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Abstract

In paleomagnetism, practical measurements are rarely made using perfect, iso-
lated, single-phase, ferromagnetic crystals. Experimental observations are typ-
ically made using magnetic materials formed by a variety of natural processes.
In this thesis, we will look at bridging the gap between current numerical mod-
elling capability and experimental observations.

First, we work towards micromagnetic modelling of multi-phase magnetic ma-
terials, including magnetostriction, embedded in a rocky matrix, along with
crystal defects. We present a derivation of the Boundary Element Method for-
mulation used by the micromagnetics package, MERRILL, and provide an ex-
tension of this from single-phase materials to multi-phase. After discussing is-
sues with previous approaches to modelling magnetostriction, we derive and
present a more robust and flexible approach. This model of magnetostriction is
suitable for non-uniform magnetizations, for multi-phase materials, and for ar-
bitrary boundary conditions, and can be incorporated into MERRILL. We then
outline a method for extending our model to materials embedded in an infi-
nite elastic matrix of arbitrary elasticity. Finally, we present a method for mod-
elling the magnetic response of a material due to crystal defects, along with
a concrete example of a magneto-dislocation coupling energy at a magnetite-
ilmenite boundary where stress due to lattice misfit is eased by regular edge
dislocations.

Second, we work towards being able to verify micromagnetic models against
nano-scale experimental data. To do this, we present two techniques for simu-
lating electron holograms from micromagnetic modelling results, a technique
capable of imaging magnetic structures at the nano-scale. We also present
example electron holograms of commonly occurring magnetic structures in
nano-scale rock and mineral magnetism, and highlight some distinguishing
features, which may be useful for interpreting experimental electron hologra-
phy data.
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Lay Summary

Paleomagnetism is the study of how rocks record changes in the earth’s mag-
netic field. The recordings made need to remain stable for thousands, millions,
or even billions of years since the rock was formed. Verifying that a recording
is stable for that length of time is an ongoing problem. One approach to ver-
ification is to use a technique called “micromagnetic modelling” to replicate a
physical sample in a computer model, which can then be probed in a number
of ways, and in more detail, than is available to a physical experiment. These
computer experiments can then present some theoretical predictions of the sta-
bility of the physical recordings. This approach, however, requires that all the
physics of the rock is adequately considered by the numerical model. It also
requires that modelling results can be verified against physical samples.

Micromagnetic models in rock and paleomagnetism typically assume a per-
fect, isolated, stoichiometric crystal. This does not adequately account for the
mechanical properties of the crystal, e.g. embedding in a larger rocky matrix,
and dislocations due to crystal intergrowths, and their effect on the stability on
its magnetic recording. The physical phenomena that can account for these are
elasticity, dislocations, and magnetostriction. This thesis derives and presents
the math necessary to model magnetostriction in a way that is compatible with
current state-of-the-art micromagnetic modelling techniques of non-uniform
magnetizations. It then presents some preliminary results for magnetic crys-
tals using these modelling techniques. An extension of this modelling tech-
nique for embedding the crystal in a larger rocky matrix is also presented,
along with a method for including dislocations (e.g. crystal intergrowths) into
micromagnetic models.

For experimental verification, this thesis presents a technique for simulating a
widely used experimental technique called “electron holography” for produc-
ing “magnetic induction maps.” These magnetic induction maps are a mea-
surement of the magnetization of a crystal at the nanometer scale. By simulat-
ing these maps for micromagnetic modelling results, it is possible to directly
compare these theoretical measurements to experimental measurements as ev-
idence the micromagnetic model produces the currect result.
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Chapter 1

Introduction

Paleomagnetism is the study of changes in the Earth’s magnetic field using
magnetic recordings from rocks. Rock magnetism is the study of the behaviour
of magnetic rocks. Naturally, rock magnetism is often employed in paleomag-
netism to extract the recordings from the magnetic rocks. Natural samples
tend to be imperfect: they are irregularly shaped, embedded in larger materi-
als under pressure, twinned with other crystals. They are part of, and contain,
intergrowths of other materials, and contain dislocations and inclusions. All of
these contribute to internal stresses in the material (Appel and Soffel 1984). To
account for these, we need techniques for modelling magnetic materials, for
modelling inhomogeneous magnetic materials, and for modelling the effects
of internal stresses and other mechanical deformations on the magnetization.

Ferromagnetic minerals with a cubic crystal structure are an abundant source
of magnetic signal in natural rock samples. Iron oxide and iron titanium ox-
ide minerals are particularly abundant, as in the ulvöspinel-magnetite and
ilmenite-hematite series (Tauxe 2010). In this thesis, we will be mainly con-
cerned with modelling magnetite and titanomagnetite with Ti substitution fac-
tor of 0.6, or TM60, as these are two are very commonly found in natural sam-
ples. We will be looking at magnetite and oxidized shells of magnetite for ho-
mogeneous and inhomogeneous materials. We will then look at TM60 when
including the mechanical deformation of materials into micromagnetic mod-
els, as this material has a particularly strong magneto-mechanical coupling.
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Finally, we will look at a magnetite-ilmenite lamellar structure for an inho-
mogeneous model which includes internal stresses due to incompatible lattice
spacings of the two materials.

In this chapter, we will present some history and motivating factors for study-
ing three main topics: micromagnetism, magnetostriction, and electron holog-
raphy. In brief, micromagnetism is the primary tool we will be using to model
magnetic grains, magnetostriction is the phenomenon we will be adding and
using to include imperfections, and electron holography is a tool that can be
used to verify our predictions.

1.1 Micromagnetism

Micromagnetism is a mathematical technique for describing the magnetic state
of a material in terms of a continuous “magnetization” (Kittel 1949). This is dis-
tinct from the actual picture of discrete, free electrons each contributing to the
overall magnetic state. By using a continuous function and adapting the gov-
erning equations of the physics to a continuous function, the problem becomes
more tractable. In particular, it allows the equations of motion of the system to
be posed in terms of a set of partial differential equations (PDE). In this man-
ner, describing the behaviour of the system, and finding magnetic states which
will remain stable over long periods of time can be expressed as well studied
PDEs.

As a very brief overview, the most basic elements needed to calculate the en-
ergy density, f , of a cubic ferromagnetic crystal due to a magnetization ~M is

f = −K1
1

2
(α4

1 + α4
2 + α4

3) + A(∂iM̂j)(∂iM̂j) + (∂iφ)Mi + ~Hz · ~M

∂i∂iφ = ∂iMi

α1 = M̂ · [100] , α2 = M̂ · [010] , α3 = M̂ · [001]

MiMi = Ms

(1.1)

where K1 is the cubic anisotropy constant, A is the exchange constant, φ is
the magnetic scalar potential, ~Hz is the Zeeman / external field, αi is the di-
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rectional cosine of the magnetization with the ith cubic axis, and Ms is the
saturation magnetization, a constant.

Each of these terms has a rich and detailed background, important for un-
derstanding the behaviour and stability of these remanent magnetizations. In
this thesis, however, we are more concerned with simply calculating them and
studying the results. For an in depth review, Kittel’s paper (Kittel 1949) is es-
sential. In particular, we are interested in finding remanent magnetizations. A
remanent magnetization is an ~M which locally minimizes f . By locally min-
imize, we mean ~M is a value such that small perturbations to ~M result in a
larger f , i.e. f( ~M + ~ε ) ≥ f( ~M) for any small ~ε. A stable remanent magneti-
zation is an ~M such that the value of f continues to increase even at relatively
large perturbations of ~M . It should be clear from the presented energy, par-
ticularly with the presence of the M̂ and MiMi = Ms terms representing non-
linear components of the energy, that finding remanent magnetizations is not
a straightforward task.

Rock magnetism benefits greatly from micromagnetism. Initially, micromag-
netism allowed analytic solutions to be found for the behaviour and stability
of perfect, regularly shaped grains, with uniform magnetization as found in
work by Néel (1949) and Kittel (1949). Uniformly magnetized grains are also
called single domain (SD). Of particular interest here are the relaxation equa-
tions by Néel (1949) which predict the superparamagnetic (SP) threshold. The
SP threshold is a grain size below which the thermal energy of a rock is of
the same order of magnitude of the energy barrier between remanent mag-
netic states. As a result, the grain may spontaneously change magnetic states
at a timescale which would render the magnetic recordings unreliable. As
SP grains are a subset of SD grains, this means not all SD grains are useful
recorders of magnetic signal.

From there, models such as the Amar model (Amar 1958) allowed researchers
to reason about multidomain (MD) grains, and the Morrish and Yu model
(Morrish and Yu 1955) allowed researchers to reason about single vortex (SV)
states, in regular geometries. These single vortex states fall under a category of
states called pseudo-single domain (PSD) (Butler and Banerjee 1975), so named
because they tend to behave similarly to single domain states. In particular, it
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was found that PSD states, in which two domain (TD) states are sometimes
also included, make up a significant portion of the stable magnetic signal of
natural grains (Moskowitz 1980), and in some cases the SD range can be very
narrow (Butler and Banerjee 1975), leaving PSD states as the dominant carri-
ers. This is matched by experimental observations (Day, Fuller, and Schmidt
1977). These analytic approaches, however, suffer from many simplifications
to make the equations tractable.

The introduction of 3D numerical micromagnetic models to rock magnetism
allowed for reasoning about remanent states of irregular geometries with non-
uniform magnetizations (Williams and Dunlop 1989). The introduction of the
finite element method (FEM) (Davies 2011) to micromagnetic modelling (Fred-
kin and Koehler 1987) allowed more accurate consideration of curved surfaces,
such as spheres and surface effects. In recent years, an easy to use micromag-
netics package, MERRILL, has been released, targeted at the paleomagnetic
community.

In this thesis, we will derive the energies and effective fields calculated by
MERRILL when looking for remanent magnetizations. This will act as an in-
troduction to the finite element method, and as documentation of the code for
MERRILL. It will also present a technique used in MERRILL for handling in-
finite domains using finite computer space. With the derivations done here,
it will be easier to see how later derivations of magnetoelastic and magneto-
dislocation energies might be integrated into MERRILL.

Initially, the energies and effective fields will be derived for a single-phase ma-
terial. That is, a geometry whose material parameters are constant throughout.
We will then derive an extension of these to a multi-phase material. A multi-
phase material has piece-wise constant material parameters. We will not, how-
ever, present the optimization and minimization techniques used by MERRILL
to find the remanent magnetizations.

After the derivation, we will present some example results using MERRILL.
We will present MERRILL’s solution to the Standard Problem No. 3 posed by
the µMAG group at NIST (µMAG 2017). This will act as a verification that
MERRILL works as expected for single-phase materials. Then we will present
a result for a core-shell model of a truncated octahedron of magnetite with a
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hematite shell.

1.2 Magnetostriction

Magnetostriction describes a phenomenon where the magnetization can have
an effect on the stress and strain of a magnetic material, and vice versa (Kittel
1949). In brief, when a ferromagnet is magnetized along a particular direction,
the material tends to stretch along that direction. Typical micromagnetic mod-
els tend to simplify magnetostriction by including a term suitable for a uniform
magnetization. In the case of a uniformly magnetized, cubic, ferromagnetic
crystal, the effect of magnetostriction can be bundled into the anisotropy term,
as described by Kittel (1949). However, this approximation is not, as we will
show, appropriate for non-uniformly magnetized materials.

Another approximation used for the application of magnetostriction is Kittel’s
effective uniaxial anisotropy for a uniformly magnetized ferromagnet under
a uniaxial tension. Various treatments have used this approach, substituting
the cubic anisotropy for this effective uniaxial anisotropy, to determine the be-
haviours of domain walls for highly magnetostrictive materials

In this thesis, we will derive and present a subset of Brown’s magnetostric-
tive equations of motion (Brown 1966) which should be sufficient for micro-
magnetic modelling of nano-scale ferromagnets in low magnetic fields, and
derive a FEM formulation of these. We will also present some preliminary
modelling results, outlining how magnetostriction deforms materials for non-
uniform magnetizations, and how including a full description of magnetostric-
tion effects remanent magnetizations.

This formulation of magnetostriction will be the first step needed to model the
natural rock samples we’ve described. The effects of material intergrowths,
embedding in rocky matrices, materials under stress, can all be described in
terms of mechanical effects, of stresses and strains on the materials. These
mechanical effects then affect the magnetic behaviour of the material via mag-
netostriction. By coupling this with the multi-phase description of magnetic
materials discussed in the previous section, we can present a theory capable of
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modelling imperfect magnetic crystals.

1.3 Electron Holography

An important step to ensuring the theoretical predictions of the previously
discussed models are accurate is by comparing predictions to experiment. Pa-
leomagnetism, again, presents a challenge. Early studies into rock magnetism
were primarily of MD states with well defined domain walls using techniques
like Bitter patterns (Halgedahl 1991). These magnetic grains could be tens of
microns in size. However, the SD and PSD ranges are typically on the sub-
micron scale, typically tens, or hundreds of nanometers. Further, the PSD
states represent a rich non-uniform magnetization, not easily understood by
measurements of the outside of the material.

Electron holography an experimental technique, capable of measuring mag-
netic fields on the nano-scale, and and from within the material (Tonomura
et al. 1980). In particular, off-axis electron holography is a useful technique
for generating electron holograms, and finding the “direction” of the contours
in electron holograms, describing the direction of the in-plane magnetic field
they represent (Lehmann and Lichte 2002). This represents a viable technique
for making meaningful measurements of PSD grains. In particular, with the
development of models of electron holography (Keimpema, De Raedt, and
De Hosson 2006) to use with models of micromagnetism, we have techniques
for quantitatively comparing experimental data with theoretical predictions
(Almeida et al. 2016). In this thesis, we will derive two techniques for numeri-
cal electron holography simulation for use with the numerical micromagnetic
models developed here.

We will present a range of simple remanent SD, flower-state (FS) and PSD
states, and their electron holograms from various orientations and angles. This
will represent a Rosetta stone for converting from electron holograms back
to remanent states for nano-scale materials, as predicted by numerical micro-
magnetic modelling. This should be a useful reference for reasoning about
magnetic states inferred from electron holograms in physical experiments. In
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particular, we will discuss features of electron holograms that are indicative of
various states and orientations, and features that are red herrings. We will also
discuss features that cannot be distinguished in electron holograms, either due
to lack of feature resolution or due to symmetries inherent to the process of
electron holography.

1.4 Notation

This thesis is rather math-heavy. We present here the notation used, and the
typical meaning of various symbols used throughout.

Typically, we will prefer to use a functional notation. For a function f(x), the
derivative at x is ∂f

∂x
(x). However, this presents a potential source of confusion.

When taking the derivative of f(x), should we take the derivative of only f ,
or should we apply the chain rule, and take the derivative of x as well? This
is particularly confusing when performing partial integration of integrals, or
changes of coordinates with derivatives of functions.

Unless otherwise states, one may assume functional notation. We will use the
explicit notation f(x) in a number of cases, but it should be reasonably clear
from context what is happening. This can, however, get a little confusing when
multiplying a function by a brace. For three functions f , g, and h, we can write,
in our notation, f ·g+f ·h. The value at x is (f ·g+f ·h)(x) = f(x)g(x)+f(x)h(x).
However, we can also write f · g + f · h = f · (g + h). Without the explicit “·”
for function multiplication, we would write f(g + h) which could be confused
for the evaluation of f at a point g + h, or perhaps a function composition of f
with g + h.

We choose the functional notation, with this in mind, since reasoning about
derivatives is harder than confusion with notation. Mistakes or ambiguities in
notation can be recovered from context, and from previous lines, while mis-
takes in derivatives are fundamental errors.

We also use a number of shorthands for vectors, derivatives, and directional
derivatives. In particular, we will be using Einstein notation for summation,
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and four notations for derivatives, each with its own use. The following are
equivalent

∂φ

∂x
+
∂φ

∂y
+
∂φ

∂z
= ~∇φ

= ∂xφ+ ∂yφ+ ∂zφ

= φ,x + φ,y + φ,z

and using implicit indexing and Einstein notation,

∂2φ

∂x2
+
∂2φ

∂y2
+
∂2φ

∂z2
+ = ∇2φ

= ∂i∂iφ

= φ,ii

The ∂
∂x

notation is the familiar derivative notation, and ~∇ should be familiar
from vector calculus. The notation ∂x is a shorthand for ∂

∂x
. This is particularly

useful, since it can be easily indexed. For example
∑

i ∂i = ∂x + ∂y + ∂z. It is
also useful since it is clearly visible in equations, but still compact. The final
notation, the comma notation φ,x is typical of tensor calculus, where one often
needs to manage a large number of indices, and a large number of derivatives
applied to a tensor. In brief, everything after the comma is a derivative. The
expression φ,x is equivalent to ∂φ

∂x
. Similar to ∂i, it is easily indexed. On top of

that, it is much clearer which object the derivative applies to. The expression
∂if∂ig, for example, is ambiguous. Do we mean (∂if) · (∂ig) or ∂i(f · (∂ig))? By
writing this as f,i · g,i, it is entirely unambiguous. It also allows us to move f,i
and g,i about the equation without much thought.
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1.4.1 Vectors, Tensors

fi gi =
∑
i

fi gi Using Einstein notation

~f = Vector
~f = (f1, f2, . . .) Implied vector subscripts

f = Matrix or tensor. More than 1 index.
~f · ~g = fi gi Dot product. Vector multiplication.

f : g = fijkl gkl or fijkl gklmn Tensor double dot product.
~f × ~g = εijk fj gk Cross product

1.4.2 Functions
f(x) = Evaluation of f at x

f · g = Function multiplication

(f · g)(x) = f(x) g(x)

f ◦ g = Function composition

(f ◦ g)(x) = f(g(x))

1.4.3 Derivatives

∂if =
∂f

∂xi
Derivative shorthand, i an index

f,i =
∂f

∂xi
Derivative shorthand, i an index

fi,j =
∂fi
∂xj

Derivative shorthand, i, j are indices

~∇ = (∂x, ∂y, ∂z) Del, or nabla operator

~∇f =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
Gradient

~∇ · ~f = ∂ifi Divergence
~∇× ~f = εijk∂jfk Curl
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1.4.4 Integrals∫
Ω

f dV = 3d volume integral of f over Ω

∫
∂Ω

fi ni dS =

2d surface integral over ∂Ω, the bound-
ary of Ω, of ~f dotted with the oriented
normal of the surface, ~n∫

C

fi ni dl =

1d line integral over the curve C of ~f
dotted with the oriented tangent of the
curve, ~n

1.4.5 Magnetism
~M = Magnetization

Ms = Saturation Magnetization |M |

~m = Unit magnetization ~M/Ms

~H = Effective field

φ = Magnetic scalar potential
~∇φ = ~H

∇2φ = ~∇ · ~M
~B = Magnetic field
~A = Magnetic vector potential

~∇× ~A = ~B

~∇× ~∇× ~A = ~∇× ~M

~α =
Directional cosines of the magnetization
and the crystal axes

B1, B2 = Magnetostriction coupling constants

B0
ij = Magnetostriction coupling tensor

B0
ij =

B1α
2
i if i = j

B2αiαj if i 6= j
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1.4.6 Elasticity

σij = Stress

εij = Strain

~u = Displacement

εij =
1

2
(ui,j + uj,i)

Cijkl = Stiffness tensor

Sijkl = Compliance tensor (inverse of C)

CijklSklmn =
1

2
(δimδjn + δjmδin)

~b = Burgers Vector

bi = −
∮
C

ui dl
with C counter-clockwise
about dislocation line
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Part I

Micromagnetic Modelling
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Chapter 2

MERRILL and the Finite Element
Method

This chapter will start by deriving the equations used by MERRILL to calculate
the demagnetizing field (often referred to as the “demag” field) using a joint Fi-
nite Element Method (FEM) and Boundary Element Method (BEM) technique.
This combines techniques for generating and manipulating FEM weak forms
and BEM integrals available in a number of introductory Finite Element texts,
and techniques for transforming these forms into linear algebra equations. The
primary reference text used while writing this chapter is (Davies 2011), along
with a paper by Lindholm (1984) detailing an analytic solution for the BEM in-
tegral derived here. A short derivation of the single-phase equations (2.56) can
be found in (Fredkin and Koehler 1990), while a thorough derivation will be
presented here. After deriving the single-phase weak forms, we will present
an extension to multi-phase weak forms.

After deriving the demagnetizing field weak forms, we will outline the trans-
formation of these into linear algebra equations using the FEM, and then the
extension of these needed to accommodate multi-phase materials. After that,
we will derive the approach taken by MERRILL to calculate energy gradients
for the main micromagnetic energies: the demagnetizing, exchange and the
anisotropy energies.

The following chapter will present results from two models which incorpo-
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rate these derivations: the µMAG problem #3 (µMAG 2017), which should act
as a verification that MERRILL works correctly in single-phase; and then a
core-shell model as an example of a multi-phase model, along with an efficient
approach for finding critical grain sizes where multiple distinct solutions have
the same energy.

An original contribution (but unoriginal result) in this chapter is the detailed
derivation of the Boundary Element Method formulation by Fredkin and Koehler
(1990) using the method outlined by Davies (2011) from the formulation of
micromagnetism presented in this chapter and used throughout the thesis. I
haven’t found a fully worked derivation of the BEM formulation of micro-
magnetism anywhere. Another, original contribution (and original result) is
the extension of this to multi-phase materials. Finally, while the conversion
of PDEs, and in particular, micromagnetism, to a Finite Element formulation
is well studied, the particular transformation of the magnetic equations to the
matrices used in MERRILL has not previously been documented, along with
the derivation of the effective fields. While not original, a derivation all in one
place should be useful to future students and contributors to MERRILL.
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2.1 Demagnetizing Field Calculations

Outline:
We will generate a weak form for an initial scalar magnetic potential,
φM , using finite boundary conditions for a single-phase material. We will
then present a weak form for the physical scalar potential, φ, in terms of
the initial scalar potential, with boundary conditions φ = 0 at infinity.

Next, we will present the transformations necessary to calculate φ at a
single point in terms of an integral of φM over a finite domain using the
Boundary Element Method. We will then present the final weak form,
describing the physical scalar potential φ in terms of the initial scalar
potential φM using finite boundary conditions.

Finally, we will present an extension of the single-phase approach to in-
clude multi-phase materials.

We want to calculate the demagnetizing field, which has well defined bound-
ary conditions at infinity. To solve this on a computer, however, we need to
describe the problem in terms of a finite space.

We will define a space Ω = R3 representing all space. This will be split up
into a finite magnetic region ΩM containing a non-zero magnetization, and an
infinite non-magnetic region Ω0 where the magnetization is uniformly zero.
The boundary of the magnetic region is entirely separate from the boundary at
infinity.

By way of notation, we will denote the boundary of a region ξ as ∂ξ. So we
can say concisely ∂Ω ∩ ∂ΩM = ∅. It is important to take care of the orientation
of boundaries when using this notation and transforming to integrals over one
boundary to integrals over another. This notation can become unwieldy quite
quickly, so we will try to keep it to a minimum.
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In micromagnetism, the demagnetizing field is given

∂i∂iφ = ∂iMi in ΩM (2.1a)

∂i∂iφ = 0 in Ω0 (2.1b)

φ = 0 in ∂Ω (2.1c)

As mentioned, the boundary conditions here are defined at infinity. It is this
set of equations that we’ll need to transform into an equivalent expression over
a finite space.

2.1.1 Weak Form for the Initial Potential φM

To that end, we will begin by solving a related problem

∂i∂iφM = ∂iMi in ΩM (2.2a)

∂iφM = 0i in ∂ΩM (2.2b)

which is defined over the finite volume of the magnetic material, and the
boundary conditions are over a finitely sized boundary. The weak form can
be found by multiplying by an arbitrary function φ′ and integrating over the
volume ∫

ΩM

(∂i∂iφM) · φ′ dV =

∫
ΩM

(∂iMi) · φ′ dV (2.3)

where dV denotes integration over a volume.

For any ξ and χ continuous over Ω, using integration by parts and applying
the divergence theorem, we can say∫

Ω

ξ ∂iχi dV =

∫
Ω

∂i(ξ · χi) dV −
∫

Ω

(∂iξ) · χi dV

=

∫
∂Ω

ni · ξ · χi dS −
∫

Ω

(∂iξ) · χi dV
(2.4)

where dS integration over a surface. This relation will be used rather fre-
quently in this text.
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Using this, we assume φM , M , and φ′ are continuous over ΩM ,∫
ΩM

(∂iφM) · (∂iφ′) dV −
∫

ΩM

ni · (∂iφM) · φ′ dS

=

∫
ΩM

Mi · (∂iφ′) dV −
∫
∂ΩM

ni ·Mi · φ′ dS (2.5)

and setting ∂iφM = 0 in ∂ΩM∫
ΩM

(∂iφM) · (∂iφ′) dV =

∫
ΩM

Mi · (∂iφ′) dV −
∫
∂ΩM

ni ·Mi · φ′ dS (2.6)

Moving the derivative off ~M and onto φ′ is necessary here to properly account
for uniformly magnetized materials in a practical computer implementation.
For uniform ~M , ∂iMi would be uniformly 0 in ΩM , and φM would therefore be
0.

We now have a finite, well behaved integral over the surface encoding this
change instead, which is suitable for a computer implementation. Finite El-
ement formulations of these equations are well studied, and we will derive
the equivalent linear algebra expression for this integro-differential equation
evaluated over a tetrahedralized domain later in this chapter.

The solution to (2.6) defines φM up to a gauge freedom, such that ξ = φM + χ

is also an answer for any χ such that ∂iχ = 0. This freedom does not effect the
math laid out here, but in practice it can lead to singular matrices, which lead
to numerical instabilities during linear algebra solves. Care should be taken
to ensure the φM solved for in practice is uniquely defined or that the linear
algebra solver is not sensitive to singular matrices.

Next, we rewrite (2.1), our original demagnetizing equations, as the homoge-
neous demagnetizing equations

∂i∂i(φ− φM) = 0 in ΩM (2.7a)

∂iφM = 0i in ∂ΩM (2.7b)

∂i∂iφ = 0 in Ω0 (2.7c)

φ = 0 in ∂Ω (2.7d)
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This homogeneous form allows us to use a BEM style transform.

2.1.2 The Green’s Function

We will start by defining the fundamental solution to the Poisson equation in
3D, a Green’s function

ψ~w(~x) = − 1

4π|~x− ~w|
(2.8)

which is defined such that

∂i∂iψ~w = δ3(~x− ~w) (2.9)

where δ3(~x− ~w) is the Dirac delta function in 3D

δ3(~q) = δ(q1)δ(q2)δ(q3) (2.10)

For a Poisson equation in 3D

∂i∂iχ = ξ in Ω (2.11a)

χ = 0 in ∂Ω (2.11b)

the solution can be written

χ(~w) =

∫
Ω

ξ · ψ~w dV (2.12)

We note there is a singularity in ψ~w around the point ~w. So, in our weak form,
we will omit a spherical region about ~w that we will denote Ωε. We will be
defining ~w so it is on the surface ∂ΩM (and thereby also on ∂Ω0. Upon applying
the divergence theorem, turning volume integrals into surface integrals, this
will make denoting surfaces a bit cumbersome. As a result, we will split the
surfaces of integration up as in figure 2.1.
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ΩM

Ω0

ω0 ωM
Ωε

~w
ε

ωεM

ωε0

Figure 2.1: Integral domains with ball of size ε removed

2.1.3 Weak Form for the Homogeneous Demag Equations

We have the weak form for (2.7), taken with ψ~w, and the integral taken over
Ω− Ωε ∫

ΩM−Ωε

(∂i∂i(φ− φM)) · ψ~w dV +

∫
Ω0−Ωε

(∂i∂iφ) · ψ~w dV = 0 (2.13)

Applying the divergence theorem twice, we get∫
ΩM−Ωε

(φ− φM) · (∂i∂iψ~w) dV +

∫
Ω0−Ωε

φ · (∂i∂iψ~w) dV

+

∫
∂(ΩM−Ωε)

ni(∂i(φ− φM)) · ψ − ni(φ− φM) · (∂iψ) dS

+

∫
∂(Ω0−Ωε)

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0 (2.14)

The first two integrals here contain ∂i∂iψ~w, the Dirac delta function about ~w.
But the integral domain Ω − Ωε will never be evaluated at ~w, even in the limit
as ε→ 0. So, these two terms are zero.∫

∂(ΩM−Ωε)

ni(∂i(φ− φM)) · ψ − ni(φ− φM) · (∂iψ) dS

+

∫
∂(Ω0−Ωε)

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0 (2.15)
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Already the surface notation is getting a bit unwieldy. Looking at figure 2.1,
we will split ∂(ΩM − Ωε) up into ωM + ωεM where ωM refers to the surface of
ΩM which does not touch the ball Ωε, and ωεM refers to the surface of the ball
Ωε in the region ΩM , from the ΩM side. Similarly, the surface ∂(Ω0−Ωε) will be
split up into ω0 + ωε0 + ∂Ω (remembering the boundary of Ω0 also contains the
infinite boundary)∫

ωM+ωεM

ni(∂i(φ− φM)) · ψ − ni(φ− φM) · (∂iψ) dS

+

∫
ω0+ωε0+∂Ω

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0 (2.16)

We will now look at cancelling out the terms in φ everywhere except the sur-
face of Ωε. We note that ωM and ω0 denote the same surface, but with opposite
normal directions. We can write, for ~ξ continuous across the boundary,∫

ωM

niξi dS = −
∫
ω0

niξi dS (2.17)

and so, since φ is continuous across the boundary, the integrals of φ over ω0

can be written in terms of integrals over ωM∫
ωM+ωεM

ni(∂i(φ− φM)) · ψ − ni(φ− φM) · (∂iψ) dS

−
∫
ωM

ni(∂iφ) · ψ − niφ · (∂iψ) dS

+

∫
ωε0+∂Ω

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0 (2.18)

cancelling out the φ terms over ωM

−
∫
ωM+ωεM

ni(∂i(φM)) · ψ − ni(φM) · (∂iψ) dS

+

∫
ωεM

ni(∂iφ) · ψ − niφ · (∂iψ) dS +

∫
ωε0+∂Ω

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0

(2.19)
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Next, noting that φ = 0 and ψ = 0 on ∂Ω, and their derivatives there are finite,
the integral over ∂Ω is zero, so that domain can be dropped

−
∫
ωM+ωεM

ni(∂i(φM)) · ψ − ni(φM) · (∂iψ) dS

+

∫
ωεM

ni(∂iφ) · ψ − niφ · (∂iψ) dS +

∫
ωε0

ni(∂iφ) · ψ − niφ · (∂iψ) dS = 0 (2.20)

and we can combine the integrals over φ

−
∫
ωM+ωεM

ni(∂i(φM))·ψ−ni(φM)·(∂iψ) dS+

∫
ωεM+ωε0

ni(∂iφ)·ψ−niφ·(∂iψ) dS = 0

(2.21)

We now note that the domain ωεM + ωε0 is the same as ∂Ωε with the opposite
normal, so for ~ξ continuous across those borders∫

ωεM+ωε0

niξi dV = −
∫
∂Ωε

niξi dV (2.22)

so with φ and ψ continuous across that border, we get

−
∫
ωM+ωεM

ni(∂i(φM)) ·ψ−ni(φM) · (∂iψ) dS−
∫
∂Ωε

ni(∂iφ) ·ψ−niφ · (∂iψ) dS = 0

(2.23)
We can now look at what happens in the limit as ε→ 0.

2.1.4 Evaluating Limits

On the surface of the ball Ωε, which is centered at ~w, the normal, facing away
from ~w, can be given

ni =
xi − wi
|~x− ~w|

in ∂Ωε (2.24)
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For convenience, we work out ∂iψ~w,

∂iψ~w =
∂

∂xi

−1

4π|~x− ~w|

= − 1

4π

∂

∂xi

1√
(xj − wj)(xj − wj)

= − 1

4π

wi − xi(√
(xj − wj)(xj − wj)

)3

=
xi − wi

4π|~x− ~w|3

(2.25)

and
ni∂iψ~w =

xi − wi
|~x− ~w|

xi − wi
4π|~x− ~w|3

=
1

4π|~x− ~w|2
in ∂Ωε

(2.26)

We will replace φ on the surface Ωε with evaluations of φ at ~w and some correc-
tion terms

φ(~x) = φ(~w) + η1(~x) (2.27)

(ni∂iφ)(~x) = (ni∂iφ)(~w) + η2(~x) (2.28)

which go to zero as ε goes to zero

lim
ε→0

η1 = 0 (2.29)

lim
ε→0

η2 = 0 (2.30)

We look at the limits of the integrals of φ, and their maximum values, starting
with the ∂iφ term

χ2 =

∫
∂Ωε

ni(∂iφ) · ψ dS

= −
∫
∂Ωε

((ni∂iφ)(~w) + η2) · 1

4π|~x− ~w|
dS

(2.31)
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Since |~x− ~w| = ε on Ωε, and the surface area of the sphere is 4πε2

|χ2| =
∣∣∣∣−∫

∂Ωε

((ni∂iφ)(~w) + η2) · ψ dS
∣∣∣∣

≤ |ni||((ni∂iφ)(~w) + η2)| · 1

4πε
4πε2

≤ |((ni∂iφ)(~w) + η2)|ε

(2.32)

Assuming ∂iφ is finite,

lim
ε→0
|χ2| ≤ lim

ε→0
|((ni∂iφ)(~w) + η2)|ε = 0

⇒ lim
ε→0

∫
∂Ωε

ni(∂iφ) · ψ dS = 0
(2.33)

And now the φ term. Noting our previous definition φ(~x) = φ(~w) + η1(~x) we
will write ∫

∂Ωε

φ · (ni∂iψ) dS = χ0 + χ1 (2.34)

χ0 =

∫
∂Ωε

φ(~w) · (ni∂iψ) dS (2.35)

χ1 =

∫
∂Ωε

η1 · (ni∂iψ) dS (2.36)

Looking at χ1

|χ1| =
∣∣∣∣∫
∂Ωε

η1 ·
1

4π|~x− ~w|2
dS

∣∣∣∣
≤ |η1|

1

4π|ε|2
4πε2 = |η1|

(2.37)

Taking the limit
lim
ε→0
|χ1| ≤ lim

ε→0
|η1| = 0

⇒ lim
ε→0

∫
∂Ωε

η1 · (ni∂iψ) dS = 0
(2.38)
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Finally, for χ0

χ0 =

∫
∂Ωε

φ(~w) · 1

4π|~x− ~w|2
dS

=
φ(~w)

4π

∫
∂Ωε

1

|~x− ~w|2
dS

(2.39)

On the surface of sphere, |~x − ~w| is uniformly ε, so the integral can be further
simplified

χ0 =
φ(~w)

4πε2

∫
∂Ωε

dS (2.40)

and then the integral describes the surface area of the ball Ωε

χ0 =
φ(~w)

4πε2
4πε2 = φ(~w) (2.41)

and all together

lim
ε→0

∫
∂Ωε

φ · (ni∂iψ) dS = φ(~w) (2.42)

Putting our results into (2.23)

φ(~w) = lim
ε→0

∫
ωM+ωεM

(ni∂i(φM)) · 1

4π|~x− ~w|
− φM · ni

xi − wi
4π|~x− ~w|3

dS (2.43)

We will now tackle the φM terms. We must be careful about taking the limit of
these equations since the convergence of the integral over ωεM depends on the
shape of ωεM .

Similar to our treatment of φ over Ωε, we can say

lim
ε→0

∫
ωεM

(ni∂iφM) · 1

4π|~x− ~w|
dS = 0 (2.44)

and

lim
ε→0

∫
ωεM

φM · ni
xi − wi

4π|~x− ~w|3
dS = −φM(~w)

4π
lim
ε→0

∫
ωεM

1

|~x− ~w|2
dS (2.45)

Noting the minus sign since ni = wi−xi
|~x−~w| , the opposite of ni over Ωε. The integral

term here on the RHS is the solid angle integral. Converting to spherical polars
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about ~w, the surface element becomes

dS = |r|2 sin(θ~w)dθdϕ (2.46)

which we will write using the notation dΩ~w for the solid angle element about
~w

dS = |r|2dΩ~w (2.47)

although this might get confusing, given the notation Ω used throughout this
text for general regions. We will be sure to note it is an integral over a solid
angle element whenever possible. The limit of the integral then becomes

lim
ε→0

∫
ωεM

φM · ni
xi − wi

4π|~x− ~w|3
dS =

φM(~w)

4π
lim
ε→0

∫
ωεM

dΩ~w (2.48)

If the surface ∂ΩM is smooth at the point ~w, the region of the surface about ~w
will be locally flat, and so the solid angle integral will be over a hemisphere.
However, as we will be using a tetrahedral mesh, and ~w will be defined on a
vertex on the boundary, we will instead say

lim
ε→0

∫
ωεM

dΩ~w = α~w (2.49)

where α~w is the sum of the internal solid angles of the tetrahedra which share
a vertex at ~w, at the vertex ~w. Finally, we have

lim
ε→0

∫
ωεM

φM · ni
xi − wi

4π|~x− ~w|3
dS =

α~w
4π
φM (2.50)

The equation for φ is now

φ(~w) =
α~w
4π
φM(~w)+lim

ε→0

∫
ωM

(ni∂i(φM)) · 1

4π|~x− ~w|
−φM ·ni

xi − wi
4π|~x− ~w|3

dS (2.51)

We can apply the boundary conditions ∂iφM = 0 over ωM

φ(~w) =
α~w
4π
φM(~w)− lim

ε→0

∫
ωM

φM · ni
xi − wi

4π|~x− ~w|3
dS (2.52)
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Converting into spherical polars, assuming φM is finite, we can get rid of the
pole in ψ. Using the polar coordinate transformation, centered about ~w

φ(~w) =
α~w
4π

φM − lim
ε→0

∫
ωM

(φM) · nir̂i
|r|2
|r|2 dΩ~w

=
α~w
4π

φM − lim
ε→0

∫
ωM

φMnir̂i dΩ~w

(2.53)

We can now safely take the limit over the surface of integration and say

lim
ε→0

∫
ωM

niξi =

∫
∂ΩM−~w

niξi (2.54)

since the integrand is not dependant on the shape of ωεM , so the integral is
convergent. And so

φ(~w) =
α~w
4π

φM −
∫
∂ΩM−~w

φMnir̂i dΩ~w (2.55)

This now looks like an integral over the unit sphere centered at ~w of the pro-
jection of φM on the surface ∂ΩM onto that sphere.

With this, we have each term in φ, with its boundary values at infinity well
defined for the demagnetizing field, in terms of a surface integral of φM which
encodes the value of ∂iMi inside the magnetic region. Some care must be taken
when the integral approaches the point ~w since the value r̂ is not well defined
here.

A matrix expression to evaluate the integral described here over a tetrahedral-
ized mesh, specifically over a triangular surface mesh, is described in (Lind-
holm 1984). An expression, then, for every φ on the surface vertices of the mesh
can be expressed in terms of a matrix-vector multiplication. In Lindholm’s op-
erator, the issue of r̂ at ~w is resolved as the value over triangles containing the
point ~w is uniformly zero. It can be shown that nir̂i on a flat surface containing
~w is uniformly zero, which suits our application perfectly.
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2.1.5 Final Weak Form

Now defining yet another Poisson equation for a φ0 with Dirichlet boundary
conditions in ∂ΩM setting φ0 = φ− φM on the boundary, we get

∂i∂iφ0 = 0 in ΩM (2.56a)

φ0 = φ− φM (2.56b)

= (
α~w
4π
− 1) φM −

∫
∂ΩM−~w

φMnir̂i dΩ~w in ∂ΩM (2.56c)

The weak form for this is slightly different again∫
ΩM

(∂iφ0) · (∂iφ′0) dV = 0 (2.57)

Here, the test function φ′0 is defined such that

φ′0 = 0 in ∂ΩM (2.58)

The particulars of the FEM formulation are a little involved to be discussed
here, and will not be properly treated in this text. However it is a simple ap-
plication of pure Dirichlet boundary conditions.

For a given solution φ0, we finally have

φ = φ0 + φM in ΩM (2.59)

which is our magnetic scalar potential with φ = 0 at infinity.

As a quick check, we can see

∂i∂iφ = ∂i∂iφ0 + ∂i∂iφM in ΩM

= 0 + ∂iMi
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and

∂iφ = ∂iφ0 + ∂iφM in ∂ΩM

= ∂i(φ− φM) + ∂iφM

= ∂iφ

and

φ = φ0 + φM in ∂ΩM

= φ− φM + φM

= φ

Since the values and derivatives of φ are consistent at the boundary of ΩM , we
can be happy that the value of φ is also correct beyond the boundary, and out
to ∂Ω.

2.1.6 Extension to Multi-phase and Non-Magnetic Materials

By multi-phase materials, we mean materials where two or more regions have
different material properties, e.g. saturation magnetization, anisotropy axes,
exchange constants, which may be distinct regions separated by space, or may
share a boundary. In this section, we will look at formulating the demagnetiz-
ing field for materials with different saturation magnetizations.

In equation (2.2), the differential equations for φM , we have ∂i∂iφM = ∂iMi on
ΩM and ∂iφM = 0i on ∂ΩM . In this definition, no constraints are made on the
function ~M . In particular, ∂i ~M need not be continuous, and | ~M | need not be
greater than zero.

We can split up our region ΩM into, say, 3 non-overlapping regions, illustrated
in figure 2.2:

ΩM = ΩM1 + ΩM2 + ΩM0 (2.60)
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ΩM1

ΩM2

ΩM0

Figure 2.2: Integral subdomains of ΩM : ΩM0, ΩM1, and ΩM2.

In each region, ~M is defined as follows:

| ~M | = Ms1 in ΩM1

| ~M | = Ms2 in ΩM2

| ~M | = 0 in ΩM0

(2.61)

So ΩM1 refers to one magnetic material, ΩM2 refers to another magnetic mate-
rial and ΩM0 refers to free space. The important distinction between free space
ΩM0 here and the free space Ω0 from earlier is that we are interested in finding
the value of the demagnetizing field here, and not simply using it to satisfy
boundary conditions.

We define the unit magnetization vector ~m = ~M/Ms which remains continuous
across the whole of ΩM , and write

~M = Ms1 ~m in ΩM1

~M = Ms2 ~m in ΩM2

~M = ~0 in ΩM0

(2.62)

We redefine (2.2) with this in mind
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∂i∂iφM = Ms1 ∂imi in ΩM1 (2.63a)

∂i∂iφM = Ms2 ∂imi in ΩM2 (2.63b)

∂i∂iφM = 0 in ΩM0 (2.63c)

∂iφM = 0i in ∂ΩM (2.63d)

To accommodate this change, the weak form in (2.6) should be changed to∫
ΩM

(∂iφM) · (∂iφ′) dV =Ms1

∫
ΩM1

mi · (∂iφ′) dV +Ms2

∫
ΩM2

mi · (∂iφ′) dV

+Ms1

∫
∂ΩM1

nimiφ
′ dS +Ms2

∫
∂ΩM2

nimiφ
′ dS

(2.64)
Here, only the right hand side has been affected. Since ~M = ~0 in ΩM0 and in
∂ΩM0, the volume and surface integrals in this region can be ignored. We can
see that the LHS is exactly the same as the LHS of (2.6), and the RHS is similar
to the RHS of (2.6), except each subdomain has its own volume and surface
integral over the entire subdomain volume and surface. From this, it should
be clear how to extend this to more than two magnetic subdomains.

It can be shown if Ms1 = Ms2 and ΩM0 = ∅ that equation (2.64) becomes the
previously derived single-phase weak form, equation (2.6). In brief, the two
volume integrals over ΩM1 and ΩM2 will have the same factors and integrands,
so they can be combined into one integral over ΩM . Then the two surface inte-
grals will have the same factors and integrands, but will share an integration
over a common surface in the interior of ΩM , but from opposite sides, so with
opposite sign normals, so this will cancel, leaving only an integral over the
exterior boundary, ∂ΩM .

This will be particularly useful later, as we integrate over a tessellation of tetra-
hedra. An integral over a region Ω can be split up into a sum of integrals over
the tetrahedra Ωe, then volume-surface transformations can be written with the
volume of the tetrahedron as the volume, and the surface of the tetrahedron as
the surface, and again, all summed over. Where neighbouring tetrahedra have
the same material parameters, surface integrals over shared facets will can-
cel out, since the value will be the same, but the normal pointed in opposite

32



directions, so the sign will be different.

2.2 FEM Matrices From Weak Forms

Outline:
In this section, we use the Finite Element Method to transform our weak
forms into a linear algebra equation.

We begin by introducing barycentric coordinates, which are useful for
expressing linearly interpolated functions over a tetrahedron, and are
easily integrated over the tetrahedron.

From there we express each of our weak forms as a sum of integrals
over a tessellation of tetrahedra in terms of the barycentric coordinates
and linear interpolation coefficients. We integrate these tetrahedralized
forms, and turn them into a set of matrix equations whose solution is
the interpolation coefficients. Along with these, we present a code which
should assemble the requisite matrices and vectors, similar to the equiv-
alent MERRILL code.

We will introduce a transformation from a volume integral over a tetrahedron
to an integral over barycentric coordinates. We will then introduce the analytic
results for some integrals over a tetrahedron that will be useful for the Finite
Element Method.

We introduce our coordinates ~r, and the vertices of our tetrahedron ~v1, ~v2, ~v3,
~v4:

~vi = (xi, yi, zi) (2.65)

Our initial motivation will be to evaluate the integral∫
Ω

∂u

∂ri

∂u′

∂ri
dV (2.66)

over a tetrahedron Ω where u(~vi) = ci and u′(~vi) = c′i, i.e. the value of u is a
scalar value known at each node.
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2.2.1 Barycentric Coordinates and Shape Coefficients

We introduce the barycentric coordinates ~λ = (λ1, λ2, λ3, λ4) defined

λ1~v1 + λ2~v2 + λ3~v3 + λ4~v4 = ~r (2.67)

λ1 + λ2 + λ3 + λ4 = 1 (2.68)

which expands to 

x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1





λ1

λ2

λ3

λ4


=



r1

r2

r3

1


(2.69)

so that when, say, ~r = ~v3, we have ~λ = (0, 0, 1, 0), and a linear interpolation for
values of ~r not at ~vi.

We will define the matrix T

T =



x1 x2 x3 x4

y1 y2 y3 y4

z1 z2 z3 z4

1 1 1 1


(2.70)

so equation (2.69) can be written

T~λ = ~r+ (2.71)

with ~r+ = (r1, r2, r3, 1) equivalent to ~r with a slight extension. It then remains
to find the barycentric coordinate function

~λ(~r) = T−1~r+ (2.72)
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With the barycentric coordinates in hand, we can then define the interpola-
tion for u so it is the value ci at the vertex vi, and some intermediate value
elsewhere. A good example where the value of u is essentially the weighted
average of the vertex values ~c with the weighting as the distance from the ver-
tex

uλ(~λ) = λ1c1 + λ2c2 + λ3c3 + λ4c4 = λici

= λiu(~vi)
(2.73)

So, for example,
u(~r) ≈ uλ(λ(~r)) (2.74)

and
∂u

∂ri
≈ ∂uλ ◦ ~λ

∂ri
=
∂uλ
∂λj
◦ ~λ · ∂λj

∂ri
= cj ·

∂λj
∂ri

(2.75)

Finding the inverse T−1 is needed to find the barycentric coordinate function
λ(~r). Instead of directly tackling the inverse, we will use Cramer’s rule, defin-
ing the solution of (2.72) in terms of determinants of the matrix T and related
matrices. Using the Cramer’s rule, we write

λi(~r) =
det (Ti(~r))

det (T )
(2.76)

where Ti(~r) is T with the ith column replaced with ~r+ = (r1, r2, r3, 1).

It can be shown that the volume V of the tetrahedron described by T is

V =
1

6
det (T ) (2.77)

so we can write
λi(~r) =

det (Ti(~r))

6V
(2.78)

noting V is independent of ~r.

Next, with some abuse of notation, defining the determinant applied to a ma-
trix valued function as

det (Ti)(~r) = det (Ti(~r)) (2.79)
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we can define derivatives

∂λi
∂rj

=
1

6V

∂ det (Ti)

∂rj
(2.80)

Let’s look at ∂λ2
∂r1

as an example. The matrix T2(~r) is

T2(~r) =



x1 r1 x3 x4

y1 r2 y3 y4

z1 r3 z3 z4

1 1 1 1


(2.81)

and the term of the determinant with coefficient r1 is

det (T2(~r)) = −r1 det


y1 y3 y4

z1 z3 z4

1 1 1

+ other terms (2.82)

which is obtained from the typical definition of determinants in terms of its mi-
nors. It is worth noting that this determinant will be linear in r1 from equation
(2.72), and the tetrahedron volume V being independent of ~r. Then

∂λ2

∂r1

= − 1

6V
det


y1 y3 y4

z1 z3 z4

1 1 1

 (2.83)

What’s notable here is that this is also a constant, independent of ~r.

We will therefore define the constant matrix of derivativesD

Dij =

(
∂ det (Ti)

∂rj

)
(~0) (2.84)
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with the function taken at ~0 just to get a value out. And finally, we write the
derivatives

∂λi
∂rj

=
Dij

6V
(2.85)

As an aside, since λi is linear in ~r, we can write

λi(~r) = rj
∂λi
∂rj

+ gi (2.86)

where gi is some constant. We also note

λi(~r) = T−1
i1 r1 + T−1

i2 r2 + T−1
i3 r3 + T−1

i4 (2.87)

and so
∂λi
∂rj

= T−1
ij , gi = T−1

i4 (2.88)

We can work out T−1
i4 by noting that λi(~vi) = 1

1 = v1j
∂λi
∂rj

+ T−1
i4

⇒ T−1
i4 = 1− v(i)j

∂λ(i)

∂rj

(2.89)

where i is not summed over.

We note from (2.68), the derivatives are not linearly independent and we can
write

∂λ4

∂rj
=
∂(1− λ1 − λ2 − λ3)

∂rj

= −D1j +D2j +D3j

6V

(2.90)

We can now write for λi(~r):

λi(~r) =
∂λi
∂rj

(rj − v(i)j) + 1 (2.91)
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2.2.2 Integration Over a Linear Tetrahedron

Returning to the integral (2.66) and replacing ∂u
∂rj

as in (2.75)

∫
Ω

∂u

∂ri

∂u′

∂ri
dV ≈

∫
Ω

cj ·
∂λj
∂ri

c′k ·
∂λk
∂ri

dV = S (2.92)

and replacing the ∂λj
∂ri

for constant terms as in (2.85)

S =

∫
Ω

cj ·
Dji

6V
c′k ·

Dki

6V
dV

=
1

36V 2
cj Dji c

′
k Dki

∫
Ω

dV

(2.93)

and since the volume of the tetrahedron is given by V =
∫

Ω
dV

S =
1

36V
cj Dji c

′
k Dki (2.94)

With this formulation in mind, we can state our final goal, which is to turn our
differential equations into M equations for M unknowns corresponding to the
interpolation coefficients for φ.

Suppose we have a differential equation corresponding to the weak form∫
Ω

∂iφ · ∂iφ′ dV =

∫
Ω

φ′ dV (2.95)

which, given the above discussion, can be written∫
Ω

∂iφ · ∂iφ′ dV =

∫
Ω

φ′ dV

⇒
∫

Ω

cj
∂λj
∂ri

c′k
∂λk
∂ri

dV =

∫
Ω

c′kλk dV

⇒ 1

36V
cj Dji c

′
k Dki =

V

4

∑
k

c′k

S = F

(2.96)

where cj corresponds to the coefficients of a linearly interpolated function for
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φ, and c′k are the coefficients for an arbitrary function φ′. We now have the M
unknown coefficients cj we want to know, and the M arbitrary coefficients c′k
whose values are of no importance.

By taking derivatives of the above equation with respect to each of the different
c′k, we can generate M equations for the M unknowns cj .

∂S

∂c′k
=
∂F

∂c′k
1

36V
cj Dji Dki =

V

4

(2.97)

By taking derivatives of ∂S
∂c′k

wrt cj , we can rewrite this

∂2S

∂c′k∂cj
cj = Skj cj =

1

36V
Dji Dki cj =

V

4
(2.98)

which can be written as a matrix equation

⇒ Sijcj = Fi (2.99)

where S is called the “Stiffness Matrix”, the vector ~c is called the “Coefficient
Vector”, and the vector ~F is called the “Force Vector”. The vector ~F is just
uniformly V

4
here, but in general, it may be more interesting.

2.2.3 Matrix Formulation of an Integral Over Many
Tetrahedra

We define an integral over a set of N tetrahedra. We can then say for a set of N
tetrahedra, where V e is the volume of the eth tetrahedron, cej is the interpola-
tion component of u on the jth vertex of tetrahedron e. Likewise for c′ej for u′,
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andDe is the matrix of derivatives on tetrahedron e

S ′ =

∫
∪Ωe

∂u

∂ri

∂u′

∂ri

=
∑
e

1

36V e
cej D

e
ji c
′e
k D

e
ki

=
∑
e

S ′e

(2.100)

Over the global mesh, containing M nodes, the function u will contain M in-
terpolation components cj , and u′ will contain M components c′j . These com-
ponents may be shared by a number of tetrahedra, where tetrahedra contain
the same point as a vertex. Taking derivatives wrt c′q to create M equations for
our M unknowns cj we can write

S ′q =
∑
e

∂S ′e

∂c′q
=
∑
e

1

36V e
cej D

e
ji D

e
ki

∂c′ek
∂c′q

(2.101)

We define a local-to-global mapping ej that mapping from the local node index
defined on the tetrahedron e to a global node index. If the jth node of tetrahe-
dron e refers to the global node k, we have ej = k, and ceej = ck Reversing that,
we will define ek as the global-to-local mapping of the node global index to the
tetrahedron node index. We can then write

∂c′ek
∂c′q

=

δkeq if q ∈ e

0 otherwise
(2.102)

The cases are necessary here, because the global-to-local mapping is undefined
when looking for the local index of a global index not actually contained by the
tetrahedron. We can rewrite S ′q, including a qualifier in the summation

S ′q =
∑
{e | ~q∈ e}

1

36V e
cej D

e
ji D

e
eqi (2.103)

Pulling cej outside of the sum, and swapping the local summation over j with
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a global summation over p, again including the qualifier in the summation

S ′q =
∑
p

cp
∑

{e | ~p,~q ∈ e}

1

36V e
De
epi D

e
eqi (2.104)

so we define
S ′pq =

∑
{e | ~p,~q ∈ e}

1

36V e
De
epi D

e
eqi (2.105)

so that
S ′q = S ′pq cp (2.106)

We could have come to a similar result defining

S ′pq =
∂2S ′

∂cp∂c′q
(2.107)

The implementation details now remaining are the calculation of V e, De and
the global to local index map ei. The matrix defined here is equivalent to the
stiffness matrix of a Poisson equation with pure, homogeneous Neumann con-
ditions

∂u

∂ri
= 0i on boundary (2.108)

At a glance

Having worked out the details of building the stiffness matrix, we can now
look at a simple method of moving from a formulation of the problem to an
implementation of a solution. We look at the integral over a single tetrahedron
e:

Se =
1

36V e
cej D

e
jk c

′e
i D

e
ik (2.109)

and simply sum over these for the whole volume

S =
∑
e

1

36V e
cej D

e
jk c

′e
i D

e
ik (2.110)

Replace cej and c′ei with the equivalent, globally indexed cej and c′ei , and looking
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at a single term in the above sum

S = . . .+
1

36V e
ce(j) D

e
(j)k c

′
e(i)

De
(i)k + . . . (2.111)

where braces mean we are not summing over those indices. Remembering that
ej is a local to global mapping of index j on tetrahedron e to the equivalent
global mesh vertex. We see here that j and i have values 1-4, and need to be
mapped from local to global, and k is looping over the x, y and z coordinate
index.

Now, we want to build a matrix S so that

Sijcj (2.112)

gives us the sum of all the c′i terms. To do this, we place all terms with c′i on
the ith row, and all the terms with cj on the jth column, but without including
cj or c′i in the final matrix.

This can be accomplished with the following code in MERRILL

1 S( 1 :NNODE, 1 :NNODE) = 0
2

3 ! Loop over a l l the te t rahedra e
4 DO e=1 ,NTRI
5

6 ! Loop over a l l the c ’ _ { e_ i } terms
7 DO i =1 ,4
8

9 ! Loop over a l l the c_ { e_ j } terms
10 DO j =1 ,4
11

12 ! Find the g loba l i nd i ces o f i and j , i e e_ i and e_ j
13 i g l o b a l = TIL ( e , i )
14 j g l o b a l = TIL ( e , j )
15

16 ! Def ine D^e_ { i k } and D^e_ { j k }
17 Di = ( / b ( e , i g l o b a l ) , c ( e , i g l o b a l ) , d ( e , i g l o b a l ) / )
18 Dj = ( / b ( e , j g l o b a l ) , c ( e , i g l o b a l ) , d ( e , i g l o b a l ) / )
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19

20 ! Loop over x , y , z coord ina te
21 DO k=1 ,3
22 S( i g l o b a l , j g l o b a l ) = S( i g l o b a l , j g l o b a l ) &
23 + ( 1 / ( 3 6 * ( vo l ( e ) ) ) ) * Di ( k ) * Dj ( k )
24 END DO
25 END DO
26 END DO
27 END DO

and r = Sijcj evaluated

1 r = 0
2 DO j =1 ,NNODE
3 r = r + S( i , j ) * c ( j )
4 END DO

(although since c is already in used for the shape coefficients in MERRILL, a
different variable name would need to be used here in the actual program.)

In MERRILL, the barycentric coordinate derivatives are denoted with b, c, and
d with

De
ix = b(e, i)

De
iy = c(e, i)

De
iz = d(e, i)

(2.113)

with e, here, an enumeration of the tetrahedra ranging from 1 to NTRI, and the
index i representing the ith index of the tetrahedron. The local to global index
array is TIL where

ej = TIL(e, j) (2.114)

with e on the left representing the nebulous tetrahedron object and mapping
object, but e on the right representing the enumeration of tetrahedron e. The
value of TIL(e,j) returns the global enumeration of vertex j on tetrahedron
e. Finally, the value NNODE is the number of global vertices in the mesh.

The assembly steps are written rather simply here. In MERRILL itself, the
assembly is a bit more complex, since the matrices are stored in a sparse format,
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and can’t be indexed directly. Indeed, during the initial assembly, the indices
are not known at all. Further, indexing is muddied by the matrices being stored
in a column-sparse SLAP Triad format where diagonal entries are stored at
the start of the column. While it would be possible to construct the indices
before assembly, and have a (reasonably) quick lookup of the matrix indices,
the code works as is, and the change wouldn’t have a significant effect, other
than looking nice, and possibly being a bit slower. It should suffice to outline
the “nice” assembly here, and pick apart the “ugly” assembly in the code, if
necessary.

From here, including multi-phase to a particular formulation is trivial. Say we
have the equation

S =
∑
e

M e
s

1

36V e
cej D

e
ji c
′e
k D

e
ki (2.115)

with M e
s representing a material parameter, the saturation magnetization in

this case, that is constant within a tetrahedron, but may change between dif-
ferent tetrahedra. We will use a “subdomain” enumeration, where tetrahedra
with the same material parameters are given the same subdomain. We will
build a matrix so the sum of all c′i terms is given by

r = SkijMskcj (2.116)

In MERRILL

1 S( 1 : NMater ia ls , 1 :NNODE, 1 :NNODE) = 0
2 DO e=1 ,NTRI
3

4 ! Get the subdomain index
5 sd = TetSubDomains ( e )
6

7 DO i =1 ,4
8 DO j =1 ,4
9 inode = TIL ( e , i )

10 jnode = TIL ( e , j )
11
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12 Di = ( / b ( e , inode ) , c ( e , inode ) , d ( e , inode ) / )
13 Dj = ( / b ( e , jnode ) , c ( e , inode ) , d ( e , inode ) / )
14

15 DO k=1 ,3
16 ! Same as before , but ex t ra subdomain index .
17 S( sd , inode , jnode ) = S( sd , inode , jnode ) &
18 + ( 1 / ( 3 6 * ( vo l ( e ) ) ) ) * Di ( k ) * Dj ( k )
19 END DO
20 END DO
21 END DO
22 END DO

and can be evaluated

1 r = 0
2 DO j =1 ,NNODE
3 DO sd=1 , NMater ia ls
4 r = r + S( sd , i , j ) *Ms( sd ) *C( j )
5 END DO
6 END DO

which is a reasonably small change to the original formulation.

It must be noted that this addition turns the matrices from rank-2 to rank-
3. This means they are no longer suitable for the SLAP Triad format, and no
longer suitable for passing into solver routines expecting rank-2 matrices. Care
must be taken, then, to leave matrix values passed into solvers as rank-2 ma-
trices. Luckily, our formulation of the demagnetizing field produces matrices
independent of the material parameters, but the RHS passed in is. However,
the RHS is assembled from a force matrix and the magnetization into a rank-
1 vector. The inclusion of subdomains turns the force matrix from rank-2 to
rank-3, but the assembly still produces a rank-1 vector as before.
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2.2.4 The Poisson Equation RHS

We now look at the formulation of the RHS of the demagnetizing equation

F =

∫
∪eΩe

mi · ∂iφ′ dV +

∫
∪e∂Ωe

ni ·mi · φ′ dS (2.117)

The integral over the boundary is a little over-zealous here, defined over the
facets of every tetrahedron on the mesh, but where integrands are continuous
across shared boundaries, the integrals should cancel out. That is, only facets
where the material parameters change between the neighbouring tetrahedra
will have a non-zero contribution to F . In practice, we just ignore the surfaces
that cancel out.

We will start by looking at the integral of the first term over a tetrahedron Ωe

F e
1 =

∫
Ωe

mi · ∂iφ′ dV (2.118)

with φ′ defined as above and ~m defined similar to ~u We will say at a vertex ~vi
in e that ~m(~vi) = ~Jei = (Jei1, J

e
i2, J

e
i3) so that, over a tetrahedron, we have

me
i (~r) = λj(~r) J

e
ji (2.119)

along with a global equivalent ~Ji, similar to ci from the previous section. Re-
placing ∂iφ′ =

c′ek D
e
ki

6V
, as previously worked out,

F e
1 =

c′ekD
e
ki

6V e

∫
Ω′
λj J

e
ji dV (2.120)

It can be shown that for an integration over a tetrahedron Ωe, the integral of the
barycentric coordinates, for any combination and powers of the coordinates,
can be written ∫

Ωe

λa1λ
b
2λ

c
3λ

d
4 dV = 6 |V e| a!b!c!d!

(a+ b+ c+ d+ 3)!
(2.121)
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so the integral evaluates to

F e
1 =

c′ekD
e
ki

6V

∑
j

Jeji6 |V |
1

4!

=
c′ekD

e
ki

24

∑
j

Jeji

(2.122)

Putting that back into F

F =
∑
e

c′ekD
e
ki

24

∑
j

Jeji +

∫
∪e∂Ωe

ni ·mi · φ′ dS (2.123)

Now we tackle the boundary integral. We will look at the integral over a single
triangle t of a tetrahedron e. We assume the vertices on the boundary are ~v1, ~v2,
and ~v3. In this case, λ4 will always be 0. Substituting barycentric coordinates
for ~m and φ′, and assuming a constant ~n, since integration is over the surface
of a flat triangle

F t
2 = ni

∫
t

3∑
j=1

λjJ
e
ji

3∑
k=1

λkc
′e
k dS

= ni

∫
t

Je1ic
e
1λ

2
1 + Je1ic

e
2λ1λ2 + Je1ic

e
3λ1λ3 + Je2ic

e
1λ2λ1 + . . . dS

(2.124)

Similar to before, there is a closed formula for an integral of barycentric coor-
dinates over a triangle:∫

t

λa1λ
b
2λ

c
3 dS = 2 |At| a!b!c!

(a+ b+ c+ 2)!
(2.125)

where At is the area of triangle t.

Since each term in the integrand is either one λ2
j term or two λjλk terms, the

integral evaluates to

F t
2 = nti

|At|
12

3∑
j=1

Jeji

3∑
k=1

c′ek (1 + δjk) (2.126)
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Now, instead of specifying ~v1, ~v2, and ~v3 on the surface, we will write ~v ∈ t

F t
2 = nti

|At|
12

∑
{j ∈ t}

Jeji
∑
{k∈ t}

c′ek (1 + δjk) (2.127)

We can substitute this back into F

F =
∑
e

c′ekD
e
ki

24

∑
j

Jeji +
∑
e

∑
{t∈e}

nti
|At|
12

∑
{j ∈ t}

Jeji
∑
{k∈ t}

c′ek (1 + δjk) (2.128)

From the previous discussion, this should be sufficient for building the force
vector ~F with Jeji taking the place of cej . Indeed, in the implementation, this is
the form used in its assembly. However, for completeness, we can rearrange
the terms into a sum over J

F =
∑
p

Jpi
∑

{e | ~p∈ e}

c′ekD
e
ki

24
+
∑
p

Jpi
∑

{e | ~p∈ e}

∑
{t | t∈ e}

nti
|At|
12

∑
{k∈ t}

c′ek (1+δepk) (2.129)

We will write this
F =

∑
p

Jpi(F
′
pi + F ′′pi) (2.130)

The surface integral term here contains more entries than is necessary. It is,
however, as general as possible. In practice, instead of including every trian-
gle in an element, only the triangles that contribute to discontinuous border
values need to be included. In particular, faces of tetrahedra on the boundary
of the space, or where the opposite tetrahedron is in a different subdomain
(i.e. with potentially different material properties). While including all trian-
gles will generate the correct results, for numerical purposes, we want to avoid
potentially adding and subtracting large numbers which should predictably
cancel out.

Oriented Area

We need a formulation of nti|At| found in F ′′. An obvious choice is a cross
product. For a triangle with vertices ~v1, ~v2, and ~v3 we can write the oriented
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area
~A =

1

2
(~v1 − ~v3)× (~v2 − ~v3) (2.131)

which can be expressed as the determinants

~A =
1

2


∣∣∣∣∣∣∣
v12 − v32 v13 − v33

v22 − v32 v23 − v33

∣∣∣∣∣∣∣ ,−
∣∣∣∣∣∣∣
v11 − v31 v13 − v33

v21 − v31 v23 − v33

∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣
v11 − v31 v12 − v32

v21 − v31 v22 − v32

∣∣∣∣∣∣∣


(2.132)

This can be related back to the barycentric coordinates of a tetrahedron with
a little reformulation of the original barycentric coordinate equations. Using
λ1 + λ2 + λ3 + λ4 = 1,

λ1(~v1 − ~v3) + λ2(~v2 − ~v3) + λ4(~v4 − ~v3) = r (2.133a)

⇒


v11 − v31 v21 − v31 v41 − v31

v12 − v32 v22 − v32 v42 − v32

v13 − v33 v23 − v33 v43 − v33




λ1

λ2

λ4

 =


r1

r2

r3

 (2.133b)

Denoting the matrix here as T ′, and denoting T ′i (~r) as before (with column i of
T ′ replaced with ~r) we can solve for λ4 using Cramer’s rule (remembering λ4

is in slot 3!)

λ4 =
det (T ′3(~r))

detT ′
(2.134)

Now looking at the r1 derivative:

∂λ4

∂r1

=
1

det (T ′)

∣∣∣∣∣∣∣
v11 − v31 v21 − v31

v12 − v32 v22 − v32

∣∣∣∣∣∣∣ (2.135)

The determinant here is exactly the x value of ~A in (2.132).
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It can be shown that det (T ′) = det (T ), and so

∂λ4

∂r1

=
1

6V

∣∣∣∣∣∣∣
v11 − v31 v21 − v31

v12 − v32 v22 − v32

∣∣∣∣∣∣∣ (2.136)

and it is then clear that ∣∣∣∣∣∣∣
v11 − v31 v21 − v31

v12 − v32 v22 − v32

∣∣∣∣∣∣∣ = D41 (2.137)

Doing the same for r2 and r3,

~A =
1

2
(D41, D42, D43) (2.138)

so ~A consists of the derivative coefficients of the vertex not in the triangle A.
Since ~A = ni|A|, we have

ni|A| =
1

2
(D41, D42, D43) (2.139)

Building The Matrix

We will build (2.128)

F =
∑
e

c′ekD
e
ki

24

∑
j

Jeji +
∑
e

∑
{t∈e}

nti
|At|
12

∑
{j ∈ t}

Jeji
∑
{k∈ t}

c′ek (1 + δjk)

However, to account for multi-phase materials, we must go back and add in
the saturation magnetization where we can. This results in the RHS

F =
∑
e

M e
s

c′ekD
e
ki

24

∑
j

Jeji +
∑
e

M e
s

∑
{t∈e}

nti
|At|
12

∑
{j ∈ t}

Jeji
∑
{k∈ t}

c′ek (1 + δjk)

50



in MERRILL so that
Fpi = MskFkijJpj (2.140)

1 F ( 1 : NMater ia ls , 1 : 3 , 1 :NNODE, 1 :NNODE) = 0
2

3 ! Bu i l d volume c o n t r i b u t i o n
4 DO e=1 ,NTRI
5 sd = TetSubDomains ( e )
6 DO i =1 ,4
7 DO j =1 ,4
8 inode = TIL ( e , i )
9 jnode = TIL ( e , j )

10

11 D = ( / b ( e , jnode ) , c ( e , jnode ) , d ( e , jnode ) / )
12

13 DO k=1 ,3
14 F( sd , k , jnode , inode ) = F( k , jnode , inode ) + D( k ) /24
15 END DO
16 END DO
17 END DO
18 END DO
19

20 ! Bu i l d sur face c o n t r i b u t i o n
21 DO e=1 ,NTRI
22 sd = TetSubDomains ( e )
23

24 ! I t e r a t e over t r i a n g l e s i n e , w i th a t r i a n g l e def ined by
25 ! the oppos i te ver tex .
26 DO opp=1 ,4
27

28 ! The o r ien ted area
29 nA = ( / b ( e , opp ) , c ( e , opp ) , d ( e , opp ) / ) / 2
30

31 ! T r i ang le ind ices , the ind i ces i n e which aren ’ t opp .
32 DO j =1 ,4
33 IF ( j .EQ. opp ) CYCLE
34 DO i =1 ,4
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35 IF ( i .EQ. opp ) CYCLE
36

37 jnode = TIL ( e , j )
38 inode = TIL ( e , i )
39

40 ! encode 1 + d e l t a _ i j
41 IF ( i .EQ. j ) THEN
42 f a c t o r = 2
43 ELSE
44 f a c t o r = 1
45 END IF
46

47 ! The x , y , z index
48 DO k=1 ,3
49 F( sd , k , jnode , inode ) = F( sd , k , jnode , inode ) &
50 + nA( k ) / 1 2 * f a c t o r
51 END DO
52 END DO
53 END DO
54 END DO
55 END DO

and evaluated

1 rhs ( 1 :NNODE) = 0
2 DO i =1 ,NNODE
3 DO j =1 ,NNODE
4 DO k=1 ,3
5 DO sd=1 , NMater ia ls
6 rhs ( i ) = rhs ( i ) + F( sd , k , i , j ) *Ms( sd ) *m( j , k )
7 END DO
8 END DO
9 END DO

10 END DO
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2.3 Effective Fields and Energy Gradients

Outline:
In this section, we present the relation between the effective fields and the
energy gradients used by MERRILL. We also derive the energy gradients
for the demagnetizing, exchange, and anisotropy energies, and present
the code for assembling these values.

The effective field for a given magnetic system can be defined

Hi = − ∂E

∂Mi

(2.141)

For ~M = Ms ~m with |m| = 1, this can be written

Hi = − 1

Ms

∂E

∂mi

(2.142)

This definition hides some machinery of functional derivatives, since ~H and ~m

here are actually defined pointwise, and E is defined by an integral over the
domain of ~m.

Now, for mi = λejJeji on a given tetrahedron e, and in the Finite Element
Method, we find our minima by varying Jji rather than ~m itself, we would
prefer to find a gradient with respect to Jji. The tensor value Jij can be read as
the jth component of m on vertex i. We will therefore define the FEM energy
gradient

Gij =
∂E

∂Jij
(2.143)

with Gij the jth component of G on vertex i, and

E =
∑
e

∫
Ωe

E(~m) dV (2.144)

and so
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Gij =
∑
e

∫
Ωe

∂E
∂Jij

(~m) dV (2.145)

Now, since mi = λjJji, this can be rewritten

Gij =
∑
e

∫
Ωe

∂E
∂mk

(~m)
∂mk

∂Jij
dV

= −
∑
{e|j∈e}

∫
Ωe

MsHj(~m)λi dV
(2.146)

with {e|j ∈ e} used to constrain the integration over the barycentric coordinate
functions defined at node j for any tetrahedra sharing that node. This is now
easily relatable to the usual definition of ~H . Once the usual expression includ-
ing ~m is found, it can then be converted to one using λkJki, multiplied by λi

and integrated. In the case where the ~H field becomes independent of ~m, the
result is dependant only on the geometry.

2.3.1 Demagnetizing Energy Gradient

The demagnetizing energy is

E =

∫
Miφ,i dV (2.147)

The effective field is
Hi = −φ,i (2.148)

Placing that into Hij , we have

Gij =
∑
{e | i∈e}

∫
Ωe

φ,jλi dV

=
∑
{e | i∈e}

∫
Ωe

ck
De
kj

6V
λi dV

(2.149)

with ck the value of φ at vertex k. This is something we have evaluated before
in (2.122)
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Gij =
∑
{e | i∈e}

ck
De
kj

24
(2.150)

This can be written in the form

Gij = Fjikck (2.151)

where F can be assembled in MERRILL as

1 F( 1 : 3 , 1 :NNODE, 1 :NNODE) = 0
2 DO e=1 ,NTRI
3 DO j =1 ,3
4 DO k=1 ,4
5 DO i =1 ,4
6 inode = TIL ( e , j )
7 knode = TIL ( e , k )
8

9 D = ( / b ( e , j ) , c ( e , j ) , d ( e , j ) / )
10

11 F( j , inode , knode ) = F( j , inode , knode ) + D( k ) / 24
12 END DO
13 END DO
14 END DO
15 END DO

and evaluated

1 H( 1 :NNODE, 1 :3 ) = 0
2 DO i =1 ,NNODE
3 DO j =1 ,3
4 H( j , i ) = 0
5 DO k=1 ,NNODE
6 H( j , i ) = H( j , i ) + F( j , i , k ) * ph i ( k )
7 END DO
8 END DO
9 END DO
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2.3.2 Exchange Energy Gradient

The exchange energy is defined

E = A ·mk,l ·mk,l (2.152)

We will approach this slightly differently. We cast this to the FEM formulation

E =
∑
e

∫
Ωe

Aλn,lJnkλo,lJok dV (2.153)

Now, replacing λk,i withDe, and taking derivatives with respect to Jij ,

Gij =
∑
{e | i∈e}

∫
Ωe

2ADe
nlJnjD

e
il dV

=
∑
{e | i∈e}

2AeDe
nlJnjD

e
ilV

e
(2.154)

Gij =
∑
{e | i∈e}

2AeDe
nlJnjD

e
ilV

e (2.155)

with Ae representing the exchange coupling in tetrahedron e. Here, the ex-
change coupling is assumed to be constant over each tetrahedron, but may
vary from tet to tet. This looks a lot like the formulation for the Poisson equa-
tion we worked out earlier, except with the extra Ae. We can write this

Gij = 2AsFsikJkj (2.156)

where Ak represents the value of A for subdomain k. A subdomain here is the
set of tetrahedra with the same material parameters. This can be assembled

1 F ( 1 : NMater ia ls , 1 :NNODE, 1 :NNODE) = 0
2 DO e=1 ,NTRI
3 sd = TetSubDomains ( e )
4 DO i =1 ,4
5 DO k=1 ,4
6 inode = TIL ( e , i )
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7 knode = TIL ( e , k )
8 F( sd , inode , knode ) = F( sd , inode , knode ) &
9 + ( &

10 b ( e , inode ) * b ( e , knode ) &
11 + c ( e , inode ) * c ( e , knode ) &
12 + d ( e , inode ) * d ( e , knode ) &
13 ) * vo l ( e )
14 END DO
15 END DO
16 END DO

and evaluated

1 H( 1 :NNODE, 1 :3 ) = 0
2 DO i =1 ,NNODE
3 DO j =1 ,3
4 H( i , j ) = 0
5 DO k=1 ,NNODE
6 DO s=1 , NMater ia ls
7 H( i , j ) = H( i , j ) + 2*A( s ) * F ( s , i , k ) *m( k , j )
8 END DO
9 END DO

10 END DO
11 END DO

2.3.3 Anisotropy Energy Gradient

The anisotropy energy is given

E = K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
(2.157)

where K1 is the anisotropy constant, the 3 cubic axes are ~a1, ~a2, ~a3, and using
the notation

~ai = (ai1, ai2, ai3) (2.158)
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αi is defined
αi = mjaij (2.159)

with effective field

Hi = K1

(
2a1i(mka2k)

2 + 2a2i(mka1k)
2 + 2a2i(mka3k)

2 + 2a3i(mka2k)
2

+ 2a3i(mka1k)
2 + 2a1i(mka3k)

2
)

(2.160)

which has some high order, complex dependencies on ~m. The usual approach
taken for turning this from a pointwise value to an energy gradient has looked
like the following

Gij =
∑
e

∫
Ωe

Hjλi dV

= Hj(~vi)
∑
e

∫
Ωe

λi dV

= Hj(~vi)
∑
e

|V e|
4

(2.161)

This looks like a projection of a pointwise value to an energy gradient value.
This is the current approach used in MERRILL for converting pointwise fields
to FEM energy gradients.

However, a clear issue arises, which is the value Hi is assumed constant over
the tetrahedron. An alternate formulation might be to project the pointwise Hi

onto a linear function, and then integrate. This raises the issue that our field
isn’t linear in the magnetization. However, for an accurate model, variations in
the magnetization should be small over a tetrahedron, so any non-linear effects
should look locally flat over a tetrahedron, so linear interpolation should not
introduce any large errors. We will write the linear interpolation of ~H over a
tetrahedron

Hi = λjhji in Ωe (2.162)

with
hji = Hi(~vj) (2.163)

representing the value of Hi at vertex j, where ~vj the point at vertex j.
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Now we get

Gij =
∑
e

∫
Ωe

Hjλi dV

=
∑
e

∫
Ωe

λkhkjλi dV

=
∑
e

hkj

∫
Ωe

λkλi dV

=
∑
e

hkj6|V e|1 + δki
120

=
∑
e

hkj|V e|1 + δki
20

(2.164)

Gij =
∑
{e | j∈e}

∑
k∈e

hkj|V e|1 + δki
20

(2.165)

It would be worth investigating the difference between these approaches, and
whether any change is really necessary.

2.4 Projection of Element-wise Multi-phase

Expressions to Pointwise Expressions

Outline:
In this section, we present a method of transforming element-wise de-
fined values defined into point-wise defined values.

First, we multiply the element-wise values by the BEM style test function
and taking the integral about the point of interest, and perform the usual
BEM style integral transforms. Then we take the limit as the radius of
integrated region goes to zero, returning a value at that point.

In micromagnetism, a number of pointwise expressions come up, like the an-
isotropy energy, which have no differential equations and are defined point-
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wise
Eanis = K1

(
α2

1α
2
2 + α2

2α
2
3 + α2

3α
2
1

)
(2.166)

where K1 is the anisotropy constant, the 3 cubic axes are ~a1, ~a2, ~a3, and using
the notation

~ai = (ai1, ai2, ai3) (2.167)

αi is defined
αi = mjaij (2.168)

We note that |m| = 1 and |ai| = 1.

We want a consistent formulation for this energy and the effective field Hanis
i =

∂
∂mi
Eanis where K1 and ~ai are element-wise constant, but discontinuous across

certain boundaries, and ~Hanis is continuous throughout Ω. The approach laid
out here is currently used in MERRILL to produce multi-phase FEM energy
gradients from pointwise defined fields.

We choose to study the anisotropy energy here as it’s a point-wise energy, and
since the exchange energy and the demagnetizing energy implicitly require
element-wise calculation when evaluating spatial gradients using the FEM.
Results here can, for instance, be extended to defining a multi-phase Zeeman
energy. The element-wise subdomains can, therefore, be baked into the linear
operators used to calculate these values, and the subdomain values added in
during evaluation. There are also some concerns when evaluating point-wise
multi-phase values including spatial gradients, since it’s likely the govern-
ing energies and equations were derived assuming the coupling parameters
were constant, so spatial gradients of the coupling parameters may have been
dropped.

We are reaching a saturation point for subscripts here, so we will use two sets
of cubic axes a and b and two anisotropy constants Ka1 and Kb1, and two non-
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overlapping magnetic regions Ωa and Ωb, and a non-magnetic region Ω0

Eanis = Ka1

(
(mja1j)

2(mka2k)
2

+ (mja2j)
2(mka3k)

2 + (mja3j)
2(mka1k)

2
)

in Ωa (2.169a)

Eanis = Kb1

(
(mjb1j)

2(mkb2k)
2

+ (mjb2j)
2(mkb3k)

2 + (mjb3j)
2(mkb1k)

2
)

in Ωb (2.169b)

Eanis = 0 in Ω0 (2.169c)

The total energy can be given

Eanis =

∫
Ωa+Ωb

Eanis dV

=

∫
Ωa

Ka1

(
(mja1j)

2(mka2k)
2

+ (mja2j)
2(mka3k)

2 + (mja3j)
2(mka1k)

2
)
dV

+

∫
Ωb

Kb1

(
(mjb1j)

2(mkb2k)
2

+ (mjb2j)
2(mkb3k)

2 + (mjb3j)
2(mkb1k)

2
)
dV

(2.170)

From this it’s clear that the two regions can be treated separately. Any suitable
numerical integration scheme can be used for this.

For the effective field
Hanis
i =

∂

∂mi

Eanis (2.171)
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we have the slightly more verbose

Hanis
i = Hanis

ai

= Ka1

(
2a1i(mka2k)

2 + 2a2i(mka1k)
2

+ 2a2i(mka3k)
2 + 2a3i(mka2k)

2

+ 2a3i(mka1k)
2 + 2a1i(mka3k)

2
)

in Ωa (2.172a)

Hanis
i = Hanis

bi

= Kb1

(
2b1i(mkb2k)

2 + 2b2i(mkb1k)
2

+ 2b2i(mkb3k)
2 + 2b3i(mkb2k)

2

+ 2b3i(mkb1k)
2 + 2b1i(mkb3k)

2
)

in Ωb (2.172b)

Hanis
i = 0i in Ω0 (2.172c)

This poses a bit more of a challenge, since ~Hanis must be worked out at each
point. In addition, we want ~Hanis to be continuous, while ~Hanis

a and ~Hanis
b need

not be continuous across shared borders. We seek a reasonable interpolation
of Hanis which is pointwise defined, but reflects the volume-wise definition of
the various anisotropies.

We use the weak form∫
Ωa+Ωb

Hi · φ′i dV =

∫
Ωa

Ka1

(
2a1i(mka2k)

2 + 2a2i(mka1k)
2

+ 2a2i(mka3k)
2 + 2a3i(mka2k)

2

+ 2a3i(mka1k)
2 + 2a1i(mka3k)

2
)
· φ′i dV

+

∫
Ωb

Kb1

(
2b1i(mkb2k)

2 + 2b2i(mkb1k)
2

+ 2b2i(mkb3k)
2 + 2b3i(mkb2k)

2

+ 2b3i(mkb1k)
2 + 2b1i(mkb3k)

2
)
· φ′i dV

(2.173)

where ~φ′ is an arbitrary vector-valued test function. Again, the regions can be
treated separately, but the integral isn’t linear in ~m. We write it in the shorter
form ∫

Ωa+Ωb

Hanis
i · φ′i dV =

∫
Ωa

Hanis
ai · φ′i dV +

∫
Ωb

Hanis
bi · φ′i dV (2.174)
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We will again make use of the Green’s function defined earlier

ψ~w = − 1

4π|~x− ~w|

and we will use only φ′γ non-zero, and say

φ′m =

∂i∂iψ~w = δ3(~x− ~w) if m = γ

0 otherwise
(2.175)

Using similar tricks to before, we will cut a ball Ωε out of the region Ω, and
split it up into Ωa′ , the region of Ωa without the ball, Ωεa the region of Ωa inside
the ball, and ωεa for the common surface of the ball between Ωa′ and Ωεa. We
similarly define Ωb′ , Ωεb and ωεb. We note that the volume integrals over Ωa′

and Ωb′ will never reach the point ~w, and so are uniformly zero.

We will look at the LHS

χLHS =

∫
Ωεa+Ωεb

Hγ · ∂i∂iψ~w dV (2.176)

As before, we will split Hγ over Ωε up into

Hγ(~x) = Hγ(~w) + η1(~x)

(∂iHγ) (~x) = (∂iHγ) (~w) + η2i(~x)
(2.177)

with limε→0η1 = 0 and limε→0η2i = 0.

Now we can say, using integration by parts and the divergence theorem as
before∫

Ωεa+Ωεb

∂i(Hγ · ∂iψ~w) dV =

∫
Ωεa+Ωεb

(∂iHγ) · (∂iψ~w) dV

+

∫
Ωεa+Ωεb

Hγ · (∂i∂iψ~w) dV

=

∫
Ωεa+Ωεb

(∂iHγ) · (∂iψ~w) dV + χLHS

(2.178)
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Looking at the first term and applying the divergence theorem

χ1 =

∫
Ωεa+Ωεb

∂i(Hγ · ∂iψ~w) dV

=

∫
∂Ωεa+∂Ωεb

Hγ · ni∂iψ~w dS
(2.179)

We can split each region into two regions. For the region Ωεa, we have the sur-
face of the ball cutting through the volume, ωεa, and also possibly the boundary
of the region Ωa inside the ball, which includes the point ~w, which is defined
by a number of tetrahedral faces. We will denote this tetrahedral boundary
region fεa.

χ1 =

∫
∂ωεa+fεa+∂ωεb+fεb

Hγ · ni∂iψ~w dS (2.180)

As before, we can say

ni =
xi − wi
|~x− ~w|

in ∂Ωε

∂iψ~w =
xi − wi

4π|~x− ~w|3

ni∂iψ~w =
1

4π|~x− ~w|2
in ∂Ωε

(2.181)

and so, looking at the ωεa and ωεb regions, we find

χ1ω =

∫
∂ωεa+∂ωεb

Hγ ·
1

4π|~x− ~w|2
dS

= Hγ(~w)

∫
∂ωεa+∂ωεb

1

4π|~x− ~w|2
dS +

∫
∂ωεa+∂ωεb

η1 ·
1

4π|~x− ~w|2
dS

= χ11 + χ12

(2.182)
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Again

|χ12| =
∣∣∣∣∫
∂ωεa+∂ωεb

η1 ·
1

4π|~x− ~w|2
dS

∣∣∣∣
≤ |η1| |

1

4πε2
| |4πε2| = |η1|

⇒ lim
ε→0
|χ12| ≤ lim

ε→0
|η1| = 0

⇒ lim
ε→0

χ12 = 0

(2.183)

and
χ11 =

Hγ(~w)

4π

∫
∂ωεa+∂ωεb

1

|~x− ~w|2
dS

=
Hγ(~w)

4π

∫
∂ωεa+∂ωεb

dΩ~w

=
Hγ(~w)

4π
(αa~w + αb~w)

(2.184)

where αa~w is the solid angle at the vertex ~w in all the tetrahedra with the vertex
~w in the region Ωa, and similar for αb~w. For Hγ in the interior of a the magnetic
region, i.e. not a boundary node, we should have χ11 = Hγ(~w).

Now
lim
ε→0

χ1ε =
Hγ(~w)

4π
(αa~w + αb~w) (2.185)

Looking at the region over the tetrahedral faces, and converting into polar
coordinates centered about ~w and a solid angle integral about ~w

χ1f =

∫
fεa+fεb

Hγ · ni∂iψ~w dS

=

∫
fεa+fεb

Hγ · ni
xi − wi

4π|~x− ~w|3
dS

=

∫
fεa+fεb

Hγ · ni
ri

4π|r|
dΩ~w

=
1

4π

∫
fεa+fεb

Hγ · nir̂i dΩ~w

(2.186)

Now, as ε→ 0, a region, say fεa, can be split up into a set of integrals over a set
of triangular faces, each of which will contain the vertex ~w. On any particular
triangle, which contains the vertex ~w, we now have the surface normal ~n facing
out of the plane of the triangle, and the normal radial vector r̂ which is in the
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plane of the triangle. It follow, then, that these two vectors are orthogonal, and
so the dot produce nir̂i is uniformly zero. So now, while the limit of ~n and
r̂ will depend on which direction you approach ~w from, the dot product nir̂i
does not, and so it is well defined as 0 at ~w. And now we can say

lim
ε→0

χ1f = 0 (2.187)

Putting this all together, we have

Hγ(~w)

(
αa~w + αb~w

4π

)
=

∫
Ωεa+Ωεb

(∂iHγ) · (∂iψ~w) dV + χLHS (2.188)

Next, we tackle the remaining integral term

χ2 =

∫
Ωεa+Ωεb

(∂iHγ) · (∂iψ~w) dV

=

∫
Ωεa+Ωεb

(∂iHγ) ·
xi − wi

4π|~x− ~w|3
dV

= (∂iHγ)(~w)

∫
Ωεa+Ωεb

xi − wi
4π|~x− ~w|3

dV +

∫
Ωεa+Ωεb

η2 ·
xi − wi

4π|~x− ~w|3
dV

(2.189)

Taking the maximum value

|χ2| ≤ |(∂iHγ)(~w)|
∣∣∣ ε
ε3

∣∣∣ ∣∣∣∣43πε3
∣∣∣∣+ |η2|

∣∣∣ ε
ε3

∣∣∣ ∣∣∣∣43πε3
∣∣∣∣

= (|(∂iHγ)(~w)|+ |η2|) |ε|

⇒ lim
ε→0
|χ2| ≤ 0

⇒ lim
ε→0

χ2 = 0

(2.190)

And now, we have

χLHS =

∫
Ω

Hγ · ∂i∂iψ~w dV = Hγ(~w)

(
αa~w + αb~w

4π

)
(2.191)

This is quite clearly just the definition of a Green’s function. However, given
the definition we used here, when our Green’s function is used on the bound-
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ary of a material, the value at a given vertex will be weighted by the solid angle
at the vertex in each material. For the effective field ~Hanis, this isn’t particularly
useful for averaging out multi-phase effects, but it is important for a well de-
fined average when taken at the boundary between a magnetic material and a
non-magnetic one.

Returning to the weak form∫
Ωa+Ωb

Hanis
i · φ′i dV =

∫
Ωa

Hanis
ai · φ′i dV +

∫
Ωb

Hanis
bi · φ′i dV (2.192)

From the above discussion, and substituting Hγ for ξβγ as appropriate, we find

Hanis
i (~w)

(
αa~w + αb~w

4π

)
= Hanis

ai

(αa~w
4π

)
+Hanis

bi

(αb~w
4π

)
(2.193)

and cancelling the 4π

Hanis
i (~w) (αa~w + αb~w) = Hanis

ai αa~w +Hanis
bi αb~w (2.194)

So now we can find ~H at a point ~w by taking a weighted average of the differ-
ent, discontinuous values for the field. For many regions, we have

~Hanis(~w) =

∑
βH

anis
β (~w) αβ ~w∑
β αβ ~w

(2.195)

This approach can then be extended to any projection of traits that are element-
wise well defined, but must be point-wise well defined.

Finally, the anisotropy energy gradient in MERRILL is defined, as previously
discussed, and using the pointwise formulation described here for ~Hanis

Gij = Hanis
j (~vi)

∑
e

|V e|
4

(2.196)
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Chapter 3

Example MERRILL Modelling
Results

We present some example results from single-phase and multi-phase mod-
elling using MERRILL. We begin by running µMAG Standard Problem 3 (µMAG
2017) on MERRILL, as a verification of correctness. Next, we run a simple core-
shell model to demonstrate the sort of modelling our extension to multi-phase
materials might allow.

The results of each section represent original results. In the case of the µMAG
results, while not strictly new, the contribution of MERRILL’s results to the
existing body of results is a significant contribution.
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3.1 µMAG Standard Problem 3

3.1.1 Introduction

The µMAG Standard Problem 3 (µMAG 2017) is a test for the critical edge
length of a cube with uniaxial anisotropy for a change in the magnetic phase
from a flower state to a single vortex state.

In Standard Problem 3, the material parameters of the cube: the saturation
magnetization Ms, the exchange coupling A, and the uniaxial anisotropy con-
stant Ku are related by the following relations

Ku = 0.1
1

2
µ0M

2
s (3.1)

and the exchange length is given

lex =

√
A

Km

(3.2)

This material was realized in MERRILL using

Ms = 4.807680× 105 A/m

A = 1.334870× 10−11 J/m

Ku = 1.452282× 104 J/m3

(3.3)

where Ms and A here are the saturation magnetization and exchange coupling
for Magnetite and Ku is derived from the above relation to Ms. This gives us
the exchange length

lex = 9.587248× 10−3 µm (3.4)

3.1.2 Method

To nucleate a flower state, the mesh is scaled to 7.5×lex and a Local Energy
Minimum (LEM) is found, then rescaled to 8.45×lex and the LEM found, and
then saved to disk. By “scaled to”, we mean the mesh is resized until edge
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length of the cube is the given value. This two step approach to nucleation is
needed, since a flower state isn’t guaranteed to nucleate at 8.45 × lex, because
this is around the critical edge length. So a flower state is nucleated away from
the critical edge length, and then re-minimized around the critical edge length.
Re-minimizing at 8.45×lex is done primarily to save time during minimization
later when finding LEMs for the various edge lengths. An initial flower state
is shown in figure 3.1.

Figure 3.1: An initial flower solution at edge length 8.45 × lex, coloured by
helicity ( ~M · (~∇× ~M)). Blue is lower helicity, red is higher helicity.

To nucleate a vortex state, the mesh is first scaled to 11×lex and the LEM found,
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then scaled to 8.5×lex and the LEM found and saved to disk. Re-minimizing
is a particularly useful step here since the vortex at 11×lex is much “tighter”
than the vortex at 8.5×lex. By tighter, we mean the vortex core is smaller, with
more of the magnetization conforming to the exterior, circular formation. This
typically results in a lower overall remanence, despite being a larger grain.
This saves a significant amount of time while running the script. An initial
state is shown in figure 3.2.

Figure 3.2: An initial vortex state at edge length 8.45 × lex colored by helicity
( ~M · (~∇× ~M)). Blue is lower helicity, red is higher helicity.

To further save time, these states are first nucleated with a coarse mesh, so

72



the nucleation and minimization runs much faster, then interpolated onto the
target mesh we actually want results for, and re-minimized on the target mesh.
The coarse mesh has a node spacing around the exchange length, so the results
produced are reasonably accurate. Re-minimizing on the target mesh, then,
does not take much time.

To evaluate, say, the flower state energy at a certain cube size, the mesh is
scaled to that size, the flower state is loaded from disk, the energy is min-
imized, and the energy is reported. This is done for the flower and vortex
states for a range of cube sizes.

The critical length for the cube is then found by finding the iteration just before
the flower state energy passes the single vortex energy and the iteration just
after, and using a linear interpolation between the energies of each iteration to
find the edge length where they intercept. Denoting the first iteration’s flower
and vortex energies and length scale as f−, v−, l−, and the second as f+, v+, l+,
we can find the intercept length scale by solving for t where

v−(1− t) + v+t = f−(1− t) + f+t (3.5)

giving

t =
f− − v−

(f− − v−)− (f+ − v+)
(3.6)

and the intercept length l0 is

l0 = l−(1− t) + l+t (3.7)

This assumes the energies scale linearly with the edge length, which is incor-
rect, but for sufficiently small steps of the edge length, it should be accurate
enough for this application.

This entire process is then repeated for an increasingly fine mesh. The critical
edge length of the cube should scale as the square of the mesh spacing. This
is due to higher resolution of derivatives which, for the demagnetizing and
exchange calculations are of order 2. By performing a linear fit on the (mesh
spacing)2 versus the intercept length, it should be possible to extrapolate the
intercept length for an infinitely fine mesh, i.e. where the mesh spacing is zero.
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Two types of mesh were used in this test, a regular one generated by regu-
lar subdivision of a cube into tetrahedra, and an irregular one by Delaunay
triangulation. The regular mesh was generated using the built in cubic mesh
generator in MERRILL. The mesh created by this is very regular, so measur-
ing the average edge length of this mesh is more indicative of a mesh spacing
than, say, an irregular mesh, where mesh spacing may vary wildly between
different sections of the geometry. The irregular mesh was generated using
MEshRRILL, which uses CGAL’s Delaunay triangulation algorithm. Example
meshes are shown figures 3.3 and 3.4.

Figure 3.3: Regular cube mesh with a node spacing of 0.5×lex.

For each mesh, the energies were found for the flower and vortex states for
8.39×lex to 4.70×lex in steps of 0.01×lex. The mesh spacings used were 1.0×lex
to 0.3×lex in steps of 0.1×lex.
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Figure 3.4: Irregular cube mesh with a node spacing of 0.5×lex.

3.1.3 Results

Regular Mesh

From figure 3.5, the critical edge length for an infinitely fine regular mesh was
found to be (8.4704± 0.0002)× lex, and from figure 3.6, the critical energy was
(0.30261± 0.00001)×KdV .

The extrapolated partial energies are given in units of KdV

Flower Vortex

Demag 0.27947± 0.00004 0.0785± 0.0001

Anisotropy 0.005572± 0.000009 0.05218± 0.00002

Exchange 0.01757± 0.00003 0.1719± 0.0001
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And the extrapolated magnetizations in units of Ms

Flower Vortex

< mx > 0.97118± 0.00005 −0.0003± 0.0001

< my > 0.0001± 0.0001 0.0± 0.22496823

< mz > −0.0001± 0.0001 0.2± 0.1

Regular Mesh Critical Edge Length vs. Node Spacing

Figure 3.5: The critical length versus the node spacing of the regular mesh,
and linear fit extrapolating the node spacing to 0. This shows the critical edge
length for an infinitely fine mesh is (8.4704± 0.0002)× lex.
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Regular Mesh Critical Energy vs. Node Spacing

Figure 3.6: The critical energy versus the node spacing of the regular mesh,
and linear extrapolating the node spacing to 0. This shows the critical energy
for an infinitely fine mesh is (0.30261± 0.00001)×KdV .

Irregular Mesh

From figure 3.7, the critical edge length for an infinitely fine irregular mesh
was found to be (8.468 ± 0.002) × lex, and from figure 3.8, the critical energy
was (0.30242± 0.00008)×KdV .

The extrapolated partial energies are given in units of KdV

Flower Vortex

Demag 0.2791± 0.0001 0.0775± 0.0006

Anisotropy 0.00563± 0.00002 0.0520± 0.0001

Exchange 0.01773± 0.00005 0.1729± 0.0007
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And the extrapolated magnetizations in units of Ms

Flower Vortex

< mx > 0.97086± 0.00008 −0.0000± 0.0008

< my > −0.0000± 0.0002 0.0± 0.3

< mz > −0.0003± 0.0002 0.0000± 0.0007

Irregular Mesh Critical Edge Length vs. Node Spacing

Figure 3.7: The critical length versus the node spacing of the irregular mesh,
and linear fit extrapolating the node spacing to 0. This shows the critical edge
length for an infinitely fine mesh is (8.468± 0.002)× lex.

3.1.4 Discussion

The results for the regular and the irregular mesh are in reasonable agreement
with each other and with other submissions to the µMAG Standard Problem
3 (µMAG 2017). Potential sources of difference between the regular and ir-
regular meshes are then inherent anisotropy of the regular mesh. In the reg-
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Irregular Mesh Critical Energy vs. Node Spacing

Figure 3.8: The critical energy versus the node spacing of the irregular mesh,
and linear extrapolating the node spacing to 0. This shows the critical energy
for an infinitely fine mesh is (0.30242± 0.00008)×KdV .

ular mesh, cubes are split along cube edges and diagonals, admitting a cubic
anisotropy, while the irregular mesh has tetrahedra with edges in effectively
random directions. I have observed that anisotropic meshes can result in an
anisotropic bias of the magnetization. This, in itself, is an interesting result.
The irregular mesh, on the other hand, has a broader range of tetrahedron
shapes, sizes and orientations. This would tend to average out any anisotropy
in the mesh.

The errors presented here are the error in extrapolation of the measured values
on the finite meshes to the infinite meshes, not a measurement of the error in
the measured values themselves. Indeed, no error measurement was made of
these values. In this manner, when comparing between the regular and irreg-
ular meshes, and the submissions to the µMAG site, it is more reasonable to
roughly compare the measured values, than to compare within the presented
errors.
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Comparing figures 3.5 and 3.7, and 3.6 and 3.8, it is interesting to note how
much more closely the trend lines follow the values of the regular mesh versus
the irregular mesh. This is likely due to the node spacing being measured as
an average of the edge lengths of the tetrahedra in the mesh. For the regular
mesh, this will naturally be quite representative of any given edge in the mesh.
However, for the irregular mesh, this represents only the average of the edges.
There is no significant constraint on the variance of the edge lengths. As a
result, extrapolation using the average tetrahedron edge length for an irregular
mesh may not be ideal. However, in this case, the results correspond well
enough with those of the regular mesh.

It is, perhaps, worth noting the difference between the values for the critical
length and energy in the coarse mesh and the infinite mesh is around 1%. For
quantitative measurements, this may be an issue, but for qualitative results,
it may be acceptable. In general, however, it is not clear if the results on an
infinitely fine mesh would even be within 1% of the real world values, so ex-
trapolating to an infinitely fine mesh, or indeed performing calculations using
a very fine mesh, may add precision, but not accuracy to a result. For this rea-
son, and for reasons of time in producing results, we will prefer to use coarse
meshes and report trends in this thesis, rather than any hard values, except
when comparing models to each other. In this case, coarse means the node
spacing will be around the exchange length.
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3.2 Core-shell Model

We will explore here the PSD states of a multi-phase material where a magnetic
material has a “skin” of a different magnetic material.

3.2.1 Background

We want to model changes in behaviour of magnetite as it becomes oxidized.
We will model oxidation of a magnetite grain as it growing a “skin” of constant
thickness of maghemite, usually described as a core-shell model. We define the
oxidation parameter z by

z =
Volume Maghemite

Total Volume
(3.8)

representing the fraction of the grain that has been oxidized to maghemite. No
consideration will be given to the exchange coupling between the boundary.
The exchange is considered volume-wise constant, so the exchange at the in-
terface will effectively be an average of the two exchange energies. Neither is
any consideration given to stresses due to differing lattice sizes between the
materials.

Recent work by Nagy et al. (Nagy et al. 2017) has identified easy-axis-aligned
Single Domain (SD) and Flower States (FS) as being stable over geological
timescales with increasing size, up until the Pseudo-Single Domain (PSD) tran-
sition where a Hard-axis-aligned Single Vortex (HSV) are viable LEM states,
but highly unstable. Further increases in size to an Easy-axis-aligned Single
Vortex (ESV) then rapidly become very stable with increasing size. Therefore,
rather than looking at how the coercivities for the grains change with size and
oxidation to gauge their magnetic stiffness, which would then be used as a
proxy for it’s recording fidelity, we will instead identify critical grain sizes
where the energies for various local energy minimum states overlap. We will
use the results to carve out an “island of instability” where the HSV state en-
ergies overlap with the SD/FS and the ESV states and suggest grains smaller
and larger than the overlap will be reasonably stable.
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We assume that, to move from one state to another, say a [111] SV to a [-111]
SV state, the magnetization must move through a state of higher energy. In
the worst case scenario, it would move through the highest energy axis, the
[100]. However, if the energy of a state along [111] and [100] are the same, or
similar, there may be no large energy barrier for the state to pass through. In
this case, the state may be in a rather shallow local energy minimum and be
quite unstable.

The grains we will look at are truncated octahedra (cuboctahedra). The core-
shell model will consist of two concentric cuboctahedra, where the inner octa-
hedron will have the properties of magnetite, and the space between the inner
and the outer octahedron will have the properties of maghemite.

We will denote the size of grains using an Equivalent Sphere Volume Diam-
eter (ESVD). That is, for a cuboctahedron of volume, say V , we will denote
the ESVD size of that octahedron by the diameter of a sphere with the same
volume.

3.2.2 Method

A program was written to generate core-shell octahedron meshes using the
CGAL library. Two cuboctahedral polyhedra were built, an inner cuboctahe-
dron and an outer cuboctahedron, and the inner cuboctahedron scaled so

Vouter − Vinner

Vouter
= z (3.9)

to match our definition of the oxidation. A level set was then constructed that
returned 1 inside the inner octahedron, 2 between the inner and outer octahe-
dron, and 0 outside the outer octahedron. The sharp edges and corners of the
octahedra were added to the triangulation, and then a Delaunay triangulation
was performed on the level set, resulting in a tetrahedral mesh representing
the core-shell model. The mesh was then subdivided until the average edge
length was below the exchange length of magnetite and maghemite. Care must
be taken with the edges added to the triangulation that they are the minimum
of the exchange length and of the spacing between the two octahedra, or else
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the meshing may not terminate.

With the mesh generated for a given oxidation parameter, it was loaded into
MERRILL from a custom Fortran program, and the material parameters set
for the given subdomains. Three states were then nucleated: a [111] SD/FS
state, an anti-clockwise [100] HSV state and an anti-clockwise [111] ESV state.
This was done by defining an initial heuristic magnetization that was similar
in shape to the desired state, and then each state was minimized near where
the overlap edge lengths were expected. Care must be taken here to ensure the
expected states actually nucleate. Since there is some overlap between where
these states are meta-stable, the desired states are not always guaranteed to
nucleate. To this end, a random kick was given to the initial magnetization,
the minimization performed, and a conformance check for each state done. If
the state failed to conform to the expected parameters (e.g. the average mag-
netization pointing in the correct direction, and the magnitude of the average
magnetization being above or below a given threshold), the nucleation was
attempted again.

To find the overlap size between two states, a two step process was employed
to reduce the number of minimizations needed. First, the grain was scaled
from a minimum size to a maximum size in small increments and the energy
of each state evaluated. The minimum and maximum sizes were chosen by
trial and error, by manually checking where the energy of the SD/FS state was
smaller than that of the HSV and ESV states, and where the energy of the ESV
state was larger than that of the SD/FS and HSV states. Once the energy of
the second state passed the first, the scaling was stopped and the two states
minimized at that size. These two steps were then repeated until the same
overlap size was found twice in a row. The minimization step is important
because the exact magnetization of a given state, and so the energy, varies
slightly with grain size.

This process was done to find the overlap size between the SV/FS and the HSV
states, and between the HSV and ESV states. It was done for oxidations of 0,
0.1, 0.2, 0.3 ... 0.9, 1 with 0 representing a whole magnetite grain and 1 a whole
maghemite grain.
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3.2.3 Results

Critical ESVD Grain Size vs. Oxidation

Figure 3.9: The critical ESVD grain size versus oxidation for the SD/FS and
HSV states, and the HSV and ESV states.

The critical sizes versus oxidations are shown in figure 3.9. There is a near lin-
ear relation between SD/FS and HSV overlap and the oxidation. The relation
between HSV and ESV has a shallower slope, and isn’t as linear.

The region of instability, where the HSV state is of similar energy to the SD/FS
and ESV states is larger for magnetite than for maghemite, and monotonically
decreases when moving from z = 0 to z = 1. The average position of the
region, however, increases as the oxidation increases.

3.2.4 Discussion

The results suggest that oxidation raises the minimum stable grain size for PSD
grains. For magnetite grains that were on the threshold of stability, oxidation
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may push them into an unstable region. In this case, oxidation may effect the
recording fidelity of a grain. Similarly, oxidation may move grains which were
previously on the lower bound of instability to stability. As a result, SD/FS
signals measures from oxidized minerals around the SD/FS and HSV critical
size may not be reliable signals.

The inclusion of different boundary exchange values may change the results
presented here. This could be included in the model as-is by introducing a
third polyhedron in the meshing routine and having an inner, middle, and
outer polyhedron, and assigning different subdomains to the inner region, the
region between inner and middle, and the region between middle and outer.
Setting the thickness the inner-to-middle region to around one exchange length
could suffice, and an average of the material parameters could be used. Alter-
natively, an ab-initio model of the core-shell grain could be done to find the
material parameters withing this middle region. Another approach would be
to add a surface energy term along the boundary. From previous discussion
for constructing the FEM matrices for surface terms, adding this to MERRILL
could be straightforward.

Including the magnetostrictive effect between the core and shell could pose
quite a challenge. In particular since physical core-shell style grains are typ-
ically cracked due to very high stresses. A linear theory of magnetostriction
may not be enough to account for this. The inclusion of a linearized theory
of dislocations may not even be sufficient to model it. It is likely, however, to
have a contribution to the behaviour of the material. A full treatment of mag-
netostriction is a significant area where multi-phase magnetic modelling tends
to be lacking, even for multi-phase magnetic and non-magnetic materials, e.g.
from exsolution.
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Chapter 4

Conclusions - Micromagnetism

In this part, we presented a thorough derivation of the FEM and BEM formu-
lation for the demagnetizing field in found in Fredkin and Koehler (1990). In
particular, we derived it from a boundary condition formulation well suited
for a finite geometry, and used in a number of other FEM texts and numerical
frameworks, particularly the FEniCS project (Wells, Mardal, and Logg 2012).

From here, we derived an original FEM and BEM formulation of the demag-
netizing field for multi-phase materials, along with multi-phase formulations
for the exchange, anisotropy and Zeeman fields. We then presented a rough
formulation of how these were incorporated into MERRILL.

We also derived formulations for element-wise and point-wise energies. These
should be particularly useful for future students and developers adding new
physics to MERRILL. Along with formulations for various surface integrals,
it should be reasonably straightforward to formulate and implement a num-
ber of surface energies, e.g. surface anisotropy and surface exchange energies.
These will be of particular concern for accurate modelling of realistic multi-
phase materials. In particular, the FEM and BEM volume formulations will
be useful for modelling long-range interactions like the demagnetizing field,
and the FEM surface formulations will be useful for short-range — e.g. sub-
exchange-length sizes — interactions.

In this thesis, however, we will focus on the contributions needed for mod-
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elling the elastic interactions between phases, which we will later see for a
magnetite-ilmenite lamellar system can be modelled as an effective surface an-
isotropy.

This represents a significant improvement to MERRILL. In particular, as mag-
netic materials in geoscience applications are often found as a result of ex-
solution, or experience partial chemical alteration, real samples are typically
multi-phase. Given MERRILL is aimed at the geoscience community, it is of
particular interest and importance that it be able to model the sorts of systems
encountered in natural samples, and not just representative systems.

To date, modelling of multi-phase ferromagnets for geoscience applications
has either been impossible, possible only for cubic meshes using the finite
difference method, or has effectively ignored surface effects. In this thesis,
we have begun the process of putting all the necessary pieces together for
multi-phase modelling of ferromagnetic materials of arbitrary geometry, tak-
ing all the necessary physics into account, in a thorough and rigorous manner.
With the outline presented here of the multi-phase FEM and BEM formulation,
along with surface effects, the ground work has been laid out. In the following
chapters, we will begin looking at including magnetostriction, a long ignored
effect, and later derive surface effects due to lattice mismatch. Unfortunately,
this will just be the initial steps towards the goal of comprehensive simulations
of arbitrary materials geometries.

These code modifications will have significant implications. In particular, with
accurate modelling, we would expect a significant improvement to our esti-
mations of the magnetic stability of various materials, and more importantly,
the interactions between materials. Even more importantly, providing this in
an easy-to-use and fast program means it can be applied to a wide number
of problems. MERRILL has, for example, found recent use in modelling of
iron grains in meteor samples (Einsle et al. 2016), greigite with a focus on hy-
drocarbon exploration (Valdez-Grijalva et al. 2018), and stability analysis of
pseudo-single domain grains (Nagy et al. 2017).

It can’t be overstated that it is not possible (or at least not easy) to find closed
form solutions for LEM magnetizations. It is also currently infeasible to map
the whole magnetization of a physical 3D ferromagnet for non-uniform mag-
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netizations. As a result, physical experiments are limited to bulk measure-
ments of magnetic materials and detailed surface measurements to determine
its behaviour, along with penetrative measurements like electron holography
and x-ray holography imagery which suffer from significant loss of data. Mi-
cromagnetism presents the most feasible option for researchers to visualize
the 3D magnetization held by a material. As a result, it is imperative that work
continues to increase the speed, accuracy, and ease-of-use of micromagnetic
models.

The results presented here for the µMAG Standard Problem 3 provide good
evidence that MERRILL is correct, at least for uniaxial materials. These results,
in themselves, represent a contribution to the field of micromagnetism, adding
another data point for the critical size problem posed, for which there is no
analytic solution. Correctness tests for MERRILL are an important addition,
as detailed verification of models against their physical counterparts is not
always feasible.

The study by Einsle et al. (2016), is a good example of this. In paleomagnetic
systems, there are a very large number of magnetic grains in a typical sample.
In this situation, bulk measurements are made against the whole sample to ex-
tract the paleomagnetic data (i.e. direction and strength of the Earth’s magnetic
field at the time and position of cooling), and micromagnetic models are used
to get detailed information about representative grains, like the magnetization
and its thermal stability. However, the technique used to image the grains in
Einsle et al. (2016) was a destructive focused ion beam nano-tomography. In
this situation, the grains measured can’t be subjected to further study by the
physical methods mentioned. The image of the grain geometry, the micromag-
netic model, and the bulk measurements of that grain, and the huge number
surrounding it are the only data available.
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Part II

Magnetostriction

91





Chapter 5

Including Magnetostriction in
Micromagnetic Models

In this chapter, we will discuss two approaches previously taken to include
magnetostriction in micromagnetic models. We will present Kittel’s formula-
tion (Kittel 1949), which is derived assuming a uniformly magnetized material,
in a tensorial style we will be using throughout this thesis. Next, we will dis-
cuss some issues surrounding his derivation of the magnetostrictive response
of a material as a function of uniaxial pressure. We will then present Fabian
and Heider’s formulation (Fabian and Heider 1996) in terms of the same ten-
sorial style, and discuss some potential issues surrounding this formulation.

This chapter serves primarily as an introduction to previous approaches, and
an introduction to the notation for the magnetostrictive coupling and linear
elasticity used in this thesis. The proof of Kittel’s mistake in formulating the
magnetostrictive response due to uniaxial tension, and demonstrating the de-
coupling of applied pressure from the magnetic response for SD magnetiza-
tions are original works, and a significant result, suggesting Kittel’s theory is
incomplete. The discussion of Fabian and Heider’s formulation is also an orig-
inal analysis of their results.
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5.1 Kittel’s Formulation of Magnetostriction

Kittel provided a micromagnetic energy term including magnetostriction in
his seminal 1949 paper on ferromagnetism (Kittel 1949). Assuming the mag-
netostrictive effect was related to the anisotropy, and so expanding the aniso-
tropy in terms of the strain of the material, he found the potential energy f for
a cubic material with magnetization ~M due to a linear elastic strain ε

f =B1(α2
xεxx + α2

yεyy + α2
zεzz)

+B2(αxαy(εxy + εyx) + αyαz(εyz + εzy) + αzαx(εzx + εxz))

+
1

2
C11(ε2

xx + ε2
yy + ε2

zz)

+
1

2
C44((εxy + εyx)

2 + (εyz + εzy)
2 + (εzx + εxz)

2)

+ C12(εxxεyy + εyyεzz + εzzεxx)

(5.1)

where εij = εji is the symmetric strain tensor of the material in a linear elastic
theory, αi is the cosine of the magnetization along axis i (e.g. αx = M̂ · x̂ and
M̂ = ~M/|M |), B1, B2 are the magnetostrictive coupling constants, and C11, C12,
C44 are the elastic stiffness constants.

As an aside, it is important to note that the εij used in (Kittel 1949) are from the
Voigt, or Engineering notation. There is a factor of two difference in the cross
terms for ε. Specifically, for ~ε voigt

~ε voigt =



ε
voigt
xx

ε
voigt
yy

ε
voigt
zz

ε
voigt
yz

ε
voigt
zx

ε
voigt
xy


=



εxx

εyy

εzz

εyz + εzy

εzx + εxz

εxy + εyx


(5.2)
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while for ~σvoigt

~σvoigt =



σ
voigt
xx

σ
voigt
yy

σ
voigt
zz

σ
voigt
yz

σ
voigt
zx

σ
voigt
xy


=



σxx

σyy

σzz

(σyz + σzy)/2

(σzx + σxz)/2

(σxy + σyx)/2


(5.3)

and for Cvoigt

C
voigt
ij =



C1111 C1122 C1133 C1123 C1131 C1112

C2211 C2222 C2233 C2223 C2231 C2212

C3311 C3322 C3333 C3323 C3331 C3312

C2311 C2322 C2333 C2323 C2331 C2312

C3111 C3122 C3133 C3123 C3131 C3112

C1211 C1222 C1233 C1223 C1231 C1212


(5.4)

For a rank-2 tensor, say ξij , the Voigt vector is roughly built as follows:

~ξvoigt =



ξ11

  

ξ12 ξ13
oo

ξ21 ξ22

  

ξ23

OO

ξ31 ξ32 ξ33

OO


=



ξ11

ξ22

ξ33

(ξ23 + ξ32)/2

(ξ13 + ξ31)/2

(ξ12 + ξ21)/2


(5.5)
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I say roughly, because the 4th, 5th and 6th elements in ~σvoigt and ~εvoigt are built
differently. It is because of this inconsistency that we will prefer to present
results in the full notation, but we will do a decent amount of calculations in
Voigt notation.

The Voigt notation is used because is turns awkward equations of rank-2 and
rank-4 tensors, into equations of vectors and matrices, e.g.

σij = Cijklεij → σ
voigt
i = C

voigt
ij ε

voigt
j

It implicitly assumes symmetries of ε, σ and C, so it it makes specifying the
elasticity tensor much easier, e.g. for a cubic material, it is necessary only to
specify C11, C12, and C44 and note that

Cvoigt, cubic =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44


Here, we will prefer to work in the full notation when working with indices,
but use Voigt equations when convenient. We will always, however, use the
full εij in final formulations, since we later want to say εij = 1

2
(∂iuj + ∂jui)

without fear of spurious factors of 2.
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By looking for a ε that minimizes f , Kittel finds

∂f

∂εxx
= B1α

2
x + C11εxx + C12(εyy + εzz) = 0

∂f

∂εyy
= B1α

2
y + C11εyy + C12(εzz + εxx) = 0

∂f

∂εzz
= B1α

2
z + C11εzz + C12(εxx + εyy) = 0

∂f

∂εxy
= B2αxαy + C44(εxy + εyx) = 0

∂f

∂εyz
= B2αyαz + C44(εyz + εzy) = 0

∂f

∂εzx
= B2αzαx + C44(εzx + εxz) = 0

(5.6)

with solutions

εij =

B1
C12−α2

i (C11+2C12)

(C11−C12)(C11+2C12)
if i = j

−B2αiαj/(2C44) otherwise
(5.7)

This particular solution is only for a cubic material with zero stress. We will
look for a more general solution to this problem.

5.1.1 A Cleaner Formulation

The Hooke Formulation

The relationship between the problem and solution can be made clearer by
using the relationship between stress, strain, and energy and presenting the
relationships in Voigt notation. The linear stress σ due to an energy f is given

σij =
∂f

∂εij
(5.8)

so, already, it is clear we were finding σ = 0 which looks like a force balance
equation. In this case, it is looking for stress-free solutions. If the energy is in
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the form of a Hooke energy, namely

f =
1

2
εijCijklεkl + σ0

ijεij

=
1

2
ε

voigt
i C

voigt
ij ε

voigt
j + σ

0,voigt
j ε

voigt
j

(5.9)

we have the Hooke relation

σij = Cijklεkl + σ0
ij

σ
voigt
i = C

voigt
ij ε

voigt
j + σ

0,voigt
i

(5.10)

in particular, we have (which can be confirmed by (5.6))



σxx

σyy

σzz

1
2
(σxy + σyx)

1
2
(σyz + σzy)

1
2
(σzx + σxz)


=



C11 C22 C22 0 0 0

C22 C11 C22 0 0 0

C22 C22 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





εxx

εyy

εzz

εxy + εyx

εyz + εzy

εzx + εxz


+



B1α
2
x

B1α
2
y

B1α
2
z

B2αxαy

B2αyαz

B2αzαx


(5.11)

which looks exactly like the Voigt version

σ
voigt
i = C

voigt, cubic
ij ε

voigt
j + σ

0,voigt
i (5.12)

We will therefore define

B0 =


B1α

2
x B2αxαy B2αxαz

B2αxαy B2α
2
y B2αyαz

B2αxαz B2αyαz B2α
2
z

 B0,voigt =



B1α
2
x

B2α
2
y

B2α
2
z

B2αyαz

B2αxαz

B2αxαy


(5.13)
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and we write the magnetostrictive energy in a Hooke form

f =
1

2
εijCijklεkl +B0

ijεkl

=
1

2
ε

voigt
i C

voigt
ij ε

voigt
j +B

0,voigt
i ε

voigt
i

(5.14)

which is really nothing more than un-expanding (5.1).

The Magnetostriction Coupling as an Offset

From a purely mechanical point of view, one can view the magnetostrictive
coupling as displacing the equilibrium deformation. As in a simple spring
model, where the energy is

f =
1

2
mẋ2 − 1

2
kx2 (5.15)

or, in a manner closer to our previous Hooke form,

f =
1

2
mẋ2 − 1

2
xkx (5.16)

the equations of motion are given

mẍ = −kx (5.17)

which describes a system with an equilibrium point of 0.

Using a change of variable x → x′ − x′0, where x′0 is a constant, we get the
energy

f =
1

2
mẋ′2 − 1

2
(x′ − x′0)k(x′ − x′0) (5.18)

(since ẋ′ + ẋ′0 = ẋ′) and the equations of motion

mẍ′ = −k(x′ − x′0) (5.19)

which now describes a system with equilibrium point x′0.
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The energy term can be expanded

f =
1

2
mẋ′2 − 1

2
x′kx′ + x′0kx

′ − 1

2
x′0kx

′
0 (5.20)

The x′0kx′0 term can be dropped without effecting the equations of motion, leav-
ing us with

f =
1

2
mẋ′2 − 1

2
x′kx′ + x′0kx

′ (5.21)

which now describes a spring system with equilibrium point x′0.

In an exactly analogous manner, we can say the B0
ijεij term represents an off-

setting term, like x′0kx′, to the equilibrium strain of the material. However,
this term is missing the necessary elastic stiffness tensor to fit it back into the
εijCijklεkl term.

The Compliance Tensor

We now define the compliance tensor S

SijklCklmn =
1

2
(δimδjn + δinδjm)

S
voigt
ij C

voigt
jk = δik

(5.22)

which is the inverse of C.

Using this, we can now rewrite the B0
ijεij

B0
ijεij = B0

ijSijklCklmnεmn (5.23)

introducing the needed stiffness tensor. We can now see the correspondence
of kx′ to Cklnmεmn, and x′0 to B0

ijSijkl. We can, therefore, intuitively identify
the new equilibrium position for the strain without need for any extra math or
minimization as

ε0
ij = SijklB

0
kl (5.24)

although, one can confirm solving ∂f
∂εij

(ε0) = 0ij for ε0 produces the same re-
sult.
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Applying the compliance tensor to equations (5.10), we get

εij = Sijklσkl − Sijklσ0
ij

ε
voigt
i = S

voigt
ij σ

voigt
j − Svoigt

ij σ
0,voigt
j

(5.25)

For a cubic material, we have

Svoigt =



C11+C12

(C11−C12)(C11+2C12)
−C12

(C11−C12)(C11+2C12)
−C12

(C11−C12)(C11+2C12)
0 0 0

−C12

(C11−C12)(C11+2C12)
C11+C12

(C11−C12)(C11+2C12)
−C12

(C11−C12)(C11+2C12)
0 0 0

−C12

(C11−C12)(C11+2C12)
−C12

(C11−C12)(C11+2C12)
C11+C12

(C11−C12)(C11+2C12)
0 0 0

0 0 0 1
C44

0 0

0 0 0 0 1
C44

0

0 0 0 0 0 1
C44


(5.26)

which applied to (5.25) with ~σvoigt = ~0, and ~σ0,voigt = ~B0voigt, and remembering
for directional cosines α2

x + α2
y + α2

z = 1, produces the same result as (5.7).

Specifically, we find

ε
0,voigt
i = −Svoigt

ij B
0,voigt
j

⇒ f =
1

2
S

voigt
ij B

0,voigt
j C

voigt
jk S

voigt
kl B

0,voigt
l −B0,voigt

i S
voigt
ij B

0,voigt
j

=
1

2
B

0,voigt
i S

voigt
ij B

0,voigt
j −B0,voigt

i S
voigt
ij B

0,voigt
j

= −1

2
B

0,voigt
i S

voigt
ij B

0,voigt
j

= −1

2
B0
ijSijklB

0
kl

(5.27)

which is a significantly more compact, and in fact, more general result than is
in Kittel’s paper, as this also holds for a non-cubic material.
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Relating Back To Kittel’s Energy

To demonstrate the equivalence of the result, we’ll match this to what Kittel
finds, we’ll look at a cubic material. We’ll first expand the terms including B2
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(5.28)

Using the relation from Kittel,
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we have
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(5.30)

which gives
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The B2
2 terms are much easier
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By setting

∆K =
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1
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2
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(5.33)

and dropping the terms independent of the magnetization and the strain, we
can write the energy

f = −1

2
B

0,voigt
i S

voigt
ij B

0,voigt
j = ∆K(α2

xα
2
y + α2

yα
2
z + α2

zα
2
x) (5.34)

Extension to Non-Zero Stress

The compactness of the Hooke formulation with the compliance tensor allows
us to quickly evaluate the same equations for a system where σ 6= 0:
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And so, for the Hooke style system with a known, constant stress σ, we have

f =
1

2
σ

voigt
i S

voigt
ij σ

voigt
j − 1

2
B

0,voigt
i S

voigt
ij B

0,voigt
j (5.36)

This represents a complete separation of the elastic and magnetic energies.
However, it is important to note that σ implicitly depends on ε0. In cases
where σ is kept constant, independent of variations of B0, say through pure
(constant) surface tension conditions, the σ term is then independent of theB0

term, with the difference taken up by the deformation of the material itself, i.e.
in ε.

It appears the only way to change the behaviour of the magnetization through
the deformation, beyond the usual result, is to restrict the deformation of the
material, ε, in some way, so it does not correspond directly to a fixed σ. This
could be done, for example, by fixing two sides of the surface by placing the
material in a clamp. In this manner, σ would need to change asB0 changes, to
remain within the clamp. Another situation may be for the material embedded
in another elastic material since the outer material will tend to resist change in
the inner material, looking like a non-constant surface tension, resulting in a
variation of the stress term due to a variation in theB term.

For a σ0 Hooke term which does not look like theB0 term presented, however,
the second term represents a mixing of the terms linear in ε (as opposed to the
pure stress term εijCijklεkl term which is quadratic in ε). Brown (1966) presents
a much fuller magnetostrictive theory involving more terms linear in ε, which
may provide more interesting results.

5.1.2 Correction to Uniaxial Stress Result

With this in mind, we can now examine Kittel’s results for a magnetostrictive
material under a constant uniaxial tension. Kittel (1949) defines a stress with
directional cosines γx, γy, γz for the direction of the applied stress with tensile
stress T as

Pij = Tγiγj (5.37)
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In his derivation, however, he used

σ = Pij

⇒ εij = SijklPkl

and substituted this ε into the energy instead of

σ =
∂f

∂εij
(ε0) = Pkl

⇒ Cijklε
0
kl +B0

ij = Pkl

⇒ ε0
ij = SijklPkl − SijklB0

kl

which uses the proper definition of the stress from (5.8). By setting

~P voigt = (Tγ2
x, Tγ

2
y , Tγ

2
z , Tγyγz, Tγxγz, Tγxγy) (5.38)

in a manner similar to ~B0,voigt, we get

ε
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voigt
j −B0,voigt

j ) (5.39)

We see here that ~P voigt in ~ε0 here is the same as ~σvoigt in (5.35b), so we can
immediately write the energy, similar to (5.35c)
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ij B
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It is clear that the second term here is the same as (5.27), and so, the same as,
(5.34), the cubic anisotropy form. Also worth note is the first term is purely
elastic, and has no dependence on the magnetization. We can therefore con-
clude that the effective field due to a uniaxial stress, using Kittel’s energy, can
be no different than for an unstressed material for a uniformly magnetized
material. It will always look like the usual cubic anisotropy form.

It is worth emphasizing the importance of this result. The results from Kittel’s
approach, which leaves out the magnetostrictive term in the stress, leads to a
coupling of the stress and the magnetization. This is a result frequently used
in research, but doesn’t follow from the math. We will show in a later sections
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how we might recover Kittel’s uniaxial result. One approach will be in sim-
ulations by evaluating the magnetostrictive energies when the system is not
in thermodynamic equilibrium, specifically when the elastic response is not in
equilibrium. Another approach will be by including a theory of continuum
defects to incorporate intrinsic, irresolvable stresses.

106



5.2 Fabian and Heider’s Formulation of

Magnetostriction

The paper by Fabian and Heider (1996) outlined a set of coupled equations
for solving for the stress due to magnetostriction in non-uniformly magne-
tized materials, and from there, the micromagnetic energy. This technique was
based on continuum defects techniques by Kröner (1958; 1981) for resolving
stresses and strains due to materials with incompatible equilibrium deforma-
tions, as might be found in a non-uniformly magnetized material.

We will show here how the stress, strain, and magnetostrictive coupling de-
rived in the previous section relate to the stress and strain derived in Fabian
and Heider’s technique. Ultimately, we want to lay out enough of this ap-
proach to show how it relates to Kittel’s model, the predictions it makes about
energies due to uniform vs. non-uniform magnetizations, and ultimately, the
issues and difficulties posed by this approach, and why we won’t be using it
moving forward. While we will not be using it, we want the model we do
come up with to at least describe the physics and behaviours that Fabian and
Heider’s approach can describe. In this manner, it is worth outlining in famil-
iar terms.

5.2.1 A Brief Background

Fabian and Heider’s formulation uses a number of exotic operators and terms
from dislocation theory. A full description of these operators, their origins,
behaviours, implications etc. would take up quite a bit of space. Fabian and
Heider cite a number of works by Kröner in continuum defects in Fabian and
Heider (1996). I have found the piece in the Les Hôches series (Kröner 1981)
the easiest to follow, although it omits a treatment of the operations used by
Fabian and Heider to transform the stress potential and energy equations into
a form suitable for solving on a computer. In this section, however, we will be
stopping at the stress potential equations.
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Most notably used in Fabian and Heider (1996) is the incompatibility operator

−eikmejln∂k∂l (5.41)

which can act as a sort of measure of the dislocations of a material. The incom-
patibility of a material can be found by applying this incompatibility operator
to the strain, ε, resulting in the incompatibility tensor η with

−eikmejln∂k∂lεmn = ηij (5.42)

In particular, a material can be described as “compatible”, meaning the de-
formed material remains in one piece, no cracks, and no dislocations, if η = 0.
This is the Saint-Venant condition, and is a necessary and sufficient condition
to describe a rank-2 tensor in terms of a rank-1 potential. In more concrete
terms if the strain, ε satisfies the above condition, it can be described in terms
of a potential ~u

−eikmejln∂k∂lεmn = 0

⇒ εij =
1

2
(ui,j + uj,i)

(5.43)

which is the typical description used for the strain in linear elasticity. From
other constructions, and from physical reasoning, it can be shown that this
potential ~u corresponds to the displacement of the material. In particular, if
one piece of the material occupies a point X before the deformation, and a
point x after the deformation, the displacement is defined

u = x−X (5.44)

Another important relation is that

−∂jeikmejln∂k∂lξmn = 0i (5.45)

for any ξmn. Using reasoning very similar to the derivation of the magnetic vec-
tor potential ~A from the magnetic field ~B due to the divergence / curl relation,
i.e.

∂iBi = 0⇒ Bi = eikm∂kAm (5.46)
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we can derive a strain potential χ from the strain σ due to the divergence /
incompatibility relation, i.e.

∂jσij = 0i ⇒ σij = −eikmejln∂k∂lχmn (5.47)

This term is used similar to the magnetic vector potential. In particular, it’s
useful for introducing derivatives into equations and introducing gauge free-
doms. This can be a useful mathematical trick for finding solutions to other-
wise intractable problems.

5.2.2 The Stress Potential Relation

With this in mind, we can now present the equations and relations used in
Fabian and Heider (1996)

σij,j = 0i (5.48a)

σij = −eikmejlnχmn,kl (5.48b)

−eikmejlnε′mn,kl = ηij (5.48c)

σij = Cijklε
′
kl (5.48d)

ηij = eikmejlnε
0
mn,kl (5.48e)

f =
1

2
σijε

′
ij (5.48f)

where ε0 is defined as the equilibrium deformation

ε0
ii =

3

2
λ100(m2

i −
1

3
)

ε0
ij =

3

2
λ111mimj if i 6= j

(5.49)

which can be derived from the Kittel energy by saying

ε0
ij =

{
εij

∣∣∣∣ ∂f∂εij (εij) = 0

}
(5.50)

the maximum/minimum of f .

We can provide an alternate value for ε0 by deriving it and rewriting it in terms
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we’ve been using throughout this script. The energy we previously used is

f =
1

2
εijCijklεkl +B0

ijεij (5.51)

so, taking derivatives wrt εij , the pointwise max/min strain (by evaluating at
ε0) is

∂f

∂εij
(ε0) = Cijklε

0
kl +B0

ij = 0 (5.52)

and multiplying across by the inverse of C, the compliance tensor S

SghijCijklε
0
kl + SghijB

0
ij = 0 (5.53)

and cancelling SC and moving theB0 term over

1

2
(δgkδhl + δglδhk)ε

0
kl = −SghijB0

ij (5.54)

and expanding the δ terms

1

2
(ε0
gh + ε0

hg) = −SghijB0
ij (5.55)

and since εij = εji

ε0
gh = −SghijB0

ij (5.56)

and reindexing
ε0
ij = −SijklB0

kl (5.57)

Now we can better discuss how the two compare. In (Kröner 1981), a distinc-
tion is made between plastic and elastic deformations. Plastic deformations
are defined as deformations that result in no elastic stress, while elastic defor-
mations do. The general approach used, then, is when a material undergoes
a plastic deformation, described by a (potentially incompatible) strain εp, the
opposite (potentially incompatible) elastic deformation, ε̄p = −εp is applied,
returning the material to “normal”, but with a resulting stress, and an extra
elastic deformation term ε is added, which is free to vary, and minimize the
resulting stress.

The pointwise equilibrium strain due to magnetostriction can be considered a
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plastic deformation. That is, if the material is free to assume that strain, there
will be zero stress in the material. And so,

εp = ε0 = −S : B0 (5.58)

with S : B0 = SijklB
0
kl. Next, we apply an elastic deformation to the material

once it’s in this state back to the undeformed state, resulting in a stress σ̄

σ̄ = C : ε̄p

= C : (−εp)

= C : S : B0

= B0

(5.59)

and we add an extra, free, compatible strain term that can be used to solve the
equations of motion

σ = C : ε+ σ̄

= C : ε+B0
(5.60)

with
∂iσij = 0i (5.61)

Now, the strain term ε′ used by Fabian and Heider, for which

σij = Cijklε
′
kl (5.62)

is related to our strain term by

ε′ij = εij + SijklB
0
kl (5.63)

for which
σij = Cijklε

′
kl

= Cijkl(εkl + SklmnB
0
mn)

= Cijklεkl +B0
ij

=
∂f

∂εij

(5.64)

matching our previous definition of the strain from Kittel’s theory.
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When taking the incompatibility of ε′, we have

−eikmejlnε′mn,kl = −eikmejln(εmn,kl + SmnopB
0
op,kl)

= −eikmejlnεmn,kl − eikmejlnSmnopB0
op,kl

(5.65)

As discussed, for a continuous deformation which produces no cracks or dis-
continuities, the strain can be written

εij =
1

2
(ui,j + uj,i) (5.66)

and satisfies the Saint-Venant condition that

eikmejlnεmn,kl = 0ij (5.67)

Since the strain in a linear elastic theory is based on this (ui,j + uj,i) definition,
ε satisfies these properties. So now we have, remembering our equilibrium
strain ε0 = −S : B

−eikmejlnε′mn,kl = −eikmejlnεmn,kl − eikmejlnSmnopB0
op,kl

= −eikmejlnSmnopB0
op,kl

= eikmejlnε
0
mn,kl

= ηij

(5.68)

with ηij the incompatibility tensor, as used in Fabian and Heider (1996). Here,
already, we see a clear connection between the terms in Fabian and Heider
(1996), the equilibrium deformation, and the incompatibility tensor, and terms
we’ve been using, i.e. the magnetostriction tensor, and our equilibrium defor-
mation term.

We can now press ahead to write the stress function equation in familiar terms

σij = Cijklε
′
kl

⇒ Sopijσij = ε′op
(5.69)
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and replacing σij = −eikmejlnχmn,kl and ε′kl = εkl + SklmnB
0
mn

−Sopijeikmejlnχmn,kl = εop + SopmnB
0
mn (5.70)

and taking the incompatibility again, remembering the incompatibility of ε is
zero because it’s a compatible deformation,

esqoetrpSopijeikmejlnχmn,klqr = esqoetrpSopmnB
0
mn,qr (5.71)

which is the core equation being solved in Fabian and Heider (1996). Solving
this for χ will produce the stress σ from the definition σij = −eikmejlnχmn,kl,
and the strain from σij = Cijklε

′
ij .

From here, it should be clear that the primary contribution to the stress, and the
energy, is from an incompatibility in the SopmnB0

mn term, as might be found for
a non-uniform magnetization. This now represents a theory that can account
for a physical, compatible strain and a potentially incompatible, non-uniform
magnetization.

5.2.3 Discussion of, and issues with this approach

Interpretation of the Stress
An interesting case of Fabian and Heider’s formulation is where SopmnB0

mn is
compatible. For a uniform magnetization, for example, SopmnB0

mn,qr = 0, since
B0 is constant. If the RHS is zero, then χ = 0 will solve the equation, and so
σij = eikmejlnχmn,kl = 0. If the stress due to incompatibility is be zero, then the
stress energy due to incompatibility should be zero. Similarly, if SopmnB0

mn,qr is
zero, the ηop is zero, and the dislocation energy ηijχij is zero.

From here, it can be reasoned that the stress calculated in Fabian and Hei-
der’s formulation is the residual, extra stress introduced into the system due
to incompatibility in the strain due to incompatibility in the S : B0 term. The
strains determined by these stresses should be added to the Kittel strains to
produce a physical strain for the magnetostrictive system, which conform to
the mechanical equations of motion.
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What this usefully suggests is that the extra stresses (and by extension, the
difference in energy and magnetic behaviour) that arise from a full treatment
of magnetostriction, compared to Kittel’s original stress-free formulation, will
be entirely from the incompatibility in the S : B0 term.

Isotropic elasticity
To make the final equation more tractable, a number of transformations and
constraints are added to turn the esqoetrpSopijeikmejlnχmn,klqr term into a bihar-
monic χ′st,kkrr term. In (Kröner 1981) and (Fabian and Heider 1996), this is done
using an isotropic elastic material for S, specifying a linear transformation be-
tween χ and χ′, and imposing a gauge fixing on χ. While it may be possible
to perform this transformation with a cubic S, the equations become large and
messy very quickly.

Boundary conditions
As the gauge fixing and boundary conditions are applied on a mathematical
construct, χ, the stress potential, it is not clear how the boundary conditions
effect the problem. Indeed, it is not clear what valid boundary conditions are,
except at infinity. In linear elasticity, for example, the potential used, ~u can be
directly related to the displacement of the material. Valid boundary conditions,
for example setting u = 0 at the boundary, represent clamping the material in
place at the boundary. This is clearly a significantly different situation to, say,
free boundaries. In imposing boundary conditions on the stress potential, it is
no clear how that translates into the conditions placed on the system.

Similarity between magnetic vector potential and stress potential
An interesting observation we used previously is how closely the stress poten-
tial for the stress field relates to the magnetic vector potential for the magnetic
field. Specifically, the magnetic vector potential ~A is defined for the magnetic
fieldB

Bi = eijkAk,j (5.72)

which is the curl operator applied to the index of ~A where the stress potential
χ is defined for the stress σ

σij = −eikmejlnχmn,kl (5.73)
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which is two curl operators, one applied to each index of χ.

An interesting, and for us unfortunate, takeaway of this is the boundary con-
ditions for χ are only really obvious at infinity. For very similar reasons that
~A→ 0 as ~x→∞ because ~B → 0, we can say χ→ 0 as ~x→∞ because σ → 0.
This would necessitate an infinite material. Indeed, much of the mathematical
and physical reasoning that applies to magnetic fields would apply to stress
fields using this technique, along with the constraints for solutions.

Stable finite element formulation
Another complication arises when constructing a stable Finite Element for-
mulation. A stable formulation for a magnetic vector potential equations use
Nédélec elements, a formulation slightly more exotic than the linear elements
we’ve previously used. To formulate a stable Finite Element formulation of the
stress potential equations, an even more exotic formulation is needed. While
this is not an insurmountable problem, the literature surrounding stable Fi-
nite Element formulations and building functions in the various Finite Element
spaces can be rather dense. In particular, papers by Arnold (2002), which are
working towards a stable Finite Element formulation of a stress potential for-
mulation of elasticity are very abstract with few tangible examples to follow.
As a result, efforts to build a Finite Element implementation of Fabian and Hei-
der’s formulation of magnetostriction for a cubic material for this thesis could
not progress past writing the appropriate weak forms for an infinite material.

Due to all the difficulties mentioned, we won’t pursue Fabian and Heider’s
approach, and instead look to a different formulation. In particular, we want
a formulation that will generate the characteristic energies and elongation of
materials described by Kittel’s theory, but account for non-uniformly magne-
tized materials, as in Fabian and Heider’s theory.
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Chapter 6

Magnetostriction of Non-Uniformly
Magnetized Materials

The incompatibility of the magnetostriction coupling is an important consid-
eration for the system. In fact, it can be shown that the minimum strain tensors
derived using Kittel’s formulation are not generally correct. Specifically, since
our material is not cracked after deformation, the incompatibility of the equi-
librium deformation is zero

inc ε0 = 0 (6.1)

(with inc ε0 representing the double curl eikmejlnε0
mn,kl) however, we had de-

rived the equilibrium strain
ε0 = −S : B0 (6.2)

(with S : B representing the contraction SijklB0
kl) which implies

inc ε0 = −inc S : B0 = 0 (6.3)

However, there is no constraint on the magnetization, and so, no guarantee
the incompatibility of the S : B0 term vanishes. The derivation of ε0 = S : B0

is therefore not, in general, true, since the incompatibility of both sides is not
guaranteed to match. It can hold in some simple cases, like for a uniform mag-
netization, as assumed in section 5.1. This tells us that solving ∂f

∂ε
(ε0) = 0

or ∂f
∂ε

(ε0) = σ0 will not give us a physically correct equilibrium strain for all
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magnetizations, and in fact makes some implicit assumptions about the distri-
bution of the magnetization. Indeed, it gives us pointwise minima, but it fails
to account for how one piece of the material deforming to its minimum energy
state might impede another piece of the material from doing the same. We
will describe approaches using this constant stress approach “Kittel Constant
Stress” (KCS). These correspond to the Kittel approach to magnetostriction de-
scribed in section 5.1.

We can say that the previously derived, pointwise ε0 represents a lower bound
of the magnetostrictive energy, since it is a less constrained solution than we
will need. So we would expect the previous anisotropy approximation to un-
derestimate the magnetostrictive energy, and so, the effective anisotropy cou-
pling in non-uniformly magnetized materials. With this in mind, we look at a
formulation of a coupled magnetic and linear elastic system, defining the strain
ε in terms of the displacement ~u, as is typical of a linear elasticity, so that we can
find a minimum strain that is physical by solving the mechanical equilibrium
equations. We will describe approaches solving Kittel’s energy function by a
simple substitution of the strain with the equivalent displacement and solv-
ing the mechanical equations of motion Kittel Mechanical Equilibrium (KME).
This is the approach we will be mainly interested in in this thesis.

The equations of motion derived here have also been derived by Brown (1966)
in significantly more detail and rigour, using both thermodynamic and energy
equilibrium approaches. Here, we present a formulation which is the intersec-
tion between his derivation and Kittel’s, derived via an action minimization
approach. Indeed, Brown makes passing reference to the KME approach hav-
ing been used elsewhere. Given how straightforward it is to replace the strain
with the displacement and derive the equations of motion, it is a natural next
step from Kittel’s approach. Indeed, Brown’s approach is for a rather different
theory, deriving a fully magnetic and elastic material, rather than a simple cou-
pling between the two effects. However, by ignoring certain effects, or setting
certain coupling constants to zero, it is possible to recover the KME equations
from Brown’s.

One example of an effect left out in our derivation is a demag-elastic coupling,
the kind of force that causes powerful magnets to pull themselves apart. How-
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ever, as we are talking about quite small magnets, with quite small fields, and
in quite small fields, this particular consideration is unnecessary. There are
others as well, for which there are no good measurements for the materials we
are interested in, such as corrections to the exchange coupling parameters as a
function of strain.

One major advantage of performing the derivation here, from scratch, is that
we can start from Kittel’s energy and move forward on familiar ground. In
Brown’s approach, he takes arbitrary variations of the energy with respect to
various parameters, and it is up to the reader to connect the derivative value
to the appropriate physical parameter. While his approach is more general, it
is significantly less clear for our specific application. Another advantage with
performing the derivation here is that we will be generating all the pieces we
need to define our weak forms as we go along.

Using an action minimization approach, we are also keenly aware of time in
our derivation, and explicitly how we are handling it. In Brown’s derivation,
he finds equilibrium energy configurations with no mention of the path taken
to that equilibrium. Since we are interested in partial simulation of the physics
to find energy minima, and minimum action paths for stability calculations (al-
though not in this thesis), we must be able to reason about the non-equilibrium
behaviour, and how the partial simulation might deviate from a full simula-
tion.

We will be solving our equations using the Finite Element Method. The Finite
Element Method is, at its heart, a minimization problem. One typical applica-
tion is turning a PDE into a weak form, and then that weak form into a matrix
equation. When the best coefficients for the linear interpolation of the func-
tion being solved for are plugged into the FEM matrix equation, the residual
is minimized. This is the approach we took in building the demag weak forms
for MERRILL.

The magnetoelastic equations of motion presented here are not original work,
as they have been derived elsewhere, particularly in the more general form
by Brown (1966) using an energy variational method. However, a formula-
tion explicitly using Hamilton’s principle of least action is something I haven’t
seen elsewhere. The explicit addition of time, even though we later discard
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it, could be an original contribution. The assertion that discarding time im-
plies the equations treat the elastic relaxation time as faster than the magnetic
relaxation time is something I haven’t seen mentioned elsewhere, so may be
an original contribution, and is an important consideration for dynamic sim-
ulation. Indeed, the approach laid out here for a Lagrangian formulation in-
cluding time could be an important part for formulating a correct dynamic
micromagnetic model.

The derivation of the magnetoelastic effective fields suitable for finding rema-
nence states is an original contribution. The FEM formulation for a magnetoe-
lastic effective field and energy, while relatively straightforward, is original.
The discussion of issues surrounding solving the magnetoelastic FEM equa-
tions with free boundaries can be found in various forms, in various places,
for solving linear elastic problems with free boundaries. However, I haven’t
seen them laid out neatly, in one place, as presented here. Finally, the formu-
lation for a magnetoelastic grain embedded in an infinite elastic matrix uses
an existing technique, but I haven’t found this technique applied to an elastic
system elsewhere, so this is likely original.

6.1 Equations of Motion

6.1.1 Weak Forms and the Equations of Motion

One approach for building weak forms is by taking a variational approach to
the energy equation. This is why weak forms are sometimes referred to as
variational forms. Indeed, these two approaches are linked via the equations
of motion.

Take, for example, the energy density

E(x) =
1

2
mẋ2 + f(x) (6.4)
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with the associated Lagrangian

L =
1

2
mẋ2 − f(x) (6.5)

The Euler-Lagrange equations of motion

∂L

∂q
− d

dt

∂L

∂q̇
= 0 (6.6)

where q is a generalized coordinate, suggest the following equations of motion

−∂f
∂x

(x)−mẍ = 0 (6.7)

The typical approach of forming the weak form is to replace x with a test func-
tion, u and multiply both sides by a trial function v and integrate over the
domain of integration. In this case, we’ll use space and time. This gives the
weak form ∫

T

∫
Ω

müv +
∂f

∂x
(u)v dV dt = 0 (6.8)

The variational form of this energy can be found by assuming the energy is
minimized by a value of x = u, and then perturbing the system a small distance
εv from that position.

E(u+ εv) =
1

2
m(u̇+ εv̇)2 + f(u+ εv) (6.9)

Now, since the energy is minimized by u, the energy is minimized when ε = 0.
Therefore the derivative of this expression for the energy wrt ε is zero at ε = 0.

E ′(ε) = E(u+ εv) (6.10)
∂E ′

∂ε
(ε) = m(u̇+ εv̇)v̇ +

∂f

∂x
(u+ εv)v (6.11)

∂E ′

∂ε
(0) = mu̇v̇ +

∂f

∂x
(u)v = 0 (6.12)
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Now integrating this over space and time, we get∫
T

∫
Ω

mu̇v̇ +
∂f

∂x
(u)v dV dt = 0 (6.13)

These two weak forms vary in how they treat the derivative terms. In the first,
we have müv, and in the second mu̇v̇. The difference here is a partial integra-
tion of the mu̇v̇ term in the time domain. So, in terms of weak forms, they’re
equivalent. This shouldn’t be surprising, since the Euler-Lagrange equations
are, themselves, derived in terms of a variational minimization problem.

6.1.2 Elasticity Equations Of Motion

To derive the variational form for a magnetostrictive energy, we will derive
the equations of motion of the magnetostrictive system. We will first look at
a detailed derivation of the equations of motion for a pure elastic system, and
seeing which pieces land where, we will add in the magnetostriction coupling
terms.

For a strain ε that leaves the material unbroken, i.e. no cracks, we say it is a
compatible deformation. Specifically, we can say the tensor satisfies the Saint-
Venant condition

eikmejlnεmn,kl = 0ij (6.14)

Here, eijk is the totally antisymmetric Levi-Civita tensor, and we use a comma
notation, where indices after the comma represent spatial derivative with re-
spect to that index, e.g.

ξij,kl =
∂

∂xk

∂

∂xl
ξij (6.15)

We introduce further notation to avoid having to constantly write the cumber-
some ∂

∂xi
where it is clear what coordinates we are taking derivatives of

∂i =
∂

∂xi
(6.16)
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in case it is not clear, we may write

∂ξi =
∂

∂ξi
(6.17)

For any tensor that satisfies (6.14) in a simply connected domain (i.e. a sane
region of space), it can be described by a potential ~λ such that

eikmejlnξmn,kl = 0ij

⇒ ξij = λi,j + λj,i
(6.18)

For the strain in (6.14) we define a potential ~u, which can be shown to be the
displacement of the material at each point under deformation

εij =
1

2
(ui,j + uj,i) (6.19)

Using this definition of ε, we can say for the energy f

∂f

∂ui,j
=

∂f

∂εkl

∂εkl
∂ui,j

=
1

2

(
∂f

∂εij
+

∂f

∂εji

)
=

1

2
(σij + σji) = σij (6.20)

since σij = σji So we can say f is a function of U with Uij = ui,j

f = f(U) (6.21)

Usually it is also a function of ~m, but we will assume here that we have a fixed
~m. Remembering that f is a potential energy, we then define the Lagrangian
density

L =
1

2
ρu̇2 − f (6.22)

where ρ is the density, and we use the notation of a dot meaning derivative
with respect to time

ξ̇ = ∂tξ (6.23)

We define the Lagrangian as the integral of the Lagrangian density, but also
include a surface term

L =

∫
Ω

L dx−
∫
∂Ω

Tiui dS (6.24)
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where ~T is a constant force on the surface of the elastic material, so a defor-
mation ~u moves a distance ~u through a force ~T , representing thermodynamic
"work" done by the surface during deformation. Noting that

∂L

∂qi
=

∫
Ω

∂L
∂qi

dx−
∫
∂Ω

∂Tjuj
∂qi

dS (6.25)

for all the coordinates we are interested in, we list derivatives of L and Tjuj

∂L
∂ui

= 0 (6.26)

∂L
∂u̇i

=
1

2
ρ
∂u̇2

∂u̇i
= ρu̇i (6.27)

∂L
∂ui,j

= − ∂f

∂ui,j
= −σij (6.28)

∂Tjuj
∂ui

= Ti (6.29)

and finally, the action functional

S[q] =

∫ t2

t1

L(q(t)) dt (6.30)

where q represents the generalized coordinates (i.e. all the time varying vari-
ables in the Lagrangian) and is a function of time. In our case,

q = (~u, ~̇u, ~U) (6.31)

Using Hamilton’s principle, we have

δS = 0

δq(t1) = δq(t2) = 0
(6.32)

and so ∫ t2

t1

δL dt =

∫ t2

t1

∂L

∂qi
δqi = 0 (6.33)

124



expanding:∫ t2

t1

δL dt =

∫ t2

t1

(
∂L

∂ui
δui +

∂L

∂ui,j
δui,j +

∂L

∂u̇i
δu̇i +

∫
∂Ω

Tiδui dS

)
dt

=

∫ t2

t1

(∫
Ω

−σijδui,j + ρu̇iδu̇i dx−
∫
∂Ω

Tiδui dS

)
dt

(6.34)

Noting that Ω refers to the undeformed material, and so is independent of
time, and also noting that derivatives and variations commute, i.e.

δ
∂

∂qi
ξ =

∂

∂qi
δξ (6.35)

we can swap the order of integration for the δu̇ term and perform a partial
integration∫ t2

t1

∫
Ω

ρu̇iδu̇i dx dt =

∫
Ω

∫ t2

t1

ρu̇iδu̇i dt dx

=

∫
Ω

∫ t2

t1

ρu̇i∂tδui dt dx

=

∫
Ω

(ρu̇iδui)|t2t1 dx−
∫

Ω

∫ t2

t1

ρüiδui dt dx

= −
∫

Ω

∫ t2

t1

ρüiδui dt dx

= −
∫ t2

t1

∫
Ω

ρüiδui dx dt

(6.36)

leaving us with a δu term. Looking at the δui,j term, and again performing a
partial integration∫ t2

t1

∫
Ω

σijδui,j dx dt =

∫ t2

t1

∫
∂Ω

njσijδui dS dt−
∫ t2

t1

∫
Ω

σij,jδui dx dt (6.37)

Where ∂Ω refers to the boundary of Ω. It’s not the best idea, having ∂ hanging
about with several roles, but it’s widely used notation and we won’t reinvent
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the wheel (too much) here. Substituting back into δL

∫ t2

t1

δL dt =

∫ t2

t1

(∫
∂Ω

njσijδui dS

+

∫
Ω

(−σij,jδui + ρüiδui) dx−
∫
∂Ω

Tiδui dS

)
dt = 0 (6.38)

Since this holds for any value of variation of δui and the variations δ~u and δ ~m

are independent, notably for any non-zero value, then the integrands must be
uniformly zero (and handily, the integrands of the volume and surface inte-
grals must separately be zero) i.e.

σij,j − ρüi = 0i on Ω

njσij − Ti = 0i on ∂Ω
(6.39)

which are the equations of motion for our elastic system, with ~T a surface
tension.

Noting that ü is equivalent to an acceleration, and the density ρ is equivalent
to a mass, it is clear that ρü is equivalent to a force density. The equations of
motion, therefore look like a force balance equation.

Looking at the choice of Kittel to choose a σ = ∂σf = 0 is one specific σ which
will solve the equations of motion in the absence of body forces since 0ij,j = 0

and nj0ij = 0. It is also clear that this solution refers to a zero stress state with
free and stress free boundaries. The stress σij = Tγiγj also defines a solution
with ∂jTγiγj = 0 (since γi is independent of position) and njTγiγj = Tγi,
meaning the surface is free with a surface tension of (~n · T̂ )|T | = ~n · ~T at each
point of the surface.

From the equations of motion, we can now solve the system in terms of the
displacement ~u. Most usefully, we can specify boundary conditions that admit
non-constant values for σ. We can, in particular, specify arbitrary boundary
conditions for ~u, admitting a variety of physical situations, such as a grain in
a clamp under a given pressure and see how the grain deforms under these
conditions.
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To be clear here, the surface tension ~T here was assumed to be independent
of the deformation ~u and the strain ui,j . This term would be suitable for mod-
elling, for example, a hydrostatic pressure, or a uniaxial static pressure. In a
rock magnetic setting, this could be a lithostatic pressure. However, it is not
suitable for modelling an embedded material where the response force may
not be independent of deformation. It may be possible to use this term to,
for example, couple the elastic system to a larger elastic system. If ~T was de-
fined such that it was linearly dependent on ~u with ~T assuming a minimum at
~u = ~0, this would look somewhat like coupling to a larger material, or like a
deformable clamp. In this case, the variational term would look like∫

∂Ω

−Tiδui −
∂Ti
∂uj

δujui dS (6.40)

and the equations of motion would be

σij,j − ρüi = 0i on Ω

njσij − Ti −
∂Ti
∂uj

ui = 0i on ∂Ω
(6.41)

where the ~T terms now look like a Taylor expansion of ~T with respect to ~u.

6.1.3 Magnetostrictive Mechanical Equations Of Motion

The difference between Kittel’s magnetostrictive energy and the elasticity en-
ergy calculated above is the addition of the magnetostrictive coupling term
and the absence of the kinetic term. Our energy density f is

f =
1

2
εijCijklεkl +B0

ijεij (6.42)

with
εij =

1

2
(ui,j + uj,i) (6.43)
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and the associated Lagrangian density

L = −1

2
εijCijklεkl −B0

ijεij (6.44)

with Lagrangian

L =

∫
Ω

L dx−
∫
∂Ω

Tiui dS (6.45)

The associated derivatives are

∂L
∂ui

= 0 (6.46)

∂L
∂u̇i

= 0 (6.47)

∂L
∂ui,j

= − ∂f

∂ui,j
= −σij −B0

ij (6.48)

∂Tjuj
∂ui

= Ti (6.49)

with
σij = Cijklεkl (6.50)

Following the same steps as above for variations and transformations, we get
the variational form∫ t2

t1

δL dt =

∫ t2

t1

(∫
∂Ω

nj(σij +Bij)δui dS

+

∫
Ω

(−(σij,j +Bij,j)δui) dx−
∫
∂Ω

Tiδui dS

)
dt = 0 (6.51)

we get the equations of motion

σij,j +B0
ij,j = 0i on Ω

njσij + njB
0
ij − Ti = 0i on ∂Ω

(6.52)

So here, it can be seen that the magnetostrictive coupling acts similar to a
“force” term in the elasticity equation, appearing in place of the body force
term in the volume equations and adding to the tension term in the surface
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equations. Again, the tension ~T we’ve used here is independent of the defor-
mation of the material.

It is important to note that this point of view is only a useful way to compare
the magnetostrictive and pure elastic results. In fact, the stress is defined ∂f

∂ui,j
,

so the entirety of σij + B0
ij is the stress in the magnetostrictive case. That is, if

placed under a small deformation, that is the restorative force that will actually
be measured. Splitting up the elastic and magnetic contributions to the stress
is purely academic when talking about the response of the magnetic systems.
This was the fundamental mistake made by Kittel when deriving his uniaxial
magnetostrictive energy.

Expanding in terms of ~u, we get the KME mechanical equations of motion

1

2
Cijkl(uk,lj + ul,kj) +B0

ij,j = 0i on Ω

1

2
njCijkl(uk,l + ul,k) + njB

0
ij − Ti = 0i on ∂Ω

(6.53)

By substituting solution for ~u into the Kittel magnetostrictive energy, we get
the KME energy.

We now, finally, have a formulation for a minimum strain ε0 in terms of the
magnetostrictive couplingB0, in a manner that does not imply that the incom-
patibility of S : B must be zero. Indeed, no constraints on the incompatibility
of S : B are made by the equations of motion derived here, and since the
variations of the Lagrangian were made with respect to ~u, rather than ε, it fol-
lows that the solutions are minimum energy solutions of ~u, but not necessarily
minimum energy solutions of ε, as we were previously considering. They are,
however, the minimum energy, physical solutions of ε, at least as far as linear
elasticity applies. As previously mentioned, then, we would expect the KME
solutions when inc S : B = 0 to match the KCS solutions for ∂f

∂ε
(ε0) = 0.

Indeed, one of the tests made for the implementation of the solver for these
equations is that KCS and KME solutions for uniform magnetizations match
exactly for a cubic geometry. However, they’re not strictly guaranteed to match
for finite geometries due to surface and corner effects in the mechanical solver.
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6.1.4 Magnetostrictive Energy Gradient

When finding effective fields for our energy, given our displacement depends
implicitly on ~m, we would normally need to include the complex relation be-
tween ~u and ~m when taking derivatives of ~u with respect to ~m. We present a
novel approach to circumvent this issue.

Solutions to the mechanical equations of motion, as we have formulated them
here, represent an extremal solution of the action with respect to ~u for a fixed
magnetization ~m. For a time-independent formulation, as we have here, the
solutions of the equations of motion represent an extremal value of the La-
grangian. For a Lagrangian quadratic in ~u, as we have here, the extremal value
is a minimum. And for our formulation, this represents an energy minimum.

We write the displacement function which minimizes the energy f ′ for a given
magnetization ~m as ~u0(~m)

min
~u
f ′(~m, ~u) = f ′(~m, ~u0(~m)) (6.54)

If we treat our system as though it has instant elastic equilibriation, we can
write for our micromagnetic energy f(~m)

f(~m) = min
~u
f ′(~m, ~u) = f ′(~m, ~u0(~m)) (6.55)

Now, if we take derivatives of our micromagnetic energy with respect to ~m

∂f

∂mi

(~m) =
∂f ′

∂mi

(~m, ~u0(~m)) +
∂f ′

∂ui
(~m, ~u0(~m))

∂u0i

∂mi

(~m) (6.56)

Ordinarily, the derivative of ~u0 would be a nebulous and difficult value to pin
down. However, we can simply say the equations of motion are reasonably
well behaved, so ~u0 is reasonably well behaved, so the derivative ∂mi~u0 should
be finite. We can then say, since ~u0 represents an extremal value of f ′, that the
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derivative wrt ~u evaluated at ~u0 is zero

f ′(~m, ~u0(~m)) = min
~u
f ′(~m, ~u)

⇒ ∂f ′

∂ui
(~m, ~u0(~m)) = 0i

(6.57)

With this term zero, and the other factor finite, we can say

∂f ′

∂ui
(~m, ~u0(~m))

∂u0i

∂mi

(~m) = 0 (6.58)

and the derivative of the magnetostrictive energy wrt ~m for an instantly equi-
librating system is

∂f

∂mi

(~m) =
∂f ′

∂mi

(~m, ~u0(~m)) (6.59)

Now, we can solve the mechanical equations of motion to solve for ~u0 in one
step, and substitute the solution into our micromagnetic energy in the next,
decoupling the two steps, and eliminating the reverse relationship of how the
magnetization effects the mechanical behaviour. To be exact, we should prob-
ably be taking derivatives wrt ui,j , but the argument remains the same.

The result arrived to by this approach should produce valid solutions at ther-
mal equilibrium. That is, at both magnetic and mechanical equilibrium. This
is fine for finding local energy minima of the magnetization, or even the quasi-
static equilibrium of a magnetic hysteresis loop, or path energy minimiza-
tion. However, it is not suitable for dynamical simulation. It is worth noting,
though, that the usual approach of including the magnetostrictive response
in the anisotropy energy, the KCS approach, also implicitly assumes instant
mechanical equilibriation, so it’s also unsuitable for dynamical simulation.
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6.2 Finite Element Formulation

6.2.1 Magnetostrictive Weak Form

Taking the volume equations of motion and multiplying them by a test func-
tion ~v, and integrating over the volume we get∫

Ω

(
σij,jvi +B0

ij,jvi
)
dV = 0 (6.60)

performing a partial integration, moving the derivative to vi∫
Ω

(
njσij + njB

0
ij

)
vi dS −

∫
Ω

(
σijvi,j +B0

ijvi,j
)
dV = 0 (6.61)

From the equations of motion, the term in braces in the surface integral can be
replaced with Ti ∫

Ω

Tivi dS −
∫

Ω

(
σijvi,j +B0

ijvi,j
)
dV = 0 (6.62)

We move the terms independent of the displacement to the RHS∫
Ω

σijvi,j dV =

∫
∂Ω

Tivi dS −
∫

Ω

B0
ijvi,j dV (6.63)

Replacing σ with its equivalent in terms of the displacement∫
Ω

Cijkl
1

2
(uk,l + ul,k)vi,j dV =

∫
∂Ω

Tivi dS −
∫

Ω

B0
ijvi,j dV (6.64)

At this point, there are a number of steps we could take to make this easier to
solve, or to reason about. First, taking advantage of the symmetries of C and
B, specifically Cijkl = Cjikl and Bij = Bji, we can symmetrize vi,j∫

Ω

1

4
Cijkl(uk,l + ul,k)(vi,j + vj,i) dV =

∫
∂Ω

Tivi dS −
∫

Ω

1

2
B0
ij(vi,j + vj,i) dV (6.65)

From this, given the symmetry between ~u and ~v, we can conclude that the
stiffness matrix described by the LHS integral is symmetric.

132



This form is enough to build a FEM formulation of the problem. The imple-
mentation for including surface tension uses this form.

Figure 6.1: The deformation of TM60 due to magnetostriction. On the left
is the [100] magnetization, in the center is the magnetostrictive deformation
of the material with zero surface forces, on the right is the magnetostrictive
deformation with a [100] uniaxial tension applied of around 107 Pa.

Figure 6.1 shows the equilibrium deformation of the material in this formu-
lation with and without surface tension. The tension-free result shows the
characteristic deformation due to magnetostriction, an elongation of the mate-
rial parallel to the magnetization. The result with a uniaxial tension applied
to counteract the deformation shows that it is a combination of the character-
istic magnetostrictive deformation, and the usual elastic deformation under a
uniaxial tension.

6.2.2 FEM Matrices

The displacement ~u over a single tetrahedron is given

ui = λjcji (6.66)

and the test function ~v is
vi = λjc

′
ji (6.67)

and remembering the integral of barycentric coordinates can be written∫
Ωe

λa1λ
b
2λ

c
3λ

d
4 dV = 6 |V e| a!b!c!d!

(a+ b+ c+ d+ 3)!
(6.68)
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The RHS can be written∫
Ω

Cijkluk,lvi,j dV =
∑
e

∫
Ωe

Cijkluk,lvi,j dV

=
∑
e

∫
Ωe

Cijklλm,lcmkλn,jc
′
ni dV

=
∑
e

V eCijkl
De
ml

6V e
cmk

De
ml

6V e
c′mi

=
∑
e

Cijkl
De
mlD

e
nj

36V e
cmkc

′
ni

(6.69)

and the stiffness matrix S can be written

1 S( 1 :NNODE, 1 : 3 , 1 :NNODE, 1 : 3 ) = 0
2

3 DO e=1 ,NTRI
4 DO m=1 ,4
5 DO n=1 ,4
6 co l = TIL ( e ,m)
7 row = TIL ( e , n )
8

9 DO i =1 ,3
10 DO j =1 ,3
11 DO k=1 ,3
12 DO l =1 ,4
13 Dm = ( / b ( e ,m) , c ( e ,m) , d ( e ,m) / )
14 Dn = ( / b ( e , n ) , c ( e , n ) , d ( e , n ) / )
15

16 S( row , i , col , k ) = S( row , co l ) + C( i , j , k , l ) *Dm( l ) *Dn( j )
17

18 END DO
19 END DO
20 END DO
21 END DO
22 END DO
23 END DO
24 END DO
25

134



26 u ( 1 :NNODE, 1 : 3 ) = ( / . . . / )
27 v ( 1 :NNODE, 1 : 3 ) = 0
28 DO i =1 ,NNODE
29 DO j =1 ,3
30 DO k=1 ,NNODE
31 DO l =1 ,3
32 v ( i , j ) = S( i , j , k , l ) * u ( k , l )
33 END DO
34 END DO
35 END DO
36 END DO

The LHS can be written∫
Ω

B0
ijvi,j =

∑
e

∫
Ωe

B0
ij

De
kj

6V e
c′ki dV

=
∑
e

De
kj

6V e
c′ki

∫
Ωe

B0
ij dV

(6.70)

where B0
ij can be written

B0
ij =

B1α
2
i if i = j

B2αiαj if i 6= j
(6.71)

and for the crystal axes aligned with the coordinate axes

B0
ij =

B1m
2
i if i = j

B2mimj if i 6= j
(6.72)

and expanding mi = λjJji in a tetrahedron e

B0
ij =

B1λmJm(i)λlJl(i) if i = j

B2λmJmiλlJlj if i 6= j
(6.73)
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and the integral is

∫
Ωe

B0
ij dV =

B1
V e

20
(1ml + δml)Jm(i)Jl(i) if i = j

B2
V e

20
(1ml + δml)JmiJlj if i 6= j

(6.74)

The force matrix F can be written

1 DO e=1 ,NTRI
2 DO k=1 ,4
3 co l = TIL ( e , k )
4 DO i =1 ,3
5 DO m=1 ,4
6 DO l =1 ,4
7 DO j =1 ,3
8 mm = TIL ( e ,m)
9 l l = TIL ( e , l )

10

11 Dk = ( / b ( e , k ) , c ( e , k ) , d ( e , k ) / )
12

13 IF ( i .EQ. j ) THEN
14 B = B1
15 ELSE
16 B = B2
17 END IF
18

19 IF (m .EQ. l ) THEN
20 f a c t o r = 2
21 ELSE
22 f a c t o r = 1
23 END IF
24

25 F( k , i , mm, i , l l , j ) = F( k , i , mm, i , l l , j ) &
26 Dk( j ) * B * f a c t o r / 120.0
27 END DO
28 END DO
29 END DO
30 END DO
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31 END DO
32 END DO
33

34

35 rhs ( 1 :NNODE, 1 : 3 ) = 0
36 DO i =1 ,NNODE
37 DO j =1 ,3
38 DO k=1 ,NNODE
39 DO l =1 ,3
40 DO m=1 ,NNODE
41 DO n=1 ,3
42 rhs ( i , j , k , l ,m, n ) = rhs ( i , j , k , l ,m, n ) &
43 + F( i , j k , l ,m, n ) *m( k , l ) *m(m, n )
44 END DO
45 END DO
46 END DO
47 END DO
48 END DO
49 END DO

6.2.3 Solver Issues

For stress free surface conditions, i.e. pure Neumann conditions, the matrices
for the mechanical equations of motion, generated using the FEM, are singu-
lar. The current solver in MERRILL, a conjugate gradient solver with partial
Cholesky decomposition preconditioner, handles these well enough. How-
ever, many solvers, like the unconditioned conjugate gradient method, don’t
play well with singular matrices, since the solution space is no longer strictly
bowl-shaped.

The kernel of the matrix can be found from considering the form of ~u in the
mechanical equations of motion

1

2
Cijkl(uk,lj + ul,kj) +B0

ij,j = 0 (6.75)
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and, in particular, the (uk,l + ul,k) term. It is clear that the kernel of the FEM
matrices is the gauge freedom of this term. If ~u is a solution of the equations of
motion, then ~λ is too if

~λ = ~u+ l1(1, 0, 0) + l2(0, 1, 0) + l3(0, 0, 1) (6.76)

where l1, l2, l3 are arbitrary scalar constants, or if

~λ = ~u+ l4(y,−x, 0) + l5(z, 0,−x) + l6(0, z,−y) (6.77)

again with l4, l5, and l6 arbitrary scalar constants. The first condition represents
a rigid body displacement, and the second is a rigid body rotation. Given these
six linearly independent conditions, a basis for the kernel of the FEM matrix
can be constructed with coordinates ~l. However, we will omit the details for
constructing this basis for a FEM representation.

Lagrangian Multiplier Approach

Some solvers, e.g. PETSc’s Krylov solver, are equipped to solve singular matri-
ces if supplied with the basis of the kernel of the matrix. Others are not so well
equipped. Given the gauge conditions above, we can break the singularity by
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defining a coupled equation

1

2
Cijkl(uk,lj + ul,kj) +B0

ij,j = 0i on Ω

1

2
njCijkl(uk,l + ul,k) + njB

0
ij − Ti = 0i on ∂Ω∫

Ω

ux dV = 0∫
Ω

uy dV = 0∫
Ω

uz dV = 0∫
Ω

(uxy − uyx) dV = 0∫
Ω

(uxz − uzx) dV = 0∫
Ω

(uyz − uzy) dV = 0

(6.78)

The coupling is usually achieved using a mixed-element formulation to en-
force Lagrange multipliers. The effect is to pad the FEM matrix with a few
extra rows and columns, and the result vector with some extra entries. Where
the extra constraints are sufficient for gauge fixing, the resulting matrix will be
non-singular, and should work well in a conjugate gradient solver. However,
it will no longer be symmetric and will not have the same diagonal pattern as
the original matrix.

Regularization Approach

Another approach is to add a small regularization term to the energy to break
the rigid body symmetry. We add a small u2 term to the energy

f =
1

4
(ui,j + uj,i)Cijkl(uk,l + ul,k) +

1

2
B0
ij(ui,j + uj,i) + ε uiui (6.79)
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where ε is some very “small” value. This translates to a small penalty for hav-
ing a larger displacement. The resulting equations of motion are

1

2
Cijkl(uk,lj + ul,kj) +B0

ij,j + ε ui = 0i on Ω

1

2
njCijkl(uk,l + ul,k) + njB

0
ij − Ti + ε ui = 0i on ∂Ω

(6.80)

As can be seen, these consist of our previous equations of motion, plus a ε ui
term. As a result, the FEM matrices for the previous formulation can be con-
structed as usual, and the FEM matrices for

∫
Ω
ε uivi dV constructed separately.

In practice, the original FEM matrix is constructed first. Let’s call this S1. Next,
the matrix for

∫
Ω
uivi dV is constructed. Let’s call this S2. Then, the smallest

non-zero absolute value in S1 is found, say s, and the largest absolute value in
S2, say t. Finally, the total FEM matrix is constructed

S = S1 + ε′
s

t
S2 (6.81)

where ε′ is some number that is small relative to 1, say 10−3. The term ε′ s
t

should act as an ε, such that the largest contribution by the perturbation εu2

should be smaller than the smallest contribution of the actual problem we want
to solve. By setting ε′ to 10−3, we expect the solution u to be off by about
0.1%. This perturbation, then, can break the singularity of the FEM matrices
while having a minimal impact on the correctness of the solutions. This was
the preferred solution in the implementation made for this thesis, before the
MERRILL solver was used.

6.3 Future Work - Embedding in an Infinite

Elastic Matrix

We present a technique for modelling magnetostriction in an infinite elastic
material. In our section on deriving the demag field for MERRILL, we encoun-
tered the issue of dealing with an infinite boundary. There, we dealt with it
through application of the BEM. Here, however, we will take a more direct ap-
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proach, performing a spatial transformation of the domain of integration from
an infinite to a finite domain. This technique is presented for the demagne-
tizing field in Imhoff, Meunier, and Sabonnadiere (1990) and in Imhoff, Meu-
nier, Brunotte, et al. (1990), with extensions to non-spherical mapped regions
in Brunotte, Meunier, and Imhoff (1992). The alterations needed to describe
elasticity in an infinite elastic medium using this technique are minimal.

To simulate an infinite elastic material, it is typically necessary to solve over
some infinite domain. As we want to solve on a computer, we must transform
the calculation over an infinite domain to one over a finite domain. To this end,
we use a shell transformation (Imhoff, Meunier, Brunotte, et al. 1990). This is
where we embed the grain in two concentric spheres, and define a diffeomor-
phism (i.e. an invertible and differentiable map), transforming the space be-
tween the inner sphere and the outer sphere to a space from the inner sphere
to infinity.

A simple map from finite to infinite space, where the boundary of the inner
sphere maps to the boundary of the inner sphere, and the boundary of the
outer sphere maps to infinity is given

fsimple(~x) = x̂

(
RinnerR

inner −Router

|x| −Router

)
(6.82)

In this map, the space is scaled linearly. In a practical application, where the
value of a solution will drop of as some power of the distance from the region
of interest (i.e. go to zero at infinity), the scaling of space should be chosen
to match this drop off. That is, the value of the solution in the mapped space
should drop off linearly as it approaches the outer sphere so the linear elements
representing the space can represent the solution well.

6.3.1 A Linear Form Transformation

We will derive the general form for a transformation of coordinate function
in the linear forms representing a weak form for a linear elastic problem for
an material of infinite extent. We will ignore the linear form on the RHS
here which depends on the magnetization, because we assume the embedding
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grain is non-magnetic in the transformed region. When actually solving the
problem, we will actually be fixing the boundary at infinity, because the dif-
ference between using fixed and free boundaries at infinity should be a rigid
body motion. This also solves the problem of mappings being poorly defined
at the outer sphere boundary, since they will not have to be defined there.

We define two spaces, Ω and Λ representing the real, infinite space and the
transformed, spherically bound spaces respectively. These spaces are defined
starting from the boundary of the inner sphere on.

Ω = {~x | |x| ≥ Rinner} (6.83a)

Λ = {~x | Router ≥ |x| ≥ Rinner} (6.83b)

We define a diffeomorphism ~ψ from Ω to Λ with inverse ~ψ−1

~ψ : Ω→ Λ

~x→ ~ψ(~x)

~ψ−1 : Λ→ Ω

~y → ~ψ−1(~y)

(6.84)

The untransformed integral over Ω is∫
Ω

(ui,j(x) + uj,i(x)) Cijkl (vk,l(x) + vl,k(x)) dx3 = 0 (6.85)

where here, we must be explicit that

dx3 = dx1 ∧ dx2 ∧ dx3 (6.86)

with∧ the wedge product, in order to properly account for changes of variable.

Defining the variable
~y = ~ψ(~x) (6.87)
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we get the transformations

~x = ~ψ−1(~y)

dxi =
∂ψ−1

i

∂yj
(~y) dyj = J(ψ−1)ij(~y) dyj

dx1 ∧ dx2 ∧ dx3 = |J(ψ−1)(~y)|dy1 ∧ dy2 ∧ dy3

Λ = ~ψ(Ω)

(6.88)

The Jacobian J of a vector valued function ~f with vector valued domain at a
point ~y is a matrix defined:

J(f)ij(~y) =
∂fi
∂xj

(~y)

J(f)ij = fi,j

(6.89)

We use the notation for a matrix M that |M | = det(M).

With all this in mind, we get the transformation of the integral (6.85) over Λ∫
Λ

(
ui,j(~ψ

−1(y)) + uj,i(~ψ
−1(y))

)
Cijkl

(
vk,l(~ψ

−1(y)) + vl,k(~ψ
−1(y))

)
|J(~ψ−1)(y)| dy3 = 0 (6.90)

with dy3 = dy1 ∧ dy2 ∧ dy3, similar to dx3.

Next, we must change ~u and ~v from functions with domain Ω to functions ~µ
and ~ν with domain Λ. To that end, we define

~µ = ~u ◦ ~ψ−1 (6.91a)

⇒ ~u = ~µ ◦ ~ψ (6.91b)
∂ui
∂xj

(~x) =
∂µi
∂yk

(~ψ(~x))
∂ψk
∂xj

(~x) (6.91c)

ui,j = (µi,k ◦ ~ψ) · ψk,j (6.91d)
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and similarly for ν

~v = ~ν ◦ ~ψ (6.91e)

vi,j = (νi,k ◦ ~ψ) · ψk,j (6.91f)

From here we find

ui,j ◦ ~ψ−1 = ((µi,k ◦ ~ψ) · ψk,j) ◦ ~ψ−1

= (µi,k ◦ ~ψ ◦ ~ψ−1) · (ψk,j ◦ ~ψ−1)

= µi,k · (ψk,j ◦ ~ψ−1)

= µi,k · (J(~ψ)kj ◦ ~ψ−1)

(6.92)

From the Inverse Function Theorem, we have for the diffeomorphism ~ψ,

J(~ψ) ◦ ~ψ−1 =
[
J(~ψ−1)

]−1
(6.93)

with [·]−1 the matrix inverse function, [M ]−1
ik Mkj = δij . And so

ui,j ◦ ~ψ−1 = µi,k ·
[
J(~ψ−1)

]−1

kj

vi,j ◦ ~ψ−1 = νi,k ·
[
J(~ψ−1)

]−1

kj

(6.94)

Looking at
(ui,j(~ψ

−1(y)) + uj,i(~ψ
−1(y))) Cijkl (6.95)

and using the substitutions in (6.94), we get(
µi,m(~y)

[
J(~ψ−1)

]−1

mj
(~y) + µj,m(~y)

[
J(~ψ−1)

]−1

mi
(~y)

)
Cijkl (6.96)

and finally, (6.85) can be written, dropping the explicit coordinate,
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∫
Λ

(
µi,m ·

[
J(~ψ−1)

]−1

mj
+ µj,m ·

[
J(~ψ−1)

]−1

mi

)
· Cijkl

·
(
νk,m ·

[
J(~ψ−1)

]−1

ml
+ νl,m ·

[
J(~ψ−1)

]−1

mk

)
· |J(~ψ−1)| · dy3 = 0 (6.97)

which is over the finite domain Λ with every function in that domain. This
means the time needed to evaluate the integral is now finite and the storage
needed to store the functions is finite.

6.3.2 A Good Linear Form Transformation

Now a suitable ψ must be found so the functions ~µ and ~ν can be well repre-
sented by linear finite elements.

Tetrahedron Integral Independence

One approach is to ensure the FEM integrals are independent of the coordi-
nate. This would ensure the problem is dependent only on the geometry of
the mesh, and the resulting FEM matrices are numerically stable. To do this,
we will find the order of one of these integrals in terms of the interpolation
coefficients, ~c, the transformation function, ~ψ−1, and the coordinate |y|.

Taking the order of y of one of the factors as

O(

(
µi,m ·

[
J(~ψ−1)

]−1

mj
+ µj,m ·

[
J(~ψ−1)

]−1

mi

)
) = O(

∂µ

∂y
) O(

[
J(~ψ−1)

]−1

mi
) (6.98)

we can say the order of the integrand is

O(integrand) = O(
∂µ

∂y
) O(

[
J(~ψ−1)

]−1

)

O(
∂ν

∂y
) O(

[
J(~ψ−1)

]−1

) O(|J(~ψ−1)(y)|) (6.99)
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We remember that, for a linearly interpolated function,

µi(~y) = λ(~y)kcik

with ~λ defined and evaluated element-wise, and 0 ≤ λ(~y)i ≤ 1 on each ele-
ment, and derivatives

µi,j(~y) =
∂λk
∂yj

(~y)cik

= Dkjcik

with Dkj dependent only on the tetrahedron geometry, and independent of ~y.
Therefore, we can say for the trial function term µi,j

O(
∂µ

∂y
) = O(D)O(c)

= O(c)

(6.100)

and the test function term νi,j , where c = 1 or c = 0, to build the appropriate
matrix equations

O(
∂ν

∂y
) = O(D) = 1 (6.101)

Using some very rough approximations, and assuming dim(Λ) = 3:

O(~ψ−1(~y)) = |y|n (6.102)

O(µ(~y)) = O(c) (6.103)

O(ν(~y)) = 1 (6.104)

O(J(~ψ−1)(~y)) = O(
∂ ~ψ−1

∂y
)(~y) =

O(~ψ−1)(~y)

|y|
(6.105)

O(|J(~ψ−1)(y)|) = O(J(~ψ−1)(~y))3 =
O(~ψ−1(~y))3

|y|3
(6.106)

O(
[
J(~ψ−1)

]−1

(~y)) =
1

O(J(~ψ−1)(~y))
=

|y|
O(~ψ−1(~y))

(6.107)
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which gives us

O(integrand) = O(c)
|y|

O(~ψ−1(~y))

|y|
O(~ψ−1(~y))

O(~ψ−1(~y))3

|y|3

= O(c)
O(~ψ−1(~y))

|y|

(6.108)

Integrating this value over, say, a single tetrahedron Λe, we get

O(integral) = O(

∫
λe

c
~ψ−1

|y|
dy3)

= O(c) O(~ψ−1) |y|2
(6.109)

assuming c and ~ψ−1 are polynomial in |y|within the context of the approxima-
tion.

For the FEM, we solve the linear equation

Sijcj = Fi

where S is the stiffness matrix, ~c is the interpolation coefficients, and ~F is the
stiffness matrix. In the context of the approximation, we have

O(S) = O(~ψ−1)|y|2 (6.110)

and
O(~F ) = 1 (6.111)

At the very least, we need

O(c) O(~ψ−1) |y|2 = 1 (6.112)

for consistency.

To have the stiffness matrix independent of the coordinates, we could set
O(~ψ−1) = |y|−2. This would give us O(c) = 1.

This appears to be the approach used in (Imhoff, Meunier, Brunotte, et al. 1990)
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and (Brunotte, Meunier, and Imhoff 1992) to choose an appropriate transfor-
mation function.

Far Field Approximation Approach

Yet another approach was used in (Abert et al. 2013), by noting the far field
approximation of φ for a magnetic scalar potential is

φ(x) ∼ 1

x2

Choosing a ~ψ−1 such that
φ(ψ−1(~y)) ∼ y

so the transformed functions are linear in the transformed region, it is found
that

φ(ψ−1(~y)) ∼ 1

ψ−1(~y)2
∼ y

works if O(ψ−1) = |y|− 1
2 .

Transformation Functions and Jacobians

We will continue here with the integral based consideration, and useO(ψ−1) =

|y|−2.

In general, a suitable pair ~ϕ and ~ϕ−1 with O(~ϕ−1(~y)) = |y|−n are

~ϕ(~x) = x̂

(
(Rinner −Router)

(
Rinner

|x|

) 1
n

+Router

)
(6.113a)

~ϕ−1(~y) = ŷ Rinner

(
Rinner −Router

|y| −Router

)n
(6.113b)

we want these for n = 2, so we will use
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~ψ(~x) = x̂

(
(Rinner −Router)

(
Rinner

|x|

) 1
2

+Router

)
(6.114a)

~ψ−1(~y) = ŷ Rinner

(
Rinner −Router

|y| −Router

)2

(6.114b)

It can be shown that the Jacobians that appear in the integral can be given

[
J(~ψ−1)

]−1

ij
(~y) =

δij|y|
|ψ−1(~y)|

+
yiyj(R

outer − (n+ 1)|y|)
n|ψ−1(~y)||y|2

(6.115)

∣∣J(ψ−1)
∣∣ (~y) =

n|ψ−1(~y)|3

Router|y|2 − |y|3
(6.116)

where we want n = 2.

Substituting these Jacobians back into the transformed regions is enough to
specify a complete problem for the transformed region. Noting that these
terms are singular at |y| = Router, it is clear that we shouldn’t evaluate our
integral there. In the FEM formulation, this is taken care of by using Dirich-
let boundary conditions. When using Dirichlet conditions, the test function
is uniformly zero at the boundary, so the integral isn’t evaluated there. If we
choose ~µ = 0, this will represent fixed boundary conditions, ~u = 0, at infinity.

Given the complexity of these terms, an analytic formulation of the FEM matri-
ces is not straightforward. In this case, a numerical integration scheme, like a
weighted Gaussian integral, may be preferable. This is handled automatically
by FEniCS. While this formulation wasn’t implemented for this thesis, the ex-
tension of the existing FEniCS implementation should be straightforward.
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Chapter 7

Example Modelling Results for
Magnetostrictive Minerals
with Free Boundaries

Here we present some results from micromagnetic models using MERRILL, in-
cluding the full magnetic and elastic description of magnetoelastic materials,
including the deformation independent surface tension term. The FEM ma-
trices and vectors for mechanical equations and for the FEM energy gradient
were built using the automated FEM assembly environment FEniCS (Wells,
Mardal, and Logg 2012).

All the results presented in this chapter are original, and significant results.
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7.1 Deformations for SD, FS, HSV, ESV States

7.1.1 Introduction

The formulation of magnetostriction we’ve presented involves directly com-
puting the equilibrium displacement ~u of a material due to a given magnetiza-
tion. The displacement can be used to visualize the deformation of a material
using, for example, the "Warp By Vector" filter in ParaView.

We’d like to see how a number of typical magnetization states in nano-scale
minerals deform the material.

7.1.2 Method

To most clearly visualize the deformations, a cubic geometry was chosen. The
cube was given the magnetic, elastic and magnetoelastic parameters for Ti-
tanomagnetite (TM60), a highly magnetoelastic material.

To nucleate a desired state, e.g. a hard-aligned single vortex, the size of the
cube was set to where the given state is at least meta-stable. Then, the magne-
tization was set to an approximation of the target state to encourage nucleation
of that state, and the energy minimization was run. If the desired state was nu-
cleated, the result was accepted. If not, the size of the cube was changed, and
the approximation/minimization rerun.

This was done for a flower state (FS), a hard-aligned single vortex (HSV), and
an easy-aligned single vortex (ESV). A uniform single domain (SD) state was
also generated, but needed no minimization. When the desired state was
found, the magnetization and displacement were output to disk. Visualiza-
tions of the magnetization and the deformation of the cube were generated
using ParaView.
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7.1.3 Results

Single Domain

Figure 7.1: Magnetostrictive response of a Single Domain TM60 cube. Left is
the magnetization colored by helicity (~∇ × ~m) · ~m, right is the exaggerated
deformation with amplification factor 1000. The undeformed cube is outlined
in black.
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Flower State

Figure 7.2: Magnetostrictive response of a Flower State TM60 cube. Left is
the magnetization colored by helicity (~∇ × ~m) · ~m, right is the exaggerated
deformation with amplification factor 1000. The undeformed cube is outlined
in black.

Hard-Aligned Single Vortex ([111])

Figure 7.3: Magnetostrictive response of a Hard-aligned Single Vortex TM60
cube with a clockwise vortex pointed towards a cube corner, here pictured
pointing out of the image. Left is the magnetization colored by helicity (~∇ ×
~m)· ~m, right is the exaggerated deformation with amplification factor 1000. The
undeformed cube is outlined in black.
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Easy-Aligned Single Vortex ([100])

Figure 7.4: Magnetostrictive response of a Easy-aligned Single Vortex TM60
cube with a clockwise vortex pointed towards a cube face. Left is the magne-
tization colored by helicity (~∇ × ~m) · ~m, right is the exaggerated deformation
with amplification factor 1000. The undeformed cube is outlined in black.
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7.1.4 Discussion

The ability to visualize the deformation in our formulation is quite useful for
reasoning about how the material might behave, particularly the visualization
of deformation due to non-uniform magnetizations.

While the stretching of the SD and FS states is expected, the twisting of the
SV state was an interesting result. In particular, it may point to how previous
simulations by Fabian and Heider (Fabian and Heider 1996) of a magnetoelas-
tic material embedded in a larger non-magnetic material may have pushed the
PSD range to a larger grain size. If this twisting of the material is inhibited, the
nucleation of a SV state may be inhibited. While the stretching of the SD and
FS states may also be inhibited, the energy needed to stretch the surrounding
material, rather than twist it, may be much lower.

The twisting effect echoes the Wiedemann effect, where a helical magnetic field
will generate a twist in a ferromagnet. This is likely an effect of the magneti-
zations aligning with the helical field looking like our vortex states. Here, the
deformation due to the vortex states could be described as a sort of remanent
Wiedemann effect.
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7.2 Critical Grain Sizes for Magnetostrictive

Materials

7.2.1 Introduction

Here we present how the critical grain sizes for a cube and a sphere differ
between the Kittel Constant Stress (KCS) and Kittel Mechanical Equilibrium
(KME) formulations.

We also plot the energy and the remanent magnetization versus grain size for
the FS, HSV and ESV states, where they’re meta-stable to see how the expected
remanent magnetization strength differs between the theories.

We will be using the relative energies of the states versus size as a proxy for
the stability of a grain. As shown in (Nagy et al. 2017), grains tend to be stable
in the SD and PSD regions, but unstable around the transition between SD and
PSD. This is likely due to the hard aligned vortex state being close in energy to
the easy aligned states, presenting an easy path for the magnetization to pass
through to transition from one remanent state to another.

7.2.2 Method

In each case, a FS, HSV, and ESV state was nucleated at a grain size stable for
that particular state, and those states were stored as reference states. The grain
was then scaled to 0.1 µESVD and the states minimized at that size, and the
measurements made. This was repeated for 0.1, 0.11, 0.12, ... 0.26 µESVD. This
was done to reliably minimize to the FS, HSV, and ESV meta-stable states, even
where they were only minimally stable, so we could see how the energies of
these specific states change versus grain size.
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7.2.3 Results

7.2.4 Cube

Critical Edge Length

Kittel Constant Stress (KCS)

ESVD (µm) Energy (KdV )

FS/HSV 0.143 18.821

HSV/ESV 0.156 17.421

Kittel Mechanical Equilibrium

ESVD (µm) Energy (KdV )

FS/HSV 0.177 10.744

HSV/ESV 0.198 10.089
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Energy Vs. ESVD in a KCS Cube

Figure 7.5: Energy vs. Equivalent Sphere Volume Diameter for a TM60 cube
with magnetostriction calculated using the Kittel Constant Stress formulation.
FS is a [100] Flower State, ESV is a [100] Easy-aligned Single Vortex, and HSV
is a [111] Hard-aligned Single Vortex.

Energy Vs. ESVD in a KME Cube

Figure 7.6: Energy vs. Equivalent Sphere Volume Diameter for a TM60 cube
with magnetostriction calculated using the Kittel Mechanical Equilibrium for-
mulation. FS is a [100] Flower State, ESV is a [100] Easy-aligned Single Vortex,
and HSV is a [111] Hard-aligned Single Vortex.
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Remanent Magnetization Vs. ESVD in a KCS Cube

Figure 7.7: Remanent Magnetization vs. Equivalent Sphere Volume Diameter
for a TM60 cube with magnetostriction calculated using the Kittel Constant
Stress formulation. FS is a [100] Flower State, ESV is a [100] Easy-aligned Single
Vortex, and HSV is a [111] Hard-aligned Single Vortex.

Remanent Magnetization Vs. ESVD in a KME Cube

Figure 7.8: Remanent Magnetization vs. Equivalent Sphere Volume Diameter
for a TM60 cube with magnetostriction calculated using the Kittel Mechanical
Equilibrium formulation. FS is a [100] Flower State, ESV is a [100] Easy-aligned
Single Vortex, and HSV is a [111] Hard-aligned Single Vortex.
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Comparison of KCS and KME Remanence for ESV states

Figure 7.9: Remanent Magnetization vs. Equivalent Sphere Volume Diameter
for an easy aligned vortex state in a TM60 cube for both Kittel Constant Stress
and Kittel Mechanical Equilibrium formulations of magnetostriction.
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7.2.5 Sphere

Critical Edge Length

Kittel Constant Stress

ESVD (µm) Energy (KdV )

FS/HSV 0.129 20.151

HSV/ESV 0.151 17.191

Kittel Mechanical Equilibrium

ESVD (µm) Energy (KdV )

FS/HSV 0.153 9.949

HSV/ESV 0.190 8.648

Energy Vs. ESVD in a KCS Sphere

Figure 7.10: Energy vs. Equivalent Sphere Volume Diameter for a TM60 sphere
with magnetostriction calculated using the Kittel Constant Stress formulation.
FS is a [100] Flower State, ESV is a [100] Easy-aligned Single Vortex, and HSV
is a [111] Hard-aligned Single Vortex.
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Energy Vs. ESVD in a KME Sphere

Figure 7.11: Energy vs. Equivalent Sphere Volume Diameter for a TM60 sphere
with magnetostriction calculated using the Kittel Mechanical Equilibrium for-
mulation. FS is a [100] Flower State, ESV is a [100] Easy-aligned Single Vortex,
and HSV is a [111] Hard-aligned Single Vortex.

Remanent Magnetization Vs. ESVD in a KCS Sphere

Figure 7.12: Remanent Magnetization vs. Equivalent Sphere Volume Diameter
for a TM60 sphere with magnetostriction calculated using the Kittel Constant
Stress formulation. FS is a [100] Flower State, ESV is a [100] Easy-aligned Single
Vortex, and HSV is a [111] Hard-aligned Single Vortex.
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Remanent Magnetization Vs. ESVD in a KME Sphere

Figure 7.13: Remanent Magnetization vs. Equivalent Sphere Volume Diame-
ter for a TM60 sphere with magnetostriction calculated using the Kittel Me-
chanical Equilibrium formulation. FS is a [100] Flower State, ESV is a [100]
Easy-aligned Single Vortex, and HSV is a [111] Hard-aligned Single Vortex.

Comparison of KCS and KME Remanence for ESV states in a Sphere

Figure 7.14: Remanent Magnetization vs. Equivalent Sphere Volume Diameter
for an easy aligned vortex state in a TM60 sphere for both the Kittel Constant
Stress and the Kittel Mechanical Equilibrium formulations of magnetostriction.
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7.2.6 Discussion

Comparing figures 7.5 with 7.6, and 7.10 with 7.12, we see the full treatment of
magnetostriction (using the KME formulation) pushes the FS-dominant grain
size further ahead by about 0.04 ESVD. It also pushed the grain size for a sta-
ble HSV state ahead 0.05 ESVD. Stable here means a minimization retained
the state, and didn’t spontaneously nucleate a different state. It also causes
the HSV and ESV energies to diverge faster, causing a larger energy gap be-
tween the two with increasing grain size, implying a more stable magnetiza-
tion. However, the region where the FS, HSV, and ESV energies overlap is
larger in the full magnetostriction case, implying a larger region of instability
for the grain. In general, the KME formulation implies a larger SD range, but
a larger region of instability.

Looking at 7.9 and 7.14, we see that the KME formulation predicts lower re-
manence in ESV states with increasing grain size. This might be explained by
the magnetostrictive effect tending to resist incompatibilities due to varying
magnetization.
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7.3 Surface Tension Results

7.3.1 Introduction

In our magnetostrictive formulation, we have a tension term, ~T , which we
have so far set to zero. Here, we will explore the effect a non-zero T on the me-
chanical and magnetic behaviour of a magnetic cube. We also want to explore
the behaviour of the system under varying approaches to treating mechanical
equilibriation.

So far, we have been assuming instant mechanical equilibriation, which would
put the elastic response of the system at a much smaller time-scale than the
magnetic response. This was done to speed up and simplify numerical so-
lutions, as the order in which both aspects come to equilibrium is irrelevant
when simply looking for overall equilibrium solutions. In reality, the magnetic
equilibriation happens on a much smaller time-scale than the elastic response.
We will, therefore, also look at the magnetic response of the system for fixed
elastic deformations, to get an idea of how magnetostriction might effect dy-
namical simulations.

7.3.2 Method

A Fortran program was written, using the MERRILL library, to run the mag-
netostriction solver in a number of different modes. A 100 nm cube was used
with the parameters of titanomagnetite (TM60).

Three values for the surface tension were used: ~T = p~n, ~T = p (~n · [100])~n, and
~T = p (~n · [111])~n, with ~n the surface normal. These represent a hydrostatic,
[100] uniaxial, and [111] uniaxial surface tension respectively.

Four approaches to solving the mechanical equations were used, labelled dy-
namic, static-0, static-[100], and static-[111]. The dynamic approach is the in-
stant mechanical equilibriation approach we’ve been using thus far, where the
displacement is always set to the minimizing displacement for the given mag-
netization. The static approaches solve the mechanical equations for the given
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surface tension and magnetization, but freeze the displacement at that value
for subsequent magnetizations. For static-0, the magnetoelastic coupling is set
to zero before solving the elastic equations. For static-[100] and static-[111],
the magnetization is set to [100] and [111] respectively before solving the elas-
tic equations.

For each of these surface tensions and solver schemes, the magnetostrictive
energy due to the magnetization was found. The minimum energy of all these
values was found and subtracted from the others, so the energies began at
zero, without effecting the relative differences. This was output in the form of
an energy surface The energy surface is a spherical plot, where the polar and
azimuthal angles are the angles of the unit magnetization, and the radius is the
energy. Or put another way, from the center, the unit direction is the direction
of the magnetization, and the distance from the origin is the energy. For a point
‖r‖ r̂ on the energy surface, we have

m̂ = r̂

E(m̂)− E0 = ‖r‖
(7.1)

with E0 the minimum energy. For each tension and scheme, the displacement
was also output for m̂ = [100].

7.3.3 Results

The given setup generates at least 12 cases to check, and for a range of pres-
sures. To avoid wasting space, we present most results around 107 Pa, and
present more results where the pressure makes a significant change to the en-
ergy surface.

The deformations presented are exaggerated by 1000x, except for |T | = 108,
there the exaggeration is 800x.
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Tension: Hydrostatic – Solver: dynamic
1
0
7

Pa

Tension: Uniaxial-[111] – Solver: dynamic

1
0
7

Pa

Tension: Uniaxial-[100] – Solver: dynamic

1
0
7

Pa

Figure 7.15: The effective anisotropy (left) for a fully dynamic magnetostrictive
solver, and the corresponding deformation for a [100] magnetization (right).
The top images are the results for a grain under a hydrostatic pressure, the cen-
ter images are for a grain under a [111] uniaxial tension, and the bottom images
are for a grain under [100] uniaxial tension. Only the results for a pressure of
107 Pa are shown here, but the value of Emax is the same for all pressures.
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Tension: Hydrostatic – Solver: static-0

1
0
7

Pa

Figure 7.16: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a non-magnetic material, frozen at that value, and then sub-
stituted into the magnetoelastic energy. This image represents an equilibrium
found under a hydrostatic pressure. Only 107 Pa is shown here, but every
pressure tested produced similar results.
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Tension: Uniaxial-[111] – Solver: static-0
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Figure 7.17: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a non-magnetic material, frozen at that value, and then sub-
stituted into the magnetoelastic energy. The images here represent an equilib-
rium found under a [111] uniaxial tension from 106 Pa to 108 Pa.
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Tension: Uniaxial-[100] – Solver: static-0
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Figure 7.18: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a non-magnetic material, frozen at that value, and then sub-
stituted into the magnetoelastic energy. The images here represent an equilib-
rium found under a [100] uniaxial tension from 106 Pa to 108 Pa.
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Tension: Hydrostatic – Solver: static-[111]
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1
0
8

Pa

Figure 7.19: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [111] magnetization, frozen at that value, and then sub-
stituted into the magnetoelastic energy. These images represent a solutions
under a hydrostatic pressure. Results for 0 Pa and 108 Pa are presented here.
All values in between produce the same result.
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Tension: Uniaxial-[111] – Solver: static-[111]
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Figure 7.20: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [111] magnetization, frozen at that value, and then substi-
tuted into the magnetoelastic energy. The images here represent solutions
under a [111] uniaxial tension. The solutions for 107 Pa and 108 Pa are pre-
sented here as they produce a significant change in shape. Solutions below
107 Pa produce the same shape results as the 107 Pa solution, and solutions
above 108 produce the same shape results as the 108 Pa solution.
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Tension: Uniaxial-[100] – Solver: static-[111]
1
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Figure 7.21: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [111] magnetization, frozen at that value, and then substi-
tuted into the magnetoelastic energy. The images shown here are for solutions
under a [100] uniaxial tension for 106 Pa, 107 Pa, and 108 Pa. Below 106 Pa, so-
lutions retain the [111] aligned donut shape, and above 108 Pa solutions retain
the [100] aligned dumbbell shape.
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Tension: Hydrostatic – Solver: static-[100]
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Figure 7.22: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [100] magnetization, frozen at that value, and then substi-
tuted into the magnetoelastic energy. These images are solutions for a hydro-
static pressure. All solutions above 108 Pa are also effectively zero.
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Tension: Uniaxial-[111] – Solver: static-[100]
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Figure 7.23: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [100] magnetization, frozen at that value, and then substi-
tuted into the magnetoelastic energy. The images here are for a [111] uniaxial
tension. Pressures below 106 Pa retain the [100] aligned donut shape, and pres-
sures above 108 Pa retain the [111] aligned dumbbell shape.
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Tension: Uniaxial-[100] – Solver: static-[100]
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Figure 7.24: The effective anisotropy (left) and corresponding deformation un-
der a [100] magnetization (right) for a solver where the equilibrium deforma-
tion is found for a [100] magnetization, frozen at that value, and then substi-
tuted into the magnetoelastic energy. The images here are for a [100] uniax-
ial tension. Pressures below 106 Pa retain the [100] aligned donut shape, and
pressures above 108 Pa retain the [111] aligned dumbbell shape. The transi-
tion between the donut and dumbbell is very rapid about the point where the
uniaxial tension exactly cancels out the magnetostrictive elongation.
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7.3.4 Discussion

The energy surfaces can be interpreted as the highest/lowest energy points
being the hard/easy axis directions. The slope of the energy surface can be
interpreted as the magnetic field direction for the given magnetization.

Dynamic
The dynamic results confirms our assertion that under instant-equilibriation,
the magnetic behaviour of the material is independent of the surface tension.
This means the remanent magnetization should be independent of the surface
tension. The energy surface of the dynamic solver is the same energy surface
for a cubic anisotropy with negative anisotropy constant. This also confirms
our formulation returns the typical anisotropy-shaped result.

Static-0 and Kittel’s Uniaxial Formulation
The static-0 formulation — where the elastic deformation is solved for a non-
magnetic material, and that deformation is then used for the magnetostrictive
energy — is equivalent to Kittel’s formulation for a uniaxial stress. The first
failure of this approach can be seen in the hydrostatic results, which predict
extremely low magnetic fields. In a physical sample, one would expect nomi-
nal fields for even low hydrostatic pressures. The static-0 uniaxial results also
recover Kittel’s 3

2
λT sin2(θ) uniaxial result, which confirms that we are indeed

modelling Kittel’s solution. Another failure of this approach is the deforma-
tions are clearly lacking the characteristic magnetostrictive deformation, even
at very low tensions. In particular, for 0 tension, the characteristic magne-
tostrictive deformation should appear, but it doesn’t.

Static-[111] and Static-[100]
The static-[111] and static-[100] correspond to the magnetic energy, as expe-
rienced on a time-scale where the mechanical motion of the material is neg-
ligible. The static-[111] energies, for instance, represent the magnetoelastic
energies experienced by a system which was in thermal equilibrium with a
[111] magnetization, and is now out of equilibrium. The system will continue
to experience this energy response until the magnetization comes to equilib-
rium, and the elastic response has had enough time to deform the material by
a noticeable amount. And similar for the static-[100] energies.
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From the general trends, we can see that the magnetic energy is lowest when
the magnetization is pointing in a direction where the current deformation is
close to the equilibrium deformation for that direction. This is most clearly
shown in the static-[100], uniaxial-[100] series. Noting that |T | = 106 and |T | =
107 have deformations similar to the equilibrium deformation for m̂ = [100],
and the energy minimum is for m̂ = [100]. However, this trend is reversed at
|T | = 108. We can see that the material is most extended in the yz-plane, and
that the energy is lowest for m̂ in the yz-plane. This is because the deforma-
tion in this plane is closest to the characteristic magnetostrictive deformation,
compared to other directions.

Effective Easy and Hard Axes
This result gives us some tools for reasoning about how the magnetoelastic
energy should behave under further constraints. For example, should a mag-
netoelastic grain be embedded in a rocky matrix of anisotropic elasticity, we
should expect the magnetoelastic energy to be lower in whichever direction
the material is best able to deform to the characteristic magnetoelastic defor-
mation. This will result in an effective easy axis. Similarly, the direction of
inhibition of deformation should result in an effective hard axis. This could be
as simple as a material in a clamp, where the less deformable clamp results in
a hard axis. This suggests the magnetoelastic behaviour of a material will be
effected more by its surroundings than by its own stress or strain.

While Kittel’s uniaxial result doesn’t appear to hold in the current derivation,
but does in experimental conditions, it is possible that this description of ef-
fective easy and hard axes is what is actually being measured in experiments.
Rerunning this experiment in an infinite, anisotropic material of varying stress
and elasticity could confirm this. Similarly, rerunning this with the ∂Ti

∂uj
uj sur-

face term, derived in the mechanical equations of motion, added to the mag-
netoelastic equations of motion could return a similar result.

Another potential source of this term is from dislocations, which act to min-
imize the energy due to deformation, but can couple to the magnetostrictive
term. We will explore this coupling in the next chapter.
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Chapter 8

Dislocations in a Magnetostrictive
Theory

In this chapter, we will outline how a continuum theory of dislocations can
be included in a model magnetostriction, and how the magnetostrictive effect
can be used to mediate the effect of dislocations on the magnetic behaviour of
a crystal. This will appear as a magnetoplastic coupling term.

I found the book by Weertman and Weertman (1992) presents a very clear
introduction to plastic deformations, dislocations, and many of the concepts
we’ll be using here. However, it’s not necessary reading, since we won’t actu-
ally be deriving any of the deformations due to dislocations. We will be using
results derived in other sources, particularly in van der Merwe (1950).

I haven’t found the approach I take here to including dislocations and plas-
tic deformations in the magnetostrictive energy in use in the literature, so I
assume everything in this chapter is novel. However, it has been used implic-
itly in Fabian and Heider (1996) in treating the magnetostrictive deformation
as a plastic deformation. Here, we will find that, while considering the mag-
netostrictive and plastic deformations separately, they will ultimately end up
looking quite similar.

The use of plastic deformation to recover the uniaxial anisotropy due to uni-
axial tension measures in physical experiments is a significant result. In par-
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ticular, the derivation of the magnetoplastic coupling is original work. The
result of finding a surface anisotropy for a magnetite-ilmenite lamellar struc-
ture, while already predicted by Shive and Butler (1969), presented here in
terms of a magnetoplastic coupling is an original and significant result. Due
to the success of the magnetoplastic coupling in deriving uniaxial anisotropy
results — that we’ve seen in previous chapters can not be the result of a purely
elastic coupling — I suspect the magnetoplastic coupling may be a significant
part of magnetostrictive theory in the future.

8.1 Including Continuum Dislocations

One approach for including dislocations in the material is to use a contin-
uum dislocations theory. This is the theory underpinning of Fabian and Hei-
der’s formulation of the magnetostriction. In such a theory, an intrinsic stress
field σ′ is calculated for the material at equilibrium due to dislocations within
the material. Such a theory, like those presented by Kröner (Kröner 1958;
Kröner 1981), and by Weertman and Weertman (Weertman and Weertman
1992), present techniques for calculating this stress field for the continuum ap-
proximation due to an arbitrary dislocation line / Burgers vector combination.

We might include this in our theory by first calculating the intrinsic stress due
to dislocations for the non-magnetic material, and use include the resulting
deformation into our magnetoelastic equations.

For a dislocation characterized by the Burgers vector~b, in a non-magnetic elas-
tic material, we have the equations of motion∫

u′i = −bi (8.1a)

1

2
Cijkl(u

′
k,l + u′l,k),j = 0 (8.1b)

Cijklε
′
kl,j = 0i (8.1c)

with ε′kl = 1
2
(u′k,l + u′l,k) the dislocation strain. For a dislocation-free magnetic

182



material, we have the equations of motion

Cijklεkl,j +B0
ij,j = 0i (8.2)

with εkl = 1
2
(uk,l + ul,k), the magnetic strain.

We will say the elastic deformation will tend towards the dislocation deforma-
tion in a non-magnetic material. Subtracting (8.1c) from (8.2), then, we have

Cijkl(εkl,j − ε′kl,j) +B0
ij,j = 0 (8.3)

which has a solution ~ut

~ut = ~u− ~u′ (8.4)

For the dislocation stress σ′, we will say

σ′ij = Cijklε
′
kl (8.5)

and for the pure elastic stress, we will say

σij = Cijklεkl (8.6)

Our equations of motion now read

σij,j +B0
ij,j − σ′ij,j = 0 (8.7)

where σij,j+B0
ij,j represent the usual elastic and magnetoelastic term, and−σ′ij,j

represents the tendency of the material to want to have the deformation that
would result in the stress σ′, as that actually represents a lower energy con-
figuration here than the unstressed case. This also suggests a way of thinking
about the magnetostrictive term,B0, as a term which shifts the equilibrium de-
formation away from 0. Rather than a material deforming to accommodate the
magnetization, the magnetization actually changes the equilibrium spacing of
the lattice, and the material is just returning to the new equilibrium spacing.

We look for solutions with varying ε and fixed ε′, since the pure dislocation
equations of motion, (8.1c), are dependent only on the geometry of the mate-
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rial, and independent of the magnetization. We are particularly interested in
energies that produce the equations of motion (8.7), and the magnetic equa-
tions of motion implied by those energies under instant elastic equilibriation.

An energy that produces the desired equations of motion is

f =
1

2
(εij − ε′ij)Cijkl(εkl − ε′kl) +B0

ij(εij − ε′ij) (8.8)

in which ε = ε′ represents a minimum with respect to the elastic energy, as
expected, but not with the inclusion of the magnetoelastic coupling. This ap-
proach also echoes Kröner’s approach of finding equilibrium deformations af-
ter plastic deformation by reversing the incompatible plastic deformation, say
ε′, with an equal, but opposite elastic deformation, −ε′, and minimizing the
compatible term, ε.

The equilibrium strain ε0 for this, away from the line of dislocation, where ε′

is compatible, and for a uniform magnetization (so S : B0 is compatible), is

∂f

∂εij
(ε0) = Cijkl(ε

0
kl − ε′kl) +B0

ij = 0 (8.9)

and multiplying across by the compliance tensor S, remembering SijklCklmn =
1
2
(δimδjn + δinδjm)

ε0
ij = ε′ij − SijklB0

kl (8.10)

which represents an equilibrium deformation which accounts for both dislo-
cation effects and magnetostrictive effects.

If we do the old trick of placing the equilibrium deformation into the energy,
we get

f(ε0) =
1

2
(ε0
ij − ε′ij)Cijkl(ε0

kl − ε′kl) +B0
ij(ε

0
ij − ε′ij)

=
1

2
(−SijklB0

kl)Cijkl(−SijklB0
kl) +B0

ij(−SijklB0
kl)

=
1

2
B0
klSijklB

0
kl −B0

ij(SijklB
0
kl)

= −1

2
B0
klSijklB

0
kl

(8.11)

which is independent of the deformation due to dislocations, is dependent
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only on the magnetization, and is exactly the stress-free magnetostrictive re-
sult we had before. While it produces the mechanical equations of motion we
want, it doesn’t produce the magnetic equations of motion we might expect.
We expect to find the inclusion of dislocations should produce some effect on
the magnetization, as evidenced by phenomena like domain wall pinning and
Barkhausen noise.

If instead, we treat the elastic and magnetoelastic components differently, de-
spite our complaints in previous sections about other treatments doing exactly
this, we can get something that works. We try

f =
1

2
(εij − ε′ij)Cijkl(εkl − ε′kl) +B0

ijεij (8.12)

noting the absence of the dependence on the equilibrium strain due to intrinsic
stress on the magnetostrictive term. This energy results in the same mechanical
equations of motion as our previous attempt, but crucially, different magnetic
equations of motion.

This energy be physically reasoned as the magnetostrictive response depend-
ing on the deformation away from a perfect crystal lattice, and not on the ac-
tual elastic stress, strain, equilibrium strain, or any other mechanical property
of the material itself. This echoes our previous suggestion that the magnetoe-
lastic energy is a result of the magnetization changing the equilibrium lattice
spacing, rather than actually introducing any sort of elastic deformation to the
system itself. The dislocation deformation term then encodes the preference
for the system to be away from the equilibrium lattice position, which depends
on the elastic and magnetoelastic energies, to a mechanical equilibrium posi-
tion due to intrinsic stress.

We find the equilibrium strain, away from the dislocation, for a uniform mag-
netization,

∂f

∂εij
(ε0) = Cijkl(ε

0
kl − ε′kl) +B0

ij = 0

⇒ ε0
ij = ε′ij − SijklB0

kl

(8.13)
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exactly as before, and substituting back into the energy

f(ε0) =
1

2
(ε0
ij − ε′ij)Cijkl(ε0

kl − ε′kl) +B0
ijε

0
ij

=
1

2
(−SijklB0

kl)Cijkl(−SijklB0
kl) +B0

ij(ε
′
ij − SijklB0

kl)

= −1

2
B0
ijSijklB

0
kl +B0

ijε
′
ij

(8.14)

f = −1

2
B0
ijSijklB

0
kl +B0

ijε
′
ij (8.15)

which now contains a B0
ijε
′
ij term, linking the magnetostriction and the de-

formation due to dislocations, which we will call the magneto-dislocation, or
magnetoplastic coupling term. This also has the effect that the magnetic be-
haviour returns to the dislocation-free behaviour as ε′ → 0.

In general, solutions to ε′ can be quite complicated, and worse, the dislocation
deformation can be quite large, nearing unity, particularly near the point of
dislocation, and so, are potentially unsuitable for modelling using a linearized
theory, such as the ones considered here. We can, however, get a qualitative
idea of how a simple stress might effect the material.

8.2 A Model of Dislocation Mobility in

Magnetoelastic Materials:

Recovering Kittel’s Uniaxial Stress Result

One approach to describing the plastic deformation of a material is to say it’s
proportional to the stress of the material. Here, however, we are interested
not simply in stress-free deformations, but in deviations of the crystal lattice
from a perfect lattice. We therefore describe this plastic deformation in terms
of dislocation mobility.

Plastic deformation can occur when dislocations form and move in a material
in a manner which minimizes the stress of the material. Their formation is
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proportional to the stress of the material, and the intrinsic stress they create
acts to minimize the stress of the material at the time of formation. Similarly,
already formed dislocations tend to travel through the material to minimize
overall stress. Since our dislocation terms have been defined to shift the equi-
librium elastic stress position, we can set our dislocation terms proportional to
the formational terms to achieve the desired effect.

We will therefore look at a dislocation stress, σ′ which is proportional to the
maximum stress, σmax, such that

σ′ = κ σmax (8.16)

For a uniaxial tension, we have

σmax
ij = −Tγiγj (8.17)

and so
σ′ij = −κ Tγiγj (8.18)

with a dislocation strain, ε′ of

ε′ij = −κ TSijklγkγl (8.19)

giving a magnetoplastic coupling term of

f = −κT B0
ijSijklγkγl (8.20)

We borrow from Kittel’s derivation of the uniaxial stress, considering S for an
isotropic material. We will convert equation (8.20) into Voigt notation

f = −κT B0,voigt
i SijΓj (8.21)
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with

~B0,voigt =



B1α
2
x

B1α
2
y

B1α
2
z

B2αxαy

B2αyαz

B2αzαx



~Γvoigt =



γ2
x

γ2
y

γ2
z

γxγy

γyγz

γzγx



S =



S11 S12 S12 0 0 0

S12 S11 S12 0 0 0

S12 S12 S11 0 0 0

0 0 0 S44 0 0

0 0 0 0 S44 0

0 0 0 0 0 S44



(8.22)

Looking at a B1α
2
x term, we have

κTB1α
2
x(S11γ

2
x + S12(γ2

y + γ2
z ))

= κTB1α
2
x(S11γ

2
x + S12(γ2

y + γ2
z + γ2

x)− S12γ
2
x)

= κTB1α
2
x((S11 − S12)γ2

x + S12)

= κTB1(S11 − S12)α2
xγ

2
x + κTα2

xS12

(8.23)

since γ2
x + γ2

y + γ2
z = 1, because ~γ is a directional cosine.

Combining the α2
x, α2

y, and α2
z terms, we get

κTB1(S11 − S12)α2
xγ

2
x + κTα2

xS12

+κTB1(S11 − S12)α2
yγ

2
y + κTα2

yS12

+κTB1(S11 − S12)α2
zγ

2
z + κTα2

zS12

= 3κTB1S12 + κTB1(S11 − S12)(α2
xγ

2
x + α2

yγ
2
y + α2

zγ
2
z )

(8.24)
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since α2
x + α2

y + α2
z = 1. Since 3κTB1S12 is a constant, independent of the

magnetization, or the direction of applied stress, we can drop it.

Finally, adding in the αiαjγiγj terms, we get the expanded energy

f =− κTB1(S11 − S12)(α2
xγ

2
x + α2

yγ
2
y + α2

zγ
2
z )

− κTB2S44(αxαyγxγy + αyαzγyγz + αzαxγzγx)
(8.25)

This energy is what Kittel found, and used to derive his uniaxial term. Using
that, we can write the magnetoplastic coupling energy

f =
3

2
κλT sin2 θ (8.26)

where λ is the isotropic magnetostriction constant, and θ is the angle between
the magnetization and the tension.

This recovers Kittel’s uniaxial energy result, as seen in experimental data. In-
deed, it describes the residual effective uniaxial anisotropy seen in samples af-
ter crushing. Our approach, however, derives it as a result of internal stresses
due to dislocations. A similar result should hold for an embedding in a larger
elastic material where the equilibrium elastic state has the magnetic material
under a uniaxial tension, as seen in e.g. magnetic fabrics. It is important to
note, however, that Kittel’s formulation is not, by itself, enough to generate
this result, as proven in section 5.1.2. An addition, such as the addition of
crystal defects made here, is necessary to recover this result.

8.3 A Model of Magnetostriction at a

Magnetite-Ilmenite Boundary

We take, for example, the interface between two materials of differing lattice
sizes, such as in magnetite and ilmenite lamellae. A treatment of this bound-
ary has been done by Shive and Butler (1969) using a treatment by van der
Merwe (1950) for finding the optimum insertion of edge dislocations to mini-
mize lattice misfit. Here, however, we will return to Merwe’s treatment for the
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mathematics, and use Shive and Butler’s treatment for where the edge disloca-
tions should be placed, and derive the strains ourselves. We will then find the
average strain near the surface of the material, and determine the behaviour of
the magnetization near the surface.

In van der Merwe (1950), dislocations in the xy-plane of an isotropic mate-
rial are considered. The dislocation line is in the positive y direction and the
Burgers vector in the positive x direction. He puts the material of larger lattice
constant into the positive z direction. We will use this [001] formulation, along
with the isotropic elastic constants presented by Shive and Butler (1969), and
later rotate it into the proper [111] orientation to match the magnetite-ilmenite
interface plane.

To present the displacements to edge dislocations due to lattice misfit by van
der Merwe, we first need to present a number of prerequisite values. We have
a and b, the lattice constants, with a < b. In our case, a is for ilmenite and
a = 1.34 × 10−10 m, and b is for magnetite and b = 1.48 × 10−10 m. The
value P is an integer value such that Pb = (P + 1)a. In our case, we will say
Pb ∼ (P+1)a, and so, P = 10. Next, we have the average lattice constant c such
that (P + 1

2
)c = Pb. This also acts as the Burgers vector of the edge dislocation

where the Burgers vector in an edge dislocations. We have the wall spacing
p = Pb representing the spacing between edge dislocations. The value d repre-
sents the equilibrium separation between atoms in the magnetite plane and the
ilmenite plane. Finally ζ is equivalent to the z coordinate, but measured from
the first atom in the magnetite, a distance d/2 into the magnetite. In (van der
Merwe 1950), he also introduces a number of variables which keep the equa-
tions relatively clean. We will present the relevant variables, along with the
ones we’ve just described beside the displacement, (u0

x, u
0
y, u

0
z), as presented in
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his paper for the magnetite phase which extends from ζ = 0 to ζ = +∞

a = 1.34× 10−10 (8.27a)

b = 1.48× 10−10 (8.27b)

P = 10 (8.27c)

p = Pb = 1.48× 10−9 (8.27d)

c =
P

P + 1
2

b = 1.4067× 10−10 (8.27e)

µ = µ0 = 0.95× 1011 (8.27f)

ν = 0.28 (8.27g)

β =
πµc

pµ0(1− ν)
(8.27h)

A =
√

1 + β2 − β (8.27i)

X =
2πx

p
(8.27j)

Z =
2πζ

p
(8.27k)

R =
√

1 + A2e−2Z − 2Ae−Z cos (X) (8.27l)

u0
x =

c

2π
tan−1 (

Ae−Z sin (X)

1− Ae−Z cos (X)
)− cZe−Z sin (X)

4π(1− ν)R2
(8.27m)

u0
y = 0 (8.27n)

u0
z =

(1− 2ν)c

4π(1− ν)
ln (

R

1− A
)− cZAe−Z(cos (X)− Ae−Z)

4π(1− ν)R2
(8.27o)

where care must be taken in a magnetic context that µ0 is not the permittivity
of free space, but rather an elastic constant dependent on the specifics of the
interfacing materials. For simplicity, we set it to the value of magnetite when
inside the magnetite region.

From Shive and Butler (1969), on the magnetite-ilmenite boundary, there is a
rotational symmetry of π/3, so the edge dislocations are likely to occur along
three lines from the position, say, (x, y, z) = (0, 0, 0). We therefore need to rotate
the displacements and coordinates to model these extra walls. The standard
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rotation matrix in the xy-plane will work here

Θxy(θ) =


cos (θ) sin (θ) 0

− sin (θ) cos (θ) 0

0 0 1

 (8.28)

To rotate the displacements, we will use the relation

uθi (~x, θ) = Θxy(θ)ijuj((Θ
xy(θ))Tklx

′
l)

= Θxy(θ)ijuj(Θ
xy(−θ)klx′l)

(8.29)

noting the transpose of the rotation matrix is (Θxy(θ))T = Θxy(−θ). For mag-
netite with a π/3 rotational symmetry, we have

~u(~x) = ~uθ(~x, 0) + ~uθ(~x,
π

3
) + ~uθ(~x,−π

3
) (8.30)

Already, this contains too many terms to deal with directly. Indeed, deriva-
tives and plotting of the equations presented here was done symbolically and
numerically in Mathematica.

As usual, the strain can be defined

ε′ij(~x) = (ui,j + uj,i)/2 (8.31)

Figure 8.1 shows the magnitude of the strains in the plane ζ = 0 described by
the equations presented.

As can be seen from figure 8.1, there are regions of very large strain. Indeed,
this can be seen from the dislocations, but it is much clearer from the pre-
sented image. In these regions, the assumptions of linear elasticity and of
linear magnetostriction of small displacements break down. In particular, in
these regions, the values tend towards infinity. We want to take an average of
the strain over some small region near the interface surface to incorporate the
elastic strains into a continuum theory on the same order of approximation as
the magnetic continuum theory. However, the large values near the disloca-
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Figure 8.1: The magnitude of the strain, |ε′|, due to dislocation walls due to
lattice misfit in the plane ζ = 0 in the magnetite phase.
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tion wall contribute significantly to the resulting average, while effecting only
a region of around 10% of all the atoms. To that end, we will simply exclude a
region extending a distance b from either side of the wall in the xy-plane, and a
distance b extending into the material, and assume our values are at least 10%
off. This should exclude the atoms in the edge dislocation and their immediate
neighbours. The region outside the domain wall and neighbouring atoms can
be described by the Boolean function

ΞB(x, y, z) =
(

(cos (
2π

b
x) < cos

2πb

p
)

&& (cos (
2π

b
(x cos (π/3) + y sin(π/3)) < cos

2πb

p
)

&& (cos (
2π

b
(x cos (−π/3) + y sin(−π/3)) < cos

2πb

p
))

|| z > a

(8.32)

and the windowing function is given

Ξ(x, y, z) =

1 if ΞB(x, y, z) == True

0 if ΞB(x, y, z) == False
(8.33)

The average of the strain is then found using

〈ε′〉 =

∫
Ω
ε′ Ξ dV∫
Ω
dV

(8.34)

We must now determine an appropriate region of integration. From inspec-
tion of figure 8.1, the period in the x direction is not p, the distance between
the walls, but 2 p, the distance between intersecting walls, punctuated by red
“dots”. The x range can, therefore, be x ∈ [−p, p]. It can be shown that the
distance between red dots in the y direction is 2p√

3
. The y range can be set to

y ∈ [− p√
3
, p√

3
].

We will look at the purely surface effect, setting ζ = 0 and Ω = [−p, p] ×
[−p/

√
3, p/
√

3]. The integration is done using Mathematica’s NIntegrate
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function. For the given values, we get

〈ε′〉 =


−0.0192251 2.199979× 10−7 −1.03469× 10−9

2.19979× 10−7 −0.0192144 3.0011× 10−10

−1.03469× 10−9 3.0011× 10−10 0.0149415

 (8.35)

This shows a compression in the xy-plane, and a stretching in the z-direction,
which is what we would expect. We note the values of 〈ε′xx〉 and 〈ε′yy〉 are equal
to within 0.1%, and the off diagonal terms are approximately zero.

We now need to rotate this strain tensor to the correct orientation, from [001]

to [111]. For a rotation matrix Φ, the rotated strain tensor ε′′ can be found by

ε′′ij = Φikε
′
klΦ

T
lj (8.36)

For our transformation, after rotation, the z direction, [001], needs to point in
the [111] direction. Then

Φ · (0, 0, 1) = (
1√
3
,

1√
3
,

1√
3

)

⇒ (Φ13,Φ23,Φ33) = (
1√
3
,

1√
3
,

1√
3

)

Next, we align the x direction with the projection of the x direction in the [111]

plane. The projection of a vector ~x into a plane with normal ~n can be given
~v⊥ = ~v − (~v · n̂) n̂. In our case, we have ~v = (1, 0, 0), n̂ = norm(1, 1, 1) =

1√
3
(1, 1, 1) and need |v⊥| = 1, so

Φ · (1, 0, 0) = norm((1, 0, 0)− 1√
3

((1, 0, 0) · (1, 1, 1))
1√
3

(1, 1, 1))

⇒ (Φ11,Φ21,Φ31) = (
2√
6
,− 1√

6
,− 1√

6
)

And finally, we find the vector perpendicular to (1, 1, 1) and ( 2√
6
,− 1√

6
,− 1√

6
) A

cross product will give us this. The correct choice between ~y′ = ~x′ × ~z′ and
~y′ = ~z′ × ~x′ can be found from det (Φ) = +1 for a rigid body rotation. This

195



gives us ~y′ = ~z′× ~x′. The wrong choice would give det (Φ) = −1, which would
imply one of the axes has also been mirrored.

We have

Φ · (0, 1, 0) = (
1√
3
,

1√
3
,

1√
3

)× (
2√
6
,− 1√

6
,− 1√

6
)

⇒ (Φ12,Φ22,Φ32) = (0,
1√
2
,− 1√

2
)

All together, this gives

Φ =


2√
6

0 1√
3

− 1√
6

1√
2

1√
3

− 1√
6
− 1√

2
1√
3

 (8.37)

and so, the correctly oriented average strain 〈ε′′〉 is

〈ε′′〉 =


−0.00783619 0.011389 0.0113887

0.011389 −0.007831 0.0113836

0.0113887 0.0113836 −0.00783075

 (8.38)

We plot the energy surface of the magnetoplastic coupling energy

f = B0
ij〈ε′′ij〉 (8.39)

at the magnetite-ilmenite boundary in figure 8.2. The maximum and minimum
values found for this energy are

max f = 2.26× 105

min f = −5.69× 105
(8.40)

giving the range ∆f = 7.95201 ∗ 105.

The image in 8.2 looks like a uniaxial anisotropy K sin(θ) with positive an-
isotropy constant and axis in the [111] direction. We have for our 〈ε′′〉 that
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Figure 8.2: Energy surface of the magnetoplastic coupling energy at the
magnetite-ilmenite boundary.

197



the diagonal terms 〈ε′′ii〉 all have nearly the same value ε1, and the diagonal
terms 〈ε′′ij〉 have nearly the same value ε2. From this (remembering |m| = 1 ⇒∑

im
2
i = 1)

f = B1(
∑
i

mimi)ε1 +B2(
∑
i 6=j

mimj)ε2

= B1ε1 +B2(
∑
i 6=j

mimj)ε2

(8.41)

we drop the term independent of ~m, B1ε1, and add a constant term indepen-
dent of ~m, B2ε2

f = B2ε2 +B2(
∑
i,j

mimj)ε2

= B2(
∑
i

mimi)ε2 +B2(
∑
i 6=j

mimj)ε2

= B2(
∑
i

mi)(
∑
j

mi)ε2

= B2

(√
3 ~m · ( 1√

3
,

1√
3
,

1√
3

)

)2

ε2

= 3B2ε2 cos2 (α)

(8.42)

where α is the angle of the magnetization wrt the uniaxial axis, [111] in this
case. Indeed, the value 3B2ε

′′
xy = −7.95408 × 105 has the same magnitude as

∆f to within 0.1%, and the correct sign for the magnetization aligned with the
[111] direction to represent an energy minimum. It is likely an exact integration
of the region would result in the off-diagonal entries being more similar, and
the values for 3B2ε

′′
xy and ∆f would match more closely.

Finally, we can say, for the magnetite-ilmenite boundary, where the strain εij =

ε2 for i 6= j, that

f = 3B2ε2 cos2(α) (8.43)

8.3.1 Discussion

To recap, we derived the strain for the magnetite-ilmenite boundary for a [100]

orientation, averaged the strain over one period of the strain in the x and y

directions at the interface and then rotated it to the correct [111] orientation,

198



matching the expected lamellar interface orientation. From here, we noted that
the magnetoplastic coupling energy depends only on the off-diagonal magne-
tostrictive coupling term and the off-diagonal strain term, and the squared co-
sine of the angle between the magnetization and the interface normal. This
looks exactly like a uniaxial anisotropy with the coupling constant Kuλ =

3B2ε2. For the magnetite-ilmenite boundary, this value is Kuλ = −7.954× 105.

Comparing this value to the effective cubic anisotropy coupling constant for
magnetite, including the uniform magnetostrictive response, which has the
value K1 +Kλ = −1.326580×104, we see the effective uniaxial coupling due to
the magnetoplastic coupling energy is approximately 10 times larger than the
cubic anisotropy. This suggests the uniaxial anisotropy energy should domi-
nate at the ilmenite-magnetite boundary, with the easy axis pointing normal
to the interface boundary. The magnetoplastic anisotropy coupling drops ex-
ponentially with distance from the interface boundary. However, the uniaxial
preference at the boundary of the material should be enough to break the cu-
bic symmetry of the magnetite throughout the material via coupling with the
exchange energy. The magnetization at the surface will prefer to point along
the interface normal, and neighbouring magnetizations will prefer to point in
the direction of their neighbours, and so on.

A magnetite-ilmenite lamellar structure should, therefore, experience a pref-
erence to magnetize parallel to the axis of the system. This is, indeed, seen
in measurements made by N. Church during his PhD in which a magnetite-
ilmenite structure tended to magnetize along the system axis. This chapter
stands as a potential explanation for that phenomenon.
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Chapter 9

Conclusions - Magnetostriction

One significant point demonstrated by this section of this thesis is that, even for
a uniformly magnetized material, Kittel’s equations for the effective magne-
tostrictive anisotropy due to a uniaxial tension cannot be correct. When under
a fixed stress, the elastic terms and the magnetic terms in Kittel’s formulation
completely decouple. This was further cemented in the simulations performed
for grains with free boundaries and fixed surface tension, where any applied
surface tension resulted in exactly the same behaviours as the tension-free sim-
ulations. The simulations make no particular changes to Kittel’s formulation of
the energy, they simply find the deformation that minimizes the energy for the
given magnetization. The two-factor proof, both from the mathematics and
simulation results, mean Kittel’s theory for the effective uniaxial anisotropy
under uniaxial tension should no longer be used.

The chapter on including plastic deformations goes a long way towards re-
covering the uniaxial results. Specifically, the magnetoplastic coupling suc-
cessfully predicts effective uniaxial anisotropies in situations of uniaxial inter-
nal stress. This is particularly important, as the uniaxial result is a well stud-
ied and commonly measured phenomenon in physical samples. Considering
the power of the plastic deformation model to recover the results we had just
proven were not a result of a pure magnetoelastic theory, this is a significant
contribution to our understanding of magnetostrictive effects. Indeed, I think
any recovery of the uniaxial results will be, at the very least, expressible in
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terms of a magnetoplastic coupling.

The inclusion of a FEM magnetostriction solver into MERRILL represents a
significant step towards accurate measurements for highly magnetostrictive
materials like titanomagnetites. In particular, the compatibility between the
magnetostriction solver and the nudged elastic band code in MERRILL means
the stability of titanomagnetites can be accurately predicted. Again, this would
go a long way towards reliable measurements of some of the oldest recordings
of the Earth’s magnetic field. The preliminary modelling results presented here
for various geometries of titanomagnetite show that the KCS and KME ap-
proaches produce different critical grain sizes and slightly different saturation
magnetizations — i.e. they behave differently, so KCS results may not be reli-
able. Further work must be done in this area to determine the particular effect
this has on the stability of the grains, and the effect on less magnetostrictive
materials. The only reason it wasn’t done here was due to time constraints.

It should be noted that simulations of highly magnetostrictive materials sim-
ply aren’t possible without a KME solver. A number of KME solver exist
(e.g. Azoum, Besbes, and Bouillault (2004) and Azoum, Besbes, Bouillault,
and Ueno (2006)), but no FEM solvers for arbitrary magnetizations which pro-
duce effective fields, and nothing fully integrated with a micromagnetics pack-
age like MERRILL. In particular, I am not aware of any other formulations of a
magnetostrictive solver that explicitly includes time, which makes clear the as-
sumptions made about relaxation times when finding solutions. Further, I’ve
seen no attempts made to derive effective fields that represent what a magne-
tization might experience on the scale of the magnetic relaxation time, like we
saw our uniform magnetization experiments in chapter 7.

The particular formulation presented in chapter 6 also makes it possible to see
the deformation due to magnetostriction for non-uniform magnetizations. As
an interesting example found here, the twisted deformation found for single
vortex states echoes the Wiedemann effect. This is a good sign that the im-
plementation presented here is correct. In particular, the Wiedemann effect
is where a grain assumes a twisted deformation when exposed to a helical
magnetic field. Indeed, a helical field in a paramagnetic grain would induce
a magnetization similar in shape to a single vortex. This could be a promis-
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ing route for direct comparison of the theoretical predictions made here for
deformations due to non-uniform magnetizations.

The inclusion of magnetoelasticity in MERRILL, and the theory of magneto-
plastic deformation represents a significant step towards accurate modelling of
multi-phase materials. As previously mentioned, the most common measure-
ments of magnetic materials made for GeoSciences applications, are of multi-
phase materials. The multi-phase aspect and deformations of these materials is
very often over-simplified or simply ignored. We can now fully model materi-
als taking the mechanical deformation and interactions of their crystal lattices
into account.

For core-shell grains of magnetite-maghemite, for example, the interaction of
two incompatible lattices means an accurate FEM simulation would involve
multi-phase micromagnetic FEM (solved in chapter 2), magnetostriction FEM
(solved in chapter 6), edge dislocations on the interface (effective anisotropy
derived in chapter 8), and determining the magnetic parameters in the inter-
face region (left as an exercise for the reader).

At the closing of this part of the thesis, we are now in a good position, mov-
ing forward, to add all the necessary physics to micromagnetic models for fully
describing the sorts of irregularly shaped, imperfect, multi-phase materials en-
countered in typical geophysical settings.
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Part III

Electron Holography
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Chapter 10

Electron Holography

Electron holography is an imaging technique that can extract magnetic infor-
mation from a material at a nanometer scale. This is a particularly promising
avenue for direct comparisons of experimental measurements and modelling
results. This has already been done and published (Almeida et al. 2016) using
the same simulation software, HoloMag, I wrote during my studentship, and
was used to generate the results presented in this part of the thesis.

In this chapter, we will outline some mathematical results, primarily as pre-
sented by Keimpema (Keimpema, De Raedt, and De Hosson 2006), and present
methods for using them to produce simulated holography images for micro-
magnetic models. We will also present some example holography images. By
having a full picture of the magnetization, along with the accompanying elec-
tron hologram, we can paint a picture of how various magnetic structures con-
tribute to electron holograms, some of the potential pitfalls when interpreting
holography images, and how they might be mitigated.

While the idea to use a tessellation of boxes to approximate the magnetization
to calculate the electron hologram is not an original idea, the specific deriva-
tions presented here using Keimpema’s solutions for a uniformly magnetized
brick are original. In particular, the approximation of the solutions near the
box edges, suitable for numerical simulation. The derivation of the projection
formulation, however, is entirely original work.
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10.1 Background

Here we will present how the phase of an electron changes as it passes through
a magnetic field, and how that translates to an electron hologram. Much of this
is presented much better elsewhere, particularly in (Keimpema, De Raedt, and
De Hosson 2006), (Keimpema 2008), and (Lehmann and Lichte 2002).

In electron holography, a point source, as in a Transmission Electron Micro-
scope (TEM) generates an electron potential in the form of a plane wave from
the source to the image plane. This wave is then considered in two halves. One
half, say the left half from the point of view of an observer, will pass through a
magnetized sample. We will refer to this as the probe wave. The other half, the
right half, will not. This will be called the reference wave. For ease of thought,
we can imagine these two waves are separated and moved far away from each
other. After the probe wave has passed through the sample, the probe wave
and the reference wave are moved such that they’re overlapping, typically by
passing them through a “Lorentz lens”. When the overlapped wave is im-
aged, say by counting incident electrons on a CCD, it produces an interference
pattern.

The interference pattern arises due to the way electric and magnetic fields ef-
fect the phase of an electron, and an electron wave.

The phase change of an electron as it travels along a path can be derived using
the Klein Gordon equation. We won’t go into it here, as delving into quan-
tum mechanics is, perhaps surprisingly for this thesis, an unnecessary extra
complication. A brief treatment, and presentation of many of the initial re-
sults used here can be found in Keimpema, De Raedt, and De Hosson (2006).
The result using the Klein Gordon equation appears to differ from the Hamil-
tonian formulation used in the original Aharonov and Bohm (1959) paper by
a factor of c, the speed of light. This could be an artefact of using “natural
units” in Aharonov and Bohm (1959), where c is set to 1, and the other units
are scaled to allow for this. This allows Aharonov and Bohm (1959) to quickly
apply a relativistic generalization to derive the magnetic part. However, it is
then difficult to see where c would be reintroduced. On the other hand, the
Klein-Gordon formulation is defined relativistically from the ground up using
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SI units. I decided not to investigate much further, and accept the SI formula-
tion in Keimpema, De Raedt, and De Hosson (2006).

It can be shown that the phase, φ, of an electron travelling along a path L,
parameterized by

~l(s) = (l1(s), l2(s), l3(s)) , s ∈ [0, 1] (10.1)

can be written in terms of the magnetic vector potential, ~A, that it passes
through, and ignoring the contribution from any electric potential

φ = − q
~

∫
L

Ai · l̂i · dl (10.2)

where q is the electron charge, and ~ is the reduced Planck constant. It can also
be shown that the wave function for an electron travelling along the path L,
using the integral above, can be written

ψ(~l(1)) = ψ(~l(0)) e−iφ (10.3)

which is equivalent to the wave at the point ~l(0), but with only a change in
its phase. In this manner, it is clear that, since the magnetic vector potential
experienced by the probe and reference waves as they travel from their source
to the image plane is different, the phase of each electron wave at the point
they are overlapped is different. We therefore expect this phase difference to
produce an interference pattern.

From quantum mechanics, it can be shown that the probability of measuring
an electron at a point ~x, represented by a complex valued wave function ψ,
assuming ψ has been normalized, is

P (ψ(~x)) = |ψ(~x)|2 (10.4)

with | · | the complex absolute value with

z = a+ ib

⇒ |z| = zz̄ = (a+ ib)(a− ib) =
√
a2 + b2
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For a wave representing a single electron, as in our problem, and writing
ψ(~l(0)) = ψ0 we have

P (ψ(~l(1))) = |ψ(~l(0)) e−iφ|2 = |ψ0|2 (10.5)

since |eiα| = 1. This simply represents the amplitude of the wave function, and
ignores any change in the electron phase over space or time.

When the wave function consists of two overlapping electron waves, ψ1 and
ψ2, as in our example, which travel along paths L1 and L2, parameterized by
~l1(s) and ~l2(s) respectively, which have the same start and end point, and have
phase changes of φ1 and φ2, we have ψ = ψ1/2 + ψ2/2 and, again assuming ψ0

is properly normalized,

P (ψ(~l(1))) =
1

4
|ψ1(~l1(1)) + ψ2(~l2(1))|2

=
1

4
|ψ0 e

−iφ1 + ψ0 e
−iφ2|2

=
1

4
|ψ0|2 |cos (−φ1) + i sin (−φ1) + cos (−φ2) + i sin (−φ2)|2

=
1

4
|ψ0|2

(
cos (−φ1)2 + cos (−φ2)2 + 2 cos (−φ1) cos (−φ2)2

+ sin (−φ1)2 + sin (−φ2)2 + 2 sin (−φ1) sin (−φ2)
)

=
1

4
|ψ0|2

(
2 + 2 cos (−φ1) cos (−φ2) + 2 sin (−φ1) sin (−φ2)

)
=

1

2
|ψ0|2

(
1 + cos (−φ1 − φ2)

)
=

1

2
|ψ0|2

(
1 + cos (φ1 + φ2)

)

(10.6)

In our case, we can use L1 to refer to the probe beam path and ψ1 to refer to
the probe beam, and L2 to refer to the reference beam path and ψ2 to refer to
the reference beam. From here, we can see the probability of measuring an
electron at the image plane is related to the cosine of the phase shifts of the
probe and the reference waves.

Now, if we describe the magnetic vector potential, ~A, using the Coulomb gauge
condition, we have that ~A = 0 at infinity. If we assume, then, the reference
wave stays far from the magnetic region at all times, infinitely far, in fact, we

210



can say that ~A = 0 in L2, and so Ai in the integrand of (10.2) is uniformly zero,
so the phase change φ2 is zero. This also assumes that the electron source and
the image plane are also infinitely far away from the magnetic material, since
the start and end points of the two paths are the same. This actually suits the
assumptions we will be making about the setup. We then get the probability
of measurement is entirely due to the probe wave

P (ψ(~x)) =
1

2
|ψ0|2(1 + cos (φ1)) (10.7)

When an image is taken of this overlapping wave function, the “brightness”
of each pixel is proportional to the probability of measuring an electron at that
point. As can be seen from the probability function described here, that prob-
ability is a product of both the electron phase, but also the amplitude. In our
treatment, we neglect absorption of the electron beam by the sample, but this is
an important consideration in experiments. There are a number of techniques
used to separate the cosine contribution from the amplitude in experimental
data. A commonly used one is Off-Axis Holography, which involves using
Fourier Transforms to separate the phase varying factor from the constant am-
plitude factor. The details of this won’t be discussed here, but these methods
produce a 2D image of the cos (φ1) term for each L1 travelling from the TEM
source to the given pixel. This is the value we will be most interested in simu-
lating, as this is what is typically presented in publications.
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10.2 Tessellation Formulation

Outline:
We will now seek a formulation of the phase shift φ which makes ref-
erence only to the magnetization, M , of a material. We will take an
integral-form solution of the phase shift from integral-form solutions to
the Maxwell equations, and discretize them into a sum over contribu-
tions from uniformly magnetized boxes with closed, analytic solutions.

We will then resolve potential issues with the solutions near the sides
and the corners of the boxes, and present a function which should work
well in a computer implementation.

We will then show how to find the magnetization of these boxes.

This will be done with the aim of generating electron holograms of re-
sults from micromagnetic models. Given the simulated phase shift, we
can then take the cosine to generate our simulated electron hologram.

We assume the TEM setup is as follows: The electron source is at a point
l(0) = (x, y,−∞) and the image plane is at a point l(1) = (x, y,+∞). This
implies that the source is at a different point for different parts of the electron
wave. Indeed, the assumption we make here is that the electron wave begins
as a plane wave. This can be reconciled with a point source by assuming the
electron wave spreads out into a plane wave at a distance very far from the
magnetic source where ~A is still effectively zero. We will then look at the phase
change in the electron wave at a single point as it travels in a straight line from
(x, y,−∞) to (x, y,+∞).

The integral over the line L1 now represents an integral along the z-axis with
z ∈ [−∞,∞], and l̂ is ẑ. The phase integral becomes

φ1(x, y) = − q
~

∫ ∞
−∞

Az(x, y, z) dz (10.8)

As previously mentioned, we will use the Coulomb gauge, where we can write
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solutions to the Maxwell equations in a static, charge-free region

~A(~x) = ~∇×
∫

Ω

~M(~x ′)

4π|~x′ − ~x|
dV ′ in Ω

∂iAi = 0 in Ω

Ai = 0i in ∂Ω

(10.9)

where ~M is the magnetization, and the domain Ω is over the whole magnetic
material.

We will approximate the domain Ω by a tessellation of non-overlapping, axis-
aligned cuboidal regions, denoting them with a box �i, with

Ω =
⋃
i

�i

i 6= j → �i ∩�j = ∅
(10.10)

such that we can rewrite the above integral

~A(~x) ∼
∑
i

~∇×
∫
�i

~M(~x ′)

4π|~x′ − ~x|
dV ′ (10.11)

Now, if we choose the cuboidal region small enough that ~M is approximately
constant, say ~Mi in the region �i, we get

~A(~x) ∼
∑
i

~∇×
∫
�i

~Mi

4π|~x′ − ~x|
dV ′ (10.12)

We can now find the phase

φ(x, y) ∼ − q
~
∑
i

∫ ∞
−∞

~∇×
∫
�i

~Mi

4π|~x′ − ~x|
dV ′ dz (10.13)

The integral here, for uniform ~M over a cuboidal region with our boundary
and gauge conditions has been solved in (Keimpema, De Raedt, and De Hos-
son 2006), so we can replace the integrals here with analytic solutions. The
contribution φi to the phase due to box �i with thicknesses (Lxi, Lyi, Lzi), and
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center (x0
i , y

0
i , z

0
i )

F0(x, y) = x ln (x2 + y2)− 2x+ 2y tan−1

(
x

y

)
φi(x, y) =

µ0MiLzi
4Φ0

(
−
(

F0

(
(x− x0

i )− Lxi/2, (y − y0
i )− Lyi/2

)
− F0

(
(x− x0

i ) + Lxi/2, (y − y0
i )− Lyi/2

)
− F0

(
(x− x0

i )− Lxi/2, (y − y0
i ) + Lyi/2

)
+ F0

(
(x− x0

i ) + Lxi/2, (y − y0
i ) + Lyi/2

) )
mx

+
(

F0

(
(y − y0

i )− Lyi/2, (x− x0
i )− Lxi/2

)
− F0

(
(y − y0

i ) + Lyi/2, (x− x0
i )− Lxi/2

)
− F0

(
(y − y0

i )− Lyi/2, (x− x0
i ) + Lxi/2

)
+ F0

(
(y − y0

i ) + Lyi/2, (x− x0
i ) + Lxi/2

) )
my)

(10.14)

The full phase is then simply a sum of these contributions

φ(x, y) =
∑
i

φi(x, y) (10.15)

Noting the absence of dependence on the z coordinate, one simple optimiza-
tion that can be made is to sum the magnetizations and lengths from boxes in
the same z-aligned column. This is equivalent to choosing boxes that are long
in the z-direction and averaging the magnetization in the column. This averag-
ing and multiplying by the z-length also looks like integrating the value down
in the z-direction onto a flat square. This is, I believe, the viewpoint taken by
other authors in building this formulation.

10.2.1 Resolving Box Sides and Corners

We note there are potential infinities at F0(x, 0) and F0(0, 0), the box sides and
corners, so we’ll take limits and see what these values are. This is an important
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step for a stable computer implementation.

We’ll first look at limy→0 for x 6= 0:

lim
y→0

F0(x, y) = lim
y→0

x ln(x2 + y2)− 2x+ lim
y→0

2y tan−1 (x/y) (10.16)

The first term is simple enough

lim
y→0

x ln(x2 + y2) = x ln(x2) (10.17)

For the second term, if we remember the domain of tan is the angle θ which,
while not strictly bounded, is periodic. So the range of tan−1 will be that value
θ, and fixing it on a single rotation about the unit circle, will be somewhere in
[−2π, 2π], depending on conventions. Importantly, −2π < limv→∞ tan−1(v) <

2π, so tan−1 is bounded. Then

lim
y→0

2y tan−1 (x/y) = 0 (10.18)

Finally
lim
y→0

F0(x, y) = x ln(x2)− 2x (10.19)

If we now take the limit as x→ 0 of this value

lim
x→0

lim
y→0

F0(x, y) = lim
x→0

x ln(x2)− 2x (10.20)

To resolve the evaluation of x · ln(x2) = 0 · ∞ in this limit, we use l’Hôpitale’s
rule. Writing

lim
x→0

x lnx2 = lim
x→0

2 ln(x)

1/x
(10.21)

we have ∞∞ . Taking the first derivative should suffice

lim
x→0

2 ln(x)

1/x
= lim

x→0

(2 ln(x))′

(1/x)′
= lim

x→0

1/x

−1/x2
= lim

x→0
−2x = 0 (10.22)

and so
lim
x→0

lim
y→0

F0(x, y) = 0 (10.23)
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Taking limits in the opposite order

lim
x→0

F0(x, y) = lim
x→0

x ln(x2 + y2)− lim
x→0

2x+ lim
x→0

2y tan−1(x/y)

= 0 ln(y2) + 0 + 2y0

= 0

(10.24)

and including the y limit
lim
y→0

lim
x→0

F0(x, y) = 0 (10.25)

so our limits converge.

In a computer implementation, however, we still come across the issue of, say
in the x ln(x2) term, a very small number multiplied by a very large number as
x → 0. A simple workaround is to create piece-wise functions, with the limits
applied at a threshold distance ε

F ′0x(x, y) =

x ln(x2 + y2)− 2x if x > ε

0 otherwise

F ′0y(x, y) =

2y tan−1(x/y) if y > ε

0 otherwise

F ′0(x, y) = F ′0x(x, y) + F ′0y(x, y)

(10.26)

10.2.2 Evaluating the Box Magnetization

We also need a way of computing ~Mi. We’ve noted that the box should be
small enough that ~M is essentially constant, but we’ve also noted that, due to
the absence of z-coordinate, we can elongate the box in the z-direction and take
the average. We will, therefore, take boxes, �i, short in the x and y direction,
and long in the z direction, and compute ~Mi by taking the total average

~Mi =

∫
�i

~M dV∫
�i
dV

(10.27)
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10.2.3 Example Implementation

This tessellated box technique was implemented as a ParaView plugin. We
will show here the result of each step of the implementation.

We start with a 100 nm cube with a
vortex state. The image to the right
is the cube as it will be seen in the
electron hologram, with the z-axis
pointing into the page.

Next, we divide this into a grid
of boxes, fine in the x and y di-
rections, and extending at least the
length of the cube in the z direction.
The boxes should at least cover the
magnetic region. The grid pictured
here is a lower resolution than will
actually be used.
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The average magnetization, ~Mi is
then found for each box �i. It
is found by uniformly sampling
the magnetization within each box.
The magnitudes of the average
magnetizations are pictured here,
along with vectors pointing in the
magnetization direction. The pro-
jected outline of the cube is pic-
tured here in white.

For each point (x, y) of the image,
the electron phase

φ(x, y) =
∑
i

φi(x, y)

is evaluated. Each φi depends on
the ~Mi of each box �i.
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From the electron phase, the in-
plane B-field, ~B⊥ is calculated by

~B⊥ = (−∂yφ, ∂xφ)

The contour map and directions ~C

are then calculated using

~C = cos(αφ)B̂⊥

with α the “amplification factor”,
and colored based on the size and
direction of this vector, as anno-
tated on the image.

10.3 Projection Formulation

Outline:
We want to find a differential equation describing the electron phase in
terms of the magnetization, similar to the PDE that describes the mag-
netic scalar potential in terms of the magnetization. With this, we may
write a Finite Element solver for the electron hologram.

To do this, we will take the typical micromagnetic PDE for the magnetic
vector potential and use the equations including ~A, Mx and My. We will
integrate both sides from z = −∞ to z =∞.

We will then show all terms in Ax and Ay vanish, and the terms in Az can
be written as terms in φ, the electron phase. This will give us the PDE
we’re looking for.

We will then look for suitable boundary conditions for the PDE, and then
present a well defined problem of a PDE and Dirichlet boundary con-
ditions. This will then be suitable for solving with the Finite Element
Method.
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In micromagnetism, we have

~B = µ0( ~H + ~M) (10.28)

with
~∇ · ~B = 0

~∇× ~H = 0
(10.29)

from this, we can say B has no divergence, so it can be written in terms of a
potential ~A

~B = ~∇× ~A (10.30)

and so
~∇× ~A = µ0( ~H + ~M) (10.31)

and taking the curl of both sides, and remembering ~∇× ~H = 0

~∇× ~∇× ~A = µ0
~∇× ~M (10.32)

which gives us our initial PDE relation.

We now want to isolate the Az, Mx, and My components, since that is what
contributes to our electron phase shift. Taking the 3rd component of (10.32),
being a vector equality, and expanding out the curls, we get

∂x∂zAx − ∂x∂xAz − ∂y∂zAy − ∂y∂yAz = −∂yMx + ∂xMy (10.33)

Now, we perform a line integral of both sides from ~l = (x, y,−∞) to ~l =

(x, y,+∞), in line with the line integral we use to define our electron phase,
φ =

∫∞
−∞Az dz. We hope that this integral will hit the Az terms, and make the

Ax and Ay terms vanish.
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We get

∫ ∞
−∞

(
(∂x∂zAx)(x, y, z

′)− (∂x∂xAz)(x, y, z
′)

− (∂y∂zAy)(x, y, z
′)− (∂y∂yAz)(x, y, z

′)
)
dz′

=

∫ ∞
−∞

(−(∂yMx)(x, y, z
′) + (∂xMy)(x, y, z

′)) dz′ (10.34)

We introduce the function application (x, y, z) to clarify the coordinate being
integrated over, and make liberal use of braces to clarify that the derivatives
act on the vector valued function ~A, not on the resulting value of ~A(x, y, z).
However, this becomes a little confused as integrals and derivatives are com-
muted. Suffice it to say, derivatives will always be acting on the function ~A,
even if it appears to have the coordinates applied. Indeed, it would be cleaner
to consider the integral as a functional like the derivative, i.e. (Szξ)(x, y) =∫∞
−∞ ξ(x, y, z

′) dz and define derivatives (∂γSzξ)(x, y) =
∫∞
−∞(∂γξ)(x, y, z

′) dz

and show that ∂γSzξ = Sz∂γξ representing the commutation of the derivatives
and the integral. For this short section, however, I think that would probably
be even more confusing. Suffice it to say the chain rule will never be needed in
this section.

Since the line of integration has no variation in x and y, the derivatives ∂x and
∂y commute with the integral. We can say∫ ∞

−∞
∂x∂xAz(x, y, z

′) dz′ = ∂x∂x

∫ ∞
−∞

Az(x, y, z
′) dz′ (10.35)

recalling

φ(x, y) = − q
~

∫ ∞
−∞

Az(x, y, z
′) dz′ (10.36)

then
∂x∂x

∫ ∞
−∞

Az(x, y, z
′) dz′ = −~

q
(∂x∂xφ)(x, y) (10.37)

and similar for ∂y∂yAz. We can also say∫ ∞
−∞

(∂yMx)(x, y, z
′) dz′ = ∂y

∫ ∞
−∞

Mx(x, y, z
′) dz′ (10.38)
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and similar for ∂xMy. For convenience, we will write

~M⊥(x, y) =

(∫ ∞
−∞

Mx(x, y, z
′) dz′ ,

∫ ∞
−∞

My(x, y, z
′) dz′

)
(10.39)

and call ~M⊥ the projection of ~M onto the image plane, or simply the in-plane
magnetization.

We now write∫ ∞
−∞

(∂x∂zAx(x, y, z
′)− ∂y∂zAy(x, y, z′)) dz′ +

~
q
∂x∂xφ(x, y) +

~
q
∂y∂yφ(x, y)

= −∂yM⊥
x (x, y) + ∂xM

⊥
y (x, y) (10.40)

Since
∫ b
a
∂zAi(x, y, z

′) dz′ = Ai(x, y, z
′)|z′=bz′=a, we have∫ ∞

−∞
(∂x∂zAx)(x, y, z

′) dz′ = ∂x

∫ ∞
−∞

(∂zAx)(x, y, z
′) dz′

= ∂x(Ax(x, y,∞)− Ax(x, y,−∞))

(10.41)

and similar for the other term.

We want theseAx andAy terms to vanish so we’re left with just φ. We can prove
that derivatives of ~A go to zero at z = ±∞. Assuming a Coulomb gauge, we
can write integral solutions for ~A

Ax(x, y, z) = −∂z
∫
My(x

′, y′, z′)

4π|~x− ~x′|
dV ′ + ∂y

∫
Mz(x

′, y′, z′)

4π|~x− ~x′|
dV ′

=

∫
(z − z′) ·My(x

′, y′, z′)

4π|~x− ~x′|3
dV ′ −

∫
(y − y′) ·Mz(x

′, y′, z′)

4π|~x− ~x′|3
dV ′

(10.42)
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and taking derivative with respect to x

∂xAx(x, y, z) = ∂x

∫
(z − z′) ·My(x

′, y′, z′)

4π|~x− ~x′|3
dV ′

− ∂x
∫

(y − y′) ·Mz(x
′, y′, z′)

4π|~x− ~x′|3
dV ′

= −
∫

3(x− x′) · (z − z′) ·My(x
′, y′, z′)

4π|~x− ~x′|5
dV ′

+

∫
3(x− x′) · (y − y′) ·Mz(x

′, y′, z′)

4π|~x− ~x′|5
dV ′

(10.43)

and taking the limit as z → ±∞, we can commute the limit and the integral
since the region of integration is independent of the limit

lim
z→∞

∂xAx(x, y, z) = − lim
z→∞

∫
3(x− x′) · (z − z′) ·My(x

′, y′, z′)

4π|~x− ~x′|5
dV ′

+ lim
z→∞

∫
3(x− x′) · (y − y′) ·Mz(x

′, y′, z′)

4π|~x− ~x′|5
dV ′

= −
∫

lim
z→∞

3(x− x′) · (z − z′) ·My(x
′, y′, z′)

4π|~x− ~x′|5
dV ′

+

∫
lim
z→∞

3(x− x′) · (y − y′) ·Mz(x
′, y′, z′)

4π|~x− ~x′|5
dV ′

=

∫
0 dV ′ −

∫
0 dV ′

= 0

(10.44)

as expected, assuming the magnetic region is finite. Similarly, we can say
limz→±∞(∂yAy)(x, y, z) = 0. And so we’re left with

∂x∂xφ(x, y) + ∂y∂yφ(x, y) = − q
~
∂yM

⊥
x (x, y) +

q

~
∂xM

⊥
y (x, y) (10.45)

and dropping the (x, y), we get

∂x∂xφ+ ∂y∂yφ = − q
~
∂yM

⊥
x +

q

~
∂xM

⊥
y (10.46)

Noting that the LHS looks like a 2d Laplacian operator, and the RHS looks like
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a 2d curl, we will write
∇2φ =

q

~
∇× ~M⊥ (10.47)

where∇ is defined over 2d functions as ~∇ = (∂x, ∂y). Unfortunately, I couldn’t
think of a clear and consistent way of differentiating between the two, but the
2d and 3d cases shouldn’t overlap from here on.

To find some boundary conditions, we will look at φ on the infinite boundary.

−~
q
φ(x, y) =

∫ ∞
−∞

Az(x, y, z
′′) dz′′

=

∫ ∞
−∞

(
− ∂y

∫
Mx(x

′, y′, z′)

4π|(x, y, z′′)− ~x′|
dV ′

+ ∂x

∫
My(x

′, y′, z′)

4π|(x, y, z′′)− ~x′|
dV ′
)
dz′′

=

∫ ∞
−∞

(∫
(y − y′) ·Mx(x

′, y′, z′)

4π|(x, y, z′′)− ~x′|3
dV ′

−
∫

(x− x′) ·My(x
′, y′, z′)

4π|(x, y, z′′)− ~x′|3
dV ′
)
dz′′

=

∫ ∫ ∞
−∞

(y − y′) ·Mx(x
′, y′, z′)

4π|(x, y, z′′)− ~x′|3
dz′′ dV ′

−
∫ ∫ ∞

−∞

(x− x′) ·My(x
′, y′, z′)

4π|(x, y, z′′)− ~x′|3
dz′′ dV ′

(10.48)

The integral over z′′ converges in both integrals if |(x, y)| > |(x′, y′)|. Since we
are looking for φ at infinity and we’ve assumed the magnetic region is finite,
this is true. Now

−~
q

lim
|x,y|→∞

φ(x, y) = lim
|x,y|→∞

(∫
(y − y′) ·Mx(x

′, y′, z′)

2π|(x, y)− (x′, y′)|2
dV ′

−
∫

(x− x′) ·Mx(x
′, y′, z′)

2π|(x, y)− (x′, y′)|2
dV ′
)

= 0

(10.49)

and so, we can say φ vanishes at infinity.

We now have all the pieces necessary to write out a well defined PDE, suitable
for a FEM formulation. We will denote the “shadow” of the magnetic region
ΩM as ΩM⊥ , in line with our notation for the projection of the magnetization.

224



We will denote the region outside this shadow as Ω0. And noting the magneti-
zation is uniformly zero in Ω0

∇2φ =
q

~
∇× ~M⊥ in ΩM⊥ (10.50a)

∇2φ = 0 in Ω0 (10.50b)

φ = 0 in ∂Ω (10.50c)

10.3.1 Weak Forms

We will now outline a weak form that will solve (10.50). This will involve
first outlining the initial weak forms, and then ensuring each function has at
most one derivative applied to it. Next, we will move the derivative terms
off the ~M⊥ terms so uniform magnetizations work as expected. Finally, we
will include a domain transformation to perform the infinite integration over
a finite domain.

From here on, we will drop the q
~ term. The simplest way to account for it is

to solve the equations without it, knowing the solution for φ will then be off
by a factor of q

~ . In a similar manner, m̂⊥ is typically used in a practical imple-
mentation instead of ~M , and Ms accounted for afterwards. This turns out to
be necessary for the implementation of a stable numerical solver. With this in
mind, knowing these factors must be accounted for in the final implementa-
tion, we drop them for the sake of clarity.

By multiplying both sides of the equation by a test function, v, and integrating
both sides over their respective domains, we get the weak form (remembering
we’re in 2D) ∫

Ω

(∇2φ)v dS =

∫
Ω
M⊥

(∇× ~M⊥)v dS (10.51)

Using the usual partial integration / divergence theorem transformation, we
have ∫

Ω

φ,iiv dS =

∫
∂Ω

niφ,iv dl −
∫

Ω

φ,iv,i dS (10.52)

where ~ni is a directed tangent of the boundary ∂Ω. Since we are using Dirichlet
conditions for φ on ∂Ω, our test function v is set to zero on the boundary, so we
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can drop the surface term∫
Ω

φ,iiv dS = −
∫

Ω

φ,iv,i dS (10.53)

and our weak form is now

−
∫

Ω

φ,iv,i dS =

∫
Ω
M⊥

(∇× ~M⊥)v dS (10.54)

Next, we want to move the derivatives off the ~M⊥ terms. We can use the
Kelvin-Stokes theorem to do this which states∫

Ω
M⊥

(
v(∇× ~M⊥) + (∇v)× ~M⊥

)
dS =

∫
∂Ω

M⊥

vM⊥
i ni dl (10.55)

so we have∫
Ω
M⊥

(∇× ~M⊥)v dS = −
∫

Ω
M⊥

(∇v)× ~M⊥ dS +

∫
∂Ω

M⊥

vM⊥
i ni dl (10.56)

putting this into our weak form, and taking care of signs, we now have∫
Ω

φ,iv,i dS =

∫
Ω
M⊥

(∇v)× ~M⊥ dS −
∫
∂Ω

M⊥

vM⊥
i ni dl (10.57)

which is now very close to what we want.

10.3.2 Infinite Domain Transform

Outline:
In this section, we will transform the integral over the infinite domain Ω

to an integral over the finite domains ΩR and Λ. This will be done with
an appropriate change of variable using a transformation function.

Next, we will find the appropriate transformation function to use based
on keeping the order of the whole integral independent of the coordinate,
and keeping the test and trial functions linear in the coordinates.

226



Change of Variable

Noting the domain Ω on the LHS of (10.57) is the infinite domain, this weak
form is unsuitable for solving on a computer. We must introduce some tech-
nique for solving over this infinite domain. One approach would be to use
the Boundary Element Method, which is perfectly possible, given ∇2φ = 0 in
the non-magnetic region and out to infinity, just as in the MERRILL equations.
However, here we will use the surface transformation techniques laid out in
section 6.3.

We denote the domain ΩR as the region from the origin out to a circle of radius
Rinner, and the region ΩR+ as the region from Rinner out to infinity. We split
our weak form based on these regions∫

ΩR
φ,iv,i dS +

∫
ΩR+

φ,iv,i dS =

∫
Ω
M⊥

(∇v)× ~M⊥ dS −
∫
∂Ω

M⊥

vM⊥
i ni dl (10.58)

We are looking to transform the integral over ΩR+.

We will denote the diffeomorphism ~ψ which maps the region ΩR+ to a finite
region Λ between two circles or radius Rinner and Router about the origin. We
will use the variables ~x ∈ Ω and ~y ∈ Λ and the relation

y = ~ψ(~x) (10.59)

from which we get the transformations

Λ = ~ψ(ΩR+)

~x = ~ψ−1(~y)

dxi = ψ−1
i,j (~y)dyj

(10.60)

We transform the variable of integration over ΩR+ to Λ∫
ΩR+

φ,i(~x) v,i(~x) dx2 =

∫
Λ

φ,i( ~ψ−1(~y)) v,i( ~ψ−1(~y))
∣∣∣J( ~ψ−1)(~y)

∣∣∣ dy2 (10.61)

with J( ~ψ−1) the Jacobian of ~ψ−1, where J( ~ψ−1)ij(~y) =
∂ψ−1

i

∂yj
(~y).
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We will use the functions ϕ and η on Λ as the analogs of φ and v on ΩR+,
defining them

ϕ = φ ◦ ~ψ−1

⇒ φ = ϕ ◦ ~ψ
(10.62)

and
η = v ◦ ~ψ−1

⇒ v = η ◦ ~ψ
(10.63)

We can now apply the chain rule to find derivatives of φ and v wrt ~x in terms
of derivatives of ϕ and η wrt ~y

∂φ

∂xi
(~x) =

∂ϕ

∂yj
(~ψ(~x))

∂ψj
∂xi

(~x)

φ,i = (ϕ,j ◦ ~ψ) ψj,i

= (ϕ,j ◦ ~ψ) J(~ψ)ji

(10.64)

with J(~ψ) the Jacobian of ~ψ, and so, the φ,i( ~ψ−1(~y)) = (φ ◦ ~ψ−1)(~y) terms in the
integral are

φ,i ◦ ~ψ−1 = ϕ,j (J(~ψ)ji ◦ ~ψ−1) (10.65)

and from the Inverse Function Theorem, J(f) ◦ f−1 = J−1(f−1), so

φ,i ◦ ~ψ−1 = ϕ,j

[
J(~ψ−1)

]−1

ji
(10.66)

and similarly

v,i ◦ ~ψ−1 = η,j

[
J(~ψ−1)

]−1

ji
(10.67)

The integral over ΩR+, as it now stands is∫
ΩR+

φ,i(~x) v,i(~x) dx2

=

∫
Λ

ϕ,j(~y)
[
J(~ψ−1)

]−1

ji
(~y) η,k(~y)

[
J(~ψ−1)

]−1

ki
(~y)

∣∣∣J( ~ψ−1)(~y)
∣∣∣ dy2 (10.68)
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Choosing a Transformation Function

From discussion in section 6.3, we want the integral to be independent of ~y,
and the functions ϕ and η to be linearly dependent on ~y. We have

O(integrand) =

O (ϕ,j(~y)) O
([
J(~ψ−1)

]−1

ji
(~y)

)
O (η,k(~y)) O

([
J(~ψ−1)

]−1

ki
(~y)

)
O
(∣∣∣J( ~ψ−1)(~y)

∣∣∣)
(10.69)

with (for dim(Λ) = 2)

O(ϕ,i) = O(η,k) = 1

O(J(ψ−1)) =
O(ψ−1)

|y|

O
([
J(ψ−1)

]−1
)

=
|y|

O(ψ−1)

O
(∣∣J(ψ−1)

∣∣) =
O(ψ−1)

|y|

2

(10.70)

giving us
|y|

O(ψ−1)

|y|
O(ψ−1)

(
O(ψ−1)

|y|

)2

= 1 (10.71)

so, in fact, the specific function used for ψ−1 isn’t strictly important for a stable
formulation in 2D. In our implementation, we used O(ψ−1) = |y|−1.

We have
~ψ−1(~y) = ŷRinner

(
Rinner −Router

|y| −Router

)
|ψ−1|(~y) = Rinner

(
Rinner −Router

|y| −Router

)
[
J(~ψ−1)

]−1

ij
(~y) = δij

|y|
|ψ−1|(~y)

+
yiyj(R

outer − 2|y|)
|ψ−1|(~y) |y|2∣∣∣J(~ψ−1)

∣∣∣ =
(|ψ−1|(~y))

2

Router|y| − |y|2

(10.72)
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which can be substituted back into (10.68), providing the transformation we
need from an infinite to a finite domain.

All together

We can now put the entire weak form together. We remember that the region
ΩR refers to the region from the origin to the radius Rinner, and the region Λ

refers to the region from Rinner to Router. We also drop the explicit application
of the variable of integration. At this point, it is unnecessary, and in the actual
implementation, it is irrelevant. We replace the transformed ϕ and η with the
original test and trial functions, φ and v, since they will be in the same function
space in the FEM implementation. However, when interpreting results, we
must remember values of φ in the region Λ are for the transformed function ϕ.

Putting the original equation and the transformed equations together, we get

∫
ΩR
φ,i v,i dS +

∫
Λ

φ,i v,j

[
J(~ψ−1)

]−1

ik

[
J(~ψ−1)

]−1

kj

∣∣∣J(~ψ−1)
∣∣∣ dS

=

∫
Ω
M⊥

(∇v)× ~M⊥ dS −
∫
∂Ω

M⊥

vM⊥
i ni dl

φ = 0 , v = 0 on ∂Λ

(10.73)

which should produce the electron phase φ over the region ΩR.

10.3.3 Example Implementation

This projection technique was implemented as a ParaView plugin. We will
show here the result of each step of the implementation, similar to the tessel-
lated box technique.

For a practical implementation, we still need a method to find the outline of
the material to determine the region ΩM⊥ , we need to implement a 2d mesh of
the region ΩM⊥ ∪ ΩR ∪ Λ and we need to project the values of the 3d volume
onto the region ΩM⊥ . Each of these is a reasonably complex task, and each
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worth a full section of discussion. However, these implementation details will
be omitted from this section, and the results simply presented.

We start with a 100 nm cube with a
vortex state. The image to the right
is the cube as it will be seen in the
electron hologram, with the z-axis
pointing into the page.

Next, we divide this into a grid
of boxes, fine in the x and y di-
rections, and extending at least the
length of the cube in the z direction.
The boxes should at least cover the
magnetic region. The grid pictured
here is a lower resolution than will
actually be used.
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The average magnetization, ~Mi is
then found for each box �i. It
is found by uniformly sampling
the magnetization within each box.
The magnitudes of the average
magnetizations are pictured here,
along with vectors pointing in the
magnetization direction. The pro-
jected outline of the cube is pic-
tured here in white.

For each point (x, y) of the image,
the electron phase

φ(x, y) =
∑
i

φi(x, y)

is evaluated. Each φi depends on
the ~Mi of each box �i.
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From the electron phase, the in-
plane B-field, ~B⊥ is calculated by

~B⊥ = (−∂yφ, ∂xφ)

The contour map and directions ~C

are then calculated using

~C = cos(αφ)B̂⊥

with α the “amplification factor”,
and colored based on the size and
direction of this vector, as anno-
tated on the image.
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Chapter 11

Example Electron Holography
Modelling Results

11.1 Electron Holograms for Reference Magnetic

States

11.1.1 Introduction

Electron holography is a useful experimental tool for gathering information
about the magnetization of a material at the nano-scale. However, the image
generated is a projection of the 3D magnetization onto a 2D surface. As a result,
some information is lost. By looking at how the electron holograms generated
by 3D magnetic states, typical of the nano-scale magnetic minerals, change
with angle and grain geometry, we can begin to develop an intuition for how
some features of the 2D image translate to features of the 3D magnetization.
We can also see which 3D features cannot be easily recovered.

The HoloMag software package was developed for just this purpose. It con-
tains a plugin for the ParaView visualization suite. With HoloMag and Par-
aView, a solution from a micromagnetic model can be loaded in, and using a
visual interface, the electron hologram generated. Most usefully, however, the
magnetic grain can be rotated about, and the electron hologram updated in
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near-real time. This is particularly useful for developing an intuition for how
a 3D magnetization translates into a 2D hologram based on its angle with the
image plane, and so an intuition for which features of a 2D hologram might
translate back to a 3D magnetization.

Some key intuitions are presented here. Although, they are not a substitute for
developing the intuition oneself, by playing with states in the software.

All the results and analyses presented here are original work.

11.1.2 Method

The MERRILL library was used to nucleate a number of states in a 80 nm cube
with the magnetic parameters of magnetite. To nucleate [111] uniform, flower,
and vortex states, the magnetization was first set to an approximation of the
state, and then minimized. However, for the uniform state, no minimization
was done. While this may nucleate weakly stable, or unstable states, we’re
more interested here in realistic states, indicative of real world states, to study
how they translate to a hologram, rather than actual real world states.

To nucleate the [100] states, the anisotropy constant, K1, of magnetite was first
set to K1 = |K1|, to make [100] the easy axis, and then the above procedure
was carried out.

Once the appropriate state was nucleated, it was loaded into ParaView and
HoloMag, was used to generate the hologram. Visualizations of the magneti-
zation, the projected magnetization, and the electron hologram were generated
and output to disk.
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11.1.3 Results

We present a number of comparative images. They are labelled e.g.

〈m̂〉: [111] – Rotation: (45◦, 0◦).

The “〈m̂〉: [111]” refers to the direction of the average magnetization, in this
case along the [111] diagonal. The “Rotation: (45◦, 0◦)” refers to the axes about
which the grain was rotated, and the angle at which it was rotated, in this case
45◦ about the vertical axis, and 0◦ about the horizontal axis. The values for
the rotation are meant as a rough guide, as it can be difficult to conceptualize
how an Euler rotation — progressive rotations applied one after the other —
actually effects the orientation of a 3D object. In all cases, we’ve described
where the direction of the magnetization is pointing with respect to the page,
and the reader should be able to determine from the images the orientation of
the cube and the crystal axes.
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〈m̂〉: [100] – Rotation: (0◦, 0◦)
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Figure 11.1: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [100]
direction. Here, the [100] direction is the face of the cube pointing to the right
and perfectly in the plane of the page. Results for a uniform magnetization, a
flower state, and a single vortex are shown. The vortex is a right hand vortex
with core pointing in the [100] direction.
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〈m̂〉: [100] – Rotation: (45◦, 0◦)
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Figure 11.2: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [100]
direction. Here, the [100] direction is the face of the cube pointing to the right
and 45◦ out of the page. Results for a uniform magnetization, a flower state,
and a single vortex are shown. The vortex is a right hand vortex with core
pointing in the [100] direction.
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〈m̂〉: [100] – Rotation: (90◦, 0◦)
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Figure 11.3: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [100]
direction. Here, the [100] direction is the face of the cube pointing out of the
page. Results for a uniform magnetization, a flower state, and a single vortex
are shown. The vortex is a right hand vortex with core pointing in the [100]
direction.
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〈m̂〉: [100] – Rotation: (30◦, 30◦)
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Figure 11.4: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [100]
direction. Here, the [100] direction is the face of the cube pointing towards the
top right, and about 30◦ out of the page. Results for a uniform magnetization,
a flower state, and a single vortex are shown. The vortex is a right hand vortex
with core pointing in the [100] direction.
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〈m̂〉: [111] – Rotation: (0◦, 0◦)
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Figure 11.5: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [111]
direction. Here, the [111] direction is the corner of the cube pointing towards
the top right, and about 30◦ out of the page. Results for a uniform magnetiza-
tion, a flower state, and a single vortex are shown. The vortex is a right hand
vortex with core pointing in the [111] direction.
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〈m̂〉: [111] – Rotation: (45◦, 0◦)
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Figure 11.6: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [111]
direction. Here, the [111] direction is the corner of the cube pointing towards
the top, and about 30◦ out of the page. Results for a uniform magnetization, a
flower state, and a single vortex are shown. The vortex is a right hand vortex
with core pointing in the [111] direction.
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〈m̂〉: [111] – Rotation: (90◦, 0◦)
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Figure 11.7: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [111]
direction. Here, the [111] direction is the corner of the cube pointing towards
the top left, and about 30◦ out of the page. Results for a uniform magnetiza-
tion, a flower state, and a single vortex are shown. The vortex is a right hand
vortex with core pointing in the [111] direction.
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〈m̂〉: [111] – Rotation: (0◦, 45◦)
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Figure 11.8: The magnetization, projected magnetization, and electron holo-
gram for a cube of magnetite with average magnetization pointing in the [111]
direction. Here, the [111] direction is the corner of the cube pointing towards
the top left, and perfectly in the plane of the page. Results for a uniform mag-
netization, a flower state, and a single vortex are shown. The vortex is a right
hand vortex with core pointing in the [111] direction.
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11.1.4 Discussion

In the following discussion, we will contract the label e.g.

〈m̂〉: [111] – Rotation: (45◦, 0◦)

to [111] (45◦, 0◦). This is done to refer more concisely to a group of images.

Uniform vs Flower State

While there is a visible difference between the SD and FS magnetizations and
projected magnetizations, there appears to be little difference between their
electron holograms. There is a slight difference between the uniform and the
flower state in the [100] (45◦, 0◦) holograms (figure 11.2). There is a slight flat-
tening of the contours towards the center of the grain. This difference, how-
ever, would likely be unnoticeable in an experimental image, and could be
indistinguishable from noise. Therefore, an electron hologram is not suitable
for distinguishing a uniform state from a flower state.

Thickness Effects

In off-axis electron holography, significant effort is taken to separate changes
in beam amplitude due to absorption in the material, and changes due to mag-
netic fields. In the uniform [111] (0◦, 45◦) images (figure 11.8), we can see some
very clear effects on material thickness on the electron hologram, specifically,
a significant “kink” in the contour at the center of the grain. Comparing the
[111] (0◦, 45◦) image to the [111] (45◦, 0◦) image (figures 11.8 and 11.6), it is clear
the orientation of the grain and the projected thickness can still play a signifi-
cant role in the resulting electron hologram. Interestingly, looking at the vortex
image for [111] (0◦, 45◦), the thickness effect is significantly less pronounced,
while one might have expected a vortex to be less well behaved. It appears
curving lines in a hologram, which could look like a curving magnetization or
curving vortex core, are no guarantee of an interesting magnetization. They
could simply be a manifestation of an interesting geometry.
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These effects occur because the hologram relies on the projection of the magne-
tization, and that projection can be described as 〈 ~M〉Lz, where Lz is the thick-
ness of the material at the point (x, y) of the image. For a uniform magneti-
zation, one can expect the value of |〈 ~M〉| to be independent of (x, y), leaving
only Lz as the deciding factor. So while absorption due to material thickness
has been eliminated, other subtle effects due to material thickness have not.

Comparing the kinked uniform holograms versus the vortex holograms, the
deciding factor appears to be the number of kings. The vortex cores have a
single curvature, which we will later relate to its handedness and in-plane /
out-of-plane orientation, while the uniform magnetizations have two kinks.
The two kinks in, say, the [111] (0◦, 45◦) images (figure 11.8), are due to the
region of high projection magnetization towards the center of the image. Here,
we are not seeing a kink, so much as an increase in the number of contours
in this region. This explains, then, why the vortex core doesn’t experience as
much of a kinking, as the projection magnetization doesn’t have a band of such
high value, and the region it does have follows the direction of the average
magnetization.

In-Plane vs. Out-Of-Plane Vortex Cores

Some clear in-plane SV images can be seen for [100] (0◦, 0◦), and [111] (0◦, 45◦)

(figures 11.1 and 11.8). These are distinguished from the out-of-plane images
by looking like uniform images with two roughly equal ring structures, while
the out-of-plane images have either one ring, or two asymmetric rings.

The in-plane vortex images can be distinguished from the uniform images by
the contour density. The uniform images have a much larger projected mag-
netization, and so a much denser internal and external contouring.

One significant difference between partial out-of-plane, e.g. [100] (45◦, 0◦), and
the fully out-of-plane, e.g. [100] (90◦, 0◦), is the external field (figures 11.2 and
11.3). In the fully out-of-plane image, the external field is very weak, with little
to no contouring. In the partial out-of-plane image, there is a significant exter-
nal field. Indeed, given an experimental image, it may be possible to use this
external field in a single vortex grain to estimate the angle of the vortex with
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the image plane. By playing with the HoloMag ParaView plugin, a researcher
may be able to get a feel for how the external field changes for a vortex with
angle, and apply that understanding to interpretation of experimental images.

Another significant detail is the asymmetry between the two contour centers.
The amount of asymmetry can be used as an indicator for how out-of-plane
the vortex core is. Once the asymmetry is so large that one contour center
has disappeared, we can say the vortex is very out-of-plane, if not fully out-of-
plane. One must be careful in interpreting these contour centers, as the contour
center coincides with the vortex center only when the vortex is fully out-of-
plane. Similarly, there are many more ways to interpret a contour ring than an
out-of-plane vortex, as an accompanying ring, even a small one, implies some
in-plane component. It is also important to note that even a small asymmetry
in contour ring pairs implies some out-of-plane component.

Vortex Cores and Image Asymmetries

From the images of the partial out-of-plane vortices, it can be seen that the
orientation of the core plus the direction of the core produce an asymmetric
bias in the in-plane magnetization, and an asymmetry in the contour centers.
Figure 11.9 presents a schematic of how the asymmetry in the in-plane magne-
tization happens. It depicts a right hand (RH) vortex coming out of the page,
and the direction of the magnetization around its outside. By right hand, we
mean if you make a “thumbs up” gesture with your right hand, and align your
thumb in the direction of the average magnetization of the vortex core, your
fingers will point in the direction of the magnetization around the outside of
the vortex. Similarly, we define a left hand (LH) vortex in a similar manner,
but with a left hand “thumbs up.”

The asymmetry in the magnitude of the projected magnetization can be ex-
plained as follows for a RH vortex coming out of the page: The upper magne-
tization tends to come out of the page and to the left. The lower magnetization
tends to go into the page and to the right. By adding an extra bias towards the
right, the leftward component of the upper magnetization is reduced, and that
overall magnetization is moved further out of the page, further out-of-plane.
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Figure 11.9: A schematic of how a perfect vortex plus a small axial bias can
create an asymmetric in-plane magnetization.

Conversely, the rightward component of the lower magnetization is increased,
and that overall magnetization is moved further in-plane. In this manner, we
should expect an asymmetry in the projection magnetization of a vortex core.
This can be seen in the result (rightmost image) in figure 11.9, and considering
the in-plane magnetization it would produce.

For a RH vortex, pointed to the right, and coming out of the page (OTP), as in
[100] (45◦, 0◦) (figure 11.2), we can now explain the higher projection magneti-
zation, and tighter contours towards the bottom of the image. We can expect to
see the same thing happen for a LH vortex, pointing to the left, and OTP. This
means for a LH OTP vortex pointing rightwards, the higher projection mag-
netization will be at the top of the image. We can expect the exact opposite to
happen, for these two states if they instead point into the page (ITP). That is,
rightwards facing RH ITP will have higher projection magnetization towards
the top of the image, and rightwards facing LH ITP will have higher projection
magnetization towards the bottom of the image.

This can be summarized for a rightward pointing core

Dense Contours Vortex

Bottom RH OTP or LH ITP

Top RH ITP or LH OTP

and can be rotated around to fit the direction of the external field of the holo-
gram being studied.
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Figure 11.9 also explains where the contour rings come from, as each slice of
the vortex, itself, creates a ring of magnetization. Unfortunately, looking at the
direction of the internal contour ring doesn’t help. Again, taking the exter-
nal field pointing to the right, we expect RH ITP to cause clockwise contours;
RH OTP to cause anti-clockwise contours; LH ITP to cause anti-clockwise con-
tours; and LH OTP to cause clockwise contours. As can be seen, RH ITP has
the same contour direction as LH OTP, and similar for RH OTP and LH ITP.

Due to symmetry, then, we cannot distinguish RH OTP vs. LH & ITP, or RH
& ITP vs. LH & OTP. With a low enough symmetry in the grain, however, it
may be possible to determine through micromagnetic modelling if the vortex
is pointing ITP or OTP, by determining which of ITP of OTP is possible. If only
one is possible, then with the other option eliminated, we can determine if the
vortex is RH or LH. Similarly, if ITP and OTP are both possible, but only RH or
LH can be nucleated, then we can tell the vortex direction. Although, symme-
try suggests the vortex core direction should be less constrained by geometry.

The most important thing to note here, though, is a perfectly centered vor-
tex pointing perfectly in rightwards, can look crooked. One could assume the
[100] (45◦, 0◦) vortex (figure 11.2) was pointing upwards, rather than right-
wards. One might, at least, assume there is some upwards component. This
is, however, just an effect of asymmetry of RH vs. LH and OTP vs. ITP. Even
more interesting is the [111] (0◦, 0◦) vortex (figure 11.5), where the contours
would suggest the vortex core is pointing towards the top left of the image,
rather than the top right. In all these cases, the external field is a clear indicator
of where the vortex core is actually pointing. In these cases, it’s clear. How-
ever, if the external field is not clearly visible, e.g. the vortex begins and ends
somewhere inside the material, this is an important consideration. Indeed, in
most cases where the vortex is not highly out of plane, the center of the con-
tours is not indicative of the center of the vortex. The position of the center
of the vortex in these cases is a result of RH/LH OTP/ITP. To determine the
actual direction of a vortex core, in the absence of an external field, it is then
important to be able to distinguish these orientations.

In the vortex states presented, there is another distinguishing feature. The vor-
tex states present two lobes. One with dense contouring, which we’ve been
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discussing, and one with low or extremely low contouring. In [100] (45◦, 0◦),
for example, the low contour is at the bottom, and in [111] (45◦, 0◦), it’s at
the right (figures 11.2 and 11.6). Between these centers are contour lines that
manage to escape the magnetic region, and connect directly with the external
region. In all cases, the direction of these lines has roughly aligned with the
direction of the vortex core, with an added curve. In this manner, rather than
looking at the position of the contour centers, one should be looking at the di-
rection of this “central” contour line to determine the direction of a vortex core,
and taking the extra curving from the high contour region into account. The
asymmetric contours can therefore be used to indicate an out-of-plane vortex,
and the central line its in-plane direction. The position of the contour center,
for partially out-of-plane vortices, should not be considered.
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Chapter 12

Conclusions - Electron
Holography

We’ve seen here two methods for simulating electron holographic images from
micromagnetic models. The first is an existing approach (although as-yet un-
published) developed independently by a colleague, and the second is an orig-
inal approach. Both methods are adequate for holography simulation, and
both are packaged into a ParaView plugin which update the simulated holo-
gram at near-real-time with changes in magnetization and rotation of the grain.
The plugin is a highly effective tool for gaining intuition of how magnetiza-
tions translate into electron holograms. The intuition gained informed the pre-
liminary study presented here, showing holograms for uniformly magnetized,
flower state, and single vortex cubes.

We demonstrated that single vortex holograms produce counter-intuitive re-
sults. For a vortex core aligned out-of-plane, the center of the contour rings
coincides with the center of the vortex. Following that observation, one might
expect the center of the contours for a partially-out-of-plane vortex core to also
coincide with the center of the vortex. However, we saw that it actually moves
perpendicular to the motion of the core, i.e. if the core moves towards the top
of the image, the contour center moves to the left or the right. Indeed, the best
indicator of the direction of the core is the stray field line that passes closest
to the closed rings. We also saw some information about the core orientation
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is fundamentally lost. There is an ambiguity between core handedness and
whether the core is pointing into or out of a hologram.

The discussion of these results highlights one important fact: one cannot make
any certain conclusions about the magnetization from the electron hologram
alone. This reinforces the assertion made in previous conclusion chapters: the
primary method available to researchers for visualizing the 3D magnetization
of 3D grains is micromagnetic modelling.

From the data presented here, any existing papers making assertions about the
shape and direction of the magnetizations based on the holograms alone may
need reinterpretation. In particular, any study that claims to have resolved
a flower state from a single domain state should be reinterpreted, any study
that declared the center of a vortex to be at the center of the contour rings (for
anything other than perfectly out-of-plane) should be reinterpreted, and any
study that interpreted a kink in the hologram as anything other than a uniform
magnetization should be reinterpreted. Given that the thickness of the sample
down the axis of the hologram isn’t always easy to measure, or available, pre-
vious studies with kinked holograms may need to be completely redone with
the thickness measured. In all cases, a coupled micromagnetic model would
be a very quick route towards producing the correct interpretation, with the
electron hologram acting as a verification of the model.

For future studies in electron holography, another option exists: tomography.
It can be shown that performing an electron holographic tomograph about, say,
the x-axis can recover the x-component of the ~B field. It might be possible to
use this component to break the irresolvability features previously mentioned
(e.g. distinguishing between RH OTP or LH ITP vortices). Even taking the
electron hologram from two different angles might suffice to make the reso-
lution. Further study into interpretations of electron holograms (of the sort
done here) should be done to see if either of these approaches would produce
enough data to make an interpretation without an accompanying model.

Of course, this is not always possible. Where an experiment requires a constant
field across the grain, it might not be possible to rotate the sample to measure
a second electron hologram. Similarly, given the delicacy and complexity of
specimen holders for different experiments, it may be infeasible to consider ro-
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tating the sample. In these cases, as always, an accompanying micromagnetic
model is needed. The FEM and BEM formulations presented in this paper, the
mechanical effects studied, and the volume and surface integrals evaluated
should be a significant step towards including the physics necessary to model
these situations, leaving little excuse to forgo a modelling step.
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Part IV

Reflections
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Chapter 13

Discussion

In this chapter, we will discuss some of the results, and implications of the
results of this thesis. This will be a much more speculative chapter, outlining
pieces of the story left out, potential issues, and future work.

This thesis focused mainly on the scientific work I’ve done during my PhD,
rather than the engineering. In particular, it focuses on the theoretical physics
and modelling results. A general theme has been to present some theoreti-
cal derivation of a phenomenon and then present some computer experiment
using results from a model implementing that derivation. The missing link
between these two chapters, in every instance presented here, has been the
implementation details.

Most of the time that went into the work presented in this thesis has actually
been to implement the numerical models. Rather than going into detail about
the programs written, I decided instead to focus on presenting the theory be-
hind them, and the results they produce, as that presented a more coherent
story. A chapter was planned for a number of programs I wrote during my
PhD, particularly some of the meshing software I wrote. Unfortunately, due to
time and space constraints, it wasn’t included.

There are two significant pieces of software I wrote: HoloMag for electron
holography simulations of micromagnetic models, available at bitbucket.
org/poconbhui/holomag , and MEshRRILL for generating tetrahedral meshed
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geometries for use with MERRILL, available at bitbucket.org/poconbhui/
meshrrill . I also made significant contributions to MERRILL, available at
bitbucket.org/wynwilliams/merrill and rockmag.org , which I will
talk about in more depth here.

13.1 Micromagnetism

MERRILL represents a significant step forward in user friendly micromagnetic
simulation. It’s already in widespread use in the Earth Sciences community.
The addition of multi-phase solvers is, I think, a significant improvement.

Something left out of this thesis is the amount of software engineering work
that went into MERRILL. As with other implementation details, it didn’t add
significantly to the stories I was presenting. In particular, I spent a long time
cleaning it up, making it ready for contributions from outside sources. I also
got it running orders of magnitude faster than before, to the point where there
was some doubt about whether I had broken it with my changes, until we
found the results were correct.

There is still more work to be done on MERRILL. There are already others, not
just myself, making some changes to the source code, so I would consider my
cleanup of the code to be a success. Ideally, MERRILL should still be maintain-
able if I fall out of touch with the Edinburgh group.

Some parts of MERRILL are still very messy, and I foresee mistakes being intro-
duced, simply because someone forgot to update the various disparate parts
in various disparate files that control saving and loading of variables. The ma-
trix storage, as an example, needs to be made more generic, so one function
can be written to save and load them and one type can be used to reference
them. There are a lot of instances of matrices where one variable holds the
matrix data, one variable holds the column indices and one variable holds the
column offsets. These should be combined into a derived type. Further, there
are instances of arrays which hold arrays of these matrix variables to “save”
them for later loading, interpolation etc. These “save” type arrays should be
holding derived types representing the arrays, and one clear operation should

260



automatically find / save / load the appropriate parts of each matrix. And
even further, these “save” type arrays should be linked lists, so they can be dy-
namically resized with little memory overhead. And even further again, the
active matrices could be pointers into this linked list, further reducing mem-
ory overhead. With these in place, running several models in parallel while
sharing matrix data would be reasonably straightforward.

What I hope to convey with this convoluted phrase is that there are some fun-
damental architectural issues with MERRILL. To fix them would require some
significant effort, and a change in the paradigm MERRILL was programmed
in. Specifically, it was initially programmed in a purely procedural style, while
I am advocating an object oriented style here. However, they payoff would be
a faster program with a lower memory footprint, and easy parallelization. Un-
fortunately, however faster the program may be, however smaller the memory
usage, however more maintainable by a software engineer, one must remem-
ber the audience it is aimed at: Earth Scientists. As it stands, the community
has been able to use and edit MERRILL as needed, and any increase in com-
plexity runs the risk of making it unusable and unmodifiable to the target au-
dience.

13.1.1 Future Work

Multi-Phase Modelling

I would recommend taking full advantage of the multi-phase capabilities in
MERRILL. There are numerous problems to be investigated on various combi-
nations of different materials. So far, most multi-phase simulations have been
on regularly shaped geometries. We could easily do these now for arbitrary
geometries.

First, however, a number of things need to be implemented and researched.
First, we need to implement surface energies. In particular, surface anisotropies
to account for the magneto plastic effect along the interface planes, and surface
exchange energies to account for the exchange energy of the mixed crystal. We
need an FEM formulation for the surface anisotropy energy and surface an-
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isotropy effective field. Given the discussion here and in Davies (2011), that
should be reasonably straightforward. We also need the effective magneto-
plastic anisotropy energy. I was only able to find that here thanks to the work
by van der Merwe (1950) and Shive and Butler (1969). I suspect for systems
that don’t resemble the magnetite-ilmenite interface, this might be a more dif-
ficult problem.

Parallelization

MERRILL is suitable for parallelization on a shared-memory architecture with-
out any major change in the implementation approach or the physics. That
is, when running on a computer with, say, 64 cores, it could be parallelized
reasonably well to the 64 cores. To be clear, a machine like Archer in Edin-
burgh with over 100,000 cores is a distributed-memory architecture, made up
of a number of shared-memory nodes. Each shared-memory node on Archer
contains 24 cores, which means 24 cores is the maximum efficient parallelism
MERRILL could reach on this machine. The primary reason it can’t be effec-
tively parallelized on a distributed-memory system is the dense matrix used
for the BEM.

I tried to parallelize MERRILL a few times with OpenMP, but couldn’t quite
find the bottlenecks at the time. I believe I know where the issue is now. The
preconditioner for the Poisson FEM matrices does an approximate LDU fac-
torization. Solving the L and U matrices, a step in the preconditioned conju-
gate gradient solver, doesn’t parallelize well. A simple solution is to swap to
a parallel-friendly preconditioner scheme instead. After that, parallelization
with OpenMP would be trivial.

There exists another possibility for parallelism for MERRILL, which is GPU
based parallelism. This would allow matrix operations to be parallelized quite
well. However, memory management would be a significant issue here. In
particular, a top-of-the-line (as of the time of writing) Tesla P100 GPU has
around 16 GB of memory. That means the models that would run well on this
platform would need to be under 16 GB. Beyond that, managing moving data
on and off the card could contribute enough overhead that any performance
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gain would be lost.

Abstraction

The energy calculators in MERRILL should be extracted into derived types.
Similar to what was mentioned for the matrices, there is a lot of redundant
spaghetti code attached to the energy calculators. This has already been done
to a certain extent, and is used for loading the magnetostriction solver as a
plugin. However, the core energies — demag, anisotropy, exchange, Zeeman,
NEB fields (which I don’t understand...) — should be similarly packaged up.

One upside to this would be the ability to add “dirty” bits to the energies. A
dirty bit is a flag set to say something has been changed. For example, we
might set a dirty bit for the mesh, the material parameters, or for the magne-
tization. That way, we might ask the energy to do any necessary precompu-
tations (e.g. building the FEM matrices for the demag calculator) every time
it’s called, but only have it run if the pieces it depends upon (i.e. the mesh, the
subdomains, and the material parameters) change.

The application I have in mind is that Brown’s full magnetostrictive energy,
including the demag-elastic effect involves the demag field. While solving for
Brown’s magnetostriction, it would make sense to calculate the demag field
only once, however, there is no strict guarantee in MERRILL that the demag
field has already been calculated when the magnetostriction solver runs.

Of course, knowing MERRILL intimately, I know the demag solver runs first,
but there is no guarantee someone won’t change that behaviour in the future.
Making the order explicit by calling the demag solver in the magnetostriction
solver, but only have it run once for a given magnetization, would be ideal.

13.2 Magnetostriction

The derivation of the magnetostrictive effect here for micromagnetic mod-
els isn’t new math. However, the FEM derivation suitable for inclusion in a
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FEM/BEM based model, along with the implementation is. However, the ap-
proach taken here, generalizing Kittel’s model to a non-uniform magnetization
is limited. In particular, it fails to account for the deformation of a material
due to its demagnetization field. This is the phenomenon that causes large
magnets to tear themselves apart. It also doesn’t account for, say, the change
in the exchange interaction due to the deformation of the material. Brown’s
formulation does.

The approach taken here, however, is inspired by Brown’s. Indeed, includ-
ing the extra behaviours predicted by Brown’s full theory should be straight-
forward given the ground work laid out here. However, I would expect the
demag-magnetostrictive effect to be small in the grains we’re interested in, and
there aren’t many measurements of the effects of deformation on exchange,
anisotropy etc. for the materials we’re interested in. There are hardly even
measurements of the elastic or magnetic constants for the materials we’re in-
terested in! In short, I’m not sure including the extra effects from Brown’s the-
ory are feasible at the moment, or that they will make a significant difference.
It would still be interesting to do for a material with all the required material
parameters well measured. As mentioned, some changes to MERRILL should
be made before some of these can be implemented reliably.

The simulations performed here are the first of their kind, as far as I can find.
In particular, an appropriate simulation of magnetostriction for non-uniformly
magnetized ferromagnets, along with the deformation. They make direct,
quantitative predictions about the deformations due to flower and single vor-
tex states. A good follow up for the simulations presented here would be high
resolution measurements in an electron microscope to see if my predictions
are accurate. There is also a prediction made here of a remanent Wiedemann
effect, where I predict the grain will assume a helical torsion due to a vortex
magnetization. This might actually be a way of getting vortex orientations
from electron holograms: information which might otherwise be lost.

The magnetoplastic effect presented here is also quite interesting. Of course,
it is just the simplest thing I think will work, and that makes sense to me.
The result, however, is that I still don’t understand all the consequences and
implications of the equations I’ve derived. A lot more work and investigation
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needs to be done in this direction, as it’s the only promising route I’ve seen for
recovering Kittel’s uniaxial result.

13.2.1 Future Work

FEM Implementation

The implementation used for the magnetostriction used FEniCS to build the
FEM matrices. This has a significant issue that the system must be “assem-
bled” on each run. In particular, if the material parameters remain the same
from one solve to the next, the elasticity matrix can be kept as-is. However, the
magnetoelastic matrix is build with contributions from the displacement vec-
tor. So any change to the magnetization implies a change to the displacement
vector, meaning the FEM matrix for the magnetoelastic fields must be rebuilt.

By using a rank-3 tensor to store the magnetoelastic FEM contributions, it may
be possible to keep the displacement independent of this tensor, meaning it
need not be reconstructed for every new magnetization. Most of the math and
a rough implementation of the necessary Fortran code has been presented in
this thesis. Baking the material parameters into the magnetostrictive tensor
would lower the indices needed by the tensor, potentially reducing the stor-
age needs and calculation time. However, the implementation of dirty bits, as
previously mentioned, would be needed to do this effectively.

Magnetoplasticity

The magnetoplastic coupling is a rich source of future work. I’ve only written
down the general form. Some more work needs to be done in interpreting
exactly what is described by the equations, and what can be described by them.
There is also still much to do in finding solutions for the particular systems
common in GeoSciences.

The magnetoplastic coupling needs to be included in an FEM model. I’ve
shown what the surface anisotropy for a magnetite-ilmenite lamellar system
looks like, on a scale suitable for micromagnetic modelling. However, I’ve
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made no effort to formulate it in a manner suitable for surface integration for a
FEM implementation. Given all the work presented here on multi-phase sur-
face integrals etc. this should be reasonably straightforward though.

13.3 Electron Holography

The electron holography simulation software presented here has already proven
to be very useful, and very popular, with results already in use in publications.
Unfortunately, it’s also completely untested, and prone to crashing. The results
look good, and match some experimental data, but some more work needs to
be done to add unit testing, and debug the typical cases where the code crashes
or hangs.

One significant body of work left out of this thesis, actually, is the meshing
work I’ve done. My implementation for generating the outline for the grain,
for example, may well be an original contribution to computational geome-
try. This, along with the 2D meshing needed to generate the projection mesh
has been completely glossed over, but represented a significant difficulty to be
overcome, and a significant amount of time in terms of implementation.

13.3.1 Future Work

Some better testing needs to be added to HoloMag. In particular, some exper-
imental electron holograms of a well measured geometry with a well known
magnetization is needed to ensure the results generated by HoloMag are cor-
rect. While I’ve said repeatedly throughout this thesis that a micromagnetic
model is currently the best measurement of the internal magnetization, that’s
not good enough in this case, because the electron hologram might be used as
a verification of the model. A single domain cube of magnetite would be ideal,
along with a single vortex cube.

The projection code in needs work, as it frequently crashes. Due to the com-
plexity of generating the outline and the mesh, and the size of the libraries
it relies upon, debugging is not straightforward. The environment in which
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it’s run — as a plugin for ParaView — also makes it quite difficult to test and
debug.

13.4 Closing Remarks

It was touched upon in the various conclusions chapters in the thesis, but
the work done here will have an impact on any GeoSciences application that
deals with ferromagnetism like paleomagnetism, rock magnetism, and mag-
netic fabrics. The implications are even wider than that: it should have an
impact on any field that uses ferromagnets, like biomagnetism, nano-wires,
and magnetic ram to name a few. We’ve demonstrated throughout this thesis
that we have provided many of the necessary pieces to consider all the physics
occurring in a given system within the continuum approximation, along with
the mechanical deformation of the crystal lattices, for ferromagnets of arbitrary
shape and composition.

I hope the work done here and detailed derivations are useful in future re-
search and to future students. I’ve made every effort to expand all the steps
I’ve taken as fully as possible, which is something I would have liked to have
starting out.

I also hope the various pieces of software written for this thesis finds use in
research environments. I’ve found them quite useful in my research, and I
expect others will as well.
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