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Learning Nullspace Policies

Chris Towell, Matthew Howard and Sethu Vijayakumar

Abstract—Many everyday tasks performed by people, such from demonstrations with fixed constraints. Howard [8] has
as reaching, pointing or drawing, resolve redundant degrees pursued the alternative of learning unconstrained pdlitiat

of freedom in the arm in a similar way. In this paper we 56 maximally consistent with observations under differen
present a novel method for learning the strategy used to constraints

resolve redundancy by exploiting the variability in multiple

observations of different tasks. We demonstrate the effecteness In this paper, we make use of the idea that the pseudo-
of this method on three simulated plants: a toy example, a three inverse solution to the inverse kinematics problem is a
link planar arm, and the KUKA lightweight arm. problem of constraints. We extend the approach in [8] to

seek inconsistencies in the demonstrations of differesksta
) ~in order to learn the nullspace resolution. We demonstrate
Humans arms are often redundant with respect to a particul@fat this method clearly outperforms the standard form of

task since the freedom in joint space is usually greatgfirect policy learning and that it can then be successfully
than that required for the task. For example, keeping thgpplied to novel tasks.

hand at a fixed location on a desk still allows the elbow to
move through a range of motions. Humans often employ
a single strategy to resolve joint redundancy for a range
of tasks, for example, the position of the elbow is usually
low down, close to the body in a variety of tasks such as
pointing, pouring and wiping, as shown in Fig. 1. In robatics
control of redundant manipulators is often decomposed into
two orthogonal components using the well known pseudo-
inverse solution [10], [9], [15], [11]. A task space compohe rig 1. Three different tasks: moving the finger to @ny, =, position,
determines the control of joint angles required to achieweouring liquid and wiping a surface. In each case, redung@mcesolved
a task and a nullspace component determines how aplyhe same way. The red arms show alternative, less natural tuagsolve
. . redundancy. By observing several examples of each task,ame tlee single

redundancy with respect to the task is resolved. The lattg§hderying policy that resolves redundancy.
is used to accomplish a secondary, lower priority task to
complement the first, for example, for avoidance of joint Il. PROBLEM DEFINITION
limits [2], singularities [17] or obstacles [9]. In prindg In this section, we characterise the approach of directypoli
humans must also solve these problems in task-orientéshrning (DPL) [14], [12] as applied to the problem of learn-
behaviour, motivating research into methods that can do thing from observations under task constraints. The general
decomposition from data. An important benefit to findingorm of DPL is as follows. Ifx € R™ andu € R represent
this decomposition is as follows. states and actions respectively, we seek to learn the n@gppin

If a robot has a similar morphology to a demonstrator,
it is desirable to learn the nullspace component for transfe u(t) = m(x(t)) , ™R R

to the robot. For example, a humanoid robot has roughlyiven paired observations af(t) andx(t) in the form of
the same degrees of freedom as a human. To facilitaigyjectories. For example, in kinematic control the stafes
interaction between it and humans, it should move in waygctions may be the joint positions and velocities, respelsti
similar to humans with corresponding patterns of jointssTh Alternatively, in dynamics control, the state may includiaf
allows humans to predict the robot’s movements more easilyositions and velocities, with torques as actions. Immiyga
making them more comfortable with the robot. In this casg is typically assumed that in demonstrations, the actians
we wish to learn the redundancy resolution in such a wayf the policy = are directly observed [14], [12].
as to be able to transfer to the robot, and to generalise to ajn this paper, we wish to learn policies that describe how
range of novel tasks. redundancy is resolved with respect to higher priority task
Udwadia [16] describes the pseudo-inverse solution igonstraints. Specifically, we assume that our observations
terms of constraints. The task space component of a mgontain different components of motion due to both the
tion in the pseudo-inverse solution can be thought of asulispace policy, and the task constraints. In such cases,
a constraint on the nullspace component. Much work hagandard approaches to DPL encounter several difficulties.
been done to exploit statistical regularities in cons&din  For example, consider the problem of learning the policy
demonstrations in order to extract features relevant ttetsle | sed to resolve redundancy in a pointing task, as shown
(for example [4], [5], [1], [6]). Typically such work learns in Fig. 2. There, the task is to move the finger tip to a

specific position (red target). The nullspace policy resslv
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to end-effector velocities. For redundant manipulatong t

x ,;\ ’,1 % nullspace ofJ is not empty andr can be used to control
‘Q ﬁ motion in the joint space without affecting the task-space
NS . %\7

a1

motion. Policiesw indexed by joint angles can be used to
drive the joint configuration towards a comfortable positio
ji) \%' ’ and are compatible with the human cost functions proposed
— ~. in [3].
N >\ If our observations ofx andx are generated by (2) with
K lé t/‘ \e x the same policyr, then the general problem of constrained
A %

DPL is to recover this policy. In [8], constraints of the form
() © given by (1) are considered whebe= 0. Here we consider
Fig. 2. (a) Movement due to the nullspace policy, with no taskstraint. the more complex case of non-zeso
The finger approaches a nearly straight, ‘comfortable’ pest(b) Move- We will term the two parts of (2) the task space component

ment under a ‘pointing’ task. The task constraints drive tingdr tip to
the Cartesian position indicated by the target. The nutlsgaolicy acts to
resolve the redundancy in the remaining one degree of free@@rvector
field representation of the movement. The two axes correspmitiuet first u=A'b+ Nnx ="u+"u. 3)
two joint angles. Arrows indicate joint velocities obseaivged), velocities

due to task constraints (green), velocities due to the patiis component - As noted earlier, it would be useful to obtain this decomposi
(blue) and velocities due to the nullspace policy (black) L .
tion into the two components and even to obtain the nullspace

zero where the finger is slightly bent). Fig. 2(a) shows th@0licy 7. This would allow us to model the redundancy
movement in the absence of the task, and the correspondifgolution observed in a variety of tasks (such as in Fig. 1)
vector field representation of this is shown in black irP’ t0 apply the same strategy to a new task, defined in a
Fig. 2(c). As can be observed, in the absence of the tagifferent space. _ o
constraints, each of the vectors point to the zero (central) For learningr, we assume that multiple training examples
position. On the other hand, Fig. 2(b) shows the the finger&'€ available across a variety qf tasks. The difficulty here
movement to the target under the task constraints. The ré&i that, for any given observation, we do not know the
arrows in Fig. 2(c) show the correspondingserved joint ~ ©€xact form of the task, i.e., we may not knad, b or
velocities, with the nullspace component shown in blue antY- This is especially apparent in learning from human
the task space component shown in green. Clearly, directfigmonstrations where, for example, the exact end-effector
applying DPL on the observed movements (red arrows) wi acobian is unknown, and, even if it were, it is often notrclea
give a poor approximation of the underlying policy (b|ack)exactly which end-effector degree; of freedgm are cowttol|
or the nullspace component (blue). Instead, we must consic®S Part of the task. For example, if you point at a far away
the structure of the data in terms of the task constraints fgfget, the orientation of the hand is controlled such that
order to inform learning in this setting. it points tpyvards the target. It is less clear whether the
A Constraint Model x,y, z position of the hand is part of the task or whether

' a comfortable position is chosen as part of the redundancy
One way of thinking about the combination of task ang¢esolution.
nullspace policy in the above example is to think of the task |y addition to this, the problem of leaming is also
as a constraint on the nullspace policy. This, unlike stethdanon-convex in two ways. The observed actiortan appear
DPL, allows us to account for the fact that part of the policyifferently under different tasks due to variations bnfor
is obscured by the constraint, and the remaining part Withe samer. Also, two nullspace components can appear
have some task component added fo it. The dimension #iferently under two different task spaces due to variatio
which the policy is obscured is the same as that in which the the constraint matrixA for the samer. For DPL, this
task space component is added. Consider the set of consistgfzans that we cannot expect the mean of observations to

tsu and the nullspace componehitu

k-dimensional constraints give us the nullspace policy.
A(x)u(x,t) = b(x,t) (1) The problem is also degenerate in two ways. There may
with x € R™ andu € R%. The general solution to this set be multiple policiesw that are projected bN to the same
of equations is nullspace component and there may be multiple ways to
decompose into two orthogonal components depending on
u(x,t) = A(x)b(x, 1) + N(x)m(x) (2)  what the true task space consists of.

whereA' denotes the unique Moore-Penrose pseudo-inverseDespite these difficulties, we consider a class of problems
of the matrix A and N(x) = (I — A(x)TA(x)) € R¥?, ~ where we are able to group observations as having been
m(x) € R? is an arbitrary vector. For clarity, we will now generated in a specific task space (having the same comstrain
drop the dependence onandt. matrix A). Such tasks may be those which require the
In the case of kinematic control of the end-effector of a,y, 2 Cartesian position of the end-effector (for example
manipulator we can identify (1)—(2) with the well knowndrawing) or those which require control over orientatioor (f
pseudo-inverse solution to inverse kinematics controle Thexample pouring liquid from a cup) and, in a real world
states are the joint angles= q and the actions are the joint scenario, would be straightforward to label. If we make this
velocitiesu = §. b is a policy which outputs end-effector assumption, although we may not know the nature of the
velocities andA is the Jacobiard relating joint velocities constraint, and given sufficient variation in tasks, then we



will show that a model of the nullspace polieycan still be  other words, for theith data subset, we seek a policy that
learnt. minimises

N
[11. METHOD - ns ns ~
b Ensl#] = 3 "t = "7 () 1 ®)
Our method works on data that is given as tuples, u,,) 1

of observed states and constrained actions. We assume that )

all commandsu are generated using the same underlyiny/N€ré"*ux . is the true nullspace component of thh data
policy 7(x) to resolve redundancy, which for a particularPOint in thekth data subset. Note that, by assumption, we
observation might have been constrained by task constrainf© N0t have access to samplesu, ., so we cannot directly
that isu, = Alb, + N,7(x,) for task space movement OPtimise (6).

b,, and constraintA,,. We assume that the latteA(, and Instead, we seek to eliminate the components of motion
b,,) are not explicitly known for any given observation. but that are due to the task constraints, and learn a model that is

that observations may be grouped inf6 subsets ofN consistent with the observations. The key to our approach,

data pointé, each recorded under a different constraint (i.e!S 0 Use a projection to do that elimination, that is, we seek
the kth data set contains observations under e task & ProjectionP for which

constraintAk(x)). Our goal is to reconstruct the nullspace Pu=P ("u+™u) =""u. @)
policy 7 (x).
Given only x,, and u,,, one may be tempted to simply One such projection is the matX(x) since, by definition,
minimise the standard risk its image space (or any subspace of this) is orthogonal to the
KxN task (ref. Fig. 3(a)). However, this is also not possiblesin
Bivect|[] = Z [, — 7(x,)|2 (4) N(x) is also unavailable by assumption.
1 A second possibility would be to replad®, with a pro-

. jection onto the true nullspace componé&fi, i.e., defining
which would correspond to the standard DPL approach, _ nsgnsy? /|[nul|2 = TSP, Since™u is, by definition,

However, this would ignore the const.raints and.task Spa%‘?tﬁogonal to**u, this would effectively eliminate any task
movzmcfants, C‘;".Ed cotrre_spondtto a naive averaging of Co@bace components in the observed data (as can be seen, for
masq S romk ! ertehn tcwcudmts ancets._ traint example, in the projections af;, uy onto™*u; in Fig. 3(b)).

INce we know that our data contains constraints, a S€co wever, since samples Bfu are also not directly available,

tempting possibility is to directly use constraint coreigt : - ;
leaming (CCL) [7]. This estimates a policgy(x) by min- such an approach is also not possible with the data assumed

o ) : given.
imising the inconsistency error [7] However, motivated by this observation, we can instead
KxN T make an approximation of the required projection. Our pro-

Ei[m] = Z lu, — Po(x,)|I*; P, = ﬁlgu”n? (5) posalis to replac®, with a projection based on astimate
n=1 n

of the nullspace component, and proceed to iteratively refine
However, as discussed in Sec. I, constraint consistemtlea that estimate in order to optimise consistency with the
ing relies on the assumption tHatx, t) = 0, i.e. that the task observations. For this, we propose to minimise the error
constraints are stationary. In our setting, the non-zesi tafunction
space movementu(x,t), interferes with learning, resulting N
in poor performance. E [ wg] = Z IPrnlg, — 575 (x0)]? (8)

Instead, our proposal is to use a new two-step approach n=1

to learning. In the first step, we use tlié data subsets to
learn a set of intermediate policiééw,(x), k=1,..., K.

with Py, = ”Sﬁk’nmﬁf’n/\|nsfrk,n|\2. Here, u;,, is the
The latter should capture the nullspace component of motidﬁh data ,'?S'f‘t n thekt.h .dgta subset, and we deﬂned
Tpn = 7(x,). Minimising (8) corresponds to min-

"su(x, t) under each of thé( task constraintg\(x), while . ising the difference between the current model of the
eliminating as far as possible the task space compone'mI Ing ! o~ W u :
ullspace movement;®7,(x), and the observationpro-

tsu(x,t). Having learnt these intermediate models, we cafl : A A,
then combine our observations into a single model th E)cted onto that model. An illustration is shown in Fig. 3(b)-
captures the policy used for redundancy resolution acrosy’ . . . . .
tasks. For learning the latter, we propose to bootstrap CCL ItEffecltl\gaIy, n (8.) w?].aflp'r]?xmatN(x?[ W':.h a g%:cuon
on the predictions from the intermediate policies, in ordepto @ 1-L Space in which, It our current estima k(X)

to estimate the true underlying poliey(x). A schematic of IS accurate, the true nullspa(_:e comp_on’ehin I|e_s. A.t th|s_
the approach is illustrated in Fig. 3. point we note that the quality of this approximation will,

in general, depend on our on how well the current estimate
Sep 1. Learning the Nullspace Component "$71(x) captures the true underlying policy. Since we pursue

In this step, we process each of tHé data subsets to an iterative approach, this means that the initialisatibn o
learn a set (;f intermediate polici#&s, (x), k = 1 K model parameters has a significant effect on the accuracy of

that capture the nullspace component of moffén(x). In our final_ estimate. In pra(_:tice, in the absence of any prior
information about the policy, we can draw several random

For clarity, here we will assume that the subsets are of edeel but sets of parameters for initialis.at_ion’ run the optimisatiand
in general the sizes may differ. select the model that best minimises (8).



However, in order to find the optimal weights
WP = arg min E; (W) (10)

we can apply fast numerical optimization techniques suited
to solving such problems. In our experiments, we use the
efficient Levenberg-Marquardt (LM) algorithm to optimise
the parameters based on (9).

'
>
tsu

(a) Raw observationu consists of (b) Two observationsiy, uz of dif-

two orthogonal component§u and ferent tasks performed in the task B. L v Linear licy M

"su (not explicitly observable). space defined by ;. - Local y ea Policy odels ) ) )
The parametric models of the previous section quickly

encounter difficulties as the dimensionality of the input
space increases. As an alternative, we can use local lgarnin
techniques. For this, we fit multiple locally weighted linea
models”sﬁ-k,m(x) = Bk,mi = Bkm(XT, l)T to the kth
data subset, learning each local model independently [13].

For a linear model centred at,, with an isotropic Gaus-
sian receptive field with variance?, we would minimise

N
El (Bk,m> = Z Wn,m ||Pk,n,muk,n - Bk,anHQ (11)

(c) Two observationsus, us of (d) Reconstruction of the underlying

tasks performed in a second taskolicy = by CCL on the model pre- n=1
space defined byA,. Naive regres- dictions™*7rq, "*a. _ _ _
sion results in predictioni. wherePy, . = B mXn (Brm%n)" /|| Br,mXa[|*. The fac-

, — _ 1 _ 2 i i
Fig. 3. lllustration of our approach. Raw observatiams, us in space tors wym = exp( 202 [ — ¢ |") weight the importance

A, project onto the nullspace compongtitu;. Similarly, us anduy i~ Of €ach observatiofix,,, u,,), giving more weight to nearby
spaceA project onto nullspace componehtu,. Naive regression on the samples. The optimal slopes

data causes model averaging and a poor prediction @g\We therefore

first seek the nullspace componeritsu;, "*uz then apply CCL to find BoPt — arg min El(Bk m) (12)
the underlying policysr. k,m K

A second point to note is that by framing our learnin
problem as a risk minimisation task, we can apply standa

et ; ; - LM algorithm for this.
regularisation techniques such as adding suitable pena )P - .
terms to prevent over-fitting due to noise. Finally, for the global prediction of the nullspace policy,

The proposed risk functional can be used in conjunctioﬁie combine the local linear models using the convex com-

with many regression techniques. However, for the exper-nat'on EM 0B %
ments in this paper, we restrict ourselves to two classes of Mre(x) = mle m —k,m
function approximator for learning the nullspace compdnen Y om—1Wm
of the observations. These are (i) simple parametric mod€l§,are,, — -~
with fixed basis functions (Sec. Ili-A), and (ii) locally kar wn = exp (
models (Sec. llI-B). In the following we briefly outline how Sep 2: Learning the Underlying Policy
these models can be trained using the proposed approacprmymg the approach described in the previous sections to
A. Parametric Policy Models gach of t_heK data il{bsets, we are th.en left with a set of

] ) intermediate model%° 7, (x) that approximate the nullspace
A convenient model for capturing the nullspace componeriomponent of motion for tasks performed in thedifferent
of the kth data subset is given by’m,(x) = Wybi(x),  task spaces. Our task now is to combine these intermediate

re retrieved with a non-linear least squares optimisen- Si
r to the parametric approach, in our experiments we use

507X — eml?).

where W, e R>*M is a matrix of weights, anth, (x) €R models™* 7 (x) to find a single consistent approximation of
is a vector of fixed basis functions. This notably includes ththe ynderlying policyr (x).
case of (globally) linear models where we #gi(x) =x = This is relatively straightforward using CCL [7]. Specif-

(x", )T, or the casg(gicn;)rmalised radial basis functiongally, we make predictions from the intermediate models
(RBFS) by, i(x) = s,y calculated from Gaussian to form a concatenated data st,,, "7y, }_, for k =

kernels K (-) around M pre-determined centree;, i = 1,...,K,where"’m; ,, = "*7;(x,). We then directly apply
1...M. CCL on this data by seeking a policy estimate that minimises
For the kth data subset, with this model, the error (8)the objective function
becomes NxK e me T
~1 ns ~ D = 2, » N TTn T,

|| Wb (W) "k, G D DN e 0 e a2
E((Wi)=> : R Wby, =1 n

— Wb (13)

(9) As described in [7], a closed-form solution to this optimisa
where we definedb;,, = by(x,). Due to the 4th-order tion exists for both parametric and local linear policy misde
dependence oW, this is a non-linear least squares problemmaking this final step highly efficient. The outcome is a
which cannot easily be solved fow, in closed form. policy model that is consistent with each of the intermegiat



Algorithm 1 i.e.,r* ~ U[-2,2]. The task, therefore, is to move with fixed
1: Split demonstrations into K data subsets, one for eacfelocity to the target point* along the direction given by
type of task constraint. a

2: for k=1to K do Under this set up, we collected data undér= 2 different

3:  Learn intermediate policy*7(x) by minimising E;  task constraints, where, for each constraint, we colle¢ted
(8) using numerical optimization. trajectories from random start states, each of ledgtteps

4:  Output predictions fof**uy ,, using learnt policy. (in total N = 1600 data points per task constraint), reserving

5. end for 10% of the total data set as unseen test data.

6: Combine predictions into a single dataset. For the learning, we used a parametric policy represen-

7: Use CCL [7] to learn the underlying nullspace poliey tation (see Sec. lll-A) consisting d@fx 6 grid of Gaussian

radial basis functions arranged around the maximum extents
of the data. The widthsr?> were fixed to give suitable
rqé/erlap between basis functions. For comparison, we also

about redundancy resolution, even under task constraiats tt”ed learning with the direct regression approach, whereb

are previously unseen in the data. The whole process \&e dire_ctly trained on the raw (_)bseryatimst)y minimising
summarised in Algorithm 1. ), using the same parametric policy model. We repeated

this experiment for50 data sets and evaluated (i) the nor-
IV. EXPERIMENTS malised mean-squared error (nMSE) in the estimation of the

To demonstrate the performance of the algorithm, we appligt/llspace component of the daf,, (i) the normalised

it to scenarios on three simulated plants. Firstly an aiific €rror according to the proposed objective functiby, (iii)

toy two-dimensional system, then a planar three link arm ari#€ normalised constrained policy error (n\CPE), and (ie) th

finally a higher dimensional 7-DOF Kuka lightweight arm.normalised unconstrained policy error (nUPE) [7] on the

models (ref. Fig. 3(d)), and can be used to make predictio

Data was generated by numerically integrating (2). test data. The latter two measure the difference between the
estimated policyr and that of the true underlying policy
A. Toy Example 7 either when subject to the same constraints as in the

The goal of the first set of experiments was to demonstrag@ta, or when fully unconstrained [7], and as such, give an
the principles involved in our approach, and characterisestimate as to how well the policy will generalise to new,
its performance for learning polices of varying complexityunseen constraints. We also repeated the experiment for two
under different noise conditions and with varying amountgdditional nullspace policies with differing functionarins,
of data. namely,
For this, we set up a simple toy system consisting of a 1) a sinusoidal policyr(x) = Vx¢(x) where ¢(x) =
linear attractor policy —(sin(x;) cos(xz) and g = 0.%; b
2) a limit cycle policy: = r(p* — r%), 0§ = w with
m(x) = B(x0 —x) (4) : radiu5p2i2, a%gulér velociggu:—2)md s~1, where
with statesx € R? and actiona1 € R? representing position x1=[rcost, zo=0Frsind and 3 = 0.01.
and velocities, respectively. The policy has a single etitra  Tables | & II show the results averaged over 50 trials for
point which we set tax, = 0, and the scaling factor was each experiment.
set to3 = 0.1. Policies such as (14) are commonly used The scores ofz,, in Table I tell us that the estimation of
for joint limit avoidance in many inverse kinematics comtro the nullspace componefitu using the proposed approach

schemes [2]. is orders of magnitude better than using the naive method, a
The policy (14) was subject to 1-D task constraints of théact confirmed the corresponding low scores Fr. Looking
form at Table Il we see that this also translates to low error in
A=aT; a= (o1, a0)T (15) estimating the underlying underlying poliey, as evinced by

) ) ) __the very low values for the nUPE and nCPE. (again, orders
so that for any given choice o4, the task space is defined of magnitude lower in error compared to the direct regressio
as the direction parallel to the normalised vector(for  approach).
example, ifa=(1,0)", then the task space consists of the ' Comparing the figures for the three different policy types,
first dimension of the state-space). _ ~we also see that increasing complexity of the policy resnlts

_To simulate the effect of observing multiple tasks ing harder learning problem: compare the error figures for the
different spaces, we collected data in which, for each demofinear policy to those of the of the limit cycle and sinusaida
stration, a randomly generated task space policy acted fpjicies.

a random subspace of the system. Specifically, for eachfrinally, we note that in all cases the nCPE was at least
trajectory, the elements af were chosen from the uniform one order of magnitude better for the policies learnt with
distribution «; ~ U[0,1]. Using this as the task space,the proposed method as compared to those learnt with direct
movements were then generated with a linear attractorypoli¢egression. This supports the view that, even if we cannot
_ - exactly reconstruct the original nullspace policy, we cén a
b(x) = s (x" — ). (16) least obtain a single policy which matches the nullspace
Here,r denotes the current position in task spacedenotes component under the observed constraints.
the task space target and we chgse = 0.1. For each To further characterise the performance, we also looked at
trajectory the task space target was drawn uniform randomithe effect of varying levels of noise and amounts of training



[ Policy [ Method Ens [ E4 - . . X
Linear Direct | 0.40617%0.28809 | 0.43799F 0.26530 tgfsft our ability to generr]gllse acrhoss d|ﬁgrent tgsks ddf!ne
Novel | 0.00042+0.00188 | 0.00031+ 0.00233 .dl ergnt spaces. For this, we chose to investigate a skenar
Sinusoidal | Direct | 0.60510% 0.82434 | 0.72154f 0.40734 in which we wish to learn the redundancy resolution for a
L g‘;gg g-ggggig-ggggg g-gg?gi g-géggg kinematically controlled planar three link arm.
imit cy i . . . . . ;
Novel | 001590+ 004186 | 001290+ 0.05013 The set up was as follows: The state and action spaces

NORMALISED ERROR IN PREDICTING THE NULLSPACE COMPONENT OF
MOTION (STEP 1). RESULTS ARE(MEAN=+S.D.) OVER 100 TRIALS (50

TABLE |

TRIALS X 2 CONSTRAINTS).

of the arm were described by the joint angles= q €

R? and velocitiesu = ¢ € R?, respectively. For ease of
comparison with the toy example, we used the same linear
policy (14) for redundancy resolution, this time with= 1

and with attractor poink, = (10°, —10°,10°)%. This point

[ Policy [ Method | nUPE [ nCPE was chosen as a safe, default posture, away from singakariti
Linear Direct | 0.82792£0.05979 | 0.02212F0.01746 and joint limits.
T gﬁgil g-gggggg-gé‘;gg 8-8222&8-82%2 Under this redundancy resolution regime, we collected
Novel | 0.13302+0.15719 | 0.00287+ 0.00266 data from the arm as it performed different tasks in several
Limit cycle | Direct | 0.78840E 0.25528 | 0.04080f 0.04512 task spaces. Specifically, tasks were defined in (i) the 2-D
Novel | 0.14135+0.23641 | 0.00386+ 0.00606 space describing the Cartesian position of the end-effecto

NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICY(STEPS

TABLE I

1 AND 2). RESULTS ARE(MEAN=S.D.) OVER 50 TRIALS.

10

Normalised Error

Normalised Error

10
Noise (%)

nCPE

15

20

20 25
Trajectories

15

30

35 40

(i.e.,r = (z,y)T); (i) the space defined by the-coordinate
and orientation of the end-effector (i.e.,= (z,6)T), and;
(i) the space defined by thg-coordinate and end-effector
orientation (i.e.r = (y,0)7).

Within each of these spaces the arm was controlled to
randomly perform different tasks. Specifically, in eachcepa
the arm followed a linear policy (16) (this time with= 1)
to track to randomly selected targets. The latter were drawn
uniformly for each trajectory frome* ~ U[-1,1], y* ~
Ul0,2] and 6* ~ U[0°,180°]. These values were chosen to
limit the arm to approximately the top half of the workspace
with y > 0. Only targets with a valid inverse kinematics
solution were considered.

For each task space, 40 trajectories each of length 40 steps
were generated at a sampling rate of 50Hz. The start states
for each trajectory were drawn from the uniform distribatio
g1 ~U[0°,10°], g2 ~ U[90°,100°], g5 ~ U[0°,10°]. Of the
total data, 10% was reserved as unseen test data.

For the learning, we used parametric models (see Sec. IlI-
A) consisting of 100 Gaussian RBFs with centres chosen ac-
cording to k-means and with widths taken as the mean of the
distances between centres. We trained the same parametric
model (i) with the proposed approach, and, for comparison;
(ii) with direct regression on the raw observations We
repeated this experiment for 50 trials, and evaluated the
normalised error in terms of the four metrics: (6), (8), the
UPE, and the CPE.

Table Il shows the results for step 1 and Table IV shows
the results for the whole process. Table Il shows that we can

Fig. 4. Top: Normalised UPE, CPE ard, s for increasing noise levels ; ;
in the observedk,, andu,, for the limit cycle nullspace policy. Bottom: learn a very QOOd approximation of the nuIIspace component

Normalised UPE, CPE and,, versus data set size as the number of >u and that minimizingF/; again tends to minimize,,.
training trajectories increases. Table IV shows we can learn the nullspace policy far better
data for the limit cycle policy. Fig. 4(top) shows how thethan the direct method and obtain a reasonable estimate of
nUPE, nCPE and normalised nullspace ety error vary 7 The very low nCPE again demonstrates that if the same
with increasing levels of noise in the observed state constraints as those observed are applied to our singletlear
and commandsui,, up to 20% of the scale of the data. policy, then the output closely matches the constraineel tru
Fig. 4(bottom) shows how these errors vary with differenfullspace policy. _

numbers of input trajectories. As can be seen, our methodFig- 5(@) and 5(b) show an example of using the learnt

shows a gradual decrease is error as the amount of d&dlspace policy with knownA andb in (2) to generate a
increases and an increase in the error as noise increasesNéW trajectory. The task space matches one of the observed

) task spaces and was to control they position of the
B. Three Link Arm end effector and move to the poifit.5,1)”. A novel start
The goal of our next set of experiments was to evaluatgosition of (90°,45°, —20°) was used. The experiment was
the efficacy of the method on a more realistic problem, andin for 200 time steps to demonstrate convergence to the



[ Cstr.] Method] Fns [ 120 ]
- Direct | 33.9343514.70679] 2.0504 +0.5077 | | O\ o g T e
Y| Novel 0.00037+0.00136| 7.364%10~12 +1.2412x10~ 11
.0 Direct | 17.8422%:3.36997| 0.4301 +0.1635 Soem R e m
’ Novel 0.00010+ 0.00020| 2.1258x10~10 +5.7595x10 19
0 Direct | 28.69063t 3.44916] 0.7642 +0.2130
Y Novel | 0.00118+0.00133| 3.0107x10~? 43.1828x10—°
TABLE Il
NORMALISED ERROR IN PREDICTING THE NULLSPACE COMPONENT OF — s o R
MOTION (STEP1). RESULTS ARE(MEAN=S.D.) OVER 50 TRIALS FOR (a) Arm visualisation for exampléb) Joint angle trajectory for ex-
EACH OF THE 3 CONSTRAINTS task in space = (z,y) ampl(e m)ovement in task space
r=(z,y
[ Method | nUPE [ nCPE ]

Direct | 20.8532744.81346 | 0.31210+0.06641
Novel 0.36199%H-0.84707 | 0.00017+ 0.00025

TABLE IV
NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICYSTEPS
1 AND 2). RESULTS ARE(MEANZS.D.) OVER 50 TRIALS.

20 40 60 80 100 120 140 160 180 200
t

20 40 60 80 100 120 140 160 180 200
t

[ Constr. | Direct [ Novel ]
T 12.62812+ 3.55790 | 0.139174+0.39708 ey % @ s w o @ w0 w0 w0 w0
Y 6.87882+4.22021 | 0.15620+0.32314 . o . .
9 10 19341346767 | 0. 12200 0.33360 (c) Arm visualisation for exampléd) Joint an_gle trajectory for ex-
task in spacea = 0 ample task in space = 6
TABLE V

NORMALISED ERROR IN PREDICTING THE POLICY IN THE NULLSPACE  F19- 5. Using the learnt policies to resolve redundancy anttree link
arm. Top: Redundancy resolution under a task constraint sedre data
OF UNSEEN TASK CONSTRAINTS RESULTS ARE(MEAN=+S.D.) OVER 50 (r = (,y)). The task is to move the end-effector with linear velocity

TRIALS. to the pointr* = (1.5,1). Bottom: Redundancy resolution under a task
constraint previously unseen in the data=£ 6). The task is to move to
e target orientatiom™ = 45°. Movement according to the ground truth
target. The true nullspace policy and the policy learnt glsmpollcy (black) and the policies learnt with the proposedrapph (red) and
the naive direct method are shown as a comparison. It can #iesct regression (blue) are shown. The opaque arms show mtdEdong
seen that the novel method follows the true joint trajeetpri e trajectories (marked as squares on the joint angle pspfile
extremely well. The direct method, although forced to fInISf’gnored the orientation. Similarly,z,y, 6,) means the task
at the correct task space target, ends up with quite differefyas defined in the:- and y-coordinates and the orientation
joint angles. around thez-axis, while leaving the:-position and orienta-
In Fig. 5(c) and 5(d), the task space is one that has ngibn around they- and z-axes unconstrained.
been seen in the training data. It is to control the orieotati  Within these different spaces, we then set up a closed
of the end effector only in order to move to an angletdf.  |oop inverse kinematics policy for tracking to a variety
The learnt nullspace policy generalises well, matching thef targets at different speeds. Specifically, we used the
true joint trajectories closely - resolving the redundaiity |inear attractor policy (16), this time with targets chosen
the correct way. The direct method again arrives at a quitgccording toz ~ U[.25,.75], y U[ 5,0], z ~ UJ0,.5]
different set of joint angles. Table V shows the nCPE whegand 6, ~ 0.0+ U0, %] (where 0.0 is the z- angle of the
the learnt policies are constrained by unseen task spaces énd-effector at joint posmomlo) To increase the variation
how well we can predict®u under the indicated constraints. in the task-directed movements we also varied the speed of
The low score shows that as in Fig. 5(c) and 5(d), the learpésk space movement by drawing the scaling parameter from
nullspace policy can be expected to generalise well to new; ~ /[0, .04]. Depending on which of the 4 spaces is used,

task spaces. this policy corresponds to qualitatively different taskeated
) ) behaviours. For example, in thie, y, z) task space (i.e., end-
C. Kuka Lightweight Arm effector positions) the behaviour is similar to reachingato

The goal of our final set of experiments was to characterigarget. In the(z,y, 6,) space, the behaviour is more like a
how well the algorithm scales to higher dimensional probpouring behaviour (tracking to a desired orientation atiatpo
lems, with more complex, realistic constraints. For thig, win the horizontal plane).
used a kinematic simulation of the 7-DOF Kuka lightweight For resolving redundancy, we used a non-linear joint
robot (LWR-III) Fig. 6. limit avoidance type policy ast(x) = —aV®(x), with
The experimental procedure was as follows. We generatélte potential given byd(x) = Zzzl |z;|? for p=1.5 and
a random initial posture by drawing 7 joint angles uniformlyp = 1.8. We then generated 250 trajectories with 40 points
around a default start postutg in the range oft+0.4rad, each, following the combined task and nullspace policies fo
that is ¢; ~ qo; +U[—0.4;0.4] rad. We then selected 4 the 4 different task constraints.
different spaces in which different tasks were performed, For learning in the 7-D state space, we selected locally
denoted here as:, y, 2), (z,y,0,), (z,2,60,), and(y, z,6,). linear models as described in Sec. Ill-B, where we used
Here, the letters denote which end-effector coordinate® wereceptive fields of fixed widtho? = .25) and placed the
controlled as the task space, that {s,y,z) means the centres{c,,} of the local models such that every training
task was defined in end-effector position coordinates, bsample(x,,u,,) was weighted within at least one receptive



[ Policy | Constr. | Novel [

0.175+0.021
0.313£0.022
0.318+0.037
0.133£0.023

0.200+0.020
0.317£0.021
0.322+0.030
0.161+0.020
0.2944+0.013
0.393£0.022
0.422+0.030
0.318£0.021

TABLE VI

Direct |

0.400+ 0.083
0.457£0.048
0.467£0.059
0.263£0.048

0.361+ 0.069
0.426£0.040
0.422£0.049
0.250+£ 0.040

0.381+£0.048
0.452£0.033
0.448+£0.035
0.352£0.031
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NORMALISED ERROR IN PREDICTING THE NULLSPACE PART OF MOTION

FEns, UNDER TASK CONSTRAINTS IN DIFFERENT SPACES FOR JOINT
LIMIT AVOIDANCE POLICIES ON THE KUKA LWR-IIl. R ESULTS ARE
MEAN=£S.D. OVER 20 TRIALS.

V. CONCLUSION

In this work, we introduced a novel technique for learning
redundancy resolution (nullspace) policies from demaeaastr
tions. We assume that demonstrations are generated with a
consistent redundancy resolution strategy and that this ac
within the nullspace of the task. Importantly, no knowledge
of the task space or task policy is required. In experiments
with three simulated plants, we demonstrated that our ndetho
learns better nullspace policy estimates compared to atend
DPL on the raw observations. A key benefit is that the single
learnt nullspace policy can be used to resolve redundancy
with any tasks in the observed task spaces, and will often
generalise to new task spaces.

In future work we aim to demonstrate the method on
human data where no ground truth nullspace policy is known.
Currently we learn velocity based nullspace policies. Byac
the same framework can be used for acceleration and force
based policies. We aim to examine performance in this
case. We also aim to investigate an alternative benefit of
learning the nullspace decomposition whereby the nullspac
component is removed from observations in order to learn

[ Policy [ Method ] nUPE [ nCPE |
—920 Novel | 0.732+£0.049 [ 0.097+0.024
p=2 Direct . ; . .
—18 Novel | 0.755+0.038 [ 0.091+0.018
p=2 Direct [ 1.001F0.024 | 0.087%£0.005
—15 Novel | 0.870+0.043 [ 0.097+0.009
p=2 Direct [ 1.006%0.01 093F0.
TABLE VI
NORMALISED ERROR IN PREDICTING THE UNDERLYING POLICY(STEPS 1]
1 AND 2) FOR JOINT LIMIT AVOIDANCE POLICIES ON THEKUKA
LWR-IIl. RESULTS ARE MEAN£S.D. OVER 20 TRIALS. 2l
(3]
(4]
5]
(6]
Fig. 6. The redundant Kuka Lightweight Arm. A simulated vensivas
used for the experiments in section IV-C. [7]

field with w,, (x,,) > 0.7. On average, this yielded between [
30-60 local models. For all constraint types (task spaves),
estimated the policy from a training subset, and evaluated!
it on test data from the same constraint. The results afeo
enumerated in Tables VI & VII.

Looking at Table VI we see that in all cases the proposed1i]
approach performed better than direct regression for ilegrn
the nullspace component of motidriu. Comparing errors [12]
for the different policies, we see that the learning problem
became increasingly harder for the more non-linear palicid’S!
(p = 1.8 andp = 1.5). We also note that the performanceyyy
was also affected by the different constraint types (with th
(x,y,0,) and (z,z,6,) task spaces presenting the harde% |
learning problems). These trends are reflected in terms F
the performance of Step 2 (ref. Table VII), however, we note
that in all cases the proposed approach achieved lower nUP£!
that the direct approach, indicating that policies learithw [17

this approach have better generalisation across difféasit
constraints.

policies for the task space component.
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