davis (1965a) and (1965b) linear, exponential and 

reversed exponential curves are discussed), but they are certainly 

the most widely used. 

Often the main object of an experiment is to provide an 

2. 



estimate of the dose level for which the probability of positive 

response takes a particular value p. Commonly p equals 0.5 and the 

level to be estimated is the median of the underlying tolerance 

distribution. This level is sometimes called the ED50 or LD50 (the 

50 per cent effective or lethal dose) or simply the LI,tlevel. The 

level for which the probability of positive response is p is often 

called the LP level. Usually the experimenter would also like some 

estimate of a scale or slope parameter for the response curve. 

1.2 ANALYSIS AND DESIGN OF EXPERIMENTS 

Finney in 'Probit Analysis' (1971) gives much of the history 

of probit estimation. This method essentially provides maximum 

likelihood estimates of parameters under the assumption of a normal 

tolerance distribution. The dataare plotted on normal probability 

paper and a line is visually fitted to give initial estimates of p 

and d. The likelihood equations are non-linear in the parameter 

values • The solution of the equations can be approached by 

Newton-Raphson iterations using as starting values the initial 

estimates. The log, likelihood is the function to be maximised 

and iterations are performed in terms of parameters a and B, where 

a=-)2/a and =1/a. In the matrix of second derivatives one can 

either use the actual proportions of positive and negative 

responses or replace them by the expected proportions given the 

current parameter estimates. Garwood (1941) discusses the merits 

of these two procedures. With modern computing facilities there is 

little to choose between them. For the logistic curve these 
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procedures coincide as the second derivatives are functions of only 

the numbers of observations at each level and the parameter values. 

In non-sequential experiments several alternatives to the 

maximum likelihood estimator of the ED50 have been suggested. 

Cornfield and Mantel (1950) describe the method of Spearman (1908) 

and Kärber (1931) for estimating the mean of the tolerance 

distribution and they also describe a similar approximation to the 

second moment discussed in Churchman and Epstein (1946). They 

suggest that these estimators should be used to give starting 

values for iteration to maximum likelihood estimates • The 

Spearman-Karber and other alternative estimators are discussed and 

compared in Finney (1950) and (1952b) for assumed probit and 

logistic response curves • The conclusion of both of these papers 

is that of these alternatives to the maximum likelihood estimator 

only the Spearman-Kärber and moving average method (see Thompson 

(1947)) should ever be employed as the others have no theoretical 

or practical advantages. A further. alternative estimator is 

Berkson's minimum transform chi-squared estimator (see Berkson 

(1944)). To obtain this estimator first order Taylor expansions 

are made of the likelihood equations and then the resulting linear 

equations are solved to give estimates of the parameters (this 

method is described more fully in Section 2.1). Using this method 

estimates of parameters are obtained, without iteration, which have 

the same asymptotic properties as maximum likelihood estimates. In 

Berkson (1956) mean square errors of the minimum transform chi 

squared estimator and the maximum likelihood estimator are compared 

in small sample experiments. The results showed that there was a 

L1 



m.s.e. advantage for the minimum transform chi squared estimators. 

However Cramer (1964) in similar calculations when dose levels are 

not symmetrically placed about 	found an advantage in a m.s.e. 

sense for the maximum likelihood estimators. Berkson (1980) 

contains a discussion of the merits of these procedures. There are 

further alternatives to maximum likelihood estimation for use in 

sequential experiments which will be discussed later along with 

descriptions of the corresponding sequential methods. 

Li 

Apart from the problem of analysing results there is also the 

problem of experimental design. Suppose in a design observations 

are made at k levels: x, ,...,xk. Suppose further F(x) equals 

G((x-p 
p.)/O) for some known function G. If ""p and ' are m.l. e .t s  of p 

and Cr then n (p-p) and n (d-ø), where n is the number of 

observations, converge, in probability to a bivariate normal 

distribution with variance-covariance matrix 

- 	 3 d ((w) +(d-p?S) 	- (d
- 
-p)S 

1.2.3 

S 	 04. S 

where ) is the proportion of observations made at level x 1 , the w 

are weights equal to 0f(x) )2./(F(x)(1_F(x)), d 

and S w 1 )(x-d) . If 	is known the O(d-p)t s term in the 

variance expression for 	is dropped. The lower bound on the 

asymptotic variance for p is a 1T/2n; for the logistic this lower 

bound is 4/n. Suppose in an experiment equal numbers of 

observations are made at two points symmetrically placed about 

5 



by making the distance between these two points arbitrarily low 

these bounds can be approached (of course in practice ? is unknown 

and such an experiment cannot be set up). For a logistic response 

curve the lower bound on the asymptotic variance of the m.l.e. of 

,8 is 2.28Ø/n (see Wetherill (1963)) this bound being attained when 

equal numbers of observations are made at levels for which the 

probabilities of positive response are close to 0.085 and 0.915. 

These lower bounds on asymptotic variance cannot of course be 

attained simultaneously. For logistic response Wetherill (1963) 

suggests a design criterion of minimising the product of the 

asymptotic variance expressions for parameters )1 and ). The design 

that achieves the minimum is such that observations are placed in 

equal numbers at levels for which the probabilities of positive 

response are close to 0.176 and 0.824, that is close to 

p - 1.551$. 	 1.2.4 

The asymptotic variance expressions for and ,8 then eual 6.90/,&n 

and 2.89 2/n. Another criterion is to minimise the determinant of 

the variance-covariance matrix (this is discussed at length in 

Abdelbasit (1980)). With this criterion terms involving (d-)i) 

cancel. If one is particularly interested in estimating the 

parameter )1 the contribution to the asymptotic variance expression 
I _. 

for p from the 	(d-p)_ S term is important. In such circumstances 

I would be reluctant to use this criterion. 	Another critprinn 

suggested by Finney (see Finney (1952a), pages 218-222) is to use a 

design which minimises the length of a Fieller's theorem 95 per 

cent confidence interval for the ED50. Davis (1965a) and (1965b) 



uses this criterion in non-sequential experiments with 12 subjects 

(Professor Finney has told me that he would not seriously consider 

a proposal for a quantal response experiment with so few subjects). 

With this criterion the design alters as the number of proposed 

observations is increased with all observations eventually being 

required to be made close to the generally unknown value for p. 

Whatever criteria are used all 'optimal' designs depend on 

unknown parameter values. Sequential methods for choosing levels, 

which are designed to overcome disastrous effects of bad initial 

estimates of parameters )  have long been sought. Methods fall into 

three main categories: methods using variants of the Up and Down 

rule, Stochastic approximation methods and Bayesian methods. In 

the following chapters I have made a study of the first two of 

these categories. 

1.3  VARIANTS OF THE UP AND DOWN RULE 

One of the earliest references to the Up and Down rule is in 

Dixon and Mood -(1948). They remark that they first came across 

this procedure for choosing testing levels in 1943 at the Explosive 

Research Laboratory in Bruceton, Pennsylvania. The rule is 

essentially very simple, the first observation is made at at a 

level guessed to be close to the ED50 level, the level y,_ that is 

visited after (t-1) observations is related to &f  by the formula 

y1  = y 	+ N d, 	 1.3.1 

7 



where a is some fixed step size and c takes the value 1 if the 

response at observation t is negative and -1 if it is positive. 

The strategy was devised to concentrate observations around the 

50 level. The results of such experiments can be analysed by 

maximum likelihood estimation. The levels visited form a Markov 

chain for which any level that can be visited equals xL for some 

integer i and constant x0  where 

xj = x0  + ( id). 	 1.3.2 

Providing regularity conditions for application of a theorem in 

Billingsley (1961) hold one can show that the asymptotic properties 

of the m.l.e.'s are similar to those of m.1.e.'s in non-sequential 

experiments only each proportion XC in the variance-covariance 

matrix is replaced by the equilibrium probability 1T of being atx. 

In Appendix 5 these regularity conditions are given, many response 

curves satisfy the conditions and it is easy to verify that they 

are satisfied by probit or logistic response curves. Alternative 

estimators of the ED50 that have been proposed are described in 

Section 2.1. The alternative estimators in greatest use are 

asymptotically equivalent to the mean of all levels visited (see 

Dixon and Mood and Brownlee, Hodges and Rosenblatt (1953)) or the 

mean of the peaks and valleys in the sequence of levels visited 

(see Wetheril, Chen and Vasudeva (1966)). By a peak I mean an 

observation for which the response type changes from being 

previously negative to positive and by a valley I mean an 

observation where there is change from positive to negative. Fig. 

8 



Fig. 1.3.1 Typical sequence of levels visited 
muluS 	 using the Up and Down rule. 
ev el 

-f 

+ 	 - 	e 	 + .® 	- 

S 	0 	 0 

0 denotes peak or valley in the sequence 
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1.3.1 illustrates a typical result of operating the Up and Down 

rule. Both estimators are in general biased but under certain 

circumstances the bias is very small. In many studies of the Up 

and Down rule and its variants maximum likelihood estimation of 

parameters is not considered in small sample calculations or 

simulations and much emphasis is placed on estimating the ED50 of 

the response curve with little or no consideration of the problem 

of estimating slope or scale parameters. The availability of 

easily formed alternative estimators of the ED50 has discouraged 

use of maximum likelihood estimation. In small samples the maximum 

likelihood equations often have a degenerate solution. One can see 

this as a failing of the maximum likelihood technique but I 

consider that a more natural conclusion is that sample sizes 

considered are often too small. 

In Chapters 2,3 and 4 I discuss in detail the small sample and 

asymptotic properties of estimators of location., scale and slope 

for several applications of the Up and Down rule. 

1.4 STOCHASTIC APPROXIMATION PROCEDURES 

Robbins and Monro (1951) described a method for sequentially 

choosing levels at which to test in quantal response experiments. 

The rule for choosing levels is similar to the Up and Down rule but 

the step size is not held constant. The level y &  visited after 

(t-1) trials (with possibly more than one observation per trial) is 

related to by the formula 



yt  = ye.,+ a0-P(y.. 1 )), 	 1.4.1 

where pEr(0,1), P(yt) is the proportion of positive responses 

observed at trial t and [a} is a sequence of constants • Robbins 

and Monro suggested that a& be set equal to c/t and they proved 

that 

limit (E((y-L))) = 0.0. 	 1.4.2 

The conditions they place on the response curve 

are that F is monotonic with derivative greater 

Hodges and Lehmann (1956) modified a result in 

the asymptotic distribution of y • If gp 

response curve at L  then, providing c>1/2g, 

normality with mean Lp and variance 

F for 1.4.2 to hold 

than zero, at L. 

hung (1954) to find 

is the slope of the 

ye has asymptotic 

cp(1-p)/((2gc-1 )mt), 	 1.4.3 

where m is the number of observations per trial • The asymptotic 

variance expression in 1.4.3 is minimised when c=1/g. For the 

logistic response curve 

gp = (l-p)p. 	 1.4.4 

So for the logistic the expression in 1.4.3 is minimised when p=0.5 

and c=4/. The asymptotic variance of ye  is then 41 11

mt which is 

the lower bound in non-sequential experiments on the asymptotic 



variance of the m.l.e. of 

Several modifications of the Robbins-Monro procedure have been 

suggested. Kesten (1958) suggests a procedure designed to 

accelerate convergence to the ED5O (i.e. it is used when p=0.5). 

Again the a&  are set equal to c/t but here step sizes are only 

changed when the two previous steps have been in opposite 

directions (the first and second steps in the process being c and 

c/2). Davis (1965a), (1965b) and (1971) report results of 

simulations using this procedure. In Davis's work a non rigorous 

development in Cochran and Davis (1963) is cited to illustrate why 

the expression in Formula 1.4.3 is the correct variance expression. 

He uses this argument to conjecture that the last level visited in 

Kesten's procedure is asymptotically normal, providing c>1/4g,,, 

with mean equal to the ED50 and variance 

c1/((4gc-1)mn), 	 1.4.5 

where n is the number of steps taken. I have not been able to find 

a rigorous proof of this result. The value of c minimising the 

expression in Formula 1.4.5 is 1/2g 11 ; that is half the value with 

the original procedure. A modification very similar to Kesten's 

that I have suggested is to decrease the step size at each change 

in response rather than to wait until the next step. 

In Chapter 5 I make some comparisons between these and other 

stochastic approximation procedures. I have also tried to make 

comparisons between these procedures and procedures using the Up 

11 



and Down rule. Davis makes similar comparisons in his work for 

experiments using 12 observations. I found that it is difficult to 

determine which step sizes with the Up and Down rule and values for 

c with the Robbins-Monro procedure are comparable as such 

comparability depends very much on the number of observations made 

in an experiment. 
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2 • USE OF THE UP AND DOWN RULE TO ESTIMATE THE ED50 

2.1 POSSIBLE ESTIMATORS OF THE ED50 VALUE 

One of the principal parameters of interest in many problems 

in bio-assay is the ED50 (i.e. the stimulus level at which the 

probabilities of positive and negative response are both 0.5). 

This is of course the median of any assumed underlying tolerance 

distribution and will correspond to the mean if such a distribution 

is symmetric. 

For use with the Up and Down rule, various alternatives to 

maximum likelihood estimation have been proposed. Dixon and Mood 

(1948) suggest an estimator which I will call EDM. It is derived 

from taking a linear approximation to one of the likelihood 

equations and is asymptotically equivalent to the mean of levels 

visited (see Appendix 2). If at the end of the experiment, 

positive responses have been less frequent than negative then 

E vr4  = flX/flL - ( df2 ), 	 2.1.1 

where n is the number of positive responses at level xi and d is 

the distance between adjacent levels (index 'i' denotes the 

position of the level along the stimulus axis). Otherwise 

E0 =m.x/Im. + (df2), 	 2.1.2 



where m, is the number of negative responses at x. If the numbers 

of positive and negative responses are equal the expressions in 

Formulae 2.1.1 and 2.1.2 both equal the mean of the levels visited. 

Brownlee, Hodges and Rosenblatt (1953) consider using simply 

the mean of levels visited as an estimate of ED50 with the 

modification that the starting level is not included in the mean 

(they argue that this level is completely determined by the 

experimenter), instead they include the level that would have been 

visited if the experiment had continued for one more step. I will 

call this estimator H8 . Suppose after n observations the sequence 

of levels visited is y1  and that the level that would have 

been visited after one more step is y.% , then 

nl. l 

E 8 	/n. 	 2.1.3 

Brownlee et al give recursive formulae which allow calculation of 

the bias and m.s.e. of E8 in relatively large 'small samples' 

(see Tsutakawa (1967a) where samples of size 30 are considered). 

Instead of investigating every possible outcome, the number of 

which rises exponentially with the number of observations, one only 

has to evaluate a number of terms rising quadratically. In many 

papers investigating the Up and Down rule the estimator E 3  is used 

rather than EDM (see Choi (1971), Cochran and Davis (1964), Davis 

(1965a), (1965b) and (1971), Hsi(1969), Wetherill (1963), 

Wetherill, Chen and Vasudeva (1966) and Tsutakawa (1967a)). It is 

difficult to see why the properties of EDM  have been so seldom 

studied as in simulations it is only slightly more troublesome to 

Is. 



calculate than E 8  . One disadvantage that EOM has over E 8  is that 

recursive formulae such as those for E 8  cannot be used to obtain 

exact values of m.s.e. and bias. So for example calculations made 

for E6 in Tsutakawa and Hsi would be much more difficult for EDM. 

The shortcomings of E B  for extreme starts and small step sizes 

were realised by Brownlee et al (i.e. that bias of the estimator 

becomes large), they suggested a further modification of ignoring 

the first run of constant response type by forming a 'delayed' 

estimator. I will call this estimator E 9p. 

n+I 
E 80  =y 7.f(n-T'+2), 	 2.1.4 

where at the T'th. 	response the response type first changes (if 

T'=2 then of course E8D= E9 ). Davis considered EBD in detail. 

From calculations in the next section it appears that EOM and EBD 

have similar small sample behaviour. As with EPM the bias and 

m.s.e. of E8 0  cannot be calculated using recursive formulae. I 

believe that EDM merits further consideration, first because it is 

derived directly from Dixon and Mood's approximate formulae and 

second because it behaves reasonably well for small step size and 

extreme starting level without any special modification. 

In the paper of Wetherill et al an estimator which they term 

is suggested. For convenience I will call this estimator EKE. In 

the sequence of positive and negative responses, whenever there is 

a change in response type an intuitive estimate of the ED50 is the 

level midway between the consecutive levels at which this change 

takes place. EWE is simply the mean of all such estimates arising 

I1 



from a staircase and so 

Ew = 0•51(yT+yTI )/m, 	 2.1.5 

where T is the set of T such that responses at y r  and YT) have 

opposite sign and m is the number of times response type changes. 

Choi considers a further estimator that he terms w which is the 

mean of peaks and valleys in a sequence (where a level at which 

response changes from negative to positive is a peak, if the change 

is from positive to negative it is a valley). I will call this 

estimator Epv. 

Epy 	yrJm. 	 2.1.6 
re 'T 

It is easy to see that this estimator is asymptotically equivalent 

to Ew&. EWE equals Epy if the number of changes in response type 

is even and otherwise 

Ep 	E.j5t(O.5d/m). 	 2.1.7 

The sign is positive if there are more peaks than valleys, negative 

otherwise. 

All these estimators are in general asymptotically biased but 

if the underlying tolerance distribution is symmetric and stimulus 

levels are symmetrically placed about the ED50 then all the biases 

are zero. In Section 2.3 some values of biases of these estimators 

are given (see Tables 2.3.1 and 2.3.2); for small step sizes the 
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biases are very small. 

One alternative to maximum likelihood that has been widely 

used in non-sequential experiments is minimum logit chi squared 

estimation (here one assumes a logistic response curve). Estimators 

from this procedure have the same asymptotic distribution as the 

maximum likelihood estixnatar.5 nd are obtained explicitly, values of 

m.l.e.'s must be approached by iteration. The m.l.e.'s for 

logistic response curve are the solutions of the equations 

= 0.0, 	 .2.1.8 

= 0.0, 	 2.1.9 

where Fi = (1.0+exp(-(a+x ))' and FFL is n/(n+m). 	For minimum 

logit chi squared estimation (-F,) is approximated using a first 

order Taylor expansion by 

F1-F.)(log(1j/(1-))-a-,$xj. 	 2.1.10 

With this approximation the equations become linear in parameters a 

and )3. Berkson has suggested that in some circumstances these 

estimates are preferable to m.l.e.'s. There is a problem as to how 

to treat levels at which responses are all of the same type, 

log(F,/(1-F.)) cannot then be evaluated. If such levels are 

ignored, estimates do not exist when there is only one level of 

mixed response. Berkson (1957) suggests use of what he calls a 

1 1/2n' rule but this is not really appropriate for use in Up and 

Is 



Down experiments. The procedure to adopt in such circumstances 

will be discussed in the next section. The ED50 equals -a/)3 so 

providing the sin. logit chi estimates of a and exist and the 

estimate of $ is not zero an estimate of the ED50 can be formed. 

I suggest two further estimators, which I will call E w s and 

E pv  as alternatives to EWE. and Ep. EWE and Epw can be written in 

the following forms 

EWE =(x-,'2))P 	+l(x 1 +( d/2)) v )Yip .+v) , 	2.1.11 

E PV = Zx 1 (Pl.,+VL 	J(Pi +V0, 	 2.1.12 

where Pj, is the proportion of observations for which peaks are 

recorded at.xj and V. is the proportion for which valleys are 

recorded at x • It is easy to see that the equilibrium probability 

of being at level x 1  and observing a positive response after moving 

UP rrom tfle Level below (i.e. of observing a peak) is 

1T,(1-F.., )F., where 1TL is the equilibrium probability of being at 

level x L  and FL is the probability of positive response at this 

level. P is an estimate of this quantity which is asymptotically 

unbiased as the number of observations increases. Another estimate 

of this quantity which is also asymptotically unbiased is 

n1rn1/((n+m)n) (i.e.  11j1  is estimated by (nj- 1 +m 1 )/n, F by 

n/(n+m) and (1-F. 1) by m/(n.+m. 1 )). V L  provides an estimate 

of 11(1-F )F.1  ; an alternative estimate of this quantity is 

n 4. 1 m/((n-t-m 1 )n). The estimators corresponding to Ewe  and Ev if 

these alternatives to P, and VZ are used will be denoted by E wF  and 

E p  where 
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Ew = ((x-(d/2)) 	+ (XL+(d/2))V 	 2.1.13 

	

EpV =Ix+.)/i+, 	 2.1.14 

-I 

P. and V equal nm1/(n+m) and nrn/(n+m) respectively (the 

factor n cancels in 2.1.13 and 2.1.14. -P"C and V,',  are set equal to 

zero if (n+m) is zero). These estimators have the same 

asymptotic expectation as EWE  and Epv  but lower asymptotic variance 

(see the argument in Theorem 3 of Appendix 4). 
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2.2 COMPARISON OF ESTIMATORS OF THE ED50 

In the previous section many estimators of the ED50 for use in 

Up and Down experiments are described. I have made a comparison of 

these estimators for small samples. The two most commonly used 

forms for the response curve are the logistic and probit. In these 

calculations the logistic form is assumed as it is easier to 

program and in practice there is little to choose between the two 

forms. 

In practice the value of the slope parameter 	will not be 

known. Often in problems in bio-assay there is a rough prior 

estimate of )3 from experiments on a standard preparation. The 

problem of estimating , is discussed in the next chapter. Here it 

is assumed that the prior estimate of ,$ differs from the true value 

by no more than a factor of two. 

Values of bias and m.s.e. have been calculated for several 

estimators. Experiments consisted of 12 observations (as in Davis 

(1965a), (1965b) and (1971)) with the Up and Down rule being 

operated. Dixon and Mood suggest a step spacing equal to the 

standard deviation of the underlying tolerance distribution. For 

the logistic response curve this standard deviation is 1T/( 3.0). 

In the experiments step sizes were set equal to 0.5(0.5)2.0. The 

slope parameter, ,$, is set equal toTT/3.0 "'l  so that the standard 

deviation of the tolerance distribution is 1.0. Starting levels 
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were set equal to 0.00(0.25)4.00 relative to y (as in Tsutakawa 

(1967a)). E8 , E80 and EPM all have the same asymptotic normal 

distribution as the mean of the levels visited (I will call the 

mean level estimator E ; details of its asymptotic distribution 

are given in the next section). Ep y  has the same asymptotic normal 

distribution as EWE (see Appendix 3); Ep. has the same asymptotic 

normal distribution as EWE (see Appendix 4). In the 12 Step 

experiments the estimators which are calculated are EM , E L3 , E, 

E, EWE, Ep, E , Epy* and the minimum logit chi squared 

estimator of p. As in Davis' work outcomes of probability less 

than 10.0 are automatically excluded (the number of possible 

outcomes is only 4096 so this seems reasonable). For some of the 

outcomes some of the estimators as defined do not exist. E M  and 

* 	* E6  always exist; EBD, EDM, EWE, Ep, EWE and Epv all exist if 

and only if there is more than one type of response. 

Tables 2.2.1 to 2.2.4 give values of m.s.e.'s of EM , E 8  

EBB , EUM, E, Epv, EWE , and  Ep v. These tables also contain 

asymptotic theory predicted values for m.s.e.'s. Tables 2.2.5 to 

2.2.8 give all the analogous values of biases. The relationships 

between these estimators is also illustrated graphically. Figs. 

2.2.1 to 2.2.4 illustrate values of m.s.e. of EM , E8 , E60 and 

ESM. Figs. 2.2.5 to 2.2.8 illustrate values of m.s.e. of E,and 

EWE* ( values for E 1  and Ep 1  are not illustrated as they are often 

very close to values for EWE-and E). The probability of outcomes 

of individual probability less than 10.0 - 0 	is always less than 
- 

2.0 '10.0 • The probability that all outcomes are of the same type 

(i.e. that only EM and E IS exist) is always less than 10.0 3 and 
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Table 2.2.1 100*m.s.e. of estimators in 12 step experiments 
for step size 0.5 and ,$=1T/3.0"2r 

4 
Start 	EM 	E8 	E jqp EDM Ap M  Ewe Epy AWE E NE E p' A 

0.00 8.74 9.77 9.69 9.64 12.55 10.43 11.23 13.30 10.11 10.43 12.59 
0.25 8.99 9.85 9.91 10.17 12.55 10.80 11.54 13.30 10.28 10.58 12.59 
0.50 9.77 10.10 10.53 11.49 12.55 11.74 12.37 13.30 10.84 11.05 12.59 
0.75 11.21 10.58 11.48 13.08 12.55 13.07 13.57 13.30 12.00 12.02 12.59 
1.00 13.47 11.42 12.71 14.65 12.55 14.82 15.16 13.30 13.75 13.62 12.59 
1.25 16.80 12.80 14.16 16.28 12.55 17.00 17.15 13.30 15.69 15.48 12.59 
1.50 21.56 14.92 15.74 18.06 12.55 19.36 19.37 13.30 17.40 17.12 12.59 
1.75 28.14 18.08 17.40 19.87 12.55 21.74 21.64 13.30 19.10 18.66 12.59 
2.00 36.99 22.65 19.12 21.70 12.55 24.27 24.10 13.30 21.21 20-.64 12.59 
2.25 48.66 29.05 20.93 23.75 12.55 27.16 26.90 13.30 23.62 23.06 12.59 
2.50 63.77 37.74 22.80 26.14 12.55 30.22 29.95 13.30 25.91 25.36 12.59 
2.75 82.99 49.25 24.73 28.73 12.55 33.32 33.12 13.30 28.13 27.45 12.59 
3.00 106.99 64.24 26.79 31.56 12.55 36.76 36.68 13.30 30.94 30.09 12.59 
3.25 136.56 83.36 29.04 34.99 12.55 40.89 40.97 13.30 34.65 33.79 12.59 
3.50 172.56 107.27 31.49 39.24 12.55 45.53 45.88 13.30 38.86 30.08 12.59 
3.75 215.06 136.77 34.13 44.21 12.55 50.47 51.25 13.30 43.34 42.47 12.59 
4.00 267.27 172.72 36.99 50.07 12.55 56.14 57.46 13.30 48.80 47.68 12.59 

Table 2.2.2 100*m.s.e. of estima€ors in 12 step experiments 
for step size 1 .0 and 8=.1T/3.0' 

Start 	E M 	ER 	8 gp E PM  A 	E WE  8  v A vVa7 E 	E p v  AWE  

0.00 12.85 13.90 13.55 13.37 15.20 14.49 16.29 16.32 14.22 14.58 15.76 
0.25 12.86 13.92 13.65 13.57 15.19 14.55 16.22 15.91 14.18 14.63 15.26 
0.50 12.97 13.96 13.93 14.18 15.19 14.97 16.33 15.49 14.23 14.85 14.76 
0.75 13.28 13.99 14.34 15.12 15.19 15.90 16.92 15.91 14.48 15.16 15.26 
1.00 13.90 13.98 14.81 16.21 15.20 16.87 17.65 16.32 14.78 15.30 15.76 
1.25 14.93 13.92 15.28 17.21 15.19 17.40 18.10 15.91 15.13 15.28 15.26 
1.50 16.41 13.92 15.75 17.92 15.19 17.78 10.50 15.49 15.04 15.55 14.76 
1.75 18.38 14.11 16.26 18.30 15.19 18.49 19.25 15.91 17.03 16.36 15.26 
2.00 20.90 14.61 16.84 18.45 15.20 19.46 20.16 16.32 18.26 17.43 15.76 
2.25 24.15 15.51 17.49 18.65 15.19 20.45 20.95 15.91 19.16 18.46 15.26 
2.50 28.43 16.88 18.19 19.15 15.19 21.60 21.84 15.49 19.83 19.48 14.76 
2.75 34.06 18.76 18.89 20.06 15.19 22.99 23.02 15.91 20.40 20.37 15.26 
3.00 41.20 21.19 19.51 21.23 15.20 24.13 24.13 16.32 20.68 20.69 15.76 
3.25 50.23 24.37 20.03 22.34 15.19 24.61 24.79 15.91 20.74 20.46 15.26 
3.50 61.03 28.60 20.49 23.10 15.19 24.79 25.26 15.49 21.15 20.38 14.76 
3.75 73.74 34.19 20.99 23.45 15.19 25.31 26.03 15.91 22.21 21.00 15.26 
4.00 88.54 41.37 21.60 23.56 15.20 26.26 27.06 16.32 23.55 22.16 15.76 

Note: 1, Aand AEdenote columns for asymptotic predicted m.s.e. s of 
E6,, Ew8fld EresPectively. 

23 



Table 2.2.3 100cm.s.e. of estimators in 12 step experiments 
for step size 1.5 and ,?i= lr/3.0 "  

Start 	EM 	EB - ED Epj ADA EWE Epy AWE Ewi Epy 	
41t

AWE 

0.00 16.70 17.56 17.17 16.96 18.34 19.59 22.72 22.45 19.03 19.25 22.20 
0.25 16.52 17.45 17.09 16.88 18.22 18.73 21.70 20.59 18.24 18.53 20.18 
0.50 16.17 17.25 16.98 16.81 17.98 17.12 19.63 17.04 16.72 17.23 16.36 
0.75 15.98 17.19 17.11 17.08 17.86 16.65 18.51 15.36 16.07 16.90 14.57 
1.00 16.21 17.35 17.60 17.87 17.98 18.27 19.48 17.04 16.99 18.11 16.36 
1.25 16.80 17.57 18.29 19.02 18.22 21.01 21.77 20.59 18.62 19.84 20.18 
1.50 17.56 17.57 18.85 20.13 18.34 22.79 23.39 22.45 19.51 20.62 22.20 
1.75 18.48 17.24 19.08 20.94 18.22 22.44 23.06 20.59 19.06 19.86 20.18 
2.00 19.84 16.75 19.06 21.43 17.98 20.83 21.59 17.04 18.10 18.39 16.36 
2.25 21.90 16.46 19.06 21.77 17.86 19.96 20.93 15.36 18.05 17.68 14.57 
2.50 24.63 16.60 19.33 22.05 17.98 20.98 22.20 17.04 19.61 18-56 16-36 
2.75 27.68 17.11 19.85 22.19 18.22 23.16 24.61 20.59 21.96 20.42 20.18 
3.00 30.82 17.80 20.37 22.03 18.34 24.69 26.27 22.45 23.46 21.75 22.20 
3.25 34.29 18.67 20.71 21.60 18.22 24.52 26.03 20.59 23.23 21.68 20.18 
3.50 38.78 19.98 20.95 21.22 17.98 23.46 24.65 17.04 22.12 21.04 16.36 
3.75 44.91 22.00 21.37 21.34 17.86 23.37 24.07 15.36 21.76 21.37 14.57 
4.00 52.82 24.70 22.11 22.23 17.98 25.24 25.49 17.04 22.89 23.25 16.36 

Table 2.2.4 100m.s.e. of estimators in 12 step experiments 
for step size 2.0 and 	=TrJ3.0 

Start EM Eg E6D E Apt. E W E Epv AWE EI.VE 	Epv 
. 

AWE
* 
 

0.00 21.85 22.45 22.14 21.98 22.93 28.05 32.98 33.17 26.90 27.00 33.09 
0.25 21.32 22.00 21.69 21.49 22.49 26.14 30.95 29.77 25.18 25.31 29.51 
0.50 19.97 20.89 20.57 20.26 21.36 21.63 25.97 22.28 21.07 21.32 21.73 
0.75 18.53 19.74 19.44 19.06 20.17 17.27 20.71 15.59 17.08 17.56 14.91 
1.00 17.88 19.29 19.11 18.76 19.66 15.77 18.00 13.00 15.62 16.44 12.31 
1.25 18.47 19.86 19.93 19.81 20.17 18.26 19.31 15.59 17.54 18.76 14.91 
1.50 19.98 21.08 21.57 21.84 21.36 23.73 24.01 22.28 21.66 23.23 21.73 
1.75 21.53 22.15 23.26 23.93 22.49 29.41 29.51 29.77 25.57 27.37 29.51 
2.00 22.45 22.45 24.31 25.29 22.93 32.25 32.59 33.17 27.13 29.09 33.09 
2.25 22.75 21.75 24.36 25.62 22.49 30.80 31.46 29.77 25.71 27.70 29.51 
2.50 23.15 20.30 23.48 25.17 21.36 26.21 27.08 22.28 22.29 24.02 21.73 
2.75 24.67 18.79 22.18 24.52 20.17 21.44 22.43 15.59 19.03 20.01 14.91 
3.00 27.96 18.09 21.32 24.37 19.66 19.34 20.48 13.00 18.05 17.89 12.31 
3.25 32.76 18.64 21.54 25.07 20.17 21.14 22.54 15.59 20.32 18.93 14.91 
3.50 37.92 20.10 22.77 26.31 21.36 25.93 27.71 22.28 24.98 22.64 21.73 
3.75 42.17 21.62 24.31 27.34 22.49 31.08 33.36 29.77 29.71 26.91 29.51 
4.00 45.07 22.52 25.33 27.47 22.93 33.66 36.51 33.17 31.97 29.20 33.09 
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Table 2.2.5 1009bias of estimators in 12 step experiments 
for step size 0.5 and,B= 1T/3.0 '  

Start EM ER 	EBD 	EPM 	ADM 	EWE 	E 	EWE 	Ep 	AWE 

0.00 0.00 0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 
0.25 5.24 3.18 	3.20 	4.66 	0.00 	4.04 	3.59 	3.73 	3.44 	0.00 
0.50 10.67 6.52 	6.25 	8.63 	0.00 	7.81 	6.96 	7.37 	6.75 	0.00 
0.75 16.44 10.20 	9.08 	11.72 	0.00 	11.30 	10.10 	10.85 	9.96 	0.00 
1.00 22.67 14.37 	11.65 	14.25 	0.00 	14.60 	13.07 	13.92 	12.89 	0.00 
1.25 29.51 19.16 	13.92 	16.50 	0.00 	17.56 	15.75 	16.39 	15.25 	0.00 
1.50 37.08 24.65 	15.89 	18.47 	0.00 	20.06 	18.03 	18.38 	17.09 	0.00 
1.75 45.45 30.93 	17.62 	20.19 	0.00 22.25 20.02 20.30 	18.88 	0.00 
2.00 54.65 38.09 	19.20 	21.87 	0.00 	24.38 21.94 22.26 20.82 	0.00 
2.25 64.75 46.15 20.64 23.69 	0.00 	26.42 	23.75 24.06 22.61 	0.00 
2.50 75.81 55.14 21.97 25.51 	0.00 	28.20 25.33 25.62 	24.07 	0.00 
2.75 87.82 65.09 23.24 27.29 	0.00 29.90 	26.80 27.28 25.61 	0.00 
3.00 100.78 76.04 24.53 29.26 	0.00 31.78 28.39 29.34 27.63 	0.00 
3.25 114.72 87.98 25.82 	31.58 	0.00 	33.78 30.05 31.64 29.93 	0.00 
3.50 129.65 100.89 27.10 	34.10 	0.00 	35.70 	31.59 33.89 	32.1.2 	0.00 
3.75 145.54 114.79 28.42 	36.75 	0.00 37.71 	33.16 36.29 34.39 	0.00 
4.00 162.39 129.69 29.89 39.82 	0.00 40.20 	35.07 39.39 37.40 	0.00 

Table 2.2.6 100bias of estimators in 12 step experiments 
for step size 1.0 and 	=1T/3.0i- 

Start E tj E 	E 	, 	 E pM 	A 	E WE 	Epy 	E 	E p,' 	AWE 

0.00 0.00 0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 	0.00 
0.25 2.69 0.99 	1.27 	2.78 -0.01 	2.05 	1.00 	1.71 	1.51 	-0.23 
0.50 5.62 2.01 	2.44 	5.32 	0.00 	4.05 	2.18 	3.39 	2.79 	0.00 
0.75 8.92 3.06 	3.39 	7.28 	0.01 	5.63 	3.25 	4.85 	3.59 	0.23 
1.00 12.59 4.26 	4.09 	8.43 	0.00 	6.55 	3.96 	6.02 	4.00 	0.00 
1.25 16.60 5.79 	.4.66 	8.79 	-0.01 	7.21 	4.53 	7.14 	4.51 	-0.23 
1.50 20.90 7.85 	5.23 	8.66 	0.00 	8.10 	5.27 	8.39 	5.43 	0.00 
1.75 25.48 10.51 	5.87 	8.50 	0.01 	9.26 	6.08 	9.51 	6.57 	0.23 
2.00 30.37 13.70 	6.52 	8.68 	0.00 	10.40 	6.72 	10.28 	7.61 	0.00 
2.25 35.74 17.37 	7.09 	9.40 	-0.01 	11.42 	7.25 	10.80 	8.44 -0.23 
2.50 41.72 21.44 	7.50 	10.51 	0.00 	12.29 	7.80 	11.19 	8.92 	0.00 
2.75 48.37 25.85 	7.68 	11.55 	0.01 	12.69 	8.17 	11.32 	8.78 	0.23 
3.00 55.62 30.62 	7.66 	12.07 	0.00 	12.52 	8.17 	11.19 	8.15 	0.00 
3.25 63.38 35.91 	7.60 	11.94 	-0.01 	12.19 	8.07 	11.22 	7.68 -0.23 
3.50 71.55 41.84 	7.69 	11.44 	0.00 	12.30 	8.21 	11.69 	7.91 	0.00 
3.75 80.09 48.45 	7.99 	11.03 	0.01 	12.93 	8.58 	12.43 	8.77 	0.23 
4.00 89.01 55.68 	8.42 	11.15 	0.00 	13.79 	8.93 	13.15 	9.88 	0.00 

Note: Aand Adenote columns for asymptotic predicted biases of 
EØMand E,respectively. 
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Start 

Table 

EM 

2.2.7 

Ea 

100bias of estimators 
for step size 1.5 and ,2=TTf3.0 

EBD 	EOM 	AM - EWE 

in 12 step experiments 

EPv 	Ewg 	E Py 	A ws  

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

0.25 1.11 0.01 0.27 1.33 -0.42 -0.14 -1.90 -0.19 -0.22 -2.40 
0.50 2.86 0.42 0.91 3.12 -0.42 1.13 -2.10 0.89 0.70 -2.37 
0.75 5.42 1.21 1.85 5.33 0.00 3.75 -0.48 3.18 2.56 0.00 
1.00 8.52 1.98 2.60 7.39 0.42 6.24 1.50 5.36 3.96 2.37 
1.25 11.74 2.38 2.70 8.61 0.42 7.03 2.25 6.13 3.69 2.40 
1.50 14.99 2.49 2.11 8.74 0.00 5.94 1.49 5.50 1.94 0.00 
1.75 18.50 2.86 1.38 8.08 -0.42 4.44 0.49 4.71 0.20 -2.40 
2.00 22.55 4.08 1.11 7.23 -0.42 4.25 0.71 5.04 -0.12 -2.37 
2.25 27.05 6.27 1.50 6.55 0.00 5.70 2.26 6.58 1.15 0.00 
2.50 31.66 9.10 2.24 5.97 0.42 7.60 3.83 8.23 2.87 2.37 
2.75 36.04 12.14 2.83 5.35 0.42 8.48 4.01 8.74 3.81 2.40 
3.00 40.26 15.26 3.10 4.82 0.00 8.05 2.64 7.99 3.75 0.00 
3.25 44.78 18.69 3.28 4.89 -0.42 7.37 1.04 7.10 3.66 -2.40 
3.50 50.11 22.67 3.69 5.92 -0.42 7.75 0.71 7.29 4.51 -2.37 
3.75 56.35 27.14 4.30 7.75 0.00 9.29 1.88 8.59 6.09 0.00 
4.00 63.25 31.72 4.67 9.67 0.42 10.77 3.37 9.82 7.04 2.37 

Table 2.2.8 100xbias of estimators in 12 step experiments 
for step size 2.0 and 

Start 	EM 	ES 	E6B EPM APM E we Epy E 	E, ft Awg 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
0.25 -1.31 -1.93 -1.76 -1.15 -2.14 -4.07 -6.52 -3.84 -3.82 -6.93 
0.50 -1.21 -2.60 -2.26 -0.94 -3.00 -5.20 -9.71 -4.91 -4.91 -9.44 
0.75 0.95 -1.55 -1.03 1.20 -2.11 -2.38 -8.42 -2.28 -2.42 -6.44 
1.00 4.79 0.69 1.37 4.76 0.00 3.12 -3.88 2.82 2.33 0.00 
1.25 9.23 2.92 3.68 8.49 2.11 8.74 1.25 7.92 6.75 6.44 
1.50 13.15 3.93 4.59 10.98 3.00 11.78 4.27 10.58 8.34 9.44 
1.75 15.98 3.22 3.45 11.32 2.14 10.67 3.60 9.56 5.96 6.93 
2.00 18.00 1.33 0.69 9.66 0.00 6.08 -0.14 5.69 0.66 0.00 
2.25 20.18 -0.39 -2.34 7.11 -2.14 0.90 -4.25 1.52 -4.77 -6.93 
2.50 23.53 -0.58 -4.15 5.11 -3.00 -1.66 -5.82 -0.33 -7.55 -9.44 
2.75 28.40 1.38 -3.97 4.52 -2.11 -0.27 -3.75 1.19 -6.58 -6.44 
3.00 34.32 5.08 -2.11 5.16 0.00 4.06 0.79 5.18 -2.83 0.00 
3.25 40.26 9.43 0.30 6.06 2.11 8.90 5.34 9.47 1.54 6.44 
3.50 45.22 13.28 1.97 6.10 3.00 11.70 7.34 11.75 4.22 9.44 
3.75 48.78 16.06 2.14 4.75 2.14 10.98 5.40 10.73 3.94 6.93 
4.00 51.39 18.06 1.04 2.52 0.00 7.29 0.28 7.03 1.26 0.00 
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Fig. 2.2.1 M.s.e.'s of estimators of the ED50 in 12 step 
experiments with step size 0.5 (,2rr/3.0"-). 
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Fig. 2.2.2 As in Fig. 2.2.1 only with step size 1.0. 
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m.s.e. 	 Fig. 2.2.3 As in Fig. 2.2.1 only with step size 1.5. 

U: 

3 

0i 

oc 
- 	 OO 

starting level 

m.s.e. 	 Fig. 2.2.4 AS in Fig. 2.2.1 only with step size 2.0. 

EM 

TTi .TT TT....! 
t oo 	 2 	 - 

tfl.S .e. 

a 

01 

0. 9 

0-7 

t - 6 

o5 

4UQ 

starting level 
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experiments with step size 0.5 ()3.--17/3.6 "2-) 
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except for step size 0.5 and starts 2.75(0.25)4.00 this probability 

is less than 10.0 

One interesting point to note is that the m.s.e.'s of EWE and 

are always less than corresponding values for EWE and Epy. 

This is what asymptotic theory suggests. It could be argued that 

the reductions in m.s.e. are not large enough to justify the extra 

calculation required, though now such objections carry less weight 

than in the past. Results for E WE  do clarify the relationship 

between EWE and E.M . The m.s.e.'s and biases of EDM  and are we 

close for step size 0.5; that is an estimator which is in a m.s.e. 

sense slightly better than EWE has very similar behaviour to that 

of EDM. For step size 1.0 the relationship between EPM and Eis WE 

not so close but they have roughly similar biases and m.s.e.'s. 

For step size 1.5 the biases of EM and are not similar and 

m.s.e.'s are only roughly comparable in magnitude. For step size 

2.0 the biases of E OM  and Ew are again not similar and now it is 

clear that the m.s.e.'s of EWE  are much more dependent on phasing 

than those of EDM (where by phasing I mean the distance of the 

nearest lvel above p from divided by the step size).This is what 

one would expect from the asymptotic theory for these estimators. 

In general one can say that for the smallest step size the 

estimators E, Epv, E WE  and Ep '  have higher or similar m.s.e.'s to 

those of ED,  but as step sizes increases these m.s.e.'s eventually 

become heavily dependent on phasing and oscillate above and below 

values for E. These results suggest to me that E,.1  is preferable 

to all of these estimators. 
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If one is intent upon using one of the estimators EWE, Epv, 
4 	 * 

EWE or Epv  it seems sensible to choose EWE or EpV . The m.s.e.'s of 

EandE,v*  are close with often m.s.e.'s of E$ being slightly 

smaller than those of E PV for starts close to and slightly bigger 

for distant starts. The expectation of EPVis always less than 

that of EWE , usually Ewe and Ep are both positively biased (all 

starting levels are above p) and then the bias of E PV* is smaller 

than that of E., . The m.s.e. of Epv is usually greater than that 

of EWJV however EIPVhas always lower expectation and usually 

smaller bias. In Choi (1971) there are similar results. Choi 

asserts that in experiments in which a fixed odd number of peaks 

and valleys are obtained that the variance of EWE is less than or 

equal to that of Ep V  and he shows that for starts above F the 

expection of E,, is less than that of EWE (if the number of peaks 

and valleys is a fixed even number then Epv always equals EWE). 

Suppose one is to use one of the estimators EM , E 8  , E g  or 

EM. The estimator EM has, as would be expected, large bias and 

high m.s.e. for distant starting levels. For starts close to 

this estimator has the lowest m.s.e. but this advantage is never 

very great. It would appear unwise to use EM unless one is sure 

that the starting value is close to p. The estimator E 8  has 

similar advantages and defects as EM . This estimator often has 

lower m.s.e. 	than E6 or EPM but again this advantage is never 

great and its in.s.e. is very high for step size 0.5 and starts 

beyond 2.00. 	The estimators EBB and EPM have m.s.e.'s that are 

always roughly similar. Both estimators are such that bad starting 

values do not greatly inflate m.s.e.'s even for the smallest step 
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size. For starts close to the estimator EDM has slightly lower 

m.s.e. than ESD but eventually as the distance of starting level 

from  is increased E8D has the lower m.s.e. (EPM has m.s.e. less 

than E 8.for a range of starts increasing with step size). The 

expectation of EOD  is always less than that of EDM  and usually the 

bias of E S
, is less than that of EB,,. This suggests to me for such 

small scale experiments, where reduction of bias and m.s.e. due to 

bad starting values is very important, that the estimator E5 0  

should be preferred. 

Appendix 1 gives conditions under which the m.l.e. 	of 

exists when trials are made according to the Up and Down rule and 

the response is logistic. In such small experiments there appeared 

no point in looking in great detail at the possibility of using 

maximum likelihoQd estimation as there is for all conditions a high 

probability that the maximum likelihood equations have a degenerate 

solution (for example for step size 1.0 the probability that the 

m.l.e. of)3 is infinite ranges between 0.407 and 0.574 for starts 

at 0.50 and 4.00 respectively). These difficulties can be seen as 

an indication that too few experimental units have been considered 

or that maximum likelihood estimation is inadequate for small 

samples. There are similar difficulties in trying to form minimum 

logit chi squared estimates. The minimum logit chi squared 

estimates of a (a=-Pp) and have the form 

= 	 2.2.1 

2.2.2 
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where n and rnj are the number of positive and negative responses 

at x 1 , vj is nrn/(n+m) and R is the weighted mean of the x; with 

weights proportional to v; . These expressions exist if and only if 

there are two levels of mixed response type (where levels for which 

the response is of only one type are ignored). The probability 

that the expressions do not exist is slightly higher than the 

probability that the rn.l.e. of P is infinite (for example for step 

size 1.0 this probability ranges from 0.410 to 0.599 for starts at 

0.5 and 4.00 respectively). The minimum logt chi squared estimate 

of 
IF cannot be formed if the estimate of 	is 0.00. As before 

paths of probability less than 	 not included. With such 

high probabilities of experiments yielding no estimates it is 

impossible to make a useful comparison between the estimators 

previously discussed and the minimum logit chi squared estimator of 

(or with the m.l.e. of?). Berkson (1957) suggests the use of a 

11/2n  rule for levels where only one response type is recorded (if 

n 1  positive and no negative responses are recorded at x then he 

replaces n- by (n-0.5) and mi by 0.5, if there are m L  negative and 

no positive responses he replaces ni by 0.5 and m l  by (rn-O.S)), 

this rule seems somewhat arbitrary but the probability that a path 

will give an estimate is much higher (for example when step size is 

1.00 it is greater than 0.9975 for all starts). However using this 

rule did not give satisfactory results, the estimator of y has much 

higher m.s.e. than values for the other estimators. These results 

are not surprising as for such small samples often there will only 

be one observation at some of the more extreme levels and 

application of the 1 1/2n' rule makes no sense as it makes such 

observations at the extremes seem close to (Berkson of course 
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Table 2.2.9 Mean and m.s.e. of min. logit chi squared estimates 
of  when the step size is 1.0 

1 1/2n' rule used 

Starting level 

	

0.0 	1.0 	2.0 	3.0 	4.0 

mean 	 0.000 0.108 0.029 0.234 -0.192 
m.s.e. 	 0.338 0.354 0.657 3.421 72.946 

1 1/2n' rule used but levels visited only once are ignored 

Starting level 

	

0.0 	1.0 	- 2.0 	3.0 	4.0 

mean 	 0.000 0.031 -0.010 0.036 -0.018 
m.s.e. 	 0.193 0.392 6.036 4.335 5.661 
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only proposed that the rule should be used in non-sequential 

experiments in which all the 'n' are large). I tried to overcome 

this difficulty by ignoring levels visited only once but otherwise 

using the 1 1/2n' rule. Again the probability of paths from which 

an estimate of can be formed is much greater than when the 1 1/2n' 

rule is not used, unfortunately the m.s.e.'s are usually well above 

values for the other estimators. Table 2.2.9 gives some results 

for step size 1.0 using both procedures. 

Davis in (1965a) and (1965b) does discuss minimum transform 

chi squared estimates of parameters in non-sequential experiments 

involving 12 observations. He encountered similar problems and 

resorted to putting a lower bound on estimates of slope equal to 

0.2 times the true value. The probability of an 'unacceptable' 

estimate of slope was often very high. In Davis (1971) he cmm:is 

discussion of this estimator. 

As the probabilities of experiments for which the maximum 

likelihood equations have a degenerate solution can be very high it 

would be surprising if minimum logit chi squared estimation had 

given satisfactory results. In the next chapter simulated 

experiments consisting of greater numbers of observations are 

described and a more useful comparison of maximum likelihood, 

minimum logit chi squared and alternative methods of estimation can 

be made. 
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2.3 DESCRIPTION OF SOME ASYMPTOTIC THEORY 

In the previous section various estimators of the ED50 have 

been compared. Expressions for asymptotic bias and variance of 

estimators allow one to compare estimators as the number of 

observations tend to infinity and also indicate to what extent 

small sample results conform to asymptotic theory. 

In the Up and Down experiments the sequence of levels visited 

can be thought of as a Markov chain. The equilibrium probability 

TIC of being at level xi can be obtained by solving all the 

equations of the form 

1T(1.0-F) =Tl7_1F_ 1 	 2.3.1 
I 

subject to the condition ZiT, = 1.0; Ft is probability of positive 

response at level x i.. When the response curve is logistic then iTt 

is proportional to 

exp( -$(xi -)i_(d/2)f/2d)+exp(_)3(x_)1+(d/2)) 2/2d) 	2.3.2 

where d is the distance between adjacent levels (for derivation of 

2.3.2 see Appendix 6). The first term : in Formula 

2.3.2 is the contribution from positive responses, the second that 

from negative responses. So the positive responses are arranged 

asymptotically at stimulus levels in proportion to the value at 



each stimulus level of a normal density with mean ji+(d/2) and 

variance 	the negative responses are arranged in proportion to 

a normal density with mean ,p-(d/2) and variance d/,$. This suggests 

that 
IP1

or pl could be used as rough estimates of /u, where pi is 

the mean of levels of positive response minus d/2 and ).li is the 

mean of levels of negative response plus d/2. Expressions for the 

Dixon and Mood mean are given in Formulae 2.1.1 and 2.1.2. 	EDM 

equals pl if positive responses are less frequent and equals 

otherwise. The expressions for the equilibrium probabilities of 

positive and negative responses for a logistic curve can be seen as 

further motivation for use of EpMas a rough estimate of , i. The 

'asymptotic expectation of the Dixon and Mood estimator is 

2.3.3 

where u t  equals exp(_(x_p_(d/2)) 2./2d). This of course is the 

asymptotic expectation of EM, E9 and E85 as they are all 

asymptotically equivalent to 
EDM. The asymptotic variance 

expression of all these estimators has a more complicated form. 

Tsutakawa (1967a,b) uses a central limit theorem in Chung (1960) to 

derive the expressions for asymptotic expectation and variance of 

these estimators. The asymptotic mean and variance of these 

estimators are M and V/n (where n is the number of observations) 

M = 1Tr1 x 	 2.3.4 

-27r0 E 	 2.3.5 
I.  

J< <0 

where E, equals x-M and Pi is the probability that the process 
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starting at XL  reaches x0  before returning to x. ( )Oo is defined as 

1.0). The expressions to be evaluated are infinite sums which have 

no closed form. The approximation of setting hi equal to zero for 

fij>40 is made in all following calculations; as IiI.*oo  the Tr; tend 

to zero rapidly ( Iri is soon dominated by a term which is a multiple 

of exp(-di/2)) and the approximation will give evaluation of the 

sums well within the desired level of accuracy. 

From symmetry one can deduce that the biases of EOM for p/d 

equal to x and -x will be for all x of the same magnitude but of 

opposite sign. If )1/d equals k+x for some integer k then the bias 

will be the same as when 11/d equals x (in this case the scale has 

been translated without the phasing of the levels being altered). 

If one knows the bias for p/d [0.0,0.5] one can deduce the bias 

for all ,p/d values. Calculations reveal that the bias of the 

is very small for a wide range of ,8 and )a values. Table 2.3.1 

contains values of asymptotic expectation of' ED/d for )1/d values 

of 0.00(0.05)0.50 and ,d values of 2.25(0.25)4.00 (values of Ad of 

0.25(0.25)2.00 were also considered but to three decimals the bias 

of EDM/d was zero). The biases for ji/d equal to 0.50 and 0.00 are 

always zero as then the possible stimulus levels are symmetrically 

placed about )1. 

The bias is towards the midpoint of the two possible stimulus 

levels falling on either side of 	(when p is actually at a 

possible stimulus level the bias is zero). 	Taking the limit as 

*oo in Formula 2.3.3 then the term for which (xL - (d/2) -ji)2  is a 

minimum will eventually dominate and the expression for the 
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Table 2.3.1 Values of asymptotic expectation of E0,1  Id. 

2.25 	2.50 	2.75 	3.00 	3.25 	3.50 	3.75 	4.00 

)lfd 

0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
0.400 0.401 0.401 0.402 0.403 0.405 0.407 0.410 0.413 
0.300 0.301 0.302 0.303 0.306 0.308 0.312 0.316 0.321 
0.250 0.251 0.252 0.253 0.256 0.259 0.263 0.267 0.273 
0.200 0.201 0.202 0.203 0.206 0.208 0.212 0.217 0.222 
0.100 0.101 0.101 0.102 0.103 0.105 0.108 0.110 0.113 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2.3.2 Values of asymptottheXpectationof E/d. 

1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 

p/d 

0.500. 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 
0.400 0.400 0.401 0.402 0.405 0.408 0.411 0.415 0.420 0.424 0.429 0.434 
0.300 0.301 0.302 0.304 0.308 0.312 0.318 0.325 0.332 0.340 0.348 0.356 
0.250 0.251 0.252 0.254 0.258 0.263 0.269 0.276 0.284 0.293 0.302 0.311 
0.200 0.201 0.202 0.204 0.208 0.212 0.218 0.225 0.232 0.241 0.250 0.259 
0.100 0.100 0.101 0.102 0.105 0.108 0.111- 0.116 0.121 0.126 0.132 0.138 
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Table 2.3.3 Asymptotic variance expressions (/d=0.0). 

M.  
0.25 	0.50 	0.75 	1.00 

Asymptotic Variance of: 

A 	 112- - 	n 

-MpM)$fl '  

(EwE M )$ Y1 '- 

4.251 4.504 4.762 5.025 
4.253 4.514 4.781 5.056 
4.259 4.527 4.799 5.076 
4.429 4.769 5.071 5.357 
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asymptotic expectation of EOM will tend to the midpoint of the two 

levels on either side of ji (providing ji is not 	at 	a stimulus 

level). 

The asymptotic expectations of EWE, E,., Ew  and Epv  are all 

the same and equal the following expression (see Appendices 3 and 

4) 

Thx (F1 (1 .0-F e .., )+(1 .0-Fr )F +1  )/Zm(F 1 ( 1.0-F,., )+( 1 .0F L  )F. 1 ). 2.3.6 

Values of the asymptotic expectation of E/d were calculated for 

the same ).x/d and ,Bd values as used in calculations for the 

expectation of E/d (again one only need consider ?/dE [0.0,0.5] 

as biases outside this range can be deduced from values within this 

range in the same way as values for biases of EM). Table 2.3.2 

gives some values of the asymptotic expectation of EWE/d (for 

values of 0.25(0.25)1.25 the bias is zero to three decimals). As 

with EDM the biases are towards the midpoint of the two levels 

either side ofp, the biases being larger than corresponding values 

for E. The estimators are asymptotically normal with the 

asymptotic variance expression for EWE and E, given in Appendix 3 

and that for E WE * and Epy*in Theorem 3 of Appendix 4. 

The m.l.e.'s of parameters 	and 	will be asymptotically 

unbiased and have an asymptotic bivariate normal distribution. 

This follows from a theorem in Billingsley (1961). The regularity 

conditions required to apply this theorem are given in Appendix 5 

and it is easy to verify that they are satisfied for the Markov 
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chain generated from using the Up and Down rule with logistic 

response. The theorem gives expressions for the asymptotic 

variances and covariances of the m.l.e.'s, which are just as for 

non-sequential experiments only with proportions of observations at 

levels used replaced by equilibrium probabilities of being at the 

levels (see Section 1.3). That is if 51 and are m.l.e.'s of and 
from xi observations then r(-ji) and rh2ç_,$) are asymptotically 

bivariate normal with the following variance-covariance matrix. 

M/I TriW,,) +(5E_PTC- )2, 	(?)S/ 

2.3.7 

S 

where wi is the logit weight associated with observations at x 1  

(i.e. w-, equals F; (1.O-F;)), R is the weighted mean of the x 

with weights proportional to 1Twj and 

S = ( wi ( xj _Tc )21 	 2.3.8 

Tsutakawa (1967a) gives a similar expression for probit response 

where probit weights are used instead of the logit weights. If  

is estimated conditional on a known , then the (5—)1)2' S/)3 7- term in 

the variance expression for is dropped. 

I calculated values for the asymptotic variance of 

and in Fig. 	2.3.1 some of these values are illustrated. I also 

calculated values for the asymptotic variance of d&(E_M 
), 

and n(E W -MwE), (where MM and MWE are the 
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asymptotic expectations of EDM  and EWF  respectively). Some of 

these values are illustrated in Figs. 2.32 and 2.3.3. The 

asymptotic variance expression for n(j-i)$ hardly changes with 

phasing for 1Sd<2.00 but above this phasing begins to have a more 

marked effect, with higher values for )1/d equal to 0.5 and lower if 

?/d equals 0.0 (this is as could be expected as if the step size is 

large in the former case all possible stimulus levels yield little 

information but in the latter at least at the level the logit 

weight of observations is at its highest possible value). The 

asymptotic variance expression for also hardly changes 

with phasing for d<2 .00 but again above this phasing begins to 

have a marked effect, with now lower values fory/d equal to 0.5 

levels and higher if )1/d equals 0.0 (this is the opposite pattern 

I' 
to that for /U*  This is not however surprising, as observations at 

levels which yield little information have low variability and 

those which yield much information have high variability; when the 

step size is large and  is midway between levels observations have 

very low variability and E.M has lower variance than when ,p is at a 

level). Fig. 2.3.3 illustrates values of asymptotic variance of 

nI/2(Ew _Mw ), , analogous 	values 	for 	n' ( E-MwE),8 	are 	also 

illustrated  by the points joined by dashed lines. 	For these 

estimators phasing begins to have a marked effect for d>1.25. The 

dependence on phasing is similar to that for EPM  but the effect of 

• phasing is greater. The difference between the variance 

expressions for EWE  and E '  is not a high proportion of the 

variance expression for EWE. 

For small step sizes the values of asymptotic variance 



expressions for p, EDM and  EWE  are close with that for p being 

lowest and that for E,wg  highest; the value for EWE is then some 

way above the other values. Table 2.3.3 gives values of asymptotic 

variance of r ' i-p) and the analogous expressions for E,,, EWE, 

and E., for p/d equal to zero and d values 0.25(0.25)1.00, for 

these d values the effect of phasing on all the values is very 

small. For small step size all these variances, except those for 

EWE, are approximately equal to 4 .0+d. 

The high dependence on phasing of the asymptotic variance 

expressions for EWE  and EWE for large step sizes does much to 

explain the large oscillations in m.s.e.'s of these estimators 

observed for the experiments of the previous section for the 

largest step size (see Tables 2.2.1 to 2.2.4). The similar xn.s.e.'s 

of E WE  and E for small step size are not surprising as 

asymptotic theory predicts that the estimators have similar 

variance for small step size. The results of the previous section 

together with these asymptotic calculations tend to suggest that 

one should use the EBD or  EDM  in preference to EWE  or E WE but 

there is little to choose between EUM  and E 	for low step size. 

• As step size becomes smaller the asymptotic variance 

expression for p decreases and so one could say that it is best to 

use as small a step size as possible. However there are two 

important disadvantages in using a small step size. One is that if 

a starting level distant from p is chosen it will take many 

observations before anything like the asymptotic distribution of 

levels is achieved and in small samples estimates will have high 
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m.s.e.; the other is that in the absence of precise knowledge 

about , one will wish to obtain an estimate from the results of the 

experiment but for small step sizes the asymptotic variance of the 

m.l.e. of ,$ becomes very large (see Fig. 3.1.8). 

However observations are placed the asymptotic variance 

expression for r(j-)1),fl is bounded below by 4.0 (this correspond to 

the limit as d tends to zero when observations are made in equal 

numbers at ).1+d and ,)1-d). Of course 1u is not known so one cannot 

place observations at short distances either side of to approach 

this limit, also if an estimate of ,)3 is required it would be a 

mistake to place all observations close to . In the next chapter 

a comparison of the asymptotic properties of the Up and Down method 

and non-sequential methods is made. 
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3 • ESTIMATION OF BOTH SCALE AND LOCATION PARAMETERS 

3.1  COMPARISON OF UP AND DOWN AND NON-SEQUENTIAL DESIGNS 

It has been suggested that the slope parameter A of a logistic 
response curve cannot be satisfactorily estimated using sequential 

strategies (see the conclusion of Wetherill (1963)). In the 

following a comparison is made between the Up and Down design and 

several commonly used non-sequential designs; one would expect 

that some non-sequential design would give better results, at least 

for estimation of slope, than the Up and Down design. 

In the Up and Down design the possible stimulus levels form a 

lattice of equispaced dose levels; the non-sequential designs 

considered are those where equal numbers of observations are placed 

at k consecutive lattice points, with k equal to 2,3,4 or 5. One 

would wish to place dose levels symmetrically about y as the 

tolerance distribution is symmetric, but in practice the value of 

is not known. For the Up and Down rule values for j/d considered 

are 0.00(0.05)0.50. For the non-sequential designs I placed the 

centre point(s) of the design at the lattice point(s) nearest to 

(one of the principal advantages of the Up and Down rule is that it 

is a strategy that is able to adjust the testing levels when the 

initial estimate of is poor, so in a sense such comparisons are 

favourable to non-sequential strategies)* . For the non-sequential 

designs the points are symmetrically placed about for )i/d equal 

to 0.5 when there is an even number of design points, and for 



equal to 0 .0 for an odd number. As in the small sample experiments 

('3- 
of Section 2.2 the value of P is set equal to ff13.0 so that the 
variance of the tolerance distribution is normalised to unity. 

Calculations were made for step sizes 0.25(0.25)3.00. 

A 
For convenience the asymptotic variances of n 1_)i) and 

where u and P are m.l.e.'s of and ,will be denoted by 

V(?) and V(,). The comparison between values of V(,1i) for the Up 

and Down and non-sequential designs is favourable to the Up and 

Down design. Fig. 3.1.1 illustrates values of V( ,u)p for the all
2.  

the designs when the step size is 0.25. Although each 

non-sequential design has a lower value for V)1))3 than that for 

the Up and Down design for some phasing of levels, non has a lower 

value for all phasings. The Up and Down design has the advantage 

that the value of V( p) is almost independent of phasing; for the 

other designs this is certainly not the case. The principal reason 

for this low dependence of V(.1) when the Up and Down rule is used 

is that 3Z in the matrix in 2.3.7 is very close to u whatever the 

phasing. The contribution to V(P) from the (-)1)2 S/, term is 

always calculated to be zero and the covariance of r " )_)1) and 

n(,$-,$) is zero to 5 decimals. As step size increases magnitudes 

of covariances increases but they are low over a wide range of step 

sizes. Values for covariances are given in Table 3.1.1. The 

average of Vi) over phasings is lowest for the Up and Down design 

(see Fig. 3.1.7). For the other step sizes considered the value 

of Vi) for the Up and Down design is always lowest or second 

lowest among these designs. For step sizes 0.50 and 0.75 the value 

is lower for the 3 point design for )1/d values up to 0.25 and 0.20 
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Fig. 3.1.1 V(p) 	for step size 0.25, 	1T/3.0". 

Fig. 3.1.2 Vx), 	for step size 0.50, $=1T/3.0 "  
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Fig. 3.1.3 v(,l)flt for step size 0.75, 	Tr/3.0 

" 	' Table 3.1.1 Minus asympt. covariances of n-)1) and 	for ='TT/3 .O 

Phasing 

Step size 	0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 

1.00 0.00 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.02 0.01 0.00 

1.25 0.00 0.05 0.09 0.12 0.14 0.14 0.13 0.11 0.08 0.04 0.00 

1.50 0.00 0.13 0.24 0.32 0.37 0.37 0.34 0.28 0.20 0.10 0.00 

1.75 0.00 0.28 0.51 0.67 0.74 0.73 0.66 0.53 0.37 0.19 0.00 

2.00 0.00 0.52 0.94 1.20 1.29 1.24 1.08 0.86 0.59 0.30 0.00 

2.25 0.00 0.89 1.58 1.95 2.03 1.90 1.62 1.26 0.86 0.44 0.00 

2.50 0.00 1.44 2.49 2.98 3.02 2.75 2.30 1.77 1.19 0.60 0.00 

2.75 0.00 2.25 3.78 4.40 4.32 3.84 3.16 2.39 1.60 0.80 0.00 

3.00 0.00 3.42 5.60 6.32 6.05 5.25 4.25 3.18 2.11 1.05 0.00 

Covariances to 2 decimals are 0.00 for step sizes 0.25, 0.50 and 0.75. 
Values are negative for phases between 0.00 and 0.50 and positive for 
phases between 0.50 and 1.00. 
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respectively but for ).1/d values beyond that the 2 point design is 

lower. For these step sizes the Up and Down design can be seen as 

a compromise between the 2 and 3 point designs which works well 

over the whole range of phasings (see Figs. 3.1.2 and 3.1.3). 

Again the average of V(?)  over phasings is lowest for the Up and 

Down design. For step size 1.00 and above only the 2 point design 

has a lower value for V(,,i) than that for the Up and Down design. 

The average over phasings of V(i) is now always lowest for the 2 

point design. As the step size increases the 2 point design has 

the lowest value of V(p) over a wide range of the p/d values and 

for step sizes above 2.00 is lower for all ,ii/d values considered 

except 0.00. 

In the previous section it is noted that for small step sizes 

the value of V(?), using the Up and Down rule is approximately 

equal to 4.0+,d (see the values of Vi),S in Table 2.3.3). In the 

2 step design with observations placed at )1l a value of V01) 

equal to V0  is achieved when 

10  = log((1+h)/(1-h))/,$, 	 3.1.1 

where 

1/2.. 

h = (1-(4/V0$2 )). 	 3.1.2 

If V0 	is 4.0+pd then for small values of fid the value of l is 

approximately (d/b). 	In terms of Vi) the Up and Down design is 

roughly equivalent to a non-sequential design with observations in 



equal numbers at )1±(d/b). 	It is not surprising that for the 

smallest step V1) is less for the non-sequential designs than for 

the Up and Down design, providing design points are close to being 

symmetrically placed about?, as testing levels are 0(d) away from 

not 0(d" ). However it must be remembered that ensuring 

approximate symmetry of levels becomes difficult for small step 

sizes without a very good prior estimate of 

For large step sizes the sequence of levels visited following 

an Up and Down rule, whenever ,p/d is not close to 0.0, will 

typically consist of alternations between the two lattice points 

nearest to with occasional visits to more distant levels that 

yield less information, this explains the slight advantage the 2 

point design has in such circumstances over,the Up and Down design. 

Designs with very large step sizes are not of much interest as then 

corresponding values of V(p) are very large. 

The comparison between designs based on values of V(i) alone 

can be very misleading; if values of V(/B) are considered quite a 

different pattern emerges. For estimation of B or the Up and 

Down rule is not so satisfactory; the value of V) only has the 

lowest or second lowest value for step sizes 0.25 and 0.50 with 

certain values of )1/d and for step sizes 1.5 and above. However 

the performance of the Up and Down design is not so poor as might 

first be thought. The lowest ratio of V() for a non-sequential 

design against V) for the Up and Down design is for the 5 point 

design with phasing of 0.0 and step size 0.5. 	The relative 

efficiency of the Up and Down design in estimating 	under these 
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conditions is 68.2 percent; 	for most phasings the Up and Down 

design has 80 to 90 percent efficiency in estimatingA relative to 

the best non-sequential design. These gains in efficiency are not 

very large and there is usually a corresponding drop in efficiency 

in estimating )1. The rapid rise in V) as step size decreases 

below about 1 .0, for all designs, should discourage any experimenter 

from using what he guesses to be a very small step size in order to 

make a small asymptotic gain in estimating )1. 

When step sizes are small the values of Vi) and Vç$) for the 

Up and Down design are almost independent of phasing, but in the 2 

and 3 point designs V.i) does vary over fairly wide ranges even for 

small step sizes. Figs. 3.1.4, 3.1.5 and 3.1.6. illustrate how 

V()i) varies with phasing for the Up and Down, 2 point and 3 point 

designs for all step sizes considered. The values of V(?) for the 

4 and 5 point design do not depend so much on phasing as those for 

the 2 and 3 point designs but the values of V( 3 i) do rise very 

rapidly as step size increases. The value for V(?) with the 2 

point design and ?/d equal to 0.0 is always equal to 8.00 whatever 

the value of d; it is easy to show that in general V(p) equals 21w0 

where w is the weight associated with observations at y. In the 2 

point designs with observations made at )1+Od and ).1-(1-)d, where 

respective weights of observations are w, and w, 

V(i) 	= 2((w,+w ' +(($w,(1-)w))fw, w1 (w+w)), 	3.1.3 

and so for small step size V(u)r is approximately (1+(291)2 )/w0 

(this approximation holds very well for step size 0.25). 
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Fig. 3 . 1 . 4 V(?) 2  for the Up and Down rule, 
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Figs. 3.1.7 and 3.1.8 illustrate values of V(p)$ and V03031  

after taking averages over the values of ).1/d (i.e. ?/d equal to 

0.00(0.05)0.50). For step sizes above 1.00 the average of V(?) is 

lowest for the 2 point design and for step sizes below it is lowest 

for the Up and Down design. However any advantage of the 2 point 

design over the Up and Down design for the larger step sizes in 

estimating? is small. The value of V) for the 2 point design 

rises a long way above the value for the Up and Down design for 

small step sizes, so in the absence of a good initial estimate of ,Z 

(and hence of relative step size) it seems reasonable to always use 

the Up and Down design. Although the value of V() for the Up and 

Down design is sometimes some distance above the corresponding 

values for some non-sequential designs it is never considerably 

higher. 

In Wetherill (1963) a lower bound is given for V03)/)8 I of 2.28 

(see Section 1.2). For step sizes of 1.00 to 2.25 the average of 

V(,)/ for the Up and Down design is less than 5.00, though the Up 

and Down design is not close to fully efficient in estimating ,B it 

does have for a wide range of step sizes around 50 percent 

asymptotic efficiency. Even with the most efficient design for 

estimating ,ø one would expect to make around 900 observations 

before the standard error of A is down to 5 percent of the 

magnitude of B. The Up and Down design undoubtedly will give 

unsatisfactory estimates of in small samples but so will any 

other design. 



3.2 A POSSIBLE ESTIMATOR OF 1/ DR LOGISTIC RESPONSE 

Dixon and Mood (1948), in addition to an approximate estimator 

of the parameter p, gave an estimator for C of an assumed 

underlying normal tolerance distribution. In Appendix 2 the steps 

taken to arrive at EDM  as an approximate estimator are given, the 

same approximations can be made for both the normal and logistic 

response curves. Suppose at level x that n positive and m 

negative responses have been recorded. If d < 2c the estimator for 

they suggest is 

1.620:((v/d )+0.0290) 	 3.2.1 

where if positive responses are less frequent than negative 

v = (Znx/En) - (Lnx./ZnJ, 	 3.2.2 

and if negative responses are less frequent 

V 	(lmCx/m.) - (Zm..xL/Zm. 	 3.2.3 

Using a theorem on page 87 of Chung (1960) it follows that the 

expression in Formula 3.2.2 converges with probability one to 

ZmFX/Z11 F - ( 	FLxL/ZTTF 	, 	 3.2.4
0.  

and that the expression in Formula 3.2.3 converges with probability 
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one to 

- (ZiT(1-F)x 	 )2.  . 	3.2.5 

It is easy to show that these two limits are equal. So v converges 

with probability one to the expression in 3.2.4. 

The estimator of given in Formula 3.2.1 was suggested for 

the normal response curve because, if this limit is substituted for 

v in the formula, then the resulting expression is very close to C 

providing 6/d > 0.5. For the logistic response curve the limit is 

(x-,po? 	 2d),3.2.6 

where p. is the asymptotic expectation of the Dixon and Mood 

estimator. In Appendix 7 I show that as d tends to zero the 

expression in 3.2.6 divided by d tends to 1/p.. So the limit in 

probability of v/d is arbitrarily close to i/$ for sufficiently 

small d. The estimator of VA that I suggest is 1/p where 

1/%= V/ d. 	 3.2.7 

The limit with probability one of 11 is in fact very close to 11  

for Ad < 2.0. In Table 3.2.1 limits for 1/, d are given for Ad 

equal to 1.75(0.25)4.00 and ).1/d equal to 0.0(0.1)0.5 and 0.25. 

Calculations were also made for ,d equal to 0.25(0.25)1.50, then 

the biases to 3 decimals were zero. This estimator has been 

derived in a similar way to the estimator of 6  given by Dixon and 



Pd 

0.00 
0.10  
0.20 
0.25 
0.30 
0.40 
0.50 

Table 3.2.1 Limits with probability one of 1/pd. 

1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00 
0.571 0.500 0.444 0.400 0.364 0.333 0.308 0.286 0.267 0.250 

0.572 0.501 0.447 0.405 0.372 0.346 0.325 0.309 0.296 0.286 
0.572 0.501 0.446 0.404 0.370 0.343 0.322 0.304 0.290 0.279 
0.572 0.500 0.445 0.401 0.366 0.337 0.313 0.293 0.275 0.261 

0.571 0.500 0.444 0.400 0.364 0.333 0.308 0.286 0.266 0.249 
0.571 0.500 0.444 0.399 0.361 0.330 0.302 0.279 0.257 0.239 

3.571 0.499 0.442 0.396 0.357 0.324 0.294 0.267 0.243 0.221 
0.571 0.499 0.422 0.395 0.356 0.322 0.291 0.263 0.238 0.215 

Table 3.2.2 Mean and m.s.e of 	in 12 step experiments 
together with asymptotic predicted variance of the m.l.e. of 

i.e. 11=0.5513 to 4 decimals). 

Starting level 

0.0 	1.0 	2.0 	3.0 	4.0 

size 0.5 

mean 
m. S .e. 
Asympt. Var. m.l.e. 

Step size 1.0 

mean 
m.s.e. 
Asympt. Var. m.l.e. 

Step size 1.5 

mean 
m. S .e 
Asympt. Var. m.l.e. 

Step size 2.0 

mean 
m. S .e. 
Asympt. Var. m.l.e. 

0.300 0.373 0.423 0.405 0.274 
0.110 0.126 0.242 0.409 0.438 
0.164 0.164 0.164 0.164 0.164 

0.374 0.415 0.422 0.419 0.401 

0.086 0.093 0.113 0.142 0.161 
0.114 0.114 0.114 0.114 0.114 

0.420 0.411 0.451 0.439 0.397 
0.069 0.091 0.097 0.095 0.120 
0.116 0.092 0.092 0.116 0.092 

0.477 0.379 0.488 0.421 0.477 
0.051 0.111 0.067 0.122 0.073 
0.152 0.070 0.152 0.070 0.152 

ri 



Mood and will be used to give starting values for iterations to 

m.l.e.'s in the simulations of the next section. I calculated 143 

in the experiments described in Section 2.2. The actual value of 

1/)3 in these experiments is 3"2rr which equals 0.5513 to 4 decimals. 

Often there were marked negative biases in the estimates. Some of 

the results are given in Table 3.2.2. The results are not 

encouraging as the m.s.e.'s are very high given the actual 

magnitude of i/. However for many starting values the m.s.e.'s 

are lower than the asymptotic predicted variances of the m.l.e. of 

1/)3. 

From Appendix 7 it follows that for the normal response curve 

the limit with probability one of v/d is, for sufficiently small d, 

arbitrarily close to This suggests an estimator for 0 of 

( 8 /TI )v/d. 	 3.2.8 

The value of (8/TT)" -  is 1.596 to 3 decimals. This estimator is 

close to that suggested by Dixon and Mood for a wide range of 

values of v/d. 



3.3 RESULTS OF SOME SIMULATIONS 

In Section 2.2 m.s.e.'s and means of various estimators of 

are calculated for 12 step experiments. The sample size is too 

small to make a valid comparison of these estimators with the 

maximum likelihood estimator (the probability that the maximum 

likelihood equations have a degenerate solution is always high). 

Also the sample size is so small that no useful estimates of slope 

or scale could be expected. Beyond 12 steps it becomes rapidly 

less practicable to calculate m.s.e.'s and biases of estimators by 

looking at each possible outcome. Except for EM and E8  , no 

recursive formulae exist for calculating biases and m.s.e. 's. I 

investigated the small sample properties of estiiators for larger 

numbers of steps by means of simulation. 

I first simulated 24 step experiments. Again I restricted 

attention to a logistic response curve and set $ equal to 1T/3.0' 2. 

As before I considered step sizes of 0.5(0.5)2.0 and starting 

levels were set at 0.00(0.25)4.00 relative to?. For each set of 

conditions 2000 simulations were made. Tables 3.3.1 to 3.3.4 give 

* values of m.s.e. Is of EM , E 0  , E80 , E011  E.,, EPY I Evi,and E.. 

Tables 3.3.5 to 3.3.8 give corresponding values for bias. 	EM 

E8 , EG D  and  EPM  are asymptotically equivalent, as are EWE  and 

and also EWE  and 
	

These tables contain asymptotic predicted 

values of m.s.e 	and bias. Values of m.s.e. for EM , E 8  , E80 

and E 	are also illustrated in Figs. 3.3.1 to 3.3.4; values for 

EWE and E 	are illustrated in Figs. 3.3.5 to 3.3.8 (for the sake 
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Table 3.3.1 	100,cm.s.e. of estimators in 24 step experiments 

for step size 0.5 	(,$=T1/3.d' based on 2000 simulations). 

Start E Eg 	- E9D Ep ADM EWE E py A y E - Ew -E p*  

0.00 5.09 5.30 5.27 5.35 6.27 5.65 5.83 6.65 5.41 5.49 6.30 

0.25 5.29 5.49 5.50 5.63 6.27 5.92 6.07 6.65 5.54 5.60 6.30 
0.50 5.56 5.68 5.79 6.06 6.27 6.30 6.43 6.65 5.78 5.81 6.30 

0.75 5.87 5.75 6.01 6.39 6.27 6.61 6.69 6.65 6.11 6.11 6.30 
1.00 6.40 5.87 6.23 6.75 6.27. 6.89 6.94 6.65 6.45 6.41 6.30 

1.25 7.34 6.30 6.71 7.14 6.27 7.57 7.56 6.65 6.92 6.84 6.30 

1.50 8.57 6.95 7.31 7.70 6.27 8.41 8.38 6.65 7.48 7.38 6.30 
1.75 10.22 7.70 7.65 7.92 6.27 8.65 8.58 6.65 7.93 7.79 6.30 

2.00 12.38 8.71 7.90 8.08 6.27 8.91 8.81 6.65 8.18 8.03 6.30 
2.25 15.54 10.56 8.61 8.58 6.27 9.77 9.63 6.65 8.77 8.60 6.30 

2.50 19.12 12.59 9.02 8.99 6.27 10.55 10.41 6.65 9.14 8.97 6.30 
2.75 24.00 15.45 9.15 9.07 6.27 10.55 10.39 6.65 9.34 9.13 6.30 
3.00 29.85 18.98 9.18 9.04 6.27 10.49 10.33 6.65 9.34 9.14 6.30 

3.25 37.53 23.99 9.66 9.48 6.27 11.13 10.91 6.65 9.80 9.60 6.30 
3.50 46.27 29.70 10.07 9.86 6.27 11.91 11.70 6.65 10.09 9.87 6.30 
3.75 57.25 37.11 10.57 10.30 6.27 12.37 12.16 6.65 10.69 10.45 6.30 

4.00 70.79 46.45 10.69 10.46 6.27 12.48 12.28 6.65 10.90 10.65 6.30 

Table 3.3.2 lOOXm.s.e. of estimators in 24 step experiments 
for step size 1.0 (=1T/3.0" based on 2000 simulations). 

Start 	EM - ES 	EBD EPM A ojA Ewe Ep 	 Ewe Epy 

0.00 6.84 7.04 6.91 7.03 7.60 7.46 7.86 8.16 7.30 7.43 7.88 

0.25 7.04 7.27 7.17 7.28 7.60 7.52 7.88 7.95 7.39 7.54 7.63 
0.50 6.80 7.06 7.02 7.14 7.60 7.38 7.68 7.75 6.98 7.12 7.38 
0.75 6.95 7.16 7.23 7.38 7.60 7.85 8.04 7.95 7.09 7.23 7.63 

1.00 7.17 7.26 7.46 7.78 7.60 8.30 8.48 8.16 7.41 7.52 7.88 
1.25 7.77 7.58 7.94 8.42 7.60 8.87 8.97 7.95 7.96 7.99 7.63 
1.50 7.67 7.20 7.71 8.22 7.60 8.43 8.57 7.75 7.72 7.66 7.38 
1.75 8.12 7.18 7.82 8.24 7.60 8.44 8.57 7.95 8.01 7.88 7.63 
2.00 8.67 7.13 7.74 8.06 7.60 8.63 8.72 8.16 8.21 8.03 7.88 
2.25 9.59 7.54 8.17 8.38 7.60 8.88 8.93 7.95 8.55 8.41 7.63 
2.50 10.44 7.69 8.13 8.26 7.60 8.98 8.99 7.75 8.22 8.13 7.38 
2.75 12.12 8.33 8.37 8.47 7.60 9.56 9.49 7.95 8.38 8.30 7.63 
3.00 13.72 8.82 8.57 8.73 7.60 9.95 9.92 8.16 8.59 8.53 7.88 
3.25 16.30 9.94 9.00 9.34 7.60 10.40 10.34 7.95 9.08 8.96 7.63 
3.50 18.36 10.55 8.84 9.25 7.60 9.87 9.89 7.75 8.93 8.76 7.38 
3.75 21.79 12.06 8.99 9.36 7.60 10.01 10.05 7.95 9.33 9.08 7.63 
4.00 25.57 13.76 8.81 9.07 7.60 10.03 10.08 8.16 9.38 9.11 7.88 

Note: A 	Aand AWEdenote  columns for asymptotic predicted rn.s.e.'s of 
E, Eand E,,*-  respectively 
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Table 3.3.3 lOOxm.s.e. of estimators in 24 step experiments 
for step size 1.5 	0=iT/3.0 based on 2000 simulations). 

Start E, ES Eq0 EO,j AM EWE Epy AWE EWE Ep. AWE 

0.00 8.52 8.68 8.54 8.62 9.17 10.19 10.89 11.22 9.89 9.95 11.10 
0.25 8.80 9.02 8.88 8.91 9.11 9.88 10.58 10.32 9.68 9.79 10.12 
0.50 8.40 8.68 8.60 8.59 8.99 8.43 9.03 8.55 8.25 8.42 8.21 
0.75 8.18 8.51 8.48 8.47 8.93 7.88 8.32 7.68 7.60 7.83 7.28 
1.00 8.44 8.73 8.77 8.88 8.99 8.90 9.15 8.55 8.15 8.38 8.21 
1.25 8.58 8.81 8.98 9.11 9.11 10.40 10.49 10.32 9.26 9.49 10.12 
1.50 8.85 8.85 9.17 9.44 9.17 11.21 11.33 11.22 9.93 10.16 11.10 
1.75 9.05 8.81 9.26 9.64 9.11 10.74 10.82 10.32 9.65 9.87 10.12 
2.00 9.21 8.62 9.20 9.71 8.99 9.58 9.73 8.55 8.71 8.85 8.21 
2.25 9.84 8.54 9.21 9.82 8.93 9.04 9.19 7.68 8.47 8.37 7.28 
2.50 10.26 8.49 9.28 9.85 8.99 9.60 9.83 8.55 9.04 8.78 8.21 
2.75 10.74 8.34 9.13 9.56 9.11 10.28 10.51 10.32 9.95 9.57 10.12 
3.00 11.81 8.65 9.31 9.64 9.17 11.38 11.64 11.22 10.8 10.41 11.10 
3.25 12.60 9.10 9.89 10.03 9.11 11.28 11.59 10.32 10.87 10.59 10.12 
3.50 13.65 9.25 9.73 9.74 8.99 10.03 10.30 8.55 9.63 9.48 8.21 
3.75 15.03 9.51 9.48 9.41 8.93 9.28 9.40 7.68 8.79 8.74 7.28 
4.00 17.11 10.25 9.76 9.70 8.99 10.44 10.43 8.55 9.29 9.32 8.21 

Table 3.3.4 	100m.s.e. of estimators in 24 step experiments 
for step size 2.0 	(p=T13.0" based on .2000 simulations). 

Start EM Eg EgD E Ap t.  EWE Ep jr AE - EWE Epii 
* 

A 

0.00 11.24 11.37 11.26 11.27 11.47 15.13 16.22 16.59 14.63 14.65 16.55 
0.25 11.27 11.39 11.28 11.33 11.27 14.34 15.55 15.13 13.96 14.00 14.99 
0.50 10.13 10.36 10.26 10.22 10.73 10.85 12.06 11.59 10.70 10.80 11.31 
0.75 9.45 9.84 9.75 9.60 10.11 8.23 9.25 8.00 8.22 8.40 7.66 
1.00 8.94 9.36 9.30 9.19 9.83 6.92 7.41 6.50 6.93 7.18 6.16 
1.25 9.38 9.76 9.77 9.74 10.11 8.38 8.40 8.00 8.05 8.34 7.66 
1.50 10.22 10.27 10.39 10.63 10.73 11.81 11.59 11.59 10.58 10.78 11.31 
1.75 11.06 11.12 11.39 11.57 11.27 15.16 14.85 15.13 13.41 13.67 14.99 
2.00 11.14 11.08 11.51 11.79 11.47 16.17 16.23 16.59 14.16 14.57 16.55 
2.25 11.06 11.14 11.76 11.91 11.27 15.07 15.21 15.13 13.51 14.18 14.99 
2.50 10.58 10.39 11.21-11.40 10.73 12.26 12.47 11.59 11.11 11.86 11.31 
2.75 10.84 9.80 10.72 11.11 10.11 9.62 9.82 8.00 8.90 9.37 7.66 
3.00 11.65 9.35 10.23 10.82 9.83 8.16 8.36 6.50 7.76 7.74 6.16 
3.25 12.99 9.64 10.44 11.19 10.11 9.28 9.44 8.00 9.15 8.66 7.66 
3.50 14.91 10.49 11.21 11.98 10.73 12.62 12.82 11.59 12.18 11.38 11.31 
3.75 15.91 10.79 11.42 12.04 11.27 15.02 15.29 15.13 14.44 13.59 14.99 
4.00 16.74 11.33 12.12 12.66 11.47 16.69 17.19 16.59 15.99 15.30 16.55 



Table 3.3.5 lOOthias of estimators in 24 step experiments 

for step size 0.5 ()?= fl/3.0 h' based on 2000 simulations). 

Start EM ER Eg EPM ADM EWE Epy E 
4 

Epy AWE - 

0.00 -0.36 -0.43 -0.43 -0.30 0.00 -0.25 -0.24 -0.39 -0.39 0.00 

0.25 2.29 1.22 1.30 2.05 0.00 1.99 1.77 1.46 1.26 0.00 
0.50 4.52 2.37 2.38 3.47 0.00 3.40 3.02 2.91 2.56 0.00 
0.75 7.90 4.70 4.35 5.36 0.00 5.56 5.01 5.22 4.73 0.00 
1.00 11.09 6.86 5.65 6.51 0.00 7.14 6.47 6.56 5.98 0.00 

1.25 14.91 9.68 7.19 7.71 0.00 8.92 8.12 8.06 7.39 0.00 
1.50 18.16 11.84 7.45 7.79 0.00 9.45 8.59 8.46 7.73 0.00 

1.75 22.66 15.29 8.54 8.60 0.00 10.49 9.55 9.64 8.87 0.00 
2.00 27.47 19.07 9.42 9.32 0.00 11.59 10.60 10.41 9.62 0.00 

2.25 32.60 23.20 10.03 9.72 0.00 12.26 11.20 10.86 10.04 0.00 
2.50 37.69 27.21 9.75 9.57 0.00 12.28 11.21 10.70 9.85 0.00 

2.75 44.02 32.49 10.48 10.20 0.00 12.83 11.71 11.54 10.67 0.00 
3.00 50.55 37.98 10.85 10.52 0.00 13.40 12.25 11.85 10.98 0.00 
3.25 57.68 44.12 11.33 10.91 0.00 14.14 12.92 12.22 11.33 0.00 
3.50 64.85 50.20 11.05 10.75 0.00 13.99 12.77 12.02 11.08 0.00 
3.75 72.88 57.18 11.27 10.94 0.00 14.10 12.83 12.36 11.41 0.00 

4.00 81.80 65.06 12.14 11.84 0.00 15.24 13.93 13.25 12.30 0.00 

Table 3.3.6 100bias of estimators in 24 step experiments 
/ for step size 1.0 (,3=Tt,3.0 , based on 2000 simulations). 

A U 

Start 	EM 	Eg 	E0 EPM _Apm EWE Epv EwF Efy AwE 

0.00 -0.28 -0.33 -0.36 -0.26 0.00 -0.24 -0.23 -0.34 -0.34 0.00 

0.25 0.48 -0.48 -0.30 0.56 -0.01 0.66 0.16 -0.19 -0.39 -0.23 
0.50 1.93 0.08 0.41 1.77 0.00 1.70 0.87 0.55 0.09 0.00 

0.75 4.17 1.20 1.51 3.31 0.01 3.05 1.95 2.05 1.26 0.23 
1.00 5.47 1.20 1.29 3.29 0.00 2.78 1.62 2.28 1.16 0.00 
1.25 7.82 2.35 2.01 3.82 -0.01 3.34 2.15 3.42 2.05 -0.23 
1.50 9.18 2.56 1.48 2.84 0.00 2.92 1.66 3.28 1.78 0.00 
1.75 11.63 4.05 1.96 2.87 0.01 3.72 2.29 3.89 2.38 0.23 

2.00 14.67 6.27 2.89 3.63 0.00 4.64 2.97 4.60 3.22 0.00 
2.25 16.90 7.60 2.59 3.33 -0.01 5.02 3.16 4.12 2.82 -0.23 
2.50 20.05 9.86 3.05 3.93 0.00 5.60 3.67 4.31 3.00 0.00 

2.75 24.01 12.70 3.80 5.04 0.01 6.35 4.42 5.16 3.73 0.23 
3.00 27.11 14.51 3.05 4.57 0.00 5.46 3.65 4.66 3.06 0.00 
3.25 31.22 17.42 3.26 4.76 -0.01 5.27 3.57 5.19 3.44 -0.23 

3.50 34.68 19.73 2.55 3.68 0.00 4.50 2.85 4.72 2.92 0.00 
3.75 39.35 23.44 3.11 3.89 0.01 5.29 3.56 5.32 3.59 0.23 
4.00 44.23 27.50 3.75 4.48 0.00 5.92 3.99 5.76 4.21 0.00 

Note: ADM  and Aidenote  columns for asymptotic predicted biases of 

and EWE  respectively. 
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Table 3.3.7 100%bias of estimators in 24 step experiments 
for step size 1.5 (,$=TT/ 3-0 "21 based on 2000 simulations). 

Start EM - Ede - Ep EWE Epy Ew E&O  A,,E 

0.00 -0.29 -0.24 -0.28 -0.32 0.00 -0.40 -0.39 -0.45 -0.46 0.00 
0.25 -0.89 -1.43 -1.29 -0.81 -0.42 -1.90 -2.79 -2.34 -2.43 -2.40 
0.50 0.62 -0.65 -0.36 0.74 -0.42 -0.77 -2.24 -1.43 -1.65 -2.37 
0.75 2.00 -0.23 0.21 1.95 0.00 1.63 -0.31 0.56 0.04 0.00 
1.00 3.67 0.19 0.65 3.09 0.42 3.77 1.64 2.44 1.49 2.37 
1.25 5.61 0.82 1.17 4.01 0.42 4.59 2.40 3.48 2.06 2.40 
1.50 6.72 0.46 0.46 3.59 0.00 2.56 0.51 2.21 0.33 0.00 
1.75 8.42 0.56 0.10 3.15 -0.42 0.83 -0.97 1.18 -1.13 -2.40 
2.00 10.16 0.84 -0.38 2.32 -0.42 0.29 -1.31 0.95 -1.68 -2.37 
2.25 13.01 2.59 0.49 2.64 0.00 2.52 0.98 3.19 0.45 0.00 
2.50 14.64 3.41 0.26 1.63 0.42 3.47 1.75 4.01 1.35 2.37 
2.75 16.90 5.00 0.60 1.38 0.42 3.92 1.89 4.36 1.93 2.40 
3.00 19.68 7.22 1.40 1.92 0.00 3.48 1.03 3.59 1.51 0.00 
3.25 20.86 7.82 0.29 0.76 -0.42 1.71 -1.16 1.25 -0.49 -2.40 
3.50 23.93 10.16 0.82 1.55 -0.42 .2.01 -1.04 1.28 -0.21 -2.37 
3.75 27.35 12.62 1.31 2.62 0.00 3.93 0.76 2.82 1.37 0.00 
4.00 30.89 14.92 1.44 3.52 0.42 5.59 2.49 4.11 2.46 2.37 

Table 3.3.8 100*bias of estimators in 24 step experiments 
for step size 2.0 (fi=1Tf3.0" based on 2000 simulations). 

Start Etj Eg Ego E9M Apm EE E pv Ewc 	Spy AWE 

0.00 -0.42 -0.23 -0.24 -0.52 0.00 -0.56 -0.59 -0.68 -0.71 0.00 
0.25 -2.44 -2.69 -2.59 -2.39 -2.14 -5.88 -7.10 -5.90 -5.92 -6.93 
0.50 -2.49 -3.28 -3.09 -2.32 -3.00 -7.36 -9.40 -7.35 -7.39 -9.44 
0.75 -1.59 -2.98 -2.66 -1.45 -2.11 -4.85 -7.66 -5.22 -5.40 -6.44 
1.00 2.13 -0.06 0.34 2.12 0.00 1.54 -1.68 0.74 0.30 0.00 
1.25 5.13 1.73 2.22 4.72 2.11 7.26 3.81 5.91 5.03 6.44 
1.50 7.32 2.40 2.90 6.19 3.00 10.00 6.56 8.29 6.83 9.44 
1.75 8.67 2.11 2.46 6.27 2.14 8.76 5.47 7.40 5.35 6.93 
2.00 8.11 -0.30 -0.37 3.92 0.00 2.68 -0.23 2.27 -0.37 0.00 
2.25 8.76 -1.50 -2.19 2.21 -2.14 -2.77 -5.11 -2.17 -5.36 -6.93 
2.50 9.92 -2.23 -3.73 0.59 -3.00 -5.60 -7.40 -4.58 -8.23 -9.44 
2.75 12.66 -0.93 -3.28 0.59 -2.11 -3.52 -5.06 -2.49 -6.39 -6.44 
3.00 16.41 1.87 -1.39 1.84 0.00 1.44 -0.04 2.33 -1.62 0.00 
3.25 19.54 4.17 -0.14 2.30 2.11 6.21 4.62 6.68 2.77 6.44 
3.50 22.48 6.62 1.29 2.83 3.00 8.74 6.73 8.89 5.20 9.44 
3.75 24.49 8.37 1.75 2.57 2.14 7.79 5.18 7.86 4.55 6.93 
4.00 25.10 8.62 0.38 0.66 0.00 2.93 -0.30 2.97 0.17 0.00 
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Fig. 3.3.4 As in Fig. 3.3.1 only with step size 2.0. 
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Fig. 3.3.8 As in Fig. 3.3.5 only with step size 2.0. 
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of clarity values for E, and E, are not illustrated on these 

graphs as they are usually very close to values for EE  and EWS). 

The figures illustrate very clearly the relations between 

these estimators. These are much the same as for 12 step 

experiments (in Figs. 2.2.1 to 2.2.8 analogous values of m.s.e. 

for 12 steps are illustrated). One point to notice is that with 

just one exception the m.s.e. of E is greater than that of E we  

(for step size 2.00 and starting level 1.00 the m.s.e. of EWE is 

0.0692 and that of EWF 0.0693). 	The m.s.e. 	of Epy is always 

greater than that of Ep. For step size 0.5 the rn.s.e.'s of E DM 

and E are close (as in the 12 step experiments) and biases are 

roughly similar. So again a close connection between EprA  and EWE 

is apparent from the very similar behaviour of E,M  and the 

alternative to EE of EWE. As step size is increasea this 

connection breaks down. For step size 2.00 the m.s.e.'s of 

EWE , EpV and Ep are oscillating above and below corresponding 

values for EDM. This is what one would expect from asymptotic 

theory. 

Among the estimators EWE, E,E P., and EpV it seems again 

sensible to use E or Ep V  As in 12 step experiments EVE  and  EPV  

have similar m.s.e.t s . The mean of E, is always less than that of 

E W E  and often Ep y  has smaller bias. EpV often has m.s.e above that 

of E but smaller bias. 

The relations between EM ,E9 , E and E are much the same 

as in the 12 step experiments. Again EM and E8  have high 
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m.s.e.'s and large biases for step size 0.5 and distant starting 

levels. The estimators E 6. and E OM  have similar m.s.e.'s and are 

more robust than the other two estimators against bias due to bad 

starting levels. In the 12 step experiments E 9  had a very obvious 

advantage over E in that EBD almost always had smaller bias. In 

these 24 step experiments E6D often has smaller bias than EPM  but 

biases due to bad starting levels are in any case less pronounced. 

As E,Pand EDM  are asymptotically equivalent it is not surprising 

that in the experiments with larger numbers of observations there 

is less to choose between them. 

I used E and 1/p to give starting values of u and I/P for 

iteration to maximum likelihood estimates (recall that 1/ )B is the 

approximate estimator of 1/, S described in the previous section). 

Newton-Raphson iterations were performed in terms of parameters a 

and )3 (a=-)i/) with the function to be maximised being the log. 

likelihood. After each Newton-Raphson step I formed provisional 

estimates of 21  and 1/,. Iterations were terminated when the 

difference in both these estimates before and after a step was less 

than 0.5x10-4  (this is an arbitrary criterion but appeared 

reasonable considering the magnitude of standard errors of 

estimators). I did not start iteration when a degenerate response 

curve fitted the observed responses (this happens if there has been 

only one type of response or if after the first reversal of sign of 

response only two or three levels are subsequently visited). I 

also stopped iterations if the determinant of the matrix to be 

inverted in each iteration became less than 10 in magnitude 

(typically in such cases one change in response would allow the 



responses to be fitted by a degenerate curve). Unfortunately the 

numbers of experiments for which iterations were either not started 

or terminated before the convergence criterion was satisfied are 

large for the larger step sizes. In Fig. 3.3.9 the number of 

experiments for which estimates could be formed is plotted against 

starting level. For most of the experiments that did not give 

estimates the likelihood equations had a degenerate solution. It 

is clear that for the larger step sizes the number of experiments 

discarded reaches maxima for phasing of 0.0 and minima for phasing 

of 0.5.  This is not surprising as if phasing is close to 0.0 one 

level is close to )1 but the the two adjacent levels are about one 

step size distant from 1u and so if the step size is large the 

probability of there being only one level of mixed response in 

small sample experiments is high; if phasing is close to 0.5 there 

are two levels which are only about half a step size distant from 
IU 

and providing the step size is not very large the probability of 

there being only, at most one level of mixed response is much 

reduced. Only a small proportion of the simulated experiments were 

discarded because the determinant of the matrix to be inverted 

became too small (for step size 0.5 the highest number of such 

discards at any level is only 20, for step size 1.0 it is 8, for 

step size 1.5 it is 23 and for step step size 2.0 it is 41). So 

providing m.l.e.'s exist there are relatively few problems 

encountered in the iterations. When there is convergence the 

average number of iterative steps taken is always between 3 and 4. 

Fig. 3.3.10 is a plot of the m.s.e.'s of E51  and the m.l.e. of 

for step size 0.5 (it must be remembered that these m.s.e.'s are 

not directly comparable as in the simulations ESM always existed 

72. 



Fig. 3.3.9 Numbers of 24 oervation experiments out of 2000 which 
are not discarded in the course of attempts to find m. 1 • e. is. 
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Fig. 3.3.10 M.s.e.'s of Et,M and 	(the rn.1.e. of ji) in 24 
step experiments with step size 0.5. 
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Fig. 	3.3.11 M.s.e.'s of ;M and 	if u can be, found, 
otherwise )&E 	) in 24 step experiments with step size 1.0. 
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Fig. 3.3.12 As in Fig. 3.3.11 only with step size 1.5. 

Fig. 3.3.13 As in Fig. 3.3.11 only with step size 2.0. 
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but often 	did not). Figs. 3.3.11 to 3.3.13 are the same plots 

for step sizes 1.0, 1.5 and 2.0 only the rn.s.e.'s of an estimator 

that I will call fare also plotted. I define yas being equal to 

if it can be found and otherwise equal to EPM (for step size 0.5 

few experiments are discarded and m.s.e.'s of j when it exists and 

* 
p are very close). 	The m.s.e. s of and E are close for all PA 

step sizes • There is in fact a high correlation between and 

in simulations this correlation is at least 0.86 for step size 0.5 

and at least 0.95 for step sizes 1.0, 1.5 and 2.0. Fig. 3.3.14 is 

a plot of p against E for step size 1.0 and starting level 0.0 

from the first 100 experiments simulated (only 88 of these 

experiments gave values for )). Some of the points are multiple 

points or are very close to some other point (numbers next to 

points give the number of times any point is recorded). Most 

points are such that EPM  and are close though there are a few 

outlying values. 	In all the simulations linear regression 

coefficients for the regression of on Ept, were calculated using 

the admittedly arbitrary criterion of least - squares; 	always 

intercepts were close to 0.0 and slopes were close to 1.0. 	The 

correlations between 1/p, the m.l.e. 	of i/$, and 1/)3 are also 

high, being at least 0.83 for step size 0.5, 0.93 for step size 

1.0, 0.87 for step size 1.5 and 0.81 for step size 2.00. Fig. 

3.3.15 is similar to Fig. 3.3.14 only values of 1/,  are plotted 

against values of 1/,8. There are several points for which 1/ is 

some way above 1/)3 but usually values of the two estimates are 

close. For all simulations linear regression coefficients were 

calculated; these regression coefficients are not usually as close 

to 0.0 and 1.0 as corresponding values for the regression of ^ on 

-75 



Fig 3.3.14 Plot of )1 against EDM for simulated experiments 
where the step size is 1.0 and the starting level is 0.0. 
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Fig 3.3.15 Plot of i/ against 1/)3 for simulated experiments 
where the step size is 1.0 and the starting level is 0.0. 
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E0,. 

The estimator )P has an advantage over the alternative 

estimators previously discussed in that for the smaller step sizes 

it often has much smaller bias. Table 3.3.9 gives values for bias 

and m.s.e. of this estimator. It seems curious that a composite 

estimator such asbehaves so well. However there is no reason to 

suppose that the m.l.e. if it exists can be significantly bettered 

by any alternative and when it does not exist then there is some 

justification for using EPM as it is an approximation to the 

conditional m.l.e. of p given g, which is independent of the 

usually unknown value of (see Appendix 2 and Dixon and Mood 

(.1948)). Of course how well this approximation holds depends on 

the approximation breaks down if is very large or if 2 is close 

to 0.0 and the numbers of positive and negative responses are not 

equal. 

Clearly as the number of observations increases 	is 

asymptotically equivalent to )"I. Table 3.3. 10 gives values for the 

asymptotic variances of estimators (this table is similar to Table 

2.3.3; again MD  and M denote asymptotic means of EPM  and  EWE). 

Asymptotically the distribution of all these estimators depends on 

the starting level only through the phasing of levels so from Table 

3.3.10 asymptotic variances of the estimators under all the 

conditions simulated can be deduced (asymptotic biases are given in 

Tables 3.3.5 to 3.3.8). For step sizes 0.5 and 1.0 the asymptotic 

variance expression for E is slightly above that of the 

expression for EWE is slightly above that of EDM  and the expression 
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Table 3.3.9 100*m.s.e. and 100-bias of )1 '  in 24 step 
experiments (= 1T/3.0" 1, based on 2000 simulations). 

Step size 

0.5 	 1.0 	- 	1.5 	- 	2.0 

	

100 	100 	100 	100 	100 	100 	100 	100 
X 

	

bias 	m.s.e. bias 	m.s.e. bias 	m.s.e. bias 	m.s.e. 
Start 

0.00 -0.48 5.93 -0.38 7.09 -0.27 8.51 -0.22 11.10 
0.25 -0.21 6.10 -0.84 7.44 -1.25 8.96 -2.51 11.15 
0.50 -0.40 6.39 -0.70 7.33 -0.60 8.82 -2.85 10.20 
0.75 0.11 6.57 0.00 7.30 -0.42 8.75 -2.45 9.94 
1.00 0.23 6.82 -0.38 7.46 -0.14 8.61 0.47 9.54 
1.25 0.67 6.98 0.17 8.15 0.86 8.56 2.40 9.71 
1.50 0.33 7.17 -1.04 7.98. 0.78 8.84 3.54 9.82 
1.75 0.72 7.30 -1.22 7.91 0.57 9.39 4.13 10.77 
2.00 0.92 7.10 -0.55 7.61 -0.32 9.74 2.09 11.22 
2.25 0.81 7.91 -0.95 8.04 -0.23 9.74 0.58 11.75 
2.50 0.53 7.81 -0.61 7.97 -1.20 9.53 -1.06 11.67 
2.75 0.92 8.13 0.11 7.99 -1.09 8.98 -1.30 11.46 
3.00 0.98 7.83 -0.26 8.08 -0.42 9.17 -0.29 10.96 
3.25 0.90 8.58 0.29 8.80 -1.48 9.80 0.27 10.92 
3.50 0.84 8.62 -0.83 8.83 -1.08 9.73 0.95 11.43 
3.75 0.88 9.08 -0.79 8.86 -0.62 9.48 1.13 11.44 
4.00 1.21 8.92 -0.27 8.35 -0.18 9.32 -0.45 12.10 
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Table 3.3.10 Asymptotic variance expressions for 
various starts and step sizes when 

Variance of: r2(I r 	(EDM-M9M)$ Eii-M,)$ 

Step size 0.5 

Start 

0.00 4.927 4.953 4.972 	5.252 
0.25 4.927 4.953 4.972 	5.251 

size 1.0 

0.00 5.920 6.000 6.220 	6.443 
0.25 5.935 5.999 6.023 	6.279 
0.50 5.949 5.997 5.828 	6.117 

Step size 1.5 

Start 

0.00 6.833 7.239 8.763 8.863 
0.25 6.973 7.191 7.942 8.104 
0.50 7.204 7.096 6.439 6.706 
0.75 7.301 7.049 5.751 6.063 

Step size 2.0 

7.442 9.054 13.065 13.096 
7.913 8.859 11.460 11.565 
8.723 8.397 8.227 8.445 
9.254 7.946 4.860 5.130 
9.423 7.762 5.724 5.989 

0.00 
0.25 
0.50 
0.75  
1.00 



for E.. is some way above all of these. So for these step sizes 

has an asymptotic advantage over the other estimators in terms of 

variance. For step sizes 1.5 and 2.0 this is not always the case 

but the other estimators then often have high asymptotic bias and 

rates of change of bias have higher magnitude than corresponding 

values for the smaller step sizes. 

In Figs. 3.3.16 to 3.3.19 m.s.e.'s of the m.l.e. 	of 
 y 

conditional on the true value of 	are illustrated, in the 

simulations this estimator always existed (it exists providing 

there is one level of mixed response). In practice $ would usually 

be unknown and it would be impossible to form this estimator. It 

is encouraging that the rn.s.e.'s of E.,and E are close to values 

for this estimator for all the conditions simulated. These results 

confirmed my view that EBO  or EPM  should be used if approximate 

estimates of are required. 

Also illustrated in these figures are m.s.e.'s of 	the 

minimum logit chi squared estimator of P. These estimates have 

been calculated using Berkson's 1 1/2n' rule but any levels visited 

only once are ignored (to me it seems unreasonable to give high 

weight to levels visited only once which is what happens if the 

1 1/2n' rule is used for such levels). The results are better than 

in the 12 step experiments. Such estimates existed for all the 

simulated experiments. Looking in more detail at the results for 

step size 0.5 it was apparent that values of the estimate from a 

few experiments were inflating m.s.e.'s by large amounts. To 

counter this I excluded experiments for which the estimate of 13was 



Fig. 3.3.16 M.s.e.'s of mm. logit X estimates of u, m.l.e.'s of 

for known and of E., in 24 step experiments with step size 0.5 
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Fig. 3.3.17 As in Fig. 3.3.16 only with step size 1.0. 
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less than 0.2 (these bad estimates of ,p were associated with low 

values of ). Only at most 11 out of 2000 experiments were in this 

way discarded. The bias of ji is usually less than that of but 

I could see no reason for preferring it to p. Berkson (1980) makes 

a case for using minimum chi squared estimates instead of maximum 

likelihood estimates. In this paper he refers to Wetherill (1963) 

and Little (1964), who compared these two estimation procedures 

when the Up and Down rule is operated. These papers corroborate 

some of Berkson's results but both authors indicate that they have 

no strong preferences between procedures. Wetherill uses the 

'1/2n' with no special procedure for dealing with levels visited 

only once; Little calculates estimates conditional on the value of 

slope. 

So far I have not discussed in detail 	that I used to start 

iterations. Tables 3.3.11 to 3.3.14 give values for the mean and 

m.s.e. of 1/p. I have also given analogous values for an 

estimator 1/(I define 1/ito equal 1/,  if it can be found and 

otherwise to equal. 11) and i/SB, the minimum logit chi squared 

estimator of 1/ (where the '1/2n' rule is used, levels visited 

only once are ignored and for step size 0.5 some experiments were 

discarded because the estimate of is less than 0.2). The 

estimators 14 and 11g A* always have some negative bias (11) = 0.5513 

to 4 decimals). For all step sizes except 0.5 they have roughly 

similar m.s.e's and biases. For step size 0.5 the m.s.e.'s of 11 

rapidly mount as the starting level is increased beyond 2.00 

(though the bias actually decreases as starting level increases). 

The estimator 1/)—g always has positive bias. It also has much 



Table 3.3.11 Mean and lOOlm.s.e. of estimators of i/ft in 24 step 
experiments for step size 0.5 (=1r/3.0 based on 2000 simulations). 

VB 

Start mean 100 mean 100 mean 100 Asympt. Var. iJ,$ 
m.Le. m..e. m..e. 

0.00 0.410 6.44 0.453 7.92 0.708 25.37 8.22 
0.25 0.421 6.50 0.454 7.34 0.707 23.52 8.22 
0.50 0.434 6.29 0.452 7.04 0.704 21.99 8.22 
0.75 0.458 6.30 0.460 6.84 0.726 23.00 8.22 
1.00 0.469 6.95 0.461 8.28 0.742 25.28 8.22 
1.25 0.485 7.55 0.461 8.07 0.773 25.01 8.22 
1.50 0.490 8.07 0.454 7.01 0.791 25.64 8.22 
1.75 0.500 8.59 0.452 6.47 0.816 29.94 8.22 
2.00 0.509 9.88 0.454 6.43 0.845 38.61 8.22 
2.25 0.521 11.43 0.456 7.76 0.866 43.18 8.22 
2.50 0.516 12.38 0.446 6.89 0.861 42.90 8.22 
2.75 0.523 14.03 0.444 7.01 0.875 48.44 8.22 
3.00 0.524 15.36 0.443 6.83 0.891 54.36 8.22 
3.25 0.530 16.74 0.443 7.77 0.894 52.63 8.22 
3.50 0.523 16.07 0.433 7.04 0.900 54.85 8.22 
3.75 0.527 17.40 0.431 7.28 0.900 57.53 8.22 
4.00 0.528 18.39 0.432 7.10 0.925 66.85 8.22 

Table 3.3.12 Mean and 100sm.s.e. of estimators of i/ft in 24 step 
experiments for step size 1.0 (,=JT13.0 	based on 2000 simulations). 

Start mean 100 mean 100 mean 100 Asympt. Var. i/,$ 
rn.s.e. m.s.e. m.s.e. 

0.00 0.458 4.80 0.493 5.20 0.730 15.26 5.72 
0.25 0.462 4.56 0.494 4.81 0.749 15.24 5.62 
0.50 0.467 4.71 0.494 4.83 0.770 15.07 5.52 
0.75 0.479 5.02 0.495 5.12 0.765 16.08 5.62 
1.00 0.485 4.92 0.489 5.14 0.738 14.85 5.72 
1.25 0.495 4.80 0.494 4.95 0.761 14.81 5.62 
1.50 0.507 5.21 0.501 5.06 0.806 15.97 5.52 
1.75 0.508 5.54 0.500 5.04 0.829 17.65 5.62 
2.00 0.499 5.78 0.494 5.11 0.822.19.57 5.72 
2.25 0.493 5.68 0.491 4.82 0.826 20.53 5.62 
2.50 0.490 5.89 0.489 4.77 0.849 21.28 5.52 
2.75 0.496 6.46 0.488 5.13 0.867 24.51 5.62 
3.00 0.495 6.60 0.480 5.28 0.857 25.65 5.72 
3.25 0.499 5.97 0.482 4.96 0.851 24.43 5.62 
3.50 0.505 6.29 0.487 5.05 0.868 24.91 5.52 
3.75 0.504 6.47 0.486 5.06 0.870 25.35 5.62 
4.00 0.495 6.50 0.483 5.18 0.851 25.81 5.72, 

s5 



Table 3.3.13 Mean and 10m.s.e. of estimators of 1/)3 in 24 step 
experiments for step size 1.5 (-71 3.0, based on 2000 simulations). 

1/ 

Start mean 100 mean 100 mean 100 Asympt. Var. 
m.s.e. m.s.e. m.s.e. 

0.00 0.486 3.74 0.507 4.08 0.786 12.97 5.80 

0.25 0.487 3.93 0.513 4.32 0.809 14.42 5.35 
0.50 0.474 4.49 0.504 4.64 0.826 16.84 4.61 
0.75 0.474 4.95 0.505 4.97 0.845 19.58 4.29 
1.00 0.481 4.78 0.504 4.69 0.837 18.20 4.61 
1.25 0.493 4.35 0.503 4.34 0.806 14.77 5.35 
1.50 0.507 4.36 0.508 4.35 0.794 13.58 5.80 
1.75 0.514 4.75 0.511 4.52 0.814 14.96 5.35 
2.00 0.510 5.15 0.508 4.64 0.860 18.26 4.61 
2.25 0.509 5.25 0.508 4.62 0.916 21.84 4.29 
2.50 0.515 5.29 0.511 4.76 0.947 24.90 4.61 
2.75 0.513 4.82 0.507 4.29 0.924 24.06 5.35 
3.00 0.509 4.65 0.506 4.17 0.889 23.33 5.80 
3.25 0.502 4.70 0.507 4.33 0.874 21.34 5.35 

3.50 0.482 5.30 0.497 4.86 0.886 22.40 4.61 
3.75 0.477 5.81 0.495 5.22 0.932 26.09 4.29 
4.00 0.477 5.44 0.491 4.92 0.956 27.45 4.61 

Table 3.3.14 Mean and 100m.s.e. of estimators of i/$ in 24 step 
experiments for step size 2.0 ()=fl/3.0 	based on 2000 simulations). 

Start mean 100 mean 100 mean 100 Asympt. Var. i/, 
m.s.e. m.s.e. m.s.e. 

0.00 0.541 2.74 0.552 3.14 0.911 16.30 7.61 

0.25 0.522 3.09 0.536 3.49 0.911 16.83 6.64 
0.50 0.488 4.29 0.509 4.60 0.899 18.95 4.97 
0.75 0.461 5.60 0.491 5.73 0.890 22.76 3.85 
1.00 0.440 6.34 0.475 6.32 0.864 23.59 3.49 
1.25 0.453 5.81 0.482 5.81 0.879 22.51 3.85 
1.50 0.490 4.99 0.508 5.11 0.905 20.72 4.97 
1.75 0.527 3.93 0.533 3.97 0.917 18.40 6.64 
2.00 0.554 3.57 0.554 3.48 0.921 17.92 7.61 
2.25 0.546 3.91 0.545 3.72 0.926 18.13 6.64 
2.50 0.517 4.54 0.518 4.23 0.942 20.51 4.97 
2.75 0.491 6.00 0.498 5.51 0.974 26.28 3.85 
3.00 0.476 6.53 0.488 5.94 1.001 31.87 3.49 
3.25 0.477 5.75 0.486 5.24 1.022 34.36 3.85 
3.50 0.516 5.03 0.517 4.58 1.045 36.32 4.97 
3.75 0.544 3.96 0.541 3.56 1.024 32.85 6.64 
4.00 0.551 3.51 0.548 3.17 0.989 28.69 7.61 



higher m.s.e. than the other two estimators. The magnitude of the 

m.s.e.'s of these estimators relative to the magnitude of 149 

indicates that these estimators of 1/ are still not very useful 

but the m.s.e.'s of 11 and 1/,are often close to the asymptotic 

predicted values for the variance of iI$. 

When a normal tolerance distribution is assumed one would 

usually in addition to an estimate of p want an estimate of the 

scale parameter (S. For the logistic 1/) is a scale parameter and 

of course has the same units as P. it seemed natural to me that 

one would wish to estimate this quantity. However in studies using 

the logistic it has been the slope parameter ,2 that that has been 

estimated (for example see Wetherill (1963)). I repeated 

calculations using B and 	as estimators of . 	In a few 

experiments there was only one level at which the less frequent 

response is recorded and no estimate of $ could be formed because 

equals 0.0 (the numbers of such experiments increase with step 

size: such experiments accounted for only at most 1 out of 2000 

experiments for step size 0.5, 4 out of 2000 for step size 1.0, 23 

out of 2000 for step size 1.5 and 63 out of 2000 for step size 

2.0). Iterations were stopped when changes in estimates of ).1 and 

before and after a step were less than 0.510.0. From asymptotic 

theory I expected that the variance of the estimators would be 

approximately 1T9.0 times the variance of corresponding estimators 

of 11,$ (i.e. variances should be about 11 times larger). However 

I found that m.s.e.t s  are for the smallest step sizes much in 

excess of what I expected from results for estimators of 11)3.  For 

step size 0.5 the m.s.e. of is at least 2.79, for step size 1.0 



at least 1.83, for step size 1.5 at least 0.99 and for step size 

2.0 at least 0.39 (m.s.e.'s for and rare usually close). It is 

quite common that estimates of 1/ are some way below the actual 

values of i/). These estimates do not greatly inflate m.s.e.'s of 

the estimators of 1//B but their reciprocals give very poor 

estimates for )3. For this small sample size it is apparent that 

there are estimates of scale that behave well compared to the best 

performance one could expect from asymptotic theory but the same is 

not true for the slope. 

I also simulated 48 and 96 step experiments under the same set 

of conditions. Appendix 9 contains tables summarising my results. 

Much of what I have said concerning 12 and 24 step experiments 

applies equally well to 48 and 96 step experiments. There are a 

- number of points I particularly want to stress: 

The m.s.e.'s of E and E 	 are always less than those ofP. 

and Ep V  respectively. 

The m.s.e.'s of EBb  and ED.M  are close and both estimators 

are robust against bad starting values for small step sizes (unlike 

E 1  and E8 ). The biases of EGD  and E have similar behaviour for 

step sizes 0.5 and 1.0; for step sizes 1.5 and 2.0 biases of both 

estimators are small. 

rAWA 
LOW 



The m.s.e.'s of E, and E 	are close for step size 0.5 

but as step size is increased m.s.e.'s of Ewa (and EWE) begin to 

oscillate above and below values for EPM in accordance with 

asymptotic theory. 

The m.s.e.'s of 	are similar to those of E8p and EPIM but 

has the advantage, of having low bias for all the conditions 

simulated. 

p.,  

The estimators 1/, and 	have similar behaviour except 

for step size 0.5 when often 1/, has smaller bias but higher in.s.e. 

From ( 1 ) it is reasonable to conclude that E,, E  and. E' should 

be used in preference to E WE and Epv. From (2)1 conclude that 

and EDM  are estimators with much the same properties providing the 

number of observations is reasonably large. Brownlee et al (1953) 

suggested the estimator EqD to overcome the difficulties they 

encountered in using E8 ; these results suggest that they could 

just as well have suggested a return to the original estimator E. 

From (3) I conclude that at least for the conditions I have 

considered EWE.  has no special advantage over EgV or EM  for small 

step sizes and it has definite disadvantages for large step sizes. 

From (4) one can see that there is often a close relationship 

between 51 and the estimators E 6  and E., - For reduction of bias it 

seems wise to use P if it exists. The results confirm my belief 



that if an approximate estimator of is required E 3  or E CM  should 

be used. From (5) one sees that there is also a relationship 

between 1/pand 1/p. As the m.s.e.'s of 1/,S and 1/)3 are high 

compared to the magnitude of 1/, (even for 96 step experiments) I 

would be reluctant to make much use of an estimate of 11 arising 

from one experiment. The estimator 1/,  does appear to be of some 

use for giving a starting value for iterations to the maximum 

likelihood estimates. 

As one would expect for these experiments in which more steps 

are taken the asymptotic theory is more closely obeyed. For the 48 

step experiments a large proportion of experiments did not yield 

m.l .e • 's for step sizes 1.5 and 2.0; for 96 step experiments there 

are only large proportions of such experiments for step size 2.0. 

The m.s.e.'s of 	and 	are usually close. As before m.s.e.'s 

of and ,S'are often higher than one would expect. 	Even for 96 

step experiments when the step size is 0.5 the m.s.e.'s of 	are 

about 50 per cent above asymptotic expected values and for step 

size 2.0 m•s.e.'s are very variable with often values inflated by 

results from a few experiments. This suggests that if estimates 

are pooled from several experiments one should pool estimates of 

1/ ahd not estimates of 3. 



4 USE OF UP AND DOWN TRANSFORM RULES 

4.1  DESCRIPTION AND SOME PROPERTIES OF THE UDR RULE 

In Chapters 2-and 3 the problem of estimating parameters 'p, 
and l/, , where the response curve is logistic, has been considered. 

Often an experimenter wishes to estimate the stimulus level at 

which the probability of positive response takes some general value 

p. This level can be denoted as the ED(100p) level, or using 

another common notation as the Lp level. If the response curve has 

parametric form F((x-P)) for some known function F then 

Lp = ?+ (k1), 	 4.1.1 

where F(k) = p; for logistic response k = log(p/( l-p)). 

When the Up and Down rule is used with logistic response, the 

asymptotic correlation between m.l.e.'s of and fi is small for 

small step sizes (see Table 3.1.1). The value of V(p) is close to 

its lower bound of 4/r  but the value of V(fl) is large (see Figs. 

3.1.7 and 3.1.8). As step size decreases the m.l.e. of is at 

least asymptotically approaching full efficiency. However as step 

size decreases the asymptotic variances of m.l.e.'s of all other Lp 

levels increase without bound. For small step sizes observations 

are eventually made close to p. One has to rely very heavily upon 

the assumed form for the response curve to obtain any estimate of a 

L level for p not close to 0.5. Bartlett (1946) emphasises the 

Cl 



importance of estimating an extreme percentage point from 

observations made in the neighbourhood of the point and suggests an 

inverse sampling procedure for use in non-sequential experiments. 

Wetherill (1963) gave a 

estimating general percentage 

rule on a transformed response 

Down Transform rule (UDTR rule 

first specify some qE(0.0,1.0) 

a level until either: 

strategy called 'Routine 15' for 

points which uses the Up and Down 

curve, it has been called the Up and 

o To operate the UDTR rule one must 

and integer no  . Tests continue at 

The proportion of positive responses is less than q, in 

which case the stimulus level is increased by one step. 

The proportion of positive responses based on no  or more 

trials exceeds q, in which case the stimulus level is decreased by 

one step. 	 - 

(Responses at previous visits to a level are not used in forming 

proportions.) 
If after n 0  trials the proportion of positive responses equals q, 

then one more observation is made to determine the direction of the 

next step. Alternatively one can base the UDTR rule on the 

proportion of negative responses • Wetherill in 'Sequential Methods 

in Statistics' (1966, Page 184) gives an example of an UDTR rule 

where n0= 4 and q = 0.75. With this rule moves up are made after 

sequences of responses -,+-,++- or +++-- and moves down after ++++ 

or +++-+. If the response curve has the form F0(x-)1)) then the 

probability that a move down will be made at the next change in 

level given that the level just entered is x is G(x) where 

12 



G(x) =F((x-)1))(2-F(fl(x-)1))). 	 4.1.2 

The sequence of levels visited can be viewed as being generated by 

an Up and Down rule with the response curve G (where the number of 

observations made at each visit to a level is ignored). The value 

of F((x-?))  which gives equal probability of moving up or down 

will be the root of the equation (2z -z 6) = 0.5. This equation has 

just one root in (0.0,1.0) which is close to 0.8. 

A simple example of an UDTR rule is when n 0= 2 and q takes any 

value in (0.5,1.0), here a move up is made after sequences of 

responses - or +- and down after ++. The sequence of levels 

visited can in this case be viewed as being generated using the Up 

and Down rule on the square of the original response curve. This 

rule has been extensively used in psychometric studies; its 

properties will be discussed in the remainder' of this section. 

Wetherill, Chen and Vasudeva (1966) suggest when an UDTR rule is 

used that Wetherill's estimator E5  (where moves down are taken as 

positive responses and moves up as negative responses) can be used 

to estimate LP,  where p is the probability of positive response 

that gives equal probability of moving up or down (so in the last 

example of an UDTR rule, where p = 0.5 EWE would be used to 

estimate Lit). One could in the same way use ESM,  or any of the 

other estimators discussed in Section 2 • 1, to provide estimates of 

14fZ  

Often the assumed response curve arises from a symmetric 
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tolerance distribution, when an UDTR rule is used the transformed 

response curve no longer has this symmetry. Using the Up and Down 

rule E 0  and Ewe  are, for logistic response, estimators of p of 

small asymptotic bias for small step sizes (see Tables 2.3.1 and 

2.3.2), and if stimulus levels are symmetrically placed aboutp the 

biases are zero. The asymptotic biases of E
.A.

and  Ewa for the UDTR 

rule for estimating L 11 (described in the previous paragraph), with 

logistic response, are for small step sizes, much larger than 

corresponding biases for estimates when the Up and Down rule is 

used to give estimates of )1. This is not surprising, as in the 

special case where the response curve is logistic, one can show 

that the asymptotic biases of EQM  and E divided by d tend to zero 

as d tends to zero. For the UDTR rule I have only been able to 

show that the biases divided by d '12-  tend to zero as d tends to zero. 

These results follow from results in Appendix 6. Fig. 4.1.1 

illustrates values of the asymptotic bias of E pfl  in estimating L 

for Pd = 0.25(0.25)4.00 and )1/d = 0.00(0.25)0.75. Fig. 4.1.2 

Illustrates analogous biases of EWE.  The bias for small values of 

Pd is smaller for E than EPM,  but the maximum bias for high 

values of ,$d  iq greater for Ewe. 

Wetherill et al describe some simulations operating this UUPR 

rule, using EWE  as an estimator of Lj,. These simulations indicate 

that this estimator sometimes has m.s.e. below that of the m.l.e. 

of Lv,j (their results will be discussed in more detail in the next 

section). 

For convenience I will define V(L1) to equal the asymptotic 



Fig. 4.1.1 (Asymptotic bias of E)/d when estimating LfrL. 
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Fig. 4.1.2 (Asymptotic bias of EWE)/d  when estimating L.. 
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V2. 
variance of (L,r-Lv)n , where 	is' the m.l.e. of Li,and n is 

the number of observations. 	Fig. 4.1.3 illustrates values of 

v(L)$t  for )1/d = 0.00(0.25)0.75 and $d = 0.25(0.25)4.00. 

Fig. 4.1.4 illustrates values of the analogous variance expression 

for ED,  that is the asymptotic variance of n ut(EDM _MPM  ); where 

MOM  is the asymptotic expectation of EDM. Fig. 4.1.5 illustrates 

values for the asymptotic variance expressions of n(EwE -MwE ) and 

where M., is the asymptotic expectation of EWE 

4' 
(points joined by dashed lines correspond to expressions for E). 

The value of V(L, /,rl )p hardly changes with phase for d < 2.0, but 

above this phase begins to have a marked effect with higher values 

for )1/d = 0.25 and lower for )1/d = 0.75. The asymptotic variance 

of nht(Ep,_MpM ) also hardly changes with phase for Pd 2.0, but 

above this phase begins to have a marked effect with now higher 

values for )1/d = 0.75 and lower for ?/d = 0.75. So the dependence 

of the asymptotic variance expression for E on phase is quite 

different from that for L. This is no surprise as using the Up 

and Down rule the dependence of asymptotic variance expressions for 

EPM  and 51 are also quite different (see Figs. 	2.3.1 and 2.3.2). 
The asymptotic variances of n(EE-M WE) and 	E, - e) have a 

similar dependence on phase as the asymptotic variance of 

n"-(EM -M  ). This dependence on phase is small for ,d < 1.25 but 

becomes very large for Pd = 4.0. From this one can anticipate that 

for large step sizes E W E and  EWE  will have properties more 

dependent on phase than and E. The drop in variance in using 

E rather than E.6 is not a high proportion of the variance of 

EWE. 
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Fig. 4.1.5 Asymptotic variance of (EWE-MWE),Znwhert  the UDTR 
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For small step size the asymptotic variance expression for 

and E are close with the values for Eb. being slightly lower. 

The asymptotic variances for E are some way above these values 

and the asymptotic variances for 	are some way below. Table 

4.1.1 	gives values for V(Li,) 2  and the analogous variance 

expressions for Ev. , EWX  and Ewa. In this table values are given 

for Ad = 0.25(0.25)0.75 and )1/d = 0.0, for these Pd values the 

dependence of these expressions on ).i/d is small. 

Table 4.1.2 gives some values of V(L,), V(j.i),8 2' and V()/ 

for both the UDTR and Up and Down rule. For values of d of 

0.25(0.25)1.00 the dependence on phase of these expressions is 

small. For small values of gd the value of V(L,,) is much greater 

for the Up and Down rule than the UDTR rule. However with the UDTR 

rule, for all sets of parameter values considered, the asymptotic 

correlation between m.l.e.'s of 
U

and A is negative and as could be 
expected V}1) is always greater for the UDTR rule than for the Up 

and Down rule. For the smaller values of ,d the values of V(,$) are 

greater for the UDTR rule than for the Up and Down rule, but for Pd 

values 2.75 and above V() is for some )1/d values smaller for the 

UDTR rule. However there is never any great gain in efficiency in 

estimating , using the UDTR rule. 

In Section 3.2 a possible estimator of 11, was discussed equal 

to the variance of the levels of less frequent response type 

divided by step size. From Appendix 7 it follows that when the 

UDTR rule is used, for d sufficiently small, the limit with 

probability one of this quantity is arbitrarily close to 1/4), 

too 



Table 4.1.1 Asymptotic variance expressions (y/d=0.0). 

Bd 

0.25 	0.50 	0.75 	1.00 

Asymptotic Variance of: 

r/t(L_LL,4jJ 5.089 5.356 5.630 5.913 
i L  

5.278 5.594 5.923 6.264 
-ME))3 5.294 5.632 5.978 6.331 

5.522 5.943 6.313 6.664 

Table 4.1.2 Values of V(LI,(2 ), V()1), 	and 
for the UDTR and Up and Down rules (p/d=0.0). 

fid 

0.25 	0.50 	0.75 	1.00 

V(L) for tJDTR rule 5.089 5.356 5.630 5.913 
V(Lj/3 for Up & Down 18.240 12.294 10.503 9.757 

V( for UDTR rule 22.135 13.582 10.894 9.679 
V(y))3 

Z. for Up & Down 4.250 4.504 4.762 5.025 

for UDTR rule 24.551 13.367 9.528 7.679 
for Up & Down 18.008 10.029 7.290 6.091 



where N o  is the slope of the transformed response curve at Lg. 

The value of > 0  is 	1 - (0.5)1_), so this result suggests a 
IF  possible of l/, that I will call 1/,B where 

1/)3 = 4(1 - (0.5))vJd, 	 4.1.3 

and v is the variance of the levels of less frequent response type 

(where again moves down are taken as positive responses and moves 

up as negative responses). A more detailed definition of v is 

given in Section 3.2. 	In Fig. 4.1.6 values of the limit with 

probability one of v/d are illustrated. For ,d 2.0 the values of 

these limits are very close to 1/(4(1 - (0.5)" -), ); 	that is for 

, d < 2.0 the limit with probability one of 1/,  is close to 

Whether the estimator 1/ ,,B is of much use is questionable as for 

small values of ,d the asymptotic variance of even the ni.l.e. of 

is relatively high. The uses of this estimator will be 

discussed in the next section. 

Wetherill et al suggest that in order to estimate the slope 

two UDTR rules should be operated, one designed to concentrate 

observations about some level L and the other about (i.e. 

roles of positive and negative responses interchanged). One could 

for example use the UDTR rules that are designed to concentrate 

observations close to the and Lj..V levels. Wetherill et al 

also suggest that both UIYTR staircases should be stopped after a 

fixed number of changes in response type. If w 14, and are 

estimates of Ls,, and Lj.-% based on using E WE  for each staircase 

then an estimate of 1/, suggested in Wetherill et al is 

01 
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Fig. 4.1.6 Plot of limit with probability one of v/d against 1,$d. 
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	w11 , 	)/ 2i, 	 4.1.4 

where Tc = log((2)+ 1). 	One could also form an estimate of? 

equal to 

.rl.  + w 1 v.j)/2. 	 4.1.5 

Estimates of 
Ip

and  1/A can be obtained by maximum likelihood 

estimation, values of V(y) 	and V)/ are illustrated in Figs. 

4.1.7 and 4.1.8 respectively. 	Points joined by unbroken lines 

correspond to variance expressions when two UDTR rules are used; 

those joined by broken lines correspond to expressions when the Up 

and Down rule is used. There is some loss in efficiency in 

estimates of p using this new procedure but asymptotically at least 

there is protection against poor estimates of 1/p if a small step 

size is used. As with calculations made for the Up and Down rule 

these asymptotic values should be interpreted with care. The 

asymptotic variance of decreases with step size, but as step 

sizes become smaller, larger samples will be required before 

anything close to the asymptotic distribution of observations is 

achieved. Another point to remember is that if a small step size 

is used most observations will eventually be made close to the Lb/a 

and Lj.,,,-2  levels; estimates of p and 1/P  will not then be robust 

against departures of the model from the assumed form. 

At best one would hope that w,,r  and w 11.. have properties 

similar to those predicted by asymptotic theory for the m.l.e.'s of 

tCLi. 



Fig. 4.1.7 Vi), when the two UDTR's for L1j and Liv are used 

(values for the Up and Down rule are joined by dashed lines). 
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L., and L ilrl  from the two respective staircases. Suppose the 

m.l.e. of Li/.r,_ from the staircase designed to place observations 

around the L/r-i  level is 	and the m.l.e. of Lji 	from the 

other staircase is 	• These two estimators can be combined to 

give an estimator of l/ of the form. 

(Li,11 - i-t/r2 )/2k. 	 4.1.6 

As the staircases are independent the variance of such an estimator 

is simply 

((variance of 	+ (variance of Lt.1,r))/ 4k 	4.1.7 

The estimator of 1/,8 given in Formula 4.1.6 is asymptotically 

unbiased but does not have full efficiency relative to the m.l.e. 

of i/,L Suppose equal numbers of observations are made in each 

staircase. Expressions for the variances of the m..l.e.'s of 1Pand 

are given by the formulae in matrix 2.3.7 (there is sufficient 

regularity to apply results in Billingsley (1961)). If a small 

step size is chosen all observations are asymptotically made close 

to the Lqr2.  and L1-i levels • The estimator in Formula 4.1.6 will 

then be of high efficiency relative to the m.1.e. of 1/p. However 

the efficiency rapidly drops as step size increases. Table 4.1.3 

gives values of this asymptotic efficiency for phases of 0.00,0.25 

and 0.50 (from symmetry the efficiency for phasing 0.75 is the same 

as for 0.25). What these calculations are indicating is that, 

unless a very small step size is chosen, one cannot expect an 

estimator such as that in Formula 4.1.4 to have variance close to 

10 e 



Table 4.1.3 Efficiency of the estimator in Formula 4.1.6 
relative to the m.l.e. of i/,. 

0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 

	

0.00 	 0.852 0.744 0.661 0.595 0.498 0.435 0.400 0.457 

	

0.25 	 0.852 0.744 0.661 0.595 0.498 0.430 0.343 0.294 

	

0.50 	 0.852 0.744 0.661 0.595 0.498 0.425 0.292 0.187 

Table 4.1.4 Efficiency of the estimator in Formula 4.1.8 
relative to the m.l.e. of P. 

M.  
0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 

p.Id 

	

0.00 	 0.989 0.980 0.973 0.966 0.954 0.938 0.870 0.735 

	

0.25 	 0.989 0.980 0.973 0.966 0.954 0.945 0.937 0.950 

	

0.50 	 0.989 0.980 0.973 0.966 0.955 0.952 0.974 0.995 

11 

Table 4.1.5 Efficiency of the estimator analogous to 	based on 
m.l.e.'s from both staircases, relative to the m.l.e. of 1/p. 

0.25 0.50 0.75 1.00 1.50 2.00 3.00 4.00 

ji /d 

	

0.00 	 0.980 0.966 0.955 0.947 0.935 0.929 0.937 0.961 

	

0.25 	 0.980 0.966 0.955 0.947 0.936 0.928 0.911 0.902 

	

0.50 	 0.980 0.966 0.955 0.947 0.936 0.929 0.907 0.873 

67 



that of the m.l.e. of 1/ from the two staircases. An estimate of 

the p level can be formed equal to 

Z. + Ctir, )/2. 	 4.1.8 

The efficiency of this estimator relative to the m.l.e. 	of 	is 

high for the parameter values considered. Table 4.1.4 gives values 

of asymptotic efficiency for for phases 0.00, 0.25 and 0.50. This 

suggests that an estimator of the form of the expression in Formula 

4.1.5 could possibly give estimates of whose variance is close to 

that of the m.l.e. of 

If one proposes to form an estimate of 1/)3 from the two 

staircases, without using maximum likelihood estimation, then there 

are serious objections to the use of an expression such as that in 

Formula 4.1.4. The use of an expression such as that in Formula 

4.1.5 may provide useful estimates of i. In forming Wetherill's 

estimate of 11)3  one is ignoring any possible information available 

for estimating 11 from the individual staircases • The estimate of 

i/S given in 4.1.3 can be calculated for both staircases. Suppose 

these estimates are respectively 1/n, and 1/2- and that 

1/3 = (A,,- A_a,€)/2k, 	 4.1.9 

where As and 	are the Dixon and Mood estimates of Li, and 

(i.e. 	1/3 is an estimate similar to Wetherill's only based 

on using E). It is not at clear how such estimates of 1/ ,  

should be combined. 	Suppose in the staircase for L. that there 

lo' 



are ; responses of the less frequent type, at levels 

Y', ,y12  , ... ,y,,. (here by response I mean a move up or down). 

Suppose that z 1 , = YIK ± d/2, where the sign is negative if moves 

down are most frequent and positive otherwise. By definition 

=Zz 	/r 	and 	1/ 	= 	( z, -A11 	/r 1  d, 	where 

= 4(1 - (0.5)' ). Suppose for the other staircase there are r2  

responses of the less frequent type and that z2  ,z 22  ,•.•,Zzr are 

defined in the same way as the z, j, of the first staircase. Define 

V to equal 

1.y•. 

	

' 	(z 	 (r, +r, 	 4.1.10 
r. 1  pI 

where 	= 	/(r, +r). 	This is 	of course a variance 
01 JKZI 

expression for all the ZCK .  Rearranging it follows that 

V = (dI.)((ej 1  ) + ( O/,J) + e,e1 4(k./B3?, 	4.1.11 

where 0, = r /(r, +r) and 92.  = r.,/(r, +r). For d sufficiently small 

the limits with probability one of all the )3 are arbitrarily close 

to 9. One can set V equal to 

(d/A )((0../,) + (0 t/)) + 	 4.1.12 

to obtain a quadratic in i/,$. The quadratic has only one positive 

root; I will call this root i/,$ '  . It can be used to provide an 

estimate of i/p. The form of this estimator is somewhat 

complicated but simulations in Section 4.2 indicate that under 

certain conditions it has much lower m.s.e. than 11 . For small 
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step sizes 	is close to 113; for large step sizes 1/p' is 

close to ((Oi/, )+(8t/,j). 

I used 1/p' as an estimator because I could see of no other 

natural way of combining the estimates of 1/p. One can make some 

justication for using 1/p' by calculating asymptotic efficiencies 

of an analogous estimator based on rn.l.e.'s from both staircases. 

Suppose one operates both staircases so that equal numbers of 

observations are made in each. Asymptotically 8, and 8. will tend 

A 	 A 

in probability to 0.5. Suppose that A, and )3L  are the m.l.e.'s of 

from the two staircases and 1/ 3  equals the expression in 4.1.6. 

If one substitutes these ,& for the $; in the expression for 

then the resulting expression is an asymptotically unbiased 

estimator of i/,L This estimator is asymptotically equivalent to 

its first order Taylor expansion in terms of 11fl , 1/. and 14B3. 

Using this expansion one can calculate the aymptotic efficiency of 

the estimator relative to the m.l.e. of 1/,L Values of the 

efficiency are given in Table 4.1.5. The efficiencies are high 

compared to the values in Table 4.1.3. 

I 



4.2RESULTS OF SOME SIMULATIONS 

An UDTR rule which is in common use is that designed to centre 

observations close to the L,1 level of the response curve. This 

rule has been described in Section 4.1 (i.e. after - or +-

responses move up, after ++ move down). Experiments were simulated 

with this rule operating on the logistic curve. The set of 

conditions considered was similar to those used in the calculations 

of Section 2.2 and the simulations of Section 3.3. Starting levels 

were at -2.00(0.25)2.00 relative to the Li/level (the logistic 

tolerance distribution is symmetric so in Section 2.2 and 3.3 one 

only had to consider starting levels above with the UDTR rule 

being used starts both above and below LI/r, must be considered). 

The value of was again set equal to Tr/3.0  and step sizes used 

were 0.5(0.5)2.0. For each set of conditions 2000 experiments 

consisting of 24 observations were simulated. The estimators E, 1  
* E8  , E ap I EPM  EWE , EpI  EWE  and  Epv were calculated. For a rough 

estimate of 1/, the estimator 1/,2 was used (see Formula 4.1.3). 

The m.s.e.'s and biases of these estimators of Li1jr, are given 

in Tables 4.2.1 to 4.2.8. My conclusions concerning the relative 

merits of estimators are much the same as those made in Section 

3.3. The estimators EM and E 8  have similar m.s.e.'s to those for 

E5  and E for the larger step sizes, but have the disadvantage of 

larger m.s.e. and bias for the smaller step sizes and distant 

starts. The estimator E 80  usually has slightly smaller in.s.e. and 

smaller bias than ED M  but these differences are never very great. 



Table 4.2.1 100r.s.e. o F estimators of Li/Sin 24 observation UDTR 

experiments for step size 0.5 (=1T/3.0 ' , based on 2000 simulations). 

	

Start 	E 	E6 	ERD 	EQ 
	Pt0,. 	Ewa Epy AE E 	E 

	

-2.00 	18.12 10.34 8.35 8.98 7.82 9.92 9.85 8.31 8.85 8.67 7.88 

	

-1.75 	14.26 8.85 8.84 9.53 7.82 10.31 10.32 8.31 9.35 9.17 7.88 

	

-1.50 	10.84 7.36 8.20 8.86 7.82 9.67 9.69 8.31 8.66 8.52 7.89 

	

-1.25 	9.08 6.98 7.99 8.75 7.82 9.18 9.26 8.31 8.43 8.33 7.88 

	

-1.00 	7.35 6.37 7.32 8.03 7.82 8.26 8.42 8.31 7.60 7.54 7.88 

	

-0.75 	6.68 6.45 7.11 7.84 7.82 7.94 8.23 -9.31 7.31 7.31 7.88 

	

-0.50 	6.28 6.52 6.82 7.35 7.82 7.57 7.95 8.31 6.99 7.09 7.88 

	

-0.25 	6.10 6.63 6.69 6.98 7.82 7.26 7.68 8.31 6.83 7.03 7.88 

	

0.00 	6.23 6.85 6.75 6.92 7.82 7.29 7.74 8.31 6.92 7.13 7.88 

	

0.25 	6.60 7.07 7.08 7.32 7.82 7.55 7.96 8.31 7.22 7.40 7.88 

	

0.50 	7.31 7.39 7.61 8.14 7.82 8.35 8.70 8.31 7.85 7.94 7.88 

	

0.75 	8.64 8.01 8.50 9.34 7.82 9.48 9.68 8.31 8.82 8.80 7.88 

	

1.00 	10.65 8.93 9.68 10.74 7.82 11.21 11.29 8.31 10.18 10.03 7.88 

	

1.25 	13.44 10.27 11.08 12.23 7.82 13.08 13.10 8.31 11.79 11.56 7.88 

	

1.50 	16.83 11.59 11.68 12.88 7.82 13.96 13.88 8.31 12.56 12.25 7.88 

	

1.75 	22.41 14.38 13.09 14.35 7.82 15.87 15.63 8.31 14.08 13.71 	7.88 

	

2.00 	29.56 18.06 14.25 15.51 
	

7.82 17.51 17.23 8.31 15.42 15.01 7.88 

Table 4.2.2 100xm.s.e. of estimators of L11€  in 24 observation UDTP 
experiments for step size 1.0 (,..TT/3.d ' , based on 2000 simulations). 

	

Start 	EM 	E6 	Ego EM AM 	 Ep y  A.,E 	 E,.y A ,. *E 

	

-2.00 	10.82 7.81 9.37 9.83 9.57 10.87 11.19 10.62 9.77 9.74 10.37 

	

-1.75 	9.78 8.11 9.64 10.08 9.57 10.66 11.04 9.78 9.70 9.72 9.44 

	

-1.50 	8.92 8.19 9.48 10.05 9.64 10.34 10.75 9.44 9.54 9.63 8.99 

	

-1.25 	8.98 8.79 9.71 10.19 9.64 10.56 10.95 10.28 9.78 9.86 9.90 

	

-1.00 	7.99 8.26 8.80 9.24 9.57 9.91 10.43 10.62 9.08 9.21 10.37 

	

-0.75 	8.23 8.90 9.08 9.50 9.57 9.55 10.25 9.78 9.05 9.35 9.44 

	

-0.50 	8.20 8.95 8.91 9.34 9.64 9.32 10.17 9.44 8.85 9.29 8.99 

	

-0.25 	8.68 9.45 9.30 9.58 9.64 9.89 10.84 10.28 9.34 9.82 9.90 

	

0.00 	8.32 8.97 8.76 9.07 9.57 9.63 10.55 10.62 9.01 9.44 10.37 

	

0.25 	9.00 9.53 9.37 9.77 9.57 10.03 10.86 9.78 9.38 9.78 9.44 

	

0.50 	9.52 9.86 9.83 10.24 9.64 10.31 11.09 9.44 9.80 10.14 8.99 

	

0.75 	10.01 10.17 10.36 10.82 9.64 11.03 11.56 10.28 10.51 10.71 	9.90 

	

1.00 	10.23 9.77 10-18,10-84 9.57 11.49 11.91 10.62 10.65 10.64 10.37 

	

1.25 	11.55 10.29 10.99 11.82 9.57 12.05 12.27 9.78 11.14 10.94 9.44 

	

1.50 	12.64 10.27 11.08 12.07 9.64 1232 12.46 9.44 11.35 11.03 8.99 

	

1.75 	14.07 10.71 11.76 12.63 9.64 13.32 13.46 10.28 12.27 11.92 9.90 

	

2.00 	15.70 10.58 11.33 12.22 9.57 13.44 13.48 10.62 12.26 11.81 10.37 

Note: AD..e  Awand Awe  denote columns for asymptotic predicted m.s.e.'s of 
E, Eand E,* respectively 



Table 4.2.3 100*m.s.e. of estimators of 	in 24 obse rvation UDTR 
experiments for step size 1.5 ()= iT,') .0'11,, based on 2000 simulations). 

a 

	

Start 	E 	ES 	Egg 	EOM Ay m 	 E PV AWE E 
	

Ep 	A 

	

-2.00 	11.12 10.35 11.94 12.26 11.95 12.13 12.84 10.79 11.11 11.43 10.35 

	

-1.75 	11.62 11.49 12.80 13.21 12.20 15.38 16.16 14.68 13.81 14.02 14.42 

	

-1.50 	10.93 11.18 11.98 12.46 11.87 15.14 15.89 16.12 13.75 13.84 16.04 

	

-1.25 	9.97 10.57 10.90 11.29 11.28 12.47 13.11 13.44 11.84 12.00 13.29 

	

-1.00 	9.86 10.92 10.97 11.28 11.01 10.25 11.12 9.66 10.10 10.55 9.35 

	

-0.75 	9.96 11.33 11.20 11.29 11.35 9.20 10.31 8.43 9.28 10.03 8.00 

	

-0.50 	10.74 12.07 11.90 11.95 11.95 11.02 12.39 10.79 10.62 11.50 10.35 

	

-0.25 	11.57 12.57 12.39 12.65 12.20 14.25 15.86 14.68 13.11 14.00 14.42 

	

0.00 	11.07 11.96 11.78 12.01 11.87 14.45 16.02 16.12 13.30 14.09 16.04 

	

0.25 	10.95 11.81 11.66 11.79 11.28 13.27 14.55 13.44 12.42 13.21 13.29 

	

0.50 	10.86 11.53 11.38 11.57 11.01 10.79 11.94 9.66 10.50 11.15 9.35 

	

0.75 	11.09 11.34 11.27 11.68 11.35 9.89 10.68 8.43 9.75 10.12 8.00 

	

1.00 	13.09 12.81 12.89 13.78 11.95 12.90 13.44 10.79 12.40 12.47 10.35 

	

1.25 	13.63 13.13 13.52 14.27 12.20 15.90 16.34 14.68 14.73 14.61 14.42 

	

1.50 	13.56 12.58 13.27 13.93 11.87 16.71 17.18 16.12 15.19 14.98 16.04 

	

1.75 	13.55 11.77 12.72 13.37 11.28 15.02 15.36 13.44 13.92 13.63 13.29 

	

2.00 	14.48 11.55 12.51 13.42 11.01 12.78 12.97 9.66 12.17 11.80 9.35 

Table 4.2.4 100'm.s.e. of estimators of Lifq in 24 observation JDTR 
experiments for step size 2.0 (,,B= 1T/3.0i, based on 2000 simulations). 

	

Start 	E, 	Eg 	E8p 	E 	 M 	E 1 	Er,' 	A WE E.iE 	Ev 	A.JE 

	

-2.00 	15.11 14.92 16.08 16.61 16.00 23.04 23.88 25.34 20.64 20.72 25.32 

	

-1.75 	14.22 13.67 14.18 15.16 14.57 19.68 19.99 21.38 18.24 17.95 21.23 

	

-1.50 	12.29 12.69 12.87 13.50 12.68 14.40 14.68 14.15 13.96 13.98 13.85 
-1.25 10.73 11.97 11.90 12.03 11.44 9.36 10.11 8.14 9.62 9.98 7.84 
-1.00 10.27 12.50 12.25 11.83 11.86 7.63 8.91 6.42 8.06 9.14 6.13 
-0.75 12.32 15.09 14.85 14.03 13.69 11.21 13.12 9.75 11.21 12.88 9.39 
-0.50 14.00 16.41 16.27 15.52 15.57 16.06 18.19 16.39 15.15 16.85 15.98 
-0.25 15.82 17.50 17.35 17.16 16.40 21.58 23.99 23.01 19.76 21.37 22.79 
0.00' 15.03 16.37 16.27 16.16 16.00 22.02 24.43 25.34 20.10 21.50 25.32 
0.25 14.12 15.46 15.37 15.21 14.57 20.17 22.19 21.38 18.36 19.79 21.23 
0.50 12.34 13.41 13.28 13.29 12.68 14.70 16.59 14.15 13.95 15.27 13.85 
0.75 11.37 12.19 12.05 11.92 11.44 9.57 10.93 8.14 9.83 10.71 7.84 
1.00 12.13 12.07 11.95 12.32 11.86 8.21 8.85 6.42 8.61 8.84 6.13 
1.25 15.19 14.33 14.35 15.20 13.69 12.26 12.14 9.75 12.12 11.80 9.39 
1.50 17.93 16.58 16.85 17.96 15.57 18.54 17.95 16.39 17.60 16.98 15.98 
1.75 18.74 17.30 17.93 18.98 16.40 23.56 23.40 23.01 21.81 21.13 22.79 
2.00 17.79 16.49 17.56 18.44 16.00 24.89 25.59 25.34 22.58 22.15 25.32 
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Table 4.2.5 100'cbias of estimators of Lr- in 24 observation UDTR 
experiments for step size 0.5 (,$T1/ 3.O', based on 2000 simulations). 

Start 	E, 	Eg 	E89 	E0M 	Ap 	EWE Epv 	E,,,& Epw 	A 

-2.00 -37.28-23.75 -6.38 -7.75 2.27 -9.96 -8.20 -8.34 -7.06 1.75 
-1.75 -30.61-18.53 -5.92 -7.32 2.27 -9.26 -7.61 -7.89 -6.61 1.75 
-1.50 -24.32-13.74 -5.35 -6.66 2.27 -8.63 -7.00 -7.17 -5.93 1.75 
-1.25 -19.46-10.48 -5.55 -6.94 2.27 -8.56 -7.11 -7.22 -6.03 1.75 
-1.00 -14.25 -6.90 -4.39 -5.96 2.27 -6.92 -5.60 -5.93 -4.85 1.75 
-0.75 -9.85 -4.21 -3.31 -4.99 2.27 -5.42 -4.35 -4.60 -3.65 1.75 
-0.50 -6.15 -2.20 -2.08 -3.80 2.27 -3.67 -2.91 -3.15 -2.47 1.75 
-0.25 -2.30 -0.03 -0.15 -1.40 2.27 -1.22 -0.89 -0.67 -0.25 1.75 
0.00 2.22 2.80 2.82 2.27 2.27 2.30 2.25 2.56 2.63 1.75 
0.25 5.65 4.33 4.49 4.85 2.27 4.56 4.06 4.69 4.40 1.75 
0.50 9.79 6.60 6.52 7.64 2.27 7.20 6.38 7.13 6.57 1.75 
0.75 15.00 10.06 9.28 10.67 2.27 10.64 9.45,10.34 9.54 1.75 
1.00 20.44 13.62 11.34 12.89 2.27 13.28 11.87 12.76 11.77 1.75 
1.25 25.96 17.26 12.51 14.03 2.27 14.78 13.11 14.23 13.13 1.75 
1.50 32.44 21.83 13.82 15.19 2.27 16.65 14.81 15.70 14.53 1.75 
1.75 40.31 27.70 15.43 16.88 2.27 18.45 16.37 17.31 16.08 1.75 
2.00 48.58 33.96 16.39 17.85 2.27 19.; 17.53 18.35 17.00 1.75 

Table 4.2.6 100.cbias of estimators of L41r, in 24 observation UDTR 
experiments for step size 1.0 (,=1T/3.0" ti  based on 2000 simulations). 

'S 

Start 	EM 	Eg 	Egp EPM AQM Ewa Epy E w  a  Ep' AWE 

-2.00 -20.06 -5.68 0.86 -1.78 3.87 -3.25 -0.62 -2.25 0.25 2.51 
-1.75 -15.55 -2.64 1.65 -0.86 3.99' -2.76 -0.24 -1.51 0.97 2.39 
-1.50 -11.76 -0.38 2.05 -0.46 4.01 -1.75 0.68 -0.81 1.60 3.19 
-1.25 -9.84 -0.31 0.72 -1.76 3.89 -2.46 -0.14 -1.60 0.71 3.31 
-1.00 -6.69 1.23 1.36 -1.29 3.87 -2.02 0.04 -1.17 0.96 2.51 
-0.75 -3.32 2.99 2.67 0.16 3.99 -0.29 '1.38 0.60 2.45 2.39 

-0.50 -0.89 3.84 -3.42 1.02 4.01 1.32 2.48 2.01 3.39 3.19 
-0.25 0.48 3.25 3.01 1.32 3.89 1.70 2.21 2.28 3.10 3.31 
0.00 2.57 3.57 3.60 2.58 3.87 2.20 2.01 2.86 3.04 2.51 
0.25 5.22 4.56 4.81 4.51 3.99 3.65 2.64 4.23 3.84 2.39 
0.50 7.56 5.16 5.56 6.04 4.01 5.52 3.98 5.71 4.81 3.19 
0.75 9.53 5.19 5.53 6.77 3.89 6.46 4.41 6.47 5.09 3.31 
1.00 12.63 6.56 6.52 8.10 3.87 7.12 4.68 7.34 5.63 2.51 
1.25 16.37 8.55 7.72 9.44 3.99 8.56 5.81 8.98 '7.08 2.39 
1.50 20.04 10.48 8.43 10.18 4.01 9.85 6.80 10.33 8.34 3.19 
1.75 22.82 11.25 7.36 9.10 3.89. 9.17 5.97 9.75 7.65 3.31 
2.00 27.60 14.21 8.09 10.00 3.87 9.70 6.33 10.31 8.08 2.51 

Note: A., and Adenote columns for asymptotic predicted biases of 
Eand k.  respectively. 
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Table 4.2.7 100%bias of estimators of Luin 24 observation UDTR 
experiments for step size 1.5 çJ3=1T/3.0 	based on 2000 simulations). 

Start 	E,1 	E6 	E80 	EPM 	A 2,q 	EW F 	Ep y 	E,j' Ep 

-2.00 -12.69 2.53 5.28 1.73 6.31 1.94 5.28 2.73 6.31 8.31 
-1.75 -10.54 2.96 4.37 0.71 5.16 0.73 4.13 1.64 5.25 6.92 
-1.50 -8.40 3.35 3.71 0.22 3.95 -1.84 1.46 -0.55 3.05 2.06 
-1.25 -6.14 3.96 3.67 0.22 3.89 -3.56 -0.69 -1.96 1.52 -1.15 
-1.00 -2.72 6.06 5.63 1.85 5.03 -0.76 1.71 0.59 3.76 0.41 
-0.75 0.02 7.12 6.63 3.24 6.25 3.05 5.07 3.85 6.55 5.02 
-0.50 2.15 7.46 7.05 4.10 6.31 6.09 7.58 6.44 8.43 8.31 
-0.25 2.67 6.09 5.83 3.45 5.16 5.24 5.88 5.89 7.08 6.92 
0.00 3.02 4.57 4.52 3.05 3.95 2.36 2.14 3.52 3.93 2.06 
0.25 4.35 4.09 4.23 3.60 3.89 0.81 -0.53 1.99 1.56 -1.15 
0.50 6.05 4.26 4.61 4.59 5.03 1.78 -0.42 2.78 1.68 0.41 
0.75 8.89 5.33 5.83 6.69 6.25 5.78 2.98 6.10 4.35 5.02 
1.00 12.31 7.01 7.55 9.11 6.31 9.83 6.48 9.79 7.65 8.31 
1.25 13.50 6.45 6.80 8.66 5.16 9.49 5.65 9.55 7.01 6.92 
1.50 14.72 5.66 5.43 7.81 3.95 6.44 2.40 6.99 4.18 2.06 
1.75 17.30 6.41 5.31 7.80 3.89 4.76 0.49 5.76 2.90 -1.15 
2.00 21.05 8.66 6.33 8.83 5.03 5.66 1.21 7.06 4.18 0.41 

Table 4.2.8 100'cbias of estimators of Lf,in 24 observation UDTR 
-r experiments for step size 2.0 ()= 'n 13.0 . based on 2000 simulations). 

Start 	EM 	EA 	ES 	EPM 	ADM Ew& Ep 	 Ep' 

-2.00 -12.40 3.07 3.63 -0.88 2.74 -3.59 0.65 -1.81 3.15 1.30 
-1.75 -12.80 0.96 0.75 -3.76 -0.09-10.50 -6.59 -8.16 -3.30 -8.07 
-1.50 -9.19 3.11 2.64 -2.10 0.51 -9.56 -5.93 -7.34 -2.71 -9.64 
-1.25 -4.56 6.37 5.84 1.33 4.16 -4.15 -1.14 -2.69 1.81 -3.64 
-1.00 2.75 12.30 11.84 7.36 8.79 5.74 8.42 6.45 10.50 6.21 
-0.75 7.67 15.58 15.20 11.03 11.75 14.01 16.35 14.07 17.52 15.16 
-0.50 8.04 14.05 13.79 10.20 11.22 15.67 17.51 15.57 18.20 18.32 
-0.25 5.25 9.28 9.14 6.24 7.45 10.35 11.17 10.91 12.61 12.75 
0.00 1.89 3.84 3.76 1.87 2.74 1.28 0.88 2.81 3.38 1.30 
0.25 0.00 -0.06 -0.03 -0.96 -0.09 -5.95 -7.66 -3.90 -4.47 -8.07 
0.50 2.00 0.10 0.22 0.28 0.51 -6.58 -9.04 -4.63 -6.14 -9.64 
0.75 6.17 2.77 3.02 3.95 4.16 -1.67 -4.93 -0.39 -2.51 -3.64 
1.00 12.06 7.36 7.82 9.31 8.79 7.12 3.15 7.74 5.21 6.21 
1.25 17.12 10.84 11.46 13.34 11.75 15.33 10.87 15.15 12.11 15.16 
1.50 19.21 11.22 11.86. 14.18 11.22 18.59 13.54 18.05 14.79 18.32 
1.75 18.37 8.37 8.71 11.33 7.45 14.64 9.23 14.49 10.86 12.75 
2.00 15.69 3.81 3.37 6.22 2.74 5.39 -0.35 6.24 2.53 1.30 
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There is not a great deal to choose between estimators E, Efl,, 

E and E PV 	For step sizes 0.5 and 1.0 the m.s.e.'s for Ew and 

E p
*  
are always less than corresponding values for EWE and Epv 

respectively. For step sizes 1.5 and 2.0 this is not always the 

case but m.s.e.'s of E WE  and Ep are never much greater than 

corresponding m.s.e.'s for E w.  and Ep1. 	For step size 0.5 the 

m.s.e.'s of E, E, E wE , Epv, E and E 	are all close. Fig. 

4.2.1 illustrates how the m.s.e. of E, is always slightly less 

than that of Eye,  how the m.s.e. of E we  is always slightly less 

than or equal to that of EDM  and how the m.s.e. of EgD is slightly 

less than that of Ew;. The pattern is roughly similar for step 

size 1.0 (see Fig 4.2.2). However for step sizes 1.5 and 2.0 the 

m.s .e. 's of Ewe,Epy, E w sw and E$ oscillate above and below 

corresponding values for Eand E (see Figs. 4.2.3 and 4.2.4). 

The dependence on phase of these oscillation is much as one would 

expect from asymptotic theory. It appears that for small step 

sizes there is not much to choose between estimators (except E M  

and E 8  then have large biases and m.s.e.'s for starts not close to 

L  Q. For the larger step sizes the behaviour of E 6 , Epv, and 

EFY is very dependent on phase. For this reason I would recommend 

use of EP  or EPM. This is.the same conclusion as I reached in 

Sections 2.2 and 3.3. 

Table 4.2.9 contains values of expectation and m.s.e. of 

(the value of 1/),is 0.5513 to four decimals). This estimator 

always has some negative bias. For step sizes 1.5 and 2.0 the 

m.s.e. oscillates with phase, with minima roughly when the Li1 

level is at a stimulus level and maxima when it is midway between 

If 
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Table 4.2.9 Mean and 1009m.s.e. of 1/ in 24 observation 
UDTR experiments ( , =1T/3.0", based on 2000 simulations). 

Step size 

0.5 	- 	 1.0 	 1.5 	 2.0 

100 	 100 	 100 	 100 
mean 	tn.s.e. 	mean 	m.s.e. 	mean 	m.s.e. 	mean 	m.s.e 

Start 

-2.00 0.430 13.20 0.438 8.05 0.444 7.67 0.543 3.56 
-1.75 0.413 11.81 0.436 8.11 0.465 5.88 0.499 4.74 
-1.50 0.430 11.31 0.435 7.79 0.466 5.50 0.428 7.13 
-1.25 G425 10.59 0.439 7.30 0.446 6.45 0.371 10.07 
-1.00 0.421 10.19 0.432 7.12 0.418 8.12 0.354 11.86 
-0.75 0.403 8.72 0.429 7.42 0.413 8.26 0.394 10.32 
-0.50 0.390 8.82 0.423 7.18 0.441 7.32 0.471 7.83 
-0.25 0.363 9.10 0.418 6.94 0.459 5.54 0.525 4.51 
0.00 0.355 8.65 0.414 6.93 0.466 4.8 0.546 3.23 
0.25 0.359 8.76 0.418 7.22 0.444 5.96 0.503 4.17 
0.50 0.376 8.73 0.419 7.29 0.419 7.51 0.439 6.36 
0.75 0.393 9.30 0.427 7.12 0.413 8.43 0.373 9.80 
1.00 0.421 10.48 0.438 7.42 0.437 7.89 0.355 11.85 
1.25 0.427 12.47 0.440 8.18 0.464 6.36 0.390 10.67 
1.50 0.437 14.80 0.442 8.50 0.473 5.78 0.454 8.59 
1.75 0.453 18.86 0.446 9.22 0.463 7.10 0.518 5.38 

2.00 0.464 21.78 0.443 9.08 0.435 8.39 0.541 3.90 



stimulus levels. The estimator 1/ ,;B 	not very accurate but with 

such a small sample much greater accuracy could not be expected. 

The values of EpM and 1/)3 provided starting values for Liq and 

1/$ in Newton-Raphson iterations to find m.l.e.'s of 1/,8 and Ly. 

Iterations were performed using parameters a and , (where a=-)1) 

but the criterion for stopping iterations was that the change in 

estimates of 1/)3 and Ls,r should be less than 0.500.0 ' . Iterations 

were not started if a degenerate curve with /13 infinite would fit 

the observed responses • If the determinant of the matrix that is 

inverted at each iterative step became less than 10.08 iterations 

were abandoned (usually this happened when just one change of 

response would allow the observations to be fitted by a degenerate 

curve). Iterations were also abandoned if there had not been 

convergence after 10 iterations. In experiments where m.l.e.'s 

were eventually obtained on average between 3 and 5 iterative steps 

were taken. Using the UDTR rule there is a possibility that 1/,B is 

0.0, iterations were not started in such circumstances (starting 

values for a and 8 could not then be easily found), such outcomes 

were rare for all the conditions simulated. In the 24 step 

experiments, the m.s.e. of m.l.e.'s of Lur, and 1/ are somewhat 

misleading measures of dispersion. For step size 0.5 the m.s.e.'s 

of these estimates are for many starting values above corresponding 

values for alternative estimators. However these m.s.e.'s are 

inflated by results coming from a small proportion of the simulated 

experiments. Discarding the few experiments for which the 

magnitude of the m.l.e. 	of 1/ was greater than 2.00 often gave 

rise to considerable drops in m.s.e.'s. 	The few experiments 
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discarded usually make a disproportionate contribution to m.s.e. 

Table 4.2.10 gives, for the various sets of conditions, the 

numbers of experiments which were not discarded. For all the step 

sizes large proportions of experiments were discarded; for step 

sizes 1.5 and 2.0 often more than half the experiments were not be 

used. For the larger step sizes most discards were made because 

there is only a degenerate solution to the maximum likelihood 

equations. The number of experiments discarded for other reasons 

is always less than 15 percent of the total number (often 

considerably less). Such discards were usually made because the 

determinant of the matrix to be inverted became too small. 

I considered an estimator of Li, equal to the m.l.e. 	of 

in the experiments which are not discarded and otherwise equal to 

EoM. I also considered an estimator of i/ equal to the m.l.e. of 

1/, in the experiments which are not discarded and is otherwise 

equal to 11. I will call these estimators 
Ila and 1/n. Values of 

m.s.e. and bias of these estimators are given in Tables 4.2.11 to 

4.2.14. For step sizes 1.0 and 1.5, L and 1/p * always have 

smaller m.s.e. than ED,j  and 1/,L For the drop in m.s.e. was 

usually less than 10 percent but for 1/p*it was often around 25 

percent. For step sizes 0.5 and 2.0, Land 1/ often have smaller 

m.s.e.'s than E and 1/p but the differences are not so great. 

One advantage I,rhas over E M is than the bias of Lis often much 

less. When so many experiments are discarded how these results are 

interpreted is open to question but it does indicate that for these 

step sizes there is some gain in efficiency in using, whenever 

LI 



Table 4.2.10 Numbers of 24 observation UDTR experiments out of 

2000 where m.l.e.'s of parameters can be obtained (,=1T/3.0 ). 

Step size 

0.5 1.0 1.5 2.0 

Start 

-2.00 1658 1507 932 562 
-1.75 1676 1522 902 758 
-1.50 1717 1490 1037 889 
-1.25 1771 1476 1220 900 
-1.00 1798 1578 1227 727 
-0.75 1850 1595 1098 593 
-0.50 1835 1494 923 463 
-0.25 1808 1418 854 420 
0.00 1794 1482 968 507 
0.25 1826 1589 1175 691 
0.50 1814 1521 1240 888 
0.75 1829 1449 1127 873 
1.00 1801 1503 965 786 
1.25 1772 1528 911 620 
1.50 1731 1481 972 476 
1.75 	 ( 1680 1371 1120 430 
2.00 1670 1413 1191 497 
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Table 4.2.11 Values of mean and m.s.e. of Li and 1/iri 24 
observation UDTR experiments for step size 0.5  

lfi 4  
100 - 	 100 100 

Start mean m.s.e. mean m.s.e. A,p 

-2.00 -2.45 8.56 7.35 0.417 8.28 10.44 
-1.75 -2.58 9.06 7.35 0.414 8.09 10.44 
-1.50 -1.79 8.51 7.35 0.430 8.01 10.44 
-1.25 -2.50 8.44 7.35 0.435 8.13 10.44 
-1.00 -1.94 7.90 7.35 0.438 8.14 10.44 
-0.75 -2.35 7.81 7.35 0.437 7.97 10.44 
-0.50 -2.29 7.47 7.35 0.436 8.51 10.44 
-0.25 -1.69 7.29 7.35 0.417 8.49 10.44 
0.00 -0.18 7.19 7.35 0.412 7.96 10.44 
0.25 -0.39 7.63 7.35 0.416 8.50 10.44 
0.50 0.33 8.09 7.35 0.418 8.47 10.44 
0.75 1.36 8.58 7.35 0.413 8.36 10.44 
1.00 2.22 9.24 7.35 0.417 8.49 10.44 
1.25 1.90 9.75 7.35 0.413 9.61 10.44 
1.50 2.70 10.14 7.35 0.405 9.99 10.44 
1.75 3.00 11.29 7.35 0.404 11.88 10.44 
2.00 2.81 12.50 7.35 0.401 11.86 10.44 

Table 4.2.12 Values of mean and m.s.e. of yh- and 1/jri 24 
observation UDTR experiments for step size 1.0 ç,=Il73.0). L 

14i 
100 100 100 

Start 
x 

. 	 mean zu.s.e. mean 
x 

m.s.e. 

-2.00 -1.38 9.10 8.72 0.460 6.07 6.70 
-1.75 -0.45 9.53 8.76 0.455 6.50 6.54 
-1.50 -0.31 9.54 8.77 0.454 6.72 6.68 
-1.25 -2.09 9.52 8.73 0.469 6.16 6.85 
-1.00 -1.79 8.58 8.72 0.476 5.99 6.70 
-0.75 -0.63 8.93 8.76 0.473 6.51 6.54 
-0.50 -0.15 8.64 8.77 0.460 6.76 6.68 
-0.25 -0.99 9.11 8.73 0.461 6.36 6.85 
0.00 -0.60 8.61 8.72 0.469 6.14 6.70 
0.25 -0.32 8.90 8.76 0.478 6.86 6.54 
0.50 0.34 8.99 8.77 0.466 6.85 6.68 
0.75 0.02 9.55 8.73 0.463 6.48 6.85 
1.00 0.39 9.49 8.72 0.472 6.34 6.70 
1.25 1.38 10.05 8.76 0.465 6.69 6.54 
1.50 1.87 9.98 8.77 0.456 7.33 6.68 
1.75 0.55 10.95 8.73 0.455 7.16 6.85 
2.00 0.76 10.39 8.72 0.457 6.53 6.70 

Note: AL ,and Ail,  denote columns for asymptotic predicted variances 
of I~i and 1/,  respectively. 
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Table 4.2.13 Values of mean and m.s.e. of Li4i  and 1/ " in 24 
observation UDTR experiments for step size 1.5  

L"( 
100 100 100 

Start mean m.s.e. A& mean m.s.e. Ai1 

-2.00 0.97 11.28 10.55 0.454 6.80 6.09 
-1.75 -0.38 12.45 10.12 0.489 5.11 6.81 
-1.50 -1.28 11.78 9.97 0.507 4.56 6.28 
-1.25 -1.27 10.48 10.25 0.494 5.41 5.26 
-1.00 0.36 9.88 10.60 0.463 7.47 4.79 
-0.75 1.60 9.80 10.75 0.444 7.93 5.13 
-0.50 2.44 10.66 10.55 0.460 7.14 6.09 
-0.25 1.52 11.88 10.12 0.489 5.28 6.81 
0.00 0.17 11.53 9.97 0.511 4.46 6.28 
0.25 -0.66 10.79 10.25 0.507 5.70 5.26 
0.50 -0.21 9.91 10.60 0.474 7.10 4.79 
0.75 1.63 9.68 10.75 0.452 8.19 5.13 
1.00 3.68 11.42 10.55 0.464 7.96 6.09 
1.25 3.17 12.64 10.12 0.489 5.95 6.81 
1.50 1.50 12.97 9.97 0.507 4.87 6.28 
1.75 0.87 11.93 10.25 0.498 5.43 5.26 
2.00 1.74 11.07 10.60 0.469 6.71 4.79 

Table 4.2.14 Values of mean and m.s.e. of Li/, r,.and 1/tin 24 
observation UDTR experiments for step size 2.0 03=TT/3.0). 

	

100 	100 	 100 
Start 	 mean 	m.s.e. 	AL. 	mean 	m.s'.e. 	A/9  

-2.00 -2.05 16.20 10.77 0.573 3.31 7.85 
-1.75 -5.39 14.85 11.53 0.543 4.27 5.68 
-1.50 -3.90 12.55 12.61 0.482 6.63 4.24 
-1.25 -0.26 10.57 13.47 0.419 9.43 3.77 
-1.00 5.97 10.52 13.97 0.382 11.65 4.14 
-0.75 9.98 12.79 13.92 0.409 10.20 5.37 
-0.50 8.74 14.44 12.99 0.478 7.56 7.40 
-0.25 4.65 16.67 11.40 0.545 4.67 8.89 
0.00 -0.22 15.83 10.77 0.579 3.38 7.85 
0.25 -3.81 14.67 11.53 0.553 4.35 5.68 
0.50 -3.69 12.35 12.61 0.499 6.26 4.24 
0.75 0.16 10.19 13.47 0.424 9.34 3.77 
1.00 5.84 10.06 13.97 0.390 11.48 4.14 
1.25 9.92 12.71 13.92 0.412 10.78 5.37 
1.50 10.88 15.77 12.99 0.464 8.53 7.40 
1.75 8.09 17.83 11.40 0.530 5.18 8.89 
2.00 2.21 17.96 10.77 0.566 3.68 7.85 
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Possible, maximum likelihood estimation. 

I made some further simulations of 48 and 96 observation 

experiments under the same sets of conditions. Values of m.s.e.'s 

and biases of estimators are given in Appendix 10. The results of 

these simulations were broadly similar to those for the 24 

observation experiments. For these larger numbers of observations 

the estimators conform more closely to asymptotic theory and there 

is less to choose between asymptotically equivalent estimators. 

For the smaller step sizes properties of EB D , E PM 1 EVE, E,, E 

and Ep,, are similar. For the larger step sizes m.s.e.'s for E, 

, 

E PV E E  and Ep, oscillate above and below corresponding values for 

E 8  and E.A . 	I would again recommend that E8. or E.,should be 

used rather than one of the estimators related to EWE. It was 

possible to make a more direct comparison between these estimators 

and the m.l .e • of L for experiments as 

discarded and the m.s.e.'s of m.l.e.'s 

bad values • The bias of Lj is often much 

it always has smaller m.s.e. The bias of 

IV 

that of 1/ and the m.s.e. of 1/)B * is o 

fewer experiments were 

are not inflated by a few 

less than that of Ep,t  and 

1/,b is often less than 

ten substantially smaller 

than that of i/,$. This again suggests that there is some gain to 

be made in using m.l.e.'s. It should be remembered that, even for 

96 observation experiments, large numbers of experiments were still 

discarded when the step size is 2.0. 

In Wetheril et al some results of simulations of experiments 

using an UDTR rule are given. These results indicate that EWE can 

have smaller m.s.e. than the m.l.e. of the level the UDTR is 
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designed to estimate. In my simulations I have only seen a marked 

advantage of this kind in 24 observation experiments with step size 

0.5 (corresponds to spacing in Wetherill et al's work of 0.9069 as 

they set ,B-- 1.0) and only then if one includes estimates from a few 

experiments which greatly inflate the m.s.e.'s. Wetherill et al 

remark that in there simulations 

'Sometimes patterns of results occur which give the impression of a 
very flat response curve and maximum likelihood then extrapolates 
and gives estimates well outside the range of levels used'. 

It seems likely that with such experiments contributing to m.s.e. 

that the m.s.e. alone will not be a useful measure of dispersion. 

In making a comparison of maximum likelihood estimation with the 

other procedures it is crucial to decide upon how one should treat 

experiments for which a degenerate curve fits the observed 

responses or for which outlying estimates of parameters are 

produced. The m.s.e.'s of the m.l.e.'s are sometimes grossly 

inflated by results coming from a small proportior of experiments. 

It cannot be right to compare m.l.e.'s with alternative estimators 

using these m.s.e.'s. My procedure of discarding some experiments 

in calculation m.l.e.'s was an attempt to make a more useful 

comparison. 

In Section 4.1 the use of two UDTR rules to give an estimate 

of slope was discussed. I have simulated some experiments 

consisting of two staircases, both of 24 observations, one being 

designed to concentrate observations around the LI/rI  levels and the 

other around the Li1 level. The response curve was again 
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logistic with 	equal to 1T/3.0. The starting levels for both 

staircases were chosen to be at the s, ime level, the levels were at 

0.00(0.25)4.00 relative to (with two such complementary UDTR's 

being operated from symmetry there is no need to consider starting 

values below )1). Step sizes were set at 0.5(0.5)2.0 with 2000 

experiments simulated for each set of conditions. 

Estimates of Lw11 and L 	can be formed from the two 

staircases using E 0 . Suppose these estimates equal Ag 1  and 

The design using two UDTR rules was suggested very much with the 

problem of estimation of 1/,  in mind. I formed an estimate of 

equal to 

(A1, - 	 4.2.1 

where k equals log(2 1 + 1) for the logistic curve (i.e. this 

estimator is 1/,$31  see Formula 4.1.9). This is much the same as 

the estimator suggested by Wetherill et al only I have used 

estimates of Litrz and Li-1/ based on using EDM rather than E. E. 

Another estimator of 1/, , that I call 1/ , is suggested at the end 

of Section 4.1.  This is an estimator which combines this estimator 

of 1/,  with the estimates of 1/,2 derived from both staircases using 

Formula 4.1.3. Its form depends to a great extent on the 

particular response curve that is assumed but the estimator in 

Formula 4.2.1 also depends on the assumed response curve through 

the value of 1. 

Values of the mean and m.s.e. of 14 3  and 146 are given in 
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Tables 4.2.15 and 4.2.16. Clearly the estimator 11,8 '  has a large 

advantage over 1/A  in that its m.s.e. is usually much smaller. I 

used as an estimator for ,u the mean of At % and I will for 

convenience call this estimator i' (this estimator has a similar 

form to the expression in Formula 4.1.5). Values of the mean and 

m.s.e. of 
19  / are given in Table 4.2.17. 

The estimators ).l'and 1,/)3'were used as starting values for 

and 11,8  in Newton-Raphson iterations to find the m.l.e.'s of Y and 

11,8. The convergence criterion was the same as in the iterations 

described in Section 3.3. The same criteria for discarding 

experiments were used with the additional criterion that an 

experiment would be discarded if the value of 1/9 is 0.0 • Table 

4.2.18 gives, for the various sets of conditions, the numbers of 

experiments for which m.l.e.'s could be formed. Again for the 

larger step sizes most discards are made because there is only a 

degenerate solution to the likelihood equations (discards for other 

reasons are always amount to less than 6 percent of the total 

number of experiments). I considered estimators j.rand 1/,$tual to 

the m.l .e. 's if they could be found but otherwise equal to j'  and 

1/,8'. Values of mean and m.s.e. of ,i'and 1/)B are given in Tables 

w. 
4.2.19 and 4.2.20. For step size 0.5 the m.s.e.'s of 	and 11,8 are 

slightly less than corresponding values for ).i'and 1/,8' for starts 

close to but much less for distant starts. For the other step 

sizes m.s.e.'s of "and 1/)3 are slightly less than those for ,i '  and 

1/,8'over the whole range of starts. These experiments were 

specifically designed to provide estimates of 11; values of 

m.s.e.'s of i/,S 1/, ' and 1/,8 are illustrated in Figs. 4.2.5 to 
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Table 4.2.15 Values of mean and m.s.e. of 1J3when 2 

TJDTR's of 24 observations are operated (,S=1T/3.0'L). 

Step size 

0.5 1.0 1.5 2.0 

100 100 100 100 
Start mean m.s.e. mean  m.s.e. mean m.s.e. mean m.s.e. 

0.00 0.507 4.90 0.562 5.99 0.596 8.00 0.659 10.77 
0.25 0.515 4.62 0.558 5.97 0.600 7.73 0.645 10.14 
0.50 0.529 4.64 0.563 5.86 0.586 7.54 0.599 8.73 
0.75 0.538 4.87 0.570 6.00 0.576 7.42 0.560 8.31 
1.00 0.548 4.93 0.580 6.25 0.580 7.20 0.547 8.45 
1.25 0.566 5.31 0.584 6.65 0.597 7.66 0.558 8.37 
1.50 0.574 5.79 0.594 6.61 0.615 8.53 0.603 8.91 
1.75 0.581 6.10 0.593 6.89 0.619 8.42 0.647 10.31 
2.00 0.586 6.24 0.600 7.11 0.609 8.11 0.670 11.19 
2.25 0.593 6.76 0.593 7.16 0.597 8.09 0.671 10.95 
2.50 0.600 7.31 0.598 7.14 0.603 8.27 0.620 9.27 
2.75 0.608 7.88 0.605 7.36 0.609 8.65 0.584 9.05 
3.00 0.611 7.96 0.602 7.50 0.617 8.92 0.565 8.80 
3.25 0.627 8.97 0.596 7.67 0.611 8.75 0.567 9.51 
3.50 0.623 9.20 0.599 8.01 0.607 8.79 0.612 9.73 
3.75 0.637 10.20 0.604 8.34 0.603 8.66 0.658 11.14 
4.00 0.651 11.57 0.605 8.42 0.602 8.79 0.674 11.76 
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Table 4.2.16 Values of mean and m.s.e. of 11,  when 2 
UDTR's of 24 observations are operated 0$=1T/3.0ult). 

Step size 

0.5 1.0 1.5 2.0 

100 100 100 100 
Start mean m.s.e. mean m.s.e. mean m.s.e. mean m.s.e. 

0.00 0.477 3.29 0.509 2.87 0.525 2.86 0.563 2.14 
0.25 0.480 3.12 0.507 2.95 0.526 2.90 0.550 2.44 
0.50 0.490 3.05 0.508 2.90 0.519 3.08 0.520 3.00 
0.75 0.499 3.05 0.512 2.89 0.510 3.26 0.489 3.91 
1.00 0.512 2.95 0.520 2.87 0.516 3.03 0.483 4.30 
1.25 0.531 3.13 0.524 3.04 0.523 2.86 0.490 3.98 
1.50 0.540 3.38 0.534 3.05 0.534 3.03 0.520 3.15 
1.75 0.547 3.69 0.534 3.10 0.534 3.05 0.551 2.40 
2.00 0.550 4.00 0.539 3.19 0.530 3.25 0.564 2.36 
2.25 0.557 4.40 0.535 3.47 0.525 3.46 0.560 2.53 
2.50 0.564 4.87 0.538 3.52 .0.529 3.32 0.526 2.98 
2.75 0.570 5.40 0.540 3.67 0.534 3.11 0.503 3.99 
3.00 0.572 5.50 0.542 3.61 0.539 3.21 0.493 4.42 
3.25 0.586 6.27 0.537 3.77 0.532 3.21 0.497 4.25 
3.50 0.583 6.53 0.539 3.91 0.529 3.62 0.526 3.28 
3.75 0.595 7.44 0.542 3.94 0.524 3.90 0.558 2.64 
4.00 0.607 8.33 0.543 4.00 .0.528 3.71 0.570 2.51 
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Table 4.2.17 Values of mean and m.s.e. of 1'when 2 
UDTR's of 24 observations are operated ($=7r/3.0"'). 

Step size 

0.5 1.0 1.5 2.0 

10.0 100 100 100 100 100 100 100 
Start mean m.s.e. mean 

x 
m.s.e. mean cn.s.e. mean 	m.s.e. 

0.00 0.26 3.58 0.38 4.52 0.39 5.80 0.92 7.49 
0.25 1.94 3.78 0.92 4.62 -0.48 5.67 -1.82 7.14 
0.50 4.36 3.90 1.38 4.47 -0.02 5.49 -2.82 6.85 
0.75 6.15 4.09 2.67 4.95 1.08 5.71 -1.95 6.55 
1.00 8.23 4.72 3.80 4.93 2.19 5.75 0.87 6.24 
1.25 9.44 5.13 4.37 5.20 2.62 6.06 3.39 6.72 
1.50 10.93 5.64 4.43 5.26 3.77 6.46 5.31 7.18 
1.75 11.44 6.14 5.82 5.55 3.00 6.33 4.87 7.87 
2.00 12.30 6.54 6.05 5.62 2.89 6.38 3.90 8.21 
2.25 13.02 6.93 5.71 5.90 3.88 6.33 1.28 7.84 
2.50 13.70. 7.52 5.88 5.73 4.38 6.43 -0.04 7.79 
2.75 14.59 7.88 6.71 6.14 4.55 6.49 0.90 7.12 
3.00 15.88 8.38 6.95 6.09 4.33 6.67 3.38 6.86 
3.25 16.06 9.08 6.45 6.16 3.90 6.84 5.36 7.44 
3.50 16.80 9.71 6.66 6.30 3.95 6.87 6.50 8.04 
3.75 17.87 10.88 7.21 6.81 4.42 7.00 5.93 8.37 
4.00 19.77 11.67 7.09 6.90 5.22 7.10 T4.44 8.47 

'3! 



Table 4.2.18 Numbers of experiments operating 2 UDTR's of 24 
observations for which m.l.e.'s are obtained. 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

0.00 1997 1953 1593 966 
0.25 1997 1964 1694 1083 
0.50 1998 1989 1855 1358 
0.75 1999 1974 1902 1587 
1.00 1996 1960 1877 1702 
1.25 1995 1961 1731 1632 
1.50 1994 1987 1621 1419 
1.75 1998 1972 1695 1151 
2.00 1986 1955 1839 992 
2.25 1990 1954 1903 1109 
2.50 1985 1983 1843 1335 
2.75 1986 1955 1697 1570 
3.00 1987 1937 1592 1673 
3.25 1972 1931 1640 1586 
3.50 1964 1970 1812 1353 
3.75 1961 1947 1867 1113 
4.00 1954 1926 1816 961 
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Start mean 

0.00 
0.25 
0.50 
0.75  
1.00 
1.25 
1.50 
1.75 
2.00 
2.25 
2.50 
2.75 
3.00 
3.25 
3.50 
3.75 
4.00 

0.504  
0.504 
0.505 
0.505  
0.506 
0.511 
0.508 
0.509 
0.503 
0.504 
0.503 
0.504 
0.499 
0.503 
0.494 
0.494 
0.491 

Table 4.2.19 Values of mean and m.s.e. of 1/,B when 2 
UDTR's of 24 observations are operated ($=Tr/3.0'). 

Step 'size 

0.5 	 1.0 	 1.5 	 2.0 

100 
$ 

m.s.e. mean 

	

2.99 	0.517 

	

2.99 	0.518 

	

2.88 	0.520 

	

2.83 	0.519 

	

2.76 	0.516 

	

2.82 	0.517 

	

2.78 	0.522 

	

2.88 	0.518 

	

2.96 	0.517 

	

2.90 	0.515 

	

3.07 	0.514 

	

3.16 	0.513 

	

3.06 	0.512 

	

3.30 	0.509 

	

3.34 	0.512 

	

3.35 	0.511 

	

3.48 	0.507 

100 
m.s.e. mean 

2.48 0.523 
2.48 0.529 
2.37 0.531 
2.35 0.527 
2.37 0.525 
2.43 0.523 
2.34 0.525 
2.43 0.526 
2.41 0.526 
2.54. 0.525 
2.50 0.521 
2.61 0.519 
2.50 0.520 
2.61 0.516 
2.62 0.518 
2.66 0.518 
2.66 0.517 

100 
m.s.e. mean 

2.42 0.559 
2.42 0.549 
2.46 0.529 
2.47 0.511 
2.36 0.512 
2.24 0.512 
2.29 0.529 
2.34 0.549 
2.38 0.557 
2.45 0.550 
2.42 0.527 
2.25 0.514 
2.25 0.509 
2.36 0.507 
2.57 0.523 
2.70 0.546 
2.61 0.555 

100 
m.s • e. 

1.66 
1.91 
2.39  
3.01 
3.34 
3.08 
2.43 
1.84 
1.65 
1.71  
2.18 
2.97 
3.31 
3.15 
2.36 
1.77 
1.62 
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Table 4.2.20 Values of mean and m.s.e. of 	when 2 
UDTR's of 24 observations are cerated (,=jt/3.0 ' ). 

Step size 

0.5 1.0 1.5 2.0 

100 
x  

100 100 100 100 100 100 100 
Start mean 	m.s.e. mean m.s.e. 

A 
mean 

A 
m.s.e. 

A 
mean m.s.e. 

0.00 0.13 3.41 0.44 3.92 0.18 4.63 0.59 6.06 
0.25 0.04 3.52 0.05 4.02 -0.10 4.54 -1.38 5.85 
0.50 0.62 3.54 -0.24 3.99 0.13 4.73 -1.55 5.64 
0.75 0.56 3.59 -0.04 4.13 -0.32 5.06 -0.97 5.78 
1.00 0.97 3.78 0.39 4.04 -0.51 4.97 -0.22 6.01 
1.25 0.86 3.92 0.43 4.32 -0.48 4.85 0.38 5.87 
1.50 1.10 4.02 0.06 4.47 '0.44 4.96 1.78 5.53 
1.75 0.56 4.19 0.65 4.47 0.54 5.12 1.96 6.07 
2.00 0.71 4.21 0.77 4.38 0.39 5.48 1.38 6.78 
2.25 0.55 4.42 0.19 4.64 0.12 5.76 0.01 6.61 
2.50 0.33 4.81 0.00 4.59 -0.24 5.36 -0.79 6.77 
2.75 0.36 4.76 	- 0.35 4.60 0.04 4.98 -0.25 6.52 
3.00 0.91 4.69 0.65 4.68 0.25 5.16 0.63 6.70 
3.25 -0.38 5.20 0.27 4.88 0.53 5.45 1.05 6.40 
3.50 -0.04 5.38 0.15 5.05 0.41 5.66 1.99 6.11 
3.75 -0.38 5.73 0.57 5.03 -0.07 5.93 2.35 6.37 
4.00 0.06 5.80 0.32 5.09 -0.19 5.62 1.62 6.95 
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Fig. 4.2.7 As in Fig. 4.2.5 only with step size 1.5. 

Fig. 4.2.8 As in Fig. 4.2.5 only with step size 2.0. 
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4.2.8. Although one may not be so interested in estimating )1 it is 

also worth noting that for the smaller step sizes has a clear 

advantage over Yin that it has smaller bias. So there appears to 

be some advantage to be gained from calculating m.l.e.'s (though 

again this must be qualified as some experiments have been 

discarded when the m.l.e.'s are formed). It is interesting to 

compare Table 4.2.19 with Table 12 of Appendix 9 which gives values 

of m.s.e. and mean of the estimator 1/Ain 48 step Up and Down 

experiments (1 also equals the m.l.e. of 11)3 if it can be 

found). For step sizes 0.5 and 1.0 the m.s.e. of 1/,S's less than 

that of i/,E but for step sizes 1.5 and 2.0 it is often higher 

(i.e. using two UDTR's is not giving better estimates of 1/)3 than 

those obtained from using an Up and Down rule for the same total 

number of observations) • Such a comparison is to some extent 

unfair on the procedure of using two UDTR's as in my simulations ,I 

have started both staircases at the same level; 	in practice one 

would start the staircase for 	some way above the start for the 

staircase for L(I/r. 

The main conclusion that can be drawn from the simulations 

using two UDTR rules is that experimenters should be very wary of 

using estimators of 1/,8 such as 11 (i.e. of a form such as that 

in Formula 4.2.1) and should instead be prepared to carry out 

maximum likelihood estimation. How seriously my suggested 

alternative estimator, 11,L should be taken is questionable but in 

the simulations it did have m.s.e. close to that of the m.l.e. of 

11)3. 
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4 • 3 PROPERTIES OF THE UDTR 1WJLE IN 2IFC EXPERIMENTS 

In psychometric studies if an UDTR rule is used it is very 

often when a two interval forced choice (2IFC) procedure is 

operated. This procedure is described in Rose, Teller and 

Rendleman (1970). In such experiments the stimulus to be detected 

is presented in one of two intervals. The subject is asked to 

choose the interval in which he judges the stimulus is most likely 

to have been present; the subject must make a choice even if he 

has no idea as to which interval contains the stimulus. It has 

been argued that this procedure is better than the yes-no 

procedure, where a stimulus is presented to a subject who must say 

whether or not it has been detected. The argument is that with the 

yes-no procedure the subject is free to set his own criterion for 

giving a positive response but in the 2IFC experiment the criterion 

is brought under the control of the experimenter. 

If the probability of detection of the stimulus is given by 

G(x), where x is the stimulus level, then the probability of a 

correct choice at level x in the 2IFC experiment is given by 

(1-G(x))/2 + G(x) = (1+G(x))/2. 	 4.3.1 

If the stimulus is detected it is assumed that the subject will 

always choose the correct interval and of course if the signal is 

not detected the subject will have probability 0.5 of making the 

correct choice. 



In other disciplines it is difficult to see applications for 

this procedure. For example in bio-assay there is a clear physical 

response to the stimulus by the subject, there is no sensible way 

and certainly no reason to operate a procedure such as the 2IFC in 

these circumstances. 

If a 2IFC procedure is adopted then the Up and Down rule 

cannot be used as whatever the response curve is there will always 

be probability of at least 0.5 of making a correct choice. The L 1  

of the response curve G corresponds to the LtIrL of the response 

curve in the 2IFC experiments. Experimenters have often been 

satisfied to obtain an estimate of the L,j1 level of the 2IFC 

response curve by means of the UDTR rule designed to concentrate 

observations around this level discussed in the Section 4.1. They 

often cite a paper by Wetherill and Levitt (1965))  which describes 

the UDTR rule, but has no discussion of its suitability for use in 

2IFC experiments. The stimulus level they try to estimate is the 

L level of the function G. 

Rose et al compare the yes-no procedure where the Up and Down 

rule is operated with the 2IFC procedure where the UDTR rule is 

used. In this section and Section 4.4 these strategies will for 

convenience be referred to as Routine A and Routine B respectively. 

They made this comparison by means of simulation, where usually a 

linear response curve was assumed, though some simulations were made 

assuming a normal response curve. They concluded that statistical 

properties of estimators are better with Routine A than Routine B 

providing subjects are ideal in the sense that they say they detect 
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the stimulus if and only if they actually do. The calculations of 

this section allow one to make a similar comparison of asymptotic 

properties of these strategies when the underlying response curve 

is logistic; Section 4.4 contains results of a simulation study 

designed to compare small sample properties. Rose et al's results 

are discussed in more detail at the end of Section 4.4. 

Fig. 4.3.1 illustrates values of V(L x )P for Routine B with 

underlying logistic response, that is the values of the asymptotic 

,,  
variance of nt(LJj 	 where L, is the m.l.e. of L_ 1  and n 

is the number of observations (there is sufficient regularity to 

use results in Billingsley (1961)). The value of Vj.i) is 

illustrated in Fig. 4.3.2. The values of V(yi) and V(Lui.-i) for 

Routine B are close over a wide range of ,2id values (this is not 

surprising as the and L 1  levels only differ by 0.3466/,). 	The 

dashed lines in Fig. 	4.3.2 join points representing values of 

V(J1),$ if Routine A is used with ideal subjects (Fig. 	2.3.1 

illustrates these values on a more appropriate scale). There is a 

considerable loss in efficiency in estimating ji by maximum 

likelihood estimation if Routine B is used rather than Routine A. 

The subjects will not usually be ideal but these asymptotic 

calculations must raise the question as to whether experimenters 

should be using the 2IFC procedure at all unless they have serious 

doubts about the reliability of subjects. Also it seems unlikely 

that methods developed for use with the normal or logistic response 

curves, with the up and Down or UDTR rules being operated, will be 

directly applicable to experiments where the 2IFC procedure is 

used, where in effect a natural responsiveness of 0.5 has been 
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Fig. 4.3.1 Values of V(L.,j$ for Routine B. 
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Fig. 4.3.2 Values of Vp.)$ for Routine B (analogous values 
for Routine Aare joined by dashed lines). 
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Table 4.3.1 Values ofV()f 	for y/d = 0.0. 

0.25 	0.50 	1.00 	1.50 	2.00 	3.00 	4.00 

Routine A 	18.008 10.288 6.091 4.858 4.410 4.809 7 .067 Routine B 	
51.427 32.299 23.080 20.531 20.246 24.183 35.287. 



introduced. 

The values of asymptotic variance for the m.l.e. of 	with 

Routine B compare unfavourably with the corresponding values when 

Routine A is used. Table 4.3.1 gives some values of for 

both routines when the phasing of levels is 0.0. Values vary with 

phase but under the conditions for which calculations are made 

(i.e. phases 0.00(0.25)0.75 and values for , d of 0.25(0.25)4.00) 

there was always a considerable advantage in terms of asymptotic 

efficiency in using Routine A rather than Routine B. 

The weights, w, entering into the asymptotic variance 

expression of matrix 2.3.7 are 

wZ = (dG(x)/dx)/,8(G(x)(1-G(x)))f. 	 4.3.2 

If the 2IFC procedure is used then the response curve is of the 

form (1+G(x))/2 and new values for w are 

w = (dG(x)/dx)/,((1+G(x))(1-G(x)))I. 

So with this new response. curve a factor of G(x)/(1+G(x)) has been 

introduced. This factor is less than or equal to 0.5; the weight 

that is attached to observations in a 2IFC experiment is 

considerably less than that for the yes-no procedure. Fig. 4.3.3 

illustrates the values for these weights using the two procedures 

when the response curve is logistic. Use of Routine A and Routine 

B give rise to different asymptotic distributions of design points 

1LF3 



Fig. 4.3.3 Weight attached to observations Using the yes-no 
and 2IFC procedures for the logistic curve. 
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but it is not at all surprising that asymptotic variances of 

m.l.e.'s of p andy are much larger with Routine B than Routine A. 

With Routine B experimenters often use either E.6  or some 

estimator asymptotically equivalent to Ep m  to give an estimate of 

the level of the 2IFC response curve. Fig. 4.3.4 illustrates 

some values of asymptotic bias for these estimators for logistic 

response. The bias is negative for both estimators, with bias of 

Ew being smaller than that of EM  for the parameter values 

considered. Figs. 4.1.1 and 4.1.2 give analogous values for bias 

when the UDTR rule is used with the yes-no procedure, these values 

for bias are much smaller than those illustrated in Fig. 4.3.4. 

Tables 2.3.1 and 2.3.2 give analogous values for bias using Routine 

A, here values for bias are very small for a wide range of 

parameter values. 

As in the previous situations considered the limit with 

probability one of the variance of the levels of frequent response 

type (i.e. where - and +- responses count as a negative response 

and ++ as a positive response) is close to being linearly related 

to 1/, providing Ad . 2.0. 	This relation is illustrated in 

Fig. 4.3.5 for underlying logistic response. 	The slope of the 

square of the 2IFC response curve at its L., level is equal to 

1). From Appendix 7 it follows that, for d sufficiently 

small, the this limit divided by d is arbitrarily close to 

1/(4(2- 	This suggests that the points in Fig. 4.3.5 

should be fitted by a line with slope 1/(4(2tf_ 1)). 	The dashed 

line in Fig. 4.3.5 corresponds to such a line through the origin. 
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A line with this slope but intercept on the y-axis of 0.5 fits the 

calculated values closely for ,d 1 2.0. This suggests that one 

could estimate 1/,  by 1/,B where 

i/,$ = ((v/d)-(df2))(8"- 2), 	 4.3.4 

where v is the variance of the less frequent response type. 	If 

, d 2.0 the asymptotic bias of such an estimator is small. 

However the values for the asymptotic variance of the m.l.e. of 

1/ suggest that such an estimator will have low precision. 

Fig. 4.3.6 illustrates values of the asymptotic variance 

expressions for n " (ED, MoM ). For Routine A or the UDTR rule with 

the yes-no procedures these expressions were, for small step sizes, 

close to the corresponding values of V()1), and V(Li i ) (i.e. EPM
2.  

and the corresponding m.l.e.'s had similar variances). For Routine 

B, for the ,d values I consider, such values are usually 

substantially above corresponding values of V(L 1  ) 	(i.e. there 

appears to be no close relationship between EØM  and the tu.l.e. 	of 

L 1  ). One could argue that there may be close relationship 

between EØM  and the m.l.e. of L 1  for smaller step sizes, but 

then the asymptotic variances for the m.l.e. of P will be 

enormous. Figs. 4.3.7 and 4.3.8 illustrates values of asymptotic 

variance expressions for !(E w -MwE ),  and 

respectively, these are also not close to corresponding values 

V(L, ) . The effect of phasing on variance of estimators E WC  and 

is, for the larger values of ,d considered, much smaller for 

Routine B than that for Routine A or the UDTR rule operated with 

(L7 
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the yes-no procedure (see Figs. 2.3.3 and 4.1.5). 

The main conclusions at the end of this section are: 

Estimators asymptotically equivalent to EQM,  E 	or EWE, 

have apparently no close relationship with the m.l.e. of Liji for 

the conditions considered. 

Using Routine B rather than Routine A with ideal subjects 

can increase the asymptotic variance of m.l.e.'s dramatically. 

tSo 



4.4 RESULTS OF SIMULATIONS OF 2IFC EXPERIMENTS 

I made some simulations of Routine B in experiments consisting 

of 24 observations. I assumed that the underlying response curve 

was logistic withequal to Tt/3.0'.  The values of EM , E8 , E9 0 , 

ED, E WC, Epv, EWE '  and Ep V  were calculated and used to estimate 

L 1  . Starting levels were set to be at -2.00(0.25)2.00 relative 

to L, and step sizes 0.5(0.5)2.0 were used. Again 2000 

experiments were simulated for each set of conditions • Values of 

m.s.e and bias of these estimators are given in Tables 4.4.1 to 

4.4.8. The m.s.e.'s and biases are relatively large compared to 

corresponding values for Routine A. To see this one should compare 

these tables with Tables 3.3.1 to 3.3.8 (in this section values in 

the tables are multiplied by 10 not 100). These values are also, 

for most sets of conditions, much larger than corresponding values 

for experiments where the UDTR rule is used with the yes-no 

procedure (see Tables 4.2.1 to 4.2.8). All the estimators have 

similar m.s.e.'s and biases. This was certainly not the case in 

the simulations of Sections 3.3 and 4.2 where, for step sizes 1.5 

and 2.0, the m.s.e.'s of E WE, Epv, Eand oscillated above and 

below the m.s.e.'s for EBD  and EDM.  That there are no such large 

oscillations is not surprising as the dependence of asymptotic 

variance and bias on phase is relatively small (see Figs. 	4.3.6, 

4.3.7 and 4.3.8). 	The m.s.e.'s of the estimators are relatively 

stable for all step sizes as starting levels are increased from 

to 2.00 above L ( , but values rapidly rise as the starting level is 

dropped to 2.00 below L. 	In fact the m.s.e.'s of all the 



Table 4.4.1 10m.s.e. of estimators of L.. 1 	in 24 observation 
experiments using Routine B for step size 0.5. 

Start EM Eg Egp E V jK ADM Ewe Epy Awa  E Ep' Aw 

-2.00 11.55 9.98 9.73 11.24 4.06 11.17 11.21 3.86 10.71 10.68 3.67 

-1.75 8.86 7.77 7.68 8.85 4.06 8.77 8.81 3.86 8.43 8.42 3.67 
-1.50 6.77 6.08 6.10 6.95 4.06 6.83 6.88 3.86 6.60 6.59 3.67 
-1.25 5.19 4.81 4.92 5.51 4.06 5.42 5.48 3.86 5.25 5.25 3.67 
-1.00 3.97 3.83 3.94 4.33 4.06 4.27 4.33 3.86 4.13 4.14 3.67 
-0.75 3.10 3.14 3.26 3.49 4.06 3.46 3.53 3.86 3.37 3.39 3.67 
-0.50 2.59 2.76 2.87 2.96 4.06 2.97 3.05 3.86 2.91 2.94 3.67 
-0.25 2.11 2.33 2.431 2.45 4.06 2.53 2.63 3.86 2.44 2.48 3.67 
0.00 1.83 2.09 2.19 2.20 4.06 2.25 2.34 3.86 2.20 2.24 3.67 
0.25 1.67 1.92 2.05 2.08 4.06 2.10 2.18 3.86 2.07 2.10 3.67 
0.50 1.59 1.81 2.01 2.08 4.06 2.05 2.13 3.86 2.03 2.07 3.67 
0.75 1.64 1.74 1.99 2.14 4.06 2.12 2.18 3.86 2.05 2.07 3.67 
1.00 1.81 1.77 2.10 2.32 4.06 2.31 2.36 3.86 2.21 2.21 3.67 
1.25 2.11 1.90 2.31 2.55 4.06 2.55 2.59 3.86 2.44 2.43 3.67 
1.50 2.46 2.00 2.42 2.69 4.06 . 2.79 2.82 3.86 2.60 2.58 3.67 
1.75 3.05 2.24 2.53 2.82 4.06 3.00 3.01 3.86 2.74 2.70 3.67 
2.00 3.80 2.62 2.78 3.07 4.06 3.34 3.34 3.86 3.02 2.99 3.67 

• Table 4.4.2 10'm.s.e. of estimators of Ljj_t in 24 observation 
experiments using Routine B for step size 1.0. 

Start 	EM 	E6 	EeV E pm  APM E 	Epv 	AwE E we Epv 	Aw 

-2.00 11.58 10.65 10.71 12.02 8.94 11.61 11.75 7.37 11.30 11.28 	• 7.00 

-1.75 9.85 9.26 9.36 10.40 8.94 10.03 10.18 7.39.. 9.77 9.75 7.02 

-1.50 8.58 8.31 8.42 9.14 8.93 8.88 9.03 7.35 8.69 8.68 6.97 
-1.25 7.50 7.45 7.64 8.16 8.93 8.02 8.19 7.33 7.83 7.84 6.95 
-1.00 6.69 6.87 7.06 7.36 8.94 7.27 7.44 7.37 7.16 7.18 7.00 

-0.75 5.82 6.14 6.32 6.53 8.94 6.44 6.61 7.39 6.38 6.42 7.02 
-0.50 5.38 5.84 6.01 6.10 8.93 6.03 6.23 7.35 6.00 6.07 6.97 
-0.25 4.85 5.39 5.51 5.61 8.93 5.59 5.81 7.33 5.55 5.62 6.95 
0.00 4.57 5.17 5.31 5.35 8.94 5.30 5.54 7.37 5.31 5.39 7.00 
0.25 4.28 4.93 5.21 5.24 8.94 5.17 5.43 7.39 5.18 5.28 7.02 
0.50 3.93 4.64 5.01 5.03 8.93 4.88 5.14 7.35 4.95 5.06 6.97 
0.75 3.72 4.40 4.89 4.98 8.93 4.82 5.11 7.33 4.83 4.93 6.95 
1.00 3.43 4.13 4.69 4.78 8.94 4.67 4.92 7.37 4.63 4.72 7.00 
1.25 3.16 3.74 4.41 4.51 8.94 4.36 4.60 7.39 4.31 4.38 7.02 
1.50 3.16 3.72 4.62 4.73 8.93 4.54 4.78 7.35 4.53 4.60 6.97 
1.75 3.09 .3.52 4.62 4.74 8.93 4.59 4.82 7.33 4.55 4.60 6.95 
2.00 3.16 3.48 4.80 4.94 8.94 4.80 5.04 7.37 4.73 4.77 7.00 

Note: AD M , AEand Adenote columns for asymptotic predicted m.s.e.'s of 
EDM, Eand E' respectively 



Table 4.4.3 	10m.s.e. of estimators of L 1 	in 24 observation 
experiments using Routine B for step size 1.5. 

Start EM E6 E 13 Ep APM E jva Epj AwE EWF Eev A 

-2.00 15.72 15.23 15.37 16.53 16.85 15.54 15.78 12.20 15.57 15.53 11.58 
-1.75 14.18 14.00 14.16 15.11 16.88 14.40 14.65 12.43 14.42 14.38 11.82 

-1.50 13.06 13.19 13.35 14.01 16.98 13.56 13.80 12.83 13.55 13.53 12.22 
-1.25 12.00 12.36 12.66 13.15 17.04 12.78 13.06 12.99 12.79 12.79 12.35 
-1.00 10.96 11.54 11.82 12.08 17.01 11.65 11.94 12.75 11.80 11.84 12.10 
-0.75 10.02 10.77 10.98 11.19 16.92 10.59 10.90 12.35 10.84 10.89 11.71 
-0.50 9.72 10.64 10.89 11.01 16.85 10.43 10.78 12.20 10.65 10.74 11.58 
-0.25 9.10 10.14 10.37 10.48 16.88 10.08 10.47 12.43 10.21 10.32 11.82 
0.00 8.58 9.73 9.96 9.99 16.98 9.77 10.21 12.83 9.86 10.01 12.22 
0.25 8.32 9.59 9.89 9.97 17.04 9.64 10.15 12.99 9.82 10.01 12.35 
0.50 8.03 9.48 10.01 10.00 17.01 9.46 10.01 12.75 9.84 10.07 12.10 
0.75 7.87 9.41 10.14 10.13 16.92 9.52 10.13 12.35 9.84 10.09 11.71 
1.00 7.14 8.75 9.67 9.66 16.85 9.01 9.60 12.20 9.33 9.57 11.58 
1.25 6.57 8.10 9.09 9.14 16.88 8.55 9.13 12.43 8.74 8.95 11.82 
1.50 6.33 7.93 9.10 9.09 16.98 8.68 9.24 12.83 8.71 8.92 12.22 
1.75 5.88 7.40 8.79 8.82 17.04 8.42 8.98 12.99 8.44 8.62 12.35 
2.00 5.78 7.36 9.11 9.15 17.01 8.47 9.04 12.75 8.71 8.90 12.10 

Table 4.4.4 10m.s.e. of estimators of L 41_ 1  in 24 observation 
experiments using Routine B for step size 2.0. 

Start 	EM 	E 	E 	EpM APM E 	Epv Awa E w E E 

-2.00 21.95 22.09 22.35 23.37 28.44 22.53 22.86 20.62 22.61 22.53 19.66 
-1.75 20.73 21.10 21.32 22.25 28.86 21.32 21.70 21.21 21.57 21.49 20.19 
-1.50 19.38 20.00 20.15 20.79 28.95 19.78 20.14 20.80 20.14 20.07 19.78 
-1.25 18.15 19.02 19.34 19.91 28.66 18.48 18.86 19.71 19.00 18.93 18.73 
-1.00 17.02 18.21 18.53 18.79 28.17 17.20 17.56 1.61 17.87 17.86 17.69 
-0.75 15.87 17.29 17.58 17.73 27.75 16.24 16.67 18.07 16.88 16.91 17.20 
-0.50 15.46 17.06 17.44 17.62 27.66 16.26 16.79 18.39 16.86 16.98 17.52 
-0.25 14.93 16.70 17.07 17.27 27.95 16.41 17.06 19.43 16.74 16.90 18.52 
0.00 14.70 16.66 17.07 17.09 28.44 16.59 17.33 20.62 16.83 17.06 19.66 
0.25 14.33 16.47 16.93 16.99 28.86 16.37 17.25 21.21 16.69 17.00 20.19 
0.50 13.80 16.22 16.69 16.57 28.95 15.58 16.54 20.80 16.27 16.67 19.78 
0.75 13.44 16.09 16.86 16.64 28.66 15.47 16.53 19.71 16.18 16.64 18.73 
1.00 12.63 15.41 16.59 16.36 28.17 14.90 16.00 18.61 15.67 16.13 17.69 
1.25 12.15 15.02 16.35 16.23 27.75 14.56 15.65 18.07 15.34 15.78 17.20 
1.50 11.46 14.36 16.05 15.96 27.66 14.43 15.48 18.39 15.11 15.54 17.52 
1.75 10.69 13.51 15.28 15.25 27.95 14.06 15.07 19.43 14.46 14.85 18.52 
2.00 10.29 13.21 15.20 15.09 28.44 14.29 15.29 20.62 14.50 14.89 19.66 
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Table 4.4.5 lOxhias of estimators of 	in 24 observation 
experiments using Routine B for step size O.S. 

Start EM E8 Egp EM A VM  EW6  Ep1  EwE Eev 

-2.00 -8.98 -7.80 -7.09 -7.60 -1.52 -7.74 -7.65 -7.45 -7.39 -1.27 
-1.75 -7.55 -6.50 -5.94 -6.40 -1.52 -6.48 -6.40 -6.26 -6.20 -1.27 
-1.50 -6.26 -5.37 -4.96 -5.37 -1.52 -5.36 -5.28 -5.22 -5.16 -1.27 
-1.25 -5.08 -4.34 -4.07 -4.40 -1.52 -4.39 -4.30 -4.28 -4.22 -1.27 
-1.00 -4.02 -3.42 -3.26 -3.55 -1.52 -3.49 -3.42 -3.44 -3.38 -1.27 
-0.75 -3.03 -2.59 -2.51 -2-.74 -1.52 -2.67 -2.61 -2.65 -2.59 -1.27 
-0.50 -2.32 -2.07 -2.05 -2.16 -1.52 -2.11 -2.07 -2.11 -2.07 -1.27 
-0.25 -1.47 -1.39 -1.40 -1.42 -1.52 -1.39 -1.35 -1.39 -1.37 -1.27 
0.00 -0.76 -0.84 -0.87 -0.79 -1.52 -0.77 -0.77 -0.80 -0.79 -1.27 
0.25 -0.05 -0.31 -0.34 -0.19 -1.52 -0.15 -0.18 -0.23 -0.25 -1.27 
0.50 0.46 0.02 -0.06 0.19 -1.52 0.22 0.16 0.12 0.08 -1.27 
0.75 1.25 0.63 0.48 0.77 -1.52 0.85 0.76 0.70 0.64 -1.27 
1.00 1.97 1.16 0.87 1.18 -1.52 1.31 1.19 1.15 1.07 -1.27 
1.25 2.70 1.70 1.18 1.48 -1.52 1.68 1.53 1.45 1.36 -1.27 
1.50 3.42 2.24 1.40 1.74 -1.52 1.98 1.80 1.75 1.65 -1.27 
1.75 4.32 2.95 1.73 2.06 -1.52 2.34 2.14 2.08 1.96 -1.27 
2.00 5.17 3.61 1.85 2.20 -1.52 2.53 2.31 2.23 2.11 -1.27 

Table 4.4.6 lOsbias of estimators of L 1  in 24 observation 
experiments using Routine B for step size 1.0. - 

Start E Pj  E A E E p EWE Epy EWE Ep Aw E 

-2.00 -7.32 -6.14 -5.82 -6.32 -3.46 -5.98 -5.83 -6.03 -5.89 -2.67 
-1.75 -6.39 -5.36 -5.14 -5.60 -3.47 -5.25 -5.12 -5.31 -5.16 -2.69 
-1.50 -5.67 -4.82 -4.69 -5.05 -3.47 -4.72 -4.59 -4.80 -4.65 -2.70 
-1.25 -4.93 -4.26 -4.21 -4.51 -3.46 -4.20 -4.07 -4.30 -4.17 -2.68 
-1.00 -4.35 -3.84 -3.84 -4.04 -3.46 -3.76 -3.65 -3.85 -3.73 -2.67 
-0.75 -3.73 -3.39 -3.41 -3.55 -3.47 -3.28 -3.19 -3.40 -3.30 -2.69 
-0.50 -3.20 -3.03 -3.06 -3.09 -3.47 -2.89 -2.81 -2.98 -2.90 -2.70 
-0.25 -2.64 -2.66 -2.67 -2.63 -3.46 -2.43 -2.40 -2.57 -2.52 -2.68 
0.00 -2.26 -2.46 -2.46 -2.34 -3.46 -2.14 -2.15 -2.30 -2.29 -2.67 
0.25 -1.91 -2.29 -2.28 -2.09 -3.47 -1.92 -2.00 -2.10 -2.12 -2.69 
0.50 -1.48 -2.04 -2.05 -1.77 -3.47 -1.58 -1.71 -1.79 -1.87 -2.70 
0.75 -1.00 -1.75 -1.80 -1.46 -3.46 -1.28 -1.45 -1.52 -1.64 -2.68 
1.00 -0.63 -1.56 -1.66 -1.30 -3.46 -1.08 -1.32 -1.32 -1.47 -2.67 
1.25 -0.09 -1.17 -1.37 -1.01 -3.47 -0.73 -1.01 -0.99 -1.16 -2.69 
1.50 0.33 -0.95 -1.31 -0.92 -3.47 -0.61 -0.91 -0.87 -1.06 -2.70 
1.75 0.83 -0.66 -1.23 -0.83 -3.46 -0.45'-0.82 -0.76 -0.98 -2.60 
2.00 1.29 -0.38 -1.21 -0.83 -3.-46 -0.46 -0.82 -0.72 -0.95 -2.67 

Note: APM and Adenote columns for asymptotic predicted biases of 

EPM and  E,,E  respectively. 



Table 4.4.7 10'bias of estimators of 	in 24 observation 

experiments using Routine B for sten size 1.5. 

Start EM E E, E DII A0 E Spy E Ep A 

-2.00 -7.91 -6.84 -6.73 -7.17 -5.64 -6.44 -6.25 -6.73 -6.51 -4.16 

-1.75 -7.22 -6.32 -6.27 -6.65 -5.59 -5.93 -5.75 -6.21 -6.00 -4.02 

-1.50 -6.61 -5.87 -5.86 -6.16 -5.60 -5.53 -5.35 -5.78 -5.58 -4.07 

-1.25 -6.02 -5.43 -5.46 -5.71 -5.67 -5.18 -5.02 -5.41 -5.22 -4.26 

-1.00 -5.51 -5.11 -5.15 -5.29 -5.71 -4.81 -4.66 -5.04 -4.87 -4.40 

-0.75 -4.95 -4.71 -4.73 -4.82 -5.70 -4.33 -4.19 -4.60 -4.45 -4.35 

-0.50 -4.69 -4.66 -4.67 -4.63 -5.64 -4.15 -4.06 -4.44 -4.32 
-4.16 

-0.25 -4.34 -4.50 -4.48 -4.38 -5.59 -3.85 -3.81 -4.17 -4.09 -4.02 

0.00 -3.89 -4.21 -4.17 -3.99 -5.60 -3.48 -3.50 -3.81 -3.78 -4.07 

0.25 -3.67 -4.15 -4.11 -3.89 -5.67 -3.47 -3.58 -3.79 -3.81 -4.26 

0.50 -3.49 -4.17 -4.14 -3.82 -5.71 -3.44 -3.63 -3.78 -3.87 -4.40 

0.75 -3.19 -4.05 -4.04 -3.69 -5.70 -3.26 -3.53 -3.65 -3.80 -4.35 

1.00 -2.76 -3.81 -3.84 -3.42 -5.64 -2.94 -3.29 -3.36 -3.57 -4.16 

1.25 -2.20 -3.43 -3.51 -3.06 -5.59 -2.55 -2.94 -2.96 -3.22 -4.02 

1.50 -1.86 -3.26 -3.42 -2.95 -5.60 -2.42 -2.85 -2.78 -3.07 
-4.07 

1.75 -1.46 -3.01 -3.29 -2.83 -5.67 -2.30 -2.78 -2.65 -2.95 -4.26 

2.00 -1.14 -2.92 -3.37 -2.87 -5.71 -2.32 -2.81 -2.68 -3.00 -4.40 

Table 4.4.8 10hias of estimators of in 24 observation 

experiments using Routine B for step size 2.0. 

Start E,, E 13 Ep Ep'i Açj E we 	Epv Ewa 	Epv AWE 

-2.00 -8.87 -7.91 -7.89 -8.27 -7.77 -7.28 -7.03- ?--7.67 -7.38 -5.42 

-1.75 -8.48 -7.68 -7.69 -8.04 -8.03 -7.21 -6.98 -7.57 -7.29 -5.99 

-1.50 -8.15 -7.56 -7.58 -7.81 -8.26 -7.15 -6.91 -7.47 -7.22 -6.44 

-1.25 -7.68 -7.23 -7.25 -7.47 -8.33 -6.79 -6.59 -7.13 -6.88 -6.50 

-1.00 -7.22 -6.96 -6.98 -7.07 -8.19 -6.33 -6.14 -6.73 -6.51 -6.15 

-0.75 -6.64 -6.56 -6.55 -6.56 -7.94 -5.69 -5.53 -6.14 -5.95 
-5.61 

-0.50 -6.11 -6.21 -6.19 -6.10 -7.70 -5.12 -5.01 -5.62 -5.46 -5.18 

-0..25 -5.78 -6.07 -6.02 -5.85 -7.63 -4.89 -4.83 -5.40 -5.29 -5.09 

0.00 -5.60 -6.04 -5.98 -5.76 -7.77 -4.90 -4.92 -5.38 -5.33 -5.42 

0.25 -5.56 -6.17 -6.10 -5.84 -.03 -5.17 -5.32 -5.60 -5.63 -5.99 

0.50 -5.51 -6.34 -6.26 -5.88 -8.26 -5.34 -5.59 -5.80 -5.92 -6.44 

0.75 -5.40 -6.41 -6.36 -5.94 -8.33 -5.43 -5.78 -5.90 -6.10 -6.50 

1.00 -5.06 -6.22 -6.22 -5.75 -8.19 -5.08 -5.52 -5.62 -5.88 -6.15 

1.25 -4.58 -5.92 -5.94 -5.44 -7.94 -4.59 -5.09 -5.19 -5.50 -5.61 

1.50 -3.95 -5.47 -5.54 -4.99 -7.70 -4.02 -4.59 -4.65 -5.00 -5.18 

1.75 -3.38 -5.08 -5.21 -4.64 -7.63 -3.64 -4.23 -4.23 -4.62 -5.09 

2.00 -3.06 -4.93 -5.15 -4.57 -7.77 -3.66 -4.30 -4.17 -4.58 -5.42 



estimators are above the asymptotic predicted m.s.e.'s for the low 

starting levels, but below these values for the high starting 

levels. In using the UDTR rule with the yes-no procedure there 

appeared, for small step sizes, to be a slight advantage in using 

starting levels below the LIjr  level in the sense of giving smaller 

m.s.e for estimators (see Figs. 4.2.1 and 4.2.2). 	For the 2IFC 

procedure starting levels above 	seem preferable. Much of the 

large m.s.e. for low starting values is due to bias, but there is 

also a marked increase in the variability of estimators. The 

probability of taking a step down using Routine B is not tending to 

0.00 as stimulus level decreases but is bounded below by 0.25. 

Even if the starting level is far below the LJ 1 level there is 

still a relatively high probability of staying close to the 

starting level, even when a moderately large sample size is used. 

For all the step sizes asymptotic biases bear little relation to 

the actual biases, however the agreement with asymptotic theory is 

closer for the larger step sizes. which of these estimators one 

should prefer is not at all obvious. The estimator EM  often has 

the smallest m.s.e. but there is not a great deal to choose 

between estimators. 

I also simulated some experiments consisting of 48 and 96 

observations under the same set of conditions. Values of m.s.e and 

bias of E VIA  , EWE and 
It 

 E WE  are given in Appendix 11 • One interesting 

point to note is that often E wE  has a slightly larger m.s.e. than 

Eg (contrary to what asymptotic theory predicts). EE  usually has 

larger bias than EWE,  and the contribution to the m.s.e. from bias 

is large in these experiments. The m.s.e.ts  of EWE  and 	are 
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usually less than those of E; this is what asymptotic theory 

predicts. 

These estimators not only have large biases but also have 

large variability. The step sizes I have considered may be 

inappropriate; their use was motivated by a recommendation for 

step size for the yes-no procedure. However it must be remembered 

that if smaller step sizes are used the asymptotic variance of the 

m.l.e. ofA will be very large. 

I used 1/ (as defined in Formula 4.3.4) to estimate 11p. 

Values of m.s.e. and mean of are given in Table 4.4.9. This 

estimator is useless in 24 observation experiments, not only 

because it has large m.s.e., but it also has marked negative bias. 

For 48 and 96 observation experiments the estimator has for each 

step size smaller bias for most starts (see Appendix 11). However 

the variability of the estimator is always high, even in the 96 

observation experiments. 

It may be as psychologists suggest that Routine A cannot be 

sensibly used. However if Routine B is used it appears that larger 

sample sizes than those common in psychometric studies are needed 

to give estimates with acceptable precision. Also it appears that 

if possible maximum likelihood estimation should be used to derive 

estimates, as the approximate estimators may have little relation 

to the quantities they pupport to estimate. 

Some difficulties were encountered when attempts were made to 



Table 4.4.9 Mean and 10'm.s.e. of i/,$ in 24 observation 

experiments using Routine B (,$= Tr/3.0'L, with 2000 simulations). 

Step size 

0.5 1.0 1.5 2.0 

10 10 10 10 
,' 

mean 	m.s.e. mean 
$ 

m.s.e. mean 
X 

m.s.e. mean 
19 

m.s.e 

Start 

-2.00 0.462 3.15 0.289 3.05 0.176 4.84 0.133 7.31 

-1.75 0.387 2.60 0.245 3.04 0.153 4.92 0.118 7.45 

-1.50 0.323 2.23 0.204 3.03 0.141 4.96 0.093 7.84 

-1.25 0.262 2.06 0.179 3.06 0.122 5.08 0.048 7.94 

-1.00 0.214 2.02 0.154 3.15 0.101 5.24 0.032 8.26 

-0.75 0.176 2.09 0.136 3.33 0.080 5.29 0.012 8.24 

-0.50 0.152 2.19 0.121 3.45 0.073 5.43 0.013 8.01 

-0.25 0.134 2.31 0.115 3.39 0.079 5.33 0.042 7.94 

0.00 0.134 2.33 0.116 3.47 0.085 5.33 0.065 7.84 

0.25 0.134 2.35 0.118 3.42 0.084 5.16 0.062 7.49 

0.50 0.146 2.36 0.121 3.49 0.087 5.46 0.060 8.37 

0.75 0.160 2.41 0.121 3.45 0.078 5.46 0.035 8.30 

1.00 0.171 2.37 0.131 3.58 0.072 5.46 0.010 8.15 

1.25 0.181 2.48 0.123 3.41 0.071 5.25 0.006 8.15 

1.50 0.187 2.65 0.125 3.48 0.071 5.17 -0.004 7.87 

1.75 0.188 2.76 0.130 3.51 0.069 5.21 0.009 7.55 

2.00 0.193 2.83 0.121 3.54 0.065 5.18 0.027 7.36 
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calculate m.l.e. 's of parameters. The system of equations to be 

solved is relatively simple. If there are n i, positive and m 

negative responses at x and the probability of positive response 

at this level is (1+G(x))/2, then the likelihood of the 

observations is 

TI ((1+G(x))/2) ((1-G(x))/2) . 	 4.4.1 
1. 

If the response curve is logistic the derivatives of the log 

likelihood, 1, with respect to parameters a and , (where a=-p) are 

l =(n(1-G(x)) -mG(x)) -n(1-G(x))/(1+G(x)), 4.4.2 

l =x L (n(1G(x)) -mG(x)) -XxnL(1-G(x))/(1+G(x3).4.4.3 

The second derivatives are 

1l =Zz, 	 4.4.4 

4.4.5 

2 	- 2 4Xj z4 , 	 4.4.6 

where 

z•= -(n+m)G(x3(1-G(x 1 )) +2 nG(x)(1-G(xj)/(1+G(x))2 .4.4.7 

The matrix of second derivatives is not in general negative 



definite. With the yes-no procedure the corresponding matrix is 

always negative definite; so if finite maximum likelihood 

estimates of a and f exist, they are unique and Newton-Raphson 

iterations converge to these values. With the 2IFC procedure there 

exists a degenerate solution to the likelihood equations with G(x) 

equal to 0.0 for all x. There can also exist another degenerate 

solution. Suppose the highest level for which some negative 

response is recorded is x. If n,> m, then  G(x) taking the value 

( nk -mK)/(nK+mk) at x x , 1.0 above x K and 0.0 below, satisfies the 

likelihood equations. The corresponding value of Z K  is 

all the other z are 0.0. So the matrix of 

second derivatives of 1 is negative definite. Moving towards this 

degenerate solution one is approaching a local maxima for 1. 

I tried to obtain m.l.e.'s of 	parameters 	in the 	24 

observations experiments using a simple Newton-Raphsori iterative 

algorithm. I performed these iterations in terms of the parameters 

a and ,, using the actual values as starting values. Iterations 

often broke down because the matrix to be inverted at each 

iterative step became less than 10.0- 8  in magnitude. I tried to 

start iterations using different pararneterisations but similar 

problems were encountered. The problems in all these iterations 

arose because the iterations were moving towards a degenerate 

solution of the likelihood equations. i tried to overcome such 

problems by using a modification of the Newton-Raphson procedure 

contained in the NAG library called NAG routine E04LAF. This uses 

the method described in Gill and Murray (1976). I again used as 

starting values for iterations the actual values of a and /3. The 



routine indicates that various problems have arisen in iterations 

by means of the value of an integer IFAIL. If the value of IFAIL 

was 0 on exit then no apparent problems had arisen. The value 5 

for IFAIL was common. When IFAIL is 5,6,7 or 8 this indicates that 

there is some uncertainty as to whether at exit a maximum has been 

reached, the value 5 represents the lowest level of uncertainty. 

Results were accepted if IFAIL is 0; it also appeared reasonable 

to accept results if IFAIL is 5. Much the same problems arose 

using this routine as before, in that iterations often began to 

move towards degenerate solutions of the likelihood equations. 

With this routine one can set upper and lower bounds on the 

possible parameter values. The value of P is 1.814 to 3 decimals. 
I decided to place upper and lower bounds on P of 10.0 and 0.5. 

These bounds were chosen arbitrarily but seemed reasonable 

considering the actual value of A. The number of experiments for 

which IFAIL is 5 remains at around a quarter of those simulated for 

all except step size 2.0 where it is around a half. I formed 

estimates of and 143, that I call Lr and 1/,$,  which equal the 

m.l.e.'s of L,& j  and 1/ if neither bound on P  was attained, but 

otherwise equal EDM  and i/,E. Unfortunately the proportion of 

experiments for which one of the bounds on P was reached is often 

very high. Table 4.4.10 gives the number of experiments for which 

neither bound is reached. 	Values of m.s.e. and mean of Land 

i/,$ are given in Tables 4.4.11 and 4.4.12. 	How one interprets 

these results in such circumstances is not at all clear. For step 

sizes 0.5, 1.0 and 1.5 the m.s.e. of Li1is smaller than that of 

E for the lowest start but eventually becomes larger for some 

higher start. For step size 0.5 the bias of L 1  is always smaller 



Table 4.4.10 Numbers of 24 observation experiments using 
Routine B where bounds on are not attained in the course of 
iterations with E04LAF ()=Trf3.0 " 11 with 2000 simulations). 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

-2.00 841 826 632 756 

-1.75 916 829 608 970 

-1.50 957 835 606 1072 

-1.25 1060 894 633 1132 
-1.00 1124 886 629 958 

-0.75 1160 878 667 840 
-0.50 1199 883 669 795 
-0.25 1236 966 667 763 

0.00 1281 972 658 805 
0.25 1265 979 697 987 

0.50 1276 966 701 1053 

0.75 1265 1002 755 955 
1.00 1253 999 743 888 
1.25 1259 937 729 847 

1.50 1228 909 680 816 
1.75 1187 914 630 840 
2.00 1179 921 619 942 
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Table 4.4.11 	lOAMean and 10m.s.e. of IL 
Lç (  in 24 observation 

experiments using Routine B 93Tr(3.0 with 2000 simulations). 

Step size 

0.5 1.0 1.5 2.0 

10 10 10 10 10 10 12  

A mean 	m.s.e. 
A mean m.s.e. 

A 
mean 

* 
m.s.e. 	mean m.s.e 

Start 

-2.00 -5.955 10.41 -5.045 10.76 -6.157 15.32 -6.026 20.12 

-1.75 -4.910 7.80 -4.455 9.47 -5.760 14.20 -5.220 18.44 

-1.50 -3.932 6.99 -4.068 8.45 -5.413 13.22 -4.698 17.66 

-1.25 -3.081 5.78 -3.583 7.62 -4.991 12.37 -4.279 18.02 

-1.00 -2.434 4.21 -3.287 7.18 -4.632 11.37 -4.372 17.83 

-0.75 -1.836 3.70 -2.960 6.49 -4.202 10.79 -4.208 17.10 

-0.50 -1.615 3.41 -2.622 6.14 -4.147 10.95 -4.266 16.66 

-0.25 -1.177 3.12 -2.360 6.02 -3.990 10.58 -4.182 15.72 

0.00 -0.830 3.04 -2.195 5.93 -3.721 10.16 -4.087 15.09 

0.25 -0.539 2.96 -2.147 5.98 -3.714 10.10 -4.001 14.89 

0.50 -0.528 3.09 -2.036 5.90 -3.708 10.19 -3.986 14.96 

0.75 -0.313 3.04 -1.802 5.76 -3.617 10.46 -4.230 15.10 

1.00 -0.115 3.25 -1.863 5.81 -3.551 10.30 -4.165 15.75 

1.25 -0.017 3.40 -1.666 5.45 -3.251 9.88 -4.195 15.83 

1.50 0.095 3.36 -1.648 5.74 -3.231 9.99 -4.014 15.42 

1.75 0.132 3.60 -1.665 5.84 -3.166 9.54 -3.671 14.46 

2.00 0.018 4.12 -1.741 6.25 -3.256 9.86 -3.469 14.09 
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Table 4.4.12 Mean and lOxm.s.e. of 1/)3 
.4 
	24 observation 

experiments using Routine B (,S=1T/3.0h2,  with 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

10 	 10 	 10 	 10 
X 	 X 	 x 

mean m.s.e. 	mean 	rn.s.eo 	mean 	m.s.e. 	mean 	m.s.e 
Start 

-2.00 0.502 2.70 0.438 2.77 0.360 4.77 0.304 6.77 
-1.75 0.443 2.20 0.407 2.77 0.332 4.79 0.327 6.55 
-1.50 0.398 1.84 0.377 2.80 0.332 4.89 0.323 6.69 
-1.25 0.358 1.66 0.373 2.79 0.322 4.97 0.298 6.48 
-1.00 0.338 1.60 0.354 2.87 0.298 5.09 0.248 7.11 
-0.75 0.318 1.65 0.340 3.05 0.287 5.02 0.204 7.43 
-0.50 0.314 1.70 0.328 3.07 0.281 5.30 0.193 7.36 
-0.25 0.306 1.78 0.336 2.96 0.287 5.27 0.211 7.32 
0.00 0.315 1.78 0.339 3.10 0.292 5.29 0.226 7.22 
0.25 0.310 1.83 0.345 3.08 0.305 5.06 0.273 6.55 
0.50 0.321 1.87 0.341 3.13 0.302 5.28 0.292 7.41 
0.75 0.333 1.93 0.343 2.98 0.304 5.19 0.256 7.23 
1.00 0.332 1.94 0.353 3.13 0.299 5.28 0.216 7.12 
1.25 0.332 2.05 0.330 3.05 0.293 5.08 0.214 7.34 
1.50 0.329 2.14 0.321 3.10 0.278 5.00 0.197 7.17 
1.75 0.323 2.28 0.323 3.17 0.262 5.11 0.197 6.88 
2.00 0.324 2.32 0.313 3.18 0.252 5.06 0.217 6.29 
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than that of EDM,  but is sometimes larger for step sizes 1.0 and 

1.5. For step size 2.0 the always has smaller m.s.e. and bias 

than E. The m.s .e. of 17 is always smaller than that of 1,; 

this is mainly on account of smaller bias. The estimator 1/ 

itself has a large negative bias and could not be reasonably used 

to estimate 1/, . Results of these calculations are inconclusive 

and it cannot be said that use of maximum likelihood estimation 

significantly improves the quality of estimates. 

I made similar calculations for the 48 and 96 observation 

experiments. The results are of greater interest as, at least for 

the smaller step sizes, fewer problems were encountered in 

iterations. Tables analogous to Tables 4.4.9 to 4.4.12 are 

contained in Appendix 11 • For the 48 observation experiments, with 

step sizes 1.0, 1.5 and 2.0, the biases of E , Ek,E and E 	are 

larger than those of 	This is not always the case for step 

size 0.5, but for low starts the biases of LS,-,  are smaller than 

those of the other estimators. For step sizes 1.5 and 2.0 the 

m.s.e.'s of E., EWE  and  EWE  are larger than those of L. For the 

step sizes 0.5 and 1.0 the m.s.e.'s of L, at least do not reach as 

high levels of those of the other estimators for low starts. For 

96 observation experiments the biases of EWE and E w F are 

always larger than those of L 
A. 
 . For all except step size 0.5 the 

m.s.e.'s of L rL are smaller than those of the other estimators. 

For step size 0.5 the m.s.e.'s of L are slightly larger than 

those of the other estimators for some high starts. These results 

indicate that LT., has some advantages over alternative estimators 

in that bias and m.s.e. are often smaller. This is not surprising 
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as the other estimators have relatively large asymptotic biases but 

is asymptotically unbiased. For both the 48 and 96 observation 

experiments the m.s.e.'s of 1/ 'are always smaller than those of 

* 
1/)3. Also the biases of 1/ are usually smaller than those of 193. 

Although Lr '  and 1/,8 'A /, appear to have some advantages over 

alternative estimators they have relatively high variability 

compared to analogous estimators from Routine A (see tables for 

mean and m.s.e. of )1 'and 1,3in Appendix 9). 

It is not possible, for a number of reasons, to make a direct 

comparison of results in this section with those in Rose et a].. 

The assumed forms for the response curve are different and the 

number of observations per experiment were set at different 

numbers • More importantly Rose et al used estimates based on the 

mean and median of stimulus levels presented, ignoring the first 10 

trials, and also averaged results over starting levels (i.e. 

several possible starting levels covering a wide range of stimulus 

intensities were assumed and results were pooled over these 

levels). They identify three main failings of forced choice 

estimates as opposed to yes-no estimates as being that: forced 

choice estimates are more variable than yes-no estimates, 

properties of forced choice estimates are a function of the 

stimulus spacing but those of the yes-no estimates are not, and in 

the yes-no procedure it is sometimes possible to identify a 

staircase run that is very likely to lead to a biased estimate but 

it is much less likely that such an identification can be made if a 

forced choice procedure is used. Certainly my results also support 

the first of these statements. Rose et al state that in their 
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experiments the standard deviation of the forced choice estimates 

is on average 2.6 times as large as that of yes-no estimates, that 

is the variance is around 7.0 times larger. Looking in more detail 

at their results it is apparent that the ratio of standard 

deviations depends to a large extent on step size, with larger step 

sizes usually giving higher ratios. Comparing Table. 4.4.1 and 

Table. 3.3.1 one sees that, for the logistic curve (fr-117'3.0') in 24 

observation experiments for the range of starting values 

considered, the ratio of the m.s.e.'s of EDM,  using Routine A and 

Routine B, is for step size s ,,2-0,- and 1.5 at least 10.0, for step size 

1.0 at least around 4.0, and for step size 0.5 at least around 2.0, 

with often these ratios being considerably larger. This is similar 

to the pattern in Rose et al's results. The asymptotic variances 

of m.l.e.'s illustrated in Figs. 4.3.1 and 4.3.2 also indicate 

that estimates using Routine B will in large samples be more 

variable than those from Routine A. The second assertion Rose et 

al make is mistaken as even when Routine A is used the properties 

of estimators will depend on step size. They also say that their 

estimators using Routine A are unbiased. 	In general such 

estimators will be biased if stimulus levels are 	placed 

asymmetrically about )1. However, from both their results and mine, 

it is clear that for a wide range of conditions bias of estimators 

and effect of step size are much smaller using Routine A rather 

than Routine B. They observed marked negative bias in estimates of 

from Routine B for large step sizes which is in line with my 

findings for step sizes 1.5 and 2.0. The asymptotic biases of the 

EpM and EE  are indeed negative over a wide range of conditions 

(see Fig. 4.3.4). The third assertion that Rose et al make (i.e. 
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that it is easier with Routine A than with Routine B to identify a 

run which is likely to give a biased estimator) seems reasonable 

enough; though any criteria for making such judgements will for 

both Routines be somewhat subjective. 

At the end of this study any conclusions about the usefulness 

of Routine B cannot be encouraging. The bias and variability of 

approximate estimates of parameters are large. Asymptotic 

calculations and simulations suggest that a large sample will be 

required for maximum likelihood estimation to give useful 

estimates. 



5 • STOCHASTIC APPROXIMATION METHODS 

5.1 ESTIMATION USING THE ROBBINS-MONRO METHOD 

In Chapters 2, 3 and 4 I have discussed variants of the Up and 

Down procedure. In Section 3.1 I made a comparison between 

asymptotic properties of the Up and Down design and non-sequential 

designs. The Up and Down procedure has often been compared with 

the Robbins-Monro procedure (for example in Davis (1965a), (1965b) 

and (1971), Cochran and Davis (1964) and Wetherill (1963) and 

(1966)). This procedure and Kesten's modification of it are 

described in Section 1.4. Davis's work provides a very detailed 

comparison between methods but with the limitation that only 12 

subjects are used in each design with 1,2,3 or 4 animals per trial 

in 12,6,4 or 3 trials respectively. Davis was able with such small 

numbers of observations to calculate exact values of m.s.e.'s and 

biases • I performed similar calculations to obtain the results in 

Section 2.2. As is usual when operating the Robbins-Monro 

procedure Davis took as his estimate the level that would have been 

visited had one more observation been made. It is no surprise in 

these circumstances that delayed versions of the Robbins-Monro and 

Up and Down procedures are recommended for use under all conditions 

considered, as they are specially designed to reduce bias due to 

bad starting levels which is pronounced in such small scale 

experiments (see recommendations at the end of Davis (1971)). What 

Davis terms the delayed Up and Down design is the use of the Up and 

Down procedure with the estimator E; the delayed Robbins-Monro 



design uses the Robbins-Monro procedure with the modification of 

following the Up and Down rule until the first change of response 

type. Davis used several response curves including the logistic 

and all were normalised so that the tolerance distribution had unit 

variance. He found that, providing starting levels were within 

distance 2.0 of the ED50 and step sizes in the Up and Down 

procedure are between 0.5 and 2.0, the two delayed procedures were 

about equally good in terms of the m.s.e.'s of the corresponding 

estimators (he made comparisons between procedures using the same 

multiples of his recommended step size and c values). Calculated 

values in Davis (1965b) provide a check on some results in Section 

2.2. Much of the motivation for Davis's work is contained in 

Cochran and Davis (1964). In the discussion at the end of this 

paper Marvin Schneiderman raises the problem of estimating points 

other than the ED50. Wetherill (1963) performed a simulation study 

of the Robbins-'Monro method, some. of the results of which are 

reproduced in 'Sequential Methods in Statistics' (1966), using the 

method to estimate percentage points other than the ED50 gave very 

disappointing results with estimators subject to substantial bias. 

An explanation for this behaviour is given in Section 10.2 of 

Wetherill (1966). Wetherill does cite Kesten (1958) and Davis 

(1963) for examples of modifications to this procedure which may 

overcome such difficulties but he makes no simulations using these 

modified procedures. 

For the Up and Down procedure a step size recommended by Dixon 

and Mood (1948) and Brownlee et al (1953) is the standard deviation 

of the tolerance distribution underlying the response (values for 



asymptotic variances in Section 3.1 for logistic response indicate 

that this is a sensible step size use). For the Robbins-Monro and 

delayed Robbins-Monro procedures a value of c equal to 1/g,,2.  will 

give the lowest asymptotic variance for the estimator (g 11  is the 

slope of the response curve at the ED50 and c is the step 

multiplier, see Section 1.4). Davis discusses Kesten's 

modification of the procedure where the step size is changed only 

when the two previous steps have been in opposite directions (the 

first two steps being of length c and c/2). His conjectures 

concerning the asymptotic variance of the estimator from this 

procedure (see Section 1.4) suggest that c should then be chosen 

equal to 1/2g. For convenience I will refer to the Robbins-Monro, 

delayed Robbins-Monro and Kesten procedures as Procedures 1,2 and 3 

respectively. I have considered an alternative procedure where the 

step size is changed if the next step to be taken is in the 

opposite direction to the previous; this I will call Procedure 4 

(here the step size is changed one step earlier than would be the 

case for Procedure 3). Using the same arguments one would again 

try to set c equal to 1/2g#,, !   Usually the value of g,, is not known 

exactly and one must use some prior estimate for g, 1 in deciding 

upon an appropriate value for c. 

To investigate the behaviour of these procedures when p=0.5 

(i.e. the ED50 is estimated) I simulated 24 step experiments where 

the response curve is logistic. I set P equal to 11/3. O 1,2. so  that 

comparisons with previous simulations using the Up and Down rule 

would be easy. For Procedures 1 and 2 the value of c minimising 

the asymptotic variance of the estimator is 4.0/3 and for 
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Procedures 3 and 4 it is 2.07)3. I considered values of c equal to 

0.5(0.5)2.0 times these values. Starting levels were set equal to 

0.00(0.25)4.00 and 2000 simulations were made for each set of 

conditions. Figs. 5. 1.1 to 5.1.4 illustrate m.s.e.'s of 

estimators. Values of rn.s.e. of estimators are also given in 

Tables 5.1.1 to 5.1.4. and the corresponding values for bias are 

given in Tables 5.1.5 to 5.1.8. 

For c equal to 0.5 times the recommended value the differences 

between procedures are very obvious. When Procedure 1 is used the 

m.s.e.'s rise very rapidly as the starting level is made more 

distant from )1. The m.s.e.'s and biases of estimators when 

Procedure 2 is used are much lower for the distant starts. 

Procedure 3 has much the same defects as Procedure 1; this is 

somewhat surprising as Procedure 3 is supposed to accelerate 

convergence. Davis had similar results in his 12 step experiments. 

He decided to compare Procedure 3 with Procedures 1 and 2 using the 

same value of c (i.e. twice the value asymptotic theory would 

suggest). If I followed his example I would compare values in 

Tables 5.1.1 and 5.1.5 for Procedures 1 and 2 with values in Tables 

5.1.2 and 5.1.6 for Procedure 3. I can see some merit in his 

suggestion, but I prefer comparisons between procedures under 

conditions for which they have similar asymptotic properties. For 

the conditions he considered the larger value of c used in 

Procedure 3 did make the m.s.e.'s more comparable to those for 

Procedure 2 but in his conclusion he still thought it best to use 

Procedure 2. It encouraged me to see that m.s.e.'s and biases of 

estimators using my alternative procedure, Procedure 4, are 
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Fig. 5.1.1 M.s.e's of estimators from Procedures i to 4 with 
c equal to 0.5  times the asymptotic optimal values. 
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Fig. 5.1.3 As in Fig. 5.1.1 only with c equal to 1.5 
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Table 5.1.1 lOOxin.s.ee  of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (Tr/3.d",based on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 5.75 6.53 3.18 4.19 

0.25 5.62 6.68 3.89 4.56 

0.50 6.14 7.30 5.81 5.66 

0.75 6.86 8.34 8.74 7.24 

1.00 8.56 9.76 12.43 9.08 

1.25 10.63 11.05 17.14 11.16 

1.50 13.97 13.04. 21.76 13.03 

1.75 18.74 13.99 26.93 15.04 

2.00 26.70 15.36 32.88 16.85 

2.25 38.98 17.52 38.49 18.71 
2.50 56.36 18.35 44.11 20.17 

2.75 81.35 18.91 51.90 21.97 

3.00 116.98 19.66 60.57 23.38 

3.25 162.67 19.51 70.79 24.90 

3.50 221.77 20.59 82.34 27.22 

3.75 294.13 21.33 96.90 29.70 
4.00 379.97 22.23 115.81 31.50 

Table 5.1.2 100m.s.e. of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (= 11/3.0"'-,based on 2000 simulations). 

Procedure 	 1 	2 	3 	- 4 

Start 

0.00 5.66 5.88 4.76 5.26 

0.25 5.67 5.84 4.75 5.41 

0.50 5.84 6.16 5.11 5.47 

0.75 5.76 6.05 5.37 5.61 

1.00 5.68 6.29 6.15 5.91 

1.25 5.99 6.68 6.85 6.32 

1.50 6.03 6.78 7.87 6.65 
1.75 6.21 6.88 8.84 6.83 

2.00 6.42 6.99 9.87 7.21 

2.25 6.59 7.31 10.78 7.65 

2.50 7.18 7.60 11.48 7.92 
2.75 7.90 7.73 12.93 8.14 
3.00 9.19 7.92 14.00 8.35 
3.25 10.37 7.55 14.96 8.51 

3.50 13.26 8.07 16.15 8.66 
3.75 17.81 8.27 17.52 9.20 
4.00 24.53 8.44 18.99 9.84 
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Table 5.1.3 100"m.s.e. of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (p=IT/3.0h12,based  on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 6.22 6.19 5.62 6.20 
0.25 6.16 6.18 5.75 6.25 
0.50 6.23 6.28 5.72 6.25 
0.75 6.15 6.17 5.80 6.25 
1.00 6.13 6.24 5.78 6.23 
1.25 6.30 6.29 6.09 6.36 
1.50 6.12 6.45 6.50 6.43 
1.75 6.34 6.51 6.49 6.56 
2.00 6.23 6.41 6.95 6.71 
2.25 6.20 6.62 7.32 6.66 
2.50 6.29 6.71 7.72 6.94 
2.75 6.41 6.97 8.12 7.11 
3.00 6.31 6.80 8.40 7.43 
3.25 6.38 6.69 8.54 7.49 
3.50 6.31 6.78 9.32 7.47 
3.75 6.48 7.08 9.53 7.44 
4.00 6.90 6.97 9.73 7.54 

Table 5.1.4 100m.s.e. of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values ( , =-iT/3.- 0,based on 2000 simulations). 

Procedure 	 - 1 	2 - 	3 	4 

Start 

0.00 - 	 7.08 7.10 6.59 6.84 
0.25 7.00 7.04 6.65 7.09 
0.50 7.46 7.43 6.41 7.14 
0.75 7.04 7.14 6.63 7.10 
1.00 7.28 7.37 6.51 7.14 
1.25 7.22 7.32 6.92 7.29 
1.50 7.07 7.18 6.70 7.48 
1.75 7.24 7.37 6.77 7.22 
2.00 7.36 7.50 6.97 7.47 
2.25 7.27 7.59 7.17 7.61 
2.50 7.16 7.43 7.55 -7.63 
2.75 7.21 7.49 7.51 7.56 
3.00 7.15 7.46 7.80 7.56 
3.25 	- 7.29 7.56 8.24 7.76 
3.50 7.15 7.87 8.14 8.07 
3.75 7.26 7.63 8.38 8.13 
4.00 7.11 7.87 8.65 8.22 
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Table 5.1.5 100* bias of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (= TrI3.0",based on 2000 simulations). 

Procedure 	 1 - 	2 	3 - 	4 - 

Start 

0.00 -0.30 -0.43 0.01 -0.13 

0.25 3.59 2.53 7.23 4.64 
0.50 7.39 5.33. 14.64 9.97 
0.75 . 	 12.16 7.96 21.82 13.78 
1.00 16.91 10.25 28.07 17.64 

1.25 22.66 12.21 34.51 20.63 
1.50 29.41 13.59 39.37 22.98 
1.75 3.7.35 14.22 44.50 25.38 
2.00 47.28 16.02 49.48 26.70 

2.25 59.19 17.20 53.76 28.80 
2.50 . 	 72.87 17.21 58.01 30.57 
2.75 88.81 17.60 63.37 31.95 
3.00 107.27 17.82 68.77 32.58 
3.25 127.08 17.69 74.86 33.90 

3.50 148.63 18.72 81.37 35.66 
3.75 171.33 18.84 89.57 37.16 
4.00 . 	 194.83 18.59 99.91 38.64 

Table 5.1.6 100 bias of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values çB=1T/3.0't,b ased on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 -0.14 -0.14 -0.28 -0.80 

0.25 0.43 . 	 0.33 2.18 0.88 
0.50 0.55 0.14 4.89 2.60 
0.75 1.41 0.62 7.20 3.28 
1.00 2.47 1.18 9.68 4.35 
1.25 3.57 1.92 12.01 4.96 
1.50 4.57 2.02 14.11 .5.82 
1.75 5.53 1.99 15.90 6.06 
2.00 7.10 1.50 17.34 7.02 
2.25 8.94 2.14 18.89 7.05 
2.50 . 	 11.79 2.91 19.68 7.23 
2.75 15.03 2.83 21.52 7.46 
3.00 18.73 3.15 22.75 7.57 
3.25 22.85 2.82 23.62 7.72 
3.50 28.91 2.47 24.75 8.53 
3.75 36.09 2.02 26.63 8.54 
4.00 44.88 2.37 28.18 8.90 
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Table 5.1.7 100bias of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (frTT/ 3.0',based on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 -0.19 -0.24 -0.29 -0.52 

0.25 -0.57 -0.51 0.57 -0.21 
0.50 -0.16 -0.25 1.33 0.48 
0.75 -0.04 0.01 2.38 0.57 
1.00 0.57 0.33 3.50 1.19 
1.25 0.10 -0.16 4.84 1.16 
1.50 0.71 0.17 5.54 1.42 
1.75 0.86 0.47 6.05 1.74 
2.00 0.89 -0.11 6.88 2.03 
2.25 1.04 0.15 7.69 2.10 
2.50 1.58 -0.15 7.90 	- 2.37 
2.75 2.24 -0.18 8.57 2.09 
3.00 2.50 0.09 8.74 1.83 
3.25 3.45 0.20 9.54 2.19 
3.50 4.24 -0.12 10.03 2.36 
3.75 5.53 -0.06 10.48 2.11 
4.00 6.79 0.43 11.14 2.77 

Table 5.1.8 100bias of estimators in 24 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values. çB=1T'/3.0 L,based  on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 -0.25 -0.31 -0.25 -0.23 

0.25 . 	 -0.32 -0.36 -0.00 -0.43 
0.50 -0.47 -0.39 -0.12 -0.33 
0.75 -0.22 -0.37 0.28 -0.09 
1.00 0.08 -0.06 1.03 -0.11 
1.25 -0.34 -0.17 1.81 0.55 
1.50 0.16 0.24 1.98 -0.22 
1.75 -0.10 -0.23 2.72 0.48 
2.00 -0.10 -0.21 2.90 0.07 
2.25 -0.15 -0.28 2.91 0.31 
2.50 -0.48 -0.44 3.74 0.88 
2.75 -0.18 -0.39 3.64 0.34 
3.00 -0.25 -0.21 3.69 0.87 
3.25 -0.16 -0.64 3.92 1.04 
3.50 0.57 -0.56 4.12 1.03 
3.75 0.67 -0.34 4.36 0.34 
4.00 0.58 -0.20 4.97 0.33 



comparable to those for Procedure 2 • The m.s • e. 's with Procedure 4 

do rise some way above those for Procedure 2 for distant starts but 

not to the heights reached using Procedures 1 and 3. The bias is 

usually higher with Procedure 4 than 2 but again it does not rise 

to the much higher levels reached using Procedures 1 and 3. 

When c equals the asymptotic optimal value, asymptotic theory 

predicts a value for the variance of the estimators of 0.0507. 

Close to p this asymptotic prediction is fairly closely obeyed 

(m.s.e.'s with Procedure 3 are then a little below this value and 

with the other procedures they are a little above). Much of what 

was said in the previous paragraph applies equally well here. 

Procedures 1 and 3 have bad behaviour for distant starts. 

Estimators from Procedures 2 and 4 have similar m.s.e.'s that do 

not rise so high as those for the other procedures. The biases 

using Procedure 2 are lower than using Procedure 4. 

When c equals 1.5 times the asymptotic optimal value the 

asymptotic predicted variance for the estimators is 0.0570. The 

m.s.e.'s of Procedures 1,2 and 4 are now close with Procedure 2 

having a slight advantage in terms of bias for the distant starts. 

These m.se.'s are always above 0.0570 but not greatly above. The 

biases using Procedure 3 are usually the highest and the m.s.e.'s 

rise some way above those for the other procedures for distant 

starts. 

When c equals 2.0 times the asymptotic optimal value the 

predicted variance of estimators is equal to 0.0675. There is now 



little to choose between procedures. The biases are always small 

and the m.s.e.'s are usually a little way above the predicted 

variance. The bias is greatest for distant starts when Procedure 3 

is used. 

I also simulated experiments of 48 and 96 steps under the same 

set of conditions. The values of m.s.e.'s and biases from these 

simulations are contained in Appendix 12. Much of what I have said 

concerning 24 step experiments also applies to 48 and 96 step 

experiments. The asymptotic theory that applies for multiples of 

1.0(0.5)2.0 of the recommended value of c is more closely obeyed. 

There appears to be no good reason in these experiments to follow 

the expedient suggested by Davis of comparing Procedure 3 with the 

other procedures using the same value for c (asymptotic theory 

suggests that the c value for Procedure 3 should be half the c 

value used in Procedures 1 and 2). For c equal to 0.5 times the 

recommended value the m.s.e.'s using Procedure 4 are below those 

for Procedure 2 but the biases are larger. The m.s.e.'s and biases 

using Procedures 1 and 3 are above values for Procedures 2 and 4 

for distant starts (though in 96 step experiments the m.s.e. for 

Procedure 3 does not rise to very high values for distant starts). 

For c equal to the recommended step size m.s.e.'s for Procedures 2 

and 4 are similar but the bias with Procedure 4 is higher. Again 

Procedures 1 and 3 have some disadvantage in that they have higher 

m.s.e.'s and biases for distant starts but this disadvantage is 

less than it was for 24 step experiments. For multiples of the 

recommended value for c of 1.5 and 2.0 there is little to choose 

between procedures as biases are low and m.s.e.'s are similar (the 
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bias is often lowest for Procedure 2 and highest for Procedure 3). 

The main conclusions from these simulations can be summarised 

as follows: 

Procedure 2 is to be preferred to Procedure 1 as for 

distant starts m.s.e.'s and biases using Procedure 1 are often much 

higher than those using Procedure 2. but they take similar values 

for starts close to p. 

There is some uncertainty over what value of c using 

Procedure 3 should be used in comparison with Procedures 1 and 2. 

I can see no evidence that Procedure 3 has any particular 

advantages over the other procedures and in some respects it 

compares very badly with Procedure 2 in that it has similar defects 

to Procedure 1 

The modification of Procedure 3 that I suggest, Procedure 

4, appears much more effective than Procedure 3 in accelerating 

convergence. The behaviour of estimators 'using .  Procedure 4 is 

often similar to that of estimators using Procedure 2. Procedure 2 

usually has an advantage in that m.s.e.'s are similar for these 

procedures but biases are lower with Procedure 2. For the lowest c 

value considered estimators from Procedure 4 often have lower 

m.s.e. than those from Procedure 2. From the asymptotic theory 

alone I believe that one should be careful to avoid such a low 

value for c. 	If c is less than or equal to half the asymptotic 

optimal value, one cannot show that the estimators are 
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asymptotically normal; although the estimators tend in mean square 

to )1 the convergence is not as fast as 0(1/n), where n is the 

number of observations (see Hodges and Lehmann (1956)). 

(4) From the results of simulations of 48 and 96 step 

experiments it seems sensible to use a value of c of about 1.5 

times the recommended value because then: 

The dependence of m.s.e.'s on starting levels is small. 

There is little to choose between procedures. 

There is only a low possible loss in efficiency relative 

to what could be expected with the ayniptotic optimal c. 

One has some protection against choosing a value of c 

which is less than or equal to half the asymptotic optimal value if 

the initial estimate of is too high. 

So far I have not made any comparison between these stochastic 

approximation procedures and the Up and Down procedure. In such 

comparisons there is immediately the problem of what sets of 

conditions are comparable as the asymptotic properties of the Up 

and Down procedure are quite different. Davis having decided upon 

what were appropriate c values for the stochastic approximation 

procedures and step size for the Up and Down procedure made 

comparisons between experiments where the same multiples of these 

recommended values were used. He recommends the delayed forms of 

32... 



the procedures and notes that estimators from these procedures have 

similar m.s.e.'s over a wide range of conditions. For the 

experiments with 24 observations there are difficulties in making 

comparisons. With Procedures 2 and 4, for c value 0.5 times the 

asymptotic optimal value, the m.s.e.'s of estimators are, for 

distant starts, well above m.s.e.'s for E80  and E bM  for step size 

0.5 with the Up and Down procedure (see Tables 3.3.1 and 5.1.1). 

The m.s.e.'s with Procedures 2 and 4, for c value, 2.0 times the 

asymptotic optimal value are always below values for E and EøM 

for step size 2.0 (see Tables 3.3.4 and 5.1.4). I simulated Up and 

Down experiments for step sizes 0.25 and 0.75 and starts at 

0.00(0.25)4.00 making 2000 simulations per set of conditions. 

Tables 5.1.9 and Table 5.1.10 give values of m.s.e.'s and biases of 

E DjA for step sizes 0.25(0.25)1.00 (values for step sizes 0.50 and 

1.00 come from results in Section 3.3). The m.s.e.'s and biases of 

ED for step sizes 0.25 and 0.50 are close to m.s.e.'s and biases 

using Procedure 4. for c values 0.50 and 1.00 times the asymptotic 

optimal value. The m.s.e.'s of ED  for step sizes 0.75 and 1.00 

are fairly close to values of rrt.s.e.'s using Procedure 4 for c 

values 1.50 and 2.00 times the asymptotic optimal value (though now 

the bias of EDM is usually some way above the bias of the estimator 

from Procedure 4). For this number of observations the stochastic 

approximation procedures are more closely comparable to the Up and 

Down procedure if one compares results for the stochastic 

approximation procedures with c equal to k times the asymptotic 

optimal value with the Up and Down procedure for step size k/2 

times the recommended value (where k=0.5(0.5)2.0). 
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Table 5.1.9 100m.s.e. of E cM  in 24 step experiments 
(1T/3.0 1j2 ,based on 2000 simulations). 

Step Size 	 0.25 	0.50 	0.75 	1.00 

Start 

0.00 	 - 4.16 5.35 6.29 7.03 

0.25 4.60 5.63 6.30 7.28 
0.50 5.41 6.06 6.54 7.14 

0.75 6.62 6.39 6.91 7.38 

1.00 7.58 6.75 7.46 7.78 
1.25 9.08 7.14 7.37 8.42 

1.50 9.93 7.70 7.37 8.22 
1.75 11.63 7.92 7.75 8.24 
2.00 12.64 8.08 7.80 8.06 
2.25 14.19 8.58 8.26 8.38 

2.50 15.67 8.99 8.54 8.26 
2.75 17.56 9.07 8.57 8.47 

3.00 19.22 9.04 8.61 8.73 

3.25 21.9.8 9.48 8.61 9.34 

3.50 24.35 9.86 8.81 9.25 
3.75 27.75 10.30 9.04 9.36 
4.00 31.88 10.46 9.18 9.07 

Table 5.1.10 100xbias of EPM in 24 step experiments 
(= fl/3.0based on 2000 simulations). 

Step Size 	 0.25 	0.50 	0.75 	- 1.00 

Start 

0.00 0.10 -0.30 -0.47 -0.26 

0.25 4.18 2.05 1.43 0.56 
0.50 	. 8.48 3.47 2.54 1.77 
0.75 11.46 5.36 3.63 3.31 
1.00 14.14 6.51 3.44 3.29 
1.25 16.40 7.71 4.68 3.82 
1.50 18.54 7.79 4.68 2.84 
1.75 20.45 8.60 5.43 2.87 
2.00 22.08 9.32 5.27 3.63 
2.25 23.97 9.72 6.09 3.33 

2.50 25.89 9.57 5.50 3.93 
2.75 28.14 10.20 6.29 5.04 
3.00 29.94 10.52 5.92 4.57 

3.25 32.88 10.91 6.18 4.76 
3.50 35.07 10.75 6.10 3.68 
3.75 37.79 10.94 6.87 3.89 
4.00 41.31 11.84 5.98 4.48 



This result is not very surprising as in the stochastic 

approximation procedures the average step size decreases with n but 

for the Up and Down procedure remains fixed. One might hope that, 

by setting the ratio of the fixed step size to c value equal to 

some decreasing function of n, one could obtain close comparability 

between the Up and Down procedure and one of the stochastic 

approximation procedures for any n. Consideration of the 

asymptotic properties of estimators shows two reasons why this is 

not possible. One is that whatever step size is chosen with the Up 

and Down procedure the rn.l.e. of is asymptotically normal with 

asymptotic variance tending to zero as 0(1/n) but if the c value is 

chosen too low in the stochastic approximation procedures then (as 

I have already remarked) the corresponding estimators cannot be 

shown to be asymptotically normal and have asymptotic variances 

tending to zero at a rate slower than 0(1/n). So the asymptotic 

properties of estimators from the respective procedures are quite 

different for small step sizes and c values. The other reason is 

that the asymptotic variance expression for the m.l.e. of.p with 

the Up and Down procedure approaches the lower bound of 445Lrt as 

the step size decreases but with the stochastic approximation 

procedures this lower bound is attained only for c equal to 1/g. 

For comparability between procedures for any n one would need the 

ratio of c to step size to depend not only on n but also on the c 

value. The step size in the Up and Down procedure would have to 

tend to zero as n increases for c<1/2g 112  or c=1/g,, but to some 

finite limit otherwise. 

For experiments involving 48 and 96 observations I tried to 



find some basis for comparability between the Up and Down procedure 

and the other procedures. I simulated Up and Down experiments with 

various step sizes to try to find a step size for which the 

m.s.e.'s of EDM  were similar to m.s.e.'s of the estimator from 

Procedure 4 with the asymptotic optimal c value. I finally settled 

on step sizes 0.4 and 0.3 as giving roughly comparable results for 

48 and 96 observations respectively. I then in addition simulated 

experiments for multiples of these step sizes of 0.5,1.5 and 2.0. 

Values of m.s.e. and bias of EDM  from these simulations are given 

In Tables 17 to 20 of Appendix 12. Using these lower step sizes in 

making comparisons does help to make the Up and Down procedure more 

comparable with the other procedures but as n increases the 

comparability across the range of multiples of step size begins to 

break down (e.g. in the 96 step experiments a larger step size 

than 0.60 appears to be needed for comparability with the 

stochastic approximation ,procedures with c equal to 2.0 times the 

asymptotic optimal value). 

I have already given reasons (see point (4) of my conclusions 

for Procedures 1 to 4) for using a c value above the asymptotic 

optimal value. If such a c value is used the asymptotic variance 

of the estimator will be above its lower bound and some value of 

step size with the Up and Down procedure will be such that the 

m.l.e. - has, the same asymptotic variance. The stochastic 

approximation procedures have an advantage in that asymptotically 

unbiased estimators are easily obtained without making strong 

assumptions about the form of the response curve. However the 

procedures are more complicated to operate than the Up and Down 
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procedure (a check has to to be made after each visit to a level to 

determine whether the step size should be changed), also, because 

observations are eventually concentrated close to one level, one 

cannot expect accurate internal estimates of slope even for very 

large n and a further disadvantage is that there are potentially 

d.isasterous consequences if the c value is set too low. Of course 

estimates of p from the Up and Down procedure can be seriously 

biased if the step size is low and the starting level is distant 

but such biases can be substantially reduced by forming the m.l.e. 

(see Section 3.3). 

It is not at all clear whether one should use stochastic 

approximation or the Up and Down procedure; it is even difficult 

to determine under what conditions they should be compared. In 

Section 5.3 I discuss in more detail the relative merits of all 

procedures. I also consider variants of the stochastic 

approximation procedures for which estimators have full asymptotic 

efficiency and the possibility of using m.l.e.'s from Robbins-Mon±o 

experiments. In Section 5.2 I consider the problem of estimating 

levels other than the ED50 using stochastic approximation. 



5.2 RESULTS OF SIMULATIONS OF EXPERIMENTS DESIGNED 

TO FIND STIMULUS LEVELS OTHER THAN THE FD50 

In the simulations of Section 5.1 the value of p in the 

stochastic approximation procedures was set equal to 0.5 (see 

Section 1.4) and so it was the ED50 (alternatively termed the L,, 

level) that was estimated. In the work of Davis (1965a), (1965b) 

and (1971) attention has been restricted to p = 0.5, but in 

Wetheril (1963) some small sample simulations using the 

Robbins-Monro procedure are made with p M. Conclusions in 

Section 10.2 of Wetheril (1966) concerning these simulations are 

not encouraging; his simulations indicate that 

'away from the immediate neighbourhood of 	the process leads to 
small sample estimates which frequently have large biases, and in 
addition, the sample variances are greatly in excess of those 
predicted from asymptotic theory.' 

The delayed Robbins-Monro procedure and the Kesten version of the 

Robbins-Monro procedure were both devised with improvement in small 

sample estimation of L,,  in mind. In this Section I consider 

whether these modifications have any merit for p # 0.5. For 

estimating a general L level the levels visited, iyel ,  are related 

by 

y= y + c(p-PL)/t, 	 5.2.1 

where p. = 1 or 0 according to whether the response is positive or 
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negative. Providing the value of c is greater than 1/2g (where gp 

is the slope of the response curve at L) then the estimator from 

the Robbins-Monro procedure (i.e. the level that would have been 

visited following one more step) is asymptotically normal with 

variance given by 

cp(1-p)/(2cgp- 1)n, 	 5.2.2 

where n is the number of observations. Suppose the response type 

changes at observation t 0 . What I term the delayed procedure is 

where the levels visited are linked by the equations 

yit= y + c(p-p) 	for t < t 0 . 	 5.2.3 

y= y + c(p-p)/(t+2-t.) 	for t 	t o . 	 5.2.4 

The asymptotic properties of this procedure are the same as the 

original procedure. Similar arguments to those in Davis 's work 

suggest that, for the procedure with Kesten's modification a value 

of c of k(pt +(1-p))/g will give an estimator with the same 

asymptotic variance expression as that for the unmodified procedure 

with c equal to k/g e  (where k > 0.5). The (p2+(1_p)) term appears 

because it is the limit in probability of the ratio of the number 

of changes in response type to n (this follows using similar 

arguments to those in Appendix 8). 

A modification of the Robbins-Monro procedure which I have 

considered is to operate the procedure on a transformed curve (I 

discuss operating the Up and Down rule on transformed curves in 
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Section 4.1). 	I thought that this could possibly be successful as 

the suggestion in Wetherill (1966) of operating the Up and Down 

rule on a transformed curve to obtain estimates of levels other 

than the Li,1  is certainly successful for some sets of conditions 

(see results in Section 4.2). A simple example of such a procedure 

would be to visit levels, [y , making at most two observations per 

visit according to the following rule 

= y - c(z.-0.5)/t, 	 5.2.5 

ç 1.0 if at y a ++ response is recorded, 

where z. = 10.0 if at y a - or +- response are recorded. 

That is moves are made between levels following much the same rules 

as the UIYR rule designed to give estimates of Li(see description 

in Section 4.1) but the size of the steps decreases throughout the 

experiment. In Appendix 8 some asymptotic properties of the 

estimator from this procedure are derived. The level that would 

have been visited had one more observation been taken provides an 

estimate of the L1evel of the response curve • The value of c 

minimising the asymptotic variance expression for this estimator is 

(0.5)/g,(i.e. the slope at Lijr, of the transformed response 

curve). Operating on the transformed response curve does not 

greatly reduce asymptotic efficiency. If c values chosen for this 

procedure and the Robbins-Monro procedure with p = (0.5)1 /Z 
are 

k(0.5)/g11 and k/g 11  respectively (k > 0.5) then the ratio of the 

asymptotic variance expressions is 0.9706 to four decimals (see 

Appendix 8). Of course one can use any of the modifications of the 
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Robbins-Monro procedure that I have discussed on the transformed 

curve. This procedure can be adapted to provide estimators of any 

L by replacing 0.5 by p 2  in Formula 5.2.5. 

I simulated stochastic approximation procedures which provide 

estimates of Li (i.e. the level estimated in the simulations of 

Section 4.2). I will use the terminology of the Section 5.1 for 

the different procedures considered. I considered Procedures 1 to 

4 operating on the untransformed response curve and the same 

procedures on the transformed response curve. I will call 

Procedures 1 to 4 operating on the transformed curve Procedures 5 

to 8 respectively. I simulated experiments for c values equal to 

0.5(0.5)2.0 times the asymptotic optimal values ; 24 observations 

were made in each experiment. The response curve was logistic with 

)3 equal to 1T,3•01'• Starting levels were chosen at -2.00(0.25)2.00 

relative to the position of L 1,. Again 2000 simulations were made r. 

per set of conditions. Values of m.s.e.'s and biases of estimators 

are given in Tables 5.2.1 to 5.2.8. The m.s.e.'s of estimators 

from Procedures 1,4,5 and 8 are illustrated in Figs. 5.2.1 to 

5.2.4; these are the procedures I consider to be of greatest 

interest. My reasons for considering Procedures 2,3,6 and 7 to be 

of less interest are as follows: 

(1) Procedure 2 has poor performance in that for all except 

the smallest c value m.s.e.'s with this procedure are always in 

excess of corresponding values with Procedure 1. Even for the 

smallest c value the in.s.e. with Procedure 2 is only lower than 

that with Procedure 1 for starts at 1.25(0.25)2.00. 
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Table 5.2.1 100m.s.e. of estimators of Li/ in 24 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (= Tr/ 3.0'based on 2000 simulations). 

Procedure 	1 	- 2 	3 	4 	5 	- 6 	7 	8 

Start 

-2.00 9.41 10.74 16.32 11.22 33.88 11.41 25.47 13.41 

-1.75 8.23 10.80 14.08 10.43 21.83 11.16 20.53 12.44 
-1.50 7.17 10.01 11.46 9.38 14.28 10.67 16.92 11.47 
-1.25 6.77 9.22 9.15 8.57, 10.38 10.49 13.29 10.22 
-1.00 6.36 8.45 7.45 7.51 7.85 9.75 10.46 8.93 
-0.75 6.43 8.26 5.77 • 6.54 6.40 8.58 7.77 7.24 

-0.50 6.71 8.14 4.79 5.77 5.80 7.70 6.28 5.70 

-0.25 7.26 8.37 4.45 5.17 5.71 7.19 5.99 4.85 
0.00 8.19 9.03 4.71 5.50 6.17 7.33 5.71 4.46 
0.25 8.99 10.01 5.65 5.72 6.46 7.44 6.36 5.21 

0.50 10.65 11.96 7.58 6.58 8.00 9.15 7.60 7.36 
0.75 12.00 13.17 9.88 7.47 9.85 11.17 8.87 10.42 

1.00 14.22 14.75 13.16 8.93 13.43 14.34 10.15 14.71 
1.25 18.57 16.80 17.07 10.31 18.54 17.04 11.85 19.26 
1.50 25.89 18.87 21.11 11.61 26.57 19.51 13.66 24.51 
1.75 39.23 21.27 25.39 13.04 40.02 22.40. 14.69 30.47 

2.00 58.17 22.43 31.71 14.15 60.50 24.56 16.34 37.35 

Table 5.2.2 lOOxm.s.e. of estimators of Ls,'€in  24 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (8=Wf3.0"based on 2000 simulations). 

Procedure 	- 1 	2 - 	3 	4 	5 - 	6 	7 	8 - 

Start 

-2.00 6.50 9.73 6.21 7.23 5.88 8.25 9.95 7.65 
-1.75 6.74 9.61 6.00 7.18 5.74 8.03 9.44 7.71 
-1.50 7.18 10.10 5.95 7.01 5.90 8.19 9.00 7.23 
-1.25 7.26 10.04 6.03 6.63 6.20 8.06 8.86 7.14 
-1.00 8.00 10.97 6.04 6.85 6.42 7.94 8.47 6.81 
-0.75 8.53 10.51 6.41 6.70 6.47 7.65 8.60 6.63 
-0.50 8.80 10.41 6.63 6.90 6.82 7.68 8.97 6.33 
-0.25 . 	 9.10 9.96 6.75 7.32 7.12 7.60 9.13 6.33 
0.00 9.41 9.82 7.36 7.22 7.03 7.20 9.71 6.52 
0.25 10.20 10.32 7.27 7.12 7.42 7.58 10.45 6.50 

0.50 10.95 11.36 8.05 7.55 7.94 8.20 11.26 7.08 
0.75 11.41 11.84 8.44 7.82 7.96 8.38 11.30 7.91 
1.00 11.95 12.61 9.48 7.77 8.70 9.02 12.94 9.20 
1.25 12.22 12.94 10.39 8.01 9.60 10.03 12.98 10.29 
1.50 12.33 13.17 11.23 8.42 10.19 10.76 14.28 11.41 
1.75 13.61 14.13 12.53 9.22 10.88 11.50 14.77 12.71 
2.00 14.07 14.20 13.62 9.51 12.03 12.05 16.18 13.65 



Table 5.2.3 lOOsm.s.e. of estimators of L,,in 24 step experiments using 
stochastic approximatiOn procedures with c equal to 1.5 times the 
asymptotic optimal values (=rr/3.0based on 2000 simulations). 

Procedure 	1 	2 	3 - 	- 4 	5 	6 	7 	- - 8 

Start 

-2.00 8.43 11.59 7.71 8.53 7.00 8.74 11.28 8.54 
-1.75 8.66 11.56 7.77 8.57 7.50 8.38 11.63 8.03 
-1.50 9.17 12.06 7.95 8.64 7.79 8.57 11.55 7.90 
-1.25 9.21 11.50 8.31 8.48 7.96 8.66 11.70 7.95 
-1.00 9.06 10.34 8.54 8.63 7.96 8.56 11.97 7.84 
-0.75 9.31 10.14 8.84 8.86 8.15 8.58 12.52 8.06 
-0.50 9.86 10.39 8.78 8.97 7.95 8.33 12.22 7.61 
-0.25 9.92 10.29 8.91 9.17 8.22 8.24 12.54 7.91 
0.00 9.88 10.09 9.18 8.85 8.16 8.20 13.69 7.93 
0.25 10.44 10.59 9.13 8.83 8.06 8.18 13.45 7.79 
0.50 11.83 11.95 9.34 9.14 8.38 8.51 14.38 8.24 
0.75 11.81 12.07 9.56 9.12 8.34 8.40 14.89 8.15 
1.00 12.28 12.53 9.97 9..46 8.56 8.62 15.33 8.63 
1.25 12.07 12.68 .10.34 9.20 8.76 8.88 16.81 9.65 
1.50 12.04 12.59 10.79 9.63 8.64 9.01 16.73 9.96 
1.75 12.18 13.26 11.60 9.80 9.09 9.44 18.43 10.26 
2.00 11.76 12.22 12.02 9.83 9.29 9.56 18.10 11.00 

Table 5.2.4 100$ m.s.e. of estimators of Lvin 24 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 

OU  asymptotic optimal values (=T73.0'based on 2000 simulations). 

Procedure 	- 	 2 	3 	4 	5 	6 	7 	8 

Start 

-2.00 9.75 11.69 10.14 10.42 8.99 9.60 14.52 . 	 9.34 
-1.75 9.83 11.40 10.07 10.58 9.14 9.70 14.00 9.45 
-1.50 10.13 11.48 10.82 10.45 9.35 9.84 14.25 9.37 
-1.25 10.23 11.26 10.75 10.79 9.29 9.77 15.09 9.46 
-1.00 10.46 11.24 11.14 10.98 9.59 9.73 15.86 9.08 
-0.75 10.86 11.31 11.08 10.96 9.42 9.57 15.47 9.01 
-0.50 10.69 10.92 11.06 10.85 9.37 9.39 15.86 9.24 
-0.25 10.97 10.96 11.02 11.17 9.40 9.47 16.69 9.38 
0.00 10.92 10.98 11.08 10.82 9.31 9.42 16.66 9.09 
0.25 11.93 11.94 11.33 10.82 9.39 9.44 16.81. 9.03 
0.50 12.61 12.79 11.29 	. 10.82 9.37 9.45 17.73 9.32 
0.75 12.83 12.97 10.99 11.53 9.44 9.43 18.38 9.03 
1.00 12.67 12.90 11.58 11.20 9.49 9.54 18.26 9.29 
1.25 12.54 12.88 11.61 11.25 9.66 9.61 19.20 10.29 
1.50 12.40 13.21, 12.31 11.40 9.54 9.68 20.08 10.05 
1.75 12.52 12.94 12.43 11.10 9.83 9.95 21.98 10.66 
2.00 12.40 12.79 12.78 11.47 9.58 9.97 20.98 10.96 
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Table 5.2.5 lOOsbias of estimators of Lin 24 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (=1r/3.0 L,based on 2000 simulations). 

Procedure 
	

1 	2 	3 	4 	5 	6 	7 	8 

Start 

-2.00 -22.07 -7.72 -32.65 
-1.75 -17.99 -6.90 -29.94 
-1.50 -13.94 -5.66 -26.02 
-1.25 -10.74 -4.80 -21.72 
-1.00 -7.26 -3.27 -17.21 
-0.75 -4.25 -1.22 -12.21 
-0.50 -1.37 1.05 -7.01 
-0.25 1.74 3.47 -1.98 
0.00 4.94 6.29 3.71 
0.25 8.50 8.92 8.99 
0.50 13.11 11.99 15.04 
0.75 18.23 14.08 19.87 
1.00 24.51 15.27 25.03 
1.25 33.15 17.20 30.19 
1.50 43.97 18.96 34.40 
1.75 57.94 19.92 38.66 
2.00 73.42 20.24 44.54 

-20.38 -56.78 
-19.64 -44.32 
-17.69 -33.88 
-15.22 -26.13 
-13.62 -19.18 
-10.62 -13.00 
-7.92 -7.89 
-4.52 -2.95 

	

-1.06 	1.12 

	

2.16 	6.04 

	

5.18 	11.75 
8.05 18.01 
10.31 25.76. 
12.46 34.84 
13.98 45.75 
15.83 59.43 
16.56 75.37  

-10.44 -43.20 
-9.72 -37.80 
-9.66 -33.13 
-9.80 -28.32 
-8.44 -23.53 
-6.79 -17.61 
-4.66 -12.20 
-1.33 -7.78 
1.65 -3.08 

	

5.32 	0.82 

	

9.64 	4.13 

	

12.94 	5.99 

	

16.26 	8.73 
18.62 10.40 
20.59 13.55 
22.60 15.51 
23.59 20.69 

-23.95 
-23-02 
-22.30 
-20.47 
-18.29 
-14.51 
-9.92 
-5.14 
0.88 
7.00 

13.70 
20.40 
26.00 
30.90 
35.99 
40.57 
46.06 

Table 5.2.6 100"bias of estimators of Lrin  24 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (=1T/3.0,based on 2000 simulations). 

Procedure 	1 - - 2 	3 	4 	5 	6 	- 7 	8 

Start 

-2.00 2.70 7.94 -4.49 -1.61 -9.29 1.56 -13.71 -4.89 
-1.75 3.99 8.48 -3.06 -1.53 -6.14 1.22 -12.50 -4.64 
-1.50 4.64 8.28 -1.83 -1.59 -4.31 1.54 -10.77 -4.30 
-1.25 5.87 8.71 -0.48 -1.70 -2.36 1.15 -10.08 -4.29 
-1.00 7.76 10.04 0.76 -0.53 -1.64 0.95 -7.07 -3.26 
-0.75 8.48 9.93 2.54 0.09 0.16 1.79 -5.60 -2.06 
-0.50 9.24 10.47 3.73 0.63 1.25 2.27 -4.50 -1.30 
-0.25 9.46 10.52 4.73 1.15 1.94 2.54 -3.68 0.88 
0.00 10.02 11.03 6.06 1.68 2.49 2.56 -2.25 1.91 
0.25 11.03 12.28 7.95 2.49 3.66 3.72 -1.29 3.84 
0.50 10.90 12.53 9.54 2.96 5.24 5.00 -0.60 6.16 
0.75 11.16 12.43 11.10 3.54 6.04 5.61 0.83 8.20 
1.00 11.39 12.74 12.97 4.24 7.74 6.61 0.34 9.72 
1.25 11.63 12.26 13.93 4.49 9.38 7.33 1.68 11.60 
1.50 13.14 12.31 15.69 5.03 11.49 7.36 0.61 13.22 
1.75 15.85 13.02 17.04 5.46 14.31 8.35 1.57 14.73 
2.00 18.72 13.61 18.71 5.89 18.24 8.01 0.95 15.41 



Table 5.2.7 100ibias of estimators of Li/in 24 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (,2=1r/3.d" ,based on 2000 simulations). 

Procedure 	1 - 	2 	3 	4 	5 	6 	7 	8 

Start 

-2.00 7.17 10.26 4.08 1.97 1.08 3.09 -4.66 0.36 

-1.75 8.00 10.52 4.21 2.35 1.58 3.36 -4.44 0.70 
-1.50 8.73 10.72 5.36 2.89 1.80 3.06 -3.52 0.34 
-1.25 8.52 9.79 5.57 2.67 1.90 3.39 -2.96 0.70 
-1.00 9.36 9.98 6.68 3.00 2.68 3.56 -3.04 0.55 
-0.75 10.46 10.84 6.64 3.36 3.56 4.11 -2.06 1.28 
-0.50 10.91 11.20 7.11 3.48 3.16 3.53 -1.41 1.33 
-0.25 11.79 11.99 6.47 3.05 3.02 3.12 -1.82 2.33 
0.00 11.77 12.05 7.42 3,21 2.98 3.06 -1.55 3.02 
0.25 12.00 12.67 8.08 3.46 3.60 3.60 -0.83 3.63 
0.50 12.29 13.21 8.50 4.06 3.49 3.54 -0.60 4.23 
0.75 11.12 11.87 9.12 3.04 4.15 4.11 -1.44 4.70 
1.00 10.81 12.12 9.60 3.84 4.63 4.58 0.00 5.51 
1.25 10.32 11.11. 10.92 4.04 4.77 4.60 0.61 6.53 
1.50 9.64 10.97 11.01 4.55 5.47 5.07 -0.61 7.01 
1.75 9.72 10.85 12.14 4.56 5.69 5.08 -0.60 7.09 
2.00 9.73 10.73 12.00 4.75 6.17 4.81 -0.34 7.84 

Table 5.2.8 100 bias of estimators of Liin 24 step experiments using 
stochastic approximation procedures with c equal to 2.0  times the 
asymptotic optimal values (=1T/3.0,based on 2000 simulations). 

Procedure 	1 ' 	2 	3 - 	4 	5 	6 	- 7 - 	8 - 

Start 

-2.00 7.40 8.58 7.25 3.73 2.63 3.80 -1.14 2.49 

-1.75 	- 7.49 8.27 7.16 3.89 3.02 3.61 -0.36 2.14 
-1.50 8.36 8.91 8.14 3.88 3.78 4.12 -0.78 2.08 
-1.25 8.69 9.04 8.03 3.70 ' 2.95 3.63 -0.57 1.88 
-1.00 9.70 9.95 7.59 4.09 3.62 3.76 -0.33 2.55 
-0.75 10.63 10.78 7.82 3.98, 3.57 3.82 -0.46 2.64 
-0.50 11.06 11.17 7.52 3.71 3.83 3.89 -0.16 3.00 
-0.25 11.45 11.39 •8.22 3.85 3.30 3.42 0.19 3.10 
0.00 11.69 11.83 8.07 3.73 3.45 3.60 -0.18 3.14 
0.25 12.29 12.35 8.23 4.86 4.17 4.26 -0.68 3.14 
0.50 12.71 12.84 8.36 4.53 3.48 3.52 0.25 3.61 
0.75 11.32 11.57 8.67 4.51 3.74 3.77 0.07 3.72 
1.00 10.16 10.44 9.07 4.15 3.69 3.60 -0.26 4.30 
1.25 9.75 10.44 9.46 4.58 3.74 3.96 0.97 5.16 
1.50 9.12 10.19 9.53 4.11 3.83 3.66 1.86 4.81 
1.75 9.15 9.85 10.21 4.76 4.76 4.33 0\.53 5.47 
2.00 8.53 9.76 9.97 4.20 4.67 4.01 -0.31 5.43 
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Fig. 5.2.1 M.s.e.'s of estimators from Procedures 1,4,5 and B 
with c equal to 0.5 times the asymptotic optimal values. 
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Fig. 5.2.2 As in Fig. 5.2.1 only with the optimal C values. 
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Fig. 5.2.3 As in Fig. 5.2.1 only with c equal to 1.5 
times the optimal values. 

P,roce,lv"Q I 

CQ4Iy 4 
	PceJ 	5' 

- --- 

ôOtf 

0(6 

04. 

o• IL 

0(0 

006 

a 
-20o 

-1 - 00 	 (-00 
starting level 

Fig. 5.2.4 As in Fig. 5.2.1 only with c eual to 2.0 
times the optimal values. 

2-0 

leo 	 2 

starting level 

q  



Procedure 3 deserves greater consideration than Procedure 

2. The reason I do not recommend its use is that it has certain 

disadvantages when compared with Procedure 4. The biases of 

estimators from Procedure 4 are usually smaller than those of 

estimators from Procedure 3 (they are always smaller for the two 

larger c values). 	For the smallest c values the m.s.e.'s with 

Procedure 3 are smaller than corresponding m.s.e's with Procedure 4 

for starts at -1.00(0.25)0.25. However in.s.e.'s with Procedure 3 

become much larger than those with Procedure 4 for high starts. 

For the other c values m.s.e.'s with Procedure 3 are smaller than 

those with Procedure 4 for low starts but larger for high starts. 

The m.s.e.'s with Procedure 4 depend less upon the start than 

m.s.e.'s with Procedure 3 and have a lower average value over the 

range of starts. 

Values of m.s.e.'s with Procedure 6 are usually higher 

than those using Procedure 5. This is true for all starts for 

multiples of the asymptotic optimal c value of 1.0 and 1.5. 	For 

the largest c value the in.s.e.'s are smaller with Procedure 6 only 

for starts at 1.25 and 1.75 (where m.s.e.'s with the two procedures 

are close). For the smallest c value the performance of Procedure 

6 relative to Procedure 5 is better, but m.s.e.'s are still less 

with Procedure 5 for starts at -1.25(0.25)1.00. 

Procedure 7 has very poor performance in that m.s.e.'s 

with this procedure are often substantially above values with 

Procedure 5 and always above values with Procedure 4. 

ME 



A direct comparison between Procedures 1 and 5 (i.e. between 

the Robbins-Monro procedure for L,1 operating on the untransformed 

and the analogous procedure operating on the transformed curve) 

indicates that Procedure 5 has some advantages. The m.s.e.'s using 

Procedure 5 are less than those using Procedure 1 for: 

Starts -0.75(0.25)1.25, when c values equal 0.5 times the 

asymptotic optimal values. 

All starts considered, when c values equal 1.0, 1.5 and 

2.0  times the asymptotic optimal values 

The biases using Procedure 5 are less than those using Procedure 1 

for: 

Starts 0.00(0.25)0.75, when c values equal 0.5 times the 

asymptotic optimal values. 

Starts -1.50(0.25)2.00, when c values equal the asymptotic 

optimal values. 

All starts, when c values equal 1.5 and 2.0 times the 

asymptotic optimal values. 

The m.s.e.'s with Procedure 5 are only much greater than those with 

Procedure 1, when starts are low and c values are equal to 0.5 

IMI 



times the asymptotic optimal values • For multiples of asymptotic 

optimal c values of 1.0,1.5 and 2.0, asymptotic theory predicts 

variances for the procedures on the zitransformed curve of 0.0612, 

0.0688 and 0.0815 respectively. For the procedures on the 

transformed curve corresponding values are 0.0630, 0.0709 and 

0.0840. For Procedure 1 the rn.s.e.'s are always above these 

predicted variances. For Procedure 5 the m.s.e.'s are sometimes 

below these predicted variances (i.e. for low starts and multiples 

of the asymptotic optimal c values of 1.0 and 1.5) and certainly 

the departure from asymptotic theory is not so great as for 

Procedure 1. 

One interesting point to note is that, for multiples of 

asymptotic optimal c values of 1.5 and 2.0, the biases with all 

procedures, except Procedure 7, are always positive. This accords 

with results in Wetherill (19.63) for Procedure 1. Wetheril argues 

that such biases are, to a large extent, due to experiments where 

an initial negative response is recorded; even starting close to 

Lp many steps must be taken before one is again close to Lp. 

Procedure 4 also has some definite advantages over Procedure 

1 • For multiples of asymptotic optimal c values of 1 .0, 1.5 and 

2.0, the biases of estimators with Procedure 4 are always less than 

with Procedure 1. For low starts the m.s.e.'s are slightly greater 

with Procedure 4 than with Procedure 1 but the m.s.e.'s do not 

become so large for high starting levels. For the smallest c 

values and the lowest start, the m.s.e. with Procedure 4 is some 

way above that with Procedure 1 but for the high starts the 
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m.s.e.'s with Procedure 4 are much smaller. 

How well Procedure 5 compares with Procedure 4 depends very 

much on the multiples of asymptotic optimal c values considered. 

For multiples of 1.5 and 2.0 the m.s.e.'s are always smaller with 

Procedure 5 than with Procedure 4. The biases with Procedure 5 are 

smaller than those for Procedure 4 for low starts but greater for 

high starts. The average value of the biases over the range of 

starts is roughly the same for both procedures. For c values equal 

to the asymptotic optimal values,, if m.s.e. is used as a 

criterion, there is not much to choose between Procedures 4 and 5. 

Biases are greater with Procedure 5 than with Procedure 4. 

Procedure 5 compares very unfavourably with Procedure 4 for the 

lowest c values considered. Values of nt.s.e. and bias are often 

much larger with Procedure 5 than with Procedure 4 (values are 

similar for starts close to Li1..). If one uses c values that one 
41. 

guesses to be above the asymptotic optimal values, then Procedure 5 

is preferable. If smaller c values are used Procedure 4 appears 

best. 

For multiples of the asymptotic optimal c values of 1.0,1.5 

and 2.0 the m.s.e.'s with Procedure 8 are slightly less than with 

Procedure 5 for most starts. For distant starts the m.s.e.'s with 

Procedure 8 are higher than for Procedure 5 • Procedure 8 is more 

complicated to operate than Procedure 5 and never, using m.s.e. as 

a criterion, has a great advantage over Procedure 5. For these c 

values I would prefer to use Procedure 5 rather than Procedure 8. 

For the lowest c value the m.s.e.'s using Procedures 5 and 8 are 
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again close for most starts but now for distant starts it is the 

m.s.e.'s with Procedure 5 which are much higher. 

As could be anticipated from asymptotic theory, the behaviour 

of all procedures is relatively poor for the smallest c values 

considered. Usually the slope of the response curve will not be 

known precisely. It seems sensible to choose c values which one 

guesses to be above asymptotic optimal values (this is a precaution 

against choosing c values that are too small). If such a c value 

is chosen, one would expect estimators from using Procedures 5 and 

8 to have the lowest m.s.e.'s. 

I repeated simulations of Procedures 1 to 8 under the same 

conditions but with 48 and 96 observations per experiment. Again 

2000 simulations were for each set of conditions. Values of 

m.s.e.'s and biases of the estimators are given in Tables 1 to 16 

of appendix 13. Many of the remarks I made for 24 observation 

experiments apply equally well for 48 and 96 observations. For the 

larger numbers of observations, the distinctions between procedures 

is less marked than for 24 observations. There is still little to 

be lost if attention is restricted to Procedures 1,4,5 and S. The 

other procedures have either, similar properties to, or compare 

unfavourably with, at least one of these procedures. There are 

several points I wish to stress: 

(1) For the smallest c values, using m.s.e. as a criterion, 

Procedure 4 has good behaviour in that m.s .e. 's over for all starts 
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are relatively small. 

For c values equal to the asymptotic optimal values the 

m.s.e.'s using Procedures 4,5 and 8 are fairly close but biases are 

usually less with Procedure 4. 

For c values equal to 1.5 and 2.0 times the asymptotic 

optimal values: 

The m.s.e.'s using Procedures 5 and 8 for all starts are 

relatively small • There is no strong reason for using Procedure 8 

rather than the less complicated Procedure S. 

In the 48 observation experiments, the m.s.e.'s with 

Procedure 4 are only less than those with Procedure 1 for starts at 

1.00(0.25)2.00. In the 96 observation experiments, these m.s.e.'s 

are never less. The advantages Procedure 4 had over Procedure 1. 

for 24 observation experiments no longer exist. 

In the 96 observation experiments m.s.e.'s using Procedure 

1 are close to those for Procedures 5 and 8, and are often slightly 

lower (this is what one would expect from asymptotic theory). 

However biases with Procedure 1 are higher than those with 

Procedures 5 and 8. 

Providing one chooses a c value a little way above the 
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asymptotic optimal value it appears that Procedure 5 (i.e. the 

Robbins-Monro procedure operating on the transformed curve) 

compares well with the other procedures. However if a large number 

of observations is made (for example 96) then m.s.e.'s with 

Procedure 1 are close to m.s.e.'s with Procedure 5. From 

asymptotic theory it follows that Procedure 1 must eventually be 

more efficient than Procedure S. For small c values Procedure 4 

appears to have some advantages. However one would try in any case 

to avoid using small c values. 

I remarked earlier in this section that Procedure 5 could be 

adapted to provide estimates of any L(i.e. by replacing 0.5 by 

p7- in Formula 5.2.5). I decided to simulate some more experiments 

where the L01 level is to be estimated. One cannot expect estimates 

with much accuracy for this extreme level without making large 

numbers of observations. I simulated 96 observation experiments, 

using Procedures 1,4,5 and 8 (c values used in Procedures 4 and 8 

were ((O.g)t+(O.l) times corresponding values used in Procedures 

1 and 5). Starts were at -2.00(0.25)2.00 relative to L0 . In all 

other respects conditions for simulations were as before. Values 

of m.s.e. and bias of estimators from these simulations are given 

in Tables 17 to 20 of Appendix 13. For multiples of asymptotic 

optimal c values of 1.0,1.5 and 2.0, asymptotic theory predicts 

variances of estimators using Procedures 1 and 4 of 0.0352,0.0396 

and 0.0469 respectively. For Procedures 5 and 8 analogous values 

are 0.0353,0.0397 and 0.0470. 	The m.s.e.'s 	using 	all 	the 

procedures are well above these values. For all except the 

smallest c values, biases are positive for all procedures. The 



biases with Procedure 1 are then much higher for low starts than 

for high, this seems a somewhat curious result. It is not so 

surprising when one considers that an initial negative response 

(which Wetheril argues accounts for such bias) is extremely 

unlikely for the high starts but is fairly likely for the low 

starts. 

The biases and m.s.e.'s can be enormous with Procedure 1 and 

it is clear that Procedure 5 is in these circumstances much to be 

preferred (the m.s.e.'s and biases are usually much smaller with 

Procedure 5 than with Procedure 1). The only conditions for which 

the tn.s.e. is higher with Procedure 5 than with Procedure 1 is for 

the lowest c value and starts at 1.75 and 2.00. Procedure 4 is 

also to be preferred to Procedure 1 (the m.s.e.'s and biases with 

Procedure 4 are always smaller than those for Procedure 4). 

However it is Procedure 8 which has the best behaviour among these 

procedures. The m.s.e.'s with this procedure are less than those 

for the other procedures, with exceptions for the lowest start and 

the smallest and largest c values (then the m.s.e. with procedure 

5 is lower). For all except the lowest c values the bias is always 

smallest with Procedure 8. 

In the simulations to find L 11 there was not a great deal to 

choose between Procedures 5 and B. For the simulations to find L 0 . 

Procedure 8 has better behaviour. The number of sets of condition 

that one can consider in any simulation study will always be 

limited. The results of this section indicate that it is a good 

idea to operate the stochastic approximation procedures on 
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transformed curves (even though asymptotically there is a small 

drop in efficiency in using such procedures). What I have called 

Procedure 8 (which is my modification of Kesten's procedure 

operating on the transformed curve) has worked relatively well 

under all the conditions simulated. 
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5 • 3 ALTERNATIVE STOCHASTIC APPROXIMATION PROCEDURES 

In Sections 5.1  and 5.2 I simulated experiments using variants 

of the Robbins-Monro procedure. The estimator used was always the 

level that would have been visited had one more observation been 

taken. Asymptotic properties of such estimators are described in 

Section 1.4 (one can establish these properties under the condition 

that the response curve is monotonic with derivative greater than 

zero at the level to be estimated). Suppose one wants an estimate 

of the L level and that the slope of the response curve at Lp is 

gp. At the start of an experiment one must choose a value for a 

positive constant c. There is an optimal value of c for which the 

estimators from these procedures are asymptotically normal with. 

mean Lp and variance p(1-p)/(gn) (where n is the number of 

observations). For other values of c either the asymptotic 

variance expression is higher or the estimator is not 

asymptotically normal (this is for c less than or equal to half the 

optimal value; the estimator then has mean squared error tending 

to zero at a rate slower than 0(1/n)). The optimal c value depends 

upon the generally unknown value of g' (for the unmodified and 

delayed Robbins-Monro procedure the optimal c value equals 1/g e ). 

It would obviously be preferable to obtain estimates from 

stochastic approximation procedures which are less dependent on the 

value of gp• One could try to use different estimators with the 

same procedures; for example if one assumes a parametric form for 



the response curve the maximum likelihood estimates could be 

calculated. Alternatively one could try to devise new stochastic 

approximation procedures. Venter (1967) discusses a procedure in 

which observations are made in pairs, Yrt Cr, where Yr is an 

estimate of L,,after 2r observations. In his procedure all the Cr 

are positive and c,- r tends to c as r increases for some c > 0.0 

and 3'E(0.0,0.5). The y. are determined by the recursive relation 

= Yr - dA Zr, 	 5.3.1 

where dr is a sequence of positive numbers 	satisfying 

dr = hr (1+0(1/r")). The value of Zr equals 0.5 if the responses 

at y±cy  are positive, -0.5 if they are negative and 0.0 if they 

are,of opposite sign. Ar is an estimator of g 12 which is determined 

as follows. Let 

By 	W/2Cg r, 	 • 5.3.2 

where Wg equals 1.0 if the responses at Y K + c K  and y- cK are 

respectively positive and negative, 0.0 if they are of the same 

sign and -1.0 if they are respectively negative and positive. The 

expectation of WK  is G(y( + cK) - G(y- CK ), where G is the response 

curve. All the Wk/2Cg  terms provide crude estimates of slope; the 

bias is sml1 if the levels are close to L. In this procedure one 

requires positive lower and upper bounds on gv,, say k 1  and k. Ar 

is defined to equal Br truncated by k and kL; that is Ar = Br if 

B 1 (k ,k), Ar. = k 1  if k and A 1  = k if Br>, k. Venter 

suggested that '' be set equal to 0.25 and that a moderate value of 
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C be used. Providing the second derivative of the response curve 

at L11  is 0.0 (as it is for logistic and normal response curves), 

then (y-L11 )n
'1. 
 is asymptotically normal with mean 0.0 and variance 

0.25/g%-&,(n = 2r). The estimator y  has asymptotic variance equal 

to that using the Robbins-Monro procedure with the optimal c value. 

Anbar (1977) suggests another procedure with similar properties. 

In Anbar's procedure observations are made one at a time. The 

levels visited are determined by the same recursive relations as 

for the Robbins-Monro procedure but the value of c is altered 

throughout the experiment. For the first two changes in level c 

values are chosen arbitrarily. Suppose z. equals 0.5 or -0.5 

according to whether the response at Yt  is positive or negative. 

The expectation of z is G ( y.  ) -0 • 5; this is approximately equal to 

g1(y-0.5) for ye. close to L. The c value used after n 

observations (n > 2) is K , where A, is an estimate of g,, 

determined as follows. Let 

- 	'1 	- 
B, = 	y)z.J(y -  y) I 	 5.3.3 

- 	 I'- 

where y =y/n. A equals B,, truncated at k and k 2 . Anbar 

(1978) shows that (y-L 1,)n tends in distribution to a normal with 

mean 0.0 and variance 0.25/gJ . So with both Venter's and Anbar's 

procedures estimators can be obtained which are asymptotically 

normal and have asymptotic variances equal to the lowest possible 

asymptotic variance using the Robbins-Monro procedure. 

Wetherill (1963) tried to obtain maximum likelihood estimates 

from simulated experiments where the Robbins-Monro procedure had 
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been used. His principal object was to try to obtain estimates of 

(his simulations were also made assuming a logistic response 

curve). He remarks that 'many iterations are required and the 

project has been dropped'. I decided to perform similar 

calculations for simulated experiments (described in Section 5.1), 

where the unmodified Robbins-Monro procedure had been used for 24 

steps. I used the Robbins-Monro estimator as a starting value for 

in Newton-Raphson iterations; I took the actual value of as a 

starting value for 13. The function to be maximised was the log 

likelihood; I worked in terms of parameters a and B, where 

a = -ji/. I stopped iterations when the change in estimates of 

between steps was less than 0.516i 4. I discarded experiments if 

the determinant of the matrix to be inverted at each step in 

iteration became less than lO s. For the lowest c value, equal to 

0.5  times the optimal value, a large proportion of experiments are 

discarded. For the most distant starting level the number of 

discards is 1343 out of 2000; this is clearly unacceptable. 

However the number of such discards only starts to rise rapidly for 

starts beyond 2.25 (at this level 3 out of 2000 experiments are 

discarded). For starting levels below 1.75 no discards were made 

at all (so it appears that then the probability of discarding is 

very small). For the other c values only at most 10 discards out 

of 2000 were made for any set of conditions. For most sets of 

condition it was possible to satisfy my convergence criterion in a 

large proportion of the experiments. However I encountered further 

difficulties, some experiments were giving estimates of p  that 

grossly inflated the m.s.e. of the m.l.e. of p. These poor 

estimates of p  came from experiments where the final estimate of 
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is negative or very small. I decided to discard experiments for 

which estimates of were less than half the actual value. In the 

remaining experiments the iterations converged quite rapidly; 

usually on average between 4 and 5 iterative steps were taken. I 

performed similar calculations to obtain m.l.e. 's of ).1 conditional 

on the true value of 6. It is easy to deduce that these 

conditional estimates have the same asymptotic properties as the 

Robbins-Monro estimates for optimal c (though if one knew A one 

would know the value of g 11 and so be able to use the optimal C). I 

discarded experiments if in the iterations, the second derivative 

of the log likelihood with respect to the parameter a became less 

than 10 in magnitude (this happened if and only if all responses 

had been positive). In .  Table 5.3.1 I give the total numbers of 

discarded experiments when iterations are made to the m.l.e. of 

with and without conditioning on 6. For the smallest c value so 

many discards are made for distant starts that calculated m.s.e. 's 

of the m.l.e. of?  are of little value. In comparing m.s.e.'s of 

m.1.e.'s of with those of the Robbins-Monro estimators one must 

remember that the Robbins-Monro estimator can be obtained in all 

experiments. Figs. 5.3.1 to 5.3.4 illustrate m.s.e.'s of the 

Robbins-Monro estimator, the m.l.e. of 	and the m.1.e. 	of 

conditional on In these simulations maximum likelihood 

estimation has not in general proved a useful alternative to using 

the Robbins-Monro estimator. One could argue for the largest c 

value considered that, as there are relatively few discards and the 

m.s.e. of the m.l.e. of is always less than that of the 

Robbins-Monro estimator, the m.l.e. of is then preferable but 

any advantage is never great. I calculated biases and m.s.e.'s of 
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Table 5.3.1 Number of discards out of 2000 simulations, in maximum 
likelihood estimation from 24 observation Robbins-Monro experiments, 

where the response curve is logistic. 

Multiple of optimal c 

Start 	 0.5 	1.0 	1.5 	2.0 	0.5 

0.00 10 36 44 30 0 
0.25 28 35 40 28 0 
0.50 51 37 48 29 0 
0.75 85 50 49 36 0 
1.00 118 59 61 37 0 

1.25 143 65 47 42 0 
1.50 181 68 45 44 0 
1.75 220 80 48 48 0 
2.00 254 91 52 42 0 
2.25 297 105 50 38 0 
2.50 351 104 65 33 1 
2.75 443 113 71 31 13 
3.00 631 128 59 30 75 
3.25 867 136 56 27 242 

3.50 1134 158 62 38 510 
3.75 1380 170 78 51 1142 
4.00 1563 211 83 50 1385 

* This column is for estimation when one knows A. With the optimal 
c only one experiment is discarded (this is for start at 4.00). 

For multiples of 1.5 and 2.0 none of the experiments are discarded. 
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Fig. 5.3.1 M.s.e.'s of the Robbins-Monro estimator, the m.l.e. 
estimator of i and the m.l.e. of p conditional on , in 24 step 

experiments with c equal to 0.5 times the optimal value. 
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Fig. 5.3.3 As in Fig 5.3.1 only with c equal to 1.5 tines 
the optimal value. 
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Fig. 5.3.4 As in Fig 5.3.1 only with c equal to 2.0 times 
the optimal value. 
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these estimates were negatively biased often having 

expectation around half the true value. It appears that no useful 

information about A  or 1/)3 can be obtained by maximum likelihood 

estimation. I have not encountered the same problems with 

convergence as Wetherill (1963) but on the basis of this small 

study I cannot recommend use of maximum likelihood estimation with 

the Robbins-Monro procedure. 

Anbar (1977) simulated experiments using both his and Venter's 

procedures. He used a normal response curve, with 6 = 1.0. His 

experiments consisted of 12 or 24 observations. In Venter's 

procedure he set equal to 0.25 (as suggested by Venter) and c 

equal to 0.5,1.3,1.7,2.1 or 2.9. He truncated Br and at 0.5 and 

1.5 times the actual value of g. Both Venter and Anbar suggest a 

possible modification to the expressions for B,- and B,.. (see 

Formulae 5.3.2 and 5.3.3), they say that one could ignore the first 

rn-i terms in the summations (where in may depend on a) in order to 

avoid large deviations due to results from the first few 

observations. In Anbar's simulations he considered in equal to 1,2 

or 3. For r < in, Ar. was set equal to g,; for it m+1, A,-,was also 

set equal to g, 1. Even with such small numbers of observations his 

results indicated that his procedure works well; the m.s.e.'s of 

estimates were usually close to asymptotic predicted variances. 

Venter's procedure appears to work well for starts close to L,/but 

m.s.e.'s rise very rapidly as starting levels were made more 

distant (this is particularly true for the larger c values). I 

decided to simulate experiments using these procedures under the 

conditions considered in Section 5.1. For each set of conditions I 



simulated 2000 experiments; 	each experiment consisted of 24 

observations • I set the constant c in Venter's procedure equal to 

0.5(0.5)2.0. As in Anbar's simulations Br and Bh were truncated at 

0.5  and 1.5  times the actual value of g,, and in was set equal to 1,2  

or 3. Fig. 5.3.5 illustrates m.s.e.'s of estimates using Anbar's 

and Venter's procedures (at = 1). The asymptotic predicted 

variances of these estimators is 0.0507. This graph is not unlike 

Fig. 2 of Anbar (1977) (in this graph he plots m.s.e.'s for in = 1, 

n = 24). The results of all the simulations were much as would be 

expected from Anbar's results (I also simulated experiments with 

exactly the same conditions as in Anbar's paper and found my 

results were very similar to his). It appeared that Anbar's 

procedure had much to commend it. In this procedure the values of 

A, provide estimates of g. I calculated the mean and mean square 

error of the final estimates of g,,, derived from A,. I found that 

the estimates of g,,were often substantially biased, positively for 

starts close to L(1 3. and negatively for distant starts. Often for 

starts close to Lp, the expectations were close to the upper 

truncation level and for distant start close to the lower 

truncation level. For example, when at = 1 in the simulations with 

logistic response, expectations were 0.605 and 0.228 for starts 

0.00 and 4.00; the truncation levels are 0.680 and 0.227. I found 

that when I repeated simulations with truncation levels at 0.25gg V2.  

and 3.0xg j,, the results were often quite different. Fig. 5.3.6 

illustrates values of m.s.e.'s of estimates analogous to those in 

Fig. 5.3.5, when these broader truncation levels are used. 

Anbar's and Venter's procedures have asymptotic properties 



Fig. 5.3.5 M.s.e.'s of estimators using Venter's procedure 
(with =0.25 and c0.5,1.0,1.5 and 2.0) and Anbar's procedure, 
in 24 step experiments with truncation at 0.5 and 1.5 times 
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Fig. 5.3.6 As in Fig. 5.3.5 only with truncation at 
0.25 and 3.0 times g,,,. 
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Note: For m=2 and 3 the m.s.e.'s also depend very much on the 
truncation levels used. The relative performance of Anbar's 
procedure with the wider truncation levels to the original 

procedure is worse for m=2 and 3 than for m=1. 



independent of initial estimates of g 111, but in small samples it 

appears that properties of estimators depend to a large extent upon 

what truncation levels are used. These levels are set with 

reference to initial estimates of g,,. The results are not 

surprising when one considers that, even in non-sequential 

experiments and those using the Up and Down rule, one will often 

need large numbers of observations before g 1 , 2  can be determined at 

all accurately. In Anbar's and Venter's procedures asymptotic 

optimality depends upon using internal estimates of g. In these 

and other stochastic approximation methods observation are 

eventually made close to one level and one cannot expect to obtain 

good estimates of g 11 . 

Stochastic approximation procedures and variants of the Up and 

Down procedure differ in that: 

• 	(1) With the variants of the Up and Down procedures it is 

often necessary to make a large number of observations before 

accurate m.l.e.'s of slope or scale parameters can be obtained but 

at least such estimates have asymptotic normality with variance 

tending to zero as 0(1/n). With stochastic approximation 

procedures it is not at all clear how one should obtain estimates 

of these parameters. If one requires an estimate of slope or 

scale, to use a procedure designed to concentrate all observations 

about one level must surely be unwise. 

(2) If the initial estimates of slope are poor, the asymptotic 

properties of estimates from the procedures described in Section 



5.1 can be very bad. If the value of c is chosen to be less than 

or equal to half the optimal value the estimates are no longer 

asymptotically normal • In this section I have considered 

procedures where the asymptotic properties of estimates do not 

depend on these initial estimates • However these procedures use 

internal estimates of slope which are very poor in small samples. 

With the variants of the Up and Down procedure one chooses a step 

size with reference to some initial estimate of slope. Small 

sample properties of estimates can be bad if this estimate is poor 

but m.l.e.'s of location parameters will always be asymptotically 

normal with variance tending to zero as 0(1/n). 

The stochastic approximation procedures have the advantage that 

asymptotically unbiased estimators can be obtained without assuming 

a parametric form for the response curve • However if estimates of 

• slope parameters are required these procedures appear to be of 

little use. If one uses one of the procedures discussed in Section 

5.1, without having a good estimate of slope, one might unwittingly 

choose a c value for which the Robbins-Monro estimator is not 

asymptotically normal. 
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APPENDIX 1 

A NOTE ON THE EXISTENCE OF MAXIMUM LIKELIHOOD ESTIMATES 

FOR THE UP AND DOWN PROCEDURE WITH LOGISTIC RESPONSE 

Suppose at the end of an experiment nj positive responses and 

ml negative responses have been recorded at level x and that the 

observations are recorded in some known sequence. Suppose further 

that the probability of positive response at level xis given by 

F(x.a); where F is a known function taking values in (0.0,1.0) 

with upper and lower asymptotes at 1.0 and 0.0 as its argument 

tends to positive and negative infinity respectively. The logistic 

form for the response curve (see (8)) satisfies these conditions. 

The likelihood of observations is 

- 

1TF' (1-F-)
Th 	

where F=F(x+a). 	 (1) 

If the observations are not recorded in a sequence or one only 

-  knows a set of possible sequences that could give rise to such 

results the likelihood of observations takes the above form but is 

multiplied by some function of the nZ and m. 

As (,x+a) increases (1-F) tends to zero and as it decreases 

F tends to zero. From this it follows that for any level of mixed 

response (i.e. n > 0 and m > 0), 



F '(lF) ' < 6 	for 	x+a > K, 	 (2) 

for any positive E providing K is sufficiently large. As all the 

terms in the product in (1) are bounded by 1.0 one can also ensure 

that the likelihood is arbitrarily small. In searching for maximum 

likelihood estimates one can restrict attention to a region for 

which x+al < K (K can be chosen so that the likelihood outside of 

this region is less than some known value taken by the likelihood). 

Suppose z 1  is a level of mixed response and that positive responses 

are recorded at levels z 1  and z3  which are above and below z 2 . The 

region in which one should search for m.l.e.'s of a and can be 

restricted to 

(3) 

for Kz  sufficiently large as zL is a level of mixed response. At 

z and z3 one only knows that there is a positive response and so 

one can only restrict the region in which to search to 

Z, +a ? K,  

, z3 +a > K 3 ,  

for K 1  and K3 sufficiently low. All the K have been chosen so - 

that outside of the regions defined by (3),(4) and (5) the 

likelihood is always less than some known value taken by the 

likelihood, so it is easy to see that the intersection of these 

regions is not empty. The inequalities (4) and (5) can be put in 

the forms 
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>, K 1 , 	 ( 6) 

)3(z_;-z L )+(z 2.+a) 	K3 . 	 ( 7) 

By assumption (z,-z 7-) and (z3-z) have opposite signs, also 

is bounded. From (6) and (7) it is clear that P is bounded which 

in turn implies that a is bounded so the intersection is a 

bounded closed set. The problem of maximising the likelihood is 

equivalent to that of maximising the log likelihood. For the 

logistic response curve 

	

F=( 1 +exp( - ç$x.+a))) ' , 	 (8) 

and if L is the log likelihood then 

() 

= 	 (10) 

= -)x 	(4+m)F(1-F). 	 (11) 

The matrix of second derivatives is a negative definite matrix so 

the log likelihood is concave and will have a maximum within the 

closed bounded set. Such a maximum will be the unique solution of 

the likelihood equations. 

From this one deduces that if there is one level of mixed 

response with levels for which there are positive responses above 

and below, then finite m.l.e. of a and )2 exist. By similar 

arguments the same is true if there are negative reponses above and 
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below a level of mixed response or if one only knows that there are 

two levels of mixed response. The -remaining cases possible using 

the Up and Down rule are that all responses except possibly the 

last are of the same type or there is a level of mixed response 

with only responses of opposite sign above and below. For these 

cases a degenerate curve with infinite fits the observed response 

rates exactly. From these results one deduces that unique finite 

rn.l.e.'s of a and P exist providing that after the initial run of 

constant response type more than three levels are visited (in this 

condition one includes the level that would have been visited had 

one more step been taken). 

The ED50 of the logistic response curve equals -a/,B  and so the 

m.l.e. of the ED50 exists providing the m.l.e. of P is not zero. 

In the following I derive a condition that is satisfied if and only 

if the m.l.e. of ',8 is zero. Suppose in the Up and Down experiment 

the sequence of levels visited is y ,. . .. ,y,, and that s 1  , .. . . 

are such that s. equals 1 if the response at y  is positive and 

equals -1 otherwise. 	Cornfield and Mantel (1950) show that in 

non-sequential experiments Zy s and is, are sufficient statistics 

for P and a. Davis (1970) shows in Up and Down experiments that 

yst/2 = (s/ 2)y1  + ( dnf4) - Qs,/ 2)d, 	(12) 

where d is the step size. Davis (1970) incorrectly concludes that 

only degenerate curves fit results from Up and Down experiments. 

In his argument he assumeds €, and Zst  are sufficient statistics 

as in the non-sequential experiments; this is not true, because 
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the set of levels at which tests are made is not fixed over 

possible outcomes. If the m.l.e.'s of a and )3 were both zero then 

It 

from the likelihood equations it is easy to deduce that both 2 ye st 

and Zs  would have to be zero which is inconsistent with the 

identity in (12). So if the m.l.e. of P is zero, the m.l.e. of a is 

not zero and no finite m.l.e. of the ED5O can exist. From the 

likelihood equations the m.l.e. of , is zero if and only if there 

exists a X such that 

= 0, 	 (13) 

It 

= 0, 	 (14) 

where the m.l.e. 	of a equals log(/'/1-,\). Unless all the s have 

the same sign (in which case no m.le.'s exist) the solution of 

(13) is always in (0.0,1.0) and log(/\/1-,,\) is well defined. 

Substituting for in (13) using (12) the condition for the 

m.l.e. of 	to be zero becomes 

(dn/4) - vYd + (y-(y/n))v = 0, 	 (15) 

where v equal 	st-/2. 	For example when in the sequence (n/2)-1 

responses of the same sign are followed by (n/2)+1 responses of the 

opposite sign then (15) is 6ati&fied and the m.1.e. of ,B equals 

zero. 

There are many possible circumstances for which the m.l.e. of 

is zero but in the simulations of Section 3.3  such experiments 

were not encountered. These simulations were of 24 step 
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experiments with 2000 simulations; the probability that the m.l.e. 

of P is zero must be very low for the conditions simulated. 
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APPENDIX 2 

CONSTRAINTS ON RESPONSES USING THE UP AND DOWN RULE 

AND A NOTE ON DIXON AND MOOD'S ESTIMATOR 

Suppose an Up and Down rule is operated between levels x, 

distance d apart, that is for some x 

XZ = x,, + (id) 	where i is an integer. 	 (1) 

Fig.1 is a representation of a possible sequence of levels visited 

operating the Up and Down rule. As moves are made, a path is taken 

which can be represented by a directed graph each arc - representing 

one move between levels (Fig.2 is such a graph corresponding to the 

experiment whose results are represented in Fig.1). The graph in 

Fig.2 can be constructed simply from the numbers of positive and 

negative responses at each level (for the level x I denote these 

as n and mL  respectively). The graph has an Eulerian chain (i.e. 

there exists a path visiting each directed arc once and only once) 

as the graph has been traced out in a continuous chain in the 

course of the experiment. 

If one is given only the values of n, and mZ for each level 

then each Eulerian chain within the directed graph corresponds to a 

possible Up and Down sequence from which the n z  and mC  could have 

been generated. Each distinct possible Up and Down sequence will 
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Fig. 1 P possible tip and Down sequence. Fig. 2 The directed graph corresponding to the 
sequence in Fig. 1.' 

stimulus level 

 

N 
N 
(i 

* Any Eulerian chain in the graph in Fig. 2 corresponds 
to a possible Up and Down sequence of equal probability 

to that represented in Fig. 1. 



be equiprobable under the assumption that the response curve is 

constant throughout the experiment. 

The number of arcs of the directed graph out of level x i  is 

n+ mL and the number of arcs in is n + m 1  • From an elementary 

result in graph theory (see Theorem 3.6 of Busacker and Saaty) a 

directed graph has an Eulerian chain if and only if all vertices 

have equal numbers of arcs directed in as out or there are just two 

vertices for which this is not so one of which has one more arc 

directed out than in (the source) and another with one more arc 

directed in than out (the sink). Translating these conditions into 

conditions on the n j  and mL one has (n L  + m L  - n L+  - m-1) equal to 

zero for all i or equal to zero except at the source and the sink 

where it takes values 1 and -1 respectively. The ni and m are 

zero for levels sufficiently high or low. From this one can easily 

deduce that 

If there is no source and sink, nc equals mi for all i. 

If the source is at level k i  and the sink is at k ?_ where 

k<k 2 then-m equals -1 for k t <i<kL+1 and is zero otherwise. 

(C) If the source and sink are as in (b) but k 2<k 1, then n-m, 

equals 1 for k1 <i<k+1 and is zero otherwise. 

The source is the starting point and the sink is the level 

that would have been reached if the experiment had continued for 
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just one more step (when no source and sink exist these two levels 

are the same). 

The Dixon and Mood estimator is the mean of the levels of the 

less frequent response type plus or minus half a step size 

depending upon whether the negative or positive responses are less 

frequent. If positive responses are less frequent then the 

estimator equals 

(n+ m- (m u - n 1  ) )xJ(n+ m- (m i - 	) ). 	 (2) 

If negative responses are more frequent then the estimator equals 

m 1 - ( n t - m 	))x1/(n+ 51L 	(riL- mc.)), 	(3) 

The estimator weights levels in proportion to the number of 

visits to a level subtracting 1 from this number if the number of 

negative responses at a level is greater than the number of 

positive responses at the next higher level or if the number of 

positive responses at a level is greater than the number of 

negative responses at the next lower level. From theorems in Chung 

(1960) it is possible to deduce the asymptotic distribution of the 

mean of the levels visited (see Tsutakawa (1967a) and (1967b)). 

Whenever one returns to the starting level the Dixon and Mood 

estimator equals the mean of the levels visited as then n. 1  equals 

m for all i. It is easy to show from the arguments used in Chung 

that the Dixon and Mood estimator is asymptotically equivalent to 
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the mean of the levels visited. 

Suppose the response curve is of the form F((x-)1)), where 

F(O.0) is 0.5, then the likelihood equations are 

n((dFfdz)/Ffl - m ((dF.. 1 /dz)/(1-F1, 1 )) = 0, 	(4) 

n L (x,(dFL /dz)/F ) - m(x(dF, /dz) 1(1-F)) = 0, 	(5) 

where dF /dz is the derivative of the F at (x-,i). A linear 

approximation to the expression on the left in equation (4) from 

expanding about P is 

- rn..- 1  (2+4>(x.1 -, i))), 	 (6) 

where .X is the derivative of F at 0.0 (if the second derivative of 

F at zero is zero, as is the case for the logistic and probit 

response curves, second order terms in a quadratic approximation 

vanish). 

In Dixon and Mood (1948) a further approximation is made, rn4.. 1  

is replaced by n,, in (6) if the positive responses are less 

frequent otherwise m,,., replaces nc • The resulting expression is 

then zero when equals the Dixon and Mood estimator. 



THE ASYMPTOTIC DISTRIBUTION OF WETHERILL'S ESTIMATOR 

In the following the asymptotic distribution of Wetherill's 

estimator; E will be derived. The argument is similar to that 

used by Tsutakawa (1967b) in deriving the asymptotic distribution 

of the sample average estimator (which is asymptotically equivalent 

to Brownlee et al's and Dixon and Mood's estimators). 

The sequence of levels visited in operating the Up and Down 

rule can be thought of as states visited in a Markov chain with 

transition probabilities of moving from x to x. 1  or X 1  being 1-F 

and F respectively (where F is the probability of positive 

response at x.). If the response curve is monotonic increasing and 

takes values above and below 0.5 then the states form a positive 

class with some equilibrium distribution TCJ 

Suppose that h is some function on the state space and the 

first n states visited are y ,. . . ,y, • Results on pages 82, 83 and 

94 of Chung (1960) together can be used to show that the asymptotic 

distribution of 

t z l 

 h(y )/n ) 	 (1) 
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is N(M,V/n) where 

M =2jT1 h(x ), 	 (2) 

V =ZTT- h- +2 	hj1TK  h (m +m K -m ) 	 (3) 
J 	 J 

h i  = (h(x)-M), M,K  is the mean first passage time from x to 

and i is any integer. 	The sums in (3) must be absolutely 

convergent. 

Tsutakawa simplified the expression for V to give an 

expression for the asymptotic variance of the sample average 

estimator (see Tsutakawa (1967a)); he took as his function h the 

identity function. 

The distribution of EWE  cannot be found by considering a sum 

such as that in (1) as the state space does not include information 

on whether a level visited is a peak or a valley. It is useful to 

consider the following Markov chain in which the state of being at 

level x is further subdivided into states (x,X), where )= 

1,2,3,4. 

State (x L ,I) is entered when Jevel xZ is reached from a valley 

at x 

State (x.,2.) is entered when level xZ is reached from 	but 

not from a valley. 

State (x,3) is entered when level xj is reached from a peak 
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at x 

State (x,L-) is entered when level x, is reached from x 1  but 

not from a peak. 

In other words the new states designate not only the current 

level but also the previous two levels visited. Clearly the 

sequence of states visited form a Markov chain. I will denote the 

equilibrium probability of being in 

state (x,I) one must be at level x 

step down followed by one step up; 

being at x is and there is probaJ 

(x,,,,) after two steps of F 1 (1-F, 

of being in state (x,-, ,( ) is given by 

state (x ,>) byrr . To reach 

two steps before and take one 

the equilibrium probability of 

ility of moving into state 

so the equilibrium probability 

	

= F (1-F-1 )TrL. 	 (4) 

By similar arguments the equilibrium probabilities of being at 

(x,,l), (x,3) and (xL,)  are 

Th = 	)(1-F_ )rT_ , 	 (5) 

fl 3 = ( 1-F)F 	TT L 	 (6) 

TLI = F 1  Fct ffL+. 	 (7) 

Let g be a function of the xL and ) such that g(x ,)) equals x. - m 

if ). equals 1 or 3 and is zero otherwise where 

m =7ix(ZiT. 	 (8) 
J .  

A;113 	Art,3 
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Suppose that (YTl)r)  for T=1,.. .,n, are the first n states visited in 

this Markov chain (here n+1 observations are made; y,- equals the 

level that would be moved to following T+1 observations). The 

value of mis chosen so that1Tg(x,)) is zero. Using the 

results in Chung it follows that g(y,-)/n has an asymptotic 

N(0,U/n) distribution. If the mean first passage time from state 

(x ,x) to (x,A2 ) is denoted by and e = x -m then 

U = 1T• e 2  + 2jTFjX,  eflk eKv, 	 (9) 
J 	.3 

i. ( 3 

where 

= m 	+ m%ILA - mJ K). 	 (10) 

Again absolute convergence of terms in the summations is required. 

Any i and) such that (x, ,\) is a possible state can be used in 

(9); in the following I will set (i,>) equal to (0,1). If 

g(Yy ,>'r)/fl is divided by the proportion of times equals 1 or 3 

(i.e. by the proportion of peaks or valleys) for the first n 

states visited the resulting expression equals 

(x (&jt.I+j-I )f(+ 	)) - 	 ( 11) 

where 	is number of peaks at x and 	is number of valleys. 

From a. result on page 87 of Chung it follows that 

limit with probability one of 2( + )/ n 	 (12) 
J 
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where 

JA 	 (13) 
I i .) 

From this one can deduce, providing terms in summations are 

absolutely convergent, that the expression in (11) will have an 

asymptotic N(O,U/n) distribution. 

EWE and  EpV  are defined in Formulae 2.1.11 and 	2.1.12 

respectively. EWEis  equal to 

( x + d/2) (e + ) / 	(O + 5) 	 (14) 
J 

and E is equal to 

(15) 
j 	 j 

When E,- -m is subtracted from the expression in (11) the remainder 

is d/22(_1+j)/~I(+j); when Ep -m is subtracted the remainder 

is twice this quantity. The total number of peaks differs from the 

total number of valleys by at most 1 (i.e. 	(- ) is 1 or 0). 

From (12) it follows that n/(+) has a limit with probability 

one of 1/x; a trivial consequence of this is that r'2/( Oj+  4) has 

a limit with probability one of zero. From these observations it 

immediately follows that n" 2  times the differences between the 

expression in (11) and EWE-m  and between this expression and E 

both tend with probability one to zero1  and so E-m  and 	-m both 
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have the asymptotic distribution of the expression in (11) (i.e. a 

N(O,U/iW 1n) distribution). The expression for U can be simplified; 

to do this one must express the mj>K>for  and X 1. equal to 1 or 3 

in terms of m . I will consider separately cases where (x,,>) c anjK 

be reached from (x ,) in a minimum of one, two or more than two 

steps. 

Starting in state (x. 	one can move in one step to (x 1 ,3) 

with probability F and to (x + 2) with probability 1-F,; starting 

in state (x; , 3) one can move in one step to (xj , I) with 

probability i_F)  and to (x 1  ,) with probability . From these 

observations it is easy to deduce that 

= 1 + (1-F (m + 	), 	 (16) 

= 1 + Fj  

Starting from state (x ,x) then, whatever the value of ) , it 

will take at least two steps to enter either state (x , ) or 

(x ,T). The probability of moving to any state from (x ,)) after 

two steps is independent of Aas A only gives information about the 

two steps made before entering (x ,X). It follows that mjAJ  and 

are independent of A1 , that is 

= mJA> 	for 	1 or 3 . 	 (18) 

Suppose m 1 is required where >,,. = 1 or 3. 	Suppose further 
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that (xk  ,A1) cannot be reached from (xX, ,>) in one step and also that 

j k (it is easy to see that this second condition implies that 

(x,A) cannot be reached in two steps). Two steps previous to 

being in state (x,)) one must be at level x so one must pass 

through some state (x,'X), where in the sequence of states 

visited in moving from (x ,>) to (x,,),). The first passage time 

consists of the first passage time from (x, ,A) to any state (xK,)3) 

(it is known that X3 cannot equalA 2 ) plus the first passage time 

from (x k ,) to (X I ,X). It is clear that the first of these times 

has mean mjK(as it is just a first passage time from x to xg ) and 

from (18) the second has mean mK < so 
A2 > 

m 	+ 	 (19) 

Using Formula (19) in (16) and (17) one 6an deduce that 

= 
J  -I 

+ 	(1-F 	) 	) (20) 

= + F 	(m ( 	) 	• (21) 

All the m 	are equal to 1/11 and so can easily be calculated. 

Using (18) (19) (20) and (21) the value of m J A 	when ,\ and A 2  

equal 1 or 3, can be found in terms of m and Ti. When Formulae 

(18) and (19) apply throughout the expression in (10) with 

(i,)) = (0 1 1) 

VJK) L =  m 101  + ( 1-'ajo)rno + (1- SOK)m 	- (1_)m 	(22) 

where SJK is the Kronecker delta. In general a correction will 
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have to be made to the right hand side in (22) whenever (20) or 

(21) have to be used in calculation. In the following I shall 

calculate the value of U assuming (22) always holds and then show 

what correction must be made to give the correct value. 

The m001  term when substituted into the expression (9) for U 

will 	vanish as 	15 Ae J  equals 	zero. 	The 	value 	of 
xLj 3 

((1- b. 0  )m 0 +(1- 	)m 01ç -(1- Sj,ç )mj ) equals 

0 ifj=Oork=0 

0 if j>0>k or k>0>j as then mjo 	+ m 	m 

+ mj if 0<j<k or 0>j>k as then m o . + 	= 

MKO + MOK if 0<k<j or 0>k>j as then mj, + m 0  

+ m 03  if j=k but j40. 

So the contribution to U from this term is 

1Tje 	+ 4r5x1iKA ZeJe(mJ O +mj ) + 2Ae (m+mj ). (23) 
A13 A-3 

Harris (1952) shows that for i not equal to zero (m + m0L) equals 

where p is the probability that starting at x one reaches 

x &  before returning to x. There exist recurrence relations for 

calculating the PL  and so it is possible to evaluate terms in (23). 

For i > 1 the relations are 

= ( 1F L  ) /( F t. ,, j.9  ) 	+ 1 IF- "-I 	 (24) 

11/9) = F_/( ( 1-F1 e- 	+ 1 /( 1-F 	) 	 ( 25) 
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where P ,  equals F and fZ eq uals 1-F. 

The first term in (10), when (i,X) = (0,1), must be calculated 

using (21) if (j,>,,) = (-1,3). The second term must be calculated 

using (20) if (k,)) = (-1,3). The third term must be calculated 

using (20) and (21) when one of the pair (j,) 1 ) and (k,) 2) takes 

value (i+1,1) and the other the value (i,3). The correction to U 

due to the first term is 

-21T 13  (1-F t  )m 00 	 (26) 
A1 3 

As,1Tek is zero the summation in (26) is just -1101 e 0 ; 	also the 
t )  3 

correction to U due to the second term vanishes as~jtk>.eK  enters as 

a factor into this correction. The correction in U due to the 

third term is 

2 (IJyrrF e 	+ J1i3-rr 1 ( l-F )m31, 	e 1  e ). 	(27) 

The term missing in (27) because the second summation does not 

include j = -1 is just the expression in (26). So dropping this 

restriction gives an expression for the total correction. This 

expression can be simplified by using (4) and (6) and also the 

identity mJ , J  = 1/JA to the following 

4jTJ FJ 2  (1-F -
- 1
)e - e 1  . 	 (28) 

Using all these results one can deduce (again making use of (4) and 

(6)) that Ew and  EpV  have an asymptotic N(m,U/n) distribution 
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with U equal to 

-I 	 ) 

J<' o 

where W equals (F. (1-F. ) + ( 1-F)F. 1 )i Z equals F- 1  (1_F;_ 1 ) and 

is defined as 1. Note that m uals and i 	juals 

njwj . 

Conditions on the response curve in Tsutakawa (1967b) are 

certainly satisfied by a monotonic increasing response curve taking 

values above and below 0.5. Under these conditions Tsutakawa 

deduced from relations (24) and (25) that inf.5 > 0. This is 

enough to show that the terms in all the summations are absolutely 

- 	convergent as the.Tr. tend to zero exponentially as j-,o 

The ej  equal x, - m, if m is replaced by 1T.xC  throughout 

(29) and W .  and Z are replaced by -1 and 0 respectively then one 

has the analogous asymptotic variance expression for the mean level 

estimator (see Tsutakawa (1967a) and Formula 2.3.5). So a program 

for calculating the asymptotic distribution of E can be easily 

adapted to find that of all the estimators asymptotically 

equivalent to the mean of levels visited. 
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CONDITIONAL DISTRIBUTIONS AND SOME ASYMPTOTIC PROPERTIES 

OF PEAKS AND VALLEYS IN AN UP AND DOWN SEQUENCE 

This Appendix contains three theorems. The first and second 

are concerned with the distribution of peaks and valleys in an Up 

and Down sequence given the starting level and the numbers of 

positive and negative responses at each level. The third gives the 

VL 
asymptotic distribution of E 	and E (for definition of these 

estimators see Formulae 2.1.13 and 2.1.14 respectively); 	this 

theorem makes use of the result proved in the first. 

In Appendix 2 a directed graph corresponding to an Up and Down 

sequence was discussed. Each Eulerian chain in this graph 

corresponds to a possible Up and Down sequence and all such 

distinct sequences will be equiprobable. This graph can be drawn 

if and only if the values of ni and mL for each level xL are known 

(where n and m:,  are numbers of positive and negative responses 

respectively). The Dixon and Mood estimator is a function of the 

nL and m. Wetherill's estimator is not a function of the nL and 

m; its values for different Eulerian chains in the graph are not 

in general equal. 

For all except the first visit to a level a peak is recorded 

if and only if the response at the current visit and previous visit 



are both positive s  and a valley is recorded if and only if they are 

both negative. So with the exception of peaks and valleys possibly 

recorded at the first visit to a level the number of peaks and of 

valleys at a level equal the number of agreements in positive and 

negative sign respectively in the sequence of responses at the 

level. 

Usually the directed graph will have a source and a sink. At 

the source there is one more directed arc out than in, at the sink 

one more arc in than out, at all other levels the number of 

directed arcs into a level equals the number of directed arcs out. 

Any Eulerian chain must start at the source and end at the sink. 

If the level that would have been visited operating the Up and Down 

rule for one more step is the starting level no such identifiable 

source and sink exist; in such cases I designate the -  source and 

sink as both equal to the starting level. 

Theorem 1 

Given the values of n- ,  and m for all levels, and the value of 

the starting level, then the distributions of the number of peaks 

and the number of valleys at a level are independent of the number 

of peaks or valleys at any other level. 

Proof 

If the starting level is given, it is always possible to 
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identify the source and sink of the directed graph. Above the sink 

one must finally depart from each level by roving down (the last 

response is positive); below the sink one must depart by moving up 

(the last response is negative). Above the source one must 

initially enter each level from below; below the source one must 

enter each level from above. There is a peak at the first visit to 

a level if and only if the level is first entered from below (i.e. 

the level is above the source) and the first response is positive. 

There is a valley at the first visit to a level if and only if the 

level is first entered from above (i.e. the level is below the 

source) and the first response is negative. The number of peaks 

between the second - and last visits to the level is the number of 

positive agreements in the sequence of responses at the level; the 

number of valleys is the number of negative agreements in sign. So 

given the source, the numbers of peaks and of valleys at a level 

are functions of the sequence of responses at that level • Given 

the sink, the last response at all levels except the sink is fixed. 

Suppose K visits are made to a level where K>2, suppose 

further that responses at the (j-1)th and jth visits (1<j<K) are of 

opposite sign. Suppose that at the (j-1)th visit the response is 

positive and at the jth visit negative. Between the (j-1)th and 

the jth visit levels passed through are all below the level, and 

between the jth and (j+ 1 )th visit they are all above the level. 

One can interchange the responses at the (j-1)th and jth visit 

without altering the sequence of responses at any other level by 

simply interchanging these paths above and below the level (see 

Figs. 1 and 2). If the last two responses at the sink are of 
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Fig. 1 An example of a possible Up and Down sequence wriere 

at the j-lth. and jth. visits to level x responses are 
positive and negative respectively. 

X( J' -1 

Fig. 2 A possible Up and Down sequence where the sequences of 
responses at all levels except x are the same as in Fig. 1, but 
the signs of the responses at the j-lth. and jth. visit to x g.  are 

interchanged (i.e. paths above and below x K  are interchanged. 

(e'Qk 	j-'vs 
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opposite sign one can also interchange these responses in the same 

way without altering the sequence of responses at any other level 

as there is a path from the last response at the sink returning 

back to the sink. As one interchange between adjacent responses at 

a level can be made any number of such interchanges can be made. 

From this it follows that the sequence of responses at a level may 

be permuted among themselves without altering the sequence of 

responses at any other level, with the only restriction being that 

at all levels except the sink the sign of the last response is 

fixed. From the remarks made at the end of the last paragraph it 

immediately follows that the numbers of peaks and of valleys at a 

level are conditionally independent of those at other levels. 

If one considers using Wetherill's estimator one may also 

consider replacing the numbers of peaks and of valleys entering 

into this estimator by their conditional expectations given the 

values of n L  , m and the starting level. 

Clearly if n+m L  equals 1 then there is a peak at the level if 

and only if n, equals 1 and it is the highest level reached; there 

is a valley if and only if m equals 1 and it is the lowest level 

reached(this is assuming that the level is not the source) 
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Suppose that S equals zero at the sink and one otherwise. The 

expected number of peaks at the level x given the n,, m and the 

starting level is 

(n(n-1) + m, 	 if n+m > 1, 

and the expected number of valleys is 

(rn(mL - l) + nj,, (n, -1))/(2(n+m ; -S) 	if n+m > 1. 

Proof 

Consider first the case of sequences of n positive and m 

negative responses • The number of such sequences is just the 

number of ways of choosing n out of n+m, that is using a common 

notation 

(n+m) 	

(1) 
n 

The expected number of agreements in positive sign in the sequence 

is just 

-. pj, 
	 (2) 

where p;  is the proportion of sequences for which the jth and 

(j4-1)th responses are both positive. The number of sequences in 



which any specified pair of responses are positive is the number of 

ways of choosing the rest of the sequence, that is the number of 

ways of choosing n-2 from n+m-2. Hence the proportion of sequences 

for which the jth and j+lth response are positive is 

(n+m_2'\/fn+m\ 	n(n-1) 

)/ 	I = 	 ( 3) 
\ n-2 II \ n I 	(n+m)(n+m-1). 

Substituting back into (2) one deduces that the expected number of 

agreements in positive sign is 

n(n-1)/(n+m). 	 (4) 

In a similar way one can show that the proportion of sequences for 

which any specified response is positive equals 

n/(n+m). 	 (5) 

Each level is in one of five categories: 	it can be above, 

between or below the source and sink and also at the source or the 

sink. Suppose that nore than one visit is made to the level x. 

If the level x is above the source and sink then ni equals 

the level is first entered from below and the last response is 

positive. The expected number of peaks at the first visit is just 

the proportion of times a sequence of n-1 positives and m 

negatives start with a positive, from (5) this equals 

(n-1)/(n+m-1). The expected number of peaks at the last visit 
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to the level is the proportion of times such a sequence ends with a 

positive (as the last response is positive) which is again equal to 

(n-1)/(n+m-1). The expected number of peaks at the remaining 

visits to the level is the expected number of positive agreements 

in sign in this sequence, which from (4) equals 

(n-1)(n-2)/(n+m-1). So combining these results the expected 

number of peaks at this level is 

n(n-1)f(n+m-1). 	 (6) 

If the level is between the source and the sink there are two 

cases to consider. If the sink is below the source nZ equals 

m L . l +1, the first visit is from above (so there is no peak at the 

first visit) and the last response is positive. The expected 

number of peaks at the level is just as before only there is no 

contribution to the expectation from peaks at the first visit. The 

expected number of peaks is now 

	

((n(n-1)) + ((n-1)(n-2))/(2(n+m-1)). 	 (7) 

If the source is below the sink then n, equals m-1-1, the 

first visit to the level is from below and the last response is 

negative (so there is no peak at the last visit). The expected 

number of peaks is the proportion of sequences of nZ positives and 

M L-1 negatives which start with a positive (which from (5) is 

n/(n L+m-1)) plus the expected number of positive agreements in 
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sign in this sequence (which from (4) is n(n-1)/(n L +m-1)). 	So 

-the expected number of peaks is 

((n(n-1)) + ((n+1)n))/(2(n+m-1)). 	 (8) 

Below the source and sink n equals 	the level is first 

entered from above and the last response is negative. As no peaks 

can be recorded at the first or last visits the expected number of 

peaks is just the expected number of agreements in sign in a 

sequence of n positives and m -1 negatives, that is from (4) 

n..(n-1)/(n L+m-1). 	 (9) 

The source is above, below or at the sink. If the source is 

above the sink then at the source n equals m 1 +1 and the last 

response is positive. The same arguments as used in the paragraph 

before (7) can be applied and the expression in (7) is the expected 

number of peaks. At the sink n equals m and the level is first 

entered from above (so there is no peak at the first visit), the 

expected number of peaks is the expected number of positive 

agreements in sign in such a sequence which from (4) equals 

n L (n. - l)/(n+m) 	 (10) 

If the source is below the sink then at the source n equals 



m. j  and the last response is negative. The same arguments as used 

in the paragraph before (9) can be applied to show the expected 

number of peaks is given by the expression in (9). At the sink n 

equals m 1 , 1 -1 and the level is first entered from below. The 

expected number of peaks is just equal to the expression in (10) 

plus the proportion of sequences of nj positives and m- 1  negatives 

which start with a positive (which from (5) is n/(n,+m.)), this 

equals 

((n-(n--l))  

If the source and sink coincide n equals m; at the start 

no peaks are recorded so the expected number of peaks is using the 

arguments in the paragraph before (10) equal to the expression in 

(10). 

These results together prove the first part of Theorem 2; 

clearly the second part of the Theorem follows using similar 

arguments. 

The alternatives to Wetherill's estimato: 

closely related estimator EpV, termed E, E. and 

the actual numbers of peaks and of valleys at x 

for E and Epy are replaced by nmI/(n+m L ) 

respectively. 

E, e  and Choi's 

Ep, are such that 

in the expressions 

and n(mL/(n+mj 



Suppose the response curve is monotonic increasing taking 

values above and below 0.5, then results in Appendix 3 hold and E.E 

has an asymptotic N(m,U'n) distribution where m and Uare given in 

Formulae (8) and (29) respectively of Appendix 3 and n is the 

number of observations. 

Theorem 3 

With the conditions given in the last paragraph the asymptotic 

+ 	 4W distribution of EE and Epv 	is N(m,(U-V)/n) where (using the 

notation of Appendix 3) V'equals 

(12) 
-I 

is 	and in equalsTrz,xL/x (TA  is the equilibrium probability 
Ai3 	 AI,3 

of being in state (x,\); states (x L ,I),(x.,2),(x,3) and (x,4) 

are defined onpage 233 in Appendix 3). 

Proof 

I will consider the following estimator 
PY 

E, =x. (O+)/(2(O+'j)), 	 (13) 

	

J 	 J 

where 	is the expected number of peaks at x given the n. , inL and 

starting level, and 6 is the conditional expected number of 

valleys. This is similar to the expression for E pV, given in (15) 

of Appendix 3, only numbers of peaks and valleys are replaced by 
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their conditional expectations (expressions for ; and 	can be 

obtained using Theorem 2). 	In Appendix 3 	and 	denote the 

number of peaks and valleys respectively at x; 	I will use the 

same terminology here. 

The proportion of peaks and valleys recorded has an asymptotic 

N(iic,U/n) distribution; where €1' is equal to an expression such as 

that in (9) of Appendix 3, but now with summations being taken over 

all X , with e equal to 1-in for )\ equal to 1 or 3 and equal to - 

otherwise (it is easy to show by the same arguments used at the end 

of Appendix 3 that these sums are absolutely convergent). The 

expression in (9) of Appendix 3 is still made up of absolutely 

convergent sums if all the e are replaced by 1; if all the h in 

(3) of Appendix 3 are replaced by 1 the sums are still absolutely 

convergent (again one can use arguments in Appendix 3). These two 

conditions are enough to ensure that a theorem on page 97 of Chung 

can be applied and that 

limit(nE(prop. of peaks and valleys - - 
M)7- 
 ) = U. 	(14) 

CO 

So ( Oj + ; )/n tends in mean square to M. 	The variance of 

( O'+ ')/n is always less than that of 21(0 + )/n as the latter is 

the conditional expectation of the former. So it follows that 

)/n also tends in mean square to and hence in probability 

Define m, B and B v  as the following 
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= ZXJ (fl 	+1i 	) /~ (rr.4 	 (15) 

B 1, = (x -mK)( j+ X)/n 	 (16) 

B = 	(x1-m)(Oj'+')/n. 	 (17) 

Consider now 

(18) 

which equals 

nZB + 	 +I(mK-m)(&]+'))). 	(19) 

The terms in the brackets in (19) equal the conditional expectation 

given the nL , in and starting level of (using the notation of 

Appendix 3) 

P(Y ,>JJn, 
	

(20) 

where (y,. ,)), T=1,. .. ,n, are the first n states visited in the 

Markov chain described in Appendix 3 and p is a function of the x. 

and A such that 

= x--m if lit> k, 

P(X j f. 	,() = m,,-m if I j 	< k, 

p(x_ 	,3) = x3 -m if Ii?> k, 

P(Xj . 	,3) = mk m if Iil k, 

p (xL 	 ).) 0 	if A = 2 or 4. 
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The value of m 1  has been chosen so that FajAp(xJ ,>.) is zero. Now 

using similar arguments to those in Appendix 3 one can show that 

has an asymptotic N(0,S distribution where 

	

2 	 - 

	

=ir p(x1  ,\) 	+ 25r P(Xj  ,))1TKAp(x K ,)z)vj A , 	 ( 21) 
4- 

J 

(see (10) of Appendix 3 and paragraph preceding (9) for definition 

of vJ A ). The summations are absolutely convergent for all k. 

The value of m tends to m as k , it is easy to deduce that the 

expression in (21) tends to zero as • Also conditions for the 

application of the theorem on page 97 of Chung are satisfied and 

limit (nE('p(y r ,) r)/n)') =. 	 (22) 

I have already noted that the terms in brackets in (19) equal the 

conditional expectation given the n, m and starting level of 

p(y,X)/n. This conditional expectation has lower variance than 
Tmi 

, > )/n and so it follows that the square of these terms have 
Tzi 

expectation arbitrarily close to or below Sk for n sufficiently 

large. By choosing k sufficiently large Sr- can be made arbitrarily 

small. So for k and . n sufficiently large one can ensure that the 

expression in (18) is arbitrarily close to XB with arbitrarily 

high probability. 

Suppose q is a function of x,  and such that 

x_m 	if j( 	k, 
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13) = x5-m 	if Iii 	k. 

The asymptotic distribution of B is N(O,U K/n) , where U is 

similar to the expression in (21) only q replaces p throughout. 

The sums are absolutely convergent and it is not difficult to see 

that as k-;;Ioo the value of U, tends to U, where U/n is the 

asymptotic variance of (x-m)()j+j)/n (an equation for U is given 

in (9) of Appendix 3). The characteristic function of nB can be 

written in the form 

(23) 

where i = -1, S denotes the set of values of n, Xfl (  and starting 

level, p(BI S) is the probability of observing B K  given S, and p(S) 

is the probability of a particular set S of n, mZ and starting 

level. The inner summation in (23) is the characteristic function 

of 'B-B) given S. From Theorem 1 conditional on S the values 

of (O5+ '5) are independent and so this characteristic function 

equals 

ffE(exp(it(xJ-mK)c)), 	 (24) 
1jI k 

where 

fL ci. = ((01+ )-(0+ ))/n . 	 (25) 

The value of (O +'j) differs from the number of agreements in 
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sign in the sequence of responses at this level by at most one 

(this is when there is a peak or a valley at the first visit). The 

number of runs of positive and negative responses plus the number 

of agreements in sign equals the total number of observations at a 

level. So c is asymptotically equivalent to 

(-r3+E(r(S))/n , 	 (26) 

where r is the number of runs at level x. The distribution of 

the number of runs in a sequence of positive and negative responses 

has been much discussed in the past. In Wald and Wolfowitz (1940), 

expressions are given for the mean and variance of the number of 

runs in a randomly permuted sequence of n positive and m negative 

responses. The expected number of runs is 

(2mn/(m+n)) + 1, 	 (27) 

and the variance of the number of runs is 

- 	 2mn(2mn-(m+n) )/((m+n) (m+n-1)). 	 (28) 

Suppose that 

0 <cC.< (n/(m+n)) <.< 1, 	 (29) 

for some fixed 	and o • 	For (m+n) sufficiently large the 

expression in (28) divided by (m+n) is less than 

2S' 



 

so using Chebishev's inequality it follows that the probability 

that the number of runs differs from the expression in (27) by more 

than c4(m+n is arbitrarily small for (rn-I-n) and c sufficiently 

large. Suppose (2mn/(m+n) )+1+(w(m+n)') is a possible number of 

runs where fw<oco. Following the method in Theorem 1 of Wald and 

Wolfowitz one can show that the probability of this number of runs 

is proportional to 

 

where 	equals n/(n+m). With the bounds in (29) the O((m+n)) term 

is bounded by an O( ( m+n ) t12 ) term depending only on c,  and ,-Az. 

I define sets L),,, and 3such that 

= w : (w <ca, w=(j-1-(2mn/(rn+n) ) )/(rn+n)" , j is an integer } 

(wjct, s=(j-1-(2mn/(rn+n)))/(rn+n, j is an integer} 

Suppose the number of runs in the sequence is r. The 

characteristic function of (r_E(r))/(rn+n)/l  is of the form 

 

where f1(w) equals exp(itw) and f2(w) equals the expression in (31). 

For (m+n) and oo sufficiently large, 	ob(w2) is arbitrarily 
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small. As the derivative with respect to 	of a normal density 

with variance 4 ( ( ( 1-1))L  )  is bounded it is possible, providing the 

inequalities in (29) hold, to construct uniform bounds on the 

modulus of the difference between the expression in (32) and the 

characteristic function for a N(0,4V5(1-)) 2  ) distribution, which 

tend to zero as (m+n) increases. 

Providing TT is not zero, then as n increases n/(n+m) tends 

in probability to F . So whenever F is between one and zero, the 

condition in (29) holds with arbitrarily high probability, forc< 1  

and cx arbitrarily close to F, , for n sufficiently large. Also the 

value of (n L +mZ )/n tends in probability to TT, • The values of n 

and rn, will increase above any bound with arbitrarily high 

probability. Conditioning on S 	fixes the sign of the last 

response at all levels except the sink. 	It is clear that this 

restriction will not affect the asymptotic distribution of the 

expression in (26). Combining these results it follows if n is 

large enough that, outside of a set of S of arbitrarily low 

probability, the characteristic function of the expression in (26) 

is arbitrarily close to that of a N(O,TT4( (F,, (1-F ) ? 

distribution. From this and Formula (24) it follows that, for n 

large enough, the inner summation in expression (23) is, with 

arbitrarily high probability, arbitrarily close to that of the 

characteristic function of a N(O , Vk ) distribution, where 

(33) 
IJ t 

The expression in (23) tends to the characteristic function of a 
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N(O,tJ,) distribution. It is easy to deduce that as n increases the 

characteristic function of r0"B k1C  tends to that of a N(O ,UVg ) 

distribution. 

I have already shown that for k large enough the expression in 

(18) is, with arbitrarily high probability, arbitrarily close to 

r!x'Bj  (see paragraph following formula (22)). So it follows that by 

qhoosing k and n large enough the characteristic function of the 

expression in (18) is arbitrarily close to that of a N(OUgVK.)•  I 

have also already shown that ( G+ ' )/n tends in probability to . 

So n(Em) has a characteristic function, for large enough k and 

2. 

n, which is arbitrarily close to that of a N(O,(U-Vg)/m 

distribution. As k increases UK/ff z  and 	tend to TJ and V*; 

so n/2.(E,_m)  has an asymptotic N(O,U*_V*)  distribution. 

The differences between 0 . and njm/(n+m) and between 

and n 	m /(nj +m ) are bounded and equal zero when a level has never 

been 	visited. Replacing bi  and 	' by n mjl /( n 1  +m) and 

nm/(n+m ) respectively will not alter the asymptotic 

distribution of the estimator. That is E has the same asymptotic 

distribution as The total numbers of valleys and peaks differ 

by at most one; so the expected total numbers given S differ by at 

most one. It follows that also has the same asymptotic WE 

distribution as E and E PV 
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A NOTE ON THE REGULARITY CONDITIONS REQUIRED 

FOR APPLICATION OF BILLINGSLEY'S THEOREM 

Suppose that the Up and Down rule is operated and that the 

probabilities of moving up or down a step, given the current level 

is x, are (1-F(x,6)) and F(x,e) respectively where F is some known 

function and Q, is some vector of parameters (i.e. the response 

curve takes the form F(x,O)). Billingsley (1961) states a theorem 

which gives among other results the asyrrtotic distribution of the 

maximum likelihood estimator of • This theorem is Theorem 2.2 on 

page 13 of his monograph. When this theorem holds the maximum 

likelihood estimator of 9 will have asymptotic normality with an 

asymptotic variance covariance matrix similar to that when a 

non-sequential design is used but proportions of observations made 

at each level are replaced by equilibrium probabilities of being at 

a level. 

Billingsley's results were for a time-discrete Markov process. 

The conditions he requires can be somewhat simplified for the 

Markov chain generated by use of the Up and Down rule. These 

conditions are then: 

(A) For each possible 0 there exists a unique equilibrium 

distribution for stimulus levels. 
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(B) The set of x for which F(x,O) & (0,1) does not depend on 

(C) First, second and third partial derivatives of F(x,G) with 

respect to the A parameters exist and are continuous for all  

(D) For any possible e there exist a neighbourhood N of 

for which 

E8  (sup. I'H(x,)/ ~O(j Ort)  

where E 0  denotes the expectation for the equilibrium distribution 

of x and H(x,O) is a random variable such that 

H(x,O) = log(F(x,e)) with probability F(x,e),  

H(x,) 	= log(1-F(x,O)) with probability (1-F(x,)).  

If F(x,0) equals 1.0 or 0.0 then H(x,e) is set equal to 0.0. 

(E) The following inequality must be satisfied 

E r. 	<'. 	 (4) 
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M There exists no linear combination v of the elements of 

such that the derivative of F(x,g) with respect to v is zero for 

all x (i.e. there is no redundancy in the parameterisation). 

Conditions (B) to (F) are restatements of Billingsley's Condition 

1.1. 

From Theorem 1.3 on page 7 of Billingsley the first part of 

his Condition 1.2 holds if the Markov chain generated by use of the 

Up and Down rule is irreducible and each state is recurrent and non 

null. The existence of a unique equilibrium distribution ensures 

that this is the case (see Condition (A)). Billingsley notes that 

the second part of Condition 1.2 can berep1aced by what I call 

Condition (E). 

It is relatively easy to check whether Conditions (A),(B),(C) 

and (F) hold but it is more difficult to check (D) and (E). 

Tsutakawa (1967b) shows that providing the response curve is 

truncated so that there are only finitely many possible levels then 

only Conditions (A),(B),(C) and (F) are needed (Condition (E) is 

automatically satisfied) and (C) can be relaxed in that existence 

of third order partial derivatives is not required. 

For logistic and normal tolerance distributions the response 

curve can be written in the fortnF(, ( z-).1)). It is easy to see that 

conditions (A),(B),(C) and (F) are satified. Condition (E) can be 

restated as the following: 
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E(zw(z)) < 00, 	 (5) 

E0(Izw(z)I ) < 	, 	 (6) 

E0 (w(z)) <on, 	 (7) 

where w(z) are the logit or probit weights associated with 

observations at z. It is easy to show that then inequalities hold 

as these weights are bounded. One can use similar arguments to 

show that Condition (D) holds. In the proofs one has to show that 

there are bounds on 

(dF(x)/dx) /(1-F(x)), 	 (8) 

3/2 
and (dF(x)/cIx) /F(x). 	 (9) 

For the logistic response curve the expressions in (8) and (9) 

equal 

	

F(x) (1-F(x)) , 	 (10) 

I 

	

F(x)
/I 
 ( 1-F(x) ) , 	 (11) 

and it is immediately obvious that they are bounded. For the 

probit response curve dF(x)/dx equals exp(_xL/2)/(21r)12 and clearly 

as x decreases the expression in (8) tends to zero. From a result 

in Abromowitz and Stegun (1965) it follows that 

1-F(x) = 	 for some 101 < 1.0.(12) 

Using this result one can then show that the expression in (8) 

tends to zero as x increases. The expression in (8) is continuous 



so it follows that it is bounded. A similar argument shows that 

the expression in (9) is bounded. 
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NOTE ON SOME APPROXIMATIONS TO THE ASYMPTOTIC 

EXPECTATIONS OF ESTIMATORS FOR THE UP AND DOWN PROCEDURE 

Suppose that a response curve is of the form G(x) where 

G(x) = F(, ( x_J1)) 	and 	> 0.0. 	 (1) 

F is some known function having limits, as its argument increases 

and decreases, above and below 0.5 respectively. F only takes 

values between 0.0 and 1.0 for one set of consecutive stimulus 

levels. Suppose further that 

	

F(0.0) = 0.5, 	 (2) 

dF(z)/dzl = k 1  where k 1 > 0.0, 	 (3) 
z C 0 

d 2F(Z)/dz! = k 1,. 	 (4) 
7 - 0 -c 

If the Up and Down rule is operated with step size d one can 

assume, without loss of generality, that the possible stimulus 

levels, tx , are given by 

x. =y + (i+6)d 	for some Ge [0.0,1.0). 	 (5) 

The sequence of levels visited can be viewed as a Markov chain. 

Suppose the equilibrium probability of being at x is -riZ The 

equations to be solved to find the"11Z are of the form 
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IT, G(x ) = 1T, ( 1-G(x_ 1  ) ) . 	 ( 6) 

These equations have a solution 

	

= Ucff(1-G(x 1  ))/G(x.) 	i > 0, 	 (7) 

	

Ti = TL l\G(x., )/(1_G(x )) 	i < 0, 	 (8) 

where Ti0  can take any value (TL = 0.0 if and only if G(x) or 

(1-G(x) = 0.0). I have assumed that G(x 1  )FO.O and G(x 1 )11.0; 

from the continuity of G at p this is bound to be the case for d 

sufficiently small. Providing 2Ti is convergent, the iT can be 

normalised so that they sum to 1.0. These normalised i1 are the 

unique equilibrium probabilities for the process. This sum is 

convergent because the conditions on the limits of F ensure that, 

for some (0.0,1.0) and i sufficiently large, 

	

(1 -G(x))fG(x3 < 	, 	 (9) 

	

G(x- 1 ) ( 1-G(x . ) < 	• 	 (10) 

Clearly from (9) and (10) it follows that the tL  can be dominated 

for Iii sufficiently large by terms decreasing exponentially in 

W. 

In general there will be no explicit expression for the 

products on the right of (7) and (8). In the following theorem I 

derive an expression which allows one, when the value of d is 
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small, to make an approximation to these products 

Theorem 1 

If hR c/d"2for  some c > 0.0, and providing d is sufficiently 

small then 

m'ri= exp(-(4k)(x-,p)1 /2d) + 	), 	 ( 11) 

where 

£ /d < K, 	 (12) 

and K. is a constant depending upon C. That is for small d the 

equilibrium probabilities are roughly proportional to the density 

for a normal distribution with mean ji and variance d/4k 1 . 

Proof 

For convenience I will define a function H(z) which equals 

log((!-G(z))/G(z)). 

If 1T # 0.0 and i > 0, then from (7) it follows that 

log(W/1T) = 	H(x) + log(G(x)/G(x 0 )). 	 (13) 

The first and second derivatives of H are given by 
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dH(z)/dz = -dG(z)/dz/((l-G(z))G(z)), 	 (14) 

2. 
d2H(z)/dz = dG(z)/d/((1G(z))G(z)) + (1-2G(z))(dH(z)/dz)(15) 

From (1),(2),(3) and (14) it follows that the derivative at?  of H 

is -4k,L From (1),(2),(4) and (15) it follows that the second 

derivative of H at P is -4k,$. Making first order Taylor series 

expansions of all the H(x) terms in (13) about p one obtains the 

following 

log(J)= -4k(x-?) + 	(x-p)(vJ2) + log(G(x)/G(x))(16) 

where Vs equals the value of the second derivative of H for some 

stimulus level between Xj  and p. Here one assumes that the second 

derivative of H exists for all levels between x.--, and ji. For 

convenience I will call the first, second and third terms on the 

right of (16), A 1 , AL and A3 respectively. From (5) 

A 1  = _4k,2(j+O)d, 	 (17) 

which simplifies to 

A j  = -4k,,$((x-p)/2d) .+ 2k,,(i+O)d. 	 (18) 

Suppose 0 < i c/d , then for d sufficiently small the second 

term in (18) is less than 3k, 1 c d "t From (5) 

0.0 < (x L -y.1 ) < c d + ed. 	 (19) 

From continuity of G and the second derivative of H at p  it follows 



that, for sufficiently small d, values of G(x,) and G(x,. 1 ) are 

arbitrarily close to 0.5 and values of dH(z)/dz for z in (yi 1 x) 

are arbitrarily close to -4k 1113 . So in particular for sufficiently 

small d 

0.25 < G(x) and G(x 1) < 0.75, 	 (20) 

and 

	

sup.dH(z)/dz 2i< 81k1I,. 	 (21) 
Z6(p) xJ 

From (20) it follows that TV > 0.0, and from (21) it follows that 

IA 2. 1 < 4 tkI, 	I (j+8)
2. 
 d '- , 	 (22) 

j.7 0  

where m is the integer part of c/d t  the expression in (22) equals 

41k21,E((m(m-1)(2m-1)/6) + Om(m-1) + e'm)d . 	(23) 

This in turn is less than 4Ik,((c tL/3)+Oc2 d+ecd). 	For d 

sufficiently small this is less than 2 jkjc3  d' this provides a 

bound for 1A41. From making a Taylor series expansion 

A3 = dG(z)/dz/G(z)I 	(X,-)I) - dG(z)/dz/G(Z)(XL_}1), 	(24) Z= 20 	 Z  

for some z0  and z C  in (y,x 0 ) and ()1,x) respectively (providing d 

is sufficiently small for the derivative of logG(z) to exist in 

(yx . )). For d sufficiently small both the dG(z)/dz/G(z) terms are 

can be made arbitrarily close to 2k,L The (x-)i) and (x 0 -)1) terms 
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are bounded by (cd+ ed). It is easy to show from (24) that, for 

sufficiently small d, (A31 is less than 5kcd "  Combining these 

results it follows that for sufficiently small d 

+ 4k 1 ((x-p)72d)l < d 1(8kc + 2 k4c). 	(25) 

It is a trivial matter to show that, for sufficiently small d, (25) 

holds for i=O. One can show using similar arguments that (25) 

holds for sufficiently small d if 0 > i >, -c/d "% The theorem 

immediately follows from this inequality. 

When the response curve is logistic one can find an explicit 

expression for 1T/r 0,. There is some simplification because H(z) 

equals -(z-.).i). The second term in (16) is 0.0. The value of k 

is 0.25. From (16) and (18) (i.e. the expression for the first 

term on the right in (16)), it follows that 

log(1TG(x)/fl c G(x 0 )) = -(( x-)1) - ( x-).i)d + (Ge)di/2d.(26)4.  

From this it follows, after some simplification, that 

U ç  cK (exp(_$(x_)1_(d/2)/2d) + exp(_)3(x_)1+(d/2))72d)). (27) 

The first term on the right in (27) corresponds to the contribution 

to 1T from the positive responses, the second term is the 

contribution from negative responses. 
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The estimators E , ES , E, and ED,  described in Section 

2.1, all have asymptotic expectation 

(28) 

If the response curve is such that F(z) = (1-F(-z)) (as are the 

logistic and normal response curves) and the stimulus levels are 

symmetrically placed, then the asymptotic bias of these estimators 

is 0.0. However in general there is some bias. In the following 

theorem I show, as d tends to 0.0, this bias tends to 0.0 faster 

than O(dL). 

Theorem 2. 

Suppose that F 5aElSfies the same conditions as before. 

Suppose that F also satisfies the following: 

F(z) takes values above and below 0.5 according to whether 

z is positive or negative. 

There exists some C > 0.0 such that if IZI< ., then 

F(z) = F(y) implies z = y. 

A consequence of (a) is that p is the unique ED50 for G. F is 

continuous in [-',S] for sufficiently small & 11 so one can assume 
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without loss of generality that F is continuous for (z < £ (simply 

replace Eby inf.(E,')). 

With these conditions it follows that 

limit 	 (x._).1)/d'2) = 0.0. 	 (29) 
& 

Proof 

First I will show that 

limit 1T(xL-)1)/T1c. = 0.0. 	 (30) 

Consider 

(31) 

where m is the integer part of c/d , for some c > 0.0. 	Frost 

Theorem 1 the expression in (31) equals 

Iz;dexp(-2k 11 z + fz) 	 (32) 

where z 	equals (x.)1)/d' and 11i/d"-  is bounded. This is a step 

function approximation to the integral 

çz exp(_2kzL) dz. 	 (33) 

The range of integration in (33) is finite and the 
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z-exp(-2kz 1 + 1. ) terms in (32) are bounded. 	It is a simple 

matter to apply Lebesgue's dominated convergence theorem to show 

that the summation in (32) tends, as d tends to 0.0, to the 

integral in (33) (for a statement of this theorem see Bartle 

(1966), page 44). This integral equals 0.0, so it follows that the 

expression in (31) tends to 0.0 as ci tends to 0.0. 

Consider 

	

2 iT(x-i)/flo. 
	

(34) 

Let S = ( 1 -G(x,? ))/G(x,)I( ); from (a) S < 1.0. For d sufficiently 

small , (x, , _y) < E. • From (b) (where £ is chosen sufficiently 

small so that F(z) is continuous for tz(< ( ) it follows that F must 

be monotonic increasing between 0.0 and,(x-)1). Also from (b) it 

follows that G(x. 1 ) can take no value between 0.5 and G(XI) for 

I > m, and from (a) it follows G(x,..1) > 0.5. So it follows that 

G(x.) > G(xM41), similarly G(x) > G(xJ. From these results it 

follows that 

(1-G(x)/G(x1) < S for i > m. 	 (35) 

From (6) it follows that 

	

for i 	in. 	 (36) 

So the expression in (34) is bounded by 
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TT in 	(m+i+O)d/iT, 	 (37) 
L 

which equals 

rcd(((1- S)(m+O)) + 1) /((1- S) 2 rr0 ). 	 (38) 

For d sufficiently small it follows, from making a first order 

Taylor expansion of S , that 

= 1 - 4k(m+G)d + 0(d). 	 (39) 

From this result and Theorem 1 it follows that, as d tends to 0.0, 

the expression in (38) tends to 

exp(-2k, 	)((4k 1 )' + (4kc)). 	 (40) 

For c sufficiently large this expression is arbitrarily small, and 

so 27. (x-)u)/Tr is also arbitrarily small (as the expression in 

(38) bounds that in (34)). By similar arquments it follows that 

is also arbitrarily small for c sufficiently large. 

have already shown that ~ ff(x -)i)/rr tends to 0.0 as d tends to 0.0 
I( 

for any c. An immediate consequence of these results is that (30) 

is true. 

One can use similar arguments to show that 

limit WL d "/i1,= (TT/2k 11 ) 2 	 (41) 
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lTL  dt/r[o (i.e. 	d/ 0 ) is a step function 	approximation to 

JexP(_2kz) dz. Theorem 2 follows from (30) and (41). 

When the response curve is logistic one can show that the 

asymptotic bias of the estimators tends at a faster rate to 0.0 as 

d decreases. 

Theorem 3 

For the logistic response curve 

	

limit(rr L (x-)1)/d) = 0.0. 	 (42) 

That is d
"1
in (29) is replaced by d. 

Proof 

For convenience I will define a function h where 

h(z) = exp(-, (z-p-(d/2))/2d) + exp(-,$(z-)1+(d/2)) 2/2d). 	(43) 

From (27) it follows that TT  is proportional to h(x). Consider 

(44) 
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Using the identities h(_z+2y) = h(z) and -x 1+2) = x L ((1+20)d), 

and rearranging terms it follows that this expression equals 

00 

- 	 (45) 

where ) = (1+20). This in turn equals 

Ut 
~ (h(z)z)/dzI 	)d , 	 (46) 

- 	 lrZ 

for some z between x and x,-Ad. This is a step function 

approximation to the integral 

f2(1_z1)e(_zi/2) dz, 	 (47) 

which equals 0.0. A function taking the value 4,J3z2exp($zL/4) for 

ZIL  > 1/, 	and 2.0 otherwise can be used in the dominated 

convergence theorem to show that, as d tends to 0.0, the limit of 

(44) is 0.0. 	From Theorem 1 it follows that the constant of 

proportionality between 	and h(x;) tends to 0.5 as d tends to 

0.0, and so 

limit 1TC (x.?)/d"1To= 0.0. 	 (48) 

From (48) and (41) Theorem 3 immediately follows. 

The value of all the G(x) depends on, and d only through d, 

so the bias of the estimators as a proportion of d only depends on 
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,$d. Suppose B(,,d) is the bias for slope ,13 and step size d, then 

B($ 1  ,d), 	= B( 11 1d/82). 	 (49) 

From (49) the following corollary to Theorems 2 and 3 follows. 

Corollary 1 

Under the conditions for Theorem 1 

1imit(B(,,d),$) = 0.0. 	 (50) 

For the logistic response curve 

limit(BçLd)) = 0.0. 	 (51) 

In Section 2.1 further estimators, E N ,EPV,E and 	of y 

are described. They have asymptotic bias 

(52) 

where w(x)= ((G(xL) t  + ( 1-G(x)) ). 

Corollary 2 

The results in Theorems 2 and 3, and in Corollary 1 apply 

277 



equally well to the expression in (52). There are bounds on w(x), 

also w(x) tends to a non-zero limit as x  tends to this is 

enough to ensure that Theorem 1 still holds. Theorem 2 still 

holds; in the proof, terms involving h(z) in (44),(45) and (46) 

must be replaced by h(z)w(z). Both w(z) and its derivative are 

bounded and there is no difficulty in again applying the dominated 

convergence theorem. Corollary 1 again holds for the same reasons 

as before. 
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NOTE ON THE LIMIT WITH PROBABILITY ONE OF 14  

In Section 3.2 I suggested an estimator of 1j2, that I term 

1/p, for use when the response curve is logistic (see Formulae 

3.2.2, 3.2.3 and 3.2.7 and paragraphs preceding these expressions). 

This estimator equals the variance of levels of the less frequent 

response type divided by step size (see Section 3.2). Suppose the 

response curve is of the form G(x); where G(x)=Fg(x.-,u)) for some 

known function F (/B > 0.0), and F satisfies all the conditions in 

Theorem 2 of Appendix 6. From a theorem on page 87 of Chung (1960) 

one can deduce that (using the notation of Appendix 6) as the 

number of observations increases this estimator converges with 

probability one to 

(QT-1,-  G(x )xL/tTLG(x)) - ( 1T1. G(x )x/1TG(x )? )/d. 	(1) 

I will assume, without loss of generality that possible stimulus 

levels, Sx} , are given by 

x = 	+ (i+B)d 	for some 6 - [0.0,1.0). 	 (2) 

Theorem 

With these conditions the expression in (1) tends to 1/4k ,  as 

d tends to 0.0, where k is the derivative of F at 0.0 (by 

assumption k 1  > 0.0). 	For the logistic response curve k, = 0.25 



and so this limit is 1 /,)B - 

Proof 

The function G is bounded having a limit of 0.5 as its 

argument tends to p. Following similar arguments to those used in 

Theorem 2 of Appendix 6 one can show that 

	

1imitIr1G(x)(x-y)/1Tc  = 0.0, 	 (3) 

	

limit Z1r,.2G(x L )d/rTc = (1V12k 1 ) 	
( 4) 

From (3) and (4) it follows that 

0.0. 	 (5) 

So the limit of the expression in (1) as d tends to 0.0 will equal 

the limit as d tends to 0.0 of 

(6) 

providing such limits exists. From (4) this equals 

limit(2k 1,$/ 	 (7) 
0. 

Consider 

(8) 
Lls 
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where m is the integer part of c/dt, for some c > 0.0. From 

Theorem 1 of Appendix 6 this equals 

2G(x )exp(-2k 1 z 	+ 	) d 	 (9) 

where z L  = (x-)0/dand E,:Id"I is bounded. 	For d sufficiently 

small, the 2G(x) and ( terms in (9) are arbitrarily close to 1.0 

and 0.0 respectively. The summation in (9) is a step function 

approximation to the integral 

f zexP(-2k t z) dz. 	 (10) 

The range of integration is 	finite 	and 	 the 

z, 2 2G(x )exp(-2k.)z + ) are bounded. It is easy to apply 

Lebesgu&s dominated convergence theorem (see Bartle (1966), page 

44). As a tends to 0.0 the expression in (9) tends to the integral 

in (10). This integral in turn is arbitrarily close to 

(21T)lL/(4k)hL for c sufficiently large (i.e. it is arbitrarily 

close to the integral from - o to OQ ). 

Consider 

iT2G(x)(x...J1)/dLfl.. 	 (11) 

G(xi) is bounded by 1.0, so the expression in (11) is bounded by 

ffz2(x_J1)L/d1To. 	 (12) 
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Let 	= (1-G(x,))/G(x,). From Condition (a) of 	Appendix 	6, 

, < 1.0. From the argument preceding (36) of appendix 6 it 

follows, for sufficiently small d, that 

Tt 	 for i >, m. 	 (13) 

From (13) it follows that the expression in (11) is bounded by 

	

j 2(m+i+O)d 3'/it. 	 (14) 

This expression equals 

TT((2 2/(1-)3  )+(2(m+O)+1)/(1-)1  )+((m+0) /(1_)))d]hhIrr. (15) 

From a first order Taylor series expansion, for d sufficiently 

small 

= 1 - 4k 11 (x_)i)d + 0(d). 	 (16) 

From this result and Theorem 1 of Appendix 6 it follows that, as d 

tends to 0.0, the expression in (15) tends to 

exp(-2k,c2 )((2/(4k 112c) )+(2/(4k 1 $fc)+(c/4k 1 )). 	 (17) 

For c sufficiently large this is arbitrarily small. So for c 

sufficiently large, 	 is arbitrarily small (as 

the expression in (15) bounds that in (11)). By similar arguments 
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one can show 	 is arbitrarily small for c 

large enough. I have already shown that 
I 

tends to the integral in (10) as d tends to 0.0, which is 

arbitarily close to (211 )/(4k)$L for c sufficiently large. From 

these results it follows that 

(2 FT ) 1 t /(4k1 	 (18) 
a-7 0-0 

So the limit in (7) equals 1/4k, ,13, but this is also the limit as d 

tends to 0.0 of the expression in (1) and so the theorem is proved. 



ASYMPTOTIC PROPERTIES OF THE RIDBBINS-MONRO PROCEDURE 

OPERATING ON A TRANSFORMED RESPONSE CURVE 

Suppose that a response curve takes the form F(x), where x is 

the stimulus level and F is a strictly increasing continuous 

function taking values in (0.0,1.0) with a non zero derivative, g,, 

at LIfrL  (F(L)-Y). Suppose further that a Robbins-Monro procedure 

is operated, but moves down are made after two positive responses 

and moves up are made after either a negative response or a 

positive followed by a negative response. The sequence of levels 

visited yb j are related by the equation 

y 	= 	- c(z-0.5)/t, 	 (1) 

where zt equals 1.0 with probability F(y) 2 	and 0.0 with 

probability (1-( F(y ) ) -I  ). 	The sequence of levels visited can be 

viewed as a Robbins-Monro process operating on the transformed 

response curve F(x) . 	From standard results (see Section 1.4.) y 

tends in mean square to L,-and providing c> 1 /( 8Th,,) (i.e. 	is 

greater than half the inverse of the slope of the response curve 

F( x)2  at L) then y has an asymptotic normal distribution with 

mean L,1  and variance 

'It 
c ' /4(8 g,c -1)t). 	 (2) 

2. 
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The number of observations made per visit to a level is not 

fixed. If u e  is the number of observations made at y, then u. 

equals 2 with probability F(y) and 1 with probability (lF(y)) 

(two observations are made if and only if the first response at the 

level is positive). After T levels have been visited the ratio of 

the number of observations to the number of levels visited is 

Zue/T. The expectation of u given y is 

2F(y) + (1-F(y)). 	 (3) 

So the expectation of ut/T is 

1+(E(F(y))/T). 	 (4) 

From 	the definition of u 	it 	follows 	that 	the 	conditional 

expectation of u"' given yt  is 

4F(y) + (1-F(y.)). 	 (5) 

The expeetatioris 	of the expressions in (3) and (5) are the 

unconditional expectations of u and u. It follows that the 

variance of u is 

(6) 

As t increases, y1  tends in mean square to L 1,. The function F is 
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bounded and continuous, so E(F(y)) tends to 2 as t increases. 

From this it follows that, as t increases, the expression in (4) 

(i.e. the expectation of fu/T) tends to (1+2-'/Z  ) and that the 

expression in (6) tends to f '12 
 The covariance of u L  and u )  

is the expectation of 

(7) 

Suppose i>j; then the conditional expectation of the expression in 

(7) given y.. ,y and u is 

(F(y)-E(F(y) ) )(u,-1-E(F(y. ) ) ). 	 (8) 

The (u-l-E(F(y))) term is bounded in modulus by 1 and so the 

covariance between u and u1  (which is the expectation of the 

expression in (8)) is bounded in modulus by 

EF(y)-E(F(y))1. 	 (9) 

The term in the expectation in (9) tends, as i increases, in 

probability to 0 and is bounded by 1 • So it follows that the 

expectation of this quantity tends to 0 as i increases. From this 

it follows that the covariance between u and u tends, as i 

increases, to 0 uniformly for any j<i. As in addition the variances 

T 
of the u r  are bounded it follows that the variance of u/T tends to 

0 	T increases. 	The expectation of Lu/T tends to 1+2_ '  so the 

limit in probability of 	IT is also 1+i "2. If n is the number of 

observations and T levels have been visited then (u1 - n) equals 1 



or 0 )  and so n/T also tends in probability to 1+2' So it follows 

from (2) that, providing c>1/(8 1 g , ), y. has an asymptotic normal 

distribution with mean L,and variance 

c -1)n). 	 (10) 

If the Robbins-Monro procedure for estimating Li,,, on the 

untransformed curve is used, providing c>1/2g 1  , the estimator has 

asymptotic normality with mean Land variance 

c1  ( 1-2)2/(2g,c -1)n. 	 (11) 

If c values of k/(2'g11) and k/g )fr are substituted into expressions 

(10) and (11) respectively (k>0.5) then the expression in (11) 

divided by that in (10) is 

(12) 

which equals 0.9706 to four decimals. So there is little loss in 

asymptotic efficiency in operating the Robbins-Monro procedure on 

the transformed curve. One can adapt the procedure operating on 

the transformed curve to obtain an estimate of a general Lp by 

substituting p2  for 0.5 in (1). Using similar arguments to those 

- If)  

for when p equalled 2 it follows that for the same multiples of 

optimal c values for the Robbins-Monro procedure on the transformed 

and untransformed curves the ratio of asymptotic variance 

expressions is 



4p (1+p) 
1.. 	

(13) 

So for p>0.5 the efficiency of the procedure on the transformed 

curve relative to that on the untransformed curve is greater than 

8/9. 
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Table 1 100'm.s.e. of estimators in 48 step experiments 
for step size 0.5 (B=TI3.0'I2 , based on 2000 simulations). 

p. 
Start 	EM 	E0 	Egc, 	EDM 	ADM 	E. 	Epv 	Ai Z 	EE Ep V 	A,.' 

0.00 2.72 2.77 2.77 2.78 3.14 2.93 2.97 3.33 2.77 2.79 3.15 
0.25 2.91 2.97 2.97 2.99 3.14 3.13 3.16 3.33 2.95 2.96 3.15 
0.50 2.90 2.90 2.94 3.00 3.14 3.15 3.18 3.33 2.93 2.94 3.15 
0.75 3.06 2.99 3.07 3.16 3.14 3.29 3.31 3.33 3.07 3.06 3.15 
1.00 3.14 2.98 3.06 3.18 3.14 3.33 3.34 3.33 3.10 3.08 3.15 
1.25 3.45 3.17 3.26 3.37 3.14 3.55 3.54 3.33 3.29 3.26 3.15 
1.50 3.69 3.24 3.27 3.36 3.14 3.63 3.61 3.33 3.33 3.29 3.15 
1.75 4.24 3.56 3.48 3.53 3.14 3.81 3.79 3.33 3.56 3.52 3.15 
2.00 4.75 3.77 3.50 3.49 3.14 3.83 3.81 3.33 3.54 3.49 3.15 
2.25 5.61 4.33 3.80 3.73 3.14 4.11 4.07 3.33 3.79 3.74 3.15 
2.50 6.49 4.80 3.81 3.71 3.14 4.18 4.15 3.33 3.80 3.74 3.15 
2.75 7.89 5.67 3.97 3.84 3.14 4.31 4.28 3.33 3.95 3.89 3.15 
3.00 9.30 6.49 3.85 3.69 3.14 4.17 4.13 3.33 3.84 3.78 3.15 
3.25 11.17 7.73 4.03 3.85 3.14 4.35 4.30 3.33 3.97 3.92 3.15 
3.50 13.34 9.13 4.02 3.84 3.14 4.42 4.38 3.33 3.96 3.91 3.15 
3.75 16.25 11.12 4.08 3.95 3.14 4.46 4.42 3.33 4.08 4.02 3.15 
4.00 19.52 13.35 3.94 3.81 3.14 4.29 4.25 3.33 3.95 3.89 3.15 

Table 2 100'm.s.e. of estimators in 48 step experiments 
for step size 1.0 (,B=11/3.0 	based on 2000 simulations). 

Start 	EM 	E9 	E 0 	EDM 	ADM E we  Epy - Aø E 	,V-  AwF- 

0.000 3.44 3.49 3.46 3.47 3.80 3.76 3.87 4.08 3.63 3.66 3.94 
0.25 3.58 3.62 3.60 3.63 3.80 3.78 3.88 3.98 3.67 3.70 3.81 
0.50 3.45 3.51 3.51 3.52 3.80 3.60 3.67 3.87 3.42 3.45 3.69 
0.75 3.51 3.58 3.60 3.62 3.80 3.84 3.89 3.98 3.58 3.61 3.81 
1.00 3.59 3.59 3.64 3.72 3.80 4.05 4.08 4.08 3.72 3.74 3.94 
1.25 3.87 3.79 3.88 3.99 3.80 4.19 4.20 3.98 3.88 3.88 3.81 
1.50 3.66 3.48 3.59 3.71 3.80 3.78 3.80 3.87 3.57 3.54 3.69 
1.75 3.90 3.61 3.75 3.85 3.80 4.02 4.04 3.98 3.82 3.77 3.81 
2.00 4.01 3.56 3.67 3.77 3.80 4.03 4.06 4.08 3.87 3.81 3.94 
2.25 4.26 3.69 3.80 3.88 3.80 4.06 4.08 3.98 3.91 3.87 3.81 
2.50 4.51 3.77 3.84 3.89 3.80 4.04 4.05 3.87 3.81 3.77 3.69 
2.75 4.91 3.94 3.93 3.92 3.80 4.30 4.28 3.98 3.95 3.93 3.81 
3.00 5.37 4.09 3.98 4.00 3.80 4.52 4.50 4.08 4.07 4.05 3.94 
3.25 6.23 4.56 4.26 4.30 3.80 4.68 4.65 3.98 4.26 4.22 3.81 
3.50 6.59 4.51 3.96 4.02 3.80 4.21 4.21 3.87 3.94 3.88 3.69 
3.75 7.46 4.93 4.04 4.11 3.80 4.34 4.34 3.98 4.13 4.06 3.81 
4.00 8.46 5.39 3.96 3.99 3.80 4.39 4.39 4.08 4.16 4.08 3.94 

Note: A0,, Aand AJdenote columns for asymptotic predicted m.s.e.' s of 
ED,l, E and Erespectively. 

2'{O 



Table 3 100%m.s.e. of estimators in 48 step experiments 
for step size 1.5 (,=Tr/3.0', based on 2000 simulations). 

Start 	EM 	E g 	ESD 	Eppj 	A0, 	EWE Ep 	AWE E04  E 	Epv 	AWE 

0.00 4.40 4.48 4.46 4.41 4.58 5.37 5.55 5.61 5.25 5.28 5.55 
0.25 4.51 4.58 4.55 4.54 4.56 5.10 5.28 5.19 5.03 5.07 5.09 
0.50 4.32 4.40 4.37 4.36 4.50 4.14 4.30 4.30 4.10 4.15 4.13 
0.75 4.32 4.40 4.39 4.39 4.46 3.88 3.97 3.84 3.72 3.77 3.64 
1.00 4.29 4.36 4.38 4.39 4.50 4.35 4.37 4.30 4.05 4.09 4.13 
1.25 4.30 4.35 4.39 4.42 4.56 5.15 5.11 5.19 4.77 4.81 5.09 
1.50 4.36 4.32 4.39 4.47 4.58 5.52 5.52 5.61 5.15 5.19 5.55 
1.75 4.54 4.44 4.55 4.65 4.56 5.23 5.24 5.19 4.93 5.00 5.09 
2.00 4.56 4.31 4.46 4.60 4.50 4.51 4.56 4.30 4.19 4.22 4.13 
2.25 4.78 4.34 4.51 4.66 4.46 4.20 4.24 3.84 3.93 3.87 3.64 
2.50 4.69 4.15 4.32 4.44 4.50 4.35 4.36 4.30 4.17 4.05 4.13 
2.75 5.11 4.38 4.53 4.64 4.56 5.17 5.19 5.19 5.06 4.91 5.09 
3.00 5.44 4.56 4.66 4.75 4.58 5.65 5.71 5.61 5.55 5.43 5.55 
3.25 5.52 4.59 4.75 4.80 4.56 5.35 5.44 5.19 5.26 5.21 5.09 
3.50 5.68 4.55 4.65 4.65 4.50 4.48 4.56 4.30 4.39 4.37 4.13 
3.75 6.15 4.71 4.65 4.63 4.46 4.21 4.22 3.84 4.03 4.01 3.64 
4.00 6.73 4.90 4.69 4.67 4.50 4.83 4.77 4.30 4.44 4.42 4.13 

Table 4 100m.s.e. of estimators in 48 step experiments 
for step size 2.0 	()3=1T13.dlL, based on 2000 simulations). 

Start E,1  EA E ep Ep, AD,i EWE Ep V  A3,E EWE Epv Aw 

0.00 5.66 5.68 5.66 5.67 5.73 7.96 8.27 8.29 7.76 7.76 8.27 
0.25 5.69 5.74 5.72 5.71 5.66 7.61 7.94 7.80 7.48 7.50 7.74 
0.50 5.18 5.27 5.24 5.20 5.41 5.91 6.27 6.24 5.83 5.86 6.10 
0.75 4.88 4.98 4.95 4.92 5.08 4.15 4.47 4.21 4.14 4.21 4.04 
1.00 4.67 4.76 4.74 4.73 4.92 3.34 3.44 3.25 3.24 3.29 3.08 
1.25 4.80 4.84 4.85 4.87 5.08 4.32 4.18 4.21 3.99 4.01 4.04 
1.50 5.25 5.23 5.27 5.33 5.41 6.33 6.08 6.24 5.83 5.82 6.10 
1.75 5.57 5.55 5.62 5.67 5.66 7.78 7.57 7.80 7.25 7.26 7.74 
2.00 5.70 5.66 5.77 5.84 5.73 8.34 8.31 8.29 7.77 7.87 8.27 
2.25 5.63 5.72 5.88 5.88 5.66 7.72 7.80 7.80 7.33 7.59 7.74 
2.50 5.26 5.23 5.46 5.48 5.41 6.15 6.29 6.24 5.77 6.07 6.10 
2.75 5.29 5.03 5.28 5.36 5.08 4.52 4.62 4.21 4.25 4.45 4.04 
3.00 5.34 4.63 4.83 4.98 4.92 3.63 3.67 3.25 3.40 3.36 3.08 
3.25 5.93 4.80 4.92 5.14 5.08 4.39 4.37 4.21 4.32 4.05 4.04 
3.50 6.82 5.34 5.39 5.60 5.41 6.37 6.31 6.24 6.27 5.87 6.10 
3.75 7.22 5.58 5.60 5.76 5.66 7.88 7.84 7.80 7.65 7.28 7.74 
4.00 7.31 5.77 5.90 5.99 5.73 8.38 8.49 8.29 8.14 7.93 8.27 
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Table 5 100-bias of estimators in 48 step experiments 
for step size 0.5 (8=TT/3.OIL, based on 2000 simulations). 

Start 	E 	E, 	E 	E Lim 	Al)wi 	EE 	Epv 	E,.' 	Ep 	-vt  

0.00 0.49 0.44 0.44 0.53 0.00 0.46 0.47 0.44 0.44 0.00 
0.25 1.42 0.87 0.94 1.31 0.00 1.22 1.11 0.97 0.87 0.00 
0.50 2.86 1.80 1.85 2.37 0.00 2.38 2.20 2.07 1.89 0.00 
0.75 4.58 3.00 2.86 3.32 0.00 3.53 3.27 3.26 3.01 0.00 
1.00 6.27 4.15 3.61 3.92 0.00 4.27 3.95 4.00 3.68 0.00 
1.25 7.83 5.20 4.00 4.11 0.00 4.79 4.42 4.40 4.04 0.00 
1.50 9.67 6.52 4.36 4.35 0.00 5.28 4.89 4.94 4.55 0.00 
1.75 11.97 8.30 4.95 4.74 0.00 5.88 5.46 5.53 5.13 0.00 
2.00 14.37 10.16 5.34 4.99 0.00 6.21 5.78 5.77 5.36 0.00 
2.25 16.68 11.97 5.34 4.87 0.00 6.19 5.73 5.68 5.25 0.00 
2.50 19.35 14.12 5.41 4.89 0.00 6.36 5.91 5.83 5.40 0.00 
2.75 22.65 16.89 5.84 5.26 0.00 6.80 6.32 6.29 5.85 0.00 
3.00 25.95 19.66 6.00 5.36 0.00 6.90 6.42 6.33 5.88 0.00 
3.25 29.20 22.41 5.79 5.11 0.00 6.77 6.28 6.06 5.61 0.00 
3.50 32.79 25.48 5.66 5.01 0.00 6.69 6.19 6.02 5.56 0.00 

3.75 36.97 29.13 5.89 5.20 0.00 6.89 6.39 6.31 5.86 0.00 
4.00 41.36 32.99 6.05 5.37 0.00 7.07 6.56 6.40 5.93 0.00 

Table 6 100bias of estimators in 48 step experiments 
for step size 1.0 3=TT/3.0 1 z, based on 2000 simulations). 

Start 	EM 	E p 	Epp 	EpM 	ADM EWE E pv E 	 AWE 

0.00 0.38 0.34 0.35 0.40 0.00 0.48 0.48 0.37 0.37 0.00 

0.25 0.63 0.15 0.26 0.70 -0.01 0.71 0.46 0.08 -0.04 -0.23 
0.50 1.34 0.38 0.58 1.28 0.00 1.34 0.93 0.58 0.33 0.00 
0.75 2.33 0.80 1.00 1.91 0.01 1.83 1.31 1.36 0.96 0.23 
1.00 3.07 0.93 1.03 2.02 0.00 1.72 1.16, 1.56 1.00 0.00 
1.25 4.51 1.77 1.66 2.54 -0.01 2.18 1.61 2.26 1.56 -0.23 
1.50 5.38 2.05 1.60 2.24 0.00 2.20 1.61 2.51 1.73 0.00 
1.75 6.50 2.69 1.73 2.12 0.01 2.68 2.04 2.82 2.05 0.23 
2.00 8.08 3.88 2.28 2.48 0.00 3.17 2.41 3.04 2.32 0.00 
2.25 8.98 4.33 1.92 2.12 -0.01 2.99 2.16 2.43 1.74 -0.23 

2.50 10.45 5.33 1.97 2.35 0.00 3.23 2.35 2.52 1.84 0.00 
2.75 12.31 6.61 2.18 2.70 0.01 3.41 2.54 2.94 2.22 0.23 
3.00 13.94 7.63 1.98 2.59 0.00 3.07 2.25 2.82 2.03 0.00 
3.25 16.17 9.27 2.28 2.86 -0.01 3.09 2.34 3.13 2.27 -0.23 

3.50 18.06 10.56 2.08 2.53 0.00 2.86 2.14 3.22 2.32 0.00 
3.75 20.20 12.23 2.12 2.39 0.01 3.18 2.43 3.38 2.52 0.23 

4.00 22.85 14.48 2.68 2.79 0.00 3.71 2.87 3.58 2.79 0.00 

Note: AM  and A lE denote columns for asymptotic predicted biases of 

EDM and EE respectively. 
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Table 7 100bias of estimators in 48 step experiments 
for step size 1.5 (&= 1i73.0', based on 2000 simulations). 

Start 	EM 	E 	Egi, 	E LA4 	Aj 	Ew a 	Ep' 	E v E 	Ep, 	Awe- 

0.00 0.66 0.60 0.60 0.70 0.00 0.68 0.69 0.58 0.59 0.00 

0.25 -0.22 -0.57 -0.46 -0.13 -0.42 -1.64 -2.04 -1.98 -2.03 -2.40 
0.50 0.31 -0.33 -0.14 0.38 -0.42 -1.25 -1.98 -1.82 -1.97 -2.37 

0.75 1.48 0.38 0.62 1.46 0.00 1.43 0.47 0.60 0.30 0.00 

1.00 2.41. 0.65 0.92 2.11 0.42 3.41 2.35 2.60 2.09 2.37 

1.25 3.48 1.03 1.27 2.67 0.42 3.92 2.86 3.28 2.54 2.40 
1.50 3.93 0.71 0.79 2.34 0.00 1.84 0.86 1.65 0.67 0.00 

1.75 4.71 0.73 0.55 2.06 -0.42 0.01 -0.83 0.18 -1.01 -2.40 
2.00 5.58 0.89 0.36 1.69 -0.42 -0.26 -0.97 0.13 -1.22 -2.37 

2.25 7.21 1.97 1.00 2.04 0.00 1.92 1.23 2.34 0.95 0.00 

2.50 8.11 2.44 0.96 1.62 0.42 3.64 2.87 3.89 2.54 2.37 

2.75 9.54 3.51 1.40 1.76 0.42 4.06 3.16 4.26 3.02 2.40 

3.00 10.82 4.51 1.70 1.91 0.00 2.79 1.68 2.76 1.70 0.00 
3.25 10.84 4.25 0.59 0.74 -0.42 0.32 -0.96 0.03 -0.86 -2.40 

3.50 12.20 5.32 0.73 0.99 -0.42 0.32 -1.09 -0.20 -0.98 -2.37 

3.75 14.20 6.85 1.28 1.81 0.00 2.58 1.11 1.79 1.04 0.00 

4.00 16.16 8.15 1.52 2.45 0.42 4.42 2.99 3.59 2.76 2.37 

Table 8 100 bias of estimators in 48 step experiments 
for step size 2.0 (,=1T /3•0'L based on 2000 simulations). 

Start 	EM 	E g 	Egv 	Ep,.i AM EWE Ep 	 Epv 

0.00 0.65 0.65 0.63 0.65 0.00 0.65 0.64 0.59 0.59 0.00 

0.25 -1.60 -1.79 -1.73 -1.55 -2.14 -5.63 -6.20 -5.73 -5.75 -6.93 

0.50 -2.13 -2.55 -2.42 -2.04 -3.00 -7.77 -8.78 -7.89 -7.94 -9.44 

0.75 -1.53 -2.28 -2.09 -1.45 -2.11 -5.30 -6.66 -5.71 -5.87 -6.44 

1.00 1.15 0.05 0.30 1.15 0.00 0.97 -0.63 0.25 -0.03 . 0.00 

1.25 4.17 2.50 2.79 3.98 2.11 7.55 5.83 6.47 5.99 6.44 

1.50 5.63 3.14 3.45 5.04 3.00 10.16 8.48 9.11 8.36 9.44 

1.75 5.64 2.28 2.52 4.40 2.14 8.04 6.49 7.23 6.18 6.93 

2.00 4.57 0.27 0.31 2.43 0.00 2.02 0.67 1.71 0.34 0.00 

2.25 3.92 -1.32 -1.58 0.60 -2.14 -4.00 -5.08 -3.74 -5.38 -6.93 

2.50 4.00 -2.15 -2.81 -0.68 -3.00 -6.77 -7.61 -6.29 -8.16 -9.44 

2.75 5.95 -0.89 -1.98 -0.08 -2.11 -4.28 -4.97 -3.73 -5.70 -6.44 

3.00 8.93 1.62 0.08 1.65 0.00 1.42 0.77 1.88 -0.11 0.00 

3.25 11.62 3.87 1.84 3.00 2.11 7.07 6.36 7.30 5.33 6.44 

3.50 13.59 5.60 3.05 3.78 3.00 9.93 9.01 10.02 8.16 9.44 

3.75 14.32 6.13 2.91 3.29 2.14 8.39 7.23 8.41 6.73 6.93 

4.00 13.56 5.22 1.20 1.34 0.00 2.63 1.16 2.62 1.21 0.00 
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Table 9 Numbers of 48 step experiments out of 2000 where 
m. i.e.' s of parameters can be obtained ()B--T -i/3.0" -). 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

0.00 2000 1953 1587 963 

0.25 1999 1976 1699 1079 

0.50 1999 1994 1882 1388 
0.75 2000 1970 1955 1685 
1.00 1999 1943 1863 1796 

1.25 1999 1970 1674 1674 
1.50 1999 1984 1567 1383 

1.75 2000 1972 1660 1075 
2.00 1999 1953 1857 948 
2.25 1999 1977 1937 1071 

2.50 1998 1994 1867 1336 

2.75 2000 1959 1717 1634 

3.00 1999 1934 1594 1774 

3.25 2000 1959 1692 1652 

3.50 1999 1982 1872 1376 
3.75 2000 1961 1946 1092 

4.00 1999 1938 1848 965 

2A4 



Table 10 	100m.s.e. and 100bias of 	' )1 in 48 step 
experiments ()=TT/3.0 1 , based on 2000 simulations). 

Step size 

0.5 1.0 - 1.5 2.0 

100 100 100 100 100 100 100 100 
bias 	m.s.e. 

A 
bias 	m.s.e. bias m.s.e. bias m.s.e. 

Start 

0.00 0.35 2.90 0.28 3.45 0.50 4.24 0.58 5.30 
0.25 0.08 3.11 0.00 3.65 -0.06 4.43 -1.02 5.32 
0.50 0.30 3.04 -0.12 3.60 0.15 4.52 -1.02 4.98 
0.75 0.60 3.11 -0.11 3.64 0.02 4.77 -1.00 5.40 
1.00 0.67 3.04 -0.04 3.60 -0.48 4.46 -0.17 5.65 
1.25 0.52 3.22 0.50 3.89 0.10 4.18 0.98 5.17 
1.50 0.57 3.15 0.09 3.65 0.40 4.15 1.83 4.87 
1.75 0.78 3.29 -0.10 3.71 0.79 4.45 2.07 5.10 
2.00 0.76 3.17 0.40 3.54 0.68 4.60 1.09 5.47 
2.25 0.52 3.42 0.03 3.75 0.39 4.82 -0.04 5.54 
2.50 0.48 3.34 -0.12 3.82 -0.53 4.42 -0.67 5.31 
2.75 0.81 3.47 -0.05 3.82 -0.19 4.30 -0.09 5.71 
3.00 0.74 3.32 -0.02 3.79 0.55 4.40 0.39 5.72 
3.25 0.50 3.52 0.45 4.14 0.01 4.59 0.47 5.36 
3.50 0.34 3.48 0.09 3.90 0.16 4.73 1.35 5.18 
3.75 0.53 3.61 -0.03 3.92 -0.05 4.95 1.68 5.23 
4.00 0,57 3.49 0.57 3.72 -0.45 4.68 0.63 5.54 
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Table 11 100m.s.e. and mean of 1/, in 48 step 
experiments ()$= it/3.O'.  based on 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

mean 	100 	mean 	100 	mean 	100 	mean 	100 
m.s.e. 	 m.s.e. 	 m.s.e. 	m.s.e. 

Start 

0.00 0.478 3.56 0.506 2.59 0.528 2.07 0.573 1.60 
0.25 0.481 3.55 0.509 2.47 0.525 2.16 0.558 1.80 
0.50 0.491 3.64 0.511 2.75 0.513 2.35 0.522 2.28 
0.75 0.501 3.42 0.513 2.84 0.506 2.56 0.487 3.03 
1.00 0.513 3.72 0.517 2.73 0.513 2.59 0.469 3.50 
1.25 0.521 4.05 0.526 2.69 0.528 2.38 0.484 3.08 
1.50 0.524 4.29 0.532 2.79 0.537 2.30 0.523 2.50 
1.75 0.530 4.25 0.532 2.89 0.537 2.44 0.560 2.01 
2.00 0.538 4.80 0.528 2.83 0.530 2.64 0.581 1.85 
2.25 0.542 5.23 0.529 2.80 0.525 2.90 0.571 2.07 
2.50 0.545 5.59 0.525 3.16 0.532 2.83 0.538 2.49 
2.75 0.544 5.66 0.524 3.31 0.538 2.46 0.502 3.28 
3.00 0.548 5.94 0.527 3.36 0.539 2.36 0.488 3.61 
3.25 0.548 6.21 0.531 3.17 0.534 2.40 0.497 3.24 
3.50 0.548 6.36 0.536 3.27 0.519 2.63 0.536 2.63 
3.75 0.547 6.43 0.531 3.13 0.510 2.81 0.566 2.08 
4.00 0.547 6.47 0.525 3.12 0.514 2.82 0.579 1.85 



Table 12 100 m.s.e. and mean of 1/sin 48 step 

	

experiments 	= TT/3.0", based on 2000 simulations). 

!!P size 

0.5 	 1.0 	 1.5 	 2.0 

mean 	100 	mean 	100 	mean 	100 	mean 	100 
A 

	

m.s.e. 	 m.s.e. 	m.s.e. 	 m.s.e. 
Start 

0.00 0.500 3.69 0.521 2.74 0.530 2.26 0.569 1.58 
0.25 0.499 3.69 0.524 2.50 0.533 2.23 0.559 1.79 
0.50 0.499 3.77 0.527 2.73 0.533 2.20 0.539 2.14 
0.75 0.500 3.43 0.520 2.88 0.532 2.17 0.526 2.46 
1.00 0.503 3.55 0.516 2.87 0.530 2.37 0.521 2.61 
1.25 0.502 3.67 0.523 2.69 0.529 2.37 0.523 2.51 
1.50 0.499 3.67 0.529 2.62 0.529 2.36 0.537 2.29 
1.75 0.498 3.38 0.526 2.73 0.529 2.41 0.557 1.87 
2.00 0.502 3.57 0.521 2.70 0.531 2.36 0.571 1.62 
2.25 0.501 3.63 0.525 2.51 0.533 2.43 0.563 1.83 
2.50 0.499 3.66 0.525 2.72 0.534 2.47 0.540 2.21 
2.75 0.496 3.53 0.519 2.89 0.529 2.33 0.525 2.66 
3.00 0.498 3.54 0.515 3.03 0.530 2.30 0.523 2.69 
3.25 0.496 3.63 0.519 2.78 0.533 2.25 0.521 2.58 
3.50 0.495 3.61 0.526 2.72 0.531 2.28 0.540 2.31 
3.75 0.492 3.59 0.521 2.69 0.530 2.23 0.558 1.81 
4.00 0.493 3.64 0.515 2.73 0.527 2.42 0.569 1.59 



Table 13 100m.s.e. of estimators in 96 step experiments 
for step size 0.5 (,B- T-1/3.0"'r  based on 2000 simulations). 

Start 	EM 	E 1 	Egp 	Ep,M Ap.j 	E PV 	A ve E 	Ep,' 

0.00 1.49 1.51 1.50 1.50 1.57 1.59 1.60 1.66 1.52 1.52 1.57 

0.25 1.63 1.64 1.64 1.66 1.57 1.75 1.76 1.66 1.65 1.65 1.57 

0.50 1.58 1.59 1.60 1.62 1.57 1.69 1.70 1.66 1.60 1.60 1.57 

0.75 1.53 1.52 1.54 1.56 1.57 1.63 1.63 1.66 1.54 1.53 1.57 

1.00 1.58 1.54 1.57 1.59 1.57 1.68 1.67 1.66 1.59 1.59 1.57 

1.25 1.77 1.69 1.72 1.75 1.57 1.86 1.85 1.66 1.74 1.73 1.57 

1.50 1.76 1.65 1.67 1.68 1.57 1.79 1.78 1.66 1.68 1.67 1.57 

1.75 1.81 1.64 1.61 1.62 1.57 1.72 1.71 1.66 1.63 1.62 1.57 

2.00 1.97 1.73 1.65 1.65 1.57 1.77 1.76 1.66 1.69 1.68 1.57 
2.25 2.32 2.00 1.85 1.84 1.57 2.00 2.00 1.66 1.86 1.85 1.57 

2.50 2.48 2.06 1.80 1.78 1.57 1.93 1.92 1.66 1.81 1.80 1.57 

2.75 2.74 2.19 1.75 1.71 1.57 1.85 1.84 1.66 1.73 1.72 1.57 

3.00 3.12 2.43 1.76 1.72 1.57 1.87 1.86 1.66 1.77 1.76 1.57 
3.25 3.75 2.88 1.92 1.87 1.57 2.07 2.06 1.66 1.91 1.90 1.57 

3.50 4.25 3.20 1.90 1.84 1.57 2.04 2.03 1.66 1.90 1.88 1.57 

3.75 4.89 3.60 1.80 1.74 1.57 1.90 1.88 1.66 1.78 1.77 1.57 

4.00 5.72 4.18 1.81 1.76 1.57 1.92 1.91 1.66 1.82 1.80 1.57 

Table 14 100. m.s.e. of estimators in 96 step experiments 

for step size 1.0 	(frTV/3.0', based on 2000 simulations). 

Start - E G EBP E ppj  ApM EwE Ep' Awe E Epv A 

0.00 1.82 1.84 1.83 1.83 1.90 1.99 2.02 2.04 1.94 1.94 1.97 

0.25 1.87 1.88 1.87 1.88 1.90 1.98 2.00 1.99 1.90 1.91 1.91 
0.50 1.86 1.88 1.88 1.88 1.90 1.88 1.90 1.94 1.81 1.82 1.85 
0.75 1.93 1.95 1.96 1.96 1.90 2.06 2.07 1.99 1.96 1.97 1.91 

1.00 1.94 1.95 1.96 1.98 1.90 2.10 2.11 2.04 1.98 1.99 1.97 

1.25 1.89 1.86 1.89 1.91 1.90 2.02 2.02 1.99 1.89 1.88 1.91 
1.50 1.89 1.85 1.87 1.91 1.90 1.94 1.94 1.94 1.85 1.84 1.85 

1.75 1.96 1.90 1.93 1.96 1.90 2.07 2.08 1.99 1.98 1.96 1.91 

2.00 1.95 1.84 1.87 1.88 1.90 2.06 2.06 2.04 1.98 1.96 1.97 

2.25 2.05 1.90 1.93 1.94 1.90 2.06 2.06 1.99 1.96 1.95 1.91 

2.50 2.13 1.94 1.96 1.97 1.90 1.98 1.97 1.94 1.90 1.89 1.85 

2.75 2.25 2.02 2.02 2.03 1.90 2.15 2.14 1.99 2.04 2.04 1.91 

3.00 2.36 2.06 2.04 2.05 1.90 2.21 2.21 2.04 2.08 2.07 1.97 

3.25 2.50 2.08 1.98 1.99 1.90 2.13 2.12 1.99 1.98 1.97 1.91 

3.50 2.62 2.11 1.96 1.98 1.90 2.03 2.03 1.94 1.93 1.92 1.85 

3.75 2.85 2.22 1.99 2.01 1.90 2.12 2.12 1.99 2.04 2.02 1.91 

4.00 3.09 2.32 1.95 1.95 1.90 2.15 2.15 2.04 2.06 2.04 1.97 

Note: AM,  A,and Adenote columns for asymptotic predicted m.s.e.'s of 
E, E and EJ respectively. 
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Table 15 100rm.s.e. of estimators in 96 step experiments 
for step size 1.5 	(,=1T/3.0iL, based on 2000 simulations). 

Start Eh ER ER EPM AVM E vv a Ep' 
4 

EWE Ep 

0.00 2.38 2.40 2.39 2.38 2.29 2.87 2.92 2.81 2.85 2.86 2.77 
0.25 2.30 2.31 2.30 2.31 2.28 2.63 2.68 2.62 2.59 2.60 2.57 
0.50 2.27 2.28 2.27 2.28 2.25 2.17 2.21 2.18 2.12 2.13 2.09 
0.75 2.21 2.22 2.21 2.23 2.23 1.91 1.93 1.92 1.82 1.83 1.82 
1.00 2.30 2.31 2.31 2.32 2.25 2.25 2.24 2.18 2.13 2.13 2.09 
1.25 2.36 2.36 2.37 2.39 2.28 2.81 2.79 2.62 2.65 2.65 2.57 
1.50 2.36 2.37 2.39 2.40 2.29 2.87 2.86 2.81 2.80 2.82 2.77 
1.75 2.27 2.27 2.30 2.32 2.28 2.56 2.57 2.62 2.51 2.55 2.57 
2.00 2.32 2.28 2.31 2.35 2.25 2.25 2.27 2.18 2.16 2.19 2.09 
2.25 2.31 2.22 2.26 2.30 2.23 2.03 2.04 1.92 1.90 1.89 1.82 
2.50 2.31 2.18 2.22 2.25 2.25 2.25 2.25 2.18 2.14 2.09 2.09 
2.75 2.57 2.37 2.40 2.43 2.28 2.80 2.81 2.62 2.76 2.70 2.57 
3.00 2.64 2.40 2.43 2.45 2.29 2.94 2.95 2.81 2.90 2.87 2.77 
3.25 2.54 2.30 2.34 2.35 2.28 2.67 2.70 2.62 2.61 2.61 2.57 
3.50 2.59 2.31 2.34 2.35 2.25 2.24 2.27 2.18 2.17 2.17 2.09 
3.75 2.68 2.30 2.28 2.29 2.23 1.99 1.98 1.92 1.90 1.89 1.82 
4.00 2.93 2.45 2.39 2.39 2.25 2.35 2.32 2.18 2.23 2.21 2.09 

Table 16 100xm.s.e. of estimators in 96 step experiments 
for step size 2.0 	()=TF/3.0', based on 2000 simulations). 

Start EM Ej E ev E V .m Ao, E..,E EPv Av 
* 

Ep AW E  

0.00 2.99 2.99 2.99 2.99 2.87 4.24 4.33 4.15 4.20 4.20 4.14 
0.25 2.88 2.89 2.88 2.89 2.85 4.07 4.17 4.14 4.03 4.04 4.11 
0.50 2.74 2.76 2.75 2.74 2.75 3.40 3.53 3.57 3.38 3.39 3.50 
0.75 2.42 2.44 2.43 2.43 2.56 2.16 2.28 2.31 2.13 2.15 2.23 
1.00 2.47 2.48 2.48 2.49 2.46 1.69 1.71 1.62 1.61 1.62 1.54 
1.25 2.58 2.55 2.56 2.60 2.56 2.43 2.33 2.31 2.25 2.23 2.23 
1.50 2.85 2.80 2.81 2.86 2.75 3.69 3.55 3.57 3.49 3.45 3.50 
1.75 3.00 2.96 2.98 3.02 2.85 4.35 4.25 4.14 4.16 4.13 4.11 
2.00 2.96 3.00 3.02 3.02 2.87 4.24 4.23 4.15 4.14 4.18 4.14 
2.25 2.82 2.93 2.98 2.94 2.85 4.02 4.07 4.14 3.95 4.08 4.11 
2.50 2.69 2.80 2.86 2.83 2.75 3.46 3.53 3.57 3.37 3.54 3.50 
2.75 2.51 2.54 2.61 2.61 2.56 2.32 2.37 2.31 2.20 2.32 2.23 
3.00 2.55 2.38 2.43 2.47 2.46 1.74 1.75 1.62 1.62 1.61 1.54 
3.25 2.87 2.50 2.51 2.57 2.56 2.40 2.38 2.31 2.32 2.18 2.23 
3.50 3.31 2.82 2.80 2.86 2.75 3.65 3.60 3.57 3.60 3.41 3.50 
3.75 3.52 3.01 2.98 3.02 2.85 4.41 4.38 4.14 4.37 4.21 4.11 
4.00 3.38 2.98 3.01 3.04 2.87 4.31 4.34 4.15 4.26 4.20 4.14 



Table 17 100,bias of estimators in 96 step experiments 
for step size 0.5 (=1T/3.0' based on 2000 simulations). 

Start EM E g E, AL,M Ewu E, E Ep 1 ' A v.  c 

0.00 0.28 0.28 0.27 0.28 0.00 0.38 0.37 0.33 0.33 0.00 
0.25 0.90 0.63 0.68 0.83 0.00 0.88 0.82 0.72 0.67 0.00 
0.50 1.39 0.88 0.91 1.12 0.00 1.12 1.02 0.98 0.89 0.00 
0.75 2.34 1.56 1.50 1.69 0.00 1.78 1.64 1.70 1.57 0.00 
1.00 3.11 2.07 1.79 1.91 0.00 2.20 2.04 2.07 1.91 0.00 
1.25 4.03 2.72 2.10 2.14 0.00 2.53 2.34 2.36 2.18 0.00 
1.50 4.76 3.20 2.09 2.04 0.00 2.45 2.25 2.38 2.19 0.00 
1.75 6.04 4.22 2.51 2.37 0.00 2.92 2.71 2.86 2.65 0.00 
2.00 7.17 5.08 2.62 2.40 0.00 3.10 2.88 2.98 2.77 0.00 
2.25 8.48 6.13 2.75 2.49 0.00 3.23 3.00 3.01 2.80 0.00 
2.50 9.68 7.09 2.66 2.34 0.00 3.04 2.81 2.86 2.65 0.00 
2.75 11.39 8.53 2.94 2.57 0.00 3.34 3.11 3.17 2.96 0.00 
3.00 12.96 9.83 2.92 2.52 0.00 3.38 3.15 3.17 2.95 0.00 
3.25 14.81 11.42 3.04 2.63 0.00 3.54 3.31 3.23 3.01 0.00 
3.50 16.50 12.87 2.90 2.45 0.00 3.29 3.05 3.05 2.83 0.00 
3.75 18.64 14.75 3.04 2.59 0.00 3.42 3.18 3.25 3.03 0.00 
4.00 20.75 16.58 3.01 2.55 0.00' 3.46 3.22 3.27 3.05 0.00 

Table 18 100'bias of estimators in 96 step experiments 
for step size 1.0 03=iT/3.0' -, based on 2000 simulations). 

Start EM E6 E&j, EPM Atm E,e Epv - EjE Ep AWE 

0.00 0.27 0.28 0.29 0.26 0.00 0.36 0.35 0.27 0.27 0.00 
0.25 0.51 0.31 0.37 0.52 -0.01 0.52 0.38 0.17 0.11 -0.23 
0.50 0.77 0.32 0.41 0.72 0.00 0.73 0.50 0.38 0.26 0.00 
0.75 0.99 0.26 0.37 0.78 0.01 0.85 0.57 0.64 0.44 0.23 
1.00 1.39 0.36 0.43 0.88 0.00 0.74 0.44 0.67 0.39 0.00 
1.25 2.28 0.94 0.89 1.31 -0.01 1.03 0.74 1.10 0.75 -0.23 
1.50 2.65 1.02 0.79 1.08 0.00 1.09 0.79 1.25 0.87 0.00 
1.75 3.23 1.36 0.87 1.04 0.01 1.34 1.01 1.51 1.12 0.23 
2.00 - 4.10 2.03 1.22 1.30 0.00 1.62 1.25 1.57 1.21 0.00 
2.25 4.69 2.41 1.20 1.27 -0.01 1.65 1.23 1.36 1.01 -0.23 
2.50 5.31 2.77 1.08 1.25 0.00 1.64 1.19 1.36 1.02 0.00 
2.75 5.99 3.17 0.92 1.17 0.01 1.58 1.15 1.44 1.09 0.23 
3.00 6.84 3.72 0.87 1.15 0.00 1.34 0.94 1.30 0.92 0.00 
3.25 8.21 4.78 1.28 1.54 -0.01 1.53 1.16 -1.61 1.18 -0.23 
3.50 9.04 5.32 1.06 1.25 0.00 1.44 1.09 1.64 1.19 0.00 
3.75 10.14 6.19 1.12 1.21 0.01 1.64 1.28 1.84 1.41 0.23 
4.00 11.49 7.34 1.42 1.43 0.00 1.89 1.48 1.83 1.43 0.00 

Note: ADM  and A denote columns for asymptotic predicted biases of 
E and E respectively. 
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Table 19 100'bias of estimators in 96 step experiments 
for step size 1.5 (=iTI3.0L, based on 2000 simulations). 

Start EM Eg E 8 i., E PM ADM E Ep' 4 
E.vE 	Ep A.J E 

0.00 0.50 0.52 0.54 0.49 0.00 0.47 0.46 0.47 0.47 0.00 
0.25 -0.06 -0.17 -0.11 -0.05 -0.42 -1.78 -2.01 -1.94 -1.97 -2.40 
0.50 0.01 -0.28 -0.18 0.04 -0.42 -1.73 -2.13 -2.08 -2.16 -2.37 
0.75 0.79 0.28 0.41 0.78 0.00 0.79 0.28 0.29 0.15 0.00 
1.00 1.35 0.53 0.68 1.21 0.42 2.84 2.28 2.44 2.20 2.37 
1.25 2.13 0.97 1.09 1.75 0.42 3.29 2.74 3.00 2.65 2.40 
1.50 2.10 0.55 0.60 1.32 0.00 0.99 0.50 0.92 0.45 0.00 
1.75 2.09 0.15 0.07 0.79 -0.42 -1.28 -1.71 -1.14 -1.73 -2.40 
2.00 2.54 0.23 -0.02 0.61 -0.42 -1.30 -1.66 -1.11 -1.77 -2.37 
2.25 3.38 0.78 0.30 0.79 0.00 0.79 0.45 1.04 0.35 0.00 
2.50 4.09 1.29 0.54 0.86 0.42 2.81 2.42 3.00 2.33 2.37 
2.75 5.13 2.17 1.12 1.27 0.42 3.34 2.89 3.52 2.90 2.40 
3.00 5.60 2.50 1.08 1.16 0.00 1.51 0.95 1.57 1.04 0.00 
3.25 5.47 2.23 0.39 0.43 -0.42 -0.85 -1.49 -0.91 -1.36 -2.40 
3.50 5.96 2.55 0.24 0.35 -0.42 -0.98 -1.69 -1.24 -1.63 -2.37 
3.75 7.22 3.59 0.79 1.02 0.00 1.39 0.65 0.95 0.59 0.00 
4.00 8.27 4.33 1.00 1.41 0.42 3.33 2.62 2.97 2.57 2.37 

Table 20 100bias of estimators in 96 step experiments 
for step size 2.0 	(=TV13.0', based on 2000 simulations). 

Start EM E 13 E 13p E p n  APM EWE Ep' EwE Eev AE 

0.00 0.46 0.49 0.49 0.45 0.00 0.44 0.42 0.45 0.44 0.00 
0.25 -1.61 -1.66 -1.62 -1.61 -2.14 -5.98 -6.31 -6.05 -6.06 -6.93 
0.50 -2.45 -2.61 -2.54 -2.41 -3.00 -8.48 -9.04 -8.58 -8.62 -9.44 
0.75 -1.70 -2.01 -1.91 -1.67 -2.11 -5.82 -6.53 -6.04 -6.11 -6.44 
1.00 0.63 0.12 0.25 0.63 0.00 0.57 -0.25 0.16 0.02 0.00 
1.25 3.21 2.43 2.58 3.12 2.11 7.07 6.21 6.46 6.24 6.44 
1.50 4.51 3.35 3.51 4.24 3.00. 9.93 9.07 9.42 9.07 9.44 
1.75 3.89 2.30 2.42 3.31 2.14 7.49 6.70 7.13 6.62 6.93 
2.00 2.19 0.11 0.14 1.14 0.00 0.87 0.18 0.78 0.11 0.00 
2.25 0.85 -1.72 -1.85 -0.79 -2.14 -5.61 -6.16 -5.39 -6.20 -6.93 
2.50 0.52 -2.51 -2.83 -1.80 -3.00 -8.12 -8.54 -7.87 -8.79 -9.44 
2.75 1.80 -1.59 -2.13 -1.20 -2.11 -5.47 -5.81 -5.18 -6.16 -6.44 
3.00 4.35 0.72 -0.05 0.72 0.00 0.62 0.30 0.84 -0.14 0.00 
3.25 6.81 2.97 1.97 2.53 2.11 6.74 6.39 6.89 5.91 6.44 
3.50 8.29 4.33 3.05 3.42 3.00 9.60 9.15 9.74 8.82 9.44 
3.75 8.41 4.36 2.76 2.95 2.14 7.82 7.24 7.94 7.11 6.93 
4.00 6.94 2.79 0.78 0.84 0.00 1.41 0.68 1.50 0.80 0.00 



Table 21 Numbers of 96 step experiments out of 2000 where 
m.l.e.'s of parameters can be obtained 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

0.00 2000 1999 1906 1463 
0.25 2000 1998 1949 1548 
0.50 2000 2000 1988 1788 
0.75 2000 2000 1998 1946 
1.00 2000 1997 1984 1978 
1.25 2000 2000 1954 1943 
1.50 2000 2000 1904 1813 
1.75 2000 1997 1939 1569 
2.00 2000 1999 1989 1453 
2.25 2000 1998 1998 1570 
2.50 2000 2000 1989 1787 
2.75 ' 	 2000 2000 1951 1933 
3.00 2000 1997 1904 1984 
3.25 2000 2000 1949 1948 

3.50 2000 2000 1989 1793 
3.75 2000 1997 1998 1580 
4.00 2000 1999 1983 1456 
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Table 22 100m.s.e. and 100'bias of yin 96 step 
experiments 3=tTI3.0 , based on 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

100 100 100 100 100 100 100 100 
bi&s m..e. bias m.s.e. bias m..e. bias m.s'.e. 

Start 

0.00 0.27 1.54 0.28 1.83 0.47 2.22 0.46 2.60 
0.25 0.24 1.67 0.30 1.88 0.57 2.24 0.06 2.50 
0.50 0.12 1.62 0.07 1.89 0.40 2.37 0.34 2.61 
0.75 0.38 1.55 -0.20 1.96 0.15 2.38 0.47 2.87 
1.00 0.34 1.57 -0.15 1.92 -0.45 2.39 0.05 3.21 
1.25 0.38 1.70 0.34 1.87 -0.09 2.26 -0.14 2.95 
1.50 0.21 1.64 0.07 1.89 0.20 2.20 0.26 2.61 
1.75 0.47 1.57 -0.01 1.92 0.53 2.21 0.60 2.53 
2.00 0.38 1.59 0.33 1.84 0.51 2.41 0.23 2.64 
2.25 0.40 1.75 0.34 1.91 0.02 2.42 0.01 2.56 

2.50 0.26 1.70 0.09 1.94 -0.57 2.30 0.35 2.70 
2.75 0.48 1.63 -0.16 2.00 -0.12 2.29 0.50 2.98 
3.00 0.35 1.64 -0.10 1.98 0.52 2.24 0.07 3.13 
3.25 0.42 1.78 0.41 - 	 1.94 0.63 2.26 -0.52 2.92 
3.50 0.25 1.75 0.12 1.95 0.44 2.43 0.02 2.64 
3.75 0.41 1.65 0.07 1.96 0.21 2.43 0.80 2.56 
4.00 0.32 1.68 0.40 1.90 -0.40 2.44 0.50 2.63 
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Table 23 100m.s.e. and mean of 	in 96 step 
experiments ($= ff/3•0L, based on 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

mean 	100 	mean 	100 	mean 	100 	mean 	100 
m.s.e. 	 m.s.e. 	 m.s.e. 	m.s.e. 

Start 

0.00 0.512 2.00 0.527 1.43 0.543 1.07 0.587 0.90 
0.25 0.516 1.90 0.528 1.42 0.538 1.11 0.571 0.92 
0.50 0.519 1.98 0.530 1.48 0.528 1.23 0.536 1.14 
0.75 0.524 1.94 0.530 1.49 0.523 1.36 0.499 1.58 
1.00 0.529 2.03 0.533 1.45 0.529 1.36 0.483 1.93 
1.25 0.535 2.02 0.539 1.44 0.540 1.17 0.501 1.71 
1.50 0.536 2.16 0.542 1.49 0.549 1.15 0.538 1.24 
1.75 0.540 2.15 0.538 1.52 0.547 1.25 0.573 1.04 
2.00 0.544 2.28 0.538 1.51 0.537 1.34 0.591 1.00 
2.25 0.547 2.24 0.538 1.48 0.531 1.43 0.578 1.04 
2.50 0.546 2.38 0.538 1.55 0.537 1.36 0.542 1.23 
2.75 0.547 2.36 0.537 1.58 0.544 1.23 0.507 1.75 
3.00 0.549 2.48 0.537 1.56 0.550 1.15 0.491 1.96 
3.25 0.551 2.44 0.542 1.52 0.544 1.18 0.504 1.64 
3.50 0.550 2.64 0.544 1.57 0.531 1.28 0.543 1.26 
3.75 0.549 2.65 0.539 1.57 0.525 1.42 0.575 1.05 
4.00 0.550 2.69 0.538 1.55 0.530 1.41 0.591. 0.98 

304 



Table 24 100'm.s.e. and mean of 111$in  96 step 

experiments (,=Ti/3.dIL,  based on 2000 simulations). 

Step size 

0.5 1.0 1.5 2.0 

mean 100 mean 100 mean 100 mean 100 
m.s.e. m.s.e. m.s.e. 

-< 
m.s.e. 

Start 

0.00 0.524 2.05 0.533 1.49 0.534 1.34 0.560 0.84 

0.25 0.525 1.94 0.537 1.43 0.536 1.29 0.551 0.92 

0.50 0.523 2.00 0.539 1.45 0.540 1.14 0.540 1.09 
0.75 0.523 1.92 0.535 1.49 0.542 1.10 0.538 1.04 
1.00 0.524 1.99 0.532 1.50 0.540 1.25 0.539 1.03 

1.25 0.525 1.90. 0.537 1.42 0.534 1.30 0.540 1.14 
1.50 0.522 1.97 0.540 1.40 0.534 1.39 0.543 1.15 

1.75 0.522 1.89 0.534 1.47 0.537 1.39 0.552 1.01 

2.00 0.524 1.95 0.533 1.49 0.540 1.21 0.560 0.87 
2.25 0.525 1.83 0.536 1.40 0.542 1.13 0.552 0.98 

2.50 0.522 1.92 0.538 1.41 0.540 1.21 0.539 1.15 

2.75 0.522 1.85 0.534 1.47 0.533 1.32 0.539 1.18 
3.00 0.523 1.90 0.531 1.51 0.533 1.35 0.540 1.05 

3.25 0.524 1.82 0.537 1.41 0.535 1.29 0.537 1.07 

3.50. 0.522 1.95 0.539 1.39 0.540 1.14 0.542 1.14 
3.75 0.521 1.91 0.533 1.46 0.542 1.11 0.551 0.99 

4.00 0.522 1.93 0.532 1.48 0.539 1.25 0.560 0.84 
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Start 

Table 	1 	lOOxrn.s.e. 

experiments for step 

EM 	E g 	Ei, 

of estimators of 

	

size 	0.5 	05= Tr/3.0z, 

	

E, 	A pj 	Ewg 

L1 1-- in 48 observation UDTF 41 
based on 2000 simulations). 

Epv 	A wc. 	EWE - Ery 	AC 

-2.00 5.93 4.11 3.95 4.04 3.94 4.38 4.39 4.17 3.99 4.10 3.96 

-1.75 5.10 3.87 4.03 4.14 3.94 4.50 4.50 4.17 4.12 4.22 3.96 

-1.50 4.23 3.51 3.88 4.01 3.94 4.31 4.33 4.17 3.95 4.06 3.96 

-1.25 3.89 3.48 3.82 3.97 3.94 4.19 4.21 4.17 3.89 3.99 3.96 

-1.00 3.49 3.40 3.71 3.87 3.94 4.00 4.04 4.17 3.71 3.85 3.96 

-0.75 3.47 3.53 3.71 3.87 3.94 3.95 4.01 4.17 3.72 3.88 3.96 

-0.50 3.43 3.58 3.66 3.76 3.94 3.89 3.98 4.17 3.64 3.81 3.96 

-0.25 3.45 3.62 3.61 3.69 3.94 3.82 3.91 4.17 3.60 3.77 3.96 

0.00 3.54 3.71 3.66 3.70 3.94 3.82 3.97 4.17 3.64 3.72 3.96 

0.25 3.72 3.81 3.78 3.89 3.94 3.98 4.06 4.17 3.81 3.83 3.96 

0.50 3.86 3.82 3.86 4.00 3.94 4.12 4.17 4.17 3.86 3.76 3.96 

0.75 4.27 4.02 4.15 4.37 3.94 4.54 4.54 4.17 4.23 4.01 3.96 

1.00 4.87 4.34 4.47 4.70 3.94 4.91 4.89 4.17 4.53 4.08 3.96 

1.25 5.52 4.63 4.74 4.93 3.94 5.25 5.22 4.17 4.82 4.32 3.96 

1.50 6.62 5.21 5.12 5.24 3.94 5.61 5.55 4.17 5.20 4.54 3.96 

1.75 7.91 5.86 5.39 5.46 3.94 5.96 5.88 4.17 5.54 4.84 3.96 

2.00 9.99 7.03 5.76 5.71 3.94 6.34 6.23 4.17 5.84 4.91 3.96 

Table 2 	lOOXm.s.e. of estimators of LIf€ in 48 observation UDTR 

experiments for step size 1.0 7/3.0' based on 2000 simulations). 

Start E4 Eg EPD Ep.i A D M EWE Epy AWE t.i EWE* Epv A 

-2.00 4.68 4.32 4.88 4.96 4.86 5.32 5.44 5.34 5.04 5.29 5.22 

-1.75 4.49 4.34 4.79 4.91 4.86 5.00 5.11 4.92 4.67 4.87 4.75 

-1.50 4.37 4.50 4.87 4.95 4.90 4.83 4.96 4.77 4.60 4.77 4.54 

-1.25 4.38 4.61 4.83 4.91 4.89 5.08 5.23 5.19 4.84 5.06 5.01 

-1.00 4.23 4.50 4.62 4.70 4.86 5.03 5.19 5.34 4.76 4.99 5.22 

-0.75 4.30 4.60 4.61 4.70 4.86 4.67 4.85 4.92 4.48 4.69 4.75 

-0.50 4.47 4.79 4.75 4.80 4.90 4.68 4.87 4.77 4.48 4.66 4.54 

-0.25 4.61 4.86 4.81 4.86 4.89 5.05 5.26 5.19 4.79 4.97 5.01 

0.00 4.51 4.73 4.67 4.70 4.86 5.08 5.26 5.34 4.83 5.05 5.22 

0.25 4.65 4.77 4.74 4.80 4.86 4.82 4.98 4.92 4.64 4.80 4.75 

0.50 4.86 4.89 4.90 4.99 4.90 4.88 4.95 4.77 4.68 4.69 4.54 

0.75 5.02 4.97 5.02 5.19 4.89 5.36 5.40 5.19 5.11 5.08 5.01 

1.00 5.35 5.06 5.17 5.38 4.86 5.66 5.68 5.34 5.38 5.36 5.22 

1.25 5.58 5.04 5.21 5.42 4.86 5.47 5.49 4.92 5.15 5.05 4.75 

1.50 6.08 5.26 5.42 5.65 4.90 5.57 5.51 4.77 5.28 4.99 4.54 

1.75 6.55 5.40 5.56 5.77 4.89 6.02 5.95 5.19 5.67 5.36 5.01 

2.00 7.19 5.61 5.67 5.89 4.86 6.30 6.22 5.34 5.93 5.65 5.22 

Note: A, Aand Adenote columns for asymptotic predicted m.s.e.'s of 

Et'M r Eand Erespectively 
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Table 3 	lOOxrn.s.e. of estimators of Lç1 in 48 observation UDTR 

experiments for step size 1.5 	(p=1T/3.0" based on 2000 simulations). 

Start EM Er, EgD E E 	e Epv A/E E Ep * h 

-2.00 5.17 5.70 6.19 6.11 6.18 5.76 6.10 5.74 5.57 5.37 5.52 

-1.75 5.47 5.98 6.30 6.25 6.23 7.43 7.71 7.58 6.99 7.19 7.45 

-1.50 5.39 5.71 5.88 5.94 6.01 7.54 7.76 8.08 7.08 7.56 8.04 

-1.25 5.30 5.67 5.74 5.79 5.71 6.57 6.73 6.73 6.24 6.66 6.65 

-1.00 5.34 5.90 5.89 5.86 5.63 5.16 5.34 4.83 5.04 5.38 4.67 

-).75 5.57 6.14 6.07 6.00 5.87 4.65 4.97 4.34 4.63 4.67 4.13 

-0.50 6.09 6.63 6.55 6.48 6.18 6.02 6.40 5.74 5.84 5.57 5.52 

-0.25 5.81 6.24 6.18 6.08 . 6.23 7.27 7.61 7.58 6.86 6.97 7.45 

0.00 5.51 5.77 5.73 5.70 6.01 7.32 7.68 8.08 6.87 7.40 8.04 

0.25 5.56 5.71 5.68 5.73 5.71 6.51 6.81 6.73 6.19 6.75 6.65 

0.50 5.70 5.84 5.82 5.83 5.63 5.21 5.39 4.83 5.05 5.43 4.67 

0.75 6.15 6.05 6.06 6.19 5.87 4.87 4.93 4.34 4.79 4.69 4.13 

1.00 6.73 6.47 6.54 6.70 6.18 6.34 6.25 5.74 6.15 5.54 5.52 

1.25 6.85 6.49 6.61 6.80 6.23 7.97 7.87 7.58 7.58 7.27 7.45 

1.50 6.66 6.13 6.29 6.51 6.01 7.96 8.01 8.08 7.55 7.77 8.04 

1.75 6.62 5.88 6.08 6.32 5.71 7.04 7.14 6.73 6.68 7.02 6.65 

2.00 7.35 6.24 6.43 6.68 5.63 5.99 6.01 4.83 5.78 5.90 4.67 

Table 4 	100%m.s.e. of estimators of LI,(in 48 observation UDTR 

experiments for step size 2.0 	(=1T/3.0" 	based on 2000 simulations). 

Start E fA E8 E, EM APM EE Epv A wE EVV f E pV,  AtE 

-2.00 7.50 7.88 8.17 8.13 8.04 11.85 12.07 12.68 11.16 12.41 12.67 

-1.75 6.84 6.81 6.93 7.12 7.29 10.30 10.25 11.02 9.59 9.94 10.94 

-1.50 6.41 6.60 6.61 6.73 6.34 7.79 7.70 7.54 7.40 7.34 7.39 

-1.25 5.68 6.22 6.16 6.12 5.81 4.56 4.67 4.13 4.56 4.80 3.98 

-1.00 5.88 6.91 6.80 6.52 6.32 3.87 4.29 3.40 4.01 3.75 3.26 

-0.75 7.23 8.27 8.16 7.87 7.54 6.40 7.06 6.02 6.32 4.40 5.04 

-0.50 8.54 9.48 9.40 9.07 8.41 10.16 10.85 9.87 9.72 7.35 9.67 

-0.25 8.46 9.12 9.06 8.83 8.48 11.93 12.46 12.32 11.31 11.21 12.21 

0.00 7.71 8.12 8.09 7.97 8.04 11.61 12.10 12.68 10.08 12.34 12.67 

0.25 6.87 7.09 7.07 7.08 7.29 10.13 10.72 11.02 9.48 10.36 10.94 

0.50 6.14 6.40 6.39 6.32 6.34 7.33 7.88 7.54 6.97 7.21 7.39 

0.75 5.93 6.01 5.99 5.99 5.81 4.44 4.76 4.13 4.45 4.80 3.98 

1.00 6.85 6.54 6.54 6.75 6.32 4.11 4.08 3.40 4.21 3.86 3.26 

1.25 8.62 7.86 7.90 8.33 7.54 6.79 6.43 6.02 6.72 4.46 5.84 

1.50 9.98 9.08 9.21 9.58 8.41 10.88 10.28 9.87 10.36 7.31 9.67 

1.75 9.94 9.23 9.43 9.67 8.48 12.89 12.46 12.32 12.31 11.48 12.21 

2.00 8.84 8.23 8.46 8.64 8.04 12.21 12.21 12.68 11.59 12.53 12.67 
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Table 5 100ihias of estimators of L 
in 48 observation UDTR 

experiments for step size 0.5 T/ 3.0" based on 2000 simulationS). 

Start F M  E E EDM I\p Fw E E PV  
* 

EWE 

-2.00 -17.47-10.431-1.26 -1.46 2.27 -3.07 -2.30 -2.26 -1.57 1.75 

-1.75 -14.27 -8.07 -1.58 -1.75 2.27 -3.22 -2.47 -2.50 -1.82 1.75 

-1.50 -10.69 -5.26 -1.01 -1.26 2.27 -2.65 -1.92 	-1.87 -1.20 1.75 

-1.25 -8.43 -3.88 -1.45 -1.75 2.27 -2.99 -2.30 	-2.28 -1.62 1.75 

-1.00 -5.15 	-1.41 	-0.23 -0.68 2.27 -1.68 -1.06 -1.07 -0.46 1.75 

-0.75 -3.17 -0.33 -0.01 -0.55 2.27 -1.24 -0.73 	-0.63 -0.10 1.75 

-0.50 -0.86 1.18 1.13 0.46 2.27 0.07 0.42 0.55 0.95 1.75 

-0.25 0.43 1.55 1.41 0.89 2.27 0.74 0.92 1.08 1.29 1.75 

0.00 3.00 3.27 3.24 3.02 2.27 2.74 2.71 3.05 3.08 1.75 

0.25 4.61 3.96 4.03 4.21 2.27 3.83 3.62 4.05 3.90 1.75 

0.50 6.57 5.07 5.11 5.53 2.27 5.05 4.65 5.16 4.86 1.75 

0.75 8.67 6.22 5.94 6.45 2.27 6.24 5.71 6.25 5.83 1.75 

1.00 11.73 8.42 7.41 7.86 2.27 7.86 7.21 7.88 7.36 1.75 

1.25 14.09 9.84 7.68 7.89 2.27 8.28 7.58 8.24 7.67 1.75 

1.50 17.54 12.38 8.63 8.65 2.27 9.38 8.61 9.21 8.59 1.75 

1.75 20.82 14.71 8.86 8.66 2.27 9.69 8.88 9.49 8.84 1.75 

2.00 25.60 18.61 10.24 9.89 2.27 10.98 10.13 10.70 10.04 1.75 

Table 6 100hias of estimators of Ljf 	in 48 observation UDTR 

experiments for step size 1.0 (=iT/3.0v based on 2000 simulations). 

ES ESD E DM AØi EVE Epy Ew Epv Awe 
Start EM 

-2.00 -7.51 -0.17 3.03 1.99 3.87 0.42 1.65 1.00 2.30 2.51 

-1.75 -5.57 0.92 2.95 1.93 3.99 0.05 1.24 0.80 2.10 2.39 

-1.50 -3.18 2.50 3.61 2.54 4.01 1.55 2.73 2.13 3.40 3.19 

-1.25 -1.99 2.79 3.17 2.16 3.89 1.34 2.46 1.94 
1.71 

3.15 
2.84 

3.31 
2.51 

-1.00 -0.54 3.43 3.39 2.24 3.87 1.08 2.08 

-0.75 0.72 3.82 3.54 2.50 3.99 1.22 2.05 1.90 2.88 2.39 

-0.50 2.14 4.39 4.11 3.13 4.01 2.69 3.26 3.10 3.82 3.19 

-0.25 2.98 4.35 4.15 3.45 3.89 3.20 3.45 3.67 4.10 3.31 

0.00 3.88 4.41 4.38 3.90 3.87 3.01 2.91 3.53 3.64 2.51 

0.25 4.97 4.62 4.76 4.65 3.99 3.23 2.81 3.87 3.69 2.39 

0.50 6.39 5.16 5.43 5.64 4.01 5.04 4.31 5.32 4.86 3.19 

0.75 7.32 5.15 5.41 5.94 3.89 5.46 4.51 5.69 5.00 3.31 

1.00 8.64 5.67 5.75 6.40 3.87 5.28 4.14 5.62 4.79 2.51 

1.25 10.25 6.36 6.07 6.85 3.99 5.39 4.17 5.84 4.91 2.39 

1.50 12.54 7.78 6.91 7.66 4.01 7.05 5.73 7.29 6.25 3.19 

1.75 14.14 8.45 6.75 7.43 3.89 7.13 5.73 7.51 6.43 3.31 

2.00 16.33 9.79 7.00 7.71 3.87 6.91 5.47 7.46 6.36 2.51 

Note: 0 and AEdenote columns for asymptotic predicted 
biases of 

and E WE respectively. 
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Table 7 loOxbias of estimators of L,frmn 48 observation UDTR 

experiments for step size 1.5 (3=1T/3.0" based on 2000 simulations). 

Start EM E S EBo EDM A om Ewe Epv EWE*  Epv' AE 

-2.00 -1.83 5.73 7.01 5.45 6.31 6.54 8.18 6.80 8.61 8.31 
-1.75 -1.73 5.03 5.59 3.99 5.16 4.71 6.28 5.09 6.95 6.92 
-1.50 -1.91 3.99 4.05 2.39 3.95 0.47 2.05 1.14 2.98 2.06 
-1.25 -0.64 4.30 4.06 2.44 3.89 -1.84 -0.39 -0.86 0.89 -1.15 
-1.00 1.62 5.83 5.51 3.84 5.03 -0.06 1.19 0.97 2.58 0.41 
-0.75 3.81 7.16 6.84 5.38 6.25 4.50 5.53 5.00 6.34 5.02 
-0.50 5.61 8.10 7.84 6.59 6.31 8.20 8.97 8.33 9.33 8.31 
-0.25 4.79 6.46 6.32 5.26 5.16 6.95 7.21 7.12 7.75 6.92 
0.00 4.08 4.92 4.88 4.10 3.95 3.02 2.83 3.61 3.82 2.06 
0.25 4.44 4.27 4.34 4.11 3.89 0.17 -0.46 1.04 0.85 -1.15 
0.50 5.99 5.11 5.29 5.28 5.03 1.48 0.42 2.36 1.84 0.41 
0.75 8.23 6.42 6.71 7.17 6.25 5.97 4.66 6.35 5.49 5.02 
1.00 10.23 7.51 7.89 8.61 6.31 9.88 8.38 9.90 8.77 8.31 
1.25 10.24 6.71 7.02 7.82 5.16 9.11 7.34 9.12 7.83 6.92 
1.50 9.93 5.57 5.59 6.48 3.95 5.02 3.16 5.51 4.13 2.06 
1.75 10.80 5.47 5.06 6.17 3.89 2.01 0.08 2.76 1.35 -1.15 
2.00 13.43 7.34 6.33 7.43 5.03 3.39 1.42 4.24 2.84 0.41 

Table 8 lOOThias of estimators of L,in 48 observation UDTR 

experiments for step size 2.0 (=1T/3.0' based on 2000 simulations). 

Start EM E8 E 	13 Ep Ap E w g Ep' E v * 	Ep V* AwE 

-2.00 -3.90 3.85 3.99 1.82 2.74 -0.29 1.75 0.62 3.13 1.30 
-1.75 -5.74 0.97 0.74 -1.43 -0.09 -8.63 -6.72 -7.22 -4.80 -8.07 
-1.50 -3.90 2.01 1.67 -0.52 0.51 -9.24 -7.43 -7.80 -5.46 -9.64 
-1.25 0.42 5.68 5.32 3.20 4.16 -3.52 -1.93 -2.43 -0.18 -3.64 
-1.00 6.95 11.40 11.09 9.12 8.79 6.59 8.08 7.14 9.09 6.21 
-0.75 10.41 14.09 13.87 12.00 11.75 14.93 16.16 14.90 16.56 15.16 
-0.50 10.70 13.54 13.39 11.75 11.22 17.84 18.75 17.47 18.76 18.32 
-0.25 6.83 8.81 8.73 7.35 7.45 12.02 12.31 12.04 12.87 12.75 
0.00 3.31 4.39 4.36 3.34 2.74 2.50 2.18 3.26 3.60 1.30 
0.25 0.40 0.45 0.46 0.03 -0.09 -6.45 -7.35 -5.26 -5.46 -8.07 
0.50 1.35 0.59 0.66 0.64 0.51 -7.92 -9.26 -6.60 -7.18 -9.64 
0.75 5.48 4.00 4.15 4.55 4.16 -2.27 -3.99 -1.29 -2.13 -3.64 
1.00 11.37 9.06 9.31 10.10 8.79 7.39 5.48 7.86 6.66 6.21 
1.25 15.50 12.31 12.66 13.71 11.75 15.91 13.86 15.91 14.41 15.16 
1.50 16.34 12.31 12.73 13.87 11.22 19.45 17.19 18.96 17.22 18.32 
1.75 13.45 8.53 8.83 10.01 7.45 14.19 11.66 14.06 12.20 12.75 
2.00 10.59 4.84 4.80 5.99 2.74 4.90 2.26 5.58 3.71 1.30 

0 
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Table 9 Mean and 100m.s.e. of 1 	in 48 observation 

UDTR experiments (,$ff/3.0'IL, based on 2000 simulations). 

Step size 

0.5 
	

1.0 	 1.5 	 2.0 

100 	 100 	 100 	 100 
)c 	 X 	 A 	 Al 

mean 	m.s.e. 	mean 	m.s.e. 	mean m.s.e. 	mean 	m.s.e 
Start 

-2.00 
-1.75 
-1.50 
-1.25 
-1.00 
-0.75 
-0.50 
-0.25 
0.00 
0.25 
0.50  
0.75  
1.00 
1.25 
1.50 
1.75  
2.00 

0.492 
0.491 

0.494  
0.489 
0.485 
0.475 
0.463 
0.453 
0.449 
0.453 
0.459 
0.477 
0.491 
0.506 
0.516 
0.5.33 
0.533 

6.74 0.496 

6.05 0.491 

5.96 0.488 
5.41 0.498 
5.63 0.487 
5.04 0.483 
5.23 0.482 
5.00 0.484 
5.35 0.481 
5.01 0.476 
5.22 0.478 
5.21 0.490 
5.71 0.493 
6.40 0.495 
7.30 0.495 
8.61 0.507 
9.13 0.505 

4.16 0.496 

4.12 0.523 

4.14 0.520 
3.98 0.489 
3.95 0.460 
3.92 0.464 
4.08 0.494 
3.97 0.518 
3.85 0.520 
3.96 0.493 
3.91 0.462 
3.88 0.462 
3.86 0.493 
4.10 0.524 
4.29 0.529 
4.60 0.505 
4.60 0.476 

4.25 0.600 

3.15 0.553 
2.62 0.476 
3.11 0.410 
4.42 0.396 
4.64 0.434 
4.14 0.511 
3.04 0.582 
2.68 0.600 
3.12 0.554 
4.31 0.478 
4.71 0.415 
4.25 0.395 
3.16 0.434 
2.82 0.509 
3.15 0.584 
4.51 0.608 

2.13 

2.15 
3.59  
5.91 
7.03 
5.81 
4.07 
2.54 
2.01 
1.98 
3.43 
5.57 
6.97 
6.10 
4.23 
2.89 
2.46 
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Table 10 Numbers of 48 observation UDTR experiments out of 
2000 where m.1.e.'s of parameters can be obtained (=iT/3.0'9. 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

-2.00 1969 1927 1603 992 
-1.75 1978 1956 1492 1305 
-1.50 1979 1930 1607 1501 
-1.25 1994 1906 1791 1437 
-1.00 1990 1944 1773 1301 
-0.75 1995 1966 1727 1174 
-0.50 1995 1939 1591 969 
-0.25 1995 1906 1434 823 
0.00 1995 1921 1541 918 
0.25 1997 1958 1772 1234 
0.50 1993 1932 1786 1471 
0.75 1992 1913 1731 1483 
1.00 1997 1925 1604 1319 
1.25 1995 1953 1493 1191 
1.50 1987 1936 1554 998 
1.75 1992 1897 1736 885 
2.00 1992 1916 1780 941 
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Table 11 Values of mean and m.s.e. of Land 1/)3 in 48 

observation UDTR experiments for step size 0.5 (, =Tr/3.0'9. 

100 100 100 

Start mean 	xu.s.e. 
)1 

A 
7' 

m.s.e. 

-2.00 -0.16 3.91 3.68 0.496 3.89 5.22 

-1.75 -0.75 3.96 3.68 0.497 3.90 5.22 

-1.50 -0.12 3.82 3.68 0.500 3.98 5.22 

-1.25 -0.84 3.78 3.68 0.500 4.03 5.22 

-1.00 -0.02 3.77 3.68 0.499 4.27 5.22 
-0.75 -0.47 3.79 3.68 0.498 4.46 5.22 

-0.50 0.00 3.71 3.68 0.496 4.64 5.22 
-0.25 -0.65 3.64 3.68 0.495 4.69 5.22 

0.00 0.25 3.58 3.68 0.493 4.62 5.22 

0.25 -0.15 3.70 3.68 0.494 4.72 5.22 
0.50 0.10 3.62 3.68 0.489 4.90 5.22 
0.75 -0.17 3.78 3.68 0.491 4.72 5.22 

1.00 0.53 3.78 3.68 0.492 4.69 5.22 
1.25 -0.03 4.00 3.68 0.488 4.70 5.22 

1.50 0.27 4.03 3.68 0.489 4.86 5.22 

1.75 -0.38 4.31 3.68 0.494 5.21 5.22 
2.00 0.68 4.25 3.68 0.488 4.76 5.22 

Table 12 Values of mean and m.s.e. of 	and 1/)3 in 48 

observation UDTR experiments for step size 1.0 (=1T/3.0"2 ). 

100 100 100 
Start 

X mean 	m.s.e. ALd, mean m.s.e. Al/a 

-2.00 -0.04 4.48 4.36 0.521 3.08 3.35 

-1.75 -0.42 4.48 4.38 0.519 2.85 3.27 

-1.50 -0.14 4.54 4.38 0.516 3.13 3.34 
-1.25 -0.43 4.43 4.36 0.520 3.12 3.42 

-1.00 -0.06 4.23 4.36 0.519 3.09 3.35 

-0.75 -0.35 4.31 4.38 0.520 2.97 3.27 

-0.50 -0.47 4.39 4.38 0.517 3.28 3.34 

-0.25 -0.52 4.28 4.36 0.518 3.44 3.42 
0.00 -0.14 4.21 4.36 0.521 3.16 3.35 

0.25 -0.45 4.27 4.38 0.521 3.12 3.27 

0.50 -0.26 4.36 4.38 0.515 3.15 3.34 
0.75 -0.38 4.41 4.36 0.515 3.19 3.42 
1.00 -0.17 4.36 4.36 0.521 3.17 3.35 

1.25 -0.25 4.43 4.38 0.518 3.11 3.27 
1.50 0.04 4.59 4.38 0.513 3.32 3.34 
1.75 -0.17 4.61 4.36 0.514 3.41 3.42 

2.00 0.21 4.61 4.36 0.516 3.29 3.35 

Note: AL,1and As, denote columns for asymptotic predicted variances 
of L,and ilr respectively. 
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Table 13 Values of mean and m.s.e. 
Ac 

of Li,,,-  and 1 	i 48 
observation UDTR experiments for step size 1.5 (=1T/3.0"2.). 

L-ii 
100 100 100 

Start 
Y. 

mean 	m.s.e. AL1,.. mean m.s.e. Aj 

-2.00 1.14 5.18 5.28 0.514 3.27 3.04 
-1.75 0.59 5.23 5.06 0.533 2.44 3.40 
-1.50 -0.31 5.12 4.98 0.541 2.08 3.14 
-1.25 -0.16 5.14 5.12 0.531 2.32 2.63 
-1.00 0.48 5.32 5.30 0.514 3.35 2.39 
-0.75 0.56 5.42 5.37 0.509 3.54 2.56 
-0.50 1.53 5.33 5.28 0.517 3.46 3.04 
-0.25 1.11 5.02 5.06 0.531 2.61 3.40 
0.00 0.40 4.91 4.98 0.543 2.19 3.14 
0.25 0.02 5.02 5.12 0.537 2.53 2.63 
0.50 0.09 5.13 5.30 0.520 3.33 2.39 
0.75 0.37 5.30 5.37 0.509 3.57 2.56 
1.00 1.49 5.27 5.28 0.518 3.43 3.04 
1.25 1.56 5.29 5.06 0.532 2.53 3.40 
1.50 0.59 5.36 4.98 0.543 2.24 3.14 
1.75 0.08 5.29 5.12 0.533 2.28 2.63 
2.00 0.73 5.57 5.30 0.515 3.31 2.39 

Table 14 Values of mean and m.s.e. of 	and 11A in 48 
observation UDTR experiments for step size 2.0 (=ii/3.0"2.). 

100 100 100 
Start mean 	m.s.e. A mean m.s.e. 

-2.00 S 	0.16 7.14 5.38 0.602 1.48 3.93 
-1.75 -2.29 6.25 5.76 0.575 1.66 2.84 
-1.50 -1.42 6.19 6.30 0.527 2.87 2.12 
-1.25 1.29 5.93 6.74 0.473 5.01 1.88 
-1.00 5.00 6.10 6.99 0.456 6.30 2.07 
-0.75 6.76 6.32 6.96 0.477 5.32 2.69 
-0.50 7.25 6.91 6.49 0.528 3.67 3.70 
-0.25 4.27 7.38 5.70 0.588 2.17 4.44 
0.00 0.92 6.95 5.38 0.606 1.58 3.93 
0.25 -1.89 6.22 5.76. 0.578 1.70 2.84 
0.50 -1.38 5.82 6.30 0.529 2.83 2.12 
0.75 1.25 5.69 6.74 0.483 4.66 1.88 
1.00 4.59 6.07 6.99 0.457 6.17 2.07 
1.25 6.92 6.46 6.96 0.478 5.55 2.69 
1.50 7.75 6.92 6.49 0.527 3.75 3.70 
1.75 5.28 7.69 5.70 0.586 2.15 4.44 
2.00 1.93 7.38 5.38 0.608 1.74 3.93 



• TableI5 100m.s.e. of estimators of L11  in 96 observation tJDTR 
experiments for step size 0.5 	=1T/3.0" based on 2000 simulations). 

Start 	EM 	EA 	F j3p E 	App4  E 	8 py A N 	E E*  E' Aw 

-2.00 2.42 2.03 2.11 2.12 1.99 2.22 2.23 2.10 2.11 2.11 1.99 

-1.75 2.07 1.34 1.96 1.99 1.99 2.11 2.12 2.10 1.97 1.97 1.99 
-1.50 2.03 1.91 2.06 2.09 1.99 2.16 2.17 2.10 2.07 2.06 1.99 
-1.25 1.34 1.80 1.92 1.95 1.99 2.06 2.07 2.10 1.92 1.92 1.99 

-1.00 1.00 1.92 2.02 2.05 1.99 2.14 2.15 2.10 2.02 2.03 1.99 
-0.75 1.81 1.86 1.91 1.94 1.99 2.02 2.nA 2.10 1.90 1.91 1.99 
-0.50 1.94 2.01 2.02 2.04 1.99 2.10 2.12 2.10 2.03 2.04 L99 
-0.25 1.87 1.92 1.92 1.93 1.99 2.01 2.03 2.10 1.90 1.91 1.99 
0.00 2.01 2.06 2.05 2.05 1.99 2.13 2.15 2.10 2.04 2.05 1.99 
0.25 1.05 1.96 1.96 1.98 1.99 2.05 2.06 2.10 1.95 1.o5 1.99 
0.50 2.04 2.02 2.04 2.06 1.99 2.12 2.13 2.10 2.03 2.03 1.99 
0.75 2.13 2.04 2.08 2.12 1.99 2.21 2.20 2.10 2.08 2.07 1.99 
1.00 2.43 2.28 2.32 2.36 1.99 .2.40 2.38 2.10 2.32 2.30 1.99 
1.25 2.54 2.28 2.29 2.32 1.99 2.44 2.2 2.10 2.29 2.27 1.99 
1.50 2.88 2.47 2.41 2.42 1.99 2.55 2.53 2.10 2.44 2.40 1.99 
1.75 3.19 2.61 2.42 2.40 1.99 2.61 2.58 2.10 2.43 2.39 1.99 
2.00 3.00 3.03 2.65 2.59 1.99 2.U1 2.77 2.10 2.66 2.62 1.99 

Table 16 100m.s.e. of estimators of Lj,-in 96 observation UDTF. 
experiments for step size 1.0 ()=7T/  3.0", based on 2000 simulations). 

Start 	EM 	E t3 	Ep 	F P m 	A c, .m 	E E Ep 	A 	E 	Ep 

-2.00 2.24 2.30 2.52 2.52 2.50 2.68 2.72 2.70 2.57 2.60 2.64 
-1.75 2.25 2.35 2.51 2.51 2.51 2.53 2.57 2.49 2.41 2.44 2.40 
-1.50 2.34 2.49 2.61 2.60 2.53 2.53 2.59 2.44 2.44 2.48 2.32 
-1.25 2.35 2.50 2.56 2.57 2.52 2.62 2.67 2.65 2.52 2.55 2.56 
-1.00 2.31 2.47 2.49 2.49 2.50 2.63 2.68 2.70 2.55 2.58 2.64 
-0.75 2.30 2.44 2.43 2.43 2.51 2.41 2.46 2.49 2.33 2.36 2.40 
-0.50 2.45 2.59 2.56 2.55 2.53 2.53 2.59 2.44 2.42 2.46 2.32 
-0.25 2.43 2.52 2.50 2.50 2.52 2.54 2.59 2.65 2.44 2.48 2.56 
0.00 2.46 2.53 2.51 2.51 2.50 2.67 2.70 2.70 2.57 2.60 2.64 
0.25 2.48 2.50 2.49 2.51 2.51 2.48 2.51 2.49 2.40 2.41 2.40 
0.50 2.65 2.63 2.65 2.66 2.53 2.6() 2.61 2.44 2.51 2.51 2.32 
0.75 2.69 2.61 2.64 2.68 2.52 2.74 2.72 2.65 2.63 2.60 2.56 
1.00 2.75 2.61 2.65 2.69 2.50 2.84 2.91 2.70 2.74 2.71 2.64 
1.25 2.81 2.60 2.64 2.71 2.51 2.67 2.65 2.49 2.56 2.52 2.40 
1.50 3.03 2.74 2.76 2.83 2.53 2.74 2.71 2.44 2.5 2.60 2.32 
1.75 3.16 2.76 2.77 2.82 2.52 2.9 2.34 2.65 2.77 2.71 2.56 
2.00 3.39 2.96 2.82 2.87 2.50 3.02 2.97 2.70 2.91 2.85 2.64 

Note: A, AEand  tdenote columns for asymptotic predicted m.s.e.'s of 
and Eresnectively 
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Table i7 100n.s.e. of estimators of 	in 96 observation UDTR 
experiments for step size 1.5 (A= T/3.01"', based on 2000 simulations). 

Start 	Ep 	E, 	cav 	E D AA 	J'C?M EWE 	Epj 	Awe 	C' Ep 	71 

-2.00 2.98 3.38 3.55 3.48 3.29 3.35 3.50 3.21 3.26 3.42 3.10 
-1.75 2.89 3.19 3.28 3.23 3.25 3.91 4.04 .1.03 3.76 3.8 3.96 
-1.50 2.97 3.21 3.25 3.21 3.08 4.11 4.18 4.06 3.92 3.96 4.04 
-1.25 2.71 2.90 2.91 2.98 2.93 3.26 3.30 3.37 3.14 3.13 3.33 
-1.00 2.81 3.07 3.06 2.99 2.94 2.51 2.57 2.42 2.45 2.49 2.34 
-0.75 3.00 3.28 3.25 3.17 3.13 2.37 2.46 2.30 2.34 2.45 2.19 
-0.50 3.34 3.58 3.54 3.48 3.29 3.39 3.51 3.21 3.31 3.44 3.10 
-0.25 3.14 3.28 3.26 3.23 3.25 3.93 4.01 4.03 3.77 3.97 3.96 
0.00 3.15 3.24 3.23 3.20 3.08 4.08 4.15 4.06 3.88 3.94 4.04 
0.25 2.96 2.98 2.97 3.00 2.93 ,3.31 3.39 3.37 3.18 3.21 3.33 
0.50 3.03 3.05 3.05 3.04 2.94 2.54 2.58 2.42 2.48 2.51 2.34 
0.75 3.32 3.27 3.28 3.29 3.13 2.47 2.44 2.30 2.45 2.44 2.19 
1.00 3.71 3.56 3.59 3.66 3.29 3.56 3.46 3.21 3.47 3.39 3.10 
1.25 3.55 3.35 3.40 3.47 3.25 4.23 4.14 4.03 4.06 3.96 3.96 
1.50 3.57 3.34 3.39 3.46 3.08 4.32 4.29 4.06 4.15 4.09 4.04 
1.75 3.31 3.01 3.05 3.13 2.93 3.41 3.45 3.37 3.31 3.28 3.33 
2.00 3.59 3.18 3.20 3.27 2.94 2.70 2.69 2.42 2.63 2.60 2.34 

TableI8 lOOxm.s.e. of estimators of L 	in 96 observation UDTfl 
experiments for step size 2.0 (,=1T/3.Otl, based on 2000 simulations). 

Start E E3 E EDM Aom EWE Ep AE Ep7 

-2.00 3.86 4.09 4.16 4.12 4.06 6.18 6.27 6.35 5.92 5.07 6.34 
-1.75 3.48 3.48 3.50 3.53 3.64 5.64 5.57 5.83 5.32 5.15 5.80 
-1.50 3.10 3.13 3.13 3.17 3.17 4.20 4.12 4.23 3.99 3.79. 4.16 
-1.25 2.89 3.12 3.10 3.04 2.99 2.18 2.19 2.13 2.14 2.10 2.06 
-1.00 3.36 3.85 3.82 3.61 3.54 2.00 2.14 1.89 2.05 2.23 1.82 
-0.75 4.31 4.84 4.80 4.56 4.46 4.25 4.49 4.16' 4.23 4.54, 4.07 
-0.50 4.80 5.24 5.20 5.00 4.8A 6.70 6.92 6.61 6.48 6.79 6.51 
-0.25 4.54 4.77 4.76 4.66 4.52 6.88 7.01 6.97 6.62 6.81 6.92 
0.00 4.03 4.14 4.13 4.09 4.06 6.09 6.20 6.35 5.84 5.93 6.34 
0.25 3.57 3.63 3.62 3.63 3.64 5.63 5.81 5.83 5.32 5.40 5.20 
0.50 3.13 3.16 3.15 3.17 3.17 4.14 4.37 4.23 3.92 4.01 4.16 
0.75 3.12 3.07 3.07 3.10 2.99 2.19 2.31 2.13 2.15 2.19 2.06 
1.00 3.89 3.75 3.76 3.81 3.54 2.14 2.05 1.09 2.17 2.12 1.92 
1.25 4.97 4.65 4.69 4.79 4.46 4.43 4.17 4.16 4.41 4.22 4.07 
1.50 5.45 5.03 5.09 5.24 4.84 6.92 6.55 6.61 6.70 6.42 6.51 
1.75 5.17 4.78 4.84 4.98 4.52 7.28 7.02 6.97 7.04 6.80 6.92 
2.00 4.52 4.25 4.31 4.40 4.06 6.49 6.47 6.35 6.23 6.15 6.34 
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Table ( lOOxbias of estimators of 	in 96 observation UDT 
experiments for step size 0.5 (,$= 1r/3.0"t, based on 2000 simulations). 

Start 	E Pok 	E 6 	Ego - 	- A p tj 	F,,E 	Epv 	E.,iE' 	LPv4  

-2.00 -7.02 -4.23 0.45 0.43 2.27 -0.53 -0.17 -0.20 0.16 1.75 
-1.75 -5.92 -2.77 0.51 0.52 2.27 -0.46 -0.10 -0.10 0.26 1.75 
-1.50 -4.33 -1.58 0.53 0.50 2.27 -0.41 -0.06 -0.08 0.27 1.75 
-1.25 -2.91 -0.61 0.60 0.51 2.27 -0.43 -0.10 -0.04 0.30 1.75 
-1.00 -1.48 0.41 0.99 0.78 2.27 0.02 0.32 0.32 0.64 1.75 
-0.75 -0.30 1.14 1.28 1.02 2.27 0.43 0.67 0.78 1.04 1.75 
-0.50 0.60 1.62 1.57 1.23 • 2.27 0.84 1.01 1.12 1.31 1.75 
-0.25 1.69 2.24 2.16 1.91 2.27 1.59 1.67 1.23 1.94 1.75 
0.00 2.52 2.66 2.67 2.50 2.27 2.19 2.16 2.35 2.36 1.75 
0.25 3.44 3.12 3.17 3.23 2.27 2.80 2.67 3.01 2.93 1.75 
0.50 4.33 3.60 3.63 3.76 2.27 3.33 3.12 3.48 3.32 1.75 
0.75 5.62 4.41 4.29 4.48 2.27 4.18 3.91 4.31 4.09 1.75 
1.00 6.78 5.16 4.66 4.76 2.27 4.63 4.31 4.73 4.47 1.75 
1.25 8.20 6.11 5.05 5.06 2.27 5.11 4.77 5.22 4.93 1.75 
1.50 9.91 7.39 5.53 5.41 2.27 5.59 5.23 5.67 5.35 1.75 
1.75 11.64 8.64 5.74 5.50 2.27 5.79 5.41 5.27 5.54 1.75 
2.00 13.57 10.14 5.95 5.58 2.27 6.01 5.62 6.01 5.67 1.75 

Table 20 100bias of estimators of 	in 96 observation UDTR 
exeriments for step size 1.0 	=TT/3.0'L, based on 2000 simulations). 

Start 	EM 	26 	2 j3p 2 Um ADM 2 E Epy 	Ev 	Ept A 

-2.00 -1.56 2.16 3.73 3.25 3.37 1.76 2.34 2.13 2.80 2.51 
-1.75 -0.66 2.64 3.64 3.12 3.99 1.42 2.05 1.26 2.52 2.39 
-1.50 0.29 3.19 3.72 3.18 4.01 2.34 2.90 2.61 3.27 3.19 
-1.25 1.04 3.50 3.66 3.10 3.69 2.43 2.97 2.76 3.39 3.31 
-1.00 1.86 3.98 3.82 3.26 3.87 1.97 2.45 2.34 2.1 2.51 
-0.75 2.41 3.99 3.84 3.29 3.99 1.93 2.33 2.26 2.76 2.39 
-0.50 3.15 4.34 4.18 3.65 4.01 3.15 3.41 3.41 3.79 3.19 
-0.25 3.54 4.28 4.17 3.73 339 3.42 3.52 3.71 3.93 3.31 
0.00 4.16 4.45  4.43 4.14 3.87 3.12 3.04 3.41 3.47 2.51 
0.25 4.40 4.25 4.32 4.23 3.q9  2.90 2.66 3.12 3.08 2.39 
0.50 5.02 4.47 4.62 4.64 4.01 4.06 3.69 4.23 4.01 3.19 
0.75 5.73 4.73 4.88 5.03 3.29 4.51 4.02 4.76 4.43 3.31 
1.00 6.57 5.11 5.18 5.42 3.27 4.19 3.62 4.49 4.08 2.51 
1.25 7.23 5.33 5.22 5.54 3.90  4.10 3.49 4.40 3.93 2.39 
1.50 8.12 5.83 5.40 5.73 4.01 5.10 4.45 5.31 4.81 3.19 
1.75 9.06 6.31 5.48 5.79 3.89 5.40 4.72 5.65 5.11 3.31 
2.00 10.22 7.02 5.66 5.93 3.87 4.96 4.25 5.27 4.72 2.51 

rote: APM  and AEdenote columns for asymptotic predicted biases of 
Ep.and E respectively. 

317 



Table II lflOshjas of estimators of Li, in 96 observation tJDTR 

experiments for step size 1.5 ( 	1T/3.0 1  based on 2000 simulations). 

* .tart 	E.1. 	1g 	E 	8 M 	AM 	Ewa 	t p 	8 WE rpi1 	AiE ,  

-2.00 2.43 6.32 6.94 6.09 6.31 7.52 8.29 7.68 9.63 8.31 

-1.75 1.80 5.24 5.49 4.65 5.16 6.02 6.78 6.12 7.06 6.92 
-1.50 1.43 4.39 4.39 3.58 3.95 1.72 2.48 2.08 3.01 2.06 

-1.25 1.77 4.32 4.18 3.34 3.139 -1.22 -0.53 -0.69 0.21 -1.15 

-1.00 3.44 5.63 5.45 4.59 5.03 0.42 1.01 0.90 1.73 0.41 

-0.75 5.17 6.96 6.79 5.96 6.25 4.90 5.36 5.26 5.98 5.02 

-0.50 6.21 7.55 7.41 6.69 6.31 2.44 9.78 8.60 9.13 9.31 

-0.25 5.23 6.12 6.05 5.45 5.16 7.28 7.39 7.35 7.68 6.92 
0.00 4.34 4.74 4.71 4.34 3.95 2.92 2.20 3.21 3.31 2.06 

0.25 4.21 4.21 4.24 4.05 3.89 -0.29 -0.66 0.16 0.07 -1.15 
0.50 5.43 5.06 5.15 5.09 5.03 0.97 0.39 1.40 1.14 0.41 

0.75 7.21 6.43 6.59 6.68 6.25 5.45 4.74 5.80 5.40 5.02 
1.00 8.44 7.20 7.39 7.65 6.31 9.15 8.37 9.29 9.76 p.31 

1.25 7.82 6.13 6.30 6.63 5.16 9.18 7.29 8.21 7.513 6.92 
1.50 7.23 5.05 5.09 5.50 3.95 3.86 2.94 4.16 3.46 2.06 

1.75 7.49 4.91 4.72 5.20 3.29 0.73 -0.22 1.20 0.51 -1.15 

2.00 9.21 6.25 5.77 6.24 5.03 1.98 1.00 2.45 1.76 0.41 

Table 22 10flhjas of estimators of 	in 96 ohservation UDTR 
experiments for step size 2.0 ( , =T1/3.0" based on 2000 simulations). 

Start EM E EA EpM APM EvE Ep wE 

-2.00 -0.09 3.81 3.84 2.81 2.74 1.02 2.08 1.52 2.79 1.30 

-1.75 -2.67 0.76 0.62 -0.48 -0.09 -8.04 -7.12 -7.25 -6.00 -8.07 
-1.50 -1.60 1.3 1.20 0.09 0.51 -9.27 -8.40 -8.57 -7.3% -9.64 

-1.25 2.43 5.11 4.92 3.82 4.16 -3.45 -2.69 -2.84 -1.69 -3.64 
-1.00 8.00 10.34 10.19 9.11 8.79 6.62 7.29 6.813 7.92 6.21 
-0.75 11.23 13.17 13.06 12.02 11.75 15.05 15.62 15.17 16.04 15.16 

-0.50 10.92 12.44 12.36 11.46 11.22 17.96 18.36 17.79 18.49 18.32 

-0.25 7.46 8.51 8.47 7.72 7.45 12.82 12.94 12.78 13.22 12.75 
0.00 3.35 3.88 3.86 3.37 2.74 2.33 2.15 2.66 2.93 1.30 
0.25 0.05 0.14 0.14 -0.13 -0.09 -7.30 -7.80 -6.61 -6.70 -9.07 

0.50 0.83 0.48 0.50 0.47 0.51 -9.81 -0.52 -9.15 -8.44 -9.64 

0.75 4.79 4.13 4.19 4.32 4.16 -2.97 -3.87 -2.37 -2.79 -3.64 
1.00 10.16 9.11 9.23 0.52 2.79 6.22 5.89 7.18 6.62 6.21 
1.25 13.56 12.10 12.29 12.68 11.75 15.44 14.38 15.54 14.93 15.16 
1.50 13.51 11.61 11.24 12.32 11.22 18.53 17.37 18.33 17.51 18.32 

1.75 10.53 8.16 8.34 8.86 7.45 13.67 12.42 13.59 12.68 12.75 

2.00 6.97 4.10 4.12 4.67 2.74 3.54 2.27 3.87 2.94 1.30 
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Table 23 Mean and lOOxm.s.e. of 1/,in 96 observation 

UDTR experiments (,= fl73.0' based on 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

100 	 100 	 100 	 100 
X 	 x mean 	tn.s.e. 	mean 	m.s.e. 	mean 	m.s.e. 	mean 	m.s.e 

Start 

-2.00 0.516 3.15 0.521 2.14 0.521 2.28 0.624 1.53 
-1.75 0.523 3.02 0.515 2.21 0.546 1.67 0.578 1.25 
-1.50 0.518 3.06 0.515 2.15 0.546 1.44 0.499 1.92 
-1.25 0.520 2.86 0.521 2.12 0.519 1.75 0.434 3.53 
-1.00 0.511 2.84 0.515 2.08 0.487 2.46 0.416 4.46 
-0.75 0.512 2.73 0.509 2.18 0.488 2.53 0.455 3.45 
-0.50 0.502 2.82 0.512 2.16 0.520 2.23 0.536 2.13 
-0.25 0.499 2.73 0.515 2.07 0.543 1.58 0.605 1.59 
0.00 0.495 2.87 0.511 2.06 0.546 1.42 0.624 1.48 
0.25 0.500 2.71 0.505 2.19 0.519 1.73 0.577 1.18 
0.50 0.499 2.69 0.508 2.17 0.486 2.39 0.497 1.91 
0.75 0.511 2.77 0.517 2.13 0.486 2.55 0.436 3.42 
1.00 0.517 3.02 0,520 2.07 0.520 2.28 0.415 4.42 
1.25 0.528 3.07 0.515 2.25 0.547 1.66 0.457 3.52 
1.50 0.532 3.27 0.518 2.19 0.550 1.48 0.535 2.27 
1.75 0.540 3.47 0.526 2.26 0.524 1.76 0.605 1.75 
2.00 0.540 3.69 0.524 2.20 0.493 2.41 0.626 1.58 
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Table 24 Numbers of 96 observation UDTR experiments out of 
2000 where m.l.e.'s of parameters can be obtained ()=iT/3.05. 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

-2.00 2000 2000 1920 1457 
-1.75 2000 1999 1866 1739 
-1.50 2000 1994 1926 1898 
-1.25 2000 1997 1972 1756 
-1.00 2000 1998 1965 1614 
-0.75 2000 1999 1956 1636 
-0.50 2000 1995 1931 1505 
-0.25 2000 1998 1841 1325 
0.00 2000 1997 1908 1417 
0.25 2000 2000 1976 1710 
0.50 2000 1998 1964 1883 
0.75 2000 2000 1956 1767 
1.00 2000 1997 1921 1609 
1.25 2000 1999 1850 1616 
1.50 2000 1994 1908 1485 
1.75 2000 1996 1972 1324 
2.00 2000 1996 1972 1415 
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Table 25 Values of mean and m.s.e. of L,4h and 1 1A in 96 
observation UDTR experiments for step size 0.5 (,8=TT13.0"t). 

V ,  '64  
100 100 100 

Start mean 	m.s.e. A mean 
X 

m.s.e. Aj1 

-2.00 -0.05 2.05 1.84 0.521 2.14 2.61 
-1.75 -0.06 1.91 1.84 0.526 2.18 2.61 
-1.50 0.01 2.03 1.84 0.524 2.22 2.61 
-1.25 -0.14 1.86 1.84 0.526 2.25 2.61 
-1.00 0.02 1.98 1.84 0.521 2.23 2.61 
-0.75 -0.03 1.88 1.84 0.526 2.35 2.61 
-0.50 -0.01 1.99 1.84 0.521 2.43 2.61 
-0.25 -0.05 1.84 1.84 0.524 2.43 2.61 
0.00 0.06 1.96 1.84 0.521 2.51 2.61 
0.25 -0.06 1.84 1.84 0.523 2.43 2.61 
0.50 -0.03 1.87 1.84 0.517 2.32 2.61 
0.75 - 	 -0.05 1.83 1.84 0.521 2.43 2.61 
1.00 0.07 2.01 1.84 0.518 2.46 2.61 
1.25 0.02 1.93 1.84 0.521 2.45 2.61 
1.50 0.18 1.97 1.84 0.519 2.32 2.61 
1.75 0.02 1.94 1.84 0.521 2.43 2.61 
2.00 0.08 2.10 1.84 0.518 2.37 2.61 

Table 26 Values of mean and m.s.e. of 	and 1/ 0in 96 
observation UDTR experiments for step size 1.0 03=TT/3.0''L). 

Va 
100 100 100 

Start mean 	m.s.e. A, mean m.s.e. 

-2.00 0.32 2.23 2.18 0.539 1.59 1.68 
-1.75 -0.03 2.26 2.19 0.538 1.50 1.63 
-1.50 -0.17 2.34 2.19 0.536 1.57 1.67 
-1.25 -0.14 2.27 2.18 0.539 1.65 1.71 
-1.00 0.20 2.20 2.18 0.535 1.66 1.68 
-0.75 -0.12 2.17 2.19 0.536 1.59 1.63 
-0.50 -0.10 2.29 2.19 0.538 1.68 1.67 
-0.25 -0.11 2.17 2.18 0.537 1.73 1.71 
0.00 0.20 2.18 2.18 0.536 1.71 1.68 
0.25 -0.30 2.18 2.19 0.537 1.62 1.63 
0.50 -0.33 2.29 2.19 0.534 1.63 1.67 
0.75 -0.06 2.24 2.18 0.536 1.71 1.71 
1.00 0.23 2.19 2.18 0.537 1.69 1.68 
1.25 -0.04 2.20 2.19 0.536 1.63 1.63 
1.50 -0.14 2.30 2.19 0.535 1.64 1.67 
1.75 -0.07 2.26 2.18 0.537 1.73 1.71 
2.00 0.29 2.27 2.18 0.534 1.69 1.68 

Note: ALand Ai/denote columns for asymptotic predicted variances 
of L i,7and 1/,  respectively. 
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Table 27 Values of mean and m.s.e. of Lg1 	and 1 	in 96 
observation tJDTR experiments for step size 1.5  

Ito 4 
100 100 100 

Start mean m.s.e. mean m.s.e. 

-2.00 0.11 2.76 2.64 0.538 1.62 1.52 
-1.75 0.13 2.52 2.53 0.539 1.52 1.70 
-1.50 0.23 2.55 2.49 0.542 1.41 1.57 
-1.25 0.28 2.54 2.56 0.543 1.33 1.31 
-1.00 0.25 2.80 2.65 0.539 1.45 1.20 
-0.75 -0.10 2.81 2.69 0.538 1.50 1.28 
-0.50 0.22 2.72 2.64 0.540 1.65 1.52 
-0.25 0.47 2.46 2.53 0.538 1.54 1.70 
0.00 0.38 2.50 2.49 0.542 1.44 1.57 
0.25 0.26 2.57 2.56 0.543 1.39 1.31 
0.50 0.01 2.78 2.65 0.538 1.46 1.20 
0.75 -0.28 2.85 2.69 0.537 1.51 1.28 
1.00 0.15 2.76 2.64 0.540 1.64 1.52 
1.25 0.51 2.51 2.53 0.538 1.52 1.70 
1.50 0.38 2.59 2.49 0.541 1.40 1.57 
1.75 0.41 2.57 2.56 0.541 1.38 1.31 
2.00 0.13 2.86 2.65 0.538 1.43 1.20 

Table 28 Values of mean and m.s.e. of Lt1and 1 /,$in 96 
observation UDTR experiments for step size 2.0 0=W/3.0j. 

100 1- 100 ' 	 100 
Start 

X 
mean 

Ix 
m.s.e. A 	1141,  mean 

x 
m.s.e. A1, 

-2.00 0.62 3.13 2.69 0.582 0.88 1.96 
-1.75 -0.36 2.86 2.88 0.559 1.00 1.42 
-1.50 0.28 3.14 3.15 0.538 1.28 1.06 
-1.25 1.09 3.26 3.37 0.516 2.25 0.94 
-1.00 2.80 3.45 3.49 0.499 3.20 1.03 
-0.75 2.91 3.34 3.48 0.514 2.58 1.34 
-0.50 3.27 2.96 3.25 0.544 1.62 1.85 
-0.25 2.94 3.26 2.85 0.580 1.03 2.22 
0.00 0.82 3.14 2.69 0.585 0.89 1.96 
0.25 -0.52 2.90 2.88 0.560 1.00 1.42 
0.50 -0.03 3.06 3.15 0.537 1.35 1.06 
0.75 0.87 3.29 3.37 0.518 2.22 0.94 
1.00 2.59 3.52 3.49 0.498 3.18 1.03 
1.25 3.08 3.43 3.48 0.514 2.72 1.34 
1.50 3.53 3.06 3.25 0.542 1.70 1.85 
1.75 3.13 3.37 2.85 0.578 1.07 2.22 
2.00 1.12 3.25 2.69 0.585 0.88 1.96 
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Table 1 lOxm.s.e. of estimators of 	in 48 observation 
experiments using Routine B for step size 0.5. 

Start 	 EpM AM E WE AWE EwE 	AwF 

-2.00 4.55 2.15 4.58 2.01 4.38 1.91 

-1.75 3.78 2.15 3.78 2.01 3.60 1.91 
-1.50 3.20 2.15 3.19 2.01 3.05 1.91 

-1.25 2.75 2.15 2.74 2.01 2.62 1.91 
-1.00 2.30 2.15 2.28 2.01 2.20 1.91 

-0.75 1.97 2.15 1.96 2.01 1.90 1.91 
-0.50 1.75 2.15 1.77 2.01 1.71 1.91 
-0.25 1.54 2.15 1.56 2.01 1.52 1.91 
0.00 1.46 2.15 1.46 2.01 1.44 1.91 
0.25 1.42 2.15 1.40 2.01 1.39 1.91 
0.50 1.40 2.15 1.40 2.01 1.37 1.91 
0.75 1.33 2.15 1.31 2.01 1.28 1.1 
1.00 1.35 2.15 1.33 2.01 1.29 1.91 
1.25 1.45 2.15 1.44 2.01 1.37 1.91 
1.50 1.52 2.15 1.51 2.01 1.44 1.91 
1.75 1.52 2.15 1.50 2.01 1.45 1.91 
2.00 1.53 2.15 1.54 2.01 1.48 1.91 

Table 2 10m.s.e. of estimators of L, - \  in 48 observation 

experiments using Routine B for step size 1.0. 

Start 	 E.M Ai EE A.iE E 	A 

-2.00 6.00 5.07 5.50 4.04 5.60 3.86 

-1.75 5.49 5.07 5.05 4.06 5.16 3.87 
-1.50 4.95 5.07 4.48 4.04 4.67 3.85 
-1.25 4.60 5.07 4.11 4.03 4.31 3.84 

-1.00 4.30 5.07 3.94 4.04 4.08 3.86 
-0.75 4.06 5.07 3.74 4.06 3.89 3.87 
-0.50 3.93 5.07 3.63 4.04 3.76 3.85 
-0.25 3.72 5.07 3.36 4.03 3.54 3.84 

0.00 3.50 5.07 3.16 4.04 3.36 3.86 
0.25 3.51 5.07 3.20 4.06 3.39 3.87 

0.50 3.54 5.07 3.14 4.04 3.38 3.85 
0.75 3.38 5.07 2.97 4.03 3.21 3.84 
1.00 3.29 5.07 2.96 4.04 3.14 3.86 

1.25 3.27 5.07 2.92 4.06 3.09 3.87 

1.50 3.43 5.07 3.06 4.04 3.20 3.85 
1.75 3.49 5.07 3.07 4.03 3.24 3.84 

2.00 3.46 5.07 3.01 4.04 3.22 3.86 

Note: A 0 , AE  and AwE  denote columns for asymptotic predicted m. S .e.' s of 

and E resnectively 
0,-Il 	WE 



	

Table 3 10'm.s.e. of estimators of 	in 48 observation 

experiments using Routine 13 for step size 1.5. 

4 

Start 	 E 	A1 	EE AwF 	E 	A 

-2.00 9.74 10.01 7.96 6.96 8.80 6.66 

-1.75 9.16 10.00 7.54 7.02 8.28 6.72 

-1.50 8.73 10.06 7.51 7.24 8.06 6.94 

-1.25 8.60 10.13 7.48 7.40 8.07 7.08 

-1.00 8.14 10.14 7.03 7.34 7.62 7.01 

-0.75 8.07 10.08 6.72 7.12 7.48 6.80 

-0.50 7.77 10.01 6.51 6.96 7.14 6.66 

-0.25 7.47 10.00 6.22 7.02 6.87 6.72 

0.00 7.30 10.06 6.21 7.24 6.64 6.94 

0.25 7.30 10.13 6.28 7.40 6.92 7.08 

0.50 7.25 10.14 6.14 7.34 6.81 7.01 

0.75 7.34 10.08 5.98 7.12 6.77 6.80 

1.00 7.13 10.01 5.77 6.96 6.51 6.66 

1.25 6.69 10.00 5.37 7.02 6.11 6.72 

1.50 6.72 10.06 5.63 7.24 6.22 6.94 

1.75 6.88 10.13 5.79 7.40 6.39 7.08 

2.00 6.85 10.14 5.64 7.34 6.25 7.01 

Table 4 10m.s.e. of estimators of Lr 	in 48 observation 

experiments using Routine B for step size 2.0. 

Start Epm ADM Ew a Awa E  A. 

-2.00 15.01 17.24 12.38 11.78 13.57 11.30 

-1.75 15.19 17.65 12.81 12.40 14.11 11.89 

-1.50 14.76 17.89 12.45 12.47 13.67 11.96 

-1.25 14.06 17.80 11.34 11.97 12.81 11.48 

-1.00 13.57 17.44 10.76 11.20 12.21 10.74 

-0.75 13.32 17.02 10.39 10.61 11.79 10.17 

-0.50 12.67 16.80 9.84 10.54 11.18 10.10 

-0.25 12.85 16.88 10.10 11.01 11.46 10.55 

0.00 12.80 17.24 10.42 11.78 11.70 11.30 

0.25 13.03 17.65 10.76 12.40 12.16 11.89 

0.50 13.22 17.89 10.92 12.47 12.27 11.96 

0.75 13.28 17.80 10.66 11.97 12.10 11.48 

1.00 12.67 17.44 9.90 11.20 11.35 10.74 

1.25 12.53 17.02 9.55 10.61 10.97 10.17 

1.50 12.07 16.80 9.04 10.54 10.48 10.10 

1.75 11.66 16.88 8.92 11.01 10.28 10.55 

2.30 11.64 17.24 9.37 11.78 10.54 11.30 

I 
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Table 5 logbias of estimators of Lrj.. 1  in 48 observation 
experiments using Routine B for step size O.S. 

Start 	 EqM 	A 	EI.IE 	EwF 	 A.JE 

-2.00 -4.35 -1.52 -4.45 -4.38 -1.27 

-1.75 -3.73 -1.52 -3.78 -3.73 -1.27 
-1.50 -3.27 -1.52 -3.26 -3.24 -1.27 

-1.25 -2.90 -1.52 -2.85 -2.84 -1.27 
-1.00 -2.44 -1.52 -2.33 -2.36 -1.27 

-0.75 -1.96 -1.52 -1.87 -1.90 -1.27 

-0.50 -1.65 -1.52 -1.55 -1.59 -1.27 

-0.25 -1.30 -1.52 -1.21 -1.26 -1.27 
0.00 -0.97 -1.52 -0.87 -0.95 -1.27 
0.25 -0.69 -1.52 -0.59 -0.69 -1.27 
0.50 -0.48 -1.52 -0.38 -0.48 -1.27 

0.75 -0.25 -1.52 -0.10 -0.24 -1.27 

1.00 -0.07 -1.52 0.11 -0.03 -1.27 
1.25 0.05 -1.52 8.29 0.12 -1.27 

1.50 0.11 -1.52 0.39 0.22 -1.27 
1.75 0.20 -1.52 0.54 0.34 -1.27 

2.00 0.30 -1.52 0.69 0.47 -1.27 

Table 6 10'bias of estimators of Ljk in 48 observation 
experiments using Routine B for step size 1.0. 

Start 	 Ep.t APM 	E 	 A w F  

-2.00 -4.64 -3.46 -4.15 -4.39 -2.67 

-1.75 -4.27 -3.47 -3.81 -4.04 -2.69 

-1.50 -3.93 -3.47 -3.46 -3.72 -2.70 
-1.25 -3.72 -3.46 -3.24 -3.48 -2.68 

-1.00 -3.48 -3.46 -2.99 -3.24 -2.67 

-0.75 -3.28 -3.47 -2.81 -3.07 -2.69 
-0.50 -3.09 -3.47 -2.67 -2.92 -2.70 

-0.25 -2.87 -3.46 -2.44 -2.69 -2.68 

0.00 -2.65 -3.46 -2.19 -2.49 -2.67 

0.25 -2.55 -3.47 -2.13 -2.43 -2.69 

0.50 -2.50 -3.47 -2.05 -2.38 -2.70 

0.75 -2.36 -3.46 -1.93 -2.26 -2.68 
1.00 -2.20 -3.46 -1.73 -2.07 -2.67 

1.25 -2.09 -3.47 -1.62 -1.95 -2.69 

1.50 -2.10 -3.47 -1.61 -1.94 -2.70 

1.75 -2.13 -3.46 -1.60 -1.92 -2.68 

2.00 -2.06 -3.46 -1.47 -1.82 -2.67 

Note: ADS, and AE  denote columns for asymptotic predicted biases of 
EMand E  
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Table 7 10 bias of estimators of 	in 48 observation 
experiments using Routine 5 for step size 1.5. 

Start 	 Ec,M 	A 	E.,E 

-2.00 -6.12 -5.64 -5.07 -5.58 -4.16 
-1.75 -5.83 -5.59 -4.75 -5.25 -4.02 
-1.50 -5.53 -5.60 -4.54 -5.01 -4.07 
-1.25 -5.49 -5.67 -4.58 -5.06 -4.26 
-1.00 -5.33 -5.71 -4.49 -4.95 -4.40 
-0.75 -5.11 -5.70 -4.27 -4.75 -4.35 
-0.50 -4.91 -5.64 -4.00 -4.49 -4.16 
-0.25 -4.79 -5.59 -3.81 -4.32 -4.02 
0.00 -4.55 -5.60 -3.61 -4.12 -4.07 
0.25 -4.58 -5.67 -3.72 -4.23 -4.26 
0.50 -4.60 -5.71 -3.80 -4.31 -4.40 
0.75 -4.55 -5.70 -3.72 -4.25 -4.35 
1.00 -4.35 -5.64 -3.44 -3.99 -4.16 
1.25 -4.12 -5.59 -3.15 -3.72 -4.02 
1.50 -4.01 -5.60 -3.05 -3.59 -4.07 
1.75 -4.13 -5.67 -3.20 -3.75 -4.26 
2.00 -4.14 -5.71 -3.27 -3.78 -4.40 

Table S lOxbias of estimators of L,j 	in 48 observation 
experiments using Routine B for step size 2.0. 

Start 	 EM A M  EE EE 

-2.00 -7.66 -7.77 -6.08 -6.77 -5.42 
-1.75 -7.75 -8.03 -6.42 -7.09 -5.99 
-1.50 -7.83 -8.26 -6.70 -7.32 -6.44 
-1.25 -7.65 -8.33 -6.52 -7.15 -6.50 
-1.00 -7.36 -8.19 -6.08 -6.76 -6.15 
-0.75 -7.06 -7.94 -5.57 -6.29 -5.61 
-0.50 -6.67 -7.70 -5.02 -5.77 -5.18 
-0.25 -6.63 -7.63 -4.92 -5.70 -5.09 
0.00 -6.51 -7.77 -4.96 -5.70 -5.42 
0.25 -6.66 -8.03 -5.36 -6.09 -5.99 
0.50 -6.96 -8.26 -5.84 -6.53 -6.44 
0.75 -6.98 -8.33 -5.90 -6.57 -6.50 
1.00 -6.74 -8.19 -5.50 -6.21 -6.15 
1.25 -6.49 -7.94 -5.01 -5.77 -5.61 
1.50 -6.16 -7.70 -4.47 -5.29 -5.18 
1.75 -5.94 -7.63 -4.22 -5.05 -5.09 
2.00 -5.91 -7.77 -4.35 -5.11 -5.42 
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Table 9 Mean and lOim.s.e. of i/1$ in 48 observation 
experiments using Routine B ()= 11/3.0"-, with 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

10 	 10 	 10 	 10 
$ 	 'C 

mean 	m.s.e. 	mean 	m.s.e. 	mean 	m.s.e. 	mean 	m.s.e 
Start 

-2.00 0.615 3.25 0.436 3.33 0.382 6.23 0.377 9.10 
-1.75 0.537 2.54 0.400 3.05 0.354 5.92 0.375 9.35 
-1.50 0.465 1.98 0.369 3.27 0.343 5.60 0.356 9.06 
-1.25 0.404 1.76 0.349 3.34 0.343 6.06 0.317 9.16 
-1.00 0.357 1.62 0.335 3.20 0.335 6.58 0.307 10.07 
-0.75 0.331 1.66 0.319 3.35 0.320 6.63 0.290 10.03 
-0.50 0.303 1.63 0.309 3.41 0.315 6.18 0.292 9.93 
-0.25 0.292 1.78 0.310 3.38 0.314 5.92 0.324 9.22 
0.00 0.290 1.75 0.308 3.15 0.307 5.73 0.333 9.38 
0.25 0.292 1.87 0.310 3.25 0.315 5.82 0.339 9.31 
0.50 0.302 1.78 0.310 3.56 0.322 6.51 0.340 9.21 
0.75 0.314 1.89 0.309 3.63 0.311 6.56 0.309 10.25 
1.00 0.322 1.85 0.315 3.34 0.308 6.69 0.290 .10.55 
1.25 0.342 1.97 0.314 3.43 0.300 6.17 0.285 10.52 
1.50 0.349 1.90 0.317 3.42 0.304 5.73 0.292 10.67 
1.75 0.359 2.07 0.319 3.54 0.317 5.85 0.302 9.49 
2.00 0.358 2.03 0.322 3.29 0.320 6.72 0.315 9.03 
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Table 10 Numbers of 48 observation experiments using 
Routine B where bounds on A are not attained in the course of 
iterations with E04LAF (=1T/3.0' with 2000 simulations). 

Step size 

0.5 1.0 1.5 2.0 

Start 

-2.00 1563 1329 1088 821 
-1.75 1563 1315 1019 1198 
-1.50 1623 1351 920 1410 
-1.25 1612 1393 899 1553 
-1.00 1633 1347 956 1435 
-0.75 1653 1287 1112 1239 
-0.50 1677 1377 1147 1092 
-0.25 1677 1441 1083 949 
0.00 1740 1397 929 1053 
0.25 1736 1348 858 1316 
0.50 1738 1397 962 1457 
0.75 1724 1455 1104 1361 
1.00 1747 1425 1170 1384 
1.25 1742 1362 1135 1243 
1.50 1767 1392 1027 1173 
1.75 1738 1422 923 1282 
2.00 1720 1408 971 1294 
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Table 11 10 Mean and 10 m.s.e. of Lj ' ifl 48 observation 

experiments using Routine B (-1T/3.0, with 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

10 	10 	10 	10 	10 	10 	10 	10 
'C 

mean 	m.s.e. 	mean 	m.s.e. 	mean 	rn.s.e. 	mean 	m.s.e 
Start 

-2.00 -1.789 3.15 -2.478 4.59 -4.008 7.98 -4.820 10.70 

-1.75 -1.458 2.76 -2.307 4.13 -3.926 7.83 -3.525 9.07 

-1.50 -1.190 2.42 -2.108 3.79 -3.979 7.52 -2.608 8.73 

-1.25 -1.073 2.20 -1.919 3.67 -3.979 6.83 -2.114 9.77 

-1.00 -0.887 1.93 -1.879 3.55 -3.659 6.14 -2.125 10.67 

-0.75 -0.704 1.82 -1.915 3.37 -3.254 6.26 -2.793 11.12 

-0.50 -0.624 1.74 -1.721 3.20 -3.140 6.56 -3.290 10.10 
-0.25 -0.494 1.58 -1.483 3.16 -3.178 6.46 -3.581 9.00 
0.00 -0.388 1.59 -1.586 3.23 -3.416 6.51 -3.155 8.34 
0.25 -0.387 1.65 -1.685 3.23 -3.633 6.28 -2.394 7.76 
0.50 -0.391 1.71 -1.597 3.05 -3.415 5.83 -1.987 8.28 

0.75 -0.317 1.60 -1.471 3.08 -3.142 6.02 -2.567 9.56 
1.00 -0.327 1.68 -1.413 3.17 -2.962 6.19 -2.379 9.54 

1.25 -0.348 1.82 -1.521 3.08 -2.945 6.15 -2.969 9.49 
1.50 -0.371 1.93 -1.521 3.17 -3.042 6.17 -3.004 8.48 
1.75 -0.385 1.99 -1.528 3.37 -3.337 5.98 -2.746 7.65 

2.00 -0.357 1.96 -1.520 3.45 -3.137 5.70 -2.541 6.98 
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Table 12 Mean and lOxm.s.e. of 11A in 48 observation 
experiments using Routine B 	(,,2=n/3.0'L, with 2000 simulations). 

Step size 

0.5 1.0 1.5 2.0 

10 10 10 10 
X 'C 

mean 	m.s.e. mean m.s.e. mean m.s.e. mean m.s.e 
Start 

-2.00 0.532 1.99 0.561 2.55 0.572 5.39 0.466 7.09 

-1.75 0.505 1.74 0.549 2.42 0.541 5.20 0.473 6.47 

-1.50 0.489 1.55 0.533 2.56 0.526 4.67 0.466 5.42 
-1.25 0.467 1.44 0.529 2.65 0.529 5.68 0.491 6.39 
-1.00 0.456 1.26 0.523 2.45 0.515 5.57 0.466 6.26 
-0.75 0.459 1.37 0.513 2.77 0.535 5.75 0.447 6.39 
-0.50 0.456 1.32 0.513 2.67 0.538 5.31 0.436 6.54 
-0.25 0.451 1.38 0.517 2.64 0.522 4.84 0.405 6.45 

0.00 0.458 1.28 0.524 2.53 0.505 4.93 0.391 7.48 

0.25 0.467 1.44 0.524 2.68 0.503 5.23 0.396 6.11 
0.50 0.471 1.38 0.516 2.79 0.511 5.67 0.412 5.46 
0.75 0.468 1.46 0.524 2.84 0.524 5.64 0.442 7.53 
1.00 0.472 1.41 0.521 2.56 0.536 5.43 0.435 5.50 

1.25 0.482 1.53 0.520 2.79 0.532 5.44 0.434 5.78 
1.50 0.481 1.37 0.514 2.62 0.516 4.64 0.413 5.20 
1.75 0.478 1.51 0.513 2.70 0.511 5.25 0.410 5.80 
2.00 0.474 1.48 0.516 2.55 0.500 5.80 0.393 5.39 

31 111 



Table 1 3 1Nm.s.e. of estimators of L 	in 96 observation 
experiments using Routine B for step size 0.5. 

Start 	 EP,4 	Ap 	 A,,E E W E  

-2.00 1.98 1.19 1.91 1.08 1.94 1.04 

-1.75 1.82 1.19 1.73 1.09 1.77 1.04 
-1.50 1.59 1.19 1.50 1.08 1.54 1.04 
-1.25 1.49 1.19 1.41 1.09 1.43 1.04 
-1.00 1.27 1.19 1.19 1.08 1.22 1.04 
-0.75 1.19 1.19 1.12 1.09 1.15 1.04 
-0.50 1.08 1.19 1.02 1.08 1.04 1.04 
-0.25 1.04 1.19 0.99 1.09 1.01 1.04 
0.00 0.94 1.19 0.90 1.09 0.92 1.04 
0.25 0.96 1.19 0.92 1.09 0.93 1.04 
0.50 0.87 1.19 0.83 1.08 0.84 1.04 
0.75 0.88 1.19 0.84 1.09 0.85 1.04 
1.00 0.86 1.19 0.81 1.09 fl•P3 1.04 
1.25 0.93 1.19 0.87 1.09 0.88 1.04 
1.50 0.87 1.19 0.82 1.09 0.83 1.04 
1.75 0.92 1.19 0.86 1.09 0.86 1.04 
2.00 0.87 1.19 0.22 1.08 0.82 1.04 

Tah1e1- 10%m.s.e. of estimators of 	in 96 observation 
experiments using Routine B for step size 1.0. 

Start 	 EDM 	Api E F  A 

-2.00 3.56 3.13 2.93 2.30 3.21 2.23 

-1.75 3.41 3.13 2.79 2.39 3.08 2.30 
-1.50 3.14 3.13 2.56 2.33 2.82 2.29 
-1.25 3.09 3.13 2.49 2.37 2.78 2.28 
-1.00 2.91 3.13 2.36 2.38 2.63 2.28 
-0.75 2.90 3.13 2.35 2.39 2.63 2.30 
-0.50 2.73 3.13 2.21 2.38 2.47 2.29 
-0.25 2.67 3.13 2.16 2.37 2.42 2.28 
0.00 2.56 3.13 2.09 2.38 2.34 2.28 
0.25 2.58 3.13 2.12 2.39 2.36 2.30 
0.50 2.43 3.13 1.96 2.39 2.21 2.29 
0.75 2.52 3.13 2.02 2.37 2.29 2.28 
1.00 2.43 3.13 1.99 2.38 2.21 2.28 
1.25 2.54 3.13 2.06 2.39 2.31 2.30 
1.50 2.43 3.13 1.05 2.38 2.19 2.29 
1.75 2.41 3.13 1.90 2.37 2.14 2.28 
2.00 2.43 3.13 1.93 2.38 2.18 2.29 

Note: A,Aw. and Adenote columns for asymptotic predicted n.s.e.'s of 

Ec., E and EE'respective1y 
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Table IS 10m.s.e. of estimators of 	in 96 observation 

experiments using Routine P for step size 1.5. 

Start 	 F, p m A P K 	Ewe AWC EWE '  Aw c *  

-2.00 6.73 6.60 4.86 4.35 5.62 4.19 

-1.75 6.39 6.56 4.57 4.32 5.32 4.17 

-1.50 6.15 6.60 4.57 4.45 5.25 4.30 

-1.25 6.17 6.67 4.66 4.61 5.36 4.45 

-1.00 6.04 6.70 4.58 4.64 5.26 4.47 

-0.75 	 0 
5.98 6.67 4.40 4.50 5.11 4.35 

-0.50 5.73 6.60 4.09 4.35 4.79 4.19 

-0.25 5.61 6.56 3.99 4.32 4.68 4.17 

0.00 5.43 6.60 3.96 4.45 4.64 4.30 

0.25 5.54 6.67 4.18 4.61 4.81 4.45 

0.50 5.46 6.70 4.13 4.64 4.77 4.47 

0.75 5.57 6.67 4.10 4.50 4.79 4.35 

1.00 5.46 6.60 3.90 4.35 4.57 4.19 

1.25 5.24 6.56 3.72 4.32 4.39 4.17 

1.50 5.23 6.60 3.87 4.45 4.46 4.30 

1.75 5.38 6.67 4.03 4.61 4.64 4.45 

2.00 5.42 6.70 4.02 4.64 4.67 4.47 

Tab1eI 	10m.s.e. of estimators of 	in 96 observation 

experiments using Routine 13 for step size 2.0. 

Start 	 F,,4 	A 9,A  rwE AWE 

-2.00 10.94 11.63 7.75 7.36 8.98 7.12 

-1.75 	- 11.17 12.05 8.22 7.99 9.49 7.74 

-1.50 11.36 12.36 8.43 8.31 9.75 8.06 

-1.25 11.25 12.37 9.15 0.10 9.47 7.85 

-1.00 10.60 12.08 7.36 7.49 8.65 7.26 

-0.75 	- 10.26 11.66 6.94 6.08 8.09 6.66 

-0.50 9.72 11.36 6.29 6.61 7.51 6.39 

-0.25 9.65 11.35 6.32 6.80 7.57 6.57 

0.00 0.76 11.63 6.80 7.36 6.00 7.12 

0.25 10.13 12.05 7.39 7.09 8.61 7.74 

0.50 10.32 12.36 7.56 8.31 8.87 8.06 

0.75 10.38 12.37 7.42 6.10 2.73 7.85 

1.00 10.03 12.09 6.86 7.49 8.14 7.26 

1.25 9.76 11.66 6.41 6.29 7.65 6.66 

1.50 9.43 11.36 6.10 6.61 7.30 6.39 

1.75 9.29 11.35 6.10 6.80 7.29 6.57 

2.00 0.51 11.63 6.63 7.36 7.76 7.12 
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Table 17  10bias of estimators of L 	in 96 observation 
experiments using Routine 13 for step size 0.5. 

Start 	 AD' EW S E WE  AE 

-2.00 -2.86 -1.52 -2.80 -2.91 -1.27 
-1.75 -2.64 -1.52 -2.54 -2.65 -1.27 
-1.50 -2.36 -1.52 -2.23 -2.34 -1.27 
-1.25 -2.21 -1.52 -2.06 -2.16 -1.27 
-1.00 -1.94 -1.52 -1.76 -1.137 -1.27 
-0.75 -1.77 -1.52 -1.58 -1.69 -1.27 
-0.50 -1.55 -1.52 -1.313 -1.49 -1.27 
-0.25 -1.44 -1.52 -1.26 -1.39 -1.27 

0.00 -1.22 -1.52 -1.06 -1.17 -1.27 
0.25 -1.13 -1.52 -0.96 -1.09 -1.27 
0.50 -0.94 -1.52 -0.76 -0.°0 -1.27 
0.75 -0.91 -1.52 -0.71 -0.85 -1.27 
1.00 -0.80 -1.52 -0.58 -0.72 -1.27 
1.25 -0.80 -1.52 -0.55 -0.70 -1.27 
1.50 -0.68 -1.52 -0.39 -0.55 -1.27 
1.75 -0.72 -1.52 -0.41 -0.58 -1.27 
2.00 -0.65 -1.52 -0.33 -0.49 -1.27 

Table jg  10bias of estimators ofT, ~-Z- j in 96 observation 
experiments using Routine 13 for step size 1.0. 

Start 	 E 0 M AV M  E 	 A wE  

-2.00 -4.03 -3.46 -3.40 -3.69 -2.67 
-1.75 -3.26 -3.47 -3.21 -3.53 -2.69 
-1.50 -3.73 -3.47 -3.10 -3.41 -2.70 
-1.25 -3.61 -3.46 -2.98 -3.28 -2.68 
-1.00 -3.43 -3.46 -2.79 -3.11 -2.67 
-0.75 -3.39 -3.47 -2.74 -3.08 -2.69 
-0.50 -3.28 -3.47 -2.67 -2.99 -2.70 
-0.25 -3.18 -3.46 -2.57 -2.08 -2.68 

0.00 -3.10 -3.46 -2.48 -2.81 -2.67 
0.25 -3.02 -3.47 -2.40 -2.74 -2.69 
0.50 -2.96 -3.47 -2.36 -2.70 -2.70 
0.75 -2.91 -3.46 -2.32 -2.64 -2.68 
1.00 	 V -2.01 -3.46 -2.19 -2.52 -2.67 
1.25 -2.82 -3.47 -2.18 -2.53 -2.69 
1.50 -2.80 -3.47 -2.16 -2.51 -2.70 
1.75 -2.76 -3.46 -2.11 -2.44 -2.68 
2.00 -2.75 -3.46 -2.06 -2.41 -2.67 

Note: Aand /\ WEdenote columns for asymptotic predicted biases of 

C M and 	respectively. 
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Tahie K 10bias of estimators of 	in 96 'ohservation 
exoeriments using Routine B for step size 1.5. 

Start 	 EV ..% 	A 	EwiF EWF 	 A 

-2.00 -5.89 -5.64 -4.64 -5.15 -4.16 

-1.75 -5.71 -5.59 -4.40 -4.92 -4.02 
-1.50 -5.55 -5.60 -4.31 -4.82 -4.07 

-1.25 -5.55 -5.7 -4•3 -4.90 -4.26 
-1.00 -5.50 -5.71 -4.44 -4.94 -4.40 
-0.75 -5.41 -5.70 -4.30 -4.81 -4.35 
-0.50 -5.25 -5.64 -4.06 -4.57 -4.16 

-0.25 -5.22 -5.59 -3.94 -4.47 -4.02 
0.00 -5.09 -5.60 -3.87 -4.39 -4.07 
0.25 -5.11 -5.67 -3.97 -4.49 -4.26 
0.50 -5.12 -5.71 -4.10 -4.61 -4.40 
0.75 -5.09 -5.70 -4.03 -4.54 -4.35 
1.00 -4.99 -5.64 -3.82 -4.33 -4.16 
1.25 -4.07 -5.59 -3.63 -4.15 -4.02 
1.50 -4.84 -5.60 -3.62 -4.14 -4.07 
1.75 -4.88 -5.67 -3.72 -4.24 -4.26 
2.00 -4.94 -5.71 -3.87 -4.30 -4.40 

TableZO 10bias of estimators of Lrj in 96 observation 
experiments using Routine B for step size 2.0. 

Start 	 EDM 	?'tbM 	 E we  * 

-2.00 -7.72 -7.77 -5.77 -6.48 -5.42 
-1.75 -7.83 -8.03 -6.15 -6.84 -5.99 
-1.50 -8.03 -0.26 -6.58 -7.22 -6.44 
-1.25 -8.04 -8.33 -6.58 -7.22 -6.50 
-1.00 -7.72 -8.19 -1.10 -6.75 -6.15 
-0.75 -7.45 -7.94 -5.57 -6.26 -5.61 
-0.50 -7.16 -7.70 -5.09 -5.80 -5.18 
-0.25 -7.12 -7.63 -5.00 -5.75 -5.09 
0.00 -7.15 -7.77 -5.21 -5.95 -5.42 
0.25 -7.30 -8.03 -5.65 -6.35 -5.99 
0.50 -7.54 -8.26 -6.12 -6.80 '-6.44 
0.75 -7.64 -8.33 -6.22 -6.88 -6.50 
1.00 	' -7.43 -8.19 -5.83 -6.49 -6.15 
1.25 -7.10 -7.94 -5.34 -6.01 -5.61 
1.50 -6.91 -7.70 -4.87 -5.58 -5.18 
1.75 -6.80 -7.63 -4.70 -5.44 -5.09 
2.00 -6.90 -7.77 -4.96 -5.67 -5.42 
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Table 21 Mean and lOx rn.s.e. of 1 1,13 in 96 observation 
experiments using Routine B (,=1T/3.0hl2 with 2000 simulations). 

Step size 

0.5 
	

1.0 
	

1.5 
	

2.0 

10 10 10 10 
mean m.s.e. mean m.s.e. mean m.s.e. mean m.s.e 

Start 

-2.00 0.625 2.27 0.514 3.01 0.507 5.81 0.541 8.83 
-1.75 0.568 1.76 0.496 2.80 0.493 5.44 0.550 8.61 
-1.50 0.519 1.45 0.465 2.65 0.477 5.09 0.531 9.13 
-1.25 0.479 1.27 0.454 2.71 0.483 5.29 0.502 9.01 
-1.00 0.446 1.18 0.441 2.58 0.467 5.49 0.469 9.20 
-0.75 0.424 1.20 0.440 2.67 0.465 5.80 0.464 9.27 
-0.50 0.408 1.16 0.428 2.72 0.462 5.72 0.472 9.16 
-0.25 0.405 1.24 0.432 2.71 0.466 5.39 0.505 8.80 
0.00 0.398 1.23 0.429 2.65 0.458 5.25 0.521 9.11 
0.25 0.404 1.28 0.437 2.76 0.466 5.43 0.531 9.25 
0.50 0.402 1.24 0.419 2.72 0.462 5.42 0.518 9.23 
0.75 0.414 1.30 0.431 2.92 0.461 5.89 0.492 8.71 
1.00 0.418 1.26 0.432 2.81 0.458 5.57 0.466 9.04 
1.25 0.433 1.36 0.440 2.75 0.461 5.43 0.462 9.21 
1.50 0.432 1.25 0.433 2.78 0.459 5.29 0.474 9.25 
1.75 0.441 1.38 0.435 2.73 0.463 5.14 0.496 9.05 
2.00 0.439 1.32 0.436 2.75 0.460 5.30 0.510 8.86 
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Table 22 Numbers of 96 observation experiments using 
Routine B where bounds on A are not attained in the course of 
iterations with E04LAF )3= 1r/3.0" with 2000 simulations). 

Step size 

0.5 	1.0 	1.5 	2.0 

Start 

-2.00 1898 1785 1629 978 

-1.75 1917 1659 1542 1313 
-1.50 1910 1685 1314 1662 
-1.25 1899 1804 1127 1833 
-1.00 1924 1775 1226 1800 
-0.75 1925 1660 1445 1671 
-0.50 1925 1684 1634 1494 
-0.25 1931 1816 1584 1271 
0.00 1931 1790 1330 1367 
0.25 1937 1682 1141 1608 
0.50 1931 1708 1235 1736 
0.75 1949 1826 1452 1653 
1.00 1940 1823 1649 1682 
1.25 1943 1670 1612 1599 
1.50 1940 1691 1365 1574 
1.75 1944 1808 1158 1634 

2.00 1951 1815 1214 1578 
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Table 23 10Mean and lOxm.s.e. of 	in 96 observation 
experiments using Routine B (>=T1/3.0hl  with 2000 simulations). 

Step size 

10 
Ic 

m.s. 

3.25  
3.77 
4.02 
3.67 
2.78 
2.83 
2.73 
3.40  
3.62 
3.31 
2.65 
2.61 
2.55 
3.03 
3.56 
3.27 
2.44 

Start 

-2.00 
-1.75 
-1.50 
-1.25 
-1.00 
-0.75 
-0.50 
-0.25 
0.00 
0.25 
0.50 
0.75 
1.00 
1.25 
1.50 
1.75 
2.00 

0.5 

10 	10 
mean 	m.s.e. 

-0.391 	1.07 
-0.362 	1.07 
-0.297 	1.01 
-0.343 	1.02 
-0.233 	0.92 
-0.246 	0.91 
-0.215 	0.88 
-0.244 	0.88 
-0.197 	0.87 
-0.219 	0.90 
-0.181 	0.86 
-0.206 	0.88 
-0.164 	0.89 
-0.195 	0.97 
-0.156 	0.93 
-0.245 	0.97 
-0.174 	0.93 

1.0 

10 
mean 

-0.855 
-1.090 
-0.959 
-0.724 
-0.760 
-1.038 
-0.931 
-0.678 
-0.806 
-0.924 
-0.865 
-0.641 
-0.626 
-0.971 
-0.815 
-0.604 
-0.686 

10 
X 

m.s .e. 

1.94 
1.88 
1.53 
1.62 
1.68 
1.72 
1.41 
1.57 
1.63 
1.66  
1.36 
1.47 
1.56 
1.67 
1.35 
1.43 
1.62 

1.5 

10 
mean 

-1.634 
-2.001 
-2.637 
-2.988 
-2.597 
-2.025 
-1.377 
-1.783 
-2.449 
-2.794 
-2.491 
-1.920 
-1.295 
-1.543 
-2.261 
-2.684 
-2.388 

2 

10 
4. 

. mean 

-4.122 
-2.460 
-0-878 
-0.262 
-0.059 
-0.832 
-1.666 
-2.605 
-2.111 
-1.183 
-0.495 
-0.859 
-0.784 
-1.242 
-1.399 
-1.520 
-1.515 

.0 

10 
m.s .e 

6.04 
4.26 
3.70 
4.60 
4.95 
5.45 
5.50  
4.69 
3.48  
3.22 
3.49 
3.88 
4.46 
4.64 
3.83 
3.19 
2.75 
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Table 24 Mean and 10*m.s.e. of 1(,$"in  96 observation 
experiments using Routine B (fr Tt/3.0 	with 2000 simulations). 

Step size 

0.5 	 1.0 	 1.5 	 2.0 

10 	 10 	 10 	 10 

mean 	m.s.e. 	mean 	m.s.e. 	mean m.s.e. 	mean 	m.s.e 
Start 

-2.00 0.525 1.04 0.565 1.50 0.594 2.91 0.565 5.64 
-1.75 0.523 1.03 0.571 1.61 0.608 3.14 0.492 4.42 

-1.50 0.522 1.00 0.554 1.51 0.599 3.44 0.465 3.28 
-1.25 0.516 0.93 0.560 1.46 0.575 3.55 0.503 3.21 
-1.00 0.509 0.85 0.558 1.40 0.561 3.52 0.492 2.61 
-0.75 0.512 0.90 0.565 1.69 0.582 3.39 0.522 3.34 
-0.50 0.515 0.90 0.550 1.48 0.572 2.46 0.530 4.03 
-0.25 0.515 0.84 0.560 1.53 0.605 3.07 0.523 4.44 
0.00 0.518 0.89 0.563 1.27 0.588 3.22 0.452 4.29 
0.25 0.520 0.96 0.562 1.64 0.565 3.36 0.430 3.95 
0.50 0.518 0.92 0.550 1.60 0.563 3.45 0.430 2.81 
0.75 0.518 0.87 0.556 1.47 0.574 3.26 0.460 2.47 
1.00 0.516 0.87 0.553 1.26 0.562 2.04 0.490 2.30 
1.25 0.520 0.93 0.563 1.61 0.587 2.17 0.509 2.47 
-1.50 0.517 0.82 0.541 1.33 0.583 2.93 0.498 2.23 
1.75 0.522 0.85 0.550 1.33 0.563 3.27 0.473 3.33 
2.00 0.515 0.79 0.554 1.20 0.538 2.75 0.437 3.55 
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APPENDIX 12 TABLES TO ACCOMPANY SECTION 5.1 



Table 1 lOOxm.s.e. of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (, 1T/3.0'based on 2000 simulations). 

Procedure 	 i 	- 2 	3 	4 

Start 

0.00 3.38 3.81 2.05 2.51 
0.25 3.33 3.84 2.39 2.66 
0.50 3.52 4.05 3.37 3.14 
0.75 4.04 4.72 5.04 4.10 
1.00 4.80 5.34 6.80 5.01 
1.25 6.14 6.24 9.03 5.88 
1.50 7.81 7.08 10.83 6.71 
1.75 10.99 8.06 12.87 7.46 
2.00 15.16 9.02 14.59 8.09 
2.25 21.99 10.38 16.19 8.64 
2.50 32.07 11.23 17.73 9.16 
2.75 47.18 11.99 19.55 9.29 
3.00 69.31 12.65 21.29 9.36 
3.25 98.98 12.44 22.98 9.69 
3.50 139.30 13.03 24.47 10.08 
3.75 191.34 12.55 26.05 10.49 
4.00 256.55 12.57 28.85 10.69 

Table 2 lOOxm.s.e. of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (t173.0based on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 2.68 2.71 2.45 2.58 
0.25 2.65 2.69 2.44 2.60 
0.50 2.63 2.71 2.47 2.62 
0.75 2.71 2.79 2.59 2.59 
1.00 2.63 2.71 2.77 2.69 
1.25 2.70 2.91 3.09 2.84 
1.50 2.74 2.88 3.37 2.92 
1.75 2.87 3.04 3.67 2.98 
2.00 2.99 3.11 3.90 3.12 
2.25 3.04 3.18 4.08 3.25 
2.50 3.20 3.26 4.14 3.29 
2.75 3.50 3.37 4.39 3.35 
3.00 3.91 3.44 4.68 3.36 
3.25 4.26 3.46 4.63 3.33 
3.50 5.11 3.68 4.71 3.29 
3.75 6.31 3.54 4.81 3.39 
4.00 8.12 3.55 5.13 3.57 
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Table 3 lOOtm.s.e. of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 1.5  times the 
asymptotic optimal values (=iT/3.d',based on 2000 simulations). 

Procedure 	 1 	2 - 	3 	4 

Start 

0.00 2.93 2.95 2.75 2.86 
0.25 2.87 2.89 2.78 2.81 
0.50 2.83 2.85 2.73 2.83 
0.75 2.85 2.88 2.77 2.83 
1.00 2.86 2.83 2.75 2.92 
1.25 2.88 2.92 2.83 2.83 
1.50 2.87 2.91 2.94 2.92 
1.75 2.95 2.97 3.00 3.01 
2.00 2.85 2.98 3.09 3.05 
2.25 2.90 2.90 3.18 3.04 
2.50 2.97 3.02 3.26 3.08 
2.75 2.98 3.01 3.37 3.10 
3.00 2.96 3.01 3.29 3.16 
3.25 2.92 3.07 3.29 3.17 
3.50 2.97 3.01 3.43 3.11 
3.75 3.01 3.11 3.53 3.16 
4.00 3.07 3.11 3.55 3.13 

Table 4 100%m.s.e. of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values (=1T/3.dIL,based on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0.00 3.46 3.46 3.27 3.44 
0.25 3.50 3.50 3.26 3.33 
0.50 3.41 3.42 3.21 3.43 
0.75 3.42 3.43 3.27 3.34 
1.00 3.40 3.41 3.25 3.39 
1.25 3.49 3.48 3.26 3.35 
1.50 3.43 3.46 3.25 3.44 
1.75 3.48 3.54 3.29 3.42 
2.00 3.45 3.48 3.43 3.46 
2.25 3.48 3.44 3.44 3.53 
2.50 3.50 3.49 3.43 3.57 
2.75 3.48 3.52 3.48 3.51 
3.00 3.46 3.59 3.51 3.60 
3.25 3.47 3.60 3.57 3.56 
3.50 3.48 3.51 3.56 3.58 
3.75 3.56 3.52 3.62 3.55 
4.00 3.51 3.58 3.70 3.64 
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Table 5 100.bias of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values ()=1T/3.0' t,based on 2000 simulations). 

Procedure 	 1 	2 	- 3 	4 

Start 

0.00 0.19 0.29 0.23 0.42 
0.25 2.87 2.22 5.64 3.75 
0.50 5.71 4.21 10.99 7.49 
0.75 9.47 6.51 16.27 10.76 
1.00 12.95 8.30 20.28 13.00 
1.25 17.08 9.93 24.47 14.76 
1.50 21.57 11.02 27.10 16.49 
1.75 28.00 11.98 29.85 17.45 
2.00 34.95 13.14 32.10 18.16 
2.25 43.71 13.72 33.92 19.12 
2.50 54.31 13.90 35.63 20.14 
2.75 66.99 14.70 37.30 20.15 
3.00 82.03 14.99 39.25 20.39 
3.25 98.76 14.71 40.59 20.70 
3.50 117.55 14.82 41.85 20.98 
3.75 138.06 14.25 43.28 21.44 
4.00 160.01 14.64 45.14 21.71 

Table 6 lOOxbias of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal-  values l3=1T(3.0"based on 2000 simulations). 

Procedure 	 1 	2 	- 3 	4 

Start 

0.00 0.29 0.22 0.14 0.22 
0.25 0.48 0.39 1.58 0.74 
0.50 0.94 0.58 2.73 1.57 
0.75 1.08 0.96 4.27 2.12 
1.00 1.54 0.98 5.67 2.92 
1.25 2.19 1.45 6.80 3.33 
1.50 2.87 1.80 7.71 3.49 
1.75 3.80 1.97 8.53 3.77 
2.00 4.25 1.70 9.06 4.02 
2.25 5.20 2.03 9.66 3.93 
2.50 6.66 2.08 9.79 3.81 
2.75 8.14 2.24 10.43 3.94 
3.00 10.27 2.26 10.64 4.19 
3.25 12.34 2.24 10.69 4.06 
3.50 15.40 2.30 10.98 4.22 
3.75 19.15 1.94 11.09 4.07 
4.00 23.50 2.10 11.64 4.23 
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Table 7 100.bias of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (=1Tf3.0based on 2000 simulations). 

Procedure 	 1 	2 	3 	4 

Start 

0000 0.19 0.14 0.30 0.19 
0.25 0.10 0.08 0.33 0.24 
0.50 -0.04 -0.09 0.71 0.54 
0.75 0.14 0.09 1.12 0.45 
1.00 0.42 0.29 1.67 0.93 
1.25 0.38 0.29 2.27 0.97 
1.50 0.44 0.28 2.66 0.90 
1.75 0.77 0.55 2.79 1.01 
2.00 0.74 0.46 3.07 1.03 
2.25 0.94 0.43 3.30 1.08 
2.50 1.09 0.39 3.17 1.25 
2.75 1.29 0.23 3.53 1.01 
3.00 1.30 0.30 3.57 1.10 
3.25 1.53 0.53 3.43 1.03 
3.50 2.05 0.57 3.75 0.92 
3.75 	 / 2.34 0.60 3.84 1.22 
4.00 2.93 0.47 3.79 0.88 

Table 8 100 4 bias of estimators in 48 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values ()3=ir/ 3.0'-,based on 2000 simulations). 

Procedure 	 1 - 	2 - 	3 - 	4 

Start 

0.00 0.02 -0.01 0.05 0.27 
0.25 0.05 0.07 0.13 -0.06 
0.50 0.03 0.02 0.07 -0.06 
0.75 0.04 0.06 0.14 0.13 
1.00 0.20 0.17 0.57 0.16 
1.25 0.18 0.19 0.97 0.35 
1.50 0.28 0.20 0.81 0.30 
1.75 0.20 0.20 1.29 0.63 
2.00 0.08 0.14 1.37 0.39 
2.25 0.19 0.06 1.15 0.37 
2.50 0.21 0.10 1.39 0.53 
2.75 0.26 0.12 1.12 0.30 
3.00 0.22 0.14 1.26 0.53 
3.25 0.30 0.06 1.26 0.34 
3.50 0.31 -0.25 1.56 0.38 
3.75 0.16 0.20 1.41 0.54 
4.00 0.32 0.09 1.33 0.29 



Table 9 100Wm.s.e. of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (Z= ff/3.0based on 2000 simulations). 

Procedure 	 - 1 	- 	2 - 	3 	4 

Start 

0.00 1.89 2.11 1.31 1.52 

0.25 1.90 2.15 1.47 1.61 

0.50 2.01 2.29 1.92 1.83 

0.75 2.22 2.58 2.66 2.19 

1.00 2.56 2.88 3.50 2.59 
1.25 3.14 3.19 4.41 2.90 

1.50 4.02 3.59 5.24 3.27 

1.75 5.66 4.17 6.04 3.48 

2.00 7.99 4.68 6.65 3.85 

2.25 11.69 5.25 7.06 4.09 

2.50 16.99 5.62 7.66 4.30 

2.75 25.55 6.26 8.08 4.23 
3.00 38.17 6.77 8.61 4.31 

3.25 55.83 7.13 8.90 4.36 

3.50 81.36 7.20 8.98 4.37 

3.75 116.58 7.54 9.19 4.44 

4.00 163.20 7.70 9.85 4.52 

Table 10 100m.s.e. of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (=W/3.0"l..based on 2000 simulations). 

Procedure 	 - 1 	- 	2 	3 	4 

Start 

0.00 1.37 1.39 1.31 1.36 

0.25 1.38 1.37 1.32 1.35 
0.50 1.35 1.36 1.32 1.34 

0.75 1.37 1.39 1.36 1.38 
1.00 1.39 1.40 1.39 1.39 
1.25 1.38 1.41 1.43 1.41 

1.50 1.41 1.42 1.51 1.39 
1.75 1.43 1.47 1.59 1.46 
2.00 1.45 1.49 1.64 1.45 

2.25 1.46 1.50 1.66 1.48 

2.50 1.50 1.54 1.74 1.49 

2.75 1.57 1.56 1.75 1.53 
3.00 1.62 1.54 1.79 1.52 
3.25 1.77 1.57 1.80 1.55 
3.50 1.97 1.56 1.82 1.53 
3.75 2.30 1.58 1.82 1.53 
4.00 2.81 1.57 1.86 1.59 



Table 11 100m.s.e. of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values ( ,$=1T/ 3.0based on 2000 simulations). 

Procedure 	 1 	2 - - 	3 	4 

Start 

0.00 1.52 1.52 1.49 1.52 

0.25 1.52 1.51 1.47 1.50 
0.50 1.51 1.51 1.45 1.47 
0.75 1.52 1.53 1.47 1.50 
1.00 . 	 1.51 1.50 1.46 1.48 
1.25 1.51 1.51 1.51 1.51 
1.50 1.51 1.51 1.49 1.51 
1.75 1.52 1.50 1.52 1.52 
2.00 1.50 1.53 1.51 1.53 
2.25 1.51 1.52 1.53 1.53 
2.50 1.51 1.52 1.53 1.53 
2.75 1.51 1.53 1.56 1.54 
3.00 1.53 1.54 1.55 1.54 
3.25 1.54 1.54 1.56 1.57 
3.50 1.52 1.53 1.56 1.53 
3.75 1.55 1.55 1.65 1.56 
4.00 1.54 1.55 1.62 1.57 

Table 12 100sm.s.e. of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values çS=  IT/ 3.0 ltr based on 2000 simulations). 

Procedure 	 1 	2 - 	3 - 	4 

Start 

0.00 1.77 1.77 1.73 1.75 

0.25 1.77 1.77 1.72 1.74 
0.50 1.76 1.76 1.70 1.75 
0.75 1.79 1.78 1.70 1.74 
1.00 1.76 1.77 1.70 1.76 
1.25 1.78 1.80 1.71 1.76 
1.50 1.77 1.77 1.72 1.76 
1.75 1.80 1.79 1.74 1.74 
2.00 1.76 1.77 1.71 1.78 
2.25 1.77 1.78 1.72 1.76 
2.50 1.80 1.79 1.74 1.75 
2.75 1.78 1.81 1.74 1.75 
3.00 1.76 1.78 1.76 1.77 
3.25 1.78 1.79 1.76 1.78 
3.50 1.79 1.79 1.78 1.77 
3.75 1.75 1.79 1.77 1.78 
4.00 1.78 1.81 1.81 1.80 



Table 13 100xbias of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values ()=TT73.0"based on 2000 simulations). 

Procedure 
	 1 	2 	3 	4 

Start 

0.00 0.10 0.27 0.17 0.23 

0.25 1.91 1.47 3.99 2.58 
0.50 3.76 2.69 7.59 5.07 

0.75 6.10 3.96 11.20 7.04 

1.00 8.69 5.38 14.01 8.66 
1.25 11.60 6.38 16.52 9.73 

1.50 15.02 7.47 18.32 10.85 
1.75 19.67 8.17 19.96 11.31 
2.00 25.03 8.88 21.25 12.11 
2.25 31.59 9.17 21.90 12.86 

2.50 39.26 9.41 22.96 13.14 
2.75 49.01 10.23 23.56 12.83 
3.00 60.62 10.44 24.46 13.15 
3.25 73.91 10.66 24.69 13.37 

3.50 89.69 10.82 24.70 13.27 

3.75 107.63 11.01 24.93 13.49 
4.00 127.53 10.90 25.73 13.54 

Table 14 100bias of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values Q3=  Tr/ 3.0 hl.,based on 2000 simulations). 

Procedure 	 1 - - 	2 	3 	- 	4 

Start 

0.00 0.14 0.13 0.10 0.18 

0.25 0.35 0.22 0.77 0.43 
0.50 0.51 0.43 1.41 0.77 

0.75 0.50 0.43 2.20 1.01 
1.00 0.71 0.57 2.80 1.41 
1.25 0.92 0.58 3.38 1.48 

1.50 1.32 0.70 3.74 1.72 
1.75 1.56 0.68 4.21 1.92 
2.00 2.08 0.70 4.57 1.86 
2.25 2.57 0.96 4.67 1.87 

2.50, 3.27 1.02 4.80 1.86 
2.75 4.01 1.01 5.02 2.03 
3.00 4.94 0.98 5.04 2.03 
3.25 6.11 0.91 5.03 1.98 
3.50 7.81 0.99 5.21 2.16 
3.75 9.76 0.98 5.14 2.04 
4.00 12.09 0.91 5.35 2.09 
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Table 15 100bias of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values ()= TT/3.O'based on 2000 simulations). 

Procedure 	 1 - 	2 	- 3 	- 4 

Start 

0.00 0.21 0.21 0.22 0.29 
0.25 0.11 0.12 0.30 0.18 
0.50 0.18 0.18 0.40 0.30 
0.75 0.22 0.21 0.55 0.31 
1.00 0.20 0.19 0.72 0.48 
1.25 0.23 0.29 1.04 0.40 
1.50 0.27 0.24 0.98 0.43 
1.75 0.38 0.38 1.22 0.50 
2.00 0.42 0.33 1.33 0.47 
2.25 0.49 0.43 1.30 0.57 
2.50 0.45 0.14 1.31 0.61 
2.75 0.51 0.25 1.43 0.62 
3.00 0.61 0.19 1.36 0.59 
3.25 0.68 0.32 1.43 0.52 
3.50 0.76 0.27 1.43 0.48 
3.75 0.92 0.29 1.63 0.65 
4.00 1.08 0.29 1.52 0.65 

Table 16 100bias of estimators in 96 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values (=ttf3.0,based on 2000 simulations). 

Procedure 	 1 	2 - 	3 	4 

Start 

0.00 0.11 0.10 0.13 0.27 
0.25 0.19 0.18 0.16 0.16 
0.50 0.24 0.22 0.18 0.21 
0.75 0.26 0.25 0.27 0.23 
1.00 0.27 0.28 0.24 0.27 
1.25 0.10 0.08 0.42 0.33 
1.50 0.27 0.28 0.43 0.27 
1.75 0.26 0.27 0.49 0.32 
2.00 0.28 0.27 0.56 0.25 
2.25 0.22 0.22 0.42 0.35 
2.50 0.21 0.28 0.45 0.30 
2.75 0.21 0.15 0.57 0.30 
3.00 0.25 0.28 0.51 0.39 
3.25 0.28 0.25 0.48 0.25 
3.50 0.25 0.15 0.57 0.28 
3.75 0.31 0.35 0.67 0.29 
4.00 0.29 0.35 0.58 0.26 
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Table 17 100m.s.e. of Ep in 48 step experiments 
(=W/ 3.0"L. based on 2000 simulations). 

Step Size 	 0.20 	0.40 	0.60 	0.80 

Start 

0.00 2.30 2.62 3.00 3.18 

0.25 2.42 2.68 3.14 3.35 
0.50 2.69 2.84 3.09 3.30 

0.75 3.17 3.02 3.18 3.44 
1.00 3.48 3.08 3.25 3.55 
1.25 3.90 3.29 3.33 3.49 
1.50 4.25 3.39 3.44 3.48 
1.75 4.55 3.39 3.52 3.64 
2.00 4.89 3.67 3.53 3.67 

2.25 5.16 3.91 3.58 3.71 
2.50 5.56 3.76 3.71 3.92 
2.75 5.65 3.78 3.75 3.92 
3.00 6.13 3.95 3.89 3.82 
3.25 6.38 3.90 3.78 3.81 
3.50 6.73 3.93 3.66 3.80 
3.75 7.26 4.14 3.87 3.95 
4.00 7.54 4.08 3.91 4.12 

Table 18 100 ,cbias of EDM  in 48 step experiments 
(= 1r/3.0,based on 2000 simulations). 

Step Size 0.20 0.40 - 0.60 0.80 

Start 

0.00 0.30 0.52 0.47 0.27 

0.25 3.34 1.69 1.14 1.09 
0.50 5.47 2.73 1.79 1.41 
0.75 7.47 3.97 2.69 1.90 
1.00 8.93 4.40 3.47 2.39 
1.25 9.96 4.97 3.75 2.58 
1.50 11.22 5.45 3.56 3.00 
1.75 11.68 5.63 3.37 3.01 
2.00 12.44 5.74 4.01 2.83 

2.25 13.46 6.27 4.37 3.14 
2.50 13.97 6.46 4.49 2.85 
2.75 14.31 6.13 4.14 3.08 
3.00 15.19 6.65 4.04 3.56 
3.25 15.29 6.67 4.33 3.24 
3.50 16.29 6.58 4.50 3.00 
3.75 17.08 6.67 4.53 3.08 
4.00 17.45 6.89 4.36 3.06 



Table 19 100%m.s.e. of E 0  in 96 step experiments 
(=1T/ 3.0based on 2000 simulations). 

Step Size 	 0.15 	0.30 	0.45 	0.60 

Start 

0.00 1.27 1.34 1.46 1.58 
0.25 1.29 1.41 1.57 1.73 
0.50 1.40 1.41 1.57 1.65 
0.75 1.57 1.56 1.50 1.65 
1.00 1.67 1.51 1.63 1.63 
1.25 1.81 1.57 1.65 1.67 
1.50 1.94 1.64 1.58 1.80 
1.75 1.99 1.62 1.57 1.67 
2.00 2.11 1.73 1.78 1.70 
2.25 2.20 1.68 1.76 1.71 
2.50 2.28 1.81 1.65 1.79 
2.75 2.40 1.77 1.74 1.88 
3.00 2.49 1.72 1.81 1.82 
3.25 2.53 1.78 1.73 1.73 
3.50 2.64 1.71 1.71 1.74 
3.75 2.73 1.91 1.88 1.87 
4.00 2.81 1.75 1.83 1.91 

Table 20 lOOxbi'as of E L,, in 96 step experiments 
(Th/3.0" ,based on 2000 simulations). 

Step Size 	 0.15 	0.30 - 0.45 	0.60 

Start 

0.00 0.10 0.04 0.18 0.26 
0.25 2.03 0.94 0.85 0.72 
0.50 3.45 1.72 1.25 0.87 
0.75 4.54 2.47 1.62 1.24 
1.00 5.54 2.59 2.14 1.78 
1.25 6.19 3.25 2.18 1.88 
1.50 6.83 3.24 2.16 1.75 
1.75 7.33 3.50 2.39 1.58 
2.00 7.61 3.60 2.60 1.88 
2.25 7.92 3.50 2.68 2.19 
2.50 8.40 4.11 2.79 2.25 
2.75 8.67 3.76 2.83 1.98 
3.00 9.11 3.92 2.70 1.83 
3.25 9.09 4.01 2.58 2.12 
3.50 9.14 4.02 2.65 2.26 
3.75 9.43 4.18 2.93 2.37 
4.00 9.77 3.90 2.83 2.19 
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Table 1 lOOxm.s.e. of estimators of L,'ifl 48 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (= TT/ 3.0'based on 2000 simulations). 

Procedure 	1 	2 	3 	4 - 	5 	- 6 	7 	8 

Start 

-2.00 4.84 6.27 7.37 5.33 18.75 6.56 8.73 6.10 

-1.75 4.38 6.09 6.39 5.05 12.05 6.43 7.51 6.12 
-1.50 3.90 5.85 5.53 4.66 8.00 6.18 6.76 5.66 
-1.25 3.78 5.31 4.56 4.27 5.71 5.91 5.73 5.18 

-1.00 3.68 4.88 3.79 3.81 4.31 5.38 4.72 4.70 
-0.75 3.78 4.96 3.10 3.54 3.58 4.75 3.92 4.01 

-0.50 3.92 4.82 2.71 3.14 3.36 4.37 3.45 3.33 
-0.25 4.26 5.00 2.58 2.86 3.35 4.15 3.23 2.84 

0.00 4.83 5.40 2.66 2.87 3.64 4.28 3.35 2.67 
0.25 5.38 5.84 3.18 3.04 4.00 4.60 3.64 3.15 
0.50 6.28 6.90 4.05 3.42 4.74 5.24 3.93 4.26 
0.75 7.49 8.06 4.91 3.78 5.64 6.16 4.48 5.89 

1.00 8.83 8.89 6.15 4.13 7.72 7.85 4.65 7.94 
1.25 12.20 10.98 7.56 4.69 11.13 10.16 5.11 10.33 
1.50 16.94 12.43 8.68 4.98 15.96 11.94 5.29 12.15 
1.75 25.31 14.57 9.98 5.49 24.00 13.80 5.68 14.23 
2.00 38.21 15.49 11.63 5.63 36.67 15.69 6.23 16.68 

Table 2 100m.s.e. of estimators of Lin 48 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (=ff/3.0,based on 2000 simulations). 

Procedure 	1 	2 	3 	4 - 	5 	6 	7 - 	8 

Start 

-2.00 3.33 4.53 3.19 3.40 2.97 3.88 4.84 3.53 
-1.75 3442 4.45 3.14 3.47 3.04 3.87 4.91 3.52 
-1.50 3.52 4.64 3.18 3.47 3.06 3.85 4.78 3.48 
-1.25 3.58 4.82 3.31 3.35 3.09 3.70 4.77 3.45 
-1.00 3.81 4.84 3.27 3.33 3.19 3.68 4.72 3.37 

-0.75 4.05 4.80 3.35 3.39 3.27 3.62 5.04 3.27 
-0.50 4.20 4.97 3.34 3.39 3.38 3.63 5.05 3.27 
-0.25 4.18 4.76 3.46 3.46 3.39 3.48. 5.16 3.24 
0.00 4.32 4.65 3.48 3.42 3.46 3.48 5.38 3.34 

0.25 4.64 4.76 3.62 3.43 3.42 3.48 5.53 3.35 
0.50 4.79 4.92 3.88 3.56 3.60 3.67 5.71 3.47 
0.75 4.86 5.06 4.02 3.65 3.73 3.80 6.01 3.74 
1.00 5.17 5.35 4.13 3.69 3.88 3.90 6.35 4.08 
1.25 5.83 6.04 4.44 3.75 4.30 4.42 6.39 4.55 
1.50 6.23 6.44 4.62 3.84 4.54 4.65 6.89 4.77 
1.75 6.90 7.01 4.81 3.94 4.97 5.03 6.93 5.08 
2.00 7.39 7.23 5.08 4.05 5.26 5.22 6.97 5.25 
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Table 3 lOOxm.s.e. of estimators of L,in 48 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (= TT/ 3.0"based on 2000 simulations). 

Procedure 	1 	2 	- 3 - - 4 - - 	5 	- 6 	7 	8 

Start 

-2.00 3.89 4.73 4.21 4.33 3.63 4.02 6.57 3.90 
-1.75 3.94 4.50 4.17 4.37 3.71 3.91 6.49 3.84 
-1.50 4.07 4.74 4.36 4.31 3.71 3.94 6.33 3.94 
-1.25 4.03 4.78 4.32 4.48 3.85 3.97 6.46 3.88 
-1.00 3.94 4.51 4.42 4.37 3.75 3.86 6.85 3.75 
-0.75 4.11 4.67 4.45 4.34 3.82 3.84 6.79 3.76 
-0.50 4.20 4.59 4.45 4.31 3.77 3.81 7.14 3.72 
-0.25 4.24 4.45 4.38 4.44 3.73 3.77 7.21 3.81 
0.00 4.24 4.43 4.44 4.26 3.79 3.77 7.43 3.79 
0.25 4.26 4.28 4.55 4.40 3.79 3.80 7.43 3.76 
0.50 4.37 4.38 4.51 4.47 3.81 3.82 7.51 3.84 
0.75 4.42 4.45 4.81 4.46 3.86 3.90 8.12 3.88 
1.00 4.61 4.65 4.78 4.52 3.82 3.85 7.89 4.05 
1.25 4.91 5.06 4.82 4.56 3.97 4.01 7.98 4.13 
1.50 5.02 5.15 4.98 4.63 4.08 4.05 8.41 4.30 
1.75 5.22 5.41 5.07 4.62 4.13 4.19 8.71 4.39 
2.00 5.35 5.58 5.13 4.62 4.17 4.17 8.48 4.33 

Table 4 100m.s.e. of estimators of L-in 48 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values (=ff/3.0-,based on 2000 simulations). 

Procedure 	1 	2 	3 	4 	5 	6 	7 	8 

Start 

-2.00 4.57 4.96 5.42 5.35 4.44 4.61 8.18 4.55 
-1.75 4.48 4.93 5.39 5.37 4.51 4.56 8.38 4.43 
-1.50 4.48 4.95 5.37 5.38 4.50 4.57 8.42 4.49 
-1.25 4.67 5.17 5.45 5.26 4.50 4.50 8.74 4.41 
-1.00 4.61 5.03 5.39 5.38 4.37 4.39 8.36 4.25 
-0.75 4.51 4.61 5.44 5.41 4.54 4.55 8.91 4.30 
-0.50 4.57 4.70 5.45 5.38 4.52 4.51 8.89 4.38 
-0.25 4.55 4.56 5.49 5.41 4.48 4.52 8.88 4.55 
0.00 4.59 4.58 5.56 5.27 4.59 4.59 9.11 4.46 
0.25 4.70 4.68 5.48 5.48 4.50 4.51 9.18 4.46 
0.50 4.73 4.72 5.43 5.42 4.42 4.43 9.49 4.41 
0.75 4.70 4.68 5.64 5.38 4.48 4.48 9.75 4.45 
1.00 4.66 4.76 5.58 5.39 4.49 4.52 9.82 4.48 
1.25 4.78 4.89 5.59 5.63 4.53 4.56 10.10 4.68 
1.50 4.91 5.01 5.76 5.57 4.41 4.50 10.11 4.70 
1.75 5.15 5.20 5.69 5.57 4.52 4.52 10.48 4.69 
2.00 5.13 5.27 5.86 5.52 4.60 4.68 10.36 4.82 
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Table 5 100,Lbiag of estimators of Lin 48 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values (,$=rtf3.0-,based  on 2000 simulations). 

Procedure 	1 	2 - 	3 - - 4 	5 - 	6 	- 7 - 	8 

Start 

-2.00 -14.44 -4.21 -20.38 -12.93 -41.77 -7.01 -21.80 -14.82 
-1.75 -11.92 -3.83 -18.54 -12.12 -32.17 -6.83 -19.74 -14.86 
-1.50 -9.00 -2.70 -16.44 -11.17 -24.45 -6.46 -17.90 -14.10 
-1.25 -6.48 -1.95 -13.74 -9.74 -18.43 -6.16 -15.35 -13.11 
-1.00 -3.83 -0.75 -10.49 -8.35 -13.15 -5.44 -12.84 -11.77 
-0.75 -1.88 0.62 -6.98 -6.39 -8.67 -4.10 -10.06 -9.64 
-0.50 -0.01 1.76 -3.82 -4.64 -4.84 -2.39 -7.02 -6.57 
-0.25 2.22 3.68 -0.63 -2.52 -1.72 -0.46 -4.52 -2.91 
0.00 4.88 6.00 3.21 -0.18 1.86 2.28 -2.40 1.14 
0.25 7.65 8.07 7.00 1.77 5.52 5.10 -0.74 5.70 
0.50 10.58 10.10 10.32 3.69 8.99 7.65 0.28 10.19 
0.75 14.33 11.57 13.17 5.22 13.22 9.82 0.96 14.70 
1.00 19.00 12.89 15.86 6.19 18.98 12.55 1.26 18.30 
1.25 25.84 14.89 18.55 7.80 26.07 15.08 1.38 21.82 
1.50 34.29 15.78 20.43 8.14 34.28 16.43 1.33 24.22 
1.75 45.19 17.39 22.09 8.85 44.91 18.57 1.90 26.65 
2.00 58.39 18.15 24.52 9.20 57.67 19.48 2.40 29.87 

Table 6 100bias of estimators of Li,in 48 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values Q=ft/3.0' t,based on 2000 simulations). 	- 

Procedure 	- 1 	2 	3 	4 	- 5 	6 - 	- 7 - - 8 

Start 

-2.00 2.82 5.77 -0.69 -0.30 -4.36 1.37 -4.59 -1.90 
-1.75 3.33 5.98 -0.08 -0.07 -2.86 1.03 -4.08 -1.76 
-1.50 3.83 6.02 0.70 0.26 -1.55 1.59 -3.61 -1.70 
-1.25 4.34 6.27 1.29 0.11 -0.36 1.58 -3.77 -1.44 
-1.00 5.15 6.58 1.87 0.28 0.35 1.72 -2.74 -1.16 
-0.75 5.73 6.69 2.65 0.67 1.03 1.78 -2.51 -0.53 
-0.50 6.17 6.98 2.80 0.80 1.24 1.72 -2.03 -0.03 
-0.25 6.23 6.92 3.47 1.08 1.95 2.07 -1.76 0.89 
0.00 6.60 7.16 3.82 1.34 2.13 2.09 -1.55 1.72 
0.25 7.33 7.85 4.95 1.39 2.63 2.68 -0.96 2.69 
0.50 7.39 8.00 5.68 1.96 3.31 3.17 -0.91 3.66 
0.75 7.47 7.97 6.19 2.27 3.91 3.87 -0.93 4.70 
1.00 7.30 8.17 6.54 2.29 4.46 4.20 -1.09 5.68 
1.25 8.29 8.54 7.33 2.43 5.70 4.62 -0.73 6.74 
1.50 9.11 8.87 7.82 2.43 6.84 4.99 -1.19 7.22 
1.75 10.42 9.36 8.23 2.62 8.64 5.61 -1.41 8.27 
2.00 12.25 9.04 8.53 2.69 10.46 5.76 -1.23 7.92 



Table 7 100,bias of estimators of Lin 48 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (=1r/3.0based on 2000 simulations). 

Procedure 	1 - 	2 	3 	4 - 	- 5 - 	6 	- 	78 

Start 

-2.00 3.99. 5.45 3.06 1.38 1.26 2.03 -1.04 0.85 
-1.75 4.14 5.34 3.48 1.50 1.33 2.08 -0.86 0.94 
-1.50 4.59 5.60 3.75 1.87 1.40 1.87 -0.60 0.57 
-1.25 4.87 5.74 3.91 2.06 1.88 2.00 -0.92 1.16 
-1.00 4.84 5.37 3.78 2.06 1.97 2.12 -0.50 1.07 
-0.75 5.51 5.90 4.24 1.83 2.15 2.22 -0.21 1.18 
-0.50 5.48 5.79 4.06 2.02 1.87 1.92 -0.59 1.12 
-0.25 5.70 5.93 4.08 1.61 1.81 1.84 -0.57 1.90 
0.00 5.57 5.77 4.19 1.80 2.08 2.11 -0.06 1.77 
0.25 5.75 5.95 4.33 2.09 2.19 2.26 0.08 2.03 
0.50 6.08 6.38 4.46 2.29 2.18 2.28 -0.29 2.49 
0.75 5.83 6.04 4.92 1.78 2.43 2.36 -0.76 2.51 
1.00 5.58 6.16 5.03 2.07 2.60 2.49 0.01 2.62 
1.25 5.96 6.27 5.06 2.22 2.59 2.56 -0.48 3.13 
1.50 5.62 6.17 5.07 2.42 2.86 2.81 -0.28 3.33 
1.75 5.87 6.22 5.35 2.17 3.04 2.87 -0.31 3.42 
2.00 5.81 6.16 5.37 2.36 3.40 2.80 -0.11 3.70 

Table 8 100bias of estimators of Lj,in 48 step experiments using 
stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values (=1i/3.0based on 2000 simulations). 

Procedure 	1 	2 	3 	4 	5 	6 	7 	8 

Start 

-2.00 3.49 4.12 4.02 2.46 1.87 2.24 0.07 1.53 
-1.75 3.66 4.19 4.44 2.23 1.99 2.04 0.16 1.65 
-1.50 3.97 4.42 3.99 2.39 2.28 2.26 0.41 1.45 
-1.25 3.99 4.35 4.49 2.33 2.09 2.28 0.47 1.78 
-1.00 4.33 4.60 4.07 2.62 2.04 2.03 0.57 1.50 
-0.75 4.34 4.41 4.35 2.11 2.07 2.14 0.19 1.65 
-0.50 4.60 4.69 4.42 2.52 2.05 1.99 0.38 1.74 
-0.25 4.53 4.49 4.64 2.38 2.19 2.19 0.49 2.21 
0.00 . 	 4.68 4.58 4.10 2.36 2.33 2.36 0.58 1.75 
0.25 4.78 4.81 4.40 2.27 2.17 2.23 0.78 1.81 
0.50 5.03 5.18 4.26 2.31 1.84 1.84 0.25 1.89 
0.75 4.81 4.83 4.72 2.39 2.05 2.09 0.30 2.14 
1.00 4.57 4.64 4.55 2.20 1.81 1.80 0.20 2.26 
1.25 4.71 5.02 4.87 2.53 2.27 2.17 0.14 2.15 
1.50 4.39 4.59 4.45 2.30 1.94 2.04 0.82 2.39 
1.75 4.70 4.99 4.61 2.50 2.11 1.92 1.03 2.39 
2.00 4.45 4.79 4.88 2.54 2.25 2.27 0.10 2.74 



Table 9 100m.s.e. of estimators of Lt ft fl 96 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the' 
asymptotic optimal values ()-7T/3.d',based on 2000 simulations). 

Procedure 	1 	2 	- 3 	4 	5 	6 	7 - 	8 

Start 

-2.00 2.63 3.60 3.40 2.52 10.24 3.63 3.18 3.12 
-1.75 2.36 3.34 3.07 2.42 6.74 3.70 2.88 3.13 
-1.50 2.24 3.22 2.67 2.32 4.47 3.43 2.72 3.01 
-1.25 2.12 3.12 2.33 2.18 3.25 3.27 2.45 2.81 
-1.00 2.13 2.98 2.00 2.05 2.42 2.98 2.15 2.56 
-0.75 2.13 2.92 1.72 1.83 2.08 2.68 1.96 2.27 
-0.50 2.29 2.84 1.52 1.71 1.97 2.52 1.83 1.97 
-0.25 2.57 3.00 1.48 1.59 1.98 2.40 1.81 1.64 

0.00 2.78 3.11 1.50 1.58 2.11 2.39 1.85 1.55 
0.25 3.09 3.31 1.65 1.61 2.26 2.55 1.87 1.78 
0.50 3.44 3.73 1.99 1.68 2.60 2.85 2.01 2.34 
0.75 4.05 4.31 2.38 1.84 3.14 3.36 2.19 3.23 
1.00 5.10 5.05 2.85 1.96 4.24 4.20 2.23 4.10 
1.25 7.16 6.31 3.20 2.09 6.02 5.40 2.30 5.21 
1.50 10.12 7.36 3.61 2.25 8.67 6.33 2.36 5.88 
1.75 14.82 8.24 3.89 2.37 13.08 7.43 2.40 6.68 
2.00 22.46 8.92 4.21 2.46 20.11 8.58 2.60 7.21 

Table 10 lOOsm.s.e. of estimators of Lt,&in  96 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (=1T/3.0 '.based on 2000 simulations). 

Procedure 	1 2 3 	- - 	 4 - 	 5 6 - 	 7 - 	- 8 

Start 

-2.00 1.65 2.04 1.68 1.76 1.55 1.76 2.75 1.77 
-1.75 1.71 2.03 1.70 1.77 1.56 1.81 2.70 1.75 
-1.50 1.73 2.01 1.71 1.76 1.58 1.77 2.71 1.74 
-1.25 -1.74 2.07 1.71 1.75. 1.60 1.79 2.74 1.71 
-1.00 1.80 2.20 1.73 1.75 1.62 1.78 2.75 1.68 
-0.75 1.85 2.15 1.74 1.73 1.61 1.73 2.83 1.67 
-0.50 1.86 2.08 1.77 1.73 1.65 1.73 2.79 1.67 
-0.25 1.85 2.00 1.81 1.75 1.69 1.70 2.88 1.66 
0.00 1.96 2.06 1.78 1.76 1.70 1.74 2.91 1.68 
0.25 2.06 2.10 1.88 1.74 1.72 1.74 2.91 1.64 
0.50 2.10 2.19 1.90 1.80 1.72 1.76 3.02 1.73 
0.75 2.17 2.28 1.96 1.79 1.72 1.75 3.09 1.79 
1.00 2.28 2.41 2.00 1.83 1.74 1.73 3.30 1.91 
1.25 2.44' 2.51 2.02 1.84 1.93 1.95 3.23 2.00 
1.50 2.68 2.80 2.11 1.88 2.01 1.99 3.33 2.11 
1.75 2.82 2.85 2.12 1.89 2.10 2.09 3.27 2.14 
2.00 3.06 2.98 2.17 1.92 2.18 2.11 3.31 2.32 

3S6 



Table 11 100m.s.e. of estimators of Lyjfl 96 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (=1T/3.0based on 2000 simulations). 

Procedure 	1 - 	- 2 	3 - 	- 4 	5 	6 - 	7 	- 8 

Start 

-2.00 1.91 2.15 2.18 2.24 1.85 1.91 3.83 1.92 

-1.75' 1.85 1.96 2.22 2.22 1.87 1.92 3.82 1.93 

-1.50 1.91 2.02 2.21 2.23 1.88 1.92 3.83 1.87 

-1.25 1.89 1.95 2.23 2.23 1.88 1.89 3.86 1.87 

-1.00 1.95 2.04 2.24 2.23 1.87 1.87 3.89 1.94 

-0.75 1.93 2.00 2.26 2.21 1.89 1.91 3.99 1.85 

-0.50 1.98 2.07 2.30 2.23 1.86 1.87 4.02 1.85 

-0.25 2.01 2.08 2.24 2.22 1.89 1.90 3.97 1.95 

0.00 1.98 2.09 2.25 2.20 1.88 1.90 4.09 1.90 

0.25 1.96 2.00 2.28 2.23 1.88 1.88 4.11 1.90 

0.50 1.98 2.04 2.26 2.26 1.88 1.88 4.19 1.90 

0.75 1.99 2.11 2.32 2.25 1.91 1.91 4.25 1.93 

1.00 2.03 2.02 2.34 2.27 1.88 1.89 4.20 1.95 

1.25 2.04 2.07 2.34 2.28 1.87 1.89 4.27 1.98 

1.50 2.09 2.12 2.37 2.28 1.89 1.86 4.32 2.00 

1.75 2.12 2.14 2.36 2.23 1.93 1.91 4.38 2.00 

2.00 2.17 2.19 2.43 2.29 1.94 1.95 4.37 2.05 

Table 12 lOOsm.s.e. of estimators of L,in 96 step experiments using 
stochastic approximation procedures with c equa,1 to 2.0 times the 
asymptotic optimal values (P= IT/ 3.0'/ ,.based on 2000 simulations). 

Procedure 	1 - 	2 	- 3 	4 - 	5 - 	6 	- 7 	8 

Start 

-2.00 2.22 2.25 2.71 2.71. 2.20 2.25 4.78 2.23 

-1.75 2.17 2.19 2.75 2.74 2.25 2.24 4.81 2.23 

-1.50 2.21 2.24 2.76 2.74 2.18 2.22 4.99 2.19 

-1.25 2.22 2.26 2.72 2.74 2.24 2.26 4.96 2.25 

-1.00 2.17 2.24 2.76 2.74 2.20 2.18 4.95 2.17 

-0.75 2.24 2.26 2.75 2.75 2.22 2.24 5.00 2.23 

-0.50 2.19 2.23 2.77 2.73 2.23 2.23 5.13 2.23 

-0.25 2.20 2.25 2.75 2.71 2.23 2.23 5.03 2.26 

0.00 2.18 2.17 2.78 2.73 2.22 2.22 5.05 2.24 

0.25 2.18 2.17 2.75 2.70 2.20 2.20 5.11 2.22 

0.50 2.21 2.22 2.74 2.69 2.20 2.20 5.13 2.23 

0.75 2.21 2.19 2.74 2.70 2.24 2.23 5.23 2.24 

1.00 2.24 2.22 2.76 2.77 2.21 2.22 5.31 2.28 

1.25 2.22 2.23 2.85 2.77 2.23 2.23 5.47 2.27 

1.50 2.25 2.29 2.82 2.79 2.20 2.23 5.35 2.30 
1.75 2.27 2.26 2.86 2.84 2.21 2.22 5.40 2.30 

2.00 2.26 	' 2.26 2.85 2.75 2.23 2.23 5.49 2.33 
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Table 13 100bias of estimators of Lin 96 step experiments using 
stochastic approximation procedures with c equal to 0.5 times the 
asymptotic optimal values ()3=Tr/3.0"based on 2000 simulations). 

Procedure 	1 	2 	3 - 	4 - 	5 	- 6 	- - 7 	8 

Start 

-2.00 -10.12 -2.18 -13.23 -8.28 -30.48 -5.09 -10.65 -10.07 

-1.75 -8.13 -2.37 -12.09 -7.96 -23.66 -5.04 -9.96 -10.13 

-1.50 -6.42 -2.18 -10.77 -7.41 -17.88 -4.70 -9.29 -9.61 

-1.25 -4.66 -1.31 -9.08 -6.73 -13.46 -4.68 -8.09 -9.00 

-1.00 -2.61 -0.26 -7.03 -5.59 -9.29 -3.63 -6.74 -8.13 

-0.75 -1.02 0.76 -4.58 -4.30 -6.18 -2.88 -5.31 -6.86 

-0.50 0.32 1.59 -2.42 -3.07 -3.71 -1.85 -3.85 -4.90 

-0.25 1.81 2.86 -0.18 -1.73 -1.31 -0.39 -2.75 -2.21 

0.00 3.46 4.28 2.22 -0.51 1.06 1.26 -1.70 0.75 

0.25 5.44 5.85 4.42 0.99 3.64 3.41 -1.14 3.98 

0.50 7.50 6.98 6.49 1.91 6.26 5.13 -0.73 7.24 

0.75 10.19 8.18 8.21 2.88 9.47 7.04 -0.47 10.27 
1.00 14.00 9.70 9.76 3.68 13.64 8.99 -0.43 12.65 

1.25 19.35 11.16 10.98 4.42 18.73 10.79 -0.48 14.88 

1.50 25.78 12.20 11.98 4.62 24.84 11.94 -0.71 16.45 

1.75 33.99 12.92 12.57 4.95 32.60 13.49 -0.30 17.74 
2.00 44.24 13.38 13.53 5.07 42.23 .14.33 -0.50 18.88 

Table 14 100bias of estimators of Lin 96 step experiments using 
stochastic approximation procedures with c equal to the asymptotic 

optimal values (= Tr/3.0based on 2000 simulations). 

Procedure 	- 	1 	2 	3 	- 4 	- 5 	6 	- 7 	8 

Start 

-2.00 1.84 3.44 0.19 0.03 -2.24 0.84 -1.67 -0.78 

-1.75 2.13 3.52 0.45 0.15 -1.35 0.75 -1.63 -0.74 
-1.50 206 3.43 0.88 0.23 -0.64 0.79 -1.41 -0.65 

-1.25 2.65 3.60 1.04 0.09 -0.08 0.88 -1.13 -0.57 

-1.00 3.11 3.90 1.39 0.39 0.32 0.98 -1.15 -0.52 

-0.75 3.38 3.97 1.72 0.49 0.70 1.08 -0.95 -0.09 
-0.50 3.56 4.00 1.82 0.57 0.80 1.02 -0.82 0.12 

-0.25 3.74 4.04 1.97 0.57 1.02 1.14 -0.78 0.58 

0.00 3.73 4.11 2.14 0.64 1.23 1.28 -0.86 1.03 

0.25 4.11 4.42 2.72 0.75 1.36 1.35 -0.65 1.56 

0.50 4.12 4.56 2.99 0.92 1.69 1.64 -0.71 2.02 

0.75 4.13 4.40 3.10 1.01 2.10 2.06 -0.71 2.60 

1.00 4.40 4.70 3.41 1.20 2.39 2.08 -0.63 3.12 

1.25 4.59 4.79 3.68 1.26 3.20 2.55 -0.76 3.54 
1.50 5.39 5.31 3.80 1.11 3.77 2.74 -0.81 3.75 
1.75 5.81 5.04 3.87 1.05 4.52 2.99 -0.89 4.29 

2.00 6.73 5.24 4.08 1.39 5.34 2.91 -0.92 4.42 



Table 15 100,bias of estimators of L,/-in 96 step experiments using 
stochastic approximation procedures with c equal to 1.5 times the 
asymptotic optimal values (,=ff/3.0'based on 2000 simulations). 

Procedure 	1 	2 	3 	4 - 	5 	6 	7 - 	8 

Start 

-2.00 2.01 2.66 1.70 0.81 0.83 1.09 -0.56 0.76 
-1.75 2.01 2.45 1.83 0.71 0.79 1.13 -0.41 0.52 
-1.50 2.19 2.55 1.95 0.93 0.83 1.00 -0.34 0.51 
-1.25 2.30 2.55 2.05 1.03 1.07 1.09 -0.17 0.65 
-1.00 2.26 2.44 2.10 0.94 1.11 1.14 -0.18 0.72 
-0.75 2.54 2.66 2.08 0.83 1.01 1.06 -0.20 0.81 
-0.50 2.61 2.72 2.15 1.08 1.03 1.06 -0.53 0.74 
-0.25 2.78 2.89 2.15 0.89 1.01 1.03 -0.43 0.99 
0.00 2.71 2.85 2.10 0.99 1.03 1.05 -0.29 0.88 
0.25 2.81 2.94 2.11 0.93 1.10 1.09 -0.37 1.13 
0.50 2.71 2.90 2.19 1.10 1.06 1.05 -0.30 1.34 
0.75 2.57 2.81 2.21 0.89 1.11 1.11 -0.43 1.35 
1.00 2.55 2.77 2.38 0.98 1.25 1.15 -0.30 1.38 
1.25 2.67 2.69 2.30 1.01 1.14 1.17 -0.23 1.60 
1.50 2.76 3.08 2.21 1.08 1.45 1.43 -0.18 1.55 
1.75 2.65 2.80 2.53 0.92 1.45 1.34 -0.23 1.68 
2.00 2.68 2.86 2.40 1.11 1.50 1.25 -0.57 1.74 

Table 16 100,bias of estimators of Lin 96 step experiments using 

stochastic approximation procedures with c equal to 2.0 times the 
asymptotic optimal values ()B= TT/3-0" Ir based on 2000 simulations). 

Procedure 	1 	2 - 	3 	4 	5 - - 6 	- - 7 	8 

Start 

-2.00 1.50 1.65 1.87 0.94 0.97 1.02 0.21 0.80 
-1.75 1.71 1.81 1.94 1.02 0.97 0.91 0.04 0.89 
-1.50 1.66 1.73 1.97 0.97 0.94 1.02 0.08 0.77 
-1.25 1.69 1.80 1.91 0.84 1.03 1.12 0.32 0.78 
-1.00 1.86 1.99 1.98 0.87 1.02 1.03 -0.05 0.88 
-0.75 1.75 1.81 1.90 1.02 0.97 1.00 -0.10 1.00 
-0.50 1.91 1.98 1.99 1.01 0.98 0.94 0.10 0.82 
-0.25 1.90 1.94 1.91 1.00 0.85 0.82 -0.02 1.09 
0.00 1.85 1.84 1.81 0.89 1.01 1.02 0.03 0.97 
0.25 1.91 1.95 1.95 0.97 0.90 0.90 0.12 1.01 
0.50 2.01 2.05 1.99 0.92 1.06 1.06 -0.16 0.96 
0.75 1.94 1.95 2.00 0.98 0.97 0.97 0.01 1.09 
1.00 1.83 1.88 2.11 1.03 0.87 0.88 0.02 1.01 
1.25 1.88 1.97 1.99 0.97 1.01 0.98 0.01 1.04 
1.50 1.97 1.93 2.01 1.00 1.05 1.06 0.09 1.32 
1.75 1.83 1.98 1.96 0.98 1.04 1.02 0.11 1.17 
2.00 1.90 1.93 2.02 0.97 1.04 1.10 0.01 1.25 
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Table 17 100m.s.e. and 100bias of estimators of Lin 96 step 

experiments using Procedures 1,4,5 and 8 with c equal to 0.5 times 

the asymptotic optimal values (, P=TT/3.0"'Lr based on 2000 simulations). 

100 m.s.e. 100 N bias 

Procedure 1 4 5 8 1 - 4 5 8 

Start 

-2.00 8.65 5.09 3.23 3.60 14.40 3.80 -3.18 -3.05 

-1.75 10.74 5.09 3.45 3.44 18.92 3.92 -1.47 -2.42 

-1.50 13.23 5.10 3.66 3.31 22.60 3.97 0.28 -2.49 

-1.25 18.15 5.21 4.19 3.29 25.89 3.88 2.29 -2.07 

-1.00 22.30 5.18 4.55 3.30 27.01 3.64 4.15 -1.72 

-0:75 26.21 5.20 5.12 3.34 26.72 4.24 5.81 -1.08 

-0.50 27.84 5.29 6.12 3.33 24.60 4.24 7.26 0.12 

-0.25 27.90 5.32 6.97 3.42 22.14 4.49 7.87 0.66 

0.00 26.03 5.35 7.91 3.58 18.79 4.48 9.18 1.64 

0.25 24.73 5.49 9.03 3.72 17.84 4.40 10.93 2.47 

0.50 24.76 5.49 10.29 4.07 18.01 4.97 13.44 3.59 

0.75 24.40 5.64 11.34 4.33 19.92 5.03 17.06 4.10 

1.00 22.87 5.54 13.78 4.39 22.60 4.82 23.59 4.71 

1.25 23.77 5.60 18.06 4.73 28.92 4.72 32.33 5.15 

1.50 28.21 5.82 25.65 4.94 38.12 5.23 43.33 5.78 

1.75 35.76 5.95 38.46 5.43 49.87 5.21 57.26 5.82 

2.00 49.90 5.71 59.32 5.68 64.71 5.00 74.08 6.00 

Table 18 lOOxm.s.e. and 100 bias of estimators of Lcqin 96 step 

experiments using Procedures 1,4,5 and 8 with c equal to the 
asymptotic optimal values (A= TT/3.0" -,based on 2000 simulations). 

100.x. m.s.e. 	 100.x bias 

Procedure 
	1 	4 	5 	8 	- 1 	4 	5 	8 

Start 

-2.00 92.60 9.35 5.76 5.07 86.21 7.60 9.82 3.65 

-1.75 120.89 9.47 6.46 5.14 94.37 7.53 11.27 3.88 

-1.50 145.91 9.53 6.87 5.27 97.90 7.75 13.25 3.91 

-1.25 158.35 9.37 7.92 5.25 93.53 7.31 15.23 3.98 

-1.00 157.66 9.26 9.14 5.35 83.98 7.40 17.19 4.16 

-0.75 147.84 9.45 10.42 5.34 72.77 7.19 18.62 4.06 

-0.50 131.15 9.44 11.44 5.28 61.52 7.31 19.70 4.32 

-0.25 110.20 9.11 12.18 5.19 50.51 7.55 18.85 4.31 

0.00 86.51 9.29 13.65 5.20 40.81 7.29 18.35 4.22 

0.25 72.02 9.25 13.94 5.21 34.37 7.68 17.07 4.30 

0.50 62.40 9.36 14.06 5.42 29.81 7.42 15.49 4.48 

0.75 56.45 9.22 14.20 5.59 26.97 7.52 14.60 4.70 

1.00 45.66 9.48 14.24 5.49 22.47 7.65 13.91 4.60 

1.25 38.65 9.55 13.67 5.74 19.67 7.96 13.97 4.89 

1.50 34.72 9.49 14.28 5.58 18.41 7.61 14.84 4.69 

1.75 29.11 9.32 13.86 5.76 17.47 7.62 15.79 4.92 

2.00 23.94 9.60 14.08 5.74 17.46 7.67 18.41 5.19 



Table 19 100'rn.s.e. and 100'bias of estimators of Laqin  96 step 
experiments using Procedures 1,4,5 and 8 with c equal to 1.5 times 
the asymptotic optimal values ()3= 1i/3.0',based on 2000 simulations). 

100, m.s.e. 	 100 X  bias 

Procedure 	1 - 	4 	5 	8 - 	1 	4 	5 	8 

Start 

-2.00 482.78 14.31 7.75 7.01 197.05 10.83 12.86 5.94 

-1.75 527.83 14.53 7.97 7.20 196.51 11.16 14.54 6.11 

-1.50 547.44 13.94 9.14 7.33 187.99 11.02 17.69 5.75 
-1.25 525.26 14.40 10.21 7.36 168.07 10.87 20.29 5.61 

-1.00 468.81 14.05 12.23 7.48 141.66 10.44 23.25 6.13 

-0.75 398.73 14.36 14.79 7.27 115.71 10.00 25.13 5.89 
-0.50 324.80 13.88 16.63 7.06 92.67 10.42 25.73 5.54 

-0.25 253.28 14.00 18.03 6.97 73.08 9.73 24.39 5.68 

0.00 186.88 13.62 19.31 7.09 57.49 10.53 22.49 5.46 
0.25 146.91 13.48 19.46 7.21 47.82 10.15 20.30 5.77 

0.50 120.58 13.95 19.35 7.37 40.51 10.40 18.08 6.09 

0.75 102.51 14.09 18.69 7.21 35.40 10.20 16.42 6.07 
1.00 80.76 13.95 17.81 7.26 29.91 10.31 15.41 5.93 

1.25 65.02 13.85 16.28 7.31 24.52 10.25 13.54 6.30 

1.50 56.92 13.92 15.36 7.33 21.94 9.90 12.42 6.24 
1.75 44.18 14.21 14.55 7.43 18.48 10.32 12.27 5.87 

2.00 34.02 14.00 13.04 7.75 16.18 10.16 11.46 6.12 

Table 20 lOOAm.s.e. and lOOcbias of estimators of Lin 96 step 
experiments using Procedures 1,4,5 and 8 with c equal to 2.0 times 
the asymptotic optimal values (73= 7/3.0"based on 2000 simulations). 

100.'< m.s.e. 	 100 x  bias 
Procedure 	1 	4 	5 	- - 8 	1 - 	4 	- 5 	8 - 

Start 

-2.00 1233.36 20.82 8.20 9.08 314.02 14.27 14.74 7.02 

-1.75 1259.14 19.95 9.44 9.27 302.21 13.49 18.03 7.14 

-1.50 1230.30 19.69 11.43 9.26 279.93 13.69 22.48 6.79 

-1.25 1119.25 20.11 14.37 9.28 242.88 14.20 27.27 7.51 

-1.00 953.37 19.06 17.77 9.23 199.00 12.98 30.60 6.87 
-0.75 777.99 18.86 21.79 9.31 158.76 13.25 32.53 7.34 

-0.50 609.26 18.45 24.81 9.14 123.50 12.83 31.99 6.78 

-0.25 458.42 18.40 26.82 9.03 95.61 13.01 29.11 6.78 
0.00 325.56 18673 27.51 8.96 72.62 13.13 26.08 6.56 
0.25 247.31 18.02 26.80 9.00 59.71 12.71 22.72 '7.07 

0.50 198.23 18.63 25.56 9.23 51.13 13.34 19.76 7.24 
0.75 164.54 18.54 23.90 9.03 44.30 12.97 17.40 6.74 
1.00 125.66 18.81 21.82 9.16 35.99 12.87 15.61 6.76 

1.25 100.32 18.58 19.25 9.38 30.00 13.23 13.70 7.06 
1.50 86.31 19.00 18.32 9.18 26.38 12.34 12.87 7.05 
1.75 65.79 18.50 16.67 9.14 21.67 12.78 11.50 6.48 
2.00 48.44 18.82 14.45 9.13 17.84 13.22 10.98 6.74 
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