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ABSTRACT 

The late 1970s technological revolution in molecular biology has 

made it possible to generate DNA sequence and derived protein sequence 
very rapidly. The international databases that contain these data are already 
so large that the exhaustive comparison of novel sequences with them is non-

trivial. Future developments, including automation of sequence generation 

and the human genome project, will greatly exacerbate this problem. 

Exhaustive sequence comparison algorithms that use the dynamic 

programming method have been implemented on the ICL DAP. This is a 

highly parallel computer, the architecture of which is particularly well suited 

to the efficient execution of such programmes. These implementations 

achieve impressive cost/performance ratios. Significantly they are more cost 

effective than implementations of inferior inexhaustive algorithms generally 
available for serial computers. 

The utility of these programmes has been greatly enhanced through 

the use of empirically derived similarity tables. These tables are however 

widely regarded as being sub-optimal. The power of the DAP programmes 

will facilitate the task of collecting the data necessary to update these tables 

and broaden their scope. This work is in progress. 

The programmes take advantage of the DAP architecture to. .collect a 

large number of alignments for each search. This feature has made possible 
the development of a new and rigorous method of assessing the significance 
of biological sequence alignments. 

Five sets of alignments, each generated by exhaustively comparing a 
novel sequence with a database, are presented. Biological functions and 
evolutionary relationships suggested by these alignments are discussed. 

It is suggested that, in the future, sequence comparison programmes 

running on parallel computers will become an essential part of experimental 
Molecular Biology. 



Remember, then, that scientific thought is the guide of 
action; that the truth at which it arrives is not that which we 
can ideally contemplate without error, but that which we may 
act upon without fear; and you cannot fail to see that scientific 
thought is not an accompaniment, or condition of human 
progress, but human progress itself. 

William Clifford. 

The Common Sense of the Exact Sciences. 
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CHAPTER ONE 

Molecular Biology 

The name Molecular Biology seems first to have been used by Warren 
Weaver in 1938 [Rees & Sternberg, 19841. In his report for that year as 

Natural Sciences Director of the Rockefeller Foundation he writes 

"...in those borderline areas in which physics and 
chemistry merge with biology, gradually there is coming into 
being a new brand of science - Molecular Biology - which is 
beginning to uncover many secrets concerning the ultimate 
units of the living cell." 

Although this may have been the first recognition of the existence of 

Molecular Biology as a distinct science, the philosophy that underlies it had 
been understood by at least a few for very much longer. 

Possibly the earliest statement of this idea is that made some three 

centuries ago by Robert Hooke in "Micrographia", his famous book 

describing observations made with an early microscope. In a philosophical 
introduction to the work he says 

"...that knowing what is the form of Inanimate or 
Mineral bodies, we shall be the 'better able to proceed in our 
next Enquiry after the forms of Vegetative bodies; and last of 
all of Animate ones, that seeming to be the highest step of 
natural knowledge that the mind of man is capable of." 

It is this idea, that a detailed understanding of life may be arrived at using 

the methods of chemistry and physics applied to biological molecules, that 
provides the motivation for molecular biology. 

In 1931 workers using X-ray diffraction to study the structure of 
natural fibres observed that the diffraction patterns generated were similar to 

those from crystalline and fibrous specimens of inanimate origin [Astbury & 

Street, 1931]. Figure 1.1 is a reproduction of some of their X-ray diffraction 

photographs which must be amongst the earliest data of molecular biology. 

1 
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Figure 1.1 

X-ray photographs from the early days of Molecular Biology [Astbury & 
Street, 1931]. Taken in the 1930s, they are of a variety of natural fibres. The 
order present in the photographs is indicative of order within the biological 
molecules that make up the fibres. 



The order present within the diffraction patterns is clearly visible and 

is a consequence of periodicities within the structure of the fibre. These 

photographs constitute a clear demonstration that the biological molecules 

that make up each particular fibre all have the same structure and are all in 

the same orientation. 

Some twenty years after this early crystallographic work, Astbury, one 

of the principal investigators, commenced his 1950 Harvey Lecture 

"Adventures in Molecular Biology" with a description of what he felt 

molecular biology to be. He said that the name molecular biology 

"...implies not so much a technique as an approach, an 
approach from the viewpoint of the so-called basic sciences 
with the leading idea of searching below the large-scale 
manifestations of classical biology for the corresponding. 
molecular plan." 

In describing the subject area of Molecular Biology he went on to say that it 
was concerned with 

"...the forms of biological molecules, and with the 
evolution, exploitation and ramifications of those forms in the 
ascent to higher and higher levels of organization." 

and also that it 

"...is predominantly three-dimensional and structural; 
which does not mean, however, that it is merely a refinement 
of morphology. It must of necessity enquire at the same time 
into genesis and function." 

Although molecular biology has expanded greatly since these early days, and 

new technologies have shifted the emphasis away from direct structure 
determination, this basic philosophy remains. 

The Molecules of Life 

Biological molecules fall naturally into five major classes; Nucleic 

Acids, Proteins, Carbohydrates, Fats and a fifth class comprising Vitamins 

and Co-enzymes. Two of these classes of molecules, nucleic acids and 

proteins, are linear directional co-polymers; they are made up of long 

unbranched chains of similar monomers whose order or sequence determines 

the properties of the molecule. It is the study of these two classes of 
molecule, the determination of the sequence of their monomers, their 



arrangement in three-dimensional space, their interactions, and how, through 
those interactions, they mediate the processes of life that is the domain of 

modern molecular biology. 

Nucleic Acids 
Nucleic acids are of two types, deoxyribonucleic acid (DNA) and 

ribonucleic acid (RNA). They are both copolymers of four monomers that 

differ very slightly between DNA and RNA. These monomers are called 

nucleotides. The nucleotides consist of an invariant part which is a five-
carbon sugar-phosphate, and a variable part which is selected from one of 
four different organic bases. These purine and pyrimidine bases carry the 

information whilst the sugar-phosphate groups are structural. For this reason, 

because the base component of the nucleotide is perceived as being more 

important than the sugar-phosphate, the terms nucleotide and base are used 

interchangeably to describe the individual nucleotides. 

DNA is the Genetic Material. The four deoxyribonucleotides of which 

it is composed are represented by the letters A, T, G and C. The information 

stored in the order of the nucleotides that make up DNA is the information 

that specifies all living things. In its DNA an organism carries information 

that is general to life, particular to its species and unique to it as an 
individual. It is as DNA that this information is passed between the 

generations. 

DNA occurs as a double helix with the sense strand, that is the strand 
from which the information is read, stored along side its complementary 

strand; each base in the sense strand exactly specifying the corresponding 

base in the complementary strand and vice versa according to the base 

pairing rules. The helix is plectonemic, that is to say the two strands cannot 

be separated without twisting. The complementary relationship extends to 

the topology of the strands which have directionality and are in opposite 

orientations. This structure is the famous double helix of the 1960's popular 

press and the story of its discovery is one of the most widely known in all of 

science. The base-pairing rules derive from the size and shape of the 

nucleotides which are such that for a DNA double helix to form, A will only 

pair with T and G will only pair with C. This complementary relationship is 

utilized by life to replicate the DNA and also to read the information it 

contains. Figure 1.2 shows the chemical structure of the nucleotides and the 
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SUGAR-PHOSPHATE 
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Figure 1.2 

The structure of the bases that 
form the variable part of the 
nucleotides of which the DNA 
double helix is composed. The 
most important aspect of the helix 
is the specificity of the pairing of 
the bases. Hydrogen bonding and 
steric restrictions mean that A can 
only pair with T and G can only 
pair with C [After Lehninger, 
1970]. 

Cytosine 

To chain 



Figure 1.3 

A piece of double stranded DNA containing 12 base pairs [Drew et at., 1981] 
modelled on an Evans and Sutherland PS330 vector graphics system running 
IRODO [Jones et at., 1978]. The DNA double helix is approximately 20 

ngstrøms across and makes one complete turn approximately every 34 
Angstroms. The atoms are coloured by type; C - white, N - blue, 0 - red, P - 
purple. Hydrogens are not shown. The picture was taken with a 35 mm lens 

at Fl 1, using 35 mm ASA 200 colour print film exposed for 2 seconds. Within 
FRODO the contrast was set to 0.5 and the intensity to 1.0. 



base-pairing rules. Figure 1.3 is a photograph of a small piece of the DNA 

double helix modelled on a computer graphics system. 

The size of DNA molecules covers a wide range. The entire genome 

of many organisms consists of just one extremely long DNA molecule, 

perhaps several million bases long, whilst DNA molecules prepared for 

experimental purposes may only be a few hundred bases long. Figure 1.4 lists 

the sizes, in kilobases, of genomes from a range of organisms. 

Name Type Size (kb) 

SV40 Virus 5.1 
oX174 Phage 5.4 
lambda Phage 49 
Epstein-Barr virus Virus 170 
T2 Phage 180 
Escherichia coli Bacteria 4,200 
Saccharomyces cerevisiae Yeast 13,000 
Diclyostelium discoideun2 Fungus 54,000 
Caemorhabditis elegans Nematode 80,000 
Drosophila melanogaster Fruit fly 140,000 
Bombix mori Silkworm 300,000 
Strongylocentrolus purpuratus Sea urchin 860,000 
Mus musculus Mouse 2,700,000 
Rattus noivegicus Rat 3,000,000 
Xenopus laevis Frog 3,100,000 
Homo sapiens Man 3,300,000 
Protoprerus aethiopicus Lungfish 102,000,000 

Figure 1.4 

The sizes of the genomes of a number of organisms in kilobases (a kilobase is 
1000 bases). [Kornberg, 1974], others [Lewin 19801. 

Figure 1.5 shows two electron micrographs of a human chromosome, 

the cellular organelle that contains DNA. In the upper picture the 
chromosome has been disrupted to release its DNA which can be seen as the 

enormously long thread filling most of the picture. The lower picture shows a 
similar chromosome that has not been treated in this way for comparison. In 

this picture the DNA is tightly packed so as to form much of the structure of 
the chromosome. 

DNA sequence is recorded as long linear lists of letters. By 
convention these are recorded in an order which is referred to as being in the 
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Figure 1.5. 

(Above) An electron micrograph of human 
chromosome number 23 [Paulson & Laemmli, 
19771 at metaphase. The chromosome is the 
cellular organelle that contains the DNA. 
Each chromosome is thought to consist of a 
single extremely long DNA molecule. The 
chromosome has been treated to remove 
attached protein (histones) and has been 
osmotically shocked to release the DNA. The 
DNA can be seen as the immensely long 
thread filling most of the picture. The vague 
outline of the familiar X-shape of the 
chromosome can also be seen. The whorls and 
patterns within the strand are thought to be 
indicative of the way in which the DNA is 
super-coiled in the construction of the 
chromosome. (Right) A similar chromosome 
[Du Praw, 1970] that has not been so treated. 



-1985 	(inc:p orate ) 
ssociated retrovirus (arv-2; proviral) 	complete genome 
ed immune ieFiciency syndrome; complete genome; envelope protein; polyprotein; reverse transcriptase. 
seociated retrovirus. Vjridae; Ss-rna enveloped viruses Retroviridae. 
(bases 1-9737) 
x-pescador R .. Power M. D., Barr P. J. , Steimer R. 5., Stemp ten M. (1. 	Brown-shimer 5. L. , Gee W. W. • Renard A. 

W A., Levy J. A. 	Dina 0., Luciw P. A.; 
,tide sequence and expression of an aids-associated retroviruS (arv-2)'. Science 227:484-492(1985). 

From 	To 	Description 

7911 2299 Oag 	polyprotein 
7911 1180 P12 protein 
1193 1885 P25 protein 
1925 2296 P16 protein 
6233 8800 Envelope protein precursor 	(env) 
332 332 0 	in 7a,9b; 	a 	in Ba 
340 340 0 	in 7a,9b; 	a 	in Ba 
4233 4233 A 	in Ba; 	g 	in Bb 
4677 4677 1 	in Ba; 	c 	in 8b 
6215. 6215 A 	in 7d; 	g 	in 7a,9b 

ed immune deiciency syndrome (aids) is caused by a retrovirus known by four different names, probably 
enting four different strains: human t-cell leukemia virus-iii (htiv-iii), aids-associated retrovirus type 
) aids virus, and lymphadenopathy-'associated virus (lay), it is still unclear with which type of virus it 
y.associated. the long terminal repeat (ltr) of arv-2 is terminated by an inverted 3 bp repeat ('ctg' and 

ram htiv-i and htiv-ii have a 2 bp inverted repeat. immediately downstream (bases 637-653) from the 5' ltr 
uence-which is complementary to lys-trna. the ma poly-a site is only tentatively assigned. there are thre 
g frames not shown in the sites table. the putative pal region extends from base 2092 to 5103. orf-1 (base' 

6) probably does not encode a functional peptide. orf-2 (bases 8802 to 9434) is unique in that it extends 
he 3' ltr. it is in a similar position to those in htiv-i and htiv-ii, although there is no apparent nuclec 
acid sequence homology, the gag gene encodes a putative p12 peptide as well as p25 and p16. the pal gene 
gy with htiv-j, rsv and mulv. the env gene probably starts at base 6233, but may start at one of two additi 
codons near the 5' end (at base 6299 or 6305). a striking feature of the env gene is that its nh2-terminus 
snap the c::h-terminus of the p01 gene. this may set arv apart from other retroviruses. 

ce 9737 5; 3445 A; 	1738 C; 2377 0; 2177 U; 
£ARV2 Leng:c: 9737 28-,JUL1957 16:37 Check: 2542 

UGOAA000C I_L4UUUG0UC CCAAAGAAQA CAAOAOAUCC UUGAUCUOUO OAUCUACCAC ACACAAOQCU ACUUCCCUOA UUOQCAOAAU 
GCCA000AU CAUAUCCA CUOACCUUUG OAUCOUOCUU CAAOCUAOUA CCAGUUOAOC CAOAOAAOOU AOAAOAOCCC AAUOAAOOAO 
UUOUUACAC CJAUGAOCC UCCAU000AU OOAOQACOCO OAOAAACAAO UGUUAOUO(J0 OAOOUUUOAC ACCAAACUAC CAUUUCAUCA 
ACCUCCAUC COAOUACUA CAAAOACUGC UOACAUCOAO CUUUCUACAA 000ACUUUCC OCU0000ACU UUCCA000AC GCOUOOCCUO 
GOAGUOGCO t.CCCUCAOAU OCUOCAUAUA AOCAOCUOCU UUUUOCCUCU ACU000UCUC UCUOOUUACA CCAOAUCUOA OCCU000AOC 
CUA000AAC CCACUGCUUA AOCCUCAAUA AAGCUUCCCU UGAGUQCUUC AAGUAGUGUO UOCCCOUCUO UUQU000ACU CUGOUAACUA 
OACCCUUUU AUCAGUOUO OAAAAAUCUC UAGCAGUOOC OCCCOAACAO QGACOCGAAA QCGAAAOUAO AACCAOAOGA OCUCUCUCCA 
OCUUOCUOA ACOCOCACA CCAAOAOOCO A000000OCO ACU0000AGU ACQCCAAUUU UUOACUAOCO OAGGCUAQAA OOAOAOAOAO 
AOCOUCOOU AUUAA00000 OOAOAAUUAO AUAAAU000A AAAAAUUCOO UUAAQGCCAG 0000AAAOAA AAAAUAUAAG UUAAAACAUA 
AOCA000AG C.JAGAACOAU UCOCAOUCAA UCCUGOCCUO UUAGAAACAU CAOAAOQCUO CAOACAAAUA UU000ACAQC UACAOCCAUC 
GAUCAOAAO AACUUAGAUC AUUAUAUAAU ACAOUAQCAA CCCUCUAUUG UOUACAUCAA AOOAUAOAUO UAAAAQACAC CAAOOAAOCU 
AGAGCAAOA• OCAAAACAAA AGUAAOAAAA AGCCACAQCA AGCAOCAGCU OCAOCUQOCA CAGGAAACAG CAGCCAGGUC ACCCAAAAUU 
CAGAACCUA CA0000CAAA UGGUACAUCA GOCCAUAUCA CCVAGAACUU UAAAUQCAUQ GOUAAAAGUA GUAOAAGAAA AGGCUUUCAG 
UACCCAUGU UIJUCAGCAUU AUCACAAOGA OCCACCCCAC AAOAUUUAAA CACCAUOCUA AACACAOUOO 0000ACAUCA AGCACCCAUO 
AOAOACUAU CAAUOAOOAA OCUCCAOAAV 000AUACAQU OCAUCCACUC CAUCCA000C CUAUUOCACC AGGCCAAAUG AOAOAACCAA 
AUAOCAGGA ACUACUAOUA CCCUUCAGQA ACAAAUACOA UOOAUOACAA AUAAUCCACC UAUCCCAOUA OGAOAAAUCU AUAAAAOAUO 
GAUUAAAUA AAAUAOUAAO AAUOUAUACC CCUACCAQCA UUCUOQACAU AAOACAACGA CCAAAGGAAC CCUUUAOAOA UUAUQUAOAC 
AACUCUAAG AGCCOAACAA OCUUCACAGQ AUOUAAAAAA UUOGAUOACA QAAACCUUQU UQCUCCAAAA UCCAAACCCA QAUUGUAAGA 
OCAUU000A CCAOCAOCUA CACUAOAAGA AAUQAUCACA OCAUGUCAQO GAGU000000 ACCCGGCCAU AAAGCAAGAQ UUUUGGCUGA 

AACUAACAA AUCCACCUAA CAUAAUOAUG CAQAGAQOCA AUUUUAGGAA CCAAAQAAAQ ACUGUUAAGU GUUUCAAUUO UGOCAAAGAA 
CAAAAAUUG CA000CCCCU AGGAAAAAGO GCUOUUGQAO AUGUOQAAOO GAAGGACACC AAAUOAAAGA UUGCACUOAO AGACAOGCUA 

AAOAUCUGG CCUUCCUACA A000AAGOCC A000AAUUUU CUUCAGAGCA QACCAGAGCC AACAGCCCCA CCAQAAGAGA GCUUCAOGUU 
AAACAACUC CCUCUCAOAA OCAGGAGCCO AUACACAAGO AACUGUAUCC UUUAACUUCC CUCAGAUCAC UCUUUOOCAA CQACCCCUCQ 
AUA000000 CAACUAAAGG AAQCUCUAUU AGAUACAGGA GCAGAUGAUA CAGUAUUAOA AOAAAUGAAU UUGCCAGOAA AAUOGAAACC 
0000AAUUG GAOOUtJUUAU CAAAGUAAGA CAGUACQAUC AOAUACCUQU AOAAAUCUOU GGACAUAAAQ CUAUAGQUAC AGUAUUAGUA 
UOUCAACAU AAUUOGAAGA AAUCUGUUQA CUCAGAUUCO UUQUACUUUA AAUUUCCCCA UUAOUCCUAU UGAAACUGUA CCAGUAAAAU 
AUGOAUGGC CCAAAAGUUA AGCAAUGGCC AUUGACAGAA GAAAAAAUAA AAGCAUUAGU AOAGAUAIJOU ACAOAAAUGO AAAAOOAAGQ 
AAAUU000C CUGAAAAUCC AUACAAUACU CCAGUAUUUG CtJAUAAAQAA AAAAQACACU ACUAAAUGGA OAAAACUAQU AGA(JUUCAQA 
AAGAACUCA AGACUUCUGG GAAGUUCAGU UAOGAAUACC ACACCCCGCA 000UUAAAAA AGAAAAAAUC AQUAACACUA UUOGAUQUOO 
UUUUCAGUU CCCUUAOAUA AAGACUUUAO AAAGUAUACU GCAUUUACCA UACCUAGUAU AAACAAUOAO ACACCA000A UUAOAUAUCA 
UGCCACAGQ CAUGQAAAGG AUCACCAGCA AUAUUCCAAA GUACCAUGAC AAAAAUCUUA GACCCUUUUA GAAAACAGAA UCCAGACAUA 
AUACAUOGA UGAUUUGUAU GUAGGAUCUG ACUUAGAAAU A000CAGCAU AQAACAAAAA UAQAQGAACU GAOACAGCAU CUOUVOAGGU 
ACACCAGAC AAAAAACAUC AGAAACAACC Ut'CAIiLJCCIJIJ tiQIU511ItIIII5AAIUfA  

AAGACAGCU 
Figure 1.6 

PQAGUAUAU 
UGAAAACAG 
IAUGGGGAAA 	Part of the entry from release 12 of the EMBL nucleic acid sequence data 
UUUCUCAAU 	base [EMBL, 1988] that records the complete genome of the human virus 
IUCAUCUAGC 	ARV-2. Such sequences and their ancillary information are accessed using 
iGAGUUAGUC 	the keys present in the first two columns of the records. Although the 
IGGCUAGUGA 	

information is stored in a format that is human-readable it would normally 
UGUAGUCCA 	be accessed automatically. Most of the 9737 nucleotides and much of the text 
iVUCCAGCAG 	are not shown. CAGUACUAC 
)AAUOAAUUA 
)00000AUUO 	 - -- ' " 
UUUUC00GU L)UAUUACAOO OACAACAAAO AUCCCCUUUQ OAAAGOACCA CCAAAOCUUC UCUOGAAAGG UGAA0000CA GUAGUAAUAC 
OACAUAAAA GUACUGCCAA GAAGAAAAOC AAAAAUCAUU A000AUUAUG OAAAACAGAU OOCAGGUOAU GAUUGUQUOG CAAOUAOACA 
$AGAACAUOG AAAACUUUAO UAAAACACCA UAUGUAUAUU UCAAAGAAAG CUAAAGGAUG GUUUUAUAOA CAUCACUAUO AAAOUACUCA 
hGUUCAOAAO UACACAUCCC CCUA0000AU OCUAAAUUGO UAAUAACAAC AUAUU0000U CUGCAUACAQ GAGAAAQAGA AUGGCAUUUG 
)COCCAUACA A(JGCAGGAAA AAOAAAUAUA GCACACAAGU AGACCCUOCC CUAGCAGACC AACUAAUUCA UCUGCAUUAU UUUOAUUGUU 
)OCUAUAAAA AAUCCCAUAU UAGOAUAUAO AQUUAGUCCU AOGUGUGAAU AUCAAGCAGO ACAUAACAAQ GUAGGAUCUC UACAAUACUU 
CAUUAAUAA CACCAAAAAA OACAAAOCCA CCUUUCCCUA OUGUUAAGAA ACUQACAGAG OAUACAUOGA ACAAOCCCCA OAAGACCAAO 

ar &At IA i 	r A r  i,,n - i; ; it it 	 t1tJA4(AtA0 AAOC(JOUUAO ACAUUUUCCU AGOCCAUGOC UCCAUAGCUU 



5' to 3' direction. This is because it corresponds to the order in which the 

5' and 3' carbon atoms of the deoxyribose monomers occur in the DNA 
backbone. Only one of the two complementary strands is recorded. Should it 

be necessary the sequence of the complementary strand can be generated 

using the base pairing rules. Figure 1.6 is the symbolic representation of 

some of the DNA that makes up the genome of a virus. 

RNA is chemically very similar to DNA. The four ribonucleotides of 

which it is comprised are represented by the letters A, U, G and C. The small 
chemical difference between the deoxyribonucleotides that make up DNA 

and the ribonucleotides that make up RNA have the effect of making RNA 

much less stable. The reduced chemical stability of RNA is reflected in its 

roles in life which often make use of this property. 

RNA is involved in the process of expressing, as protein, the 

information present in the DNA. Many RNAs have a structural role and a 

few have a catalytic role. It has been suggested that RNA was the original 

molecule of life, pre-dating both DNA and protein [Orgel, 1968]. As far as its 

primary sequence is concerned RNA can usually be considered in the same 

way as DNA. Some virus genomes are made of RNA rather than DNA. 

Proteins 

Proteins are directed co-polymers of twenty different amino acids. In 
this context amino acid is used rather loosely as one of them, proline, is an 

imino acid. As with the four nucleotides that make up nucleic acids, the 

twenty amino acids of proteins contain a common portion which allows them 
to polymerize and a unique portion which gives them their chemical identity. 

The widely differing physical and chemical properties of proteins are 

conferred on them by the different physical and chemical properties of the 

amino acids of which they are comprised. Figure 1.7 shows the chemical 
structures of the amino acid side chains. Proteins range in size from about a 

hundred to less than a thousand amino acids in length. Sometimes several 
different proteins will be synthesized as a single molecule and subsequently 

processed to produce the individual proteins. Such polyproteins often occur 

in the databases as single sequences which can be as much as 5000 residues 
long. Proteins are the expression of much of the information stored in DNA-
Virtually all the chemical reactions of life are catalysed by proteins; protein 

catalysts are called enzymes. Proteins also provide much of the structure of 
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Figure 1.7 

The structural formulae of the 19 amino acids and 1 imino acid commonly 
found in. proteins. With the exception of proline, they have the generic 
formulae NH.-CHR-COOH. They have been grouped according to the 
chemical nature of the R group. It is the variety of the chemical properties of 
the R groups or side chains that is responsible for the huge number of 
different proteins. Only the R groups have been drawn. [After Rees & 
Sternburg, 19854]. 



Figure 1.8 

The glycolytic enzyme Phophoglycerate kinase displayed on an Evans and 
Sutherland PS330 vector graphics system running FR000 [Jones et al., 
19781. The length of the long axis of the molecule is approximately 70 
Angstroms. The structure in yellow is the enzyme from yeast [Watson et at., 
1982] and in blue from horse [Banks et al., 1979]. The white regions are 
where the two structures overlap. It can be seen that the two structures are 
very similar. This similarity is mirrored by the kinetic and chemical 
properties of the two enzymes which are also extremely similar. With the 
exception of Arginine 168 of the yeast structure, which is involved in a site 
directed mutagenesis experiment described in Chapter 5, none of the side-
chains are shown. The picture was taken with a 35 mm lens at F1 1, using 35 
mm ASA 200 colour print film exposed for 2 seconds. Within FRODO the 
contrast was set to 0.5 and the intensity to 1.0. 



living things. 

Figure 1.8 is a photograph of a single molecule of the enzyme 

phosphoglycerate kinase modelled on a computer graphics system and figure 

1.9 is the symbolic representation of the 417 -  amino acids of which it is 

comprised. By convention protein sequence is recorded with the amino acids 

running from the N-terminal to the C-terminal end of the protein. This is the 

order in which proteins are synthesized by biological systems and 

corresponds to the 5' to 3' direction in which nucleic acid sequence data is 
conventionally stored. 

The relationship between nucleic acids and proteins implied above is 

exact and known; it is called the genetic code and is illustrated in figure 1.10. 

Within the living cell, molecular machinery copies portions of the 
information present in the permanent and stable DNA of the chromosome 

into smaller complementary and ephemeral molecules of RNA; this process 

is called transcription and obeys the base pairing rules. Some of these RNAs 
(messenger RNA or inRNA) are then used as templates for protein 

synthesis; this process is called translation and is performed in accordance 

with the genetic code by a subcellular body or organelle called the ribosome. 

These proteins then fold to a unique three-dimensional structure probably 
using only the information present in their sequence. Such proteins along 

with various RNAS control and mediate these and all other processes of life. 

The flow of information in life from DNA, through RNA to protein is 
illustrated in figure 1.11. 

Sequencing 

One of the major tasks of modern experimental molecular biology is 
that of working out the order of the bases in nucleic acids and the order of 

the amino acids in proteins. These activities are referred to as nucleic acid 
sequencing and protein sequencing respectively. 

The extraordinarily elegant chemical and enzymological techniques 

and the ingenious strategies that have been devised to perform sequencing 
are the result of a great deal of work by many scientists over the last 25 years. 
The various milestones in the field have been recognized by Nobel prizes. 



Phosphoglycerate kinase (EC 2.7.2.3) - Human and horse 

C;Species: Homo sapiens (man); Equus caballus (domestic horse) 

R;Michelson, A.M., Markham, A.F., and Orkin, S.H. Proc. Nat. Acad. Sci. USA 80, 472-476, 
1983 (Human liver, sequence translated from the mRNA sequence) 
A;The initiator Met is not shown. 	- 

R;Huang, I.-Y., Welch, C.D., and Yoshida, A.J. Biol. Chem. 255, 6412-6420, 1980 (Human 
erythrocytes, complete sequence with experimental details) 
A;This sequence differs from that shown in having an additional residue, Lys, following 38 
Arg, in lacking residue 417, and in the amidation states of residues 52, 109, 275, 299, 
336, and 385. 

R;Merrett, N. J. Biol. Chem. 256, 10293-10305, 1981 (Horse, complete sequence with 
experimental details) 
A;This sequence differs from that shown in having 148-Thr, 294-His, 317-Thr, 328-ALa, and 
416-Vat; in Lacking residue 417; in the transposition of residues 68-69; and. in the 
amidation states of residues 12, 78, 109, and 267. 

R;Banks, R.D., Blake, C.C.F., Evans, P.R., Haser, R., Rice, D.W., Hardy, G.W, Merrett, N., 
and Phillips, A.W. Nature 279, 773-777, 1979 (Horse muscle, X-ray crystalLography, 2.5 
angstroms) 
A;The amino end is acetylated. 
A;The structure consists of two discrete, globular domains that are joined by residues 186 
189 and correspond to the amino- and carboxyl-terminal halves of the sequence, except that 
residues 405-416 form a helix associated with the amino-terminal domain. 
A;Residues thought to be involved in ADP-ATP binding are Glu-343 to ribose and Lys-219 to 
the alpha-phosphate group. The adenine ring is in a slot bounded by residues 212-214, 236 
238, and 339-341. 

NBRF:KIHUG Length: 417 April 21, 1988 18:20 Check: 2600 

1 SLSNKLTLDK LDVKGKRVVM RVDFNVPMKN NQITNNQRIK AAVPSIKFCL 
51 DNGAKSVVLM SHLGRPDGVP NPDKYSLEPVAVELKSLLGK DVLFLKDCVG 
101 PEVEKACANP AAGSVILLEN LRFHVEEEGK GKDASGNKVK AEPAKIEAFR 
151 ASLSKLGDVY VNDAFGTAHR AHSSMVGVNL PQKAGGFLMK KELNYFAKAL 
201 ESPERPFLAI LGGAKVADKI QLiNNMLDKV NENIIGGGMA FTFLKVLNNM 
251 EIGTSLFDEE GAKIVKDLMS KAEKNGVKIT LPVDFVTADK FDENAKTGQA 
301 TVASGIPAGW MGLDCGPESS KKYAEAVTRA KQIVWNGPVG VFEWEAFARG 
351 TKALNDEVVK ATSRGCITII GGGDTATCCA KWNTEDKVSH VSTGGGASLE 
401 LLEGKVLPGV DALSNIL 

Figure 1.9 

The entry for human and horse phophoglycerate kinase from the NBRF 
protein sequence database release 12 [NBRF, 1988]. It was retrieved using 
FETCH from the UWGCG suite [Devereau et al., 1984] and is in UWGCG 
format. 
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Figure 1.11 

The flow of information in life. The information stored in the sequence of 
bases of the DNA double helix (left) is transcribed using the base pairing 
rules. The mRNA so produced (centre) is translated using the genetic code 
to produced a polypeptide chain (right) which folds, probably using only the 
information contained in its sequence, to produce a protein [After Dickerson 
& Gels, 1969]. 



All sequencing is based on a "divide and conquer" approach; the 

DNA and protein molecules are too large to have their sequence determined 
directly so they are broken into smaller sections that can be sequenced. 

Several different sets of such fragments are generated and sequenced. The 
different sets of fragments can then be compared and their order within the 

whole molecule inferred. If sufficient fragments. have been sequenced it will 

be possible to generate the sequence of the whole molecule. 

DNA sequencing 
In 1977 a technique for the fast sequencing of DNA was devised that 

revolutionized molecular biology [Sanger et aL, 1977]. It is referred to either 

as Sanger sequencing after its inventor or as dideoxy sequencing after the 

dideoxynucleotides without which it would not be possible. Before the 
invention of this technique, nucleic acid sequencing was extremely slow and 

laborious [Peattie, 1979], [Maxam & Gilbert, 1977] but as a result of this 

development it suddenly became possible to generate large quantities of 

sequence fast; up to a thbüsnd bases Of sequence per technician day in a 

well equipped laboratory [Anderson et aL, 19811. 

The technique utilizes the property of complementarity to synthesize 

DNA that is the complement of the piece of DNA of interest using a 

bacterial DNA polymerase enzyme. Four in vitro reaction mixtures are 

prepared containing the DNA to be sequenced in its single stranded form, 

DNA polymerase and the four nucleotides that comprise DNA. One of the 
nucleotides is labelled (current technologies use a radioactive atom; either 

or S) in order to make DNA synthesized in the reaction detectable. 

Each of the four reaction mixtures, has a limitingly small amount of one of 
the fOur chain-terminating dideoxynucleotides added. These are synthetic 
molecules of a structure almost identical to the deoxynucleotides that make 

up DNA with the difference that once they have been incorporated into a 

growing DNA polymer they prevent further polymerization from taking 

place. The conditions are adjusted appropriately in order that each of the 

four reactions synthesizes a whole series of molecules of DNA of increasing 

length, terminated in all possible positions by the appropriate 

dideoxynucleotide. These molecules can then be separated by high resolution 

gel chromatography in four adjacent tracks, one for each nucleotide, and the 

sequence read directly from an autoradiograph of the gel. Figure 1.12 is a 
photograph of such a gel. The sequence of the original DNA molecule can be 
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Figure 1.12 

An auto-radiograph of a DNA sequencing gel. This particular gel has seven 
sequencing experiments on it. Each set of four tracks reports the sequence of 
a particular DNA molecule. The sequences are 'read' from the gel as 
described in the text. 



generated from the sequence read from the gel using the base pairing rules. 

Protein sequencing 
Protein sequencing relies on a series of enzymatic and chemical 

techniques that cleave polypeptide chains at specific residues to produce sets 

of shorter fragments [Bailey, 1967]. These fragments are separated from each 

other and purified on the basis of size and charge using high voltage paper 

electrophoresis or, more recently, column chromatography. Unlike the whole 

protein which is too large and complex these fragments can have their 

sequence determined directly by chemical methods. Using very pure 
chemicals and a sequencing machine, fragments as long as 50 amino acids 

can be sequenced [Edman & Begg, 1967]. As with nucleic acid the sequence 

of the whole molecule is deduced by sequencing a number of sets of 
overlapping fragments. 

In addition to determining protein sequence directly it is possible to 

search DNA sequence, which is far easier to generate, for regions that code 

for proteins and to infer the sequence of the protein from the DNA 

sequence. There are however many problems associated with this process. 

In simple organisms, including virtually all prokaryotes and some 

simple eukaryotes, coding sequences are contiguous and are bounded by 

reasonably well defined signal sequences which can be easily recognized; 

protein sequences can be determined by looking for such open reading 

frames. In higher organisms things are not so easy. Almost certainly because 

their greater complexity requires more complex control mechanisms, the 

proteins of higher organisms are not usually co-linear with the DNA 

sequence from which they are derived; the coding sequences (exons) are 

interleaved with intervening sequences (introns) along the genome. During 
the course of gene expression in such an organism the introns are removed 

and the dispersed exons brought together to form a mRNA containing only 

the exons. This so-called mature mRNA is translated into the protein. The 
removal of the introns is called splicing. As it is still poorly understood, 

attempts to try to simulate splicing in order to determine the sequence of the 

protein from DNA sequence are likely to fail. It should be noticed that this 

problem is exacerbated by the consistent three to one correspondence of the 

genetic code. If, when trying to simulate splicing, an intron is incorrectly 

excised by an amount that is not an exact multiple of three, all of the 



resulting hypothetical protein sequence downstream of the error will be 

incorrect. 

An additional problem derives from the fact that the techniques for 

the determination of DNA sequence are prone to errors of insertion and 

deletion. Whilst a small number of errors of this type do not have a 

significant impact on the information content of DNA sequence the effect of 

such errors on the translated protein sequence will be disastrous. Once again, 

because of the consistent three to one correspondence of the genetic code, it 

is likely that all data downstream of an insertion or deletion error will be 

erroneous. 

Less serious problems are posed by post-translational modifications; 

the collective name for the changes that are made to proteins after they have 

been synthesized. Such changes tend not to have the serious effects on the 

information content of the sequence that the problems discussed above have, 
however, they are usually of biological significance. Post-translational 

modifications vary from minor changes such as blocking of termini or 
phosphorylation of serine and tyrosine side-chains through glycosylation, to 

large scale enzymatic cleavage and ligation. Examples of this last case are 
virus polyproteins which are translated as one very large molecule which is 

then cleaved into a number of separate functional units. The current state of 

knowledge makes it impossible to correctly predict whether such events take 

place for a particular sequence. - 

For these reasons it is very important to know, when dealing with 

protein sequence, whether it was determined directly or inferred from DNA 

sequence. In the latter case, although it is quite likely that the sequence will 

be incorrect to a greater or lesser degree, there are still ways available to 
increase confidence in the correctness of the sequence. For example, many 

organisms show a skewed and highly characteristic utilization of the genetic 

code. In such cases, when presented with a hypothetical protein from such an 

organism, it is a trivial matter to test it to see if it conforms to a particular 

codon usage. 

Future developments 

At the time of writing, methods of automating sequence collection are 

being developed. Two distinct approaches are being followed; programming 



robots to perform the current techniques [Wada, 1986] and developing 

completely new technologies that can be performed by a simple machine. 

The first approach has the advantage of using existing, technologies whilst the 

second promises to be much cheaper [Knobeloch, 1988]. 

A technique that uses fluorescence detection instead of radioactivity is 

under development [Smith et aL, 1986]. The four reaction mixtures of the 

dideoxy technique described above are combined using chain-terminating 

dideoxynucleotides that have been chemically labelled with four different 

fluorescent dyes. This mixture is separated using an appropriate physical 

separation technique. The material leaving the separator is excited with a 

laser beam and a photodetector placed at 90° detects the four different 

fluorescences corresponding to the four different bases. The machine will be 

connected to a computer which will record the sequence directly. 

As well as having many technical advantages, this technique also 

overcomes the limited resolution of a statically read gel; the reaction mixture 

can be run through completely until there are no more fragments. When such 

machines become generally available the rate of production of sequence data 

will increase dramatically and the problems addressed by this project will 

become even more severe. 

Sequence Storage & Retrieval 
A number of international organizations have come into being for the 

purpose of collecting sequence data and making it available to scientists at 
minimal cost. They distribute the data in a variety of formats. This is rather 

inconvenient however discussions are currently under way with a view to 
unifying the formats. 

When compared with the traditional commercial database 
applications the sequence databases are not large, however, they do have 
very fast growth rates. Figure 1.13 shows the rate of growth the EMBL 
nucleic acid sequence database from its inception until the present. The 

agencies that collect the data are already having difficulty keeping up to date 
[Hamm et al., 1987]. 

In addition to the sequence itself there is a slightly larger quantity of 

ancillary data. This includes information as to the source of the sequence, 

bibliographic information and details of the relationships and functions that 
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Artificial Chloroplast Elements Mitochondrial Prokaryotic Viral/Phage Eukaryotic unclassified unannotated Total 

4688 5873 17015 74422 58288 164692 260455 0 0 585433 

8238 12616 18341 109008 134270 391292 440682 0 0 1114447 

9594 20718 24471 124480 223892 494356 757352 0 0 1654863 

10163 29495 24471 150068 293437 720041 919530 0 0 2147205 

14066 51401 27180 170201 392693 834979 1362366 21607 0 2874493 

41962 83832 36948 255461 625207 1188124 2326404 9654 0 4567592 

46073 119852 37804 303549 763188 1344597 2997022 10553 0 5622638 

52672 128219 42990 316905 879633 1446696 3475686 10239 0 6353040 

68540 153786 43857 346721 1130637 1689681 4364797 15195 0 7813214 

71237 465378 43857 376392 1305116 1975030 5465260 64678 0 9766948 

76608 482334 43857 387809 1422327 2179141 6124513 42405 1430789 12189783 

85281 500141 43857 403542 1583162 2314384 6863698 47902 1766094 13638061 

Figure 1.13 

The growth of the European Molecular Biology Laboratory (EMBL) Nucleic Acid Sequence database from its inception until the 
present day. The rows in the table correspond to successive releases of the database. The first row is for release 1 which was in June 
1982. The final row is for release 12 which was in November 1987. The numbers are the total number of nucleotides contained in the 
database at each release. The introduction of unnanotated entries at release 11 is an undesirable stop-gap forced on the database 
administrators by the quantity of data that they were receiving. 



have been assigned to various parts of the sequence. It may well be that as 
understanding increases the quantity of this kind of data will come to exceed 

considerably the quantity of sequence it is describing. 

In view of the fact that the majority of computing activity is in the field 

of data processing it would not be unreasonable to assume that "off-the-

shelf' systems exist that could be used to store and retrieve sequence data. 

Unfortunately this naïve assumption turns out to be incorrect. The models 

that have been developed for the handling of data in commerce are not at all 

suitable for sequence data. It is true that the ancillary data that accompanies 

the sequence would fit very well into the relational or hierarchical models of 

conventional data processing; however, the same cannot be said for the 

sequence data itself. 

If the data atom is taken to be the individual sequence, then the 

system would have to be able to cope with fields ranging in size from a ten 

amino acid neuro-peptide to the 170,000 base genome of the Epstein-Barr 
virus; commercial database systems are unable to do this. If the individual 
sequence element is the atom then the system is faced with tens of millions of 

one-byte records; a ludicrous situation. Although it might be possible to 

divide the sequence up into reasonably sized pieces and store these pieces 
one per record, there is no biological rationale that could be used to decide 

how to divide the sequences and any arbitrary method that was chosen would 

make the retrieval programmes unnecessarily complicated. 

In practice the approach that has been followed is to store the data as 
flat files and to generate indices to provide fast access to them. The PSQ and 

NAQ systems of the Protein Identification Resource [George et al., 1988] and 

the GCG package of the University of Wisconsin [Devereux et al., 1984] use 

this approach and are widely used. It is possible to access sequences by name, 

author, feature and keyword. These systems provide rudimentary query 
languages that include logical operators for combining the search criteria in 

useful ways. 

11 



CHAPTER TWO 

Sequence Comparison 

In essence, the aim of sequence comparison in molecular biology is to 
find similarities, variously called homologies, matches or alignments, 

between the strings of letters that represent nucleic acid and protein 

molecules and to assign values to them. Such similarities are used to ascribe 

function or evolutionary relationships to the molecules and the values 

assigned to them are used to compare groups of sequences. 

It has been suggested [Reeck et aL, 19871 that the terminology for 

describing similarities should be formalized to avoid confusion. The 

suggestion is that the term homology be reserved for the purpose of ascribing 

evolutionary significance to a similarity and that in other circumstances 

similarity should be used. Although it remains to be seen if this idea will be 

adopted widely as a convention, it will be used here. 

From a biological view point similar sequences may be similar 

because they share a common function or because they are of common 

origin. Often both of these will be true. Sequences that show similarities of 
the former kind are said to be related by convergent evolution whilst those 

that show similarities of the latter kind, but not the former, are said to be 

related by divergent evolution. For a particular similarity it will not always be 

possible to decide conclusively between these two models although, divergent 

evolution is thought to be much more common than convergent evolution 
[Gould, 19801. 

The problem of detecting similarities is made difficult by the large 

range in the amount of similarity that is deemed significant according to 

circumstances. Sometimes the biologist may be looking for a perfect match to 
the sequence in which he is interested, that is to say he wishes to find other 
sequences which contain an exact, letter by letter, copy of his sequence. This 
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is a very easy problem. More often, he will be prepared to tolerate a degree 

of mismatch between his sequence and those that he considers as sufficiently 

similar to be of interest, that is to say, a proportion of the letters in the two 

sequences need not be the same. Such unmatched letters are generally 

referred to as mismatches. This too is an easy problem. The most usual 

situation and the problem that is most difficult to compute is the one where 

the biologist will also consider as similar to his sequence, sequences that 

both, have letters missing that are present in his sequence and also, have 

additional letters present that are not in his sequence. The letters that are 

missing from one sequence and are present in the other may be regarded 

either as insertions in the one sequence or as deletions from the other. To 

overcome this problem of nomenclature such letters are referred to as indels, 

a composite word derived by combining the first parts of insertion and 
deletion. 

When devising methods for finding similarities between biological 

sequences it is important to .realize that similarities that are biologically 

significant, that is to say that correspond to some functional or evolutionary 

relationship, may be less good, by whatever criterion is used to assess 

goodness, than ones that do not represent such a relationship and have 

occurred by chance. For this reason it is not satisfactory for a programme to 

return the single best alignment, rather it should return a. number of 

alignments and allow the biologist to use his intuition to assess their 
biological significance. 

It is almost always the case that an alignment chosen to represent a 

particular similarity is not unique. Whatever the scoring method used it is 

usually possible to rearrange the letters that comprise the aligned sequences 
to produce a different alignment of the same sequences with the same score. 

Thus, an alignment representing a particular similarity will be just one 

possible alignment chosen from many slightly different ones. Figure 2.1 

demonstrates this for a highly simplified example. For similarities between 
biological sequences one particular alignment may well be preferred to the 

others because it is indicated by an observation or hypothesis. In the absence 

of such information it is usually considered best to make decisions that keep 
the alignment as compact as possible [Korn et at., 1977], [Smith & 
Waterman. 1981]. 
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BCDEFBHI KLMNOP 
BCDEFBHIK LMNOP 

Side sequence. 

Figure 2.1 

An alignment representing a similarity will usually be just one taken from a 
set of many equivalent ones. In the above highly simplified example there are 
four possible ways of aligning the side sequence against the top one 
corresponding to the four marked paths through the match matrix. Empty 
cells contain zero. The example uses the type three dynamic programming 
algorithm and the + 1/-1 metric. 



Most computer programming languages contain the necessary 

facilities for the representation and manipulation of the characters of the 

alphabet and it is normally most convenient to use these to represent and 

manipulate biological sequence data. DNA and RNA are represented by 
sequences of the letters A,C,G & T or U and proteins as sequences of the 
letters of the alphabet excluding B,J,O,U,X & Z. Other symbols are used to 

represent ambiguity. The conventions used in this project are those 

recommended by IUPAC-IUB Commission on Biochemical Nomenclature 

and are detailed in figure 2.2. 

The first biological application of sequence comparison was for 

taxonomic purposes [Needleman & Wunsch, 1970]. A decade prior to this, it 

had been suggested that differences in the sequence of the same protein from 

different organisms might be used to establish taxonomic relationships 

[Crick, 1958]. In other words the differences would provide the basis for a 

protein taxonomy. When, in the late 1960s, sufficient protein sequence data 

became available to test this hypothesis it was found to be so. All proteins for 

which more than a few instances are known have been classified in this 

manner and are published in a compilation [Dayhoff et al., 1978]. A 

particular attraction and indeed a unique feature of this method of 

taxonomy, is that it permits the estimation of resemblance between 

organisms that are exceedingly diverse [Sneath & Sokal, 1973]. For example, 

it is extremely difficult to imagine a characteristic that could be used to 

compare horse and yeast, yet the sequences of the enzyme phosphoglycerate 
kinase from these two organisms are identical in 274 out of 417 comparable 
positions; the expected number of identities for random amino acid 
sequences of this length would be about 29. Figure 5.1 in chapter five shows 
these two sequences aligned. 

In the 1980s, as a result of developments in technology, large 
quantities of DNA sequence are now available and what was an interesting 

side issue has become an essential part of experimental molecular biology. It 

is now common practice for a molecular biologist to speculatively generate a 
piece of sequence and use a computer program which compares it with 

others in order to try to assign function by analogy. In addition many of the 

standard techniques of molecular biology are sequence specific; when using 

such a technique it is often necessary to use a computer program that can 
search for patterns in DNA sequence. 
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Code 	Nucleotide 

G 	= 	Guanine 
A 	= 	Adenine 
T 	= 	Thym.ine 
C 	= 	Cytosine 
R 	= 	Purine 
Y 	= 	Pyrimidine 
U 	= 	Uracil 
N 	= 	any 
X 	= 	any 

(A or G) 
(C or T or U) 
(only in RNA) 

Code 	 Amino Acid 

A = 	Ala 	= Alanine 
B = 	ASX 	= Aspartic Acid or Asparagine 
C = 	Cys 	= Cysteine 
D = 	Asp 	= Aspartic Acid 
E = 	Glu 	= Glutamic Acid 
F = 	Phe 	= Phenylalanine 
G = 	Gly 	= Glycine 
H = 	His 	= Histidine 
I = 	Ile 	= Isoleucine 
K = 	Lys 	= Lysine 

= 	Leu 	= Leucine 
M = 	Met 	= Methionine 
N = 	Asn 	= Asparagine 
P = 	Pro 	= Proline 
Q = 	Gln 	= Glutamine 
R = 	Arg 	= Arginine 
S = 	Ser 	= Serine 
T = 	Thr 	= Threonine 
V = 	Val 	= Valine 
W = 	Trp 	= Tryptophane 
X = 	X 	= any amino acid 
Y = 	Tyr 	= Tyrosine 
Z = 	Glx 	= Glutamine or Glutamic Acid 

Figure 2.2 

The one-letter codes for nucleotides and the one-letter and three-letter codes 
for amino acids adopted by the Commission on Biochemical Nomenclature 
of the IUPAC-IUB [IUPAC-IUB, 1966] [IUPAC-IUB, 1968] and used in this 
project. 



Algorithms for biological sequence comparison that directly 

manipulate the characters that represent individual sequence elements 

provide considerable flexibility with regard to the insertion of gaps between 

all the elements of both sequences in a simple manner. As this is deemed to 

be an important feature from a biological stand point these algorithms are 

regarded as preferred solutions. 

In addition to such character-based algorithms there are algorithms 

that use small groups of letters (words) as the atomic objects. These word-

based algorithms are still able to permit indels but in a much more limited 

way. They are used because they have much smaller requirements for 

computing power than the character-based algorithms. They are discussed 

further in chapter seven. 

The character-based algorithms may be classified according to which 

of two major problem solving methods they use; rule-based or dynamic 

programming. 

The Rule-Based Method 

Algorithms that use the rule-based method work by taking each 
element in one sequence with each in the other and attempting to grow 

similarities from that position according a set of rules [Korn et aL, 1977]. 

Examples-of the kind of rules that are used are:- 

a similarity starts if :- 
a pair of letters from each sequence match 

a similarity propagates if 

 the next pair of letters match 

 the next pair does not match but the next two 

pairs of letters do 

 omitting a letter from the first sequence the 

next two pairs of letters match 
 omitting a letter from the second sequence the 

next two pairs of letters match 

and so on. 

A value for an alignment generated in this manner may be calculated 
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either by summing values ascribed to each rule as it is applied or by waiting 

until the similarity finishes and then counting the number of matches, 

mismatches and indels of which it is made up. As such programmes perform 
a great deal of backtracking the latter method is likely to require much less 
computation. 

The Dynamic Programming Method 

The Dynamic Programming method [Bellman, 19571 is a method of 

solving problems that have the property of consisting of very many similar 

sub-problems. Generally algorithms using this method will take advantage of 

this to reduce the amount of work needed to solve the problem. This might 

include such a strategy as constructing a table of partially computed results 

which are used to solve the final problem. Formally a problem that is to be 
solved by this method is posed as follows 

"To find an optimal path between two prescribed nodes 
in a graph with weighted edges." 

The Dynamic Programming method is to observe [Michaelson, 1987] 

"...that for such a path, each stretch along it must be the 
solution of the same problem, but with the two end points of 
the stretch as the prescribed nodes. Then, if one takes a set of 
points which cuts the graph into two components, such that 
each component contains one of the end points, the optimal 
path must contain at least one point of the set. Each sub-path 
from that point to the two end-points must then be optimal. 
The point at which the path meets the cut-set can be found by 
finding the optimal paths from each point of the cut-set to the 
end-points and choosing the cut-point to optimize the sum of 
the weights of the sub-paths to the two original end-points." 

The types of problem that can be effectively solved by this method are 

not well defined [Sedgewick, 1983]; there are many hard problems for which 

it does not seem to be suitable and many easy problems which are better 
solved by other methods. Problems for which dynamic programming is a 

good method are those which involve looking for a best way to do something 

when there are many ways of doing it; this is exactly the type of problem 
presented by biological sequence comparison. 

The dynamic programming method applied to sequence comparison is 

based on the idea of a match-matrix. This is a two dimensional matrix which 

may be visualized by imagining the two sequences under comparison along 
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orthogonal edges of the matrix and allowing each of all the possible pair-wise 

comparisons of their elements to definea unique cell of the matrix. Values 
are calculated to fill these cells corresponding to alignments that end at the 

elements in the two sequences that define the cell. The values represent the 

relationship between the aligned sequences either in terms of similarity; the 

larger the score the greater the degree of similarity, or distance; the larger 

the score the more distant the relationship. In an optional second stage of the 

algorithm paths are traced back through the matrix to find the alignment(s) 

corresponding to the scores. 

The distance, often called evolutionary distance, between two 

sequences is the sum of the total number of changes that are made to the one 
sequence in order to turn it into the other. The permitted changes are indels 
and substitutions. Substitutions correspond to the previously described 

mismatches. These changes have appropriate weights ascribed to them and 

the figure for the measure of distance is the sum of the weights for the 

-minimum changes necessary to accomplish the inter-conversion. A value for 

the similarity between two sequences may be calculated in a similar manner 

except that instead of being neutral, exactly matched letters contribute a 

positive score to the value. 

In order to guarantee the exhaustivity of the dynamic programming 

algorithms as formally described [Kruskal, 19831 the weights ascribed to 

these changes must comprise a metric, that is to say, they must have the 

following four properties. 

Non-negative property. The distance between two sequences 

must be greater that or equal to zero. 

Zero property. If two sequences are the same then the distance 
between them must be zero. 

Symmetry. The distance between one sequence and another 

must be the same as the distance between the second sequence 
and the first and vice versa. 

Triangle inequality. The sum of the distances between two 
sequences and a third sequence must be greater than or equal 
to the distance between the two sequences. 
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These four rules comprise the metric axioms and are summarized in 

figure 2.3. 

Non-negative property. 	d(a,b)>= 0 
Zero property. 	 d(a,b) = 0 if f a = b 
Symmetry. 	 d(a,b) = d(b,a) 
Triangular inequality. 	d(a,b) + d(b,c) >= d(a,c) 

Figure 2.3 

The Metric Axioms. 

Although similarity and distance have slightly different applications in 

biological sequence comparison they have been demonstrated to be 

equivalent under general conditions [Smith & Waterman, 19811. The 

following description of the dynamic programming algorithm as used in 

biological sequence comparison is in terms of similarity. 

The Algorithm to exhaustively generate all alignments between two 
sequences a and b proceeds as follows. Let the two sequences be a and b 
having elements a[i] and b[j] where a[1..i] and b[1..j] respectively represent 

the initial segments from a[1] to a[i] inclusive and b[1] to b[j] inclusive. The 

lengths of a and b which are the maximum values that i and j can take are 
represented by n and m. The values or weights for the metric are represented 

by w(x,y) which is the weight given to a substitution of x by y, w(x,) which is 
the weight given to the deletion of x and w(,y) which is the weight given to 

the insertion of y. The character 0 is the null character and does not occur in 

the alphabet of which the sequences are comprised. In the case of biological 
sequences a space character is normally used. The algorithm calculates the 
distance d(a[1..i],b[1..j]) for successively larger values of i and j. These values 

may be considered as being calculated in an array like the one in figure 2.1. 

The value d(a[1..i],b[1..j]) chosen for a particular cell (i,j) is the minimum of 

the values of the formulae in figure 2.4. On the edge of the array, when i or j 

equal one, and access is required to values for i-i and j-1 appropriate values 

must be "put in by hand". These values constitute parameters to the 

algorithm and affect its behaviour in important ways that will be discussed in 
chapter four. 
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d(a[1. .i-1],b[1. .j]) 	+ w(a{i],) 
d(a[1..i-1J,b[1..j-1}) +w(a[i],b[j]) 
d(a[1. .i] 	,b[1. .j-1]) + w(,b(j]) 

Figure 2.4. 

Possible values for d(a[1..i],b[1..j]) 

If two or more of the values in figure 2.4 are the same then a strategy 

for deciding between them must be devised. The simplest of these is to 
choose a diagonal step in preference to the others, because it leads to more 

compact alignments, and to make an arbitrary choice between vertical and 

horizontal steps. Other strategies are available that use additional 
information. These may well be appropriate to particular biological 

circumstances. 

If it is necessary to generate alignments that represent the similarities 

as well as calculating values for them then a pointer must be recorded for 

each combination of i and j. The pointer will be chosen from the options in 

figure 25 according to the formulae chosen from those in figure 2.4. The 

alignments may then be generated by following the pointers through the 

match-matrix in an optional second stage. 

or 
pointer (i,j) = 	 or 

Figure 2.5 

Pointer equations. 

As might be imagined for an algorithm that computes all the values in 

an (n x m) array the computational complexity is no worse than proportional 

to (n x m); this has been demonstrated formally [Wong & Chandra, 1976]. 

Advantages of the Dynamic Programming Method 

When used for comparing biological sequences algorithms that use 

the dynamic programming method have a number of advantages over ones 
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that use the rule based method. 

Global optimality 

Dynamic programming algorithms are exhaustive, that is to say, they 

are guaranteed to find the best similarity (or several best similarities) out of 

all possible similarities. Because rule based algorithms only examine a subset 

of the possible similarities they cannot provide this guarantee. Although it is 

possible that the best of the rule based implementations will usually find the 

best similarity it is worrying to the scientist who obtains a negative answer 

not to be able to be sure that it is correct. Attempts to make the rule based 
implementations as exhaustive as possible contain so many rules that they are 

extremely slow [Brutlag, 1981]. 

Stable parameters. 

In general the parameters supplied to an implementation of the 

dynamic programming method do not need to be changed between analyses 

of the same type with different sequences. The parameters are the weights 

applied to matches, mismatches and indels; in the case of mismatches the 

more unlikely, in evolutionary terms, a particular substitution is the more 
heavy the penalty for including it will be. The parameters for rule based 

algorithms affect the behaviour of the algorithm in rather unintuitive ways. 
Usually considerable tinkering is necessary to produce reasonable alignments 

for a particular pair of sequences. 

Soft limiting parameters. 

The parameters that penalize poor alignments in dynamic 

programming algorithms are applied progressively. For example for each 

successive mismatch added to an alignment a fixed penalty will be subtracted 

from the value of the alignment. In contrast, implementations of rule based 

algorithms use a sharp cutoff. For example, some implementations have a 

rule that says three consecutive mismatched elements are permitted but four 
are prohibited. 

Evaluation system independent of algorithm. 

Rule based algorithms are effectively evaluating on the fly according 

to the rules. Dynamic programming algorithms potentially find all possible 

alignments and then evaluate them afterwards. This means that it is possible 
to change the evaluation system without changing the algorithm. 

Simple evaluation score. 

The evaluation systems that can be used with the dynamic 
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programming method are biologically reasonable and provide a way of at 

least tentatively assessing alignments relative to each other. With the rule 

based method there is no analogous way of calculating an evaluation score 

and indeed it is often not clear to the user how one similarity is selected in 

preference to another. 

Disadvantages of the Dynamic Programming Method 
Although the dynamic method programming possesses these very 

great advantages when used for biological sequence comparison, in particular 

that of global optimality or exhaustiveness, it has not been widely used. The 

main reason for this is that, when searching entire databases, programmes 

written using this method have a very high requirement for computing power, 

to the extent that it is only really practicable to run them on very high 

performance computers which historically have not been made available to 

biologists. This factor on its own would not, however, seem to be sufficient to 

explain the neglect that this method has suffered, particularly when one 

considers the great advantage offered by its exhaustive nature. It is said 

[Kruskal, 1983] that this method is much less intuitive and more difficult to 

program than the rule based method and it may be that this too has been a 

contributory factor. 

Although implementations of the dynamic programming methods are 

available that can align pairs of sequences, the question that all molecular 

biologists would like to ask as a matter of routine, namely "...is any part of 
my sequence like any part of any other sequence discovered so far?" is not 

answerable in a reasonable amount of time. 

Attempts to overcome this problem have centred on the idea of 

reducing the size of the databases before using the dynamic programming 

algorithm. The apparently reasonable assumption made is that most of the 
sequences in the database will not show interesting similarities to the query 
sequence. An initial fast method is used to filter out the greater portion of 

the data base sequences leaving a subset to be processed by the more time 
consuming method. The fatal flaw in this reasoning is that the fast methods 

are much less discriminating in their ability to pick out alignments of 
biological interest. The hope of those that use them is that by casting their 

net sufficiently wide they will include sequences containing the interesting 

alignments that were not detectable in the initial phase. Unfortunately it is 
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not possible to demonstrate that this is the case. 

The real solution to this problem is to use a computer that is powerful 

enough to run the exhaustive algorithm as a matter of routine. As well as 

answering a real need, the use of such a machine may well catalyse the 

development of new methods for the understanding of biological sequences. 
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CHAPTER THREE 

The Computer 

A conventional, or serial, computer of the kind that is typically 

available to molecular biologists is not powerful enough to run exhaustive 

sequence comparison programmes that use the dynamic programming 

method. In order to achieve sufficiently high processing speeds for such 

programmes to be of use as a matter of routine it is necessary to use a 

parallel computer that can apply many processors to the same computation. 

The parallel computer used in this project is the International Computers 

Limited (ICL) 64 x 64 prototype Distributed Array Processor (DAP). 

Serial computers derive their -name from the fact that they perform 

their basic operations one at a time, that is serially. In fact when viewed at a 

low enough level even serial computers do certain things in parallel. For 

example, within a computer all the bits in a number will be operated on 

simultaneously, a time sharing system may well contain a small number of 
closely linked CPUs and the, system as a whole will contain device 

controllers, direct memory access controllers and so on which allow 

processing and I/O to go on simultaneously. However, the fact remains that, 
the user's perception of the computer is that it is only capable of obeying one 
instruction at a time on one data item. 

Because of inherent limitations in the technologies used to build 

computer hardware it was realized from early days that the serial 

architecture of computers imposed severe limits on the performance that 

they could achieve. For this reason designers and builders have sought to 
create computers with many processors that are able to process many data 

items simultaneously and communicate the results of the processing so that 
they co-operate in the solution of the same problem. Such computers have an 

architecture that is described as parallel and are often called super-
computers. 
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Key: 

OCP - Order Code Processor 

DAP - Distributed Array Processor 

DAC - DAP Access Controller 

MCU - Master Control Unit 

SAC - Store Access Controller 

SMAC— Store Multiple Access Controller 

DFC - Disc File Controller 

GPC - General Peripheral Controller 

MTC - Magnetic Tape Controller 

OPER - Operator Console 

LP 	- Line Printer 

FE - Front End 

(Communications Processor) 

Mbyte— 1,048,576 bytes 

(Shaded boxes represent control units) 

Figure 3.1 

A schematic representation of the main time-sharing computer system at 
Edinburgh University comprising two 2976 CPUs and two DAPs. At peak 
time it supported about 90 users. The operating system was the Edinburgh 
Multi Access System (EMAS). The system was decommissioned in June 
1987. 



Parallel computers are of two types. Single instruction stream multiple 

data stream (SIMD) and multiple instruction stream multiple data stream 

(MIMD). An SIMD machine performs the same instruction simultaneously 

on many different data items. An MIND machine will be able to perform 

different instructions simultaneously on different data items. Both kinds of 

computers have been built but when this work began only SIMD machines 
had reached the market place. 

Available SIMD computers are of two distinct types having very 

different architectures and properties. It is important to distinguish between 

them if any meaningful performance comparisons are to be made [Hockney, 

& Jesshope, 19811. Vector processors, for example the CRAY-1, achieve high 

processing power by the use of a small number of extremely powerful 

processors made from expensive high-speed integrated circuits. The 

architecture of such machines is described as pipelined. Pipelining is a 
technique that implements parallelism by allowing several machine 

instructions--to proceed simultaneously by overlapping the various atomic 
operations that comprise the instruction. 

For example, a multiply instruction will require both its operands to 

be fetched from memory and placed in registers before the actual multiply is 
performed, subsequent to this the answer will have to be written out to 

memory. In situations where a large number of similar multiplications are to 

be performed a pipelined machine will have all these separate activities 

going simultaneously for many of the multiplications; a production line is 

probably a better analogy than a pipeline [Coulson, 1985]. 

Vector processors are intended to hide parallelism from the user and 

will run existing serial codes although advantage will be gained by 

considering the details of the architecture of the particular machine when 

writing programmes. 

The true array processors or distributed array processors consist of an 

array of serial processors under the control of a master control processor and 

achieve high processing speeds through the use of a great many identical 

processors made from inexpensive integrated circuits. When programming 

such machines it is necessary for the programmer to be aware of the parallel 

nature of the architecture and to code the parallelism into programmes 
explicitly. 
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An important feature of the DAP is that the individual processors do 

not share memory. Each processor has its own private memory and cannot 
access the memory of the other processors. A number of other parallel 

computers, both SIMD and MIMD, have been designed so that the 

individual processors are able to access the same memory. Such machines 

have not been successful because of problems associated with memory 

contention. 

Hardware 

The DAP is an SIMD machine of the latter type. It is available as an 

additional store module for certain of the ICL 2900 series mainframes and is 
described by ICL as a store module which can process, in parallel, the data 

which it contains [ICL, 19821. The DAPs used were a pair operated by the 

Edinburgh Regional Computing Centre (ERCC) and were part of a dual-

processor ICL 2976 system running the Edinburgh Multi-Access System 

(EMAS). The DAP support software which was designed to run under ICUs 

own operating system VME/B was modified at the ERCC to run under 

EMAS [Stephens & Yarwood, 1986]. Figure 3.1 is a schematic diagram of the 

system at Edinburgh. 

In 1987 the part of ICL that was responsible for the DAP was 

converted into a separate independent company called Active Memory 

Technologies Ltd. (AMT). AMT are now marketing a new generation of 

DAPs of various sizes, the smallest of which has 1024 processors. It seems 
likely that these machines will overcome many of the problems encountered 
when using the prototype DAPs. 

The ICL DAP store module consists of a master control unit (MCU) 

and 4096 processors, or processing elements (PEs), arranged in a 64 x 64 
square connected array. In addition there are connections which allow the 

processors to be used as a 4096 long-vector of processors. Each (PE) has 

three one bit registers, the Accumulator (0), the Carry register (C) and the 

activity register (A), a one bit full adder and 4096 bits of local store. Taken 

together the local store of all the PEs makes up the 2 megabyte store module 

that is the DAP. Figure 3.2 emphasises the three dimensional nature of the 
DAP store. 

The PEs are so connected, by row and column highways, that their 
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Figure 3.2 

The DAP store module. Each of the 4096 PEs has 4096 bits of local store. 
Taken together this makes up the 2 Megabyte store module that is the DAP. 



registers form register planes each containing 64 x 64 bits which may be 

shifted one bit per machine cycle to allow planar routing; with the plane 

geometry option in force bits shifted in at the edge are zero whilst with the 

cyclic geometry option they are the same as the bit shifted out on the 

opposite side. 

The MCU is a powerful serial processor with 64 bit registers and 

various features for fast processing including an instruction buffer for fast 

execution of loops of up to 32 instructions. It broadcasts a stream of 

instructions to the PEs which optionally obey them according to the state of 

their A registers. It is this limited degree of local control possessed by the 

individual PEs that expands the parallel processing capability of the DAP 

into a useful form. Figure 3.3 is a schematic representation of the 

relationship between a single processing element and the DAP array. 

Software 

One of the most common criticisms of the DAP is that it is necessary 

for the DAP programmer to explicitly code the parallelism into his or her 

programmes. This is deemed undesirable because it greatly affects the way in 

which the programmer thinks. In fact the requirement is actually more 

stringent than this criticisms suggests; it is in fact essential that the 
programmer think very carefully about which parts of the algorithm may be 

executed in parallel and how this may be optimized for the DAP's hardware. 

For example, an existing serial programme transferred to the DAP will 

almost certainly run slower than it did on the serial machine. Even quite 

considerable changes to the code may well not produce an appreciable 

improvement in performance. In most cases it is necessary to return to the 

problem stage and design a new implementation, or sometimes even a new 

algorithm, bearing in mind the DAP architecture. This process is time 
consuming as it is necessary for the programmer to develop new 
programming techniques. This is not as unreasonable as it first sounds since 

many problems contain a very high degree of parallelism. Indeed, the 
algorithms that have been devised to solve such problems on serial machines 

are often extremely elegant methods for removing this innate parallelism in 

order to fit the problem onto a serial architecture. The very limited 
commercial success of the DAP may be in part due to this problem. 





The DAP support software comprises an assembler to assemble Array 

Processor Assembly Language (APAL), a compiler with runtime libraries for 
the high level language DAPFORTRAN and a linker (CONSOLIDATOR). 
All the support software runs on the host computer, the product of the 

development cycle being a two megabyte block of code and data which, in 

response to the DAPRUN command, is loaded into the block of physical 

memory that is the DAP before control is passed to the MCU. At the end of 

the programme, or if an exception occurs, control is passed back to the host. 

During the interval between these two events, no interaction is possible with 

either the programme or the data (with a limited exception discussed later). 

This not only precludes the use of interaction in DAP programmes, but also 

makes debugging extremely difficult and time-consuming; to quote from the 

ERCC DAP FORTRAN Summary Guide, the section entitled "Error 
Messages etc" [Blair-Fish, 1986], 

"...the best thing is not to make mistakes [in DAP 
programmes] because there is no direct way of printing 
intermediate numbers out from the DAP in the middle of a 
calculation..." 

The compiler, assembler and linker all use considerable amounts of 

host processor time. This means that DAP programme development has a 

significant impact on system performance and is precluded at peak times. 

Similarly, execution of DAP programmes has a great impact on the rest of 
the system. When the DAP is not executing a programme the DAP store is 

used as ordinary ICL 2900 store. The host operating system expands to fill 
the DAP store so that when the DAPRUN command is issued a long period 

elapses as the operating system clears the two megabytes of physical memory 
that is the DAP before it can load the DAP programme block. On the ERCC 
dual 2900 system with about 80 users and the DAP in use as ordinary store 
module the time that elapses between issuing the DAPRUN command and 

programme execution commencing is about two minutes. 

These defects in the software, in particular the lack of support for the 
programme development cycle, have been recognized by the manufacturer 

and it is hoped that future DAPs will show great improvements in this area. 

Indeed, recent sales literature [AMT, 1987] cites ease of programme 
development as a key feature of the latest generation of DAPs. 
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Array Processor Assembly Language (APAL). 
APAL was not used much in this project as DAPFORTRAN is very 

flexible and efficient and there are large libraries of subroutines available. 

The major exception to this was the use of APAL to increase the efficiency of 

store mode conversion. This is discussed under the section on "musical bits". 

DAPFORTRAN. 

The parallelism of the DAP hardware is available to the 

DAPFORTRAN programmer through the concept, analogous to that of type, 
of mode. All variables have mode, either explicitly as a result of declaration 
or, through an extension of the rather unfortunate implicit mechanism of 

FORTRAN. The permitted modes are scalar, vector and matrix. Variables of 

these modes are assumed to have one, sixty four and four thousand and 
ninety six elements respectively. There is no restriction on the combination of 

mode and type. Scalar variables are stored horizontally under the PEs one 
per row. All the bits of a scalar variable are processed simultaneously. Vector 

variables are stored horizontally one per layer. All the bits of all the 64 

elements of a vector variable are processed simultaneously. Matrix variables 
are stored vertically. All 4096 elements of a matrix variable are processed 
simultaneously one bit at a time. Scalar and vector variables of length less 

that sixty four bits are stored one per row; the remainder of store in the row 

is not used. A set of store mode conversion subroutines are provided to 
convert variables between the various modes. 

The DAPFORTRAN compiler was written without the use of the 

hardware scalar matrix comparison instruction. This means that such 

comparisons take longer than the theoretical minimum time. All of the 
database searching programmes developed in this project do a very great 
deal of scalar matrix comparison and their runtimes will have been adversely 
affected by this problem. 

DAPFORTRAN provides a library of functions which, in the style of 
FORTRAN, need not be declared and have specific and generic versions. 

Componential Functions. 

These are analogous to the standard FORTRAN functions providing 

such things as type and length conversion and various arithmetic and 

trigonometric functions with the difference that the arguments may be of any 



mode and the operation is performed on all the components of the argument. 

An example of a componential function is SQRT which finds the square root 

of all the components of its argument. When SQRT is applied to a scalar, 

vector or matrix argument it will simultaneously process 1, 64 and 4096 

elements respectively. 

Aggregate functions. 

The aggregate functions provide a great deal of the parallel 

processing functionality of DAPFORTRAN in a high level manner. A proper 

understanding of them is essential if efficient DAP programmes are to be 

written. By using them carefully it is also possible to write understandable 

DAP programmes [Flanders, 1982]. 

Mode conversion and expansion. 
Matrix data are stored vertically, each value in the column below its 

processor, vector and scalar data are stored horizontally in a plane of data. In 

addition, there is a fourth mode of storage corresponding to the way in which 

data is stored in the host computer. A set of store mode conversion routines 

exist to convert data between these modes. An example of such a function 

that also expands its argument is MAT; it takes a single scalar argument of 

any type and returns a matrix of the same type. MAT was used extensively in 

this project; every time a letter from one sequence was compared with 

sequence from a database it was first expanded using MAT. The 

DAPFORTRAN compiler permits implicit use of MAT, that is to say the 

reserved word can be omitted and the conversion will still take place. This 

kind of feature is to be deprecated as it can lead to programme code that is 
difficult to understand. 

Componential reordering. 

These functions alter the ordering of the components of their vector 

or matrix argument. For example REV reverses the ordering of its vector or 
long vector argument. 

MERGE. 

This function merges two vectors or matrices using a logical mask. 

The three arguments are of the same mode, the third is of type logical. The 

function returns a value of the same mode as the first two arguments, each 

component of which is taken from the corresponding component of the first 

or second argument according to whether the corresponding component of 
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the third argument is .TRUE. or .FALSE.. 

Arithmetic reduction. 
These functions perform an arithmetic operation on all the 

components of a vector or matrix. They are referred to as reductions because 

they reduce the mode of their arguments. For example SUM takes a matrix 

argument and returns the scalar sum of its components. 

Logical reduction. 

These functions perform a mode reducing logical operation on all the 

components of a vector or matrix. For example ALL and ANY return the 
scalar logical AND and OR respectively of all the components of their non-
scalar argument. 

Maximum and minimum values and positions. 
MAXV and MINV return the scalar value corresponding to the 

maximum and minimum values respectively of their non-scalar real or 

integer argument. Similarly MAXP and MINP return a logical mask of the 

same mode as the argument whose components are set in the positions 

corresponding to the maximum and minimum values respectively. 

FRST. 

This function returns a logical value of the same mode as its logical 

vector or matrix argument with all its components false except for the one in 

the position corresponding to the first .TRUE. component of the argument. 

Logical Integer transfirmations. 
These functions return • integer indices of logical arguments; for 

example ELN returns an integer scalar that is the index of the first .TRUE. 
component of its logical non-scalar argument. 

Pattern generation. 

These functions set the components of non-scalar variables to various 

patterns. For example ALTV sets alternating components of vectors and 
long-vectors to .TRUE. and .FALSE.. 

Shifting. 

These functions perform shifts on their matrix or vector first argument 

by the amount specified in the second integer scalar argument. A matrix may 
be shifted north, south, east or west. A vector or long-vector may be shifted 

right or left. Geometry may be either planar or cyclic. For example SHRP 
shifts a long-vector rightwards with planar geometry. 
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Musical Bits. 
Much of the effort involved in writing DAP programmes goes into 

designing methods of data movement to minimize the time spent in bringing 

elements of a data structure that need to interact close enough together 

within the DAP store to do so. For many applications where such movements 

are programmed in an ad hoc and inefficient manner optimal performance is 

not achieved. The musical bits routines, named after the children's game 
musical chairs [Flanders, 1980], provide a generalized method for simply 

programming complex data movements within all three dimensions of the 

DAP store. As they are written in APAL they are extremely fast. It is 

unfortunate that they were not available when the DAPFORTRAN compiler 

was written as the store mode conversion routines described above would 

have been much faster if they had been written using the musical bits 

routines. 

The user interface to the musical bits routines uses the concept of a 

mapping vector. This is a one dimensional entity which describes how the 

data is mapped onto the three dimensions of the DAP store. The user 

designs a mapping vector to describe the original data mapping and then 

specifies a series of simple operations which transform it into the mapping 
vector corresponding to the new data mapping. The only operation available 
at the time of writing was the exchange, which as its name suggests exchanges 

bits within the mapping vector. The routine to perform the exchanges is 

simply called 'X' and its two arguments are the numbers of the bits within 

the mapping vector that are to be exchanged. 

To write a subroutine to perform a particular store mode conversion it 
is necessary to design two mapping vectors corresponding to the 

arrangements of data in store before and after the conversion. These vectors 

are then used to create a simple APAL routine which calls the appropriate 

routines. The musical bits documentation includes the necessary timing 
information to enable the programmer to choose the most efficient way of 

performing the conversion. Figure 3.4 illustrates the process for the routine 

that was written for the sort described in Chapter 7. In this example the data 

have been left crinkled 32 deep after the sort and the purpose of the routine 
is to convert them into normal DAP mode. 
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22 21 20 19 18 17 16 15 14 13 12111 10 09 08 07 06105 04 03 02 01 001 
(10 09 08 07 06 05 04030201 0012221  20 19 18 17116  15 14 1312 11) 

(15 14 13 12 11 05 04 03 02 01 00122 21 20 19 18 17116 10 09 08 07 06) 

(22 21 20 19 18 05 04 03 02 01 00 1 15  14 13 12 11 17116  10 09 08 07 06) 

(22 21 20 19 18 05 04 03 02 01 00 1 17  16 13 12 11 15114 10 09 08 07 06) 

(22 21 20 19 18 05 0403 02 01 00117 16 15 14 11 13112 10 09 08 07 06) 

(22 21 20 19 18 05 04 03 02 01 00 1 17  16 15 14 13 121 10 09 08 07 06) 

Uncrinkles a 
Andrew Lyall 

CODE U8 DAP 
ENTRY POINT 
PLANES 2048 
X 0,18 
X 1,19 
X 2,20 
X 3,21 
X 4,22 

X 7,18 
X 8,19 
X 9,20 
X 10,21 
X 11,22 

LV of 8 byte objects crinkled 32 deep. 
22 June 1985 

X 5,10 
X 6,11 
X 5,8 
X 6,9 
X 6,7 
X 5,6 
EXIT POINT 
FINISH ENDMODULE 

Figure 3.4 

The Musical Bits Routines provide a generalized method for simply 
programming complex data movements within all three dimensions of the 
DAP store. (upper) This example details the exchanges in the mapping 
vector necessary to convert 8 byte data crinkled 32 deep into normal DAP 
mode. The line at the top contains the number of the bit in the address of the 
data items as used by the Musical Bits Routines. The most significant bit is 
00 and the least significant 22. The vertical bars divide the address bits 
according to the dimensions of the DAP store. (lower) The APAL code to 
perform the necessary exchanges. This routine was used to uncrinide data 
produced by the vertical mode sorting routine described in chapter seven. 



DAPSU libraries. 

The Dap Support Unit at Queen Mary College London writes and 
maintains a library of subroutines written in DAPFORTRAN and APAL. 

Most of these are aimed at engineering applications and thus have not 

proved useful in this context. 

Block Transfer System. 

BTS was developed by ICL in response to demand from users. It was 
intended to simulate an interactive capability from within DAPFORTRAN 

and thus overcome what is a major limitation of the prototype DAP; the lack 

of any interactive facility. Unfortunately the prototype DAP project was 
discontinued before BTS reached the market place. 

In response to user requests to provide a "BTS-like" facility, the 

ERCC developed two products. Dap Data Exchange (DDE) and DDE 

extension (DDX) [Brown, 1986]. Although these products did not provide an 
interactive facility, they could only be used in batch mode, they did permit 

exchange of data during a DAPRUN without completely unloading the DAP. 

Unfortunately all the data movements had to be specified before running the 

programme; this made it impossible to use them in situations where the data 

movements are only known at run time, such as external sorting. 

Furthermore even in cases when the data movements were known prior to 
run time other restrictions made them very awkward to use; DDE and DDX 
were thus not used extensively. 

Suitability of the DAP for Sequence Comparison 

The DAP possesses a number of features which make it particularly 
suitable for analysing biological sequence data. The most obvious of these 

and the original motivation for the project is the compatibility between the 

basic connectivity of the machine and sequence data. The DAP also has a 
major advantage over vector architectures which emphasise performance in 

terms of high precision arithmetic. The very great flexibility of the DAPs data 

representation with a full trade-off against speed and storage is of great 

advantage when, as is the case for sequences comparison, the data types 
require only a small number of bits. On a vector machine there is no 

advantage to be gained by using low precision variables to store the sequence 
data whereas on the DAP this provides very great advantage. At the worst, 
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sequence data can be stored as single bytes with even greater advantage 

obtained using fewer bits; proteins can be represented with 5 bit objects and 
nucleic acids with 3 or even 2 bits if it is not necessary to represent ambiguity. 

Similarly, such logical variables can be used very efficiently to store and 
process relationships between sequences. The very high speed of processing 

such logical variables allows DAP performance to equal or even exceed that 

of vector processors costing ten times as much on these types of problem 
[Collins & Coulson, 1987]. 

Additionally as a highly parallel SIMD machine the DAP is ideaily 

suited to problems that can be broken down into a large number of identical 

sub-problems with different data; this property is the salient feature of the 

dynamic programming method which is used extensively in this project. 
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CHAPTER FOUR 

The Algorithms 

Biological sequence comparison problems fall naturally into three 

distinct classes which may be tackled by three slightly different versions of 

the dynamic programming algorithm described in chapter two. The three 

versions differ only in the metrics that they use and the values that are fed in 

to the edges of the array in the circumstances, described in chapter two, when 

i or j equal one. When both i and j equal one a value of zero is always used. 

The Type One Problem 
When a pair of sequences, almost always proteins, are suspected of 

having a common ancestry it is often desirable to align them along their 
entire length so as to emphasise that ancestry and to provide a numerical 

estimate of the evolutionary distance between them. An example of the use 

of such values is for the construction of phylogenic trees. 

In order to force the sequences to align co-linearly, overhang on 

either sequence is penalized as if the overhanging residues were indels. It is 

this feature that defines the algorithm for the type one problem and it is 

achieved by moving values into the match-matrix at the edges corresponding 
to the row or column number minus one, multiplied by the indel penalty. 

The Type Two Problem 
It is often necessary to search the databases for all instances of 

similarity to a short oligo-nucleotide or peptide sequence. The sequence in 
question may be a signal or control sequence or a consensus sequence, 

typically less than fifty elements long. In this case it is desirable to penalize 

unmatched overhangs on the query sequence as indels, in order to try to 

force alignment along its entire length, but meaningless to do so for the 

database sequences. This is achieved for the query sequence as for the type 

one problem. In the case of the database sequences overhangs are neutral in 
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the affect that they have on the alignments. This is achieved by always 

moving a zero into the matrix along the edge defined by the database 

sequences. 

The Type Three Problem 

The type three problem is to answer the question "...is there any 

known sequence that has any regions that are similar to any of the regions in 

the query sequence?" 

The algorithm to do this requires the most computation and is the 

most useful. It is described as the "best local similarity algorithm" [Smith & 

Waterman, 1981]. It is used to ascribe function and evolutionary 

relationships, by analogy, to sequences of unknown function and origin. 

In this case, as it is regions within each sequence that are of interest, 
overhangs in both sequences are treated neutrally; zeros are moved in at the 

edge of the matrix in all locations. This, however, is not enough on its own to 

ensure that the algorithm will find local similarities. The problem is that any 

pair of sequences may be considered to align albeit trivially. However it is 

only regions that produce a good positive score when they are aligned that 
are of interest. Since the value for such a region will be reported relative to 

the value of the cell in which it starts, it will not be possible to determine the 

goodness of an alignment by its value, or to separate the good portions of the 
alignment from the bad portions. 

In the published description of the algorithm [Sellers, 1974] this 
problem is overcome by never letting the value in a cell drop below zero; 

immediately a value becomes negative it is reset to zero and the alignment is 

terminated. Under these circumstances local similarities may be detected 
and ordered according to their absolute score. 

Implementations 

When programming conventional serial computers, the arrangement 

of data in store can often be the most critical performance issue [DEC, 1987]. 

If this is so when the store only has a single dimension, as is the case with 
virtually all serial computers, then it becomes the over-riding consideration 

when programming the DAP which has a multi-dimensional store; if the 
square connectivity of the DAP is used then the store has three dimensions 
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(64 x 64 x 4096 bits), if the linear connectivity is used then it has two 

dimensions (4096 x 4096 bits). 

The critical implementation decision then is on mapping the data onto 

the store so as to allow as many as possible of the processors to do useful 

work for as much of the time as is possible. Often this will mean that a 
programme performs more than the theoretical minimum number of 
operations in order to increase the opportunities for parallel processing and 

thus reduce the total run time. A classic example of this is the bitonic sort 
[Batcher, 1968] described in chapter seven. 

A more subtle problem involves balancing the relative costs of 
processing and data movement, referred to in the DAP literature as 
"routing" [Reddaway, 1984]. Although the DAP possesses row and column 

highways in order to increase the efficiency of routing, time spent routing can 
still dominate the run time of certain programmes. 

The aim, when balancing processing and routing, is to arrange the 
data so that PEs that need to exchange information with each other are as 

close together as possible. Once again it may be advantageous to perform 

extra processing in order to reduce the over all runtime by reducing the 
amount of routing. It is likely that future DAPs will have very much faster 
routing [Reddaway, 1984] which will make this issue less dominant. 

Type One 

The type one problem is different from the other two problems in that 
a large database is not being searched. Usually only pairs or small numbers 

of sequences are compared. This type of analysis is not normally applied to 
nucleic acid sequence data. 

Typical proteins range in size between about one hundred and about 
four hundred amino acids in length. This is inconveniently distant from the 
two major dimensions of the DAP; 64 if the square connectivity of the array 

is to be utilized and 4096 if the linear connectivity is used. This means that 

the two most obvious ways of mapping the problem onto the array present 
problems. 

For sequences under 64 in length an extremely fast implementation 

which maps the match-matrix directly onto the array is possible, however, the 
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special programming necessary for the edges of the array, were the 

programme extended to cope with sequences of length greater than 64, is not 
only difficult but also likely to badly effect efficiency [Collins & Coulson, 
1984]. The opposite problem arises with the long vector mapping; that if only 

single pairs of sequences are compared then, for most of the time at least 

90% of the processors will not be working productively. In the case where the 
user wishes to make a number of comparisons then a single sequence may be 

compared with about 10 or so others simultaneously using the long vector 
mapping. 

If optimum performance were a critical issue it would be necessary to 

write a number of different implementations for various different lengths of 

sequence. As this is not the case a reasonable compromise is to use the long 

vector mapping and put up with the fact that a single pair-wise comparison 

will take the same amount of time as a comparison of a single sequence with 
about ten others. 

As it is distance that is of interest this implementation used a 

difference metric. This causes the best alignment to finish in the cell in the 

bottom row of the match-matrix containing the lowest value. There is 

sufficient room in the prototype DAP to generate the whole matrix and step 
back through it to generate the actual alignment. 

Type Two 

The type two problem involves comparing a short query sequence 

with a large database, ideally containing all known sequences. The major 

decision is that of how to map the database onto the array. 

The option of using the square connectivity and taking letters in 

parallel from both the query and database sequences was rejected for the 

following reasons. A great deal of time would be spent on the special 

processing necessary for dealing with the cases where the database sequences 
run off the edge of the array. Also, since it is likely that the query sequence 

will usually be substantially less than 64 letters long a great many of the PEs 
will not be used for much of the time. 

The mapping chosen used the linear connectivity. The database was 
taken 4096 letters at a time and compared in parallel with a single letter from 
the query sequence. This allows all 4096 processors to be used all the time 
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and minimises the amount of special processing necessary for dealing with 

the edges. A distance metric was used. This causes paths of interest to finish 

in cells corresponding to minima along the bottom line of the matrix. 

The values for the cells are only generated a line at a time as they are 

only needed in the final row to record the maximum score achieved by each 

path. The whole matrix is recorded but each cell only records how it was 

arrived at. As this need only assume four different values (match, mismatch, 

vertical step & horizontal step) it can be stored in a two-bit variable which is 

very space efficient although slightly fiddly when it comes to printing the 
alignments out. The two-bit values within the layers of the matrix 

corresponding to steps back along the paths are left-packed within the array 

(an extremely efficient process) to bring all the steps in each particular path 

under the same PE. 

A problem arose here because the paths are not all necessarily of the 

same length. Their length depends on the number of horizontal steps in 

them. As it is not possible to use the parallelism of the DAP effectively on 

data items that are' of varying length it was necessary to ensure that the 

objects representing the paths were of the same length. The solution was to 

record all horizontal moves as a single horizontal step regardless of the 

number of step actually involved. This can be coped with by the programme 
that prints the alignments because this particular implementation of the 
dynamic programming algorithm always ends a series of horizontal steps at 

the first possible match. This feature is a side effect of the strategy for 

selecting between steps of equivalent value that is designed to keep the 
alignments as compact as possible. 

Finally, now that each path is under its own PE, the paths may be 
sorted into order of goodness according to their maximum score and 

returned to the host computer where a simple programme decodes the 

packed paths and prints out the alignments. Usually many more paths are 
collected than the user requires to see. Ideally, the output programme would 

be made interactive so that the user could browse through the large number 

of alignments varying the selection criteria before deciding which ones to 
print. 



Type Three 

As described [Sellers, 19741 the algorithm for this problem is not 

adequate in two respects. The first is that it only returns the single best 

alignment between the pair of sequences under comparison. Unfortunately 

the regions of the sequences that align the best may do so fortuitously and 

not because of an evolutionary or functional relationship. It may be the case 

that the alignment to which biological significance or functionality is ascribed 

is not the best alignment that can be generated between the two sequences. 

What is required is an algorithm that provides the best n alignments 
where n is a biologically reasonable number. These n alignments may be then 

examined by eye in order to ascribe biological significance. 

The second problem is a pragmatic one. As described the algorithm 

requires an amount of computer memory proportional to the product of the 
lengths of the two sequences under comparison. This is not possible with the 
prototype DAP because of the lack of I/O and the small memory size. 

Interestingly enough, it turned out that the solutions to these two 
problems were linked. The reason that the algorithm, as described, does not 
return all possible paths is not that they are not computed, rather, it is that 

they are computed, but in such a way that it is not possible to detect then 

easily. The maximum scores of the paths are not directly available, they are 

scattered throughout the matrix. The best alignment, and its score are 

collected in the optional second stage of trace-back described in chapter two. 

Rather than generate the whole match-matrix within the DAP only a 

band of the matrix two cells wide is generated. This band is computed to 

sweep down the matrix, each value being generated only once during the 

computation. In addition to the scores other values are maintained and 

moved with the appropriate cell in the band. These additional values include 

such things as the start and stop points within the two sequences, the 

maximum score, the current score and other housekeeping information. 
These values are carried forward with the band sweeping down the match-
matrix so that at the end of the sweep all the information necessary to 
reconstruct the alignments is available. 

This reconstruction of the alignments from the details of the paths 
through the match-matrix was performed using a serial programme as it was 
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not computationally intensive enough to justify using the prototype DAP. 

Although not essential to this reconstruction, the maximum deviation the 

alignment makes from the main diagonal was collected by the DAP 

programme as this speeds up the serial calculation enormously. It should be 
noted that this is only a temporary measure as the task performed by the 

serial programme is likely to remain constant whilst the task performed by 

the DAP programme Will increase in magnitude rapidly. In the near future it 
is likely that it will be necessary to modify the DAP programme to increase 

its efficiency. When this happens relatively expensive and unnecessary 

features like the one just described will have to go. 

The programme maintains a list of the best four thousand or so 

alignments irrespective of which sequence in the database they are derived 

from. These results may be sorted according to a variety of criteria that are 

user selectable. Ideally, as with the type two implementation, these results 

should be presented to the user through the medium of an interactive 
browsing programme. 
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CHAPTER FIVE 

Similarity 

The description of the dynamic programming algorithm in chapter 

two does not enumerate the values (weights) used to penalize indels and 
mismatches or to reward matches, that is to say the values that comprise the 

metric. Early versions of the programmes written in this project used a metric 

that scored +1 and -1 for rewards and penalties respectively. It is not, 

however, necessary to be restricted to such a simple scheme since the 
algorithm will work with any set of values that conform to the metric axioms. 

The alignments of protein sequences generated using the + 1/-1. 

metric are very short and consist almost entirely of perfect matches. This 

renders them uninterpretable unless they are from comparisons between very 

similar sequences. This is unsatisfactory because such similarities can be 

detected using the inexhaustive (or heuristic) and thus very fast, algorithms. 

It is however apparent why this should be the case. 

As proteins contain twenty different amino acids, perfect matches 

between dissimilar sequences will occur at low frequencies; within the 

vicinity of 1 in 400. Using the + 1/-1 metric, where the score for an alignment 

is penalized by the same amount for a single mismatch as it is credited for a 

single match, it is thus impossible to generate alignments between dissimilar 

sequences. This is because the formal description of the algorithm [Sellers, 
1974] requires that when the value for an alignment drops below zero it is 

deemed to have finished and all the various counters are reset. The obvious 
solution to this, namely, to change the metric so that this is not the case, does 
not provide a satisfactory solution. A number of different ratios of reward to 
penalty were tried and values in the region of twenty seemed to be the most 

satisfactory. Although this produced a large number of much longer 

alignments it was still difficult to interpret them. Using test data it was found 

that the interpretable alignments were masked by large number of 
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uninterpretable ones that appeared spurious. Fortunately there is a biological 
rationale for why this should be so. An understanding of this makes it 
possible to devise methods that favour interpretable alignments over 

spurious ones. 

It has been known for some time that two proteins from different 

sources that perform the same function can show considerable differences in 

their sequences whilst having very similar structures. Figure 1.8 in chapter 

one shows the three dimensional structure of the glycolytic enzyme 

phosphoglycerate kinase (PGK). This was generated from X-ray 

crystallographic data and is displayed on a computer graphics system. The 

structure in blue is the enzyme from horse whilst the one in yellow is from 

yeast. The white lines are where the structures overlap. All the side chains, 

except for that of an Arginine (168 in the yeast structure and 170 in the 

horse), have been omitted for clarity. It can been seen that the structures are 

extremely similar, and indeed this is not surprising as these two proteins have 

virtually identical catalytic, kinetic and physical properties. 

Figure 5.1 shows the sequences from these two enzymes aligned. 

From this it can be seen that only 272 of the 417 amino acids of yeast PGK 

correspond exactly to those in horse PGK; these two proteins show virtually 
identical properties and structure when 35% of their amino acids are not the 
same. 

Conversely it has also been known for a long time that changes of just 

one of the several hundred amino-acids in a protein can result in extremely 

big changes to its properties. Considerable circumstantial evidence to 

support this belief has been available in the form of lethal point mutations. 

The hypothesis explaining such mutations is that they introduce a single 
amino-acid change into a protein which is thereby so badly affected that the 
organism cannot survive. 

More recently direct evidence has been provided by the technique of 

site directed mutagenesis (SDM) [Winter & Fersht, 1984]. Using this 

technique a genetically-engineered PGK has been prepared from the yeast 

enzyme with Argimne 168 changed to a Methionine. Arginine 168 can be 

seen as the single side-chain projecting into the inter-domain cleft of the 

PGK molecule in figure 1.8. This change, of just one amino acid, resulted in a 

mutant enzyme whose catalytic activity was reduced one hundred fold 
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10 	20 	30 	40 	50 
*** ** 	** * *** ******* 	** **** ** * ** * 
SLSNKLTLDKLDVKGKRVVMRVDFNVPMKNNQ ITNNQRIKAAVPS IKFCL 
SLS SKLS VQDLDLKDKRVF I RVDFNVPLDGKK I TSNQRI VAALPT I KYVL 

	

60 	70 	80 	90 	100 
*** ****** * 	**** *** ** ******* ** **** 

DNGAKSVVLMSHLGRPDGVPMPDKYSLEPVAVELKSLLGKDVLFLKDCVG 
EHHPRYVVLASHLGRPNG. ERNEKYSLAPVAKELQSLLGKDVTFLNDCVG 

	

110 	120 	130 	140 	150 
**** * 	* ********** ****** 	* **** 	** 
PEVEKACANPAAGSVILLENLRFHVEEEGKGKDASGNKVKAEPAKIEAFR 
PEVEAAVKASAPGSVILLENLRYHIEEEG. SRKVDGQKVKASKEDVQKFR 

	

160 	170 	180 	190 	200 
** * *** **************** *** * *** *** ** *** 

AS LS KLGD VYVNDAFGTAHRAH S SMVGVNLPQKAGGFLMKKELNYFAKAL 
HELS SLADVY INDAFGTAHRAHS SMVGFDLPQRAAGFLLEKELKYFGKAL 

	

210 	220 	230 	240 	250 

	

* * ******************* * **** 	********** ***** 
ESPERPFLAILGGAKVADKIQLINNMLDKVNEMI IGGGMAFTFLKVLNNM 
ENPTRPFLAILGGAKVADKIQLIDNLLDKVDS II IGGGMAFTFKKVLENT 

260 270 280 290 300 

E IGTSLFDEEGAKIVKDLNSKAEKNGVKITLPVDFVTADKFDENAKTGQA 
E IGDS IFDKAGAE IVPKLMEKAKAKGVEVVLPVDF I IADAFSADANTKTV 

	

310 	320 	330 	340 	350 

	

* 	****** 	*** **** * * * ** ****** ****** ** * 
TVASGIPAGWNGLDCGPES SKKYAEAVTRAKQIVWNGPVGVFEWEAFARG 
TDKEG I PAGWQGLDNGPE SRKLFAATVAKAKT IVWNGPPGVFEFEKFAAG 

	

360 	370 	380 	390 	400 

	

**** ***** 	* 	********* 	* 	** ************ 
TKALMDEVVKATSRGC ITI IGGGDTATCCAKWNTEDKVSHVSTGGGASLE 
TKALLDEVVKS SAAGNTV I I GGGDTATVAKKYGVTDK I SHVS TGGGAS LE 

410 
***** **** ** 
LLEGKVLPGVDALSNIL 
LLEGKELPGVAFLSEKK 

Figure 5.1 

The amino acid sequences of horse (upper) and yeast (lower) 
phosphoglycerate kinase aligned along their entire lengths. Exact matches 
are marked with a star. It can be seen that at 274 of the 417 comparable 
positions the amino acids are the same. The numbering corresponds to the 
horse sequence. Arginine 168 in the yeast sequence is marked with a caret. 



compared with that of the wild type enzyme [Minard et aL, 19871. This 

experiment was performed as part of a project investigating the catalytic 

mechanism of PGK, however, the important point in this instance is that this 

small change has a dramatic effect on the properties of the molecule. 

These two extreme examples, the first showing more than 140 

changed amino acids having very little effect on the properties of a protein 

and the second showing a single amino acid substitution which virtually 

inactivated the same protein, are a good illustration of the problem inherent 

in the comparison of protein sequences; unfortunately PGK is not an 

exception, there are good reasons to believe that this phenomenon is 

ubiquitous. 

Simply stated, if an alignment is to indicate as accurately as possible a 
functional similarity, then the contribution, either positive or negative, made 

to the goodness of the alignment by a mismatched pair of amino acids 

depends both on what those two amino acids are and also on the precise 
molecular environment that they inhabit. 

In order to improve the discrimination and sensitivity of the dynamic 

programming alignment algorithms a scoring method is needed that will try 

to take these phenomena into account. Instead of scoring separately for a 

match and a mismatch a single operation that can provide a score that varies 
according to the biological similarity of amino acids is required. 

A method of devising such similarity scores has been proposed 

[Dayhoff et al., 1978]. According to this proposal similar protein sequences 
are similar because they have evolved from a common ancestral sequence by 

divergent evolution. It should be noted that this model and the values so 

derived are applicable only to sequences that are related in such a manner; if 

the sequences are related by convergent evolution, that is to say they come 
from more dissimilar ancestral sequences then some other model is required. 

This is not as big a problem as might first appear as convergent evolution is 

thought to be very much rarer than divergent evolution [Gould, 1980]. 

Additionally, they assume that the probability of amino-acid X mutating to 

amino acid Y is the same as that of Y mutating to X. They justify this by 

saying that the frequency of a particular mutational event is related to the 
product of the frequency of occurrence of the amino-acids concerned and 

their physical and chemical similarity. 



These workers model, the mutational process in terms of two distinct 

quantities; the frequency at which each amino acid changes to each other one 

and the propensity for each amino acid to remain unchanged. The former 

quantity is referred to as the frequency of accepted point mutation. This is 
because it quantifies the replacement of one amino acid by another that, as a 

consequence of the continued existence and functionality of the protein, can 

be said to have been accepted by natural selection. The latter quantity they 

call the relative mutability although relative immutability might be a better 

term. 

In order to calculate these quantities they collected data for some 

1500 mutational events from pairs of sequences that they had aligned. They 

restricted the alignments to pairs of sequences that showed fewer than 15% 
unmatched pairs of amino acids. The reason they give for this restriction is 

that it makes double mutations so unlikely that it is unnecessary to consider 

them. 

The frequencies of accepted point mutation for all pairs of amino 
acids were collected by counting all unmatched amino acids in these 
alignments. The relative mutability of a particular amino acid is proportional 

to the number of times it has been changed divided by the number of times it 

occurs. As these values come from many different alignments of different 

evolutionary distances and of different lengths they must be normalized to an 

equivalent evolutionary distance. The arbitrary distance chosen corresponds 

to a single mutation per hundred residues. This distance is referred to as one 
PAM (Point Accepted Mutation). 

These two kinds of data, quantifying individual mutation frequencies 

and relative mutabilities, were combined to produce a single distance-
dependent mutation probability matrix. This is called the one PAM mutation 

probability matrix. For every given pair of amino acids there is an element of 

this matrix that gives the probability that the first amino acid will replace the 

second after an evolutionary interval of one PAM. This matrix can be 

multiplied by itself N times to yield a matrix that predicts the amino acid 

replacements to be found after N PAMs of evolutionary change. It should be 

noted that, strictly speaking, this can only be said to be the case for a 

sequence that is of the same composition as the original sample. 

If these values are to be used to calculate the probability that one 
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sequence has mutated into another then they must be modified to represent 

the probability (or odds) that a particular amino acid will be substituted by 

any other. This is done by dividing the values in the various PAM tables by 

the frequency of occurrence of the amino acids in the original sample; the 

frequency of occurrence of an amino acid represents the opportunity it had 

to mutate. This table can be used multiplicatively to calculate the odds for 

whole proteins. As it is computationally easier to add, the logarithms of the 

matrix elements are normally used. Figure 5.2 shows the log odds table for 

100 PAMs which was used extensively in this project. 

Although these results have been used by many workers, particularly 
in the form of the 250 PAM log odds matrix, there is a certain amount of 

dissatisfaction with them. Although this dissatisfaction is largely empirical it 

can be rationalized. 

Examination of the original data used reveals that some of the values 

derive from an extremely small number of observations; as low as no 

observations at all for some pairs. Additionally more subtle problems derive 

from the fact that the data are being used in different circumstances from 

those under which they were collected. The 250 PAM table corresponds to 
sequences that contain only 20% of identical amino acids, whereas the 

sequences that the data were collected from contained 85% or more of 
identical amino acids. There is no evidence to support the assumption that 

the factors which operate over short evolutionary distances are the same as 

- those which operate over longer ones, indeed preliminary evidence from 
other workers [Collins & Coulson, 1987] suggest that this is not the case. 

Also, the data were collected only from those proteins whose sequence was 

known at the time, almost entirely globular proteins. Amongst the most 

vociferous protesters at the inadequacy of these similarity values are those 
who work with membrane associated proteins. 

During this project a range of similarity tables have been used based 

on this original data, with what were considered glaring deficiencies 
subjectively corrected. The one hundred PAM table was used most widely. 

The ability of the programmes to discriminate between interesting and 
uninteresting alignments derives from the use of similarity tables and the 
exhaustive nature of the algorithm. 

In order to answer the criticisms above it would be desirable to have 
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better tables. The ideal solution would be to generate new tables using the 
very much larger amount of data that is now available. In addition it would 

be desirable to collect data from sequences that are more dissimilar than the 

15% maximum dissimilarity used previously and also to generate tables for 

particular classes of proteins. An obvious examples being those proteins that 

are associated with membranes. This work will require large amounts of 

computing resource to generate the very large numbers of alignments that 

will be necessary. Fortunately the efficiency of the DAP programmes mean it 

can be done although the task will require many hundreds of hours of DAP 

time. This work is currently in progress. 



CHAPTER SIX 

Significance 

It is invariably the case that the first question a biologist will ask on 
seeing a pair of sequences aligned is 

"..is it [the alignment] significant?" 

The correct answer to this question is 

"...the alignment is significant if it represents an 
evolutionary or functional relationship between the two 
biological molecules whose sequences are aligned." 

Bearing this important point in mind it can however still be useful to have a 

figure that gives some idea of the likelihood of a particular alignment 
occurring by chance. 

Because alignments can contain insertions and deletions in either 
sequence it is not immediately obvious how to calculate the likelihood of an 

alignment occurring by chance. It is a simple matter to calculate the 

probability of getting a certain number of identical bases in a region of 
known length using the lengths of the sequences and the frequency of 
occurrence of the letters. This calculation is quite satisfactory for modelling 

matches and mismatches but does not take account of insertions and 
deletions. 

A practical approach that has been used [Goad & Kanehisa, 1982] is 
to perform database searches using randomly generated sequences. The 

results of such searches can be used to construct a standard curve. This 
method has been criticised [Lipman et al., 1984] as it does not take account 
of the various inhomogeneities of real sequences. These workers have 

generated their random sequence by scrambling real sequences so as to 

preserve the various statistical properties of real sequence. These include 

such things as highly skewed and characteristic nearest neighbour frequencies 
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and various inhomogeneities of sequence composition. However, even this is 

not entirely satisfactory as real DNA and protein sequence have other 

properties which they are unable to mimic. 

A theoretical approach has been taken to calculate the significance of 

an alignment [Clayton et al., 1981]. If an alignment is considered as a series 

of events each of which elongates it by one base then this series has the 

property of being a Markov chain [Feller, 1968]; the probability of each event 

depends only upon the current state and not on any previous state. This 

means, using the base frequencies counted for the sequence in question, that 

it is possible to calculate the probability of each type of event extending the 

alignment. These values comprise a transition matrix [Feller, 1968] which 

may be used to calculate the significance of the alignment. This however, is 

computationally expensive and an approximation has been used which is said 

to require 10 less computation and produce probabilities good to 1 part in 

iø [Clayton et al., 1981]. 

All of these methods have two major disadvantages; they do not 

accurately model real sequence data and they require a considerable amount 

of computing resource. 

The DAP implementation of the type three dynamic programming 

algorithm described in chapter four stores all the alignments that score 

higher than a very trivial threshold until the whole database has been 

searched. At this point the alignments are sorted and the best few presented 

to the user. For any database search against a single query sequence it can be 

assumed that the first few alignments may represent genuine relationships of 

biological interest whilst the remainder are fortuitous. These unrelated 

alignments may be used to generate a measure of significance for each 
alignment as follows. 

The scores of a substantial number of the best alignments, currently 

4096, are collected. The top scoring 3% of the alignments are removed. The 
remaining 97% of scores are assumed to have arisen fortuitously and are 

plotted against the logarithm of the number of alignments attaining that 

score and fitted to a straight line. The 3% of alignments that are assumed to 
include all significant ones are also plotted on the same graph. 

Examination of the graph shows that many of the alignments in the 
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top 3% deviate markedly from this line and can thus be assigned a numerical 

significance. Figure 6.1 is graph of the alignments produced for one of the 

studies, that involving the human CF antigen, in chapter eight. 

For each alignment, two numbers are generated. The number of 

alignments that would be expected to attain that score purely by chance for 

that particular combination of database and query, and the number that were 

actually detected by the programme. These two numbers can be compared 

and used to guide the intuition of the .biologist who is assessing the 

alignments. 

This method has very great attraction, not only because of its rigour 

and the very small extra amount of computation required but also because it 

satisfies the requirements which are intuitively felt to be necessary by 

biologists, in particular it uses real sequence data. All of the studies in 

chapter eight use this method to assess the significance of the alignments 

generated in them. 
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Figure 6.1 

An example of the type of plot used to assess the significance of alignments 
detected with the authors implementation of the type three dynamic 
programming algorithm. These results are from the search using the CF 
antigen described in chapter eight. The interpretation of such plots is 
explained in the text although, roughly speaking, points that deviate markedly 
from the straight line indicate alignments that are likely to be due to a 
functional or evolutionary relationship. [After Collins et al., 1988]. 



CHAPTER SEVEN 

Approximate Methods 

Most molecular biologists do not have access to computers like the 
DAP and thus cannot conveniently perform database searches using dynamic 

programming algorithms. In order to overcome this problem an algorithm 

has been devised to pre-process the sequence data bases to extract those 
sequences, it is hoped a small number, that have a marked similarity to the 
query sequence [Wilbur & Lipman, 1983]. The rationale for this approach is 
that it is then feasible to process this small number of entries with a program 

that uses the dynamic programming method on an inexpensive computer. 

The algorithm relies on the fact that two similar sequences will 
contain short regions of exact identity. Such regions are called words. Whilst 

this is a reasonable assumption to make for close relationships it is not 

- reasonable for distant ones. This is unfortunate as more trivial and faster 

algorithms can find the obvious relationships already; it is the distant ones 
that are difficult and require the power of the dynamic programming 
algorithms. 

The Approximate Algorithm 

The algorithm proceeds by using a user supplied word length to build 
a hash table from all possible words of that length in the query sequence. The 

locations of duplicate words are stored in a linked list pointed to by the 

appropriate entry in the hash table. A histogram is created with one entry for 

each diagonal of the match-matrix. Every word in the database is looked up 

in the hash table and, if it occurs, the appropriate entry in the histogram is 
incremented. Overlapping words only increase the counter in proportion to 

the amount that they increase the length of the perfect match by. The 

database sequences are filtered by examining the histogram and choosing 
those sequences that have clusters of diagonals that score highly. 
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In addition to failing to detect similarities that do not contain a 

substantial number of common words the algorithm also has the unfortunate 

property of favouring diagonals which contain a large number of widely 

separated perfect matches over those which contain a smaller number of 

closely spaced ones. This latter effect is a problem because it is likely that the 
small number of closely spaced matching words are due to a biological 

feature whereas the widely separated ones may not be. Most astounding of 

all is the enormous amount of unnecessary work such programmes perform. 

As the whole database is searched every time the programmes are used, their 

run times are proportional to the size of the database. If, instead of 
converting the query sequence into a dictionary, the database were stored as 

a dictionary and the words of the query looked up in that then the runtime 

would be proportional to the length of the query sequence (normally some 3 

to 4 orders of magnitude shorter!). It is true that in this case there is the 

overhead of constructing and storing the database dictionary, however the 
databases are not distributed very often and there is no reason why the 

dictionary should not be constructed at a central site and distributed in a 

similar manner to the databases. 

Many molecular biologists currently use implementations of the 
approximate algorithm as a matter of routine on mini-computers [Devereux 

et al., 1984], [Lipman & Pearson, 1985]. Even these programmes require 

significant amounts of CPU time. This is unfortunate as it discourages 

repeated use of the programmes whilst varying the parameters, something 
that is essential if maximum benefit is to be obtained from them. This is 

necessary because the particular alignments that are detected by the 

approximate algorithm are very dependent on the values that the user 

supplies for the programme parameters. In this respect the critical 
parameters are the wordsize and the number of diagonals of the match-
matrix over which integration takes place. 

If such users had access to versions of the databases stored as 

dictionaries they would be able to perform database searches in seconds 

rather than minutes or hours. An obvious use of the DAP is to use it to 

generate such dictionaries by sorting. 
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Sorting 

Sorting is a very major activity in computing. It is fundamental to data 

processing and is also used considerably in scientific computing. A great deal 

of work has gone into the development of efficient sorting algorithms for 

machines with serial architectures. 

Naïve algorithms, for example the insertion sort, have a complexity of 

N2  making them unsuitable for anything other than very small data sets, their 

only virtue being ease of implementation. The most efficient algorithms have 

a complexity of Nlog2N; the goal of the algorithm designer being to minimize 

the value of the constant by which this is multiplied. 

Heapsort [Williams, 1964] is widely used as it is a true in situ method, 

has very good behaviour in that it is also Nlog 2N for the worst case order of 

input data and is relatively easy to implement. For very large problems where 
the ultimate performance is required the algorithm with fastest average 
performance is Quicksort [Hoare 1961]. Quicksort is a partition-exchange 

sort; by pair-wise exchange of elements the original dataset is partitioned 

into two subsets which are sorted independently by the same method. This 

process could be continued until the subsets contain two elements, at which 

point they can be trivially ordered. However when the subsets get down to a 

certain size it becomes quicker to sort them by an insertion sort. The exact 

size at which this happens is machine dependant. Further drawbacks of 

Quicksort are that it requires an additional 2 log 2N locations of storage to 
store the subsets in and that its worst case behaviour is extremely bad indeed; 
of order N2. This behaviour occurs when the data already contains some 

degree of order with correctly sorted data being the worst possible case. 

When implementing quicksort it is necessary to guard against this 

eventuality. Recommended methods include sampling the data prior to 
sorting and using a random number generator to select the data [Knuth, 
1973]. 

Parallel sorting algorithms 
A much smaller, though not inconsiderable, amount of work has been 

done on the development of sorting algorithms for parallel computers. Many 
of these algorithms are not suitable for the DAP because they assume 

architectural features that it does not possess such as independent addressing 
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within the PEs [Baudet & Stevenson, 19781. The preferred algorithm for this 

application is the bitonic algorithm [Batcher, 1968]. The so-called odd/even 

algorithm of the same author can achieve slightly better performance under 

certain circumstances but is much more difficult to program [Reddaway & 

Flanders, 1982]. So, rather like the Heapsort/Quicksort choice for serial 

sorting Bitonic sorting is the choice on the DAP unless extremely large data 

sets are to be sorted. Like Quicksort, bitonic sorting relies on a divide and 

conquer approach analogous to partition-exchange. However, whereas 

Quicksort sorts the independent subsets one at a time the bitonic sorting 

algorithm takes advantage of the independence of the subsets and the 

parallel nature of the hardware on which it is running to sort many of the 
subsets simultaneously. 

A bitonic sequence is one which when considered cyclically has one 

ascending portion and one descending portion. The critical property of 

bitonic sequences used by the algorithm is as follows. If a bitonic sequence, 

Al where i = 1,2,..n, is split into two sequences such that:- 

Ali = mm (Ai,Ai+x/2) where 1 < i < x/2 and 

A2i = max (Ai,Ai+x/2) where 1 < i < x/2 

then Al and A2 are also bitonic sequences and all the elements in A2 
are greater than or equal to all the elements in Al. 

If this process of splitting is applied to a bitomc sequence of 2' 

elements and then again to the two sub-sequences and so on until there are 
2" sequences each containing one element it can be seen that each element 

will be greater than or equal to all elements in preceding sequences. An 

arbitrary set of 2" items may be converted in to a bitonic sequence by the 
following method. 

The sequence of 2" numbers may be considered as 11  sequences of 2 
numbers each of which is trivially bitonic. If these bitomc sequences are now 

ordered so that the first and alternate sequences are in increasing order and 

the second and alternate ones are in decreasing order then each pair of the 
2t4.1  sequences will be a bitonic sequence of four elements. The number of 
sequences has been halved and the number of elements each contains has 

been doubled. This process is repeated until there is a single bitonic 
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sequence of 2N  elements which may be ordered as described previously. 

Figure 7.1 illustrates the whole process for a sequence of eight elements. 

The basic operation of the Bitomc sort is a comparison-exchange in 

which a pair of elements is compared and conditional exchanged depending 

on the result of the comparison. If one is sorting N elements then at each 

stage of the algorithm there are N/2 such comparison exchanges. For a 

complete sort there are 1/4Nlog2N2  of these [Flanders, 1982]. This is about 
V41092  more than the number of equivalent operations in a serial sort. 

When implementing a bitomc sort on DAPs the aim is to arrange it so 

that all the PEs are active and performing distinct comparison exchanges for 

as much of the time as possible, avoiding duplication of comparison-
exchanges. An additional problem with the current generation of DAPs is 

that routing is a relatively slow process and can dominate execution time if 
care is not taken. 

The QMC libraries described in chapter three contain sorting routines 
for individual vectors and long vectors. The routine for sorting a single long 

vector could be used to sort a large number of layers, however this is 

extremely inefficient as it entails a great deal of repetition. A sorting 

programme written using the long vector sort routine proved so 
unsatisfactory that it was decided to write a new routine. 

As with all DAP programming the arrangement of data in store is the 

most important consideration. Data is usually considered as being stored in 

the DAP store in horizontal mode. This is the mode in which the Host store 

mode conversion routines expect the data they convert to be in. If the data is 
represented by a 3-dimensional array then if it is horizontal mode the first 
index is the fastest running. 

Data stored in vertical mode is often referred to as being crinkled. If 
the data is represented by a 3-dimensional array then if it is in vertical mode 

the third index runs fastest, the first index second fastest and the second 
index slowest. 

A sorting routine was written that left the data in horizontal mode. 
Experience with this routine indicated that a significant proportion of the 

time was spent in routing. A second routine was written that left the data in 
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INPUT 	 34267245 x x x x 
SORTED PAIRS 	 3 4 6 2 2 7 5 4 

• x x x x 
SORTED FOURS 	 2 3 4 6 7 5 4 2 

x x x X. 
OUTPUT 	 • 	22 34 45 67 

Figure 7.1 

Batchers Bitomc sort for eight items. At each step data is moved as indicated 
by the diagonal lines and compared with the data already there. + & - 
indicate whether the larger or smaller element is selected. 



vertical mode and thus reduced the amount of routing. An accompanying 

routine was written using the musical bits routines to convert the data from 
the crinkled mode in which it is left by the vertical mode sorting routine 
directly into the host store mode. These two routines combined ran in less 

than one third of the time of the horizontal mode routine on its own. 

It is possible, using the musical bits routines, to vary the mapping 

vector during the sort with the aim of reducing routing even further. 

Theoretical timings for such a routine have been calculated [Reddaway & 

Flanders, 1982]. It was decided that the extra effort involved in coding a 

variable mapping vector sort was not worth while. Timings for these four 

methods of sorting on the DAP are given in figure 7.2. 

Method 	 Time/secs 

QMC Longvector sort >20 
DAPFORTRAN Horizontal mode 6.5 
DAPFORTRAN Vertical/uncrinlde 2 
APAL variable mapping vector <0.5 

Figure 7.2 

DAP CPU time to sort 1,048,576 (1M) of 12 byte data on the ICL 64 x64 
prototype DAP by the various methods discussed in the text. 

External sorting. 
When the amount of data to be sorted exceeds the size of the main 

store the data is divided into blocks of that size, these blocks are sorted 
separately and then merged in a number of phases. Each phase combines 

successively fewer blocks until a single sorted block is obtained. 

In the following description it is assumed that two blocks of fixed 
length records, both in ascending order, are to be merged into a single block 

also in ascending order. Records are processed from each block in fixed 

length sub-blocks each containing N records. 

1) 	The first sub-block is taken from either block and moved to a 
merge area, M. 
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The next sub-block is chosen by comparing the first element in 

the first sub-block in both blocks. The one with the smaller first 

element is chosen. 

These two sub-blocks are merged with the bitonic merge. 

The lower half of the merge area is output. 

steps 2, 3 & 4 are repeated until both blocks are exhausted. 

As the two sub-blocks in the merge area are both sorted they may be 

taken together as a bitomc sequence and sorted as. already described. An m-

way merge combines m sorted blocks into a single sorted block. When rn is a 

power of 2, an rn-way merge may be performed by a complete binary tree of 

two-way merges. The first level performs m/2 two-way merges to produce 

m/2 blocks, the next level uses these as inputs to m/4 two-way merges to 

produce m/4 output blocks and so on until, finally, a single sorted block is 

produced. When m is not a power of two, branches of the tree may be 
omitted as required. 

For an rn-way merge a block of N records is output after each stage of 

log,m merges. The work per merge is proportional to Nlog2N. From this it 
can be seen that the bitomc merge works most efficiently with the smallest 

sub-block size concomitant with fully parallel operation of the array 
[Flanders, 19821. 

This however assumes that transfers from disk to the DAP present no 

problems. As explained previously, there is no direct interface between the 

DAP and the 2900 disk packs. Data has to be read from the disk to the 2900 

memory and then moved into the DAP. Furthermore, using the standard 
- versions of the DAP support software input-output is not possible; data is 
built into the DAP program block which is then moved into the DAP, the 
program is executed and the block moved out to the host. Due to the fact 
that the host is also running a time sharing operating system with up to one 

hundred users, at peak times it takes between one and two minutes to get a 
contiguous area of virtual memory the size of the DAP, build the program 

block and load it into the DAP. In an attempt to alleviate these problems the 

ERCC produced an enhancement to the support software called DDX 

[Brown, 1986]. This provides a limited form of I/O that has to be exactly 
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specified before running the program. Obviously this is not suitable for 

merging as the I/O necessary for merging is data dependent and thus not 
known until run time. 

The solution to these problems was to write a serial program on the 

host which scattered the data based on the first few characters of the sort key 

into blocks that were guaranteed to be no larger that the one megabyte of 

keys, this being the maximum that the two megabyte DAP store could handle 

bearing in mind that memory was also needed for the half megabyte of tags 

and the program. This strategy was feasible because the composition of the 

protein databases is known and relatively constant over the short timescale of 

this project. As their order relative to each other is known at run time, these 

blocks could then be presented to DDX in the correct order and sorted in the 

DAP in batch mode (DDX does not work interactively). This rather 

unfortunate compromise actually produced an extremely fast sort/merge 

program. In the future DAPs will have direct access to disk and these 
problems will cease to be an issue. 

Applications of the Sequence Dictionaries 

Using the sorting and merging routines described above the NBRF 

protein database was sorted into a dictionary based on a key of five amino 

acids. This number was chosen because, with the current size of the database, 

it produced a set of keys the majority of which were unique. 

Because it is not necessary to .  store the keys; the tags can be binary 
searched and the key worked out by looking in the data base at the 

appropriate position, the dictionary only takes up five times the amount of 

space that the database takes up. For each position in the database there is 

the letter itself which is one byte and a four byte integer for the tag. The 

databases would have to get very large indeed before it becomes necessary to 
move to eight byte tags. 

This dictionary was transferred to a serial machine and a number of 

applications that used it were developed by other workers. These are briefly 
described below. 

Fast database searches. 
A serial programme that used the dictionary to mimic the 
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approximate algorithm described above ran in a few seconds, making it 

between two and three orders of magnitude faster. It should be noted that 

the relative costs. of CPU power and secondary storage mean that this 

approach represents a very acceptable trade off. 

The programme collected all database sequences containing more 
than a certain number of words in common with the query sequence and then 

assessed them using three different methods. The first and simplest method 
counted the total number of common words, the larger the number of words 

the better the similarity. The second method assessed the density of matching 

words in order to favour short alignments containing closely clustered 

matches above longer ones containing the same number of matches but more 

widely spaced. This method was used because it was felt that the shorter 

alignments were more likely to be indicative of biological similarities. The 

third method used a set of rules to link sets of matching words that, due to 
their proximity are likely to be part of the same similarity. 

Experience with this programme revealed that patterns of length five 

were insufficiently common, not finding a large enough number of similar 

sequences to be useful. On the other hand sequences of length three matched 

too frequently and increased the amount of processing unacceptably. The 

programme was most satisfactory, and exceptionally fast, when using tetra-

peptides. Elapsed time was further reduced by creating a two tier index to 

the dictionary to reduce paging; on average a single word could be recovered 

with just one or two page throws. in this production version the programme 

(PRELATE) was deemed to fulfil the requirements of a database searching 
programme [Collins & Coulson, 1987]. 

Database comparison using non-overlapping words. 
A considerable number of individuals, organisation and national 

bodies have established collections of sequence data. All of these databases 

overlap to some degree although usually not very considerably. As all these 

databases are being continuously updated on an almost daily basis it would 

be highly desirable to be able to compare them very quickly and remove 

identical and almost identical sequences to produce a single database without 
duplications. Dictionaries provide a very fast way of doing this. 

One of the databases is converted into a dictionary. The other 
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database is taken one sequence at a time and converted into non-overlapping 

words. A sequence of n letters would produce n/rn words of length m. These 

words are then looked up in the dictionary and if more than a certain very 
high percentage of them occur in the same sequence in the dictionary then 

the query sequence is discarded. If this is not the case it is added to the data 

base from which the dictionary was made. Because of the high degree of 

similarity that is being sought it is acceptable to use non-overlapping words 

which gives very high speed. On an ICL 2976 running EMAS a single 

sequence of about 100 letters could be compared with the approximately one 

million letters of the NBRF database in less than half a second of CPU time. 

A particularly useful feature of the performance of this programme is that it 

shows its best behaviour when the sequence being tested is not present in the 

database. This makes the process of merging dissimilar databases 
exceptionally fast. 

Further developments. 

When used for detecting similarity, the fast techniques discussed in 
this chapter depend on the fact that the similar sequences contain short 

perfect matches. This need not be the case. The danger when using such a 

method is that a similarity that is indicative of a functional or evolutionary 

relationship may go undetected because it does not contain sufficient short 
perfect matches. 

The dictionary method is currently being extended in an effort to 

overcome these problems. The approach used is to generate additional 

dictionaries based on alternative orderings of the letters present in the words. 

The aim is to permit the detection of discontinuous or partially mismatched 
similarities at similar efficiency to the exactly matched ones. 

For example, to extend the method to cope with single indels in tetra-

peptides it is necessary to construct three additional dictionaries. If one 

imagines looking up the word ABCDE then these dictionaries would be 

sorted on orders corresponding to ACDEB, ABDEC and ABCED. It is not 

necessary to arrange for the first letter (A) to be omitted as these cases will 

be taken into account when the words starting with the second letter (B) are 

looked up. Initial results with these dictionaries [Collins 8 Coulson, 1987] 
indicate that the increase in sensitivity is very considerable. 
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This technique possess great potential for enhancement. For example, 

by designing the reordered sub-strings appropriately it should be possible to 

exploit the short-range orderings present in protein sequence. These are 

caused by structural features and motifs common to all proteins such as c-

helices and a-sheets. The reordered sub-strings would be designed using the 

knowledge that members of the various classes of amino-acids occur with 

periodicities attributable to these structures. The possibilities afforded by 

exceptionally fast searches based on this kind of feature are very great. 

Although this method showed extremely promising preliminary 
results, it was not pursued as far as would have been desirable as hardware 

limitations were still a problem. Even the 12-fold increase in the size of the 

database necessary for the three additional dictionaries described above 
caused problems on the computer system being used. 

This need only cause concern in the short term. In the medium term it 

seems likely that optical technology disk drives will make it realistic to 

consider expanding the databases 100 or even 1000 fold. When this happens 

it may well be that this method will supersede all others as the preferred way 

of searching sequence databases for similarities. 

MY 



CHAPTER EIGHT 

Alignments 

This chapter contains five sequence comparison studies that were 

performed using the DAP implementation of the type three dynamic 

programming algorithm developed during this project. All five examples 

involved comparing a query sequence of unknown function with a database 

containing between five and six thousand protein sequences. The database 
was based on the most recent version of the National Biomedical Research 

Foundation (NBRF) Protein Identification Resource (PIR) protein sequence 
database with a small number of additional sequences obtained from other 

sources. The alignments for examples one and two were generated by the 

author and the conclusions were drawn in discussions with those workers who 
provided the sequences. The alignments for examples--three, four and five 

were generated by other workers using the author's programme with 

appropriate guidance. 

Each study involved a small number of runs of the programme, 
usually just a single run, each run taking between half and one hour of CPU 

time. As time on the DAP is charged at one hundred pounds per CPU hour 

this represents an extremely cost-effective approach. Each run produced 

hundreds or even thousands of alignments, however only the highest scoring 

ones are shown in the listings, although the scores of them all are 

summarized in the accompanying tables. These tables also include various 

administrative data produced by the programme at run time. These data 

differ between the tables because the studies were performed at different 

stages during the development of the programme. The tables and listings are 
in Appendix A and their format is explained in a key which precedes them. 
The listings are numbered from 1 to 5 and the individual alignments are also 
numbered. So, for example, alignment number 14 in listing number 2 is 

referred to as alignment number 2.14. In all five cases the alignments have 
been ordered by their absolute score. 
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MerC Gene From Plasmid R100 

MerC is a predicted gene product from the mercury resistance 

determinant of the bacterial plasmid R100. R100 shows considerable 

similarity to the transposon Tn501 which also confers mercury resistance, 

however, Tn501 does not posses an equivalent gene product to merC 

[Summers, 1986]. For this reason, it appears that merC might not be essential 

for mercury resistance in the R100 system. As the merC gene product has 

recently been identified on gels [Ni'Bhriain & Foster, 1986] demonstrating 

the existence of a protein corresponding to the open reading frame, it 

seemed sensible to try to assign function by analogy. As a database search 
with an inexhaustive programme had not revealed any interpretable 

alignments the merC gene product was an ideal candidate for evaluating the 

exhaustive method. 

Alignment number 1.1 is with the merT gene product from Tn501. It 
has been proposed [Misra et al., 1984] [Misra et al., 1985] that the merT 

protein contains three membrane spanning regions. Furthermore, the 

proposed mechanism for mercury detoxification [Brown, 1985] requires that 

the merT protein sits in and spans the inner membrane. The region of the 

merT protein that takes part in alignment number 1.1 includes the first 
transmembrane helix, a surface bend and the second transmembrane helix. 

This strongly suggests that the merC gene product is associated with a 
membrane in a similar manner to that of merT. 

Alignment number 1.4 is with the same region of the merT protein 
from R100 which has the same function and properties as the merT protein 
from Tn501. 

Similarity is also shown to other membrane proteins. Alignment 
number 1.2 is with pBR322 tetracycline resistance protein which is a 

membrane-associated protein that acts to exclude tetracycline from the cell 

[Pedan, 1983]. Alignment number 1.3 is with the M chain of 
Rhodopseudomona.s sphaeroides reaction centre. The reaction centre is a 

membrane-bound complex that mediates the initial photochemical event in 
the electron transfer process of photosynthesis [Williams et aL, 1983]. 
Alignment number 1.16 is with the c-chain of the non-enzymic components of 

-the membrane associated ATPase complex [Gay & Walker, 1981]. Further 

examples of these proteins from other species occur throughout listing 1. 
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The conclusions to be drawn from these alignments are as follows. It 

seems likely that the merC gene product is a membrane protein. It also seems 

likely that ,nerC bears a relationship, either evolutionary or functional, to 

merT. It is, for example, possible that the pair of cysteine residues at 

positions 23 and 26 are involved in binding Hg 2  in the same manner as has 

been proposed for the two pairs, the first at positions 24 and 25, and the 

second as positions 76 and 82, present in the merT gene product [Brown, 

1985]. 

Although these alignments appear to show a convincing and 

believable functional relationship, their expectation values, calculated as 
described in chapter six, are not much above the noise level. For this reason 
it is necessary to be careful when interpreting them. They are, however, 

sufficiently high scoring for it to be worthwhile to test the relationships that 

they suggest by experiment. It is hoped that this will be done in the near 

future. 

Streptomyces coelicolor gyiR 

The glycerol utilization (gyl) operon of Streptomyces coelicolor A3(2) is 

currently being. characterized; gyt4 codes for glycerol kinase, gyiB for 

glycerol-3-phosphate dehydrogenase and gyLK for a product of unknown 

function. In addition a 0.9 kilobase transcription unit, containing an open 

reading frame for a 27.6 kilodalton protein, has been identified and since 

circumstantial evidence exists for its role in regulation of the gyl operon it has 

been tentatively assigned the name gyiR. 

The evidence suggesting that gyiR has a regulatory role is as follows. 

Firstly, transcription of gyiR is specifically induced by glycerol-3-phosphate, 

the product of the first step of the glycerol utilization pathway [Seno & 
Chater, 19831. This suggests a positively-acting role in glycerol catabolism for 
the gyiR gene product [Smith & Chater, 1988]. It should be noted that, in 
view of the ready availability of glycerol and glycerol-phosphate esters in the 

organisms normal habitat, this observation is consistent with the demand 
theory of gene regulation [Savageau, 1977]. Secondly, two glycerol non-
utilizing mutants that are complemented by DNA from the gyiR region have 
been identified [Smith, 1986]. One of these has been partially sequenced and 

found to contain a mis-sense mutation [Smith, 1988]. 
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The first thing to notice is that none of the alignments with 

expectation values that might be considered as significant are interpretable in 

a biologically interesting manner. 

The most promising alignment is number 2.14. This is with E. coli 

hypothetical protein E-152. This sequence was submitted to the database as 

an open reading frame of unknown function [Nakamura et al., 1981]. Since 

then the gene has been identified as a regulatory element in asparagine 

metabolism and named asnC [de Wind et al., 1985]. The protein, AsnC, has 

been identified and found to be an autogenously regulated activator of 

asparagine synthetase A transcription [Kolling & Lother, 1985]. The 

alignment includes the region of AsnC that has been postulated as binding to 

DNA. Furthermore, residues 27 to 46 of the gyIR gene product fulfil the 

criteria for a classical helix-turn-helix DNA-binding structure [Pabo & Sauer, 

19841 and are aligned against the region of AsnC that also fulfils these 

criteria. This relationship is illustrated in figure 8.1. 

Alignment number 2.21 is with glycerol-3-phosphate acyl transferase 

from E. coli. This enzyme catalyses the committed step of phospholipid 

synthesis; the acylation of glycerol-3-phosphate with a fatty acyl-CoA. 

Unfortunately, little is known about which residues of glycerol-3-

phosphate acyltransferase are involved in the glycerol-3-phosphate binding 
site, however, the observation that is inactivated by phenylglyoxal 

and butane dione suggest that arginine residues may be in or near the active 
site [Green & Bell, 1984]. As it happens, the region of the acyltransferase 

that takes part in the alignment includes 6 arginine residues. It is thus 

conceivable that this is the region of glycerol-3-phosphate acyltransferase 

that binds glycerol-3-phosphate and that it shows similarity to the gyiR 

protein in the region of it that also binds glycerol-3-phosphate. As these 
proteins are of rather different origin and function it is possible that this 
similarity is the result of convergent evolution. 

Alignments number 2.10 & 2.33 also include this region of the gylR 
protein. They are with exactly corresponding regions of glyceraldehyde-3-

phosphate dehydrogenase (GAPDH) from Bacillus stearothennophilus and 
Thermus aquaticus respectively. 

Glyceraldehyde-3-phosphate and glycerol-3-phosphate have similar 
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*..*.*. 	.* 	* * 	* 	. . ..* 	*.. ** * 	. 	. * * . 	. * * • *** 
Gy1R 	5 IQSLERAAAMLRLLAGGERRLGLSDIASSLGLAKGTAHGILRTLQQEGFV--EQDDASGRYQLG 66 
AsnC 	6 IDNLDRG-- ILEALMGNART-AYAELAKQFGVSPGTIHVRVEKMKQAGI ITGARIDVSPK-QLG 65 

I 	 I 

Gy1R 	(27) 
AsnC 	(25) 
Fnr 	(197) 	 -G1u-Th- lie- Ser - Arg - L - L - Giy - 
TnpR (161) 	-A1a--ci - fl --His -G1n-L--j -----Va1 -Tyr-Lys -fl-j-G1u- 

residuetype 	P P P H 11+ P P H C H P 	P P P 11* P 	P H H P 

	

a-Helix 	 Turn 	 a-Helix 

Figure 8.1 

(upper) Alignment of the amino acid sequences of Strepomjces coelicolor GyIR and E. coli AsnC using the 100 PAM 
similarity table. Identical residues are marked with a star and pairs of residues that score positively are marked with a full stop. 
The postulated DNA binding domain of AsnC is indicated with a bar. This alignment was generated using the authors 
programme and has been reported elsewhere [Smith & Chater, 1988]. (lower) Similarities between GyIR and the so-called 
helix-turn-helix DNA binding domain from some other E. coli DNA binding proteins from a published collection [Dodd & 
Egan, 19871 generated using the FASTP programme [Lipman & Pearson, 1985] against a set of known regulatory proteins. 
Underlined residues score positively against Gy1R at 100 PAMs. The consensus residue types [Pabo & Sauer, 19841 are 
indicated with the following code: G - predominantly glycine; H - usually nonpolar; H+ - as H, alanine favoured; H* - as H, 
usually valine or isoleucine; P - usually polar. 



structures. Apart from carbon 1, which is part of an aldehyde in 

glyceraldehyde-3-phosphate and an alcohol in glycerol-3-phosphate, they are 

identical. For this reason it would not be surprising to find that their binding 

sites show sequence similarities. Indeed it is known that glycerol-3-phosphate 

acyltransferase is inhibited by glyceraldehyde-3-phosphate and that the 

kinetics of inhibition most closely resemble simple competitive inhibition 

with respect to glycerol-3-phosphate [Green & Bell, 1984]. In essence this 

means that glycerol-3-phosphate and glyceraldehyde-3-phosphate bind to 

glycerol-3-phosphate acyltransferase in the same place. Thus it seems 

possible that it is the region of GAPDH that binds glyceraldehyde-3-

phosphate and the region of the gyiR protein that binds glycerol-3-phosphate 

that are aligned in these two alignments. 

Unfortunately this hypothesis has to be rejected for a close 
examination of the structure of Bacillus stearothennophilus GAPDH, which 

has been determined to a resolution of 1.8 Angstroms [Skarzynski et al., 

1987] reveals that this region is not sufficiently near to the active site for it to 

be involved in binding glyceraldehyde-3-phosphate. 

Another alignment that may be of interest is 2.25 which is with E. coli 
NusA (also called L-factor). NusA binds directly to the core of E. coli DNA-
dependent RNA polymerase. It participates in the antitermination reaction 

mediated by bacteriophage lambda N gene protein to prevent premature 

termination of transcription initiated at the early lambda promoters and has 

been demonstrated to be necessary for the in vitro synthesis of e-
galactosidase [Ishii et al., 1984]. The hypothesis suggested by this alignment is 
that, just as NusA interacts with E. coli RNA polymerase in order to exert 
control over transcription, so the gyiR protein interacts with the analogous 
polymerase in Streptomyces coelicolor and that this alignment is between the 
regions in each protein that do this. 

Most tantalizing of all are the two extensive alignments numbers 2.42 
and 2.59 which are both with the same protein, Gene 430 protein from 

bacteriophage p6. This is an hypothetical sequence deduced from an open 

reading frame and unfortunately nothing is known concerning its function. 

The two regions corresponding to these two alignments are transposed 

between the two proteins so that the larger region, corresponding to 

alignment number 42, is C-terminal in P430 and N-terminal in Gy1R and the 
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Alignment number 42. 	
* * * * 	* * ** * * 	** 	* * * ** 	* * 	* 	* * 	* 	* * * 	* * * 

P430 204 RLGLNGALSLGNWSAVTAGDLSVAAGSSIGFGFLSNTLSLDGLFTAMENEGNGR VVSRPTL L T LD RQ SASVL RGTELPYQQSAGDGAT SVAFI1AALSLEVKPVISPDNSI VIEV 320 
Gy1R 	16 RI. LA  GGERRLGL SDI ASSLGLAKGTA HGILR TLQQEG FVE QDDASGRYQLGAELLRLGTTYLDVHELRARALWDDLA R SSGESVRLGVLHQQGVL I VHRVFRPDDSRQVLEI 129 

Alignment number 59. 

P430 	80 LLSSMVGDVLVITAFIDQVLNSERKADDLRTFR RDLFNANDIERRVINIVHA S ASESLFKEStLDAP 149 
GyIR 135 LHSTALGKVL SAYDPVAHSEALEADRKAFTDRTVCEPDSFEH VLDITRARGYAADVEETW EGIASIAAP 203 

Relationship between the similar regions of P430 (upper) and Gy1R (lower). 

all 

54 

(1) 
	

(2) 	 (3) 

Figure 8.2 

The relationship between Strej1oinyes coelicolor GyLR [Smith & Chater, 19881 and Gene 430 protein from Bacteriophage Pf3 
[Luiten et al., 19851. The alignments were generated using the 100 PAM similarity table. Identical residues are marked with a 
star and residues that contribute positively with a full stop. The two similar regions occur in opposite orientations in the two 
proteins. The large number of indels present in these alignments and the fact they do not posses expectations above the noise 
level suggest that they may well be fortuitous however since nothing is known concerning the function of P430 it is not possible 
to judge them from a biological stand-point. The numbered bars mark the alignments between GyIR and (1) the AsnC helix-
turn-helix DNA binding motif, (2) Glycerol-3-phosphate acyltransferase and (3) nusA protein. It is proposed that the region of 
GyIR corresponding to (1) is involved in binding to the gji operator, to (2) is the Glycerol-3-phosphate induction binding site 
and to (3) is the region that interacts with the DNA-dependent RNA polymerase to control transcription. Although all three of 
these hypotheses fit with the proposed biological function of GylR none of them have been tested experimentally. 



smaller one is N-terminal in P430 and C-terminal in Gy1R. This relationship 

is illustrated in figure 8.2. 

If these two regions are of common origin then it is likely that they 

correspond to distinct domains and that a domain order reversal has 

occurred during the course of evolution. Such a phenomenon has been 
postulated for a ribosomal protein (known variously as L7, L12 & L12e) 

[Liljas & Thirup, 1986] between organisms at least as distantly related. In this 

case eukaryotes and archaebacteria show one arrangement whilst the 
eubacteria show the other. 

In summary, the original idea, that Gy1R positively regulates the 

Streptomyces coelicolor glycerol utilization operon, gains considerable support 

from this set of alignments. In order to achieve its regulatory effect it may 

well bind to DNA. This could take place in the region that aligned with the 

helix-turn-helix motif of AsnC. Furthermore it could bind the inducer 

molecule in the region that aligned with the (hypothetical) glycerol-3-

phosphate binding site of glycerol-3-phosphate acyltransferase. Finally it 

could interact with the DNA-dependant RNA polymerase in the region that 
aligned against NusA protein. The fact that all three of these regions are well 
spaced out in the Gy1R sequence adds further support to the ideas as with 

this arrangement it would be possible for the three functions to occupy 

separate domains. These relationships are illustrated in Figure 8.2. It is 

hoped that at least some of these hypotheses will be tested by experiment. 

This set of alignments is particularly interesting and was included 

because it is a good example of the problem inherent in biological sequence 

comparison. The problem, discussed in chapter six, is that of assessing the 

significance of alignments. Although these alignments appear to show 

convincing and believable functional relationships, their expectation values, 

calculated as described in chapter six, are below the noise level. Great 

caution must be exercised when dealing with low scoring alignments like 
these. 

Drosophila melanogaster YP3 

The three Drosophila melanogaster yolk proteins (YP1, YP2 & YP3) 
are studied as models for developmental regulation. They occur only in the 

fat body and ovarian follicle cells of adult females and are temporally, tissue- 
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specifically and sex-specifically regulated [Bownes & Hames, 1978], [Brennan 
et aL, 1982]. They are assumed to play a nutritional role in embryogenesis 

and until this study no other function had been proposed for them. The 

sequences of YP1 and YP2 have been known for sometime and when 

optimally aligned show 53% identity [Hung & Wensink, 1983]. YP3 has 

recently had its sequence inferred from a Sall-HindIII genomic DNA 

fragment [Garabedian et al., 1987]. 

Only the first three alignments in listing 3 have expectations indicating 

that it is exceedingly unlikely that they occurred by chance. 

Alignments 3.1 and 3.2 are with YP1 and YP2. These similarities are 

extremely marked and had already been reported. As they align along their 

entire length they have been omitted from the listing. Alignment 3.3 is with 

porcine triacyl glycerol lipase. This observation had not previously been 
reported. 

The substrate binding site of the lipase has been studied [Guidoni et 

al., 1981] and spans the region consisting of residues 147 to 156. Serine 152 is 

believed to be involved in lipid-water interface recognition and its hydroxyl 

group is almost certainly an absolute requirement for the lipase activity. 

From the alignment it can be seen that YP3 does not possess an equivalent 

serine residue to serine 152 of the lipase. The analogous position in YP3, 

residue 264, is occupied by a glycine which, not possessing a hydroxyl group, 

could not substitute functionally for the serine. YP3 does have a serine at 

position 266, however, it seems unlikely that this one could substitute 

functionally in the active site, as tolerances in active sites are always 

extremely small and it is in the wrong position. This view is supported by the 
absence of a serine in the equivalent positions in YP1 and YP2, namely 
positions 257 and 258 respectively. It thus seems unlikely that any of the YPs 

will possess lipase activity. These relationships, more extensive alignments 
between all the YPs and the lipase and a consensus sequence are illustrated 
in figure 8.3. 

Why then should the YPs show similarity to a lipase? This question 

has been addressed and the results of the enquiry reported elsewhere 
[Bownes et aL, 1988]. They may be summarized as follows. 

The YPs do not possess a lipase activity. They do however possess a 
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* 	• 	* 	* 	. 	. 	* 	• 	* 	* 	* 	• 	* 	* 	• 	* 	• 	* 	• 	* * 	* 
YPIII 239 IHLIGQGISAHVAGAAGNKYTAQTGHKLRRITGLDP 274 
lipase 146 VHVIGHSLGSHAAGEAGRR - T - - NG - TIERITGLDP 177 

lipase 95 KVESVNCICVDWKGCSR-TGYTQ-ASQNIRIVGAEVA-YFVEVLKSSLGYSPSNVHVIGHSLGSILACEAGR--- R-  164 
YP1 198 KTQSGDIIVIDL- -GSKLNTYERYAMLDIEKTGAKIGKWIVKMVNE-LDMPFDTIHLIGQNVCAHVACAAAQEFTRL 271 
YP2 199 DTKTGDLIVIQL- -GNAIEDFEQYATLNIERLCEIIGNRLVE-LTNTVNVPQEIIHLICSCPAAHVACVAGRQFTRQ 272 
YP3 207 KAASGDLIIIDL- -GSTLTNFKRYAMLDVLNTCAMIGQTLID-LTNXKGVPQEIIHLICQGISAHVAGAAGNKYTAQ 280 
consensus k- -s-*-I-*d--- Gs - - - -*--- A- 	*i--- Ga-**- -*v*..1----------*H*IG- - - -*H*AGAg- - - 

lipase 165 TNG-TIERITGLDPAEPCFQCTPE- -LVRLDPSDAKFVDVIHTDAAPIIPNLCFCMSQTVGHLDFFPNG-CKQMPG 236 
YP1 272 T-GHKLRRVTCLDPSKIVAKSKNT- -LTCLARGDAEFVDAIHT- S- -VY-GMGTPI -RS -CDVDFYPNCPAAGVPC 338 
YP2 273 T-GHKLRRITALDPTKI-Y-GKPEERLTCLARGDADFVDAIHT-SA- -Y--- GMGTSQRLANVDFFPNGPSTGVPG  339 
YP3 281 T-GHKLRRITCLDPAKV-LSKRPQ- ILCCLSRCDADFVDAIHT- ST- - F-AMCTPI -R-CGDVDLYPNCPSTCVPG 347 
consensus T-G- -*-RiTgLDPa-------p---  L- -L--- DA-FVD*IHT-* ------- G ------- g-*Df*PNG - - - -*PG 

YP1 	(250) 	-His-Leu-Ile-Gly-Gln--Asn--Val-Gly-Ala-His- 
YP2 	(251) 	-His-Leu-Ile-Gly--Ser--Gly---Pro-Ala-Ala-His- 
YP3 	(259) 	-His--Leu-Ile-Gly-Gln----Gly--Ile-Ser--Ala-His- 
lipase (147) 	-His-Val-Ile-Gly-His--Ser---Leu-Gly-Ser-His- 

Figure 8.3 

(top) The similarity between Drosophila melanogaster YP3 and Porcine Triacyiglycerol lipase using the 100 PAM similarity 
table. Identical residues are marked with a star and those that contribute positively to the score with a full stop. The alignment 
was generated using the authors programme and has been reported elsewhere [Bownes et al., 19881. (middle) More extensive 
alignments between the lipase and all three YPs generated using the GAP programme from the UWGCG package [Devereax 
et al., 19841. In the consensus line an upper case letter indicates that all four sequences have that residue at that position, a 
lower case letter indicates that two of the YPs and the lipase have that residue at that position and a star indicates a position 
where all pairwise comparisons yield a positive score using the 100 PAM table. The bar marks the position of the active site in 
the lipase. (bottom) The active site region of the lipase with the catalytically important serine indicated with stars. 



triacyl glycerol binding activity, which functions to bind apolar conjugates of 

ecdysteroids. Ecdysteroids are insect moulting hormones and it is proposed 
that proteolytic degradation of the YPs times the release of the bound 

ecdysteroid and hence cuticle development. It would appear that this 

fundamental process has been highly conserved during evolution since in 

locusts ecdysteroid polar conjugates are bound to vitellin [Lagueux et al., 

19811 and are released, as free ecdysteroid, in peaks that coincide with 

cuticle secretion [Lui, 19841. 

This study is a good demonstration of the power of sequence 

comparison when it is used in conjunction with experimental work. To quote 

the final paragraph of the publication reporting the experimental work 

[BownesetaL, 19881 

"...an unexpected sequence similarity between the YPs 
and a lipase led us to devise and successfully test a model in 
which YPs play an important role in regulating embryogenesis; 
this mechanism seems to have been conserved in many insects 
and arthropods." 

Human Cystic Fibrosis Antigen CFAg 

Cystic fibrosis is an autosomal recessive disease in humans. The 
biochemical basis of the disease is not known although elevated levels of a 

serum protein, referred to as the Cystic Fibrosis Antigen (CFAg), has been 

described in both homozygotes and obligate heterozygotes [Bullock et al., 

1982]. The sequence of CFAg has recently been inferred from a cDNA clone 

[Dorin et al., 1987]. It was decided to attempt to ascribe function to CFAg by 

analogy. 

The first seven alignments in listing 4 have exceptionally small 

expectations of occurring by chance and it is almost inconceivable that they 

do not represent a functional or evolutionary relationship. These scores are 

illustrated graphically in figure 6.1. 

Of these first seven alignments 4.1, 4.3 and 4.4 are with the 

homologous a and b subunits of human and bovine S100 calcium binding 

protein from the brain. Alignments 4.2, 4.4 and 4.6 are with mammalian 

intestinal calcium binding proteins. These proteins all belong to a class of 

proteins that have been postulated to be major transducers of biological 
calcium signals [Van Eldrick et al., 19821. In addition to this many of the 



** 	* 	** ** ** * 	* 	* * ** * ** * * ** 	** * 
(2) Cow ICaBP 1 ...... KSPEELKGIFEKYAAXEGDPNQLS1ELIU..LLQTEFP. .SLLK.GPSTLD.E.L.FEE.LDKNGDGEVSFEEFQVLVKKIS ............... 74 

** 	* 	** * 	* * 	* 	A * ** * 	* * A ** 	** * 
 Pig ICaBP 1 . . .SAQKSPAELKSIFEKYAAGDPNQLSKEELKQLIQP.EFP. . SLLK.GPRTLD.D.L.FQE.LDKNGNGEVSFEEFQVLVKKIS ............... 77 

** 	* 	*** 	** 	* 	******** 	** 	* 
 Rat ICaBP 1 ............ KSIFQKYAAKEGDPNQLSIELIULIQSEFP. .NLLK.ASSTLD.N.L.FEE.LDKNDDGEVSYEEFEVFF1QCSQ .............. 69 

-,-+1. 	+ 	+ 	 +++++ 	+ 
CFAg IILTELEKALNSIIDVYHKYSLIKGNFHAVYRDDLKALLETECP. . QYIR. KKA. D. V. W. FKE . LDINTDGAVNFQEFLILVIKMAPTKKAMKKATKSS 

+++ 	+ 	+ 

(1) Cow S-100 a chain 1 ,G5ELETAMETLINVFHAHSGIGDKYKLSKKELKELLQTELS. .GFLDAQ1A.DAVDKVMKE.LDEDDGEVDFQEYVVLVVALTVACNNFFWENS.... 93 
**** 	*** 	* 	* 	* 	**** 	* 	**** 	**** 	****** 	** 

(4) Cow S-100 b chain 1 . .SELEKAVVALIDVFHQYSGREGDKH1UKKSELKELINNELS, .HFLEEIKEQ.EVVDKVM.ETLDSDGDGECDFQEFMAFVAMITTACHEFFEHE ..... 91 
***** 	*** * ** 	* 	* 	** * 	* 	* 	* 	* ** 	** 	*** 	* 

Pig p11 . PSQMEH €TMIIFTFHKFA. . . GDKGYLTKEDLRVLMEKEFP. . GFLENQKDP . LAVDKIMK. DLDQCRDGKVGFQSFFSLIAGLTI1CNDYFVVHMKQK. 
* * 	** 	* 	** 	* * * * 	A 	* 	* 	** 	** * ** * 	* 

Human 2A9 . ACPLDQAIGLLVAIFHKYSGREGDIITLSKKELKELIQKELTIGSKLQDAEIA. RL.. . . MIFDLDRNKDGEVNFQEYVTF. . LGALA.. . LIYNEALKG. 
* 	* 	**** 	* 	* 	** * 	* 	* 	** * ** **AA* 	 * 	* * 

Figure 8.4 

Alignment of the predicted amino acid sequence of human cystic fibrosis antigen (CFAg) with amino acid sequences from 
three intestinal calcium binding proteins (ICaBPs) [Fullmer & Wasserman, 19811 and the brain associated calcium binding 
proteins S-100 a and S-iOO # [Isobe & Okuyama, 1981]. Also included are two sequences, not present in version 12 of the 
NBRF database, that have recently been demonstrated to be similar to the SlOO proteins. They areporcine P11, a regulatory 
subunit of the complex that is the major cellular target for tyrosine kinase [Gerke & Weber, 1985] and 2A9 a hypothetical 
protein sequence deduced from a human cell-cycle specific cDNA clone [Calabretta et al., 19861. Residues that are identical to 
the equivalent ones in CFAg are marked with a star. Residues in CFA g analogous to the residues that bind calcium in the 
other proteins are marked with plus signs; the group to the right of the figure mark residues that are ligands in the EF-hand 
region of the LCaBPs, the group to the left mark residues that are ligands in the type two calcium binding region present in 
both the ICaBPs and the S100 proteins. These alignments were generated by the authors programme and have been reported 
elsewhere [Dorin et al., 19871. 



subsequent alignments are to other proteins that bind calcium, including 

calmodulins and troponins. Figure 8.4 shows these alignments and also 

indicates residues involved in calcium binding. 

These observations prompted the investigators concerned to perform 

equilibrium binding studies using 45Ca24  in competition with unlabelled Ca 21 

which showed that each molecule of CF antigen binds two calcium ions with 
a similar affinity to that shown by S100 protein [Bock & Haywood, 1987]. 

This experiment indicates that CFAg, like the ICaBPs, contains one of each 

of the two types of calcium binding site. 

How this observation, that CFAg binds calcium, fits in to current 

understanding of CF pathology is not immediately obvious. It is however an 

important clue, and taken together with the observation that 8-adrenergic 

stimulation of chloride channel activity observed for normal cells is absent in 

CF cells [Welsh & Liedtke, 1986] suggests that the basic defect will be in a 
component of the cAMP, phosphotidyl inositol or other related signal 
transducing pathway [Dorin et al., 19871. 

Escherichia coliftsA 

FtsA codes for a cell-cycle protein from E. coli, the sequence of which 

has been determined recently [Robinson et al., 1984]. Although nothing is 

known of its function at a molecular level it has been demonstrated that 

synthesis of the ftsA protein during the 10 to 15 minute period immediately 

prior to cell division is an absolute requirement for cell division is to take 

place successfully [Donachie et al, 19741. 

An initial comparison between the database and the sequence of the 

ftsA protein revealed a striking similarity with CDC28, a cell-cycle protein 

from the budding yeast Sacc/zaromyces cerevisiae. 

The sequence of a similar protein, CDC2 from the fission yeast 
Schizosaccharomyces pombe, which was not present in the version of the 

database used, was obtained and it was also found to align with ft&4. The 
alignment between these two proteins and the ftsA protein is shown in figure 
8.5. 

Both these yeast proteins have had kinase activities demonstrated in 
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* 	* * 	* 	• * • • . 	* 	. 	• 	. 	 . 

FtsA 	305 L N L V N E E I L Q L  Q E K L R - Q Q G V - K H H - L A A G 331 
CDC28 	84 L Y L V F E - F L D L D L K - R Y M E G I P K D Q P L G A D 111 
CDC2 	80LYLVFE-FLDMDLK-KYMDRISETGATSLD 107 

* 	 * • 	* • 	* 	• 	* . . * 	. 
FtsA 332--IVLTGGARQI-EGLAAC-AQRVFHTQVR 357 
CDC28 112 - - I V - K K F M M Q L C K G I A Y C H S H R I L H R D L K 138 
CDC2 108PRLV-QKFTYQLVNGVNFCHSRRIIHRDLK 136 

1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRI IHXXLK 60 

Figure 8.5 

(top) Alignment of cell-cycle proteins from three genetically diverse organisms using the 100 PAM similarity table; FtsA of E. 
coli [Robinson et al., 1984], CDC28 protein of Sacclzaromjces cerevisiae [Lorincs et al., 1984] and CDC2 of 
Sc/zizosaccharom)ces jxmbe [Hindley et al., 19841. Locations where all the residues are identical are marked with a star. 
Locations where all pairwise comparisons of residues would contribute positively to the score of all pairwise alignments are 
marked with a full stop. The alignment between ftsA protein and CDC28 was generated using the authors programme and has 
been reported elsewhere [Robinson et al.,1987]. (bottom) The modified sequence of ftsA protein used for the conserved 
element search described in the text. 



vitro [Reed et aL, 1985], [Simanis & Nurse, 1986] however as the regions of 

the yeast proteins that align with the ftsA protein do not include the 

consensus sequences for the ATP-binding and phosphorylation sites it is not 

reasonable to propose kinase activity for the ftsA protein on the evidence of 
these alignments alone. 

In order to try to get a clue as to the function of the common residues, 

the region of ftsA protein that aligned with CDC28 was taken and the letters 

that did not contribute positively to the score of the alignment replaced with 

Xs and Js. The metric was modified so that these letters, which do not 

represent any amino acid, score zero when mismatched. In addition, in order 

to simulate the gaps between the conserved elements, it was arranged that a 

space occurring opposite a J would not be penalized as an indel whereas one 

occurring opposite an X would be. This modified sequence, shown in figure 

8.6 was used in a repeat of the original search and it is the alignments 

produced by this second search that are shown in listing 5. 

From these alignments it can be seen that, once again, even using only 

the conserved elements, no proteins align significantly with the ftsA protein 
apart from CDC28; alignment 5.1. Although this is disappointing as it does 

not provide any clues as to the function of the protein at a molecular level, 

what it does indicate is that the similarity is very significant indeed. Had 

there been any other proteins showing even a very faint similarity to the 

conserved regions, either due to a functional or evolutionary relationship or 

fortuitously, then it is likely that this search would have detected them. 

The alignments between FtsA and the CDCs suggest two hypotheses 

[Robinson et aL, 19871. As these three organisms are genetically extremely 
diverse, it may be that these sequence similarities are the result of 

convergent evolution. The alternative hypothesis, that this domain arose 

before the emergence of eukaryotes, suggests a very severe functional 

constraint on the further evolution of the sequence. 

Although in the absence of experimental evidence it is never possible 
to be certain that an alignment corresponds to a functional or evolutionary 

relationship the extremely low value for the expectation of these alignments 

and the failure to pick up any other similar sequences in the conserved 
element search very strongly suggest that they are not due to chance 
similarities. 
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CHAPTER NINE 

Conclusions 

The advantages gained by using exhaustive algorithms for sequence 

comparison to assign function and evolutionary relationship by analogy is not 

disputed. The rationale for not using the exhaustive methods is always given 

as being economic. The development of inexpensive parallel architecture 

computers must now challenge this view. 

Machine Agency 	Cost/CPU hour Mips Cost/Mip 

VAX 750 ERCC 	 £40 1 £40 
ICL DAP ERCC 	 £100 20 £5 
CRAY-1 RAL 	 £500 160 £3 

Figure 9.1 

Cost of commercially available computer time in 1985. 

Figure 9.1 shows the commercial cost of time on a VAX 750, a DAP 

and a CRAY-1 from the Edinburgh Regional Computer Centre (ERCC) and 
the Rutherford Appleton Laboratory (RAL). The mips figures (Million 
instruction per second) often used as an indication of relative performance, 
and thus quoted here, do not take into account the different architectures of 

the machines and do not give a comparison of performance on the sequence 

comparison problems. The programmes written in this project for the ICL 
DAP achieved a performance at least as good as some similar programmes 
written for the CRAY-1 [Smith et aL, 1985]. This is because the CRAY-1 

architecture has been optimized for programmes that perform a lot of high 

precision arithmetic, such as one finds in engineering applications, and 

cannot achieve the same performance with sequence data. In the case of the 

DAP, sequence comparison programmes map onto the hardware extremely 
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efficiently and provide performance far in excess of that which the 20 Mips 
figure might suggest. For these problems the DAP provides as least as much 

power as the CRAY-1 at substantially less cost. The DAP is also very much 

more cost effective than a VAX. 

The surprising conclusion must be that, not only are exhaustive 

methods demonstrably better biologically but, with appropriate 

implementations on appropriate hardware, they are also cheaper than 

existing inexhaustive methods. 

Searching the Nucleic Acid Databases 

There is no intrinsic reason why the programmes written in this 

project and used to search the protein sequence databases cannot be used 
with nucleic acid sequence. There are, however, a number of pragmatic 
reasons associated with using nucleic acid sequence, which have caused the 
programmes to be much less successful than when they were used with 

protein sequence. 

Specific to this project were the problems with, the prototype DAP 

described in chapter three; it had only two megabytes of store and no direct 

connection to disks. At the time of writing, the protein sequence database, 

the query sequence and the programme all fitted into two megabytes. This 

could be loaded into the DAP in a single operation in response to the 

DAPRUN command. This was not the case when using nucleic acid 

sequence. The EMBL nucleic acid sequence database contained some ten 

million bases and a search against it required several runs of the DDX 

system. In practice this was always problematic. 

There are also problems inherent in the comparison of nucleic acid 

sequence that do not pertain to the comparison of protein sequence. The 

twenty character alphabet used to represent proteins results in a low noise 

level; on average fortuitous matches will occur at a frequency in the region of 

5%. In the case of nucleic acids where only four different letters are used the 
frequency of fortuitous matches is very high; in the region of 25%. This 
makes it much more difficult to distinguish distant similarities from 
background noise. There is also a problem concerning the degree to which 

indels may be tolerated in similarities that are deemed to be significant. With 

protein sequence there is good reason to suspect alignments that have indels 
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scattered evenly through them, whereas those that have their indels clustered 

are much more likely to be indicative of a real similarity. This is because 

proteins are constructed from a number of distinct secondary structural 

features, principally a-helices and a-sheets, alignment against which must be 

considered as being very sensitive to indels. Conversely, the unstructured 
regions and loops by which these features are connected may be considered 
as being tolerant of large numbers of indels when they are involved in 

alignments. Thus, considerable success has been achieved with protein 

sequences using metrics designed to penalize indels quite severely. It should 

be noted that, as explained in chapter two, the soft limiting nature of 

parameters to the dynamic programming algorithm ensures that this does not 

prohibit large indels altogether. However, in cases where this is felt to be a 

problem, the soft limiting effect can be enhanced by reducing the size of the 

penalty as the size of the indel increases. 

For these reasons, the best way to deal with DNA that codes for 
protein is to translate it into the corresponding protein sequence and search 

against the protein sequence data base using a PAM table. All five of the 

studies in chapter eight are of this type and it is fortunate that a great deal of 

the nucleic acid sequence that is of interest to contemporary molecular 

biologists codes for proteins. 

Similar structural considerations make it likely that these criteria also 

apply to nucleic acid sequences that code for structural RNAs and to regions 
of DNA that interact in a specific manner with proteins. Other nucleic acid 

sequence, in the case of a higher eukaryote like man the vast majority of the 

genome, is of unknown function and its behaviour with respect to indels can 

only be guessed at. 

For all these reasons, working with protein sequence has proved to be 
much more rewarding. In the future it is hoped that larger computers and an 

improved understanding of appropriate ways of dealing with nucleic acid 

sequence will yield similar successes. 

The Human Genome Project 

During the course of the latter part of this project there has been 

considerable discussion in scientific circles concerning the idea of sequencing 

the entire human genome. Figure 9.2 is a reproduction of a poster 
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IntelliGenetics, Inc., and BIONET 
present a Symposium 

Advances Toward Sequencing the 
Human Genome 

Speakers 

Dr. Ronald Davis 
Stanford University School of Medicine 

Methods for Physically Mapping the Human Chromosome 

Dr. Helen Donis-Keller 
Collaborative Research, Inc. 

Mapping the Human Genome with Genetic Markers: 
A Progress Report 

Dr. Lloyd Smith 
California Institute of Technology 

Automated DNA Sequencing Using Fluorescence Detection 

Professor Paul Berg of the 
Stanford University School of Medicine 

will lead a panel discussion on the 
scientific and management issues 

of the sequencing project. 

July 21, 1987 
9:00 a.m. 

Fairchild Auditorium 
Stanford University School of Medicine 

Stanford, California 

Lunch will follow 

A User Group meeting will take place in the afternoon at 
IntelliGene tics headquarters, 700 East El Camino Real, 

Mountain View, California 

Registration: $30; $15 for students 
for details, call Mary Valente at (415) 962-7356 

Limited Seating 	Preregister by July 14, 1987 

Figure 9.2. 	 0 
Reproduction of a poster advertising a meeting to discuss the practicalities 
involved in the Human Genome Project, the grand design of which is to 
sequence all 3,500,000,000 nucleotides of the human genome. By the end of 
the 1980s it is likely that this project, possibly the most far-reaching the 
human race has ever embarked upon, will have started in earnest. 



announcing a recent scientific meeting to discuss this idea. 

Although there is some scepticism concerning the feasibility of such a 

project and considerable opposition to funding it, it appears that the human 

genome project is going to happen. The National Academy of Sciences USA 

has convened a committee under its Basic Biology Board to consider the 

project and a report of a recent meeting of this committee contained the 

following [Lewin, 1987] 

"It is clearly no longer a question of whether the 
[human genome} project ought to be done, but of how fast it 
will be done." 

The Human Genome Project, the grand design of which is to 
sequence all of the approximately three and a half thousand million bases 

that make up the human genome, must surely be one of the greatest scientific 
endeavours that the human race has ever embarked upon. It is only necessary 

to understand that the huge impact of modern molecular biology has been 

based on the sequence of less than one percent of the human genome, to be 

awestruck at the consequences of this great undertaking. The Human 

Genome Project is the beginning of the much heralded biological revolution. 

There is, however, one very large caveat to this extravagant view. That 

the project is possible at all is without doubt due to the remarkable 

technologies for sequencing that were developed in the late 1970s. What is 

also without doubt is that for the sequence to be of any great value there 

must be concomitant advances in the technologies for handling, comparing 
and understanding it. 

It is surely the case that dynamic programming algorithms running on 

highly parallel architecture computers will provide an essential tool for 

performing such analyses. 

Recovery of Textual Material 

The sequence databases would be quite useless without the textual 

material, described in chapter one, that accompanies them. This textual 

material contains limited details of the known biological function of the 

molecule represented by the sequence. Other relevant biological information 
and references to the literature are also included. 
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Although attempts have been made to structure this data, a lot of it is 

in the form of natural language and as there is still no agreement on a 

common format for those data that are structured, recovery of it is 

problematic. 

A lot of the information specific to individual residues and regions of 

the sequences is stored in what are known as feature tables. These have a 

relatively regular and stable structure and the programmes written in this 
project would be greatly enhanced if they recovered this information and 

displayed it alongside the alignments. An example of the kind of residue-

specific information that could be usefully treated in this manner is 

demonstrated by the case of alignment number 3.3; the alignment of 

Drosophila melanoga.srer YP3 with porcine triacyiglycerol lipase. In this case 

the important biological information,, was the position of the active site 

region of the lipase and in particular that of the catalytically critical residue; 

serine 252. In fact this information was not present in the database and had 

to be recovered from the literature. However, it can be seen that had it been 
present in the feature table for the lipase entry, and had it been recovered 

and displayed alongside the sequence, a great deal of time and effort would 

have been saved. 

For the programmes written in this project additional information 
recovered and displayed for a particular alignment was restricted to the 
single line title that accompanies each database entry. As these titles are 

descriptive, they often proved to be enough. For example, in the case of the 
cystic fibrosis antigen, the alignments in against which' are in listing 4, all the 
titles of the sequences involved in the interesting alignments included 

references to calcium binding and it was possible to start devising hypotheses 
without further recourse to the literature. 

The contrasting case is demonstrated by alignment number 2.14, 

between the gyiR protein and E. co/i hypothetical protein E-152. In this case 

the only additional information present in the database was a reference to 
the literature. In fact a great deal more was known about E-152 and a time 

consuming literature search was required to find it out. 

For the future, it is important that as much biological information as 

possible is included in the database entries, and that alignment programmes 

recover this information and present it to the user along with the alignment. 
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The Matrix of Biological Knowledge 

The difficulty of recovering all the information associated with a 

particular piece of sequence extracted from a database provides a useful 

paradigm for a far larger problem believed to present in all modern 

biological sciences. 

It is believed that the very large amount of data being produced by 

modern molecular biology and the very disparate and non-numerical nature 
of that data presents a new and unique problem. What is feared, is that the 

difficulties of acceing and comprehending the data will soon become so 

great that further progress in understanding will be inhibited and eventually 

cease all together. 

The proposed solution to this problem involves the setting up of an 

international system consisting both of people and also the most modern 

computers and networks to connect them that will permit working scientists 

to gain rapid access to information that is essential to them whilst being 

outside of their direct area of expertise. The information to be contained in 
such a system has been named the Matrix of Biological Knowledge. 

The Matrix of Biological Knowledge Workshop held at St. Johns 

College, Santa Fe, New Mexico in July and August 1987 under the auspices 
of the National Institutes for Health, USA (NIH) was the first scientific 

meeting held to address this problem. To quote from the report of this 

workshop [Morowitz, 1987] 

"We seem to be at a point in the history of biology 
where new generalizations and higher order biological laws are 
being approached but may be obscured by the simple mass of 
data." 

A "working description", from the same report defines the matrix of 

Biological Knowledge as 

"...the complete database of published experiments, 
structured by the laws, empirical generalizations, and physical 
foundations of biology and connected by all the interspecific 
transfers of information." 

The important point to note is that the matrix includes the results of 

any analyses that the data may have been subjected to as well as the data 
itself. An example of this relevant to sequence comparison would be a 
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computer programme that performed sequence database searches and then 
updated the databases with pointers between all significant similarities after 

each search was performed. It should be noted that it would probably need 
the intervention of a human expert during the assessment of similarity stage 

and that the computer system might well have to take precautions to protect 
the database from unsound judgements on the part of the human expert. 

The development of 'such a large system is not without pitfalls. 

Modern molecular biology is a very recent innovation and consequently there 

has been very little time for an understanding of it to percolate through into 
other sciences. Furthermore it is very badly served by the media. Insufficient 
biological knowledge amongst the builders and designers could lead to a 

disaster. 

There is unfortunately a precedent for this eventuality in the 

MOLGEN project [Friedland et al., 1982], [Bach et al., 1982]. This project 

came out of a university artificial intelligence department and had as its aim 

the development of expert systems for use in experimental design. It was 

intended to pioneer the practical application of such techniques as 

"knowledge engineering" and "knowledge representation". Molecular 
biology was chosen as a "test bed" because it was believed that it represented 

a "small stable body of knowledge" that could readily be incorporated into 

such a system. 

Unfortunately, from a biological stand-point the project was an 

unmitigated disaster and it is likely that this was due to the lack of biological 

knowledge amongst the system builders. The software developed by the 

project was less useful and less efficient than equivalent systems developed 

using conventional software engineering techniques and third generation 
languages. The project has been closed down and the software is no longer 

used. 

It is hoped that those involved in developing solutions for the matrix 

of biological knowledge problem will be aware of the dangers inherent in this 

type of grandiose project. Fortunately it appears that on this occasion they 

are proceeding more cautiously. For, with regard to the problem of lack of 

specialized knowledge among those who will be building the systems the 

report says 
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"The development of the matrix [of biological 
knowledge] and the extraction of biological generalizations 
from it are going to require a new kind of scientist, a person 
familiar enough with the subject being studied to read the 
literature critically, yet expert enough in information science to 
be innovative in developing methods of classification and 
search." 

Furthermore, it is a relief to see that the closing sections of the report 

maintain a degree of scepticisms as the following indicates. 

"The matrix of biological knowledge should by further 
investigated as a potential tool in biomedical research under 
the aegis of the NIH [National Institute of Health, USA]. The 
concept must be sharpened and tested as to its utility." 

What ever solutions are developed to handle the matrix of biological 

knowledge, there can be no doubt at all that sequence comparison will be a 

major component. Further more, the vast quantity of sequence data that will 
shortly become available will ensure that biological sequence comparison on 

parallel computers will be an essential part of the future of-all biological-

science......... 
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APPENDIX A 

Listings 

This appendix contains five listings of the alignments that are referred 
to in the discussion in chapter eight. Each listing is preceded by a table 

summarizing all the results for that particular programme run. The entire 
section is preceded by a key. In all the alignments the upper sequence is from 

the database being searched and the lower is from the query sequence. 
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Keyto the interpretation of listings 

Item. 	Meaning. 

> 	This precedes the identifier from the NBRF 
protein database. The identifier uniquely 
identifies the data base entry. It is 
followed by a short title from the database. 

No. 	The number of the alignment in the listing. 

Score. 	The sum of all the values for the pair-wise 
comparisons present in the alignment 
according to the similarity figure used. 

EXPECTED. The number of alignments of this score that 
would be expected to occur by chance 
calculated in the way described in the text. 

PREDICTED same as EXPECTED. 

OBSERVED Number of results found for each score 

Quality. The score as a percentage of the maximum 
possible score for the portion of query 
sequence in the alignment. 

Hits. 	The--number of perfect matches in the 
alignment. 

MISMATCH. The number of mismatches in the alignment. 

INDEL. 	The number of letters that are aligned 
opposite a space. These may be considered as 
insertions in one sequence or deletions in 
the other and are referred to as indels. 

A star above a pair of letters indicates that 
they are the same. 

A dot above a pair of letters indicates that 
they contribute positively to the score but 
are not the same. Pairs of -letters with which 
this is used will vary according to the 
similarity table used. 

A space above a pair of letters indicated 
• that they do not contribute or contribute 
negatively to the score. Pairs of letters 
with which this is used will vary according 
to the similarity table used. 
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Summary of Results for MerC from plasmid R100. 

Score Predicted Observed Score Predicted Observed 

46 512.7 542 69 12.3 10 
47 436.0 448 70 10.4 14 
48 370.7 399 71 8.9 7 
49 315.3 309 72 7.5 12 
50 268.1 230 73 6.4 8 
51 228.0 198 74 5.4 9 
52 193.8 205 75 4.6 7 
53 164.8 139 76 3.9 12 
54 140.2 168 77 3.3 5 
55 119.2 136 78 2.8 4 
56 101.3 124 79 2.4 1 
57 86.1 89 80 2.0 4 
58 73.2 57 81 1.7 4 
59 62.3 71 82 1.4 3 
60 52.9 46 83 1.2 1 
61 45.0 75 84 1.0 3 
62 38.3 32 85 0.9 1 
63 32.5 33 86 0.7 3 
64 27.7 31 87 0.6 4 
65 23.5 17 91 0.3 2 
66 20.0 20 94 0.2 2 
67 17.0 16 95 0.1 1 
68 14.4 8 97 0.1 2 

Administrative data from program run. 

V11P100 - 100 pans 
indel 10 
MERC USED AS QUERY SEQUENCE, LENGTH 140 START 1 END 
140 
NBRF11 and new seqeunces appended; 25-3-87 15:40pm 

Proteins 4612 Residues 1066790 
MCDAP_NW30P VERSION OF 08/07/86 
TOTAL RESULTS 3512 
THRESHOLD VALUE SET INITIALLY WAS 10 
FINAL THRESHOLD VALUE IS 46 
GEN. PENALTY ADDED TO NEGATIVE SCORES FROM FIGURE: 0 
MAXIMUM SCORE 97 

A 13.6; SIGA 0.3 B -0.1621; SIGB 0.005 CH12 1.4 HIGH 73 



Listing One. MerC from Plasmid R100. 

>Pl;QQPSHT Hypothetical protein inerT (transposon Tn501) - Pseudomonas aeruginosa 
No. 1.1 Score = 97 Quality = 23.775 HITS = 36 Nis. = 8 INDELS = 10 EXPECTED NO. 0.13E+00 

13 TGGLAAILAS AC CLGPLVLIALGFSGAWIGNLAVLEPYRPIFIGVALVALF 	63 
11 TGALGSVVSAMGCAACF P AL A SFGAA IG LGFLSQYEGLFIS RLLPLF 	57 

>P1;YTEC32 	Tetracycline resistance protein - Escherichia coil pLasmid pBR322 
No. 1.2 Score = 97 Quality = 23.716 HITS = 33 Nis. = 11 INDELS = 8 EXPECTED NO. 0.13E+00 

48 LLALYALMQFLCAPVLGALSDRFGRRPVLLASLLGATIDYAIMATTPVLWIL 	99 
53 LLPLFAALAFL A NALG WFSHRQ WLRSLLG MIGPAIVFAATV WLL 	96 

>P1;WNRFMS Reaction centre protein M chain - Rhodopseudomonas sphaeroides 
No. 1.3 Score = 95 Quality = 27.457 HITS = 24 Nis. = 9 INDELS = 5 EXPECTED NO. 0.18E+00 

40 LGWFGNAQ LGPIYLGSLGVLSLFSGLIIWFFTIGIWFW 	76 
67 LGWFSHRQWLRSL LGMIGPAIVFAATVWL LGNW W 	100 

>P1;QQEBHT Hypothetical protein inerT - Shigella flexneri plasmid R100 
No. 1.4 Score = 94 Quality = 23.039 HITS = 34 Nis. = 12 INDELS = 6 EXPECTED NO. 0.21E+00 

13 AGGLAAILASTCCLGPLVLVALG FSGAWIGNLTVLEPYRPLF IGAALVALF 	63 
11 TGALGSVVSAMGC AA CFPALASFGAA IG LGFLSQYEGLFI SRLLPLF 	57 

>P1;QQADB5 Hypothetical protein C-119 - Adenovirus 5 
No. 1.5 Score = 94 Quality = 34.815 HITS = 16 Nis. = 11 INDELS = 4 EXPECTED NO. 0.21E+00 

46 PQVSAFVNN WDNLGMWWFSIALNFVCLIIM 	75 
85 PAl VFAANW LLGNWW TANWG 	 112 	 - 

>P1;VCLJA2 env polyprotein precursor - AIDS virus ARV-2 (AIDS-associated retrovirus) 
No. 1.6 Score = 91 Quality = 19.078 HITS = 30 Nis. 	14 INDELS = 10 EXPECTED NO. 0.34E+00 

765 FSYRR LRDLL LIAARTVEILGHRGWEALKYWWSL LQYWI QELKNSAVS W 	813 
70 FSHRQWLRSLLGMIGP Al VFAATVW LLGNWWTANLMY VGLALMIG VSIW 	118 

>P1;QQBE50 Hypothetical BNLF1 protein - Epstein-Barr virus (strain B95-8) 
No. 1.7 Score = 91 Quality = 13.481 HITS = 39 Nis. = 28 INDELS = 10 EXPECTED NO. 0.34E+00 

111 LFIFGCLLVL GIWIYLLEML WRLGATIWQLLAFFLAFFLDLILLIIALYLQQNWWTLLVDLLWL L LFLAILIW 183 
48 LFI SRLLPLFAALAFLANALGW FSHRQW LRSL LGMIGPAIVFAATVWLLGNWWT ANLMYVGLALMIGVSIW 118 

>P1;VCVWEK env polyprotein - AKV murine leukemia virus 
No. 1.8 Score = 87 Quality = 18.432 HITS = 28 Nis. = 18 INDELS = 7 EXPECTED NO. 0.66E+00 

229 ATSWVTGHWWGLRL YVSGHDPGLIFGIRL KITDSGPRVPIGPNPV LSDRR 	278 
91 ATVWLLGNWWTANLIIYV GL A LMIGVSIWDFVSPAHR RCGPDGCELPAKR 	139 

>F1;UIHU 	Thyroglobulin precursor - Human (fragment) 
No. 1.9 Score = 87 Quality = 25.072 HITS = 27 Nis. = 12 INDELS = 3 EXPECTED NO. 0.66E+00 

547 PTVGSFGFEINLQ ENQ NALKFLASLLELPEFLLFLQHAIS 	586 
28 PALASFGAAIGLGFLSQYEGL F ISRLLPLFAALAFLANALG 	68 

>P1;CBMS 	Cytochrome b - Mouse mitochondrion (SGC1) 
No. 1.10 Score = 87 Quality = 17.864 HITS = 32 Nis. = 15 INDELS = 8 EXPECTED NO. 0.66E*00 

115 IGVLL LFAVMATAFMGYVLPU GQMSFWGATVITNLLSAIPYIGTT LV EWIW 	165 
50 ISRLLPLFAALA FLANALGWFSHRQ WLRSLLGMIGPAIVFAATVWLLGNW W 	100 

>P1;QQSABT Hypothetical protein 8-295 - Staphylococcus aureus plasmid pT181 
No. 1.11 Score = 87 QuaLity = 9.265 HITS = 57 MISMATCHES = 42 INDELS = 8 EXPECTED NO. 0.66 

109 GRLVQGVGSAA FPSLIMVVVARNITRKKQGKAFGFIGSIVALGEGLGPSIGGIIAHYIHWSYL 171 
15 GSVVSAMGCAACFPALASFGAAIGLGFLSQYEGL FISRLLPLFAALA FLANALGWFSHRQWL 88 

172 L ILPMITIVTIPFLIKVMVPGKS TKNTLDIVGIVLM SISI 211 
87 RSLLGMIG PAIVFAATVWLLGNWWTAN LMYVGLALIIIGVSI 117 
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>P1;LBRRB 	Light-harvesting protein, beta chain - RhodospirilLum rubrum 
No. 1.12 Score = 86 Quality = 27.564 HITS = 18 Mis. = 13 INDELS = 2 EXPECTED NO. 0.78E+00 

17 EFHKIFTSSILVFFGVAAF AHLLVWIW RPWV 	47 
44 QYEGLF I SRLLPLFAALAFLANALGWFSHRQWL 	76 

>P1;SAVLVD Probable major surface antigen precursor - Hepatitis B virus (two subtypes) 
No. 1.13 Score = 86 Quality = 19.816 HITS = 27 Mis. = 17 INDELS = 5 EXPECTED NO. 0.78E+00 

324 IPIPSSUAF AKYLWEWASVRFS%JL SLLVPFVQWFVGLSPTVWLSAIW 	370 
54 LPLFAALAFLANAL GWFSHR QWLRSLLGMIGPAIV FAATVWLLGNW 	99 

>F1;FOIIVS 	pl5E protein - Simian sarcoma virus (fragment) 
No. 1.14 Score = 86 Quality = 46.486 HITS = 12 Mis. = 6 INDELS = 1 EXPECTED NO. 0.78E+00 

12 GWFNSSPWFTTLLSTIAGP 	30 
68 GWFSHRQWLRSLLGMI GP 	85 

>F1;PHECGM 	Maltodextrin phosphorytase (EC 2.4.1.1) - Escherichia coil (fragment) 
No. 1.15 Score = 85 Quality = 26.646 HITS = 28 Mis. = 5 INDELS = 8 EXPECTED NO. 0.92E+00 

110 ALGN GGLGRLAACFLDSMATVGQSATGYG LNYQY GLF 	146 
13 ALGSVVSANGC AACF PALASFG AAIGLGFLS QYEGLF 	49 

>P1;LWECA 	ATPase (EC 3.6.1.34), lipid-binding protein (C chain) - Escherichia coli 
No. 1.16 Score = 84 Quality = 20.388 HITS = 29 Mis. = 17 INDELS = 4 EXPECTED NO. 0.10E+01 

11 MA AAVMMGLAAIGAAIGIGILGGKFLEGAARQPDLIPLLRTQFFIVMGL 	59 
21 MGCAACFPALASFGAAIGLGFLS QY EGLFISR LLPLFAALAFLANAL 	67 

>P1;QXASM4 Hypothetical protein 4 - Aspergiltus amstelodami mitochondrion (SGC3) 
No. 1.17 Score = 84 Quality = 30.000 HITS = 25 Mis. = 7 INDELS = 3 EXPECTED NO. 0.10E+01 

* * 	** 	* 	* ** ** 

379 SLGNSGTPLTLNFIGEFMSLYGVFERII PLLGVLA 	412 
29 ALASFGA.AIGLGFLSQYEGLF I SRLLPLFAALA 	61 

>P1;BE1 	Probable membrane antigen p140 - Epstein-Barr virus (strain 895-8) 
No. 1.18 Score = 84 Quality = 40.000 HITS = 17 Mis. = 6 INDELS = 1 EXPECTED NO. 0.10E+01 

288 LFMRRQHPGLFPFVNAIASSLGWY 	311 
48 LFISRLLP LFAALAFLANALGWF 	70 

>P1;PWFF6 	ATPase (EC 3.6.1.34), protein 6 - Fruit fly mitochondrion (SGC4) 
No. 1.19 Score = 83 Quality = 23.714 HITS = 22 Mis. = 11 INDELS = 5 EXPECTED NO. 0.12E+01 

2 MTNLFSVFDPLAIFNFSLNWLS I FL GLL MI PSI 	34 
50 ISRLLPLFAALAFLANALGUFSHRQWLRSLLGMIGPAI 	87 

>P1;04B0C2 Cytochrome P450(C21), steroid 21-hydroxylase, liver - Bovine 
No. 1.20 Score = 82 Quality = 23.631 HITS = 28 Mis. = 10 INDELS 6 EXPECTED NO. 0.14E+01 

416 SALA FGCGARVCLGESLARLE LFVV LLRLLQAFTLLPPPVG 	456 
28 PALASFG AA IGLG FLSQYEGLFISRLLPLFAALAFLANALG 	68 

>P1;OTHtJ3 Cytochrome c oxidase (EC 1.9.3.1), polypeptide III - Human mitochondrion (SGC1) 
No. 1.21 Score = 82 Quality = 29.078 HITS = 23 Mis. = 4 INDELS = 6 EXPECTED NO. 0.14E+01 

17 PLTGALSALLMTSGLAMWF HFHSM TLL MLG 	46 
55 PLFAAL AFL ANALG WFSHRQWLRSLLGMIG 	84 

>P1;LWBOA 	ATPase (EC 3.6.1.34), lipid-binding protein - Bovine 
No. 1.22 Score = 82 Quality = 16.335 HITS = 40 Mis. = 13 INDELS = 6 EXPECTED NO. 0.14E+01 

9 IGAGAATVGVAGSGAGIGTVFGSLI ISY ARNPSL KQQLFS YAILGFALSEAMGLF 	63 
14 LGSVVSAMGCAACFPALAS FGAAIGLGFLSQYEGLFISRLLPLFAALAF LANALGWF 	70 

>F1;QXAS4M 	Hypothetical protein 4 - Aspergitlus nidulans mitochondrion (fragment) (SGC3) 
No. 1.23 Score 81 Quality = 28.929 HITS = 25 Mis. = 7 INDELS = 3 EXPECTED NO. 0.17E+01 

112 ALGNSGTPLTLNFIGEFMSLYGVFERM PILGVLA 	145 
29 ALASFGAAIGLGFLSQYEGLF I SRLLPLFAALA 	61 



>P1;ZPECL 	Lipoprotein signal peptidase (EC 3.4.22.-) - Escherichia coli 
No. 1.24 Score = 81 	Quality = 15.056 HITS = 35 Mis. = 16 INDELS = 6 EXPECTED NO. 0.17E+01 

56 	AAFSFLADSGGW 	QR WFFAGIA IGISVILAVMMYR SKA TQKLNNIAYALIIG 	106 
58 	AALAFLANALGWFSHRQWLRSLLGMIGPAIVFAATVWLLGNWWTANLIIYVGLALMIG 	114 

>P1;IMBPBL 	rexB gene protein - Bacteriophage lambda 
No. 1.25 Score = 81 	Quality = 26.045-HITS = 25 Mis. = 7 INDELS = 6 EXPECTED NO. 0.17E+01 

31 	PGV SFSAHRDGLGATLSSYAGTMIA IL I AALTFL 	64 
28 	PALASFGAAI GLG FLSQYEGLFISRLLPLFAALAFL 	63 

>P1;PHRBG 	Glycogen phosphorytase (EC 2.4.1.1) - Rabbit 
No. 1.26 Score = 81 	Quality = 22.192 HITS = 31 Mis. = 7 INDELS = 9 EXPECTED NO. 0.17E+01 

125 	IEEDAG LGN 	GGLGRLAACFLDSIIATLGLAAYGYG I RVEFGIF 	166 
7 	IADKTGALGSVVSAMGC AACF PALASFG AAIGLGFLSQYE GLF 	49 

>P1;LWZMA 	ATPase (EC 3.6.1.34), 	lipid-binding protein - Maize mitochondrion 
No. 1.27 Score = 80 Quality = 18.52 HITS = 33 Mis. = 15 INDELS = 6 EXPECTED NO. 1. 0.20E+01 

23 	GIGNVLSSSIHSVARNPSLAKQSFGYAI LGFALTEAIASF APMMAFLISFVF 	74 
13 	ALGSVVSA MGCAACFPALA 	SFGAAIGLGF LSQYEGLFISRLLPLFAALAF 	62 

>P1;VCVWGF 	env potyprotein - Feline leukemia virus (strain Gardner-Arnstein) 
No. 28 Score = 80 	Quality = 38.462 HITS = 14 Mis. = 7 INDELS = 1 EXPECTED NO. 1. 0.20E+01 

595 	GWFNKSPUFTTLISSIMGPLLI 	616 
68 	GWFSHRQWLRSLLGMI GPAIV 	88 

>F1;QXRT6M 	HypotheticaL protein 6 - Rat mitochondrion (fragment) (SGC1) 
No. 29 Score = 80 	Quality = 23.810 HITS = 25 Mis. = 10 INDELS = 7 EXPECTED NO. 1. 0.20E+01 

28 	GGFGLIVS 	GCIGCLMVLG FGGSFLGLMVFLI YLGGMLV 	65 
12 	GALGSVVSAMGCAACFPALASFGAA IGL GFLSQY EGLFI 	50 

>P1;OTBO3 Cytochrome c oxidase (EC 1.9.3.1), poLypeptide III - Bovine mitochondrion (SGC1) 
No. 30 Score = 80 	Quality = 28.369 HITS = 21 Mis. = 6 INDELS = 6 EXPECTED NO. 1. 0.20E+01 

17 	PLTGALSALLMTSGLTMWF HFNSM ILL MIG 	46 
55 	PLFAAL AFL ANALG WFSHRQWLRSLLGMIG 	84 

>P1;MFIV1 	Matrix (Ml) protein - Influenza B virus (strain B/Lee/40) 
No. 31 Score = 79 	Quality = 25.649 HITS = 22 Mis. = 11 INDELS = 2 EXPECTED NO. 1. 0.24E+01 

32 	FGGKEFDLDSALEWII(NKRCLTDIQKALIGASICF 	66 
57 	FAAL.AF LANALGWFSHRQWLRSLL GMIGPAIVF 	89 

>P1;SYECR 	Threonine synthase (EC 4.2.99.2) - Escherichia coli 
No. 32 Score = 78 	QuaLity = 30.11 HITS = 20 Mis. = 8 INDELS = 2 EXPECTED NO. 1. 0.28E+01 

14 	SFAQAVTQG LGKNQGLFFPHDLPEFS LT 	41 
32 	SFGAAIGLGFLSQYEGLFISRLLPLFAALA 	61 

>P1;TVFVR Kinase-reLated transforming protein (src) (EC 2.7.1.-) - Rous sarcoma virus (str 
No. 33 Score = 78 	Quality = 21.972 HITS = 22 Mis. = 10 INDELS = 5 EXPECTED NO. 1. 0.28E+01 

255 	LAKD AWEIPRESLR LEAKLGQG CFGE VWM GTW 	286 
63 	LANALGWFSHRQWLRSLLGMIGPAIVFAAIVWLLGNW 	99 



Summary of Results for Streptomyces coelicolor gyiR. 

Score Predicted Observed Score Predicted Observed 

49 615.1 608 69 21.82 18 
50 520.6 510 70 18.46 20 
51 440.5 442 71 15.63 22 
52 372.8 352 72 13.22 10 
53 315.5 306 73 11.19 11 
54 267.0 229 74 9.4 14 
55 225.9 235 75 8.0 8 
56 191.2 204 76 6.7 10 
57 161.8 171 77 5.7 1 
58 136.9 155 78 4.8 9 
59 115.9 121 79 4.1 6 
60 98.04 97 80 3.4 2 
61 82.96 73 81 2.9 4 
62 70.21 76 83 2.1 2 
63 59.41 66 84 1.7 2 
64 50.28 56 85 1.5 2 
65 42.55 42 86 1.2 3 
66 36.00 43 88 0.91 1 
67 30.47 21 89 0.77 1 
68 25.78 27 90 0.65 1 

96 0.24 1 

Administrative data from program run. 

SOURCE . LYALL 
0 READ; FIRST LAYER SET TO 
0 READ; LAST LAYER SET TO 275 
1 TO 254; LENGTH 254 

100 Pam 
Indel 10 

SOURCE.LYALL 	USED AS QUERY SEQUENCE, LENGTH 
254 
USING NBRF PROTEIN SEQUENCE DATABASE VERSION 12 

Proteins 4750 Residues 1108197 
EDINBURGH DAP VERSION OF 08/07/86 
TOTAL RESULTS 3982 
THRESHOLD VALUE SET INITIALLY WAS 10 
FINAL THRESHOLD VALUE IS 49 
MAXIMUM SCORE 96 

A 14.6; SIGA 0.3 B -0.2; SIGB 0.005 CHI2 0.6 HIGH 72 
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Listing Two. Streptomyces coelicolorgylR. 

>P1;RKAIL7 Ribulose bisphosphate carboxylase (EC 4.1.1.39) large chain precursor - Anabaena 
No. 	2.1 Score = 96 	Quality = 21.381 HITS = 32 Mis. = 19 INDELS = 4 EXPECTED NO. 	0.24E+00 

313 RVLAKALRL SGGDH IHTGTVVGKLEGERGITMGFV DLLRENYVEQDKSRGIY 364 
10 RAAAM LRLLAGGERRLGLSDIASSLGLAKGTAHGILRTLQQEGFVEQDDASGRY 63 

>P1;ATSY1 	Actin 1 - Soybean 
No. 2.2 Score = 90 	Quality = 29.605 HITS = 28 Mis. = 7 INDELS = 2 EXPECTED NO. 	0.65E+00 

* 	* 	* 	* 	** 	* 	* 	* 	** 

316 MSKEISALAPSSMKIKVVAPSERKFGVW IGGSI LA 	350 
1 MARN IQSLERAAAMLRLLAGGERRLGLSD IASSLGLA 	37 

>F1;FWSYG2 	Glycinin, A2B1a chain - Soybean (fragment) 
No. 2.3 Score = 89 	Quality = 25.284 HITS = 24 Mis. = 13 INDELS = 3 EXPECTED NO. 	0.77E+00 

111 IYALNGRALV 	Q WNCNGERVFDGELQEGGVLIVPQNF 	147 
79 VHELRARALVWTDDLARSSGESVHLGVLHQQGVLIVHHVF 	118 

>P1;HGMQP 	Hemoglobin gamma chain - Pig-tailed macaque 
No. 2.4 Score = 88 	Quality = 33.333 HITS = 24 Mis. = 6 INDELS = 3 EXPECTED NO. 	0.91E+00 

* 	* 	* 	* 	* 
113 VLAI RFGKEFTPEVQASWQKIIVAGVASALSSR 	144 
177 VLDITR ARGYAADVEETWEG IASIAAPIHDR 	207 

>P1;HGMQJ 	Hemoglobin gamma chain - Japanese macaque 
No. 2.5 Score = 86 	Quality = 32.576 HITS = 23 Mis. = 8 INDELS = 1 EXPECTED NO. 	0.12E+01 

* 	* 	* 	* 	* 
113 VLAIHFGKEFTPEVQASWQKNVAGVASALSSR 	144 
177 VLDITRARGYAADVEETWEG IASIAAPIHDR 	207 

>P1;HGMQR 	Hemoglobin gamma chain - Rhesus macaque 
No. 2.6 Score = 86 	Quality = 32.576 HITS = 23 Mis. = 8 INDELS = 1 EXPECTED NO. 	0.12E+01 

* 	* 	* 	* 	* 
113 VLAIHFGKEFTPEVQASWQKMVAGVASALSSR 	144 
177 VLDITRARGYAADVEETWEG IASIAAPIHDR 	207 

>P1;HGBAY 	Hemoglobin gamma chain - Yellow baboon 
No. 2.7 Score = 86 	Quality = 32.576 HITS = 23 Mis. = 8 INDELS = 1 EXPECTED NO. 	0.12E+01 

* 	* 	* 	* 	* 
113 VLAIHFGKEFTPEVQASWQKJIVAGVASALSSR 	144 
177 VLDITRARGYAADVEETWEG IASIAAPIHDR 	207 

>P1;W1WLE Probable El protein - Papillomavirus (type la) 
No. 2.8 Score = 85 	Quality = 16.634 HITS 	37 Mis. = 17 INDELS = 6 EXPECTED NO. 	0.15E+01 

130 DET ENIDE STQVDQQQKEHTGEVGAAG VNIL KASNIRAALLSRFKDTA GVSFTDL 	184 
191 EETWEGIASIAAPIHDRRRMPVGAVGITGAVERLCREGELRPELVAAVRDCARAVS RDL 	249 

>P1;RKNTL Ribulose bisphosphate carboxylase (EC 4.1.1.39) 	large chain precursor - Common t 
No. 2.9 Score = 85 	QuaLity = 18.931 HITS = 31 Mis. = 20 INDELS = 4 EXPECTED NO. 	0.15E+01 

312 RVLAKALRM SGGDHIHS GTVVGKLEGERDITLGFV DLLRDDFVEQDRSRGIY 363 
10 RAAAM LRLLAGGERRLGLSDIASSLGLAKGTAHGILRTLQQEGFVEQDDASGRY 63 

>Pl;DEBSGF Glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.12) - Bacillus stearothermoph 
No. 2.10 Score = 84 	QuaLity = 21.000 HITS = 32 Mis. = 11 	INDELS = 6 EXPECTED NO. 	0.17E+01 

12 IGRNVFRAALKNPDI EVVAVNDLTNADGLAHLLK YDSV HGR LDAE 56 
113 IVHHVFRPD DSRQVLEIGAMQPL HSTALGKVLSAYDPVAHSEALEAD 159 

>Pl;BBMS Complement factor B (in EC 3.4.21.47) - Mouse (fragment) 
No. 	2.11 Score = 84 	Quality = 25.926 HITS = 25 Mis. = 8 INDELS = 7 EXPECTED NO. 	0.17E+01 

418 VHKRSRFIQVG V ISWGVVD VCRD QRRQQPVPSYARD 	453 
204 IHDRRR MPVGAVGIT GAVERLCREGELRPELVAA VRD 	240 



>P1;HGHUA 	Hemoglobin gamma chains - Human and chimpanzee 
No. 2.12 Score = 83 	Quality = 31.439 HITS = 23 Mis. = 8 INDELS = 1 EXPECTED NO. 	0.21E+01 

* 	* 	* 	* 
113 	VLAIHFGKEFTPEVQAS%4QKIIVTAVASALSSR 	144 
177 	VLDITRARGYAADVEETWEG IASIAAPIHDR 	207 

>P1;YNEC 	Cyanate hydrolase (EC 3.5.5.3) - Escherichia coli 
No. 2.13 Score = 83 	Quality = 27.303 HITS = 26 Mis. = 8 INDELS = 3 EXPECTED NO. 	0.21E+01 

• 	***. 	*. 	* *.* * 	.**.. 
6 	INRNIR LDLADAIL L SKAKKDLSFAEIANGTGLA 	39 
1 	MARNIQSLERAAAMLRLLAGGERRLGLSDIASSLGLA 	37 

>P1;QQECE1 	HypotheticaL protein E-152 - Escherichia coIl 
No. 2.14 Score = 81 	Quality = 15.698 HITS = 35 Mis. = 23 INDELS = 6 EXPECTED NO. 	0.29E+01 

*..*.*. 	.* 	* 	* 	* 	. 	...* 	*•• 	*** 	. 	. 	* 	* 	. 	. 	* * 	. 
6 	IDNLDRG 	ILEALMGNART AYAELAKQFGVSPGTIHVRVEKtIKQAGIITGARIDVSPK QLG 	65 
5 	IQSLERAAAMLRLLAGGERRLGLSDIASSLGLAKGTAHGILRTLQQEGFV 	EQDDASGRYQLG 	66 

>P1;WMAD52 	Late Li 52K protein - Adenovirus 2 
No. 2.15 Score = 81 	Quality = 31.641 HITS = 21 Mis. = 6 INDELS = 3 EXPECTED NO. 	0.29E+01 

55 	RARHYL DLEEG EGLARLGAPSPERHPRV 	82 
182 	RARGYAADVEETWEGIASIAAPIHDRR RM 	210 

>P1;ATZM1 	Actin - Maize 
No. 2.16 Score = 81 Quality = 15.084 HITS = 36 Mis. = 22 INDELS = 8 EXPECTED NO. 0.29E+01 

.****• * * ******•** ** 
207 EIVRDI KEKLAYVALDYEQELE TAKSSSSV EKSYEMPDGQV ITIGSERFRCPEVLFQPSLVG 	268 
175 EHVLDITRAR GYAA DVEETWEGIASIAAPIHDRR RMPVGAVGITGAVERL CREGELRPELVA 	236 

>P1;GNFV1R 	pal polyprotein - Rous sarcoma virus -- 
No. 2.17 Score = 81 Quality = 20.611 HITS = 30 Mis. = 14 INDELS = 7 EXPECTED NO. 0.29E+01 

*** ** **.. ** . * 	* • * . * 
188 ASSHDGLE AAGEEVISTLERAGFTISPDKVQ R EPGVQYLGYKLGSTYV 	235 
31 ASSL GLAKGTAHGILRTLQQEGF VEQDDASGRYQLGAELL RLGTTYL 	77 

>P1;FWSYGB Glycinin, Bla chain - Soybean 
No. 2.18 Score = 80 Quality = 22.727 HITS = 23 Mis. = 14 INDELS = 3 EXPECTED NO. 0.34E+01 

* •**** . . 	.** * * *.. **** . * 
72 IYALNGRALV a VVNCNGERVFDGELQEGDVLIVPQNF 	108 
79 VHELRARALVWTDDLARSSGESVHLGVLHQQGVLIVHHVF 	118 

>P1;AFMWB 	Allophycocyanin beta chain - Mastigocladus laminosus 
No. 2.19 Score = 80 Quality = 28.470 HITS = 18 Mis. = 13 INDELS = 3 EXPECTED NO. 0.34E+01 

	

9 INSSDVQGKY LDTAALEKL KSYFSTGELRVRA 	40 
54 VEQDDASGRYQLG AELLRLGTTYLDVHELRARA 	86 

>P1;AFAIB 	Allophycocyanin beta chain - Anabaena variabilis 
No. 2.20 Score = 79 QuaLity = 28.114 HITS = 18 Mis. = 13 INDELS = 3 EXPECTED NO. 0.41E+01 

* *.* * * * .* •* 	*** ** 

	

9 INSADVQGKY LDTAALEKL KAYFSTGELRVRA 	40 
54 VEQDDASGRYQLG AELLRLGTTYLDVHELRARA 	86 

>P1;XIJECAG 	Glycerot-3-phosphate acyLtransferase (EC 2.3.1.15) - Escherichia coli 
No. 2.21 Score = 79 Quality = 17.634 HITS = 33 Mis. = 18 INDELS = 6 EXPECTED NO. 0.41E+01 

707 HI NPAHSRTLQLLAAGARETLQRYAITFWLLSA NPSINRGTLEKESRTVAQRLSV 	761 
116 HVFRPDDSR QVLEIGAMQPLHSTALG KVLSAYDPVAHSEALEADRKAFTDR TV 	168 

>F1;WMAD65 	Late Li 52K protein - Adenovirus 5 (fragment) 
No. 2.22 Score = 79 QuaLity = 35.426 HITS = 18 Mis. = 6 INDELS = 2 EXPECTED NO. 0.41E+01 

55 RARHYL DLEEG EGLARLGAPSPER 	78 
182 RARGYAADVEETWEGIASIAAPIHDR 	207 

>Pi;P3ADA2 	Peripentonal hexon-associated protein (lilA) - Adenovirus 2 
No. 2.23 Score 79 Quality = 36.916 HITS = 15 Mis. = 8 INDELS = 3 EXPECTED NO. 0.41E+01 

545 ND RQRGLVWEDD DSADDSSVLDLG 	568 
80 HELRARALVWTDDLARSSGESV HLG 	104 



>P1;P3ADA2 	Peripentonal hexon-associated protein (lilA) - Adenovirus 2 
No. 2.24 Score = 79 	Quality = 22.899 HITS = 27 Mis. = 11 	INDELS = 6 EXPECTED NO. 0.41E+01 

241 	PFTDSGSVS RDTYLGHLLTLYREAIG QAHVDEHTFQEITSVS 	282 
162 	AFTDR TVCEPDSF EHVLDITR ARGYAADVEE TWEGIASIA 	201 

>P1;FJEC 	nusA protein - Escherichia coli 
No. 2.25 Score = 79 	Quality = 30.502 HITS = 22 Mis. = 8 INDELS = 3 EXPECTED NO. 0.41E+01 

227 	SRSGFSAKIAVKTNDKRIDPVGACVGMRGARVQ 	259 
193 	TWEGIAS IAAPIHDRRRMPVGA V6ITGA VE 	222 

>P1;TFCHE 	Transferrin precursor - Chicken 
No. 2.26 Score = 78 	Quality = 14.338 HITS = 40 Mis. = 19 INDELS = 6 EXPECTED NO. 0.48E+01 

93 	LKPIAAEIY EHTEGSTTSY YAVAVVKKGTEF TVNDLQGKTSCHTG LGRSAGWNIPIGTLLH 	153 
45 	LRTLQQEGFVEQDDASG RYQLGAELLRLGTTYLDVHELRARALVWTDDLARSSGESVHLG VLH 	107 

>P1;FPHU 	Alpha-fetoprotein precursor - Human 
No. 2.27 Score = 78 	Quality = 40.625 HITS = 15 Mis. = 8 INDELS = 0 EXPECTED NO. 0.48E+01 

143 	EPVTSCEAYEEDRETFMNKF lYE 	165 
148 	DPVAHSEALEADRKAFTDRTVCE 	170 

>P1;FOMV1M 	gag polyprotein - Moloney murine leukemia virus 
No. 2.28 Score = 78 	Quality = 22.609 HITS = 23 Mis. = 14 INDELS = 2 EXPECTED NO. 0.48E+01 

238 	WKNNNPSFSEDPGKLTAL IESVLITHQPTW DDCQQLL 	274 
89 	WTDDLARSSGESVHLGVUIQQGVLIVHHVFRPDDSRQVL 	127 

>P1;HAXM 	Hemoglobin alpha chain - Axoloti 
No. 2.29 Score = 78 	Quality = 21.429 HITS = 29 Mis. = 9 INDELS = 6 EXPECTED NO. 0.48E+01 

41 	HTYFPD 	KD LNEGSF ALHSHG KKVMGALSNAVAHIDDLEA 	79 
116 	HVFRPDDSRQVLEIGANQPLHSTALGKVLSAY DPVAHSEALEA 	158 

>P1;XJEC 	Orotate phosphoribosyltransferase (EC 2.4.2.10) - Escherichia coli 
No. 2.30 Score = 78 	Quality = 16.561 HITS = 36 Mis. = 15 INDELS = 6 EXPECTED NO. 0.48E+01 

102 	AKDHGEGGNLVGSALQGR VMLVDDVITAGTARESMEI 	IQA NGATLAGLLISLD 	154 
94 	ARSSGESVHL 6 VLHQQGVLIVHHVFRPDDSRQVLEIGAMQPLHSTALGKVLSAYD 	148 

>P1;IQECDB 	dnaB protein - Escherichia coli 
No. 2.31 Score = 78 	Quality = 9.432 HITS = 60 Mis. = 31 INDELS = 13 EXPECTED NO. 0.48E+01 

354 	DNR TLEIAEISRSL 	KALAKELNVPVVALSQLNRSLEQRADKRP VNSDLRESGSIEQDADLIMF 	426 
122 	DSRQVLEIGAM QPLHSTALGKVLS AYDPVAH SEALE 	ADRKAFTDRTVCEPDSFEHVLDITRA 	173 

427 	I YRDEVYHENSD LKGIAEIIIGKQRNGPIGTVRLT 451 
174 	RGYAADV EETWEGIASIAAPIHDRRRM PVGAVGIT 218 

>P1;TQECT 	Transposase (transposon Tn3) - Escherichia coli 
No. 2.32 Score = 78 	Quality = 22.674 HITS = 25 Mis. = 10 INDELS = 4 EXPECTED NO. 0.48E+01 

* 	*** 	* 	** 	** 	* 	*** 
830 	RKIVLQW DEMIRTAG SLKLGKV QASVL VRSLLKSE 	864 
83 	RARALVWTDDLARSSGESVHLGVLHQQGVLIVHHVFRPD 	121 

>P1;DETWG3 	Glyceratdehyde 3-phosphate dehydrogenase (EC 2.2.1.12) - Thermus aquaticus 
No. 2.33 Score = 78 	Quality = 22.350 HITS = 25 Mis. = 13 INDELS = 3 EXPECTED NO. 0.48E+01 

11 	IGRQVFRILHSRGV EVALINDLTNDKTLAHLLK YDSIYH 	49 
113 	IVHHVFRPDDSRQVLEIGAMQPL HSTALGKVLSAYDPVAH 	152 

alignments 34 to 41 omitted 
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>P1;Z4BP33 Gene 430 protein - Bacteriophage Pf3 
No. 2.42 Layer 237 	Score= 76 Quality 	7.795 
HITS= 69 MISMATCHES= 35 INDELS= 23 	EXPECTED NO 	0.678096E+01 

204 RLGLNWGGALSLGNWSAVTAGDLSVAAGSSIGFGFLSNTLSLDGLFTAIIENEGNGR VVS 	262 
16 RL LA GGERRLGL SDI ASSLGLAKGTA HGILR TLQQEG FVE QDDASGRYQLG 	66 

263 RPTL L I LD RQ SASVL RGTELPYQQSAGDGAT SVAFKHAALSLEVKPVISPDN 	314 
67 AELLRLGTTYLDVHELRARALVWTDDLA R SSGESVHLGVLHQQGVL I VHHVFRPDD 	122 

315 SI VIEV 	320 
123 SRQVLEI 	129 

alignments 43 to 58 omitted 

>P1;Z4BP33 Gene 430 protein - Bacteriophage Pf3 
No. 2.59 Layer 237 	Score= 74 Quality 	12.781 
HITS= 42 MISMATCHES= 24 INDELS= 	7 	EXPECTED NO. 	0.946901E+01 

80 LLSSMVGDVLVITAMDQVLNSERKADDLRTFR RDLFNANDIERRVINIVHA S ASEVV 	136 
135 LHSTALGKVL SAYDPVAHSEALEADRKAFTDRTVCEPDSFEH VLD ITRARGYAADVE 	191 

137 SLFKESFMSLDAP 	149 
192 ETW EGIASIAAP 	203 
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Summary of Results for Drosophila melanogaster YP3. 

Score Predicted Observed Score Predicted Observed 

52 530.7 556 75 14.3 14 
53 453.6 454 76 12.2 19 
54 387.7 404 77 10.4 6 
55 331.3 379 78 8.9 10 
56 283.2 290 79 7.6 3 
57 242.0 295 80 6.5 9 
58 206.9 210 81 5.5 3 
59 176.8 143 82 4.7 5 
60 151.1 123 83 4.0 5 
61 129.1 130 84 3.4 2 
62 110.4 115 85 2.9 1 
63 94.3 91 86 2.5 4 
64 80.6 87 87 2.1 1 
65 68.9 67 88 1.8 1 
66 58.8 61 89 1.5 1 
67 50.3 37 90 1.3 2 
68 43.0 54 91 1.1 2 
69 36.7 27 94 0.7 1 
70 31.4 30 95 0.6 2 
71 26.8 22 96 0.5 1 
72 22.9 30 98 0.3 1 
73 19.6 21 183 0.6E-06 1 
74 16.7 13 1742 0.OE+00 1 

1935 0.OE+00 1 

Administrative data from program run. 

NBRF12FIN 	 LOADED SOURCE.YP3 
0 READ; FIRST LAYER SET TO 	1 
0 READ; LAST LAYER SET TO 271 
1 TO 420; LENGTH 420 

Pam 100 Indel 10 
SOURCE.YP3 USED AS QUERY SEQUENCE, LENGTH 420 
USING NBRF PROTEIN SEQUENCE DATABASE VERSION 12 

Proteins 4750 Residues 1103446 
EDINBURGH DAP VERSION OF 08/07/86 
TOTAL RESULTS 3735 
THRESHOLD VALUE SET INITIALLY WAS 10 
FINAL THRESHOLD VALUE IS 52 
MAXIMUM SCORE 1935 

A 14.4; SIGA 0.3 B -0.2; SIGB 0.005 CHI2 0.8 HIGH 76 
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Listing Three. Drosophila melanogaster YP3. 

>P1;VJFF1 	Vitellogenin I precursor - Fruit fly 
No. 3.1 Score = 1935 Quality = 53.9 HITS = 333 His. = 82 INDELS = 16 EXPECTED NO. O.00E+OO 

aligned along entire length, not displayed 

>P1;VJFF2 	Vitellogenin II precursor - Fruit fly 
No. 3.2 Score = 1742 Quality = 48.5 HITS = 324 His. = 90 INDELS = 19 EXPECTED NO. O.00E+OO 

aligned aLong entire length, not displayed 

>P1;LIPG 	Triacytglycerol Lipase (EC 3.1.1.3) - Pig 
No. 3.3 Score = 183 Quality 17 HITS = 80 MISMATCHES = 36 INDELS = 20 EXPECTED NO. 0.6E-06 

146 VHVIGHSLGSHAAGEAGRR I NG TIERITGLDPAEPCFQGTPE LVRLDPSDAKFVDVIHTDAAPIIP 211 
239 IHLIGQGISAHVAGAAGNKYTAQTGHKLRRITGLDPAKV LSKRPQILGGLSRGDADFVDAIHT ST F A 306 

212 NLGFGMSQTVGHLDFFPNG GKQMPGCQKNI LSQIVD I DGIWEGT RDF VACNHLRSYK 268 
307 MGTPI R CGDVDLYPNGPSTGVPGSENVIEAVARATRYFAESVRPGSERNFPAVPANSLKQYK 367 

>P1;VHVUNH Probable nucleoprotein - Snowshoe hare bunyavirus 
No. 3.4 Score = 98 Quality = 15.170 HITS = 47 His. = 27 INDELS = 7 EXPECTED NO. 0.38E+00 

60 KANPKFGEWQVEVVNNHFPGNRNNPINSDDLTIHRL SGYLARWVLEQYKENEDESRRELIKTTI IN PIAESNGVRWDSG 138 
113 KAQPGFGEDEVTIVLTGLP KTSP AQQKAMRRLIQAYVQKYNLQQLQKNAQEQQQQL KSSDYDYTSSEEAADQWKSA 188 

>P1;OBWT2 	Cytochrome c oxidase (EC 1.9.3.1), polypeptide II - Wheat mitochondrion 
No. 3.5 Score = 96 Quality = 27.507 HITS = 29 His. = 12 INDELS = 6 EXPECTED NO. 0.52E+00 

202 AVPGRSNLTSISVQREGVYYGQCSEIR GTNHAFTPIVVEAVTU(DY 	247 
325 GVPGSENVIE AVARATRYFAE S VRPGSERNF P AVPANSLKQY 	366 

>P1;SYECAT 	Alanyl-tRNA synthetase (EC 6.1.1.7) - Escherichia coli 
No. 3.6 Score = 95 Quality = 11.980 HITS = 56 His. = 29 INDELS = 13 EXPECTED NO. 0.61E+00 

736 LERTRQLEKELQQLK E Q AAAQESANLSSKAIDVNGVKLLVSELSGVEPKIILR TMVDDLKN QL GSTI 801 
157 LQKNAQ EQQ QQLKSSDYDYTSSEEAADQWKSAKAASG DLIIIDLGSTLTNFKRYAMLDVLNTGAMI3QTL 226 

802 IVLAT VV EGKVSLIA GVSKDVT 	823 
227 IDLTNKGVPQEIIHLIGQGISAHVA 	251 

>P1;04RBPC Cytochrome P450, phenobarbital-inducible, liver (version 2) - Rabbit 
No. 3.7 Score = 95 Quality = 17.336 HITS = 38 Nis. = 23 INDELS = 6 EXPECTED NO. 0.61E+00 

420 LKRNEGFMPFS LGKR ICLGEGIARTELFLFFTTILQN FSIASPVPPEDIDLTPRESGVGNVPPS 	483 
266 LRRITGLDPAKVLSKRPQILG GLSRGDA DFVDAIHTSTFAMGTPIRCGDVDLYPNGPSTG VPGS 	329 

>P1;AJECNA 	Asparagine synthetase (EC 6.3.1.1) - Escherichia coli 
No. 3.8 Score = 94 QuaLity = 22.651 HITS = 32 His. = 11 INDELS = 7 EXPECTED NO. 0.72E+00 

221 WSTPSELGH AGLNGDILVWNPVLED AFELSSMGI RV DADTLKHQLA 	266 
33 WLTATELENVPSLN DI TWER LENQPLEQGAKVIEKIYHVGQIKHDLT 	79 

>P1;VHVULV Nucleoprotein N - La Crosse bunyavirus 
No. 3.9 Score = 91 Quality = 18.919 HITS = 34 His. = 21 INDELS = 5 EXPECTED NO. 0.11E+01 

60 KANPKFGEWQVEVINNHFPGNRNNPIGNNDLTIHRL SGYLARWVLDQYNENDDESQHEL 	118 
113 KAQPGFGEDEVTIVLTGLP KTSP AQQJ( AMRRLIQAYVQKYNLQQLQXNAQEQQQQL 	168 

>P1;R5EC19 50S ribosomaL protein L19 - Escherichia coli 
No. 3.10 Score = 91 Quality = 25.490 HITS = 29 His. = 10 INDELS = 3 EXPECTED NO. 0.11E+01 

* 	*** **** 	*** 

	

1 SNIIKQLEQ EQMKQDV PSFRPGDTVEVKVWVVEGSKKRLQ 	40 

	

62 AKVIEKIYHVGQIKHDLTPSFVPSPS NVPVWIIKSNGQKVE 	102 

>P1;HIBPC7 	Internal virion protein C - Bacteriophage 17 
No. 3.11 Score = 90 Quality = 23.256 HITS = 30 His. = 13 

* ** 	** 	* 	* 	* * 
341 PDEQMTPQREWLISAQ EQVQNQMN AWTKAQAKALDDSMKSMNKL 
24 SNDRLKPTK WLTATELENVPSLND ITWERLENQPLEQGAKVIEKI 

INDELS = 3 EXPECTED NO. 0.13E+01 

384 
68 

103 



>F1;MWKW1 	Myosin heavy chain I - Caenorhabditis elegans (fragment) 
No. 3.12 Score = 90 Quality = 8.341 HITS = 69 Nis. = 51 INDELS = 12 EXPECTED NO. 0.13E+01 

1127 LDELN ERLDEQNKQLEIQQDNNKKKDSEIIKFRRDLDEXNMANEDQIIAM IRRKNNDQIS ALTNTLDALQKSK 1198 
45 LNDITWERLENQ PLE QGAKVIEKIYHVGQIKIIDLTPSFVPSPSNVPVWIIKSNGQKVECKLNNYVET AKAQ 106 

1199 AKI EKEKGVLQKELDDINAQVDQETKSRVEQERLAKQYEIQVAELQQKVDEQSRQI 1256 
107 PGFGEDEVTIVLTGLPKTSP AQQKAPIRRLIQAYVQK YNLQ QLQKNAQEQQQQL 169 

>P1;OKBO1R cAMP-dependent protein kinase (EC 2.7.1.37) type I regulatory chain - Bovine 
No. 3.13 Score = 89 QuaLity = 35.458 HITS = 21 Nis. = 7 INDELS = 1 EXPECTED NO. 0.15E+01 

* 	* 	******** 

5 TASEEERSLRE CELYVQKHNIQALLKDS 	32 
133 TSPAQQKAMRRLIQAYVQKYNLQQLQKNA 	161 

>P1;ANRT 	Angiotensinogen precursor - Rat 
No. 3.14 Score = 88 QuaLity = 31.655 HITS = 24 Nis. = 7 INDELS = 2 EXPECTED NO. 0.18E+01 

**** * * * * * 	* ** 

65 AKTSPVDEKTLRDKLVL.A TEKLEAEDRQRAAQ 	96 
131 PKTSPAQQKAIR RLIQAYVQXYNLQQLQXNAQ 	162 

>P1;FOMVGS gag polyprotein - Simian sarcoma virus 
No. 3.15 Score = 87 Quality = 23.200 HITS = 29 Nis. = 11 INDELS = 5 EXPECTED NO. 0.21E+01 

376 GQQAAVATAFTG Q SAPDIKKKLQRL EG LQDYSLQDLVREAE 	416 
119 GEDE VTIVLTGLPKTSPAQQKAMRRLIQAYVQKYNLQQLQKNAQ 	162 

>P1;FOMVMD gag polyprotein - Feline sarcoma virus (strain McDonough) 
No. 3.16 Score = 86 Quality = 18.105 HITS = 27 Nis. = 24 INDELS = 4 EXPECTED NO. 0.25E+01 

111 KWITLCEAEWVMMN %IGWPREGTFPLDNTSQVEKRIFAPGPHGHPDQVP YITT 	162 

	

32 KULTATELENVPSLNDITWERLENQPLEQGAKVIEKIYHVGQIKH DLTPSFVPS 	85 

>P1;VWHU 	von WiLlebrand factor precursor - Human 
No. 3:17 Score = 86 Quality = 19.501 HITS = 36 Nis. = 13 INDELS = 10 EXPECTED NO. 0.25E+01 

720 LGVSTLGP KRNSMVLDVAFVLEGSDKIGEADFN RSKEFMEEVIQRMDVGQD SIHVT 	775 
200 LG STLTNFKRYAM LDV LNTGAMIGQTLIDLTNKGVPQEIIH L IGQGISAHVA 	251 

>P1;OBZM2 Cytochrome c oxidase (EC 1.9.3.1), poLypeptide II - Maize mitochondrion and rice 
No. 3.18 Score = 86 Quality = 24.642 HITS = 27 Nis. = 15 INDELS = 4 EXPECTED NO. 0.25E+01 

202 AVPGRSNLTS I SVQREGVYYGQCSE I CGTNHAFTP IVVEAVTLKDY 	247 
325 GVPGSENVIE AVARATRYFAE SVRPGSERNF P AVPANSLKQY 	366 

>P1;W2WLEB Probable E2 protein - Bovine papilLomavirus (type 1) 
No. 3.19 Score = 86 Quality = 30.935 HITS = 23 Nis. = 10 INDELS = 4 EXPECTED NO. 0.25E+01 

82 LSKTEFGDEPWSLLDTSWDRYMSEPKRCFKKGARVVE 	118 
34 LTATELENVP SLNDITWER L E NQPLEQGAKVIE 	66 

>P1;DJECI 	DNA-directed DNA polymerase I (EC 2.7.7.7) - Escherichia coli 
No. 3.20 Score = 85 Quality = 12.537 HITS = 56 Nis. = 16 INDELS = 16 EXPECTED NO. 0.29E+01 

150 TLINTM TNTILGPE EVVNKYGVPPELIIDFLALtIGDSSDNIPGVPGVGEK TAQA L LQGLGGL 212 
211 AMLDVLNTGAMIGQTLIDLTNK GVPQE IIHLIG QGISA HVAG AA GNKYTAQTGHKLRRITGL 272 

213 D I LYAE PEKIAGLSFRG 228 
273 DPAKVLSKRPQILGGLS RG 291 

>P1;MMEBAD Outer membrane protein A precursor - Shigella dysenteriae 
No. 3.21 Score = 84 Quality = 32.061 HITS = 21 Nis. = 11 INDELS = 1 EXPECTED NO. 0.34E+01 

283 AQSVVDYLISKGIPADKISARGMGESNPVTGNT 	315 
223 GQTLID LTNKGVPQEIIHLIGQGISAHVAGAA 	254 



>P1;MMECA 	Outer membrane protein A precursor - Escherichia coli 
No. 3.22 Score = 84 Quality = 32.061 HITS = 21 Mis. = 11 INDELS = 1 EXPECTED NO. 0.34E+01 

278 AQSVVDYL I 5KG I PADKI SARGMGESNPVTGNT 	310 
223 GQTLID LTNKGVPQEIIHLIGQGISAHVAGAA 	254 

>F1;WKFF 	Neurogenic repetitive locus protein - Fruit fLy (fragment) 
No. 3.23 Score = 83 Quality = 24.412 HITS 	19 Mis. = 19 INDELS = 1 EXPECTED NO. 0.40E+01 

28 MQTI SPQQQQQQQQQQQHQQ QQQQQQQQQQQQQQQL 	65 
130 LPKTSPAQQKAMRRLIQAYVQKYNLQQLQXNAQEQQQQL 	168 

>P1;IIMEBAT Outer membrane protein A precursor - Salmonella typhimurium 
No. 3.24 Score = 83 QuaLity = 31.679 HITS = 21 Mis. = 11 INDELS = 1 EXPECTED NO. 0.40E+01 

282 AQSVVDYLISKGIPSDKISARGtIGESNPVTGNT 	314 
223 GQILID LTNKGVPQEIIHLIGQGISAHVAGAA 	254 

>P1;GNFV1R p01 polyprotein - Rous sarcoma virus 
No. 3.25 Score = 83 Quality = 11.942 HITS = 51 Mis. = 23 INDELS = 14 EXPECTED NO. 0.40E+01 

22 DQWPLPEG KLVA LTQLVE K ELQLGHIEPSLSCWNTPVFVIRKASGSYRLLHDLRA VN AKLVP FGAVQQGAPVLSALPRGWP 
55 NQ PLEQGAKVIEKIYHVGQIKHDLTPSFV PSPS NVPVUII KSNGQ KVECKLNNYVETAKAQPGFGE DEVTIVLTGLPKTSP 

>P1;SYBYMT Methionyt-tRNA synthetase (EC 6.1.1.10) - Baker's yeast 
No. 3.26 Score 83 Quality = 25.305 HITS = 28 Mis. = 10 INDELS = 4 EXPECTED NO. 0.40E+01 

*** * 	 ** **** * * 

526 FSKSRGVGVFGN NAQDSGISPSVWRYYLASVRPESSDSHFS 	566 
318 YPNGPSTGVPGSENVIEA VARAT RYFAESVRP GSERNFP 	356 

>P1;QQPSHC Hypothetical protein merC (transposon TnSOl) - Pseudomonas aeruginosa 
No. 3.27 Score = 83 Quality = 37.727 HITS = 18 Mis. = 8 INDELS = 1 EXPECTED NO. 0.40E+01 

20 LLASSQWVPSSSRSSSAISSRLKPSRW 	46 
8 LL.ATCLLVAAHA SKDASNDRLKPTKW 	33 

>P1;VCLJH3 	env poLyprotein precursor - AIDS virus HTLV-III (1-cell leukemia virus, BH10) 
No. 3.28 Score = 82 Quality = 25.309 HITS = 25 Mis. = 13 INDELS = 5 EXPECTED NO. 0.47E+01 

812 VSLL NATAIAVAEGTDRVIEVV3AYRAIRHIPRRIRQGLER 	853 
315 VDLYPNGPSTGVP GSENVIEAV A RATRYFAESVRPGSER 	353 
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Summary of Results for Human CF antigen. 

Score Predicted Observed Score Predicted Observed 

50 158.6 149 76 1.1 1 
51 131.2 125 77 0.94 1 
52 108.6 108 78 0.78 1 
53 89.83 97 79 0.65 4 
54 74.32 79 80 0.53 1 
55 61.49 68 81 0.44 1 
56 50.87 42 82 0.36 2 
57 42.09 30 83 0.30 1 
58 34.82 35 84 0.25 1 
59 28.81 32 85 0.20 6 
60 23.83 33 87 0.14 2 
61 19.72 25 89 0.97E-01 2 
62 16.31 16 90 0.80E-01 1 
63 13.50 18 92 0.55E-01 2 
64 11.17 10 93 0.45E-01 1 
65 9.237 8 96 0.25E-01 2 
66 7.642 1 97 0.21E-01 1 
67 6.323 10 98 0.17E-01 8 
68 5.231 10 119 0.33E-03 1 
69 4.328 7 154 0.43E-06 1 
70 3.580 2 173 0.11E-07 1 
71 2.962 11 177 0.55E-08 1 
72 2.451 4 179 0.38E-08 1 
73 2.027 3 184 0.14E-08 1 
75 1.388 2 195 0.18E-09 1 

Administrative data from program run. 

100 Pams 
Indel 10 

	

CFIB 	USED AS QUERY SEQUENCE, LENGTH 	94 START 

	

lEND 	94 
NBRF11 and new seqeunces appended; 25-3-87 15:40pm 

Proteins 4612 Residues 1066790 
MCDAPNW3OP VERSION OF 08/07/86 
TOTAL RESULTS 3538 
THRESHOLD VALUE SET INITIALLY WAS 10 
FINAL THRESHOLD VALUE IS 43 
GEN. PENALTY ADDED TO NEGATIVE SCORES FROM FIGURE: 0 
MAXIMUM SCORE 195 

A 14.5; SIGA 0.7 B -0.2; SIGB 0.01 CHI2 5.5 HIGH 69 
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Listing Four. Human cystic fibrosis antigen. 

>P1;BCBOIA 	S-100 protein, alpha chain - Bovine 
No. 4.1 Score = 195 QuaLity = 30.139 HITS = 51 His. = 22 INDELS = 4 EXPECTED No. 0.18E09 

2 SELETAMETLINVFHAHSGKEGDKYKLSKKELKELLQTELSGFLDAQKDADAVDKVMKELDEDGDGEVDFQEYVVLV 78 
3 TELEKALNSIIDVYHKYSLIKGNFHAVYRDDLKKLLETECPQYI RKKGAD V W FKELDINTDGAVNFQEFLILV 75 

>P1;KLBOI 	Calcium-binding protein, intestinal - Bovine 
No. 4.2 Score = 184 Quality = 28.264 HITS = 48 His. = 25 INDELS = 1 EXPECTED No. 0.14E-08 

1 KSPEELKGI FEKYAAKEGDPNQLSKEELKLLLQTEFPSLLKGPSTLDELFEELDKNGDGEVSFEEFQVLVKKIS 74 
7 KALNSIIDVYHKYSLIKGNFHAVYRDDLKKLLETECPQYIRKKGA DVWFKELDINTDGAVNFQEFLILVIKMA 79 

>P1;BCHUIB S-lOU protein, beta chain - Human 
No. 4.3 Score = 179 Quality = 26.208 HITS = 52 His. = 25 INDELS = 4 EXPECTED No. 0.38E-08 

1 SELEKAMVALIDVFHQYSGREGDKHKLKKSEU(ELINNELSHFLEEIKEQEVVDKVtIETLDNDGDGECDFQEFMAFVAMVT 81 
3 TELEKALNSIIDVYHKYSLIKGNFHAVYRQDLKKLLETECPQYIRK KGADV WFKE LDINTDGAVNFQEFLILVIKMA 79 

>P1;BCBOIB S-lOU protein, beta chain - Bovine 
No. 4.4 Score = 177 Quality = 25.915 HITS = 52 His. = 25 INDELS = 4 EXPECTED No. 0.55E-08 

1 SELEKAVVAL IDVFHQYSGREGDKHKLKKSELKELINNELSHFLEEIKEQEVVDKVMETLDSDGDGECDFQEFMAFVAM IT 81 
3 TELEKALNSIIDVYHKYSLIKGNFHAVVRDDLKKLLETECPQYIRK KGADV WFKE LDINTDGAVNFQEFLILVIKMA 79 

>P1;KLPGI 	Calcium-binding protein, intestinaL - Pig 
No. 4.5 Score = 173 Quality = 26.252 HITS = 47 His. = 27 INDELS = 1 EXPECTED No. 0.11E-07 

3 QKSPAELKSI FEKYAAKEGDPNQLSKEELKQLIQAEFPSLLKGPRTLDDLFQELDKNGNGEVSFEEFQVLVKKIS 77 
6 EKALNSIIDVYHKYSLIKGNFHAVYRDDLKKLLETECPQYIR KKGADVWFKELDINTDGAVNFQEFLILVIKMA 79 

>F1;KLRTI 	Calcium-binding protein, intestinal - Rat (fragment) 
No. 4.6 Score = 154 Quality = 26.146 HITS = 43 His. = 22 INDELS = 1 EXPECTED No. 0.43E-06 

** 	* 	*** ** 	* ******** ** 	* 
3 I FQKYAAKEGDPNQLSKEELKLLIQSEFPNLLKASSTLDNLFEELDKNDDGEVSYEEFEVFFKKLS 	68 
15 VYHKYSLIKGNFHAVYRDDLKKLLETECPQYIRKKGA DVWFKELDINTDGAVNFQEFLILVIKMA 	79 

>P1;LUPG10 	Calpactin I Light chain - Pig 
No.. 4.7 Score = 119 Quality = 18.393 HITS = 47 His. = 23 INDELS = 7 EXPECTED No. 0.33E-03 

2 SQMEHAMETMMFTFHKFAGDKG YLT KEDLRVLNEKEFPGFLENQKDPLAVDKIMKDLDQCRDGKVGFQSFFSLI 75 
3 TELEKALNSIIDVYHKYSLIKGNFHAVYRDDLKKLLETECPQYIRK KGA DV WF KELDINTDGAVNFQEFLILV 75 

>P1;A23758 CaLmodulin - Chlamydomonas reinhardtii 
No. 4.8 Score = 98 Quality = 51.309 HITS = 18 His. = 4 INDELS = 1 EXPECTED No. 0.17E-01 

57 EVDADGNGTIDFPEFLMLMARKM 	79 
57 ELDINTDGAVNFQEFLILVI KM 	78 

>P1;TPRBCW Troponin C, slow skeletal and cardiac muscles - Rabbit 
No. 4.9 Score = 98 Quality = 51.309 HITS = 19 His. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

63 EVDEDGSGTVDFDEFLVMMVRCM 	85 
57 ELDINTDGAVNFQEFLILVIK M 	78 

>P1;TPPGCS Troponin C, skeletal muscle - Pig 
No. 4.10 Score = 98 Quality = 51.309 HITS = 19 His. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

** 	* **** 	* 
61 EVDEDGSGTIDFEEFLVMMVRQM 	83 
57 ELDINTDGAVNFQEFLILVIK M 	78 

>P1;TPCHCS 	Troponin C, skeLetaL muscle - Chicken 
No. 4.11 Score = 98 QuaLity = 51.309 HITS = 19 His. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

** 	* **** 	* 
64 EVDEDGSGTIDFEEFLVMMVRQM 	86 
57 ELDINTDGAVNFQEFLILVIK M 	78 
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>P1;TPHUCS 	Troponin C, skeletal muscle - Human 
No. 4.12 Score = 98 	Quality = 51.309 HITS = 19 Mis. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

** 	* 	**** 	* 
61 EVDEDGSGTIDFEEFLVMMVRQM 	83 
57 ELDINTDGAVNFQEFLILVIK P1 	78 

>P1;TPBOCC 	Troponin C, cardiac muscle - Bovine 
No. 4.13 Score = 98 	Quality = 51.309 HITS = 19 Mis. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

63 EVDEDGSGTVDFDEFLVMMVRCM 	85 
57 ELDINTDGAVNFQEFLILVIK P1 	78 

>P1;TPFGCS 	Troponin C, skeletal muscle - Edible frog 
No. 4.14 Score = 98 	Quality = 51.309 HITS = 19 Mis. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

** 	* 	**** 	* 
64 EVDEDGSGTIDFEEFLVMMVRQM 	86 
57 ELDINTDGAVNFQEFLILVIK Pt 	78 

>P1;TPRBCS 	Troponin C, skeletal muscle - Rabbit 
No. 4.15 Score = 98 	Quality = 51.309 HITS = 19 Mis. = 3 INDELS = 1 EXPECTED No. 0.17E-01 

** 	* 	**** 	* 
61 EVDEDGSGTIDFEEFLVMMVRQII 	83 
57 ELDINTDGAVNFQEFLILVIK P1 	78 

>P1;MCTE Calmodulin - Tetrahymena pyriformis 
No. 4.16 Score = 97 	Quality = 48.744 HITS = 18 Mis. = 5 INDELS = 1 EXPECTED No. 0.21E-01 

53 NEVDADGDGTIDFPEFLSLHARKM 	76 
56 KELDINTDGAVNFQEFLILVI KM 	78 

>P1;PVSNBB 	Parvalbumin beta - Boa constrictor 
No. 4.17 Score = 96 	QuaLity = 23.415 HITS = 28 Mis. = 18 INDELS = 2 EXPECTED No. 0.25E-01 

61 DELKKFLQNFDGKARDLTDKETAEFLKEGDTDGDGKIGVEEFVVLVTK 	108 
32 DDU(KLLET EC PQYIRKKGADVWFKELDINTDGAVNFQEFLILVIK 	77 

>P1;PICSU CalmoduLin - Scallop, sea-anemone, and sea-pansy 
No. 4.18 Score = 96 	Quality = 48.241 HITS = 18 Mis. = 5 INDELS = 1 EXPECTED No. 0.25E-01 

53 NEVDADGDGTIDFPEFLTMMARKM 	76 
56 KELDINTDGAVNFQEFL ILVIKM 	78 

>P1;A23759 	Calmodulin - Spinach 
No. 4.19 Score = 93 	Quality = 46.734 HITS = 18 Mis. = 5 INDELS = 1 EXPECTED No. 0.45E-01 

53 NEVDADGNGTIDFPEFLNLMARKM 	76 
56 KELDINTDGAVNFQEFLILVI KM 	78 

>P1;MCEE Calmodulin - Electric eel 
No. 4.20 Score = 92 	Quality = 46.231 HITS = 18 Mis. = 5 INDELS = 1 EXPECTED No. 0.55E-01 

53 NEVDADGNGTIDFPEFLTMMAKKM 	76 
56 KELDINTDGAVNFQEFL ILVIKM 	78 

>P1;MCHU Calmodutin - Human, rabbit, bovine, rat, and chicken 
No. 4.21 Score = 92 	Quality = 46.231 HITS = 18 Mis. = 5 INDELS = 1 EXPECTED No. 0.55E-01 

53 NEVDADGNGTIDFPEFLTMMARKM 	76 
56 KELDINTDGAVNFQEFL ILVIKM 	78 

>P1;GNWE2C 	Genome polyprotein B - Cowpea mosaic virus 
No. 4.22 Score = 90 	Quality = 14.196 HITS = 40 Mis. = 24 INDELS = 13 EXPECTED No. 0.80E-01 

100 	LYKHYALFISNL 	VTRT LRFKELLLF CKQQFLEKMQASIVWAPELEQYLQVEGDAVA QGVSQLLYKIIVTWVPT 	171 
15 	VYHKYSLIKGNFHAVYRDDLK K LLETEC PQYIRKKGAD VWFKELD 	INTDG AVNFQEFLILVIKM AWQPT 	83 

>P1;MCSW Calmodulin - Scallop, sea-anemone, and sea-pansy 
No. 4.23 Score = 89 	QuaLity = 52.663 HITS = 16 Mis. = 4 INDELS = 0 EXPECTED No. 0.97E-01 

126 READIDGDGQVNYEEFVTMM 	145 
56 KELDINTDGAVNFQEFLILV 	75 
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>P1;MCDO 	Calmodulin - Dictyostelium discoideum 
No. 4.24 Score = 89 QuaLity = 44.724 HITS = 17 Nis. = 6 INDELS = 1 EXPECTED No. 0.97E-01 

** 

55 NEVDADGNGNIDFPEFLTPIMARKII 	78 
56 KELDINTDGAVNFQEFL ILVIKM 	78 

>P1;TPRBCW 	Troponin C, slow skeletal and cardiac muscles - Rabbit 
No. 4.25 Score = 87 Quality = 23.706 HITS = 24 Nis. = 16 INDELS = 1 EXPECTED No. 0.14E+00 

115 DELKIHLQAT GETITEDDIEELMKDGDKNNDGRIDYDEFL 	154 
32 DDLKKLLETECPQYIRKKGADVWFKELDINTDGAVNFQEFL 	72 

>P1;MCCHM 	Calmodulin, striated muscle - Chicken 
No. 4.26 Score = 87 QuaLity = 45.550 HITS = 16 Nis. = 6 INDELS = 1 EXPECTED No. 0.14E+00 

54 EVDADGSGTIDFPEFLSLMARKM 	76 
57 ELDINTDGAVNFQEFLILVI KM 	78 

>P1;A23759 Catmodulin - Spinach 
No. 4.27 Score = 85 QuaLity = 41.463 HITS = 18 Nis. = 4 INDELS = 2 EXPECTED No. 0.20E+00 

** 

126 READVDGDSQINYEEF VKVI4 MA 	147 
56 KELDINTDGAVNFQEFLILVIKIIA 	79 

>P1;KLSWM 	Calcium-binding protein, muscLe - Yesso scallop 
No. 4.28 Score = 85 Quality = 52.795 HITS = 14 His. = 4 INDELS = 0 EXPECTED No. 0.20E+00 

10 IWYKSLDVNHDGIISIEN 	27 
53 VWFKELDINTDGAVNFQE 	70 

>P1;MCHU 	CalmoduLin - Human, rabbit, bovine, rat, and chicken 
No. 4.29 Score = 85 Quality = 59.441 HITS = 14 Nis. = 3 INDELS = 0 EXPECTED No. 0.20E+00 

126 READIDGDGQVNYEEFV 	142 
56 KELDINTDGAVNFQEFL 	72 

>P1;MCDO 	CaLmodulin - DictyosteLium discoideum 
No. 4.30 Score = 85 Quality = 47.753 HITS = 17 Nis. = 4 INDELS = 0 EXPECTED No. 0.20E+00 

128 READLDGDGQVNYDEFVKMMI 	148 
56 KELDINTDGAVNFQEFLILVI 	76 
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Summary of Results for Escizerichia co/i ftsA. 

Score Predicted Observed Score Predicted Observed 

42 648.5 573 59 30.3 29 
43 541.6 502 60 25.3 29 
44 452.3 428 61 21.1 15 
45 377.8 334 62 17.6 14 
46 315.5 288 63 14.7 10 
47 263.5 258 64 12.3 12 
48 220.0 224 65 10.2 6 
49 183.8 200 66 8.5 8 
50 153.5 172 67 7.1 13 
51 128.2 155 68 5.9 5 
52 107.0 118 69 5.0 4 
53 89.4 91 70 4.1 4 
54 74.6 83 73 2.4 4 
55 62.3 80 74 2.0 6 
56 52.0 52 76 1.4 1 
57 43.4 46 77 1.1 1 
58 36.3 38 81 0.6 1 

172 0.4E-07 	1 

Administrative data from program run. 

V8P100 - 100 pains 
Indel -10 
PATTERN 	USED AS QUERY SEQUENCE, LENGTH 	60 START 
lEND 	60 
NBRF Version 8.00 Proteins 3557 Residues 809386 
MCDAPNW30P VERSION OF 08/07/86 
TOTAL RESULTS 3805 	 -. 
THRESHOLD VALUE SET INITIALLY WAS 10 
FINAL THRESHOLD VALUE IS 42 
GEN. PENALTY ADDED TO NEGATIVE SCORES FROM FIGURE: 0 
MAXIMUM SCORE 172 

A 14.0; SIGA 0.3'B -0.18; SIGB 0.005 CHI2 0.4 HIGH 62 
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Listing Five. Escherichia co/i ftsA protein. 

>P1;TVBY8 	CeLl division control protein 28 - Baker's yeast 
No. 	5.1 Score = 172 	QuaLity = 86.432 HITS = 21 Nis. = 34 INDELS = 5 EXPECTED NO. 0.43E-07 

84 LYLVFE FLDLDLK RYMEGIPKDQPLGAD 	IVKKFPIM QLCKGIAYCHSHRILHRDLI( 	138 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;QXHU4M Hypothetical protein 4 - Human mitochondrion (SGC1) 
No. 	5.2 Score = 81 	QuaLity = 81.000 HITS = 10 Nis. = 29 INDELS = 2 EXPECTED NO. 0.57E+00 

14 LTWLSK KHPIIWINTTTHSLIIS IIPLLFFNQINNNLFSC 	52 
9 LXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXC 	49 

>P1;RDSODF Dihydrofolate reductase (EC 1.5.1.3) - Streptococcus faecium 
No. 	5.3 Score = 77 	Quality = 40.314 HITS = 14 Nis. = 42 INDELS = 3 EXPECTED NO. 0.11E+01 

53 LSLPYRHIIVLTTQ KDFK VEKNAEVLHSIDELLAYAK DIPEDIYVSGGSRIFQALL 	108 
1 LXLVXEJ ILXXXXKJKXXXJ IXXXXXXXXJJ J IVXXXXXJQIXJG IXXCXXJ RI IHXXL 	59 

>P1;VGNZA2 Fusion glycoprotein - Respiratory syncytial virus (strain A2) 
No. 5.4 Score = 76 	Quality = 46.061 HITS = 13 Nis. = 35 INDELS = 7 EXPECTED NO. 0.14E+01 

511 E LLHNVNAGKSTTNIMITTIIIV 	IIVILLS LIAVGLLLYCKA RSTPVTL 	559 
6 EJILXXXXKJKX)(XJIXXXXXXXXJJJIVXXXXXJQIXJGIXX CXXJRIIHXXL 	59 

>P1;SYEC Thymidylate synthase (EC 2.1.1.45) - Escherichia coli 
No. 	5.5 Score = 74 	QuaLity = 38.743 HITS = 13 Nis. = 42 INDELS = 5 EXPECTED NO. 0.20E+01 

5 LELNQK VLDEGTQKNDRTGTGTLSIFGHQMRFNLQDGF PLV TTKRCHL RSIIHELL 	60 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJR IIHXXL 	59 

>P1;P31V34 	P3 protein - Influenza A virus (2 strains) 
No. 	5.6 Score = 74 	Quality = 44.848 HITS = 14 Nis. = 33 INDELS = 6 EXPECTED NO. 0.20E+01 

373 ILRKATR RLIQLIVSGRDEQS 	IAEAIIVAMVF SQEDCMI KAVRGDLN 	419 
8 ILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;UZADP7 Terminal protein - Adenovirus 7 
No. 	5.7 Score = 74 	Quality = 42.775 HITS = 14 Nis. = 36 INDELS = 7 EXPECTED NO. 0.20E+01 

552 VQE ILRQAAV NDTE IDSVELSFRFK LTGPVAFTQRR QIQDVNR RVVAHASL 	602 
4 VXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII HXXL 	59 

>P1;P31V33 	P3 protein - Influenza A virus (strain A/WSN/33) 
No. 	5.8 Score = 74 	Quality = 44.848 HITS = 14 Nis. = 33 INDELS = 6 EXPECTED NO. 0.20E+01 

373 ILRKATR RLIQLIVSGRDEQS 	IAEAIIVAMVF SQEDCMI KAVRGDLN 	419 
8 ILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;MWKW Myosin heavy chain - Nematode 
No. 	5.9 Score = 74 	QuaLity = 50.340 HITS = 12 His. = 30 INDELS = 5 EXPECTED NO. 0.20E+01 

30 K KNVW IPDPEEGYLAGEITATKG!) QVT 	IVTAREHSVIQVTLK 	71 
14 KJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;ODBY1 Cytochrome c oxidase (EC 1.9.3.1), polypeptide I - Baker's yeast mitochondrion ( 
No. 	5.10 Score = 74 	Quality = 54.412 HITS = 12 Nis. = 30 INDELS = 7 EXPECTED NO. 0.20E+01 

402 Q ILGLNYNEKLAQ IQFWLIFIGA 	NVIFFPM HFL GING MPRRI 	443 
6 EJ ILXXXXKJKXXXJ IXXXXXXXXJJJ IVXXXXXJQIXJGIXXCXXJRI 	54 

>P1;VCVWM1 env potyprotein - Mink cell focus-forming murine leukemia viruses (2 clones) 
No. 	5.11 Score = 73 Quality = 47.712 HITS = 13 Nis. = 34 INDELS = 6 EXPECTED NO. 0.24E+01 

593 LLLILL FGPWILN RLVQFIKDRISVVQA 	LVLTQQYHQLK TIGDCKS R 	639 
1 LXLVXEJ ILXXXXKJKXXXJ IXXXXXXXXJJJ IVXXXXXJQIXJGIXXCXXJR 	53 
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>P1;R3ZM4 	Ribosomat. protein S4 - Maize chLoroplast 
No. 	5.12 Score = 73 	Quality = 42.690 HITS = 16 Nis. = 33 INDELS = 7 EXPECTED NO. 0.24E+01 

87 LEMRLDNILFRLGM 	AST IPGARQLVNHRHILVNGRIVDIP SFR CKP RDII 136 
1 ULVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJR II 55 

>F1;DENCED NAD-specific glutamate dehydrogenase (EC 1.4.1.2) - Neurospora crassa (fragments 
No. 	5.13 Score = 73 	Quality = 42.690 HITS = 16 Nis. = 33 INDELS = 7 EXPECTED NO. 	0.24E+01 

224 LEVISDRMFLAKATK NTKQ IYQDIIQVA 	VSRHGPVIEVF DIEGSEEMRLV 273 
1 LXLVXEJI LXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII 55 

>P1;VCVWEK 	env polyprotein - AKV murine leukemia virus 
No. 	5.14 Score = 73 	Quality = 47.712 HITS = 13 Nis. = 34 INDELS = 6 EXPECTED NO. 	0.24E+01 

622 LLLILL FGPCILN RLVQFIKDRISVVQA 	LVLTQQYHQLK TIEDCKS R 668 
1 LXLVXEJ ILXXXXKJKXXXJ IXXXXXXXXJ JJ IVXXXXXJQIXJG IXXCXXJR 53 

>P1;PWECA 	ATPase (EC 3.6.1.34) alpha chain - Escherichia coLi 
No. 	5.15 Score = 70 	Quality = 48.276 HITS = 16 Nis. = 28 INDELS = 7 EXPECTED NO. 	0.41E+01 

51 E MISLPGN RYAIALNLERDSVGA 	VVMGPYA DL.AEGMKVKCTG RIL 95 
6 EJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXX CXXJRII 55 

>P1;ISRBT 	Triosephosphate isomerase (EC 5.3.1.1) - Rabbit 
No. 	5.16 Score = 70 	Quality = 58.824 HITS = 12 Nis. = 28 INDELS = 3 EXPECTED NO. 	0.41E+01 

52 RQKLDPKIAVAAQNCYK 	VTNGAFTGEISPGMIKDCGATWVV 	92 
14 KJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJG IXXCXXJRII 	55 

>P1;ISHUT 	Triosephosphate isomerase (EC 5.3.1.1) - Human 
No. 	5.17 Score = 70 	Quality = 58.824 HITS = 12 Nis. = 28 INDELS = 3 EXPECTED NO. 	0.41E+01 

52 RQKLDPKIAVAAQNCYK 	VTNGAFTGEISPGMIKDCGATWVV 	92 
14 KJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJG IXXCXXJRII 	55 

>P1;IMBPBL 	rexB gene-protein - Bacteriophage lambda 
No. 	5.18 Score = 70 	QuaLity = 52.239 HITS = 12 Nis. = 33 INDELS = 2 EXPECTED NO. 	0.41E+01 

57 LIAALTFLIGSRIRRLAKIREYGYMTSVV IVYALSFVELG ALFFC 	101 
3 LVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXC 	49 - 

>P1;V6XR1S 	Glycoprotein VP7 - Simian 11 rotavirus 
No. 	5.19 Score = 69 	Quality = 53.488 HITS = 13 Nis. = 27 INDELS = 6 EXPECTED NO. 	0.50E+01 

16 IILLNY ILKSLTRIMDCI IYRLLFIIV 	ILSPFLRAQNY 6! 	55 
1 LXLVXEJ ILXXXXKJKXXXJ IXXXXXXXXJJJ IVXXXXXJQIXJGI 	46 

>P1;WMFM9 	90K protein - Alfalfa mosaic virus 
No. 5.20 Score = 69 	Quality = 45.098 HITS = 13 Nis. = 37 INDELS = 3 EXPECTED NO. 	0.50E+01 

237 LDIV E IIPDVSPTKPYEAVISGNDWMTLGRIIPTTPVPTIR DVFFSGLSR 286 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJR 53 

>P1;HIBP14 	Internal protein I - 8acteriophage 14 
No. 	5.21 Score = 69 	Quality = 62.162 HITS = 12 Nis. = 26 INDELS = 5 EXPECTED NO. 	0.50E+01 

7 USE VIKANGKRKQGP MKAKHISAAH 	LISLVDGEEIK 6 	44 
3 LVXEJ ILXXXXKJKXXXJ IXXXXXXXXJ J J IVXXXXXJQIXJG 	45 

>P1;ACRYA1 	Acetylcholine receptor protein, alpha chain precursor - Electric rays 
No. 5.22 Score = 69 	Quality = 36.316 HITS = 17 Nis. = 32 INDELS = 9 EXPECTED NO. 	0.50E+01 

31 LVAN LLENYNK VIRP VEHHTHFVD 	ITVGLQLIQLI SVDE VN QIVETNVR 	79 
3 LVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;ANHU Angiotensinogen precursor - Human 
No. 	5.23 Score = 68 	Quality = 52.713 HITS = 12 Nis. = 28 INDELS = 6 EXPECTED NO. 	0.59E+01 

88 LVLVAA KLDTEDKLRAAM VGMLANFLGF 	RIYGMHS ELW GV 	127 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGI 	46 
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>P1;TVCHLV Virus-induced, kinase-related transforming protein (gag-env-erbB) - Chicken and 
No. 5.24 Score = 68 Quality = 35.602 HITS = 17 Nis. = 36 INDELS = 6 EXPECTED NO. 0.59E+01 

270 VQLITQ LJIPYGCL LDY IREHKDNIGSQ YLL.NWCV QIAKGMNYLEERRLVHRDL 	322 
1 LXLVXEJILXXXXKJcXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXL 	59 

>P1;YNEC 	Cyanate hydrolase (EC 3.5.5.3) - Escherichia coil 
No. 5.25 Score = 68 Quality = 35.602 HITS = 14 Nis. = 40 INDELS = 5 EXPECTED NO. 0.59E+01 

12 LDLADA ILLSKAK KDLSFAEIANGTGLAEAFVTAALLGQ Q ALPA DAARLVGAKL 	65 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXL 	59 

>P1;TVYUH 	Kinase-related transforming protein (erbB) - Avian erythroblastosis virus 
No. 5.26 Score = 68 Quality = 35.602 HITS = 17 Nis. = 36 INDELS = 6 EXPECTED NO. 0.59E+01 

206 VQLITQ LMPYGCL LDY IREHKDNIGSQ YLLNWCV QIAKGMNYLEERRLVHRDL 	258 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXL 	59 

>P1;EDBEIC 	Immediate-early protein - Cytomegalovirus 
No. 5.27 Score = 68 Quality = 35.789 HITS = 14 Nis. = 39 INDELS = 5 EXPECTED NO. 0.59E+01 

54 LFPE LAEESLK IFER VTEDCNENPEKDVLAELVK QIKVRVDMVRH RIKEHMLI( 	106 
3 LVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXLK 	60 

>P1;QQBE22 Probable membrane antigen gp220 - Epstein-Barr virus (strain B95-8) 
No. 5.28 Score = 67 Quality = 46.853 HITS = 11 Nis. = 35 INDELS = 3 EXPECTED NO. 0.71E+01 

96 LLGAGEL.ALTMRSK KLPINVTTGEEQQVSLESVDVYFQ DVF GTMWC 	141 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXC 	49 

>P1;GNVWLV p01 polyprotein - AIDS virus LAV-la (lymphadenopathy-associated virus) 
No. 5.29 Score = 67 Quality = 38.728 HITS = 14 Nis. = 31 INDELS = 11 EXPECTED NO. 0.71E+01 

88 VLE EMSLPGRWKPKII IGGIGGFIK 	VRQYD QIL IEICGH KAIGTVL 	132 
4 VXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXL 	59 

>P1;VCLJLV env polyprotein precursor - AIDS virus LAy-la (lymphadenopathy-associated virus) 
No. 5.30 Score = 67 Quality = 39.181 HITS = 12 Nis. = 37 INDELS = 6 EXPECTED NO. 0.71E+01 

* 	*• 	 * 	 . 	*. ** * 	..* 

560 LLRAIE AQQHLLQLTVWG IKQLQARILA VERYLKDQQLL GIWGCSG KLI 	608 
1 ULVXEJIL)O(XXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII 	55 

>P1;VCLJVL env polyprotein precursor - AIDS virus LV (lymphadenopathy virus) 
No. 5.31 Score = 67 Quality = 39.181 HITS = 12 Nis. = 37 INDELS = 6 EXPECTED NO. 0.71E+01 

555 LLRAIE AQQHLLQLTVWG IKQLQARILA VERYLKDQQLL GIWGCSG XLI 	603 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII 	55 

>P1;VCLJA2 env polyprotein precursor - AIDS virus ARV-2 (AIDS-associated retrovirus) 
No. 5.32 Score = 67 Quality = 39.181 HITS = 12 Nis. = 37 INDELS = 6 EXPECTED NO. 0.71E+01 

554 LLRAIE AQQIILLQLTVWG IKQLQARVLA VERYLRDQQLL GIWGCSG KLI 	602 
1 LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII 	55 

>P1;QXASBI 	Hypothetical cobA intron protein - Aspergillus nidulans mitochondrion (SGC3) 
No. 5.33 Score = 67 Quality = 35.263 HITS = 12 Nis. = 38 INDELS = 9 EXPECTED NO. 0.71E+01 

* * * 	* 	* 	 * 	* * 	** 	** 

262 LTYE LGIELSIKDVQLIYKIKKILG 	IGIVSFR KIN EIEMVAL RIRDKNHLK 	312 
3 LVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXX LX 	60 

>P1;RDHUB5 	NADH-cytochrome b5 reductase (EC 1.6.2.2) - Human 
No. 5.34 Score = 67 Quality = 40.606 HITS = 15 Nis. = 33 INDELS = 6 EXPECTED NO. 0.71E+01 

122 LLVYQGKGKFA IRPDKKSNP IIRTVKSVGMIAGGTGITPMLQVIRAIMK 	170 
8 ILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJ QIXJGIXXCXXJRIIHXXLK 	60 

>P1;GNVWVL pcI polyprotein - AIDS virus LV (lymphadenopathy virus) 
No. 5.35 Score = 67 Quality = 38.728 HITS = 14 Nis. = 31 INDELS = 11 EXPECTED NO. 0.71E+01 

97 VLE EMSLPGRWKPKM IGGIGGFIK 	VRQYD QIL IEICGH KAIGTVL 	141 
4 VXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRIIHXXL 	59 
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>P1;GNVWH3 	p01 polyprotein - AIDS virus HTLV-III (T-celI. leukemia virus, BH10) 
No. 5.36 Score = 67 Quality = 38.728 HITS = 14 Nis. = 31 INDELS = 11 EXPECTED NO. 0.71E+01 

100 	VLE EMSLPGRWKPKM IGGIGGFIK 	VRQYD 	QIL 	IEICGH KAIGTVL 144 
4 	VXEJ ILXXXXKJKXXXJ IXXXXXXXXJJJ IVXXXXXJQIXJGIXXCXXJRI IHXXL 59 

P1;GNVWA2 	pcI polyprotein - AIDS virus ARV-2 (AIDS-associated retrovirus) 
No. 5.37 Score = 67 Quality = 38.728 HITS = 14 Nis. = 31 INDELS = 11 EXPECTED NO. 0.71E+01 

88 	VLE EMNLPGKWKPKM IGGIGGFIK 	VRQYD 	QIP 	VEICGH KAIGTVL 132 
4 	VXEJILXXXXKJKXXXJ IXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRI IHXXL 59 

>P1;QQBE21 	Probable membrane antigen gp350 - Epstein-Barr virus (strain B95-8) 
No. 5.38 Score = 67 Quality = 46.853 HITS = 11 Nis. = 35 INDELS = 3 EXPECTED NO. 0.71E+01 

* 	•* 	* 	** 	. 	 * 	.. 	 * 	* 
96 	LLGAGELALTMRSK KLPINVTTGEEQQVSLESVDVYFQ DVF GTMWC 	141 

1 	LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXC 49 

>F1;UZADP2 	Terminal protein precursor - Adenovirus 2 (fragment) 
No. 5.39 Score = 67 Quality = 60.360 HITS = 11 Nis. = 29 INDELS = 4 EXPECTED NO. 0.71E+01 

** 	* 
580 	VQE ILRQAAVNDTEIDSVELSFRFKLTGPVVFTQRR QIQ El 	620 
4 	VXEJILXXXX KJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGI 	46 

>P1;VCLJH3 env polyprotein precursor - AIDS virus HTLV-III (human T-ceLl leukemia virus, BH 
No. 5.40 Score = 67 	Quality = 39.181 HITS = 12 Nis. = 37 INDELS = 6 EXPECTED NO. 0.71E+01 

555 	LLRAIE AQQHLLQLTVWG IKQLQARILA 	VERYLKDQQLL GIWGCSG KLI 603 
1 	LXLVXEJILXXXXKJKXXXJIXXXXXXXXJJJIVXXXXXJQIXJGIXXCXXJRII 55 
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IMPLEMENTATION OF INEXACT STRING MATCHING ALGORITHMS ON THE I. C. L. DAP 

A. Lyall, C. Hill*, J.F. Collins and A.F.W. Coulson 

Department of Molecular Biology and Department of Computer Science*, 
University of Edinburgh, 

Edinburgh, EH9 3JR 
Scotland, U.K. 

Searches for similarities amongst biosequences commonly 
make use of the Needleman-Wunsch-Sellers algorithms which 
are known to produce optimal alignments. We describe 
implementations of the N-W-S algorithms for the I. C. L. 
DAP and show that the multiprocessor and interconnection 
architecture of the machine allow inexact string-matching 
algorithms to be computed with high efficiency. 

INTRODUCTION 

• 	 Analysis and comparison of sequences of proteins and nucleic acids is an important 
problem for molecular biologists (Sankoff and Kruskal, 1983). While many routine 
analyses can be done on small workstations or main frame computers, there is a 
growing need for analytical tools which can handle queries with respect to entire 
collections of sequence data. 	The databases are increasing rapidly in size, 
though they are small by datapase standards - Ca. 650,000 amino-acid residues in 
protein sequences, ca. 4 x 100  bases in the nucleic acid collections. 

One key feature of both these biological polymers is that they are linear, and 
directed (i.e., two sequences can only be compared in one orientation). An early 
report of the application of the I.C.L. 64*64 distributed array processor (DAP) 
confirmed that multiprocessor array systems showed promise for these analyses, and 
the relatively high speed of 1-bit logical operations (compared to integer or real 
operations) means that the most powerful features of the DAP can be harnessed for 
these applications (Collins and Coulson, 1984). 

This paper reports on the implementation of inexact string-matching algorithms on 
the DAP. 	These algorithms have been summarised by Sellers (1980), and implement- 
ations of some of them are found in most packages used for sequence analysis in 
molecular biology. 

We consider three main variations of the inexact string-matching problem: 
To find the alignment of two sequences such that the number 
of changes needed to interconvert one to the other is minimal, 
and to find this 'distance' which, if a simple metric scoring 
all changes (mismatches, insertions or deletions) with the 
same weight is used (the Levenshtein metric), can be considered 
the 'evolutionary distance' between them. 	Other metrics can be used, 
provided that the triangle inequality holds. 
To find the best location of one test string within a (potentially 
much longer) string. 	This problem resembles the first, but there 
is no penalty attached to unpaired characters in the main string 
overhanging the test sequence. 
To find those regions in the test string which show the greatest 
similarity to regions in the main string. 	This problem is of 
immense importance to the understanding and detection of features 
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shared by proteins or nucleic acids with biological properties in 

common. 

PROBLEM 1 

The algorithm for finding the alignment of two sequences A and B which reflects 
their 'evolutionary distance' can be stated: 
Consider two strings A and B, of lengths in and n respectively: 
There is a distance matrix, d(rn,n), which can be completed such that each cell 
(i,j) contains the minimum number of changes to convert the substring A(I-i) into 

the substring B(l-j). 	The cell (m,n) therefore will contain the minimum 

'evolutionary distance' between the two strings. 	The value entered into (i,j) is 

mm 	[ d(i-1,j-l) if A(i) matches B(j) 

[ 
d(1-1,j-1) + mismatch penalty 

[ 
d(i-1,j) 	+ insertion penalty 

[ 
d(i,j-l) 	+ insertion penalty 

The aligment can be reconstructed by retracing legitimate steps back from (m,n) to 

(0,0). 	(A dummy first row and column is normally added to cope with penalties 

associated with terminal overhanging regions.) 	We confine ourselves to the use 
of the Levenshtein metric in the following discussion, for simplicity.. 

A B C A C B A C A 
0123456789 

A 10\12 3 4 5 6 7 8 
C2111 234567  
B32'1 ~ 233456 
A 4 3 2 	2 3 4 3 4 5 
B 5 4 3 3 *t 3 3 4 4 5 
C65434 \3 \ 

4445 
B 7 6 5 4 4 43- 4 5 5 
C 8 7 6 5 5 4 4 

4\4 
 5 

A 9 8 7 6 5 5 5 4 5 4 

Table 1. 	Distance Matrix, showing path of 
possible optimal. alignments. 

Three implementations of this algorithm on the DAP have been investigated. 

Mapping I. 

As the information needed to calculate d(i,j) includes d(i-1,j-l), d(i-],j) and 
d(i,j-l), it is possible to calculate the values of all elements along the minor 
diagonal simultaneously, up to the number of processors available (4096 for the 
64*64 DAP). 	It is not necessary to record all the values of d calculated, other 
than those needed to calculate each set of diagonal elements: however, to enable 
the alignment to be found without recalculating permissible steps in a traceback 
procedure, the logical states representing each legitimate step can be stored in 
sufficient numbers to recover the history of paths that lie within 275 steps of 

the main diagonal. 	This has proved perfectly adequate for all alignments tested, 
which, while they may.contain many insertions and deletions, stray from the main 
diagonal by only the difference at any step between the number of horizontal and 

vertical steps taken. 	This tends to be a much smaller number than the number of 

horizontal or vertical steps themselves. 

The alignment of two 4096 long strings can be accomplished in about 7 seconds DAP 
time: we have no meaningful comparison for speed-up available as problems of this 
scale are beyond the scope of most serial implementations of this algorithm. 

There are three comments to be made: first, the performance of the program is 
basically 0(m-i-n), as that represents the number of diagonals whose values must be 
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calculated: second, the performance is data-independent: and, third, the maximum 
degree of parallelism involved is the lesser of m or n, provided it does not 
exceed 4096, and the average parallelism is mn/(m+n), or, at best, half the 
maximum number of processors available. 	These limitations led to the 
consideration of other mappings of this problem onto the DAP. 

Mapping II. 

The second method studied was to assign the d matrix row by row. 	This is 
convenient because a comparison can be carried out with a single character from 
the test sequence broadcast to all processors simultaneously. 	The first stage is 
to set d(i,j) to the lowest value given by either a vertical step (including the 
penalty for an insertion) or by a permissible diagonal step (corresponding to 
either a match or a mismatch), using the correct values for the (i-l)st row 
already calculated. 	The values of d in this row will be correct unless a 
horizontal step can lead to an improved value. 	These corrections are made by 
manipulating a set of logical masks in the following manner: 

1) 	Identify all places where a horizontal step can improve the current 
score by testing whether d(i,j)>d(i,j-l) + insertion penalty: 
Identify all places where the current value will need correction if its 
lower neighbour's value is improved: 
Use a recursive doubling process to extend upwards all positions marked 
in test i) through any contiguous regions marked in test ii). A maximum 
of 12 stages can propagate the logical mask through 4096 positions. 
Use the mask to allow the correction of the current scores by one penalty. 

As the values calculated for the previous row are already consistent, the errors 
in values set by the vertical or diagonal move cannot exceed the single penalty, 
and the new row is now correctly set. 	The history of the permitted path steps 
are stored in logical form under each processor, which restricts the length of the 
test sequence that may be used. 	On the other hand, the performance is 0(n), the 
length of the test sequence, which is a considerable improvement. 
In unbalanced problems, this mapping is clearly advantageous to Mapping I. 	On 
the other hand, it is still insensitive to the data involved. 	It is also clear 
that much of the computation is assigning values to d in positions that cannot 
possibly lie on the best path, so that the improvement in parallelism is not all 
translated into improved performance characteristics. 

Mapping III. 

A further mapping was investigated: by calculating the values of the d matrix in 
parallel along the main diagonal. 	This is conveniently done by matching all 
characters in the two strings, and then setting cell (i,i) to the sum of the num- 
ber of mismatches in processors 1 to (i). 	This gives the correct values only if 
no insertion or deletion steps occur in the optimal pathway. 	However, if m>n, 
the value of d(n,n) + (m-n), gives an estimate for the current path which limits 
the diagonals in d which need to be examined to check whether a better path can be 
found. 	A path which enters a diagonal j from the main diagonal must have a mini- 
mum distance of 2j, even if all characters on this diagonal match. 	By setting 
additional diagonals as described, and then improving the values in adjacent 
diagonals where a vertical or horizontal step is able to connect better aligned 
regions, the value of the best alignment can be progressively refined, until it 
reaches a value better than the minimum value that can be reached by examining 
diagonals even further from the main diagonal. 	At this point, the algorithm 
terminates with the best value forthe alignment. 
Values have only been computed for d in regions that are potentially on the opti-
mum alignment; in genera-I, the performance is complex. However, the program is 
sensitive to the data; in the best case of a perfect matching pair of sequences, 
the algorithm terminates after the first cycle of execution (i.e. 0(1)). This 
mapping may be useful for screening for close similarities between two sequences. 
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PROBLEM 2. 

The location of the region in which a test sequence may be aligned within a larger 

sequence differs in two ways from Problem 1: 
there is no penalty attached to regions of the larger sequence which 

overhang the test sequence; and 
all locations that produce the locally best alignments should be 

recorded, even if they are not all of equal merit. 
In practice, this problem is posed when the longer sequence is not confined to a 
single sequence, of length equal or less than the number of processors available, 
but where it takes the form of all the collected sequences in the database. 	The 

entire set of protein sequences (650,000 characters) can be loaded and treated as 
a single object for this alignment problem. 	The best alignments are therefore of 
considerable biological significance, since they are produced from an exhaustive 

searching process. 
ABC AC B A CA 

0000 ' 000000 
A1"Q1 iO 11010 
C 2 1. 1 1 1"0 1 1 0 1 
B 3 2"1 2 2 1"9—i 1 1 
C 4 3 2"1 2 2 1"1"1 2 

Table 2. Distance Matrix, showing 2 families of optimal 
alignments arising at different locations. 

For this problem, Mapping II has obvious advantages. 	The entire first row of the 

distance matrix is set to 0 (Table 2), and row-by-row processing continues till on 
the last cycle, the values represent the scores of all the legitimate paths that 
can exit on the final row. 	The number of paths that have to be traced back is 
first reduced by using minima or plateau detecting tests; by collecting and 
comparing the start points, paths can be further restricted to a single one from 

each start point. 	The selected set of paths are then traced back through the 
histories that have been set on the forward pass, and all logical values not 
associated with a desired path are pruned out. 	In addition, all horizontal runs 
are truncated to a single bit; this allows all paths to be represented by the 
same number of bits, which can be packed'inside the DAP into larger objects, each 
of which on return to the host level computer, can be used to drive a printer 
output routine to produce, in their correct alignment, a pair of characters from 
either sequence, or one character and a gap on the alternate sequence. 	This 

compact method of reporting the best paths (additionally sorted in the DAP for 
best scores) has been a significant improvement over any serial routine available 

to us. 	This problem also benefits from the fact that, in making the corrections 
for possible horizontal steps, the recursion used to generate the mask used can 
always be stopped after log2 (i) stages on the ith row, and is thus shorter than 
this part of the program for Mapping II., Problem I. 

PROBLEM 3. 

The third problem is significantly different, but we can apply the previous 
lessons to show that Mapping II, row-by-row processing, is the obvious choice. 
However, we are now producing a similarity matrix, and the regions of interest can 
start and terminate anywhere inside it. 	The scoring credits matches with a 
positive score, and all errors in alignment with a negative penalty; cells whose 
value falls below zero are reset to zero (see Table 3). 	This problem assumes 

such a size when it is desired to use the database as one of the strings, that 
storage of path histories has to be abandoned. 	Instead, a history of the 
starting positions, the maximum score reached, the location of the maximum score 
and the current score are passed forward at each cycle. If two alignments could 
give the same score at one location, then the history of the aligment with the 
better maximum score is kept. 
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A B C A C B A C A 
0000000000 

A 0 1 0 0 ].\0 0 1 0 1 
C 0 0 0 1 0 2\1 0 2 1 

A 0 1,0 0 
B001001321 

1 0 2" 
1 

3 2 
BOO 21 00 13 32 
C 0 0 1'3 2 	1 0 2"4 3 
A 0 1 0 24 3 2 1 3\5 
C 0 0 0 1 3"54324 
A0 101222313 

Table 3. 	Similarity Matrix, showing regions 
of greatest similarity detected. 

It is necessary to report intermediate re -5ults to temporary storage, for those 
paths which have improved their maximum score. 	This store can hold 4096 results 
and, should additional results be acquired, the class of results with the least 
score is overwritten. 	Typically, the best alignments of regions in a test string 
of 100 characters can be recovered from the 650,000 protein database in Ca. 70 DAP 

.-secs. and often turn out to be a relatively small number above the initial 
threshold value of interest. 	This has considerable potential in the field of 
pattern detection and characterisation for both proteins and nucleic acids. 
Character matching can also be extended to degenerate matching schemes. 

DISCUSSION 

The specific features of proteins and nucleic acids which made sequence analysis 
so fascinating, are that these polymers can be represented by one-dimensional 
strings of characters which carry the information, if correctly interpreted, which 
determines theirchemical and ultimately their biological properties. 	Whatever 
system of analysis is used in the future, it is clear that a multi-processor 
exhibiting one-dimensional connectivity has considerable advantages over single- 
processor systems, as we have shown in the implementation of the inexact string-
matching algorithms on the DAP. 

While sequence analysis algorithms are all likely to have sufficient inherent 
parallelism to benefit from a multi-processor such as the DAP, programming to 
exploit that parallelism should include a variety of implementations, since, as we 
show here, the run-time characteristics can vary widely. For each problem, choice 
of the best implementation will depend on the data to be processed in the manner 
we have demonstrated. 	Each mapping has specific advantages under certain 
conditions. 
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1. INTRODUCTION 

Molecular biology has been revolutionised by the 
development of fast sequencing techniques for nucleic 
acids. The rate of acquisition of protein sequence data has 
correspondingly accelerated, and molecular biological re-
search now depends heavily on gene cloning, sequencing 
and the translation of open reading frames (which 
code for possible proteins using the triplet genetic code). 
This has led to the urgent need for adequate comparative 
sequence analysis, to promote the efficient use of other 
research resources. 

Proteins and nucleic acids (the genetic material) are 
linear polymers whose sequences may be represented by 
character strings, with a 20-letter alphabet for proteins 
(denoting the individual amino-acid residues). and a 4-
letter alphabet for nucleic acids (denoting the individual 
bases in the DNA or RNA polymers). The international 
database collections of sequences are prime resources 
for molecular biological research. These databases are 
currently small; the protein database has c. 1000000 

characters of sequence. and the genetic database has 
c. 10000000 bases of sequence information, but already 
the task of searching them has led to the development of 
a number of approximate methods for making compari-
sons. However, the application of the exhaustive inexact 
string-matching algorithms, reviewed by Sellers.' has 
been beyond the capacity of many workstations and 
mainframe computers. The situation will deteriorate 
further as the databases are growing exponentially, 
doubling in size every two years or less. 

We report here our experience using the I.C.L. 64 x 64 
Distributed Array Processor (DAP) 2  for exhaustive 
database searching. DAP programs for inexact string-
matching have been developed by Lyall ci al:' of these 
the most valuable, especially for the case of novel 
proteins, has implemented the 'Best Local Similarity' 
algorithm of Smith and Waterman.' 

It is common for the sequence of part or the whole of 
a protein to be determined before its function is known. 
Prediction of function from the analysis of secondary 
(i.e. local folding along the chain) and tertiary (i.e. 
assembly of folded regions into a stable structure) 
structures cannot yet be achieved, and the most profitable 
approach has been to find analogies with or within the 
sequences of known proteins. 3  

Principal author, to whorii correspondence should he addressed. 

As the databases grow larger, the number and the 
scores of alignments with unrelated protein subsequences 
increase. It is therefore an important issue to determine 
the significance of the best alignments found, and we 
A escribe here a method which is applicable precisely 
because the whole database has been searched. 

2. ALGORITHM AND DAP 
IMPLEMENTATION 

The Best Local Similarity' algorithm' is related to other 
algorithms for sequence comparison and alignment (see 
Ref. I), and uses dynamic programming techniques to 
track the best paths through a match matrix. Each path 
represents an alignment of the whole or part of the two 
sequences being compared. At each point in the matrix, 
the best path is determined by the best cumulative score 
of paths already running, such that 
Score(i.j) = MAX(Score(i— 1,1—  I) + Sini(aa 1 ,aa). 

Score(i— I ,j) +gap peiialiv, 
Score(i,j— I) +gap penalty) 

where Sim(aa 1 ,aa ) is the similarity score for amino-acids 
aa1  in one sequence and aa1  in the other. 

The cumulative scoring is justified in the Dayhoff 6  
analysis by the use of a log (odds) table, the odds being 
those that a particular pair of residues is found in a 
significant alignment rather than in a random selection 
of two residues from the whole population of residues. 
The figures were derived by Dayhoff from the 71 families 
of aligned proteins then available. She also described 
how to produce a series of log (odds) tables corresponding 
to different evolutionary spans. referred to as the PAM 
tables (I PAM corresponds to the appearance of I 
substituted amino-acid residue in a pair of related 
proteins, per 100 residues aligned). The gap penalty is set 
to limit the proportion of gaps in the alignments reported 
to a (subjectively) appropriate level. and to maintain the 
triangle inequality. Paths are allowed to start at any 
location inside the match matrix from zero, and are 
tracked until the score declines to 0 or less, or competing 
paths block further path extension. Cells scoring less 
than 0 are reset to 0 before the computation is extended. 
The best local alignments are found from the maximum 
path scores, and tracked back through the matrix to their 
origin. 

The DAP host sets up a 2Mbyte DAP core image. and 
the results are returned as data blocks to the host alter 
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the. DAP program has terminated. As the sequence 
alignments are of unknown size at the outset. the 
program was designed to store the essential details of all 
runs in a fixed format within the DAP. Implementation 
with the complete match matrix in main memory is 
impossible. and for the purposes of coding the algorithm 
m4 the DAP. store limitations require that all results be 
acquired in a single forward pass from data correspond-
ing to a small part of the match matrix, rather than from 
a double pass through the whole match matrix. 

Two rows of the match matrix are used. each 4096 
elements long (the DAP long vector length), together 
with two sets of path data, representing the previous 
and the current row and path data., The current row 
is updated: assignments of the score are carried out in 
parallel by matrix operations for score extensions with 
diagonal or vertical steps in the paths. The scoring for 
paths best extended horizontally can then be determined. 
using recursive doubling combined with logical masks to 
detect whether further improvements have been made at 
each cycle. A maximum of 12 iterations completely 
exhausts all the horizontal path extensions in each 
segment of the comparison matrix. Paths with an 
improved maximum score which exceeds a threshold 
value are reported into the results registers. The results 
are processed: 

by overwriting any existing inferior path details 
starting from the same coordinates; 

or by writing the result into a free location: 
or. if there are no free locations. by 
(a) discarding all path details iroiiithc lowest 

class currently stored. marking these locations 
as available and incrementing the threshold to 
the score of the discarded class: 

(h) if the path score to be stored exceeds the new 
threshold, returning to (ii). 

The current paths and details are then written into the 
'previous' row and details registers. As the database is 
considered in 4096-long segments, details of paths leaving 
at the end of each row are stored, to be made available 
at the beginning of each row in the next segment of 
the database. Paths can therefore be tracked wherever 
they max' occur within the match matrix for the whole 
comparison process. 

An advantage of this strategy is that the results 
accumulated are guaranteed to be the best available by 
this algorithm, and can be sorted within the DAP; a key 
is returned to allow host generation of the alignments in 
order of diminishing score, under user control. In essence, 
any run can be reconstructed if the coordinates of the 
start and stop positions are known. However, serial 
alignment programs calculate possible path states at 
many locations never included in any path; in the DAP, 
therefore, the maximum deviations above and below a 
diagonal path from the start of each path being traced 
have been added to the set of path details. This provides 
the host with additional information defining the 
narrowest band within which each alignment must lie. In 
the cases of highly related sequences with few gaps, there 
is a major saving in time in generating the alignments. 

The DAP search of version II of the NBRF (National 
Biomedical Research Foundation) protein database, 
containing 1 066 790 amino-acids, takes c. 1.8 DAP 
second per residue in the query sequence.  

3. SIGNIFICANCE 

The assessment of the significance of total or part 
alignments between genes or proteins has usually bc 
approached by asking whether the query sequer 
produces significantly better alignments than sequem 
derived by randomly reordering the query sequenc 
Two points arise here; the time to search a database 
significant even on the DAP, and the investment of mc 
CPU time to discover the statistical behaviour of rand( 
sequences each time is not attractive. Secondly. I 

database is not a collection of sets of randomly order 
characters: in general, proteins share characteris 
structure features in the natural folded state (for instan 
the alpha-helix, beta sheet and various types of turn) a 
these are reflected in short-range ordering within 
protein sequence. Therefore, real proteins are likely 
contain regions of better local similarity with each ot 
than with random rearrangements of the same residu 

The DAP program returns data for the 4096 bi 
alignments, which form in most searches the upper e 
of a much larger distribution of scores. The database 
highly diverse, and no single family of related proteins 
represented much more than 100 times. Hence 
majority of the best results will be of alignments betwe 
regions of the query sequence and proteins in 
database which have no close connection: in ot 
words, these are alignments representing the noise-le' 
in comparisons with a large collection of unrelat 
proteins. If we can determine the underlying shape oft] 
distribution, we can predict the frequency of oceurrer 
of an alignment of any score arising from unrelat 
proteins, and so establish the likelihood that a 
particular alignment belongs to this class or not. 

We can regard the alignments reported by the 'B 
Local Homology' algorithm as a series of aligned pa 
which may be scored positively or negatively, a 
unmatched residues in either strand, where gaps ha 
been introduced (under penalty). Each reported ali 
ment starts with a positive score, and terminates wh 
the cumulative score reaches a maximum. 

The analysis of significance does not require knowled 
of the complete distribution of scores. All that is need 
is a model for the expected value of the ratio of 
number of alignments scoring (n+ 1), to the number 
alignments scoring (n). The most important route 
which an alignment could improve from a score of ii 
n+ I (or beyond) is from the position at which 
current maximum score it was reached. The probahi 
that, within a region of the match matrix through 
the path can be extended with net loss of x in score, th 
is a matching region from which a net gain of(x+ I) c 
subsequently be obtained, must be independent or new 
independent of the current maximum score, once this h 
exceeded a low value. This implies that the distributi 
of path scores will decline exponentially, and this 
indeed found experimentally to be the case. 

The lower-scoring 98% of the recorded alignmei 
were therefore analysed by fitting the best line to 
log(no. of alignments) r'. score with excellent resul 
providing parameters to estimate the expected frequen 
of any scoring alignment, as well as standard deviation I 
the distribution about the line. The high-scoring outlyi 
alignments can be tested for their significance by seei 
how well they conform to this distribution; especial 

THE COMPUTER JOURNAL. VOL. 30, NO. 5. 1987 



A. F. V. COULSON. J. F. COLLINS AND A. LYALL 

how many standard deviations they are above the 
expected frequency. thus expressing the likelihood of any 
alignment occurring with unrelated proteins. 

However, it must be emphasised that any alignment can 
potentially provide the molecular biologist with useful 
information, and between. 50 and 200 are normally 
collected for display. 

4. PATTERN DETECTION AND 
SEARCHING 

Additional processing of the results can provide further 
useful displays: for example. when a query sequence is 
related to a number of sequences in the database, the 
alignments can be accumulated, or learnt'. so that it is 
possible to display a large number of alignments with 
respect to the query sequence. This is a sensitive method 
of finding conserved residues of short-sequence features, 
which are difficult to detect in individual alignments. The 
learning process can be guided by different criteria, to 
allow the disclosure of patterns relating different types of 
sequence within the same set of alignments. Each search 
for patterns can then be reinforced by re-searching the 
database with the pattern detected. to establish and 
refine its ability to discriminate sequences fitting the. 
pattern from the bulk of unrelated proteins. 

The ability to detect patterns can be extended by using 
a more general method of describing a pattern. In 
principle, a pattern search could be carried out with 
specific values for all matching possibilities at each 
position. However, we have provided simple general 
extensions which have been of considerable value, 
defining four types of character: 

normal characters, matched using the similarity 
table values, and attracting a gap penalty if unmatched in 
an alignment; 

residues which attract scores from the similarity 
table used. but which must be matched with a positive 
score in any reported alignment: 

residues which may be matched with any residue, 
with zero score, but which cannot be unpaired without 
attracting the gap penalty: and 

residues which may match any character without 
preference, with zero score, and which may be omitted 
without penalty. 

This has provided a flexible and versatile pattern-
detection and searching tool. A specific advantage that 
distinguishes this mode of pattern detection from the 
regular expression' pattern-searching programs is that, 

in addition to exact fits to the specified pattern, other 
near-fits are scored and can be reported, including those 
with a wider range of character substitution or spacing 
than envisaged in the specification of the pattern. That is, 
it is possible to discover unexpected ways in which the 
pattern is variable, without explicit definition of these 
alternatives. 

Such searches are providing interesting results with 
complex polyproteins deduced from viral gene sequences, 
where the ability to detect conserved features may help 
define regions of importance in the normal function of 
the polyprotein in the viral lifecycle, helping to define 
these features for further research. 

For example. a pattern for a zinc-ion binding site has 
been proposed' to be CX24 CX215 (C or H)X.. 4 (C or H), 
where C stands for the amino-acid cysteine, H for the  

amino-acid histidine. and X stands for an unspec 
amino-acid. The database can be searched with 
pattern in c. 60 DAP seconds and the best matd 
regions readily listed to verify this hypothesis. 

5. EXAMPLES 

5.1 Cystic-fibrosis associated antigen 

A gene cloned by Dorin et al.' coded for a protein fo 
at elevated levels in the serum of cystic fibrosis pati 
and carriers. The gene was translated, into the pro 
sequence. and the database search found that there v 

significant homologies with calcium-binding prote 
using the 250 PAM similarity table. The search 
repeated with a variety of PAM tables. and the maxin 
significance was found with the 80 PAM table. The se 
results is shown in Fig. I. The best alignment (Fig. 2) 
an expected frequency of 1.7 x 10' (44 S.D.S at: 
expectation), and clearly indicated that the alignrr 
belonged to a different class from those forming the l 
of the reported results, and which arise from biologic 
unrelated proteins. 

Twenty out of the next 21 alignments were 
proteins all known to bind calcium ions. and this 
would have indicated the same property in the c 
fibrosis antigen. even in the absence of the prot 
giving very high-scoring alignments. 

5.2 Vitcllogenins in Drosophila melanogaster 

Garabedian ci al." have shown that the sequence: 
three storage proteins (YP I. YP 2 and YP 3) foum 
the eggs of the fruit fly share a long region of hi1 
conserved sequence. A database search revealed that 

1000 
800,[ 

0 

Z 

Score of alignment 

Figure 1. Distribution of the best alignment scores reporte 
the DAP protein database searching program, using the c 
fibrosis-associated antigen sequence, and the similarity I 

calculated for 80 PAMs. 6  The line of best fit to the lower 
of the results is shown. The highest-scoring alignment wou, 
expected at a frequency of 1.7 x 10_b,  44 s.o.s from 
expected value. 
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*-*.* *. . . * • * - * * 	*. . 	• • ** ** • ** 	.- 	* ** * 	**-*-* • *-* * • **-*. . ** 

2 1  SELETAMETLINVFI-IAHSGKEGDKYK LSKKELKELLQTELSGFLDAQKDADAVDKVMKELDEDGDGEVDFQEYVVLV 78 
3 TELEKALNSIIDVYHKYSLIKGN FHAVYRDDLKKLLETECPQYI RKKGAD V W FKELDINTDGAVNFQEFLILV 75 

Figure 2. Alignment of the amino-acid sequences of the cystic fibrosis antigen (lower sequence) and the bovine s-100a alpha protein chain 
(upper sequence), in the highest-scoring alignment reported by the Best Local Homology' algorithm. The one-letter notation for 

amino-acids is that recommended b y  the IUPAC-IUB Commission on Biochemical Nomenclature (the Biochemical Journal, 113. 1 

(1969). Numbers at the ends of the sequence segments indicate the position within the entire protein chain of the aligned residues. 
Identical pairs of residues are starred; pairs scoring positively but non-identical are dotted; all others attract penalties. 

•*•*** ** ** • * 	* • ******** 	*• * * .** *** *** 

146; VHVIGHSLGSHAAGEAGRR I NC TIERITGLDPAEPCFQCTPE LVRLDPSDAKFVDVIHTDAAP 208 
239; IHLIGQGISAHVAGAAGNKYTAQTGHKLRRITGLDPAKV LSKRPQILGGLSRGDADFVDAIHT ST 	303 

.* 	• • 	* .* •*** . 	.** .. * 	.•. 	.••• *•.*.* *• * *. ** 
209 IIPNLGFGMSQTVGHLDFFPNG GKQMPGCQKNI LSQIVD I DGIWEGT RDF VACNHLRSYK 268 
30.4 F A MGTPI R CGDVDLYPNGPSTGVPGSENVIEAVARATRYFAESVRPGSERNFPAVPANSLKQYK 367 

Figure 3. The best scoring alignment found between the vitellogenin YP3 from Drosophila melanogaster (lower sequence), and pi1 

lipase (upper sequence). Expected frequency for an alignment with this score: I.17x 10-7 ; 53 S.D.S above expectation. 

conserved region otherwise aligned best with part of a 
sequence from a pig digestive lipase, and that this 
similarity was highly significant (expected frequency 
lJ7.x l-O - : 5-S.D.S above the predicted expectation) 
(Fig. 3). However, one residue thought to play a role in 
the catalytic activity of the lipase was not matched in the 
alignment (Fig. 4). The vitellogenins, in fact, do not show 
lipase activity. It was postulated that the similarity 
found is related to the ability of these proteins to bind 
lipids or lipid-like materials. Subsequent tests have shown 
that the vitellogenins strongly bind a natural lipid-like 
derivative of the insect hormone ecdysone. which is 
involved in the control of embryonic development. The 
embryo breaks down vitellogenin at the stage when the 
hormone is known to be released, and it now appears 
that these proteins may have an important role in 
regulating embryonic development. 

* ** ** • * 

VHVIGHSLGSHAAGEAGRR I 
IHLIGQG ISAHVAGA.AGNKYT 

Figure 4. Alignment of vitellogenin YP 3 (lower sequence) and 
pig lipase (upper sequence). in the region of the active serine (S) 
residue in lipase. The serine is aligned against a glycine (G) 
residue, which would not be expected to substitute functionally 

for the serine. 

6. DISCUSSION 

The nature of protein and nucleic acid sequences makes 
them immediately suitable for processing by network-
connected arrays of processors. The efficiency of the 
DAP 1-bit processors is particularly high, since much of 
the arithmetic can use 1- to 2-byte variables, and there is 
a large component of logical operations. Data movements 
are predominantly long vector shifts, which are slightly 
more complex than simple vector shifts. The published 
account of sequence comparison on a Cray-I machine"' 

shows that the DAP can match this more powerful 
machine (and at a fraction of the cost). 

As the database grows, the biologist is as interested in 
increasing the variety of known sequences as in providing 
new examples of known protein types. lncreasihgly, 
more and more of the database for proteins is likely to be 
hypothetical proteins, inferred from gene sequences. 
whose physical and chemical properties and biological 
role have not been observed. 

For this reason, results which have strong statistical 
significance are only part of the value the biologist can 
draw from these searches. If the query sequence is related. 
distantly. to a database sequence which is unique. that 
fact may be enough to generate a biological hypothesis 
which can then be tested further. The value to the 
biologist of having a complete and exhaustive search 
carried out is much more, therefore. than finding the 
single best alignment; valuable information may be 
gained from the presence of groups of related alignments 
and even from a single alignment of low statistical 
significance. This fact differentiates the biological data-
base search problem from more conventional database 
searching problems. 

It will be important to maintain some facility which 
can fulfil this search role in the near future, while the 
sizes and rate of increase in the databases can still be 
handled. When the promised improvements in sequencing 
technology are implemented, and gene sequences can be 
accumulated at 1000000 bases per day, a new crisis will 
have to be faced if this information is going to be of a 
significant use to the biological community. 
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THE GREATER STRENGTH OF ARGININE:CARBOXYLATE OVER LYSINE CARBOXYLATE ION PAIRS 

IMPLICATIONS FOR THE -DESIGN OF NOVEL ENZYMES AND DRUGS 
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The rational design of enzyme catalysts for chiral chemistry and of drugs 
which bind to proteins would be facilitated if rules for the recognition of one 
partner by the other could be formulated. This communication suggests and tests 
one generalization: arginine forms a tighter ion pair with a carboxylate group 
than does lysine and is always used for ion-pairs which are not broken during 
turnover in naturally-occurring enzymes. 	c 1987 Academic Pr.... Inc. 

In constructing tailor-made hydroxyacid dehydrogenases this laboratory (1) 

starts with a catalytic pathway carried by a large and thermostable protein 

framework and designs onto that a new substrate-binding site. In the preliminary 

design work we compared the energy of bonds between a substrate analogue 

(oxamate : H2N-CO-000 ) and two versions of the B. stearothermophilus lactate 

dehydrogenase; one with arginine and the other with lysine at the carboxylate 

binding-position 171. The ion pair with arginine was 20 kJ mol '  stronger than 

the corresponding lysine-carboxylate ion pair (2). The reasons we suggested for 

the stronger bond with arginine (the extra hydrogen bond from the bifurcated 

interaction and a greater hydration potential ) were quite genral and not 

specific to the particular protein or substrate-analogue. We now examine an 

hypothesis extending from that general argument - that ion pairs between small 

ligand-carboxylates in Nature always involve arginine rather than lysine. We do 

not examine the corollary - that a rationally designed drug aimed at a protein-

carboxylate should contain a guanidinimmm or. similar bifurcated base. 

The Brookhaven Protein Database (crystal structures) and the National 

Biomedical Research Foundation Database (protein sequences) were searched for 

- 	 0006-291X187 $1.50 
Copwight © 1987 by Academic Press. Inc. 
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proteins whose three dimensional structures included a small ligand with a 

carboxYlate group. The six proteins found are shown in the Table. The bond 

between the protein and carboxylate is always with arginine when the protein 

arboxylate bond is not transformed during the enzyme reaction. In contrast, 

when the ligand carboxylate interaction must be altered during the enzyme 

reaction, the bond is never with arginine. 

The distinction can be well illustrated with citrate synthase. Citrate 

contains three carboxylates. Two of these remain attached to the protein during 

catalysis and make bonds with arginines. The third, which is derived from the 

thio-ester in acetyl-COA is bound to the enzyme by a catalytic histidine. 

The empirical observation can be rationalized. In a simple-binding 

reaction, where bond strength is presumably a selection factor, arginine 

carboxylate ion pairs are evolved. Where a bond must be made and broken during 

the catalytic reaction, a weaker bond (never arginine) will give lower 

activation energies and thus higher catalytic rates. Indirect support for the 

generalization is the observation (Table 1) that arginines which act as binding 

residues are always conserved in the sequences of other members of the protein 

family whose three dimensional structures are unknown. 

The generalization would be expected to hold well with small uganda: as 

the size of the ligand increases and the 20 kJ m011 advantage from one strong 

ion pair becomes small in comparison to the total binding energy it might break 

down (there are as yet no known exceptions). Both for this reason, and because 

there are many factors other than bond strength (regulation, folding, proteir 

processing etc) which might determine the nature of an ion pair, we have nol 

sought to extend this rule to protein-protein ion pairs. The choice of ai 

arginine to recognize the second carboxylate of malate (00CHC011CH 2  -coo ) 

when a lactate (ooc-HC0H-Q 3) dehydrogenaSe framework was successfull 

reconstructed as a new and regulated malate dehydrogenase (1), was planned wit 

a knowledge of the generalization. 
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TABLE 1- arginine:carboxylate ion pairs 

Enzyme 	 Residue 	 Conserved 	 References 
Sequences 

1,-lactate 	 Arg-171 	 10/10 	 (3) 

dehydroqenase 

Carboxypeptidase A 	 Arg-145 	 2/2 	 (4) 

Carboxypeptidase B 	 Arg-145 	 2/2 	 (5) 

Phosphoglycerate 	 Arg-59 	 1/1 	 (6.7) 

unatase 

Aspartate 	 Arq-292 	 9/9 	 (8) 

asiinotransferase 	 Arg-386 
(complex with 
2-oxoglutarate) 

Citrate 	 Arg-401 	 3/3 	 (9) 

synthase 	 Arg-421 
(complex with 
oxaloacetate) 

Amino acid sequences were obtained from the National Biomedical Research 
Foundation's Protein Identification Resource, release 12, or as otherwise 
referenced. Crystal structures were obtained from the Brookhaven Protein 
Database tapes held at the Synchrotron Radiation Source, Daresbury, U.K. 
Sequence alignments were performed using the dynamic programming algorithm (10) as 
implemented in (11). Other sequence amnnipulationS were performed using the 
University of Wisconsin Genetic Computing Group package (12). 
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The significance of protein sequence 
similarities 

/ 

J.F. Collins , A.F.W.Coulson and A.LyaI/ 

Abstract 

A-general method of assessing the significance of scored best 
local alignments, particularly suited to protein sequence com-
parisons, is described. The method establishes the parameters 
describing the distribution of the best results from any search 
program, provided that the set is sufficiently large and the ma-
jority of the alignments arise from unrelated sequences. The 
expected frequency of occurrence of any score can then be 
calculated, together with the number of standard deviations 
above expectation. These provide sensible measures of 
significance without additional search operations. However the 
biological significance of any alignment or set of alignments 
does not solely depend on the improbability of the alignment, 
but on all relevant factors known to the biologist. 

Introduction 

'the importance of detecting protein sequence similarities that 
C?Dnvey biological insight to the molecular biologist can hardly 
t exaggerated. The international databases are now substan-
t(al in size. The flow of sequence information has accelerated 
rpidly in the last few years and will accelerate again with the 
a!lvent of automatic sequencing devices. As many comparison 
niethods report a set of best results for similarity, it becomes 
ah important issue whether any particular alignment has signifi-
cance. We describe here a simple and powerful method of ana-
lsing these results which provides quantitative values for the 
significance of alignments in cases where large numbers of com-
parisons have been reported between a query sequence and some 
reference set of sequences. The method can be applied-whatever 
method is used to locate and score similar (sub)sequences. We 
generate the sets of best alignments for this study with an im-
plementation of the'Best Local Similarity' algorithm of Smith 
ajd Waterman (1981) on the I.C.L. 64 x 64 Distributed Ar-
ray Processor (DAP; Flanders et al.. 1978). as previously 
described (Coulson et al., 1987). 

The basis of the method is a description of the form of the 
frequency distribution of alignment scores between 'unrelated' 
proteins. It is not practicable to predict this form analytically. 
because of the variable length of alignments and the fact that 

Department of Molecular Biology. (Jnirersirv of Edinburgh. King's Buildings. 
Ma'%field Road, Edinburgh. EH9 3JR. UK 
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they may contain insertions or deletions. In addition, the forrr 
of the distribution may be different for each query sequence 
and scoring scheme (and database). The significance of an align 
ment is most simply expressed as the probability that a giver 
score would be reached in the comparison of the query sequence 
with a collection of unrelated proteins the size of the database 
being searched. 

We illustrate the method with examples found using pro. 
glucagon as a query sequence and a range of PAM table 
(Dayhoff et al., 1978). These tables are effective tools for the 
location of the alignments with the greatest probability of be-
ing significant-. - The tables can - be generated for different evolu-
tionary distances (the number of PAMs or accepted point 
mutations found in an alignment of 100 residues) by repeated-
ly applying the primitive matrix of change probabilities defin-
ed for I PAM, to an initial population of amino acids. While 
this model for evolutionary changes may not apply exactly tc 
any real case, the range from 20-250 PAMs provides a varie-
ty of sets of useful similarity scores. Other tables. e.g. based 
on physical or chemical parameters, can be used, provided they 
are expressed suitably for the local homology algorithm with 
a scale that provides a zero or negative expected score for ran-
dom alignments. 

It must be noted, however, that the significance of alignments 
lies in the information they convey to the biologist and not in 
their improbability. Alignments conveying information about 
probable features related to structure or function may be im-
portant, even though their scores are not outstanding and there 
is therefore a need to make available quite extensive lists of 
alignments for perusal and detailed analysis. 

Algorithm 

We are essentially trying to answer the question: What is the 
probability that a similarity as strong as that observed in some 
specific case will occur between unrelated proteins? Since in 
any large and non-specialized database, there is a wide variety 
of protein types. a single family of proteins can only provide 
a limited number of alignments. If the number of results con-
siderably exceeds the number of alignments possible from a 
set of related proteins, we can use the distribution of the bulk 
of the results to assess the significance of the high-scoring 
alignments, since the majority of the lower scoring alignments 
must be with proteins we would regard as unrelated. We want 
to predict the behaviour of the extreme high-scoring end of the 

@ IRL Press Limited. Oxford. England 
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distribution, using the observed upper end results, without in-

chiding results which may have arisen from related proteins. 

For the NBRF database, no family of proteins is represented 

much.more than 100 times, and we can assume that the lower 
97% of the reported 4096 results are alignments with unrelated 

proteins and can be used to derive the behaviour of the re-

mainder of the set. 

We demonstrate here that the upper end of the distribution, 

when only unrelated sequences are involved, should decay ex-

ponentially. Suppose'we have an alignment, represented by a 

path through the match matrix, which has reached a score S. The 

alignment could be improved if, from any point reached with 

penalties X, it is possible, by permissible moves to find a con-

tinuation which can raise the score by more than X. The greater 

the loss of score, X, the less likely a net improvement becomes; 

the probability of improving an alignment is therefore deter-

mined largely by the chance of an improvement starting relative-

ly close to the current end. This chance does not depend on 
the current value of S. If the probability of improvement is in-

dependent of S then the population of alignments scoring more 

than S will be a constant fraction of the number scoring S. 

That. is, we have described a process which predicts exponen-

tially declining populations of alignments as the score increases. 

This expectation has been validated experimentally: Figui 

I shows a typical example. To assess the significance of ti 

high-scoring alignments, we fit the best straight line to the lol 

of the numbers of observed alignments, against the score. Oi 

ly classes containing the lower 97% of the alignments, arisir 

from unrelated proteins, are used. The parameters obtain 

allow us to predict the expected frequency with which ar 

specific score class should be observed. A search of the databa 

with a query sequence derived by randomly shuffling a re 

protein sequence should generate a distribution of results whit:  

conforms throughout to the linear model. Figure 2 shows th 

this expectation is also borne out. 

The expected frequency is the expectation that an a1ignme 

with a specified score occurs by chance in comparisons wit 

a reference set of sequences as large as the database used, coi 

taming only unrelated sequences. This measure of significan 

is convenient and readily appreciated; it has the disadvanta 

that the expected frequency depends on the size of the databa 

used. The larger this is, the more comparisons are made wil 

unrelated proteins and the higher will be the scores of alignmen 

reached by a chance similarity. This problem could be ove 

come by normalizing' the results to a standard-sized dauba 

(e.g. 1 000 000 residues), but a sounder alternative is to e 

press the frequency of the score in terms of standard devi 

tions from the fitted straight line; as the fits of the experiment 
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Fig. I. Plot of the number 01 reported alignments achieving a given score 
(Iogarithinic-scale).against the score value, for a search of the proein database 
sith bovine prolucagon as the query sequence. using the 100 PAM sinufantv 
able. The straight line is fitted to the lowest 97% of the reported part of the 

distribution. The top 4 (J results represent unequivocally related sequences. 
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F. 2. As Figure I. except that the query sequence was randomly shuffle 
he fore the search was performed. The paranters of the fitted straight line art  
alntost identical to those in Figure I. 
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Significance of sequence similarities 

points to a straight line are good, the standard deviations (s.d.) 
are small. 

When the expected frequency falls below 1, the alignments 
merit attention, though it may not be possible to interpret them 
positively. We use a value of 0.01 to indicate alignments which 
need detailed examination. Many cases of significant alignments 
have- now been demonstrated, with expectations that are orders 
of magnitude <1, and up to 60 s.d.s. above expectation (e.g.. 

Robinson et al., 1987). 

100 

' 80 

I 60 

40 

20 

C.) 

"I 	 5 10 	 50 100 	500 1000 

Query Sequence Length 

Fig. 3. Plot of the score expected once against the query sequence length 

(logarithmic scale) for 21 typical searches, using real proteins as query sequences, 

and, searching the protein database with the 100 PAM similarity table. 

Implementation 

The alignment algorithms are particularly well-suited to parallel 
architecture computers (Lyall et al.. 1986) and details of the 
best local homology implementation on the I.C.L. DAP have 
been published (Coulson et al., 1987). The program can ex-
haustively compare a 'query' sequence with every member of 
a protein sequence database and find all the locally-similar 
subsequence pairs, taking account of the possibility of any in-
sertion/deletion at any position in either sequence. 

The DAP returns ordered details of the alignments with the 
highest scores. More than one alignment can be reported from 
each comparison between a pair of sequences. The number of 
locally best alignments is huge and the top 4096 represent the 
tip of this much larger distribution. The results include only 
complete sets of results at each score and all scoring classes 
reported can therefore be used in the subsequent analysis. 

We have made use of the similarity tables described by 
Dayhoff (1978), over the range 10-250 PAM's (accepted point 
mutations per 100 residues aligned). The indel penalty has been 
set to maintain the triangle inequality and to ensure that the pro-
portion of gaps introduced into 'good' alignments is not exces-
sive. The program requires about 1.8 s of DAP C.p.U. time per 
residue of the query sequence to complete a search of Release 
11 (1 066 790 amino acid residues) of the NBRF database 
(George et al., 1986). 

The score of the alignment expected once, in the search with 
the NBRF Version 11 database and the 100 PAM similarity 
scoring table varies in proportion to the logarithm of the query 
length (Figure 3). An indication of what scores are significant 
could be obtained from the length alone, using this relationship. 

20 PAM Table 	Bits = 19 	MismatChes. = 8 	Indels = 0 	Expected No.: 0.565402x10 5  

** 	.a..a*a 	* 	a.. 	* 	•* 	*a 

52 	P.KSQGTFTSDYSKYLDSP.RAQDE'VQWL 	78 

77 	RHAEGTFTSDVSSYLEGQAAKEF1AWL 	103 

120 PAM Table 	Bits = 42 	Mismatches = is 	Indels : 4 	Expected No. 	0.252531x10 8  

aa 	.a*..a 	a 	aa 	a 	* 	•a 	a 	 a 	* 	** 	* 	a 

48 	NED KRHSQGTFTSDySKyLDSp.AQDFvQwtMN'rK RNK NNIAKRBDEFER EAEGTFT 
	104 

72 	
132 

160 PAM Table 	Hits = 58 	Mismatches = 22 	Indels z 4 	Expected No.: 0.198303x10 11  

48 	NED KRHSQGTFTSDYSKYLDSRRAQDFVQWK RNK NNIAI(RKDEFER aAEGTrrSDVSSyLEcQAAKEFIAWL11(GR 
127 

72 	BDEFERHAEGTFTSDVSSYLEGOAAKEFIA 	GRGRRDFPEEIVEELRRRHSFSDDSLADFI NWLLQTK 
155 

250 PAM Table 	 =3 	Expected NO.=0.479972X10 a.  .Hits 
a:a 

48 	NEDKRHSQGTFTSDYSKYLDSRRAQDFVO'l'K RNK NNIAKRHDEFER HAEGTFTSDVSSYLEGQKEFIA'GR 
127 

73 	DEFERHAEGTFTSDVSSYLEGOAAKEFIAWLVKGRGRRDFPEEVNIVEELRRRFADGSFSDEMNYVLDSLATRDFINWLLQTK 
155 

Fig. 4. Alignments and expected frequencies reported for the first internal repeat of the bovine proglucagon sequence, using similarity tables from 20-250 PAMs 

indicates a matched pair of residues. 	
a pair with a positive score in the current table. A gap in the sequence indicates a postulated mdcl. Searches were ala 

performed at 40. 60. 80, 100. 140. 180 and 200 PAMs, with similar results to those shown. 
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Discussion 

We illustrate several features of this method with the protein 
proglucagon, without its signal peptide. This protein belongs 
to a large group of related proteins in the NBRF Protein 
database. The results of the DAP search show that the vast 
majority of the leading alignments were with proteins in the 
same family and that the internally repeated sequence segments 
gave additional alignments in the top category. The results with 
different PAM tables illustrate why the complexity of searching 
is often underestimated. The alignment between the gastro-
intestinal peptide from pig and the glucagon region in pro-
glucagon is reported virtually unchanged between 20 PAMs to 
250 PAMs. The expected frequency ('EF') of this alignment 
is least at 60 PAMs, at 2.6 x 10_6; by 250 PAMs the ex-
pected frequency has risen to 1.3, giving no indication of the 
importance of the homology indicated. A similar situation arises 
with secretin, another active peptide. The most significant result, 
also at 60 PAMs, had an expected frequency of 1. 1 x lO. 
This alignment is also reported from 40-200 PAMs (at 20 
PAMs it is truncated somewhat). Above 60 PAMs the expected 
frequency rises; by 160 PAMs it is 0. 18, by 200 PAMs 1.9. 
and by 250 PAMs it has risen so much that it is not reported 
among the top 50 alignments, which include many new align-
ments between proglucagon and probably unrelated proteins. 
Significant alignments do not all behave the same way; the align-
ment between proglucagon and the human vasoactive intestinal 
peptide is most significant at 140 PAMs, with an EF of 5 x 
l0_ 8 .  

Another phenomenon encountered with the Best Local Hom-
ology algorithm of Smith and Waterman is the sensitivity of 
paths to the scoring scheme vised. As the scoring sheme is 
changed, alignments may lengthen or shorten, and in extreme 
cases may fragment into distinct parts, with lower scores and 
less chance of being reported. This is seen in the behaviour 
of the first alignment between two repeated regions in pro-
glucagon; at low PAMs an alignment of 27 residues is found, 
with EF about 3 x 10-6 ; by 100 PAMs an alignment of 42 
residues is reported and at 160 PAMs the alignment jumps to 
80 residues length, and EF 1.9 x 10 2  (Figure 4). 

It is expected theoretically that the most sensitive scoring 
scheme in any particular case will be provided by the PAM 
table appropriate to the overall evolutionary distance in the align-
ment being sought, and these examples show this to be the case. 
Since the evolutionary distance is not generally known in ad-
vance, searches must be repeated with a range of PAM tables 
if significant similarities are not to be missed. 

The ability to carry out database searches for similarities to 
known proteins, using the exhaustive matching algorithm for 
finding the best local homology, has proved a fruitful method 
of extending or guiding molecular biological research (Dorm 
ea' al., 1987; Robinson er al., 1987). We have described a 
method of assessment of the scores of alignments based only 

on the results of the initial search operation. An alternative 
to assess significance by reference to a further set of alignmei 
produced by unrelated sequences—for example, scrambled v 
sions of the test sequence. As these sequences give the sar 
results in our analysis, they add little information to that alrea 
obtained. 

The final test lies in the interpretation of the results by 
biologist and it is clear that score alone does not determine 
biological importance of an alignment. Thus, the cystic fibro 
antigen finds many alignments which are not individually signi 
cant, but which are all related to calcium-binding sites in pr 
teins (Dorin et al., 1987). In the case of proglucagon, mai 
of the minor alignments confirm the presence of repeated su 
sequences in the whole family of glucagon precursors. 

In practical terms, weak alignments may be better detectl 
if the query sequence is presented in a series of small segment 
perhaps 100 or less residues long, so reducing the backgrour 
of alignments arising from regions not included in the specif 
region under study. Extremely short sequences cannot be e, 
pected to produce alignments significant by their score alon 
other factors (e.g. the nature of the proteins in which matchir 
sequences are found) must be used in interpreting the outpu 

We reiterate the general nature of this method; a comple 
database search is not required, merely the ability to accumula 
a large number of scores from alignments which represent ti 
top of the distribution of such alignments. We ha 
demonstrated, for instance, that the method works effective] 
with a much smaller search (for example, with 20 000 amir 
acid residues in the reference sequence set), and the parametei 
still fit well to the model of exponential decay. Pattern sea 
ches (see Coulson et al., 1987) produce similar parameters 
searches with the same number of identified amino acid res 
dues. Variable pattern spacings, with degenerate matchin 
possibilities or with variable spacings, produce distribution wit 
lower decay constants; i.e. a higher relative score must b 
achieved to be significant than with less flexible searches. 

The parameters describing the upper portion of the distribt 
tion of results can also be applied to subsequent individual con 
parisons, since notionally each additional sequence could hay 
been added to the original data searched without affecting th 
value of the parameters derived from the initial analysis. 
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ADDENDUM 

TIMING DATA FOR THE TYPE THREE ALGORITHM. 

Since the completion of this project the type three dynamic programming algorithm 
for protein sequence comparison has been implemented on a number of different 
computers. The following table compares the performance of these implementations 
with the program written in the project. 

Ref. Machine PMEs/s Cost of machine $ PMEs/$/s 

[1] ICL prototype DAP 600,000 N/A N/A 

[21 AMT production DAP 7,000,000 150,000 46 

 Sun 3/50 72,000 5,000 14 

 Sun 3/280 139,000 10,000 14 

 Single processor Cray XMP 1,100,000 10,000,000 0.9 

 32K Connection Machine CM2 25,000,000 3,000,000 8.3 

This project. 

Collins, J.F. (1988) Personal communication. 

[3-6] Lander, E. (1988) 'Study of Protein Sequence Comparison Metrics on the 
Connection Machine CM-2' To appear in Proceedings of Supercomputing '88. Vol. 2 


