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Abstract

The LHCb detector is one of the four experiments being built to harness
the proton-proton collisions provided by the Large Hadron Collider (LHC)
at the European Organisation for Nuclear Research (CERN). The data rate
expected, when the LHC experiments are fully operational, eclipses that of
any previous scientific experiments and has motivated the adoption of a grid
computing paradigm to store and process the data. Managing PetaBytes of
data in a distributed environment provides a rich set of challenges related
to scalability, reliability and performance. This thesis will present the data
management requirements for executing the workload of the LHCb collab-
oration. We present the systems designed that support all aspects of the
grid data management for LHCb, from data transfer, to data integrity, and
efficient data access. The distributed computing environment is inherently
unstable and much focus has been made on providing systems that are ro-
bust and resilient to observed failures.
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Introduction to LHCb

The Large Hadron Collider is a proton-proton collider that will operate at a
centre of mass energy of 14 TeV. The LHC has been built in the 27km tun-
nel, under Switzerland and France, originally created for LEP, see Figure 1.
The LHC will support four major experiments: ALICE, ATLAS, CMS and
LHCb. The aim of these four experiments is to explore the current under-
standing of the Standard Model and probe what might lie beyond it.

Figure 1: The LHC.

LHCb is a specialised B physics experiment that hopes to take advantage
of the large quantity of b hadrons produced at the LHC and will concen-
trate on the precise measurement of CP violation parameters and rare decay
processes. The statistically large sample of B particles will allow LHCb to
investigate decay modes with low branching ratios, that were not possible
with the previous generation of B-factories.
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The LHCb detector [1], shown in Figure 2, is a single arm spectrometer.
It consists of a dipole magnet, two Ring Imaging CHerenkov (RICH) detec-
tors, a Vertex Locator (VELO), an electromagnetic and hadronic calorime-
ter, five muon chambers and four tracking stations. The role of each of these
is outlined below.

Figure 2: The LHCb detector.

Track parameters are measured using the tracking stations [4, 5]. Using
the track curvature (induced by the magnetic field [2]) charged particle’s mo-
menta can be determined. The VELO [3] is located next to the beam pipe,
close to the proton-proton interaction point. It measures precisely the pas-
sage of charged particles, allowing reconstruction of primary and secondary
vertices. The decay vertices (secondary vertices) of long lived particles, such
as B mesons, allow LHCb to study time dependent properties of the decays.

The particle identification is performed using information from three
sub-detectors. The two RICH detectors [6], use the Cherenkov effect to de-
termine the velocity of the particles. The first RICH detector is located in
front of the magnet and will be used to measure low momentum particles,
while the second RICH is located after the magnet for higher momentum
particles. The Electronic CALOrimeter (ECAL) measures the energy of
photons and electron while the Hadronic CALOrimeter (HCAL) measures
the energy of pions, kaons and protons [7]. The Muon system [8] consists
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of five stations to identify the particles which penetrate fully through the
calorimeters.

A key element of LHCb is the trigger system [9]. The trigger contains
two levels: the Level0 (L0) hardware trigger and the High Level Trigger in
software (HLT). The L0 primarily uses information from the calorimeter and
muon systems to select particles with high transverse energy and momen-
tum, reducing the 40MHz LHC crossing rate to 1MHz. The software trigger
further reduces this rate to 2kHz. This RAW event data is written to the
Online system [10] and is the primary commodity of LHCb. This data is the
starting point for everything that will be discussed in this thesis.
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Chapter 1

Grid Computing; History,

Standards and Middleware

The thesis will concentrate on the LHCb experiment, their computing re-
quirements, implemented solutions and experience gained. An introduction
to and history of Grid computing is presented in Chapter 1 along with an
overview of past and present Grid projects. The LHCb Computing Model
will be discussed in Chapter 2. The DIRAC system, which supports all facets
of the Computing Model, will be covered in Chapter 3. The core of this the-
sis is contained in Chapter 4, which outlines the DIRAC Data Management
System, Chapter 5 that presents the performance of the grid resources (with
the full results presented in Appendix D) and Chapter 6 which reports the
performance of the DIRAC bulk transfer system. An overall summary and
conclusions will be given in Chapter 7. Appendix A discusses the evolution
of the SRM standard and Appendix B gives a summary of the functionality
provided by version 2 of the protocol. Appendix C gives the performance of
handling RAW data by the DIRAC Data Management system.

1.1 Introduction

If such a network as I envisage nebulously could be brought into
operation, we could have at least four large computers, perhaps
six or eight small computers and a great assortment of disc files
and magnetic tape units - not to mention remote consoles and
teletype systems - all churning away. ∼ J.C.R. Licklider (1960)
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Since the earliest days of computing, dominated by monolithic beasts
built to perform a single repetitive computational tasks, the aggregation of
computational resources has been dreamed of by computer engineers. Com-
munication protocols [11] existed alongside the early computational ma-
chines to allow humans to interact at distance, but it was not till much
later that inter-machine communication was attempted. In 1965, Lawrence
Roberts at the MIT Lincoln Labs performed the first inter-computer commu-
nication [12] allowing machines to work together for the first time. Although
the scale of Licklider’s vision may appear quaint in the current computing
environment the underlying desire still remains the same; to connect com-
puting and storage resources and enable them to work together. This chapter
will review the technology, standards and projects that have paved the way
from connected machines to inter-connected Grids.

1.2 From IMP to I-WAY

After performing the first inter-computer communication Roberts moved to
ARPA (Advanced Research Projects Agency) and began work on ARPANet [13,
14]. ARPANet was mandated to be a packet (then called message) switched
network using Interface Message Processors (IMP) [15] to act as the digital
interface between hosts and the underlying (analogue telephone) network.
By 1969 the first messages had been sent on this packet switched network
(shown in Figure 1.1), opening the door for many subsequent networking
protocols and the services built on top of them.

The Network Working Group (NWG), formed just before ARPANet went
live, was responsible for considering the protocols to be used on the network.
One of the first to be proposed was a tentative protocol for transferring files
across networks [17] but it was not until the first inter-networking protocol,
Transmission Control Protocol (TCP) [18], was proposed that standards
started to emerge. After several years of discussion and updates the original
TCP specification was split into IP [19], to perform the network routing,
and TCP [20] to ensure the reliable end-to-end delivery of packets. These
two protocols form the basis of most networking applications on the modern
internet and after many intermediate proposals the File Transfer Protocol
(FTP) [21] was defined to sit on top of TCP/IP. Another important step was
the proposal of the Domain Name System (DNS) [22, 23] and subsequent
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Figure 1.1: The first 4 nodes on ARPANet: UCLA, SRI, UCSB, UTAH.[16]

modifications [24, 25] which provisioned for a scalable way of resolving ma-
chine names to their numerical network address.

The early 1990s internet, as pioneered by ARPA and the NWG, pro-
vided the standards and protocols for building and using Wide Area Net-
works (WANs). Another major step was the advent of the World Wide Web
(WWW), first proposed as an information management system [26] and
led to the development of the HyperText Markup Language (HTML) [27],
Uniform Resource Locators (URLs) [28], the HyperText Transfer Protocol
(HTTP) [29, 30] and the formation of the WWW Consortium (W3C) [31] to
develop standards. One of the important roles of the W3C was the fostering
of Web Services (WS) to ‘support interoperable machine-to-machine interac-
tion over a network’ [32]. This broad description is often taken to mean the
use of client-server communication based on XML [33] messages following
the SOAP [34] standard. In this architecture an application WS exposes a
description of the functionality offered by the service in Web Service Descrip-
tion Language (WSDL) [35] to allow prospective clients to discover services
relevant to their needs.

In 1995 the Factoring via Network-Enabled Recursion (FAFNER) [36]
project used parallel factoring algorithms to compute RSA130 solutions for
public key encryption making use of web servers to distribute tasks and re-
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ceive results from clients over HTTP. Clients could easily contribute their
hardware to the project via the HTTP interface and this paved the way for
many future projects applying an idle cycle utilisation paradigm. The first
mainstream project of this type was Entropia [37] followed by the massively
successful SETI@home project [38] based on the Berkeley Open Infrastruc-
ture for Network Computing (BOINC) [39] platform.

A contemporary to FAFNER was the Information Wide Area Year (I-
WAY) project [40] which aimed to virtualise resources across 17 partici-
pating sites using varying network resources and protocols. Each of the
participating sites installed gateway machines running the I-WAY software
environment (I-Soft) to overcome resource heterogeneity. Client computa-
tional tasks were submitted to a central scheduler which maintained commu-
nication with local schedulers installed as part of I-Soft. This architecture
allowed heterogeneous tasks to be performed on heterogeneous resources and
the experience gained led to the proposal and development of grid toolkits.

1.3 Defining the Grid

Experience from I-WAY highlighted the need to define a common set of com-
ponents and corresponding interfaces to achieve a scalable system capable of
managing heterogeneous resources. The first attempt to define the require-
ments of a Grid [41] came in parallel with their first implementation in the
Globus Toolkit (GT) [42] by the Globus Alliance [43]. This first attempt
was rather nebulous and a more concrete description, including a crystal-
isation of the nomenclature to describe the Grid and a proposed layered
architecture [44], accompanied the release of GT2. In parallel, attempts
to define standards for the grid were conducted by the Global Grid Forum
(GGF) [45], which approached this task with several research and working
groups, and later the Enterprise Grid Alliance (EGA) [46], founded by a
host of commercial software and hardware vendors.1 In 2006, GGF and
EGA merged to form the Open Grid Forum (OGF) [47] with the aim of
‘leading the global standardisation effort for grid computing’ mirroring the
role of the W3C for WWW in the Grid world.

1Founding members were: SUN Microsystems, EMC, Fujitsu Siemens Computers, HP,
NEC, Network Appliance, and Oracle.
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Although several groups attempted to enumerate a Grid in their own
particular way [41, 44, 48, 49, 50, 51] the standards based approach brought
almost everyone into agreement that the adoption of the Open Grid Services
Architecture (OGSA) defined a Grid [52] (with a few detractors [53]). OGSA
aims to provide virtualisation of heterogeneous resources by adopting a Ser-
vice Oriented Architecture (SOA) based on the web service technologies of
WSDL and SOAP. Initially, Open Grid Services Infrastructure (OGSI) [54]
was used as the underlying implementation of OGSA to extend existing web
service technology to support stateful Grid services, but this was later re-
placed by the use of Web Services Resource Framework (WSRF) [55, 56].

Independent of the architecture and technologies employed to realise
a Grid the expectation of what you get ultimately defines it. One such
definition is offered in [57].

A Grid is a hardware and software infrastructure that provides
dependable, consistent, and pervasive access to resources to en-
able sharing of computational resources, utility computing, au-
tonomic computing, collaboration among virtual organisations,
and distributed data processing, among others.

1.4 Types of Grid

Attempts to define Grids usually prove to be vague and nebulous, as is shown
above, because the specifics of what Grids are depends significantly on the
application and practitioners. In this sense, the Grid means many things to
many people and provides a wide umbrella to support significant academic
and enterprise interest in the subject. Within the definition of Grids several
major types of Grids emerge:

• Computational Grids provide an architecture for transparent access
to distributed heterogeneous CPU resources. Two examples of such
Grids are TeraGrid and DEISA (discussed further in Section 1.6.1)
which provide distributed access to US and European super-computing
facilities respectively.
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• Storage Grids provide standardised access to reliable distributed stor-
age space. The Storage Resource Broker (SRB) [58], from the San
Diego Super-computing Center, provides a logical namespace to man-
age data resident across distributed administrative domains. Another
type of large scale storage Grid facility is Amazon Simple Storage Ser-
vice [59] which offers a web service interface to an abstract storage
facility.

• Networking Grids provide access to networking resources across dis-
parate infrastructures. ‘LambdaGrids’ [60] use optical links carrying
different wavelengths to provide network resources with an explicit
quality of service which may be scheduled by user applications.

• Data Grids provide the infrastructure for users to perform the dis-
tributed processing of large volumes of data across geographically sep-
arated sites.

Although these types are different they are not mutually exclusive. A
Data Grid requires access to computational, storage and network resources
which reinforces the importance of the adoption of SOA. The focus of this
thesis is Data Management within Data Grids. To elucidate Data Grids a
summary of the typical components is given in the Section 1.5.

1.5 Typical Components of a Data Grid

The raison d’être of a Data Grid is the processing and storage of large
volumes of data. The core of a Data Grid, often referred to as the fabric
layer, are the CPUs on which the processing is performed, the servers which
store the data and the network components that connect them. Fabric level
components in a typical Data Grid are given in Section 1.5.1.

1.5.1 Fabric Layer

The fabric of a data grid is more than a collection of raw resources, but
also includes the first levels of abstraction; this ranges from the operating
systems, application libraries, and common networking protocols used by
the CPUs, to the batch systems which aggregate and manage the resources
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and schedule the tasks running on them.

Batch Systems

There are many more batch systems in existence than can be enumerated
here, but the most common is the Portable Batch System [61], which shares
its ancestor with the Tera-scale Open-source Resource and QUEue manager
(TORQUE) [62], that provides resource management and a simple sched-
uler. Both may be combined with the Maui/MOAB scheduler to provide
user and group based job priorities and scheduling algorithms. The Condor
High-Throughput Computing System [63] is a resource manager that can
aggregate dedicated clusters and idle desktop machines into a virtual clus-
ter. The common commercial products available are LSF [64] from Platform
which is a commercial integrated resource manager and scheduler, and Sun
Grid Engine (SGE) [65] which provides an open source resource manager
and scheduler that can be used to share resources between distributed SGE
systems.

Storage Systems

In an analogous way to batch systems, storage systems provide a layer be-
tween the physical storage media and the client. Familiar file systems, as
used by individual PCs, manage the underlying data storage device (most
commonly a spinning disk, although flash based devices are now common)
to map files and directories to the underlying blocks and maintain metadata
regarding the contents. As the requirements of storage systems increase,
mechanisms for accessing the file system contents across several nodes must
be adopted. There are two main approaches to this problem: shared disk
file systems and distributed file systems.

Shared disk systems (or more commonly Storage Area Networks (SAN))
provide uniform access from all servers to all the data blocks in the SAN.
The file information in this system may be maintained in a centralised server
or distributed across the servers comprising the SAN. SANs often adopt
high-bandwidth networking technology, such as Fibre Channel [66] or In-
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finiBand [67], for performance and lock managers to allow concurrent read
and write operations to blocks while avoiding data corruption.

In contrast to SANs, distributed (or network) file systems allow file access
using the wide area network where files may be distributed across different
remote network nodes. Each of the network nodes may address given parts
of the file system and therefore, to provide transparent access to the client,
should provide automatic file replication across nodes, with the added ad-
vantage of increasing fault tolerance. This data replication allows increased
performance by striping the data from multiple servers to the client. The
most widely used network file system is NFS which implements the NFS
protocol [68, 69, 70]. The newest version of NFS provide a concurrent file
read/write as well as the possibility for data access parallelism using Parallel
NFS (pNFS). Andrew’s File System (AFS) [71] approached scalability by
downloading files to the client cache from the server when accessed allowing
multiple updates without server interaction. General Parallel File System
(GPFS) [72], is a high performance system from IBM, originating from the
HPC environment which uses block parallelism to increase read and write
rates from multiple disks.

The fabric layer resources mentioned above are in no way exhaustive,
but the variety of available products emphasises the need for a standards
based approach to allow interoperability.

1.5.2 Requirements and Standards

The provision of a Grid relies on the availability of underlying resources and
a software infrastructure, referred to as middleware, to allow utilisation.
This section will give a high level overview of the middleware requirements
for a Data Grid, along with the relevant standards, while the specifics of
selected middleware projects will be given in Section 1.6.2.

Information Service

The knowledge of resources is essential to any Grid system, making infor-
mation providers important components. The ability to discover resources
available for a particular task requires that resource capabilities are pub-
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lished and are retrievable by clients. In addition to capabilities, resources
must also publish contact information such that they can be invoked. Fi-
nally, it must be possible to discover the dynamic state of a resource to
determine the optimal resource at any time. A single standard schema for
representing this information is required for transparent access to disparate
information providers. The Grid Laboratory Uniform Environment (GLUE)
Working Group [73] at OGF has produced an abstract information model
to describe attributes pertaining to computing and storage resources in the
GLUE schema [74]. The schema is independent of implementation and may
be used for interoperability between Grids.

Data Management

The variety of storage systems available in the fabric layer implies the need
for a standard protocol to manage these resources. The Grid Storage Man-
agement Working Group [75] at OGF produced the Storage Resource Man-
ager (SRM) [76] interface to provide a uniform middleware layer between
clients and the underlying resources. Early versions of the protocol dealt
with simple file management operations and later versions included the abil-
ity for clients to dynamically reserve and manage space (the evolution is
discussed in Appendix A). SRM provides a control protocol for managing
space and files, but does not define a transfer protocol. The mechanism for
protocol negotiation in the SRM specifications allows the use of any transfer
protocol that the client and the server mutually support.

The necessity to transfer large volumes of data is inherent in a Data
Grid and the definition of a transfer protocol suitable for this was proposed
by the GridFTP Working Group [77]. The GridFTP protocol [78, 79] uses
Grid Security Infrastructure (GSI) authentication on both control and data
channels for secure data transfer. In addition, the protocol builds on the
FTP specification by allowing multiple data channels (striped transfers) for
increased throughput and network utilisation. In addition to large data
transfers over the WAN a Data Grid must also provision the ability to read
data from files during processing activities. The OGSA ByteIO Working
Group [80] defined the ByteIO protocol [81] to enable POSIX-like access to
data files to allow clients for transparent access on disparate storage systems.
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A different approach to data management on the Grid is being pursued
by the Grid File System Working Group [82]. The Grid File System (GFS)
architecture, as proposed in [83], wishes to create a federated logical resource
namespace of all data in distributed file systems. A GFS system would store
resource endpoint, protocol and authentication information to map GFS file
entries to the underlying resource. These entries would then be used to
deliver the file to a client when attempting to access a file. In addition to
distributed file systems GFS also may contact transfer protocol servers for
files via HTTP, FTP or GridFTP or negotiate with SRMs. When used in
conjunction with SRMs the GFS becomes a centralised replica catalog, for
which there is no proposed standard interface.

Job Management

The approach of deploying a standardised interface that abstracts the under-
lying resource from the client is also adopted in job management. The Basic
Execution Services Working Group [84] developed a specification [85] which
allows the creation, monitoring and control of execution tasks on a com-
puting resource. The specification provisions the abstraction layer allowing
transparent submission of tasks to different batch implementations. Tasks
submitted to a Basic Execution Service are described in Job Submission
Description Language (JSDL) [86].

Security

Ensuring that resources are secure and used appropriately is fundamental to
every grid component. The de-facto standard authentication mechanism in
grid computing is the use of public key infrastructure (PKI) [87]. Globally
trusted Certification Authorities (CA) issue grid users with X.509 certificates
composed of public key and a password protected private key. The public
and private key pair can then be used when authenticating with remote
services. They can also be used to generate limited lifetime proxy certificates
which allow users a single sign-on to avoid repeatedly typing passwords.
Mechanisms to ensure that clients are authorised to perform actions must
also be used based on client affiliation and role.
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1.6 Selected Grid Projects

The first round of Grid projects was funded by national grid initiatives
which sought to foster development of middleware and the procurement
of hardware resources. An early example was the UK e-Science [88] pro-
gram which provided funds for each of the national Research Councils to
demonstrate use-cases across a broad range of research with major drivers
coming from the fields of physics, astronomy and bio-informatics. Similar
initiatives were undertaken in Italy (the Grid.it project brought together
six multi-disciplinary scientific institutes to provide a middleware platform
and applications for the participating institutes) and Germany (funding the
UNiform Interface to COmputing REsources (UNICORE) [89] project). A
selection of infrastructure projects are discussed in Section 1.6.1 and mid-
dleware projects Section 1.6.2.

1.6.1 Infrastructure Projects

HPC

Grid infrastructure projects were initiated to integrate resources at leading
super-computing centres. In the United States, the TeraGrid project [90]
links 9 ‘Resource Providers’ via a dedicated optical network and allocates
computing resources to U.S. based academics through a multidisciplinary
peer-review process. The TeraGrid infrastructure is integrated using the
‘Coordinated TeraGrid Software and Services’ middleware based on the
Globus Toolkit. The Distributed European Infrastructure for Super-computing
Applications (DEISA) [91], the European analogue to TeraGrid, links 11
national super-computing centres via 10Gb network and allows users to use
Globus or UNICORE middleware for submission of computational tasks.
The China National Grid (CNGrid) [92] set out to create a combined HPC
and Grid environment linking two super-computing centres with the comput-
ing resources of a further 6 universities using Globus. Eventually, CNGrid
produced proprietary middleware [93] based on OGSA. Recently, similar
projects have been adopted in Canada (Compute Canada [94]) and India
(Garuda [95]).
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Commodity

Several projects are building Grid infrastructures from commodity clus-
ters and storage. The two major projects in this genre are Open Science
Grid (OSG) [96] in the United States and Enabling Grids for E-sciencE
(EGEE) [97] led by CERN.

The OSG is a consortium of universities and national laboratories in the
United States that evolved as a continuation of the Grid3 project, a collabo-
rative initiative between the Grid Physics Network (GriPhyN) [98], Particle
Physics Data Grid (PPDG) [99] and the international Virtual Data Grid
Laboratory (iVDGL). The Virtual Data Toolkit (VDT) [100], produced by
the Grid3 collaborators, forms the basis of the OSG “Software Stack” and
includes Globus, Condor-G [101] and VOMs [102] and is installed at over 60
sites.

The EGEE project provides the middleware and the underlying infras-
tructure to support the European multidisciplinary research community.
The EGEE resources are contributed by National Grid Initiatives (NGI)
across Europe, North Africa, Asia and Latin America to over 300 sites pro-
viding 80,000 CPU cores. Two major contributors are the UK e-Science
program who, through GridPP [103], provides resources and support across
20 UK institutions and the Italian Grid.it project which established over 30
sites within INFN-GRID [104]. There are a plethora smaller contributors to
EGEE who provide additional resources.

1.6.2 Grid Middleware Projects

Globus Toolkit

The Globus Toolkit was an early implementation of the Grid infrastructure
attempting to provide a bag of services on which Grids could be built. The
success of the Globus Toolkit can be ascribed to the proximity of the Globus
Alliance to the first attempts to define standards. The widely used GT2 was
replaced by a Web services based OGSI implementation which was largely
ignored due to issues of scalability and reliability and was in turn replaced
by a WSRF implementation in GT4[105]. Several GT services are widely
used by other projects:
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• Grid Security Infrastructure (GSI) [106] based on X.509 public key
infrastructure (PKI) for authentication.

• MyProxyServer [107] for credential delegation and management.

• Grid Index Information Service (GIIS) [108] for publishing and discov-
ering resource status.

• Globus Resource Allocation Manager (GRAM) [109] for managing job
execution, monitoring and output.

• Grid File Transfer Protocol (GridFTP) for high throughput data trans-
fers.

The most important of these components with respect to this thesis is
GridFTP which has become the primary mechanism for file transfer on the
Grid. The name GridFTP refers to both the standard discussed in Section
1.5.2 and the Globus implementation [110].

UNICORE

The UNICORE [89] project was initiated to give German scientists access to
distributed HPC resources. The middleware was built on proprietary tech-
nologies in parallel to the emerging standards. As it became widely used
in scientific and commercial settings across Europe, the European Union
provided funding through the UniGrids project [111] to migrate it towards
a web service architecture which was compliant with OGF standards. The
UNICORE middleware is based on a three tier model: client (for user cre-
ation of workflows/tasks), gateway (for authentication and authorisation of
user requests) and service container that runs next to the Grid resource. The
service container, containing Unicore Atomic Services (UAS), offers a frame-
work for hosting WSRF compliant Grid services and is therefore extensible
to any new developments.

NAREGI

The Japanese National Research Grid Initiative (NaReGI) [112] began in
2003 to develop Grid middleware to be used for e-Science. The success of
the UNICORE project, and the complete solution it offered, provided the
basis for the first middleware deployed on the NaReGI testbed. As the
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OGSA standard was defined the NaReGI middleware evolved to implement
WSRF architecture and to emphasis interoperability with other emerging
middlewares. The major addition made to the original UNICORE architec-
ture is the Super Scheduler (SS) which aggregates globally available resource
information and performs match making based on the job requirements. The
SS itself contains four services which perform the following tasks:

• Job Management Service (JM) accepts client jobs.

• Candidate Set Generator (CSG) determines all resources required by
the job.

• Execution Planning Service (EPS) schedules the job based on the com-
pute resources returned by CSG and their state.

• Reservation Service (RS) performs resource reservation and job sub-
mission for the list of sites generated by the EPS.

Data management in NaReGI is based on Gfarm [113] which implements
a Grid File System [83] architecture. This approach is based on a set of file
server nodes, mapping the network topology, which trigger dynamic file
replication in response to high activity on a single node [114]. To facilitate
interoperability with other production Grids, GridFTP access to data is also
provisioned.

ARC

The Advanced Resource Connector (ARC) [115] project began in 2001 with
the aim to provide a Grid solution for the Nordic countries. At the time
of inception none of the existing middleware solutions met ARC’s require-
ments so a new project was started based on (the then standard) GT2. The
ARC system is designed to have no single point of failure and no centralised
management where brokering, like UNICORE, is performed in the client
layer. Clients query the top level information services (Index Services) to
obtain URLs for the resource level Local Information Services (LIS) which
are then queried in turn to obtain possible resource candidates and their
status. Once a resource is selected the task is forwarded to the Computing
Service (CS) corresponding to that resource via GridFTP. The Grid Man-
ager (GM), the main component of the CS, interprets the job description
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and retrieves the input files and job executable in a directory dedicated to
that task. The GM communicates the executable to the Local Resource
Management System (LRMS), installed on the batch system worker nodes,
and is responsible for uploading output data and cleaning the task directory.

The GM encapsulates data management operations required for fetching
input data and upload of output data using the DataMove component. This
library has a plug-able architecture for supporting different protocols and
supports third party transfers. Similarly the GM can automatically register
output data to the Data Indexing Service (DIS) with plug-able backend sup-
port. ARC also provides a Smart Storage Element (SSE), integrated with
the DIS, which has both a WS and SRM interface.

CROWN

The China R&D Environment Over Wide-area Network (CROWN) project [116]
adopts an approach similar to UNICORE and ARC, placing middleware ser-
vices next to the compute resource and performing brokering in the client.
The Node Server (NS), hosting a WSRF compliant service container, pro-
vides the services to execute and monitor tasks and retrieve output from
underlying computing resource. Each of these nodes belongs to a domain
which has an associated Resource Locating and Description Service (RLDS),
to publish and retrieve system state information, which are organised into a
hierarchical tree structure. The novel contribution of CROWN is a logical
overlay network above the set of RLDS services. In this system resources of
common properties form groups which are known to their respective RLDS
improving the resource location efficiency and scalability of the global infor-
mation service.

gLite

The history of gLite starts with the European DataGrid (EDG) project
which sought to provide a distributed computing system for three data in-
tensive applications: high energy physics, biological/medical image process-
ing and Earth observation science. Early versions of EDG middleware were
heavily based on GT2 but later enhanced to support the data-centric appli-
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cation use cases. By the end of the EDG project several production quality
middleware components were taken forward into the LHC Computing Grid
(LCG) project. In addition to the DataGrid components LCG blended
its own developments with the Virtual Data Toolkit (VDT) (produced by
PPDG, GriPhyN and iVDGL) into the supported middleware. The sec-
ond version of the LCG software (LCG-2) later became the basis for the
gLite middleware supported by the Enabling Grids for E-sciencE (EGEE)
project [97]. Current gLite middleware components of importance to this
thesis will be discussed in Section 1.7.

Next Generation Projects

The adoption of open standards and a SOA allows interoperability between
components developed by different middleware projects. In addition to the
development projects discussed above, a new type of middleware project
has emerged with the focus on consolidating existing software, one such
example is Open Middleware Infrastructure Institute (OMII) [117]. The
aim of OMII is to evaluate Grid services from existing infrastructures and
provide impartial evaluation. Another interesting project, NextGRID [118],
had the ambitious aim to define an architecture for future commercially
viable enterprise Grids in which “Grid-based applications execute on inter-
enterprise, heterogeneous Grid infrastructures which encompass at run time,
the different business models used by different stakeholders. This implies a
cost-effective and universally applicable technology supporting diverse and
sustainable business models.” [119].

1.7 gLite Middleware

The gLite middleware is based on a SOA architecture providing services in
four main groups: Information, Security, Workload Management and Data
Management.

1.7.1 Information

The foundation of the gLite information system is the resource informa-
tion publishers which generate status information compliant with the GLUE
schema. This information is published to a Globus GIIS present at each
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site which is subsequently published, using LDAP technology, to a Berkeley
Database Information Index (BDII) [120] which may then be queried by
information consumers. The BDII is based on the GIIS design, but uses
two LDAP databases to allow update and query operations to be performed
simultaneously providing increased stability. The gLite implementation of
the BDII splits static and dynamic information to reduce database load and
further increase stability.

1.7.2 Security

The security mechanism in gLite is based on X.509 certificates and GSI for
authentication. The authorisation mechanism uses the Virtual Organisation
Management Service (VOMS) [102] to maintain and verify user groups and
roles attributes. MyProxy is used as a credential store for long life proxy
certificates.

In general, the security containers are embedded within gLite services
and do not invoke external web services. On contacting a gLite service, with
a proxy containing VOMS added extensions, the authentication is performed
within the security container. Once accepted authorisation is performed, to
ensure the client has permission to access the resource. This authorisation
step can involve the use of a Local Centre Authorisation Service (LCAS)
which performs a primary check of the users’ status at the site. The Local
Credential Mapping Service (LCMAPS) then maps the grid credential, based
on the proxy certificate Distinguished Name (DN) and VOMS attributes, to
a credential understood by the local resource. Once successful the requested
service functionality is invoked. Some services, such as FTS described in
Section 1.7.4, may then use delegated client credentials for interaction with
other services.

1.7.3 Workload Management

The two key components in the gLite Workload Management system are
the gLite Workload Management System (WMS) which provides advanced
resource brokering and the Computing Resource Execution And Manage-
ment (CREAM) computing element currently being adopted. Clients of the
gLite WMS describe their computing tasks using the gLite Job Description
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Language (JDL), based on the ClassAd language [121], which contains job
attributes (such as input sandbox, executable etc.), data attributes (input
files, storage elements etc.) and job requirements (required operating sys-
tem, CPU time etc.).

gLite WMS

The gLite WMS [122] provides the job management service for matching
user tasks with available resources, submitting the tasks, monitoring their
state and where possible managing retries. The user job requirements, which
may be represented in gLite JDL, or JSDL, are used to determine candi-
date resources and are assigned to ‘task queues’ mirroring these candidates.
The state of the underlying resources is cached in the WMS server (the In-
formation Supermarket) and periodically updated synchronously and asyn-
chronously from the gLite information system. The scheduling algorithms
for matching the jobs to resources can be performed in one of two ways. The
first, eager scheduling, matches the best resource for the job based on the
requirements and the current information in the supermarket. To do this
the Job Submission Service forwards jobs to the highest ranked resource
using Condor-G [101]. The update period of the contents of the informa-
tion supermarket renders absolute scheduling decisions liable to computing
resource flooding and to combat this a fuzzy rank mechanism is adopted to
stochastically select from the best available resources. Alternatively, a lazy
scheduling approach is supported which waits for resources to become avail-
able and matches the most appropriate job from the task queues. The gLite
WMS also provides advanced features such as bulk submission, real-time
job interaction, output peeking and proxy renewal.

CREAM CE

Like any computing element CREAM [123] provides an abstract layer on
top of a computing resource, extending the native functionality to include
Grid security and increased reliability. It supports typical job management
capabilities of submission, cancellation and the ability to pause and resume
jobs (where supported by the underlying batch system). The management
of tasks can use a legacy WS or BES interface with support for gLite JDL
and JSDL for job description. Job state information is available through
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the CE Monitoring (CEMON) service which also provides an asynchronous
call-back mechanism to clients. The Journal Manager component maintains
all requested actions for a local job and executes them on the computing
resource using the BLAH interface to translate to the computing resource
client commands. CREAM is designed to be a stand alone component but
is integrated with gLite WMS using the Interface to CREAM Environment
(ICE) component within the WMS. ICE translates the job requests in the
WMS to CREAM methods, subscribes to the CEMON call-back to receive
state update information and performs resubmission in the event of transient
failures.

1.7.4 Data Management

The gLite supplied data management components allow the storage, cata-
loguing, transfer and access of files on the Grid. The four components that
provide these services are the LCG File Catalog (LFC), the gLite Disk Pool
Manager (DPM), the Grid File Access Library (GFAL) and the gLite File
Transfer Service (FTS).

LCG File Catalog

The LCG File Catalog (LFC) [124] is a lightweight and scalable file meta-
data and replica catalog. It exposes a hierarchical, logical namespace and
maps constituent files to Globally Unique IDentifiers (GUIDs). Each logical
file entry may have associated metadata (size, permissions/ownership, sta-
tus, checksum, access and modification time) and replica information (host,
pfn, number of accesses, status). It offers secure authentication and VOMS
based fine grained authorisation with ACL support at the file level. To
reduce server load it implements authenticated sessions to reduce repeated
handshaking and bulk methods to reduce round trips. Both MySQL and
ORACLE backend databases are supported with the additional opportunity
to use ORACLE Streaming Technology to replicate LFC contents to remote
servers [125].

Disk Pool Manager

The Disk Pool Manager (DPM) [126] is a lightweight disk storage manage-
ment system. The DPM architecture consists of a headnode containing the
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DPM Name Server (DPNS), the DPM Server which manages request queu-
ing and space management and the SRM interface servers. The nameserver
ensures that authentication and authorisation policies are respected while
physical access is obtained through GridFTP and RFIO daemons running
on the disk servers. At small sites all the DPM services can be installed on a
single machine while in larger instances all services (including the database
server) can be distributed across different machines.

Grid File Access Library

The Grid File Access Library (GFAL) and the LCG Utils (lcg utils) [127]
are the data management clients supplied in gLite. The GFAL library gives a
POSIX interface to local and remote data allowing users to open/read/write/close
files. As SRM became accepted as the standard interface to Grid storage ele-
ments, GFAL was extended to include SRM client capabilities. The lcg utils
are a higher level client that builds on the GFAL capabilities to allow file
replication with SRM based storages. The lcg utils also provide optional
coupling with the LFC such that end users may use logical file references to
remove and register physical files.

File Transfer Service

The gLite File Transfer Service (FTS) [128] provides reliable point-to-point
file transfers. The FTS architecture is based around a concept of channels
that group files into task queues with common sources and destinations. The
channels are generally between a source-destination pair (although catch all
channels are supported) and have their own transfer parameter configura-
tion. This configuration allows control of the number of concurrent transfers,
the number of GridFTP streams, TCP buffer size and VO shares. Chan-
nel configuration allows site managers to control the load generated against
their SRM and GridFTP servers and to meet SLA agreements regarding VO
throughput. Clients interact with the FTS web service to submit source-
destination URL pairs. These file pairs are assigned to channels and third
party GridFTP transfers executed by transfer agents. To ensure authenti-
cation and authorisation are respected the FTS interrogates the SRMs and
executes the transfers using the client’s delegated VOMS credentials.

20



1.8 Data Intensive Applications

As the understanding of the potential offered by Grid computing has spread
the adoption of Grid architecture as a practical tool for academic and indus-
trial applications has increased. The earliest adopters of Grid technologies
were in physical and medical sciences where the large volumes of scientific
data produced by experiments required storage and analysis. The catalyst
for the expansion of Grid usage was provided by national grid initiatives
(such as the UK e-Science programme) which provided substantial outreach
and industrial crossover funding. In the following section a number of data
intensive applications are discussed: an industrial application, a biomedi-
cal project and finally an overview of the applications being developed for
particle physics.

1.8.1 Distributed Aircraft Maintenance Environment

The Distributed Aircraft Maintenance Environment (DAME) [129], brought
together university researchers and commercial collaborators to produce a
distributed decision support system for aircraft maintenance. The system
performs real-time distributed analysis of in-flight aero-engine monitoring
data. This is combined with fault diagnosis and prognostic software to
provide a ‘predictive maintenance system’ to reduce aircraft turn around
time and increase safety. The aero-engine monitoring data, up to 1GB per
engine for transatlantic flights, produces petabytes of data per year. The
OGSA compliant (GT3 based Grid) analyses engine signal data in-flight and
allows faults to be discovered and repairs scheduled before the arrival of the
flight at the destination. Anomalous engine signal data for engines that
later developed problems are retained to ensure future prognosis are more
accurate.

1.8.2 Biomedical Informatics Research Network

The Biomedical Informatics Research Network (BIRN) [130] is a collabo-
ration of biomedical researchers with the aim of maximising the research
potential of neuro-imaging data produced by various scanning technologies.
The data produced varies in type, format and size and can produce over
0.5TB per day. The volume of data and the computing resources required
to process this data led to the adoption of Grid technologies. In addition, the
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Grid paradigm was suited to the distributed nature of collaborators, their
medical imaging machinery and the computing resources available to them.
BIRN uses components of Globus Toolkit for security, information systems,
resource management and data transfer and the Storage Resource Broker
for data storage. The key problem solved by BIRN application software is
the ‘information mediation’ required for researchers conducting studies to
discover relevant existing imaging data. A ‘virtual database’ federates differ-
ent underlying databases to provide a single query point for researchers that
translates their queries into a domain relevant selection for the underlying
database.

1.8.3 Particle Physics Applications

The latest generation of particle physics experiments being built at CERN
(ALICE, ATLAS, CMS, LHCb) have computing and storage requirements
an order of magnitude higher than previous particle physics experiments.
During the first full year of data taking, it is expected that 140 million
SPECint2000 (SI2k) years of processing power2 and 10PB of storage will
be required. The combined scale of the experiment requirements was a
factor in the decision to use a Grid computing paradigm. The Models Of
Networked Analysis at Regional Centres for LHC Experiments (MONARC)
project proposed the use of a hierarchical model [131] that could share the
processing and storage responsibility across member countries and institutes:

• The central site in the model is the Tier-0 from which the experiment
data originates.

• Tier-1 sites are ‘Regional Computing Centres’ and typically have a
national scope.

• The Tier-2 sites are institutional or university computing centres which
associate to a Tier-1.

• Individual computing clusters that belong to physics groups are re-
ferred to as a Tier-3.

• The lowest level in the model, the Tier-4, are individual machines
which are typically laptops or desktops of group members.

2The kilo SPECint2000 will be used for the remainder of this thesis and is denominated
as kSI2k. The kSI2k equates to the power of a Pentium Xeon 2.8GHz.
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When the model was created the assumption was that the amount of
computing, storage and manpower, as well as stability, would decrease from
the Tier-0 down to the Tier-4s.

Each experiment has a ‘Computing Model’ defining the anticipated data-
flows and the estimated computing and storage requirements required at
each Tier [132, 133, 134, 135]. The experiments use the gLite middleware,
but due to historical instability, have build their own frameworks to support
their data-flow. The LHCb experiment framework (DIRAC), which will be
discussed in Chapter 3, provides a combined workload and data management
system supporting all aspects of the data-flow in a single project based on
a common framework. The ALICE experiment also adopts a single frame-
work approach with the ALIEN project [136], which began just after the
publication of the MONARC report.

The ATLAS and CMS experiments, which together demand over 75%
of the computational and storage requirements, have adopted specialised
systems for different aspects of their computing models. For example, AT-
LAS initially split the responsibility of their Grid computing projects into
four areas; Tier-0 processing, Distributed Production, Distributed Analy-
sis and Distributed Data Management. In addition, within the Distributed
Production and Distributed Analysis areas, competing projects were devel-
oped for use in different geopolitical regions. The fragmentation of projects
was resolved with the adoption of a common Distributed Production sys-
tem for all ATLAS communities, the Production and Distributed Analysis
(PanDA) [137] project based on DIRAC, to allow more effective resource
management. The PanDA project is also likely to assume the responsibility
for Distributed Analysis to allow the entire ATLAS distributed computing
workload to be managed by a single system (the advantages of which will be
discussed along with the DIRAC architecture in the Chapter 3). The Dis-
tributed Data Management project in ATLAS, responsible for bookkeeping
file based metadata and data replication, has a similar scope to PhEDEx
project from CMS. These two projects are the most relevant to this thesis
and will be discussed in more detail in the following sections.

23



ATLAS Distributed Data Management

The ATLAS Distributed Data Management (DDM) system [138] has the
primary responsibility of bookkeeping ATLAS files and controlling the move-
ment of production data according to the Computing Model, as well as the
secondary responsibility of managing local SE access from running jobs. The
requirement for data movement in the first full year of data taking is a sus-
tained rate of 600MB/s from CERN to the Tier-1 sites. This requirement
increases to 1.1GB/s in the third full year of data taking. In addition, the
system must control Tier-1 to Tier-1 data movement of 200MB/s ranging
up to 700MB/s in the third year of data taking [132]. The bookkeeping of
file metadata is based on heavily on the concept of datasets. Within the
context of DDM a dataset is defined in the following way:

Whenever new data files are retrieved....it is necessary to group
them together. This grouping of files serves as a type of “native”
metadata.....that we define as a “data set”... [139]

With this approach, every file created becomes a member of a ‘pri-
mary’ dataset, grouped to represent some ‘common characteristics’ of all
constituent files. A file may belong only to a single ‘primary’ dataset and
therefore, newly created datasets must contain completely new files or ex-
isting datasets. Datasets created from existing datasets are referred to as
‘derived’ datasets.

To manage this dataset architecture, DDM employs 6 catalogues, each
designed to determine specific properties of datasets or their contents.

1. Repository catalog - simple dataset metadata mapping to the versions
of the datasets present.

2. Selection catalog - specific metadata for users to locate datasets of
interest.

3. Content catalog - constituents of each dataset and version.

4. Location catalog - site location of datasets.

5. Local catalog - location of dataset constituents at a local site.
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6. Subscription catalog - dataset subscriptions to trigger data replication.

The ATLAS dataflow is based completely on the concept of subscription,
i.e. sites ‘subscribe’ to datasets which in turn triggers replication of that
dataset to a site. The dataset, and all constituent files, become visible in the
‘Location’ at the site once all files are present, enforcing physical properties
of datasets. At each site the physical location of the dataset constituents is
mapped by the ‘Local’ catalog containing only the replica information (i.e.
PFN) for constituents at that local site. To gain access to replicas of a given
dataset the client interrogates the ‘Repository’ to ensure the data set exists
followed by the ‘Location’ catalog followed by the ‘Local’ catalog.

To manage bulk replication DDM builds on top of gLite FTS and the
dataset catalogues and deploys a series of agents each handling a small part
of the replication chain. Each agent in the chain refers to a single database
table which is populated by the preceding agent. A Subscription Resolving
Agent finds pending subscription requests. The Replica Resolver determines
possible source replicas and chooses based on the number of recent accesses,
producing source and destination SURL pairs. The Partitioner determines
the state of the FTS channel and partitions the number of files to be submit-
ted, which are in turn submitted by the Submitter. The Pending Handler
checks the status of FTS jobs which are treated by the Verifier once com-
plete. If the transfer of a file fails it is populated back to the Replica Resolver
to be retried.

CMS Physics Experiment Data Export

The Physics Experiment Data Export (PhEDEx) [140] project, the CMS
equivalent of the DDM, handles data placement and transfer for CMS. The
data export rates, as required from the CMS Computing TDR [133], from
Tier-0 to Tier-1 centres is 625MB/s and a massive 1GB/s between Tier-1s.
CMS tackled the data transfer problem early and PhEDEx has developed
into mature software. The CMS bookkeeping system uses datasets as an
abstraction to group event collections that would naturally be analysed to-
gether and is the smallest unit visible to end users reducing micromanage-
ment of data. The dataset architecture uses three catalogues:

1. Dataset Bookkeeping System - contains metadata about existing data.
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2. Data Location Service - contains information on where datasets exist.

3. Local file catalog - contains the location of dataset constituents at a
local site.

The Dataset Bookkeeping System (DBS) relates ‘datasets’ to their con-
stituent files. This catalog is analogous to the combined functionality of the
Dataset repository, Dataset selection and Dataset content catalogues used
by DDM. The Data Location Service (DLS) maps file blocks (groups of files
rather than the constituents of a file) to the sites at which they are present
but, does not contain any information about the physical location of files
(PFNs). It can be considered like the Dataset location catalog of the Atlas
DDM. Finally, the Local File catalog maps the constituents of the ‘file block’
to the physical location on the storage element. Within the CMS system
this has been reduced to a ‘trivial file catalog’, using convention, to map
CMS LFNs to PFNs by prepending the SE access information.

The PhEDEx system design uses a network overlay system to describe
the topology of their storage resources and their interconnections, indepen-
dently of the underlying network fabric. Although this approach pre-dated
the development of gLite FTS both adopt the same overlay principle which
resulted in the FTS being adopted by PhEDEx as the underlying transfer
mechanism. With the overlay approach PhEDEx is able to determine, for
each node in their network, a minimum spanning tree, or routing table, to
all other nodes. These minimum spanning trees are effectively static, with
the number of participating sites, but are updated periodically to reflect
problematic network links. The PhEDEx architecture is based on a central
transfer management blackboard where requested tasks are located and dis-
tributed agents request pending work, execute tasks and update status. At
each site, or node in the overlay network, a number of services and agents
are required. The main agents are the Allocator, that assigns files to their
destinations based on the transfer requests, and the File Router which de-
termines the closest replica based on the routing tables. The execution of
the transfers is performed by ‘pulling’ the data to the target. The Download
agent at the destination requests the Export agent at the source to prepare
the source file, to ensure it is available on disk and perform basic integrity
checks. Once available the Download agent executes the transfer.
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1.9 Summary

This chapter has given a historical account of the Grid computing paradigm
from the earliest networking and distributed computing systems, given in
Section 1.2, to contemporary data intensive applications in Section 1.8. The
question of defining the Grid was discussed in Section 1.3 along with a review
of the standards bodies and the architectures they have proposed. It was
argued that the expectation of a Grid is what defines it and different types
of Grids in use were discussed in Section 1.4. It was noted that Data Grids
are the most relevant to this thesis and the requirements and associated
emerging standards to build such a Grid was given in Section 1.5. Section
1.6 gave a summary of projects aiming to build Grid infrastructures and
those developing the middleware to use them. Special attention was paid
to the gLite middleware in Section 1.7 which being used by the four LHC
experiments at CERN and many small collaborations.
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Chapter 2

LHCb: Computing

Requirements and Solutions

This chapter details the computing requirements of the LHCb experiment.
LHCb’s computing activity is composed of a number of logical steps, each
with specific computing requirements and running distinct software appli-
cations. Together these steps represent the chain of LHCb’s workflow and
the data processed and produced at each step creates the logical dataflow.

The resources available to LHCb to perform its computing operations
are located at geographically distributed institutes. The Computing Model
associates each step in the workflow with a resource profile in accordance
with the tiered computing architecture. The Model also states the physical
dataflow to ensure the resilience and availability of the data.

This chapter presents the logical workflow along with the software ap-
plications used at each step. The Computing Model dataflow will also be
described including the resources required.

2.1 Gaudi: Architecture and Framework

The LHCb software strategy follows a stringent architecture approach to
ensure changing requirements can be adopted over the lifetime of the ex-
periment. The architecture aims to define a common set of services and
components with clearly defined interfaces as well as consistent data and
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algorithm handling mechanisms to be used by all event processing applica-
tions. Gaudi [141] implements this architecture, fully respecting the design
principles, as the framework for LHCb’s software applications.

2.1.1 Interface Model

The Gaudi architecture includes a well defined interface model which allows
components to be effectively de-coupled from each other. This approach
allows transparent inclusion of new software or technologies as long as they
offer the same interface. In addition, well defined interfaces for all compo-
nents allows run-time dynamic library loading to be used in the software
applications (both for testing application development code and running
individual physicist’s private code).

2.1.2 Data and Algorithms

An important aspect of the Gaudi architecture is the de-coupling of objects
describing data and the methods for manipulating the data. This approach
runs contrary to common object oriented programming paradigms. Within
the domain of LHCb physics analysis the data structures remain relatively
constant while the algorithms to process these may evolve rapidly. De-
coupling these allows rapid development, testing and deployment of new or
updated algorithms.

The DataObjects are containers for physical quantities which may be ei-
ther persistent or transient. The persistent data objects may be stored using
a variety of underlying technologies which are shielded from the consumer of
the data using transient data stores. Three transient data stores are defined
in Gaudi, based on varying access patterns and lifetime:

• Event - single event data with lifetime corresponding to the time to
process

• Detector - detector behaviour valid for the time to process a series of
events

• Histogram - statistical data produced during event processing

The methods for manipulating data objects are contained in Algorith-
mObjects which evolve more rapidly than the data objects. All algorithms
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offer a standard interface they can be instantiated and executed based on the
requirements of the application and are configured using ‘job options’. Dur-
ing execution the algorithms get access to the data to be processed through
the relevant transient data store.

2.1.3 Services

The service components offer the functionality which is standard and com-
mon for all applications developed in the framework. These services are
instantiated by Gaudi when the application is executed and used as re-
quired. For example the Histogram Service gives access to the Histogram
data store from any algorithm or application.

2.2 Physics Applications

The Gaudi framework allows physics applications specific to particular steps
in the logical workflow to execute in a standard environment. The LHCb
applications (Gauss, Boole, Brunel and DaVinci) are based on the Gaudi
framework. They consume and/or produce data (all of which is conformant
to the LHCb event model). These applications are outlined below.

2.2.1 Gauss

The first step in the simulation of physics data is performed by Gauss [142]
to study the performance and the behaviour of the detector in response to
proton-proton collision events. Within the Gauss application there are two
distinct phases: generator and detector response. The generator phase is
split into two further phases: event generation of proton-proton collisions
using Pythia[143] and B particle decays using EvtGen[144]. The detector
response phase uses Geant4[145] to simulate the detector response to parti-
cles produced by the generator phase.

For use within LHCb the response of Pythia at low energies was tuned
and EvtGen, originally developed by the BaBar collaboration[146], was ex-
tended to include other B particle decays. To use Geant4 in the response
phase the LHCb detector geometry is converted to the Geant4 format and
the output later reformatted to the LHCb Event Model format.
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2.2.2 Boole

The Boole application [147] simulates the detector behaviour using hits gen-
erated by the second phase of the Gauss application. In particular Boole
simulates the performance and digitisation of the read out electronics and the
L0 trigger hardware. In addition Boole can introduce electronics spillover
from the preceding and following beam crossings randomly. The output pro-
duced by Boole is in the same format as real data coming from the detector
after the L0 trigger.

2.2.3 Brunel

The Brunel application [147] reconstructs the digitised output from the
Boole application into tracks, clusters and performs particle identification.
The Brunel application contains a series of independent processing phases:
Reconstruction, Relations and Monitoring. This approach allows the simula-
tion specific processing in the Relations phase, where clusters are associated
to MC particles, to be skipped when processing real data. The Monitoring
phase, which allows sub-detector specific reconstruction performance to be
histogramed, may be executed selectively. This design allows a consistent
set of algorithms and conditions data to be used on both real and simulated
data in the reconstruction phase and provides the tools to investigate the
response of the different sub-detector systems.

2.2.4 DaVinci

The DaVinci application [148] provides the physics analysis framework within
LHCb. The application supports the selection of events based on supplied
criteria, either defined through job options or using supplied user algorithms.
DaVinci is configurable to produce different forms of output: an output file
containing event data selected to be used for later processing or Analysis
Object Data (or Ntuples) files containing physics objects for later processing.

2.3 Logical Workflow and Dataflow

This section outlines the logical dataflow and workflow model for all stages
in the processing of real and simulated events as required by LHCb. The
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nomenclature used for each step of the logical workflow and the data pro-
duced at each step is introduced.

2.3.1 RAW data

The High Level Trigger (HLT) receives data at 1MHz and applies increas-
ingly selective algorithms to reduce the output stream to 2kHz. Each event
contained in the stream is expected to be 25kB corresponding to an out-
put data rate of 50MB/s. The output stream consists of 4 categories of
data; Di-Muon, D* sample, b-inclusive and b-exclusive which are all trans-
ferred to Mass Storage (MSS) at CERN in quasi-real-time. The b-exclusive
sample, produced at 200Hz, is fully reconstructed at the online farm and
the resultant rDST (discussed below) and the ancestor RAW, known as the
hotstream is transferred to MSS. The provision of resources for LHCb com-
puting is based on an effective running period of 1 × 107 seconds per year.
Considering a HLT rate of 2kHz we obtain 2 × 1010 events, which at 25kB
per event gives 500TB of RAW data per year.

The RAW data and the hotstream that are transferred to MSS are read
from the Online Storage System[149] which provides a temporary buffer for
all data output by the HLT. The rate at which data is transferred from the
Online Storage to MSS is:

datarate = RAW + hotstream

= (2kHz ∗ 25kB) + 2 ∗ (200Hz ∗ 25kB)

= 60MB/s

2.3.2 Reconstruction

Once the RAW data has been created, either real or simulated, it is then
‘reconstructed’, using the Brunel application, to provide physical qualities
and particle identification. The reconstructed events, expected to be 25kB,
are written to output files called reduced Data Summary Tapes (rDST). The
reconstruction is performed in pseudo real-time when the RAW data is pro-
duced. This step may be repeated during reprocessing to include improved
reconstruction algorithms, calibration and alignment information.
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The Brunel reconstruction CPU requirement per event is 2.4kSI2k.seconds[135].
To reconstruct the entire RAW event sample from the annual running period
requires 1.5MSI2k.years and produces a further 500TB of data. As men-
tioned above this will be done in quasi-real time during the data taking pe-
riod. In addition, it is expected to completely re-reconstruct the entire sam-
ple (at least) once per data taking period, requiring another 1.5MSI2k.years.
This will take place out-with normal data taking during which the Online
Event Filter (OEF) will be available for 2 months. This provides a power
of 5.4MSI2k, corresponding to 0.9MSI2k.years, and 60% of the required
resources for re-reconstruction with the remainder being provided at LHCb
distributed computing centres.

2.3.3 Stripping

The events stored in the rDST produced at the reconstruction phase are
subjected to pre-selection criteria proposed by physics working groups called
stripping. The events passing this pre-selection, using DaVinci, are fully re-
reconstructed, using Brunel, and have their associated RAW data added
back in to provide all available event information for analysis. It is therefore
required that the stripping activity has access to rDST data files and their
ancestor RAW files. The output from the stripping activity is known as a
full DST. In addition to the DST output an Event Tag Collection (ETC)
is created containing event summary characteristics for a quick event refer-
ence. The stripping activity will be performed in pseudo real-time as the
reconstructed data becomes available and will also be repeated for any re-
processed rDST data. In addition, the stripping may be performed up to
an additional two times per year with improved or additional preselection
algorithms, calibrations and cuts.

The pre-selection step of the stripping process, performed by DaVinci,
is computationally light requiring 0.2kSI2k.seconds[135] per event. For the
entire rDST event sample, the selection requires 0.13MSI2k.years. The pre-
selection reduction factor varies per event stream, as shown in Table 2.1.

In total 2.09x109 events are output. Using the CPU requirement per
event given in Section 2.3.2, the reconstruction step of the stripping requires
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Reconstruction Stripping
Event Stream Events Size (kB) Reduction Events Size (kB)

b-inclusive 9x109 25 100 9x107 100
b-exclusive 2x109 25 10 2x108 100
Dimuon 6x109 25 5 1.2x109 50

D* 3x109 25 5 6x108 50

Table 2.1: Events information per processing step. The output of the re-
construction produces 25kB events for all Event Streams. In the stripping
phase the reduction factor and the size of the resultant stripped events differs
between streams.

a total of 0.16MSI2k.years of CPU. Therefore stripping of the entire rDST
event sample requires a total of 0.29MSI2k.years. The event size of the
stripped events varies with the sample (see Table 2.1), but in total each
stripping pass creates 119TB of output data.

2.3.4 Simulated data

The general performance of the detector will be studied using the large
number of dimuon and D* samples collected during data taking (see Table
2.1). Therefore the simulation strategy is to concentrate on particular chan-
nel decay modes of interest to physics groups. To insure the Monte Carlo
statistical error does not dominate the total error a large sample of signal
(2x109) and b-inclusive (2x109) events are to be produced.

Simulated data is produced from a detailed Monte Carlo model of the
LHCb detector incorporating the best understanding of the response. This
simulated data is produced using chained Gauss and Boole applications to
produce data that is identical in format to the real RAW data from the
HLT, but also includes additional simulated hit and and truth information.
These events are then reconstructed with Brunel. The Gauss step dominates
the CPU requirement with 50kSI2k.seconds per event while Boole consumes
1kSI2k.seconds with the two in total requiring 6.5MSI2k.years to produce
all signal and b-inclusive events. During the simulation of the trigger a
10% reduction factor is included in the design which reduces the number of
events to be reconstructed to be 4x108, but requires an additional CPU of
30.4kSI2k.years.
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The reconstructed MC event size is expected to be 400kB with an ad-
ditional 1kB for tag information. In total the simulation program creates
160TB of output data and requires 6.5MSI2k.years.

2.3.5 Analysis

Physics analysis uses the DSTs produced by the stripping phase. This is
performed using the DaVinci package and produces personal DSTs or Ntu-
ples, used for fitting and to obtain physics results. An estimation of the
number of active physicists along with their possible workload gives an es-
timated annual CPU usage of 0.78MSI2k.years producing 200TB of output
data.

A summary of the computing and storage requirements for each stage of
the LHCb’s computing activity, over the course of a full data taking period,
is given in Table 2.2.

CPU (MSI2k.years) Storage (TB) Events
RAW - 500 2x1010

rDST 1.5 500 2x1010

DST(ETC) 0.3 119 (11.9) 2.09x109

mcDST(ETC) 6.5 160 (0.4) 4x108

User 0.8 200 -
Total 9.0 1491.3 42.5x109

Table 2.2: Resource consumption for each stage of LHCb activity. The CPU
column gives the requirement to produce the data at a given step. The
Storage column gives the storage requirement for the data and the Events
column gives the total number of events at each step.

2.4 Computing Model

The LHCb Computing Model [150] was defined as a result of an iterative pro-
cess to maximise the use of resources available to the collaboration. LHCb
initially requested resources based on the integrated computational and stor-
age requirements, outlined above. The LHCb member states pledged re-
sources to LCG to be located at national Tier-1 and regional Tier-2 centres.
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The pledged resources across all Tier-1 centres matched the requirements
for data processing and analysis. As a result, the role of each Tier of the
Computing Model was determined (see Figure 2.1).

Figure 2.1: LHCb Computing Model Schematic.

2.4.1 Tier-0

CERN takes the role of a Tier-0 center and data warehouse. As the RAW
data is produced at the LHCb detector it is uploaded to the CERN MSS
and archived. The Tier-0 maintains the master copies of all RAW data and
archive copies of all DSTs produced.

2.4.2 Tier-1

In all other respects CERN is considered a Tier-1. The external Tier-1s
are: CNAF (Italy), FZK (Germany), IN2P3 (France), NIKHEF (Nether-
lands), PIC (Spain) and RAL (United Kingdom). To ensure the persistency
of each RAW file it is replicated in quasi real-time to the MSS of one of
these external centres. This creates a distributed replica of the entire RAW
dataset. This data is reconstructed, according to pledged computing re-
sources, where the resulting rDST is archived at the Tier-1 where it was

36



produced and subsequently stripped. The output of stripping step is a DST
file which is maintained on disk and tape at the local MSS. To ensure high
data availability for analysis, DST files are replicated to all Tier-1 centres
where they are maintained on disk. The user analysis activity, making use
of the DST files, is performed at all Tier-1s.

2.4.3 Tier-2

The current computational requirements of the reconstruction, stripping and
analysis activities match that of the Tier-1 pledged resources. Therefore the
simulation activity required is performed at the Tier-2 centres. The data
produced at these sites is uploaded to the associated Tier-1 (based primarily
on national affiliation), CERN and two other Tier-1 centres.

2.5 2009 Resource Requirements

The total resources to perform the computing activities of LHCb have been
given in the previous section. The LHC is expected to provide 14TeV proton-
proton collisions for the first time in 2009. The resources pledged at each
site for LHCb activity during 2009 (retrieved from [151]) provide the basis
for the calculation of the site specific requirements of LHCb’s activity.

The 2009 resources provided for LHCb at the Tier-1 sites is shown in
Table 2.3. The total computing resource available is 6.1MSI2k, the aggre-
gated tape and disk storage resources (not including the 0.5PB required
to store the entire RAW dataset stored at CERN) is 5.0PB and 3.7PB re-
spectively. The ratio of CPU, disk and tape is approximately equal across
external Tier-1 sites with tape pledges exceeding disk pledges by a factor
1.1 and CPU to disk ratio (kSI2k/TB) of approximately 1.8. These ratios
are constant across the external Tier-1s as the Computing Model links the
ability to process data with the ability to store the output. As the Tier-0
center CERN has a tape copy of all RAW files and a tape and disk copy of
all Monte Carlo DSTs which increases the ratio of required storage to CPU.

In the following sections the network rates required while performing the
real-time data taking, re-processing, re-stripping and Monte Carlo genera-
tion will be presented. These rates are derived from the pledged resources
at each site and the overall requirements for the LHCb computing activity.
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CPU(kSI2k) %pledged %-CERN Disk(TB) Tape(TB)
CERN 1056 17.3 - 991 1770
CNAF 583 9.5 11.5 253 286

GRIDKA 812 13.3 16.1 460 512
IN2P3 1342 22.0 26.6 745 829

NIKHEF 1277 20.9 25.3 666 986
PIC 307 5.02 6.1 170 189
RAL 733 12.0 14.5 415 462
Total 6110 - - 3700 5034

Table 2.3: 2009 Pledged Computing and Tape Resources by Tier-1.

2.5.1 Data Taking

Tier-0 resources

During data taking the 500TB of RAW data produced is archived on tape
at the Tier-0. Network resources of 60MB/s are required into MSS from
the LHCb DAQ and 50MB/s required to export the RAW dataset to the
external Tier-1 sites.

Tier-1 resources

The Computing model requires that a distributed copy of the RAW data
is present at the external Tier-1s. The share of the data that each site
receives is based on the percentage of CPU pledged (ignoring the CERN
contribution). This share is given in Table 2.3. The network rates required
to transfer this data, which is proportional to the pledged CPU, is shown in
Figure 2.2.

The pledge of CPU across all Tier-1s (including CERN) is used to de-
termine what percentage of the RAW data is reconstructed at each site
(given in Table 2.3). After the reconstruction step has completed, the strip-
ping step is performed, producing DSTs.1 The share of the data produced at
each site, this time including the CERN contribution, is shown in Figure 2.3.

The DST produced by the stripping phase is uploaded to MSS of the
Tier-1 where it was produced and remains available on disk. The rate at

1During data taking the quasi real-time reconstruction and stripping activities consume
1.5MSI2k.years and 0.29MSI2k.years respectively.
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Figure 2.2: Network rate into the Tier-1 sites for RAW data (MB/s).

which DSTs are produced at each Tier-1 is given in Table 2.4. Each DST
produced must be replicated to all other Tier-1s resulting in an outbound
and inbound network traffic for each site. The rate at which the DSTs are
produced derives from the pledged CPU at the site.

2.5.2 Re-processing Requirements

Re-processing of the entire RAW data set is performed once a year, dur-
ing the LHC maintenance period. During this exercise the RAW data is
re-reconstructed and stripping performed on the resulting rDSTs. This pro-
duces 500TB of rDST, 119TB of DST and 20TB of TAG.

Tier-0 resources

During the LHC maintenance the LHCb Online Event Filter (OEF) is avail-
able and provides 5.4MSI2k for the 2 month period2. The RAW data files

2Assumed to be 5.18x106s
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(a) rDST (b) DST

Figure 2.3: 2009 Tier-1 Data Produced (TB).

Produced Outbound Inbound
CERN 2.1 12.3 9.8
CNAF 1.1 6.8 10.8

GRIDKA 1.6 9.5 10.3
IN2P3 2.6 15.7 9.3

NIKHEF 2.5 14.9 9.4
PIC 0.6 3.6 11.3
RAL 1.4 8.6 10.5

Table 2.4: Network rates associated to the production of DSTs during data
taking (MB/s).

to be analysed at the OEF (42% share of the 500TB) must be transferred
from the Tier-0 MSS to the online storage. This requires a sustained rate
of 40.5MB/s throughout the period of the exercise. The 210TB of rDST
and 58.4TB of DST/TAG produced at the OEF must be transferred back
to CERN MSS. This requires a sustained rate of 50.1MB/s during the re-
processing period.

Tier-1 resources

The remaining 7.4MSI2k required for the re-processing is obtained from the
Tier-1s. The pledge of CPU share determines how much is analysed at each
site. A portion (82.7%) of rDSTs produced at the OEF must be moved
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from CERN to the Tier-1 centres. This requires an additional 33.5MB/s
out of CERN to the Tier-1s. All of the DSTs produced must be replicated
to all Tier-1 centres, adding significant network requirements out of CERN
to support the transfer of DSTs produced at the OEF.

The breakdown of rates at which rDSTs and DSTs are transferred is
given in Table 2.5.

rDST(out) rDST(in) DST(write) DST(out) DST(in)
Online 40.5 - 9.6 - -
CERN 33.5 40.5 1.7 67.8 11.7
CNAF - 3.9 1.5 9.1 21.4

GRIDKA - 5.4 1.4 8.8 21.5
IN2P3 - 8.9 2.2 13.3 20.7

NIKHEF - 8.5 4.7 28.0 18.3
PIC - 2.0 0.8 4.6 22.2
RAL - 4.9 1.1 6.4 21.9

Table 2.5: 2009 re-processing data rates for transferring rDST and DST
data (MB/s).

2.5.3 Re-stripping Requirements

Two periods of re-stripping are performed during the data taking period
and run concurrently with real-time data taking. Each of these strippings is
expected to be carried out over a month3 and produce 119TB of DST and
20TB of TAG. The short period of this exercise implies significant network
resources to be available between the Tier-1s, shown in Table 2.6.

2.5.4 Simulation Requirements

The Monte Carlo production takes place throughout the entire year4 and
produces 160TB of DSTs. These DSTs are produced at Tier-2 sites and
uploaded to the associated Tier-1. To create a distributed copy each DST
is also uploaded to archive storage at Tier-0 and on disk at another two
Tier-1s. This implies a modest site transfer rate, given in Table 2.7.

3Assumed to be 2.59x106s
4Assumed to be 31.5x106
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DST(write) DST(out) DST(in)
CERN 7.9 47.7 38.0
CNAF 4.4 26.3 41.6

GRIDKA 6.1 36.6 39.8
IN2P3 10.1 60.6 35.9

NIKHEF 9.6 57.6 36.3
PIC 2.3 13.9 43.6
RAL 5.5 33.1 40.4

Table 2.6: 2009 re-stripping data rates for transferring DST data (MB/s).

In from Tier-2 Out to Tier-1 In from Tier-1
CERN 0.88 2.63 4.20
CNAF 048 1.45 1.21

GRIDKA 0.68 2.03 1.02
IN2P3 1.12 3.35 0.58

NIKHEF 1.06 3.18 0.63
PIC 0.26 0.77 1.44
RAL 0.61 1.83 1.08

Table 2.7: 2009 Simulation network requirements (MB/s).

2.5.5 Aggregate 2009 Resource Requirements

The first full year of data taking beginning in 2009 may yield 500TB of
RAW data and 1000TB of rDST from two periods of reconstruction. Over
4 periods of stripping 476TB of DSTs will be produced with 80TB of asso-
ciated TAG. Over the entire year the simulation program will create 160TB
of DSTs. Peak network rates will be seen during re-stripping periods where
the network rates accumulate the following activities:

• RAW data transfer from CERN to external Tier-1s

• Distribution of DSTs from quasi-real time processing to all Tier-1s

• Distribution of the DSTs from re-stripping to all Tier-1s

• Distribution of the Monte Carlo DSTs to three Tier-1s

A summary of the peak network rates during the re-stripping period is
given in Table 2.8. During this time the network resources out of CERN
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will be greater than 110MB/s. In addition, significant network rates out
of IN2P3 and NIKHEF are required. The required rate of data import is
approximately constant across the sites and is around 60MB/s.

In from Tier-[0-1] Out to Tier-1
CERN 52.9 112.6
CNAF 59.8 34.6

GRIDKA 59.9 48.1
IN2P3 60.1 79.6

NIKHEF 60.1 75.7
PIC 59.7 18.2
RAL 59.9 43.5
Total 412.3 412.3

Table 2.8: Total required network rates during re-stripping exercise for each
site (MB/s). The aggregate total network rate is 412.3MB/s in and out.

2.6 Accumulated Data

The previous section outlined the resources required in 2009 while perform-
ing LHCb’s computing activities. This section will provide a summary of
the cumulative storage resources required from 2009 until 2011.

2.6.1 Tape

The tape resources required at Tier-0 and the external Tier-1s is given in
Figure 2.4.

As the Tier-0 center, CERN maintains a tape copy of all data generated.
This is cumulative over subsequent years. The activities performed in 2010
are the same as those performed in 2009 with the additional requirement of
reconstructing the 2009 stripped DSTs. This produces an additional 139TB
of DST/TAG over the previous year and must be archived at CERN. In
addition, a distributed archived copy should be spread across the Tier-1s.
The 2011 requirements are the same as those of 2010 with the additional
requirement of reconstructing the 2010 stripped DSTs. Each subsequent
year the amount of new data produced is the same as the previous year plus
139TB, required to reconstruct the stripped DSTs of the previous year.
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(a) CERN (b) External Tier-1s

Figure 2.4: Tier-0 and Tier-1 Tape Resources 2009 - 2011.

2.6.2 Disk

The requirement for retaining data on disk is not cumulative for all data,
see Figure 2.5. The hotstream RAW and rDST, introduced in Section 2.3.1,
retained on disk at Tier-0 is replaced as new data becomes available. The
required space for this data is 136TB for RAW and rDST. The simulated
DSTs, stored on disk at CERN with three distributed copies at Tier-1s, are
similarly replaced as new data is generated.

The most recent DSTs from real data, along with the next latest version
of the B stream are always kept on disk at all the sites. The most recent
DSTs from all previous years data taking are also stored on disk at all sites.
The cumulative disk resources are mostly from this requirement.

(a) CERN (b) External Tier-1s

Figure 2.5: Tier-0 and Tier-1 Disk Resources 2009 - 2011.
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2.7 Summary

This chapter introduced the computing requirements of LHCb. The physics
applications used by LHCb are based on the Gaudi framework which imple-
ments the Gaudi architecture. This allows common services and tools to be
shared and new components to be easily adopted. The logical workflow and
dataflow to perform LHCb’s computing activities was discussed and seen to
consist of three major activities: reconstruction, stripping and simulation.
The LHCb Computing Model assigns specific roles to each of the tiers in
the MONARC model, performing all data processing activities at Tier-1
centres and with Tier-2 centres the mainstay of simulation. The resources
pledged to LHCb for 2009 were presented and from these the networking
rates expected during each of the computing activities was derived. Finally
the storage requirement for the first three years of data showed cumulative
disk and tape resources of several petabytes.
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Chapter 3

DIRAC: A Community Grid

Solution

The Distributed Infrastructure with Remote Agent Control (DIRAC) is a
grid system that supports all aspects of the LHCb Computing Model. This
chapter will present a brief history of DIRAC from a Monte Carlo generation
system to its most recent incarnation as a complete grid solution. The design
principles and architecture adopted by DIRAC will be discussed in Sections
3.2 and 3.3. The DIRAC Workload, Data and Production Management
systems, that provide the functionality to support the LHCb Computing
Model, and build upon a common DIRAC framework will be presented in
Section 3.4. Finally, the advantages of a using a single system to support
the computing activities of a single community are given in Section 3.5.

3.1 Brief History

The DIRAC project began in 2002 with the aim of performing Monte Carlo
production for LHCb physics community with distributed daemons pulling
configuration parameters and workload descriptions from a central database [152],
much like the FAFNER project. The success of this exercise provided the
motivation for a new generic grid system interoperable with the emerging
OGSA standards. As the EDG project was ending and the middleware ar-
chitecture for the gLite project to replace it was also being proposed. The
Architecture Road-map for Distributed Analysis Requirement Technical As-
sessment Group (ARDA-RTAG) produced a report [153], with input from
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the four LHC experiments, that proposed a de-coupled and modular archi-
tecture leveraging experience gained by the experiments. It was foreseen
that DIRAC (in addition to AliEn) would contribute their developments al-
lowing LHCb to integrate their systems with gLite. Instead, gLite chose to
develop a Service Oriented Architecture, resulting in the experiments pro-
viding overlay systems to support their computing models.

During 2004 LHCb conducted a physics data challenge (DC04) [154] us-
ing an updated version of DIRAC [155] from that used during 2003. Two
classes of resources were used for this exercise, firstly those provided by the
(newly introduced) LCG and those pledged to LHCb directly from univer-
sity groups and managed by DIRAC. This exercise was the first successful
demonstration of a heavy workload supported by LCG. In 2005 the DIRAC
Review was conducted producing a set of recommendations [156] for the
continued development of DIRAC. During 2006, and continuing into 2007, a
Data Challenge (DC06) [157] was performed to produce data for the LHCb
physics book. DC06 exercised many aspects of the Computing Model, mak-
ing use of significantly expanded resources available in LCG. Monte Carlo
production activity was conducted at Tier-2 sites, data transfer from Tier-0
to Tier-1 [158] and reconstruction and stripping of data at the Tier-1s. By
the end of DC06 DIRAC [159] has matured to include production manage-
ment capabilities [160], as well as a workload management system capable of
supporting large production activities and user analysis [161, 162] all built
on a secure service framework [163].

After most of the DC06 exercise was complete the energy of the DIRAC
team was directed towards the implementation of the DIRAC Review rec-
ommendations. Instead of incrementally evolving DIRAC, the decision was
taken to meet the recommendations building all components freshly upon
the updated secure framework. The product of these developments is DIRAC3.

3.2 DIRAC Design Principles

The DIRAC3 system was primarily designed to support all aspects of the
LHCb Computing Model. One of the core philosophies within the develop-
ment program was to keep the system generic, adopting a pluggable archi-
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tecture to support specific LHCb policies. This design principle was taken
with the assumption that all future use-cases could not be foreseen and that
they should be easily supported, whether from LHCb, or any other commu-
nity. Another core principle was to ensure that DIRAC provides all the ser-
vices required to perform distributed computing on heterogeneous resources.
Therefore, DIRAC can be used as an overlay network on top of existing mid-
dleware (for example gLite) or in a standalone environment. The adoption
of the pluggable architecture also allows an overlay network to be converted
into standalone environment (and vice versa) with no development required.

The programming language used throughout the lifetime of DIRAC
is Python. This language was chosen because it is lightweight, portable
and freely available for many computing platforms. Similarly, DIRAC it-
self is lightweight and portable with few external dependencies and can be
used with many operating systems and architectures, even Microsoft Win-
dows [164]. The term lightweight is relevant in terms of the code base itself,
but also in the context of resource management. To maximise the resources
available to LHCb the threshold for participation in the computing activities
of DIRAC is low. When running within existing grid infrastructures (such
as gLite) DIRAC requires no additional services to be installed at a site. In
a completely standalone environment a computing resource, such as a uni-
versity computing cluster, can be integrated by allowing DIRAC to query
the underlying batch system. Where remote access to the batch system is
unavailable, only a single DIRAC agent needs to be installed with access to
the batch system client.

A key lesson learned over the lifetime of DIRAC is that utilising comput-
ing and storage resources in a distributed environment is not deterministic.
The first DIRAC versions adopted a pull scheduling paradigm, to be dis-
cussed in more detail in Section 3.4.2. This allowed DIRAC to mitigate
instabilities in the underlying computing resources by only attempting to
perform tasks in a sane execution environment. This philosophically scep-
tical approach results in a more stable system at the level of end users who
are shielded from the underlying instability. This approach has infused all
levels of DIRAC with redundancy. Rather than attempting to predict all
possible future sources of failure DIRAC aims to provide the mechanisms to
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recover. With this approach DIRAC has evolved into a flexible and resilient
system.

3.3 DIRAC Architecture

DIRAC implements a Services Oriented Architecture (SOA) decomposing
functionality into 4 broad categories: Resources, Agents, Services and In-
terfaces.

Resources in the DIRAC context corresponds to the underlying com-
puting and storage available to DIRAC. In a standalone environment this
maps to the fabric layer resources. DIRAC supports many common batch
systems through a plugin mechanism that translates standard interface to
the specific relevant commands. Similarly, in the data domain, with no grid
services available, various common transfer protocols are supported. Where
no transfer protocols are supported by the underlying resource DIRAC can
overlay a mounted file system through a simple Storage Element service. In
a grid overlay configuration DIRAC has been instrumented to submit jobs
directly to standards-based computing elements and resource brokers.

Agent Agent Agent

Services

Resources Storage 
Element

Computing 
Element

Resource 
Broker

Production 
Management

Data 
Management

Workload
Management

Figure 3.1: Interaction Of DIRAC Services, Agents and Resources.

The Resources described above are passive awaiting invocation. The
primary consumer of Resources are DIRAC Agents which are active com-
ponents that perform a specific function within the system. Agents also
interact with DIRAC Services that perform operations on request. The in-
teraction between DIRAC Services, Agents and Resources is shown in Figure
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3.1. DIRAC services can be stateless or stateful, with state usually main-
tained in database backend1. While agents may be deployed anywhere in
the distributed environment services are centrally managed in a controlled
environment. Each service offers a client interface used by agents while
performing their activity. These clients are also used by DIRAC Interfaces
which give end users access to the system through programmable Python
APIs or the Web.

3.4 DIRAC Systems

The architecture of agents interacting with resources and services provides a
flexible and extensible approach. Each DIRAC system groups services and
agents to provide a set of required functionalities. The important systems
are the Workload Management system, the Data Management system and
the Production Management system. These systems all build on the DIRAC
Framework which provides a common execution environment and a set of
tools for all components allowing rapid application level development.

3.4.1 Framework

At the core of the DIRAC framework is the DIRAC SEcure Transport
(DISET) [163, 165] layer. DISET provides the secure communication be-
tween DIRAC services and clients using OpenSSL to perform authentication
and encryption using X509 certificates. The DISET protocol provides Re-
mote Procedure Call (RPC) functionality, embedded into DIRAC services
and clients, which supports user and group level authorisation capabilities.
DISET also provides file transfer capabilities with bulk support for directory
transfer. A schematic of the DISET architecture is given in Figure 3.2.

DISET is the lowest layer in the DIRAC software stack. On top of this,
the framework provides a set of utilities commonly required in application
programming environments. Every DIRAC component has access to these
tools, that may be referenced from any level in the code. Of primary im-
portance is Configuration which must be retrieved by any executing DIRAC

1The database backend is usually MySQL with Oracle supported for DIRAC Book-
keeping Service.
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Figure 3.2: DISET Layered Architecture.

component to obtain timely data regarding resources or for service discov-
ery. To ensure the availability and resilience of the configuration data the
Configuration Services (CS) are organised in a hierarchical structure with a
single master with multiple slaves. The geographically distributed slaves are
synchronised automatically with the master CS and provide the necessary
redundancy to ensure 100% availability of the configuration data to DIRAC
services and agents.

The remaining three utilities are a global Logging service that allows
applications to send logging messages of varying status to standard output
or to a remote service, the Monitoring service which allows clients to send
periodic messages regarding the current state of the component and the
Accounting service which allows complex metrics to be formulated and later
reviewed. To further aid the development of application services and agents,
these tools are built into a set of base classes that provide a fully configurable
and secure execution environment [166].

51



3.4.2 Workload Management

The Workload Management System is the raison d’être for DIRAC. It de-
livers capabilities to clients to submit and monitor computation jobs and to
retrieve their output. To deliver increased stability DIRAC employs a series
of mechanisms to shield users from the transient failures on the grid. To
facilitate increased stability the job in the DIRAC context is separated from
the task executed on the underlying resource. This allows multiple tasks to
be executed on behalf of a single DIRAC job, thus diminishing the role of
transient errors.

The first mechanism to provide increased stability is that of shallow
rescheduling, whereby jobs which failed with transient errors are automati-
cally retried by the system.

The most important mechanism for delivering stability is the adoption of
pull scheduling. Pull scheduling assumes the execution environment found
on distributed computing resources may not be standard or consistent. Only
tasks with requirements matching those available on the worker node should
be considered for execution. This late binding also allows DIRAC to apply
scheduling decisions based on priorities with significantly reduced latency
since the decision on which job to execute is made when the resource is
already available. To achieve this DIRAC uses light agents, or Pilot Jobs,
which are sent to the underlying computing resource to check the execution
environment and then request an eligible job from DIRAC. In the case of
the WLCG grid, Pilot Jobs are sent as regular jobs not requiring any special
treatment. Typically, pilot agents are executed within a batch system with
an allocated CPU and wall clock time limit. Where DIRAC is available to
optimise the use of a batch slot, multiple jobs may be run within the time
limits thereby increasing their usage efficiency [161, 167].

The Workload Management system is composed of four major services
and a series of agents that together facilitate a pull scheduling architecture.
This is shown in Figure 3.3.
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Figure 3.3: DIRAC Workload Management System Architecture.

Services

The Job Manager service is the entry point for clients and allows the sub-
mission of jobs to DIRAC. The DIRAC API provides a client side wrapper
to allow users to formulate their tasks in a programatic way. These are
translated into Job Description Language (JDL) format and are provided
in a RPC connection to the Job Manager. The Job Manager is responsible
for creating a new entry in the database backend describing completely the
requirements of the job and the identity and group of the job owner. The
DIRAC API also allows users to specify input sandbox files to be used during
job execution which are uploaded to the Sandbox service2.

A newly entered job is treated by a series of agents, to be discussed in
Section 3.4.2, and is placed in a task queue grouping jobs with the same re-
quirements. This job is then eligible to be matched to Pilot Jobs reporting
back to the Matcher service. The Matcher translates the resource capabili-
ties reported by the Pilot Job into a list of eligible task queues and selects a
task queue and job based on the priorities assigned to each. The job JDL is
then returned to the pilot agent which then executes the payload described.

2The Sandbox service is deployed as two distinct services to deal with input and output
sandboxes
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During execution the job periodically reports back heartbeat and progress
information to the Job State Update service to ensure that the job is exe-
cuting as planned. Once the task has completed, the Pilot Job may check
the time remaining in the batch slot and attempt to match a new job with
the updated CPU limit requirement.

Agents

As mentioned above DIRAC logically splits a DIRAC job from the Pilot
Job that may eventually execute it. In this respect two broad categories of
agents exist in the Workload Management system: those involved with job
scheduling and those involved with Pilot Job management. The agents on
the left of Figure 3.3 manage job scheduling and those on the right manage
Pilot Jobs.

Once a job is received by the Job Manager it must be treated by a series
of agents before being assigned to a task queue. Each agent performs a
specific and de-coupled action in the scheduling process of each job. The re-
quirements of each job determine which of these agents needs to be applied
before making the final scheduling decision. The Job Path agent deter-
mines which subsequent steps are to be performed, assigning each job a path
through the agents, to ensure all relevant information is available for mak-
ing the scheduling decision. This design allows new steps to be added and
policies to be modified without significant development. The most common
examples of these agents are given here.

The Job Sanity agent performs a check of all of the provided requirements
to ensure that the job can execute successfully. This ranges from ensuring
that any input sandbox files are correctly uploaded and available, checking
the input data is correctly specified or that any specified output data does
not already exist. This step removes any jobs that a priori would fail from
being attempted. The Input Data agent is invoked when input data is sup-
plied in the job description and provides a key example of the advantages
of a flexible scheduling process. This agent retrieves the replica information
for the supplied files and persists this information in the database. The Job
Scheduling agent collects all the information gathered during the previous
steps and selects the sites at which the job is eligible to be executed. Fi-
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nally, once the eligible sites have been assigned the job is assigned to the
task queues supporting all of the job requirements.

The management of Pilot Jobs is performed by two agents: the Pilot
Director and the Pilot Monitor. The Director evaluates the task queues,
their requirements the number of jobs and their priorities to determine the
number of Pilot Jobs to be submitted. These Pilot Jobs can be submitted
to a grid resource broker or directly to a computing element and are given
requirements matching those of the task queue. This ensures that only
resources capable to execute the workload are reserved. The Pilot Monitor
checks the status of the submitted Pilot Jobs to ensure that too many or too
few Pilots are not submitted for the workload present in the task queues.
Failed Pilot Jobs are replaced by newly submitted ones recovering the grid
job inefficiencies.

3.4.3 Production Management

The Workload Management system provides users the ability to run their
jobs with an increased level of stability and performance. In addition to the
ability for running individual jobs the LHCb Computing Model prescribes
the need for large, centrally managed production to generate Monte Carlo
data and to process RAW physics data produced at the LHCb detector. The
Production Management system is built on top of the Workload Manage-
ment system creating and submitting jobs to fulfil production requests.

The Production Manager server offers a service interface to allow the
definition of production requests to be stored in the database backend. Each
production is defined by a Workflow that describes:

• The applications to be run and their configuration

• The data to be produced and the destination location

• Any input data requirements

When a Data Processing type production is defined any input data speci-
fied is retrieved, from the LHCb Bookkeeping, and the input files are placed
in a dedicated table in the database. As new files are produced they are
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registered in the Production Manager service and assigned to productions
with matching input data requirements.
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Figure 3.4: DIRAC Production Management System Architecture.

The Transformation Agent periodically polls for active productions from
the Production Manager. For Monte Carlo productions the agent creates
jobs to meet the number specified in the production definition, correspond-
ing to the number of events requested. For Processing productions the agent
groups candidate input files according to their location and creates jobs to
process a given number of input files, as defined in the production. These
jobs are created and stored in the database backend such that they can be
submitted to the Workload Management system asynchronously by the Pro-
duction Job agent. The architecture of the Production Management system
is shown in Figure 3.4.

The Production Management system supports the Computing Model
in a data driven and coordinated way. The real-time reconstruction and
stripping of RAW physics data can be performed as RAW data becomes
available and is registered in the Production Manager. The existence of
the RAW files will produce a reconstruction job, which in turn will create
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a rDST file, which will trigger the creation of a stripping job. Therefore,
two production definitions are required to manage the real-time processing
of LHCb data. As the jobs generated from these productions complete the
input data is marked as processed in the Production Manager, while failed
jobs may mark their input data such that they may be used to create a fresh
job.

3.4.4 Data Management

The Data Management system is responsible for file transfer and cataloguing
of all of LHCb data according to the LHCb Computing Model. The respon-
sibilities of the data management system start with the files written at the
Online system that must be reliably uploaded to mass storage at CERN.
It ensures that the data flows described by the computing model, between
the LHCb computing centres, are performed. Finally, it manages the data
produced using DIRAC by all production and user activities. The DIRAC
Data Management system will be discussed fully in Chapter 4.

3.5 The Advantages of a Community Solution

DIRAC has attempted to provide all the software necessary for a community
to perform distributed computing. The systems that constitute DIRAC are
logically separated and can be used independently of each other. Together
they provide a complete grid solution. Grid computing projects undertaken
within the particle physics community, like those discussed in Section 1.8.3,
have concentrated on supporting specific activities within experiment com-
puting models. The experiment computing models require end-to-end data
processing and data transfer. The specialised systems, that support specific
parts of these activities, must be coupled with their counterparts to achieve
this. Building on a single common framework, that provides a secure ap-
plication environment, allows rapid development of the functional code and
provides implicit communication between the systems.

A combined solution also allows a community to manage their computing
resources in a consistent way. For example, the DIRAC workload manage-
ment system allows the submission of production and user type jobs which
have different resource usage patterns. In addition, the production and user
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activities have varying priorities per production and per user (perhaps down
to the level of individual jobs). A workload management system that sup-
ports all community activities allows priorities and fair-share to be easily
applied, managed and updated as use-cases evolve. This places the manage-
ment of the available resources in the hands of the community. Community
policy may also be applied to transfer activities where data required by ur-
gent productions can be replicated across available storage elements, with
priority, to increase data availability and processing throughput.
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Chapter 4

DIRAC Data Management

Design

The previous chapter discussed the DIRAC architecture, the design princi-
ples and the components that make up the Workload and Production Man-
agement systems. This chapter will present the DIRAC Data Management
System and the design choices made.

The components that form the core of the data management system will
be described in Section 4.1. These are the basic tools on which the remainder
of the functionality is built. The bulk transfer framework, which supports
all data replication activity within LHCb will be described in Section 4.2
and the mechanism for supporting the coordinated dataflow outlined by
the Computing Model is described in Section 4.3. Ensuring the integrity
of LHCb’s data is vital and the tools designed to maintain the consistency
of the DIRAC resources is given in Section 4.4. Finally, the architecture
of the system for managing logical datasets within LHCb is presented in
Section 4.5.

4.1 Core Data Management Components

The DIRAC architecture consists of Resources, Services, Agents and Inter-
faces. The core Resources used by the DIRAC Data Management system
are grid storage elements (SE) and file catalogues. To support the use of
these resources a Storage Element and a File Catalog abstraction layer have
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been employed. These functionalities are combined by the Replica Manager
to perform simple file management on the grid. The Storage Element, File
Catalog and the Replica Manager will be discussed in the following sections.
When file management operations fail, because of transient resource level er-
rors, a mechanism for persisting and retying the operations asynchronously
is presented.

4.1.1 Storage Element

The DIRAC Storage Element is an abstraction layer used to mask underly-
ing storage technologies and protocols. Primarily, it is used to perform the
upload, download and replication of files and directories to/from grid SEs.
In addition, it offers the ability to obtain file and directory metadata and to
perform file manipulation (pre-stage, removal etc.)

To support a variety of standard and proprietary protocols, the Storage
Element adopts a plugin architecture, whereby each protocol supported by
DIRAC has an associated plugin, implementing a standard interface. These
may be used interchangeably within the Storage Element. This design allows
new protocols to be adopted without significant development. A Unified
Modelling Language (UML) class diagram of the Storage Element is shown
in Figure 4.1.

invokesStorage Element Configuration Client

....

RFIOStorage
DCAPStorage

SRM2Storage

IStorageBase

Storage Factory

Figure 4.1: Storage Element Class Diagram.

When creating a DIRAC Storage Element a name must be supplied
which references an entry contained in the DIRAC Configuration Service
(CS). This name is provided to the Storage Factory to create storage plugin
objects (e.g. SRM2Storage), based on the connection details found in the
configuration. These plugin objects are then returned to and persisted by
the Storage Element. When operations are performed, each of the storage
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plugins is attempted in turn until the operation is successful. The order
of preference in which they are executed is based on the configuration, i.e.
‘AccessProtocol.1’ is attempted before ‘AccessProtocol.2’. This adds to the
resilience of the Storage Element.

An example configuration, describing the SE at CERN for storing LHCb’s
RAW data, is given below. For this SE there are two protocols supported,
SRM2 and RFIO.

CERN-RAW
{
BackendType = Castor2
AccessProtocol.1
{
Access = remote
ProtocolName = SRM2
Protocol = srm
Host = srm-lhcb.cern.ch
Port = 8443
WSUrl = /srm/managerv2?SFN=
Path = /castor/cern.ch/grid
SpaceToken = LHCb_RAW

}
AccessProtocol.2
{
Access = local
ProtocolName = RFIO
Protocol = castor
Host = castorlhcb
Port = 9002
Path = /castor/cern.ch/grid
SpaceToken = lhcbraw

}
}

There are two mandatory elements of the protocol configuration for Stor-
age Factory to instantiate plugin objects. The ‘ProtocolName’ element is
used to locate the plugin to be instantiated. The ‘Access’ element allows
Storage Element to know whether a protocol must must be used locally or
whether it may also be used remotely. This distinction is required as SEs
may block certain protocol use from off-site for security reasons. In the
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example above, SRM2 is a ‘remote’ protocol while RFIO is ‘local’. When
performing an operation, the Storage Element object first determines the
location in which it has been invoked and its relation to the underlying grid
SE, based on the DIRAC configuration, to evaluate which protocols are suit-
able for use.

The remaining elements in each protocol configuration are the connec-
tion elements. The number of elements required may vary between plugins
as they are used to construct the URLs understood by the protocol libraries
e.g. the SRM2 plugin requires 6 connection elements to construct the URL
while the RFIO plugin requires only 5 (the File plugin, not shown above,
requires only 2).

During the WLCG workshop in Mumbai 2006 [168], the LHC experi-
ments agreed that the interface to grid SEs used in LCG should be SRM
(the evolution of which is discussed in Appendix A). The SRM protocol is
a control protocol with the aim of providing transparent access to disparate
SE implementations. For this reason, SRM2 is the primary storage plugin
used by the Storage Element. The SRM2 plugin uses the GFAL Python
binding to contact SRM services and lcgutils to perform file transfer. The
performance of the LHCb SRMs using the GFAL client is presented in Sec-
tion 5.2.

4.1.2 File Catalog

The DIRAC File Catalog, like the Storage Element, is an abstraction layer,
used to maintain a single point of access to different replica and metadata
catalogues. It adopts a plugin architecture, similar to that of Storage Ele-
ment, to allow the support of new catalogues as requirements dictate. The
philosophy of File Catalog differs from Storage Element in that each opera-
tion should be carried out on all available catalog plugins to maintain their
mutual consistency. The plugin architecture relies on each plugin realising
a File Catalog interface. A UML class diagram of File Catalog is shown in
Figure 4.2.

When a File Catalog object is created it searches the DIRAC config-
uration to obtain the current list of known catalogues. An example con-
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LcgFileCatalogCombined

LcgFileCatalogClient

ProductionDB
PlacementDB

LHCbBK IFileCatalog

Figure 4.2: File Catalog Class Diagram.

figuration slice, containing two catalogues, ‘LcgFileCatalogCombined’ and
‘ProductionDB’, is shown below.

FileCatalogs
{
LcgFileCatalogCombined
{
Status = Active
AccessType = Read-Write
Master = True
LcgGfalInfosys = lcg-bdii.cern.ch:2170
MasterHost = lfc-lhcb.cern.ch
ReadOnlyHosts = lfc-lhcb-ro.cern.ch

}
ProductionDB
{
Status = InActive
AccessType = Write
Master = False

}
}

The catalog name is used to locate the catalog plugin to be instantiated.
For each catalog there are two mandatory and one optional configuration
elements. The mandatory elements are:

• Status - whether or not a catalogue is ‘Active’

• AccessType - whether a catalogue is ‘Read’, ‘Write’ or ‘Read-Write’
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The ‘Master’ element is optional and allows the File Catalog to deter-
mine which catalog to consider as primary. Within LHCb the LFC contents
are assumed to be primary and correct. Therefore, if registration in the LFC
does not succeed no other registration operations should be performed.

The File Catalog separates the read and write catalogues based on the
‘AccessType’ configuration element. File Catalog acts as a simple dis-
patcher, directing queries to ‘Read’ catalogues and registration/removals
to ‘Write’ catalogues. This separation is performed as read and write op-
erations have a fundamental difference: ‘Write’ operations should be per-
formed on all catalogues to ensure mutual consistency while ‘Read’ opera-
tions should only be directed to catalogues for which the operation is sane.

LCG File Catalog

The LCG File Catalog (LFC), described in Section 1.7.4, is the primary
catalog of LHCb. The LFC is used as a replica catalog to store the DIRAC
SE names and PFNs for each replica associated to registered LFNs1. In
addition to replica information, the LFC is used to store file metadata (size,
GUID, checksum, status) and replica metadata (status). The most con-
sumed LFC information is the replica information, used for job scheduling,
data upload and replication. As described in Section 1.8.3, other grid Data
Management systems have chosen an architecture with distributed ‘site-
specific’ catalogues due to the volume of data being managed. In compar-
ison, DIRAC manages a smaller data volume and has a single, centralised
catalogue containing all managed files. This approach has shown to be scal-
able to the current level of O(10M) replicas and has several advantages. A
single central catalogue simplifies the operations required to obtain replica
information and reduces the number of components required to be opera-
tional. The centralised architecture employed by DIRAC does have a single,
major drawback: single point of failure.

To ensure maximum availability of replica information a distributed LFC
service is employed, shown in Figure 4.3. To provide redundancy in the
availability of replica information DIRAC uses distributed read-only catalog

1A full explanation of the mappings between LFNs, GUIDs, PFNs and DIRAC SE
names is given in Section 5.1.
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Figure 4.3: Architecture for Ensuring Availability of Replica Information.

mirrors at LHCb’s Tier-1s, populated from the central instance using Oracle
Streaming Technology [125]. Producers of replica information must contact
the read/write master instance while queries can use any of the read-only
mirror catalogues, with the additional benefit of reducing the load on the
master. In the event the master instance is unreachable, registration re-
quests are persisted using the mechanism presented in Section 4.1.4. These
requests are retried asynchronously until successful and provide additional
redundancy for the master instance.

The performance of the LFC for registration, querying and removing
file and replica metadata is fundamental to the scalability of the DIRAC
Data Management system. A study of the capability to perform all of these
operations is presented in Section 5.1.

4.1.3 Replica Manager

The Replica Manager (RM) combines the functionalities of the Storage El-
ement and File Catalog to provide a coherent interface for performing file
based data management and accounting. This ensures that the consistency
of the File Catalog and Storage Element is maintained. A UML class dia-
gram of the RM is shown in Figure 4.4.

The Replica Manager interface allows clients to upload files to grid SEs
and register their contents, download data specified as an LFN from a grid
SE with best replica selection, replicate and register LFNs to grid SEs. It
also allows the removal of files and replicas from grid SEs and catalogues.
The success or failure of each attempted operation is returned to the client
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Replica Manager

Storage ElementFile Catalog

Accounting Client

Figure 4.4: Replica Manager Class Diagram.

along with any timing information available. This timing information is
used to create and send accounting reports for operations attempted.

The Replica Manager and the underlying Storage Element and File Cat-
alog use redundancy wherever possible to complete the requested opera-
tion. To provide additional resilience to transient failures any failed Replica
Manager operation may be persisted in a Request Database, discussed in
Section 4.1.4 and retried asynchronously by specialised Data Management
agents, described in Section 4.1.5.

4.1.4 Request Database

Each data management operation that may be attempted in the Replica
Manager interface can be persisted as a request in the event of failure. This
request is a generic XML [33] representation of the information required
to execute the operation at a later time. Once created the request must
be set to a Request Database service which maintains the XML contents
either in a MySQL or file based database backend. A distributed ‘failover’
mechanism (shown in Figure 4.5), using Request DB services deployed on
each of LHCb’s Tier-1 VO boxes, ensures the persistency of requests.

In addition to data management operations the XML schema may repre-
sent any client-server operation possible in DIRAC. This mechanism is used
across DIRAC to ensure failed server updates can be retried asynchronously.

4.1.5 Data Management Agents

The requests persisted within the Request Databases are retrieved and exe-
cuted by a series of agents, each capable of handling requests of a particular
type. When creating a request the ‘type’ parameter must be provided. This
field corresponds to the agent that should execute the request e.g. transfer
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Figure 4.5: Distributed Request DB Service Schematic.

requests are retrieved by the Transfer Agent, removal requests by the Re-
moval Agent and register requests are retrieved by the Registration Agent.
An ‘operation’ field must also be supplied which informs the agents what
functionality is being requested, which in the Data Management context
maps to the Replica Manager interface.

The decision to have distinct agents for each type of request was taken
to fully exploit the bulk functionalities available at the Resource level (these
will be presented in Chapter 5). Individual agents with a specific scope can
group requests for similar operations making use of bulk interactions with
the Resources wherever possible. The Registration Agent uses the bulk
functionalities provided in the LFC, while the Removal Agent uses both the
LFC and SRM bulk functionalities. The network requirements to perform
data transfer derived from the Computing Model necessitates the use of a
bulk transfer mechanism. The bulk transfer framework will be discussed in
the next section.

4.2 Bulk Transfer Framework

The bulk transfer framework architecture has been defined by an iterative
process. The first bulk transfer mechanism employed, managed centrally
coordinated transfer activity. It obtained transfer requests and submitted a
job to the gLite File Transfer Service (FTS), discussed in Section 1.7.4, for
all the files contained in the request. The system provided a simple wrapper
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to submit and monitor FTS jobs.

Transfer requests generated by jobs were collected in the distributed
Request Databases present on LHCb VO boxes at the Tier-1s, where they
were executed by Transfer Agents. This system provided the advantages
of a distributed ‘failover’ mechanism with the disadvantage that there was
no global knowledge of the behaviour of the other agents. The load placed
on the SEs with this system proved unpredictable and resulted in degraded
global performance.

The eventual solution combined the two mechanisms previously em-
ployed into a centralised repository with distributed failover. The com-
ponents comprising the bulk transfer framework will be discussed in this
section and their interactions are represented schematically in Figure 4.6.

Replication 
Scheduler

Request DB
Service

Task Queues

FTS 
Submit

Bulk Transfer 
Framework 

Components

FTS Service

Request Database

FTS 
Monitor

FTS Jobs

FTS 
Finalise

LFC Read-Only LFC Read-Write

Request DB Client

Figure 4.6: The DIRAC bulk transfer framework components.

4.2.1 Transfer Database

A centralised repository allows an aggregation of similar transfer requests
into bulk operations and provides an overall picture of global activity and
performance. This aggregation occurs at the central Transfer Database
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(Transfer DB) which offers the same interface as the Request DB. The
Transfer DB inherits the MySQL backend of the Request DB, extending
it to include task queues. The task queues contain the files waiting to be
transferred on specific point-to-point transfer routes between grid SEs.

The default bulk transfer mechanism uses gLite FTS. In this mode of
operation the task queues reflect the available underlying FTS channels.
The Transfer DB schema contains tables to store details of the FTS jobs
submitted, their status and the files they contain.

4.2.2 Replication Scheduler

The Replication Scheduler interacts with the Request DB interface to re-
trieve transfer requests waiting to be executed (using the same mechanism
as the Data Management agents mentioned in Section 4.1.5). The destina-
tion SE (and where available the source SE) is retrieved from the request
along with the list of LFNs or datasets (see Section 4.5). The replica infor-
mation for data to be scheduled is retrieved from the File Catalog and the
task queues are populated with the source and destination SURLs for each
file.

The Replication Scheduler uses a plugin architecture to apply a variety
of replication strategies. These strategies perform a scheduling decision to
determine the channel(s) on which to transfer a file. The strategy used can
be defined as a request parameter otherwise the general agent configura-
tion is used. The strategies are invoked for each individual file with the
replica information and a list of target SEs supplied. The strategies can
apply any algorithm, but must return a standard structure containing the
source-destination pair of each point-to-point transfer and the dependencies
of the transfers, in the case of multi-hop transfers. The approach allows new
replication strategies to be implemented and tested simply. In addition, the
individual treatment of files allows higher granularity scheduling than would
be possible if scheduling was performed on the level of requests.

There are two broad types of strategies which have been implemented:
static and dynamic.
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Static Strategies

Static strategies create a replication tree based on information contained
only within the plugin itself. An example is the simple strategy that creates
a transfer from the source SE to each of the supplied destinations.

Dynamic Strategies

Dynamic strategies use input information that changes with time. The in-
put information available is the observed bandwidth of the active channels,
the number of files in the task queues and their total size. The premise of
the dynamic strategies is that optimal use of the available network resources
can be made using intelligent scheduling based on the current state of the
task queues and recently observed throughput.

For example, the channel defined from A to B may have a high time to
start (many files in the task queue and/or low observed throughput) while
the task queues linking A to C and C to B may be more performant. If a
file is to be replicated from site A to sites B and C and the combined time
to start of the A-C-B route is lower than that of the direct A-B route, it is
more efficient to schedule the replication first from A to C, then from C to B.

A number of dynamic strategies exist which handle the input information
differently. Each dynamic algorithm may evaluate the time to start based
on the number of files in the task queues, their size or both. Also, the time
over which the recent throughput is determined can be varied for a shorter
or longer term view. Finally, with multi-hop transfers there is a delta time
between the completion of a hop and the start of the next hop which may
be evaluated in the time to start calculation. Variation of this value changes
the branching ratio and depth of the resultant replication trees.

An investigation of the performance of a number of strategies will be
presented in Section 6.3.

4.2.3 FTS Submit / Monitor

Files are retrieved from the task queues by the FTS Submit agent which con-
trols the submission of transfer jobs to the FTS. To ensure that edge effects
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do not reduce the achieved transfer throughput the agent maintains multi-
ple (configured to be 2) FTS jobs on each channel concurrently. The agent
retrieves files from a task queue based on a hierarchy of importance; task
queues with fewer submitted jobs are preferred and subsequently the task
queue with more files. Once the FTS jobs are submitted, the agent populates
the Transfer DB with the details of that job and the files contained within it.

To monitor the status of the bulk transfer jobs the FTS Monitor agent
retrieves details of the FTS jobs from the Transfer DB. To ensure these are
monitored fairly the least recently monitored active job is always taken. The
agent first contacts the relevant FTS server to obtain a summary of the job
(job status and a count of the file statuses). If the job is in a final status the
full job output is retrieved and the status of individual files is updated in
the Transfer DB. An accounting message is sent containing the data volume
transferred since the job submission time.

During the prototyping stage the submission and monitoring were per-
formed sequentially by the same agent. This approach incurred a lag be-
tween submission attempts and was abandoned in order to execute the avail-
able work as quickly as possible.

4.2.4 Request finalisation

The transfer requests initially sent to the Request DB are broken down
by the Replication Scheduler to allow their aggregation in the task queues.
After the replication of the files has been accomplished the initial requests
must be updated. In addition, the operation of the original requests is
checked and where appropriate the file is registered in the File Catalog, or
in the case of a move operation, the source file is removed.

4.2.5 Request Persistency

The disadvantage of a central scheduling architecture is that it acts as a sin-
gle point of failure. The persistency of the transfer requests is ensured using
the distributed Request DB service, described in Section 4.1.4. These re-
quests are forwarded to the central Request DB by specialised agents present
on the VO Box.
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If the central service remains unavailable for long periods Transfer Agents
located on the VO Boxes can be activated to process the requests. This mode
of operation is heavily throttled to avoid overloading SEs while still allowing
some activity to be executed.

4.3 Data Driven Replication

In the previous section the bulk transfer framework was outlined. This
provides a service to ensure data replication is attempted until success is
attained. The bulk transfer framework knows nothing about the LHCb
Computing Model and therefore must be supplied with requests to transfer
data. DIRAC supports the LHCb Computing Model dataflow using a data
driven approach (in contrast to the subscription based approach used by
ATLAS, described in Section 1.8.3). The approach is data driven because
replication operations to be performed are triggered by the availability of
the data. The mechanism for performing data driven replication is outlined
in this section and a schematic of the components mentioned given in Fig-
ure 4.7.

A specialised catalog called the Placement Database (Placement DB)
offers the File Catalog interface and is populated transparently by File Cat-
alog. Files registered here are candidates for data driven transformations.
The Placement DB tables contain the information required to execute the
transformations. The most important of these elements are:

• The file mask which is used to determine which files are eligible

• The plugin with which to process the eligible files

As files are registered in the Placement DB the file mask element of each
of the active transformations is evaluated against the LFN of the file. Files
matching are ‘added’ to the transformation. The plugin element is used to
locate the module to be instantiated when the transformation is processed.
Each plugin may require different metadata fields to operate and these are
stored in an additional table.
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Figure 4.7: Components to perform data driven replication.

The Transformation Agent retrieves the active transformations from the
Placement DB. For each active transformation the desired plugin is instan-
tiated with any required metadata. The unused files for the transformation
are retrieved from the Placement DB and passed to the plugin module. A
standard structure is returned by the plugin representing the operations to
be performed. This structure is used to create transfer requests which are
submitted to the Request DB service for execution.

Within the Computing Model, data driven replication has two main uses
cases:

• transfer of the RAW data from CERN to the Tier-1s to create a dis-
tributed copy.

• transfer of DSTs (both from real and simulated data) to multiple Tier-
1s.

These will be discussed in the following sections.
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4.3.1 RAW Data Splitting

The LHCb experiment dataflow requires the RAW data must have a dis-
tributed replica at the Tier-1s. The quantity of replica data at each site is
based on pledged computing resource. To support this use case the transfor-
mation file mask selects only RAW files. The destination Tier-1 sites, and
their share of the data, is defined using additional metadata in the transfor-
mation. A specific load balance plugin is used which splits the input files into
chunks according to the defined Tier-1 share. As will be seen in Section 4.4.1
only verified RAW data is registered in the File Catalog. Therefore, as files
are verified safe, they are eligible for export to the Tier-1 sites.

4.3.2 DST Data Broadcast

The stripping phase of the LHCb dataflow at the Tier-1 centres produces
DST files. DST files produced from real physics data are replicated to all
Tier-1 centres to allow load balanced distributed user analysis. To support
this a broadcast plugin is used with all destination SEs defined as transfor-
mation parameters. The file mask for the transformation matches LFNs of
real DSTs which are registered when the output is uploaded at the end of a
stripping job.

The DSTs produced from simulated physics data is present on selected
Tier-1 centres only. This can vary per production. For each of the pro-
ductions (or set of productions) a transformation is defined that reuses the
broadcast plugin with a reduced set of destination SEs.

As can be seen from the RAW and DST use-cases described, the plu-
gin architecture is extensible and allows new operations to be defined and
executed with minimal development.

4.4 Ensuring Data Integrity

The previous sections discussed the bulk transfer framework and the mecha-
nism for performing data driven replication. These activities aim to provide
greater access to data and to ensure resilience from data loss or corruption.
This section will discuss the mechanisms for ensuring the integrity of data
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and recovering from any loss or corruption. The first part of this section will
present the components that ensure the integrity of the RAW physics data.
The second part will discuss a general framework for ensuring the consis-
tency of the Resources used by the DIRAC Data Management system.

4.4.1 RAW Data

As the Tier-0, CERN performs the role of RAW data warehouse and main-
tains the master copy of every RAW file. The integrity of each file in the
offline computing environment must be ensured. A file erroneously migrated
to tape may not be recovered once the disk copy is garbage collected. There-
fore the defining principle for ensuring the integrity of the RAW data can
be stated as:

All of LHCb’s RAW data must verified on tape before any inter-
mediate copies can be removed.

The High Level Trigger (HLT) writes 2GB RAW physics data files to
the Online Storage System [149] approximately every 30 seconds. For each
file an entry is made in the Online Run Database (RunDB), which man-
ages the file state machine within the online system [169]. The Data Mover
queries the Run DB for files awaiting transfer to offline MSS at CERN2 and
initiates the RAW data replication. This is done by setting a request, con-
taining all the information required, to put the file on the Storage Element
(file location, destination storage element name) and register in the meta-
data catalogues (LFN, GUID, file size, adler32 checksum3), to the DIRAC
RequestDB (see Figure 4.8).

Once this request has been set a series of DIRAC components manage
the file upload and the verification process. A UML activity diagram of the
the steps involved is given in Figure 4.9, with the actors described below.

2This is managed by CASTOR2. [170]
3The adler32 checksum, proposed by Mark Adler, is composed of two sums accumulated

for each byte of the required data. The first (s1) is the sum of all the bytes in the data and
the second sum is the sum of all the s1 values. This algorithm is faster than comparative
cyclic redundancy checks, for example CRC-32 but is open to intentional forgery.
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Transfer Agent

The Transfer Agent is deployed on a gateway machine to have access to the
Online Storage and the private Gb/s network connected to CERN IT fab-
ric. The agent is configured to know of a single Storage Element, (‘CERN-
RAW’), with a single protocol, CASTOR’s proprietary RFIO, which ensures
the transfer is performed to dedicated disk pools. The configuration also con-
tains a single entry for the File Catalog, ‘RAWIntegrityDB’, so files await-
ing verification do not pollute production catalogues. The agent retrieves
requests from a local Request DB and performs the �put to the CERN-RAW
Storage Element and on completion registers the file in the RAW Integrity
Database (RAW Integrity DB).

The RAW Integrity DB maintains a list of files awaiting migration to
tape. It contains all the metadata supplied in the initial request to perform
a registration in all catalogues once a file is verified. The RAW Integrity
agent retrieves the list of active files from RAW Integrity DB and, using
the Storage Element, obtains the metadata from the Castor SRM interface.
When migrating a file to tape CASTOR calculates the adler32 checksum.
This is compared with the checksum calculated by the RunDB when the
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Figure 4.9: RAW Integrity Activity Diagram.

files were initially written. If the two checksums match the integrity of the
file in CASTOR, both on tape and disk, can be assumed. In this case a
removal request is created and set to the gateway machine Request DB.
Then the file is fully registered in all of the LHCb catalogues. In the event
of a checksum mismatch the physical file is removed from CASTOR and a
re-transfer request is set to the gateway Request DB.

Removal Agent

The final component in the chain retrieves and executes the removal requests
placed by the RAW Integrity Agent. The agent is configured to know only
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of the online storage protocol, a simple wrapper around plain RPC service,
exposed by the RunDB. This wrapper offers two service methods which ei-
ther instruct the RunDB that a file may be considered for removal or to
request a re-transfer.

During the migration and verification process files may be used for cali-
bration and detector performance studies and their use is registered with the
RunDB to ensure their availability at the Online system. When ‘removing’
data the Removal Agent merely advises the RunDB that the file may be
removed. The physical removal is performed asynchronously when space is
required on the Online storage.

Commissioning

This system for uploading the RAW data from the online storage and ensur-
ing it’s integrity was tested during a computing preparedness (the Common
Computing Readiness Challenge) exercise to mimic the data being produced
from the detector. This exercise showed The results are given in Appendix C.

4.4.2 DIRAC Resource Consistency

The mutual consistency of Resources managed by DIRAC is vital in the
provision of reliable data management. The architecture of the File Catalog
ensures the mutual consistency of each of the underlying catalogues. The
distributed Request DB service and related agents ensure than any failed
operation is persisted as a request and retried until success. In addition,
individual file catalog and storage element plugins contain rollback mecha-
nisms to clean up the resource in the event of failure.

To ensure the mutual consistency of these resources is maintained over
time a suite of agents is deployed to verify the contents of the three main
Data Management Resources: the grid storage elements (SE), the LFC cat-
alogue and LHCb’s Bookkeeping and provenance database. This suite of
agents report any inconsistencies found to an Integrity Database (Integrity
DB). Files or replicas entered in the Integrity DB are also marked as prob-
lematic in all of DIRAC’s catalogues. In the case of the LFC the replicas
become invisible to replica queries. This ensures that while the integrity of
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an entry is being investigated no further attempts to access it can be made.
The suite of agents and service and their interaction with the Resources is
shown in Figure 4.10.
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Figure 4.10: Schematic representation of the data integrity suite.

The motivation to maintain the mutual consistency of the Bookkeeping,
LFC and Storage Elements is given below.

Bookkeeping and LFC

LHCb’s Bookkeeping DB contains provenance information regarding all LHCb’s
files and jobs. The Bookkeeping provides an interface for physicists to query
for files with particular properties of interest. Files that do not physically
exist are flagged in the database and are invisible to searches. To ensure
physicists are given only files that exist, the consistency of the Bookkeeping
must be maintained with the LFC. An agent is deployed to verify the ex-
istence in the LFC for the data visible in the Bookkeeping. Similarly, data
registered in the LFC and not visible in the Bookkeeping can never be found
by a physics search, which requires an agent to use the LFC namespace and
check whether the files found exist in the Bookkeeping.
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LFC and storage elements

The LFC is used to obtain the storage element and PFN for replicas associ-
ated to a file. If the replica information is incorrect attempts to access files
that do not physically exist may occur. The PFNs registered in the LFC
are checked on the storage elements, to ensure they exist, and the adler32
checksum returned by the storage may be verified.

When managing PetaBytes of data, using the storage resources efficiently
is paramount. The LHCb disk requirements, presented in Section 2.6, as-
sume a disk utilisation efficiency of 100%. Orphan physical files on storage
resources, without registered replicas in the LFC, can never be seen and are
a source of waste. To combat this, the contents of the SE namespace are
obtained and the physical files present checked against the LFC contents.

Resolving Data Integrity Problems

The series of agents above report any inconsistencies found to a central
repository, the Integrity DB, with a note of the observed prognosis. In ad-
dition to these agents, which try to pre-emptively discover problems, the
Integrity DB can be populated by any DIRAC component when a problem
is found with a file or replica. In this way every Workload Management and
Data Management agent as well as every job is an integrity check.

To resolve the problem files found in the Integrity DB a further agent
is responsible for determining the core reason for the inconsistency. This
agent attempts to resolve the fundamental inconsistency by performing
(re)replication, (re)registration, physical removal or catalogue removal of
files. If the problem is successfully resolved the status of the file or replica
in the LFC and other DIRAC catalogues is updated. Some pathologies may
not be resolved automatically and remain in the DB for manual intervention.

4.5 Datasets

The final section of this chapter will look at a mechanism for clients to sim-
plify the management of large volumes of data by using datasets.
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The concept of datasets, where a single tag may reference large numbers
of files grouped by their inherent properties, provides several advantages for
end users:

• Managing large numbers of files is reduced to managing a smaller
number of datasets.

• Dataset handling is less error prone.

• Dataset sharing between collaborators is easier.

This section will give the use-cases for using datasets in LHCb, the design
considerations and the eventual implemented architecture.

4.5.1 Dataset Use Cases

The LHCb Computing Model and the analysis activities of the LHCb physics
community provide a number of use-cases for datasets.

Physics analysis

The primary motivation for defining and supporting datasets is to reduce the
physicist’s exposure to large lists of files. The analysis activities routinely
performed by physicists are envisaged to take two forms:

• Algorithm tuning; repeated analysis of a subset of events for relevant
decay channels to determine the effect of modifications.

• Full analysis; run over all available events for the relevant channels for
increased statistical precision.

The full analysis activity provides a use-case for accessing large numbers
of files and analysing them as an atomic unit. To support the algorithm
tuning use-case it must be possible to select a subset of files with a required
level of repeatability.

Reprocessing activities

During periods of re-processing, to take place between data taking peri-
ods, large numbers of files with similar properties (i.e. RAW/rDST data
produced during the latest data taking period) are reprocessed.
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Managing the ‘hot stream’

The LHCb computing model makes provision for a sample of RAW and
rDST data to be available on disk storage to allow data monitoring, data
quality checking and tuning of application algorithms. For this case a set of
files would maintained on disk for low latency access.

4.5.2 Dataset architecture and implementation

Within LHCb a dataset is defined with the following criteria:

1. A dataset is a logical grouping of files defined by a specific set of
common properties.

2. Dataset constituents must physically exist and be accessible.

3. Datasets can be either ‘open’ where the constituents may be added or
removed or ‘closed’ where data may only be removed (subject to 2).

The logical grouping of files with similar properties is a common ap-
proach to aggregate data to simplify management and processing. The
second criteria implies that constituents can be distributed across many
locations, but maintain their logical grouping. This approach was taken
because logical groupings of files may exist with a distributed copy across
many sites, i.e. all RAW data has a distributed copy at the Tier-1 centres.
No a priori physical property (i.e. location) of a dataset is implied by being
a member of a dataset.

Defining datasets as being either ‘open’ or ‘closed’ allows a simple dataset
evolution architecture that does not require a complex system of dataset ver-
sioning. A dataset is ‘open’ while it is initially being populated and during
this period no repeatability, as perceived from a physics analysis, can be
guaranteed. A dataset should be ‘closed’ once the common conditions defin-
ing a dataset end, e.g. run period ends or a stripping production ends.
Before being ‘closed’ an integrity check of the entire dataset content is per-
formed (see Section 4.4.2).

Design considerations

The following points were considered when defining the dataset architecture.
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• Determining the contents of datasets (dereferencing) should be 100%
available.

• Creating datasets is important, but less critical than dereferencing.

• Dataset metadata should be searchable.

For datasets to support the use-cases defined in Section 4.5.1 the avail-
ability of the dataset architecture must be ∼100% and not susceptible to a
single point of failure. To reduce the number of privately created datasets,
a mechanism for end users to query the dataset architecture for existing
datasets must be available (at lower quality of service).

Dataset architecture

A schematic representation of the dataset architecture is given in Figure 4.11.

Dataset Repository  
DB

Dataset Repository Service

User 1
Searchable web interface

Distributed LFC Service

User 2User 2User 2User 2

Dereference

Query

Create

Dataset Handle

Figure 4.11: Dataset Architecture Schematic.

It was decided that the dataset architecture would use the LFC service
to store the datasets. The primary reason for this was the overall resilience
of the distributed LFC service, which provides 100% read access, across
seven read-only instances. In addition, the file metadata (replica informa-
tion) stored in the LFC matches the information required by the dataset
consumers with the consequence that resolving datasets requires a single
service call. Each dataset is defined in a dedicated directory within the LFC
containing soft links to production LFNs, or other dataset directories. A
short dataset ‘handle’ may also be used to point to the LFC dataset direc-
tory, i.e. the ‘handle’
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DC06/StrippedDSTs

would be located at

/lhcb/dataset/DC06/StrippedDSTs

in the LFC namespace. The performance of dataset dereferencing was
investigated and will be given in Section 5.1.7.

An additional service offers a browsable interface to the dataset meta-
data for the less frequent operation of users searching for available datasets.
It is expected that dataset searches will be performed much less frequently
than dereferencing so the criticality of this service is lower. Similarly, the
creation of datasets is expected to be a low frequency operation and can
be managed by the Dataset repository service. If a dataset is not present
the user may create a private dataset by providing the LFNs they wish it
to contain, and any metadata tags for other users to search for. Once the
service creates the links in the LFC, and publishes the correct metadata, a
dataset ‘handle’ is returned to the requesting user.

One of the major advantages of defining datasets is to perform reference
counting of the most popular data. Assuming that the number of datasets is
very much smaller than the number of files, tracking the number of times a
dataset is accessed gives a scalable and accurate picture of most frequently
used data. At the point that a dataset is dereferenced a message is sent
to the dataset repository service to increment the dataset reference count.
This does not affect the availability of the dataset dereferencing system,
since the failure to contact the dataset repository is not considered fatal. It
is wrapped as a request and set in the RequestDB service for asynchronous
execution. Knowledge of the most popular datasets with time allows more
efficient resource planning and consumption.

4.6 Summary

This chapter presented the DIRAC Data Management system and the com-
ponents required to support LHCb’s computing activities.
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The core components of Storage Element and File Catalog provide an
abstraction of the underlying resources and when combined can be used to
perform file management on the grid using the Replica Manager. To en-
sure that operations are not effected by transient failures, operations can be
stored as requests and executed asynchronously. The bulk transfer frame-
work provides redundant file replication making intelligent use of available
network resources. The support of the Computing Model dataflows is pro-
vided using a data driven approach that triggers replication as data be-
comes available. The solutions of ensuring data integrity was described for
RAW physics data and a general suite for maintaining the consistency of the
DIRAC resources was given. The dataset architecture was presented which
allows users to reduce their exposure to unmanageable list of data files and
provides the data management system with the knowledge of which data is
the most popular within the collaboration.

The following Chapters will present the performance studies relating to
the components described in this Chapter.
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Chapter 5

DIRAC Resources

Performance

The DIRAC Data Management System manages the physical files and file
based metadata for all LHCb physics data. The LCG File Catalog (LFC),
discussed in Section 1.7.4, is the replica catalog of choice within LHCb. The
performance of the LFC for meeting the use-cases of LHCb is presented in
Section 5.1.

The LHCb data, from RAW to DSTs are stored on grid Storage Elements
offering the Storage Resource Manager (SRM) interface. The performance
of the SRM interface at the LHCb Tier-1 sites is given in Section 5.2.

5.1 Replica Catalog Performance

The LCG File Catalog (LFC) stores trivial file metadata and replica infor-
mation for all files that physically exist and that are under management of
the DIRAC Data Management System. The primary role of the replica cata-
logue is to map a Logical File Name (LFN), and its Global Unique IDentifier
(GUID), to its replicas on grid Storage Elements. A file entry may have any
number of replicas. Each replica registered has two important associated
fields: the Storage Element name and the Physical File Name (PFN), or
Storage URL (SURL). The Storage Element name is used by the Workload
and Data Management systems to make scheduling decisions based on the
availability of data. The PFN information is used to gain access to the file,
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either within the actual job or data transfer task. The relationship between
the LFN, GUID, PFN and SE name is shown in Figure 5.1.
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Physical 
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Storage 
Element
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Figure 5.1: The relationship between LFN, file GUIDs, PFNs and Stor-
age Element names within the LFC. Each LFN is associated with a single
GUID. The GUID has associated file metadata and replica information.
Each replica entry has a PFN and Storage Element name.

The ability to register file and replica information in a timely manner
is fundamental to all operations performed by DIRAC. The speed at which
this information can be retrieved places a limit on how quickly scheduling
decisions can be made. In addition, as data ages, or new (and better) pro-
cessings exist, the relevance of the older data decreases. The need to remove
replicas and eventually files is therefore required. The performance of all
these operations will be discussed in the following sections. All results dis-
cussed in this section use a Python binding to the LFC client.

All tests were performed from a single host with Intel Xeon 3.0GHz quad-
core with 8GB of RAM. The master LFC instance used for write operation
tests (Sections 5.1.1, 5.1.2, 5.1.4 and 5.1.5) was a DNS load-balanced service
with two Intel Xeon 3.0GHz dual-core hosts with 4GB of RAM. The read
only instances used for query tests (Sections 5.1.3, 5.1.6 and 5.1.7) are given
in Table 5.1. All LFC instances were used an Oracle RAC as the database
backend.
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CPU RAM
CERN Intel Xeon 3.0GHz dual-core 4GB
CNAF Intel Xeon 2.4GHz dual-core 4GB

GRIDKA Intel Xeon 2.33GHz dual-core 5GB
IN2P3 IBM System x3550 2xdual-core 2GB
NL-T1 Dell 1850 4GB
PIC AMD Opteron 2218 2.6MHz dual-core 8GB
RAL Intel Xeon 2.8GHz dual-core 4GB

Table 5.1: CPU and RAM configuration of LFC read only instances at
CERN and Tier-1 sites.

5.1.1 Initial File Registration

The combined LHCb computing activities, over the course of a year, will
produce a total of 25M files which must be registered in the LFC. This
implies a file registration rate of 0.8Hz sustained over that period.

Registration of a file in the LFC is a multi-step process. The LFC uses a
GUID (of the UUID format proposed in [171]) as the primary file identifier
to which LFNs are associated. Once the GUID is created, file metadata,
such as the file size and checksum information, is added. The final step is
the registration of the first replica. To avoid corrupted entries, due to tran-
sient errors, all the above steps are performed within a single transaction.
The registration of 180k files with single replicas was performed and the
time for the complete registration was recorded.

A histogram of registration time is shown in Figure 5.2 and shows the
registration time is well defined with good precision. A tail in the distri-
bution can be seen extending out to 1.4 seconds. The most likely cause for
the tail’s existence is the variable load on the LFC service, although further
investigation would be required to confirm this. The mean registration time
of 0.85s implies a registration rate of 1.17Hz which is 30% above the required
rate.

No errors were observed during the registration of the files which is
testament to the stability and robustness of the LFC service.
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Figure 5.2: Time to register a file with a single replica in the LFC within a
single transaction.

5.1.2 Registering Replicas

The LFC uses the file GUID as the primary file identifier. The registration
of replicas requires the GUID to associate the replica to a file. DIRAC uses
LFNs as the file identifiers and therefore the file GUID must first be retrieved
before replica registration can be performed. This places the requirement
for an additional client-server interaction.

To avoid multiple client-server authentications1 the LFC provides the
ability to create an authenticated session. These sessions allow to perform
a single client-server authentication which is then reused for all subsequent
operations until the session is closed.

The Computing Model defines that the RAW data should have a dis-
tributed replica across the external Tier-1 sites. The DST and TAG files
produced from these RAW files should be present at all 7 Tier-1s while the
DSTs produced by the simulation activities are to be replicated at 3 Tier-
1s. Each additional replica of a file must be registered in the LFC requiring,
over the course of a year, a total of 4.4M replicas to be registered. Over the
period of a year this equates to a registration rate of 0.14Hz.

To test the performance of the replica registration within an authenti-
1The client server authentication requires mutual verification of the client and server

identity. This involves CPU intensive operations at the SSL layer and adds significantly
to the load on the LFC service.
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cated session a series of replica registrations was performed, each attempting
to register groups of replicas, increasing from 1 to 5,000, within a session.
A new session was created for each group of files and destroyed after the
group had completed and the time to register the replicas was recorded.
This series of registrations was repeated 200 times giving a total of ∼177k
replica registrations performed during the test. The mean rate at which
replicas were registered, with the RMS of this value represented as error
bars, is plotted against the number of replicas registered within a session
in Figure 5.3. This plotting style will be adopted for the remainder of this
Chapter.

Figure 5.3: Insert rate of replicas in the LFC for a varying number of replicas
within an authenticated session.

The rate at which replicas are registered increases with the number of
replicas registered per session until reaching a stable maximum of around
19Hz. The time to perform the authentication handshake is included in the
recorded registration time and contributes a significant portion of the time
for smaller groups of registrations. As the number of registrations increases
the relative cost of the handshaking decreases until the database insertion
rate limit is reached. The lowest insertion rate of 4Hz, observed for a single
replica registration within a session, is an order of magnitude above the rate
required by the Computing Model.

5.1.3 Retrieving Replica Information

The core consumers of file replica information are the agents performing job
and transfer scheduling. Retrieval of replica information should not limit
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the ability to perform these activities. The Computing Model activities (ex-
cluding user activity) require the job and transfer scheduling agents query
for 17.3M file replicas which represents a sustained rate of 0.54Hz.

Two methods for retrieving replica information were compared. The
first uses an authenticated session and polls for replica information for each
file serially. The second is a bulk method, taking a list of input files and
involves a single client-server round trip. The files used in the test each had
seven replicas and the time taken to retrieve replica information for bunches
of files, from 1 to 10k, was recorded. This series was repeated 200 times
(resulting in ∼377k file replica queries for each method evaluated). The
rate at which replicas were retrieved plotted against the number of files in
the group is shown in Figure 5.4.

Figure 5.4: Retrieval rate of replica information from the LFC for a varying
number of files. Two methods were used: bulk query method and query
within an authenticated session.

The rate at which replica information is retrieved increases with the
number of files for both methods used. The lowest retrieval rate of 5Hz,
observed for a single file within a session, is an order of magnitude greater
than the requirement. The session approach shows a plateau of ∼20Hz.
The bulk method shows a plateau at over 120Hz providing a factor of 6
performance increase over the session approach. This increased performance
can be attributed to two factors.

• The session method requires a client-server round trip for each file.
Short round trip times can become significant when accumulated over
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all files. The bulk method requires only a single round trip.

• The bulk method performs a single query to the database backend.
This allows the database backend to retrieve many entries at once.

Section 2.4 outlined the necessity to store stripped DSTs at all seven
of LHCb’s Tier-1 sites (including CERN). It is therefore expected that a
file may have up to seven replicas registered in the LFC. The bulk method,
found to be most performant in the previous test, was used to determine the
retrieval rate for files with varying numbers of replicas. Distinct sets of files
were registered with varying numbers of replicas, varying from 1 to 7. For
each set of files the performance profile of replica retrieval was determined
for varying groups of files in each query. For each set this was repeated 200
times. The performance profile for each set of files is given in Figure 5.5.

Figure 5.5: Retrieval rate of replica information from the LFC for a varying
number of files using bulk method. Seven sets of files were used with the
number of replicas varying one to seven.

The first feature of Figure 5.5 is that it verifies the ∼120Hz performance
plateau of the bulk method for seven replicas, presented in Figure 5.4. The
retrieval rate for the different file sets only begins to differentiate with more
than 50 files in a single query. At groups over 103 files the different sets
show variable plateau ranging from ∼120Hz (for files with 7 replicas) up
to ∼170Hz (for files with 1 and 2 replicas). From a file centric view the
retrieval rate decreases by one third as the number of replicas for each file
increases (∼170Hz to ∼120Hz). From a replica centric view this is a 5 fold
increase for each retrieval, corresponding to an absolute rate change from
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∼170Hz to ∼840Hz (7×120).

5.1.4 Removing Replica Information

The computing model foresees periodic reprocessing of data with the newest
version of the reconstruction software. Data produced by earlier processing
activities must be removed from selected storage elements to recover space
as their relevance decreases. Once removed from the storage elements the as-
sociated file replica information must be removed from the LFC such that no
further attempts to access the physical file are made. In addition, small files
produced by the stripping are to be merged into larger files with the removal
of the input files once the merger is complete. These activities imply the
removal of 15M replicas over the course of a year giving a requirement 0.5Hz.

The LFC maintains file replica information in a separate database ta-
ble, which has the PFN as a primary key. The removal of a replica can be
performed by providing only the PFN and does not require a resolution of
the file GUID (as is the case for replica registration). This removal can be
performed within an authenticated session.

As before, the number of replicas removed in a single group was varied,
from 1 to 5000, and the time to remove all replicas in the group recorded.
This was repeated 200 times and the removal rate profile shown in Figure 5.6.

Figure 5.6: Removal rate of replicas from the LFC for a varying number of
replicas within an authenticated session.
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The removal rate reaches a plateau at ∼140Hz for groups of files greater
than 103. This rate is over 2 orders of magnitude higher than required. This
removal rate within a session is significantly higher than the insert rate or
the replica retrieval rate for the following reasons:

• The removal of a primary key is optimised at the database level.

• The registration of replica information requires an additional database
query to obtain the file GUID.

• The retrieval of replica information requires a join of two database
tables (the files table containing the LFN and the replicas table).

5.1.5 Removing Files

The removal of all replicas associated to a file will leave the file metadata
registered in the namespace. The 15M small files produced by the stripping
must be completely removed after the merging activity is complete giving a
requirement of 0.5Hz sustained over the year.

The metadata removal performance was analysed using two methods:
the authenticated session and bulk method taking a list of LFNs. Using
both approaches the number of metadata entries removed was varied. The
results are shown in Figure 5.7.

Figure 5.7: Removal rate of files from the LFC for a varying number of files.
Two methods were used: bulk removal and removal within an authenticated
session.
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The bulk method shows better rate of removal than the session with
a 10% performance improvement observed for large numbers of files. Both
methods give performance more than 2 orders of magnitude over the require-
ment. The removal rate for both methods is lower than the replica removal
rate, as seen in Figure 5.6. This is because a database level constraint en-
sures that metadata information may not be removed unless all replicas have
first been removed. This constraint requires checks to be performed at the
database level resulting in decreased performance.

5.1.6 Distributed Read-Only Mirror Performance

The use of a distributed LFC service with a single read-write master and
multiple read-only mirrors was discussed in Section 4.1.2. The distributed
mirrors are updated using Oracle Streaming technology as changes are made
in the master. The consistency of the distributed mirrors lags that of the
master server as the updates are streamed. If this lag period becomes too
high then the information served by the mirrors might be inconsistent.

To determine the lag period a series of 4000 file inserts and file removals
was performed on the master. An authenticated session was created to each
of the mirror instances and replica information was retrieved in a loop, with
a small wait time O(0.1s), until the modifications became visible. The six
mirrors used for this test were present all Tier-1 sites (other than GRIDKA),
and the observed times are shown in Table 5.2.

Time For Insert To Propagate Time For Removal To Propagate
CERN 00.30± 0.12 00.32 ± 0.26
CNAF 19.99 ± 7.00 22.12 ± 8.39
IN2P3 22.09 ± 8.70 22.02 ± 8.41
NL-T1 22.65 ± 8.20 23.16 ± 8.44
PIC 21.98 ± 8.49 22.48 ± 8.45
RAL 22.27 ± 8.40 22.04 ± 8.38

Table 5.2: The time taken for updates to the read-write master LFC to
reach the read-only mirrors (s).

The time measured was similar across all mirrors for both insert and re-
moval operations, with the exception of CERN. At CERN, the mirror shares
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the database backend with the master instance and therefore the ‘replica-
tion’ is observed to be instantaneous.

For the replica retrieval tests, performed in Section 5.1.3, the CERN
mirror instance was used. The performance of all of the distributed mirrors
must be satisfactory. Using the bulk method for a varying number of files,
the performance for replica retrieval was evaluated at each available mirror.
The results are shown in Figure 5.8.

Figure 5.8: Retrieval rate of replica information from the read-only LFC
instances for a varying number of files using bulk method.

The profile for each mirror instance can be seen to be the similar with a
rapid increase of performance with the number of files until reaching stability
for groups of files over 103. The CERN mirror shows the lowest performance
of all tested due to sharing the database backend with the master instance.
The other six mirrors showed a maximum retrieval rate between 200 and
300Hz, which varied with the memory available to the database on the
machine supporting the service.2

5.1.7 Data Set Dereferencing

As discussed in Section 4.5.2 the dataset architecture supported by DIRAC
maps a dataset handle to a directory in the LFC. The final study performed
was to evaluate the performance of a specific LFC binding method that
allows the retrieval of file and replica metadata information for all files in

2The IN2P3 mirror, one of the least performant, is hosted by a 4 core IBM x3550 with
2GB of RAM. The PIC mirror, one of the most performant, is hosted by dual core AMD
2218 machine with 8GB of RAM.
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a directory. The performance of retrieving replicas for directories contain-
ing varying number of files was evaluated for the CERN and the CNAF
mirrors. These mirrors were chosen as they showed the lowest and highest
retrieval rate, respectively, in Figure 5.8. The results of this test are shown
in Figure 5.9.

Figure 5.9: Time to obtain replicas for entire directory from the LFC for a
varying number of files in the directory.

The maximum observed retrieval rate with this approach ranges from
550Hz to 800Hz for large directories. In some cases this gives a quadrupling
of performance over the bulk method by file (as seen in Figure 5.8). The
bulk method by file allows any files to be used in an ad-hoc way, but the
directory method is advantageous when all the files are contained in a single
directory. Grouping files into a dataset within a single directory allows the
performance to be maximised. This underpins the architectural design of
the Dataset system, presented in Section 4.5.2.

5.1.8 Summary

The performance of the LFC was evaluated for all LHCb use cases and the
required rates surpassed for all. The requirement for file registration was
exceeded by 30% while the other use-cases were exceeded by more than 2
orders of magnitude.

Where bulk methods are available they always out perform session based
approaches. Several use-cases have no associated bulk methods, namely the
registration of replicas and the removal of replicas. The performance of
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replica registration also suffers because the client side retrieval of GUIDs
associated to LFNs is required before registering a replica. To address this,
requests for additional functionality have been made to the LFC developers.

It has been seen in all tests that the rate at which operations can be
performed increases when acting on large groups of files. This was observed
for session based, bulk and directory based queries. The data management
agents, discussed in Section 4.1.5, have been designed to allow the aggrega-
tion of requests such that wherever possible large groups of files are acted
upon. This design gives an increased performance to the data management
system and reduces the load on the LFC master instance.

5.2 Storage Resource Manager Performance

The Storage Resource Manager (SRM) protocol is the accepted standard in-
terface to Grid storage for the LHC experiments. The SRM protocol allows
a diverse range of space and file management capabilities (see Appendix A)
which are supported to varying degrees by the deployed implementations in
the EGEE Grid infrastructure. Although SRM was designed to provide a
standard interface, the storage elements which implemented the SRM inter-
face interpreted the standard in different ways, due to ambiguities in the
specification.

The GFAL library, discussed in Section 1.7.4, was extended to provide
SRM client capabilities to the LHC experiments. GFAL offers a subset of
the SRM specification, providing core file and directory management ca-
pabilities: path metadata, obtaining URLs for transport, issuing prestage
requests and removing files. These functionalities allow DIRAC to man-
age data on grid storage elements. The performance of the GFAL library
and the underlying SRM implementation is central to the design of data
management system components. The four functionalities were evaluated
against the SRM services at each of LHCb’s Tier-1 sites. Across the seven
sites three flavours of SRM are deployed:

• Castor SRM - at CERN and RAL

• dCache SRM - at GRIDKA, IN2P3, NIKHEF and PIC
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• StoRM - at CNAF

The response time for each of the SRM services was measured for a
varying number of files, each hour, over a period of 20 days. This approach
was chosen to provide a large statistical basis for the measurements and
to determine any time-variability of services’ performance. The time taken
for each operation was recorded and the size of the file grouping plotted
against the mean time taken. The errors bars presented are the standard
deviation of the time distribution. All of the results discussed in this section
are contained in full in Appendix D.

5.2.1 Retrieving File Metadata

The retrieval of file metadata in GFAL is a wrapper around the srmLs
method and is the most solicited of the available functionalities. The in-
formation returned is similar to a POS-IX like ls providing file size and
permissions data in addition to the locality of the file on disk and/or tape.
The file metadata information is used within the Data Management agents
such as the RAW Integrity Agent (to determine when a file is migrated and
to obtain the checksum), the Stager Agent (to determine when a file is avail-
able on disk cache) and the Data Integrity agents (to verify the existence of
files and cross check their size and checksum information). The functionality
is also used when performing file uploads to ensure:

• The target file does not already exist before executing the transfer.

• The upload was successful on its completion.

The time to obtain metadata was measured for a varying number of files.
This was done each hour, over a period of 20 days and the average response
calculated. This involved ∼3k SRM interactions and the metadata of ∼90k
files being retrieved at each site. The mean response time for each site is
shown in Figure 5.10, and the observed success rates are given in Table 5.3.

The two Castor services, present at CERN and RAL, show the best
performance. They have well defined response times below 10 seconds. At
both sites a decreased success rate was observed for group of files of 50 or
above. For files groups of 100 CERN displays a success rate of almost zero
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Files CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 1.00 0.99 1.00 0.97 1.00 0.98 1.00
2 1.00 0.99 1.00 0.98 1.00 0.98 1.00
5 1.00 0.99 1.00 0.98 1.00 0.98 1.00
10 0.99 0.99 1.00 0.99 1.00 0.98 1.00
20 1.00 0.98 1.00 0.99 1.00 0.98 1.00
50 0.46 0.98 1.00 0.96 0.94 0.96 0.95
100 0.01 0.99 0.88 1.00 0.67 0.87 0.52

Table 5.3: Success rates for file metadata retrieval from site SRMs for vary-
ing number of files using GFAL.

Figure 5.10: Retrieval time for file metadata from site SRMs for a varying
number of files using GFAL. Note the different scale for GRIDKA.

which explains the significant response time variation. The dCache services,
present at GRIDKA, IN2P3, NIKHEF and PIC display a similar profile.
The response time is approximately flat for file groups ranging from 1 to
20, but increases rapidly above this. This effect is particularly noticeable at
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NIKHEF and GRIDKA, and is accompanied by a decrease in success rates.
For both Castor and dCache file groups over 20 result in an increased failure
rate. To avoid this a default file grouping of 20 files has adopted within the
DIRAC Storage Element plugin.

5.2.2 Issuing Prestage Requests

The DIRAC Stager System centrally manages staging requests for all DIRAC
activities. The stager performs two distinct actions: the submission of
prestage requests and the monitoring of file status to discover when files
become available. When performing large pre-staging operations, as is en-
visaged for re-processing activity, the goal of the Stager is to allow the stor-
age element tape system to optimise tape recalls by providing large numbers
of prestage requests. During the re-stripping exercise the entire sample of
500k RAW and rDST data files must be recalled from tape over the period
of one month. This gives a requirement of issuing a prestage request for a
single file every 5 seconds. The performance of issuing prestage requests for
varying numbers of files is given in Figure 5.11.

The time to issue prestage requests is significantly lower than retrieving
file metadata with most implementations returning positive responses within
10s for all file grouping sizes at all sites. For groups of 100 files this gives a
rate of 10Hz which is two orders or magnitude in excess of requirements. The
Castor services at CERN and RAL show the same profile with an increased
response time with larger groups of files. Operations containing more than
50 files exhibited lower success rates, contributing to the increased variance.
The dCache services all show a flat profile as the group size increases. The
IN2P3 service shows better response times than all other services, closely
followed by PIC.

An interesting feature of the dCache sites is the variation in response
time between sites, that previously showed similar responses to metadata
queries. The dCache service does not provide tape management, but at-
taches an external tape management system through a plug-in mechanism.
The difference in performance of GRIDKA and NIKHEF compared to the
other dCache services reflects the communication between dCache and the
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Figure 5.11: Time to issue prestage request to the site SRMs for a varying
number of files using GFAL. Note the different scale for CNAF and NIKHEF.

underlying tape system manager3.

5.2.3 Retrieving Transport URLs

The most important functionality provided by a storage element is allowing
access to data under management. The SRM interface provides a mecha-
nism for negotiating the transport protocol used and provides a transport
URL (tURL, see Appendix A) for the agreed protocol. The SRM server
accepts an ordered list of protocols from the client and performs a logical
AND with the protocols it supports. The SRM then performs a brokering
with the storage element backend to find the best disk server to serve the file
from. This information is then used to create the tURL which is returned

3NIKHEF and GRIDKA both use the TSM tape manager from Tivoli while IN2P3
uses HPSS from IBM and PIC uses Enstore developed by Fermi National Laboratory
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to the client.

The LHCb Computing Model dataflow (excluding user activity) gives the
yearly requirement for getting access to files through the SRM. Obtaining
transport URLs is required when replicating data and when reading data
from within a job. These two activities combined require a total of 18M
files to be accessed over a year period. By far the largest contribution to
this number is the access required to the small files produced by the strip-
ping activities when performing the merging and therefore the requirement
is split between the Tier-1s in proportion with the pledged CPU. Taken over
a year long period this rate becomes 0.56Hz.

The success rate for for each of the Tier-1 SRMs is given in Table 5.4
and the retrieval time is shown in Figure 5.12.

Files CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 0.98 0.84 0.97 0.98 0.82 0.96 0.99
2 0.98 0.86 0.96 0.97 0.75 0.96 0.98
5 0.98 0.89 0.95 0.97 0.66 0.93 0.98
10 0.98 0.87 0.96 0.97 0.65 0.88 1.00
20 0.98 0.88 0.93 0.96 0.66 0.88 0.98
50 0.00 0.89 0.87 0.97 0.64 0.83 0.69
100 0.98 0.90 0.93 0.97 0.67 0.85 0.99

Table 5.4: Success rates for tURL retrieval from site SRMs for varying
number of files using GFAL.

Comparing Tables 5.3 and 5.4 the success rate of obtaining tURLs is
lower at all sites. At CERN and RAL, which both use Castor SRM, an inter-
esting race condition occurs when retrieving 50 files resulting in a significant
drop in success rate. The StoRM service at CNAF shows a constant failure
rate of 10-15%. Significant error rate of over 30% is observed at NIKHEF
for groups of files greater than 2.

Despite the high failure rate the StoRM service returns tURLs within
20 seconds. The Castor services show a flat response profile, particularly
at RAL, but demonstrate occasional out-lying events that result in a large
measured deviation. The dCache services demonstrate poor response time
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Figure 5.12: Retrieval time for transfer URLs from site SRMs for a varying
number of files using GFAL. Note the different scales.

with this operation, i.e. GRIDKA, IN2P3, NIKHEF and PIC. The architec-
ture of dCache is such that to obtain access to a file through the SRM five
internal service look-ups are required. The complexity of this operation and
the dependency on multiple components results in a significantly increased
response time. This is effect was most marked at NIKHEF where response
times of over 14k seconds were observed for a single file.

The highest retrieval rates were observed for large file groupings for all
sites. The best performing sites are CERN, CNAF and RAL each displaying
rates around 5Hz. Three dCache sites GRIDKA (2Hz), IN2P3 (0.5Hz) and
PIC (0.5Hz) also exceed the total required aggregate rate. The pledged share
of resources at NIKHEF, given in Table 2.3, is 21% requiring a retrieval
rate of 0.12Hz. At NIKHEF the peak rate retrieval rate observed is 0.05Hz
which is twice less than required.
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5.2.4 Removing Files

As discussed in Section 5.1.5 15M files must be removed each year as a
result of the merging activity giving an aggregated removal rate across all
Tier-1s of 0.5Hz. To determine the rate at which files could be removed
from the SRM two tests were performed. The first test, to remove single
byte files, was to determine the rate at which files could be removed from
the namespace with minimal physical bytes. This gives a measure of the
SRM overhead for removing files. The second test, with 2GB files, was to
determine overall rate at which data could be removed through the SRM.
The results of the first test are shown in Figure 5.13.

Figure 5.13: Time to remove 1 byte files from site SRMs for a varying
number of files using GFAL. Note the different scale for GRIDKA, IN2P3
and NIKHEF.

The removal of single byte files is well defined across all services. The
peak removal rate varies significantly across the sites: the quickest is PIC
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with 20Hz with 20 files and the slowest is GRIDKA with 1.2Hz with 20 files.
This slowest rate at a single site is 2.4 times above the requirement for all
sites in total. The combined rate possible for all sites is 60Hz which is over
100 times the overall requirement.

The Castor services show a similar profile that increases regularly as the
group size increases. PIC is the quickest of all SRMs where 20 files may
be removed in 0.6 of a second. For all groups of files IN2P3 shows mean
removal times below 5 seconds, but displays significant variance. GRIDKA
and NIKHEF show a similar profile with significant increases in response
time as the group size increases.

Figure 5.14: Removal rate of data from site SRMs for a varying number
of 2 GB files using GFAL. Note the different scale for CERN, CNAF and
GRIDKA.

The rate at which data can be removed through the SRM, using 2GB
files, is shown in Figure 5.14. At GRIDKA a plateau was observed at
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∼10GB/s. At all other sites the removal rate increased with the size of the
grouping. Rates up to 80.4GB/s and 70.3GB/s were measured at IN2P3
and PIC respectively. File removal is significantly higher than data can be
written to the storage element. To highlight this, the removal all of the
RAW and rDST data produced during LHCb data taking period (1PB) of
1 year would take (assuming a removal rate of 7GB/s) ∼39 hours.

5.2.5 Uploading Files

The data produced by a processing job running on a Tier-1 worker node
should be uploaded to the SRM at that Tier-1 to ensure the share of pledged
storage resources is respected. Uploading files involves two main operations:
preparation of the target file and the transfer. The preparation of the target
file is done by GFAL issuing asynchronous requests to the SRM4 to obtain
a tURL for writing. Internally, the SRM must decide which disk server to
place files on and prepare the tURL to return to the client. To determine
the status of the prepare to put request GFAL periodically polls the SRM
until the tURL is returned. Once the tURL has been obtained the upload
of the file takes place using GridFTP. Within the suite of lcgutils, discussed
in Section 1.7.4, a method exists that combines the SRM interaction and
GridFTP transfer step and is used within DIRAC to perform file uploads.
The performance of the upload of single byte files was evaluated at all Tier-
1s and is given in Figure 5.15.

The performance of the Tier-1s varied drastically. Both PIC and IN2P3
complete almost all uploads within 10s with CNAF and NIKHEF and GRIDKA
completing all within 60s. The CNAF profile, in Figure 5.15(b), shows dis-
tinct clustering of results around 5, 15 and 25 seconds which alludes to the
periodic polling of the SRM to obtain the destination tURL. The two Castor
sites, CERN and RAL, both show much higher upload times than the others
with only 80% of CERN uploads and 54% of RAL uploads completed with
60s.

4Specifically a srmPrepareToPut operation.

107



5.2.6 Summary

The performance of the SRM interface to grid storage was evaluated at
each of LHCb’s Tier-1s. During the tests 3 different SRM implementations
(Castor, dCache and StoRM) were tested with four GFAL methods (gfal ls,
gfal prestage, gfal turlsfromsurls and gfal deletesurls). The requirements
derived from the Computing Model for the issuing prestage operations was
exceeded by 2 orders of magnitude. When removing files from the SRM the
lowest observed rate was 2.4 times above the requirement with an aggregate
rate 2 orders of magnitude grater that required. It was observed that all
of LHCb’s RAW and rDST data could be removed in a under two days.
The ability to retrieve transport URLs was achieved at all sites other than
NIKHEF where the achieved rate is less than half of the requirement.

One major concern regarding the performance of the SRM services was
discovered. During the transport URL test, discussed in Section 5.2.3, very
high response times, performance variability, and failure rate for dCache
services was observed. This discovery carries extra weight for LHCb as the
two largest Tier-1s by pledged resources (NIKHEF and IN2P3) fall into this
category. Efforts to diminish the effect of this have been discussed but at
the time of writing no clear solutions have been proposed.

Overall, the Castor SRMs were seen to be the most perfomant with
significantly less variation for retrieving metadata, submitting pre-stage re-
quests, retrieving tURLs and file removal. For all implementations the num-
ber of files in a request affects the operation response time. In addition,
larger groups of files are relatively more performant than smaller groups,
although groups of 50 or 100 are more prone to error.

The rate at which pre-stage requests may be submitted compared to
the rate at which file metadata can be retrieved had a significant influence
on the design of the Stager System. The submission and monitoring of
the pre-stage requests was split into two agents. This was done to ensure
that retrieving metadata did not hamper the submission of the requests and
therefore the ability for the tape system to optimise the recall process.
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(a) CERN

(b) CNAF (c) GRIDKA

(d) IN2P3 (e) NIKHEF

(f) PIC (g) RAL

Figure 5.15: Histogram of time taken to upload a 1 Byte file to site SRM
from local worker node.

109



Chapter 6

DIRAC Bulk Transfer

Framework Performance

The DIRAC transfer framework, discussed in detail in Section 4.2, is based
on the principle of a central scheduler that assigns files to task queues repre-
senting source and destination storage element pairs. Transfers are retrieved
from the task queues and executed as transfer slots become available. This
framework supports the file replication activity of all parts of the LHCb
dataflow and must be able to meet the network requirements outlined. This
chapter presents the performance of the DIRAC transfer framework and dis-
cusses the implications for the design choices that were made. Section 6.1,
will outline the peak network rates to be supported by the transfer frame-
work. Section 6.2 will give the results of the transfer framework commission-
ing exercise performed to ensure the scalability of the system. Section 6.3
will discuss the possibility to apply intelligent replication strategies within
the transfer framework.

6.1 Peak Network Requirements

The Computing Model, described in Section 2.4, outlines the role of each
computing center according to the tiered MONARC model. The distributed
processing of data is performed at seven LHCb Tier-1 centres and requires
sustained data transfer between sites to ensure data persistency and provide
increased availability of data to physicists. The peak network requirements
occur during the re-stripping period which takes place concurrently with
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data taking. During this period, as discussed in Section 2.5, the transfer
activities are:

• RAW data transfer from CERN to external Tier-1s

• Distribution of DSTs from quasi-real time processing to all Tier-1s

• Distribution of the DSTs from re-stripping to all Tier-1s

• Distribution of the Monte Carlo DSTs to three Tier-1s

The total required data rate during this period, in and out of each site,
are given in Table 2.8. The network rates required into each site are approx-
imately equal at around 60MB/s. The rates out of the sites differ for two
reasons. The primary reason is the differing CPU pledges at the sites. A
larger CPU pledge results in more DSTs being produced at the site. Since
the DSTs must be distributed to multiple final destinations the rates can
vary significantly. The CERN export rate is higher than other similarly sized
Tier-1s because of the RAW data that is exported at 50MB/s. The values
in Table 2.8 are sustained rates over the 1 month period of re-stripping and
therefore the transfer framework should demonstrate the capability of peak
rates in excess of these.

6.2 Commissioning Exercise

To ensure the transfer framework can support the LHCb dataflow a com-
missioning exercise was performed with two main aims:

• To ensure the transfer framework scales to support PBs of data

• To achieve the required transfer rates into and out of each site

The exercise was set up using 2GB files as seeds at every Tier-1 site to
be replicated to each of the other sites. Large files were chosen to mimic the
real RAW and DST files which will be transferred during data taking and
re-stripping. The target of the exercise was to transfer 1PB. This volume of
data was chosen to ensure scalability was addressed and to determine the
achievable rates for each site.

To ensure the full transfer framework chain was tested, without inter-
ference, the exercise was managed from a stand alone client installation.
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Figure 6.1: Cumulative transferred data during commissioning exercise
grouped by destination site.

Requests to transfer the seed files were created by the client and set in the
Transfer DB. From here they were assigned to task queues by the Replication
Scheduler, the FTS Submit and Monitor agents controlled interaction with
FTS and the replica registration was performed on completion. To repeat
the cycle the client would periodically check for successfully registered files
at the target SEs, remove the physical files, and their catalog entries, then
create new requests to retransfer the files. With this approach the system,
and each of the underlying source-destination SE pairs, was always loaded.

The exercise completed within 21 days, transferring a total of 1.01PB (see
Figure 6.1). This accomplished the first aim of the commissioning exercise;
to achieve scalability of the framework to the PB level.

6.2.1 Transfer Throughput Scalability

The metrics used to determine the throughput scalability of the system are:

• The framework should support overall transfer rates 1.5 times the max-
imum required network rate. This translates to 412×1.5=618MB/s.
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• The framework should be able to saturate the available network re-
sources.

The observed throughput over the course of the exercise grouped by the
destination site is shown in Figure 6.2.

Figure 6.2: Transfer throughput during commissioning exercise grouped by
destination site (MB/s).

There are three important periods that can be seen in Figure 6.2. The
first period (in the first 11 days) was characterised by stable throughput
rates of 500MB/s that decreased to around 400MB/s on the final day.
The second phase was characterised by transfer throughput of ∼700MB/s
sustained for 5 days. The third phase, during the last three full days of the
exercise, displayed sustained daily rates of ∼950MB/s. These three result
periods will be discussed in turn.

Phase 1

During the first phase of the exercise the sustained daily rate was in excess
of the 412MB/s total peak rate required, with the exception of the first day
ramp-up. As the period progressed the daily rate decreased until reach-
ing ∼410MB/s on the final day. The cause of the decreased performance
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was investigated and a significant bottleneck was discovered in the central
database. The slow database response was limiting the rate at which the
agents in the framework could retrieve their tasks. This resulted in a re-
duction in the rate at which FTS requests were monitored, which in turn
limited the rate at which new FTS requests could be submitted.

To increase the performance the database schema was revised, making
use of indices for heavily solicited table rows. The effect of the database
update was studied by evaluating the number of times each FTS Request
was monitored. This is shown in Figure 6.3.

As the first period progressed the mean number of monitors for each
request decreases. An associated reduction in the standard deviation is also
seen illustrating that the database slowdown affected all FTS requests. The
schema change was made on the 9th of November after which the mean
number of times each FTS Request was monitored increased. This resulted
in a higher turn-around of requests and increased throughput.

Figure 6.3: Mean number of times FTS requests were monitored by the FTS
monitor agent (red) grouped by day. The standard deviation observed dur-
ing each day is show in blue. The updated database schema was introduced
on the 9th of November.
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Phase 2

The second period was characterised by daily transfer throughput of∼700MB/s.
Although the throughput was successfully increased it coincided with an in-
crease in the observed error rate. It was discovered that 12.3% of the errors
were caused due to the target storage elements being full1. On further
investigation, the storages exhibiting this symptom were found to all be
dCache SRMs. Discussions with the dCache SRM administrators revealed
that when files are ‘deleted’ from dCache the space associated to these files
is reclaimed asynchronously. Therefore, even though files had been removed
from the namespace dCache thought there was no space available in which
to write new files.

The initial test setup was designed to immediately remove files from the
target SRM after the replica catalog registration was performed to conserve
space. To overcome the problem associated to the asynchronous space re-
covery the setup was modified to transfer files alternately to three different
SRM spaces. These different SRM spaces are accounted by dCache indepen-
dently, effectively allowing access to three times as much physical disk. The
modification was made on the 13th, after which, no further errors with this
prognosis were observed.

Phase 3

During the final three days of the exercise, ignoring the last day ramp-down,
an average daily throughput of ∼950MB/s was achieved. This through-
put was limited only by the performance of the site SRMs and underlying
GridFTP servers. At this daily average rate the transfer framework was
twice the total required rate given in Table 2.8; achieving the first through-
put scalability metric given above. A snapshot of the throughput on one
of these days is given in Figure 6.4 with peak throughput over 1GB/s, 2.4
times the required sustained rate.

The network rates during the final period of the exercise, in and out
of each site, is given in Table 6.1. The network requirements are given in

1600219 transfers were attempted of which 480550 failed. Of those, 59164 failed with
the error signature NO SPACE LEFT.
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Figure 6.4: Transfer throughput during commissioning exercise grouped by
source site (MB/s).

Table 2.8 were met and frequently exceeding requirement by 50%, allowing
the system to recover from backlogs effectively. There was one exception:
the network rate out of NIKHEF.

As was found in Section 5.2.3, the ability to retrieve tURLs for existing
files from NIKHEF is error prone. The mean time to return tURLs at
NIKHEF was observed to be over 2000s (for all file group sizes tested). The
FTS applies a timeout when retrieving tURLs from the source (and target)
SRM which is configured be of the order of 300s. If this timeout is exceeded
the transfer is failed by FTS. This severely limits the ability to transfer data
out of NIKHEF.

6.2.2 Channel Performance

During the exercise almost all of the raw throughput metrics were accom-
plished. These metrics were chosen to ensure that the site SRMs could cope
with the aggregated required network rates. The performance of the indi-
vidual FTS channels will be discussed in this section.
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In from Tier-1 Out to Tier-1
CERN 163.1 232.7
CNAF 70.1 66.5

GRIDKA 169.4 155.0
IN2P3 202.9 213.0

NIKHEF 86.6 4.7
PIC 189.8 30.3
RAL 65.0 244.8
Total 946.9 946.9

Table 6.1: Aggregated throughput achieved during final phase of commis-
sioning exercise (MB/s).

The exercise was set up to maintain a sustained equal load on each FTS
channel. This ensured that channels were never starved of data. Therefore
during the period of the exercise, better performing channels would transfer
more data while lesser performing channels would transfer less. To evaluate
the performance of each channel several metrics were investigated. The first
metric was the success rate of each of the channels observed during the final
phase of the exercise, given in Table 6.2.

Destination
CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL

Source

CERN - 0.76 0.96 0.89 0.95 0.97 0.92
CNAF 0.72 - 0.03 0.44 0.10 0.63 0.14

GRIDKA 0.78 0.12 - 0.79 0.05 0.45 0.83
IN2P3 0.87 0.20 0.87 - 0.70 0.80 0.74

NIKHEF 0.36 0.01 0.03 0.08 - 0.57 0.31
PIC 0.43 0.04 0.11 0.20 0.31 - 0.47
RAL 0.85 0.19 0.95 0.96 0.60 0.82 -

Table 6.2: Channel success rate during final phase of commissioning exercise.

It can be seen from the Table that the success rate of 20 of the 42
channels is less than 50%2. One of the arguments for using FTS for data
transfer is that it allows sites to manage the load on their SRMs and control
the network traffic to maintain system stability. To do this sites configure
the number of file transfers that are executed concurrently on each chan-
nel. A larger number of files allows the possibility to achieve higher transfer

220 (of 42) channels less than 50% success rate, 22 channels less than 60%, 24 channels
less than 70%, 29 channels less than 80%, 36 channels less than 90%
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throughput with a corresponding increased load on the system.

The second metric measuring the performance of each channel was de-
rived from the individual file transfer times (obtained from FTS logging
information). The mean file transfer time (for successful transfers) over the
final exercise phase for each channel is given in Table 6.3.

Destination
CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL

Source

CERN - 957.6 211.3 228.0 551.2 159.8 569.1
CNAF 1550.8 - 1566.7 687.6 1231.3 1276.7 1574.0

GRIDKA 579.9 1862.1 - 253.8 501.4 603.6 1100.3
IN2P3 217.5 1848.0 247.4 - 515.5 544.3 769.5

NIKHEF 1303.8 2673.8 690.4 743.9 - 2247.6 1990.2
PIC 2002.7 2587.7 455.5 617.6 1661.0 - 2512.0
RAL 662.0 1472.7 374.0 349.0 882.6 747.5 -

Table 6.3: Mean file transfer time of 2GB file during final phase of commis-
sioning exercise (s).

To obtain a measure of the instantaneous throughput on a channel the
mean transfer time was combined with the number of concurrent transfers
per channel and the observed success rate. The number of concurrent files
transferred on each channel varied by source and destination with most
channels configured to transfer between 4 and 15 files3. Since the file size
was constant (2GB) the formula for obtaining an estimation of throughput
is:

throughput =
concurrent files

mean transfer time
× success rate (6.1)

This estimated throughput for each channel is given in Table 6.4. The
estimated throughput and success rate is represented in a scatter plot for
each source and destination pair in Figure 6.5. This shows a non-trivial
correlation between the estimated throughput and the channel success rate.
This suggests that protecting the storage element from high load, increases
the overall throughput that can be achieved. The high failure rates seen in
Table 6.2 also suggest that the balance between performance and stability

3The CERN-Tier1 and Tier1-CERN transfers are managed by the CERN FTS server
and are weighted by the relative contributions of the sites to LHCb computing activi-
ties. For Tier1-Tier1 activity transfers into CNAF were configured for 10 concurrent files,
GRIDKA and RAL for 5, IN2P3 and NIKHEF for 10 and PIC for 15.
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Destination
CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL

Source

CERN - 7.92 45.64 109.55 17.26 36.57 32.48
CNAF 16.75 - 0.16 12.70 1.69 14.74 0.90

GRIDKA 64.64 0.50 - 62.11 1.85 22.41 7.51
IN2P3 79.75 0.86 35.08 - 27.03 44.32 9.66

NIKHEF 6.59 0.02 0.45 2.02 - 7.62 1.58
PIC 25.96 0.13 2.37 6.49 3.70 - 1.87
RAL 51.27 1.04 25.31 55.03 13.49 32.90 -

Table 6.4: Estimated channel throughput during final phase of commission-
ing exercise (MB/s).

has not been achieved yet.

Figure 6.5: Channel throughput and success rate by source and destination
site. The normalised network rate is denoted by the area of the dots and the
success rate denoted by the colour, ranging from 0% (red) to 100% (green).

The balance between performance and stability is made more compli-
cated by the deployment schema of FTS whereby a channel is managed
by the destination site FTS server4. In this schema it is possible to di-
rectly control the transfer activity into a site, but not the transfer activity
out. Therefore, a site may overload another by configuring the channels
according to the target site capabilities. This suggests the need for a global

4Except channels with CERN as a source which are managed by the CERN FTS.
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co-ordination between the sites to obtain realistic channel configuration.

6.2.3 Discussion

In this section the results of the transfer framework commissioning exercise
were presented. The bulk transfer framework was designed with a central
database to allow replication scheduling policies to be applied to all LHCb
replication activities. The counter argument to a centralised design is that
it creates a possible performance bottleneck that can be avoided with a fully
distributed system. It was seen that during 21 days the framework trans-
ferred over 1PB of data and supported peak transfer rates of over 1GB/s,
approximately 2.4 times the rates required from the LHCb computing model.
This provided justification for the selected design.

During the commissioning exercise a significant variation in performance
of the FTS channels was observed. It was shown that the success rate
and observed throughput show a non-trivial correlation suggesting that a
coordinated FTS configuration between the sites should be undertaken to
protect the storage elements from high load.

6.3 Replication Strategies

This section will present the mechanism used in the DIRAC bulk trans-
fer framework to efficiently use available network resources. Section 6.3.1
will give a brief introduction to the concepts of graph theory that is used
throughout. The subsequent sections present two algorithms employed to
execute scheduling decisions, and the generation of the input for the algo-
rithms. In Section 6.3.4 a comparative study of the performance of these
algorithms is presented.

6.3.1 Introduction to Graph Theory

An introduction to the concepts used in the following sections is given in
Figure 6.6.

Data produced as a result of the stripping phase of the LHCb workflow
must be replicated from the generation site to several destinations. In the
nomenclature of graph theory the seven LHCb Tier-1s are vertices in a com-
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(a) A Complete Graph (b) A Sub-Graph

(c) A Spanning Tree

Figure 6.6: Introduction to graph theory. A complete graph connects all
vertices to all other vertices. A sub-graph is a subset of an existing graph.
A spanning tree connects all vertices in the graph. An edge connects any
two vertices.

plete graph. The FTS channels connecting the Tier-1s are edges. When
scheduling the replication of a file, a sub-graph is created which connects the
source SE with all the required destinations.

The edges connecting the vertices have an associated weight, represent-
ing some metric for transferring data on that channel. To make the most
efficient use of the available network the total weight of all spanning tree
configurations can be evaluated. Minimising the total weight for connecting
all the vertices provides a minimum spanning tree and is the most efficient
way to transfer the data.

The following section will discuss the algorithms used to generate the
spanning trees in the DIRAC bulk transfer framework.
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6.3.2 Spanning Tree Generation

The role of the Replication Scheduler is to generate a spanning tree, con-
necting the primary vertex to all destination vertices. The algorithms used
to generate the spanning trees, referred to as strategies, may be used in-
terchangeably and are applied to each file at the point of scheduling. With
the small number of available edges5 the spanning tree generation can be
performed deterministically for each file.

The two strategies that will be presented here apply the Prim-Jarnik
(P-J) algorithm [174, 175] and a proprietary algorithm named Min-Sigma.
The algorithm steps performed for each are given below.

Prim-Jarnik

Starting from the primary vertex the P-J algorithm builds the spanning
tree by selecting always the lowest weighted edge to a non-connected vertex.
This algorithm will always produce a minimum spanning tree for the LHCb
setup because all sites are connected to all others. This is represented as
follows:

• Input: A complete weighted graph with weights W , vertices V and
edges E. The source vertices are Vsources and the selected edges are
Eselected

• Initialise: The source vertices is initialised with only the primary ver-
tex, Vsources = {primary vertex}. The selected edges are initialised to
be empty, Eselected = {}

• Repeat the following steps until the source edges contain all the des-
tination vertices, Vsources = V :

– Choose the edge (u, v) from the possible edges E with the lowest
edge weight, MIN(Wu,v) s.t. u ∈ Vsources and v /∈ Vsources

– If there are multiple edges with the same Wu,v choose arbitrarily

– Add the selected destination v to the possible sources Vsources and
add the edge (u, v) to the selected edges, Eselected

5The 7 LHCb Tier-1s connected to each other create 42 possible edges
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• Output: Spanning tree containing the selected sources, Vsources and
the selected edges, Eselected

The P-J algorithm minimises the sum of all consumed edge weights but
does not consider the possible parallelism of transfer operations. For ex-
ample, the time to transfer a file from A to B and C on the A-B and A-
C channels is MAX(A-B,A-C) and not SUM(A-B,A-C). If the goal of the
scheduling algorithm is to minimise the maximum weight (a proxy measure-
ment for time) to reach all vertices, a different algorithm could be considered.
The algorithm designed for this was named Min-Sigma (MS).

Min-Sigma

The Min-Sigma algorithm makes a small addition to the P-J algorithm to
generate a minimised spanning tree that is not a conventional minimum
spanning tree. At each step, the edge with the destination vertex with
the lowest sum of all ancestor edges weights is selected. This is written as
follows:

• Input: A complete weighted graph with weights W , vertices V and
edges E. The source vertices are Vsources and the selected edges are
Eselected

• Initialise: The source vertices is initialised with only the primary ver-
tex, Vsources = {primary vertex}. The selected edges are initialised to
be empty, Eselected = {}

• Repeat the following steps until the source edges contain all the des-
tination vertices, Vsources = V :

– Choose the edge (u,v) from the possible edges E with the lowest
sum of ancestor weights, MIN(

∑
Wsource,v) s.t. u ∈ Vsources and

v /∈ Vsources

– If there are multiple edges with the same
∑

Wsource,v choose ar-
bitrarily

– Add the selected destination v to the possible sources Vsources and
add the edge (u, v) to the selected edges, Eselected
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• Output: Spanning tree containing the selected sources, Vsources and
the selected edges, Eselected

The P-J and M-S algorithms both generate replication trees containing
edges with ancestors, i.e. multi-hop transfers. The cost of additional hops,
taken to relate to the turn around time between one transfer completing
and the descendent starting, is not included in algorithms outlined above.
To model this extra cost an additional parameter, δ, is added to the edge
weight if the edge source is not the primary vertex.6

The difference between the P-J and M-S algorithms, and the effect of
the δ parameter is demonstrated using an example graph, see Figure 6.7. If
the Red vertex is taken to be primary, with associated weights on each edge,
then the minimum spanning trees generated by the different algorithms are
shown in Figure 6.8.

2

1

2

4

4
5

Figure 6.7: Complete weighted graph example. The numbers are the edge
weights.

The P-J solution, Figure 6.8(a), can be seen to differ from M-S, Fig-
ure 6.8(b), since the M-S algorithm evaluates the Red-Yellow edge as smaller
than the sum of the Red-Blue-Green-Yellow edges. The P-J solution would
result in a total transfer time (5.2 including δ)7 that is equal to the time
till completion. The M-S solution has a higher total transfer time (7.1 in-
cluding δ)8 but, since the Red-Yellow edge will proceed in parallel, the time

6In [176] a similar parameter was shown to regulate the replication tree depth and
branching factor. They found increasing δ produced shallower trees with higher branching
factors.

71+(0.1+2)+(0.1+2)=5.2
81+(0.1+2)+4=7.1
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(a) Prim-Jarnik, δ = 0.1 (b) Min-Sigma, δ = 0.1

(c) Min-Sigma, δ =∞

Figure 6.8: Solutions to weighted graph in Figure 6.7.

till completion is estimated to be lower (the weight of the Red-Yellow edge:
4). The effect of increasing the δ parameter is to reduce the depth of the
resulting tree, until at the upper limit, a multi-unicast strategy is produced,
shown in Figure 6.8(c).

6.3.3 Edge Weight Generation

The edge weights provided as input to the strategy algorithms represent an
estimate of the time for a newly assigned file to complete transferring on
the edge. This weight is calculated using two sources of information: the
observed throughput on the edge and the number of files already assigned
to the edge.
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Determining Throughput

The throughput on an edge can be calculated over a period of time chosen
by the strategy. For a long-term view of the stability of an edge, a long
consideration period may be chosen. For more timely information a short
period may be chosen.

The throughput is calculated by evaluating the amount of data success-
fully transferred on the edge in the consideration period, and dividing by
the amount of time the data transfer has been attempted for. With this
approach, periods where no transfer activity was attempted do not diminish
the observed throughput. This also includes failed transfers which reduce
the observed throughput.

Assigned Files

Using solely the edge throughput in the scheduling algorithm would result in
all files being scheduled on the most performant edges. These edges would
appear equally attractive to all files irrespective of the number of files already
assigned to the edge. This results in a waste of resources.

Edge Weight Formula

The edge weight is a simple combination of the following two numbers:

edge weight =
volume of waiting data (MB)

throughput (MB/s)
,

or

edge weight =
waiting files

throughput (s−1)

Once a spanning tree is generated for a file the number of files waiting
on each of the selected edges is incremented. The updated edge contents
are then used in the computation of the spanning tree for the next file to be
scheduled.
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6.3.4 Comparing Strategy Performance

The algorithms outlined in Section 6.3.2 do not collude to attain optimal
global performance, but approximate it by minimising consumed resources
for individual files.

Considerations for Comparing Strategies

If the three examples given in Figure 6.8 were to be executed to transfer
data in parallel the P-J and M-S (δ = 0.1) algorithms would aid the perfor-
mance of the M-S (δ = ∞) algorithm. This would happen because the P-J
and M-S (δ = 0.1) algorithms do not select the Red-Green and Red-Yellow
edges, leaving it free for use by the M-S δ = ∞ algorithm.

To determine the true strategy performance the interference of concur-
rently executing strategies must be removed. As has been shown, the perfor-
mance of grid resources are variable. To ensure the status of the resources
does not dominate the performance comparison the strategies should be
executed with minimal variation in time.

Experimental Setup

To compare the replication strategies a simple experiment was conducted.
During this experiment 5k 24kB files were transferred from a single source
site (CERN) to four external Tier-1 sites. Requests to transfer files were gen-
erated on a client machine and submitted to the bulk transfer framework.
The files were split into groups of 100 and a particular strategy specified in
the request.

The client submission of requests was done serially, such that a new re-
quest was created only when the previous has completed successfully. This
was to avoid interference between concurrently executing strategies. Each
new request incremented the strategy specified. The total time to complete
the requests was recorded.

Three strategies were compared: P-J (δ = 0), M-S (δ = 0) and M-S with
(δ = ∞) (which generates simple multi-unicast trees). For the duration
of the experiment the throughput consideration period was set to 12 hours

127



to keep a stable performance estimates between consecutive requests. The
results are presented in the following sections.

Mean Time To Transfer

The mean time for a file to reach all of its destinations, per individual
request, is given in Figure 6.9.

Figure 6.9: Mean time to transfer files within each request for the strategies
evaluated. A best fit dotted line was applied to the mean transfer times for
the requests of each strategy.

The M-S δ = ∞ strategy consistently under-performs relative to the dy-
namic strategies, which verifies the premise that intelligent scheduling can
be applied.

The performance of the M-S δ = ∞ strategy is lower because the time
for a file to reach all of its destinations is limited by the least performant of
the edges. Of the two dynamic strategies P-J consistently outperforms M-S.
To understand the performance difference, the spanning trees generated by
each of the strategies were analysed.
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Spanning Tree Properties

The spanning trees generated for each file scheduled during the exercise were
recorded. The branching ratio of the spanning trees, which gives a measure
of the number of times a vertex was used as a source, was calculated. The
spanning tree depth, which gives a measure of how may hops have been
performed from the primary vertex to the destinations, was also calculated.
The average depth and branching ratio for all the files in a request is plotted
against the mean time for the request to complete, Figure 6.10.

(a) Branching Ratio

(b) Tree Depth

Figure 6.10: Average request spanning tree properties.

The average branching factor, shown in Figure 6.10(a), and depth, shown
in Figure 6.10(b), show clear correlation with the algorithm that produced
the spanning tree. The P-J algorithm produces trees with low branching
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ratio and high tree depth while M-S produces trees with high branching
ratio and low tree depth (at δ = ∞ limit the trees have a depth of 1 and
branching factor equal to the number of destination vertices).

The most performant requests generate spanning trees with low branch-
ing ratios with high tree depth.

Edge Utilisation

Analysing spanning tree properties gives a file centric view of the algorithm
results, but tells nothing of the overall edge utilisation. The number of files
assigned to an edge in each request shows us whether the algorithm makes
heavy use of some edges and light use of others. The number of files assigned
to each edge for all requests in the exercise by the P-J and M-S algorithms
is shown in Figure 6.11.

Figure 6.11: Aggregated assigned files per edge. The blue and red sections
represent histograms for each algorithm employed with a small overload
being observed between 10 and 25.

The M-S algorithm appears to have two groups of edges: heavily used
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(more than 50 files per request) and lightly used (less than 20 files per
request). The M-S algorithm values parallelism of transfers and the four
peaks which can be observed above 50 correspond to the four channels out of
CERN. The P-J algorithm displays a different profile with more distributed
edge usage never assigning more than 40 files to an edge. The P-J algorithm
chooses the cheapest edge making more use of the edges not related to the
primary vertex. The result of this is that a file replicated to a destination
becomes a new seed to replicate to the other destinations. This reduces the
demand on the edges out from the primary vertex.

Edge Performance

The validity of the scheduling decisions can be evaluated by comparing the
number of files assigned to an edge against the performance transferring
those files. This is presented in Figure 6.12.

The heavy M-S edges from Figure 6.11 can be seen in Figure 6.12(a) to
correspond to the channels out of CERN (bottom right) and the lightly used
edges connect the Tier-1 sites (top left). As the primary vertex, the edges
out of CERN must be used to gain access other edges. The P-J algorithm
makes less use of the edges out of CERN making use of the more performant
edges connecting Tier-1s.

The higher performance of the P-J algorithm can be clearly seen in
Figure 6.12(b) where, excluding the required edges out of CERN, the number
of files assigned to an edge increases with the performance of the edge,
demonstrating the validity of the routing decision.

6.3.5 Selected Strategy

This section has shown that intelligent scheduling is possible using past
network performance to minimise the time to get a file to all destinations.
Of the two dynamic algorithms that were presented the Prim-Jarnik out-
performed the Min-Sigma algorithm. The P-J algorithm creates spanning
trees with low branching ratio and high depth making higher use of more
performant channels. For this reason this algorithm has been selected to be
used by default in the bulk transfer framework.
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(a) M-S δ = 0

(b) P-J δ = 0

Figure 6.12: Edge files scheduled vs. performance by source.

6.4 Summary

This chapter presented two facets of the performance of the DIRAC bulk
transfer framework. It was seen that the bulk transfer framework scales to
support the needs of the LHCb Computing Model and demonstrated net-
work rates of over 1GB/s whilst transferring 1PB of data. The required
transfer rate metrics, in and out of each site, were met (except data out of
NIKHEF) but analysis of the individual channels showed significant varia-
tion in performance.

The ability to perform intelligent scheduling to make efficient use of
network resources was demonstrated. The Prim-Jarnik algorithm has been
adopted as the default strategy to be used. The adopted algorithm uses
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edges in proportion to their overall performance and ensures that the vari-
ation in the underlying channels does not effect timely distribution of files
to all their destinations.

The application of intelligent scheduling has the added benefit of making
the required network rates for sites more flexible. It allows to compensate
for the transfer metrics not achieved by shifting the export requirement to
sites that are more performant.
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Chapter 7

Conclusions

The Grid computing paradigm has been presented as a solution to the re-
source challenge faced by contemporary data-intensive applications. To al-
low the Grid computing architecture to function a set of standards have
emerged that aim to provide seamless access to disparate computing and
storage resources. This thesis concentrated on the requirements of the LHCb
experiment being built at CERN, which will produce 500TB of RAW physics
data each year of operation. To analyse this data LHCb have adopted a
dataflow that splits processing across seven Tier-1s and using a large num-
ber of Tier-2 centres to generate simulated data.

The DIRAC project has evolved over that last four years to support all
facets of the LHCb computing dataflow and workflow. The DIRAC Work-
load Management system has championed the pull scheduling paradigm us-
ing Pilot Jobs to mask the instabilities of the underlying Grid middleware
and resources. This approach has now been accepted by several of the other
LHC experiments as the mechanism for ensuring stability and managing
community policy.

The DIRAC Data Management system design has been presented. The
core of the system are the components that abstract the underlying re-
sources. The main resources consumed by the data management system
are the grid storage elements (offering the SRM interface) and replica cat-
alogue. On top of these components a set of services and agents have been
developed to fully support the logical dataflow outlined in the Computing
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Model. A key component of this is the bulk transfer system which uses a
central scheduler to implement intelligent replication strategies. A system
for performing data-driven replication of production files has been developed
to automatically distribute data according to LHCb policy for different data
types. A integrity and accessibility of LHCb’s data is ensured by maintaining
the mutual consistency of all the catalogues and grid resources used. The
mechanisms employed by the Data Management system to ensure resilience
to problems with the resources were presented. The distributed failover
mechanism has proved so successful that it is now employed by all DIRAC
components to relay messages in the event of services being unavailable.

The client interface to the LFC was tested and supports the tested op-
erations far in excess of the needs of LHCb. The initial file registration rate
required was exceed by 30% and all other tested functionlities exceeded re-
quirements by over 2 orders of magnitude. The SRM interface to the seven
LHCb Tier-1s was tested showing significant variation in performance across
the SRM implementations and for different functionality. The requirement
to issue prestage requests and to remove files exceeded requirements by 2
orders of magnitude. The ability to obtain access to data through the SRM
was observed to be problematic with NIKHEF achieving only half the re-
quired rate and exhibiting a 30% error rate. Significant efforts have been
made by the community to increase the stability and scalability of Grid
storage systems on the whole, but this still remains a problematic issue.

The bulk file transfer mechanism facilitates the distributed processing
of LHCb data and has shown to provide both the brute force through-
put required and the ability to perform intelligent scheduling, using past
network performance, to create replication trees. The transfer framework
commissioning exercise demonstrated peak throughput rates of over 1GB/s
and sustained rates 2.4 times the requirement from the Computing Model.
While the aggregate requirements were met specific metrics of site perfor-
mance were not met at NIKHEF. The centralised scheduler allows intelligent
scheduling to be performed and the Prim-Jarnik algorithm was found to pro-
vide more efficient use of network resources and increased performance. It
was shown to provide a 50% reduction in total transfer times compared to a
simple multi-unicast approach and 33% reduction compared to the propri-
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etary Min-Sigma algorithm. The application of intelligent scheduling also
allows to redistribute the Computing Model network requirements alleviat-
ing the load from problematic sites.

The generation of optimal replication strategies is a fertile ground for
further research. The parameter space to investigate using the Prim-Jarnik
algorithm is significant, but will primarily concentrate around an investi-
gation of the δ parameter to model the added cost of making multi-hop
transfers and the resulting spanning tree performance.

During September 2009 the first beam was observed at the LHC provid-
ing LHCb with its first data. This data was transferred to MSS at CERN
using the mechanisms presented here. Since then, detector commissioning
has continued to produce cosmic ray data that is being managed by DIRAC
daily. This has provided the first taste of LHC data, and with first collisions
approaching, mechanisms to ensure the scalability and use-ability of DIRAC
are being extended. The datasets architecture presented here will be made
public to users along with a mechanism to manage user grid storage quo-
tas. The coming months will see the LHC return to operation bringing first
collisions to the experiments. This will begin the data deluge for which all
members of the LHCb collaboration have been waiting.
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Appendix A

SRM Evolution

The standardisation of the interface to grid storage is the key current effort
in storage management. The Storage Resource Manager (SRM) interface is
the result of this effort. The design considerations first proposed when the
SRM specification was created are reviewed here, followed by an overview of
the evolution of the specification from the first version to version 2.2 which
is being used within LCG.

A.1 Key Concepts

The SRM interface provides uniform access to heterogeneous storage re-
sources on the grid. When the concept of Storage Resource Managers was
first discussed the interface was very simple but the imagined functionality
that could be performed by the SRM was significant. The fundamental idea
behind SRM was the ability for a grid storage system to dynamically man-
age space. The core concepts in the early discussions were file pinning and
space reservation, file types and space types.

File pinning is necessary for dynamic management of shared disk caches.
It allows clients to inform the SRM of the expected lifetime of a file and how
long it should be available. This could be used by the SRM to garbage col-
lect old files as their pins expired. A pin lifetime associated to a file that is
only on disk cache implies that this file is temporary. This introduced the
need to define file types. Three file types were proposed: volatile, durable
and permanent.
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Volatile files are temporary and have a pin with an associated lifetime.
These files may be removed by the SRM once the pin expires and are effec-
tively managed by the SRM. Permanent files are to be kept forever. Since
the SRM can not remove these files they are owned by the client. The
durable file type is a hybrid of the previous two with an associated lifetime
but could not be removed by the SRM after the expiration of the lifetime.
The use case for this file type was to allow sharing of temporary resources
while protecting important files from automatic deletion.

Space reservation was required to allow a client to dynamically reserve
space with different characteristics and lifetimes. To allow the SRM to
manage its resources a space type and lifetime, like the pin lifetime, was as-
sociated to the reservation. The arguments for defining three file types can
equally be applied to spaces resulting in the definition of volatile, durable and
permanent spaces. Similar to the arguments for volatile and permanent file
types, the need for volatile and permanent space is immediately apparent.
Volatile space has a lifetime associated with it. The SRM can reclaim the
space and remove the files contained within it once this expires. Permanent
is managed by the client and can not be recovered by the SRM. Durable
space is client owned temporary space guaranteed by the SRM. Durable
space, like durable files, are client managed, but have an associated lifetime.
After the expiration of the lifetime the SRM must inform the owner of the
space.

When the lifetime of a volatile space expires the SRM can release the
space, removing all the files contained in the space. To ensure that all
the files in a volatile space can be removed as the space lifetime expires
files cannot be pinned for a lifetime longer than the lifetime of the space.
When the space lifetime expires the SRM knows the files contained have
also expired. With similar logic, durable files may only be placed in durable
or permanent space and permanent files can only be stored in permanent
space. Volatile files, because of their temporary nature, can be placed in
any of the three space types. This is shown in Table A.1.

The ability for clients to reserve space with a given type and (if appropri-
ate lifetime) is core to the principles of SRM. From the client’s perspective
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Space Type
File Types Volatile Durable Permanent
Volatile Yes Yes Yes
Durable No Yes Yes

Permanent No No Yes

Table A.1: Files Types Allowed in SRM Space Types.

this reservation would be guaranteed at the requested size for the lifetime
of reservation. This is known as guaranteed reservation model. An alterna-
tive is a best-effort system, where the space is allocated to the client as it
is claimed. With this system the initial reservation is advisory which the
SRM tries to honour within the reservation time. With a best-effort system
the SRM can optimise the use of its resources by allocating space only to
those who utilise their reservations. A summary of the properties of different
space types can be seen in Table A.2.

Space Type
Features Volatile Durable Permanent

Lifetime applies Yes Yes No
Can SRM reclaim? Yes No No

Best-effort Always Possible Possible

Table A.2: SRM Space Type Properties [177].

The motivation for different space and file types was to allow SRM to
conduct the management of its resources dynamically. As will be seen in
Section A.3 this has not happened in real world applications.

A.1.1 LFNs, PFNs, Source URLs and Transfer URLs

Each unique file on the grid has a globally unique Logical File Name (LFN).
An example LFN, the first RAW file written by LHCb is:

/lhcb/data/2008/RAW/LHCb/BEAM/32438/032438 0000081608.raw

Each replica of this file, stored on different storage resources, will have
a different Physical File Name (PFN). To allow clients to locate replicas
of a file on the grid, a replica catalogue is required to map LFNs to their
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corresponding PFNs.

Files on the grid are also represented by a Source URL (SURL). This
SURL is made up of the protocol and the PFN. Clients wishing to access a file
may use a SURL to begin discussion with the SRM managing the file. Once
a client has requested the SRM to pin a file and the protocol negotiation has
taken place the SRM returns a transport URL (tURL). This tURL, contains
the negotiated transfer protocol followed by the PFN.

A.2 Protocol Development

The Storage Resource Manager Working Group first discussed the func-
tionality and common operations that SRM should support in October
2001. This led to the preparation of the Common Storage Manager Op-
erations [178]. This specification covers basic functionality to allow files to
be placed and retrieved from the SRM, to pin and unpin these files, to delete
and to archive files. The specification also allowed clients to access request
information, file metadata, transfer protocols supported and the estimated
time for requests to complete.

This specification document was subsequently reviewed and additional
functionality, such as third party SRM copies, termination of part or all of
requests and suspension and resumption requests were added. This Joint
Functionality Design [179] document detailed the SRMv1.1 specification.
The methods outlined in this protocol version are discussed briefly below.

A.2.1 SRM Version 1.x

This version contained two main categories of function: Transfer and Status.
These functions are largely superseded by the SRMv2.x protocols which
will be discussed in more detail in Section A.2.2 and to avoid redundancy
the SRMv1.1 functions are summarised in Table A.3 and A.4 with a brief
description of their operation.
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Function Action
Get() Get file from SRM cache
Put() Request space and perform put
Pin() Pin file
Unpin() Unpin file
MkPermanent() Make file of ‘permanent’ type
setFileStatus Update status by client
AdvisoryDelete() Advises to delete file (not accessed again)

Table A.3: SRMv1.1 Transfer Functions and Their Operation.

Function Action
getRequestStatus() Returns info for files in request
getFileMetaData() General file info: location and status
getEstGetTime() Best possible time (remaining) for get request
getEstPutTime() Best possible time (remaining) for put request
getProtocols() Get protocols SRM supports

Table A.4: SRMv1.1 Status Functions and Their Operation.

A.2.2 SRM Version 2.x

The second version of the SRM protocol was developed to extend and re-
fine the methods proposed in SRMv1.1. The development of the SRM v2.x
protocol began with v2.0[180]. This early version contained the ‘Transfer’
and ‘Status’ functions contained in v1.x as well as the addition of four new
functions. These functions were added to allow clients to obtain additional
details on their requests and increase the allocated lifetime of file pins.

This starting point was greatly expanded with the completion of v2.1[181].
This version included completely new Space Management, Permission and
Directory functions as well as re-defining the previous Transfer and Status
functions. A further version, 2.1.1[182], was finalised in March 2004 which
contained an additional, optional parameter for a single function. For this
reason the two protocol versions can be assumed to be all but the same.
The SRMv2.x functionality can be split into five categories: Transfer, Space
Management, Directory Management, Permission and Status functions. Ap-
pendix B has enumerated the SRM2.x functions.
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Changes Since 1.x

In the development of the SRMv2.1.1 interface specification the previous
version was modified and expanded. In addition to the new functions im-
plemented existing functionality were refined or altered. Therefore version
1.x does not exist as a subset of the version 2.x specification. Many current
SRM implementations use version 1.x as the interface and it is expected that
as SRMs develop they will support both v1.x and v2.x. It is therefore im-
portant to appreciate the difference between the two specifications to avoid
unpredictable behaviour when submitting requests to SRMs.

Additions

The addition of the Space, Directory and Permission Management functions
are the main additions since SRMv1.x. These have allowed many of the
important functionality desired of SRMs.

Alterations

The Get and Put call of the v1.1 have been updated to srmPrepareToGet
and srmPrepareToPut to reflect the role of the SRM as separate from that
of the file transfer service. Additional parameters were added to these com-
mands and similarly with the new srmCopy function.

The ability to change the type of a file has been advanced from a single
MkPermanent operation to support a changing of files to any type using srm-
ChangeFileStorageType. The AdvisoryDelete function has been replaced by
srmRemoveFile and the setFileStatus function used to update the SRM on
the status of a Put operation has been replaced with srmPutDone.

The getRequestStatus function has been superseded by a number of
new status requests: srmGetRequestSummary and srmStatusof{Get, Put,
Copy}Request while getFileMetadata has been replaced by srmLs.

An explicit Unpin operation has been renamed srmRelease, but is often
carried out automatically by the SRM.

Removals

Several operations have been removed from the specification completely.
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The Pin operation is now carried out automatically by the SRM and the
requirement to call the Pin operation to update a file lifetime has been placed
with srmExtendedFileLifeTime. The getEstGetTime and getEstPutTime
have been removed as the information required is now returned as part
of srmStatusOfGetRequest and srmStatusOfPutRequest. The getProtocols
function has been removed completely and is now expected to be obtained
by a grid information service.

A.2.3 Additions in SRM Version 2.2

The definition of the SRM2.2 specification [76] was required because some
clear use cases could not be clearly expressed in the previous nomenclature.
The description of files as being permanent, durable or volatile says nothing
about the medium on which they are stored. For the LHC experiments two
additional properties of files were important: a measure of the time to ac-
cess the file and the media on which a file is stored. The LHC experiments
are the largest group of SRM users and their request lead to the definition
of two additional file and space parameters: access latency and retention
policy. The access latency defines a file as being either ONLINE, NEAR-
LINE or OFFLINE. The retention policy is either REPLICA, OUTPUT or
CUSTODIAL.

In principle, any combination of these properties can be supported, but
in practise only three are used:

• ONLINE,REPLICA - the file is on disk and is not migrated to tape

• ONLINE,CUSTODIAL - the file is on disk and is migrated to tape

• NEARLINE,CUSTODIAL - the file is not on disk and is migrated to
tape

A.3 SRM in LCG

The interface to storage in LCG is SRM. A reduced version of the SRM2.2
interface is supported by all of the SRM implementations deployed.
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The rich schema of file and space types has not been exploited and all
space reservations for the experiments are permanent. In addition, all files
uploaded to the SRM are considered permanent. The workflows of the LHC
experiments are well defined with specific storage requirements to support
them. The resources are provided by the sites are associated directly to the
experiments and practically may be used only by them. In this way the
management of the space is in the hands of the experiments but removed
the ability of the SRM to dynamically share and manage resources.

The concept of pinning is supported by the LCG SRM implementations,
but has a reduced scope. The pin lifetime is used to instruct the storage
element to retain the file on disk for the period of the pin. This pin lifetime
is only relevant for files which are on custodial, tape storage as if they are
only on disk they can not be removed by the SRM.

A.4 Summary

The original concept of a Storage Resource Manager was to allow dynamic
management of storage resources on the Grid. To support this a number
of space types and files types were defined that would allow the SRM to
create space from data no longer being used. The SRMv2 interface defined
a full set of methods for file, space, directory, permission management on
top of the existing transfer and status functions. In real world usage, where
storage resources are pledged explicitly to the clients, the rich functionality
provided is not required and the SRM interface is primarily used for the file,
directory, transfer and status functions.
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Appendix B

SRM 2.x Commands

B.1 Data Transfer Functions

The main requirement of a SRM is to allow grid clients to utilise storage
and to obtain files at a later point. There are ten functions in the data
transfer category three of which will be discussed individually here: srm-
PrepareToGet, srmPrepareToPut and srmCopy. The other functions will
also be discussed briefly.

To allow the transfer of files from a SRM to local system a client can
use srmPrepareToGet(). The file must be pulled from the SRM, to avoid
firewalls blocking the SRM from pushing the files into the local storage, and
because the SRM does not know whether enough space is available to receive
the file. The SRM prepares the files to be transferred, pinning them and
providing the client with the relevant transfer URLs, so that the file transfer
service can be invoked to perform the transfer. For this reason this function
was renamed to ‘PrepareToGet’ since SRMv1.1. The function has been de-
signed to be asynchronous and non-blocking. To obtain status information
client can poll the SRM using a request-token supplied by the SRM. Once
the SRM has pinned the requested files or directories it returns the transfer
URL. Once the files have been copied the client should issue a release call
to allow the space to be released.

Inversely to transfer files into an SRM space from a local system srm-

PrepareToPut() is used. The function performs space management op-
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erations to prepare the space receiving the file. Similar firewall problems
mean that the transfer of files is performed in push mode. The client sup-
plies the space-token for the reserved space, file type, desired lifetime (if file
is volatile/durable) and the size of file. The SRM returns the TURL as
well as the future SURL of the file. Once each file transfer in the request is
complete the SRM expects the client to issue a srmPutDone() function.

To allow clients to third party copy, the client can use srmCopy() with
which the client must supply the source and target SURLs. These define
whether the transfer is made in pull or push mode, so as to always give
control to the SRM to which the request is made. For both types of request
the client can flag whether the source files are to be removed on completion
of the copy. On completion the SRM returns an array containing the status
of the requested files/directories.

As well as transferring data it must be possible to control these requests.
By supplying the request token to the SRM a client can abort a single file in a
multi-file request using srmAbortFiles() or abort a complete request with
srmAbortRequest(). The client can use the srmSuspendRequest()

and srmResumeRequest() functions to pause and restart requests by sup-
plying the request token to the SRM.

The srmRemoveFiles() function can be used by clients to remove files
from an SRM by supplying the file SURLs and the request token issued
when the files were obtained. If the files are not to be completely removed
from the SRM, but only released then the srmReleaseFiles() function can
be used. This releases all the files associated with a request token. If only a
subset of the associated files are to be released the SURLs of these files can
be optionally supplied with the function.

B.2 Space Management Functions

A SRM supporting the version 2.x functionality must support the ability to
reserve and manage space. To reserve space, important for grid scheduling,
the srmReserveSpace() function is used. This call should contain the
type and size of the space desired. In response the SRM returns the type,
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guaranteed size, total size and a space token.

The lifetime and size of a space can be requested to be changed using
the srmUpdateSpace() function. It is also possible to request to change
the type of storage for individual files or directories. This srmChange-

FileStorageType() function takes the SURL path and the desired storage
type for the file/directory. This operation may require the SRM to man-
age the user space allocations and is therefore deemed a space management
function.

Space can also be released with srmReleaseSpace(). Which allows
a Boolean forceFileRelease parameter to release pinned files present in the
space. A client can also use a srmCompactSpace() function to remove
released/unpinned files in their durable and permanent allocation to create
space. An optional Boolean doDynamicCompactFromNowOn parameter can
be defined so that in the future files are removed from the SRM as soon as
they are released.

Information about space reservations can be obtained using the sr-

mGetSpaceMetaData() call which returns all metadata pertaining to the
space. In the event that a client loses the space token corresponding to a
space they can use the srmGetSpaceToken() function using a space token
description supplied with initial reservation. If no description is supplied the
SRM returns all tokens associated with the client.

B.3 Permission Functions

The permission functions allow clients to view and change the access per-
missions for files stored at remote and local sites. The srmCheckPermis-

sion() function allows clients to check their access permissions for a set of
supplied SURLs which can be local or remote. It is possible for the owner
of a file or directory to pass ownership to another user with the srmReas-

signToUser() function supplying the SURL, the new user and the lifetime
of assignment. The new user has the lifetime of the assignment to copy the
file into their space before the file is removed.
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An optional function in the 2.x protocol allows clients to add, remove or
change file or directory permissions. In the srmSetPermission() function
the client can supply the corresponding SURLs along with the UNIX type
permission they wish to add, remove or change for individual users or groups.

B.4 Directory Functions

Directory manipulation of reserved space using various UNIX type functions
is supported. Making directories, srmMkdir(), removing directories, srm-

Rmdir() and removing files, srmRm(), by supplying the directory or file
SURL is possible. The UNIX like srmLs() function allows the user to see
the contents of a supplied SURL. Finally srmMv() function can be used
to move files and directories by supplying the source and target SURLs but
maybe subject to permissions in source and target spaces.

B.5 Status Functions

The final set of functions are the status functions that allow clients to check
the status of their requests. The srmStatusOfGetRequest(), srmSta-

tusOfPutRequest() and srmStatusOfCopyRequest() functions can be
used with the request tokens to obtain information on all the files in a re-
quest. If only specific files are of interest the client can supply the SURLs of
interest. The SRM returns an array containing the status of the requested
files.

In addition to obtaining status information for files in a request it is
possible to poll the SRM details of a submitted request using the srmGe-

tRequestSummary() and supplying the request token. The SRM will
then return all the metadata associated with the request type. In the event
that the request token is lost it can be recovered by supplying a description
of the request, supplied at the time of the initial request. If no descriptions
are supplied with this srmGetRequestID() function all the request tokens
associated with a client are returned. A final status function allows clients to
reset the lifetime of their files with the srmExtendFileLifeTime() call.
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Appendix C

RAW Upload Performance

The architecture employed for ensuring the integrity of RAW physics data
was discussed Section 4.4.1. The first operation to be performed is the
upload of the RAW data to the dedicated disk servers in Castor. The Com-
puting Model outlines the requirement that during data taking RAW data
is uploaded to Castor at a sustained rate of 60MB/s. To determine the
configuration of the DIRAC services and agents that deliver the best perfor-
mance a series of studies were conducted for various deployments. A single
DIRAC instance was deployed on a single gateway machine1, with access to
the online and offline networks, and the number of transfer agents executing
upload requests was varied. Each configuration was deployed for 24 hours
and the read rate from the Online storage system was monitored at intervals
of 2 seconds. The mean data read rate from the disk pools and the standard
deviation are plotted against the number of executing agents in Figure C.1.
The read rate from the disk pools increased with the number of clients until
network saturation, approaching the 1Gb/s limit, occurred with four clients.

The online storage system was designed to allow concurrent high through-
put reading and writing. Performance studies have shown it has surpassed
its design goals [149]. To ensure the DIRAC deployment could also meet
the 200MB/s peak rate required by LHCb a further test was performed with
the deployment of an additional four executing agents on a further machine2

with a dedicated 1Gb network connection to CERN. This configuration was
able to saturate both dedicated network connections into Castor as seen in

1An eight core Intel Xeon 1.6GHz with 8GB of RAM.
2Another eight core Intel Xeon 1.6GHz with 8GB of RAM.
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Figure C.1: Read rate from online storage with varying number of executing
agents.

Figure C.2: Lemon network monitoring of Castor pools accessed by the
DIRAC agents deployed at the gateway. The red line shows transfer activity
into the pools from the online storage and the green line shows the transfers
out to the tape servers.

Figure C.2.

During a preparatory computing exercise to mimic real data taking, con-
ducted over the period of a month, the Online system fed 2GB files to DIRAC
every 30s. This was performed for six hours followed by a period of six hours
without data to simulate the duty period of the LHC. The transfer activity
from the Online system over a period of three days is shown in Figure C.3.
Over the duration of this exercise a total of 91,447 files, corresponding to
182TB, were uploaded to Castor.
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Figure C.3: Lemon network monitoring of Castor pools accessed by the
DIRAC agents. The red line shows transfer activity into the pools for six
hours followed by a six hour break and the green line shows the transfers
out of the disk pools to the tape servers and the Tier-1s.

The integrity of all LHCb RAW files must be ensured before any process-
ing or replication takes place. To ensure that the file can always be recovered
it must be migrated to tape and the tape copy checksum verified against
the checksum calculated at the first write by the online system. Therefore,
the migration time dictates the timetable for the reconstruction of the RAW
data. The file migration times are given in Figure C.4. After 130 minutes
50% of files have been migrated and by 6 hours 90% have been migrated.
During the exercise several small outages of the network connecting the on-
line system to Castor occurred causing backlog of files to accumulate. Once
connectivity was repaired high sustained rates of transfers were observed
resulting in a increased migration queue within Castor and the long tail
observed in the histogram. In these cases all files were eventually migrated
within a day.3

3During the entire period of the exercise no file failed checksum matching, suggesting
such a strict integrity requirements may not be necessary. While the DIRAC Data Man-
agement System can ensure integrity of the file in Castor it knows nothing of the physics
quality of the files. The real-time processing of data will not occur until the physics qual-
ity has been verified and therefore the decision was made to retain the thorough integrity
checking mechanism.
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Figure C.4: Histogram of the time for files to be migrated to tape after being
uploaded to Castor disk pools.
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Appendix D

SRM Performance Results

This appendix presents the tabulated results obtained during the SRM
and GFAL testing performed in Section 5.2. Four GFAL methods were
tested (gfal ls, gfal prestage, gfal turlsfromsurls and gfal deletesurls) against
seven storage elements at CERN, CNAF, GRIDKA, IN2P3, NIKHEF, PIC
and RAL. Two Castor instances were tested (CERN, RAL), four dCache
(GRIDKA, IN2P3, NIKHEF and PIC) and one StoRM (CNAF). The re-
sults for each of the tests are given in the following sections.

D.1 Retrieving File Metadata

The results in this section correspond the those presented in Section 5.2.1.

D.2 Issuing Prestage Requests

The results in this section correspond the those presented in Section 5.2.2.

D.3 Retrieving Transport URLs

The results in this section correspond the those presented in Section 5.2.3.

D.4 Removing Files

The results in this section correspond the those presented in Section 5.2.4.
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Files Metric CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 Mean (s) 0.28 7.48 2.41 6.03 0.96 5.58 0.56

StdDev 0.48 46.94 2.62 40.58 2.38 36.24 0.56
Median 0.20 0.28 1.65 0.47 0.63 0.74 0.42

Suc. Rate 1.00 0.99 1.00 0.97 1.00 0.98 1.00
2 Mean (s) 0.38 4.94 3.80 2.56 1.29 4.47 0.52

StdDev 1.16 23.45 4.00 10.46 2.64 25.15 0.64
Median 0.26 1.30 2.50 0.63 1.00 0.93 0.41

Suc. Rate 1.00 0.99 1.00 0.98 1.00 0.98 1.00
5 Mean (s) 0.48 7.14 8.67 3.66 2.39 6.20 0.62

StdDev 0.22 27.79 9.32 13.16 2.14 32.21 0.55
Median 0.44 2.24 6.60 1.33 2.18 1.93 0.51

Suc. Rate 1.00 0.99 1.00 0.98 1.00 0.98 1.00
10 Mean (s) 1.09 12.91 16.11 5.84 4.27 6.79 0.95

StdDev 2.22 41.67 19.56 20.54 1.03 24.81 1.11
Median 0.75 3.78 11.69 2.51 4.15 3.50 0.72

Suc. Rate 0.99 0.99 1.00 0.99 1.00 0.98 1.00
20 Mean (s) 1.54 12.11 29.47 8.17 8.27 8.81 1.46

StdDev 0.88 25.50 26.86 24.02 2.88 22.66 1.49
Median 1.35 6.48 22.52 4.59 7.99 6.57 1.12

Suc. Rate 1.00 0.98 1.00 0.99 1.00 0.98 1.00
50 Mean (s) 3.67 21.20 69.92 14.32 19.94 16.22 2.53

StdDev 3.19 35.54 63.86 11.59 2.57 16.83 1.52
Median 3.20 14.17 56.04 11.56 19.65 15.13 2.23

Suc. Rate 0.46 0.98 1.00 0.96 0.94 0.96 0.95
100 Mean (s) 11.93 35.61 117.31 29.45 39.62 30.05 4.79

StdDev 32.49 29.51 74.94 30.32 5.74 17.26 3.09
Median 6.24 33.49 101.67 22.40 38.85 29.69 4.10

Suc. Rate 0.01 0.99 0.88 1.00 0.67 0.87 0.52

Table D.1: Mean, standard deviation and median of the retrieval time and
the success rate for file metadata queries from site SRMs for a varying num-
ber of files using GFAL.
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Files Metric CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 Mean (s) 0.77 1.94 0.68 0.57 1.02 1.14 1.10

StdDev 0.04 4.60 1.91 0.18 1.69 0.26 0.19
Median 0.76 0.62 0.44 0.54 0.86 1.10 1.08

Suc. Rate 1.00 0.99 1.00 1.00 1.00 1.00 1.00
2 Mean (s) 0.80 1.85 0.58 0.55 1.11 1.15 1.15

StdDev 0.05 5.30 0.93 0.11 1.90 0.32 0.34
Median 0.79 0.68 0.44 0.54 0.87 1.10 1.10

Suc. Rate 1.00 1.00 1.00 1.00 0.99 1.00 1.00
5 Mean (s) 0.89 2.72 0.91 0.56 1.25 1.12 1.16

StdDev 0.07 7.31 6.17 0.30 2.77 0.10 0.20
Median 0.89 0.88 0.45 0.53 0.88 1.10 1.13

Suc. Rate 1.00 1.00 1.00 1.00 1.00 1.00 1.00
10 Mean (s) 1.05 3.21 0.60 0.56 1.32 1.16 1.23

StdDev 0.07 7.64 1.16 0.07 3.80 0.28 0.24
Median 1.04 1.19 0.45 0.56 0.90 1.11 1.20

Suc. Rate 1.00 1.00 1.00 0.99 0.99 1.00 1.00
20 Mean (s) 1.36 6.15 0.77 0.59 1.73 1.20 1.40

StdDev 0.12 11.39 2.37 0.11 6.99 0.25 0.27
Median 1.38 1.83 0.47 0.58 0.95 1.16 1.35

Suc. Rate 1.00 1.00 1.00 0.99 0.99 0.99 1.00
50 Mean (s) 2.31 9.01 0.69 0.62 1.88 1.39 1.85

StdDev 0.37 12.79 0.95 0.10 4.18 1.30 0.41
Median 2.36 5.17 0.52 0.62 1.16 1.29 1.78

Suc. Rate 0.00 0.00 0.94 1.00 0.82 0.97 0.84
100 Mean (s) 4.12 9.16 0.71 0.67 3.09 1.98 2.62

StdDev 0.98 7.32 0.82 0.30 10.74 9.69 0.91
Median 4.32 6.88 0.55 0.63 1.39 1.34 2.49

Suc. Rate 0.96 1.00 1.00 1.00 0.99 1.00 1.00

Table D.2: Mean, standard deviation and median of the operation time and
the success rate for pre-stage request to site SRMs for a varying number of
files using GFAL.
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Files Metric CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 Mean (s) 9.25 19.48 38.80 28.82 2027.92 667.23 2.96

StdDev 28.19 76.78 307.74 173.74 4807.79 3046.06 1.37
Median 2.03 12.35 1.77 2.18 2.03 2.59 2.57

Suc. Rate 0.98 0.84 0.97 0.98 0.82 0.96 0.99
2 Mean (s) 16.10 9.80 44.76 31.33 2903.27 406.71 8.22

StdDev 117.50 22.43 447.07 128.38 5559.52 2239.28 81.16
Median 1.91 3.58 1.62 12.07 1.91 2.44 2.54

Suc. Rate 0.98 0.86 0.96 0.97 0.75 0.96 0.98
5 Mean (s) 9.21 11.99 7.56 78.30 3606.62 224.18 3.83

StdDev 28.78 40.64 13.41 689.90 5888.32 1093.15 3.86
Median 2.17 12.33 2.54 12.17 2.02 2.46 2.71

Suc. Rate 0.98 0.89 0.95 0.97 0.66 0.93 0.98
10 Mean (s) 10.90 10.85 7.90 56.46 3444.36 397.07 4.28

StdDev 30.08 17.30 13.32 364.23 5925.72 1772.79 4.35
Median 2.67 12.43 11.70 12.24 2.00 2.48 3.01

Suc. Rate 0.98 0.87 0.96 0.97 0.65 0.88 1.00
20 Mean (s) 24.98 12.49 19.48 65.69 2770.15 252.00 20.02

StdDev 146.80 22.52 176.99 503.93 5271.50 1784.22 231.98
Median 6.34 12.51 11.75 12.30 2.12 2.55 3.63

Suc. Rate 0.98 0.88 0.93 0.96 0.66 0.88 0.98
50 Mean (s) 3.28 14.22 11.84 151.57 2642.61 55.46 5.33

StdDev 17.84 23.86 55.39 1059.93 5188.65 454.13 3.90
Median 1.49 12.69 11.87 22.46 2.32 2.71 5.23

Suc. Rate 0.00 0.89 0.87 0.97 0.64 0.83 0.69
100 Mean (s) 25.49 18.21 13.56 218.25 1943.07 124.38 18.51

StdDev 24.18 68.90 29.53 1498.82 4574.24 741.99 5.01
Median 21.16 12.83 12.00 22.64 12.81 3.25 18.56

Suc. Rate 0.98 0.90 0.93 0.97 0.67 0.85 0.99

Table D.3: Mean, standard deviation and median of the retrieval time and
the success rate for transport URL queries from site SRMs for a varying
number of files using GFAL.
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Files Metric CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 Mean (s) 1.28 1.39 1.65 1.97 0.87 0.19 1.27

StdDev 0.58 1.17 1.49 12.17 1.05 0.22 1.13
Median 1.38 1.11 1.24 0.15 0.40 0.13 0.86

Suc. Rate 0.99 0.99 1.00 0.94 1.00 0.91 0.99
2 Mean (s) 1.34 1.56 2.56 0.73 0.95 0.16 1.92

StdDev 0.57 1.21 2.31 5.54 0.98 0.28 1.84
Median 1.37 1.37 1.67 0.16 0.47 0.11 1.15

Suc. Rate 0.96 0.96 0.98 0.90 0.91 0.91 0.98
5 Mean (s) 1.46 3.06 4.60 0.36 1.39 0.31 2.38

StdDev 0.64 1.44 2.96 0.49 1.30 0.37 1.80
Median 1.53 3.01 4.08 0.20 0.71 0.14 1.88

Suc. Rate 0.95 0.93 0.98 0.77 1.00 0.93 0.96
10 Mean (s) 1.72 3.84 4.91 1.06 6.79 0.44 3.21

StdDev 0.57 1.64 3.07 6.83 7.08 0.55 2.24
Median 1.71 4.04 4.39 0.26 3.64 0.20 2.61

Suc. Rate 0.99 0.91 0.99 0.69 0.44 0.98 0.99
20 Mean (s) 2.17 4.79 13.52 2.89 10.99 0.55 4.26

StdDev 0.56 1.93 6.29 14.17 9.13 0.56 2.20
Median 2.15 5.07 13.68 0.58 7.90 0.30 4.17

Suc. Rate 0.98 0.80 0.99 0.43 0.95 0.93 0.99

Table D.4: Mean, standard deviation and median of the removal time and
the success rate for 1 byte file removal requests from site SRMs for a varying
number of files using GFAL.
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Files Metric CERN CNAF GRIDKA IN2P3 NIKHEF PIC RAL
1 Mean (GB/s) 1.04 6.52 3.23 7.39 5.03 4.89 4.87

StdDev 0.46 3.05 2.55 2.23 1.04 3.32 0.75
Median 1.01 7.77 2.31 7.51 5.15 4.70 5.00

Suc. Rate 0.97 0.94 1.00 0.99 1.00 0.99 1.00
2 Mean (GB/s) 2.09 10.01 5.44 16.94 10.17 10.73 8.80

StdDev 0.80 5.83 4.53 4.64 2.05 3.86 2.02
Median 2.05 11.31 3.81 17.92 10.34 10.97 9.44

Suc. Rate 0.98 0.95 1.00 0.99 1.00 0.99 1.00
5 Mean (GB/s) 5.58 4.21 8.90 39.05 22.65 25.45 18.76

StdDev 2.59 2.29 7.27 11.07 5.80 14.44 2.84
Median 5.27 4.69 6.46 41.92 23.70 25.79 19.32

Suc. Rate 0.99 0.95 1.00 0.99 1.00 0.98 1.00
10 Mean (GB/s) 11.94 5.56 10.96 63.11 39.31 45.54 27.91

StdDev 5.01 3.62 6.30 21.20 12.48 36.45 5.07
Median 11.00 5.93 9.34 69.41 43.66 45.43 29.43

Suc. Rate 0.98 0.96 1.00 0.99 1.00 0.98 1.00
20 Mean (GB/s) 18.57 7.23 10.47 84.38 50.17 70.33 40.23

StdDev 6.90 5.91 5.46 30.29 15.95 60.64 6.41
Median 17.42 7.26 9.43 94.07 56.40 71.09 41.96

Suc. Rate 0.99 0.94 1.00 0.98 1.00 0.97 1.00

Table D.5: Mean, standard deviation and median of the removal rate and
the success rate for 2GB file removal requests from site SRMs for a varying
number of files using GFAL.
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