Generating walking behaviours

in legged robots

Richard Reeve

SATIFICIAL INTELUGENCE LIBRARY
UNIVERSITY OF EDIMNBURGH
80 South Bridge
Edinburgh EH1 1HN

Ph.D.
University of Edinburgh

1999

ARTIfNS?AL INTELUGE NCE LIBRARY
UNIVERSITY OF £DIMI3URGH
80 South Bridge
Edinburgh EH1 1HN

Generating walking behaviours

in legged robots

Richard Reeve

[

Ph.D.
University of Edinburgh
1999

Abstract

Many legged robots have been built with a variety of ditferent abilities, from running
to hopping to climbing stairs. Despite this however, there has been no cousistency of
approach to the problem of getting them to walk. Approaches have included breaking
down the walking step into discrete parts and then controlling them separately, using
springs and linkages to achicve a passive walking cycle, and even working out the
necessary movements in simulation and then imposing them on the real robot. All of
these have limitations, although most were suceessful at the task for which they were
designed. However, all of them fall into one of two eategories: either they alter the
dynamics of the robots physically so that the robot, whilst very good at walking, is
not as general purpose as it onee was (as with the passive robots), or they control the
al mechanism of the robot directly to achieve their goals, and this is a ditficult

In this thesis a design methodology is deseribed for building controllers for 3D dynam-
ically stable walking, inspired by the best walkers and ronners around — ourselves —
so the controllers produced are based on the vertebrate Central Nervous System. This
means that there is a low-level controller which adapts itself to the robot so that, when
switched on, it can be considered to simulate the springs and linkages of the passive
robots to produce a walking robot, and this now active mechanism is then controlled
by a relatively simple higher level controller. This is the best of both worlds — we
have a rohot which is inherently capable of walking, and thus is casy to control like
the passive walkers, bhut also retains the general purpose abilities which makes it so
potentially useful.

This design methodology uses an evolutionary algorithm to generate low-level control-

lers for a selection of shmmlated legped robots. The thesis also looks indetail at previons

witlking robots and their controllers and shows that some approaches, including staged

evolution and hand-coding designs, may be vnnecessary, and indeed inappropriate, at

least for ageneral purpose controller. The specific algorithm used is evolutionary, using
a simple genetic algorithin to allow adaptation to different robot configurations, and
the controllers evolved are continons time neural networks. These are chosen becanse
of their ability to entrain to the movement of the robot, allowing the whole robot and
network to be considered as asingle dynamical systemn. which can then be controlled
by a higher level system.

An extensive progriun of experiments investigates the types of neural models and net-
work structures which are best suited to this task, and it is shown that stateless and
simple dynamic neural models are significantly outperforined as controllers by more
complex, biologically plasible ones but that other ideas taken from biological systemns,
including network connectivities, are not generally as useful and reasons for this are
examined.

The thesis then shows that this system, although only developed on a single robot,
is capable of antomatically generating controllers for a wide selection of different test
designs. Finally it shows that high level controllers, at least to control steering and
speed, can be casily built on top of this now active walking mechanismn.

iii

Acknowledgements

Thanks to everyone who helped me take as long as I did over this thesis — they know
who they are, but particularly iy flatmates and the Mobile Robots group. Thanks to
Louise for support and proof-reading above and beyond the call of duty, and to my
supervisor and exaniners for spotting the mistakes which would otherwise have littered
the thesis — hopefully there aren’t too many left. Finally thanks to my parents not
hassling me too much for still not having a proper job, and supporting me through the
years this has taken.

vi

Declaration

I Ili'll'h.\' decle that | t'u]ll':u:-il‘.lI this thesis entirely IIII\,'h'u“- and that it deseribes my

[E1']] rl,‘.{il‘.{ll'l'! I

R E Reeve
Fdinburgh
16th December 1999

vii

viii

Contents

Abstract

Acknowledgements

Declaration

List of Figures

List of Tables

1 Introduction

1.1
1.2
1.3

Motivation
Sumnmary of Achievements . . . 0. 000 0oL

Organidsation of this thesis . . . 0. . . 00 ..o

2 Walking research

2.1

2.2

Early researchi 0 . . 0 e
211 Studiesofgait
QL2 AR . . o o s mw s s s e s soE mems s
2.1.3 Peripheral vs. Central Control
210 Early Robots e
Recent developments - . . 0 . o Lo
2.2.1 First steps with dynamie stability
2.2.2 Central Pattern Generators 0.0
2.2.3 Group theory, non-lincar dynamics and co-ordination.
224 Evolving robot controllers L.

ix

iii

vii

xvii

xix

2.2.5 Vertebrate locomotion and developmento 18

2.2.6 Functional Neuwromusenlar Stimulation . . . 0 00 0000 20

23 Whereare Weniow? . o . oo v v vin tr s e s ms we e e e 20
231 Commercinl robots . . 00000 L 20

2:3.2 ReseaidiBobobled 5 ;2 2008 56 500 ns 5emr® 5id Bud s s mee a 22

233 Modelling lnmnans and other animals 22

Bl CHOnelisIoNnS: o =7 ewew 508 55 5857 Fe 2leS 20 Sl s D B o ond o 21

3 Neural Networks 25
J.1 Building eomtrollers . . . 0 .. 0oL L 25
311 Typesofeontrollers, 25

312 TepusaFNemiB . 35 Dew b he B w5 5 o wa B B e 26

313 Methods for training Nearal Network controllers . 0 0 0 0 0 0 L 29

314 Seleetiowrriberia s @y e 65 ww S T 6 SR EN Das S w 30

3.2 Evolutionary Newral Networks . . 0. 0 000000000000 31
E21 ‘Divect Bneodingsao: oy won oa o8 a8 85 8 00 S et o 43

322 ‘hwlivect:Eoeodings:: o sms o em wf v w0 ed v s e @ ol

i SHIERY 5 ool e WS e W DR B N R B B W W e @G g 12

4 Architecture 45
4 DS GHEortR: o o woens o Gy ORS00 R BA WOSE B A mE e 16
41.1 Mechanical simulator . © . .0 o0 0oL v s i s i e s 46

1.2 Neural Simslator . . .5 covn i v v v e 5 e s v s s A8

413 Evolutiouary-AlForithim soeos s ww moms os w e on s s v 19

£ X Verificabion, oo v sosmrawe oo ommm e oo wEnE s mE E FTALE 65 50
ST BEChmItE : s e v soEne sy SR woeEE RO W0V SR AUECH SE s 50

B0 INUOTORE 505 oo womm oo sevem v S5 NSWSE Sy§ Mie500 B fwien pos s hl

423 Evolubion . oo woews s s s s moey s wess sye aeee ssr s 51

24 ICOEEIE - sy s s s s o e Eomse mo Rewm i s 51

L3 SUINMMIALY. oun o sos wmwss S S S5 0 Sowis B Swms s e 8 . 52

5 Symmetric controllers and neural models 53

X

5.1 Experimental design and results 0L oL 000000 53
5.2 Degenerate controllers Lo 55
L TDIBERRION . v con sieie vt mmum mer PREIEEMIE s WS eOE SR 63

B3 NewsilaodelS, oo o e soas aoe somie s wsmns o ansie b e s 64
53l SIEMoIdIL-. & v s ow oo sew ese meEmEsE e S e e e 64
532 Firskorder o wo woaow em s o6 sreEmie s SRR B 5 eh 67
.33 Socondionder’ s e s s s e e s ER SRR 0 R @ ok GY

A "EMed Order . oo sovon o s B v SRR e MBI ETE BSE Af wed 73
S35 U DISERSSION A 5w s et e BE R S B UETH WE RO ETE ¥ R s 7

S Bwnmary oo e e w0 B DN G WS ST 0T SR e W e 74
6 Encodings and fitness measures 81
6] EiwaidliEy ss ne s b Eome no etet dd BE BB B S e 81
6.1.1 The OneMotor encodingo 000000 82
6.1.2 The LocalSparsc encoding L. L. 86

6.1.3 The Local GNARL encoding 87

6.1.4 The SymGNARL encoding oo 0000000 88
6.1.5 TheSymSparseencoding0 v v i e 89

GG DIRCHNEION ..on oy momom s aen wooe s waaar BN M SnemE DR BRa 90

G2 ERIRENICHROIE o s spoass ws w oo Sme svm @ B 59 SUEE KB ADRUA 94
G201 GBI o o s e 0w s giee Dve sbd S eme R MW N AR R 97

6: 22 DEND G o a s sim moms e oty sid v Sowte RIS Wor o i 50 98

628 BENDE . voow wn wnw oo wnmm nm s Boems w6 9 0 0% 5 2 99

B2 DENDEX : wicoe sp mimes om momcosi v W0 05 99 5 e 55 3 101

6.2:5: DENDEQ: e s sauns o 905 women 5o smeum oo oiF S8 4 103
B:26 DiCWSI0N: soaoe on s w88 SRR o MR R W T @ 104

6:3 Conelosions.cir on sann o i o W SEeE BN wE S a0 SRR e 105
7 Testing the system 107
7.1 Asclectionofrobots oL oL 107
701 Quadrupeds 108

xi

7.1.2 Ditferent enviromments L. Lo 111

7.1.3 Triped and Bipedrobots 00 0000000 Lo 111

Tled DDISensstongns oo Sa gid % R $ e Bh B N o SR 117

7.2 Active mechanisis and higher level controllers 000 0. L. 118
Tl Bteorltm © sied oF U5 Sain B weaE BN TR PR AR 8 e aa 119

T.2.2 Slowingdowivs o o5 50 6 ses 5 e 08 S 06 s e 121

723 Combiningeontrollers o000 oo e 122

ok Disossioice s ds 5 ba 57 7E0 uH 59 vl ey re L2 Sk 122

T Conmlusionss & e s fel B2 fod nig o8 53 fesur ma 408 % 122

8 Conclusions 125
8.1 Swmmary of contributionso 0oL L0000 125
8.2 Future Divectionso v vt vt i v e e e e e e 126
Bibliography 128
A Controller breakdown 137
Al Unmodified network behaviowe - 00 00 0000000000000 1T
A2 KAIRIENCITONE s wnosos o ond S0f SOe S ENR BNE Ry 5SS Bl a5 110
A2 SMIINATY oo scsor ss wsmed o s o9 TR B 50 e wew s 142

AT CJOINEBSCHSOME o oox miess sve woams sos Soems 66 SUELE ME BoR e Boe F9G 112
A3 DUNMIATY o mass o6 mosus 608 S0aE o8 FienE HE Som SevE B e 114

A4 Damaging the actuators oL Lo 145
A8 (CONCIBIONE T : s coummns mn mro S5 Sowe s SRew E5 Reh SR B B 145
B Statistical techniques 147
B.1 Why Use Computer Intensive Tests? .. 000 .00 o000 L. 117
B.2 Resampling to calculate confidence intervals00 147

C Interface 151
D Example Robot 155
D.1 Robot Configuration File 155

xii

D.2 Commmnication

xiii

xiv

List of Figures

(4]

e
cn

&
(=

A standard direet fixed arehitecture encoding 0 0000000000
Maniezzo’s weight and connection encoding

A network in the GNARL encoding and the effeets of some mutation
ODUFAOILE, o pmen wor wom S0n o B e

Stnple quadmmped with two hinge joints on each leg, knees hending inwards

Expected vadues of best of ntrials with 95% confidence intervals

Bootstrapped probability density function of controller fitness estimated
GO VUSIES v o e s oo wow om woe s wnaLW MR M NN RS WO E IR ¥

The best robot with a non-degenerate controller (viewed left to right,
thiotop:bachottom) = 2 &0 weaw oe wa 20EE o U EEEE 0T S5 0 3

One of many stable robots with a degenerate controller (left to vight,
R EOTIBERONIY) rve som 3 momw s o o W wamow e MR WSS i WEE M M 8

Results showing expected fitness with 95% confidence intervals for sig-
moidal weuronso Veh BN BN S SURE W RGGE 3

Bootstrapped probability density function of siginoidal nenron fitness . .
Testing co-evolved against fixed parameters for fivst ovder neurons
Comparison of different network sizes for first order neurons

Bootstrapped probability density and cumulative probability density of
first order neuron Btness L L L L L L

Testing co-cvolved against fixed parameters for second order neurons . .

xv

69
70
71

5.15 Comparison of different network sizes for sccond ovder neurons 72
5.16 Bootstrapped probability density of sceond ovder neuron tuess .. . L . 72

5.17 Testing co-evolved against fixed pavamneters for thivd ovder neurons .. . 71

518 Connparison of different network sizes for thivd ovder nenrons .. . i
5.19 A typical third order controller . . . 00000000000 L 76
6.1 Typical conmectivity of one CPG in OneMotor encoding with 4 nearons

PCEHERMBEON = o son s ool wnow G AR R S SEE0H RN R 0N Bl WS 84
6.2 Typical evolutionary run for thicd order nearons without elitism 81
6.3 Typical evolutionary run for third order neurons with elitism 85
6.4 Cowmparison of Full and OneMotor encodings00 000 85
6.5 Typieal conmectivity of one CPG in Loeal Sparse encoding with L neuvons

[ELe i TH R TETY 7o) o e O RSP .
6.6 Comparison of results using LocalSparse encoding 00 . . 0. 87
6.7 Comparison of results using Local GNARL encoding H#8
6.8 Comparison of results using SymGNARL encoding &Y
G99 Comparison of vesults using SvinSparse encoding 0 0 000 000 000 00
G100 Comparison of fitness using evolved and extended fitoess funetions . . 05
G111 Prob. density of fitness of size 6 controllers using Speedd and Speed200 0 06
6.12 Comnparison of results using the FND fitness measare - 00 00 0 0 0 L U8
G.13 Comparison of results using the DEND fitness measure . . .00 0 0L L. L]
6.14 Comparison of results using the DENDF fitness measure .0 0 00 0 . 100
6.15 Three different functions used in DFNDFA . 0 0 000 00 00000 0L 1n
6.16 Comparison of results using the DFNDFAa and b fitness measwres 102
6.17 Cowparison of results using the DFNDFO fituess measure 1073
7.1 A fast controller for the Quadsmne robot 0 00 0000000 0L]
7.2 Average speed of best of 9 runs for cach guadrupedal robot . . it
7.3 A varicty of gaits for the Quad full robot 110
74 Quad_prism: a quadruped with prismatic knee joints 110
7.5 Oue of many controllers for the Quad foot robot o0 000 112
76 Average speed of best of 9 runs for different enviromments 113

xvi

i
78
79
7.10
7.11

Al
A2
Al
Ad

AT

D.1
D.2

Average speed of best of 9 runs for triped and biped 000 114

One of the better biped controllers! . . 0000000000000 115
A ypical triped: wses s wars wb BEeE B8 wURi BE RS @ e a0 sEeed b 116
Additional connections for steeving control onoajoint . . . 00 119
Tuming bl o s o s sie soae 0 wEUE B9 U NOR R T 120
Recording of all four newron 3 signals o oo 138
Detail of 025 of newron dsignal oo 00000 138
Behaviour of a maximal unique set of nearonso 139
Starting behaviour of set of newronso o000 L 139
Effcct on a group of neurons of removing Newron 5 .. 0 0L L L L L 141
Extra neural activity when semsor 15 is removed during locomotion . . . 144

More activity when sensors 15 and 17 are removed during locomotion . 145

An example bipedalvoboto 0L oL 155

Commmunications between different parts of the system L L 160

xvii

xviii

List of Tables

=]
—

[4,]
L]

7.1

Al
A2
Al

Details of Genetic Algorithin paramneters for Chapter 5. o8

2arameters for four different lamprey neurons oL oL L 74
Details of sctup of experiments for Chapter 7 L. 107
Result of removal of neurons on continued movemnent L. 140
Result of removal of neurons on initiating movement 142
Result of removal of sensors on initiating and continuing movement . . . 143

xix

Chapter 1

Introduction

Many legged robots have heen built with a variety of different abilities. from running
to hopping to climbing stairs. However, despite this there has been little consisteney of
approach to the problem of getting them to walk — every research group has followed
its own instinets. For instanee, some have bhroken down the walking step into diserete
parts and then controlled them separately, some have used springs and linkages to
achieve a passive walking eyele, and some have worked out the necessary movemnents
in simulation and then hmposed them on the veal robot, Al of these approaches have

limitations. althongh most were successful on the robots for which they were intended.

The design of a controller for dynamically stable walking machines which can be used
across as wide a spectrum of wmachines as possible wonld allow the field to progress
bevond just building the robots and making them walk. towards actually putting the

robots to use in real situations.

This has been the focus of my vesearch, and inspiration on how to design controllers
for a wide variety of different body conforinations came from the best walkers, runners
and stair-climbers around — ourselves — and as a result the control systems produced
are based on the vertebrate Central Nervous System. The controllers ave built by an
evolutionary mechanisin which adapts then automatically to any robot with which it
is presented. These controllers then become part of the now walking robot, which is
itself controlled, as to divection and speed for instance, by a higher level controller.
This is an easier task than before because the robot is alveady walking, and so only has

to have its gait inodified rather than a single monolithie controller having to determine

2 CHAPTER 1. INTRODUCTION

the position of limbs or torques in joints directly for all speeds and directions, as is

normally the case.

1.1 DMlotivation

Some prople believe that control systems give commands to mechan-
isms. But mechanisims have a mind of their own: they will obey physical
laws. Control is not to compensate for the limitations of poorly designed
mechanisims. The best systems will have mechanism and control designed
to work together in harmony.

Mare Raibert (ISToMM'093)

Mare Raibert was acknowledged as one of the leaders in the field of legged robotics
until he wmoved into mdustry in 1993, and the above extract from a talk he gave made
me think about the mechanisms which people use when trying to make robots walk.
It seems to me that alimost without exeeption they are not designed for walking at all,
but rather to be as general purpose as possible, and nudeed that the whole purpose of
the “controllers™ is to get them to walk in the first place. not to control walking, as
they have no innate ability. Exceptions to this include passive walkers (for instaunce
the “hipedd glider™ of MeGeer. 1989) which are designed not to require a controller {or
even power) for walking down gentle slopes, and spring actuated robots (e.g. Wadden
et al, 1993), all of which have springs and dampers built into the physical robot.
However there is a significant problem with this approach: although the end result is
generally a very competent walking robot, because all the springs and linkages which
make the mechanisin so effective are permanently in place the better the mechanism is
at walking the worse it becomes at everything else — until in the limit it becomes as
uncontrollable as the walking automata of the turn of the century whose intellectual
successor it is, and it becomes impossible to get it to manocuvre or climb over obstacles
or achieve anything else which might be desirable in the context of a robot designed
to carry out a task. However, the idea of the inechanisin being inherently able to walk
miakes sense since it would make the control job so much more straightforward, if only

there were a way of retaining the multifunctionality which the more basic robots have.

1.1. MOTIVATION 3

The answer in the end is clear — if you don’t want the springs all the time, why not
simulate them through the motors so that when vou switeh off the simulation you are
left with your general purpose robot again? There was a clear precedent for this which
encomraged optimisin in the approach — the vertebrate spinal cord. Take the eat, for
example. Clearly this is an extremely versatile animal capable of an enonmons range
of wovements — yet it can be induced to walk very casily by sending a simple signal
down the gpinal cord which excites the Central Pattern Generators (CPGs) associated
with walking (Grillner, 1985). These do not exactly simulate the springs and links
mentioned above, but they have a similar effeet — they actively alter the dynamies
of the legs through the muscles to create a new dynamical systemn where walking is a

stable attractor,

The significance of this point becomes clear when von realise that, both with the spinal
eat! and with a robot with simulated springs and linkages. what you still have is a dy-
nanical systemn which can be controlled: in the cat’s case this is done by various higher
centres in the brain, notably the cerebellum, but in the robot’s ease it can be done
by a more couventional controller. This should be annel siimpler than most walking
controllers. as it no longer has to “compensate for the lnitations of a poorly designed
mechanisim” . but rather controls an (active) walking mechanism and so only has to
coneern itself with maintaining the stability of the walking bhehaviour on vough tervain
aned perhaps during gait changes. as well as higher level concerns sueh as direction and
specd of movement. The latter are very siimple to control i vertebrates — for instance,
the higher the excitation of the CPGs in the cat. the faster the cat will go, changing
gaits automatically as it speeds up (Grillner, 1985), and in the kanprey, where Grillner
and his colleagues have mapped the entire stracture of the CPGs (Grilluer et al., 1991),
it is found that exciting the CPGs on one side of the body more than those on the
other side (which again is very easily done) causes the kunprey to move sinoothly away

from the exeited side.

Strangely, Raibert’s robots (Raibert, 1986, 1988) do not follow his own advice —
neither the mechanisin nor any individual part of the controller walks on its own, so

the controller has to do the whole job in one go and make the robot walk as well as

' a cat whose spinal cord has been severed just below the brain

1 CHAPTER 1. INTRODUCTION

control the walking all at once. This has resulted in all of Raibert’s controllers being
carefully handerafted, a time-consmning process. though, despite that, the controllers
that he and his successors i the MIT Leg Lab have made have been the closest yet

wiade to the general purpose controllers that we are looking for.

In fact very few people seem to have designed walking mechanisms at all since automata
wore replaced by controlled robots in the 1950s. All those that arguably have done
s hivve two things in common {(exeept the passive walkers which have no controller)
— firstly they are controlled by neural networks (this is almost inevitable as they are

the ouly well researched computational system which can be trained and have their

own continuous dynmmnies), but sccondly and more interestingly, although t
dyumamics of the robots with neural networks to make them walk, they do not appreciate
they have done this but rather deseribe their neural networks as controllers in their
own right and do not go one step further to then design a (higher-level) coutroller for
the walking robot. In trying to do it all in one go the results tend to be fairly poor,

andd certainly considerably less inpressive than Raibert’s algorithmic approach.

1.2 Summary of Achievements

I this thesis 1 deseribe a new design methodology for ereating legged robot controllers.
where a low level controller entrains to the dynamies of the system, adapting it so that
walking is o stable attractor. allowing a higher level controller to be very simple and
casy to build when compared to equivalent controllers for the original robot. This is a
general purpose design strategy which can build controllers for any robot which can be
described in the simulation language provided. Indeed, even if this is not possible, the
language is casily extensible to cover (for instance) new actuators, sensors, and even
Joint types, and the design strategy can then be applicd to the new robot in exactly the
sime wanner. The signiticant diference between this work and previous simulation
work on walking such as that by Beer and Gallagher (1992) is that the simulator was

a full 3D simulator, and dynamically stable walking was modelled.

In pursuing this goal a mechanisim was built for measuring the ability of a neural

network to control a legged robot in simulation, and as this proved to be a challenging

1.3, ORGANISATION OF THIS THESIS 5

real-world task a detailed comparison of a varicty of evolutionary methods for building
neural networks was carried out and an analysis done of the results to see how different

approaches compared on a standardised but taxing problem.

The whole system consists of a mechanical simulator with its associated simulation
language, a neural shimulator capable of simulating a variety of different types of neurons
as well as any network configuration, an evaluation mechanisin for determining how well
aspecific network performs in controlling the robot, a genetic algoritlom for evolviug the
controllers, and a series of himplementations of the different neural network encodings

used in experiments,

1.3 Organisation of this thesis

Chapter 2 discusses past ad present work in walking rescarveh, looking mostly at
robotics and its precursors but also, where appropriate, at locomotion in vertebrates
aned its neuromuscnlar control, showing how these strawds tie into the research done in

this thesis.

Chapter 3 contains areview of relevant nenral network research, partienlarly evolution-

ary approaches, and desevibes in detail a varviety of evolutionary encodings of nenal

networks, some of which are exanined in this the

Chapter 4 presents a detailed examination of the systemn used to build, model, and
evaluate walking robot controllers, including details of validation experiments, robot

models used, and how analyses were carried out.

Chapter 5 provides the initial results of the siimulator on simple encodings, showing
the potential of the system to learn appropriate behaviours, and compares a variety of

ditferent nearal models,

Chapter 6 shows the detailed results of the selection of encodings implemented for
comparison on the system, and then looks at how different fituess functions can help

in evolving walking robots.

Chapter 7 uses the best system from the previous chapter to evolve controllers for

a varicty of different test robots to show that the algorithm developed is sufficiently

6 CHAPTER 1. INTRODUCTION

general purpose. It then shows that it is simple to add a higher level controller to the
active mechanisin evolved which allows it to be steered and accelerated.
Chapter 8 examines what has been achieved in this thesis and suggests avennes for

further research.

Chapter 2

Walking research

After along thime as a junior partner in roboties, walking has seen an explosion in
interest and achicvements in the Iast fifteen years as computational power unimaginable
until recently has heen bronght to bear onits problems. At the smne time we have seen
advimees in other related ficlds: non-linear dymamics has helped us anderstand ol
model the robotie systems that we are studying: zoology has provided details of the
mechanics of animal locomotion to aid in the design of our robots: ad nearoseienee
has developed o deeper understanding of how vhivthmie movements like walking oeem

in the natural world, and this has helped us formulate new ideas for robotie controllers.

In this chapter T will give an overview of the history of walking rescarch, following its

ctiom of elockwork antomata

progression from the study of body parts and the cons
to the understanding of neural rhytlun generators and the control of robotie somer-
sanlting'. We shall see that it has become a focal point of interdisciplinary research
between the biologieal scienees and roboties, and we shall examine what can be gained

fromn this work.

2.1 Early research

Fascination with walking goes back millennia, but rescarch began in the 18th and 19th

centuries. Interest arose for varying reasons, not all of them scientific,

! An carlier version of this chapter appeared in (Reeve, 1999h)

7

8 CHAPTER 2. WALKING RESEARCH

2.1.1 Studies of gait

Some of the carliest work involved the examination of cadavers to investigate how they
were constructed (for instanee work by . C. Lavater in the late 18th century), bhut two

significant studies of gait really started the ball rolling.

The first of these was by E. J. Marey who invented a pueumatic recording device in
the 1870's which measured stepping patterns through sensors attached to the feet of
subjects which moved the pen on a clockwork recorder (Marey, 1874). This allowed

b to make records of step patterns in ditferent gaits.

The seecond (and far more finnous) was Eadweard Muybridge, a photographer whao,
initially spurred on by a bet to prove whether a horse lifted all of its legs off the
ground simultancously in a gallop, went on to record a huge collection of high-speed

photographs of animal gaits (e.g. Muybridge, 1887).

These people took some of the first steps in researching the field and though the

from very different backgrounds, they were looking for the same information. This has
alwavs been i problem for walking researchers — it is an attractive subject to invest-
igate, and it has no particular allegianee to any one field. As a result there is o danger
of duplication of effort. as new disciplines decide locomotion is a field worthy of study,
Zoologists and physiologists were amongst the early researchers (e.g. Gray et al.. 1938):
mathematicians found the apparent simplicity of these patterns interesting, and group
theoreticians examined their properties (e.g. Collins and Stewart, 1993a.b: Collins and
Richmond, 1994): neuroscientists began to study the structures which control loco-
motion (e.g. Grillner, 1985), and roboticists have tried to emulate the ability, as well
as embodying their theories of intelligence in legged robots (e.g. Raibert, 1988: Brooks,
1989); non-lincar dynamicists have examined the whole walking system to determine
its dynamics and stability (e.g. Kelso, 1995): biomechanicists have looked at how to
improve runming performance, and are trying to stimulate nerves in paraplegics to al-
low them to walk again (e.g. Yamaguchi and Zajac, 1990); finally, computer graphics
rescarchers have ereated the illusion of walking for our entertaimmnent in the cinema or

on our computers (e.g. Toy Story).

All of these people have different contributions to make, but it has become impossible

2.1. EARLY RESEARCH 9

for anyone to keep track of their different approaches and achievements. However,
it is very important to legged robot research that some feel for the overall picture is

maintained, and that is the purpose of this chapter.

2.1.2 Automata

In the mid 18th century, even before these early studies of walking in animals, antomata
were being constructed to mimice life as closely as possible and were being demonstrated
at fairs and exhibitions. One of their greatest creators was 1 de Vaneasson, whose aiim
wits to produce the perfect artificial person (Elliott, 1997). He prodoced a Haatist
which could imitate the sound of the instrument and move inoa lifelike fashion. It
wis ineredibly intricate and was controlled by hunedreds of bellows and levers. He
went on to make a mechanical duck which conld flap its wings. walk, and cven cat.,
drink aned defecate by means of a mechanical stomach. 1is project was continned in
the 1770s by P-l. Promond and H. Lois who made increasingly nmnanoid antomata
one of which (the Draftsinan) could make writing movements and follow them with
its head, and another could even reportedly play the harpsichord. Of conrse it is
nnpuossible to anthenticate these repores aoud various antomata were exposed as Tiods,
but ineredibly complex machines were certainly being made soonnd this time, aned their

makers boasted of mimicking life itself.

In the 18505 Chebyshev invented mechanieal linkages which conmected joints so that
they moved together. This allowed walking to be developed much more easily as
linkages could be designed which would make the body move horizontally by moving
the feet and legs ina fixed pattern, and many walking automata were designed by this

method (Raibert, 1986).

Oune of the difficulties with this carly approach however was that the vigid mechanical
linkages which wade walking possible totally fixed the movement of the legs. This
meant that no alterations in the gait could be made, for instance to change gaits and
move over uneven terrain. Subsequent decades were spent designing better linkages
in an attempt to produce suitable stepping motions to generate stable locomotion.
However, to allow the gait to change some means of control would have to be devised,

and there the problem lay for half a century.

10 CHAPTER 2. WALKING RESEARCH

2.1.3 Peripheral vs. Central Control

During these early years of the 20th century Newroscience began to take a serious
interest in locomaotion, debating how control of locomnotion and other rhythnic move-
ments occurred in lumans and other animals. Two competing hypotheses came to the

fore: Peripheral Control and Central Control.

The former claimed that these movements were achieved through sensory feedback: a
reflex ehain existed where cach phase of the motion eycle provided the sensory cues
which triggered the cortect timing of the next in a repeating loop. Thus the belaviour

would be disrupted by a lack of sensory feedback.

The latter claimed that the Central Nervous Systemn (CNS) does not require sensory
feedback to provide the proper timing, but rather that there is a neural pacemaker
providing the thythin which, though it may be modulated by feedback, was essentially

independent of it

Both hypotheses had carly supporters, but experimental evidence was scarce until the

1930 e 10 when wmeh support was found for the importance of sensory feedback.

Peripheral Control

Some of the best work supporting Peripheral Control was done by Sic Janes Gray and
his colleagues (e.q. Gray et al, 1938: Gray and Lissmann, 1940): they showed that
there were behaviours in both invertebrates and vertebrates which scemed to consist
of chains of reflexes, They also claimed that the sane experiments, when repeated on
deatferented? animals, produced no observable rhiytlunical motions. These last results
have been largely refuted by more careful recent experiments, but the carly behaviours
they describe. such as reflex walking in the spinal toad when it is held against aomoving

swrface, have been widely repeated.

Other work on a varicty of animals showed that particular sensory inputs can disrupt
or completely arrest normal motor output. For instance, in one experiment a bivalve

scallop with its shell bound shut was found to completely stop contracting and relaxing

? sensory (aHerent) nerves are cut so no feedback is received by CNS

2.1. EARLY RESEARCH 11

its adductor muscle (Delcomyn, 1980).

Results like these were taken at the time to support the Pevipheral Control hypothesis:
however, in reality Central Control did not preclude them, except those which were
later shown to be in error: it only said that sensory feedback was not necessiny to

ereate the rhythm, not that it did not play a significant part.

This became important when, in the 1960°s and 70°s, evidenee came in which proved

conclusively that rhythmical motions could ocenr without sensory feedback.

Central Control

A preat hody of evidence was gathered by various researchers (for a table see Deleamyvu,
1980, page A94), which showed that creatures from vight across the animal kingdom
could carry out rhytlinical actions when their nervous systems were completely isol-
ated?, deatterented, or when their muscles were paralysed. In all these cases there

s no feedback to allow reflexes to generate the movement. That these results were
not gathered hefore was in some cases a result of poorer experimental technigues and
I‘l|\1i1]1!ll‘ll| which failed to |1il'k np the 11:_\‘r.ln||.-. s i others bevanse the eXpen innental
procedures cansed too nmeh extrancons dinoage for the nervons system to be able to

continue ta operate novmally.

On the basis of this new evidence, there wis no donbt that centval mechnmisms did
generate many rhythmical motions, and the idea that all meaningful ontput had to be
driven by specifie sensory stimulation died. However, the central control hypothesis
fell far short of explaining what was happening in these pacemakers that it proposed,
and certainly observations like the reflex walking referved to carlier needed to be put
into the structure of central control; indeed some more recent work had also shown
results which did not fit in with a strong central theory, For eximnple. Grillner and
Witllén show that a spinal dogfish paralysed by curare will, if the tail is moved at a
frequency different from its natural swinming rhythm, show co-ordinated bursts in
its motoncurones at the imposed frequency (Grillner and Wallén, 1977). Also, as in

allops, the swimming movement can be suppressed by strong stimuli like holding the

b

¥ removed from the body

12 CHAPTER 2. WALKING RESEARCH
body tightly.

Experiments like this led to the realisation that aomore sophisticated explanation wonld

Liawve to be found to veplace the rather simplistic Central Control hypothesis.

2.1.4 Early Robots

Meanwhile, back in robotics, the first true walking robots had already been built.
[t was the arival of logic civeuits and later computers which made this possible by
allowing a control mechanisin to be built which would make variation in the walking

patterns possible.

Nevertheless, one of the first ideas was to use a human as the controller, as this was
still canly days for computing. General Electrie huilt one such vehicle in the 1960°s (the
“versatile walking truck” in Mosher, 1968) which, under the control of its operator, was
capable of up to 5 mph and could climb over large obstacles, This was really ignoring
the control problem however, and it was not until the late 60's that truly independent

legped robots began to appear.

One of the first of these was Dalt by Frank and MeGhee ad was called the Phony
Pony (MeGhee, 1976): cach joint was controlled by o finite state machine made from
digital logic civenits with each of four states triggering the next in a fixed loop. This
was actually very restrictive, and made the robot hehave ina fixed manner very shimilin
to the antomata it replaced. However it opened the door to the gait being compnter

controlled, and thus changeable in software.

Alter this, many research projects were started into computer controlled walking, and
indecd the first commercial product, Big Muskie, which was a walking dragline used

for strip mining, was produced by the Bueyrus-Erie company in 1969.

The late 1970° and 80's saw a succession of simple computer-controlled statically
stable robots whose patterns of locomotion were very simple and inspired by insccts
(e.q. Gurfinkel et al.,, 1981; Hirose and Uinetani, 1980). They remained balanced in
static equilibrium all the time, and moved surplus legs to new positions where they
could in turn be used for support. They were the first computer controlled walking

robots, and they moved very slowly (as they always had to keep 3 legs on the ground for

2.2. RECENT DEVELOPMENTS 13

support). Their controllers tended to be reactive (i.e. they would move to a new state
based on the sensory feedback and the state they were in). and parallels ean easily he
drawn to the Reflex Controllers mentioned earlier. This strategy allowed fairly robust
movements across terrain, and so long as acstate was deseribed in the controller (e.g. leg
moving forward hits obstacle), it could be dealt with by the robot (move back, raise leg,
and repeat). However, this approach does require the enmneration of possible states.
whiech is far from ideal. These controllers were time-independent, in the sense that the
system could be frozen and restarted at any point, or run at a different speed, and
there wonld be no effect on the walking pattern, so it didn't matter if the compnter

liael to sit and ealeulate for a bit to work out what to do next.

The next step forwarnd was the realisation of dynamically stable (or actively balanced)
walking. which arrived as computers becane more powerful, and capable of dealing
with the complexities involved in staying upright when not always in a stable posture
(e.g. Matsuoka. 1979: Miura et al.. 1984; Raibert ef al., 1981). Controllers for this kind
of robot were time-dependent, that is to say that there were points in the motion cyele
when stopping or changing speced would be fatal (imagine stopping moving vour legs
i the middle of a fast step). so the controller hid to be able to keep np with what was

soing on in real time.

2.2 Recent developments

At this point walking was still poorly understood. Physiologists had studied the bodies
of anmals, neuroscientists had argued about how they walk. and roboticists had created
slow. clumsy walkers, hut things had really yet to take off. The pace of change was

soon to speed up however.

2.2.1 First steps with dynamic stability

The first attempt at a dynamically stable robot was by Ogo et al. (1980), where a
biped with huge feet walked in a quasi-dynmmically stable fashion. They avoided the
problems of time-dependence by only having a small non-statically stable phase where

the biped ‘fell’ from one foot to the other in a controlled fashion.

14 CHAPTER 2. WALKING RESEARCH

True dynamie stability was not long in coming however. At the same time as the
above Matsuoka built a robot capable of running in a 2 dimensional world (Matsuoka,
1979). and not long after Minra and Shimoyama developed the first actively balanced
dynamically stable walker, the stilt biped. which was supposed to model the behaviour

of a person walking on stilts (Miua et al., 1984).

Raibert and his team at Carnegie-Mcellon University (it was later to move to MIT)
then started to produce walking robots. Initially he designed a 3D one-legged hop-
ping machine (Raibert ¢t al.. 1984): shortly after this he progressed to bipeds and
quaddrupeds using the sane basic algorithm for each (Raibert, 1986). They had finite
state controllers, but within cach state the controller was algorithinie, caleulating the
desired joint angle and the required joint forees. This was a more centralised control
than the statically stable robots and the robots went at inpressive speeds (for instance

the one-legged robot had a top speed of 4.5 mph).

Ou a different front, MeGeer built a dynamically stable passive walker which hie called
the “hiped ghder” (MeGeer, 1989, 1990). This conld walk stably down gentle slopes
without any form of control. and could in theory he pumped to walk on the Hat or
on other terrain This has been taken further by Goswani aoud colleagues at INRIA in
(Goswanni of al. 1997) who looked at passive walking with a very shimple gait, and then
at the mimicking of passive control with an active mechanisin to enlarge the natural

basin of attraction of the passive it eveles ad to create new gaits,

2.2.2 Central Pattern Generators

Is0 been made by neuroscientists studying rhythmical controllers.

Much progress has
Following on from the ideas of Central Control, during the 1970°s the idea grew that the
motoneurones (and henee rhythmical moveinents) in vertebrates were driven by central
networks of interneurones that generated the essential features of the motor pattern,
but also that sensory feedback signals played a crucial role in the control systemn, namely
to turn a stercotyped unstable pattern into the co-ordinated rhythm of the natural
movemnent. The networks were referred to as Central Pattern Generators (CPGs),
and evidence showed that every part of the body which makes cyclical movements

has its own individual CPG (for a summary, sce Delcomyn, 1980). Experimental

2.2, RECENT DEVELOPMENTS 15

evidence has recently proven this to be true in the lamprey (Wallén et ol., 1992),
where neurophysiologists actually mapped out the neurones making up the CPG. and

it is accepted in other animals as well.

In vertebrates the spinal cord coutains these newronal networks. The CPGs. when
stimulated, have their own dynainics which set up oscillations in outputs between the
neurones. When they are connected to the motoncurones, these generate the charac-
teristic rhythmical behaviour associated with the system. Central Pattern Generator
is a general terme for instance, in walking each muscle can be considered to have its
own CPG, but opposing muscles CPGs ean be considered collectively to forin a joint
CPG. and similarly for limb CPGs. Feedback from the muscles keeps the CPGs in
phase with the limb, so the pattern does not break down. In the sane way. limb
CPGs maintain the co-ordination between legs to generate the overall hehavionr (de.
walking) by their eross conmections. The system is self-correcting, so that if any part
loses synchromisation, the dynmnics of the whole system forees it back into the original
rhythin, Without the cerebellum, movements ave coarser and there are some problems
with cquilibrinm and co-ordination, but in essence the pattern remains nnchanged: thos
spival mommals and bivds liave been shown toomake walking movements very siilar
to those of intact animals (Grillner, T985). On the other hand, withont proprioceptive
feedback the pattern ean break down (Deleomyn, T980). as it can be very important for
adaptation to actual conditions. Even with this feedback the vhvtlon ean break down
though if it is knocked too far from equilibrimm, as the movement now falls ontside the

basin of stability of the system.

As aresult of work by Sten Grilluer and his colleagues in examining and simulating
CPGs in the Lunprey (Grilluer et al., 1991; Wallén et al., 1992), a great deal is now
kunown about their structure and behaviour in this ereature; however there is still inch

to be learnt in other animals — of particular interest to us are legged vertebrates: we

know that cach m has its own CPG and that this is essentially o very siimple
network, and that these are connected together inside each leg to generate a stepping
motion. and between legs to generate a stable rhythin, and we also know that each of
these rhythins (gaits) is stable over a certain range of speeds, so as the legs speed up, the

basin of stability for one gait shrinks until a bifurcation occurs and that gait hecomes

16 CHAPTER 2. WALKING RESEARCH

unstable, and walking moves to a new gait with a different attractor (Kelso, 1995). We
also know that the cerebellmm and other higher centres are highly connected to the
CPGs, receiving efference copies of the signals sent from the CPGs to the inotoneurones,
as well as the afferent feedback from the munscles (Grillner, 1985). aned that this allows
fine-tuning of the co-ordination without which the walking looks a bit rough and is
more likely to break down. However, we do not know the details of how the neurones
are connected, either inside a CPG or inside or between limbs, and certainly not how

the cerebellum works (though theories have been put forward (e.g. Miall ef al.. 1993)).

What we can deduece from this is that a low level dynamical system exists which links
the museles to produce walking and which has a highly regular structure consisting of
several very similar nenronal networks (CPGs). These are strongly interconnected to
maintain their thytlin and are controlled in turn by higher centres to maintain their

stability.

Mueh of the discussion in this section has been about dynamical systemns and it is the

contributions of rescarchers in this field that we shall discuss next.

2.2.3 Group theory, non-linear dynamics and co-ordination

Rescavchers from vivions areas of mathematies have studied walking. Collins and
Stewart used group theory to analyse the properties of varions coupled non-linear
oscillators. They predicted that fixed CPGs should be capable of changing between
gaits by varying very few parmneters (Collins and Stewart. 1993a.b). Collins then went
on to test this with a selection of CPG models and found that it was generally possible
to uike simple CPGs produce different gaits by varying only a fow internal parameters
whilst leaving the connectivity unchanged (Collins and Richmond, 1994). This was a
simpler solution than many previously proposed which suggested. for instance, that

different co-ordinating neurones might be needed for different gaits (Grillner, 1985).

There has also been work by non-linear dynamicists like Kelso. He has studied how
walking systems behave, what happens to the co-ordination between legs at gait trans-
itions, and how the systemn converges to its stable attractor (a particular gait). He

particularly stresses that gaits are selected (and are most stable) in animals when they

2.2. RECENT DEVELOPMENTS 17

are the most efficient for travelling at the desired speed, though some hysteresis stops
switching back and forth at transitional speeds (Kelso, 1995). He suggests that we
should build this kind of nonlinearity and multistability into robots to help eliminate
problems with redundaney. He also points out that transitions normally oceur very
smoothly, but in animals with theiv higher centres vemoved instability and critical

fluctnations oceur and gaits switch back and forth near bifurcations.

Gallagher and Beer look directly at evolved locomotion controllers from a dynmnieal
systems perspective, examining, controllers evolved to be reflex chains, central con-
trollers (without feedback) and CPGs (Gallagher and Beer, 1992). They examine the
basins of attraction of the limit eycles and fixed points. They discover that the reHex
chain controllers on their own have no limit eyeles, but rather whatever the current
state of the system, it is attracted to a fixed point forward in the walking eyele: this res-
ults in the whole (controller-body) system having a stable walking limit eyele, but this
will break down if the feedback is interrupted. This behaviour is muaeh like finite state
machine walking controllers. The other two types of controllers both have inherent
limit cycles which correspond to walking in the whole systemn, bhut whereas the contral
controller has a crude Tt evele which eannot adapt, the CPG s entrained 1o the
frequency of the rhythmic feedback from the legs, so adaptation to different conditions

does not lave to be leaent, but vather emerges from the dynamies of the contraller-

Loy svsten Tnaomore heavily mathematioal analysis. Clieng and Lin (1996) look ot
the stability of a hiped using a linearised Poincaré map and diseuss the tobustness of

the locomotion.
2.2.4 Evolving robot controllers

As more people started to built legged robots, they began to look for ways to automate
development of the controller for them. The most popular method has been a form of

sitnulated evolution®.

As many different forms of evolution have been tried as there are researchers, but
generally they tend to evolve parameters for some kind of neural controller for the

robot: normally the strengths of connections, but sometimes other internal pavameters

* for a description of Genetic algorithms, see Goldberg (1989).

18 CHAPTER 2. WALKING RESEARCH

of the neurons as well®. In general this has proved a step backwards for the sophistica-
tion of walking controllers with most of the controllers evolved being statically stable.
However, o popular way of evolving controllers is to simulate the robot concerned and
evolve a controller for it on the computer, and it is a very computer intensive process
to model a robot dynamnically, so it is possible that this is partly to blane. If so, as
computer power inereases and sinee fast dynamic simulation software is now available

{e.g. MeMillan, 1994), hopefully this problem will go away.

Lewis et al. (1992) evolved controllers for a hexapod robot (Roduey) which they had
built, The controller was evaluated on the real robot and learnt to walk with inseet-like
gaits after a staged evolution where it was encouraged a bit at a time towards the final

goal of walking.

Beer and Gallagher evolved the parameters of a dynamic neural network to control
a (statically stable) insect walking in simulation (Beer and Gallagher, 1992). They
then went onin (Gallagher et al., 1996) to evolve a statically stable controller for a

simulated robot, and then transferred the evolved controller onto a real robot with no

i

problems. Spencer (1994) used Genetie Programming” to evolve the architecture as

well as the parameters of a similar robot.

Il Siwse on the other hand. evolved dynamic controllers for robots whose morphio-
logies were evolved at the sane time (Siims, 19940). This produced arbitrary shaped
robots with controllers which would allow themn to perforn behaviours like tuinbling,
sliding. jumping, and swinining. They had the advantage of not having to remain bal-
anced as is usnal for walking robots, and it is not clear how they would have perforied
if that had been what was evolved: but they are the most visually impressive result of

this general approach.

2.2.5 Vertebrate locomotion and development

Meanwhile, zoologists have been looking for common ground between different animals

when w:\lking_.;,‘ examining which eriteria appear to be being optimised, and how loco-

3 for a g
® see Koza (1992).

ral review of this, see Kodjabachian and Meyer (1993), but also see next chapter.

2.2, RECENT DEVELOPMENTS 14

motion in vertebrates has developed over time. They call this first problem the inverse

optimality problemn — f.e. what was being optimised to produce this?

Alexander has written extensively about locomotion: in (Alexander, 1984) he Jooks at
locomotion in reptiles, birds and manmmals. He coneludes that locomotion with a sim-
ilar Froude munber (a dimensionless measure: speed? [(gravity s hipheight)) produces
dynamically similar movements in general right across different species (001 walk, |
trot/pace, 2-3 asyimmetric). He also looks at the inverse optimality problem, and con-
cludes that for turtles displacement (e, roll, ete.) is minimised. but Innnans minimise
work, Tendon elasticity helps in this regard by storing strain energy rather than al-
lowing it to he dissipated as heat. In (Alexander. 1990) he proposes the use of springs
in robots to replace tendons in their job of minimising energy loss, and also on the feet
to soften impact slightly to reduce ‘chattering” and henee improve grip, In (Alexander,
1991) he looks at how energy is saved in terrestrial locomotion, through tendons, hut
also through aligning joints to minimise the amonnt of work that has to be done and

the mnount of conflict between museles.

Eiln (1995) studies how movements chiamge both across species and duving ontogeny
(development i individuals of one species). and points ont that there is the smne
consistent. progression in each from shimple lateral movements of the trank, to use of

limbs, through to vertical movements of the trank.

Work being done on development of locomotion includes that by Vaal of al. (1995).
who detail a veseareh agenda for studying lhiman locomotion and gaining msights into
its development. They claim that very little work has been done on the ontogeny of
locomotion, and they want to identify the crucial subsystems and their interactions, and
how these develop to produce an adult locomotory pattern. They discuss CPGs and
the iimportance of feedback. and then move on to the development of walking, starting
with precursors like reflex stepping going right through to integrated walking. Unlike
most anthors, they disapprove of the concept of optimality eriteria as they consider
them arbitrary, and believe the introduction of functionality constraints should be
sufficient, namely that walking must work in a wide variety of situations. They also
mention the usefuluess of using muscles when modelling locomotion. as they elaim that

such models have inherently better stability properties than force control for joints.

20 CHAPTER 2. WALKING RESEARCH

van Soest and van Galen (1995) look at how animals reduce redundancy probleins in
multi-joint movements by imposing constraints. They divide these into physical and
self-imposed constraints (they believe the latter are imposed specitically to help solve
the problem). And finally, Assaiante and Ambland (1995) look at the ontogeny of

bialanee control.

2.2.6 Functional Neuromuscular Stimulation

One of the most exciting developments recently has been work done to restore the abil-
ity to walk to paralysed patients by electrically stimmlating their muscles (e.g. Marsolais
and Kobetic, 1983), Rescarch done by Yamapuchi recently shows that penerating the
appropriate patterns for walking is essential for optimal use of museles which have heen
weakened by the paralysis, and that ankles are a particular weak spot which might well

benefit from some kind of orthesis (Yamaguchi and Zajac, 1990).

2.3 Where are we now?

W Live nowe looked at reseanch up to tlie present li;i)'. and i this section we shall look
at the connnercial produets which have come ont of this, and at what ongoing research

uses legeed robots,

2.3.1 Commercial robots

In recent years various projects have been proposed for which walking robots would
be “invaluable’. However, the number which have actually been built and used for

anything other than walking research is much more limited.

Walking machines have long been proposed for travel over rough tervain that even -
a tracked vehicle could not navigate, and for dangerous environments where human

woulid be at risk.

To that end, Dante and Dante 1T were designed to descend into voleanoes to study
conditions in an environmnent too dangerous for humans and too rough for other robots

(Wettergreen et al., 1993). They were not unqualified suceesses. Dante 11 was the more

2.3. WHERE ARE WE NOW? 21

successful of the two. It was an extremely stable cight legged robot which moved slowly
down into Mount Spurr in Alaska. Unfortunately on its way back the gronnd collapsed

undler it. and it was not able to cope and had to be airlifted back out.

NERO was a climbing robot funded by Nuclear Eleetrie in Britain and designed for
work on a nuclear reactor pressure vessel where hinmans have huge safety problems
(Luk et al., 1994). It was designed to elimb the outside walls of the pressure vessel and
inspect its condition. elean it or even install equipment on it. but was too light too do
heavy work. It had drawbacks (it travelled at oo speed of 001 /i, and had to be
placed on the wall of the pressure vessel, it couldn’t walk there), hut it was successfully
used for these purposes. Nuclear Electrie together with Electricité de Franee, CERN
and the Italian clectricity board then funded work on a next generation of climbing
robots which would be more versatile, stronger, and capable of walking to the reactor
vessel and performing the Hoor to wall transition itself (called Robug, see Luk et al.,
199:3). but there have heen problems getting these to work to specitication (for instanee

Robug I11 is too heavy to support its own weight for long when elimbing).

Other conmmereial robots inchude a0 “walking havvester” built by PlusTeeh Oy, i
Finland (sce Plusteeh Oy, Finland). This robot has been bnile to veplace wheeled
vehicles for forestry work as it doesn't damage the gronnd and henee minimises the
risk of soil crosion on steep slopes. It also has a high and variable gronnd clearance
e so can move over obstacles which wonld Block wost other vehicles: Tt is deiven by

adriver ina cabin on top of the robot,

Muech more recently some Japanese finns have comne into the market. Honda recently
revealed their biped robot (which they have heen working on for many years), This
can walk semi-autonomously or be teleoperated and can carry out simple tasks (Honda
Motor Company Ltd., Tokyo). This is a very impressive robot, and presumably further

developments will come from them in the future,

In a completely different ficld, Sony have now released their robot puppy, Aibo (Sony
Corporation, 1999), which is being marketed as a toy. This can perforn a variety of
stereotyped actions like rolling over and standing on its hind legs and boxing the air,

as well as being remote controlled by its owner.

22 CHAPTER 2. WALKING RESEARCH

Some other fun robots, which are currently being finished, are the walking dinosaurs
being constructed for use inomusewns round Europe. The project is called Palaiomation

and is funded by the EUT

2.3.2 Research Robotics

There is a lot of rescarch currently studying the problems of coping with difficult ter-
rain, and avoiding falling and recovering afterwards. For instance, Boone and Hodgins

ntly been looking at how bipeds can recover from slipping or tripping (Boone

hiave ree
and Hodgins, 1995, 1997) despite having little information about what is going wrong.
Yoneda et al. (1996) have built a robot (Titan VI) capable of travelling at a reasonable
specd on Hat gronnd (over 2 mph). but which can move over obstacles, and of course
Honda's robot (Honda Motor Company Ltd., Tokyo) can walk up and down steps and

avoid obstacles very effectively at a fairly slow speed.

2.3.3 Modelling humans and other animals

The other area where legged robots are being used is inomodelling work, examuining
how animals move by modelling them in siimulation (or sometimes on robots). and also

just modelling their hehaviours to create nnpressive graphies for filins.

Maodelling voughly divides itself hetween creating computer graphics and simulating
real locomotion. In the former. animating robots, people and animals is becoming more
involved with simulation as the computational expense of doing the extra modelling
becomes less important and technignes become more sophisticated. In the latter,
sinmlating real animal and human locomotion helps us gain insight into how control

of movement happens in the body and provides a source of ideas for robot controllers.

Simulating human and animal locomotion

Roboticists have collaborated a great deal with zoologists looking at the energetics and
common prineiples of locomotion, as well as with neuroscientists, and with ethologists

studyimng annnal behaviour.

? Brite/Euram Craft CR 1651

2.3. WHERE ARE WE NOW? 23

Grillner and colleagues did some very careful modelling of CPGs in lampreys to see
whether what they found could explain the behavionr they saw (it could). The sim-
ulation work is deseribed by Ekeberg (1993). Other work includes that by Cruse ad
others at Biclefeld in modelling stick inseets using a real vobot (Cruse ef ol 1995), and
comparing its behaviour to their neural network based model of the insect controller;
Taga (1995) has looked at how using a sufficiently sophisticated nearal model can al-
low behaviour which ean be guantitatively compared to hmnan locomotion to emerge
on a simple simulated biped: and Lewis (1996) has looked at how the transition from
swimming to primitive walking gaits may have oceurred using real and simmlated robot

models.

Rescarch in Edinburgh has examined CPGs to see how well they can be modelled
artificially for controlling swinmning movements (Ijspeert et el 1997), and simulating
a variety of legged robots to see what general principles can be used to build controllers

for them (Reeve, 1999a).

One new clement may be work on Functional Neuromusenlar Stimulation, where re-
searchers like Yamnaguehi and Zajace (1990) adinit that their earrent wmethods for se-
lecting stimulation patterns to create gaits in paraplegic subjects are definitely sub-
optimal. It s quite possible that this biomechanies work ean be combined with artificial
intelligenee optimisation technigues, which are alveady applied to designing controllers

for walking robots, to improve the efficacy of this technigue.

Humnan modelling has become an attractive target, and several people have investigated
it. For example, Hodgins has simulated a 30 degrees of freedom hnnnanoid fgare, and
got it to run in a fairly biomechanically aceurate fashion (Hodgins, 1996). Playter has
looked at gymuastics, and has modelled different manoenvres to see how stable they
are, and cxplore the best way of stabilising them (Playter, 1994). He even managed
to get a unpowered robot to do a layout somersault! Jalies and others at Ohio State
University have started investigations into dancing with a simple planar model of a
biped, examining how to keep track of the rhythmm of the music and move the body in

time with it (Jalics et al., 1997).

24 CHAPTER 2. WALKING RESEARCH

Modelling creature dynamics

This is moving more towards modelling for the fun of it, and much work has been
done in this field (Jurassic Park for instance!). Until recently most graphics for ganes
ane filis were produced using kinematic techniques, and simulation has been largely
ignored as a waste of time, especially as the results were much cruder than could
be achieved by kinematie techniques. However, researchers are beginming to realise
that it is no longer quite so time conswming, and work has been done to combine the
technigues, tuning gaits which were ereated in other ways in a simulator so that they
are dynamically plausible, with the expectation that this will improve the appearance
of the movement (e.g. van de Panne, 1996). Work like (Ko and Badler, 1996) looks
at how to generate the right movements to stay stable whilst also maintaining the
realistic gait produced by the animation, a erucial point as the gait produced must be

pereeived as a normal walking pattern for it to be useful for their purposes.

2.4 Conclusions

There are many aveas wheve an automated process for designing controllers for legged
bodies would be very useful. These include such diverse uses as producing helievable
wilking in computer graphics applications and virtual reality, modelling human loco-
motion to develop activation patterns for Funetional Nenrommseular Stinmmlation, as
well as the more obvious application of making the choice of using walking robots, for
any task, that much more practical and straightforward (consider that the designers of
Dante 11, who are planning on landing the first private expedition on the Moon in the
near future, have decided to use a wheeled robot for the task). In the next chapter we

will look at the methods which could be used to automatically build such controllers.

Chapter 3

Neural Networks

Iu the last chapter we looked at the history and state of the art in walking research,
and we concluded that a method for antomatically generating low-level controllers for
legged robots would be very useful for the development of the field. Now we will

examine the kind of methods which are appropriate for this task.

3.1 Building controllers

We will look at what kind of controllers are appropriate for this problem and then at
what generation methods may be feasible for these controllers: we will then assess
variety of systems against the eriteria we have produeed and select those which seem

the most appropriate for further investigation,

3.1.1 Types of controllers

Generating controllers for legged robots is a difficult task, but several points are clear:

e There is a lot of symunetry in robot design, and identical joints are used in
more than one place on any given robot (e.g. the hindlimbs of a robot are alinost
invariably mirror images of cach other). Consequently an ideal controller is likely
to be highly degenerate, and any method for building coutrollers should take

account of this.
o In vertebrates, control of the legs to generate a basic walking pattern is a function

25

26

CHAPTER 3. NEURAL NETWORKS

of the spinal cord, where Central Pattern Generators actively alter the dynamics
of the legs through the muscles to ereate a new dynamical system where walking
is a stable attractor (Grillner, 1985); this creates a walking animal which is in
turn controlled by the higher centres in the brain, Becanse there is o detailed
understanding of Central pattern Generator (CPG) control of locomotion (see
Section 2.2.2), it would be possible to transfer a lot of knowledge from neur-
oseience into a controller like this for walking robots. A basic requireinent. for
this is a basic building block with its own continnous dynamics like nearones' in

animals.

Artificial Neural Networks (NNs) are used for control in a broad range of walk-
ing rohots (sce Section 2.2.4 for examples). and indeed throughout robotics and
even in control engineering (e.g. Narendra and Parthasarathy, 1989): because of
this they are a very well researched computational system and there are a large
number of methods available for training themn. Although most neurons used in
these ficlds do not have their own internal dynamics, some are particularly de-
signed with this is wind, and so would be appropriate for this kind of task (e.q.
Wallén et al., 1992; Taga et al., 1991: Beer and Gallagher, 1992: Kodjabachian
and Meyer, 1998)

For these reasons we will use Neural Networks as controllers for our walking robots,

Two issues now arise: what kind of neurons to use in the network, and how to train

them.

3.1.2 Types of Neurons

Traditionally, neurons in Artificial Intelligence have been idealised for the sake of math-

catical tractability to produce threshold and sigmoidal nearons, where the output of

a nenron Sy s a simple function of its inputs: the sigmoidal neuron, for instance, is

governed by the following equation:

' I refer to biological neurones and artificial neurons throughout this thesis.

4.1. BUILDING CONTROLLERS 27

"

vy o= Z'UJ‘SJ (.'f.].}
=
1
5 = — 1.2
R R (3:2)

where: wy; is the weight connecting neuron 3 to neuron ¢, and
yi is the internal state of neuron 1
The analytical tractability of this model has made it particularly casy to train feed-
forward networks using gradient descent algorithis like backpropagation (Rumelhart
and MceClelland, 1986) or more sophisticated ones such as conjugate gradient descent
(Bishop, 1995, ¢h.7), and indeed they have been used in the past for control of inseet-
like walking robots. However, neural networks based on this have no internal state or
continuons dynamics, and training recurrent networks (which could otfer some kind of
memory indirectly) is much more difficult, and so they may not be appropriate for the

task of altering the dynamies of the legged robot to make walking a stable attractor.

Many other neural models exist with continuous dyumnics, however, and they are
capable of amuch vicher variety of activation patterns than these stateless nowrons.
For instance Continmons Time Recurrent Neural Networks (CTRNNs) were devised
by Beer (1995) (adthough they are based on the conmnon leaky integrator madel) for
exactly this purpose. as controllers for a (statically stable) walking robot: indecd. they
were chosen for this by Beer precisely because they showed a much nicher behaviour

than discrete nearons — they are governed by the following equations:

dy, - i
r,d—‘r’; = -y +Zw‘,,5} (3.3)
j=1
: 1 ;
S = W T (3.1)

where: ¢ is a bias term, and throughout these eguations
7, is the adaptation rate of the neuron
This neural model is governed by a simple first order differential equation but is non-
etheless capable of a surprisingly rich variety of behaviours when conneeted in a net-

work (ibid.). However, we can see that in the spechic case where 7 = 1/6t, 6t being

28 CHAPTER 3. NEURAL NETWORKS

the timestep of the integration, we get the saine behaviour as for the sigmoidal neuron,
ane indeed in general these are a continuous time version of the sigmoidal nearons

above. More complicated models exist, including this one from Taga (1995):

du,

‘r.T = —u; — ffmax(0,v;) + Z w;i S + uy (3.5)

dt s

L dv ; o

T;Ttl = - +5; (3.6)
Si = max{0,u;) (3.7)

where: u; and v, are the internal state of neuron i

Again this is a fairly simple neural model, governed by two coupled first order differ-
ential equations (efectively a second order ODE, and so capable of more interesting
behaviour like oscillations), and again it has been used for control of a walking robot.,
this time a dynanically stable but two dimensional biped: indeed, stable walking was
achicved. so this seems to be a promising model. Auother step in this direction is a

model by Wallén et al. (1992), described below:

l'rl 7 .
PEL o e 3w, (35)
JE¥ 4
h”léa_ - a0
7 Crl =& + Z w;; 8 (3.9)
JEW-
L (3.10)
dt
S, = max(0,1 — O — & — pifi) (3.11)

whoere: {‘* and @ are the internal state of neuron 4, and
Wy is the set of all excitatory (inhibitory) inputs, and
I’y and g, are bias terms.

This is a third order model, and has an even richer behavioural repertoire, with in-
dividual neurons being capable of a variety of different oscillatory responses to tonic

excitation. Indeed neurons of this type were successfully used to model the CPGs in a

3.1. BUILDING CONTROLLERS 29

lamprey spinal cord in an investigation of the neuronal networks controlling swinnming

(ibid.).

Many other increasingly sophisticated neural models exist, including extremely realistic
multi-compartimental models, but these are likely to be too computationally intensive
for use in this project. Owerall, it is unclear which neural model will be the most
effective: all except the last have been used for this type of task before, but the ability
of neurons to generate a greater range of behaviours individually seems useful, and so

we will investigate them all in our experiments.

3.1.3 Methods for training Neural Network controllers

In order to make a NN controller, or indecd any other controller, we must first define
how the controlled systemn should behave, This means that we know in advance what
we want the NN to do, so we can use a supervised learning algorithmn to teach it In
cases where we know gquantitatively what is required we may be able to use inductive
learning with a gradient-descent type algorithm such as Backpropagation (Rumelhart
and MeCleland, 1986) which will allow us to train the network very offectively. Un-
fortunately, for a task such as walking there is no defimtively correct answer for the
guestion of how to walk (or at least not one that we can detennine). so we have to rely
on more gqualitative measures: for instance a robot might be jundged according to how
far it travels whilst keeping its body off the ground, or how little energy it expends to

move a certain distance.

This more difficult problemn requires a reward based approach, like Reinforeement
Learning where NNs are trained by allocating blaine when something goes wrong,.
and rewarding correct actions (Sutton and Barto, 1998). One difficulty with this type
of approach is to determine which part of controller is doing well or badly, and hence
which to reward or punish — this is the Credit Assignment Problem (ibid.). There
arce many different solutions to this, but one which is useful for particularly intractable
cases are the family of reward based approaches collectively known as Evolutionary
Algorithims?. These avoid the credit assignment problem altogether by dealing with

populations of controllers, and rewarding or punishing individuals as a whole rather

? see Goldberg (1989); Koza (1992) for example.

30 CHAPTER 3. NEURAL NETWORKS

than the more common approach of dealing with a single individual and assigning
eredit to its components. They are by definition a cruder technique than than either
Inductive or Reinforcement Learning, but in this case they offer the only practical

solution, and so it is these which we shall use in our experiments.

Evolutionary Neural Networks

The common thread running through all of these methods s that they use Genetie
Algorithms (or a relative such as Genetie Programming) with some encoding of a NN
as the genotype to evolve the desived NN These NNs are then tested for suitability
and wore individuals are ereated from the most able genotypes whilst the least able

are discarded.

The genotypes can encode cither or both of the architecture and the weights of the
network. Those that do not encode the weights have to learn them separately however,
and since this will require another learning technigue, typically a gradient-descent type
method, and since we have already said that this is inappropriate for the problem we
are tackling here, we will only concern ourselves with those genotypes which at least
encode the weights of the network. Those that do not encode the architecture st rely
on it being fixed, for instance as a fully connected recurrent network, or as a specifie

hand-crafted layout. We will discuss the advantages and disadvantages of this later.

3.1.4 Selection criteria

There are many criteria which shonld be considered in choosing an encoding for the

NN controllers:

Reusability As was mentioned above, it is clearly desirable for one leg of a robot to
be controlled in a similar or indeed identical fashion to another leg of the sane
robot, so it should be possible for subnetworks to be reused in different parts of
the controller to avoid wasted effort building different subnetworks to achieve the

same task.

Modularity In animals we know that CPGs are associated with individual muscles

and joints and limbs, and are tightly coupled to the sensors and muscles which

3.2. EVOLUTIONARY NEURAL NETWORKS 31

they control. In our rebots it is reasonable that there should be wmore direct
conneetions between sensors and actuators on the sane joint than with anything
else. This can easily be achieved for instance by assiguing CPGs to joints aud
making more local connections (inside CPGs and to local sensors and actuators)
than distal connections (to other joints or limbs). This might also be desirable
in our controllers because it would tie in well with the previous item, providing

modules which can be casily reused.

Bias It is incevitable that any encoding will show bias towards certain types of network
— it should be possible to examine the kind of networks which are likely to he cre-
ated and eliminate or alter those encodings which tend to produce configurations

which are unlikely to succeed.

Chromosome Size The space to be explored increases exponentially with the size
of the chromosome. thus potentially making the problem wneh harder, so more

compact encodings may be more desirable than larger ones.

Completeness Some encoding schemes are not complete (e, there are networks
which cainmot be encoded). and it is possible that the solution reguived is one
of these networks. so in the absence of other considerations this should be tiaken

into account,

We will now examine a varicety of encodings and consider how they stand up to these

criteria.

3.2 Evolutionary Neural Networks

There are many ways of evolving nearal networks, but the most significant difference
between different methods lies in how the NN s encoded into the genotype. There
are basically two ways of doing this — dircetly, so that every weight and connection
in the NN is recorded explictly in the chromosome (and the subset of these where
the network architecture is fixed, and only the weights are recorded), and indirectly,
where cormmonly some granmar or developmental rules are used to translate from the

chromosome to the NN. Many of these latter are production rule systems where each

32 CHAPTER 3. NEURAL NETWORKS

rule describes what one symbol (the left hand side) becomes after another develop-
mental step (for instance two new symbols). This goes on, depending on the system,
until all the symbols are terminal symbols (1.e. neurons or connections), or for a fixed
nunber of steps, after which all the symbols are translated into terminals according
to some separate translation scheme. The latter encodings are often called L-systems,
ninned after Lindewmneyer, a biologist who first used themn to describe the development

of artificial plants (Lindemmneyer, 1968).

Both types of encoding have problems — Direct encoding methods sutfer for two main

TUASONE:

Modularity and Reusability Groups of neurons (subnetworks) which have a useful
function are likely to be spread across the whole chromosome, so crossover will
tend to break them up; also because each connection and weight is recorded
separately, when a useful submetwork does form, there is usually no inechanisin

for duplicating it when the problem is degenerate.

Chromosome Size DBecanse every weight and connection is recorded separately. the
chromosomes become impractically long: s neurons reguire 1w weights if they

are fully conmected, and these weights are often real numbers.

This first problem would be extremely serious for my purposes, because as we have
said before, these are primary considerations: also as we discussed in Section 3.1.1, the
solution is likely to be highly degenerate. The chromosome size may also be a problem,
duce to practical time constraints. If we are to use a direct encoding, we must therefore
come up with a solution which at least gets around these problems of modularity and
reusability. Indirect encodings tend to be designed specifically to avoid these problems

(though some still suffer from the first). As a result other problems oceur:
Completeness Some of the encoding schemes are not complete, and networks which
are not representable might be better than those which are.

Bias Even schemes which are complete bias the networks greatly in one direction or

another: after all they contain exactly the same information when they have been

3.2, EVOLUTIONARY NEURAL NETWORKS 33

decoded as the direet schemes, so there would be no advantage in using them
if they did not do something extra such as make it easier to encode modular
networks. Generally the bias is towards some kind of regular structure to the
network. but whatever it is, it may be just as damaging as incompleteness if the

optimal structure becomes very difficult to express.

These seem on the whole to be less serious problems, but it is clearly very important
to choose the vight encoding scheme for the problem to be solved, sinee what is a good

scheme for one problem may ake another impossible to solve.

3.2.1 Direct Encodings

Fixed Architectures

There are several. mostly old, experiments which have been done with fixed architee-
tures. They tend to try to solve very simple problemns such as XOR and n-hit adders,
for instance those by Whitley and Hanson (1989). An example of a fixed architecture
encoding is shown in Figure 3.1, They were found to be faster than Backpropagation
for large NN problems at that time, but the architecture does have to be hand-coded,
which is a problem. This scems to be a very primitive solution, and suffers from
problems of reusability, wmodularity and chiromosome size, and bias towards massively
interconmected networks inits wost primitive form (a0 folly conmected network): hows-
ever, if it were possible to antomatically generate an appropriate architecture there is
no reason why this should not work. This transfers the problem to one of generating
a network architecture which is modular and involves reuse of subnets: we will diseuss

this shortly.

a
0
0021001300010000——>= g

Chromosome

Weight matrix

Newral Network

Figure 3.1: A standard direet fixed architecture encoding,

De Garis evolved controllers for a simulated legged robot (LIZZY) by designing control

34 CHAPTER 3. NEURAL NETWORKS

structures by hand, and then evolving the conmections of sinall parts of themn to achieve
desired subtasks (de Garis, 1990a.b). This avoids a lot of the issues discussed here
through detailed hand design. but this would not he possible for a general purpose

system for arbitrary robots.

One more sophisticated fixed architecture NN was developed by Lewis, Fagg and
Solidum — it was a controller for a real hexapod robot which was evolved by Staged
Evolution (Lewis ef al., 1992). Staged Evolution involves intermediate products being
evolved on the way to the desired goal: in this case first the weights for a 2-neuron
oscillator were evolved, then one was put on cach joint of the robot, and then the inter-
Joint conmections were evolved to make the leg move correctly, and then the inter-leg
connections were evolved to make the legs coordinate properly. This was fine for the
problem of generating a controller for this particular robot, solving all of the problems
mentioned above at a stroke, but it involved a detailed knowledge of exactly how a

joint or a leg should wmove, which will not be known in the general case.

The connnon thread mmong these more sophisticated solutions is that considerable work
went into hand-coding the architectme of the networks so that it wonld be possible to
evolve the appropriate controller. This is a fatal disadvantage for our task: it velies on
work heing carried ont on cach robot to determine, nsually by trial and ervor. what
the best design for this particnlar network would be: this is something we are explicitly

trving to avoid, and so it will not provide the general purpose tool we desire,

However, it may be possible to take some of the ideas from this and put themn iuto
a more general framework: what we require is knowledge about the robot itself to
determine the architecture for the network, This approach is used by Kodjabachian
and Meyer (1998), where he uses information about the design of the robot to caleulate
on the structure of the network. However, if we can extract this information from the
deseription we are given of the robot antomatically (e.g. from the simulator description
of a robot being modelled), then we may be able to generate a network which reuses, for
instance, the same subnetworks on cach leg of the robot, or only connects small groups
of nenrons to each sensor/actuator pair, without reguiring the user to have detailed
knowledge of how the system works. This would potentially eliminate the problems

of reusability and modularity which we have discussed, and because we would still

3.2. EVOLUTIONARY NEURAL NETWORKS 45

be producing complete controllers, it would avoid problemns we discussed with staged

evolution.

Variable Architectures

A lot of direct encodings with variable architectures only encode the architecture and
not the weights, in a very similar fashion to figure 3.1 but using connection matrices
with 0's and 1's for no connection and learnable connection respectively instead of
weight matrices. For instance Miller ef al. (1989) nse i GA to evolve the architecture
and then Backpropagation to learn the weights. Unfortunately, as we have already said,
we cannot use this, but there are several which learn both architecture and weights

(though many have a fixed network size).

Maniezzo (1994) manages a direct encoding of architecture and weights in the simplest
way possible by combining the two previous techniques (see Figure 3.2) with each
position on the chromosome containing a conmection bit to say whether the link exists
as well as a weight for it if it does. As with previous technigues there is no way for
subnietworks to retain theie integrity or to be vensed, and the network size s bxed
This a very similar case to the fixed architectures, and suffers from the sane problems.
However, it may be possible to use the same technique of antomatically decomposing

the problem to foree rense of components to avoid some of these ditfieulties.

Connection bit Weight abcd
2

00001201 101001 1310001011 00001010 ——»0 0 3

Chromosome 0 01

0

Weight Matrix

Neural Network

Figure 3.2: Maniezzo's weight and connection encoding

36 CHAPTER 3. NEURAL NETWORKS

Torreele, on the other hand, has a relative connection structure which could allow
reuse of subnets — the neurons are ordered on a grid and connections are allowed
to a (prespecified) sct of neighbours (Torreele, 1991). Each neuron has an associated
bit string which determines whether conmections exist, and if so, whether they excite
or inhibit. Because the addressing is relative subnets can be reused by copying to a
different position on the grid (although Toreele has no mechanisin for achieving this).
However, there are strong restrictions on the conmectivity imposed by the encoding —
there can be no long distance connections — which may cause problems. Although
this seems superficially to be biased towards the kind of networks we are interested in
(locally connected neurons, some possibility of reuse of subnets), the impossibility of
distal conmections make it a very incomplete encoding, and as it is a distinct possibility
that some loug distanee connections may be very useful in locomotion (e.g. in bipeds
it is important not to bend one knee when the other leg is off the ground), this is too

Hl'rillll,‘i Ly II\’(‘.I'll nw Ik.

Collins and Jefferson take another approach and treat the conunection as the basic
clement rather than the neuron, and divectly encode them in the form From:a To:e
Weight:- £ which they eall K connection descriptors (Collins and Jetferson, 1990). This
has the potential to be the first of these techniques to hive a variable nmmber of
nenrons, by allowing the connections freedom to mutate out from their original limits
for instanee: however, they do not take advintage of this. and indeed even keep the
munber of conmections ixed as well so that they can use straightforward crossover.
The vesult of these decisions is that the architecture is guite badly constrained, but
this is not necessary. An advantage of this encoding in general is that subnets can
be encoded in very short strings and thus are less likely to be broken up by crossover.
However, there are disadvantages — it is still not possible to reuse subnets, and because
there is no physical location on the chromosome for any particular neuron, it is likely
that different chromosomes will have the sane nodes’ connections in different places.
s0 even if a subnet remains intact there is a much greater chance of interference with
its operation during crossover from other connections being added. This is caused
partly by the massive redundancy in the encoding which is on top of the competing
conventions problem already inherent in NNs (several different networks can have the

same structure by just changing which node has which name).

3.2, EVOLUTIONARY NEURAL NETWORKS 37

However, Wicland has evolved pole-balancing controllers (including multiple and join-
ted poles) using exactly this technique, at least some of the time with considerable
snecess (Wieland, 1991). He also considered the 2-legged walker as an extension of the

jointed pole. bt unfortunately only had limited results.

Angeline uses a very different approach in (Angeline et al., 1993: Angeline, 1993) to
evolve reeumrrent neural networks, He uses mutation alone in a quasi-Simulated An-
neading techmique he calls GNARL. Since only mutation is nsed encoding is almost
irrelevant. beeause changes are done all the time on the phenotype itself. Various dif-
ferent mutation operators ave used (weight change, conmection addition fremoval, node
addition/removal), the severity of which depends on the temperature which cools as
the fitness increases. Some of the operators are shown in Figure 3.3, The technique is
also closely related to coustructive/destructive NN algoritlons but claims superiority
over them beeanse they are monotonie. only allowing 1 neuron to be added or removed
at o time, whereas his can do many —— the advantage of this is that it can get ont of
deeper local minima (in the same way as Simulated Aoncaling). It was found to be
effective on a variety of problemns. Overall the technigue avoids the problem of losing
subnets by not allowing crossover, and s complete with regard to network avchitee-
tures. allowing any mnnber of nodes/connections (although von can bias the starting
population), but again it cannot reuse existing subnets. However, with the systemn

disenssed in section 3.2.1 to foree reuse of commpouents, this could be very promnising

Uteeht and Trint (1994) deseribe and compare a variety of other imutation operators

which could perhaps be used in this method to enhanee it further.

3.2.2 Indirect Encodings

For the most part the indirect encodings contain both the architecture and the weights,
but, as with fixed encodings, some of them use Backpropagation to learn the weights:
for instance Harp, Samad and Guha use “Blucprints” in (Harp et al., 1989), and Boers
and Kuiper use an L-system to develop the architecture in (Boers and Kuiper, 1992

Boers et al., 1993).

However, most indireet encodings do encode both, using generally either a grammmar

18 CHAPTER 3. NEURAL NETWORKS

Add node(s)

(or delete) O
>
& Oe/e
o e -
[=] 0;)
8 e, .
2 c"fo
& s
)
=2

Figure 3.3: A network in the GNARL encoding and the effects of some mutation
operators

or developmental encoding of some form, 1 shall go onto those after 1 have described

another technigue which is less popular.

Fulhmer and Miikulainen used a Marker-based encoding scheme (Fulliner and Miiku-
lainen, 1991), loosely based on the warker structure of biological DNA. Each node has
a key with which it is associated, and a series of other keys which it is conmected to
(or the closest mateh if that key is not present) — each of these keys has a weight as-
sociated with it; this allows arbitrary networks to be deseribed. The markers referred
to are start and end markers on the chromosomes which border the seginents where
nenrons are defined. In other words there is no fixed point where the neuron definitions

are, and there is even unused genetic material between end and start markers

The rest of the encoding can however be separated fron these markers, and Michel and
Biondi have done just that in proposing a very similar scheme with a more straight-
forward chromosomal representation (Michel and Biondi, 1995a.b) which is inspired
by protein synthesis regulation. Each node now has a set of signals with which it

is associated and inhibitor and activator signals which will connect to it if they are

3.2, EVOLUTIONARY NEURAL NETWORKS 39

produced. The connection weights are now only £1 and neurons can have a greater
varicty of inputs as they can have more than one input signal, but otherwise it is very
similar. Neither of these methods have any possibility of reusing subnets because the
kevs/signals would all have to be changed if the new network were to not interfere with

the old.

These two techniques have exactly the same expressive powers as GNARL, described
in the previons section, but are much more complicated. The advantages they elaim
are in robustuess under crossover, which GNARL does not employ, but it is unclear

whether their results justify the increased cHort in using them.

A suceessor of this approach which is at the same time very different is the symbiotic
evolution approach by Moriarty and Miikulainen called SANE — Symbiotic Adaptive
Neuro-Evolution (Moriarty and Miikulainen, 1994). Here labels (keys again) determine
the conmectivity, but cach chiromosome represents only one neuron, and collections of
chromosomes are put together at randomn to form a network to be tested for fitness.
This very cleverly stops convergence on the gene pool, since diversity is essential as a
variety of different nenrons are needed to make an eHective nearal network,. However,
the experiments done with it were on feedforward NNs with only one hidden Layer, so
individual nenrons conld realistically have separate domains of expertise: it is dithealt
to see how the experiment could be expanded to multi-layer or recurrent neural nets

as it stands hecinse few neurons in these nets can be of any use in and of themselves,

Development encodings and grammars

Mjolsness et al. (1987) and Kitano (1990) camne up independently with similar L-systemn
schemes: cach symbol produces a 2 # 2 matrix of symbols. This is iterated a number of
times until there is a 2% 2" matrix which is then translated by a separate mechanisin
into a weight matrix. Kitano calls this a graph L-system. This scheme tends to produee
extremely regular NN structures, and thus constraius the network a lot, although, if
there are enough symbols, the scheme could theoretically be complete. The process
is also highly epistatic and changing any of the rules is likely to change the fitness
significantly, because symnbols which appear carly control the eventual shape of very

large sections of the NN, and ones which occur late are likely to appear in a lot of

40 CHAPTER 3. NEURAL NETWORKS
places, and thus again change a large section of the networks.

Both Mjolsness and Sharp, and Kitano have sinee moved on from this to el more
complicated methods, both involving very sophisticated development schemes. The
tormer (Sharp et al, 1991) is still in this ficld. and mvolves a cell division process
which eventually produces neurons with individual state vectors which are much like
the keys above, and must be matched to make connections, but the latter (Kitano,
1995) is more computational neuroscience, with cell division oceurring according to
how high the metabolic rate is in the cell, axon growth determined by Nerve Growth

Factors, and many other equally complex effects.

These are all interesting ideas, although none of them produce bias in exactly the
divection desived for this control problem, they do solve problems of modularity and
rense, and so it is cotirely possible that a different L-system based grammar would be

capable of generating controllers for legged robaots.

Gruan has a grammar scheme based on Genetie Programming rather than GAs which
he calls cellular encoding since the rewriting process happens to cells rather than
svinbols (Grumu, 199 5 b). sd which he uses for feedforward hoolean® nenral networks.
I the nodel each cell has o copy of the chromosome which codes the process, and reads
it fronn o different position. The chromosome is a tree with ordered branches whose
nodes are labelled with instructions. The instructions act on a cell or an input to
the cell. Each step in the process involves a cell reading an instruction and moving
down the tree to the next node. The instructions can be for instance to divide, change
its links. or becomne a nearon. For example when a cell is given the instruction S

seguential division — it divides, with the frst child getting the input links, and
the second getting the output links from the mother cell, with a connection between
them. The nodes have (0, 1 or 2 branches depending on whether the command was to
niike i neuron. to alter an existing cell, or to divide into two cells, the branches being
followed by the new cells. In this fashion branches of the tree form mostly scparate
subnetworks and crossover can move themn about. Gruau also proposed using Koza's
ADFs (Koza, 1994) to reuse useful submets. This scems a very ingenious system, but

its tree structure makes it difficult to see how to get it to cope with recurrent neural

? Connection weights are 1

3.2, EVOLUTIONARY NEURAL NETWORKS 11

networks, and it is unclear that a boolean network will suffice for this problem. This
work is currently being extended by Rotaru-Varga (1999) to allow more modularity in

the networks.

Nolfi and Parisi also produce feedforward networks with their encoding method, but it
would be possible to make the system recurrent. It is based aronnd neurons which are
physically situated in two dimensions, and which then grow axons to connect to other
nearons which branch and lengthen all aceording to the instructions on the chirommosome
(Nolfi and Parisi. 1992, 1993 Nolfi et al.. 1994a.b: Nolfi and Parisi. 1995). In (Nolf
et al.. 1994a) they evolve controllers using this for antonomons (wheeled) robots first in
simulation and then on the actual robots with marked snecess. They have also added
a developmental encoding to this as well (Cangelosi et al., 1994), which allows the cells
to divide and migrate about the space whilst altering their parameters (e.g. axon shape
andd weights). This systemn is probably complete, and biases towards loeal connections.
In its oviginal form it did not allow the possibility of rense of submets, becanse the
position of every node would have to be altered; however. with the developmental
encoding this is now possible as a split of the original node which produced the submet
will produee two identical ones physically removed frone each other, Unfortunately it is
anextremely complex scheme, but it conld potentially he altered to generate desivable

network structnres.

Very recently work has been carvied out by Kodjabachian and Meyer (1998) which
extends Gruau's work to allow cells to grow in a space similar to Nolfi and Parisi's
This is a prowmising approach, and has been used to control statically stable walking in
two dimensions as well as higher level control including gradient following and obstacle
avoidanee. However, it would be very interesting to see how this approach conld deal

with the much more difficult problem of dynamically stable walking.

Finally Karl Shns had a more complicated development process which he used to
evolve various robots and their nervons systems (Sims, 1994a.b) to do jobs like walking,
swimming and jumnping. This process evolved the morphology of the robot as well as
the controller, and produced very immpressive simulation of robots erawling, swiniming,
and walking, with the bodies being more snake-like for swinnning, and legged for

walking. ete.. The nervous system was not in fact a straightforward nenral network,

12 CHAPTER 3. NEURAL NETWORKS

but rather contained a variety of different nodes including thresholds, integrators, and
oscillators amongst others. Each body part has a picee of the nervous system associated
with it so that changes in the morphology of the robot change the controller as well.
This teclimigue worked well, and some very entertaining virtual robots were evolved:
although none of themn were very conventional walkers (they tended to tumble and roll,
since this is casier to evolve), this provided a very impressive example of what should

be possibile.

This kindd of coevolutionary approach, whilst interesting, is not directly applicable to
the problems being solved here as we have fixed robots we wish to build controllers for.
However the idea of associating a part of the controller with cach joint is one which
accords well with our thinking on CPGs, and could be incorporated into the system
for automatically decomposing the problem which we have discussed before. As we
have said before this is the kind of approach used by Kodjabachian and Meyer (1998).

though in that paper the adaptation to the specific robot was done manally.

3.3 Summary

Becanse of constraints on the amount we know abont the details of walking, the most
appropriate wmethod for waining controllers for legged robots s a reward based ap-
proach, and we have chosen to use evolutionary algorithims to evolve nenral networks.

There are many diferent encodings, but the most appropriate to test seein to be:

o A simple divect encoding of weights, hoth fully connected and with the network
architecture determined by an automatic analysis of the structure of the robot

(which is deseribed in Section 5.2).

A direct encoding of the weights and architecture similar to above, but allowing
the connectivity to vary, perhaps favouring denser local conmections and sparser

distal connections.

An encoding similar to Angeline et al. (1993), adapted to allow reuse of subnet-
works as above. This will be useful as it is a complete encoding which will allow

us to see what kind of structures are uscful so that we can consider designing a

3.3. SUMMARY 43

more indirect encoding to produce these structures automatically. Its weakuess
of not allowing reusce of subnetworks is overcome by the automatic synunetry

which will be built into the system by the analysis of the robot.

We will also investigate a variety of different neural models to see which scemn most

appropriate for this task.

CHAPTER 3. NEURAL NETWORKS

Chapter 4

Architecture

In order to evolve the networks deseribed in the last chapter it was necessary to meas-
ure how well they were capable of controlling legged robots, There ae two possible
approaches to this — either run the controllers on a real robot and evaduate their of-
fectiveness in situ (as was done by Lewis ef al. 1992), or build a simmlator which will
mimic the behaviour of real or putative robots, and evaluate the performance of the
simulants in the expectation that this will approximate to that of the real robots (as

wias done by Nolfi et al.. 199 1a). There ave diawbacks to hoth positions— for instanee:
e Sinmlated robots can never be the exactly the sione as real robots, so vou never
get a truly acenrate picture of how your controllers would behave in the real

world.

But:

Real robots are expensive and fragile, needing constant maintenance and super-
vision, whereas simulations can run indefinitely with neither.

o There is an upper limit (in terms of both time and cost) on the mnnber of different
real robots it is possible to experiment with, but there are less problems with

computers to run simulations on.

This last point was crucial — since the aim is to build a system capable of generating

controllers for an arbitrary walking robot, it would be impossible to test this using

15

16 CHAPTER 4. ARCHITECTURE

actual physical robots, as only a very small number could be examined, whereas as
many compnter models as necessary can be devised. It is nonetheless a serious issue
that simulated robots cannot guarantee to behave in the same fashion as a real robot
should. However work by Nolli et al. (1994a) and more recently by Perkins (1999)
amongst others shows that controllers evolved in simulation can run effectively on real
robots: Nolfi compares this transition to nothing more than a change in environmment

for the robot.

As noresult it was detenmined that a full three dimensional dymaunic simulator should
be built with the ability to model as wide a range of legged robots as possible. To-
gether with this it was necessary to ereate a neural siimulator capable of modelling the
behaviour of reenrrent dynmnic nenral networks, and an evolutionary engine to evolve
the networks. These then formed the basis for all of the vescarch in this thesis, and this
chapter will deseribe the system which was built and such details of the nnplementation

AS AN NeCessary.

4.1 Design Criteria

The wost important part of the system from a computational viewpoint is the mech-
anical simulator; it was obvious from the very beginning that the vast majority of the

processar time would be spent heve, so optimising this was o fisst priority,

4.1.1 Mechanical simulator

Initially many different simulators were tested, from our own (Reeve, 1994 Reeve
and Hallam, 1995), which was implemented for another project based on work done
in Edinburgh by Featherstone (1984). to various other simulators written by other
roboties researchers and available on the web, However none of them were sufficiently
robust or efficient for our purposes. It soon became apparent that there were several

key eriteria would have to be satisfied. The dynamical simulator would have to:

e Lo a full three dimensional dynamic simulator. Otherwise real robots could not

be simulated effectively in the computer.

4.1. DESIGN CRITERIA 47

e be capable of easy extension to incorporate any clements which might be present

on a robot it was decided to model (e.g. a new type of joint motor).

o work as cfficiently as possible — sinee this module wonld do the bulk of the
processing in the final program, the faster it could ran the more experinnents it

wonild be possible to carry out.

e allow easy designing of and switching between different robot hodies.

Eventually the frmnework for a simulator based on the PLD work of MeMillan (1994)
was found, called DynaMechs, This satisfied all of the criteria as it could madel an
arbitrary tree shaped robot (i.e. no closed loops, see Figure 4.1 for examples) much
faster than any other system tested. It was also odular, casily extensible and free,
Work wis done to incorporate o new simple joint motor and sensor design into the
framework. and it was packaged in a simple interface which would allow it to be
replaced casily with a different sinulator at a later date if this proved desirable (for
instance for modelling lumans'). The simple language which was used to deseribe
robots was also expanded to allow further information to he entered about the robot

{an example file s shown in Appendix [01).

The new motor was direct drive. offering torque or foree control depending on the
joints A pavmneter in the motor definition in the vobot description file determined
the maxinmm torgue (or foree) individual motors could generate, and the motor was
controlled by a single input between +1 and -1, for maximum forward drive and max-
i reverse respectively. This made control by the nearal networks less comphieated

as they would not have to generate different ranges of values for different motors.

The new sensors were equally simple, producing outputs proportional to the joint
angles of the robots, but scaled to between 1 and -1 again, which were the front and
back joint limits respectively. This simplified the inputs to the nenral networks, as the
inputs would vary over a simple range similar to that of the neurons themselves, so
weights could be uniform across all connections. A further set of sensor connections,

provided for joints on the legs, gated the first sensor eadings depending on whethe

' See section 8.2 for details

18 CHAPTER 4. ARCHITECTURE

Tree shaped rohds (o clised lovps)

cdbs iy |
 E i =
I

o |
S D
T 11
T

Mo tre shaped robeols

Figure 4.1: Tree shaped robots

the fuot on that leg was touching the ground or not (producing a normal reading if they

were, and 0 if not), This was provided to give some information about foot contact.

The interface, which was implemented as a C4++ superclass of the mechanical and
nenral siimulator classes, specified a set of methods which allowed the details of the

specific simulator to be ignored. These are detailed in Appendix C.

4.1.2 Neural Simulator

The neural simulator was always an ecasier problem, but some factors were important

— it should:

e be modular to allow experimentation with a variety of different neural models.

e penmit easy replacement of one network configuration with another for repeated

experiments.

e be as cfficient as possible.

4.1. DESIGN CRITERIA 49

Examination of a few available neural network simulators showed that they tended
to be too general purpose for my needs, so a simple one was built, and packaged in
the same interface used for the mechanical siimulator, allowing new neural types to he

casily plugged in, but was otherwise as uncomplicated as possible.

4.1.3 Evolutionary Algorithm

As far as the Evolutionary Algorithim was concerned, the constraints were very straight-
forward. It should be as unrestrictive as possible, allowing any kind of population (e.g.
pamnictic, island, finegrained), selection eriteria (e.g. tournmnent, proportional, ete.),
andd crossover and mutation operators that might be desivable,

This proved very casy to satisfy as the Edinburgh Parallel Computing Centre had just
created exactly such a system. called RPL2. This had a built-in Basie-like inguage
in which reproductive plans were written, and libravies could be easily added to the
Language to add new encodings or operators as desived.

This then completed the design of the system, which is detailed in figuee 120

fRF;LZHIIE\'(:iulin"lmr)_r Algurilhtﬁ .Iangung_c |
! | |

I Neural encodings |
g _.m.l Eﬂl -lm\' (1 [‘l\‘INII\E ||ul!:mg~_ = >
o e <
Simulator \
l |
' |
[(|
| Neural simulator Mechanical simulator!|
| hased von Dynablechs I
I |
| Different neural models Different robot models |
M i g T — P e T e e

Figure 4.2: The basic program architecture

50 CHAPTER 4. ARCHITECTURE

4.2 Verification

It was iimportant to ensure that all of the components of the systein were working as

required This was done by testing each component separately and then in combination.

4.2.1 Mechanics

The mechamical simulator was difficult to validate as the caleulations it was performing

were extremely complex, so two approaches were taken:

1. Siwmple abjects (e.g. cubes) were dropped and thrown in the simulated world and
calculations were made to see what their trajectories should be. These were then

compared.

2. More complex segmented objects (e.g. snakes and legged robots) were dropped
and shaken. and visual observations were made to judge whether the simulated

hehaviour looked like the behaviour one would expect in the real world.

Although the latter scems a faivly unsatisfactory test. humans are in fact extremely
gouod at distinguishing natural behaviour from artificial, and it was surprisingly casy

to spot problemns with the siimulator when adding new components by this method.

4.2.2 Neurons

The neural simulator was relatively simple by comparison, and it was possible to con-
struct siimple nearal networks and send them to the simulator and compare the neural
activity to those generated by other methods. It is also the case that there was less
need for accuracy in these tests as it was sufficient that the networks produced sim-
ilar types of activations and that these were consistent between runs, as the layout of
the neurons should be altered by the genetic algorithin to whatever was specifically

required so long as they were capable of the right sorts of behaviour.

4.2. VERIFICATION 5l

4.2.3 Ewvolution

Little testing was required here as RPL2 is now a commmereial product, aod validation
was largely an excuse to familiarise ourselves with the software hy roining a variety
of standard optimisation problems and checking that RPL2 was capable of evolving,

solutions to thewm.

4.2.4 In Concert

Connecting up the various parts and testing then together involved writing the first
nenral encodings for the GAL In fact, the most validation work (which carried on
right through the experiments) went into checking the individual encodings and their
respective mutation and crossover operators and genotvpe to phenotype mappings.
This was done by examining individual chromosomes and checking that the decoding
of them into networks for the neural shimalator was corvect, and that erossover
mntation were ereating children that were derived correctly from their parents. An
exinnple of what information is passed back and forth in a typical experiment is shown

i Appendix 122

Having done this, it was possible to carry out simple GA runs. first exanining single
chromosomes. checking that the GA had extracted the correct information about the
robot to build appropriate controllers (e.g. mumber of actuated joints, sensors, ete.).
checking that the neural siinulator was building the correct networks, and then checking
that the commnunication between the mechanical simulator and the neural simulator
wits working correctly, with the outputs from the nenrons activating the motors and

the feedback from the joints coming back into the network as input.

Finally, the first experiments were carried out to check that the fitness of the phen-
otypes was being measured correctly and the GA was carrying out the selection and
breeding correctly to produce offspring from the fitter adults in the population. Re-

grettably these were not spectacularly successful at evolving walking controllers.

52
4.3

CHAFPTER 4. ARCHITECTURE

Summary

The simulation cuviromnent was constructed and validated to satisfy the following

constriints:

The mechanical simulator should be capable of accurately modelling the three di-
mensional dynamically stable movement of arbitrary legged robot (this is provided

by the DynaMechs simulation code)

It should be easy to transfer new robots to the simulation enviromnent (a simple
modelling language is used to deseribe robot in tenns of its components, which

is designed to be fairly intuitive).

It should be possible to expand the siimulation enviromment to allow for new
motors. sensors, and types of neurons, efe. if a new robot requires it (this is built

into DynaMechs and the neural simulator).

Having put a new robot into the simulator, it should be trivial to evolve con-
trollers for it (this is ensured by the GA and the nenral simulator querying the
mechanical siimulator divectly for information abont the robot instead of asking

the user).

It should be possible to replace any component of the envivomuent fairly pain-
lessly if this is necessary, for instance to siimulate a different type of environment
(all components are connected by a simple interface which should be casy to

implement on any replacainent compounent).

Chapter 5

Symmetric controllers and neural
models

In Chapter 3 we discussed the necessity of having degencrate controllers in onr robots,
so now we will consider how this will be implemented, and cheek that it really is
cffective by comparing results with those of a simpler implementation which does not

take advantage of syminetries in the robots.

We also disenssed the vaviety of different nemal models which it is possibile to imple-
ment, amd we will investigate these thoronghly to detenmine which will be the st

appropriate for the rest of onr experiments.

5.1 Experimental design and results

All of the experiments in this thesis are evolutionary runs amd as such the resalts are
stochastic in nature. Conscequently many repetitions of cach experiment have to be car-
ried out to get an accurate estimate of the efectiveness of any particular experimental
setup. One of the main factors Iiniting the nunber of repetitions of each experiment,
was the mmount of time available. Because of the complexity of the algorithms in-
volved, the dynamic and neural simulators could only run at 60-80% of real thme (1.e.
taking 1.2 to 1.7 scconds to generate 1 sceond of simulation). This was almost en-
tirely due to the mechanical simulator, although for very large heavily interconnected
networks, the neural simulator did begin to have a marginal effect. Experiments were

set up with 50 individuals per generation and 100 generations per experiment, and

53

54 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

it was determined by trial and error that about 5 seconds of simulated time was the
miniminn necessary to determine whether the simulant was performing satisfactorily
— if less time was allowed it was difficult to distinguish robots which had just thrown
themselves forward ina single movement from those which had actually developed a
repeating pattern of some kind. Likewise 50 individuals and 100 generations were the

winimumn found necessary to generally evolve as good controller as possible from the

8t
population. This was deternmined by the fact that the fittest iwember of the population
stopped improving significantly for a nmunber of generations, and while this is not con-
clusive, it indicated at least that further improvements were likely to take prohibitively
long. Even stopping at 100 generations meant that cach trial took alhmost 10 simulated
hours, or between 12 and 17 cpu hours. This severely limited the mumber of trials that

were possible for each expoeriment.

It was calculated during the experiments that 50 repetitions of each were sutficient to
pive statistically significant results in comparisons between most expernnents whilst
not being prohibitively slow (taking 25 to 35 ¢pu days). However, from a practical
point of view it is clear that this would be too long for an end user of the system
to wait for results, so o comparison was made hetween expected results from only
andd 9 repetitions, which could be calenlated with some confidence based on our lirger
swmnple. These immbers of repetitions were chosen as the 80™ and 90 percentiles
respectively in a uniforinly distributed set of 50 trials, but in the end as the distriln-
tious were highly non-uniform (being generally unimodal but with significant tails and
occasionally skewed as well — see Figures 5.5 and 5.9 for example). it was necessary to
estimate these values directly by repeated subsampling from our population of results.
A more detailed analysis of the statistical technigues used is to be found in Appendix

B.

In fact, this proved to be a very satisfactory way of comparing different experiments,
as although it is possible to compare expected mean or median performance of the
evolutionary algorithin on a single trial or the best found across all runs, neither are
usually a useful measure due to the stochastic nature of evolutionary algorithims: the
former because the variability of individual trials means that more than one repetition

is always done, and the latter because comparing the best trials achieved over the

5.2. DEGENERATE CONTROLLERS 55

whole 50 runs opens up the possibility of having purely by chance succeeded in finding
an abnormally goad result in one of the experniments. Also there s no measure for the
standard error of the best result and so no way of expressing confidence in the results
obtained, and the standard error for the mean or median is generally larger than for a

best of four or best of nine sample, so results are less likely to be significant.

Consequently all experiments are compared by considering their estimated best per-
formance over 4 and 9 trials, and using the standard errors of those figures to detenmine
whether the results were significant. However, other measnres will be mentioned when

they are seen to be important.

5.2 Degenerate controllers

It seemns intuitively obvious that controllers for symmetric legs should be the same,
but it is less obvious what exactly we might wish to cliss as syonnetrie in this context.
However, as we said in Section 4.3, it is important for it to be casy to innplement
new robot models (otherwise the system will not be used), so if the controller is to be
Broken down into synnnetrie parts, this shonld mostly be done antomatically from an

analysis of the robot, and not require expert intervention from the user.

It is theoretically possible to analyse the actual stroctmee of the leg models and de-
teviine whether they ave ddentical (or wmitror inages of cach other). and so require
identical controllers, but it is prohibitively difficnlt to hnplement this in practice, and
also might not achieve the desived effect (e.g. arms and legs could be desipned the
sane for simplicity, but would still need different controllers). A mueh siimpler scheme
was therefore implemented where cach artienlation from the main body is deseribed
as a leg or part of the body (arm, head, ete.), and then the side of the body it is on
is deseribed (Left, Right, Centre), and then whether it is the same as any other legs
is Indicated by grouping them by number. The four legs on a simple guadraped are

described as follows for example:

Leg Left 1
Leg Right 1
Leg Left 2

506 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Leg Right 2

Indicating that the first two (fore) limbs ave the sane, as are the last two (hind) imbs.
It would have been cqually possible to define all four legs as the same, but the fore
and hind limbs on this robot were sufficiently different that this was not appropriate.
This is all the information that is used by the evolutionary algorithin to generate
the degenerate controllers: it just uses topological information about the nmmber of
articulations (or limbs) — 4 here — the mmmber of unique articulations (2), and how
the sensors and actuators are distributed in the articulations. No inforiation about
physical dimensions of the robot is used. This is discussed in more detail in Appendix

D.2

In a degencrate controller. the neurons and connections are defined for only one artie-
ulation of cach group. and are then duplicated in the others. In Figure 5.1, we see Leg
Left 1 has one nenron on its shoulder joint (nl), with two connections (cl, ¢2). Con-
sequently, Leg Right 1 has an identical neuron (nl”) on its shoulder with two matching
connections (el €2'). Shmilarly Leg Left 2 has 2 neurons (u2. n3) with a conmection

between thew (e3). so Leg Right 2 has aomatehing set (027 wd. of).

The initial experiments were carried ont with a very simple encading where every joint
haul the siane munber of neurons and every neuron was connected to every other neuron
el every sensor sund actuator (the network is fully connected). Tn this case all possible
neurons and connections always exist, so only the weights on the connections are being
replicated between symnetric neurons (so the weight on the ¢l connection is the same
as that on the ¢1' conmection). See Figure 5.2 for a simple example of this connectivity
(only one sensor per actuator is shown). In the encodings in Chapter 6 on the other
hand, the existence of conmections and even neurons will be duplicated in the samne

wily.

The non-degenerate controller is also fully conmected, but symmetries are disregarded

and so separate weights are encoded for neurons in cach of the robot's articulations.

Full details of the setup of the Genetic Algorithm which remains the smne throughout

this chapter are in Table 5.1, and the robot is shown in Figure 5.3. The fitness measure

usced throughout this chapter is the simplest imaginable — just the average speed of the

DEGENERATE CONTROLLERS

Leg Left 1

c?2

Body

nl cl nl’

T,

i . L/
cl

Leg Left 2
q

n3

Leg Right 1

n2ly y| n2’
yah N
¥ 5

Leg Right 2
3’

n3’

Figure 5.1: Replication of neurons and connections in a quadruped

Ruhest with twe poants

Leg et |

P Right |

Meural connectniny with 2 ncurons pes jont

Semsors

Newrvas

Actuaion

a dandw . ¢ are cramples of the meights which are
wopued sy memctically T kel L Aght and vice vers
i the depenerats conlndler

Figure 5.2: Connectivity of nenrons in a simple example

58 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

robot along its principal axis; we will investigate the usefulness of more sophisticated

fitness measures in subsequent chapters.

Robot model: quadruped with two hinge joints per.
leg with knees bending inwards

Fitness measure: | speed along I’Ij'“-'illi‘tl axis (ms__.r]_ »
Population size: | 50

-i;.l‘l']l‘l.'-ltllilll.‘if) 100

Selection t}’Iit.lt Tournament = '_‘

Tourmment size: | 3
Prob. crossover: 0.8
Crossov r\-pt_>- 1 point
Mutation rate: 0.1

Table 5.1 Details of Genetie Algorithin paraneters for Chapter 5

Figure 5.3: Simple quadruped with two hinge joints on each leg, knees bending inwards

Both experiments were repeated 50 times, both used the third order newral model
deseribed in more detail in Section 5.3.4 because this was a model which had not been
used before for this class of problem (walking control), and it was our expectation
that more sophisticated models might perform better; also every actuator was given 6
neurons; that is to say that there are 48 neurons in all, as there are 8 actuators. In this

encoding there is no significance to the neurons being related to individual actuators,

5.2. DEGENERATE CONTROLLERS 59

but in more sophisticated encodings in Chapter 6 the association will deterimine which

connections can be made by the nenron. An example of this connectivity on a simpler

robot was shown in Figure 5.2, Closer analysis later in the chapter will show these

were reasonable parameters to get good results from the system. The results can he
[4

seen in Figures 5.4 and 5.5, and more discussion of the statistical teclmiques is found

in Appendix B.

Best of ¥ wialy

Faincss gmdsa
(1]
Bt of 4 wrials - Q
Vit (it sn [o
1w e)
Degenaae womnilhr &
140 v -
o
1w i
130
[t
LR L
1
LRLT
el (R
L) . i s
[0 § Noa-degeneraic contndior = § Nt shopetctat: aontniller

Fignure 5.5 Expected valnes of best of nteials with 95% confidence intervals

There was o very luge difference between the two experiments, with the degenerate

controllers being significantly better even at the 0.1% level.

As we can see from Figuve 5.5, the highest probability density for the non-degencrate
controller is around a fitness of 0.5(ms~") or roughly 3.5m travelled — this is generally
i result of the robot learning to throw itsclf forward a couple of metres aned then
not. moving again. Sometimes it did continue to move. but the legs tended to act
independently and indeed no controller leant to use all of its legs. The best of themn
is shown in Figure 5.6, the only one to keep a fairly stable rhythin going, and it still

only nses 2 1/2 legs to do it

The degenerate controllers, on the other hand, produced repeating patterns with all
four of their legs over 90% of the time, with the mode around a fitness of 1.1(ms '), or
about 8 metres travelled in an average run. Many of these patterns were recognizable
as stable mammalian gaits — Figure 5.7 for example shows a robot using an ambling

gait, albeit mostly on its knees.

60 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Prohability density

a0 T e e L

i} Non-degencrate conroller
3 . ' (N SR N,

i L 5

2.50

2.00

1.50

100

0.50

[LXV 1]

0.50 1.00 1.50 2.00 Fitness (m)

Figure 5.5: Bootstrapped probability density function of controller fitness estimated
from results

n
3]

DEGENERATE CONTROLLERS 61

Figure 5.6: The best robot with a non-degenerate controller (viewed left to right, then
top to bottom)

62 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Figure 5.7: One of many stable robots with a degenerate controller (left to right, top

to bottom)

5.2, DEGENERATE CONTROLLERS 63

5.2.1 Discussion

Building symmetry into the controllers had an enormous effect on the fitness of the
controllers evolved by the system. It was to be expected that it would allow legs with
the same controllers to perform similar tasks, thus helping to avoid the possibility of
only three legs learning uscful functions for instance, but what was not so obvious
is that it also allowed the robots to coordinate much better between legs to develop
stable gaits. This in itself is a significant result as we are not aware of any other
cvolutionary system evolving dynamically stable gaits in three dimensions; it scemns to
be a consequence of the symmetrical cross-connections between legs building up. so
that a neuron activating the near forelimb of the robot when the near hindlimb is fully
extended, will make its symetrical partner do the same on the off side, for instance,
and just a few of these types of connections will build up a siinple rhythin between the
legs. It was nonetheless surprising both how bad the asymmetric and how good the
symnetric controllers were. It is possible that allowing the asymmnetric controllers to
evolve for longer would have produced better results as the genome had more degrees
of freedom to explore, but it is not elear that this would have helped as the evolution
Lzl stopped at local minima which the system would then have to have broken out
of. amd in any event time constraints were iimposed on the problein which necessitated

stopping when it did.

The other significant feature of these runs was that the majority of the degenerate
controllers moved at least partially on their knees and lower limbs. In retrospect this
is not very surprising, as it is undoubtedly casier to balance when closer to the ground
(children learn to crawl before they walk, for example), and using feet, which were
otherwise absent from the model, also helps stability — since there was no penalty
for doing this, it is in retrospect reasonable to find them using what were initially

pereeived as parts of the leg as modificd feet.

It would be interesting to be able to examine how the neurons in these networks are
controlling the walking behaviour of the robot, but unfortunately the large number
of neurons (48), all of which are fully connected to all of the other neurons and all

of the sensors and actuators, mwake it impossible to see any patterns in the neural

G4 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

oscillations. This is very frustrating, and affects the usefulness of the results, as it is
impossible to show how reliable the network is. However. a robot model from a later
chapter (Quad_same from Section 7.1.1) was sufficiently siinple that it was possible to

do a limited amount of analysis, and this is shown in Appendix A.

5.3 Neural models

Section 3.1.2 discussed a variety of different types of neurons which might be appro-
priate as a basis for a NN controller for legged robots. This section will now bricfly
recap cach neural model, and then test its efficacy thoroughly in order to deteninine

which model should be used for the rest of our experiments.

5.3.1 Sigmoidal

The sigmoidal nenvon is by far the best known of all neural models used in Artifi-
cial Intelligence and many techniques exist for training it because of its mathematical
tractability. There is however a strong drawback in using it here — it is not a continu-
ons time model - and sinee this is a continuous time dynamie system we are trying
to control, it scems likely that a network which can entrain to the frequency of the
movements will be able to control it better than one which has its rhythin imposed

from without.
However, it is the simplest neural model available, so we will investigate it first. The
equations used are exactly as seen before, with y; being the internal state of neuron 1,

and S; being the output.

h = Z"{;!SJ (5.1)
i=1
1
8w e
l+e ¥

I investigated a range of sizes of neural network, making sure to investigate enough
to determine the optimal value assuming there was only a single peak in the values

produced. The same technique was used throughout these experiments. In this case it

5.3. NEURAL MODELS 65

was necessary to look at 6, 8, 10 and 12 neurons per actuator. The results are shown in
Figures 5.8 and 5.9, and are compared with those from the 3rd order neuron exiunined

in the previous section.

Best of 4 trials

Best of 9 trials
e Funess
¢ (o]
150 ' ,
' (1] :
A0 el newren ? Ik onider newron Q
140 ; :
S 1.60) ; - . é
L
150
[Bt}
140
o
(N1 O
1 30
i ek Q Su
100 ' @ Sire 10 " O Siee 10
: : 120 '
) ‘? '? &
i s} ;
; Sise 12 Lin D
O Sire B
(1] Sie 12
10
a7 Swch Sk

Figwie 5.8: Resnlts showing expected fitness with 95% confidence intervals for sig-

moidal nenrons

All of these results are significantly worse than the 3vd order nearon at the (001%
level. and indeed the modal fituess is around 0.4 which is even below that of the non-
degenerate controller examined before. However, the distribution is strongly skewed,
with a fow very fit specimens, and so the expected values of the best of 4 and best of
9 trials are better than might be anticipated. Though the difference is not significant,
10 neurons per actuator scems to be the best size of network for this type of nenron.
Looking at individual controllers, many of them are learing repetitive movements, hut
the vast majority of these are not effective as gaits, consisting of dragging movemnents
with one pair of legs, or some similar action. Only a very few in the upper tail of the
distribution evolve any kind of recognizable gait, and even these do not seem to bhe

very stable.

I will leave further discussion until we have examined all of the neural models.

66 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Probability density

500 |y
4,00 |.5...]3rd nder ﬂ(‘!‘!tdjﬂgﬁﬂc_l‘il.l_f-! ncurons
sigmoidal neurons €
20T B) . S—
3 3rd order neurons

200 |.: i R
oo fJREEE R
0.00

0.00 2.00 Fitness

Figure 5.9: Bootstrapped probability density function of sigmoidal neuron fituess

5.3. NEURAL MODELS 67

5.3.2 First order

The next model is the CTRNN model of Beer (1995). which is a continmons time
version of the sigmoidal neuron. Equation 5.2 deseribes the model, exactly as used by

Bewr.

dy;

"
T o —pt D w,S, (5.2)

3=
1
1 + elt-w)

w

where: 8, is a bias tenn,
7; 18 the adaptation rate of the neuron, and
¥, is the internal state of the neuron.

This time there are paramneters ¢ and 7; for each neuron, for which Beer suggests
vitlues based on his studies of the dynamic behaviour of the neurons (ibid.): 0, = -2
and 7, = 1. First we will compare the behaviour of the neurons with fixed #, and 7,
with the behaviour when co-evolving them with the weights, and then we will look at

the munber of neurons which produce the best controllers in this model.

The co-evolved parameters in Figure 510 prove to be significantly better than the
fixed parameters at the 5% level for both 6 and 8 neurons per actuator, so we will now

exanine co-evolving the parameters more fully in Figures 511 and 5.12.

Surprisingly the 1% order neural models do significantly worse than even the worst
sigioidal neuron. The best size for the networks remains 10 neurons per actuator,
but the results are significantly worse even at the 1% level. However, as before the
distribution of results shows that even the best sigmoidal nearon leaves something to
be desired. The modal fitness for all of the 1*0 order nenrons is at least as good as
that for the best sigmoidal one, and, as can be seen from the cumulative probability
distribution, the medians are all roughly the same: again it is the skewed distribution
of the sigimoidal neurons which makes it better in practice. Examining the first order
controllers in detail, it is clear that very few of them even learn a repetitive movement,

and those that succeed do not necessarily learn inherently stable ones — like that

68 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Best of 4 irials Best of 9 trials
i
[y) Fibimss & 1)
LA & i . U EE N mwe P
4100
o TN XD e S SRS
aUIN . Covevalvad sire b o
B2 1) :
AR
Civevalved siee & :
LYCTT TR (ot g e
Q Coevulved sirc B o]
0 00 R 3 6010 Voo -
' d
o . :
RTINS ‘I : o
. 6400 00 e e e
00 : & ? Fiaed wiee &
; "
AT H s i
St & Biaed e . é
e : 401 ;
SN H a
H Flaed slpe ¥ S0 1 Fivad src B
54 A
in o
52010 s e s Sl 00

Figure 5.10: Testing co-evolved against fixed parvamcters for first order neurons

Best of 4 trials Best of 9 trials
Fitness x lu-‘ Eicis
il
Q
PRI 1o :
Q |
} 105 S ERE R b
LTI H worst sigmoidal neuron [}
L]
' 1.00 RO
' '
LRI o !
] [u]
worst sigmoidal neuron © 033
v
LR :
J 0%
75000 |: DBST i s o R s v
6
NN L O A A
o
H 075 GEET
psom o Gkl o
o & G size 10
o *
_ d,) E"“’u 0w smbc‘&
i
T I VR i Osice g‘m”
'
& (17 RO SR

Figure 5.11: Comparison of different network sizes for first order neurons

5.3. NEURAL MODELS GY

Prohability densily Cumulative probability density
Probabaliny densny Probahility
1 5 R :
§ L H
|
Wiy [-
|' LR
¥ st ke
wan -+
' oK
v
7m0 H
i 070
i
i
£00 H)
5 0%
410 LR L
1im w :
10 2 "
Bost szl Bost sigimnlal |
(K1) e X
\
i i i (ORI (A .-
Finess 00 1o 2 (LT} im Fitnews
of

Figure 5.12: Bootstrapped probability density and camulative probability density

first order neuron fitness

in Figure 5.13" It is entively possible that a more sophisticated fitness funetion or

encoding might have made a difference here, but this was not investigated.

5.3.3 Second order

The second ovder neural model is that of Taga (1995). It is governed by two coupled
first order differential equations (5.3 and 5.4), which have been modified very slightly

to simplify their use in this systemn.

{ ; n . .
f,% = —y; = Fmax(0,1)) + JZ:] wy, S + ki (5.3)
P n‘y:]
e o gl 4
Tt vk o
S; = min(max(0,y),1)

where: k; and §; are constants

We have allowed self connections, set a maximumn output of 1, and Taga's global

70 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Figure 5.13: One of the more enterprising first order controllers!

5.3. NEURAL MODELS 71
constant g is now a per-neuron constant k;. Again Taga provides a set of values for
T Ty foand &y (L1 2.5 and 1), so we will begin by testing these values against

vo-evolving the parameters.

Best of 9 trials
Best of 4 trials
.3 Fitness
Funess 2 10
102
9644 1K)
100 : i Cinciulvad sive §
RENT] :
(‘u{fwlwd size 8 nus
WA : i
S 9
096 il
EU] i 1
: e @ Co-evolved dise
Corevolved fire 6 094 5 i
LN : :
[}
A e @ :
Ris) 0 P T, 3o :
: 090
Kl e e @D Fixed siee
B Fived size 6 : 088
K20 O H
. i . i 086 : : ST
s 2 ; ?.h“\l’.".t.'..s..' : O Fixed size ¥
; i i 0R4 s
- Q : [e]
TEO 0 i -

Figure 514 Testing co-evolved against fixed parameters for second order nearons

The co-evolved parameters in Figure 5.14 prove to be significantly better than the fixed
parameters even at the 1% level for both 6 and 8 neurons per actnator, so we will now

investigate co-evolving the parameters more fully.

The results of using second order neurons in Figures 5.15 and 5.16 arc more equivocal.
The best number of neurons to use scemns to be 8, but the result is not significant.
Looking at the best of four trials, the sccond order neurons seem to lie in the widdle
of the sigmoidal results. The best sigmoidal result is slightly better and the worst is
slightly worse than all of the second order results, but again the result is not significant.
However, looking at the best of nine trials, all of the sigmoidal results are better than
the second order ones, although this is only significant for the best of them. Overall,
the second order neurons are significantly better than the first order neurons, but are

probably slightly worse than the sigmoidal neurons for practical purposes (looking at

72 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Hest of 9 trials

Fitness
Best of 4 trials
140 e P . . reme
Futness o O
110 - : e ; 1.35
105 .. e R 130
: best sigimaidal neuron O
hest signidal newron O 1.25 R N S Lt e
100 s i
S (Bt
0us R 0
7 5 9 & 4 IS o R
[\ O ‘? [s]
Q .12 wistst signwndal newnn
. @ sire 12 S0 3
O see 6
ORS ¥ .
@ worst sigmoidal neuron 1.05
o0 c_)sm:k
100 i siae 10
° Q
) o §)
5 B g O sire12
v
o (o]

Figure 5.15: Comparison of different network sizes for second order neurons
Probability density
550

5.

450
3 Dl wnder neuronrs

110 1 :

350

X1

best sigmobdal neurdns
2.50

200

1.50

LiXp

0.5

0.00 "

.00 L 200 Fitness

Figure 5.16: Bootstrapped probability density of second order neuron fitness

5.3. NEURAL MODELS 73

the distribution in Figure 5.16 it should be no surprise that the mean, median and
modal values of all of the sceond order neurons arve significantly better than the best
sigmoidal one, but this is not really relevant). Exinnining the controllers individually. it
is immediately obvious that even the worst controller has learnt some kind of repeating
movement, albeit a dragging one, and indeed every controller seems to have evolved
some kind of dragging or tumbling motion (like that in 5.13), although some of these
are too unstable to continue indefinitely. However, none have learnt any recognizable

pait.

5.3.4 Third order

We have already seen in Section 5.2 that these nearons can produce controllers signi-
ficantly better than anything else that we have seen so far, but we will now look at
them in more detail. They are based on work done in modelling neurones in a lamprey
spinal cord, and are described in (Wallén et al, 1992). Again there are some very sinall

modifications to their equations which are shown in Equations 5.5 to 5.7

I t
rf}f——}»f- = -y*' + Z w;; S, (5.5)
: JEV,
e
r,”'-jT' = -y + ¥ wyS, (5.6)
JEW_
Al _ gy (5.7)
dt

S, C,iulin(umx(tl,l L 0 L Yo —), 1)

where: G.i is £1 depending on whether the neuron is excitatory or inhibitory. and
Iy is the set of all excitatory (inhibitory) inputs, and
Iy and g, are bias terns,
The neurons now have a maximum output of 1, and whether they are excitatory or
inhibitory is now explicitly stated in the equations instead of being defined indirectly
through what weights the neurons are allowed to have. Wallén et al. also describe a

set of paramecters for four different types of neurons, which are listed in Table 5.2

First we compare these parameters (choosing cach neural type with a probability of

(0.25) with co-evolved parameters.

74 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

] I ! I Ty [EE]
o2 18030 [os o001
0.1 |03 0020 [00]00 1
0.5 1O | 0.020 | .3] 0.200 | -1
80 |05 0050 00|00 |-1

Table 5.2: Pavimeters for four different kunprey nearons

Best of 4 trials
Best of 9 trials
Fness Filness
I 58 T
o 175
&
b LS . O
145 Fineel stae & O Frwdsie K iis Frved sive f
(-;) Fined size §
140 1 60 T
o
135 it R ety ; ;
1.55 e
BN i et e e 1.50
Q
1.25 ' 143 Q
‘ Co-evolved sirc 3 ;
X '
B,) [T H 1.40 BIRY. SR —.
Lol é Co-gvolved size 6 é Cu-evolved sive §
4 1.35 ks
(NE] X v
- :
1 w0 :
B ik
(R] L9 o

Figure 5.17: Testing co-evolved against fixed parameters for third order neurons

53. NEURAL MODELS 75

Surprisingly the co-evolved parameters in Figure 5.17 proved to be significantly worse
than the fixed parameters even at the 1% level for both 6 and 8 neurons per actuator,
so we will now investigate the third order newrons with the fixed paraneters from

Wallén ef af. (1992) more fully in Figure 5.18.

Best of 9 trials
Best of 4 trials

Fiiness Fimexs
1RS i
1.65 @ Sire d ?Su;c-l
1600 o Bl |
H
155 @ : L75 ? . Osins
: Q ' '
1 % .
150 e L. ™ 8 Sico B
145 ° o Suzc 8 165 2
140 1.6} 2
- @ © o
135 Sire 60, HELfE 155 O Size 10
L0 Sire 100 O Sire 12 r 0
¥ 1.50 I
125 T T (P O Sive 12
120 o ' :
140 v] 0.
115 Sire 2
I i" I 35 S 2
Sisc 2
||Iﬁ I i
o Baw sigmoidal © ik Dest signmridal
1nus 120
(IR)] 3 LIS

Figure 5.18: Comparison of diferent network sizes for thivd order nenrons

All of these results are significantly better than any of the sigmoidal, first or seeond
order results, and the best number of neurons per actuators has come down to 4,
although this result is not guite significant at the 5% level. The controllers themselves
all seem to induce some kind of oscillatory motion in the robots, though for the less fit
individuals this tends to only be enough to catapult them onto their backs where they
lic with their legs waving in the air. As the robots get fitter, gaits begin to appear,
first dragging and tumbling moves we have seen before, and then with increasing fitness
hops and more recognizable ambles and trots, and some even stranger (and faster) gaits

like that in Figure 5.19 which moved the robot along at 2.5 ms~!.

76 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

Figure 5.19: A typical third order controller

5.3. NEURAL MODELS 77

5.3.5 Discussion

Amongst the continnous neural models there was a clear progression from the shnple
first order models performing very badly to the complex third order models performing
very well — one noticeable feature of the models is that with the first order model it
is not at all easy to generate oscillations between less than three neurons, although it
is theoretically possible with only two; with the second order model it is much easier,
and with the third order it is hard to avoid, and indeed it is possible to sct up an
oscillation with only one nenron. This is reflected in the hehaviour of the controllers,
with very few repeated movements being seen in the first order robots, a lot coming
in the second order though not much oscillatory behaviour, and nearly every single
rabot in the final set producing oscillatory movements; understandably this scoms to
help enormously in the generation of gaits, which are after all in their siimplest form
Just a sct of stable oscillations. It is difficult to say whether this is the main factor,
as more complex neurons may be able to entrain better to the dynamies of the robot,
but it is certainly true that the more complex neurons of Wallén et al, (1992) are the
best for this task by far. Other experimenters have got good results with fivst order
nenvons (e.g. Kodjabachian and Meyer, 1998), so it is clearly possible. One possible
explanation for this is that such simple fitness measures and network encodings were
not good enough, and a more sophisticated approach might have done better, however
it is noticeable that most of these experiments were done in two dimensions which is an
casier problem which does not require dynamic stability. It is nonctheless significant
that it was possible to get such good results with such a simple fitness function and

network architecture with the higher order neural models.

Looking at the optimal number of neurons for different neural models, we see that

siginoidal and

it comes down with inereasing complexity of neurons, from 10 for the
first order neurons to 8 for the second order, and only 4 for the third order. This
approximately matches up with the complexity of the neurons themselves, suggesting
that the increased complexity of the higher order neurons allows them to replace a
few simpler neurons, and indeed do a better job at the same time. Note that we
might expect more neurons to be optimal for the first order neural model, but in fact

increasing the number of neurons being used seems to make it more difficult to evolve

78 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

the best solution: the munber of weights increases with the square of the number
of neurons in a fully connected network and it seems likely that the evolutionary
algorithm will begin to straggle to cope with the nunber of parameters it is evolving
simultancously. producing wore and more suboptimal solutions even if they could be
potentially hetter at that network size. Attampting to solve this by perhaps increasing
the population size or the generations over which the GA is run would only result in
even slower evolutionary runs which are already taking 17 hours at this size, and so
would be impractical. However there are results which suggest that this might help if

time were not an issue (e.g. Ackley and Littman, 1992).

It is also interesting to note that parameters suggested for the first and second order
nenrons, chosen after after caveful mathematieal examination of the dynamies of the
neurons at least in the former case (Beer, 1995), proved to be less effective than just
evolving the parameters along with the weights of the connections. It seens likely that
the simple reason for this is that the eriteria used to seleet these parmneter values
woere inappropriate for this situation. which is unfortunate since both Beer and Taga
in (Taga, 1995) were envisaging using their neurons for exactly this kind of work.
Pevhaps what was lcking was diversity in the newrons, needing o variety of different
types for diferent purposes in the network. Either way gquite the opposite was true
for the thivd ovder newrons, sl the set pacmneters for these were significantly hetter
thian evolved ones: it seems likely that it s signibicant that these parmneter vadoes
were chosen becanse they mwatched real newrones controlling locomotion in a genaine
vertebrate (albeit a fish), rather than satisfying perceived eriteria seen from outside
the problem. It is also possible that having a variety of different sets of values helped

bring diversity to the nenral network.

The other issue raised by these experiments is the results from the sigmoidal controllers.
These were mostly worse than even the first order neurons but avound 10% did wneh
better, with a few even learning rudimentary gaits. This scems strange since the fivst
order controllers showed no such tendency, but closer examination of the algoritlins
showed that the first order nenurons had been evolving their adaptation rates at around
the 1 second mark (7 = 1 in Equation 5.2), which would allow them potentially to

entrain to the dynamics of the mechanical systemn, whereas the sigmoidal neurons were

54. SUMMARY 79

updating every 0.001s (the stepsize of integration of the robot simulator), which was
offectively their adaptation rate. It scems possible theretore that most were failing
for understandable reasons but a few were actually learning to match specific input
patterns and generate appropriate output patterns on the actuators as we ordinarily
expect when training sigmoidal neurons. While it is interesting that they had some
sneeess in doing this, it seeins unlikely to be a profitable approach to controlling walking
in general because stability becomes so much more complicated when approached like
this — the controller will have to learn every possible way of becoming unstable, and
the apropriate outputs to rectify this, which is just too difficult in the general case. The
approach also proved to be significantly worse than entraining the complex nenrons to

alter the dynamnics of the system, and so it is not pursued any further.

5.4 Summary

The results in this chapter have been promising:

Taking advantage of symmetries in the tobot is essential in building a good con-
troller — in the 50 experiments with an asymmetric controller only one sneceeded
in generating a repeating gait of any sort and that was extremely defective (nsing
ouly 2 1/2 legs). whereas more than half of the degenerate controllers were ae-
ceptable and many produced recognizably stable gaits. Achieving a dywanically
stable walking gait so quickly is very pleasing as it is a first using an evolutionary

algorithm in three dimensions.

Of the three continuous time neural models there was a clear progression with
the more complex models being more suited to the control tasks given to them,
both in producing more repeating gaits and in those gaits being more likely to be
stable. This may be related to the increasing case with which the more complex
neurons produce oscillatory movements, and also the simplicity of evolving the

fewer weights necessary in their increasing small networks.

e [t scens significant that the actual paramcter values taken from neurones in
locomotory CPGs in a lamprey (Wallén et al., 1992, from) were significantly

better than evolved paramneters for this task, unlike the simpler models, where

80 CHAPTER 5. SYMMETRIC CONTROLLERS AND NEURAL MODELS

the values chosen by rescarchers using perfectly plausible criteria proved to be

less effective than allowing them to evolve with the connections.

e Little analysis is possible of the networks as they are large and fully connee-
ted to themselves and the 16 sensors and 8 actuators. This is frustrating as
it hinders understanding of how the networks are operating, however in a sub-
sequent chapter a controller is built for a robot which is sufficiently small that it

is mnenible to some analysis, and this is shown in Appendix A.

Now this system will he used as a basis for exploring further ways of improving the

controllers generated.

Chapter 6

Encodings and fitness measures

The last chapter described experiments which allowed us to set up the basic platform
for the rest of the thesis. Throughout all of the remaining experiments in this chapter
and the next we will be using symmnetrie controllers and a third order nearal model
with the snme robot as in the previous chapter. Now we will investigate the use of more
sophisticated encodings than the current simplistic fully connected model to create the
kind of connectivity which will make more useful controllers casier to evolve, and then
we will look at the use of different and move comnplicated fitness funetions and see how
they can help evolve better walking behaviours.

These tasks are wade difficult by the surprisingly high quality of the controllers gener-
ated in the Tast chapter |r)‘ the thivd ovder models. Whilse the other models generated
movemnents which at best merely satistied the simple fitness ceguirement of moving
forward, the third order models were extremely effective at generating genuine stable

gaits, and it will be difficult to do better than this in these expernments.

6.1 Encodings

We discussed a varicety of different possible encodings in Seetion 3.2, ad it was decided

that the encodings most likely to be useful for this task were:

e A simple direct encoding of weights, both fully connected and with the network

architecture determined by an automatic analysis of the structure of the robot.

81

82 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

e A direct encoding of the weights and architecture similar to above, but allowing
the conmectivity to vary, perhaps favouring denser loeal connections and sparser

distal connections,

o Au encoding similar to Angeline ef al. (1093), adapted to allow reuse of subnet-

works.

The first (and simplest) encoding, which will now be veferred to as the Fall encoding,
wis implemented in the last chapter, and we will now look at how it compares with

the other encodings.

6.1.1 The OneMlotor encoding

Fronn observations of connectivity in vertebrate CPGs used for control of locomotion
(e.g. Wallén et al.. 1992), we know that nenrones tend to be collected in small groups
which are heavily interconneeted, with fewer connections between the groups (these
groups ave the CPGs in fact): the CPGs are generally associated with a single musele
or sronp of wnseles as they receive sensory signals from and ontpot wmotor commands
to only those museles. It seems reasonable that this would be a good place to start in

looking for wavs ta bias the networks being created by the genetic algorithn.

Consequently the first encoding exinined here, ealled OneMotor, s a siimple fully
connected network. but one in which each neuron is associated with a specific joint,
and can only send commands to the motor in that joint; it is also connected to the
sensors associated with that joint, although there is a small possibility of connection
to o distal sensor. This is one of the simplest possible encodings which has the correct
kind of conuectivity, and a typical example of connections generated by this encoding
is shown in Figure 6.1. Details of what topological information is extracted from the
robot model to allow the evolntionary algorithim to produce the symmetries in the

encoding is found in Appendix D.2.

We used the same experimental setup as in the previous chapter (detailed in Table

5.1), exeept for using elitism' in creating new generations. This was seen to be useful

! putting the best of cach generation directly into the next

6.1. ENCODINGS 83

All motor connections local

| Motor I

" All neurons fully connected

_-i@(v 3

1}

il

1

1

1

1

1

L}

1

1

[} .

Tt

L}

[}

L}

L}

1}

1}

L

1

i Mastly local sensor connections
1

1

1

1

1

Single CPG/joint

Figure 6.1: Typical connectivity of one CPG in OneMotor encoding with 4 neurons
per actuator

as there was a tendency for good individuals to be lost during evolution, as can be seen
from the dropping of fitness of the best individual in Figure 6.2 (the median run from

best size — 4 neurons per actuator — of third order neural controller).

Runuing the experiments in Section 5.3.4 again with clitism produces significantly
better vesults, and the median tan from the best size network (now 6 or 8 newrons pe

actuator) can now be seen in Figure 6.3

All the third order neuron experiments were rerun so that there could be a proper
baseline against which to compare new results, and the expected vesults of that aond
the OnebMotor experiments i the best of uine trials are shown in Figure 6.4 Al
experiments were run on the sane robot with the sane fitness funetion as in the
previous chapter, as they are until we look at fitness functions in detail, and the sane

robot is used through the whole chapter.

Perhiaps surprisingly the Full encoding (fully connected neurons) proves to be casily
better than the OneMotor encoding, with the best OneMotor encoding being signific-
antly worse than the worst Full encoding even at the 1% level. The saine was also true
when comparing expected results from the best of four trials. Although it is true that
more neurons per effector could have been tested as no maximum had been found, it
was felt that the results were so bad it wouldn’t be effective use of the limited com-

puting resources to study this simple encoding in any more detail. These results will

84

Fitness

L

Lo

U1}

070
0.60
0.50
040
0.30
020
0

UL

Figure 6.2:

CHAPTER 6. ENCODINGS AND FITNESS MEASURES

:_ Best

T
B std above mcan

Mean

1 std below mican

: s
AT Aoako_a, nh Wast
P P LA B I T T B T o § o
o 50.00 10000 Generation

Typical evolutionary run for third order neurons without clitisin

G.1.

ENCODINGS
Fitness
| e O
L1
L I std above mean
090
.80,
070
[T -
© Mean
05 :
L1} .
0.3
020
0 I sud below mean
000 S Worst
010 d
(100 S0.00 10K Generation
Figure 6.3: Typiecal evolutionary run for thivd order newrons with elitisin
Full encoding - best of 9 trials OneMlotor encoding - best of 9 trials
Fitricas Fitness
340 140
]
13 O Suc 8 1M
QSict o
100 100
Sizcd
1 RO § i ESHQ n 1 80
Sizc I?g 1 60
1600 sEE S
Q
140 L 140 Sire 12Q
Swre 1 o
120 L 8.'-‘1):&
o gSurK
Lo 100
0. .
e 80 §.s"d
B0 oot s e Bk 0.60

Figure 6.4: Comparison of Full and OncMotor encodings

85

806 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

be disenssed further at the end of the section.

6.1.2 The LocalSparse encoding

Allowing the neurons to conmect only to their local motors was not successful on its
own, but in the LocalSparse encoding the conmections between neurons is also changed
so that distal neurons are less likely to bhe connected that nearby ones. This would make
the conmectivity more like that seen in real CPGs. Specifically, incomplete connectivity
wis itllowed between the nenrons, with local conmections (to neurons in the sane CPG,
and the sensors and effectors assoeiated with it) heing made with a higher probability
thin distal ones (to other sensors and newrons). This encoding produces connectivity
mmch like the OneMotor encoding but with el fewer interCPG and slightly fewer

intraC’ PG oconmections (sce Figure 6.5). The results can be seen in Figure 6.6.

Al motes comections bocal

Moton

Dense bowal Sparse distal newral and

neural connecnvity Lo SERSON COMnCCtIvily

(_.’iruw | Sensor 2

Mostly locul sensar connectiong

Single CPGloint

Figure 6.5: Typical conmectivity of one CPG in LocalSparse encoding with 4 neurons
per actuator

These experiments show no significant improvement over the OneMotor encoding, even
when looking at higher munbers of neurons per actuator; this was done here because it
was felt that with the preatly reduced number of conmections present in this encoding,
it might be possible to evolve larger networks. However the results were still very

significantly worse than the Full encoding,

6.1. ENCODINGS 87

Best of ¥ trials

Best of 4 trials Fitnca
Tan
T o
B Full @ 1 Bewr bull L)
: o
| B0 .
24
160
1Lan
140 3 160
Sare 12 0 Sure 16 Q Q 0
129 =] 2 § D Bust e Mior o oo Sue 2@ g OBt Uk
St @ : Sucin O
-] a S 140 o
1 Suc 4O e R 2 cih
S 80 Sure KO
(=]
L] Q O . L Sire ré‘ @
ﬁu.-n(? o] o
e ® . [

a0
win Sircd §S|r= 1

Figure 6.6: Comparison of results using LocalSparse encoding
6.1.3 The Local GNARL encoding

The LowealSpase eneoding lias some similavities with the GNARL encoding of Angeline
et alo (1993) deseribed i Section 32010 allowing mntations of connections and their
weights, but has afixed monber of nearons instead of allowing muatation to change this
as well, a bias towards local conmections instead of a uniforin probability of connectivity,
aned symnmetry built into the system., which is absent from Angeline’s work as it was

allows crossover

unneeessary for the problems he was trying to solve. Also LocalSparse

unlike GNARL which had only mutation.

The Local GNARL encoding is a compromise between the two, by allowing the munber
of neurons to vary. The crossover operator is also removed as it was not clear how to
preserve connections during crossover in o network with varying numbers of neurons
on each CPG. thus making the encoding even more like GNARL: this allowed addition
and deletion of conmections and changing their weights (which is already possible in
the LocalSparse encoding), and also the addition and deletion of neurons. The munber
of neurons in cach CPG is initially allowed to vary between n— 1 and n + 1 where n
is the standard “number of neurons per effector” parmmeter used in other encodings,

but after that is allowed to vary at will.

88 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Two experimnents were done here with the Local GNARL encoding, the first as described
above, and the second using a litness proportionate mutation operator as deseribed by
Angeline (dhid.). This operator has a higher initial mntation rate, but this decreases
fon ficter inedividuoals fitter individuals take smaller mutation steps, and this makes
them “slow™ as they approach the summits of Lills in fitness space. As usual an optimal
network size was fonnd for the initial population in each experiment, and Figure 6.7
shows how these optimal solutions compared with other encodings.

Best of 4 trials

Fiiness Best of 9 trials
Tn
- Fatncss
S 2w
(] L
Vi 210 Bew Full
st Full 2
170
|
16l
(1
150
(1]
140
(]
IR Faveal aistain = Fuvaad munstation
Siee 14 ¥ 130 Swre 42
10 ? @ @
& L0) O
i T Bost LocalSpanse @
'
(u] I ' Bost Lol Spa
Sin 10 Sre 1 o
Frtme s proopmsrinomile nititasn Fitmess propartionate imutanion

Figure 6.7: Comparison of results using LocalGNARL encoding

Fitness proportionate mutation seemed to make alinost no difference with the results
being nearly identical with or without it. Overall, however, the Local GNARL encoding

was slightly worse than the LocalSparse encoding,. though the result was not significant.

6.1.4 The SymGNARL encoding

The local comnections were stripped out of the LocalGNARL encoding to produce
an encoding even more similar to the GNARL encoding of Angeline et al. (1993),

allowing conmections with equal probability to all sensors, actuators and neurons, but

6.1. ENCODINGS 89

still using the symmetrical controllers of Section 5.2, This (SymGNARL) encoding was
then compared with Local GNARL and the original Full encoding, and the results are

shown in Figure 6.8.

Best of 4 trials

Fitness Best of 9 trials
210 Funess
? R ; ?
200 " Best Full ©
L) sl Ful
Best Full © 220 '
v]
1) o - ! [v]
] ' 20 o
180 : - o :
G I{I? 200 Sirc 10O
170 ° o Sisc 12 o Sive 12
' 19 . %
Swe B
1600 e ? @
1 5 Sk O
150 °©
1.7
140 16
1.30 i 1.50
[T e S R e S L 140
et LocdGNARL Bist Liwal GNARL
(R =

Fignre 6.8: Comparison of results using SymGNARL encoding

Clearly these results are very significantly better than Loeal GNARL, and indeed Loe-
alSparse. even at the 1% level, but they are still slightly worse than the Full encoding,

and thos is sigmificant at the 5% level for the best of 9 result.

6.1.5 The SymSparse encoding

The samne was done to the LocalSparse encoding as to the LocalGNARL encoding,
simplifying it so as to not differentiate between local and distal connections. The

results are shown in Figure 6.9.

The results are almost identical to the original SymGNARL encoding.

90 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Best of 4 trials

Flincsy Best of 9 trials
2 Futness
230
2Nl
Best Full
Sirc 12 Best Full A -
1.0 o]
: 210 Swe 12 o Q
Sive 10 : 7
R L ey , Sice 10 O 6
Sisek O O : 2 . %
1 Size ¥ Q Q [0}
170 | i o “I%N“" L : Best SymGNARL
Q) exl Sy ARL & &
T o = .
J H . 1
It) b EME iy ez)
Sie D T
150 L L Sl
° o
140 L4
150
1.3
1 Best LowulSparse
1 Best LowalSparse
[1]

Figure 6.9: Comparison of results using SymSparse encoding

6.1.6 Discussion

It would have been nice to be able to disenss here what kind connectivity is best suitod
to this problem, and indecd it was originally intended to create a more soplisticated
encoding based on information gleaned from these experiments, which wonld generate
as close as possible to the ideal network configurations. However the results of this
section have been very disappointing. showing, as they do, that it is very difficult to

improve on the most basic encoding. Two possible reasons offer themselves:

L. The Full encoding is the best possible.

2. The wrong types of encodings were tried.

It is difficult to accept cither of these, however, so we will look hrst at the individual

results to see what the evidence shows.

6.1. ENCODINGS 91

Elitism

The results for the thivd order neurons were significantly better using elitisim: this is
nsually a usctul device for populations where most childven are very anfit - even those
of fit parents — as it allows the best member to survive until it can breed trne, As we
can see from Figures 6.2 and 6.3 the mean in the population is velatively low and stays
there, and the worst usually has a fitness near (), so it is unsurprising in retrospect that
clitisin is useful. It is also noticeable the best munber of nearons per effector inereases
fronmn 4 to 8 with elitisin switched on. though in both cases G s not significantly worse:
this is probably because size 4 networks previously bred truer ad so benefited less
fronn elitism (indeed there is very little improvement for this size of network). whereas

larger networks benefited more,

Local connections

None of the three encodings with denser local connections were even close to being
as pood as the Fall encoding, and the ability to vary the conmectivity or even the
niber of neurons on cach actuator made no significant diffevence. The LocalSparse
encoding was slightly hetter, as might be expected as it allowed greater Hexibility in
the conneetions made, but LocalGNARL was worse, even thougl it allowed even more
Hexibility: it is hikely this is because crossover was o shightly more effective operator
than mutation alone, so its removal atected the GA more than the encoding did. Tt
is also interesting that the fitness proportionate mutation had no effect on the results,
which was also unexpected, but perhaps the fitness landscape is so epistatic? that it
made very little diference: this seemns plausible after our results with elitism. which also
indicate that there is a rough fitness landscape which causes a lot of unfit individuals

to be generated.

Since full conmectivity of the nearons (in OneMaotor) and sparse conmeetivity (in Loc-
alSparse and Local GNARL) were both tried with no significant difference in the results,
and in the latter two it was possible to have many conmections from other sensors, again

without any improvement, it scens certain that the ability for individual neurons to

? small or few changes in parameters have large effects on fitness — causes a spiky fitness landscape

2 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

connect to nore than one actuator is the sipnificant factor here. It was assumaed that
the ability to connect freely to nenrons in other CPGs which would then conmect to
the actuators could replace this, as happens in vertebrates for instance, but this is
clearly not the ease. The reasoning belind having more loeal conmections was based
on comparisons with vertebrate locomotor CPGs, but in retrospect it seemns plausible
that some other factor may drive this, such as physical separation of the muscles (and
henee their associated CPGs) perhaps: indeed, physical separation of nearons is looked
at in work by Kodjabachian and Meyer (1998), which shows that it can affect network

development.

Whatever the reason, in this problem loeal conmectivity is not useful for building

wilking controllers.

Sparse connections

In ovder to try to recover something fromn these poor resalts, the encodings were altered
to remove their loeal conmectivity, making them much more like standard encodings
seen often before (although stll with their syonnetvies), These were the SyimSparse

and SvinGNARL encodings, and here the results woere el hetter,

Neither encoding was gquite as good as the best Full encoding. and this was significant
for the hest of nine result, but they were certainly of a comparable quality, with the hest
being better than many network sizes of the Full encoding. Their faillure to improve
on the simpler encoding may be heeanse the optimal connection density was very high.
at which point the encodings were less efficient than the Full encoding. as they had to
encode both the connection’s existence as well as its weight instead of just the latter.
Consequently, the GA struggled to evolve appropriate networks (as it did with larger

networks with Full encoding).

The SymSparse encoding was slightly better than the SymGNARL encoding, although
the result was again not significant (as with the LocalSparse and Local GNARL). This
was slightly counterintuitive as the greater freedom allowed by the SymGNARL en-
coding seemed like it ought to help evolve better controllers. To test the hypothesis

mentioned carlier that the GNARL encodings were worse simply because of the lack

6.1. ENCODINGS 93

of crossover, the SymSparse encoding was rerun without the crossover operator, and
SymGNARL now significantly outperformed SymmSparse at the 5% level. However
since no adequate crossover operator could be devised for SyimGNARL this is of little

comfort.

A varicty of different initial connection densities was also tried for the SymSparse
encoding to see if this could be optimised, but none of thent outperformed the Full
encoding. the one shown being a typical result (this had s initial connection density

of 5”'}'{-).

Conclusions

From the results in this seetion it seems that the best networks for controlling walking
on this robot are densely connected with no real concept of neurons being local to any
particular joint. This is unfortnnate as it makes it very ditticalt to analdvse the way the
robot is being controlled, amd thus generate contidenee about the Tong tenn stabilivy

of the controller.

It would be possible to make an indirect encoding which could generate similavly
complex networks, and indeed one was designed for this purpose. bat it was never
implemented as there was no evidence that biases inherent in this or any other indir-
cct encoding would not act to make it worse than the simple Full encoding, just as
the biases in all of the above encodings have already done. Although it might have
been possible to get useful information for the indirect encoding by looking at the very
densely connected SymSparse networks and seeing which connections were being re-
moved, unfortunately the fitness of these was significantly lower the the Full encoding,

so it was not clear that the correct connections were being removed!

In the end it is clear that the Full encoding with its simple built in synunetries is
better at generating the kind of connectivity required for this task than any of the
other encodings, and extensive rescarch into a variety of possibilities failed to uncover

any indication of what might be a better encoding,.

91 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

6.2 Fitness Measures

Little attention has been paid so fa to which fitness measure to use in evolving con-
trollers. Certainly the extremely simple “average speed over 5 seconds™ fitness funetion
(Speedd) has been sieprisingly effective, but we will now look at other more complie-
ated measures which look at other concerns in controlling a physical robot and see
whether they help. The simplest way to judge the controllers better is to see how they
move over aomeh longer period of time, but becanse of siimulation time limitations
mentioned earlier it is not possible to examine the robots for longer in the standard

fitness funetion.

Comsequently we will exaonine different fitness functions to see how wmuach they can help
in evolving controllers which can walk for long periods of time, while still only testing
them over short periods. We will do this by comparing the best evolved solutions
divectly over a mneh longer period of thime (say 20 seconds), using the siimple average

speed fitness funetion.

First we will look at the oviginal Speed fitness measure and see how controllers evolved

for that do ot the Speed20 fitness Tunetion, The vesalts aoe shown in Figoee G210

The Lger networks performed significantly worse over the longer timefiones, bat
the rest were voughly the smne with a network size of G now slightly better than 8.
although the result was not significant. This is roughly as we wonld expect since the
5 second evalnation time was chosen in Seetion 5.1 as just sufficient to judge whether
the controller could keep a repeating pattern going. However. as we can see from
the bootstrapped probability density fanctions in Figure 6,11, although the bette
controllers are still just as good, many of the worse ones clearly could not generate

repeating gaits and their fitness consequently dropped a great deal.

What wmight help a vobot keep moving over a long period of time then? Many possib-

ilities exist, for instance:

o Keeping the centre of gravity high.

e Not allowing the body the touch the ground.

6.2. FITNESS MEASURES 95

Hest of Y trials over 5§ seconds Best of 9 trials over 20 seconds
Fiincss Fiiness
240 240
230 0 " 10 Q o
Q Siscd :
210 Sl =3 7 10 Sive b O
i a ¥ :
» o] H Q SizcH
% T UL i 210 & e
(vl s
100 ; . sy 2 o
13 Sive A [l
S 4
Sire 10
1,40 1.0
170 . R 170
Sie 12 @ e
) .
I o em
150 S 1.50 i
140 i ; 140 ?
Sirc 12 Q
130 130 . o

Figure 6.10: Comparison of fitness nsing evolved and extended fitness functions
e Making sure the leas oscillate,

o Making sure the nenrons are active/oscillate.

* Minimising energy expenditure.

e Minimising ground forees.

s Putting more weight on the last couple of seconds than the first in the evaluation.

There are obviously many others. The first two ave fairly straightforward, and are
obviously related — if the robot’s body is too low or tonches the ground there is a
signiticant danger of it tripping up. The sceond two are the kind of fitness functions
often used in building legged robots in staged evolution experiments (e.g. Lewis et al.,
1992), and are felt to be useful as they are staging posts along the way to a good
walking controller. The next two are fitness functions which appear to be driving forces
in nature, the former to help endurance, and the latter perhaps to avoid damaging

oneself. The last is a purely practical consideration — sinee the robot starts from

96 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Probability density

L60 .

140 :
Original fitness functidn

120
i sl s bl
080 .

060

Extended fitness functiofy
040 .

020 ..

0.00

0.00 1.00 200 3.00 Fitness

Figure 6.11: Prob. density of fitness of size 6 controllers using Speed5 and Speed20

6.2. FITNESS MEASURES 97

standing still, it would be better to look at it after a couple of seconds when it had got

into its rhythm, rather than straight away.

Measuring energy expenditure was climinated as too computationally expensive (al-
though keeping the body Hat was tried nnsuccessfully in an attempt to minimise unne-
cessary movement instead). Minimising ground forees was also eliminated as it was not
clear how useful it would be, at least for the simulated robot we have at present. All
of the other fitness measures were tried, individuoally and jointly, There were, however,
fur too wany combinations to look at them all in depth, so I have selected a thread
through them, adding one after another to find the most etfective fitness measure. We

will look at:

FND (forward not down) Average speed minms average distance of CoG helow

starting height.

DFND (decay FND) As above, but using an exponential decay of the fitness over

the b seconds.

DFNDF (DFND or fall) As above, but with execptional punishent if pact of the

body tonches the gronnd

DFNDFA (DFNDF active) As above, but making sure that the neavons and legs
are active (e the newrons are not full on or off wnd the legs ae not locked

apainst end stops.

DFNDFO (DFNDF oscillate) As DENDF, bhut making sure that the legs ad near-

ons oscillate.

Many other cambinations were tried, but these were vepresentative of them, and in-

cluded all of the best results.

6.2.1 FND

This fitness measure was a simple extension of the Speedb measure, punishing the

robot for allowing its centre of gravity to drop too far as well. The results shown in

98 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Figure 6.12 show how it compares with the Speedb fitness measure when its controllers
are re-evaluated nsing the standard Speed20) fitness ieasure,

Best of Y trials
Best of 4 trials

Fiingss
Fitness
208
9 230 e g ®
200 '
@ e 3 :
: 228 '
195 \ :
L0 ' Best Specds @ 2 : Bewt Specds @
' '
) -
tys P osied Q . @ Sie h
) : y 215 PSied |
@ Sirch :
. '
1 %0 ' ;
2 .
1] 2 § 3
(I 1 . -
175 . v 8 ' .
" - - ¥ H
r o SRR 205 4 & QO size ¥
1.7]
o
165 & e Tl . 200 ..o
1.ndh 6 G . 5

Fignre 6.12: Comparison of results using the FND fitness ieasure

The FND fituess easire proves to be possibly slightly worse at generating good
controllers, although the result is not at all significant. This was typical of many of
the additional fitness functions on their own, including the “no falling™ measure, bhut
as we shall see later, they work well together. The size 4 and 6 networks are equally

good here, with the size 8 slightly worse.

6.2.2 DFND

This next fitness function simply decays the previous one over time. The half-life of the
fitness is about 2.4 seconds (the actual decay is 0.75!), so the very first fitness measure
has roughly 1/4 the weight of the last. The results of using this are shown in Figure

6.13.

This scems to be an improvement on the previous fitness measures, although the result

6.2. FITNESS MEASURES 99

Best of 9 trials

Best of 4 trials
Fiiness Tuncss
215 240
2 i
2 315 :
!
b !
208 ? L] Sized)
200§ Sue 5 H
4 = D Sire b
1.95 T S :
' 220 i coo Best Spev
' est Spowds
1.9 @ Sirc 6 Best SpecdS. {
' B H
i '
155 ' :
' 20 o)
1.50 !
u 205
1.75 . L ———
5
L0 il
168 195 =]
1.6 : Sic K C‘J . LBl 1
7 O Swck
1.55 : i 18§ :
.50 - 181
6 : 6

Figure 6.13: Comparison of results using the DEND fitness measure

is not quite signtfeant at the 5% level, The size 4 network seems to be the best here,

with the size 6 slightly worse, and the size 8 significantly hehind,

6.2.3 DFNDF

This fitness measure is like the previous DFND, but with an additional penalty if part
of the robot touches the ground, proportional to the length of time in contact (the
parts of the robot defined as the body are detailed in the robot deseription). The
results of this measure re-evaluated using the Speed20 fitness measure are shown in

Figure 6.14.

This is a very significant improvement, both over the original Speed5 measure at the
1% level, and the DFND measure at the 5% level. Interestingly this fitness measure on
its own and with the “not down” measure showed a similar performance to FND and
Speed5, and it was only with the decaying fitness measure that this huge improvement

was noticed. The best size of network for this mmeasure seems to be 6 but 4 is not

100 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Best of 4 trials Best of 9 trials
Funess Fitness
235 2,60
2, g
24 255 i
225 : .
2.50 T A |
220 ' :
- I L SO L, ..
215 Sire4 & :
‘ 6]
g o am e B s o
S ot e b A s s A A 1
00 .BcleFND.(il
i 235 [N
o 210 B Bew Spocd$. o
1S | [W——
1 K0 : S Sirc &
Bust Specds 110
175 S| | &
[u]

Figure 6.14: Comparison of results using the DFNDF fituess measure

6.2. FITNESS MEASURES 101

significantly worse.

6.2.4 DFNDFA

This and the following fitness function are the only two that try to look at the detail of
what is going on and specify directly what should be happening. In this case we take
the best (DFNDF) fitness measure so far, and add to it a measuwre of how active the
nenrons and legs are. This was measured by penalising inactive (ontput 0) and totally
overloaded (output £1) neurons and by penalising legs which are jammed up against
their limits (sensors at 1), which we saw frequently in the last chapter,

Fitness

(KLT]
Fuingss a

LR

oan Fitness b

070
Fitness ¢
(AL
0sn
040
13

(I

LIEEY]

BT 1500 fring .50 T X

Figure 6.15: Three different functions used in DENDFA

The fitness measures can be seen in Figure 6.15: the nearal fitness measure is (). and
two different joint fitness were tried, (a) and (b), where (a) penalises being close to
the joint limits, but (b) only penalises being pressed right up against them. They were
both tried and are referred to as DFNDFAa and DFNDEFAD respectively. The results

are shown in Figure 6.16.

There is very little difference between these two fitness functions and the previous one

102 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

Best of 4 trials Best of 9 trials
3 Fitncss
Fitness enDEA DENDFAB DFNDFAb
235 @Siced.. oo Best DFNDF
o)
Sl T T SEEREE P
aas | v L 2s0 Po@skes]
230 Sized ..o
43 " Best DENDE
210 . - N—
:
G| L JUEEOPCT I SN SR, oot A SO - | BV R, o o S e
@ Sisch
20 2.5 fors
s 220 -
o}
190 215 i
185 210
1,50 SRS, NN 208
[2 T @ 200

Figure 6.16: Comparison of results using the DFNDFAa and b fitness measures

6.2. FITNESS MEASURES 103

which had no detailed neural and joint measure, one being an insignificant amount

better, and the other worse, The optimal network size is 4 in botl.

6.2.5 DFNDFO

Another feature often used in evolving controllers is that the nenrons and joints should
oscillate (e.g. Lewis et al, 1992: Ijspeert et al., 1997). so here we replace the previous
measure of activity in the nenrons and joints with a simple measure of variance. Again
this is combined with the DENDF fitness measure. and the vesults are shown in Figure

6.17.

Best of 4 trials Best of 9 trials
Funess Fuiness
2.35 i R ; 260
230 T Q
o L}
225 i
2.50 cood Best DENDE.
220 0.c?.........Bcsl.DF.'N[)F: i
245 b
13 3 Q Sicct
S ' 200 L.
o Swed 4
203 : 238 Size 4 :
Sive i
= D Sich '
2K imsans . 33} (-3
195 . -
] 235
1.90 : .
| s T o
185 o ;
150 215
175 R A ...(:3.5,“,‘. ; 2.0 O St
170 iz ; 208 :
1.65 :
. 20 : vk
60 ; o T o]

Figure 6.17: Comparison of results using the DFNDFO fituess measure

These results are worse than the DFNDF and DFENDFA results, although not signific-

antly, with the best network size now being 4 or 6.

Many other combinations of fitness functions could have been shown here, but these

104 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

results are typical of those found. Different fitness functions were not tried because
other. simple funetions like “not down™ and “not fall” and “average speed” could not
be fonnd, the biologically plansible ones seeined either too complicated or not obviously

useful, and the more detailed ones seeined not to help.

6.2.6 Discussion

Overall the simpler fitness measures (like “decay™ and “not fall”) worked well and the
more complex (like “oscillate”) which elaimed to judge the internals of the robot and

controller performed badly: however, the results were not guite that simple.

Neither “not down™ nor “not fall” worked well on their own, but needed “decay”™
to produce good results. This seems reasonable, because many controllers early in
evolutionary rans were unstable for the first second or two when they started inoving,
aned so were penalised badly when no decaying of the fitness was included. That meant
that it was difficult for evolution to start, so there was a tendency not to evolve as
far or spend too e time optimising the first two seconds of iotion and not enongh

time on the stable gait.

The more complicated fitness measures, “active” and “oscillate”, nsed intuitive meas-
nres of what should be going on inside the robot and its controller to help goide the
evolution. Unfortunately these did not turn out to be very useful — although DFND-
FAa was very marginally better that DFNDF, the other two were marginally worse,
Fundiunentally these were based on the Hawed premise that we should know what
is the best behaviour inside the controllers should be, just as in the last chapter we
found that choosing the parameters for the st and 2nd order neuaral models based on

assumptions about the kind of behaviour nenrons should exhibit was Hawed.

In conclusion, when building fituess functions for this task at least, it is perfectly
adequate to state the goals which we want to achieve and not try to prescribe the way
to achieve thamn, cither through staged evolution or more complex fitness functions as

we tried here.

6.3. CONCLUSIONS 105

6.3 Conclusions

The results fromn this Chapter were not as clearcut as those from the last. Other en-
cadings from the simple Full (symmmnetrical) encoding were tried. but with little snevess,
but more complex fitness functions did improve the ability of the robots to move at

speed. In conclusion:

e Sparse distal and dense local conmectivity, although found universally in CPGs
in vertebrates, was not useful in controlling these robots: indeed the ability for
a single neuron to output to more than one actuator was crucial to building
good neural controllers, Taking inspiration from natwee is clealy risky when
the “reasons” helind natural designs are not known, In this case, perhaps other
factors drive the sparse distal conmectivity such as actual physical separation of
muscles, which caunses separation of CPGs in the spine, and henee difficultios in
actually making the distal conmections as well as time delays in the signals being

passed, neither of which are modelled here.

Because the Full encoding proved to he better than all of the non-fully conmeeted
eneodings which were tricd. and the closer the encoding came to the Full cueod-
ing. the hetter it did. it was decided that there was no point i hnplementing the
indirect encoding which had been designed, there Deing no reason to helieve that

the biases iu it would be more desirable than those ina fully conneeted network.

Simple additions to the fitness functions such as a decay termn to eliminate prob-
lemns at the beginning of the simulation, and penalties for the body of the robot
hitting the ground, or the robot lowering its centre of gravity, worked well to in-
crease its ability to move at speed over longer periods of time than the 5 sceonds

allowed for fitness evaluations.

More complex fitness functions to detenmine whether the nearons or joints were
doing precisely the “right” thing were not very suceessful, as anticipated in See-
tion 3.2.1, when we decided against staged evolution because it was inpossible to
tell what was the right behaviour for an arbitrary neuron in an arbitrary robot

was.

106 CHAPTER 6. ENCODINGS AND FITNESS MEASURES

The commmon thread between the results in this chapter and the last is that we have
discovered again that having a scemingly reasonable fecling (say that we want the
legs to oscillate) does not necessarily mean that it will be useful in practice, and we
shonld stick instead to the goals we wish to achieve -—— if we want a robot to move
forwards without falling over, then it is perfectly possible to specify just that and
the evolutionary algorithm will take care of the rest. It is reassuring and somewhat

surprising however that this simple approach does work.

Chapter 7

Testing the system

In the last two chapters a system has been developed which can repeatably generate
low level controllers for our target quadrped, allowing it to walk or run in a straight
line and at a constant speed. In this chapter we will examine whether the system is
as general purpose as is claimed, and whether it is fit for purpose as part of an active

walking mechanism which can be controlled by a simple higher level controller.

7.1 A selection of robots

To test whether the systemn is sutficiently general purpose to use on arbitrary legeed
tobots. o sevies of diferent designs were ereated. and the hest evalutionary setup
from the previous chapters was taken and used directly on the new design with no
modifications. The details of this setup are shown in Table 7.1 (the GA parameters

are the smne as used in the previous Chapters).

Newron type: Third order
Neurons per effector: | 6
Encoding: Full
Fitness measure: DENDF

Table 7.1: Details of setup of experiments for Chapter 7

T'he robot designs broke down into three categories:

o Other quadrupedal robots

107

108 CHAPTER 7. TESTING THE SYSTEM

o The original quadruped in different enviromnents (e.g. low friction, low gravity)

e Robots with different munbers of legs

It wis one of the design criteria of the system that it should be possible to cncode
other robot designs, but it is an significant extra that the environment can also be
waodified like this as it is a feature which is not investigated in other similar research
(e.g. Kodjabachian and Meyer, 1998). We will look at the variations in the robot

designs in the order given above.

7.1.1 Quadrupeds

The first new robot was similar to the original (Quad_in), but with all of the knees
bending in the same direction (see Figure 7.1), and was called Quad_same. This meant
that all of the legs could be given the sane controller, and T experimented with this
as well as with separate front and back leg controllers. With different controllers for
front and back legs, it was very similar to the Quad_in robot, producing some fast if
slightly uneonventional gaits: hut with only one controller duplicated across all of them
it easily ontperforined them, producing some very good controllers using fast trotting

eaits, one of which is shown i Figuee 7.1.

Al of the specds for the gquadivupeds (measured nsing the standavd Specsd20 fitness
mweasure) are shown in Figure 7.2, though it should be noted that as different robots

have different maxinmumn speeds, no strong conclusions can be drawn from them.

A robot was then built with free movements of all of its joints, so that cach could move
through 3607 (although not beyond £180° in any direction), called Quad_full. A huge
varicty of different gaits evolved, as might be imagined, some of which are shown in

Figure 7.5, though in general it was slightly slower than Quad .

The next robot tested had prismatic (sliding) joints instead of hinge joints at the knees,
and again all of its legs were given the same controllers. It was called Quad_prismn, and
again easily outperformed Quad_in. Most of the robots evolved to walk on their knees,
using only a small amount of their lower limbs to give them a h‘ﬁghtly longer reach at

the beginning of their stride (see Figure 7.4).

7.1. A SELECTION OF ROBOTS 109

Figure 7.1: A fast controller for the Quad_sane robot

Liest of Y irials

Fitness dmls)

LRl Q
Q } Quaid_samme (o comtroliet)
Vim L] prsin &
O
R0
2601 @

Quad u.% c;.‘zg\....l st (rwnh controdlers)
)

24 '
o
120 Q
O Queaad_tull

200 o

Q
e @ Quad i twuhit knicw conticny

v
1 6dd J

o

140 %()u...!_ ot

Figure 7.2: Average speed of best of 9 runs for each quadrupedal robot

110 CHAPTER 7. TESTING THE SYSTEM

Figure 7.3: A variety of gaits for the Quad_full robot

Figure 7.4 Quad _prism: o gquadiped with prisinatic knee joints

7.1. A SELECTION OF ROBOTS 111

Finally an extra joint was added to the original robot to give it feet, and the new robot
was called Quad foot. Mostly the robot evolved to use one set of feet and not the
other, as is seen in Figure 7.5, though running backwards as this one does was quite

unusual. Generally, the robot was much slower than any of the previous ones.

Oue other experiment was done, penalising the robot for walking on its knee joints, by
extending the definition of what was part of the body of the robot (touching the body
on the pround was already penalised). The robot did learn to walk on its feet, but it
was considerably slower than it was when walking on its knees. All of these results will

be discussed further at the end of this section.

7.1.2 Different environments

The Quad_in robot was then put into a low friction and a low gravity environment and
evolved to see whether it wis able to deal with these changes, The results are shown

in Figure 7.6.

The low friction environment made it easicr for the robot to move, apparently because
it did not have to worry about trippiong up any longer, and skidding did not worry it
at all — indeed many of the faster controllers start like a car starting a race with a
great deal of skidding until the robot gets up to a fast enough speed. The low gravity
on the other hand was el more problematie. with most of the robots falling over
after a few steps, and having trouble adapting to the necessanily slow pace of walking
in snch conditions. This may well be siimply because of a lack of time spent changing
time constants or the strengths of the muscles however, which would allow the new

robots to move more slowly.

7.1.3 Triped and Biped robots

Two final robots were built to test the ability of the system further, a triped and a
biped (a hexapod was also acquired, but a design error and time pressure made it
impossible to run experiments with it). Neither moved very fast (sce Figure 7.7 for
details), but the biped was very poor. Only a very few managed to develop any kind

of gait, and none of these were at all satisfactory, ncarly all falling onto their arms for

CHAPTER 7. TESTING THE SYSTEM

-3

50 Oune of many controllers for the Quad _foot robot

Figure

7.1. A SELECTION OF ROBOTS

Fitness

Best of 9 trials

2.40

2.20

2.00

0.60

Figure 7.6: Average speed of best of 9 runs for different environments

113

114 CHAPTER 7. TESTING THE SYSTEM

support, and none alternating their legs in a sensible fashion. One of the few bipeds to
stay onits feet is shown in Figure 7.8, and it is clear that this is not a useful gait to have
learnt (it uses the momentn from swinging its arms to help it hop very slowly) —
even here it fell over after a foew hops. Some recent experiments done by Reil (1999) on
a biped have shown that bipeds can learn to walk with a similar experimental sctup, so

it is likely that some parameters such as actuator strength just needed to be adjusted.

Best of 9 trials
Fitness

2.60 ey
Y SOOI .
220 .

200

1.80

T cocnvemememmmensnygan

1.40
1.20

050 Flipidcassanmmansassusna

Figure 7.7: Average speed of best of 9 runs for triped and biped

The triped on the other hand was successful, but just not physically capable of moving
at a great speed — a typical example of the triped is the bound shown in Figure 7.9,
which the robot could keep up indefinitely. The robot was in general slightly more
prone to falling over than others, but that is understandable given its design, and

apart from that the system worked well at generating gaits for it.

7.1.

A SELECTION OF ROBOTS

Figure 7.8: One of the better biped controllers!

116 CHAPTER 7. TESTING THE SYSTEM

Figure 7.9: A typical triped

7.1. A SELECTION OF ROBOTS 117

7.1.4 Discussion

Most of the vobots moved well. with some of them significantly ontperforming the
original design. Of course such commparisons are largely meaningless as some robots can
inherently move faster than others because of their limb configurations and strengths,
but it is nonetheless an indication that the system is not specifically tailored to the

original robot and can adapt to different ones.

Penalising the robots for going down onto their knees also succeeded in getting the
madels to walk on their feet more, though generally at some expense i speed. However
this speed reduction may indicate that design problems with the original robot made
it bhetter able to move on its knees than its feet, particularly when it is considersd that
the fastest robot (which had all of its knee joints bending the same way) learnt to run

on its feet without any penalties at all.

The only robot which really disappointed was the biped which, although it did generate
repeating gaits which enabled the robot to move along, certainly couldn’t be considered
to have sneceeded in generating useful walking gaits, There are two possibilities here -
cither the system broke down on the biped, or the biped was not itself well designed for
wilking (again). It is fair to say that the system did break down, and perliaps more
work needs to be done to make control of bipeds easier, as they constitute a much
more diffienlt balancing problem than quadrupeds, and extra features may have to be
incorporated into the fitness evaluation. However, since occasional evolutionary runs
in this thesis have accidentally generated bipedal or mostly bipedal gaits like knuckle
walking in the Quad_in gquadruped, T belicve that it is likely that there is also a problemn
with the design of the robot, but that this is certainly not an insuperable problem.
Indeed, it is entirely possible that a better designed biped would be capable of walking
using just this system, and this is backed up by the very shmilar results which have
just been obtained by Reil (1999). Unfortunately an alternative biped which was tricd
caused problems for DynaMechs due to the stiffuess of the integration, so it was not

possible to investigate this further.

Oue further experiment was tried which involved changing the conditions that the

robot operated in. Changing the friction cocfficient of the ground made very little

118 CHAPTER 7. TESTING THE SYSTEM

differenee, with the robot able to cope quite easily although it did slide a lot. However,
chimging the gravity to Sms” 2 did make it very diffienlt for the robot. Some gaits
were evolved, but generally they were gquite unsuceessful. Watching the robot, it was
clesn that it had trouble adapting to conditions in which it conld push itself clear
of the gronnd completely, and although moderating the strength of the motors did
help, the legs still seemed to be moving too fast — perhaps the adaptation rate of
the neurons needed to be lower in these conditions, but since we were using the fixed
lamprey neuron parameters. it was decided not to investigate this any further at this
point. This would scemn in fact to be a case where the addition of a fitness function

like: minimising ground forces mentioning in Section 6.2 might be of practical value.

In general though, the system sueceeded in generating a variety of gaits for the robots
with whicl it was presented, with the fastest exeeeding 10mph, a very reasonable speci,
More research onghit to be done using more realistic vobot models however, and we will

discuss this further in Section 8.2,

7.2 Active mechanisms and higher level controllers

The final test of the system s to see how easy it is to build high level controllers on
top of it. In vertebrates, as we said in the introduction, simple signals can be passed
down the spinal cord to the CPGs to change the speed or direction of movement, and

wation in

we will try to add control signals which induce a turning movement or ace
the robot. Move complicated tiasks such as recovering fromn tripping up, or increasing
stability when changing gaits reguire more sophisticated controllers, aud so will be left
for now. However in principle there is no problem in doing this — instead of simply
adding more connections to the existing neurons, more neurons would be added to the

network as well,

The best Quad_in controller was taken as the basis for all of these experiments, and

connections were evolved from the control inputs to all of the neurons in the controller.

7.2. ACTIVE MECHANISMS AND HIGHER LEVEL CONTROLLERS 119

7.2.1 Steering

Two vontrol inputs were used for this, with the conmections being synunetrical so that
the connections from the first input to the left of the body were the sine as the
councetions from the second to the right and vice-versa. The conncetions for one CPG
are shown in Figure 7.10. Sinee there were very few paramecters being evolved (only 1
per neuron after symnetries have been taken into account, which makes 48 in total)
the population and munber of generations of the genctie algoritinn were halved to 25
and 50 respectively. The fitness function was the integral of the product of the radial
and angular velocities, to ensure that the robot continued to move forward as well as
turning. Ten runs of the GA were carried out to see whether it was possible to evolve

a steering controller, and nine of them sueceeded. The best is shown in Figaee 711

Motor

s

[|
[|
I |
| |
I Left input Right input!

Figure 7.10: Additional conneetions for steering control on a joint

The robot can now be steered left (with inputs +2 and 0) and right (0 and +x) at will,

with higher z causing faster turns. In fact giving a signal to both inputs slows down

120 CHAPTER 7. TESTING THE SYSTEM

Figure 7.11: Turning left

7.2. ACTIVE MECHANISMS AND HIGHER LEVEL CONTROLLERS 121

the robot slightly by shortening the step length, so the inputs appear to be slowing

one gide of the robot or the other.

7.2.2 Slowing down

Sinee the fitness evaluations so far have all included a “maximise speed™ clement. it
secined unlikely that a control signal could be included which would speed up the robot
any further, so it was decided to try to add a signal which would slow it down instead.
The important feature here was that the robot should not fall over (a very cHective
way of slowing down!), so the fitness function used penalised moving forward above
half the speed it managed without the control input, but penalised falling down wnch
more heavily, The hope was the this would allow a control sigual to specifically learn
to reduce the speed of the robot but not stop it, and using a lower control input would

allow variation between the two speeds achieved.

Stopping the robot was not attempted because it was felt that this would vequire a
different low-level controller than that which had bheen evolved for walking, as standing
still conld use the muscles to keep the joiut angles constant for instance, which wonld
require aovery different controller from walking slowlv, This is in contrast to previous
experiments such as that done by Kodjabachian and Meyer (1998) where walking
slowly and stopping were very similar because the experiment was in 2-D which meant

no halaneing was required.

Again ten runs of the GA were performed with half the population and vomber of
generations. With only one control input, and the conmections synunetrical so that a
weight to a neuron on the left was the same as the weight to the same nenron on the
right. there were only 24 parvameters to be evolved. This time all of the evolutionary
runs succecded in producing speed controllers, with most of them able to slow the robot
down by about 1/5 and some up to 1/3 whilst maiutaining a stable gait. Although
this is not as much as might be expected, it scemaed likely that more was possible,
with perhaps more thought put into the fitness function, since many solutions involved
slowing down the robot by the maximum 1/2 for the first 5 seconds that the evaluation

ran over, and then slowly speeding up thereafter.

122 CHAPTER 7. TESTING THE SYSTEM

7.2.3 Combining controllers

A fial experiment was carvied ont combining the best steering controller with the best
speed controller on the sane underlving neural network. This was possible becanse
in both cases the connections were evolved as additions to the sane network. The
controllers combined easily on a single system., and the robot’s direction and speed

were then controllable filHl‘.l}l!'I'.

7.2.4 Discussion

The addition of higher level controllers to drive the active mechanisim were very sue-
cessful, with almost every single evolutionary ran ereating o sueeesstul controller. This
was an excellent result, and guite unexpectod: even more so was the ability to combine

simple higher level controllers to make imore sophisticated ones.

The controllers evolved were only simple ones to control speed and direction of loeo-
motion. but the results strongly backed up the original contention that higher level
control 1s casier to iln])h'im']lt o \\'.‘l]l-cill_'_‘, roabaot than i basic legeed one, soommeh so
indecd that they do not need any additional neurons to carry out its function. This
iy be beeause the basie walking bebaviow s stable and so ean be pushed easily by
control inputs in a variety of directions (such as to allow turning or speed changes)

without it becoming unstable. Some more sophisticated controllers, such as ones which

could carry ont transitions from walking to standing or running for instanee. might re-

quire more complicated controllers. as indeed they do in vertebrates, but investigation

into this more sophisticated kind of control is a subject for further vescavel.

7.3 Conclusions

The system ereated in this thesis for evolving low level neural controllers for arbitrary
salking robots works well, with some minor reservations concerning bipedal robots.
Furthermore, attempts to add higher level controllers to the system in the form of
a specd and a steermg controller were suceessful on the first attempt, with only the

simplest possible controllers being necessary to achieve the aims set out.

7.3. CONCLUSIONS 123
This opens up the possibility of further work to investigate how to improve the low
level controller for bipeds. and to make more sophisticated high level controllers. This

will be discussed further in Section 8.2,

121

CHAPTER 7.

TESTING THE SYSTEM

Chapter 8

Conclusions

8.1 Summary of contributions

This thesis proposes a new control methodology for walking robots. Currently robots
are controlled cither by having springs and dampers built into the physical robot to
produce an excellent walking robot. which is easily controlled but with little of the
eseneral purpose ability to elimb over obstacles or manocnvree which makes walking
tobuots desitable. or having monolithic controllers designed for specitic robots, which
15 a0 very ditficult problem. not easily generalisable amd thus very tiime consuning for

viach new robot.

Instead this thesis proposes simulating the springs and dianpers of the passive robot
through the motors to produce an active mechanisin which is a walking robot in its
own right. This eliminates the problem of the lack of multifunctionality of the passive
robots, by allowing the active mechanisin to be switched off or altered to cope with
different conditions, but avoids the higher level controller having to “compensate for
the limitations of a poorly designed mechanisin™ (Raibert, ISToMM93), thus greatly

stmplifying the control task,

This control model is implemented using neural networks to provide the low level
dynunic control of the motors, and a simple genetie algorithm to evolve the connections
of the networks. It is shown that these tools allow siimple active walking (and running)
mechanisis to be built for a varicty of robots very casily, and that adding higher level

controllers for speed and direction using the same tools is very casy, as predicted in

125

126 CHAPTER 8. CONCLUSIONS
the introduction.

The thesis also investigates o munber of issues in evolutionary nenral networks. 1t
finds that more sophisticated (and biologically plansible) neural models are significantly
better at this kind of control task than the simpler models usually used. It is suggested
that this could be a result of the greater richimess of behaviour of individual neurons;
this means that fewer neurons are needed for a given problem, which in turn simplifics

thie search for a solution.

A variety of nenral encodings arve also investigated to discover which connectivity pat-
terns are best for this problem, with the expectation that conmectivity somewhat like
CPGs in vertebrates may turn out to be useful. However, results indicate that the
best comtrollers have very dense intra- and inter-joint conmectivity, and indecd that
the ability of neurons to conneet to more than one effector is very useful in building
effective controllers: both of these resnlts are unexpected, and perhaps hint that other
factors such as simple physical separation and consequent time delays in signals may

perhaps drive the connectivity patterns found in CPGs.

Finally an analysis is made of different types of fitness funetions to detenmine which
kindd aof fitness measures help in the development of active mechanisims, It is found
that. despite their extensive use in the field, there is no evidenee that fitness measures
relating to the internal workings of neurons and joints are helpful in the design of goaod
walkers, It is suggested that this is becanse we simply don’t know what these nenrons
and joints ought to be doing in a good walking gait, but instead it is sofficient to
specify broad ontlines of the task. such as maximising speed whilst keeping the body
off the ground, amd that such simple fitness measures can produce the desived resolts

on their own.

8.2 Future Directions

The experiments done in this thesis were of necessity exploratory, and some elements
were only touched on. In particular little energy was expended on optinising the
evolutionary algorithm, and it would undoubtedly be useful to examine this in more

depth. A more serious consideration is that the robot models used were made up on the

8.2, FUTURE DIRECTIONS 127

spur of the moment to represent real or imagined generie classes of robots (the triped
will sadly probably never make it onto a production line!), It would be extremely
instructive to try out the system on a real robot, as it was obvious in retrospect that
many of the robots were poorly designed, This was not practical during the thesis for
a munber of reasons — the lack of a legged robot to use as a model, the complicated
nature of real robots, for which inertia matrices and the like have to be computed for
the simulator, and the modelling of the motors which would be difficult and entirely
unrelated to the research being carried ont. However, it is the purpose of the control
model to be used on a real robot, so it would be very interesting to see how it coped.

and whether the controller could pass across from simulation onto the actual robot.

It would also be a useful extension to the work to see how easily other. more complie-
ated, higher level controllers could be added to the system, to inerease the stability of

the system for instance, or to allow transitions from one gait to another.

Finally it would be a very interesting project to try modelling a veal vertebrate, per-
liaps a large cat or even a human, using anatomical information and sophisticated
mnsele models which ave easily available (farmore so than for robots), and to see if
waits similae to those fonnd o natare could be daplicated on the simulant. There is
every reason to helieve they wonld, given the siimilarity of many of the gaits found
in the quadrupeds studied heve to natural ones. It this was suceessful further work
conld investigate which optimisation eriteria produced which gaits in which animals,
providing insights which could then be used in zoological research such as the inverse
optimality problemn discussed in Section 2.2.5. Information could also be gathered dir-
cetly from the simulant for instance as to the energy efficiency of various gaits which

can only be roughly estimated on real animals.

128

CHAPTER 8. CONCLUSIONS

Bibliography

Ackley, Do and Littiman, M. (1992). Interactions between learning and evolution. In
Proceedings of the 2nd conference on Artificial Life, pages 487 - 509, Addison-Wesley.

Alexamder, R. (1984). The gaits of bipedal and quadrapedal animals. nt. J. Rob. Res..
3(2)., 49-59.

Alexander. R, (1990). Three uses for springs in legged locomotion. Int. J. Rob. Res..
9(2). 53 61.

Alexander. R. (1991). Enecrgy saving mechanisms in walking and vanning. J. Erp.
Biol.. 160, 55-GY.

Angeline, P. J. (1993). Evelutionary Algorithns and Emergent Intelligence. Ph.D.
thesis, Ohio State University.

Angeline, Pl Sannders, G ML and Pollack, 10 B2 (199:3) An evolutionary algorithm
that comstruects recurrent neural networks, TEEE Thansactions on Nearal Networks.

Assainnte. Cooand Awbland. B (1995). An ontogenetic model for the sensorimoton
organization of balance in hwimans. Human Movement Seience. 14, 1313,

Beer. R (1995). On the dynamics of small contimons-time recurrent neural networks.
Aduptive Behavior. 3(4), 469-509.

Beer, Roand Gallagher, J. (1992). Evolving dynamic neural networks for adaptive
behavior. Adaptive Behavior, 1, 91-122.

Bishop, C. (1995). Neural Networks for Pattern Hecoguition. Oxford University Press.
Boers. E., Kuiper, H., Happel, B., and Sprink huizen Kuyper, L (1993). Designing
modular artificial neural networks. In H. Wijshoff, editor, Proceedings of Computing

Science in The Netherlands, pages 87-9G, STON, Stichting Mathematisch Centrun.

Boers, E. J. and Kuiper, H. (1992). Biological Metaphors and the design of modular
artifictal neural networks. Master's thesis, Leiden University, The Netherlands.

Boone, G. and Hodgins, J. (1995). Refexive respouse to slipping in biped running
robots, In JROS, volume 3, pages 158-194.

Boone, G. and Hodgins, J. (1997). Slipping and tripping reflexes for bipedal robots.
Autonomous Hobots, 4, 259-271.

129

130 BIBLIOGRAPHY

Brooks, R. A, (1989). A robot that walks; cmergent behaviors from a carcfully evolved
network. Al memo 1091, MIT.

Cangelosi. AL Parisic D, and Nolfio S0 (1991). Cell division and migration in a ‘gen-
otype’ for nenral networks. Network: Computation in Newral Systems. (5), 497 -

Hlh

Cheng, M-Y. and Lin, C-8, (1996). Measurement of robustness for biped locomotion
using a linearized Poinciné map. Robotica, 14, 253-254.

Cohen, Po(1995), Ewmpavical Methods for Avtificial Intelligence. MIT Press.

Collins, J. and Richmond, S0 (1991), Hard-wired central pattern generators for guad-
rupedal locomotion. Biol. Cybernetics, 710 375 3805,

Colling, 1. and Stewart. L (1993a). Coupled non-linear oscillators and the syonnetries
of animal gaits. J. Nonhnear Sei., 3. 319-392.

Collins. J0and Stewant, I (19930). Hexapodal gaits and coupled non-linear oseillator
maodels. Brol. Cybernetics, 68, 287203,

Collins, R aned Jefferson. DO RO (1990). An artificial nearal network representation
for artificial organisins. In Proceedings of the 1st Workshop on Parallel Problem
Solving from Nature, papes 259-263.

Cruse. 1. Bronne Do Bartling, €. Deans L Dreifert. Mo Kindermann, T and
Schaitz, o (1995) Walking: o complex behaviowr controlled by simple networks
Adaptive Behavior, 3, 385 118,

de Gardse HL(1990a), Genetie progrnmming: Artificial nervons systems avtificial cin-
bryos amd embryological clectronics. In Proceedings of the st Workshop on Parallel
Prablvm Soleing from Nature, pages 117 123

de Garis, L (1990Dh). Genetie progrinnming: Building artificial nervous systems using
genetically progranmmed nenral network modules. In Proceedings of the Tth Inerna-
tional Conference on Machine Learning.

Deleomyn. Fo (1980). Newral basis of rhytlnnie behaviour in animals. Science. 210,
492 - 198,

Eilun, D. (1995). Comparative morphology of locomotion in vertebrates. J. Motor
Behavior, 271000111,

Ekeberg, O, (1993). Neural control of vertebrate locomotion: A computer siimulation
study. In B. Svensson, editor, Int. Work. on Mechatronical Computer Systems for
Perception and Action, Hahmstad University, Sweden.

Eliott, P. (1997). Personal comummnication.

Featherstone, R. (1984). Robot dynamaies algorithms. Ph.D. thesis, Department of
Artificial Intelligence, University of Edinburgh.

BIBLIOGRAPHY 131

Fullmer, B. and Miikulainen, R. (1991). Using marker-based genctic encoding of neural
networks to evolve finite-state behaviour. In Procecdings of the Ist Ewvoprean Con-
Sferenece on Avtificial Life, Puaris, Franee.

Gallagher, 1. and Beer. R.(1992). A qualitative dynamic analysis of evolved locomotion
controllers. In From Amimals to Anonats 1, pages 71- 80,

Gallagher, J.. Beer, R., Espenscheid, K., and Quinn, R, (1996). Applications of evolved
locomotion controllers to a hexapod robot. Roboties and Autonomous Systems, 19,
95-103.

Goldberg, D, (1989). Genetwe alyorithms an scareh, optinuzation, and machine learn-
ing. Addison-Wesley.

Goswami, A, Espian, B, and Keramane, A (1997). Limit eyveles in a passive compass
gait biped and passivity-mimicking control laws. Autonomous Robots, 4, 273-286.

Gray. J. and Lissmann, HOW. (1940), Journal of Erperimental Biology, 17. 237

Gray, J.. Lissmann, I W., and Puphrey, R. 0 (1938). Jowrnal of Erpervimental
Bislogy. 15, 408,

Grillner, S. (1985). Newrobiological bases of thythmic motor acts in vertebrates. Sei-
ence, 228, 143-149.

Grillner. S, and Wallén, P. (1977). Brain Research, 127, 291,

Grillner, S0 Wallén, P oand Brodin, Lo (1991). Newronal network generating locouuoton
belavionr in kanprey: Civenitry, transmitters, membrane properties, and simulation.
Annael Revicw of Newwscienee, 140 169 - 199,

Gruan, Fo(1999a). Automatic Defivition of Sub newal networks. Ph). thesis, FEeole
Notmale Supéricure de Lyon.

Gruan. F. (1991L). Automatic definition of sub neural networks. Technieal Report
94-28. Fcole normale Supéricure de Lyon.

Guuter, 13, (1991). Bootstrapping: How to make something from admost nothing and
get statistically valid answers. 1. Brave New World. Quality Progress, pages 97 103,

Gurfinkel, V., Gurfinkel, E., Selineider, A, Devjanin, E., Lensky, AL and Shitihnan, L.
(1981). Walking robot with supervisory control. Mechantsm and Machine Theory,
16. 31-306.

Harp, S. A., Swmnad, T., and Guha, A. (1989). Towards the genetic synthesis of nearal
networks. In Proceedings of the 3rd International Conference on Genctic Algorithms.

Hirose, S. and Umetani, Y. (1980). The basic motion regulation system for a quadruped
walking vehicle. In ASME Conf. on Mechanisms.

Hodgins, J. (1996). Three-dimensional human running. In IEEE Int. Conf. on Rolotics
and Automation, pages 3271-3276.

132 BIBLIOGRAPHY

Honda Motor Company Ltd., ‘Tokyo (1997). The Honda humanoid robot.
http://www honda.co jpfenglish /technology /robot /.

Lspeert. A Hallinn, Do, s Willshaw, DL (1997). Artificial lnnpreys: Comparing
naturally and artificially evolved swinmning controllers. In European Conference on
Avtificend Life, pages 206-265.

Jalies, Lo, Hemauni, H., Clymer, B, and Groff, A. (1997). Rocking, tapping and
stepping: A prelude to dance. Autonomous Robots, pages 227-242.

Kelso, Jo (1995). Dynamie Patterns: the Self-Ohrganization of Biain and Belavior.
MIT Press.

Kitano, I (1990). Designing neural networks using genetic algorithms with graph
generation system, Complee Systems, 4, 461 176.

Kitano, H. (1995). Cell differentiation and nenvogenesis in evolutionary large seale
chaos. In Proceedings of the 3rd European Conference on Artificial Life. pages 341
302

Koo 1 and Badler, No (1996). Animating human locomotion with inverse dynamics.
TEEE Computer Graphics and Applications, 16, 50-54.

Kadjabachian, J. and Meyer, J-A. (1995). Evolution and developient. of control
architectures in animats, Robotics and Autonomous Systems, 16, 161-182.

Kadjabachian, Joand Mever, J-A (1998). Evolution and development of nearal con-
trallers for locamotion. gradient-following. s abstacle-avoidanee in artificial in-
sects, JTEEE Transactions on Newral Networks. 9, TH6-812.

Koopman, Lo (V987). futrodection to contewnporary statistioal methods. Baxlury Press,
Boston, 2nd edition.

Kozao Jo R0 (1992). Genetie Programong: On the progranuning of computers by means
of natural selection. MIT Pross.

Koza, 1 R (1904). Genetic Programming 1I: automatic discovery of reuscable pro-
gramsnolfi. MIT Press.

Lewis. M. AL (1996). Self-organization of locomaetory controllers in robots and animals.
Ph.D. thesis, University of Southern California.

Lewis. M. AL Fagg. A. 1L, and Solidum, A. (1992). Genetic programming approach to
the construction of a nearal network for control of a walking vobot. In Proceedings of
the 1992 IEEE International conference on Robotics and Automation, Nice, France.
papes 26182623,

Lindenmeyer, A. (1968). Mathematical models for cellular interaction in development,

part i and part ii. Journal of Theoretical Biology, 18, 280-315.

Luk, ., Collie. A., and White, T. (1993). Nero: a teleoperated wall elimbing vehicle
for assisting inspection of a nuelear reactor pressure vessel. In ASME Int. Comp.
Eng. Conf.

BIBLIOGRAPHY 133

Luk, B.. Couke, D., Collie, A., and White, T. (1994). Robug iii: a semi-intelligent
teleoperated walking and climbing robot for disordercd and hazardous euvironments.
In Furopean Rolotics and Intelligent Systems Conf.

Maniezzo, V. (1994). Genetie evolution of the topology and weight distribution of
neural networks. TEEE Transactions in Newral Networks, 5(1).

Marey, E. (1874). Animal Mechanisms: a treatise on tervestrial and aerial locomotion.
Appleton. New York.

Marsolais, E. and Kobetie, R. (1983). Functional walking in paralysed patients by
means of electrical stimualation. Clin. Chthoped. Rel. Res., 175, 30 36,

Matsuoka., K. (1979). A model of repetitive hopping movements in man, In Procecding
of Fifth World Congress on Theory of Machines and Mechanisms. Iuternational
Federation for Information Processing,.

MeGeer. T (1989). Powered flight, child’s play. silly wheels and walking machines. In
Provecding of the 1989 IEEE International Conference on Robotics and Automation,
piges 1592-1597.

MeGeer, T. (1990), Passive dynamic walking. fut. J. Rob. Res.. 9(2). 62 82,

MeGhee, R. B. (1976). Robot locomotion. In R Herinan, S. Grilluer, P. Stein, and
D. Stuart. editors, Neural Control of Locomotion. pages 237-264. Plenmumn Press.

MeNMillan, 8. (19910). Computational Dynamies for Robotoe Systenes on Lowd aneed andded
Water. P, thesis. Ohio State University,

Miall, RoCL Weir, DOJL Wolpert, Do M s Stein, 1 FL (1993) 1s the cerehellnm a
smith predicton? Journal of Motor Behacior, 25(3). 208 216.

Michel, O el Biondis 00 (1995a). Fromn the chvomosome to the neuaral network.
In Procecdings of the International Conference on Avtificial Newral Networks and
Genetie Alyorithms.

Michel, O. and Biondi. J. (1995b). Morphogenesis of nearal networks. Newral Pro-
cessing Letters., 2(1).

Miller, G. F., Todd, P. M., and Hegde, S, UL (1989). Designing nenral networks
using genctic algorithms. In Proceedimgs of the International Conference on Genetic
Algorithms 3, papes 379-384.

Minra, 1L, Shimoyama, 1L, Mitsuishi, M., and Kimura, Ho (1984). Dymnic walk of
biped. International Journal of Roboties Researeh, 3(2), 60-74.

Mjolsness, E., Sharp, D. H., and Alpert, B. K. (1987). Recursively generated nearal
networks. Rescarch Report YALEU/DCS/RR-549. Departinent of Computer Sei-
enece, Yale University.

Moriarty, D. E. and Miikulainen, R. (1994). Efficient reinforcement learning through
symbiotic evolution. Technical Report A194-224, University of Texas at Austin.

134 BIBLIOGRAPHY

Maosher. R. S, (1968). Testing and evaluation of a versatile walking truck. In Proceeding
of the Off-Road Mobility Research Symposiune. Int. Soc. for Terrain Vehicle Systems.

Muybridge. . (1887). Awimals in Motion.

Navendra, Kooand Parthasarathy, K (1989). Tdentification and control of dynamical
systems nsing neuval networks, [EEE Transactions on Newral Networks, 1(1).

Nolfi. S. and Parisi. D. (1992). Growing nenral networks. Technical report, Institute
of Psychology. National Research Couneil.

Nolfi. S. and Parisi. D. (1993). Phylogenctic recapitulation in the ontogeny of artifi-
cial neural networks. Technical report. Institute of Psychology, National Research
Couneil.

Nolti. S. andd Parvisi. Do (1995). "penotypes™ for nearal networks. In Mo AL Arbil,
cditor, The handbook of brain theory and newrad networks. MIT Press.

Nalfi. S.. Floveano, DL, Miglino, O, and Mondada, F. (1994a). How to evalve autonom-
ous robots: different approaches in evolutionary robotics. In R Brooks aud P Maes,
editors, Artaficial Life IV proceedings. Coonbridge, MAL MIT Press.

Nolfi. S.. Miglino, O.. and Parisic D0 (1994h). Phenotypic plasticity in evolving neural
networks, In Po Gaussier and L-D. Nicoud, editors, Procecding of the Intl. Conf.
From Perception to Action.

Ogo. K. Kanse, AL and Kato, L (1980}, Dypamic walking of biped walking machine
anming ot completion of steady walking., Tn AL Moveckis G Bianehi. and K Kedzion,
cditors, Thod Symposium on Theory and Practice of Robots and Manipulators. 121-
sevier Scientific Pablishing Co.

Perkins, 5. 00 (1999). Inevemental Acquisition of Compler Viswal Behaviowr using
Genetie Programmeing and Robot Shaping. Phl). thesis. University of Edinbargh.

Playter. . (1991). Passive Dynamaies in the Control of Gymnastie Manenvers. Pl
thesis, MIT.

Plustech Ov., Finland (1997). Plustech web. http://www.plustech fi/.

Raibert, M., Brown, L, and Chepponis, M. (1984). Experiments in balanee with a 3d
one-legged hopping machine, Int. J. Rob. Res, 3(2), 75-92.

Raibert, M. H. (1986). Legged Robots That Balunce. MIT Press.

Raibert, M. IL (1988). Dynamieally stable legged locomaotion. Technical Report 11749,
MIT.

Reeve, R. (19994). Generating walking behurviours in legged robots. Ph.D. thesis,
University of Edinburgh.

Reeve, R.(1999h). Walking Robots, a step forward. Kluwer Academic Publishers.

Reeve, R. E. (1994). Control of walking by Central Pattern Generators. Master's thesis,
Departiment of Artificial Intelligence, University of Edinburgh.

BIBLIOGRAPHY 135

Reeve, R. E. and Hallam, J. (1995). Control of walking by central pattern generators.
In Proceeding of the 3rd Conference on Intelliyent Autonomous Systems.

Reil, T. (1999). Avtaficial Evolution of Newral Controllers in o Real-Tine Physics
Environment. Master's thesis, COGS, University of Sussex.

Rosner, B. (1982). Fundamentals of biostatistics. Duxbury Press, Boston.

Rotaru-Varga, A. (1999). Modularity in evolved artificial neural networks. In ECAL 99
— Advances in Artificial Life, pages 256 - 260. Springer.

Rumelhant, D. and MeClelland, J. (1986). Parallel Distributed Programming. volumne
1 and 2. MIT Press.

Sharp, D. H.. Reinitz, J.. and Mjolsuess, E. (1091). Genetie algorithins for genctic
neural nets. Technical Report YALEU/DCS/TR-845, Departinent of Computer Sci-
ence, Yale University.

Sims, K. (1994a). Evolving 3d morphology and behiaviour by competition. In R. Brooks
awd Po Maes, editors, Artificial Life IV Procecdings, pages 28 - 39, Cambridge, MA.
MIT Press.

Sims, Ko (1991h). Evolving virtual creatures. In Proceedings of SIGGRAPH 94,
Ammmal Conference Series, pages 15 22, Computer Graphics.

Sony Corporation (1999). http://www . world.sony.com/robot /top.html.

Spencer. Go (1991), Automatic generation of programs for erawling and walking, In

Ko Kinnear, editor, Advances in Genetie Programaming.

Sutton. Romwd Barto, Ao (1998). Remforcement Learning: An Introduction. NMIT
Press, Caanbridge MAL

Taga., G (1995). A wmodel of the newro-musenlo-skeletal svstem for lman locomaotion
Biological Cyberneties, 73, 97-111.

Taga., G., Ymnaguchi, Y., and Shimizu, 11 (1991). Self-organized control of bipedal lo-
comotion by neural oscillators in unpredictable environment, Biological Cyberneties,

65(3). 147-159.

Torrecle, J. (1991). Temporal processing with recurrent networks: An evolutionary
approach. In Proceedings of the §th International Conference on Genetic Algorithm,
pages 5556-561.

Utecht. U. and Trint. K. (1994). Mutation operators for stroctural evolation of nenral
networks. In Proceedings of the drd Workshop on Parallel Problem Solving from
Nature.

Vaal, J., van Soest. A., and Hopkins, B. (1995). Modelling the carly development of
bipedal locomotion: A multidisciplinary approach. Human Movement Science, 14,
6H0U-636.

van de Panne, M. (1996). Parameterized gait synthesis. IEEE Computer Graphics and
Applications, 16(2), 40-4Y.

L6 BIBLIOGRAPHY

vin Soest, AL and van Galen, G, (1995). Coordination of multi-joint movements: An
introduction to emerging views, Human Movement Science, 14, 391-400.

Wadden, ‘T Orjan Ekeberg, and Lansuer, A, (1993). Towards ann based contiol of
sinmlated legged locomotion. n B, Svensson. editor. Int. Work. on Mechatronical
Computer Systems for Peveeption and Action, pages 379 382, Halstad University.
Sweden.

Wallén, P, Ekeberg, O, Lansner, Ao Brodin, L. Travén, ., and Grilluer, S, (1992).
A computer based maodel for realistic simulations of neural networks. 11 the sep-
mental network generating locomotor rhythmicity in the hunprey. Journal of Newro-
physiology. pages 19391950,

Wettergreen, 1 Thorpe, O and Whittaker, R, (1993). Exploring mount erebus by
walking robot. Robotics and Autonomous Systems. 11, 171-185.

Whitley, D. and Hanson, T (1989). Optimising neural networks using faster, more
acenrate genetic searche In Jo Schaffer, editor, Proceedings of the drd International
Conference on Genetic Myorvithns and thewr Applications, pages 391 396.

Wiclmd, A P (1991). Evolving neural network controllers for unstable systems.
In Proceedings of the International Jomt Conference on Newral Networks, Scattle.
volume 2, pages G67-673.

Yamaguehi, Gooand Zajac, F. (1990). Restoring unassisted natural gait to paraple-
pies via functional nenronmsculn stimulation: A computer siimulation study. [EEE
Trans. Biovmed. Eng.. 37, 886 012,

Yoneda, I, Tivana, TL and Hivose, S. (1996). Intermittent trot gait of a quadruped
walking machine dynanic stability control of an onmidivectional walk. Tu IEEE Int.
Conf. on Robotics and Vatomation, pages 3002-3007.

Appendix A

Controller breakdown

Unfortunately the neural networks used in most of the experiments were too hig to
analyvse. being from 50 to 100 nenrons all fully conmected to each other. However,
the controller used in Section 7.2 was small network, as all of the legs had the smne
controller and there were omly 6 venrons per act
nenrons, but only 12 unique ones, The experiment was using the Quad sane robot
deseribed in Section 71,1, This Appendix will briefly look at the kind of hehaviom
this network exhibited. and will show how it responded to various degradations (such
4% Sensors or neurons being removed).

ator. This meant that there were -8

A.1 Unmodified network behaviour

When the robot s allowed to walk 1|:||1|1il|i_\' without any alteration to network or the
sensors, walking starts smoothly and continues very stably at roughly 4.dms ' The
four sets of twelve nenrons all behave identically with pairs almost perfectly synchon-
ized, and each pair in antiphase to the other. This results inoa diagonal trot, with the
near forelimb and the off hindlimb in phase. and the near hind aond oft fore inantiphase.
I"l‘I l]x;lll!llll'. l".u."'l“'(] Al Sil(l“‘ﬁ t“’(} hl‘.('(]llllﬁ ll:"lll(iilll_’, ll!. [I“‘. I-Ililll Heurong ill l!il['l] st IIII
twoelve (as we have sabd in deseribing the thivd ovder neurons in Seetion 5.3.4. all the
nenrons have an output which varies either between 0 and 1 or 0 and -1).

Only two signals can be veadily distinguished, but all four can be seenin the enlage-
ment of Figure A20 The diferences are insig
step, though they seem to decrease over time

aut however, and vary from step to

Looking at a whole set of twelve nenrons in Figure A3 we immediately see that only five
of them ave active, and this leads us to believe that perhaps the other seven nenrons
are not useful. However if we look at the first sccomd when the robot sets off from
its initial stationary pose, three other neurons are also active (Figure A). We shall
see later that these are also important. However four of the neurons are completely
inactive, and it seems likely these could be removed with no detrimental effect.

137

138 APPENDIX A. CONTROLLER BREAKDOWN

e bis dem
(Rl Nouroa
gy
Nounm 27
s Nostnin ¥
1 i
o 18
L 3L LR RRLT] VR LLLELH] Tow:
Figure A1 Reconding of all four neavon 3 signals
N e
N 1

n

Figure A.2: Detail of 0.2s of neuron 3 signal

AL

UNMODIFIED NETWORK BEHAVIOUR

Autivation

———

LT
[EL1)
LAL L] L1 9 s UL
Figure A.3: Behaviour of a maximal unigue set of neurons
Avti st
1imi
: !
L ' X
i : H
=
A s
oo 020 040 L0 o8 100

Figure A.4: Starting behaviour of set of neurons

Ture

139

140 APPENDIX A. CONTROLLER BREAKDOWN

A.2 Killing neurons

The first expeviments to degiade the network were to remove individual nenrons from
it while the robot was already trotting (it was allowed to run for 2 seconds before the
nenrons were killed) and analvse the hehaviour, The results ave shown in Table AL

Neuron Effect on locomotion for each neuron group
I ++ 4+

2 ¥+ ++

3 —

E T4+

5) £+ +&

i ot

7 e p—

8 e

9 ++++

1 ++++

11 - -

12 T+

where + indicates continmed movement, = stopped. and £

indicates amarked effect, sueh as slewing to one side.

Table A1: Result of removal of nearons on continued movement

It is clean from the results that four of the newrons o cach gronp are crucial for the

generating o nonmal locomotion pattern. with a typical movemnent pattern for a robot

deprived of one of these newrons being to fall nnsteadily onto one leg, and then stop

moving completely. "There seamed to be no correlation between the group of the nearon

removed i the leg that was fallen outo, however. Unsurprisingly these are four of

the five neurons which oscillated ovdinarily during movewent: the other was nenron
S and removing this seriously affected the walk in two cases where the robot swong
heavily to one side and lmped slightly. There was very little effeet on neural behaviour
outside the group the neurons were in, but inside the group the output from neuron
3 reduced demnatically, as can be seen in Figure A5 — similar nenral behaviour was
seen in all four eases, although in only two of them was there a visible eect on the
locomotion. In the undamaged network the two neurons were in phase, and there was
astrong excitatory connection from 5 to 3, which would explain the diminution in the
output from that newron. It is possible that the effects on the two neurons cancelled
each other out to some extent.,

The next experiment was to remove groups of nenrons to see whether there was some
cumulative effect, but there was very little — unsurpisingly all of the neurons inactive
during walking (munbers 1, 2, 4, 6, 9, 10, and 12 in cach set) could be removed
simultancously without affecting the movement at all, leaving only 20 neurons stably
controlling the locomotion. The four “Neuron 57s could not be removed simultancously,
however sometimes 2 could be removed without the walking pattern braking down.

After this the experiment was changed slightly to investigate the effect of removing

A.2. KILLING NEURONS 141

Ay atam

L] C] w e LA [Tume

Figure A.5: Effect on a group of newrons of removing Nearon 5

nenrons on locomation from a standing stact, as this is what is doue in the evolutionary
runs. Exactly the sine experiments were done, except that the nemrons were killed
immediately. The results are shown in Table A2

Nine extra newrons beemne eritical now., with three others making initinlising walking
voery unstable. Four of the nearons in each group (6, 9, 10 and 12) still have no
effect under any ciremnstances, meaning that 16 neurons are completely unused by
the controller. These neurons are never seen to be active, and can all be removed
shiimultancously with no adverse effects. (Of the remaining nenrons which were not fatal
to locomotion before, more than half now are. In all of the experiments so far the
robot has started with the near fore and off hind limb back slightly and the others
forward: reversing this starting position now reverses the effects of neuron 4 — the
neurons from the first and third groups are now crucial whereas those from the second
and fourth are not (note that the order of the legs is off hind. near hind, near fore, off
fore, so 1 and 2 are the hind limbs, 1 and 3 is one diagonal pair and 2 and 4 is the
other). On the other hand that had no efect on neurons 1 and 2, which seemed to only
be important for the forelimbs. Trying further initial orientations of limbs (near side
forward, off back, etc.), showed that all of the Neuron 4 neurons could be important
depending on the initial position of the limbs, as could the remaining Neuron 5, but
Neurons 1 and 2 in the first two groups were very rarely useful. Indeed generally the
unimportant Neurons 1 and 2 and all of 6, 9, 10 and 12 could be removed with ouly
some instability, but it was often difficult to remove any of Neurons 4 or 5 with any
others without the robot failing to set off.

142 APPENDIX A. CONTROLLER BREAKDOWN

Neuron Effect on locomotion for each neuron group
1 3t —=
2 ++ ——
3 e —
I +— +—
i + - ——
6 4
7 S
m —
y + b+
M0 S
11 -———
12 + 4+ ++

where + indicates continned movement, = stopped, and &
indicates a marked effect. such as an unstable start.

Table A 2: Result of removal of nenrons on initiating moveinent.

A.2.1 Summary

Four of the twelve unigue neurons (6. 9, 10 and 12) served absolutely no purpose in
any group. two (1 and 2) were essential for starting (though not for continming) inonly
two groups, bat helped ionitial stability in the other gronps: one (1) other was essential
fon starting in all gronps depending on what the initial position of the robot was. bt
unimportant for continming: another (5) was essential for stacting. and helped stability
when moving, novmally, and the vemaining four (3, 7. 8 awd 11) were essential to ereate
a gt at all.

A.3 Killing Sensors

As a further experiment the sensors were killed one by one to see whether they affected
the ability of the robot to set off or continue walking (for setting off. we looked at two
different starting positions). ‘The results are shown in Table A3,

The sensors detecting the orientation of the robot had no noticeable effect on the

wilking. presmmably because they varied very little compared to the other sensors.

The sensor for the height of the robot off the ground (munber 6) was eroeinl. perhaps
beeause it was acting as a constant excitatory input to the network. Of the other
inputs, which were all sensors on the legs, in general the gated inputs (which were
gated by whether the foot of that limb was touching the ground) helped to stabilise
the locomotion, but very few of themn were essential (one of the two forelimb shin angles
wirs needed for starting depending on the initial position of the robot, but nothing else).
On the other hand nearly all of the ungated inputs were essential for starting, with the
particular ones needed depending on the initial configuration of the legs; when already
walking generally the shin angles were very important, as were the thigh angles of the

A3, KILLING SENSORS

Sensor | Effect on starting | Effect on continuing
Orientation of robot
1 + +
2 + +
3 + +
Position of robot
Sensors 4 and 5 would have been the x and y
coordinates of the robot but were not passed
to the neurons
g | - T =
Of hind thigh angle, ungated and gated
7 F —
8 + +
O hind shin angle, ungated and gated
] = =
10 + +
Near hind
11 + -
12 + +
13 - -
14 + +
Near fore
15 ¥ +
1G + +
17 - +
18 + +
OH fore
19 + +
20 + +
21 — -
22 ¥ +

where + indicates success, — failure, and £ or
F indicates that it is sometimes required

Table A.3: Result of removal of sensors on initiating and contimuing movement

144 APPENDIX A. CONTROLLER BREAKDOWN

hind limbs, but the forelimb thigh angles were not important. Interestingly, if starting
fronn stationary the hind thigh angles were less important, but this may perhaps be a
feature of the fact that the robot is going faster when it starts with no injuries than
when it starts alveady dimmaged. and it cannot cope with the speed when injured and

so trips up. Aunother point that was noticed is that the robot often slightly dr:

lew whicl it canmot sense propetly.

Interestingly, looking at the neuaral activity when some of the sensors have heen re-
moved, nenrons which were not previously active beeome active (see Figure A6, for
example). The extra active neuron here turns ont to be one of those which is ordinarily
only active when setting off. and as the sensors ave progressively damaged, it appears
thit they can help to alleviate the damage. For instance if two sensors are vemoved,
say the two near forelimb ungated thigh and shin sensors, and we then try continming
to wove, the robot manages to keep going with a lot of extra neural activity (Figure
AT bt if these neurons nonmally only active when setting off are removed as well.
then the robat fails to maintain a rhyth,

Autis stnw

(X0

i v LE] Y6 R 10 Tune

Figure A.6: Extra nearal activity when sensor 15 is removed during locomotion

Further investigation of the damage that ean be done to the sensors showed that all of
the gated inputs and the orientation sensors could he removed simultaneously and the
robot would still be able to walk, bhut removing two of the ungated inputs could only
be done if (they were not ones which were erucial anyway and) the extra nearons were
present.

A.3.1 Summary

The controller is robust to some damage being done to the sensors, particularly the
gated inputs, but the ungated inputs are very important to maintaining a stable gait.

Ad. DAMAGING THE ACTUATORS 145

Activation
I | P T s o
L u] '
h . ¥ 1
: ' : !
if ! iy -
. ' i] H
‘ .] v '
' { £ " .
' 4 8 .
i v i v :
i A W et - v o 1 G
vy ¢ | H -
. ’ ' . e
" v . . 4
L .- . ' o
] v 1 ['-
(KL ' Y i
R L] LR o A t T

Figure A 7: More activity when sensors 15 and 17 are removed during locomotion

However the neurons which are normally only active when setting off from a stationay
pose were found to be active and to some extent to replace lost sensors, albeit not

perfeetly.

A.4 Damaging the actuators

The final experiment that was carvied ont was to dnoage or remove one of the actuators
o the robot to see the effeet it had, There were very fow to diomage and the resales
were quite siimple — the hind Ihinbs could not be altered by more than about 30%
without the robot failing to set off and only one joint could be dumaged that wmeh at
a tiime, bt when affected by less than that the robot would just Tanp slightly: with the
forelinbs on the other hand two joints could be damaged by that much. or one by as
ueh as 50% before the robot would trip over or fail to set off, otherwise it wonld just
limp as before. Damaging the sensors associated with the damaged leg or the newrons
themselves scemed to have little, if any, additional effect.

A.5 Conclusions

This Appendix necessarily only scratches the surface of the behaviour of the controllers.
This is largely because most of the networks were too complicated to analyse at all,
which is a failing of the type of controllers chosen. Generally there were over 20 and
sometimes as many as 50 unigue neurons in the controllers, and twice that many actual
ones. This made any analysis of them a serious research task in and of itself, if not
entirely impossible. Consequently this one fairly small controller was looked at in as

116 APPENDIX A, CONTROLLER BREAKD(IWWN

mch detail as was possible, A few other controllers were looked at bricfly, but no
significant diferences were seen with this one, though the nambers of neurons which
secined to e active for locomotion amd setting off varied shightly,

The analysis showed that the controller cam be damaged in many ways without failing.
mud indeed it e lose over half of its sensors and nearons and still continne. but
unfortunately these have to he earefully chosen! It is not robust to damage done to
the other half of the nearons and sensors, which are craeial to the proper funetioning

of the nenral network, Tnteres e somne neurons seem to be dedieated to st I!iny‘ the

robot. off, but are not used i normal locomotion: these were also found to he active
when the sensors were dinnaged, perhaps indicating that their purpose at the start,
isory inputs to the other neurons so that they can then

15 to simmlate the correct

set the robot moving, i ng the actuators cansed more serions problems, with no

Joint being dispensible: however they conld all be damaged slightly — the hind s
conld survive less injury. perhaps becanse they are behind the centre of gravity andd
thns penerate more of the forward foree, however all joints could be damaged slightly
aned ereated o limp in that leg as one might intuitively expeect.

From a techmical point of view the controller did not act as a Central Pattern Generator
as no walking behaviour conld be seen when all of the afferent inputs had heen removed,

aned so it hehaved more like a reflex chain (see Section 2.1.3), and this is a shaome from
the point of view of where this researeh stavted. but it is inevitable when you consider
that there was no evolutionary pressure to be able to generate thythmical motion

without the SCNSOTY feedbiaek.

However it was robust to some damage to the nenvons, sensory inputs s aetuators,
andd pethaps the wavs in which the network failed conld suggest possible changes to
the evolutionary regine. For instance the controller could be evolved further after
something which can walk has been produced. with vandom dimmage inflicted on it

hefore each evaluation to try to breed oo more vobust controller, as elearly this one had
some way to go to achieve that end. At any rate some pruning of the network conld

as finished to get vid of the neurons mul

certainly tike plaee atter the evolntionay 1u
connections which are penmanently inactive. 1t s certainly unfortunate that controllers
which were analysable were only found at the very end of the thesis, as otherwise some

of these insights could have been profitably been used to improve the re

sults further.

Appendix B

Statistical techniques

B.1 Why Use Computer Intensive Tests?

Chapters 5, 6 and 7 make extensive use of non-parmmetric and computationally in-
tensive statistical tests to analyse data instead of using more traditional statistical
technigques. These tests are deseribed in detail in (Rosner, 1982: Koopiman, 1987:
Gunter, 1991 Colien, 1995, for instance), but since they are a little less connonly

used than the more usual parametric tests, this appendix gives a brief overview!.

Connputer inte istical tests can be used to derive similar quantities to standand

patinnetric tests (sueh as Student’s t-test), ineluding confidenee intervals aod signifie-

ance levels, They bave several addvantages over such tests however:

o Parmmetric tests typically asswmne that the disttibutions they ave dealing wich e
nonnally distributed. or that sample sizes are sutficiently large that the central
it theorem applies, These tests can generate ervors if used on skewed distri-
butions. Computer intensive tests work with any kind of distribution — they are
as powerful as parametric tests on normal distributions, and more powerful on
non-normal distributions.

Certain quantities, such as confidence intervals on the median, cannot be derived
analytically, and computer intensive tests provide the only way of obtaining these

quantitics.

Despite the name. computer intensive tests can be run Lo a sufficient degree of
acenracy for moderate sanple sizes inaomatter of seeonds onmodern compnters.

B.2 Resampling to calculate confidence intervals

Suppose we want to estimate some statistical parmneter, such as the mean, for a
particular (unknown) population. Call the true wean g The usual procedore s to

' Some of this overview comes from (Perkins, 1999)

147

148 APPENDIX B. STATISTICAL TECHNIQUES

take some sample {y, xs, .., 2p) oof size N oand measure its mean T. Our best guess
is that u = Z. Of course in practice we will be slightly wrong. How can we estimate
liow wrong we are?

Analyvtical smnpling theory tells us that if the population we are sanpling from is
novially distributed then the standard deviation of the sample mean (or “standard

error’) s

T
N

where a is the true population standard deviation. In practice of course we don’t know
stiniated population standard deviation obtained

that. so we snbhstitute it with the
fronn the smnple s

The 95% confidence interval on the estimated vadue of the wmean is then shmply 7 +
1.9GA+.

To obtain the smne answer ina computer intensive way we perfornm a resampling (or a
bootstrap). The procedure is to assume that the sainple we see is representative of the
population it was drawn from. Therefore we can shinulate drawing snples from the
true |:rppulntlm| simply by drawing fresh smnples of size N with replacement from oar
whof the new smnples there will be some

sure the

sanple. IFwe n

ility in this valne, Under the assumptions of the bootstrap, this vaviability will
I

xictly the tine vindability of means of sanples dvawn from the true population,

whicliis just what we're after,

However suppose now that we want to know the mean and standard error for the “best
of nsmnples™ taken from the original population. The standard approach would he to
take nosimnple Lo e e ey boof size Nk, measure the “hest of 7
for each subsmnple to produce {b ba. . by}, and then continue as hefore.

This wonld require a much larger set of samples to get a good estimate of the mean
al panticularly the s
of samples we ean draw ftom the original population, we can take a sanple of size
N == which we assmne is representative of the population it was drawn from, and
then we can draw sianples of size 1 from the new population with replacement to
produce new “hest of 17 values at ahinost no expense.

melard ervor. Instead, if we are constrained as to the munber

Consequently we can draw arbitrarily many of these values and calenlate exactly the
mean and standard error for the best of o values drawn from the original sanple of size
N. Assuming that the original smnple is representative of the population from which
it was drawn, we have calenlated the mean and standard error we were looking for, but
with far fewer samples from the original population than would have been necessay
trditionally.

These are the caleulations carried out in this thesis to estimate the mean and the 95%
confidence intervals on that estimate (+ 1.9665).

B.2. RESAMPLING TO CALCULATE CONFIDENCE INTERVALS 149

To directly compare two different populations to see whether the “best of 1™ samples
taken from one are better than those taken from the other, we can simply resample
both together. taking the difference of the two best of ns and ecaleulating the mean and
standard error for this difference, and then we can see whether the diference differs
from 0 with 95% confidence.

150 APPENDIX B. STATISTICAL TECHNIQUES

Appendix C

Interface

The interface for the neural and mechanical simulators was inplemented as a C o+
superclass called Sinmulant, and specificd a set of methods which allowed the details of
the specific simulator to be ignored. All aspects of conmmnnicating with the simulators
is dealt with at this level except the loading of new structures (of robot or network),
which had to be dealt with at a lower level due to the inherent ditferences between the
prograims.

class Simulant
{
public:
Simulant();
virtual “Simulant();

// Inter-Simulant communication functions:

// Write current state of Simulant to array, and return size.
virtual int getState(Float *store)=0;

// Read current state of Simulant from array.

virtual void setState(Float *store)=0;

// Put current outputs from Simulant into array, and return number.
virtual int getDutputs(Float *store) { return getState(store); }
// Get current inputs to Simulant from array.

virtual int setInputs(Float *store)=0;

// simulant-world communication functions:

// Define save level (eg don't save, save outputs, save state)

inline void saveLevel (RepLevel rep_level) { _save_level = rep_level; }
// Define save filename

int saveTo(char #filename);

// Define load filename

int loadFrom(char #filename);

151

152 APPENDIX C. INTERFACE

// Save current state to file

virtual void save(Float save_time)=0;
// Load current state from file
virtual int load(Float =load_time)=0;
// Stop save.

void closeSave();

// Stop save.

void closeload();

// simulation functions:

// Initialize simulation variables (ie set up arrays to store state, etc.)
virtual void initSimVars()=0;

// Reload simulation variables (eg after new network installed)

virtual void relecadSimVars()=0;

// Test whether SimVars are initialised

virtual int isReadyToSim()=0;

// Set integration type (Newton Euler, Runge Kutta, etc.)

inline void simulationType(SimType sim_type) { _simulation_type = sim_type; }
// Run an integration step.

virtual int simulate(Float idt)=0;

// rendering functions:

// Initialise drawing (for gui).
virtual void drawInit()=0;

// Draw current state.

virtual void draw()=0;

// fitness evaluations:

// Set current fitness measure

virtual void setFitnessMeasure(FitnessMeasure fm);
// Reset fitness measure

virtual void resetFitness();

// Return current fitness

virtual Float getFitness();

protected:

// Update current fitness (called by simulate).
virtual int updateFitness(Float idt);

// File terminator for saving and loading (eg .NNsave for neural sim)
chars _file_terminator;

// Save file ctream

ofstream* _save_stream;

// Load file stream

ifstream* _load_stream;
// Is save active?
int _save_active;

// Current Save and Load levels
RepLevel _save_level, _load_level;

// 1f structure varies and can be loaded on the fly these should both be
// instantiated, otherwise both should be left blank

virtual void saveStructure() {}

virtual void loadStructure() {}

// Simulation type
SimType _simulation_type;

// Current fitness measure
FitnessMeasure _fitness_measure;
// Current fitness

Float _fitness;

154 APPENDIX C. INTERFACE

Appendix D

Example Robot

D.1 Robot Configuration File

This is the configuration file for the robot shown in Figure D1

Figure D.1: An exanple bipedal robot

A bipedal robot with feet

Graphics_Models {
Number _Graphics_Models 4 # Number of different graphical objects used
filename for each graphical object, with size and offset of CoG
"/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"
0.5 0.5 0.15 0.0 0.0 0.0
"/hame/richardr/softvare/DynaMechs/2.0.3/models/shapes/cube_centre.zan"

155

APPENDIX D. EXAMPLE ROBOT

0.3 0.10.10.15 0.0 0.0

“/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"

0.3 0.08 0.08 0.15 0.0 0.0

“/hame/richardr/software/DynaMechs/2.0.3/models/shapes/cube_centre.zan"

}

0.2 0.02 0.08 -0.06 0.01 0.0

System { # Robot
DynamicRefMember { # Reference member - first piece of robot, part of body

}

which articulations (legs) are attached to
Graphics_Model_Index O # First graphical object

Mass 25.0 # Mass of body (kg)
Shape 0 # Cuboid (other options are cylinder, sphere, or arbitrary
vhere other parameters (eg inertia matrix) are required)
Size 0.5 0.5 0.15 # Size in metres (x,y,z)
Center_of _Gravity 0.0 0.0 0.0 # Position of centre of gravity
relative to origin

Number _of _Contact_Points 8 # Ground contact is only detected
at specified points on the body

Contact_Locations 0.25 0.25 -0.1 # Contact points are 8 corners of cube

0.25 -0.25 -0.1

-0.25 0.25 -0.1

-0.25 -0.25 -0.1

0.25 0.25 0.1

0.25 -0.25 0.1

-0.25 0.25 0.1

-0.25 -0.25 0.1

Pesition 10.0 10.0 0.62 # Initial position of body
Pose 0.0 0.0 0.0 # Euler angles (phi,theta,psi)
Velocity 0.0 0.0 0.0 0.0 0.0 0.0 # Initial velocity of body

Articulation { Leg Left 1 # First articulation off body

This is a leg, on the left of the robot
First set of articulations
RevoluteLlink { Boedy # A hinge joint connects this to the reference member
This object counts as part of the body for the
purposes of penalising the robot if it falls onto it
Other options are Prismatic (sljding) and
Ball and Socket joints.

Graphics_Model_Index 1 # Second graphical object

Mass 4 # 4 kg

Shape 0

Size 0.3 0.1 0.1

Center_of Gravity 0.15 0.0 0.0 # Displacement of Centre of Gravity
from joint origin

NHumber_of _Contact_Points | # One contact point (on knoo)
Contact_Locations 0.3 0.0 0.0

D.1.

ROBOT CONFIGURATION FILE 157

Modified Denavit-Hartenburg coordinates are used to get from the origin
of the previous object (the reference member in this instance) to the

location of the joint (also the origin) connecting to this object.
MDH_Parameters 0.0 -1.5707963 0.15 1.7207963

Initial_Joint_Velocity O # Initial velocity of this joint (radians/s)
Joint_Limits 0.1 3.041592653 # Joint end stops
Joint_Limit_Spring_Constant 10000.0 # restoring spring on endstop
Joint_Limit_Damper_Constant 1000.0 #damper on joint endstop

Actuator _Type 2 # New direct drive motor
Joint_Friction 10.0 # Friction in joint
Max_Torque 80.0 # Maximum torque motor can apply

}

RevoluteLink { Leg # Another hinge joint connects this
to the previous object. This is part of the leg
Graphics_Model_Index 2

Mass 2

Shape 0

Size 0.3 0.08 0.08

Center_of Gravity 0.15 0.0 0.0

Number _of _Contact_Points 0

MDH_Parameters 0.3 0.0 0.0 -0.05
Initial_Joint_Velocity 0.0
Joint_Limits -2.0 0.1
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 5.0
Max_Torque 40.0

}

RevoluteLink { Foot # Another hinge joint, this object is a foot
This means that contact with the ground
is used to gate some of the sensor readings
Graphics_Model_Index 3

Mass 1

Shape 0

Size 0.2 0.02 0.08

Center_of _Gravity -0.06 0.01 0.0

Number_of _Contact_Points 4

Contact_Locations 0.04 0.02 -0.04 # Four corner of base of foot
0.04 0.02 0.04
-0.16 0.02 -0.04
-0.16 0.02 0.04

MDH_Parameters 0.3 0.0 0.0 -1.6707963
Initial_Joint_Velocity 0.0

8 APPENDIX D. EXAMPLE ROBOT

Joint_Limits -3.1415927 -0.8
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator Type 2
Joint_Friction 2.5
Max_Torque 20.0
}
} # End of Articulation

Articulation { Leg Right 1 # New articulation is a leg on the
right of the body, also in the first set
of articulations (ie identical to previous one)
RevoluteLink { Body
Graphics_Model _Index 1

Mass 4

Shape 0

Size 0.3 0.1 0.1

Center_of _Gravity 0.15 0.0 0.0

Number_of_Contact_Points 1
Contact_Locations 0.3 0.0 0.0

MDH_Parameters 0.0 -1.5707963 -0.15 1.4207963
Initial_Joint_Velocity O

Joint_Limits 0.1 3.041592653
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Type 2
Joint_Friction 10.0
Max_Torque 80.0

}

RevoluteLink { Leg
Graphics_Model_Index 2

Mass 2

Shape 0

Size 0.3 0.08 0.08

Center_of _Gravity 0.15 0.0 0.0

Number_of Contact_Points 0

MDH_Parameters 0.3 0.0 0.0 -0.05
Initial_Joint_Velocity 0.0
Joint_Limits -2.0 0.1
Joint_Limit_Spring_Constant 10000.0
Joint_Limit_Damper_Constant 1000.0

Actuator_Typo 2
Joint_Friction 5.0
Max_Torque 40.0

D.2. COMMUNICATION 159

}

RevoluteLink { Foot
Graphics_Model _Index 3

Mass 1

Shape 0

Size 0.2 0.02 0.08

Center_of Gravity -0.06 0.01 0.0

Number_of _Contact_Points 4

Contact_Locations 0.04 0.02 -0.04
0.04 0.02 0.04
-0.16 0.02 -0.04
-0.16 0.02 0.04

MDH_Parameters 0.3 0.0 0.0 -1.3707963
Initial_Joint_Velocity 0.0

Joint _Limits -3.1415927 -0.8
Joint_Limit_Spring_Constant 10000.0
Joint _Limit_Damper _Constant 1000.0

Actuator_Type 2

Joint_Friction 2.5
Max_Torque 20.0

D.2 Communication
Maost of the information i this file s used exelusively by the vobot simmlator, bat some
is passed on to the neural sinlator, and the evolutionary algorithm.

The nenral simulator needs to know:

e The nunmnber of sensors.

o The munber of actuators.
These are extracted from the number and types of joints. and whether those joints are
on legs or part of the body (on legs there is a sensor which is gated by contact of the

foot on the ground). It uses this information to check that neural networks it is given
are of an appropriate structure to work on the robot currently being used.

The evolutionary algorithin needs far inore information:

e The nunber of articulations (2 in the above example).

e The number of distinct articulations (1 above).

160 APPENDIX D. EXAMPLE ROBOT

e The order in which the articulations appear in the sensor /actuator lists.
o What side of the robot the actuator is on (for building steering controllers).
o The number of sensors and actuators.

o [How the sensors and actuators mateh up inside the articulations.

This information comes from the first line of cach new object and is purely topological

in nature:

Articulation Leg Left 1
RevoluteLink Body
RevoluteLink Leg
Revolutelink Foot

Articulation Leg Right 1
RevoluteLink Body
RevoluteLink Leg
RevoluteLink Foot

After the first loading of the robot, there is no further communication of structural
information between the wechanical sinmlator and the other parts of the software,
and all remaining conmmunications are new nearal structures being sent to the nearal
sinmlator, and requests for fitness evaluations for them. as well as constant exchange
of inputs and outputs between the nenral and mechanical simulators (see Figure [).2).

ation comi

and fitness info New neural structures

Structural info

structural info

Neural sim

Dyn;lMcchs sensor readings
hind actuator commands|

Figure D.2: Communications between different parts of the system

