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Abstract

Many legged robots have boon built with a variety of different abilities, from running
to liopping to climbing stairs. Despite this however, there has been no consistency of
approach to the problem of getting them to walk. Approaches have included breaking
down the walking step into discrete parts and then controlling them separately, using
springs and linkages to achieve a passive walking cycle, and even working out the
necessary movements in simulation and then imposing them on the real robot. All of
these have limitations, although most were successful at the task for which they were

designed. However, all of them fall into one of two categories: either they alter the
dynamics of the robots physically so that the robot, whilst very good at walking, is
not as general purpose as it once was (as with the passive robots), or they control the
physical mechanism of the robot directly to achieve their goals, and this is a difficult
task.

In this thesis a design methodology is described for building controllers for 3D dynam¬
ically stable walking, inspired by the best walkers and runners around — ourselves —

so the controllers produced are based 011 the vertebrate Central Nervous System. This
means that there is a low-level controller which adapts itself to the robot so that, when
switched on, it can be considered to simulate the springs and linkages of the passive
robots to produce a walking robot, and this now active mechanism is then controlled
by a relatively simple higher level controller. This is the best of both worlds — we
have a robot which is inherently capable of walking, and thus is easy to control like
the passive walkers, but also retains the general purpose abilities which makes it so

potentially useful.

This design methodology uses an evolutionary algorithm to generate low-level control¬
lers for a selection of simulated legged robots. The thesis also looks in detail at previous
walking robots and their controllers and shows that some approaches, including staged
evolution and hand-coding designs, may be unnecessary, and indeed inappropriate, at
least for a general purpose controller. The specific algorithm used is evolutionary, using
a simple genetic algorithm to allow adaptation to different robot configurations, and
the controllers evolved are continuous time neural networks. These are chosen because
of their ability to entrain to the movement of the robot, allowing the whole robot and
network to be considered as a single dynamical system, which can then be controlled
by a higher level system.

An extensive program of experiments investigates the types of neural models and net¬
work structures which are best suited to this task, and it is shown that stateless and
simple dynamic neural models are significantly outperformed as controllers by more
complex, biologically plausible ones but that other ideas taken from biological systems,
including network connectivities, are not generally as useful and reasons for this are
examined.

The thesis then shows that this system, although only developed 011 a single robot,
is capable of automatically generating controllers for a wide selection of different test
designs. Finally it shows that high level controllers, at least to control steering and
speed, can be easily built 011 top of this now active walking mechanism.
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Chapter 1

Introduction

Many legged robots have been built with a variety of different abilities, from running

to hopping to climbing stairs. However, despite this there has been little consistency of

approach to the problem of getting them to walk — every research group has followed

its own instincts. For instance, some have broken down the walking step into discrete

parts and then controlled them separately, some have used springs and linkages to

achieve a passive walking cycle, and some have worked out the necessary movements

in simulation and then imposed them on the real robot. All of these approaches have

limitations, although most were successful on the robots for which they were intended.

The design of a controller for dynamically stable walking machines which can be used

across as wide a spectrum of machines as possible* would allow the field to progress

beyond just building the robots and making them walk, towards actually putting the
robots to use; in real situations.

This has been the focus of my roseare;h, and inspiration on how to design controllers

for a wide variety of different body conformations came from the best walkers, runners

and stair-climbers around — ourselves — and as a result the control systems produced

are based on the; vertebrate Central Nervous System. The; controllers are; built by an

evolutionary mechanism which adapts them automatically to any robot with which it

is presented. These controllers then become part of the now walking robot, which is

itself controlled, as to direction and speed for instance, by a higher level controller.

This is an easier task than before because the robot is already walking, and so only has

to have its gait modified rather than a single monolithic controller having to determine

1



2 CHAPTER 1. INTRODUCTION

the position of liinbs or torques in joints directly for all speeds and directions, as is

normally the case.

1.1 Motivation

Some people believe that control systems give commands to mechan¬
isms. But mechanisms have a mind of their own: they will obey physical

laws. Control is not to compensate for the limitations of poorly designed

mechanisms. The best systems will have mechanism and control designed
to work together in harmony.

Marc Raibcrt (ISToMM'93)

Marc Raibcrt was acknowledged as one of the leaders in the field of legged robotics
until lie moved into industry in 1993, and the above extract from a talk lie gave made

me think about the mechanisms which people use when trying to make robots walk.

It seems to me that almost without exception they are not designed for walking at all,

but rather to be as general purpose as possible, and indeed that the whole purpose of

the "controllers" is to get them to walk in the first place, not to control walking, as

they have no innate ability. Exceptions to this include passive walkers (for instance

the "biped glider" of McCJeer. 1989) which are designed not to require a controller (or
even power) for walking down gentle slopes, and spring actuated robots (e.y. Wadden

et al., 1993), all of which have springs and dampers built into the physical robot.

However there is a significant problem with this approach: although the end result is

generally a very competent walking robot, because all the springs and linkages which

make the mechanism so effective are permanently in place the better the mechanism is

at walking the worse it becomes at everything else — until in the limit it becomes as

uncontrollable as the walking automata of the turn of the century whose intellectual

successor it is, and it becomes impossible to get it to manoeuvre or climb over obstacles

or achieve anything else which might be desirable in the context of a robot designed

to carry out a task. However, the idea of the mechanism being inherently able to walk

makes sense since it would make the control job so much more straightforward, if only
there were a way of retaining the multifunctionality which the more basic robots have.
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The answer in the end is clear — if you don't want the springs all the time, why not

simulate t.hem through the motors so that when you switch off the simulation you are

left with your general purpose robot again? There was a clear precedent for this which

encouraged optimism in the approach — the vertebrate spinal cord. Take the cat. for

example. Clearly this is an extremely versatile animal capable of an enormous range

of movements — yet it can be induced to walk very easily by sending a simple signal

down th<; spinal cord which excites the Central Pattern Generators (CPGs) associated

with walking (Grillner, 1(J85). These do not exactly simulate the springs and links
mentioned above, but they have a similar effect — they actively alter the dynamics

of the legs through the muscles to create a new dynamical system where walking is a

stable attraetor.

The sigi lifieance of this point becomes clear when you realise that, both with the spinal

cat1 and with a robot with simulated springs and linkages, what you still have is a dy¬

namical system which can be controlled: in the cat's case this is done by various higher
centres in the brain, notably the cerebellum, but in the robot's case it can be done

by a more conventional controller. This should be much simpler than most walking

controllers, as it no longer has to "compensate for the limitations of a poorly designed

mechanism", but rather controls an (active) walking mechanism and so only has to

concern itself with maintaining the stability of the walking behaviour 011 rough terrain

and perhaps during gait changes, as well as higher level concerns such as direction and

speed of movement. The latter are very simple to control in vertebrates — for instance,

the higher the excitation of the CPGs in the cat, the faster the cat will go, changing

gaits automatically as it speeds up (Grillncr, 1985), and in the lamprey, where Grillner
and his colleagues have mapped the entire structure of the CPGs (Grillner ct «/., 1991),

it is found that exciting the CPGs on one side of the body more than those on the
other side (which again is very easily done) causes the lamprey to move smoothly away

from the excited side.

Strangely, Raibert's robots (Raibcrt, 1986, 1988) do not follow his own advice —

neither the mechanism nor any individual part of the controller walks on its own, so

the controller has to do the whole job in one go and make the robot walk as well ;is

1
a cat whose spinal cord has been severed just below the brain



1 CHAPTER 1. INTRODUCTION

control the walking all at once. This has resulted in all of Raibert's controllers being

carefully handcrafted, a time-consuming process, though, despite that, the controllers
that lie and his successors in the MIT Leg Lab have made have been the closest yet

made to the general purpose controllers that we are looking for.

In fact very few people seem to have designed walking mechanisms at all since automata

were replaced by controlled robots in the 1950s. All those that arguably have done
so have; two things in common (except the passive walkers which have no controller)

— firstly they are controlled by neural networks (this is almost, inevitable as they are

the only well researched computational system which can be trained and have their

own continuous dynamics), but secondly and more interestingly, although they alter the

dynamics of the robots with neural networks to make them walk, they do not appreciate

they have done this but rather describe their neural networks as controllers in their

own right and do not go one step further to then design a (higher-level) controller for

the walking robot. In trying to do it all in one go the results tend to be fairly poor,

and certainly considerably less impressive than Raibert's algorithmic approach.

1.2 Summary of Achievements

In this thesis I describe a new design methodology for creating legged robot controllers,

where a low level controller entrains to the dynamics of the system, adapting it so that

walking is a stable attractor. allowing a higher level controller to be very simple and

easy to build when compared to equivalent controllers for the original robot. This is a

general purpose design strategy which can build controllers for any robot which can be
described in the simulation language provided. Indeed, even if this is not possible, the

language is easily extensible to cover (for instance) new actuators, sensors, and even

joint types, and the design strategy can then be applied to the new robot in exactly the
same manner. The sigi lificant difference between this work and previous simulation

work on walking such as that by Beer and Gallagher (1992) is that the simulator was

a full 3D simulator, and dynamically stable walking was modelled.

In pursuing this goal a mechanism was built for measuring the ability of a neural
network to control a legged robot in simulation, and as this proved to be a challenging
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real-world task a detailed comparison of a variety of evolutionary methods for building

neural networks was carried out and an analysis done of the results to see how different

approaches compared on a standardised but taxing problem.

The whole system consists of a mechanical simulator with its associated simulation

language, a neural simulator capable of simulating a variety of different types of neurons

as well as any network configuration, an evaluation mechanism for determining how well

a specific, network performs in controlling the robot, a genetic algorithm for evolving the

controllers, and a series of implementations of the different neural network encodings

used in experiments.

1.3 Organisation of this thesis

Chapter 2 discusses past and present work in walking research, looking mostly at

robotics and its precursors but also, where appropriate, at locomotion in vertebrates

and its neuromuscular control, showing how these strands tie into the research done in

this thesis.

Chapter 'A contains a review of relevant neural network research, particularly evolution¬

ary approaches, and describes in detail a variety of evolutionary encodings of neural

networks, some of which are examined in this thesis.

Chapter 4 presents a detailed examination of the system used to build, model, and
evaluate walking robot controllers, including details of validation experiments, robot
in<jdels used, and how analyses were carried out.

Chapter 5 provides the initial results of the simulator on simple encodings, showing
the potential of the system to learn appropriate behaviours, and compares a variety of

different, neural models.

Chapter G shows the detailed results of the selection of encodings implemented for

comparison on the system, and then looks at how different fitness functions can help
in evolving walking robots.

Chapter 7 uses the best system from the previous chapter to evolve controllers for

a variety of different test robots to show that the algorithm developed is sufficiently
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general purpose. It then shows that it is simple to add a higher level controller to the

active mechanism evolved which allows it to he steered and accelerated.

Chapter 8 examines what has been achieved in this thesis and suggests avenues for

further research.



Chapter 2

Walking research

After a long time as a junior partner in robotics, walking lias seen an explosion in

interest and achievements in the last fifteen years as computational power unimaginable

until recently has been brought to bear on its problems. At the same time we have seen

advances in other related fields: non-linear dynamics has helped us understand and

model the robotic systems that we are studying; zoology has provided details of the

mechanics of animal locomotion to aid in the design of our robots; and neuroscience

has developed a deeper understanding of how rhythmic movements like walking occur

in the natural world, and this has helped us formulate new ideas for robotic controllers.

In this chapter I will give an overview of the history of walking research, following its

progression from the study of body parts and the construction of clockwork automata

to the understanding of neural rhythm generators and the control of robotic somer¬

saulting1. We shall see that it has become a focal point of interdisciplinary research

between the biological sciences and robotics, and we shall examine what can be gained
from this work.

2.1 Early research

Fascination with walking goes back millennia, but research began in the 18th and l'Jt.h

centuries. Interest arose for varying reasons, not all of them scientific.

1 An earlier version of this chapter appeared in (Reeve, 1999b)

7



8 CHAPTER 2. WALKING RESEARCH

2.1.1 Studies of gait

Some of t he earliest work involved the examination of cadavers to investigate how they

were constructed (for instance work by J. C. Lavater in the late 18th century), but two

significant studies of gait really started the ball rolling.

The Hist of these was by E. J. Marey who invented a pneumatic recording device in

the 1870's which measured stepping patterns through sensors attached to the feet of

subjects which moved the pen on a clockwork recorder (Marey, 1874). This allowed
him to make records of step patterns in different gaits.

The second (and far more famous) was Eadweard Muybridge, a photographer who,

initially spurred on by a bet to prove whether a horse lifted all of its legs off the

ground simultaneously in a gallop, went on to record a huge collection of high-speed

photographs of animal gaits (e.y. Muybridge, 1887).

These people took some of the first steps in researching the field and though they came

from very different backgrounds, they were looking for the same information. This has

always been a problem for walking researchers — it is an attractive subject to invest¬

igate, and it has no particular allegiance to any one field. As a result there is a danger
of duplication of effort as new disciplines decide locomotion is a field worthy of study.

Zoologists and physiologists were amongst the early researchers (e.y. Gray ct al.. 1938):

mathematicians found the apparent simplicity of these patterns interesting, and group

theoreticians examined their properties (e.y. Collins and Stewart, 1993a,b; Collins and

Richmond, 1994); neuroscientists began to study the structures which control loco¬

motion (e.y. Grillncr, 1985), and roboticists have tried to emulate the ability, as well

as embodying their theories of intelligence in legged robots (e.y. Raibert, 1988; Brooks,

1989); non linear dynamicists have examined the whole walking system to determine

its dynamics and stability (e.g. Kelso, 1995); biomcchanicists have looked at how to

improve running performance, and are trying to stimulate nerves in paraplegics to al¬
low them to walk again (e.y. Yamaguchi and Zajac, 1990); finally, computer graphics

researchers have created the illusion of walking for our entertainment in the cinema or

on our computers (e.g. Toy Story).

All of these people have different contributions to make, but it has become impossible
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for anyone to keep track of their different approaches and achievements. However,

it is very important to legged robot research that some feel for the overall picture is

maintained, and that is the purpose of this chapter.

2.1.2 Automata

In the mid 18th century, even before these early studies of walking in animals, automata

were being constructed to mimic life as closely as possible and were being demonstrated

at fairs and exhibitions. One of their greatest creators was .1. de Vaucasson. whose aim

WiLS to produce the perfect artificial person (Elliott.. 1997). He produced a flautist

which could imitate the sound of the instrument and move in a lifelike fashion. It

was incredibly intricate and was controlled by hundreds of bellows and lovers. He

went on to make a mechanical duck which could flap its wings, walk, and even eat,

drink and defecate by means of a mechanical stomach. His project w;is continued in

the 1770s by P.-J. Promond and H. Lois who made increasingly humanoid automata

one of which (the Draftsman) could make writing movements and follow them with

its head, and another could even reportedly play the harpsichord. Of course it. is

impossible to authenticate these reports and various automata were exposed as frauds,

but incredibly complex machines were certainly being made around this time*, and their

makers boasted of mimicking life itself.

In the 1850s Chebyshev invented mechanical linkages which connected joints so that

they moved together. This allowed walking to be developed much more easily ;is

linkages could be designed which would make the body move horizontally by moving

the foot and legs in a fixed pattern, and many walking automata were designed by this

method (Raibert. 1986).

One of the difficulties with this early approach however was that the rigid mechanical

linkages which made walking possible totally fixed the movement, of the legs. This
meant that no alterations in the gait could be made, for instance to change gaits and

move over uneven terrain. Subsequent decades were spent designing better linkages

in an attempt to produce suitable stepping motions to generate stable locomotion.

However, to allow the gait to change some means of control would have to be devised,
and there the problem lay for half a century.
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2.1.3 Peripheral vs. Central Control

During those early years of the 2(lt.li century Neuroscience began to take a serious
interest in locomotion, debating how control of locomotion and other rhythmic move¬

ments occurred in humans and other animals. Two competing hypotheses came to the

fore: Peripheral Control and Central Control.

The former claimed that these movements wore achieved through sensory feedback: a

reflex chain existed where each phase of the motion cycle provided the sensory cues

which triggered the correct timing of the next in a repeating loop. Thus the behaviour
would be disrupted by a lack of sensory feedback.

The latter claimed that the Central Nervous System (CNS) does not require sensory

feedback to provide the proper timing, but rather that there is a neural pacemaker

providing the rhythm which, though it may be modulated by feedback, was essentially

independent of it.

Doth hypotheses had early supporters, but experimental evidence was scarce until the
1930's and 10's. when much support was found for the importance of sensory feedback.

Peripheral Control

Some of the best work supporting Peripheral Control was done by Sir James Cray and
his colleagues (c.ij. Gray ct a/., 1938; Gray and Lissinaim, 194(1): they showed that

there were behaviours in both invertebrates and vertebrates which seemed to consist

of chains of reflexes. They also claimed that the same experiments, when repeated on

deaffcrcnted2 animals, produced no observable rhythmical motions. These last results

have been largely refuted by more careful recent experiments, but the early behaviours

they describe, such as reflex walking in the spinal toad when it is held against a moving

surface, have been widely repeated.

Other work on a variety of animals showed tiiat particular sensory inputs can disrupt

or completely arrest normal motor output. For instance, in one experiment a bivalve

scallop with its shell bound shut w;is found to completely stop contracting and relaxing

2
sensory (afferent) nerves are cut so no feedback is received by CNS



2.1. EARLY RESEARCH 11

its adductor muscle (Delcoinyn, 1980).

Results 1 ik(? these were taken at the time to support the Peripheral Control hypothesis:

however, in reality Central Control did not preclude them, except those which were

later shown to be in error; it only said that sensory feedback was not necessary to

create the rhythm, not. that it did not play a significant part.

This became important when, in the 1960's and 70?s, evidence came in which proved

conclusively that rhythmical motions could occur without sensory feedback.

Central Control

A great body of evidence w;is gathered bv various researchers (for a table see Deleomyn.

1980. page 494), which showed that creatures from right across the animal kingdom

could carry out rhythmical actions when their nervous systems were completely isol¬

ated3, deafi'erented, or when their muscles were paralysed. In all these cases there

was no feedback to allow reflexes to generate the movement. That these results were

not gathered before w.is in some eases a result of poorer experimental techniques and

equipment- whic h failed to pick up the rhythms, and in others because the experimental

procedures caused too much extraneous damage for the nervous system to be able to

continue to operate normally.

On the basis of this new evidence, there was no doubt that central mechanisms did

generate many rhythmical motions, and the idea that all meaningful output had to be

driven by specific sensory stimulation died. However, the central control hypothesis

fell far short of explaining what was happening in these pacemakers that it proposed,

and certainly observations like the reflex walking referred to earlier needed to be put

into the structure of central control; indeed some more recent work had also shown

results which did not. fit in with a strong central theory. For example. Griliner and

Wallen show that a spinal dogfish paralysed by curare will, if the tail is moved at a

frequency different from its natural swimming rhythm, show co-ordinated bursts in

its inotoneuroncs at the imposed frequency (Grilhicr and Wallen, 1977). Also, ;is in

scallops, the swimming movement can be suppressed by strong stimuli like holding the

3 removed from the body
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body tightly.

Experiments like this led to the realisation that a more sophisticated explanation would

have to be found to replac e the rather simplistic Central Control hypothesis.

2.1.4 Early Robots

Meanwhile, back in robotics, the first true walking robots had already been built.

It was the arrival of logic circuits and later computers which made this possible by

allowing a control mechanism to be built which would make variation in the walking

patterns possible.

Nevertheless, one of the first ideas was to use a human as the controller, as this was

still early days for computing. General Electric built one such vehicle in the 1960's (the

"versatile walking truck*1 in Mosher, 1968) which, under the control of its operator, was

capable of up to 5 mph and could climb over large obstacles. This was really ignoring

the control problem however, and it was not until the late 6(Ts that truly independent

legged robots began to appear.

One of the first of these was built by Frank and McGhee and was called the Phony

Pony (McGhee, 1976); each joint was controlled by a finite state machine made from

digital logic circuits with each of four states triggering the next in a fixed loop. This

was actually very restrictive, and made the robot behave in a fixed manner very similar
to the automata it replaced. However it opened the door to the gait being computer

controlled, and thus changeable in software.

After this, many research projects were started into computer controlled walking, and
indeed the first commercial product, Big Muskic, which was a walking dragline used
for strip mining, was produced by the Bucyrus-Erie company in 1969.

The late 1970's and 80's saw a succession of simple computer-controlled statically

stable robots whose patterns of locomotion were very simple and inspired by insects

(e.g. Gurfinkel et al., 1981; Hirose and Umetani, 1980). They remained balanced in

static equilibrium all the time, and moved surplus legs to new positions where they
could in turn be used for support. They were the first computer controlled walking

robots, and they moved very slowly (as they always had to keep 3 legs on the ground for
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support). Their controllers tended to be reactive (i.e. they would move to a new state

based 011 the sensory feedback and the state they were in), and parallels can easily be

drawn to the Reflex Controllers mentioned earlier. This strategy allowed fairly robust

movements across terrain, and so long as a state was described in the controller {c.<l. leg

moving forward hits obstacle), it could be dealt with by the robot (move back, raise leg,

and repeat). However, this approach does require the enumeration of possible states,

which is far from ideal. These controllers were time-independent., in the sense that the

system could be frozen and restarted at any point, or run at a different speed, and
there would be no effect on the walking pattern, so it didn't matter if the computer

had to sit and calculate for a bit to work out what to do next.

The next step forward was the realisation of dynamically stable (or actively balanced)

walking, which arrived its computers became more powerful, and capable of dealing

with the complexities involved in staying upright when not always in a stable posture

{e.g. Matsuoka. 1979; Miura et a/., 1984; Raibert et al., 1981). Controllers for this kind
of robot were time-dependent, that is to say that there were points in the motion cycle

when stopping or changing speed would be fatal (imagine stopping moving your legs
in the middle of a fast step), so the controller had to be able to keep up with what was

going on in real time.

2.2 Recent developments

At this point walking was still poorly understood. Physiologists had studied the bodies

of animals, neuroscientists had argued about how they walk, and roboticists had created

slow, clumsy walkers, but things had really yet to take off. The pace of change was

soon to speed up however.

2.2.1 First steps with dynamic stability

The first attempt at a dynamically stable robot was by Ogo et al. (1980), where a

biped with huge feet walked in a quasi-dynamically stable fashion. They avoided the

problems of time-dependence by only having a small non-statically stable phase where
the biped 'fell' from one foot to the other in a controlled fashion.
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TYue dynamic stability was not long in coming however. At the same time as the
above Matsuoka built a robot capable of running in a 2 dimensional world (Matsuoka.

1979), and not long after Miura and Shimoyama developed the first actively balanced

dynamically stable walker, the stilt biped, which was supposed to model the behaviour
of a person walking on stilts (Miura ct ul.. 1984).

Raibert and his team at Carnegie-Mellon University (it was later to move to MIT)
then started to produce walking robots. Initially he designed a 3D one-legged hop¬

ping machine (Raibert ct ul.. 1984): shortly after this he progressed to bipeds and

quadrupeds using the same biisic algorithm for each (Raibert, 1986). They had finite
state controllers, but within each state the controller was algorithmic, calculating the

desired joint angle and the required joint forces. This was a more centralised control
than the statically stable robots and the robots went at impressive speeds (for instance

the one-legged robot had a top speed of 4.5 mph).

On a different front, McGeer built a dynamically stable passive walker which he called

the "biped glider'1 (McGeer, 1989, 1990). This could walk stably down gentle slopes

without any form of control, and could in theory be pumped to walk on the Hat or

on other terrain. This has been taken further by Goswani and colleagues at 1NRIA in

(Goswami c t ul.. 1997) who looked at passive walking with a very simple gait, and then

at the mimicking of passive control with an active mechanism to enlarge the natural

basin of attraction of the passive limit cycles and to create new gaits.

2.2.2 Central Pattern Generators

Much progress has also been made by neuroscientists studying rhythmical controllers.

Following on from the ideas of Central Control, during the 1970's the idea grew that the
motoneuroncs (and hence rhythmical movements) in vertebrates were driven by central

networks of interneuronos that generated the essential features of the motor pattern,

but also that sensory feedback signals played a crucial role in the control system, namely
to turn a stereotyped unstable pattern into the co-ordinated rhythm of the natural

movement. The networks were referred to as Central Pattern Generators (CPGs),

and evidence showed that every part of the body which makes cyclical movements

has its own individual CPG (for a summary, see Delcomyn, 1980). Experimental
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evidence has recently proven this to be true in the lamprey (Wallen et al., 1992),

where neurophysiologists actually mapped out the neurones making up the CPG. and
it is accepted in other animals as well.

In vertebrates the spinal cord contains these neuronal networks. The CPUs, when

stimulated, have their own dynamics which set up oscillations in outputs between the

neurones. When they arc connected to the motoneurones, these generate the charac¬

teristic rhythmical behaviour associated with the system. Central Pattern Generator

is a general tcrin: for instance, in walking each muscle can be considered to have its

own CPG, but opposing muscles CPGs can be considered collectively to form a joint

CPG, and similarly for limb CPGs. Feedback from the muscles keeps the CPGs in

phase with the limb, so the pattern does not break down. In the same way. limb

CPGs maintain the co-ordination between legs to generate the overall behaviour (i.e.

walking) by their cross connections. The system is self-correcting, so that if any part

loses synchronisation, the dynamics of the whole system forces it back into the original

rhythm. Without the cerebellum, movements are coarser and there are some problems

with equilibrium and co-ordination, but in essence the pattern remains unchanged: thus

spinal mammals and birds have been shown to make walking movements very similar

to those of intact animals (Grillner, 1985). On the other hand, without proprioceptive

feedback the pattern can break down (Deleomyn, 198(1). as it can be very important, for

adaptation to actual conditions. Even with this feedback the rhythm can break down

though if it is knocked too far from equilibrium, as the movement now falls outside the

basin of stability of the system.

As a result of work by Sten Grillner and his colleagues in examining and simulating

CPGs in the lamprey (Grillner et a I., 1991; Wallen et al., 1992), a great deal is now

known about their structure and behaviour in this creature; however there is still much

to be learnt in other animals — of particular interest to us are legged vertebrates: we

know that each muscle has its own CPG and that this is essentially a very simple

network, and that these arc connected together inside each leg to generate a stepping

motion, and between legs to generate a stable rhythm, and we also know that each of

these rhythms (gaits) is stable over a certain range of speeds, so ;is the legs speed up, the
basin of stability for one gait shrinks until a bifurcation occurs and that gait becomes
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unstable, and walking moves to a new gait with a different attiactor (Kelso, 1995). We
also know that the cerebellum and other higher centres are highly connected to the

C'PGs, receiving efference copies of the signals sent from the CPGs to the motoneurones,

;ls well as the afferent, feedback from the muscles (Grillner. 1985), and that this allows

fine-tuning of the co-ordination without which the walking looks a bit rough and is
more likely to break down. However, we do not know the details of how the neurones

are connected, either inside a CPG or inside or between limbs, and certainly not how

the cerebellum works (though theories have been put forward (e.y. Miall et ul.. 1993)).

What we can deduce from this is that a low level dynamical system exists which links

the muscles to produce walking and which has a highly regular structure consisting of

several very similar neuronal networks (CPGs). These are strongly interconnected to

maintain their rhythm and are controlled in turn by higher centres to maintain their

stability.

Much of the discussion in this section has been about dynamical systems and it is the

contributions of researchers in this field that we shall discuss next.

2.2.3 Group theory, non-linear dynamics and co-ordination

Researchers from various areas of mathematics have studied walking. Collins and

Stewart used group theory to analyse the properties of various coupled non-linear

oscillators. They predicted that fixed CPGs should be capable of changing between

gaits by varying very few parameters (Collins and Stewart. 1993a,b). Collins then went

on to test this with a selection of CPG models and found that it was generally possible

to make simple CPGs produce different gaits by varying only a few internal parameters

whilst leaving the connectivity unchanged (Collins and Richmond, 1994). This was a

simpler solution than many previously proposed which suggested, for instance, that

different co-ordinating neurones might be needed for different gaits (Grillner, 1985).

There has also been work by non-linear dynamicists like Kelso. He has studied how

walking systems behave, what happens to the co-ordination between legs at gait trans¬

itions, and how the system converges to its stable attractor (a particular gait). He

particularly stresses that gaits are selected (and are most stable) in animals when they
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arc the most efficient for travelling at the desired speed, though some hysteresis stops

switching back and forth at transitional speeds (Kelso, 1995). He suggests that we

should build this kind of nonlinearity and multistability into robots to help eliminate

problems with redundancy. He also points out. that transitions normally occur very

smoothly, but in animals with their higher centres removed instability and critical

fluctuations occur and gaits switch back and forth near bifurcations.

Gallagher and Beer look directly at evolved locomotion controllers from a dynamical

systems perspective, examining controllers evolved to be reflex chains, central con¬

trollers (without feedback) and CPGs (Gallagher and Beer, 1992). They examine the

basins of attraction of the limit cycles and fixed points. They discover that the reflex

chain controllers on their own have no limit cycles, but rather whatever the current

state of the system, it is attracted to a fixed point forward in the walking cycle: this res¬

ults in the whole (controller-body) system having a stable walking limit cycle, but this

will break down if the feedback is interrupted. This behaviour is much like finite state

machine walking controllers. The other two types of controllers both have inherent

limit cycles which correspond to walking in the whole system, but whereas the central
controller has a crude limit cycle which cannot adapt, the CPG is entrained to the

frequency of the rhythmic feedback from the legs, so adaptation to different conditions

does not have to be learnt, but rather emerges from the dynamics of the controller-

body system. In a more heavily mathematical analysis. Cheng and Lin (199(i) look at.

the stability of a biped using a linearised Poincare map and discuss the robustness of

the locomotion.

2.2.4 Evolving robot controllers

As more people started to built legged robots, they began to look for ways to automate

development of the controller for them. The most popular method has been a form of

simulated evolution4.

As many different forms of evolution have been tried its there are researchers, but

generally they tend to evolve parameters for some kind of neural controller for the

robot: normally the strengths of connections, but sometimes other internal parameters

4 for a description of Genetic algorithms, see Goldberg (1989).
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of the neurons as well3. In general this has proved a step backwards for the sophistica¬
tion of walking controllers with most of the controllers evolved being statically stable.

However, a popular way of evolving controllers is to simulate the robot concerned and
evolve a contioller for it on the computer, and it is a very computer intensive process

to model a robot dynamically, so it is possible that this is partly to blame. If so, as

computer power increases and since fast dynamic simulation software is now available

{e.(j. McMillan. 199-1), hopefully this problem will go away.

Lewis tt al. (1992) evolved controllers for a hexapod robot (Rodney) which they had

built. The controller was evaluated on the real robot and learnt to walk with insect-like

gaits after a staged evolution where it was encouraged a bit at a time towards the final

goal of walking.

B(!cr and Gallagher evolved the parameters of a dynamic neural network to control

a (statically stable) insect walking in simulation (Beer and Gallagher. 1992). They

then went on in (Gallagher ct al., 1996) to evolve a statically stable controller for a

simulated robot, and then transferred the evolved controller onto a real robot with no

problems. Spencer (1994) used Genetic Programming*' to evolve the architecture as

well as the parameters of a similar robot.

Karl Sims, on the other hand, evolved dynamic controllers for robots whose morpho¬

logies were evolved at the same time (Sims, 1994b). This produced arbitrary shaped
robots with controllers which would allow them to perform behaviours like tumbling,

sliding, jumping, and swimming. They had the advantage of not having to remain bal¬
anced as is usual for walking robots, and it is not clear how they would have performed
if that had been what was evolved; but they are the most visually impressive result of

this general approach.

2.2.5 Vertebrate locomotion and development

Meanwhile, zoologists have been looking for common ground between different animals

when walking, examining which criteria appear to be being optimised, and how loco-

5 for a general review of this, see Kodjabacliian and Meyer (1995), but also see next chapter.
6

see Koza (1992).
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motion in vertebrates lias developed over time. They call this first pr oblem the inverse

optiinality problem — i.e. what was being optimised to produce this?

Alexander h.is written extensively about locomotion: in (Alexander. 1981) he looks at

locomotion in reptiles, birds and mammals. He concludes that locomotion with a sim¬

ilar Fronde number (a dimensionless measure: speed2/{gravity * kiphe.ight)) produces

dynamically similar movements in general right across different species (0.1 walk, 1

trot/pace, 2-8 asymmetric). lie also looks at the inverse optimality problem, and con¬

cludes that for turtles displacement (i.e. roll, etc.) is minimised, but humans minimise

work. Tendon elasticity helps in this regard by storing strain energy rather than al¬

lowing it to be dissipated as heat. In (Alexander, 1990) he proposes the use of springs

in robots to replace tendons in their job of minimising energy loss, and also on the feet

to soften impact slightly to reduce 'chattering' and hence improve grip. In (Alexander,

1991) he looks at how energy is saved in terrestrial locomotion, through tendons, but

also through aligning joints to minimise the amount of work that has to be done and

the amount of conflict between muscles.

Eilam (1995) studies how movements change both across species and during ontogeny

(development in individuals of one species), and points out that there is the same

consistent progression in each from simple lateral movements of the trunk, to use of

limbs, through to vertical movements of the trunk.

Work being done on development of locomotion includes that by Vaal ct al. (1995).

who detail a research agenda for studying human locomotion and gaining insights into

its development. They claim that very little work lias been done on the ontogeny of

locomotion, and they want to identify the crucial subsystems and their interactions, and

how these develop to produce an adult loeomotory pattern. Tlioy discuss CPGs and

the importance of feedback, and then move on to the development of walking, starting

with precursors like reflex stepping going right through to integrated walking. Unlike
most authors, they disapprove of the concept of optiinality criteria as they consider

them arbitrary, and believe the introduction of functionality constraints should be

sufficient, namely that walking must work in a wide variety of situations. They also

mention the usefulness of using muscles when modelling locomotion, as they claim that

such models have inherently better stability properties than force control for joints.
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v;in Socst and van Galen (1995) look at how animals reduce redundancy problems in

multi-joint movements by imposing constraints. They divide these into physical and

self-imposed constraints (they believe the latter are imposed specifically to help solve
the problem). And finally, Assaiante and Ambland (1995) look at the ontogeny of
balance control.

2.2.6 Functional Neuromuscular Stimulation

One of the most exciting developments recently has been work done to restore the abil¬

ity to walk to paralysed patients by electrically stimulating their muscles (e.<y. Marsolais
and Kobetic. 1983). Research done by Yamaguchi recently shows that generating the

appropriate patterns for walking is essential for optimal use of muscles which have been
weakened by the paralysis, and that ankles are a particular weak spot which might well
benefit from some kind of orthosis (Yamagm hi and Zajac, 1990).

2.3 Where are we now?

We have now looked at research up to the present day. and in this section we shall look

at the commercial products which have come out of this, and at what ongoing research

uses legged robots.

2.3.1 Commercial robots

In recent years various projects have been proposed for which walking robots would

be 'invaluable'. However, the number which have actually been built and used for

anything other than walking research is much more limited.

Walking machines have long been proposed for travel over rough terrain that even

a tracked vehicle could not navigate, and for dangerous environments where human

would be at risk.

To that end. Dante and Dante II were designed to descend into volcanoes to study

conditions in an environment too dangerous for humans and too rough for other robots

(Wettergreen et a/., 1993). They were not unqualified successes. Dante II was the more
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successful of the two. It was an extremely stable eight legged robot which moved slowly

down into Mount Spurr in Alaska. Unfortunately on its way back the ground collapsed

under it. and it was not able to cope and had to be airlifted back out.

NERO was a climbing robot funded by Nuclear Electric in Britain and designed for

work 011 a nuclear reactor pressure vessel where humans have huge safety problems

(Luk et al., 1994). It was designed to climb the outside walls of the pressure vessel and

inspect its condition, clean it. or even install equipment 011 it. but was too light too do

heavy work. It had drawbacks (it travelled at a speed of 0.1 m/inin, and had to be

placed 011 the wall of the pressure vessel, it couldn't walk there), but it was successfully

used for these purposes. Nuclear Electric together with Electricite de France. CERN
and the Italian electricity board then funded work on a next generation of climbing

robots which would be more versatile, stronger, and capable of walking to the reactor

vessel and performing the floor to wall transition itself (called Robug, see Luk ct ul.,

199:1), but there have been problems getting these to work to specification (for instance

Robug III is too heavy to support its own weight for long when climbing).

Other commercial robots include a "walking harvester" built, by PlusTeeh ()y. in

Finland (set! Plnstech Oy., Finland). This robot has been built to replace wheeled

vehicles for forestry work jus it doesn't, damage the ground and hence minimises the

risk of soil erosion on steep slopes. It also has ;i high and variable ground clearance

and so can move over obstacles which would block most, other vehicles. It is driven by

a driver in a cabin on top of the robot.

Much more recently some Japanese firms have come into the market. Honda recently

revealed their biped robot (which they have boon working on for many years). This

can walk semi-jiutonomously or be teleoperated and can carry out simple Risks (Honda
Motor Company Ltd., Tokyo). This is a very impressive robot, and presumably further

developments will come from them in the future.

In ;i completely different field, Sony have now released their robot puppy, Aibo (Sony

Corporation, 1999), which is being marketed «as a toy. This can perform a variety of

stereotyped actions like rolling over and standing on its hind legs and boxing the air,
as well as being remote controlled by its owner.



22 CHAPTER 2. WALKING RESEARCH

Some other fun robots, which are currently being finished, are the walking dinosaurs

being constructed for use in museums round Europe. The project is called Palaiomation

and is funded by the EU'.

2.3.2 Research Robotics

There is a lot of research currently studying the problems of coping with difficult ter¬

rain, and avoiding falling and recovering afterwards. For instance, Boone and Hodgins
have recently been looking at how bipeds can recover from slipping or tripping (Boone
and Hodgins, 11195. 1997) despite having little information about what is going wrong.

Yoneda et al. (1996) have built a robot (Titan VI) capable of travelling at a reasonable

speed on Hat. ground (over 2 mpli), but which can move over obstacles, and of course

Honda's robot (Honda Motor Company Ltd., Tokyo) can walk up and down steps and

avoid obstacles very effectively at a fairly slow speed.

2.3.3 Modelling humans and other animals

The other area where legged robots are being used is in modelling work, examining
how animals move by modelling them in simulation (or sometimes on robots), and also

just modelling their behaviours to create impressive graphics for films.

Modelling roughly divides itself between creating computer graphics and simulating
real locomotion. In the former, animating robots, people and animals is becoming more

involved with simulation as the computational expense of doing the extra modelling

becomes less important and techniques become more sophisticated. In the latter,

simulating real animal and human locomotion helps us gain insight into how control
of movement happens in the body and provides a source of ideas for robot controllers.

Simulating human and animal locomotion

Roboticists have collaborated a great deal with zoologists looking at the energetics and
common principles of locomotion, as well as with neuroscientists, and with ethologists

studying animal behaviour.

7 Brite/Euram Craft CR 1651
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Grillner and colleagues did some very careful modelling of CPGs in lampreys to see

whether what they found could explain the behaviour they saw (it could). The sim¬

ulation work is described by Ekeberg (1993). Other work includes that by Cruse and

others at Bielefeld in modelling stick insects using a real robot (Crust; et al., 1995), and

comparing its behaviour to their neural network based model of the insect controller;

Taga (1995) has looked at how using a sufficiently sophisticated neural model can al¬

low behaviour which can be quantitatively compared to human locomotion to emerge

on a simple simulated biped; and Lewis (1996) has looked at how the transition from

swimming to primitive walking gaits may have occurred using real and simulated robot

models.

Research in Edinburgh has examined CPGs to sen; how well they can be modelled

artificially for controlling swimming movements (Ijspeert et al., 1997), and simulating
a variety of legged robots to see what general principles can be used to build controllers
for them (Reeve, 1999a).

One new element may be work on Functional Neuromuscular Stimulation, where re¬

searchers like Yamaguchi and Zajac (1990) admit that their current methods for se¬

lecting stimulation patterns to create gaits in paraplegic subjects are definitely sub-

optimal. It is quite possible that this biomechanics work can be combined with artificial

intelligence optimisation techniques, which are already applied to designing controllers

for walking robots, to improve the efficacy of this technic pie.

Human modelling has become an attractive target, and several people; have investigated
it. For example, Hodgins has simulated a 30 degrees of freedom humanoid figure, and

got it to run in a fairly biomechanically accurate fashion (Hodgins, 1996). Playtcr has

looked at gymnastics, and has modelled different manoeuvres to see how stable; they

arc, and explore the best way of stabilising them (Playter, 1994). He even manages!

to get a unpowereel robot to do a layout somersault! .Jalics and otheas at Ohio State

University have started investigations into dancing with a simple planar model of a

biped, examining how to keep track of the rhythm of the music and move the body in

time with it (Jalics et al., 1997).
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Modelling creature dynamics

This is moving more towards modelling for the fun of it. and much work has been
done in this field (.Jurassic Park for instance!). Until recently most graphics for games

and films were produced using kinematic techniques, and simulation has been largely

ignored as a waste of time, especially as the results were much cruder than could
be achieved by kinematic techniques. However, researchers are beginning to realise
that it is no longer quite so time consuming, and work lias been done to combine the

techniques, tuning gaits which were created in other ways in a simulator so that they
are dynamically plausible, with the expectation that this will improve the appearance

of the movement (e.g. van de Panne, 1996). Work like (Ko and Badler, 1996) looks
at how to generate the right movements to stay stable whilst also maintaining the
realistic gait produced by the animation, a crucial point as the gait produced must be

perceived as a normal walking pattern for it to be useful for their purposes.

2.4 Conclusions

There are many areas where an automated process for designing controllers for legged
bodies would be very useful. These include such diverse uses as producing believable

walking in computer graphics applications and virtual reality, modelling human loco¬

motion to develop activation patterns for Functional Neuromuscular Stimulation, as

well as the more obvious application of making the choice of using walking robots, for

any task, that much more practical and straightforward (consider that the designers of

Dante II. who are planning on landing the first private expedition on the Moon in the

near future, have decided to use a wheeled robot for the task). In the next chapter we

will look at the methods which could be used to automatically build such controllers.



Chapter 3

Neural Networks

In the last chapter we looked at the history and state of the art in walking research,

and we concluded that a method for automatically generating low-level controllers for

legged robots would be very useful for the development of the field. Now we will

examine the kind of methods which are appropriate for this task.

3.1 Building controllers

We will look at what kind of controllers art; appropriate for this problem and then at

what, generation methods may be feasible for these; controllers; we will then assess a

variety of systems against the criteria we have produced and select those which seem

the most appropriate for further investigation.

3.1.1 Types of controllers

Generating controllers for legged robots is a difficult task, but several points are clear:

• There is a lot of symmetry in robot design, and identical joints are used in

more than one place on any given robot (e.g. the hindlimbs of a robot are almost

invariably mirror images of each other). Consequently an ideal controller is likely

to be highly degenerate, and any method for building controllers should take

account of this.

• In vertebrates, control of the legs to generate a basic walking pattern is a function

25
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of the spinal cord, where Central Pattern Generators actively alter the dynamics
of the legs through the muscles to create a new dynamical system where walking
is a stable att.ract.or (Grillner, 1985); this creates a walking animal which is in

turn controlled by the higher centres in the brain. Because then; is a detailed

understanding of Central pattern Generator (CPG) control of locomotion (see
Section 2.2.2), it would be possible to transfer a lot of knowledge from neur-

oseience into a controller like this for walking robots. A basic requirement for

this is a basic building block with its own continuous dynamics like neurones in

animals.

• Artificial Neural Networks (NNs) are used for control in a broad range; of walk¬

ing robots (see Section 2.2.4 for examples), and indeed throughout robotics and
even in control engineering (e.g. Narendra and Parthasarathy, 1989); because of

this they are a very well researched computational system and there are a large

number of methods available for training them. Although most neurons used in

these fields do not have their own internal dynamics, some are particularly de¬

signed with this is mind, and so would be appropriate for this kind of task (e.g.
Wallen et a/., 1992: Taga ct ul., 1991: Beer and Gallagher, 1992: Kodjabachian
and Meyer, 1998)

For these reasons we will use Neural Networks as controllers for our walking robots.
Two issues now arise: what kind of neurons to use in the network, and how to train

them.

3.1.2 Types of Neurons

Traditionally, neurons in Artificial Intelligence have been idealised for the sake of math¬

ematical tractability to produce threshold and sigmoidal neurons, where the output of

a neuron St is a simple function of its inputs; the sigmoidal neuron, for instance, is

governed by the following equation:

1 I refer to biologic al neurones and artificial neurons throughout this thesis.
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iJt = y,wj'sJ (;{1)
j=i

where: wJX is tlic weight connecting neuron j to neuron i, and
yx is the internal state of neuron i

The analytical tractability of this model has made it particularly e.isy to train feed¬

forward networks using gradient descent algorithms like backpropagation (Ruuielhart
and McClelland, 1986) or more sophisticated ones such as conjugate; gradient descent

(Bishop, 1995, clt.7), and indeed they have been used in the past for control of insect¬

like walking robots. However, neural networks based on this have no internal state or

continuous dynamics, and training recurrent networks (which could offer some kind of

memory indirectly) is much more difficult, and so they may not be appropriate for the

task of altering the dynamics of the legged robot to make walking a stable attractor.

Many other neural models exist with continuous dynamics, however, and they are

capable of a much richer variety of activation patterns than these stateless neurons.

For instance Continuous Time Recurrent Neural Networks (CTRNNs) were devised

by Beer (1995) (although they are b;ised on the common leaky integrator model) for

exactly this purpose, as controllers for a (statically stable) walking robot: indeed, they

were chosen for this by Beer precisely because they showed a much richer behaviour

than discrete neurons — they are governed by the following equations:

r,-J = -y, + Y^Wj,Sj (3.3)dt
J=|

1

1 + e(#,-y.)
(3 1)

where: 0X is a bias term, and throughout these equations
r, is the adaptation rate of the neuron

This neural model is governed by a simple first order differential equation but is non¬

etheless capable of a surprisingly rich variety of behaviours when connected in a net¬

work (ibid.). However, we can see that in the specfic case where r, — l/<5£, St being
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the timcstcp of the integration, we get the same behaviour as for the sigmoidal neuron,

and indeed in general these are a continuous time version of the sigmoidal neurons

above. More complicated models exist, including this one from Taga (1995):

Ti~- = — ~ Amax(0, Vj) + tUjiSj + «o (:* -5)

= -*+* (3.6)

S, = inax((), uf) (d-7)

where: u, and v, are the internal state of neuron i

Again this is a fairly simple neural model, governed by two coupled first order differ¬
ential equations (effectively a second order ODE, and so capable of more interesting

behaviour like oscillations), and again it has been used for control of a walking robot,
this time a dynamically stable but two dimensional biped; indeed, stable walking was

achieved, so this seems to be a promising model. Another step in this direction is a

model by Wallen ct al. (1992), described below:

T,n~r = -?,+ + E wi>Si <3 8)
j£*+

T"~r = -<r + E wi>s3 (3.9)
je*~

= S.-O, (3.10)

Si = inax(0,1 - e(e'-f.+ )r' - f," - /j,<?,) (3.11)

where: and 0, are the internal state of neuron i, and
is the set of all excitatory (inhibitory) inputs, and

r, and /x, are bias terms.

This is a third order model, and lias an even richer behavioural repertoire, with in¬

dividual neurons being capable of a variety of different oscillatory responses to tonic
excitation. Indeed neurons of this type were successfully used to model the CPGs in a



3.1. BUILDING CONTROLLERS 29

lamprey spinal cord in an investigation of the neuronal networks controlling swimming

(ibid.).

Many other increasingly sophisticated neural models exist, including extremely realistic

multi-compartmental models, but these are likely to be too computationally intensive

for use in this project. Overall, it is unclear which neural model will be the most

effective: all except the hist have been used for this type of t;isk before, but the ability
of neurons to generate a greater range of behaviours individually seems useful, and so

we will investigate them all in our experiments.

3.1.3 Methods for training Neural Network controllers

In order to make a NN controller, or indeed any other controller, we must first define

how the controlled system should behave. This means that we know in advance what

we want the NN to do, so we can use a supervised learning algorithm to teach it. In

cases where we know quantitatively what is required we may be able to use inductive

learning with a gradient-descent type algorithm such as Backpropagation (Rumelhart

and McClelland. 1986) which will allow us to train the network very effectively. Un¬

fortunately, for a task such as walking there is no definitively correct answer for the

question of how to walk (or at least not one that we can determine), so we have to rely

on more qualitative measures: for instance a robot might be judged according to how

far it travels whilst keeping its body off the ground, or how little energy it expends to

move a certain distance.

This more difficult problem requires a reward based approach, like Reinforcement

Learning where NNs are trained by allocating blame when something goes wrong,

and rewarding correct actions (Sutton and Barto, 1998). One difficulty with this type

of approach is to determine which part of controller is doing well or badly, and hence

which to reward or punish — this is the Credit Assignment. Problem (ibid.). There
are many different solutions to this, but one which is useful for particularly intractable

cases are the family of reward based approaches collectively known as Evolutionary

Algorithms2. These avoid the credit assignment problem altogether by dealing with

populations of controllers, and rewarding or punishing individuals as a whole rather
2

sec Goldberg (1989); Koza (1992) for example.
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than the more common approach of dealing with a single individual and assigning

credit to its components. They are by definition a cruder technique than than cither
Inductive or Reinforcement Learning, but in this case they offer the only practical

solution, and so it is these which we shall use in our experiments.

Evolutionary Neural Networks

The common thread running through all of these methods is that they use Genetic

Algorithms (or a relative such as Genetic Programming) with some encoding of a NN
as the genotype to evolve the desired NN. These NNs are then tested for suitability
and more individuals are created from the most able genotypes whilst the least able

are discarded.

The genotypes can encode either or both of the architecture and the weights of the

network. Those that do not encode the weights have to learn them separately however,

and since this will require another learning technique, typically a gradient-descent type

method, and since we have already said that this is inappropriate for the problem we

are tackling here, we will only concern ourselves with those genotypes which at least
encode the weights of the network. Those that do not encode the architecture must rely
on it being fixed, for instance as a fully connected recurrent network, or as a specific

hand-crafted layout. We will discuss the advantages and disadvantages of this later.

3.1.4 Selection criteria

There are many criteria which should be considered in choosing an encoding for the
NN controllers:

Reusability As was mentioned above, it is clearly desirable for one leg of a robot to

be controlled in a similar or indeed identical fashion to another leg of the same

robot, so it should be possible for subnetworks to be reused in different parts of

the controller to avoid wasted effort building different subnetworks to achieve the

same task.

Modularity In animals we know that CPGs are associated with individual muscles

and joints and limbs, and are tightly coupled to the sensors and muscles which
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they control. In our robots it is reasonable that there should be more direct

connections between sensors and actuators on the same joint than with anything

else. This can easily be achieved for instance by assigning CPGs to joints and

making more local connections (inside CPGs and to local sensors and actuators)
than distal connections (to other joints or limbs). This might also be desirable
in our controllers because it would tie in well with the previous item, providing

modules which can be easily reused.

Bias It is inevitable that any encoding will show bias towards certain types of network
— it should be possible to examine the kind of networks which are likely to be cre¬

ated and eliminate or alter those encodings which tend to produce configurations
which are unlikely to succeed.

Chromosome Size The space to be explored increases exponentially with the size

of the chromosome, thus potentially making the problem much harder, so more

compact encodings may be more desirable than larger ones.

Completeness Some encoding schemes are not complete (i.e. there are networks

which cannot he encoded), and it is possible that the solution required is one

of these networks, so in the absence of other considerations this should be taken

into account..

We will now examine a variety of encodings and consider how they stand up to the.se

criteria.

3.2 Evolutionary Neural Networks

There are many ways of evolving neural networks, but the most significant difference

between different methods litis in how the NN is encoded into the genotype. There

are basically two ways of doing this — directly, so that every weight and connection

in the NN is recorded cxplictly in the chromosome (and the subset of these where

the network architecture is fixed, and only the weights are recorded), and indirectly,

where commonly some grammar or developmental rules are used to translate from the

chromosome to the NN. Many of these latter are production rule systems where each
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rule describes what one symbol (the left hand side) becomes after another develop¬
mental step (for instance two new symbols). This goes on, depending on the system,

until all the symbols are terminal symbols (i.e. neurons or connections), or for a fixed

number of steps, after which all the symbols are translated into terminals according
to some separate translation scheme. The latter encodings are often called L-systcms,
named after Lindenmeyer, a biologist who first used them to describe the development
of artificial plants (Lindenmeyer, 1(J68).

Both types of encoding have problems — Direct encoding methods suffer for two main
reasons:

Modularity and Reusability Groups of neurons (subnetworks) which have a useful

function are likely to be spread across the whole chromosome, so crossover will

tend to break them up; also because each connection and weight is recorded

separately, when a useful subnetwork does form, there is usually no mechanism
for duplicating it when the problem is degenerate.

Chromosome Size Because every weight and connection is recorded separately, the
chromosomes become unpractically long: n neurons require n2 weights if they
are fully connected, and these weights are often real numbers.

This Hist problem would be extremely serious for my purposes, because as we have

said before, these arc primary considerations; also as we discussed in Section 3.1.1, the

solution is likely to be highly degenerate. The chromosome size may also be a problem,
due to practical time constraints. If we are to use a direct encoding, we must therefore

come up with a solution which at least gets around these problems of modularity and

reusability. Indirect encodings tend to be designed specifically to avoid these problems

(though some still suffer from the first). As a result other problems occur:

Completeness Some of the encoding schemes are not complete, and networks which
are not representable might be better than those which are.

Bias Even schemes which are complete bias the networks greatly in one direction or

another: after all they contain exactly the same information when they have been
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decoded as the direct schemes, so there would be no advantage in using them
if they did not do something extra such as make it easier to encode modular

networks. Generally the bias is towards some kind of regular structure to the

network, but whatever it is, it may lx; just as damaging as incompleteness if the

optimal structure becomes very difficult to express.

These seem on the whole to be less serious problems, but it is clearly very important
to choose the right encoding scheme for the problem to be solved, since what is a good

scheme for one problem may make another impossible to solve.

3.2.1 Direct Encodings

Fixed Architectures

There are several, mostly old, experiments which have been done with fixed architec¬

tures. They tend to try to solve very simple problems such as XOR and 11-bit adders,
for instance those by Whitley and Hanson (1989). An example of a fixed architecture

encoding is shown in Figure 3.1. They were found to be faster than Backpropagation
for large NN problems at that time, but the architecture does have to bo hand-coded,
which is a problem. This seems to be a very primitive solution, and suffers from

problems of reusability, modularity and chromosome size, and bias towards massively
interconnected networks in its most primitive form (a fully connected network): how¬

ever, if it were possible to automatically generate; an appropriate; architecture there is
no reason why this should not work. This transfers the problem to one; of generating

a network architecture which is modular and involves reuse of subnets; we will discuss

this shortly.

0021001 300010000

Weight matrix Neural Network

Figure 3.1: A standard direct fixed architecture encoding

De Garis evolved controllers for a simulated legged robot (LIZZY) by designing control
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structures by hand, and then evolving the connections of small parts of them to achieve
desired subtasks (de Garis, 1990a,b). This avoids a lot of the issues discussed here

through detailed hand design, but this would not be possible for a general purpose

system for arbitrary robots.

One more sophisticated fixed architecture NN was developed by Lewis, Fagg and
Solidum — it wjis a controller for a real hexapod robot which was evolved by Staged

Evolution (Lewis ct al., 1992). Staged Evolution involves intermediate products being
evolved on the way to the desired goal: in this case first the weights for a 2-neuron
oscillator were evolved, then one was put on each joint of the robot, and then the inter-

joint connections were evolved to make the leg move correctly, and then the inter-leg
connections were evolved to make the logs coordinate properly. This was fine for the

problem of generating a controller for this particular robot, solving all of the problems
mentioned above at a stroke, but it involved a detailed knowledge of exactly how a

joint or a leg should move, which will not be known in the general case.

The common thread among these more sophisticated solutions is that considerable work

went into hand-coding the architecture of the networks so that it would be possible to

evolve the appropriate controller. This is a fatal disadvantage for our task: it, relies on

work being carried out on each robot to determine, usually by trial and error, what
the best design for this particular network would be: this is something we are explicitly

trying to avoid, and so it, will not provide the general purpose tool we desire.

However, it may be possible to take some of the ideas from this and put them into

a more general framework: what we require is knowledge about the robot itself to

determine the architecture for the network. This approach is used by Kodjabacliian
and Meyer (1998), where he uses information about the design of the robot to calculate
on the structure of the network. However, if we can extract this information from the

description we are given of the robot automatically (c..y. from the simulator description

of a robot being modelled), then we may be able to generate a network which reuses, for

instance, the same subnetworks on each leg of the robot, or only connects small groups

of neurons to each sensor/actuator pair, without requiring the user to have detailed

knowledge of how the system works. This would potentially eliminate the problems
of reusability and modularity which we have discussed, and because we would still
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be producing complete controllers, it would avoid problems we discussed with staged

evolution.

Variable Architectures

A lot of direct encodings with variable architectures only encode the architecture and

not the weights, in a very similar fashion to figure 3.1 but using connection matrices

with O's and l's for no connection and learnable connection respectively instead of

weight matrices. For instance Miller et a I. (1989) use a GA to evolve the architecture

and then Backpropagation to learn the weights. Unfortunately, as we have already said,

we cannot use this, but there arc several which learn both architecture and weights

(though many have a fixed network size).

Maniezzo (1994) manages a direct encoding of architecture and weights in the simplest,

way possible by combining the two previous techniques (see Figure 3.2) with each

position on the chromosome containing a connection bit to say whether the link exists

as well as a weight for it if it does. As with previous techniques there is no way for

subnetworks to retain their integrity or to be reused, and the network size is fixed.

This a very similar case to the fixed architectures, and suffers from the same problems.

However, it may be possible to use the same technique of automatically decomposing
the problem to force rouse of components to avoid some of these difficulties.

00 00 1201 10 1001 13 10 00 10 1100 00 10 10

Chromosome

Connection bit Weight abed
2

► 00 3

0 0 1

0'
Weight Matrix

Neural Network

Figure 3.2: Maniezzo's weight and connection encoding
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Torreele, on the other hand, has a relative connection structure which could allow

reuse of subnets — the neurons are ordered on a grid and connections are allowed

to a (prospecificd) set of neighbours (Torreele, 1991). Each neuron has an associated
bit string which determines whether connections exist, and if so, whether they excite

or inhibit. Because the addressing is relative subnets can be reused by copying to a

different position on the grid (although Toreele has no mechanism for achieving this).

However, there are strong restrictions on the connectivity imposed by the encoding —

there can be no long distance connections — which may cause problems. Although

this seems superficially to be biased towards the kind of networks we are interested in

(locally connected neurons, some possibility of reuse of subnets), the impossibility of

distal connections make it a very incomplete encoding, and as it is a distinct possibility

that some long distance connections may be very useful in locomotion (e.y. in bipeds
it is important not to bend one knee when the other leg is off the ground), this is too

serious to overlook.

Collins and Jefferson take another approach and treat the connection as the basic

element rather than the neuron, and directly encode them in the form From:a To:c

W'ciyht:-1. which they call K connection descriptors (Collins and Jefferson. 1990). This
has the potential to be the first of these techniques to have a variable number of

neurons, by allowing the connections freedom to mutate out from their original limits

for instance: however, they do not take advantage of this, and indeed even keep the

number of connections fixed as well so that they can use straightforward crossover.

The result of these decisions is that the architecture is quite badly constrained, but

this is not necessary. An advantage of this encoding in general is that subnets can

be encoded in very short strings and thus are less likely to be broken up by crossover.

However, there are disadvantages — it is still not possible to reuse subnets, and because
there is no physical location on the chromosome for any particular neuron, it is likely
that different chromosomes will have the same nodes' connections in different places,
so even if a subnet remains intact there is a much greater chance of interference with

its operation during crossover from other connections being added. This is caused

partly by the massive redundancy in the encoding which is on top of the competing

conventions problem already inherent in NNs (several different networks can have the

same structure by just changing which node has which name).
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However, Wieland has evolved pole-balancing controllers (including multiple and join¬

ted poles) using exactly this technique, at least some of the time with considerable

success (Wieland, 1991). He also considered the 2-legged walker ;is an extension of the

jointed pole, but unfortunately only had limited results.

Angeline uses a very different approach in (Angelina et al., 1993: Angeline, 1993) to

evolve recurrent neural networks. He uses mutation alone in a quasi-Simulated An¬

nealing technique he calls GNARL. Since only mutation is used encoding is almost

irrelevant, because changes are done all the time on the phenot.ype itself. Various dif¬

ferent mutation operators are used (weight change, connection addition/removal, node

addition/removal), the severity of which depends on the temperature which cools as

the fitness increases. Some of the operators are shown in Figure 3.3. The technique is

also closely related to constructive/destructive NN algorithms but claims superiority

over them because they are monotonic, only allowing 1 neuron to be added or removed
at a time;, where.is his can do many — the advantage of this is that it can get out of

deeper local minima (in the same way as Simulated Annealing). It was found to be
effective on a variety of problems. Overall the technique; avoids the problem of losing

subnets by not allowing crossover, and is complete with regard to network architec¬

tures, allowing any number of nodes/connections (although you can bias the starting

population), but again it cannot reuse existing subnets. However, with the system

discussed in section 3.2.1 to force reuse of components, this could be very promising.

Uteclit and Trint (1994) describe and compare a variety of other mutation operators

which could perhaps be used in this method to enhance it further.

3.2.2 Indirect Encodings

For the most part the indirect encodings contain both the architecture and the weights,

but, as with fixed encodings, some of them use Backpropagation to learn the weights;
for instance Harp, Samad and Guha use "Blueprints" in (Harp et al., 1989), and Boers

and Kuipcr use an L-system to develop the architecture in (Boers and Kuiper, 1992;

Boers et al., 1993).

However, most indirect encodings do encode both, using generally either a grammar
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Figure 3.3: A network in the GNARL encoding and the effects of some mutation
operators

or developmental encoding of some form. I shall go onto those after I have described
another technique which is less popular.

Fullmer and Miikulainen used a Marker-based encoding scheme (Fullmer and Miiku-

lainen. 1991), loosely based on the marker structure of biological DNA. Each node has
a key with which it is associated, and a series of other keys which it is connected to

(or the closest match if that key is not present) — eacfi of these keys has a weight as¬

sociated with it; this allows arbitrary networks to be described. The markers referred

to are start and end markers on the chromosomes which border the segments where
neurons are defined. In other words there is 110 fixed point where the neuron definitions

are, and there is even unused genetic material between end and start markers.

The rest of the encoding can however be separated from these markers, and Michel and

Biondi have done just that in proposing a very similar scheme with a more straight¬
forward chromosomal representation (Michel and Biondi, 1995a,b) which is inspired

by protein synthesis regulation. Each node now has a set of signals with which it
is associated and inhibitor and activator signals which will connect to it if they are
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produced. The connection weights are now only ±1 and neurons can have a greater

variety of inputs as they can have more than one input signal, but otherwise it is very

similar. Neither of these methods have any possibility of reusing subnets because the

keys/signals would all have to be changed if the new network were to not interfere with

the old.

These two techniques have exactly the same expressive powers as GNARL, described

in the previous section, but arc much more complicated. The advantages they claim

are in robustness under crossover, which GNARL does not employ, but it is unclear

whether their results justify the increased effort, in using them.

A successor of this approach which is at the same time very different is the symbiotic

evolution approach by Moriarty and Miikulainen called SANE — Symbiotic Adaptive

Neuro-Evolution (Moriarty and Miikulainen, 1994). Here labels (keys again) determine

the connectivity, but each chromosome represents only one neuron, and collections of

chromosomes are put together at random to form a network to be tested for fitness.

This very cleverly stops convergence on the gene pool, since diversity is essential as a

variety of different neurons are needed to make an effective neural network. However,

the experiments done with it were on feedforward NNs with only one hidden layer, so

individual neurons could realistically have separate domains of expertise: it is difficult

to see how the experiment could be expanded to multi-layer or recurrent neural nets

as it stands because few neurons in these nets can be of any use in and of themselves.

Development encodings and grammars

Mjolsness at al. (1987) and Kit.ano (1990) came up independently with similar L-system
schemes: each symbol produces a 2*2 matrix of symbols. This is iterated a number of

times until there is a 2" *2" matrix which is then translated by a separate mechanism

into a weight matrix. Kitano calls this a graph L-system. This scheme tends to produce

extremely regular NN structures, and thus constrains the network a lot, although, if
there are enough symbols, the scheme could theoretically be complete. The process

is also highly cpistatic and changing any of the rules is likely to change the fitness

significantly, because symbols which appear early control the eventual shape of very

large sections of the NN, and ones which occur late are likely to appear in a lot of
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places, and thus again change a large section of the networks.

Both Mjolsness and Sharp, and Kitano have since moved on from this to much more

complicated methods, both involving very sophisticated development schemes. The
former (Sharp ct u/., 1991) is still in this field, and involves a cell division process

which eventually produces neurons with individual state vectors which are much like
the keys above, and must be matched to make connections, but the latter (Kitano,

1995) is more computational neuroscience, with cell division occurring according to

how high the metabolic rate is in the cell, axon growth determined by Nerve Growth

Factors, and many other equally complex effects.

These are all interesting ideas, although none of them produce bias in exactly the
direction desired for this control problem, they do solve problems of modularity and

reuse, and so it is entirely possible that a different L-system based grammar would be

capable of generating controllers for legged robots.

Gruau has a grammar scheme bjiscd on Genetic Programming rather than GAs which
he calls cellular encoding since the rewriting process happens to cells rather than

symbols (Gruau. 199 la.b). and which Ik? uses for feedforward boolean'1 neural networks.

In the model each cell has a copy of the chromosome which codes the process, and reads
it from a different, position. The chromosome is a tree with ordered branches whose

nodes an; labelled with instructions. Tin; instructions act on a cell or an input to

tin; cell. Each step in the process involves a coll reading an instruction and moving

down the tree to the next. node. The instructions can be for instance to divide, change
its links, or become a neuron. For example when a cell is given the instruction S
— sequential division — it divides, with the first child getting the input links, and
the second getting the output links from the mother cell, with a connection between

them. The nodes have 0, 1 or 2 branches depending on whether the command was to

make a neuron, to alter an existing cell, or to divide into two cells, the branches being

followed by the new cells. In this fashion branches of the tree form mostly separate

subnetworks and crossover can move them about. Gruau also proposed using Koza's

ADFs (Koza, 1994) to reuse useful subnets. This seems a very ingenious system, but
its tree structure makes it difficult to see how to get it to cope with recurrent neural

3 Connection weights are ±1
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networks, and it is unclear that a boolean network will suffice for this problem. This

work is currently being extended by Rotaru-Varga (1999) to allow more modularity in

the networks.

Nolfi and Parisi also produce feedforward networks with their encoding method, but it

would be possible to make the system recurrent. It is based around neurons which are

physically situated in two dimensions, and which then grow axons to connect to other

neurons which branch and lengthen all according to the; instructions on the chromosome

(Nolfi and Parisi, 1992, 1993; Nolfi et al., 1994a.b; Nolfi and Parisi, 1995). In (Nolfi

et al., 1994a) they evolve controllers using this for autonomous (wheeled) robots first in

simulation and then on the actual robots with marked success. They have also added

a developmental encoding to this as well (Cangelosi et al., 1994), which allows the cells

to divide and migrate about the space whilst altering their parameters (e.g. axon shape

and weights). This system is probably complete, and biases towards local connections.

In its original form it did not allow the possibility of reuse of subnets, because the

position of every node would have to be altered; however, with the developmental

encoding this is now possible as a split of the original node which produced the subnet

will produce two identical ones physically removed from each other. Unfortunately it. is

an extremely complex scheme, but it could potentially be altered to generate desirable
network structures.

Very recently work has been carried out by Kodjabachian and Meyer (1998) which
extends (Jinan's work to allow cells to grow in a space similar to Nolfi and Parisi's.

This is a promising approach, and has been used to control statically stable walking in

two dimensions as well as higher level control including gradient following and obstacle

avoidance. However, it would be very interesting to see how this approach could deal
with the much more difficult problem of dynamically stable walking.

Finally Karl Sims had a more complicated development, process which he used to

evolve various robots and their nervous systems (Sims, 1994a,b) to do jobs like walking,

swimming and jumping. This process evolved the morphology of the robot as well its

the controller, and produced very impressive simulation of robots crawling, swimming,

and walking, with the bodies being more snake-like for swimming, and legged for

walking, etc.. The nervous system was not in fact a straightforward neural network,
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but rather contained a variety of different nodes including thresholds, integrators, and

oscillators amongst others. Each body part has a piece of the nervous system associated
with it so that changes in the morphology of the robot change the controller as well.
This technique worked well, and some very entertaining virtual robots were evolved:

although none of them were very conventional walkers (they tended to tumble and roll,
since this is easier to evolve), this provided a very impressive example of what should

be possible.

This kind of revolutionary approach, whilst interesting, is not directly applicable to

the problems being solved here as we have fixed robots we wish to build controllers for.
However the idea of associating a part of the controller with each joint is one which
accords well with our thinking on CPCls, and could be incorporated into the system

for automatically decomposing the problem which we have discussed before. As we

have said before this is the kind of approach used by Kodjabachian and Meyer (1998),

though in that paper the adaptation to the specific robot w.is done manually.

3.3 Summary

Because of constraints on the amount, we know about the details of walking, the most

appropriate method for training controllers for legged robots is a reward b.ised ap¬

proach. and we have chosen to use evolutionary algorithms to evolve neural networks.
There are many different encodings, but the most appropriate to test seem to be:

• A simple direct encoding of weights, both fully connected and with the network
architecture determined by an automatic analysis of the structure of the robot

(which is described in Section 5.2).

• A direct encoding of the weights and architecture similar to above, but allowing
the connectivity to vary, perhaps favouring denser local connections and sparser

distal connections.

• An encoding similar to Angeline et al. (1993), adapted to allow reuse of subnet¬
works as above. This will be useful as it is a complete encoding which will allow
us to see what kind of structures are useful so that we can consider designing a
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more indirect encoding to produce these structures automatically. Its weakness

of not allowing reuse of subnetworks is overcome by the automatic symmetry

which will be built into the system by the analysis of the robot.

We will also investigate a variety of different neural models to see which seem most

appropriate for this task.
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Chapter 4

Architecture

In order to evolve the networks described in the bust, chapter it w;ts necessary to me.is-

ure how well they were capable of controlling legged robots. There are two possible

approaches to this — either run the controllers oil a real robot and evaluate their ef¬

fectiveness hi situ (as was done by Lewis ct «/.. 1992), or build a simulator which will

mimic the behaviour of real or putative robots, and evaluate the performance of the

simulants in the expectation that this will approximate to that of the real robots (as
was done by Nolfi ct til.. 199 la). There are drawbacks to both positions for instance:

• Simulated robots can never be the exactly the same as real robots, so you never

got a truly accurate picture of how your controllers would behave in the real

world.

But:

• Real robots are expensive and fragile, needing constant maintenance and super¬

vision, whereas simulations can run indefinitely with neither.

• There is an upper limit (in terms of both time and cost) on the number of different

real robots it is possible to experiment with, but there are less problems with

computers to run simulations on.

This last point was crucial — since the aim is to build a system capable of generating
controllers for an arbitrary walking robot, it would be impossible to test this using

45
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actual physical robots, as only a very small number could be examined, whereas as

many computer models ;ts necessary can be devised. It is nonetheless a serious issue

that simulated robots cannot guarantee to behave in the same fashion as a real robot

should. However work by Nolfi ct <il. (1994a) and more recently by Perkins (1999)

amongst others shows that controllers evolved in simulation can run effectively on real
robots: Nolfi compares this transition to nothing more than a change in environment
for the robot.

As a result it was determined that a full three dimensional dynamic simulator should

be built with the ability to model ;is wide a range of legged robots ;is possible. To¬

gether with this it was necessary to create a neural simulator capable of modelling the

behaviour of recurrent dynamic neural networks, and an evolutionary engine to evolve

the networks. These then formed the basis for all of the research in this thesis, and this

chapter will describe the system which was built and such details of the implementation

;ls are necessary.

4.1 Design Criteria

The most, important part of the system from a computational viewpoint is the mech¬

anical simulator; it was obvious from the very beginning that the vast majority of the

processor time would be spent here, so optimising this was a first priority.

4.1.1 Mechanical simulator

Initially many different simulators were tested, from our own (Reeve, 1994; Reeve
and Ilallam, 1995), which was implemented for another project based on work done
in Edinburgh by Featherstone (1984), to various other simulators written by other

robotics researchers and available on the web. However none of them were sufficiently

robust or efficient for our purposes. It soon became apparent that there were several

key criteria would have to be satisfied. The dynamical simulator would have to:

• be a full three dimensional dynamic simulator. Otherwise real robots could not

be simulated effectively in the computer.
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• be capable of easy extension to incorporate any elements which might be present

on a robot it was decided to model {e.g. a new type of joint motor).

• work as efficiently as possible — since this module would do the bulk of the

processing in the final program, the faster it could run the more, experiments it

would be possible to carry out.

• allow ecisy designing of and switching between different robot bodies.

Eventually the framework for a simulator based on the PhD work of McMillan (1994)

was found, called DvnaMeehs. This satisfied all of the criteria as it could model an

arbitrary tree shaped robot (i.e. no closed loops, sec Figure 4.1 for examples) much

buster than any other system tested. It w«is also modular, easily extensible and free.

Work was done to incorporate a new simple joint, motor and sensor design into the

framework, and it was packaged in a simple interface which would allow it to be

replaced easily with a different simulator at a later date if this proved desirable (for

instance for modelling humans'). The simple language which w;is used to describe

robots was also expanded to allow further information to he entered about the robot

(an example file is shown in Appendix D.l).

The new motor was direct drive, offering torque or force control depending on the

joint. A parameter in the motor definition in the robot description file determined

the; maximum torque (or force) individual motors could generate, and the motor was

controlled by a single input between +1 and -1, for maximum forward drive and max¬

imum reverse respectively. This made control by the neural networks hiss complicated

as they would not have to generate different ranges of values for different motors.

The new sensors were equally simple, producing outputs proportional to the joint

angles of the robots, but scaled to between +1 and -1 again, which were the front and
back joint limits respectively. This simplified the inputs to the neural networks, as the

inputs would vary over a simple range similar to that of the neurons themselves, so

weights could be uniform across all connections. A further set of sensor connections,

provided for joints on the legs, gated the first sensor readings depending on whether

1 See section 8.2 for details
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Figure 4.1: Tick; shaped robots

the foot on that leg was touching the ground or not (producing a normal reading if they

were, and 0 if not). This was provided to give; some information about foot contact.

The interface, which was implemented as a C++ superclass of the mechanical and

neural simulator classes, specified a set of methods whic h allowed the details of the

specific simulator to be ignored. These are detailed in Appendix C.

4.1.2 Neural Simulator

The neural simulator was always an easier problem, but some factors were important
— it should:

• be modular to allow experimentation with a variety of different neural models.

• permit easy replacement of one network configuration with another for repeated

experiments.

• be as efficient as possible.
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Examination of a few available neural network simulators showed that they tended

to be too general purpose for my needs, so a simple one was built, and packaged in

the same interface used for the mechanical simulator, allowing new neural types to ho

easily plugged in. but w;is otherwise as uncomplicated as possible.

4.1.3 Evolutionary Algorithm

As far as the Evolutionary Algorithm was concerned, the constraints were very straight¬

forward. It should be as unrestrictive as possible, allowing any kind of population (e.g.

panmictic, island, finegrained), selection criteria (e.g. tournament., proportional, etc.),
and crossover and mutation operators that might be desirable.

This proved very easy to satisfy ;is the Edinburgh Parallel Computing Centre had just

created exactly such a system, called RPL2. This had a built-in Basic-like language!

in which reproductive plans were written, and libraries could be easily added to the

language to add new encodings or operators as desired.

This then completed the design of tin? system, which is detailed in figure! 1.2.

( RPL2 Evolutionary Algorithm language 1

Neural encodings
v aiuJ gcnnt)pc to phenol \pc mappings

1 Neural simulator Mechanical simulator

I Different neural models Different robot models

Figure 4.2: The basic program architecture
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4.2 Verification

CHAPTER 4. ARCHITECTURE

It w;ts important to ensure that all of the components of the system were working as

required This was done by testing each component separately and then in combination.

4.2.1 Mechanics

The mechanical simulator was difficult to validate as the calculations it was performing

were extremely complex, so two approaches were taken:

1. Simple objects (e.g. cubes) were dropped and thrown in the simulated world and
calculations were made to see what their trajectories should be. These were then

compared.

2. More complex segmented objects (e.g. snakes and legged robots) were dropped

and shaken, and visual observations were made to judge whether the simulated

behaviour looked like the behaviour one would expect in the real world.

Although the latter seems a fairly unsatisfactory test, humans are in fact extremely

good at distinguishing natural behaviour from artificial, and it was surprisingly easy

to spot problems with the simulator when adding new components by this method.

4.2.2 Neurons

The neural simulator was relatively simple by comparison, and it was possible to con¬

struct simple neural networks and send them to the simulator and compare the neural

activity to those generated by other methods. It is also the case that there was less
need for accuracy in these tests as it was sufficient that the networks produced sim¬

ilar types of activations and that these were consistent between runs, as the layout of

the neurons should be altered by the genetic algorithm to whatever was specifically

required so long as they were capable of the right sorts of behaviour.
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4.2.3 Evolution

Little testing was required here as RPL2 is now a commercial product, and validation

was largely an excuse to familiarise ourselves with the software by running a variety
of standard optimisation problems and checking that RPL2 was capable of evolving

solutions to them.

4.2.4 In Concert

Connecting up the various parts and testing them together involved writing the first

neural encodings for the GA. In fact, the most validation work (which carried on

right through the experiments) went into checking the individual encodings and their

respective mutation and crossover operators and genotype to phenotype mappings.
This was done by examining individual chromosomes and checking that tin; decoding

of them into networks for the neural simulator was correct, and that crossover and

mutation were creating children that wore derived correctly from their parents. An

example of what information is passed back and forth in a typical experiment is shown
in Appendix I).2.

Having doi .<• this, it was possible to carry out simple GA runs, first examining single

chromosomes, checking that the GA had extracted the correct information about the

robot to build appropriate controllers (e.g. number of actuated joints, sensors, etc.).

checking that the neural simulator was building the correct networks, and then checking
that the communication between the mechanical simulator and the neural simulator

was working correctly, with the outputs from the neurons activating the motors and
the feedback from the joints coining back into the network ;is input.

Finally, the first experiments were carried out to check that the fitness of the phen-

otypes wjis being measured correctly and the GA was carrying out the selection and

breeding correctly to produce offspring from the fitter adults in the population. Re¬

grettably these were not spectacularly successful at evolving walking controllers.
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4.3 Summary
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The* simulation environment was constructed and validated to satisfy the following
constraints:

• The mechanical simulator should be capable of accurately modelling the three di¬

mensional dynamically stable movement of arbitrary legged robot (this is provided

by the DynaMechs simulation code)

• It should be easy to transfer new robots to the simulation environment (a simple

modelling language is used to describe robot in terms of its components, which
is designed to be fairly intuitive).

• It should be possible to expand the simulation environment to allow for new

motors, sensors, and types of neurons, etc. if a new robot requires it (this is built

into DynaMechs and the neural simulator).

• Having put a new robot into the simulator, it should be trivial to evolve con¬

trollers for it. (this is ensured by the CIA and the neural simulator querying the
mechanical simulator directly for information about the robot instead of asking
the user).

• It should be possible to replace any component of the environment, fairly pain¬

lessly if this is necessary, for instance to simulate a different type of environment

(all components are connected by a simple interface which should be easy to

implement on any replacement component).



Chapter 5

Symmetric controllers and neural
models

In Chapter 3 we discussed the necessity of having degenerate controllers in our robots,
so now we will consider how this will be implemented, and check that it really is

effective by comparing results with those of a simpler implementation which does not

take advantage of symmetries in the robots.

We also discussed the variety of different, neural models which it. is possible to imple¬

ment. and we will investigate these thoroughly to determine which will be the; most

appropriate for the rest of our experiments.

5.1 Experimental design and results

All of the experiments in this thesis are evolutionary runs and as such the results are

stochastic in nature. Consequently many repetitions of each experiment have to be car¬

ried out to get an accurate estimate of the effectiveness of any particular experimental

setup. One of the main factors limiting the number of repetitions of each experiment
was the amount of time available. Because of the complexity of the algorithms in¬

volved. the dynamic and neural simulators could only run at 60-80% of real time (i.e.

taking 1.2 to 1.7 seconds to generate 1 second of simulation). This was almost en¬

tirely due to the mechanical simulator, although for very large heavily interconnected

networks, the neural simulator did begin to have a marginal effect. Experiments were

set up with 50 individuals per generation and 100 generations per experiment, and



54 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

it was determined by trial and error that about 5 seconds of simulated time was the

minimum necessary to determine whether the simulant was performing satisfactorily
— if less time was allowed it was difficult to distinguish robots which had just thrown

themselves forward in a single movement from those which had actually developed a

repeating pattern of some kind. Likewise 50 individuals and 100 generations were the
minimum found necessary to generally evolve as good controller as possible from the

population. This was determined by the fact that the fittest member of the population

stopped improving significantly for a number of generations, and while this is not con¬

clusive, it indicated at least that further improvements were likely to take prohibitively

long. Even stopping at 100 generations meant that each trial took almost 10 simulated

hours, or between 12 and 17 cpu hours. This severely limited the number of trials that

were possible for each experiment.

It was calculated during the experiments that 50 repetitions of each were sufficient to

give statistically significant results in comparisons between most experiments whilst

not being prohibitively slow (taking 25 to 35 cpu days). However, from a practical

point of view it is clear that this would be too long for an end user of the system

to wait for results, so a comparison was made between expected results from only 1

and (J repetitions, which could be calculated with some confidence based on our larger

sample. These numbers of repetitions were chosen as the 80 and 90';' percentiles

respectively in a uniformly distributed set of 50 trials, but in the end as the distribu¬

tions were highly non-uniform (being generally unimodal but with significant tails and

occasionally skewed as well — see Figures 5.5 and 5.9 for example), it was necessary to

estimate these values directly by repeated subsainpling from our population of results.

A more detailed analysis of the statistical techniques used is to be found in Appendix
13.

In fact, this proved to be a very satisfactory way of comparing different experiments,

as although it is possible to compare expected mean or median performance of the

evolutionary algorithm on a single trial or the best found across all runs, neither are

usually a useful measure due to the stochastic nature of evolutionary algorithms; the

former because the variability of individual trials means that more than one repetition

is always done, and the latter because comparing the best trials achieved over the
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whole 50 runs opens up the possibility of having purely by chance succeeded in finding

an abnormally good result in one of the experiments. Also there is no measure for the

standard error of the best result and so no way of expressing confidence in the results

obtained, and the standard error for the mean or median is generally larger than for a

best of four or best of nine sample, so results arc less likely to be significant.

Consequently all experiments are compared by considering their estimated best per¬

formance over 4 and 9 trials, and using the standard errors of those figures to determine

whether the results were significant. However, other measures will be mentioned when

they are seen t.o be important.

5.2 Degenerate controllers

It seems intuitively obvious that controllers for symmetric legs should be the same,

but it is less obvious what exactly we might wish to class as symmetric in this context.

However, as we said in Section 4.3, it is important for it to be easy to implement

new robot models (otherwise the system will not be used), so if the controller is to be

broken down into symmetric parts, this should mostly be done automatically from an

analysis of the robot, and not require expert intervention from the user.

It is theoretically possible to analyse the actual structure of the leg models and de¬

termine whether they are identical (or mirror images of each other), and so require

identical controllers, but it is prohibitively difficult to implement, this in practice, and

also might not achieve the desired effect {e.g. arms and legs could be designed the
same for simplicity, but would still need different controllers). A much simpler scheme

was therefore implemented where each articulation from the main body is described
as a leg or part of the body (arm, head, etc.), and then the side of the body it is on

is described (Left, Right, Centre), and then whether it is the same as any other legs

is indicated by grouping them by number. The four legs on a simple quadruped are

described as follows for example:

Leg Left 1

Leg Right 1

Leg Left 2
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Leg Right 2

Indicating that the first two (fore) limbs arc the same, as are the hist two (hind) limbs.
It would have been equally possible to define all four legs as the same, but the fore
and hind limbs on this robot were sufficiently different that this was not appropriate.

This is all the information that is used by the evolutionary algorithm to generate

the degenerate controllers: it just uses topological information about the number of

articulations (or limbs) — 4 here — the number of unique articulations (2), and how

the sensors and actuators are distributed in the articulations. No information about

physical dimensions of the robot is used. This is discussed in more detail in Appendix

D.2.

In a degenerate controller, the neurons and connections are defined for only one artic¬

ulation of each group, and are then duplicated in the others. In Figure 5.1, we see Leg
Left 1 h;ts one neuron on its shoulder joint (nl), with two connections (cl, c2). Con¬

sequently, Leg Right 1 has an identical neuron (nT) on its shoulder with two matching

connections (cl', c:2'). Similarly Leg Left, 2 has 2 neurons (n2, n3) with a connection

between them (c3). so Leg Right 2 has a matching set (l»2*. u3\ c,V).

The initial experiments were carried out with a very simple encoding where every joint

had the same number of neurons and every neuron was connected to every other neuron

and every sensor and actuator (the network is fully connected). In this case all possible

neurons and connections always exist, so only the weights on the connections are being

replicated between symmetric neurons (so the weight on the cl connection is the same

as that on the cl' connection). See Figure 5.2 for a simple example of this connectivity

(only one sensor per actuator is shown). In the encodings in Chapter 6 on the other

hand, the existence of connections and even neurons will be duplicated in the same

way.

The non-degenerate controller is also fully connected, but symmetries are disregarded
and so separate weights are encoded for neurons in each of the robot's articulations.

Full details of the setup of the Genetic Algorithm which remains the same throughout
this chapter are in Table 5.1, and the robot is shown in Figure 5.3. The fitness measure

used throughout this chapter is the simplest imaginable — just the average speed of the
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Leg Left 1 Leg Right

Leg Right 2

Figure 5.1: Replication of neurons and connections in a quadruped
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Figure 5.2: Connectivity of neurons in a simple example
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robot along its principal axis; we will investigate the usefulness of more sophisticated

fitness measures in subsequent chapters.

Robot model: quadruped with two hinge joints per

leg with knees bending inwards
Fitness measure: speed along principal axis (ms-1)
Population size: 50

Generations: 100

Selection type: Tournament

Tournament size: 3

Prob. crossover: 0.8

Crossover type: 1 point
Mutation rate: 0.1

Table 5.1: Details of Genetic Algorithm parameters for Chapter 5

Figure 5.3: Simple quadruped with two hinge joints on each leg, knees bending inwards

Both experiments were repeated 50 times, both used the third order neural model

described in more detail in Section 5.3.4 because this was a model which had not been

used before for this class of problem (walking control), and it was our expectation

that more sophisticated models might perform better; also every actuator was given 6

neurons; that is to say that there are 48 neurons in all, as there are 8 actuators. In this

encoding there is no significance to the neurons being related to individual actuators,
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but in more sophisticated encodings in Chapter G the association will determine which

connections can be made by the neuron. An example of this connectivity on a simpler

robot was shown in Figure 5.2. Closer analysis later in the chapter will show these

were reasonable parameters to got good results from the system. The results can be

seen in Figures 5.4 and 5.5, and more discussion of the statistical techniques is found
in Appendix B.

Bcsl of y trials

Best of 4 trials , 7o 9
IK-jUTl.T.lIC lonllolk-l 9

Figure 5.4: Expected values of best of 11 trials with 95% confidence intei vols

There was a very large difference between the two experiments, with the degenerate

controllers being significantly better even at the 0.1% level.

As we can s<x; from Figure 5.5, the highest probability density for the lion-degenerate

controller is around a fitness of 0.5(ms-1) or roughly 3.5m travelled — this is generally
a result of the robot learning to throw itself forward a couple of metres and then

not moving again. Sometimes it did continue to move, but the legs tended to act

independently and indeed no controller learnt to use all of its legs. The best of them

is shown in Figure 5.6. the only one to keep a fairly stable rhythm going, and it still

only uses 2 1/2 legs to do it.

The degenerate controllers, on the other hand, produced repeating patterns with all

four of their legs over 90% of the time, with the mode around a fitness of 1.1 (ma""1), or

about 8 metres travelled in an average run. Many of these patterns were recognizable

as stable mammalian gaits — Figure 5.7 for example shows a robot using an ambling

gait, albeit mostly on its knees.
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Figure 5.6: The best robot with a non-degenerate controller (viewed left to right, then
top to bottom)
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Figure 5.7: One of many stable robots with a degenerate controller (left to right, top
to bottom)
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5.2.1 Discussion

g;J

Building symmetry into the controllers had an enormous effect on the fitness of the

controllers evolved by the system. It was to be expected that it would allow legs with

the same controllers to perform similar tasks, thus helping to avoid the possibility of

only three legs learning useful functions for instance, but what was not so obvious

is that it also allowed the robots to coordinate much better between legs to develop

stable gaits. This in itself is a significant result as we are not aware of any other

evolutionary system evolving dynamically stable gaits in three dimensions; it seems to

be a consequence of the symmetrical cross-connections between legs building up. so

that a neuron activating the near forclinib of the robot when the near hindlimh is fully

extended, will make its symmetrical partner do the same on the off side, for instance,

and just a few of these types of connections will build up a simple rhythm between the

legs. It was nonetheless surprising both how bad the asymmetric and how good the

symmetric controllers were. It is possible that allowing the asymmetric controllers to

evolve for longer would have produced better results ;is the genome had more degrees
of freedom to explore, but it is not clear that this would have helped as the evolution

had stopped at local minima which the system would then have to have broken out

of. and in any event time constraints were imposed on the problem which necessitated

stopping when it did.

The other significant feature of these runs was that the majority of the degenerate
controllers moved at least partially on their knees and lower limbs. In retrospect this

is not very surprising, as it is undoubtedly easier to balance when closer to the* ground

(children learn to crawl before they walk, for example), and using feet, which were

otherwise absent from the model, also helps stability — since there was no penalty

for doing this, it is in retrospect reasonable to find them using what were initially

perceived as parts of the leg as modified feet.

It would be interesting to be able to examine how the neurons in these networks are

controlling the walking behaviour of the robot, but unfortunately the large number
of neurons (48), all of which are fully connected to all of the other neurons and all
of the sensors and actuators, make it impossible to see any patterns in the neural
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oscillations. This is very frustrating, and affects the usefulness of the results, as it is

impossible to show how reliable the network is. However, a robot model from a later

chapter (Quad_same from Section 7.1.1) was sufficiently simple that it was possible to

do a limited amount of analysis, and this is shown in Appendix A.

5.3 Neural models

Section 3.1.2 discussed a variety of different types of neurons which might be appro¬

priate as a basis for a NN controller for legged robots. This section will now briefly

recap each neural model, and then test its efficacy thoroughly in order to determine

which model should be used for the rest of our experiments.

5.3.1 Sigmoidal

The sigmoidal neuron is by far the best known of all neural models used in Artifi¬

cial Intelligence and many techniques exist for training it because of its mathematical

traet.ability. There is however a strong drawback in using it here — it is not a continu¬

ous time model - and since this is a continuous time dynamic system we are trying

to control, it seems likely that a network which can entrain to the frequency of the

movements will be able to control it better than one which has its rhythm imposed

from without.

However, it is the simplest neural model available, so we will investigate it first. The

equations used are exactly as seen before, with y, being the internal state of neuron i,

and Si being the output.

n

y, = Y,WJ'SJ (51)
1= 1

s, = —1—
i + e~»-

I investigated a range of sizes of neural network, making sure to investigate enough
to determine the optimal value assuming there was only a single peak in the values

produced. The same technique was used throughout these experiments. In this case it
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w;ls necessary to look at 6, 8, 10 and 12 neurons per actuator. The results arc shown in

Figures 5.8 and 5.9. and are compared with those from the 3rd order neuron examined

in the previous section.

Fitness

1.50

Best uf 4 trials

3rd order neuron 9

©

Fitness

1.70

Best of 9 trials

3rd order neuron Q

©

O Size 10
Si/c X 9 q Sl/C j0

? o

©

Figure 5.8: Results showing expected fitness with 95% confidence intervals for sig-
moidal neurons

All of these results are significantly worse than the 3rd order neuron at the 0.1%

level, and indeed the modal fitness is around 0.4 which is even below that of the non-

degenerate controller examined before. However, the distribution is strongly skewed,

with a few very fit specimens, and so the expected values of the best of 4 and best of

9 trials are better than might be anticipated. Though the difference is not significant,
10 neurons per actuator seems to be the best size of network for this type of neuron.

Looking at individual controllers, many of them are learning repetitive movements, but
the vast majority of these arc not effective as gaits, consisting of dragging movements

with one pair of legs, or some similar action. Only a very few in the upper tail of the
distribution evolve any kind of recognizable gait, and even these do not seem to be

very stable.

I will leave further discussion until we have examined all of the neural models.
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0.00 2.00 Fitness

Figure 5.9: Bootstrapped probability density function of sigmoidal neuron fitness
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5.3.2 First order

87

Tlie next, model is tlie CTHNN model of Beer (l'J'JS), which is u rout inuous time

version of the sigmoidal neuron. Equation 5.2 describes the model, exactly as used by

Beer.

dy,
t,— = -y, + Yi w},Sj (5.2)

j= I

5 = L
l+e(«.-v.)

where: 0, is a bias term,
T; is the adaptation rate of the neuron, and
y, is the internal state of the neuron.

This time there are parameters 6>, and r, for each neuron, for which Beer suggests

values based on his studies of the dynamic behaviour of the neurons (ibid.): 0, = — 2

and r, = 1. First we will compare the behaviour of the neurons with fixed 0, and r,

with the behaviour when co-evolving them with the weights, and then we will look at

the number of neurons which produce the best controllers in this model.

The co-evolved parameters in Figure 5.10 prove to be significantly better than the

fixed parameters at the 5% level for both (i and 8 neurons per actuator, so we will now

examine co-evolving the parameters more fully in Figures 5.11 and 5.12.

Surprisingly the 1st order neural models do significantly worse than even the worst

sigmoidal neuron. The best size for the networks remains 10 neurons per actuator,

but the results are significantly worse even at the 1% level. However, as before the

distribution of results shows that even the best sigmoidal neuron leaves something to

be desired. The modal fitness for all of the l5' order neurons is at le.ust as good jus

that for the best sigmoidal one, and, as can be seen from the cumulative probability

distribution, the medians are all roughly the same; again it is the skewed distribution

of the sigmoidal neurons which makes it better in practice. Examining the first order

controllers in detail, it is clear that very few of them even learn a repetitive movement,

and those that succeed do not necessarily learn inherently stable ones — like that
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Figure 5.11: Comparison of different network sizes for first order neurons
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Figure 5.12: Bootstrapped probability density and cumulative probability density of
first order neuron fitness

in Figure 5.13! It is entirely possible that, a more sophisticated fitness function or

encoding might have made a difference here, but this w;is not investigated.

5.3.3 Second order

The second order neural model is that of Taga (191)5). It is governed by two coupled

first order differential equations (5.3 and 5.4), which have been modified very slightly

to simplify their use in this system.

t,~ = -y, - ftmax(0,1/,') + Y Wj,Sj + k,
j-i

■ d'J'< ' C

T'^ii = -y'+S'
S, = inin(max(0, j/i), 1)

where: k, and /?, are constants

(5.3)

(5.4)

We have allowed self connections, set a maximum output of 1, and Taga's global
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Figure 5.13: One of the more enterprising first order controllers!
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constant uo is now a pcr-neuron constant k,. Again Taga provides a set of values for

t,, r,, fti and k, (1, 1, 2.5 and 1), so we will begin by testing these values against

co-evolving the parameters.
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96000
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Figure 5.14: Testing co-evolved against fixed parameters for second order neurons

The co-evolved parameters in Figure 5.14 prove to be significantly better than the fixed

parameters even at the 1% level for both fi and 8 neurons per actuator, so we will now

investigate co-evolving the parameters more fully.

The results of using second order neurons in Figures 5.15 and 5.16 are more equivocal.
The best number of neurons to use seems to be 8, but the result is not significant.

Looking at the best of four trials, the second order neurons seem to lie in the middle

of the sigmoidal results. The best sigmoidal result is slightly better and the worst is

slightly worse than all of the second order results, but again the result is not significant.

However, looking at the best of nine trials, all of the sigmoidal results are better than

the second order ones, although this is only significant for the best of them. Overall,

the second order neurons are significantly better than the first order neurons, but are

probably slightly worse than the sigmoidal neurons for practical purposes (looking at
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the distribution in Figure 5.10 it should be no surprise that the mean, median and

modal values of all of the second order neurons are significantly better than the best

sigmoidal one, but this is not really relevant). Examining the controllers individually, it

is immediately obvious that even the worst controller has learnt some kind of repeating

movement, albeit a dragging one, and indeed every controller seems to have evolved

some kind of dragging or tumbling motion (like that in 5.13), although some of these

are too unstable to continue indefinitely. However, none have learnt any recognizable

gait.

5.3.4 Third order

We have already seen in Section 5.2 that these neurons can produce controllers signi¬

ficantly better than anything else that we have seen so far, but we will now look at

them in more detail. They are based on work done in modelling neurones in a lamprey

spinal cord, and are described in (Wallen et ai, 1992). Again there are some very small

modifications to their equations which are shown in Equations 5.5 to 5.7.

Tn<iy?
' (it

rndyT
' dt

T• dt

s,

where: Gf is ±1 depending on whether the neuron is excitatory or inhibitory, and
is the set of all excitatory (inhibitory) inputs, and

T, and /i, are bias terms.

The neurons now have a maximum output of 1, and whether they are excitatory or

inhibitory is now explicitly stated in the equations instead of being defined indirectly

through what weights the neurons are allowed to have. Wallen et al. also describe a

set of parameters for four different types of neurons, which are listed in Table 5.2.

First we compare these parameters (choosing each neural type with a probability of

0.25) with co-evolved parameters.

= -y,+ + (5-5>
j€* +

= -yf + J2 WjiSj (5-6)

= S, - y, (5.7)

= G^minfinaxfO, 1 — e^6i~y' 'r' — y~ — /i,y,), 1)
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0 r r" /' ta f7±
-(1.2 1.8 0.030 0.3 0.400 1

0.1 on 0.020 0.0 0.0 1

0.5 1.0 0.020 0.3 0.200 -1

8.0 0.5 0.050 0.0 0.0 -1

Table 5.2: Parameters for four different lamprey neurons
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Figure 5.17: Testing co-evolved against fixed parameters for third order neurons
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Surprisingly the co-evolved parameters in Figure 5.17 proved to be significantly worse

than the fixed parameters even at the 1% level for both 6 and 8 neurons per actuator,

so we will now investigate the third order neurons with the fixed parameters from

Wallen c.t til. (19(J2) more fully in Figure 5.18.
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Figure 5.18: Comparison of different network sizes for third order neurons

All of these results are significantly better than any of the sigmoidal, first or second

order results, and the best number of neurons per actuators has come down to 4,

although this result is not quite significant at the 5% level. The controllers themselves
all seem to induce some kind of oscillatory motion in the robots, though for the less fit

individuals this tends to only be enough to catapult them onto their backs where they

lie with their legs waving in the air. As the robots get fitter, gaits begin to appear,

first dragging and tumbling moves we have seen before, and then with increasing fitness

hops and more recognizable ambles and trots, and some even stranger (and faster) gaits

like that in Figure 5.19 which moved the robot along at 2.5 ms"1.
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Figure 5.19: A typical third order controller
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5.3.5 Discussion

77

Amongst the continuous neural models there was a clear progression from the simple

first order models performing very badly to the complex third order models performing

very well — one noticeable feature of the models is that with the first order model it

is not at all easy to generate oscillations between less than three neurons, although it
is theoretically possible with only two; with the second order model it is much easier,

and with the third order it is hard to avoid, and indeed it is possible to set up an

oscillation with only one neuron. This is reflected in the behaviour of the controllers,

with very few repeated movements being seen in the first order robots, a lot coming

in the second order though not much oscillatory behaviour, and nearly every single
robot in the final set producing oscillatory movements; understandably this seems to

help enormously in the generation of gaits, which are after all in their simplest form

just a set of stable oscillations. It is difficult to say whether this is the main factor,

;is more complex neurons may be able to entrain better to the dynamics of the robot,

but it is certainly true that the more complex neurons of Wallen et a I. (1992) are the
best for this task by far. Other experimenters have got good results with first, order

neurons {e.g. Kodjabachian and Meyer, 1998), so it is clearly possible. One possible

explanation for this is that such simple fitness measures and network encodings were?

not good enough, and a more sophisticated approach might have done better, however
it is noticeable that most of these experiments were done in two dimensions which is an

easier problem which does not require dynamic stability. It is nonetheless significant
that it was possible to get such good results with such a simple fitness function and

network architecture with the higher order neural models.

Looking at the optimal number of neurons for different neural models, we see that
it comes down with increasing complexity of neurons, from 10 for the sigmoidal and
first order neurons to 8 for the second order, and only 4 for the third order. This

approximately matches up with the complexity of the neurons themselves, suggesting

that the increased complexity of the higher order neurons allows them to replace a

few simpler neurons, and indeed do a better job at the same time. Note that we

might expect more neurons to be optimal for the first order neural model, but in fact

increasing the number of neurons being used seems to make it more difficult to evolve
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the host solution: the number of weights increases with the square of the number

of neurons in a fully connected network and it seems likely that the evolutionary

algorithm will begin to struggle to cope with the number of parameters it is evolving
simultaneously, producing more and more suboptimal solutions even if they could be

potentially better at that network size. Attempting to solve this by perhaps increasing
the population size or the generations over which the GA is run would only result in
even slower evolutionary runs which are already taking 17 hours at this size, and so

would be impractical. However there are results which suggest that this might help if
time were not an issue (c.y. Ackley and Liftman. 1992).

It is also interesting to note that parameters suggested for the first and second order
neurons, chosen after after careful mathematical examination of the dynamics of the

neurons at least in the former c.ise (Beer. 1995), proved to be less effective than just

evolving the parameters along with the weights of the connections. It seems likely that

the simple reason for this is that the criteria used to select these parameter values
were inappropriate for this situation, which is unfortunate since both Boor and Taga

in (Taga. 1995) were envisaging using their neurons for exactly this kind of work.

Perhaps what was lacking was diversity in the neurons, needing a variety of different

types for different purposes in the network. Either way quite the opposite w«is true

for the third order neurons, and the set parameters for these were significantly better

than evolved ones: it seems likely that it is significant that these parameter values

were chosen because they matched real neurones controlling locomotion in a genuine
vertebrate (albeit a fish), rather than satisfying perceived criteria seen from outside
the problem. It is also possible that having a variety of different sets of values helped

bring diversity to the neural network.

The other issue raised by these experiments is the results from the sigmoidal controllers.
These were mostly worse than even the first order neurons but around 10% did much

better, with a few even learning rudimentary gaits. This seems strange since the first
order controllers showed no such tendency, but closer examination of the algorithms

showed that the first order neurons had been evolving their adaptation rates at around
the 1 second mark (r, = 1 in Equation 5.2), which would allow them potentially to

entrain to the dynamics of the mechanical system, whereas the sigmoidal neurons were
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updating every 0.001s (the stepsize of integration of the robot simulator), which was

effectively their adaptation rate. It seems possible therefore that most were failing
for understandable reasons but a few were actually learning to match specific input

patterns and generate appropriate output patterns 011 the actuators as we ordinarily

expect when training siginoidal neurons. While it is interesting that they had some

success in doing this, it scorns unlikely to be a profitable approach to controlling walking

in general because stability becomes so much more complicated when approached like

this — the controller will have to learn every possible way of becoming unstable, and

the apropriatc outputs to rectify this, which is just too difficult in the general wise. The

approach also proved to be significantly worse than entraining the complex neurons to

alter the dynamics of the system, and so it is not pursued any further.

5.4 Summary

The results in this chapter have been promising:

• Taking advantage of symmetries in the robot is essential in building a good con¬

troller — in the 5(1 experiments with an asymmetric controller only one succeeded

in generating a repeating gait of any sort and that was extremely defective (using

only 2 1/2 legs), whereas more than half of the degenerate controllers were ac¬

ceptable and many produced recognizably stable gaits. Achieving a dynamically

stable walking gait so quickly is very pleasing as it is a first, using an evolutionary

algorithm in three dimensions.

• Of the three continuous time neural models there was a clear progression with

the more complex models being more suited to the control tasks given to them,
both in producing more repeating gaits and in those gaits being more likely to be

stable. This may be related to the increasing ease with which the more complex

neurons produce oscillatory movements, and also the simplicity of evolving the

fewer weights necessary in their increasing small networks.

• It seems significant that the actual parameter values taken from neurones in

locomotory CPGs in a lamprey (Wallen et al., 1992, from) were significantly
better than evolved parameters for this task, unlike the simpler models, where
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tlio values chosen by researchers using perfectly plausible criteria proved to be

less effective than allowing them to evolve with the connections.

• Little analysis is possible of the networks as they are large and fully connec¬

ted to themselves and the 16 sensors and 8 actuators. This is frustrating {is

it hinders understanding of how the networks are operating, however in a sub¬

sequent chapter a controller is built for a robot which is sufficiently small that it

is auienible to some analysis, and this is shown in Appendix A.

Now this system will be used as a b;isis for exploring further ways of improving the

controllers generated.



Chapter 6

Encodings and fitness measures

The last chapter described experiments which allowed us to set up the basic platform

for the rest of the thesis. Throughout all of the remaining experiments in this chapter

and the next we will be using symmetric controllers and a third order neural model
with the same robot as in the previous chapter. Now we will investigate the use of more

sophisticated encodings than the current simplistic fully connected model to create the

kind of connectivity which will make more useful controllers easier to evolve, and then

wo will look at tin.' use of different and more complicated fitness functions and set? how

they can help evolve better walking behaviours.

These t<isks are made difficult by the surprisingly high quality of the controllers gener¬

ated in the last chapter by the third order models. Whilst the other models generated

movements which at best merely satisfied the simple fitness requirement of moving

forward, the third order models were extremely effective at generating genuine stable

gaits, and it will be difficult to do better than this in these experiments.

6.1 Encodings

We discussed a variety of different possible encodings in Section 3.2, and it was decided
that the encodings most likely to be useful for this t;isk were:

• A simple direct encoding of weights, both fully connected and with the network

architecture determined by an automatic analysis of the structure of the robot.

81
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• A direct encoding of the weights and architecture similar to above, but allowing
the connectivity to vary, perhaps favouring denser local connections and sparser

distal connections.

• An encoding similar to Angeline ct al. (1993), adapted to allow reuse of subnet¬
works.

The first (and simplest) encoding, which will now be referred to as the Full encoding,
was implemented in the last, chapter, and we will now look at how it compares with
the other encodings.

6.1.1 The OneMotor encoding

From observations of connectivity in vertebrate CPGs used for control of locomotion

(c.y. VVallen ct al., 1992), we know that neurones tend to be collected in small groups

which are heavily interconnected, with fewer connections between the groups (these

groups are the CPGs in fact); the CPGs are generally associated with a single muscle
or group of muscles as they receive sensory signals from and output motor commands
to only those muscles. It seems reasonable that this would be a good place to start in

looking for ways to bias the networks being created by the genetic algorithm.

Consequently the first encoding examined here, called OneMotor, is a simple fully
connected network, but one in which each neuron is associated with a specific joint,

and can only send commands to the motor in that joint; it is also connected to the
sensors associated with that joint, although there is a small possibility of connection
to a distal sensor. This is one of the simplest possible encodings which has the correct

kind of connectivity, and a typical example of connections generated by this encoding
is shown in Figure 6.1. Details of what topological information is extracted from the
robot model to allow the evolutionary algorithm to produce the symmetries in the

encoding is found in Appendix D.2.

We used the same experimental setup as in the previous chapter (detailed in Table

5.1), except for using elitism1 in creating new generations. This was seen to be useful

1
putting the best of each generation directly into the next
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All motor connections local

Mostly local sensor connections [

Single CPG/joint

Figure 6.1: Typical connectivity of one CPG in OneMotor encoding with 4 neurons
per actuator

as there was a tendency for good individuals to be lost during evolution, tis can be seen

front the dropping of fitness of the best individual in Figure (i.2 (the median run front

best size — 4 neurons per actuator — of third order neural controller).

Running the experiments in Section 5.3.4 again with elitism produces significantly
better results, and the median run from the best size network (now G or 8 neurons per

actuator) can now be seen in Figure 6.3

All the third order neuron experiments were rerun so that there could be a proper

baseline against which to compare new results, and the expected results of that and

the OneMotor experiments in the best of nine trials are shown in Figure 6.4. All

experiments were run on the same robot with the same fitness function as in the

previous chapter, as they are until we look at fitness functions in detail, and the same

robot is used through the whole chapter.

Perhaps surprisingly the Full encoding (fully connected neurons) proves to be easily

better than the OneMotor encoding, with the best OneMotor encoding being signific¬

antly worse than the worst Full encoding even at the 1% level. The same was also true

when comparing expected results from the best of four trials. Although it is true that

more neurons per effector could have been tested as no maximum had been found, it

was felt that the results were so bad it wouldn't be effective use of the limited com¬

puting resources to study this simple encoding in any more detail. These results will
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Fitness

Figure; 0.2: Typical evolutionary run for tliird order neurons without elitism
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be discussed further at. the end of the section.

G.1.2 The LocalSparse encoding

Allowing the neurons to connect only to their local motors w;is not successful on its

own, but in the LocalSparse encoding the connections between neurons is also .1 langcd
so that distal neurons are less likely to be connected that nearby ones. This would make

the connectivity more like that seen in real CPGs. Specifically, incomplete connectivity
was allowed between the neurons, with local connections (to neurons in the same CPG,
and the sensors and effectors associated with it) being made with a higher probability

than distal ones (to other sensors and neurons). This encoding produces connectivity
much like the OneMot.or encoding but with much fewer interCPG and slightly fewer
intraCPG connections (see Figure 6.5). The results can be seen in Figure 0.6.

Don so local J
neural connectivity •

Figure 6.5: Typical connectivity of one CPG in LocalSparse encoding with 4 neurons
per actuator

These experiments show no significant improvement over the OneMotor encoding, even

when looking at higher numbers of neurons per actuator; this was done here because it
was felt that with the greatly reduced number of connections present in this encoding,
it might be possible to evolve larger networks. However the results were still very

significantly worse than the Full encoding.

Mostly local sensor connections

Single CPG/joint

Sparse distal neural and
sensor connectivity
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6.1.3 The LocalGNARL encoding

The LncalSpnrse encoding has some similarities with the GNARL encoding of Angeline

rt nl. (11I1III) described in Section 3.2.1. allowing mutations of connections and their

weights, hut has a fixed number of neurons instead of allowing mutation to change this

;is well, a bias towards local connections instead of a uniform probability of connectivity,

and symmetry built into the system, which is absent from Angeline's work as it was

unnecessary for the problems he was trying to solve. Also LocalSparse allows crossover

unlike GNARL which had only mutation.

The LoealGNAR.L encoding is a compromise between the two, bv allowing the number

of neurons to vary. The crossover operator is also removed as it was not clear how to

preserve connections during crossover in a network with varying numbers of neurons

on each CPG. thus making the encoding even more like GNARL; this allowed addition

and deletion of connections and changing their weights (which is already possible in

the LocalSparse encoding), and also the addition and deletion of neurons. The number
of neurons in each CPG is initially allowed to vary between n — 1 and n + 1 where n

is the standard "number of neurons per effector' parameter used in other encodings,
but after that is allowed to vary at will.
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Two experiments were done here with the LocalGNARL encoding, the first as described
above, and the second using a fitness proportionate mutation operator as described by

Angeline (ibid.). This operator has a higher initial mutation rate, but this decreases
foi fitter individuals fitter individuals take smaller mutation steps, and this makes
them "slow" ;is they approach the summits of hills in fitness space. As usual an optimal
network size was found for the initial population in each experiment, and Figure G.7

shows how these optimal solutions compared with other encodings.
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Figure G.7: Comparison of results using LocalGNARL encoding

Fitness proportionate mutation seemed to make almost no difference with the results

being nearly identical with or without it. Overall, however, the LocalGNARL encoding

was slightly worse than the LocalSpar.se encoding, though tin; result was not significant.

6.1.4 The SymGNARL encoding

The local connections were stripped out of the LocalGNARL encoding to produce
an encoding even more similar to the GNARL encoding of Angeline et al. (19(J3),

allowing connections with equal probability to all sensors, actuators and neurons, but
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still using the symmetrical controllers of Section 5.2. This (SymGNARL) encoding was

then compared with LocalGNARL and the original Pull encoding, and the results are

shown in Figure 6.8.
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Figure 6.8: Comparison of results using SyniGNARL encoding

Clearly these results are very significantly better than LocalGNARL. and indeed Loc-

alSparse. even at the 1% level, but they are still slightly worse than the Full encoding,

and this is significant at. the 5% level for the best of 9 result.

6.1.5 The SymSparse encoding

The same was done to the LocalSparse encoding as to the LocalGNARL encoding,

simplifying it so as to not differentiate between local and distal connections. The
results are shown in Figure 6.9.

The results are almost identical to the original SymGNARL encoding.
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Figure 6.9: Comparison of results using SymSparsc encoding

6.1.6 Discussion

It would have been nice to be able to discuss here what kind connectivity is best suited

to this problem, and indeed it was originally intended to create a more sophisticated

encoding based on information gleaned from these experiments, which would generate

as close ;is possible to the ideal network configurations. However the results of this

section have been very disappointing, showing, as they do, that it is very difficult to

improve on the most, basic encoding. Two possible reasons offer themselves:

1. The Full encoding is the best possible.

2. The wrong types of encodings were tried.

It is difficult to accept either of these, however, so we will look hist at the individual

results to see what the evidence shows.
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Elitism

The results for the third order neurons were significantly better using elitism: t.liis is

usually a useful device for populations where most children are very unfit - even those

of fit parents — as it allows the best member to survive until it can breed true. As we

can see from Figures 6.2 and 6.3 the mean in the population is relatively low and stays

there, and the worst usually has a fitness near 0, so it is unsurprising in retrospect that
elitism is useful. It is also noticeable the best number of neurons per effector increases;

from 4 to 8 with elitism switched on. though in both aises 6 is not significantly worse;

this is probably because size 4 networks previously bred truer and so benefited less

from elitism (indeed there is very little improvement for this size of network), whereas

larger networks benefited more.

Local connections

None of the three encodings with denser local connections were even close to being

jis good as the Full encoding, and the ability to vary the connectivity or even the
number of neurons on each actuator made no significant difference. The LocnlSpnrsc

encoding was slightly better, as might, be expected as it allowed greater flexibility in

the connections made, but LocalGNARL w;is worse, even though it allowed even more

flexibility: it is likely this is because crossover was a slightly more effective operator

than mutation alone, so its removal affected the GA more than the encoding did. It

is also interesting that the fitness proportionate mutation had no effect on the results,

which was also unexpected, but perhaps the fitness landscape is so epistatie that it

made very little difference: this seems plausible after our results with elitism, which also

indicate that there is a rough fitness landscape which causes a lot of unfit individuals
to be generated.

Since full connectivity of the neurons (in OneMotor) and sparse connectivity (in Loc-

alSparse and LocalGNARL) were both tried with no significant difference in the results,
and in the latter two it was possible to have many connections from other sensors, again

without any improvement, it seems certain that the ability for individual neurons to

2 small or few changes in parameters have large effects on fitness — causes a spiky fitness landscape
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connect t.o more than one actuator is the significant factor here. It was assumed that

the ability to connect, freely to neurons in other CPGs which would then connect to

the actuators could replace this, as happens in vertebrates for instance, but this is

clearly not the case. The reasoning behind having more local connections was based
on comparisons with vertebrate locomotor CPGs, but in retrospect it seems plausible
that some other factor may drive this, such as physical separation of the muscles (and

hence their associated C-PGs) perhaps: indeed, physical separation of neurons is looked
at in work by Kodjabachian and Meyer (1998), which shows that it can affect network

development..

Whatever the reason, in this problem local connectivity is not useful for building

walking controllers.

Sparse connections

In order to try to recover something from these poor results, the encodings were altered

to remove their local connectivity, making them much more like? standard encodings

soon often before (although still with their symmetries). These were the SymSparse
and SymGNARL encodings, and here the results were much better.

Neither encoding was quite as good as the best Full encoding, and this was significant
for the best of nine result, but they were certainly of a comparable quality, with the best

being better than many network sizes of the Full encoding. Their failure to improve

on the simpler encoding may be because the optimal connection density was very high,

at which point the encodings were less efficient than the Full encoding, as they had to

encode both the connection's existence lis well as its weight instead of just the latter.

Consequently, the GA struggled to evolve appropriate networks (lis it did with larger

networks with Full encoding).

The SymSparse encoding was slightly better than the SymGNARL encoding, although
the result wjus again not significant (as with the LocalSparsc and LocalGNARL). This
was slightly counterintuitive as the greater freedom allowed by the SymGNARL en¬

coding seemed like it ought to help evolve better controllers. To test the hypothesis
mentioned earlier that the GNARL encodings were worse simply because of the lack
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of crossover, the SymSparse encoding was rerun without the crossover operator, and

SymGNARL now significantly outperformed SyinSparse at the 5% level. However

since no adequate crossover operator could be devised for SyniUNAHL this is of little

comfort.

A variety of different initial connection densities w;is also tried for the SymSparse

encoding to see if this could be optimised, but none of them outperformed the Full

encoding, the one shown being a typical result (this had an initial connection density
of 50%).

Conclusions

From the results in this section it seems that the best networks for controlling walking
on this robot are densely connected with no real concept of neurons being local to any

particular joint.. This is unfortunate its it makes it very difficult, to analyse the way the

robot is being controlled, ami thus generate confidence about the long term stability

of the controller.

It would be possible to make an indirect encoding which could generate similarly

complex networks, and indeed one was designed for this purpose;, but it w;u> never

implemented as there was no evidence that biases inherent in this or any other indir¬

ect encoding would not act to make it worse than the simple Full encoding, just as

the biases in all of the above encodings have already done. Although it might have

been possible to get useful information for the indirect encoding by looking at the very

densely connected SymSparse networks and seeing which connections were being re¬

moved, unfortunately the; fitness of these was significantly lower the the Full encoding,

so it was not clear that the correct connections were being removed!

In the end it is clear that the Full encoding with its simple built in symmetries is

better at generating the kind of connectivity required for this task than any of the
other encodings, and extensive research into a variety of possibilities failed to uncover

any indication of what might be a better encoding.
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G.2 Fitness Measures

Littler attention has been paid so far to which fitness measure to use in evolving con¬

trollers. Certainly the extremely simple "average speed over 5 seconds'' fitness function

(Speed!)) has been surprisingly effective, but we will now look at other more complic¬
ated measures which look at other concerns in controlling a physical robot and set*

whether they help. The simplest way to judge the controllers better is to see how they
move over a much longer period of time, but because of simulation time limitations
mentioned earlier if is not possible to examine the robots for longer in the standard

fitness function.

Consequently wo will examine different fitness functions to see how much they can help
in evolving controllers which can walk for long periods of time, while still only testing
them over short periods. We will do this by comparing the best evolved solutions
direc tly over a much longer period of time (say 20 seconds), using the simple average

speed fitness function.

First we will look at the original Speed!) fitness measure and see how controllers evolved
for that do at the SpeediO fitness function. The results an; shown in Figure 6.1(1.

The larger networks performed significantly worse over the longer timeframes, but
the rest were roughly the same with a network size of G now slightly bettor than 8.

although the result was not significant. This is roughly as we would expect since the
5 second evaluation time was chosen in Section 5.1 as just sufficient to judge whether
the controller could keep a repeating pattern going. However, as we can see from

the bootstrapped probability density functions in Figure 6.11. although the bettor
controllers are still just as good, many of the worse ones clearly could not generate

repeating gaits and their fitness'consequently dropped a great deal.

What might help a robot keep moving over a long period of time then? Many possib¬
ilities exist, for instance:

• Keeping the centre of gravity high.

• Not allowing the body the touch the ground.
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Figure 6.10: Comparison of fitness using evolved and extended fitness functions

• Making sure the legs oscillate.

• Making sure the neurons are active/oscillate.

• Minimising energy expenditure.

• Minimising ground forces.

• Putting more weight oil the last couple of seconds than the first in the evaluation.

There are obviously many others. The first two are fairly straightforward, and are

obviously related — if the robot's body is too low or touches the ground there is a

significant danger of it tripping up. The second two are the kind of fitness functions

often used in building legged robots in staged evolution experiments (e.g. Lewis et al.,

1992), and are felt to be useful as they are staging posts along the way to a good

walking controller. The next two are fitness functions which appear to be driving forces

in nature, the former to help endurance, and the latter perhaps to avoid damaging
oneself. The last is a purely practical consideration — since the robot starts from
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standing still, it would be better to look at it after a couple of seconds when it had got

into its rhythm, rather than straight away.

Measuring energy expenditure was eliminated as too computationally expensive (al¬

though keeping the body Hat. was tried unsuccessfully in an attempt to minimise unne¬

cessary movement instead). Minimising ground forces was also eliminated jus it w.is not

clear how useful it would be, at least for the simulated robot we have at present. All

of the other fitness measures were tried, individually and jointly. There were, however,

far too many combinations to look at them all in depth, so I have selected a thread

through them, adding one after another to find the most effective fitness measure. Wo

will look at:

FND (forward not down) Average speed minus average distance of CoG below

starting height.

DFND (decay FND) As above, but using an exponential decay of the fitness over

the 5 seconds.

DFNDF (DFND or fall) As above, but with exceptional punishment, if part of the

body touches the ground.

DFNDFA (DFNDF active) As above, but making sure that the neurons and legs

are active (i.e. the neurons are not full on or off and the legs are not locked

against end stops.

DFNDFO (DFNDF oscillate) As DFNDF, but making sure that the legs and neur¬

ons oscillate.

Many other combinations were tried, but these were representative of them, and in¬

cluded all of the best results.

6.2.1 FND

This fitness measure was a simple extension of the Specd5 measure, punishing the

robot for allowing its centre of gravity to drop too far as well. The results shown in
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Figure G.12 show how it compares with the Speed5 fitness measure when its controllers
are re-evaluated using the standard Speed20 fitness measure.
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Figure (>.12: Comparison of results using the FND fitness measure

The FND fitness measure proves to be possibly slightly worse at generating good

controllers, although the result is not at all significant. This was typical of many of
the additional fitness functions on their own, including the "no falling" measure, but
as we shall see later, they work well together. The size 4 and 0 networks are equally

good here, with the size 8 slightly worse.

6.2.2 DFND

This next fitness function simply decays the previous one over time. The half-life of the

fitness is about 2.4 seconds (the actual decay is 0.75'), so the very first fitness measure

h;is roughly 1/4 the weight of the hist. The results of using this are shown in Figure
6.18.

This seems to be an improvement on the previous fitness measures, although the result
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Figure 6.13: Comparison of results using the DFND fitness measure

is not quite significant, at the 5% level. The size 1 network seems to be the best here,

with the size 6 slightly worse, and the size 8 significantly behind.

6.2.3 DFNDF

This fitness measure is like the previous DFND, but with an additional penalty if part

of the robot touches the ground, proportional to the length of time in contact (the

parts of the robot defined as the body are detailed in the robot description). The
results of this measure re-evaluated using the Speed2() fitness measure arc shown in

Figure 6.14.

This is a very significant improvement, both over the original Speed5 measure at the

1% level, and the DFND measure at the 5% level. Interestingly this fitness measure on

its own and with the "not down" measure showed a similar performance to FNI) and

Speed5, and it was only with the decaying fitness measure that this huge improvement
was noticed. The best size of network for this measure seems to be 6 but 4 is not
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significantly worse.

1(11

6.2.4 DFNDFA

This and the following fitness function are the only two that try to look at the detail of

what is going on and specify directly what should he happening. In this case we take

the best (DFNDF) fitness measure so far, and add to it a measure of how active the

neurons and legs are. This was measured by penalising inactive (output 0) and totally

overloaded (output ±1) neurons and by penalising legs which are jammed up against

their limits (sensors at ±1), which we saw frequently in the hist chapter.

Figure 6.15: Three different functions used in DFNDFA

The fitness incisures can be seen in Figure 6.15: the neural fitness measure is (e). and
two different joint fitness were tried, (a) and (b), where (a) penalises being close to

the joint limits, but (b) only penalises being pressed right up against them. They were

both tried and are referred to as DFNDFAa and DFNDFAb respectively. The results

are shown in Figure 6.16.

There is very little difference between these two fitness functions and the previous one
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which had no detailed neural and joint measure, one being an insignificant amount

better, and the other worse. The optimal network size is <1 in both.

6.2.5 DFNDFO

Another feature often used in evolving controllers is that the neurons and joints should

oscillate (e.y. Lewis ct al., 1992; Ijspeert et al.. 1997). so here we replace the previous

measure of activity in the neurons and joints with a simple measure of variance. Again

this is combined with the DFNDF fitness measure, and the results are shown in Figure

6.17.
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Figure 6.17: Comparison of results using the DFNDFO fitness measure

These results are worse than the DFNDF and DFNDFA results, although not signific¬

antly, with the best network size now being 4 or 6.

Many other combinations of fitness functions could have been shown here, but these
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results are typical of those found. Different fitness functions were not tried because
other, simple functions like "not down" and "not fall" and "average speed" could not

be found, the biologically plausible ones seemed either too complicated or not obviously
useful, and the more detailed ones seemed not to help.

6.2.6 Discussion

Overall the simpler fitness measures (like "decay" and "not fall") worked well and the

more complex (like "oscillate") which claimed to judge the internals of the robot and
controller performed badly: however, the results were not quite that simple.

Neither "not down" nor "not fall" worked well on their own, but luxuled "decay"

to produce good results. This seems reasonable, because many controllers early in

evolutionary runs were unstable for the first second or two when they started moving,

and so were penalised badly when no decaying of the fitness was included. That meant

that it was difficult for evolution to start, so there was a tendency not to evolve as

far or spend too much time optimising the first two seconds of motion and not enough

time on the stable gait.

The more complicated fitness measures, "active" and "oscillate", used intuitive meas¬

ures of what, should be going on inside the robot and its controller to help guide the
evolution. Unfortunately these did not turn out to be very useful — although DFND-

FAa was very marginally better that DFNDF, the other two were marginally worse.

Fundamentally these were based on the flawed premise that we should know what

is the best behaviour inside the controllers should be, just as in the hist chapter we

found that choosing the parameters for the 1st and 2nd order neural models bused on

iissumptions about the kind of behaviour neurons should exhibit was flawed.

In conclusion, when building fitness functions for this task at least, it is perfectly

adequate to state the goals which we want to achieve and not try to prescribe the way

to achieve them, either through staged evolution or more complex fitness functions as

we tried here.
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6.3 Conclusions

105

The results from this Chapter were not as clearcut ;is those from the hist. Other en¬

codings from the simple Full (symmetrical) encoding were tried, but with little success,

but more complex fitness functions did improve the ability of the robots to move at

speed. In conclusion:

• Sparse distal and dense local connectivity, although found universally in CPGs
in vertebrates, was not useful in controlling these robots; indeed the ability for

a single neuron to output to more than one actuator was crucial to building

good neural controllers. Taking inspiration from nature is clearly risky when

the "reasons" behind natural designs are not known. In this case, perhaps other

factors drive the sparse distal connectivity such as actual physical separation of

muscles, which causes separation of CPGs in the spine, and hence difficulties in

actually making the distal connections :is well as time delays in the signals being

passed, neither of which are modelled here.

• Because the Full encoding proved to be better than all of the lion-fully connected

encodings which were tried, and the closer the encoding came to the Full encod¬

ing. the better it did, it was decided that there w;is no point in implementing the

indirect, encoding which had been designed, there being no reason to believe that

the biases in it would be more desirable than those in a fully connected network.

• Simple additions to the fitness functions such as a decay term to eliminate prob¬

lems at the beginning of the simulation, and penalties for the body of the robot

hitting the ground, or the robot lowering its centre of gravity, worked well to in¬

crease its ability to move at speed over longer periods of time than the 5 seconds

allowed for fitness evaluations.

• More complex fitness functions to determine whether the neurons or joints were

doing precisely the "right" thing were not very successful, as anticipated in Sec¬
tion 3.2.1, when we decided against staged evolution because it w«is impossible to

tell what was the right behaviour for an arbitrary neuron in an arbitrary robot

was.
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The common thread between the results in this chapter and the last is that we have

discovered again that having a seemingly reasonable feeling (say that we want the

legs to oscillate) does not necessarily mean that it will be useful iu practice, and we

should stick instead to the goals we wish to achieve — if we want a robot to move

forwards without falling over, then it is perfectly possible to specify just that and
the evolutionary algorithm will take care of the rest. It is reassuring and somewhat

surprising however that, this simple approach does work.



Chapter 7

Testing the system

In the hist two chapters a system has been developed which can repeatably generate

low level controllers for our target quadruped, allowing it to walk or run in a straight

line and at a constant speed. In this chapter we will examine whether the system is

as general purpose as is claimed, and whether it is fit. for purpose jus part of an active

walking mechanism which can be controlled by a simple higher level controller.

7. L A selection of robots

To test whether the system is sufficiently general purpose to use 011 arbitrary logged

robots, a series of different designs were created, and the best evolutionary setup

from the previous chapters was taken and used directly on the new design with 110

modifications. The details of this setup are shown in Table 7.1 (the GA parameters

are the same as used in the previous Chapters).

Neuron type: Third order

Neurons per effector: 6

Encoding: Full

Fitness measure: DFNDF

Table 7.1: Details of setup of experiments for Chapter 7

The robot designs broke down into three categories:

• Other quadrupedal robots

107
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• Tim original quadruped in different environments (e.g. low friction, low gravity)

• Robots with different numbers of legs

It. was one of the design criteria of the system that it should be possible to encode
other robot designs, but it is an significant extra that the environment can also be
modified like this as it is a feature which is not investigated in other similar research

(e.g. Kodjahachian and Meyer, 1998). We will look at the variations in the robot

designs in the order given above.

7.1.1 Quadrupeds

The first new robot was similar to the original (QuadJn), but with all of the knees

bending in the same direction (sec Figure 7.1), and was called Quad_same. This meant

that all of the lrKs could be given the same controller, and I experimented with this
;is well ;is with separate front and back leg controllers. With different controllers for

front and back legs, it was very similar to the QuadJn robot, producing some fast if

slightly unconventional gaits: but with only one controller duplicated across all of t.hem
it easily outperformed them, producing some very good controllers using fast trotting

gaits, one of which is shown in Figure 7.1.

All of the speeds for the quadrupeds (measured using the standard Specd'20 fitness

me.isure) are shown in Figure 7.2. though it should be noted that as different robots

have different maximum speeds, no strong conclusions can be drawn from them.

A robot w.'us then built with free movements of all of its joints, so that each could move

through 360° (although not beyond ±180° in any direction), called Quad-full. A huge

variety of different gaits evolved, as might be imagined, some of which are shown in

Figure 7.3. though in general it. was slightly slower than QuadJn.

The next robot, tested had prismatic (sliding) joints instead of hinge joints at the knees,

and again all of its legs were given the same controllers. It was called Quad_prism, and

again easily outperformed QuadJn. Most of the robots evolved to walk on their knees,

using only a small amount of their lower limbs to give them a slightly longer reach at

the beginning of their stride (see Figure 7.4).
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Figure 7.1: Quad-prism: a quadruped wiHi prismatic knee joints
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Finally an extra joint was added to the original robot to give it feet, and the new robot

was called Quad_foot. Mostly the robot evolved to use one set of feet and not the

other, as is seen in Figure 7.5, though running backwards as this one does was quite

unusual. Generally, the robot was much slower than any of the previous ones.

One other experiment was done, penalising the robot for walking on its knee joints, by

extending the definition of what was part of the body of the robot (touching the body
on the ground was already penalised). The robot did learn to walk on its feet, but it

was considerably slower than it was when walking on its knees. All of these results will

be discussed further at the end of this section.

7.1.2 Different environments

The QucidJn robot was then put into a low friction and a low gravity environment and

evolved to see whether it was able to deal with these changes. The results are shown

in Figure 7.6.

The low friction environment made it easier for the robot to move, apparently because

it did not have to worry about tripping up any longer, and skidding did not worry it

at all — indeed many of the faster controllers start like a ear starting a race with a

great deal of skidding until the robot gets up to a fast enough speed. The low gravity
on the other hand was much more problematic, with most of the robots falling over

after a few steps, and having trouble adapting to the necessarily slow pace of walking

in such conditions. This may well be simply because of a lack of time spent changing

time constants or the strengths of the muscles however, which would allow the new

robots to move more slowly.

7.1.3 Triped and Biped robots

Two final robots were built to test the ability of the system further, a triped and a

biped (a hexapod was also acquired, but a design error and time pressure made it

impossible to run experiments with it). Neither moved very fast (see Figure 7.7 for

details), but the biped was very poor. Only a very few managed to develop any kind

of gait, and none of these were at all satisfactory, nearly all falling onto their arms for
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Figure 7.5: One of many controllers for the QuacLfoot robot
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Figure 7.6: Average speed of best of 9 runs for different environments
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support, and none alternating their legs in a sensible fashion. One of the few bipeds to

stay on its feet is shown in Figure 7.8. and it is clear that this is not a useful gait to have
learnt (it uses the momentum from swinging its arms to help it hop very slowly) —

even here it fell over after a few hops. Some recent experiments done by R.eil (1999) on

a biped have shown that bipeds can learn to walk with a similar experimental setup, so

it is likely that some parameters such as actuator strength just needed to be adjusted.

Best of 9 trials
Fitness

2.60 Q
Quadruped O

2.40 0

2.20

2.00

1.80

1.60

1.40

1.20

1.00

0.80

0.60

0.40

0.20 § Biped

B Triped
©

Figure 7.7: Average speed of best of 9 runs for triped and biped

The triped on the other hand was successful, but just not physically capable of moving
at a great speed — a typical example of the triped is the bound shown in Figure 7.9,

which the robot could keep up indefinitely. The robot was in general slightly more

prone to falling over than others, but that is understandable given its design, and

apart from that the system worked well at generating gaits for it.
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Figure 7.8: One of the better biped controllers!
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Figure 7.9: A typical tripod
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7.1.4 Discussion
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Most of the robots moved well, with sonic of them significantly outperforming the

original design. Of course such comparisons are largely meaningless as some robots can

inherently move faster than others because of their limb configurations and strengths,

but it is nonetheless an indication that the system is not specifically tailored to the

original robot and can adapt to different ones.

Penalising the robots for going down onto their knees also succeeded in getting the

models to walk on their feet more, though generally at some expense in speed. However
this speed reduction may indicate that design problems with the original robot made

it better able to move on its knees than its f<*et. particularly when it is considered that

the fastest robot (which had all of its knee joints bending the same way) learnt to run

on its feet without any penalties at all.

The only robot which really disappointed was the biped which, although it did generate

repeating gaits which enabled the robot to move along, certainly couldn't be considered
to have succeeded in generating useful walking gaits. There are two possibilit ies here -

either t he system broke down on the biped, or the biped was not itself well designed for

walking (again). It is fair to say that the system did break down, and perhaps more

work needs to be done to make control of bipeds easier, as they constitute a much

more difficult balancing problem than quadrupeds, and extra features may have to be

incorporated into the fitness evaluation. However, since occasional evolutionary runs

in this thesis have accidentally generated bipedal or mostly bipedal gaits like knuckle

walking in the Quad_in quadruped, I believe that it is likely that there is also a problem

with the design of the robot, but that this is certainly not an insuperable problem.

Indeed, it is entirely possible that a better designed biped would be capable of walking

using just this system, and this is backed up by the very similar results which have

just been obtained by Red (1999). Unfortunately an alternative biped which was tried
caused problems for DynaMechs due to the stiffness of the integration, so it was not

possible to investigate this further.

One further experiment was tried which involved changing the conditions that the
robot operated in. Changing the friction coefficient of the ground made very little
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difference, witli the robot, able to cope quite easily although it did slide a lot. However,

changing the gravity to '.hns~2 did make it very difficult for the robot. Some gaits
were; evolved, but generally they were quite unsuccessful. Watching the robot, it was

clear that it had trouble adapting to conditions in which it could push itself clear
of the ground completely, and although moderating the strength of the motors did

help, the legs still seemed to be moving too fast — perhaps the adaptation rate of
the neurons needed to be lower in these conditions, but since we were using tin; fixed

lamprey neuron parameters, it was decided not to investigate this any further at this

point. This would seem in fact to be a ease where the addition of a fitness function

like minimising ground forces mentioning in Section 6.2 might, be of practical value.

In general though, the system succeeded in generating a variety of gaits for the robots

with which it, was presented, with the fastest, exceeding Hhnph, a very re;isonable speed.

More research ought to be done using more realistic robot models however, and we will

discuss this further in Section 8.2.

7.2 Active mechanisms and higher level controllers

The final test of the system is to sec how easy it. is to build high level controllers on

top of it. In vertebrates, as we said in the introduction, simple signals can be passed
down the spinal cord to the CPGs to change the speed or direction of movement., and

we will try to add control signals which induce a turning movement or acceleration in

the robot. More complicated tasks such its recovering from tripping up, or increasing

stability when changing gaits require more sophisticated controllers, and so will be left

for now. However in principle there is no problem in doing this — instead of simply

adding more connections to the existing neurons, more neurons would be added to the

network ;is well.

The best Quadin controller was taken as the basis for all of these experiments, and
connections were evolved from the control inputs to all of the neurons in the controller.
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7.2.1 Steering

Two control inputs were used for this, with the connections being symmetrical so that

the connections from the first input to the left of the body were the same as the

connections from the second to the right, and vice-versa. The connections for one CPG

an; shown in Figure 7.10. Since there were very few parameters being evolved (only 1

per neuron after symmetries have been taken into account, which makes 48 in total)

the population and number of generations of the genetic algorithm were halved to 25

and 50 respectively. The fitness function was the integral of the product of the radial

and angular velocities, to ensure that the robot continued to move forward as well as

turning. Ton runs of the GA were carried out to see whether it was possible to evolve

a steering controller, and nine of them succeeded. The best is shown in Figure 7.11.

Motor

I I

l l

I Left input Right input'

Figure 7.10: Additional connections for steering control on a joint

The robot can now be steered left (with inputs +x and 0) and right (0 and -f-x) at will,

witli higher x causing faster turns. In fact giving a signal to both inputs slows down
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Figuro7.il: Turning left
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the robot slightly by shortening the step length, so the inputs appear to be slowing
one side of the robot or the other.

7.2.2 Slowing down

Since the fitness evaluations so far have all included a "maximise speed"' element, it

seemed unlikely that a control signal could be included which would speed up the robot

any further, so it was decided to try to add a signal which would slow it down instead.

The important feature here was that the robot should not fall over (a very effective

way of slowing down!), so the fitness function used penalised moving forward above

half the speed it managed without the control input, but penalised falling down much

more heavily. The hope was the this would allow a control signal to specifically learn

to reduce the speed of the robot but not stop it, and using a lower control input would

allow variation between the two speeds achieved.

Stopping the robot was not attempted because it was felt that this would require a

different, low-level controller than that which had been evolved for walking, as standing
still could use the muscles to keep the joint, angles constant for instance, which would

require a very different controller from walking slowly. This is in contrast to previous

experiments such as that done by Kodjabachian and Meyer (191)8) where walking

slowly and stopping were very similar because the experiment was in 2-D which meant

no balancing was required.

Again ten runs of the GA were performed with half the population and number of

generations. With only one control input, and the connections symmetrical so that a

weight to a neuron on the left was the same as the weight to the same neuron on the

right, there were only 24 parameters to be evolved. This time all of the evolutionary
runs succeeded in producing speed controllers, with most of them able to slow the robot
down by about 1/5 and some up to 1/3 whilst maintaining a stable gait. Although
this is not as much as might be expected, it seemed likely that more was possible,

with perhaps more thought put into the fitness function, since many solutions involved

slowing down the robot by the maximum 1/2 for the hist 5 seconds that the evaluation
ran over, and then slowly speeding up thereafter.
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7.2.3 Combining controllers

A final experiment was carried out combining the best steering controller with the best

speed controller on the saint; underlying neural network. This was possible because
in both cases tin; connections were evolved ;is additions to the same network. The

controllers combined easily on a single system, and the robot's direction and speed

were then controllable together.

7.2.4 Discussion

Tin; addition of higher level controllers to drive the active mechanism were very suc¬

cessful. with almost, every single evolutionary run creating a successful controller. This

was an excellent result, and quite unexpected; even more so was the ability to combine

simple higher level controllers to make more sophisticated ones.

The controllers evolved were only simple ones to control speed and direction of loco¬

motion. but the results strongly backed up the original contention that higher level

control is easier to implement on a walking robot than a basic legged one. so much so

indeed that, they do not need any additional neurons to carry out its function. This

may he because the basic walking behaviour is stable and so can bo pushed easily bv

control inputs in a variety of directions (such as to allow turning or speed changes)

without it becoming unstable. Some more sophisticated controllers, such as ones which

could carry out transitions from walking to standing or running for instance, might, re¬

quire more complicated controllers, as indeed they do in vertebrates, but. investigation
into this more sophisticated kind of control is a subject for further research.

7.3 Conclusions

The system created in this thesis for evolving low level neural controllers for arbitrary

walking robots works well, with some minor reservations concerning bipedal robots.

Furthermore, attempts to add higher level controllers to the system in the form of
a speed and a steering controller wore successful on the first attempt, with only the

simplest possible controllers being necessary to achieve the aims set out.
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This opens up the possibility of further work to investigate how to improve the low
level controller for bipeds, and to make more sophisticated high level controllers. This

will be discussed further in Section 8.2.
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Chapter 8

Conclusions

8.1 Summary of contributions

This thesis proposes a new control methodology for walking robots. Currently robots

are controlled either by having springs and dampers built into the physical robot to

produce an excellent walking robot., which is easily controlled but with little of the

general purpose ability to climb over obstacles or manoeuvre which makes walking

robots desirable, or having monolithic controllers designed for specific robots, which

is a very difficult problem, not easily generalisable and thus very time consuming for

each new robot.

Instead this thesis proposes simulating the springs and dampers of the passive robot

through the motors to produce an active mechanism which is a walking robot in its

own right. This eliminates the problem of the lack of multifunctionality of the p.issive

robots, by allowing the active mechanism to be switched off or altered to cope with
different conditions, but avoids the higher level controller having to ''compensate for

the limitations of a poorly designed mechanism" (Raibert, ISToAIM'93), thus greatly

simplifying the control t;isk.

This control model is implemented using neural networks to provide the low level

dynamic control of the motors, and a simple genetic algorithm to evolve the connections

of the networks. It is shown that these tools allow simple active walking (and running)
mechanisms to be built for a variety of robots very easily, and that adding higher level

controllers for speed and direction using the same tools is very easy, as predicted in

125
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the introduction.

The thesis also investigates a number of issues in evolutionary neural networks. It
finds that more sophisticated (and biologically plausible) neural models are significantly
better at this kind of control task than the simpler models usually used. It. is suggested

that this could be a result of the greater richness of behaviour of individual neurons;

this means that fewer neurons art; needed for a given problem, which in turn simplifies
the search for a solution.

A variety of neural encodings are also investigated to discover which connectivity pat¬

terns are best for this problem, with the expectation that connectivity somewhat like
CPGs in vertebrates may turn out to be useful. However, results indicate that the
best controllers have very dense intra- and inter-joint connectivity, and indeed that
the ability of neurons to connect to more than one effector is very useful in building
effective controllers; both of these results are unexpected, and perhaps hint that other

factors such as simple physical separation and consequent time delays in signals may

perhaps drive the connectivity patterns found in CPGs.

Finally an analysis is made of different types of fitness functions to determine which
kind of fitness measures help in the development of active mechanisms. It is found

that, despite their extensive use in the field, there is no evidence that, fitness measures

relating to the internal workings of neurons and joints are helpful in the design of good

walkers. It is suggested that, this is because we simply don't, know what these neurons

and joints ought to be doing in a good walking gait, but instead it. is sufficient, to

specify broad outlines of the task, such as maximising speed whilst keeping the body
off the ground, and that such simple fitness measures can produce the desired results

on their own.

8.2 Future Directions

The experiments done in this thesis were of necessity exploratory, and some elements

were only touched on. In particular little energy was expended on optimising the

evolutionary algorithm, and it would undoubtedly be useful to examine this in more

depth. A more serious consideration is that the robot models used were made up on the
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spur of the moment to represent real or imagined generic classes of robots (the triped

will sadly probably never make it onto a production line!). It would be extremely

instructive to try out the system 011 a real robot, as it w;is obvious in retrospect that

many of the robots were poorly designed. This was not practical during the thesis for

a number of reasons — the lack of a legged robot to use as a model, the complicated

nature of real robots, for which inertia matrices and the like have to be computed for

the simulator, and the modelling of the motors which would be difficult and entirely

unrelated to the research being carried out. However, it is the purpose of the control

model to be used on a real robot, so it would be very interesting to see how it coped,

and whether the controller could pass across from simulation onto the actual robot.

It would also be a useful extension to the work to see how easily other, more complic¬

ated. higher level controllers could be added to the system, to increase the stability of

the system for instance, or to allow transitions from one gait to another.

Finally it would be a very interesting project to try modelling a real vertebrate, per¬

haps a large cat or even a human, using anatomical information and sophisticated
muscle models which are easily available (far more so than for robots), and to see if

gaits similar to those found in nature; could la; duplicated on the simulant. There is

every re.uson to believe they would, given tlar similarity of many of the gaits found
in the quadrupeds studied here to natural ones. If this w;is successful further work
could investigate which optimisation criteria produced which gaits in which animals,

providing insights which could then be used in zoological research such as the inverse

optimality problem discussed in Section 2.2.5. Information could also be gathered dir¬

ectly from the simulant for instance as to the energy efficiency of various gaits which
can only be roughly estimated on real animals.
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Appendix A

Controller breakdown

Unfortunately the neural networks used in most of the experiments were too big to
analyse, being from 50 to 100 neurons all fully connected to each other. However,
the controller used in Section 7.2 was small network, as all of the legs had the same
controller and there were only fi neurons per actuator. This meant that there were 48
neurons, but only 12 unique ones. The experiment was using the Quad .same robot
described in Section 7.1.1. This Appendix will briefly look at the kind of behaviour
this network exhibited, and will show how it responded to various degradations (such
as sensors or neurons being removed).

A.l Unmodified network behaviour

When the robot is allowed to walk normally without any alteration to network or the
sensors, walking starts smoothly and continues very stably at roughly 4.3ms-1. The
four sets of twelve neurons all behave identically with pairs almost perfectly synchon-
ized. and each pair in antiphase to the other. This results in a diagonal trot, with the
near foreliinb and the off hindlimb in plmse. and the near hind and off fore in antiphase.
For example Figure A.l shows two seconds recording of the third neuron in each set of
twelve (as we have said in describing the third order neurons in Section 5.3.4, all the
neurons have an output which varies either between 0 and 1 or 0 and -1).

Only two signals can be readily distinguished, but all four can be seen in the enlarge¬
ment of Figure A.2. The differences are insignificant however, and vary from step to
step, though they seem to decrease over time.

Looking at a whole set of twelve neurons in Figure A 3 we immediately see that only five
of them are active, and this leads us to believe that perhaps the other seven neurons
are not useful. However if we look at the first second when the robot sets off from
its initial stationary pose, three other neurons are also active (Figure A.4). We shall
see later that these are also important. However four of the neurons are completely
inactive, and it seems likely these could be removed with no detrimental effect.

137



APPENDIX A. CONTROLLER BREAKDOWN

Figure A.2: Detail of 0.2s of neuron 3 signal
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Figure A 3: Behaviour of a maximal unique set of neurons

0 20 0.40 0 60 0 80 1 00 Time

Figure A.4: Starting behaviour of set of neurons
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A.2 Killing neurons

The first, experiments to degrade t.lie network were to remove individual neurons from
it while the robot was already trotting (it was allowed to run for 2 seconds before the
neurons were killed) and analyse the behaviour. The results are shown in Table A.l.

Neuron Effect on locomotion for each neuron group

1 + + ++

2 + + + +

:i

•1 + + + +

r, ± + +±
(i + + + +

7

8

9 + + + +

III + + + +

11

12 + + + +

where + indicates continued movement, — stopped, and ±
indicates a marked effect, such as slewing to one side.

Table A.l: Result of removal of neurons on continued movement

It is clear from the results that four of the neurons in each group are crucial for the
generating a normal locomotion pattern, with a typical movement pattern for a robot
deprived of one of these neurons being to fall unsteadily onto one leg. and then stop
moving completely. There seemed to be no correlation between the group of the neuron
removed and the leg that was fallen onto, however. Unsurprisingly these are four of
the five neurons which oscillated ordinarily during movement; the other was neuron
5, and removing this seriously affected the walk in two cases where the robot swung

heavily to one side and limped slightly. There was very little effect on neural behaviour
outside the group the neurons were in, but inside the group the output from neuron
3 reduced dramatically, as can be seen in Figure A.5 — similar neural behaviour was
seen in all four c.ises, although in only two of them was there a visible effect on the
locomotion. In the undamaged network the two neurons were in phase, and there was
a strong excitatory connection from 5 to 3, which would explain the diminution in the
output from that neuron. It is possible that the effects on the two neurons cancelled
each other out to some extent.

The next experiment was to remove groups of neurons to see whether there was some
cumulative effect, but there was very little — unsurpisingly all of the neurons inactive
during walking (numbers 1, 2, 4, 6, 9, 10, and 12 in each set) could be removed
simultaneously without affecting the movement at all, leaving only 20 neurons stably
controlling the locomotion. The four "Neuron 5"s could not be removed simultaneously,
however sometimes 2 could be removed without the walking pattern braking down.

After this the experiment w;is changed slightly to investigate the effect of removing
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neurons 011 locomotion from a standing start, as this is what is clone; in the evolutionary
runs. Exactly the same experiments were clone;, except that the; neurons were killed
immediately. The; results are shown in Table A.2.

Nine extra neurons became; c ritical now. with three; others making initialising walking
very unstable. Four of the; neurons in each group (6. 9, 10 and 12) still have no
e;ffbct under any circumstances, meaning that 16 neurons are; completely unused by
the controller. These neurons are never seen to be active, and can all be removed

simultaneously with no adverse effects. Of the rcmiainiug neurons which were not fatal
to locomotion before, more than half now are;. In all of the; experiments so far the;
robot has started with the near fore and off hind limb back slightly and the others
forward; reversing this starting position now reverses the effects of neuron 4 — the
neurons from the first and third groups are now crucial whereas those from the second
and fourth are not (note that the order of the legs is off hind, near hind, near fore, off
fore, so 1 and 2 are the hind limbs, 1 and 3 is one diagonal pair and 2 and 4 is the
othe;r). On the other hand that had no effect cm neurons 1 and 2, which seemed to only
be important for the forelimbs. Trying further initial orientations of limbs (near side
forward, off back, etc.), showed that all of the Neuron 4 neurons could be important
depending on the initial position of the limbs, as could the remaining Neuron 5, but
Neurons 1 and 2 in the first two groups were very rarely useful. Indeed generally the
unimportant Neurons 1 and 2 and all of 6, 9, 10 and 12 could be removed with only
some instability, but it was often difficult to remove any of Neurons 4 or 5 with any
others without the robot failing to set off.
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Neuron Effect on locomotion for each neuron group

1 ± + —

2 ± + --

3

1 + - +-

5 ±

0 + + + +

7

8

'J + + + +

111 + + + +

11

12 + + + +

where + indicates continued movement, — stopped, and ±
indicates a marked effect, such as an unstable start.

Table A.2: Result of removal of neurons on initiating movement.

A.2.1 Summary

Four of the twelve unique neurons (G. 9. 10 and 12) served absolutely no purpose in
any group, two (1 and 2) were essential for starting (though not for continuing) in only
two groups, but helped initial stability in the other groups: one (1) other was essential
for starting in all groups depending on what the initial position of the robot was. but
unimportant for continuing; another (5) was essential for starting, and helped stability
when moving normally, and the remaining four (.4, 7. 8 and 11) were essential to create
a gait at all.

A.3 Killing Sensors

As a further experiment, the sensors were killed one by one to see whether they affected
the ability of the robot to set off or continue walking (for setting off , we looked at two
different starting positions). The results are shown in Table A.3.

The sensors detecting the orientation of the robot had no noticeable effect on the
walking, presumably because they varied very little compared to the other sensors.
The sensor for the height of the robot off the ground (number G) w.is crucial, perhaps
because it was acting as a constant excitatory input to the network. Of the other
inputs, which were all sensors on the legs, in general the gated inputs (which were
gated by whether the foot of that limb was touching the ground) helped to stabilise
the locomotion, but very few of them were essential (one of the two forelimb shin angles
was needed for starting depending on the initial position of the robot, but nothing else).
On the other hand nearly all of the ungated inputs were essential for starting, with the
particular ones needed depending on the initial configuration of the legs; when already
walking generally the shin angles were very important, as were the thigh angles of the
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Sensor Effect on starting Effect 011 continuing
Orientation of robot

1 + +

2 + +

3 + +

Position of robot

Sensors 4 and 5 would have been the x and y
coordinates of the robot but were not passed
to the neurons

6 - -

Off hind thigh angle, ungated and gated
7 T -

8 + +

Off hind shin angle, ungated and gated
y - -

10 + +

Near hind

11 ± -

12 + +

13 - -

14 + +

Near fore

15 T +

](i + +

17 - +

18 ± +

Off fore

19 ± +

20 + +

21 - -

22 +

where + indicates success, — failure, and ± or
indicates that it is sometimes required

Table A.3: Result of removal of sensors on initiating and continuing movement
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hind limbs, but the fun-limb thigh angles were not important. Interestingly, if starting
from stationary the hind thigh angles were less important, but this may perhaps be a
feature of the fact that the robot is going faster when it starts with no injuries than
when it starts already damaged, and it cannot cope with the speed when injured and
so trips up. Another point that was noticed is that the robot often slightly drags the
leg which it cannot, sense properly.

Interestingly, looking at the neural activity when some of the sensors have been re¬
moved, neurons which were not previously active become active (see Figure A.6, for
example). The extra active neuron here turns out to be one of those which is ordinarily
only active when setting off. and .is the sensors are progressively damaged, it appears
that they can help to alleviate the damage. For instance if two sensors are removed,
say the two near forelimb ungated thigh and shin sensors, and we then try continuing
to move, the robot manages to keep going with a lot of extra neural activity (Figure
A.7). but if these neurons normally only active when setting off are removed as well,
then the robot fails to maintain a rhythm.

9(H) 9 20 9 40 9.60 9 80 10(H) Tunc

Figure A.C: Extra neural activity when sensor 15 is removed during locomotion

Further investigation of the damage that can be done to the sensors showed that all of
the gated inputs and the orientation sensors could be removed simultaneously and the
robot would still be able to walk, but removing two of the ungated inputs could only
be done if (they were not ones which were crucial anyway and) the extra neurons'were
present.

A.3.1 Summary

The controller is robust to some damage being done to the sensors, particularly the
gated inputs, but the ungated inputs are very important to maintaining a stable gait.
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Figure A.7: More activity when sensors 15 and 17 are removed during locomotion

However the neurons which are normally only active when setting off from a stationary
pose were found to be active and to some extent to replace lost sensors, albeit not
perfectly.

A.4 Damaging the actuators

The filial experiment that was carried out w;is to damage or remove one of the actuators
on the robot to see the effect it had. There were very few to damage and the results
were quite simple — the hind limbs could not be altered by more than about 30%
without the robot failing to set off and only one joint could be damaged that much at
a time, but when affected by less than that the robot would just limp slightly: with the
forelimbs on the other hand two joints could be damaged by that much, or one by as
much as 5(1% before the robot would trip over or fail to set off, otherwise it would just
limp as before. Damaging the sensors associated with the damaged leg or the neurons
themselves seemed to have little, if any, additional effect.

A.5 Conclusions

This Appendix necessarily only scratches the surface of the behaviour of the controllers.
This is largely because most of the networks were too complicated to analyse at all,
which is a failing of the type of controllers chosen. Generally there were over 20 and
sometimes as many as 50 unique neurons in the controllers, and twice that many actual
ones. This made any analysis of them a serious research task in and of itself, if not
entirely impossible. Consequently this one fairly small controller w;is looked at in as
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much detail ;is was possible. A few other controllers were looked at briefly, but no
significant differences were seen with this one, though the numbers of neurons which
seemed to be active for locomotion and setting off varied slightly.

The analysis showed that the controller can be damaged in many ways without failing,
and indeed it can lose over half of its sensors and neurons and still continue, but

unfortunately these have to be carefully chosen! It, is not robust to damage done to
the other half of the neurons and sensors, which are crucial to the proper functioning
of the neural network. Interestingly souk; neurons seem to be dedicated to starting the
robot off, but arc not used in normal locomotion; these were also found to be active
when the sensors were damaged, perhaps indicating that their purpose at the start
is to simulate the correct, sensory inputs to the other neurons so that they can then
set the robot moving. Damaging the actuators caused more serious problems, with no

joint, being dispensiblc: however they could all be damaged slightly — the hind limbs
could survive less injury, perhaps because? they are behind the centre of gravity and
thus generate more of the forward force, however all joints could be damaged slightly
and created a limp in that leg as one might intuitively expect.

From a technical point, of view the controller did not act as a Central Pattern Clenerator
as no walking behaviour could be seen when all of the afferent, inputs had been removed,
and so it behaved more like a reflex chain (see Section 2.1.3), and this is a shame from
the point of view of where this research started, but it is inevitable when you consider
that, there was no evolutionary pressure to be able to generate rhythmical motion
without the sensory feedback.

However it was robust to some damage to the neurons, sensory inputs and actuators,
and perhaps the ways in which the network failed could suggest possible changes to
the evolutionary regime. For instance tin; controller could be evolved further after
something which can walk has been produced, with random damage inflicted on it
before each evaluation to try to breed a more robust, controller, as clearly this one had
some way to go to achieve that. end. At any rate some pruning of the network could
certainly take place af ter the evolutionary 11111 has finished to get rid of the neurons and
connections which are permanently inactive;. It is certainly unfortunate that controllers
which were analysable wen; only found at the very end of the thesis, ;is otherwise some;
of these; insights could have been profitably been used to improve the results further.
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Statistical techniques

B.l Why Use Computer Intensive Tests?

Chapters 5, 0 and 7 make extensive use of non-parametric and computationally in¬
tensive statistical tests to analyse data instead of using more traditional statistical
techniques. These tests are described in detail in (Rosner, 198*2: Koopman, 1987:
Gunter, 1991; Cohen, 1995, for instance), but since they are a little less commonly
used than the more usual parametric tests, this appendix gives a brief overview1.

Computer intensive statistical tests can be used to derive similar quantities to standard
parametric tests (such as Student's t-test). including confidence intervals and signific¬
ance levels. They have several advantages over such tests however:

• Parametric tests typically assume that the distributions they are dealing with are

normally distributed, or that sample sizes are sufficiently large that the central
limit theorem applies. These tests can generate errors if used on skewed distri¬
butions. Computer intensive tests work with any kind of distribution - they are
;is powerful ;is parametric tests on normal distributions, and more powerful on
non-normal distributions.

• Certain quantities, such as confidence intervals on the median, cannot be derived
analytically, and computer intensive tests provide the only way of obtaining these
quantities.

• Despite the name, computer intensive tests can be run to a sufficient degree of
accuracy for moderate! sample sizes in a matter of sec onds on modern computers.

B.2 Resampling to calculate confidence intervals

Suppose we want to estimate some statistical parameter, such as the mean, for a

particular (unknown) population. Call the true mean ft. The usual procedure is to

1 Some of this overview coines from (Perkins, 1999)
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take some sample jap, x-2, ■ ■ ■, in} of size N and measure its mean i. Our best guess
is that fi = x. Of course in practice we will be slightly wrong. How can we estimate
how wrong we are?

Analytical sampling theory tells us that if the population we are sampling from is
normally distributed then the standard deviation of the sample mean (or 'standard
error') is:

aT=7N
when? <t is tli<; true population standard deviation. In practice of course we don't know
that, so we substitute it with the estimated population standard deviation obtained
from the sample .s:

"t = 7N

The 95% confidence interval 011 the estimated value of the mean is then simply x ±
1.90o7.

To obtain the same answer in a computer intensive way we perforin a resampling (or a

bootstrap). The procedure is to assume that the sample we see is representative of the
population it was drawn from. Therefore we can simulate drawing samples from the
true population simply by drawing fresh samples of size N with replacement from our

original sample. If we measure the mean of each of the new samples then; will be some

variability in this value. Under the assumptions of the bootstrap, this variability will
be exactly the true variability of means of sampler drawn from the true population,
which is just what we're after.

However suppose now that we want to know the mean and standard error for tin; ''best
of;/ samples" taken from tin; original population. The standard approach would be to
take; a sample {:/11, ./"rj. • ■ •, n,, ^21.. •., ./'a m ) of size N * n. measure the "best of n "
for each subsample to produce {61,62.. • •. 6,v}, and then continue as before.

This would require a much larger set of samples to get a good estimate of the mean
and particularly the standard error. Instead, if we are constrained as to the number
of samples we can draw from the original population, we can take a sample of size;
N >> 71 which we assume is representative of the population it was drawn from, and
then we can draw samples of size 11 from the new population with replacement to
produce new "best of 11" values at almost, no expense.

Consequently we can draw arbitrarily many of these values and calculate; exactly the
mean and standard error for the best of 11 values drawn from the; original sample of size
N. Assuming that the original sample is representative of the population from which
it was drawn, we have calculated the mean and standard error we were looking for, but
with far fewer samples from the original population than would have been necessary

traditionally.

These are the calculations carried out in this thesis to estimate the mean and the 95%
confidence intervals on that estimate (x ± 1.96^).
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To directly compare two different populations to see whether the "best of n" samples
taken from one are better than those taken from the other, we can simply rcsainplc
both together, taking the difference of the two best of ns and calculating the mean and
standard error for this difference, and then we can sue whether the difference differs
from 0 with 95% confidence.
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Appendix C

Interface

The interface for the neural and mechanical simulators was implemented as a C+ +
superclass called Simulant, and specified a set of methods which allowed the details of
the specific simulator to he ignored. All aspects of communicating with the simulators
is dealt with at this level except the loading of new structures (of robot or network),
which had to be dealt with at a lower level due to the inherent differences between the

programs.

class Simulant

{
public:

Simulant();
virtual "Simulant();

// Inter-Simulant communication functions:

// Write current state of Simulant to array, and return size,
virtual int getState(Float »store)=0;
// Read current state of Simulant from array,
virtual void setState(Float «store)=0;
// Put current outputs from Simulant into array, and return number,
virtual int getOutputs(Float »store) { return getState(store); >
// Get current inputs to Simulant from array,
virtual int setlnputs(Float ♦store)=0;

// simulant-world communication functions:

// Define save level (eg don't save, save outputs, save state)
inline void saveLevel(RepLevel rep_level) { _save_level = rep.level; }
// Define save filename
int saveTo(char »filename);
// Define load filename
int loadFrom(char *filename);
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// Save current state to file
virtual void save(Float save_time)=0;
// Load current state from file
virtual int load(Float *load_time)=0;
// Stop save,
void closeSave();
// Stop save.
void closeLoadO ;

// simulation functions:

// Initialize simulation variables (ie set up arrays to store state, etc.)
virtual void initSimVars()=0;
// Reload simulation variables (eg after new network installed)
virtual void reloadSimVars()=0;
// Test whether SimVars are initialised
virtual int isReadyToSim()=0;
// Set integration type (Newton Euler, Runge Kutta, etc.)
inline void simulationType(SimType sim.type) { _simulation_type = sim_type; >
// Run an integration step,
virtual int simulate(Float idt)=0;

// rendering functions:

// Initialise drawing (for gui).
virtual void drawlnit()=0;
// Draw current state,

virtual void draw()=0;

// fitness evaluations:

// Set current fitness measure

virtual void setFitnessMeasure(FitnessMeasure fm);
// Reset fitness measure

virtual void resetFitness();
// Return current fitness
virtual Float getFitness();

protected:

// Update current fitness (called by simulate),
virtual int updateFitness(Float idt);

// File terminator for saving and loading (eg .NNsave for neural sim)
char* _file_terminator;
// Save file stream

ofstream* _save_stream;

// Load file stream
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ifstream* _load_stream;
// Is save active?
int _save_active;

// Current Save and Load levels

RepLevel _save_level, _load_level;

// If structure varies and can be loaded on the fly these should both be
// instantiated, otherwise both should be left blank
virtual void saveStructureO {>
virtual void loadStructure() {}

// Simulation type
SimType _simulation_type;

// Current fitness measure

FitnessMeasure _fitness.measure;
// Current fitness
Float .fitness;
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Example Robot

D.l Robot Configuration File

This is the configuration file fur the robot shown in Figure D.l.

Figure D.l: An example bipedal robot

# A bipedal robot with feet

Graphics_Models {
Number_Graphics_Models 4 # Number of different graphical objects used
# filename for each graphical object, with size and offset of CoG
"/hame/richardr/sof tware/DynaMechs/2.0.3/models/shapes/cube_centre.zan"

0.5 0.5 0.15 0.0 0.0 0.0

"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube.centre.zan"
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0.3 0.1 0.1 0.15 0.0 0.0

"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre. zan"
0.3 0.08 0.08 0.15 0.0 0.0

"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube.centre.zan"
0.2 0.02 0.08 -0.06 0.01 0.0

}
System { # Robot

DynamicRefMember { # Reference member - first piece of robot, part of body
# which articulations (legs) are attached to

Graphics_Model_Index 0 # First graphical object

Mass 25.0 # Mass of body (kg)
Shape 0 # Cuboid (other options are cylinder, sphere, or arbitrary

# where other parameters (eg inertia matrix) are required)
Size 0.5 0.5 0.15 # Size in metres (x,y,z)
Center.of.Gravity 0.0 0.0 0.0 # Position of centre of gravity

# relative to origin

Number.of.Contact.Points 8 # Ground contact is only detected
# at specified points on the body

Contact.Locations 0.25 0.25 -0.1 # Contact points are 8 corners of cube
0.25 -0.25 -0.1

-0.25 0.25 -0.1

-0.25 -0.25 -0.1

0.25 0.25 0.1

0.25 -0.25 0.1

-0.25 0.25 0.1

-0.25 -0.25 0.1

Position 10.0 10.0 0.62 # Initial position of body
Pose 0.0 0.0 0.0 # Euler angles (phi,theta,psi)
Velocity 0.0 0.0 0.0 0.0 0.0 0.0 # Initial velocity of body

Articulation { Leg Left 1 # First articulation off body
# This is a leg, on the left of the robot
# First set of articulations

RevoluteLink { Body # A hinge joint connects this to the reference member
# This object counts as part of the body for the
# purposes of penalising the robot if it falls onto it
# Other options are Prismatic (sliding) and
# Ball and Socket joints.

Graphics_Model_Index 1 # Second graphical object

Mass 4 # 4 kg
Shape 0
Size 0.3 0.1 0.1

Center_of.Gravity 0.15 0.0 0.0 # Displacement of Centre of Gravity
# from joint origin

Number.of_Contact_Pointo 1 # One contact point (on knoo)
Contact.Locations 0.3 0.0 0.0
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# Modified Denavit-Hartenburg coordinates are used to get from the origin
# of the previous object (the reference member in this instance) to the
# location of the joint (also the origin) connecting to this object.
MDH.Parameters 0.0 -1.5707963 0.15 1.7207963

Initial.Joint.Velocity 0 # Initial velocity of this joint (radians/s)
Joint.Limits 0.1 3.041592653 # Joint end stops
Joint_Limit_Spring_Constant 10000.0 # restoring spring on endstop
Joint_Limit_Damper_Constant 1000.0 #damper on joint endstop

Actuator.Type 2 # New direct drive motor
Joint.Friction 10.0 # Friction in joint
Max.Torque 80.0 # Maximum torque motor can apply

}

RevoluteLink { Leg # Another hinge joint connects this
# to the previous object. This is part of the leg

Graphics_Model_Index 2

Mass 2

Shape 0
Size 0.3 0.08 0.08

Center.of.Gravity 0.15 0.0 0.0

Number.of.Contact.Points 0

MDH.Parameters 0.3 0.0 0.0 -0.05
Initial.Joint.Velocity 0.0
Joint.Limits -2.0 0.1
Joint.Limit.Spring.Constant 10000.0
Joint.Limit.Damper.Constant 1000.0

Actuator.Type 2
Joint.Friction 5.0
Max.Torque 40.0

>

RevoluteLink { Foot # Another hinge joint, this object is a foot
# This means that contact with the ground
# is used to gate some of the sensor readings

Graphics.Model.Index 3

Mass 1

Shape 0
Size 0.2 0.02 0.08

Center.of.Gravity -0.06 0.01 0.0

Number.of.Contact.Points 4
Contact.Locations 0.04 0.02 -0.04 # Four corner of base of foot

0.04 0.02 0.04

-0.16 0.02 -0.04

-0.16 0.02 0.04

MDH.Parameters 0.3 0.0 0.0 -1.6707963
Initial.Joint.Velocity 0.0
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Joint_Limits -3.1415927 -0.8

Joint.Limit.Spring.Constant 10000.0
Joint_Limit.Damper.Constant 1000.0

Actuator.Type 2
Joint_Friction 2.5

Max_Torque 20.0
}

} # End of Articulation

Articulation { Leg Right 1 # New articulation is a leg on the
# right of the body, also in the first set
# of articulations (ie identical to previous one)

RevoluteLink { Body
Graphics_Model_Index 1

Mass 4

Shape 0
Size 0.3 0.1 0.1

Center_of_Gravity 0.15 0.0 0.0

Number.of.Contact.Points 1
Contact_Locations 0.3 0.0 0.0

MDH_Parameters 0.0 -1.5707963 -0.15 1.4207963

Initial.Joint_Velocity 0
Joint.Limits 0.1 3.041592653
Joint.Limit.Spring.Constant 10000.0
Joint.Limit.Damper.Constant 1000.0

Actuator.Type 2
Joint.Friction 10.0

Max.Torque 80.0

RevoluteLink { Leg
Graphics.Model.Index 2

Mass 2

Shape 0
Size 0.3 0.08 0.08

Center.of.Gravity 0.15 0.0 0.0

Number.of.Contact.Points 0

MDH.Parameters 0.3 0.0 0.0 -0.05

Initial.Joint.Velocity 0.0
Joint.Liraits -2.0 0.1

Joint.Limit.Spring.Constant 10000.0
Joint.Limit.Damper.Constant 1000.0

Actuator.Typo 2
Joint.Friction 5.0

Max.Torque 40.0
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RevoluteLink { Foot

Graphics_Model_Index 3

Mass 1

Shape 0
Size 0.2 0.02 0.08

Center_of.Gravity -0.06 0.01 0.0

Number_of_Contact_Points 4
Contact_Locations 0.04 0.02 -0.04

0.04 0.02 0.04

-0.16 0.02 -0.04

-0.16 0.02 0.04

MDH.Parameters 0.3 0.0 0.0 -1.3707963

Initial_Joint_Velocity 0.0
Joint_Limits -3.1415927 -0.8

Joint_Limit_Spring_Constant 10000.0
Joint.Limit.Damper.Constant 1000.0

Actuator.Type 2
Joint.Friction 2.5

Max.Torque 20.0
>

}
>

D.2 Communication

Most, of the information in t his file is use<l exclusively by the robot, simulator, but some
is passed on to the neural simulator, and the evolutionary algorithm.

The neural simulator needs to know:

• The number of sensors.

• The number of actuators.

These are extracted from the number and types of joints, and whether those joints are
on legs or part of the body (on legs there is a sensor which is gated by contact of the
foot on the ground). It uses this information to check that neural networks it is given
are of an appropriate structure to work on the robot currently being used.

The evolutionary algorithm needs far more information:

• The number of articulations (2 in the above example).

• The number of distinct articulations (1 above).
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1 • The order in which the articulations appear in the sensor/actuator lists.

• What side of the robot the actuator is on (for building steering controllers).

• The number of sensors and actuators.

• How the sensors and actuators match up inside the articulations.

This information comes from the first line of each new object and is purely topological
in nature:

Articulation Leg Left 1
RevoluteLink Body
RevoluteLink Leg
RevoluteLink Foot

Articulation Leg Right 1
RevoluteLink Body
RevoluteLink Leg
RevoluteLink Foot

After the first loading of the robot, there is no further communication of structural
information between the mechanical simulator and the other parts of the software,
and all remaining communications are new neural structures being sent to the neural
simulator, and requests for fitness evaluations for them, as well as constant exchange
of inputs and outputs between the neural and mechanical simulators (see Figure D.2).

Figure D.2: Communications between different parts of the system


