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Abstract

Despite the success of psychological and behavioural approaches in demonstrating
the effects of hippocampal lesions in human amnesiac and animal subjects no single
unifying theory outlining the role of the hippocampus in memory formation has been
universally accepted.

In chapter one we argue that MTL amnesia is accounted for by impairment in a
mechanism of conscious recall, and that we cannot easily infer the structure ofmemory
representations in the human hippocampus from existing data. We also argue that the
lesion studies involving rats, do not model amnesiacs adequately. Therefore we draw
the conclusion that an understanding of the role of hippocampus in rodent memory
should be developed independently of theories of amnesia.

We then examine three competing hypothesis current in the literature concerning of
hippocampal information processing. The first is that the hippocampus is two circuits,
one at the dorsal and one at the temporal pole; We argue strongly for a possible dis¬
sociation between dorsal and temporal hippocampus,on the basis of existing evidence
and we propose a novel theory that the dissociation should be understood in terms of
differences in learning speed. The second hypothesis, that the hippocampus is purely
spatial, we reject on the basis of a review of evidence from recording and behavioural
studies. The third hypothesis is that the hippocampus stores temporal sequences. The
argument that the hippocampus may store and recall sequences, however, is consid¬
ered from three different angles. We evaluate the evidence from behavioural studies
and neurophysiological studies, and conclude that that existing evidence is inconclu¬
sive. We then turn to two modeling studies. First we examine a well known model
of sequence learning in the hippocampus, and show that it does not meet our standard
of adequate recall. The end product of the thesis is an extremely simple model that
recalls sequences in one trial, that is consistent with both thee more detailed biophysi¬
cal models, and known neurophysiology. It is also consistent with models that use the
same architecture to recall single patterns. From this we draw the conclusion that the
idea that the hippocampus learns to recall sequences is plausible. We show clearly that
our simple model is more coherent, and performs better the an equivalent model.
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Chapter 1

Inventing episodic memory

The stream of thought flows on; but most of its segments fall in to the
bottomless abyss of oblivion. Of some, no memory survives the instant
of its passage. Of others, it is confined to a few moments, hours or days.
Others again, leave vestiges which are indestructible, and by means of
which they may be recalled as long as life endures. Can we explain these
differences? (William James, 1890)

1.1 Overview

1.1.1 How to read this thesis

The next section provides an over view of the argument in each chapter. There are a

couple of meta - instructions. At the beginning of each chapter there is a summary,

which outlines the position of each chapter and its contribution to the thesis.There are

two strands of argument in the thesis, one relating to Readers who are interested in the
modeling chapters should ignore chapters 1-4, as they are largely independent of the
modeling chapters.

1.2 Part I: Inventing episodic memory: Overview

Theories of event memory, where event memories are special representations in the
hippocampus, are presented in chapter 1. (Marr, 1971) suggested that hippocampal

1
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memories are one trial, simple memories, or sensory snapshots (Squire et al., 2001;

Frey and Morris, 1998; Norman and O'Reilly, 2001; McClelland and Goddard, 1996).
In chapter 1, we argue that episodic memory is not this simple memory, but is in¬
stead a constructed event representation, that incorporates information learned over

many trials. Furthermore, this information is learned within the hippocampus rather
than borrowed from neighbouring cortex. However, we also argue that the hippocam¬
pus contains information about particular trials. We therefore propose that learning
mechanisms in the hippocampus run at multiple speeds, and that information about in¬
dividual and groups of trials is integrated within the hippocampus. We argue that this
integration takes place along the septotemporal axis.

In chapter 2 we present further evidence that the hippocampus contains (at least)
two different learning systems that learn at different speeds. We propose that the ex¬

perimental work by Moser and Moser (2000) suggesting that functional differentiation
on the long axis of the hippocampus can be explained by attributing different learning
speeds to the dorsal and ventral regions. Moser and Moser (2000) explain their data
by a functional division between spatial and non-spatial processing, supported by an

anatomical division. We present evidence lesion studies in chapter 3, and anatomy in
chapter four that argues against their interpretation

This argument is further supported by Chapters 3 and 4. Chapter 3 argues against
the functional division of the hippocampus, by firstly arguing against the lamellar

hypothesis needed to divide dorsal and ventral circuits. Secondly, Chapter 3 argues

against the input/output connectivity described by Moser and Moser (2000). Chapter
3 also identifies two critical areas of future research. Modelling work is needed to

understand the role of the distribution of inputs on the dendritic tree in CA1 pyramidal
cells, and the impact of dopamine on integration of these inputs, and on plasticity at
different synapses.

A critical component of integrating recall of past events with new input is the ability
to rapidly recall past events. One potential mechanism for this is based on the NMDA

learning mechanism, and we outline this in Chapter 3. Discussion of the evidence for
this recall strategy, and two models of how it can be employed in hippocampal type
architectures forms the later half of this thesis.

In Chapter 4, we examine the argument in Moser and Moser (2000) that tasks
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requiring the dorsal hippocampus are best described as supporting a spatial map re¬

quiring special spatial input. We argue that too many non-spatial components of the
hippocampal representation have been found. However the map hypothesis has led to
a proposal that the hippocampus supports a predictive representation that exploits the
sequential recall strategy.

The essential contributions of Part 1 are as follows:Part 1 establishes the case

against two mainstream theories of the hippocampus function. Firstly, we argue against
transferring a theory of declarative , or of episodic memory to explain the rat model on
the following grounds.

1. Weakness of the theories of episodic and declarative memory.

2. lack of easy correspondence between recall and recognition tasks in humans and
in rats.

3. Reliance of the definitions episodic and declarative memory on conscious and
linguistic notions, that cannot be attributed to rats.

The case against the spatial theories of hippocampal functioning in rats is argued on

the grounds that the evidence from recording cells in the hippocampus indicates that
cells there correlate with a wide variety of things that are not places, and do not fit the
map hypothesis.

The second contribution of part 1 of the thesis is to present evidence for a functional
distinction between temporal and septal hippocampus. Evidence for this distinction is
drawn from both lesion studies, in chapter 2, and from the anatomy and physiology in
chapter 3. We hypothesise that this difference should be characterised in terms of the
speed of learning in the two parts.

Part 1 therefore offers a novel prediction, about the effects of dorsal only, and
ventral only lesions, on tasks that involve some form of alteration between trial, like
the transverse patterning task.
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1.3 Part II: Mechanisms and models of anticipatory
recall

The second part of this thesis deals with how to perform exact recall of an exact se¬

quence of items in a hippocampus-like structure.

First we examine the evidence that such a strategy is used in the hippocampus.

Chapter 5 examines a case (of proactive, or predictive) representation in the prefrontal
cortex. We distinguish such a representation from anticipatory use of the sequence

recall strategy.

We argue that although the case that the hippocampus uses a sequence recall strat¬

egy is still unproven (we discuss this in chapter 5), a structure that in principle uses the
paired recall strategy can use the sequence recall strategy.

Chapter 6 then discusses the merits of Levy (1996)'s model of sequence learning
and recall over repeated trials. We present an exact replication study, and some ad¬
ditional experiments, through which we explore the network's behaviour at capacity.
We show that the network fails to converge to a stable pattern over a long training
cycle, and therefore the weights of the network do not encode the information about
transitions in the patterns that Amarasingham and Levy (1997) propose. The model
successfully learns correlated (but recoded) input sequences, but performs rather less
well when multiple correlated sequences have to be stored separately. In this situation,

learning one sequence interferes with the recall of another. The negative patterning
task can be modelled as this sort of learning problem. We examine the performance
of the model on a negative patterning task. We argue that despite the apparent fit be¬
tween the behaviour of the model and results from Sutherland and Rudy (1989), this
cannot be treated as evidence for sequence learning as a model of the negative pattern¬

ing task. The argument can be summarised as follows: The representation of the task
does not distinguish between hippocampal and non hippocampal dependent forms of
the negative patterning task. Secondly, the model exploits assumptions about the hip-

pocampus's contribution to behavioural errors. We present what we think is an equally

good case for a an entirely, different contribution, argued from the results of the same

model and experimental results in Han et al. (1998).

Chapter 6 concludes that
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1. the model does not fit the behavioural task

2. The behaviour of the model is controlled by the threshold and the learning rule,
and these perform poorly in the one trial situation that does not use a recoding
strategy.

Chapter 7 follows on from chapter 6, considering the model proposed by Levy
(1996) and working through an analogy to the heteroassociative network. On the basis
of this analogy, we examine five different learning rules, and two different thresholding
strategies that are used in pattern completion problems in partially connected heteroas¬
sociative networks. In particular, we evaluate the presynaptic covariance rule proposed
by Minai (1997) on correlated input data in as sequence recall situation. This rule, ac¬
cording to Minai (1997) out-performs all other rules in a compression, or classification
problem. However, in an error free situation, we show that the clipped learning rule
still performs better, even on correlated data.

The conclusion of chapter 7 is that for single trial learning, where only the order
of inputs need be recalled, a binary valued learning rule is the best choice, even if the
inputs are highly correlated. We therefore argue that this kind of immediate recall of
single events, if it occurs at all, will occur only in the dorsal hippocampus, using all or
nothing potentiation at CA3 synapses.

The essential contributions of Part 11 are as follows. The essential contribution

from chapter six is the reexamination and rejection of the model of sequence recall
developed by the Levy group. This is not the only model of sequence recall available,
but it the one that has been most studied (and cited by review papers claiming that

sequence sequence learning is an essential hippocampal function, such as Wallenstein
et al. (1998)). Chapter seven presents a simple model of sequence recall in one trial,
that implements a presynaptic covariance rule. The rule is not novel, but has a) not been

implemented in an incremental fashion in the way we describe and b) not compared
against other rules or models, for this particular problem. We show that it performs as

well as the binary rule, and better than the rule and threshold proposed by the model
in chapter six. We suggest that a device such as this could be used for one trial recall,
and perhaps training of the slower temporal hippocampus.
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1.4 Overall approach and introduction to issues pur¬

sued in the thesis.

How is the beginning and end of an event known if not by reference to the
event's meaning? McKoon et al. (1986)

This thesis is devoted to three issues that the above quote raises. The first chap¬
ter of the thesis argues that it is extremely difficult to assign the exact content to a

memory. The hippocampus is supposed to be a memory for events, and we rely on

the psychological literature for a characterisation of what these events are. In our re¬

view of the hippocampal psychological literature, we meet four different theories of
what hippocampal memories are. None is satisfactory; the aim of our investigation
is to extract some ideas for the kinds of computation we might expect to find in the

hippocampus. One answer to McKoon and Ratcliffe's question is: Build a computa¬
tional model of how the brain stores events, and then we will have a characterisation of

events. Chapter 5 deals with a promising mechanism that uses the endogenous rhythms
of the hippocampus to bind events. But none of the models considered in either chapter
4 or chapter 5 succeeds in characterising the computation in the hippocampus, outside
the content of the representations assigned by the psychological literature. We argue

that to build computational models, we need a better characterisation of the nature of
learning in the hippocampus. We are particularly interested in what sort of learning is
required for learning sequences.

In a way, we have too much information about the content of the representation.
Correlation studies (reviewed in chapter 4) have successfully given us a correlation
between neural firing patterns and outside events, and objects. Observation of correla¬
tions between stimuli and neural responses provide the data that need to be accounted
for by a theory of the content of hippocampal representation -They do not amount to
a theory themselves.While we are still finding new and interesting data, we are still a
long way from understanding the meaning of the data.

Any theory of the function of the hippocampus also needs to account for the pattern
of lost and retained memory in amnesiacs. The literature on amnesiacs has also proved
to be a fertile spawning ground for divisions of human memory, for that very reason. It
si still an open question whether a unified theory can account for the same sets of data.
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The position held in this thesis, is that it can not. The argument for ths position is set
out at the end of chapter 1.

1.5 The role of hippocampus in amnesia in theory

Theories of hippocampal amnesia are partly responsible for a division of human mem¬

ory into implicit and explicit, episodic and semantic, procedural and declarative, phe¬
nomena most of which are identified knowledgeably by psychologists without more
than a rough definition. However, for the purposes of this thesis, a rough definition
is not good enough. A precise understanding of these terms of memory needs to start
with an understanding ofwhat they were originally intended to describe. Our intention
is to extract psychological concepts/phenomena that may help in developing an under¬
standing of the nature of the neural circuitry of the hippocampus. Figure 1.1 shows
how memory phenomena are classified in three theoretical accounts of the distinction
between hippocampal and non hippocampal memory.

The three distinctions arise from the following theories. The relational memory
(RT) theory, proposed by Cohen and Eichenbaum (1993) defines hippocampal memory
as declarative memory, the dual route theory, that defines hippocampal memory as

episodic memory (E), proposed by Tulving (1983), and the interference theory (I), in
McNaughton and Gray (2000) and Weiskrantz (1997), that regards the hippocampus
as part of a behavioural inhibition system, rather than the locus of memory. The latest
incarnation of this theory is extensively developed by McNaughton and Gray (2000).

One way of looking at these theories is to ask whether they propose to account for
the deficits in amnesia through a loss of a particular memory content, or loss of some
aspect of manipulating memory. Figure 1.2 gives an idea of how the same phenomena
can be interpreted differently. A theory such as the declarative or relational theory
contains both elements of strategy and representation in accounting for memory loss
in amnesia. The same deficit may sometimes be explained by either loss of strategy
or loss of representation (sometimes both), and as the examples below show, the two

explanations are not always clearly distinguished.
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non hippocampal hippocampal

implicit vs explicit
no awareness conscious

procedural vs declarative

reflex verbally accessible
non propositional propositional

inflexible flexible
semantic vs episodic
facts sensory experience

categories events

Figure 1.1: Proposed ways of dividing hippocampal memory phenomena from non

hippocampal phenomena

approach content strategy representation form
RT/E context temporal/spatial ordering
RT event/episodes declarative

E/I autoneotic experience memory detection
I error detection

Figure 1.2: The same phenomena can be captured in a theory by deficits in three
different aspects of the theory. Loss of self reflective experience can be either loss of
internal content of representations or damage to a retrieval mechanism.
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CAi

Perforant Patli

Schaffer Collaterals

CA3

Mossy fibres

Dentate Gyrus

t
Entorhinal Cortex

Figure 1.3: Feedforward trisynpatic circuit showing named layers of the hippocampus

1.6 Basic hippocampal anatomy

The anatomical circuits that support event memory are described below. A fuller de¬
scription will be given in chapter 3. However, as the trisynaptic circuit is the functional
circuit that is frequently employed in both models and theories, it is useful to charac¬
terise it here.

The hippocampus proper is considered to be the entorhinal cortex (EC), the dentate

gyrus (DG), and layers CA3, CA2, and CAI. These layers are identified with layers of
excitatory cells. Dentate gyrus has a layer of excitatory cells, called granule cells, that

project upwards with mossy fibres to the pyramidal cell layer in CA3. The excitatory
projection from CA3 is through the schaffer collaterals. The subiculum is variously
included in the hippocampus proper and is considered to be the main output relay.
Traditionally these regions were viewed as a feed forward excitatory circuit, shown in
figure 1.3. Anderson in the 1970s proposed the lamellar hypothesis, which claimed
that the hippocampus was made of independent bundles arranged in 'lamellae' stacked
along the transverse axis. The typical hippocampal slice preparation study in vitro is a

slice taken across the septo-temporal axis. The traditional trisynaptic circuit followed
the lamellar hypothesis. This picture is still more or less true for the mossy fibre pro-
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jection. The extent and complexity of CA3 recurrent projection in the septo-temporal
directions, however, was greatly underestimated.

Within the slice preparation, the regions surrounding the layers of pyramidal cells
have laminar structure. This means that the pyramidal cell, and organisation of in-
terneurons, is layered and each layer has a separate name (see 3.3 in chapter 4). Al¬

though it has been known for some time that the pattern of organisation of both in¬

hibitory and excitatory inputs is very precisely structured, the functional significance
of this layered structure is still amatter of speculation. This will be discussed in chapter
4.

Most models of the hippocampus (Rolls, 1996; Levy, 1996) are still based on the
concept of the trisynaptic circuit shown in figure 1.3, with the three synapse pathway
between CA1 and entorhinal cortex together with the direct pathway from the entorhi-
nal cortex providing the two major directions of information flow. The most striking
feature of the trisynaptic pathway is the existence of the recurrent layer, in CA3. A
recurrent loop is a feature associated with architectures that are pattern completion
devices, i.e., content addressable memories.

1.7 Amnesia and the hippocampus

Amnesia is described in the Handbook of Clinical Neuropsychology (Heilman and
Valenstein, 1993) as a severe memory deficit with preserved cognitive functioning, and
11 different aetiologies are included, ranging across age related degenerative disorders
such as Huntington's and Parkinson's, to vascular disease, cerebral anoxia, and herpes
simplex encephalitus. Chronic alcoholism giving rise to Wernike-Korsakoff syndrome
also features prominently in the psychological literature on amnesia. Last but not least,
the effects of surgical lesions to the medial temporal lobe (MTL) are mentioned.

It is particularly the last cause of amnesia that established the importance of the
medial temporal lobe in human memory. An epileptic patient, H.M., underwent a bi¬
lateral medial temporal lobe lobotomy as treatment for severe epilepsy. H.M. suffered
from upwards of 10 seizures a week, even with high dosages of anticonvulsants. Such
seizures are kindled in the hippocampus, and removal of the hippocampus therefore
reduced the seizures. The treatment improved the epilepsy, but left H.M. with a se-
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vere anterograde amnesia - an inability to form new memories - and also retrograde
amnesia - the inability to access memories from several years before the operation.

The studies of H.M. and a group of similar patients formed the backbone of the
case that made the hippocampus the storage place of memory. However, study of
H.M. revealed that although he lost in particular those sorts of memories we refer to
as experiences - he could not remember what he had eaten just after lunch (or even
that he had eaten), beginnings of conversations when he reached the end, plans formed
yesterday, people met an hour ago - he still retained the ability to acquire some new

knowledge. Commentary over the first sixteen or so years after the operation suggests
that H.M. showed a little improvement in his ability to follow the course of events
in the outside word, particularly with regard to salient events. An episode where his
mother was ill in hospital left him very uneasy about her for several days, without
being able to say why.

Apparent loss of memory might involve a breakdown at any point in the sequence

of acquisition and retrieval of the memories. It is therefore an open question as to how
much of amnesia is accounted for by deficits of acquisition, those of maintenance and
consolidation ofmemories, and deficits due to faulty mechanisms of retrieval. A subtle
distinction can also be made between faulty retrieval and problems with accessing the
retrieved memory consciously. The memory may be successfully cued or retrieved, but
remain implicit.

Despite forty years of work on amnesia, it has not yet been possible to say whether
amnesia is primarily a deficit in the acquisition of memory or primarily a deficit in
the retrieval of memory, although until recently acquisition theories seemed to have
the upper hand. This is partly because there has been a shift towards thinking about
amnesiacs as lacking the ability to create certain kinds of memory representations.
Two theories of this kind are considered first. However, the retrieval deficit theories
ofWeiskrantz and colleagues (Weiskrantz, 1997; Heilman and Valenstein, 1985) have

recently been revived, and will be considered here under the guise of the interference

theory.
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1.8 Theory 1: amnesia as loss of declarative memory

The relational memory theory is the latest guise of the proposal in Cohen and Squire
(1980): Amnesia is loss of the ability to 'know that'.

This theory started out as a theory of amnesia, in general, though it became clear
in the late 1970s (Heilman and Valenstein, 1979) that there were at least two different

recognisable syndromes. Wernike-Korsakoff amnesiacs show different ability loss and
retention from those with MTL amnesia. This is partly due to damage to frontal lobe

functioning in Korsakoff's syndrome, associated with a greater tendency to confabu¬
late, and loss of planning abilities. For example, Korsakoff patients have a tendency to
claim faces as familiar to them, even thought they cannot produce names. Frequently
they 'recognise' people with faces they have never seen. MTL amnesiacs, with their
powerful awareness of their own condition, do not do this (Heilman and Valenstein,
1985).

For this reason, when amnesia is referred to in this thesis, it usually means medial

temporal lobe based amnesia, or MTL amnesia. Much of the early literature on amne¬

sia, therefore, has to be considered carefully as studies are made up of Korsakoff and
MTL patients. Cohen and Eichenbaum take a different view in their 1993 book. As
far as they are concerned, amnesiacs (Korsakoff and MTL) show an impairment in the
same 'domain' of memory, though Korsakoff patients have additional deficits.

Cohen and Squire (1980) described two procedural tasks that can be learned by
amnesiacs. Firstly a mirror writing task, and secondly the Tower of Hanoi task (de¬
scribed in figure 1.4). Amnesiac patients like H.M. perform normally on the Tower
of Hanoi task. They learn to solve the task using the optimum number of moves (31).
Comparison of learning rates between controls and amnesiacs on both tasks show the
same rate of improvement. The striking difference between amnesiacs and controls is
that amnesiacs do not know they can solve the task. They have no memory of earlier
trials, and no insight into the solution when asked about their successful performance.
H.M.'s inability to accurately comment on implicit tasks that he performed extremely
well, was commented on in many of the early papers. Sidman (1968) also suggests that
H.M.'s loss was of the ability to verbalise memory, or create memory commentary. All
three current theories of amnesia existed in nascent form in the 1960s (Milner et al,

1968).
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.A E A,
Start Finish

From Cohen and Eichenbaum (1993), Chapter 10

Figure 1.4: The Tower of Hanoi task involves moving the discs from the leftmost peg
to the right hand peg, moving one disk at a time and never putting a bigger disk on top
of a smaller one.

The Tower of Hanoi requires no memory for moves. From any midway configu¬
ration all information required to solve the task is available to perception. It requires
minimal anticipation: from each midway configuration there is an obviously useful
move. Some explanation of why controls and amnesiacs improve over repeated trials
of this task is needed. Cohen and Squire proposed that information about the task was

represented as a perceptual motor sequence, and this form of representation was not
accessible to conscious reflection (or intervention). This is rather like seeing skill as
a matter of requiring the right stimulus responses. This they called procedural knowl¬
edge or representation. Cohen and Eichenbaum (1993) state adamantly that

skilled performance on the Tower of Hanoi puzzle depends no more on the
remembering of specific puzzle configurations or moves than performance
in tennis depends upon the explicit remembering of arm movements.

At a first glance, the procedural declarative distinction depends on the idea that
some representations are inherently not articulable. However, it is important to see

that there is a distinction between the nature or representational form of knowledge
and the nature of the process through which it is acquired and then retrieved.

The analogy with tennis playing, intended to illustrate the distinction, highlights a

problem. A procedural representation, if we believe the tennis analogy, can only be ex-
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pressed in performance of the procedure. But learning to perform in tennis is not just a
matter of acquiring an automatic procedure. Like playing the piano, learning requires a

transition period, during which conscious reflection is needed to direct the movements.
Players also learn to deautomatise movements for the purposes of improving them. So
actual performance at a given moment may not depend on declarative representation
access, but it can be influenced by it, and the procedure can be adjusted via conscious
reflection. Even this extremely physical case does not support the idea that there is a

kind of representation that is inherently inaccessible to reflection. In this kind of case,
people often bring up the 'I need to see what I do before I can talk about it' experi¬
ence. We are not arguing that things are never encoded as perceptual motor sequences
but that it is clear, in the case of tennis and piano playing, that initial learning does

proceed via conscious reflection on memory. With increasing skill, and speed, more of
the movements bypass conscious reflection but at any point, if something goes wrong,

these movements can be dragged back into consciousness. This transfer between ex¬

plicit control and motor control and back again is probably unimpaired in amnesiacs,
and the fact that they go though this process may be part of their acquired competence

at the Tower of Hanoi task. It might be that it is this very process that is facilitated
in both amnesiacs and controls, making the Tower of Hanoi much more like playing
the violin and painting or, indeed, geometry. Learning here is an interaction between
conscious and unconscious processes.

To summarise: We may characterise declarative knowledge as i) knowledge learned
through conscious attention or iijknowledge recalled through a conscious search strat¬

egy. procedural knowledge, on the other hand may be knowledge ijlearned without
conscious direction or awareness, or ii) knowledge recalled without awareness,e.g. a

cued response. So far the evidence reviewed concerning amnesiacs shows that they
are impaired only in conscious recall. The account presented , however, suggested
that this loss of conscious recall, was due to an underlying loss of particular kinds of
representations.

Now that we have established a distinction between the representation of knowl¬
edge and the process of learning and recalling it, we can see that it is not yet clear
whether the procedural/declarative distinction is intended to be between kinds of rep¬
resentations, or between implicit and explicit methods of access to knowledge. It is



1.8 Theory 1: amnesia as loss of declarative memory 15

also not clear how much we are entitled to infer the content of the memory represen¬

tations An additional ambiguity arises through the only way of assessing whether a
memory/representation is declarative is whether or not the patient can verbalise or ar¬

ticulate the memory.We rely on the verbal utterance of the subject. If the subject can
offer a verbal description of the knowledge, then we consider it declarative. However,
we then need to asses the content of the knowledge expressed in the verbal utterances.
Verbal utterances potentially express both explicit and implicit knowledge; vocabulary
choice, pauses and inflections are automatic aspects of speech. The difficulty between
drawing a boundary between the expression of explicit content and implicit content in
speech is a well recognised problem (Sperber and Wilson, 1986, 1995). We therefore
cannotmove directly from the utterance to the content of the knowledge representation.

In Ryle (1949), the original source of the 'knowing how' and 'knowing that' dis¬
tinction was intended as a distinction in methods of access only, based on a behaviourist

argument as follows: if the two kinds of knowledge can be separated by modes of
access then it is not necessary to infer anything further about the underlying repre¬

sentation. Following on from that point, if amnesiacs have lost a mode of access to
memories then that is sufficient to explain their impaired performance on the task; it
may not be that they have lost the memories themselves, or a particular kind of mem¬
ory representation. After all, the amnesiacs can retrieve the learned skill/procedure for
the Tower of Hanoi, they just can't 'know that they know' about it.

Despite the difficulties indicated above the account that Cohen and Eichenbaum
propose in 1993 moves to a strongly representational interpretation of the declara¬
tive/procedural distinction. They attempt to give a more detailed account of the nature
of the hippocampal contribution to declarative representation, and the properties of
procedural interpretation. The contrast now draws on accounts of modular and cen¬

tral brain processing, as put forward by Fodor (1983). The crucial difference between
declarative and procedural knowledge is now found in the relation of these kinds of
knowledge to context.

Cohen and Eichenbaum describe procedural knowledge as 'context inflexible', i.e.,
knowledge can only be applied in the exact circumstances of acquisition and 'localised
to particular input processors.' They describe this kind of knowledge as modular. The
idea that sensory inputs are modular is largely attributable to Fodor, although Cohen



16 1 Inventing episodic memory

and Eichenbaum do not directly compare their account with Fodors. Fodor's account

suggests that for example, a task acquired through the visual sensory domain does not
prime or automatically transfer to the same task mediated through the oral domain,
unless mediated through consciousness. Cohen and Eichenbaum do explicitly (p. 64
ibid) fit their description of the structure of declarative representation with some of
Fodor and Pylyshn's account of the structure of the Language ofThought'. The parallel
between these accounts is also noticeable in the language Cohen and Eichenbaum use

to describe declarative memory, as we illustrate below.

Cohen and Eichenbaum describe declarative knowledge showed by normal partic¬

ipants in a task such as the Tower of Hanoi, as represented in a more "propositional"
fashion, whereas procedural knowledge consists of a set of fixed rules or responses

(they describe the move algorithm that an amnesiac might learn to apply iteratively to

perform the task). The (perhaps cosmetic) use of the word "propositional" to describe
the declarative representation needs further clarification, as Fodor at least associates
propositions (or meanings) with rules for use in context. It is not clear how far Cohen
and Eichenbaum intend to buy into Fodor's account of meaning to support their repre¬
sentational account. A critique of Fodor's account lies outside this discussion. They do
not discuss whether this learning of rules underlying procedural knowledge involves
abstraction and, if so, whether it means that procedural learning is equivalent to the
kind of cognitive activity used on such a task as artificial grammar learning, which
necessarily involves abstraction; or whether they really think of perceptual motor se¬

quences as being sequences of stimulus response patterns. If procedural knowledge is
a stimulus response, it can only be triggered for recall, in a replay of the exact context
from which it was learned, making it fixed context.

In contrast, Cohen and Eichenbaum describe declarative knowledge as flexible be¬
tween contexts, or context free. It is not immediately obvious what the context of
an item of knowledge consists of, especially as they also described the declarative
knowledge as context rich; the context richness of a particular memory could refer to
a number of factors. So, let us consider the aspects of declarative memory that might
render it context rich. One is content. H.M. cannot remember the particular experience
ofmoving a piece on the Tower ofHanoi task - he lacks a memory with that particular
content. Here, the context richness is the sensory or qualitative aspect of remember-
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ing the move. Secondly, he does not have any meta knowledge that he is lacking this
memory. So, for example, a normal person might not have a memory with that par¬
ticular content, but they might remember that they did make such a move. Here the
context richness is the person's commentary on their own memory. A normal person
might also have context rich representations in the sense that they might remember the
moves before and the moves afterwards made in the task. This a context rich memory

in terms of temporal context. However, there is a problem as to whether this ordering
is a property of the storage of memories, or part of their content.We can think of both
as a kind of meta knowledge about memories, or as an integral part of the memory

itself.

Finally, Cohen and Eichenbaum might mean context rich in the sense of restricted
in application (this idea comes from language analysis, etc). To see what this means,

consider the fact that the amnesiacs are evolving a strategy for solving the Tower of
Hanoi. This strategy can be characterised in terms of rules. A context rich representa¬
tion in this case means that the context in which the rules can be used is specified by
giving the cases in which the rules applies. In Cohen and Eichenbaum's view this par¬

ticular form of context richness belongs to procedural, rather than declarative knowl¬
edge. However,this is slightly counter intuitive, as the more information a memory

carried about the particular experience, and its context, the less likely it would be to fit
another context exactly.

Eichenbaum and Cohen draw on data from Butters in Heilman and Valenstein

(1979, 1985) in their characterisation of the Tower of Hanoi task, arguing that amnesi¬
acs can only apply their task learning skill in circumstances that it was acquired.Butters
trained amnesia patients on a version of the Tower of Hanoi task in which patients were
allowed to move the circles to any peg, depending on how well the solution was turning
out. In these circumstances, where not every trial is a direct repeat, amnesiacs were

impaired. What Cohen and Eichenbaum mention, but do not elaborate on, is the fact
that most of Butter's subjects were Korsakoff amnesiacs, who frequently show frontal
lobe associated planning deficits. Cohen and Eichenbaum acknowledge that this means
Korsakoff patients may have performed poorly on the Tower ofHanoi task due to plan¬

ning deficits.However, they don't see this as impacting on their interpretation of their
characterisation of procedural knowledge.
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Although amnesiacs can solve the Tower of Hanoi task, this is not considered evi¬
dence of the ability to use rules and extract them in a context sensitive way. This seems

strange, as amnesiacs are not impaired on a task that tests the ability for rule abstraction
and application directly, namely an artificial grammar learning task. It can be said that
the explanation of why Cohen and Eichenbaum do not make the obvious connection
between these two tasks lies in the idea that procedural knowledge is expressed as a

sensory motor response to perceptual stimulus.

If one accepts the artificial grammar learning task as an analogue of the Tower of
Hanoi task, it is quite clear that this task involves generalisation of rules/categorisation

beyond the presented circumstance.

Artificial grammar learning involves presentation of a series of strings, or combi¬
nations of letters. These strings have been created by the application of grammar-like
rules, that allow only certain combinations of letters and make other combinations

obligatory. The rules, or grammar, are not given to the test subject. Instead, they
are shown a series of grammatical examples. They are then tested on unseen strings
and asked to guess whether they are grammatical or ungrammatical. Normal people
are surprisingly good at this, although they appear to learn this task implicitly. They
cannot state the rules they are using, and frequently claim to be guessing randomly.

Performance on the artificial grammar learning task is affected by the chunk strength-,
this is the frequency with which subunit strings are shown in the learning set. Kowlton
and Squire (1994) distinguished the similarity of strings from the frequency effects of
chunk strength. Similarity was found not to affect grammaticality judgements over and
above chunk strengths.

Remarkably, amnesiac patients perform as normals on this task. (Kowlton and
Squire, 1994) describes the cognitive ability measured here as part of the ability to ab¬
stract rules from instances, the same ability required for declarative memory, if declar¬
ative memory is to have propositions. Yet this is demonstrably an implicit ability that
is preserved in amnesiacs.

This has proved such a problem for some commentators, such as Squire and Zola
(1998), who think that semantic representations must depend on abstraction from par¬

ticulars, and must therefore be impaired with the loss of the hippocampus, that they
have argued that artificial grammar learning does not test powers of abstraction either.
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Instead, it too is using 'procedural learning'.
Part of the problem here is the over-use of semantic memory and declarative mem¬

ory to mean not just memory using semantic or propositional representations, but also
memory involved in the process of creating them.

1.8.1 Response I: invoke neurobiology

It is also possible to take a different approach to the characterisation of the abstraction
of representation in the hippocampus. The hippocampus is, according to Lavaneaux
and Amaral (2000), sitting at the top of a neurobiological pyramid of associational cor¬
tices, starting with unimodal cortical areas, and then proceeding though the perirhinal
and postrhinal cortices, entorhinal then through the circuits of the hippocampus proper
(i.e. figure 1.3). Therefore, it is argued, the information reaching the hippocampus
must be very abstract in nature, as processing and identification of individual stimuli
happens in other cortical areas. The hippocampus is therefore in an ideal position to
manufacture event descriptions: such a view is also put forward by Shastri (2001).
High level models of this kind of theory give a better idea of what the hippocampal
representation is supposed to look like. Cohen and Eichenbaum (1993, p63) give an

example of a semantic net (Norman and Rumelhart, 1975), with nodes and relations

(procedural memories that involve fine tuning and limited generalisation are repre¬

sented by PDP architectures). Shastri uses a similar architecture but draws on more

sophisticated notion of types. However, this is not really evidence brought to support
the notion of declarative memory but rather a prediction about the content of infor¬
mation stored in the hippocampus, based on neuroanatomy. None of the authors is
particularly concerned with how the content of the elements of the semantic structures
is learned.

The issue of whether information in the hippocampus is more abstract than infor¬
mation in input cortices such as olfactory cortex, or perirhinal cortex, will be assessed
later in the chapter.

Shastri and Cohen and Eichenbaum share a common hypothesis. Although the hip¬
pocampus is representing very complex information, the actual computational mecha¬
nism is simple association. So event description, episodic knowledge is very represen-
tationally complex. It is so in virtue of the content of its inputs; and the position of the
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output on the abstraction tree. Essentially the hippocampus is acting as an associational
binder.

Shastri and Cohen and Eichenbaum see this as an advantage of their theory, as it
means that the computational side can be implemented very simply. The hard job of

establishing and recognising complex relations between events is pushed elsewhere:
of course, this is very convenient for hippocampal modelling, but perhaps does not

exploit the full richness of the computation available in hippocampal architecture.
More recent papers associated with the relational theory (Eichenbaum, 1999; Eichen¬

baum et al., 1999), discussed in the next chapter, still use the terminology of nodes
and relations without offering insight into how these items that form the structure of

episodic memories might be established.

1.8.2 Response II: additional subdivision

In the previous section, it was argued that the notion of procedural memory is too weak
to capture the nature of the abilities retained by amnesiacs. Declarative memory seems

too all-encompassing to be a useful description of the hippocampal memory. Simply

defining hippocampal memory as 'abstracted memory' does not usefully distinguish
the contribution of the hippocampus from the contribution of the surrounding areas,

particularly as some forms of abstraction are clearly preserved in amnesiacs.
The neurobiological argument put forward in the previous section needs to be sup¬

ported by clear evidence that representation becomes increasingly abstract as it ap¬

proaches the hippocampus. That evidence will be considered when we consider corre¬
lation studies in chapter 4.

1.8.3 Response III: abandon the procedural/declarative distinc¬
tion

A possible response to the failure to define procedural memory adequately is to take
the view that the approach of phenomenologically dividing memory into independent
systems is wrong. Squire and Zola (1998) argue that the hippocampus and surrounding
cortical areas are interdependent. They describe semantic learning as follows:

New information is always presented as part of some event, but through
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repetition or rehearsal the new information can be abstracted from its orig¬
inal context and represented as semantic memory.

This presentation of particulars occurs through or in the hippocampus. However, with¬
out something to contrast it with, and with damage to the hippocampus, the entire
system of memory collapses.

Data that purports to show selective impairment of only one of two particular kinds
of memories can still be explained, as hippocampal damage in humans is never com¬
plete, and the extent of extra-hippocampal damage hard to assess (see Squire and Zola's
response to Vargha-Khadem et al. (1997) in the following section).

However, in other publications, such as Squire and Knowlton (1995); Reed et al.
(1999), it is made clear that there are subtypes of implicit memory, such as those un¬

derlying category formation, that are hippocampal independent. This looks like a rein-
troduction of the procedural/declarative distinction, with procedural memory reworked
as those processes underlying category formation.

Let us turn now to a second theory of amnesia that attempts to draw another qualita¬
tive distinction between two kinds of memory. This theory shares many of the features
of the previous theory.

1.9 Theory 2: amnesia is loss of episodic memory
Human memories are divisible at the phenomenal level into two kinds of memories:
memories of experience and memories for facts. James (1890) draws a distinction
between memories that arise from, and are part of the conscious stream of thought,
and memories that are incidently captured from unattended experience. In this section,
we will consider the possibility that two dissociable memory systems underly these
two kinds of memories. New evidence based on a study of three hippocampal amne¬
siacs who acquired their disorder during early childhood (ages 4, 7, 9), described in
Vargha-Khadem et al. (1997), suggests an alternative view of the hippocampus' role in
declarative memory. These three children, despite having little recall of daily events,

appointments, tasks and places, managed to progress through normal school, and per¬
form close to average on standard verbal IQ and general knowledge tests. This devel¬
opmental study has been cited as strong support for a distinction in kinds of declarative
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memory into semantic (the kind of memories that are tested in general knowledge and
verbal IQ tests) and episodic memories (that are specifically autobiographical, event
memories). This distinction originates from Tulving (1983) (updated in Tulving and
Markowitsch (1998)), who holds that these two forms of memory are not necessarily
different in representational demands, but are different in content. Episodic memories
have a kind of content that Tulving refers to as autonoetic. This word is intended to

cover the "feeling" of memory, sometimes a vivid sensory image, or an unspecified
experience of recall.

How does episodic memory compare to semantic memory?

The original episodic/semantic distinction as first formulated by Tulving also puts more
emphasis on the difference in representational structures. Episodes are organised by
spatial and temporal co-occurrence, as opposed to a 'semantic' ordering of inference
or similarity relations. Episodic knowledge is context dependent, in the sense of being
context specific, and context restricted. This is therefore almost exactly the opposite
of the context rich but flexible representations in Cohen and Eichenbaum's theory.
Neither episodic memory nor semantic memory needs be explicit, i.e., accessible to

consciousness. The episodic system exists for its own sake, because episodes are use¬

ful. However, the episodic memory is best thought of as a specific, specialised version
of semantic memory that draws heavily on semantic notions of content. As a con¬

sequence, this theory has the same property as the previous one: all the hard work

constructing meaning is done elsewhere.
It is an important component of this theory that both semantic and episodic memory

should have direct pathways from sensory information, and that information should
flow from semantic to episodic memory. But it does not rule out a pathway from
episodic memory.

1.9.1 Response I: abandoning the episodic/semantic distinction

Squire and Zola (1998) argue that in the Vargha-Khadem study there is no way of eval¬
uating either the extent to which there is residual episodic memory, nor what the verbal
IQ type scores would have been without the episodic impairment. In other words, they
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claim that the data is still consistent with a general impairment in declarative memory

proportional to hippocampal damage.

1.9.2 Response II: undermining episodic priming

The original episodic/semantic distinction proposed by Tulving hypothesised the ex¬

istence of a phenomenon called episodic priming, and considered a body of evidence
meant to support the existence of this phenomenon. Episodic priming is supposed to
occur in a condition where the subject is presented with unrelated paired words and
then cued for recall. Tulving originally argued that episodic priming (within newly
learned paired associates) was a process proceeding via the semantic and episodic
representation spaces, and was therefore a slower priming effect than activation that
underlay semantic priming, occurring through the semantic space only.

McKoon and Ratcliffe (1986a), McKoon et al. (1986) and McKoon and Ratcliffe

(1986b) attacked the episodic/semantic distinction on the grounds that it is not possible
to separate semantic and episodic priming effects in normals. McKoon and Ratcliffe
(1986a) found no differences in speed of priming in replications of the experiments
Tulving cited. Episodic priming as described by Tulving did not appear to exist.

On semantic space accounts of semantic priming (see, for example, Lowe and Mc¬
Donald, 2000) it would be surprising if episodic priming existed as a separate phe¬
nomenon, for the following reason. Semantic relatedness is modelled as derived from
co-occurrence statistics. Priming is supposed to reflect the degree of semantic relat¬
edness. Random co-occurence is locally biasing the co-occurrence of words. There is
no reason to think this is a separate process from co-occurrence detection in any other
situation.

1.9.3 Reinventing the episodic/semantic distinction I

Tulving (1986) then argued that the episodic/semantic memory system makes sense

as a description of human experience of memory, and that it was a category mistake,
to expect the underlying causal structure to reflect this distinction. Fortunately1 since

'This extreme position is contradicted by Tulving elsewhere. He is right in the sense that episodic
memory does seem like a natural kind and, as far as psychology goes, that makes it worth investigation.
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then, it has been possible to relate subjects' phenomenal experience of performing
semantic and episodic tasks to the activated brain regions. As is shown below, this has

given (some) new support to the idea that there is a different mechanism for memories
that are experienced as episodic.

1.9.4 Reinventing the episodic/semantic distinction II: autonoetic
content

Essentially, autonoetic content is a new phrase for the same phenomenon that reared
its head when we discussed meta-knowledge, and awareness or 'knowing that.' In
sectionl.8 on declarative memory, we discussed the problem that awareness could be a

property of the representation, or of access to the representation. In the autonoetic ver¬

sions, awareness is a special property of hippocampal representations. Experimentally,
the first challenge for the autonoetic theory of hippocampus is to show that awareness
is a defining part of the content, and always accompanies an episodic memory. It might
be that awareness triggers the creation of an episodic memory; it has an essential role
in acquisition. This should be distinguished from the possibility that awareness plays
an essential role in recall, or always accompanies recall.

Finally, there is a possibility that awareness is a sufficient but not a necessary con¬

dition for either acquisition or recall. The date of Maguire and Mummery (1999)
suggests that awareness should be grouped alongside other kinds of salience. The al¬
ternative is that awareness is interpreted rather like a body state cue, as just another
kind of context, and that it should not have any additional role outside use as a possible
contextual cue. In this case, only some hippocampal memories are autonoetic.

1.9.5 Autonoetic content in recall

Eldridge et al. (2000) support the idea that hippocampal activity is phenomenologi-
cally detectable and accompanies recall. This experiment looked for the fMRI activa-

However, it could just be distinguished phenomenally by its content. Without evidence that the different
content produced different behavioural effects, there would be no grounds for saying that it was a sepa¬

rate memory system, rather than just a separate word - linguistic behaviour effects might be enough to

support separate meaning. Ryle is a two edged sword here.
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tion correlates of the experience of remembering, in a classic list recognition task. In
a word list recognition or perceptual recognition task, the subject is allowed to study
one or two lists. Then, at some later point, the subject is asked to recall the contents of
the list, in an explicit test. Or, the subject is presented with a series of words, or pic¬
tures and asked if the current item is in the study list. In this particular study, subjects
were presented with a series of words on a screen, and then placed inside the scanner.

They were presented with test words, some of which were from the training set. They
were asked to judge how confident they were that the word had appeared in the test

set, and then asked to rate the basis of their response as either knowing or recalling of
the word. Subjects were asked to classify a memory item as recalled, if they had some

internal (sensory) experience on which they based their judgment. Eldridge's data
clearly showed raised activation in the hippocampus proper (i.e., DG, CA1, CA3) only
for the correct "recalling" responses. The other categories of responses, false alarms
and misses showed no raised activation in the hippocampus. Perhaps the most interest¬
ing aspect of this experiment was the distribution of false alarms. Only 1 percent of the
recall responses were false alarms against 33 percent of the knowing responses. How¬
ever, the question of whether awareness is a side product or a causal factor in recall,
or created by awareness in acquisition, is still unanswered. There is also counter evi¬
dence that suggests hippocampal memories are not always accompanied by awareness.

A study that looked at contextual, or pattern, priming put the emphasis back onto con¬

textual information, by comparing explicit and implicit contextual conditioning. Chun
and Phelps (1999) found amnesiacs were impaired on a visual search task, designed
so that the background distractor predicted the position of a sought symbol. Control
subjects were tested for awareness. Although most (6/10), claimed to notice some re¬

lationship between the backgrounds, this awareness did not affect performance. This
is an example of a hippocampal dependent task, where the hippocampal mechanism is
not affected by awareness.

1.9.6 Consciousness can (sometimes) predict recall

Experiments by Clark and Squire (1998) compared amnesiacs and controls in the ac¬

quisition of eye blink trace conditioning. Both groups acquired an eye blink response

to a tone that overlapped with an air puff in a normal conditioning paradigm. When
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a delay intervened between air puff and tone, amnesiacs were not able to acquire the
conditioned response. However, both groups were then distracted by a silent movie
that they were instructed to remember, through the 'distractions' of sounds. Amne¬
siacs showed no conditioning in this paradigm, while in controls only those subjects
that showed awareness of a relationship between tone and air puff showed the con¬

ditioned response. These results initially seemed to suggest that accessibility to con¬

scious awareness was an essential part of the functioning of the hippocampus (Eichen-
baum, 1999). A follow up study (Manns et ai, 2000) on conditioning without the delay
found that awareness in this case also predicted the magnitude of the conditioned re¬

sponse. Conditioning without the delay is not hippocampally dependent; it therefore
looks as if awareness generally affects conditioning. Are there further grounds for
assuming a special relationship between awareness and hippocampal memory?

Maguire and Mummery (1999) suggested that it may be that an episode with
heightened awareness is more likely to become an episodic memory, on the basis of
their finding of raised activation in the hippocampus on retrieval of contextual and
"personally relevant" memories, rather than factual, or simply autobiographical mem¬
ories.

An alternative theory of why amnesiacs do not form these kinds of memories de¬
rives from the studies that suggest that it is not the special accessibility of these mem¬

ories that is lost, but the selfmonitoring content.

The data concerns H.M.'s inability to report on his own physical body states. He
was, of course, not able to remember when he had just eaten, but neither was he able to
consult his body's internal state to judge whether he was or was not hungry. He acted
on implicit signals of hunger and satiety, and refused food, but never gave "feeling full"
as a reason for his actions. Due to the extensive nature of H.M.'s lesions, it may be
that this is a result of damage to the amygdala, rather than the hippocampus. However,
Davidson and Jarrard (1993) and Clifton et al. (1998) showed behavioural evidence
that rats were not able to monitor their internal state. This raises the issue of whether

one can talk about the contribution of awareness or self awareness to animal behaviour.

It has been argued (Shanks and John, 1994) that it is practically impossible to

establish the absence of a contribution of awareness to a memory task in a human

subject. Another approach might be to look for another characteristic that distinguished
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semantic memory from episodic memories. One such characteristic has been proposed
in theories of categories, where category construction is considered a prime example
of semantic memory.

In section 1.8, we said that meta knowledge or awareness could be thought of as an
inherent quality of representations, or as second order representation of representation,
or second order representation. In this section, we have found evidence that shows
awareness is not a necessary part of recall or acquisition of episodic memories. In
the next section we consider the plausibility of Tulving's claim that the hippocampus
is a specialised subtype of semantic memory, and does not play the role of providing
particulars for abstraction in semantic memory. In other words, the opposing view,
that Squire and Zola (1998) (although see also Squire and Knowlton, 1995 and Reed
et al., 1999) set out in section 1.8.3, says that the hippocampus is needed for the cre¬

ation of semantic categories in amnesiacs. This means that MTL amnesiacs should
not show normal category formation. Note that this is different from the classification
judgements required in the artificial grammar task, see discussion in Reed et al., 1999).
There is a vast literature on category creation. In amnesiacs it has been studied through
the use of list recognition tasks, of the kind described in Eldridge et al. (2000). Al¬
though list recognition does not explicitly test category formation, the performance of
subjects is affected by factors related to implicit category structure. So, for example,
in a word recognition test, if (some) study words are semantically related and then in
the test list another related word occurs, that related word is likely to generate a false
judgement that it occurred in the study list. Such a word is often referred to as a lure.

1.10 Recognition judgements and category creation

There are a number of memory tasks that amnesiacs generally perform well, such as

those involving perceptual priming, and word or sentence completion. They perform
better on tasks that require them to complete words with the first thing that comes into
their head, rather than those that require them to explicitly recall the contents of a list
of words or objects. Amnesiacs are impaired on explicit novelty judgements, where
they are asked simply to say whether a test item appeared in a previously presented set.

However, they are unimpaired on categorisation tasks and artificial grammar learnin-
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ing (see below) where they are required to make a category decision, rather than recall
an item. Work on the influence of semantic knowledge and structure on recognition
has suggested that these two memory systems (category and recognition) are not com¬

pletely independent, contra Squire and Knowlton (1995).

The initial work on word recognition from lists found that amnesiacs were impaired
in false recognition due to similarity effects, (Schacter et al., 1996), but enhanced on

unrelated false recognition cases. This means they did not respond to category lures
normally, producing fewer false alarm responses of this type. Koutstaal et al. (1999)

replicated these results using perceptual items, which were scored for similarity. They
also included prototypical items for the categories in the testing set. Difficulties in

interpreting evidence regarding the existence of false alarm effects created by prototype
or 'gist memory' are compounded by the failure to distinguish Korsakoff from MTL
amnesiacs (Schacter et al., 1996) and hippocampal from non hippocampal plus wider
MTL damage in Koutstaal et al. (1999).

However, these findings in Schacter et al. (1996) are disputed by Melo et al. (1999),
who treated the Korsakoff amnesiacs and those with frontal lobe damage as a separate

group from MTL amnesiacs. These results show that amnesiacs are impaired in recog¬

nition, and false recognition relative to controls. However, in all responses (both old
and new judgements if one considers the proportion of responses of false recognition,
relative to "old" responses - 'category lure intrusions'), amnesiacs show a greater pro¬

portion of gist based false alarms to controls. On the other hand, amnesiacs with frontal
lobe damage show category lure intrusions, thus partly explaining Schacter's findings.

Overall, these results support the idea that recognition judgements are due to two

factors, category/semantic memory and episodic, and that prototype activation is intact
in impaired recognition performance. However, the two experiments with perceptual
and verbal list items are not equivalent. Data from the word recognition tasks do
not tell us anything about impairments in novel category creation. The second paper

(Koutstaal et al., 1999) is better characterised as examining the effects of similarity
on category acquisition, whereas Melo and Schacter et al. (1996) were examining the
effects of pre-existing semantic structure.

Melo suggests that perhaps the best explanation of increased lure intrusions is that
control subjects can use recall of particular items to exclude or suppress cases during
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recall. It would be extremely interesting to know if indeed amnesiacs are more or less
affected by similar items in the perceptual analogue task, where they are acquiring
a new category. Such a case is partially explored in the next section where a theory
that considers the suppression of interfering item to be the main contribution of the
hippocampus will be discussed.

1.11 Theory 3: interference

The apparent failure of amnesiacs to judge correctly whether they have seen an item
before is accounted for by two different theories of amnesia as interference, rather than
memory loss. The original version put forward by Warrington and Weiskrantz (1970)
proposed that amnesia was caused by deficits in recall. We will also outline a more

recent version that claims the hippocampus has an equally important role in preventing
interference during acquisition.

1.11.1 Weiskrantz's version

Warrington and Weiskrantz (1970) suggested an interpretation of amnesiac behaviour
in recognition, an account that makes amnesia largely a retrieval deficit. They had
observed that on a list recognition task, amnesiacs performed at the levels of controls.
However, if asked to learn a second list, the amnesiacs continued to produce the primed

responses from the first list. They argued that good performance on the first list indi¬
cated that the amnesiacs were capable of acquiring the memories; what they lacked
was the ability to suppress, or adjust to, competing responses. In particular, they also
had no way of distinguishing between remembered items. Under Weiskrantz's latter
day theory, expressed fully in 'Consciousness Lost and Found' (1997), the hippocam¬
pus is a tool for comparing and commenting on the comparison between more than one

memory or, indeed, memory and current representation of the present, which is also a

kind of memory. This account takes amnesia to be purely a retrieval deficit.
On this account, it is difficult to explain why conditions during acquisition should

affect amnesiacs' performance in the recall task. Weiskrantz may be characterising
something important about the features of tasks amnesiacs cannot perform. However,
both the previous theories, in a way, offer an explanation of this; there is something
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about hippocampal representations that mean they support such commentary and com¬

parison. To be a serious alternative to the memory theories, Weiskrantz's theory needs
to offer us something more about the contribution of the hippocampus to comparing
memories.

1.11.2 A behavioural inhibitor: Gray's version

McNaughton and Gray (2000) propose that the hippocampus is not a temporary mem¬

ory store, or in fact a memory store of any kind. In their theory the hippocampus is
primarily an inhibition system with a twofold function; firstly to prevent inference -

that will be explained below - and secondly to inhibit inappropriate behavioural re¬
sponses. The latter links the hippocampus with the anxiety (fight/fight/panic) system,
and indeed their book is called the 'Neuropsychology of anxiety'.

This theory is particularly interesting for its explanation of the behaviour of hu¬
man amnesia "forgetting", and the discussion of interference. They claim not that
amnesiacs have lost stored memories, but that they cannot successfully retrieve them,
because they cannot suppress competing cued responses. This sits comfortably along¬
side the Weiskrantz theory that amnesiacs have lost insight into whether or not they are

recalling something - rather like blind sight for memories.

McNaughton and Gray's theory is that the hippocampus' role in recall and in learn¬

ing is to suppress the creation of competing alternatives. They give as an example the
well known problem of symmetrical association forming. In a symmetrically con¬

nected hebbian system, discussed in section 3.7, learned association (due to correla¬
tion) of A with B automatically produces strengthening of connections between A and
B, and also between B and A. The task of the hippocampus is to prevent B and A be¬

coming co-associated. Amnesiac failure in memory tasks is not due to failure of recall,
but over-abundance of recalled conflicting and interfering alternatives.

McNaughton and Gray take amnesia to be a problem with both acquisition and
retrieval, as they think the same mechanism for suppression of similar or competing
alternatives is needed in both.
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1.11.3 Basic Hippocampal anatomy from the point of view ofMc-

Naughton and Gray

Hippocampal regions are regarded as 'logic gates.' The functional view of hippocam¬
pal anatomy taken by McNaughton and Gray proposes that rather than looking at the
feed forward trisynaptic loop as the essential computation unit, each individual region
of the hippocampus performs an independent, separate computation.

The other aspect of the interference theory is reflected in the dispute about the
components of recognition judgements. Weiskrantz (1970) and McNaughton and Gray
(2000) both suggest that implicit and explicit recall can interfere with one another.
Therefore one might expect this possibility to be reflected by mutual inhibition, or
some form of neuro hormonal switching between the hippocampus and surrounding
cortical areas. Figure 1.5 shows some of the ways the information flow through the
hippocampal circuit can switch, according to the behavioural stimulus.

1.11.4 Response to the interference theory: retrograde amnesia

One strong plank of support for memory based theories of hippocampal literature is
the phenomenon of temporally graded retrograde amnesia. Retrograde amnesia, as we
defined in section 1.7 is loss ofmemories before the amnesia causing event. Amnesiacs
do not seem to lose a class of memories completely, but rather a time period ofmemory
before the operation. This is the phenomenon that has led to the postulation of a
consolidation period. In this period, memories are moved from temporary storage
in the hippocampus to permanent storage in the neocortex.

A considerable body of evidence (Kapur and Brooks, 1999; Jarrard, 2001; Squire
et al., 2001) has documented time limited retrograde amnesia in amnesiac patients.
Memory theories such as McClelland and Goddard (1996) argue that retrograde am¬

nesia only makes sense if theories are being slowly transfered out of the hippocampus.
There are also well documented objections to the consolidation theory. First of

all, it takes a very long time, longer than any studied plasticity process. Secondly, the
extent of retrograde amnesia varies depending on the the extent of extra hippocampal
damage. Reed et al. (1999) describe a case of a few years of retrograde amnesia with

hippocampal damage, versus a case of 25 years, in the case of damage to entorhinal
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From McNaughton and Gray (2000), chapter 10

Figure 1.5: These examples show information flow though the hippocampus in dif¬
ferent behavioural scenarios; i) Continuous exploration, ii) A situation of conflict, of
goals, or between expectations, and curent input. iii) An entirely novel environment.
McNaughton and Gray's idea is that parts of the circuit entorhinal cortex inputs sup¬

press hippocampal output. They are also interested in the idea that input of some con¬

tent, say from the amygdala, can selectively alter the composition of the hippocampal
circuit.
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cortex, plus hippocampus, plus subiculum.
Finally, it is not clear that loss of stored memories is a better explanation than loss

of a particular form of recall. It may be that conscious recall becomes more and more
difficult with the age of a memory.

1.12 Animal models of amnesia

Studying memory in other species (particularly rats, monkeys and chimpanzees), al¬
lows the study of the effects of precise lesions of the hippocampus and related areas.

However, as animals cannot directly report the effects on memory, behavioural tasks
have been devised that attempt to demonstrate amnesia like effects in the animals re¬

sponses to the tasks. In these section we consider the merits of some of these tasks as

models of human amnesia.

1.12.1 DNMS

The role ofhippocampus and the contribution ofperirhinal cortex has been investigated
using the delayed non match to sample (DNMS) task as an analogy of antrograde am¬

nesia (Aggleton and Brown, 1999; Wan etal., 1999). DNMS involves the animal being
shown an object, or an arrangement of objects. After a variable length delay, the an¬

imal is then offered a choice of novel object, and the object shown previously. The
animal is required to choose the novel object. This task tests either the ability of the
animal to hold an object "in mind" over a length of time, or it tests the recognition ca¬

pacity of the animal; it is thus very similar to a recognition judgement task in humans.
It can be solved simply by familiarity or novelty detection. Thus a dispute has broken
out as to whether this task is or is not impaired after hippocampal lesions. The dual
route model in humans would predict little or no impairment on this task, contrary to
most experimental findings until a study by Murray and Mishkin (1998) that claimed
that perirhinal lesions alone resulted in impairment on this task and ibotonic lesions,
that spared that pathway between the perirhinal and the fornix, left performance on the
task intact. This study was then contradicted by a similar study by Zola et al. (2000)
that compared the various types of lesions, and claimed to find an impairment on the
DNMS task with all of them. One difference in pre-operative training may be the root
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of this discrepancy; Murray trained the monkeys pre operatively on the task over short

delays. The animals were also not returned to home cages. However, Zola and Squire's

monkeys are only impaired on long delays, over 40 seconds. And even on long delays,

they still performed the task (albeit at around 65% success, rather than 80%. Murray's

response to this discrepancy is to point out that the important thing to notice is that
under some conditions the task is not impaired after hippocampal lesions, and it is im¬

paired in proportion to perirhinal lesions. Most recently, Baxter and Murray (2001a,b)
have published a reanalysis suggesting that hippocampal animals may perform better
than controls, or partially lesioned animals. This result is not universally accepted in
the literature (Clark et al., 2001 looks agains at the reanalysis), but would be strong

evidence for interference between recall pathways.
We have already observed that both the explicit recall and implicit memory recog¬

nition contribute to recognition judgements. It is not straightforward to compare these
two components with hippocampal and perirhinal/parahippocampal regions. A much
greater impairment was shown on the visual match task, that simply measured the
amount of time or attention the animal devoted to looking at the novel stimulus.

1.12.2 Additional evidence regarding the parahippocampal regions
in humans

One of the contributions of the post (homologous to parahippocampal regions in the

monkey) and perirhinal cortices to recognition seems to be a novelty signal. Neurons
have been found in these areas that signal both familiarity and recency (Aggleton and
Brown, 1999). It is clear that a novelty signal is enough to do most tasks based on

recognition. The perirhinal cortex has been found to be active by C-fos staining (Wan
et al., 1999), on the presentation of novel single items - alongside the temporal lobe.
The postrhinal cortex and area CA1 showed increased activation for novel spatial ar¬
rangements of familiar items. This has led to the claim that it is the postrhinal cortex
that is particularly concerned with space and spatial memory. This should be compared
to the findings of Kirchhoff et al. (2000) in human subjects that, in general, a novel
stimulus resulted in raised activation in a wide variety of areas concerned with mem¬

ory, including the prefrontal areas. It was also found that the response to novelty in the
hippocampal and parahippocampal cortices predicted success in recall from explicit
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memory. It may be that DNMS, in not being hippocampal dependent, actually is an

accurate model of human recognition judgements that are composed of a hippocampal
and a non hippocampal component.

1.12.3 Spatial tasks/maze tasks

Maze tasks, such as the water maze, the radial arm maze and the T-maze, are used

in reference memory tasks where the animal has to remember which arms have been
baited, or the location of a hidden submerged platform, relative to landmarks or non
visual cues.

Maze tasks are quintessential hippocampally dependent tasks. However, it is diffi¬
cult to immediately see how they model amnesia. Again, relational or episodic theo¬
rists claim that the abstract nature of spatial relations make the memories hippocampal
dependent. The other two theories account for deficits in the maze tasks, not by loss
of a particular kind of information, but by loss of ability to privilege correct recall and
successful trials, from current sensory data, or incorrect trials. This position predicts
that rats might perform better in an error free learning situation, just as amnesiacs do.

There is a very influential account of hippocampal functioning in rats, that we call
the strong cognitive map hypothesis, that basically divorces rat hippocampal function¬
ing from amnesia. Chapter 4 will consider arguments against this theory, and discuss
the nature of the impairment in maze tasks.

Looking ahead, the conclusion of chapter 4 is that the hippocampal representation
supports both amnesia theories. Chapter 5 considers the 'sequence learning' interpre¬
tation of the contribution to spatial tasks, that also encompasses the configural learning
tasks described below.

1.12.4 Configural learning

Configural learning tasks are particularly interesting as subtle variation in the task led
to different hippocampal effects. They have been regarded as tasks that model the
effects of a special kind of hippocampal retrieval 'contextual retrieval' (O'Reilly and
Rudy, 2000; Norman and O'Reilly, 2001) and a special kind of hippocampal learning;
'relational' learning (Dusek and Eichenbaum, 1997) or 'conjunctive' (McClelland and
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Goddard, 1996) or'configural' (Sutherland and Rudy, 1989; Alvarado and Rudy, 1995,
1992; McDonald et al., 1997), or 'contextual' (Good et al., 1998) learning. Commen¬
tators frequently claim that these tasks are hippocampal lesion sensitive in rats because
they require this special kind of learning or retrieval, and this is comparable to the
kinds of learning and retrieval found in human episodic memories.

An alternative interpretation of the learning and retrieval operations required for
configural learning problems has emerged from the modelling literature. Configu¬
ral tasks have been modelled as sequence learning tasks (Sohal and Hasselmo, 1998;

Levy, 1996; Wallenstein et al., 1998). It has been argued that learning parts of an event
in correct temporal order is a contribution of the hippocampus to event representation.
This hypothesis potentially unifies accounts of amnesia and hippocampal deficits in
rats. It has also been argued that since these configural tasks can be represented as se¬

quence learning tasks, and learned by a hippocampal type architecture, this constitutes
evidence for the hippocampal sequence learning. We shall come back to this point in
chapter 6.

In the modelling section of this thesis we shall consider how well the representa¬

tion of configural learning tasks as sequence tasks works. There is a problem (side
stepped by these models), in that not all the configural learning tasks that can be mod¬
elled as sequence learning tasks are in fact hippocampally dependent. How much of a

problem this is will become clear after we outline the tasks. The easiest task to repre¬

sent as a sequence task is the transitive reasoning task. Dusek and Eichenbaum (1997)

suggest that the transitive reasoning task in rats is a suitable analogue of the kinds of
flexible relations that the hippocampus is supposed to encode. The transitive reason¬

ing task is hippocampally dependent in rats. Transitive inference involves the transfer
of properties between premise pairs. The subjects are trained to select one of a pair
of items: a is rewarded rather than b (represented as a > b), and then three similar
pairs b > c,c > d,d > e. They are then tested on the pairs b > d and a > e. As b
and d have been both rewarded and unrewarded choices with equal frequency, the cor¬

rect selection of b in test pair is considered an example of transitive inference between
pairs. However, it is about applying a relation from one set of pairs to a new pair. It is
therefore much closer to the artificial grammar learning task, in humans, which is not

impaired in amnesia.
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'feature' negative patterning negative patterning biconditional

XA + A+ AX+

A- B+ AY-

X- AB- BY+

B+ BX-

not impaired slowed mildly slowed

Table 1.1: Impairments due to hippocampal lesions on configural learning tasks

Other configural learning tasks, such as negative patterning, capture interference
effects. Negative patterning and 'feature' negative patterning both involve reversal
learning. In negative patterning, stimulus AB+ represents the case where A is posi¬
tively reinforced when combined with B. B- and A- represent the cases where A and B
by themselves are not reinforced. The rat is trained on these alternative cases, and then
its degree of learning is evaluated by its readiness to respond in these three cases.

Negative patterning was thought by configural association theorists (Alvarado and
Rudy, 1995, 1992) to be another defining hippocampal dependent tasks in rats. How¬
ever, studies with ibotonic lesions (more selective, fibre sparing) (McDonald et al.,
1997; Gallagher and Holland, 1992) found that in fact hippocampal rats were not com¬
pletely impaired, but acquisition was slowed. A similar effect is found for the bicondi¬
tional task. Both these tasks are described in figure 1.1.

The 'feature' negative patterning task, in figure 1.1 however, is not hippocampal
dependent. The modelling of these tasks as sequence learning tasks, discussed in chap¬
ter 6, cannot easily distinguish between these two types of tasks.

It is possible to use the feature negative patterning task to examine a hippocampal
memory dependent known as proactive interference. 'Proactive interference' occurs
where learning a new item can interfere with the recall of an previously learned item.
This effect only occurs in the intact animals. Hippocampally lesioned animals learn
this task better than controls. It has been proposed (O'Reilly and Rudy, 2000) that the
negative patterning task is a reasonable model of the negative transfer effect seen in list
learning in amnesiacs described in section 1.11.1. However, the negative patterning
task is not fully hippocampal dependent; it is a difficult task for an intact animal. An
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alternative explanation of the acquisition impairment is failure to control responding.
It is clear that to show light on the impairment in amnesia, the precise nature of the

impairment on configural learning tasks must be identified. We shall discuss the cause

of proactive interference in the intact hippocampus, and the hypothesis that these tasks
should be represented as temporal sequence problems in chapter 6.

1.13 Retrograde amnesia and animal models

Although antrograde amnesia can easily be modelled as the failure to acquire new

memories, it is far harder to test animals for retrograde amnesia.

Despite technical difficulties, two recent papers, (Sutherland et al., 2001; Riedel
et al., 1999) have considered disrupting storage of spatial memories retroactively. Al¬
though Riedel et al. (1999) have found a time limited period in which disruption can

take place, they have not found clear evidence of a temporal gradient. Contrary evi¬
dence is presented in Ramos (1998). Winocur et al. (2001) claim to have found retro¬

grade amnesia in a socially transmitted food preferences task.
However, these papers all find a role in short term consolidation of memories (less

than a month). This does not compare very well to the human time scale of years.
Although Riedel et al. (1999) clearly establish a time limited role for the hippocampus,
they do not rule out the possibility that the role is more like that which McNaughton
and Gray (2000) propose.

1.13.1 Conclusion

Overall, it does not seem that there is a definitive rat model of human amnesia. How¬

ever, this does not mean we can learn nothing about amnesia through studying rodent
lesion studies. It does mean that we should be suspicious of broad brush hippocam-

pal theory that claims to describe both rodent and human. One of the themes of this
thesis is that the rodent hippocampus does not perform one unified function. In the
final chapter we will consider whether this is borne out by studies of intact human hip¬

pocampus. The next section discusses the possible developmental contribution of the
hippocampus, that turns out to depend heavily on other human specialisations, such as

language.
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1.14 Learning and consolidation

1.14.1 Episodes are constructed not just represented

Goswami (1998) shows that children remember events using an event schema. They
use the pattern of causal relations in an event to construct a memory of it. Goswami's
data demonstrates that children make more errors on non causally related event recall,
and also tend to displace details that are irrelevant or not causally contributory. The
observation was made that in free or prompted recall, the child's discourse in reply to

a question like "tell me about going shopping", is very causally structured and goal
orientated. The episodic memory perhaps exploits this structure of propositions to
assist in the recall of a difficult memory task.

The phenomenon of so called infantile amnesia bears on the development of episodic
memory. Adults do not remember events below ages three or four. There are two pro¬

posed developmental explanations for this. The first is that young children's memories
are coded perceptually, and with sensory motion coding that becomes unreadable by
the adult after they switch to linguistic type encoding of events. The second explana¬
tion is that the brain areas such as the neocortex and hippocampal areas simply aren't
fully functional, as they undergo extensive development. One aspect of explicit mem¬
ory that is specifically episodic clearly shows developmental change in the children's
ability to distinguish particular events in recall. Goswami describes a study that com¬
pared four year olds to seven year olds. Both groups were taken to the laboratory five
times over two weeks, and shown puppet animals playing games. These games were

the same on every visit, and occured in the same order. On one visit, the animals
produced a novel game. The children were asked to describe what happened during
their visits. The younger children tended to report that the novel event had happened
on each of their visits, and included it in their general 'schema' of events. The older
children made a distinction between that particular deviant occurrence and the general
pattern of the event.

This study suggests that the ability to recall distinct episodes without interference
is acquired late in development, alongside the development of the pre-frontal cortex
and the hippocampus. As it happens, explicit memory follows a similar developmental
path, while implicit memory does not improve with age. This kind ofmemory is tested
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on, for example, perceptual matching tasks and fragment completion type tasks, where
children are primed with a list of words, and then asked to complete presented letter

pairs, e.g., CH **** with Cherry. In the implicit version of the task, the participants
were simply asked to complete the letters with the first word that came to mind. In the

explicit task, they were asked to complete the word as one presented in the list. (Of
course, this is the same task that amnesiacs perform so well in the implicit version, and

struggle with in the explicit version).
A study by Naito (1990) found that adults and children performed equivalently on

the implicit completion task, but adults had far superior explicit recall of the words
originally presented. This study has been replicated with picture fragments, and im¬

plicit memory found to be fully functional in children as young as three. Here the
implicit task was to say what the fragments "looked like" as quickly as possible. The
explicit task was to try and use the picture fragments to recall the list of previously

presented picture. Performance on the explicit task correlated with age, reaching adult

performance at about age 12.
This evidence strongly suggests the picture of human episodic memory as a spe¬

cialised form of semantic memory, as described in Tulving's theory. Episodes are re¬

membered as structured events. The interesting question is how is this event structure
learned? Is it derived from neocortex, or does the hippocampus itself develop gener¬

alised knowledge about events, and event structure? The contrast already touched on

in section 1.8.3, between the requirements of learning about generalised structure and

learning about individual events has been well expressed in McClelland and Goddard
(1996):

... The brain makes use of complementary learning systems... One of these
the neocortical learning system, is specialised for the gradual extraction of
structure from ensembles of events and experiences, leading to the acqui¬
sition of connection weights among neurons that support generalisation

This describes inductive learning, located firmly in the neocortex.

The function of the second system, the hippocampal memory system, is
to store new memories and retrieve them while they remain in storage, so

they can be played back to the neocortical system for interleaved learning
with learning with other memories and experience.
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This picture of two complementary systems, related by a process described as

learning, abstraction and consolidation, is still a useful one and much exploited (O'Reilly
and Rudy, 2000).

We argue that it is no longer possible to neatly attribute the two varieties of learning
to these two locations. We argue this from three points: (i) episodic memory depends
on the existence of generalised knowledge acquired over multiple trials; (ii) the hip¬
pocampus shows evidence of representing information abstracted over many trials -

see in particular chapter 4; (iii) it also shows evidence that a slower learning system
exists within the hippocampus - see chapter 2.

One of the arguments put forward in this thesis is that consolidation should be

thought of as a purely biological process of stabilising memories, in the medium or

even the short term. It has no obvious implications for the kind of information be¬
ing stored. Abstraction, or generalisation, is a description of the kind of information
learned that says nothing about the stability or longevity of the information. The sep¬

aration of consolidation from generalisation is an example of a switch from a content
based approach to the hippocampus, to a strategy based approach. In general, the mem¬
ory strategy used by the hippocampus for long term memory storage tells us nothing
about the content of that memory.

1.14.2 Summary

We have examined ways of characterising the kind of representations stored in the
hippocampus. Chapter one reviews standard attempts to characterise memory repre¬

sentations. Intuitively we have a notion of episodic memory, but attempts to refine
it within psychological theories are not convincing. We show this in the first part of
Chapter 1, by examining firstly the definition of declarative memory, defined relative
to procedural memory, then episodic as defined relative to semantic memory. We ar¬

gue that there is equally good evidence that memory loss caused by the damage to

hippocampus, is due to interference between recall mediated by the hippocampus, and
recall mediated elsewhere. Apparent memory loss may therefore be due to loss of a
recall strategy, rather than loss of actual memories.

However, this evidence does not apply to the best known model ofMTL amnesia,
the rat with a lesioned hippocampus. We discuss various memory tasks for rats that
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have been claimed to be equivalent to tasks taxing the human hippocampus, and draw
the conclusion the match is not particularly good. We also suggested that episodic
memory is closely bound up with language and with consciousness, and therefore is
likely to be quite different in the rat. The majority of the remaining chapters are on

hippocampal memories in the rat.

Finally we have established the idea of ' an episode' as containing information

gained over many similar instances, and also some information from one particular
instance. In chapter two we propose that information is learned at different speeds in
the ventral and dorsal hippocampus respectively, and that dorsal hippocamus learns
information about particular single instances.



Chapter 2

The contributions of dorsal and

ventral hippocampus to memory.

2.1 Summary

This chapter presents a theory that dorsal and ventral hippocampus play different roles
in the learning and recall. The best known interpretation of the failure of hippocampal
rats on some learning tasks, has tended to identify those tasks as 'spatial'. We exam¬

ine a claim Moser and Moser (2000) that these spatial tasks depend particularly on

learning and recall in the dorsal hippocampus, and reject in favour of the idea that the
dorsal hippocampus plays a particular role in recall from single instances. The dor¬
sal hippocampus has been shown to learn more quickly than the ventral hippocampus;
lesioning the dorsal hippocampus removes an effect of interference from the recall of
successful behaviour on a previous trial. We contrast this with the idea that the ventral
hippocampus, as it has been shown to learn more slowly, may learn more general at¬
tributes across sets of similar trails. We therefore propose an analysis of behavioural
tasks, that suggests that some tasks might be better performed by animals with dorsal
lesions.

By the end of chapter two , we have established the following critical points.

• The differences in LTP and LTD between ventral and Dorsal hippocampus, sup¬

port the idea that the learning speed is slower in the ventral hippocampus.

• Behavioural data from lesion studies, selectively lesioning the poles of the hip-

43



44 2 The contributions of dorsal and ventral hippocampus to memory.

pocampus, offers support for the idea that the ventral hippocampus learns more

slowly.

• We therefore hypothesise that the Dorsal hippocampus is specialised to recall

'single trial' events. We suggest that the memory output from the dorsal hip¬
pocampus biases the animals behaviour towards repeating its (successful) be¬
haviour on the previous similar trial.

• We therefore predict that animals with only temporal hippocampus will perform
better than animals with only dorsal hippocampus on transverse patterning tasks,
and perhaps even better than controls.

2.2 Introduction

In most accounts of the human hippocampus, the aim has been to provide a unified
account of hippocampal functioning. However, a new attractive hypothesis has ap¬

peared in the rat literature that suggests this may not be a feasible objective. The idea
is that the hippocampus is dissociable into two functional circuits along the dorsal-
ventral axis. Experimental support for this hypothesis was provided in 1993 by Moser
et al. (1993), and then reinvestigated in a number of studies(Hoz, 2000; Bannerman
et al., 1999; Hock and Bunsey, 1998). Moser and Moser (1998a) proposed that the
dorsal hippocampus was primarily concerned with spatial processing and the tempo¬

ral, less accessible, pole with some unspecified function. Candidates for that function

range across most of the hippocampal dependent behaviours that do not fit comfortably
into memory based accounts, such as behavioural disinhibition, impairment to condi¬
tioned freezing, etc. These behaviours are those that in particular interference accounts
of hippocampal functioning (described as theory 3 in chapter 1) adopted as primary.
Obviously, Moser and Moser's proposal (1998a) potentially provides a way of recon¬
ciling these two accounts. This thesis proposes a different theory that is consistent with
Moser's results, but which draws on some more recent experimental results.
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Figure 2.1: This figure shows the position and orientation of the hippocampus. The
fornix is marked at the dorsal tip. The drawing shows the output fibres that travel
through the fornix extending backwards, on the hippocampal surface, to ventral
area.(Amaral and de Witter, 1995)

2.3 Dorsal and ventral hippocampus

Dorsal and ventral hippocampus are often also referred to as the septal and temporal
poles of the hippocampus, particularly in anatomy papers. In the monkey, dorsal hip¬
pocampus is often referred to as posterior hippocampus, while ventral hippocampus is
known as anterior hippocampus. In this chapter dorsal and ventral hippocampus will
be referred to, whereas in chapter 3.10 the anatomical convention will be followed.
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2.4 A theory of content differentiation

2.4.1 Moser's original proposal

Lesions of the dorsal hippocampus affect both acquisition (Moser et al., 1993; Moser
and Moser, 1998a; Moser et al., 1995; Hock and Bunsey, 1998) and recall (Moser and
Moser, 1998b) of a quintessential spatial memory task, such as the reference memory

task in the Morris water maze. Moser divided the hippocampus into sections along
the dorsal-ventral axis. The results in Moser and Moser (1998a) show that animals
with 70% of hippocampus left intact (30% lesioned from the ventral pole) performed
as intact animals. The closeness in location of the fornix to dorsal hippocampus could
suggest that the fornix/fimbria input/output system might be damaged by dorsal le¬
sions. However, these recent lesion studies are ibotonic fibre sparing, in an effort to
leave as much of the input and output connections intact as possible. Moser and Moser
(1998a) argue quite convincingly that animals with ventral end spared show improve¬
ment on the spatial task, as the lesion moves past the mid-line, so it is not just the
dorsal tip/beginning of the fornix that is required. Also, fornix lesioned animals show
severe impairments of conditioned freezing, and which is associated with ventral le¬
sions (see below) rather than dorsal lesions. Crucially, animals with progressively less
dorsal hippocampus showed a decline in performance proportional to the amount of
dorsal hippocampus removed.

It was not clear whether the effect of dorsal lesions only produces a deficit in recall,
or in acquisition of spatial memory. Moser and Moser (1998b) therefore conducted a

reversible lesion study to try to clarify this. It was found that a small drug-induced
lesion of the dorsal end of the hippocampus was sufficient to disrupt recall in pre-

operatively trained animals. A control group of animals tested 48 hours after injection
of the drug in the same protocol showed no impairment, confirming that the lesion was

genuinely reversible. This is not quite the same as showing that the effects of the lesion
are always reversible; animals were killed in the test case to examine the extent of the
lesion. It is therefore not known whether the stored memory could have been retrieved

successfully, as recalling a memory under damaged conditions might affect the actual
content or stability of the memory. Recent results on reconsolidation after recall in
the amygdala in Nader et al. (2000) suggest the memory in that region becomes labile
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during recall even if it has previously been consolidated.

The most interesting finding was that animals trained and tested during the period
of the lesion showed no impairment on either learning or recall. Moser et al. (1995)
claims that this shows that the spatial memory is a relational structure that uses the
entire hippocampus available, and that successful recall depends on the structure of
the hippocampus remaining the same between learning and recall. There is an implicit
suggestion, therefore, that the ventral hippocampus does not form part of this relational
structure to the same degree. Moser et al. (1995) did not investigate whether, after
the lesion had disappeared, recall became impaired for the animals trained during the
lesion, as their theory predicts.

Although Moser et al. (1995) argues that the data suggest that the representation
in the hippocampus is disrupted, the data could equally well support the idea that the
dorsal hippocampus has a particular role in recall. Moser and Moser (1998a) claim
further support for the division of the hippocampus, by claiming that the inputs to the

hippocampus via the perforant path were divided in content. Visual (i.e. spatial') infor¬
mation is channelled to the rostro-medial zones only, while only olfactory information
reaches all three. The anatomical picture supporting this claim is as follows. Entorhi-
nal cortex can be divided into three zones; the caudo-lateral zone projects to the dorsal
half of the dentate gyrus, the intermediate zone to the adjacent quarter, while only the
rostro-medial zone projects to the ventral hippocampus. Consequently, they claim that
the temporal pole of hippocampus does not receive as much spatial information as the
ventral two thirds. For this separation of inputs to provide a basis for two separate

circuits, the information needs to be kept segregated through the hippocampus. Moser
assumes "....a largely unidirectional transverse loop through the dentate gyrus, CA3,
CA1 and subiculum" repeated along the longitudinal axis. Consistent with the 1am-
mellar hypothesis, Moser also draws attention to the greater number of mossy cells,
and of bioaminergic receptors at the ventral pole but does not speculate on their pos¬
sible functional significance. For the moment, we will leave the anatomical aspect of
Moser's theory on one side, returning to it in the next chapter (in particular section
3.9.1) and concentrate on the behavioural aspect.

'spatial information is not necessarily visual, as there is also self motion information, path integra¬
tion, timing intervals between other cues
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2.4.2 The putative role of ventral lesions

Support for a difference in ventral and dorsal hippocampal functioning based on dif¬
ferent content would be greatly increased if a double dissociation between tasks asso¬

ciated with lesions of ventral and dorsal areas could be found. Having identified dorsal
lesions with spatial tasks, attempts have been made to identify a ventral dependent
task. Some place cells2 (Granger et al., 1996) have been found in the ventral hip¬

pocampus, but those experimenters who support a strong distinction in the functioning
of the dorsal and ventral parts claim that as the division (if there is one) occurs closer
to the ventral end, the more likely it is that these place cells may not be 'real' place
cells (Moser and Moser, 1998a). It has been found that place cells in the ventral hip¬
pocampus were found to have larger fields and apparently less spatial discrimination

(Jung et al., 1994). Several recent studies (Richmond et al., 1999; Bannerman et al.,
1999) claim that conditioned freezing is dependent on ventral hippocampus. Freezing
behaviour is an automatic response to the expectation of an electric shock. When foot-
shock is paired with a light or a tone stimulus, the rat quickly becomes conditioned
to expect the footshock, and produces the freezing response. Freezing is therefore re¬

garded as providing a potential measure of the rat's ability to remember the association.
Conditioned freezing is not, however, an unambiguous task. Firstly, it is not a task,

in the sense that navigating a maze is a task, as it is the animals automatic or implicit

response to the environment that is measured, rather than the animals ability to use

previously learning information. Secondly, a distinction should be drawn between

freezing that is conditioned on context, where the context in which the conditioning
occurs is considered to be the box, and freezing conditioned on a stimulus, such as a

tone that occurs while the rat is n a stable context. Rats can also learn to associate the

background context with footshock. Philips and LeDoux (1992, 1994) found lesions
of the amygdala disrupted both conditioned responses, while lesions to hippocampus
disrupted only conditioning to context.

Bannerman et al. (1999) do find an impairment in freezing response after ventral
lesions, but find it on both these tasks. There are two different possible explanations.
Failure to show conditioned freezing could be an impairment of the freezing motor

2Place cells fire when an animal fires in a particular location in a particular environment; see chapter
4
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response, rather than a failure ofmemory (Maren and Fanselow, 1997). Secondly, the
ventral end does receive input from the amygdala and thalamus, and outputs back to

those regions (see discussion of the limbic system in chapter 3, section 3.5). So a

break of contextual information flow to the amygdala would account for the task im¬
pairment, without pointing to particular computational deficit within the hippocampus.
Another point worth bearing in mind is that the impairment in freezing response has
been found not to correlate well with other measures of fear conditioning, such as the
startle response and behaviour (Desmedt et al., 1998), again pointing to an impairment
of freezing response rather than in memory. In summary, we conclude that at present
it is not possible to identify the role of the ventral hippocampus in the conditioned
freezing response.

It is therefore proposed here that the reason why it seems so difficult to identify a

ventrally dependent task is because of the bias towards thinking about tasks in terms
of content of information needed, rather than the computational demands of the task.

The failure to identify a unique role of the ventral hippocampus becomes more

damaging in the light of work reviewed in chapter 4. It is clear that spatial versus non-
spatial content division partly relies on being able to identify spatial-only cell firing,
and its role in behaviour. Chapter 4 will argue that the pure spatial theory is no longer
supported by evidence from the place cell paradigm.

However, a replication of Moser's experiment suggests that a difference between
dorsal and ventral hippocampus is not a difference in information content but in com¬

putational mechanism, as is now explained.

2.5 A theory of computational differentiation

Moser's original results have also been replicated in Hoz (2000) and Hoz and Morris
(1999). Hoz (2000) showed that using a slightly different training protocol removed
the differences between the ventral and dorsally lesioned animals. The essential dif¬
ferences are these: the rats in Hoz's experiments were trained for two additional days,
with fewer trials on each day; Moser's rats were trained for four days, with six trials
per day. Hoz trained two groups, one as Moser, for six trials over four days, the second

group for four trials per day, over eight days. At the end of the Moser training group,
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there was a significant split between the animals lesioned in ventral and dorsal parts.
At the end of the eight days, the groups were indistinguishable. Both were unimpaired
relative to the control group of completely lesioned animals.

These startling results suggest strongly that there are significant computational dif¬
ferences on the dorsal ventral axis, perhaps to do with the either the speed of learning,
or the speed of consolidation. Hoz's interpretation of her own data is ambivalent be¬
tween the possibilities that the ventral hippocampus learns more slowly and that it
consolidates more slowly. Under the latter interpretation, information is being slowly
transferred to the neocortex; once there, the task is no longer hippocampally depen¬
dent, so the ventrally lesioned rats are using their neocortical representations to solve
the task. Hoz does not develop this interpretation. However, an alternative interpre¬
tation suggests that the difference might be found in the learning mechanisms in the

hippocampus.
Another replication of Moser's study by Richmond et al. (1999) found dorsal le¬

sioned rats able to learn the water maze task in six days, with four trials per day.
The identical protocol in Bannerman et al. (1999) on the same task found an impair¬
ment. These studies differed in the kind of pre-training the rats were give. Richmond
et al. (1999) pre-trained on a fear conditioning task, whereas Bannerman et al. (1999)

pretrained in a T-maze. Hoz suggests that this discrepancy may be due to the ventral

hippocampus being engaged in the fear conditioning task. However, there is also a pos¬

sibility that performance was affected by the number and selection of start positions.
Bannerman et al. (1999) used eight positions, chosen randomly, whereas Richmond
et al. (1999) used four, one for each daily trial, in random order. Dorsal lesioned rats

still performed worse than ventral lesioned rats, even though they performed better
than controls.

2.5.1 Physiological evidence supporting differences in learning

Let us suppose that the Hoz replication is explained by faster learning speed in the dor¬
sal hippocampus. Are there any physiological differences between ventral and dorsal
hippocampus that might help to account for differences in the speed of learning? First
of all let us outline the nature of the biological changes that are thought to underly

learning in the hippocampus.
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2.6 Long term potentiation as the basis of learning

Long term potentiation (LTP) fits the prescription that Donald Hebb (1949) proposed
as the basis of biological substrate of learning. The idea of hebbian learning is simply
that the synaptic strength between two neurons changes in proportion to the degree of
correlation in their firing. Long term potentiation is an increase in synaptic strength
that occurs when a presynaptic neuron fires up to 50 ms before the post synaptic neuron
firing. It was discovered first by Bliss and Lomo (1973) and has been described in detail
at hippocampal pyramidal cell synapses. Depression also occurs at these synapses if
the post synaptic neuron fires before the presynaptic neuron.

The best understood type of LTP is mediated by the NMDA receptor. The post

synaptic NMDA receptor is blocked by Mg2+ at resting potential, but on depolarisation
the Mg2+ block is relieved, permitting an influx of Ca2+. This activates at least three
protein kinases that produce the change in synaptic strength. These may involve the
insertion of new AMPA receptors into the postsynaptic cell or the phosphorylation of
AMPA receptors. NMDA receptors provide a triggering signal for LTP, though they do
not participate in normal synaptic transmission. Other triggering signals are known to
use similar, sometimes overlapping effects (Cowan et ai, 2001).The same mechanisms
are activated during long term depression (LTD).

There are several protocols for inducing LTP and LTD in the hippocampus: tetanic
LTP (high frequency stimulation of the neural afferents), paired pulse facilitation, (in¬
put pulses paired with post synaptic depolarisation), theta burst stimulation (a series of
high frequency bursts at the theta frequency). LTD is harder to induce and stabilise,
but can usually be induced with low frequency stimulation. LTP or LTD can appear

within half an hour, and last (depending on protocol and type) for over 24 hours.
Short term potentiation or synaptic facilitation can appear within a spike train.
Recent studies of LTP, LTD and short term depression (STD) in region CA3 in vivo

and slice3 have found significant differences between the ventral and dorsal poles in the
schaffer collateral synapses. This data is presented here, in this chapter, rather than in
the anatomy chapter, because the papers reviewed were clearly looking for effects that
fitted with Moser's hypothesis, which is referred to directly here. Papatheodoropou-
los and Kostopoulos (2000a) find that tetanic (100 Hz stimulus) LTP, which produces

3
see chapter 3, figure 4 for a description of regions of the hippocampus, and laminar organisation
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a reliable effect of 30% increase in EPSP slope in the dorsal hippocampus, produces
only a 5% increase in the ventral pole. This effect was blocked by AP5, which blocks
NMDA receptors. They therefore suggest that it may be caused by the lower density
of NMDA receptors that has been found in the ventral pole. Papatheodoropoulos and

Kostopoulos (2000b) found a deficit in short term potentiation across the full range of
inter pulse intervals. A second set of results by Izaki et al. (2000) found preferential
induction of LTD in ventral hippocampus by a low frequency pulse bursts. This proto¬
col, used in slice and in vivo, also produced LTD in dorsal hippocampus, but the LTD
was not stable. The same protocol used in the ventral hippocampus produced LTD
that remained stable for an hour and a half after induction. These results have been

replicated recently by Maruki et al. (2001b).

Potentially, differences in LTP and LTD provide evidence that the substrate of

learning is different in the two different poles, and the difference is of the right kind to

explain the effect of increasing the number of trials, or the number of days on learning.
However, it does not explain why performance in the dorsal hippocampus should

correlate with the number of trials on the reference memory task, while performance
in the ventral hippocampus should correlate with the number of days. One possibility
is that the smaller effects of NMDA LTP mean that effective learning requires some

other mediating process that takes a long time.
This data suggests two ways in which learning may be different. Firstly, learning

in the ventral hippocampus may still be NMDA dependent, but require more repetition
of firing patterns to induce comparable levels of potentiation. Secondly, learning in
the ventral hippocampus may be mediated in the hippocampus via a mechanism that is
complementary, or even independent of the NMDA receptor.

2.6.1 Alternative substrates for learning in the ventral hippocam¬

pus

One kind of NMDA mediated LTP (late LTP) has turned out to be blocked by D1 re¬

ceptor antagonists. It is also known that dopamine receptors are strongly differentially
distributed to favour the ventral pole. It might be that ventral hippocampus shows a

stronger effect of late LTP - this form of LTP cannot be induced through the protocol
used by Papthegopopulous. Huang and Kandel (1995) found an enhancement of late
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LTP by the activation of D1/D5 receptors. They also found a non-NMDA component

that was enhanced by dopamine, that Kumar (1999) attributes to a- amino-3-hydroxy-
5-methyl-4-isoxazolepropionate (AMPA) mediation. As described in the next chapter,
both AMPA receptors and dopamine are distributed to favour the ventral pole.

This late LTP although quickly induced has much longer lifetime of duration.
There are thus two possible ways this learning mechanisms might account for slower
learning in the ventral hippocampus.

The first possibility is that the ventral end plays a greater role in learning when
acting in response to a reinforced signal. Dopamine responses lower LTP thresh¬
old or increase the potential response. The dopamine can act retrospectively, to in¬
crease or even reverse from LTD after a tetanus is applied or it can act to prime
the synapses, and increase the probability and the magnitude of the LTP response.

Dopamine triggers potentiation that acts very like LTP but is independent of NMDA
receptors, known as dopamine evoked potentiation (DEP). However, although it is easy
to see that dopamine has a potentiating effect at synapses, its overall effect on the in¬
tegration of inputs and the firing threshold of the neuron is not so clear. This matter
will be discussed at length in chapter 3, section 3.8. The second postulates an inter¬
ference effect, akin to that described over a longer time scale. LTP expression and
consolidation needs a longer interval between trials.

The crucial difference might not turn out to be the number of trials per day, but
rather the intertrial interval. Tetanic LTP cannot be induced in the same pathway under
a certain interval. The same might be true of late LTP, on a longer time scale. This
issue has not yet been investigated.

2.6.2 The functional significance of slow learning

One suggestion has been tentatively made by Jung et al. (1994), who claimed to find
fewer and more diffuse place cells in the dorsal hippocampus. They suggest that the
dorsal units encode more general information. This is consistent with the idea that
dorsal cells require more accumulated firing events. The relational memory theory dis¬
cussed in chapter 1 in fact predicts that some cells are able to accumulate information
over multiple trials. Wallenstein et al. (1998) and Eichenbaum (1999) have identi¬
fied the need for two different types of representations. The two do not have different
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content in the Moser sense but have different levels of abstraction.

Eichenbaum (1999) describes two different kinds of representations in the hip¬
pocampus memory space: (i) sequentially organised cell firing that represents the 'au¬
tomatic recording of unattended experience'. These cell firings represent the passage

of events within a particular episode; (ii) however, some cells form nodes, defined as

common elements across these episodes, which may be either common places, tasks,
or behaviours. These nodes are intended to capture the structure across episodes.

How are these two different kinds of nodes constructed? Eichenbaum and col¬

leagues put forward an argument that network models such as the models of Levy,
Wallenstein and Hasselmo automatically create these two kinds of nodes, when solv¬
ing the problem of how to link discontinuous events through time. They require cells
performing different kinds of learning. Oddly enough, they also require the different
kinds of learning proposed for the dorsal and ventral poles of the hippocampus.

It is therefore proposed here that we should be able to separate learning on two
time scales. Learning within the dorsal hippocampus is genuinely one trial, recall in
the dorsal hippocampus is therefore biased towards recalling that single trial. Learning
in ventral hippocampus may be biased towards learning information derived from mul¬
tiple trials. The next section describes an effect that this theory predicts will be limited
to the dorsal hippocampus, as it appears to be derived from the previous trial memory.

Learning across trials may potentially exploit information flow along the dorsal-
ventral axis of the hippocampus, thus departing from the trisynaptic, forward flow that
has been presented so far.

2.7 Proactive Interference

Nobody has looked directly yet at whether rats can distinguish the memory of the
previous trial, from a more general memory of the task and environment. However,
the effect of the inter-trial interval has been investigated, in both learning and recall.
Potential support for the possibility that the dorsal hippocampus recalls the memory of
a previous trial, rather than an accumulated memory is provided by the phenomenon of
proactive interference. This phenomenon is described in Han et al. (1998), where they
looked at the effect of intertrial spacing in both learning and recall. They were looking
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X-> A+

A-

X->B -

B+

Table 2.1: Reward contingencies for the negative patterning task.

at a serial negative patterning task, represented in figure 2.1. The animal learns to

associate X followed by A with reward, and A alone with no reward. X and B together
are not rewarded, while B alone is rewarded.

This task was once thought to be hippocampal, as configural learning theorists
claimed that reversal tasks of this kind were generally dependent on a hippocampal
mechanism. However, Gallagher and Holland (1992) showed otherwise, and in 1998
found that hippocampal animals performed better than control animals on this task, in
certain circumstances. Han et al. (1998) compared animals trained at 1 min intervals,
with animals trained at 8 min intervals. Both lesioned and control animals performed

equivalently during training on the long interval but, at the short interval, lesioned
animals performed better.

They also found an effect of recall. Intact animals were vulnerable to proactive
interference. Animals trained on long intervals and tested on short intervals performed
worse than when long intervals were allowed for testing. They were also worse than
lesioned animals trained on long intervals and tested at the same short intervals.

This effect was found to be due to the nature of the previous trial: animals per¬

formed worse when the negative (unreinforced) trial followed a reinforced trial con¬

taining the same stimulus item. So it is as if the memory for the previous trial 'lingers'.
Han et al. (1998) claim this is an effect of the hippocampus based recall of the previous
trial. The preceding theory would suggest that the effect should be limited to the dorsal
hippocampus.

Their results also suggest a way of dividing up tasks that might correctly predict
which tasks would show better performance with intact dorsal hippocampus versus

intact ventral hippocampus. If dorsal hippocampus has a bias towards recall of the pre¬

vious trial then any task in which the effects across trials are additive should be prefer-
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entially learned by rats with dorsal hippocampus spared. Dorsal hippocampus spared
animals should also show gradual improvement. However, ventral spared rats should

perform as well as, or better, than dorsal spared, or intact rats on tasks (like reversal
tasks) where performance requires inconsistent responses. However, they should be

relatively impaired on additive tasks, like the water maze. They should also show dif¬
ferent pattern of improvement, as in Hoz's replication; they should improve suddenly,
as the slow learning system moves over threshold.

It is necessary to distinguish the interference effect found by Han et al. (1998) from
the kind of negative transfer interference usually associated with this task. Effects
of negative transfer, as we said in the previous chapter, are effects in learning. The

negative patterning does produce such an effect, but it is not specifically hippocampally

dependent. Proactive interference is closer to accelerated forgetting, due to the recall of
the opposite reward contingency. It is worth pointing out that the rats do not know they
have passed into a phase that is testing previously acquired responses - a behavioural

strategy that always updates its response by the most recent piece of information about
reward consistency might be a sensible approach.

However, the consolidation hypothesis suggesst that it is not trial spacing but the

long/overnight rest period that enabled ventral hippocampus to learn or consolidate
elsewhere. The only way to discriminate between these hypotheses is through further

experimental work. It is possible to model a task like Gallagher's, and show that a
similar effect of accelerated forgetting is associated with having a large rate of poten-

tiation/depression. This is discussed in chapter 5.

2.8 Recent work on tasks that show dorsal and ventral

differentiation

In the time since Moser's study was published, a number of studies of the effects of
dorsal, and ventral lesions on hippocampal tasks have been made.
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2.8.1 Conditioned place preference

Fertinbeau and McDonald (2001) investigated the effects of amygdala, fornix, com¬
plete, dorsal and ventral hippocampus lesions on conditioned place preference. This
task measures the tendency of the rat to stay out of half of a conditioning box in which
it has previously received an electric shock. Dorsal, complete and amygdala lesions
were found to impair learning on this task, while fornix and ventral hippocampus le¬
sions enhance learning. These results support the idea of a dorsal/ventral disassocia-
tion, but do not support the idea that ventral hippocampus is more closely associated
with the amygdala. This is an example of a task that is consistent across trials, in
which the memory of the previous trial gives as much information as memory of all
the trials. Therefore, ventral lesion might result in enhanced learning through biasing
hippocampal output towards recall of the previous trial.

2.8.2 Delayed alteration

Delayed alteration is another task requiring memory of performance on the previous
trial. Indeed, Maruki et al. (2001a) found that dorsal inactivation resulted in impaired
performance, at long delays, while ventral inactivation produced no impairment. How¬
ever, Maruki et al. (2001a) remarks that ventral inactivation produces a tendency to

persevere in a particular response. Whether this observation supports the hypothesis
under discussion here is a matter of interpretation. Perseverance errors are associated
with pre-frontal deficits, another circuit that is preferentially engaged with ventral hip¬
pocampus. However, such a response is also consistent with the rat possessing accu¬

mulated information that 'rewards are (sometimes) available on the left arm', without

being able to recall that it had just previously visited the left arm.

2.9 Summary

The weight of experimental evidence that there is some sort of dissociation between
ventral and dorsal hippocampal function in rats is now quite impressive. However, the
emerging data no longer fits the spatial/non-spatial explanation proposed by Moser.
The hypothesis proposed here is a distinction between two memory functions within
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the hippocampus, where one is to recall the immediate past occasion and the other is
to record general properties of the environment and task contingencies. A bias in the
dorsal hippocampus towards recall of the most recent trial is one possible explanation
of the dorsal/ventral data that has not yet been tested explicitly.

The next chapter follows on from this by considering the anatomical support for
dissociation between ventral and dorsal hippocampal circuits. It also puts the observa¬
tions on NMDA dependent LTP in this context. Chapter four considers the hypothesis
that the hippocampus is a 'spatial' cognitive map. Our ability to identify a clear task
set that the ventral hippocampus performs, appears to compare unfavorably to the clear
identification that 'spatial' tasks are performed by the dorsal hippocampus. However,
chapter four, when we get there, will argue that the computation role of the dorsal part
is also underspecified.



Chapter 3

Anatomy

3.1 Summary

In the previous chapter we discussed the theory that dorsal and ventral hippocampus
processed information with differing content; Spatial information through the dorsal
hippocampus. We argued against this possibility, and suggested a difference in the
recall and learning strategies of dorsal and ventral hippocampus. In this chapter we
present a systematic review of the and internal circuitry of the hippocampus, and de¬
scribe the connections to and from hippocampus. We use this review to argue against
the idea that dorsal and ventral hippocampus receive different inputs that are kept seg¬
regated through hippocampal processing. The chapter also describes some features of
the micro-circuitry of the hippocampus( function unknown), that differ between ventral
and dorsal areas. We also argue that these micro-circuits should be taken into account

by hippocampal modellers, as the assumptions used in neural network models about
hippocampal connectivity are at best wrong, and occasionally misleading.

By the end of chapter 3 we have established that theories that rely on separation of
different types of input remaining segregated within the hippocampus are not consis¬
tent with anatomy.

59



60 3 Anatomy

3.2 Three ways of looking at hippocampal circuits

There are three views of information processing in the hippocampus that can be fitted
to hippocampal anatomy. We have already mentioned the trisynaptic circuit, where
the hippocampus is viewed as a feed forward excitatory system. This circuit forms the
basis of a number of models from Rolls (1996) through to Guazzelli et al. (2001). An¬
other view, outlined in chapter 1, treats each layer of the hippocampus as a separately
gated computation unit. Finally, a third view (outlined below) regards the hippocampus
as divisible into two parts along the septo-temporal axis. In this chapter, the anatomical
and physiological support for these three views will be evaluated. In particular, it will
be argued that the lamellar/trisynaptic circuit picture of information flow through the
hippocampus is insufficiently precise.

3.3 Functional differentiation along the septo-temporal
axis: the neurobiological basis

In the previous chapter, the proposal due to Moser was presented in section 2.4.1.
He argues that hippocampus can be divided into two parts: a dorsal circuit that deals
with spatial memory and a ventral part that controls either memory for reward or be¬
havioural inhibition. Part of the supporting evidence for this proposal was the observa¬
tion that the input coming through the direct cortical pathway that terminated in dorsal

hippocampus is predominantly spatial. However, in chapter 2 we put forward a counter

proposal suggesting there are computational differences between the septal and tempo¬
ral ends related to differences in speed and substrate of learning. This chapter supplies
the essential anatomy and neurophysiology needed to make sense of this proposal.

Figure 3.1, adapted from Amaral and de Witter (1995), shows the position of the
hippocampus and the relative arrangement of septal and temporal poles. These poles
correspond to the areas lesioned in ventral and dorsal hippocampal lesions. Also shown
is the orientation of the hippocampal slice and some of the positions of the subcortical
and cortical areas that project to the hippocampus. Figure 3.3 shows the full range and
variety of afferents the hippocampal region receives, without showing the details of
the connectivity map. What follows is not a comprehensive review of all projections
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Figure 3.1: The location of septal (dorsal) and temporal (ventral) poles seen in hori¬
zontal section.

subcortical inputs subcortical outputs

Amygdala Amygdala
Claustrum Olfactory regions

Supramamillary nucleus Mamillary nuclei
Lateral hypothalamus Hypothalamus
Anterior thalamus Anterior thalamus

Midline thalamus Midline thalamus

Ventral tegmental area (VTA) Nucleus accumbens

Raphe nuclei
Locus coerulus
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Cortical Interconnections
Perirhinal Cortex
Retrosplenial Cortex
Medial Frontal Cortex

Adapted from Amaral and de Witter (1995)

Figure 3.2: Hippocampal circuit connections.
DG Dentate gyrus

EC Entorhinal cortex

PrS Presubiculum

PaS Parasubiculum
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to and from the hippocampus, but merely enough to show that functional differences
are possible.

3.4 The lamellar hypothesis

The lamellar hypothesis was proposed by Anderson et al. (1971) and Anderson and
de Witter (1989) and is still heavily relied on in the modelling literature. In Moser's
hypothesis it is necessary to keep the content on the dorsal circuit separated from the
ventral circuit. Evidence for organisation in lamellae is strongest for the mossy fibre
projection to CA3, as described in Tamamaki and Nojyo (1991).

3.4.1 Dentate gyrus

The dentate gyrus is divided into two excitatory layers. The granule cells form the
polymorphic layer and send a mossy fibre projection, at the same septo-temporal level,
to the molecular layer, that contains mossy cells. The molecular and polymorphic lay¬
ers (also known as the hilus) are shown on figure 3.3. The mossy fibre connection is
point to point, organised in fibre bundles, and travels onward to the CA3 pyramidal
cells. The only cortical input to the dentate gyrus is via the perforant path projection
from entorhinal cortex. Subcortical, partly cholinergic input from the septum targets
the polymorphic cell layer, as does a substantial noradrenergic and seratonergic in¬
put from the brain stem. There is a very small dopaminergic input from the ventral
tegmental area (VTA). A narrow band of the molecular layer also receives input from
the hypothalamus.

According to the trisynaptic model, 'the mossy fibres form the excitatory input,
therefore their functional role is clear.' This point of view is expressed explicitly in
Lisman (1999), who talks of the necessity of one granule cell firing one CA3 pyramidal
CA3.

There are some differences between dorsal and ventral ends. Most conspicuously,
the density of granule cell packing varies from septal to temporal pole. At the septal

pole, the ratio of granule cells to pyramidal cells in CA3 is 12:1, while at the temporal
pole the ratio is 2:3. Perhaps consequently, the ratio between excitatory and inhibitory
cells is also affected by septo-temporal position in the DG/CA3 circuits. The ratio
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Figure 3.3: Cell layers of t le hippocampal formation.
DG Dentate Gyrus CA1-3

Po Polymorphic layer so stratum oriens

Ml Molecular layer pel pyramidal cell layer
G1 Granule layer si stratum lucidium

sr stratum radiatum

sl-m stratum lacunosum-moleculare

S subiculum
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of inhibitory basket cells to granule cells increases from 1:220 to 1:40 (Amaral and
de Witter, 1995). Whether the change in ratio affects the amount of inhibition or the
distribution is as yet unknown. It is known that the mossy fibre projection is largely

organised in a lamellar fashion; the same septo-temporal layer of DG connects to the
same layer of CA3. However, the feed forward inhibitory connections are predomi¬
nantly to the neighbouring lamellae. There are also feedback inhibitory and possibly

excitatory connections from the mossy cells. Mossy cells described in Acsady et al.
(1998) seem to inhibit granule cells in the same septo-temporal layer, but also send a

widely divergent back projection that may be either excitatory or inhibitory, thus form¬
ing disynaptic recurrence. Li et al. (1994) found that the back projection (about which
there is still some dispute) predominantly originated from temporal CA3 cells.

3.4.2 Can one mossy fibre fire a pyramidal cell?

The numbers given in Henze et al. (2000) estimate that one granule cell contacts as

many as 14 pyramidal cells, and each CA3 pyramidal cell receives input from as many

as 50 cells, via giant mossy fibre boutons. Each bouton may have up 30 active zones;

assuming they operate simultaneously, this potentially provides massively strong exci¬
tatory drive. However, pyramidal cells are not the only cells that receive giant boutons.
The mossy cells of the hilus (see figure 3.3), also excitatory, receive more convergent

excitatory input. Mossy cells have a larger spread of dendritic tree and appear to "see"
more mossy fibre cells. However, they contact gabanergic interneurons within the DG,
so their overall effect is probably inhibitory. But most striking of all, the greatest
number of synaptic contacts made by the mossy fibres are actually with inhibitory in¬
terneurons, up to 150 per fibre. These boutons forming on inhibitory interneurons are

not as large, but have relatively larger active zones.

The implication of these details is that the overall effect of a mossy fibre input to a

pyramidal cell is not known. For example, it is not known whether the inhibitory cells
fired by the mossy fibre inhibit the same pyramidal cell contacted by the mossy fibre,
or the neighbours of that cell, or what the time course of the disynaptic inhibition is
relative to the firing of the pyramidal cell.

The overall picture of sparse firing in CA3 caused by a point to point connection
from dentate gyrus seems roughly correct. However, the existence of divergent recur-
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Adapted from Ishizuka etal. (1990)

Figure 3.4: Proximal and distal CA3 and CA1 positioned on the transverse axis.

rence within dentate gyrus between septo-temporal layers makes it unlikely that the
lamellar structure of the projection is sufficient to preserve the septo-temporal division
of input information that Moser's anatomical hypothesis requires.

3.4.3 The structure of CA3

The excitatory cells of CA3 are the pyramidal cells. On the trisynaptic view, CA3 is
sparsely, and randomly recurrent, sending topographic projections to CA1. The pro¬

jection from CA3 to CA1 is composed of the schaffer collaterals, whereas the internal
recurrent collaterals are sometimes referred to as the associational fibres. First, data

from Ishizuka et al. (1995) and Ishizuka et al. (1990) suggest that CA3 is not a uni¬
form circuit along the transverse slice. In general, the position of cells relative to the
transverse axis (shown in figure 3.4) is described by their proximity to the preceding

region; proximal CA3 is next to the dentate gyrus, proximal CA1 is next to CA2.
Proximal CA3 connects mostly to itself, while mid CA3 connects sparsely across
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the whole transverse region. Cells in distal CA3, which has the thickest projection to

CA1, have much longer axon collaterals and are connected across the transverse axis.
However, distal CA3 does not connect with itself, in some ways not being a recurrent

circuit at all. These cells have their dendrites in the stratum lacunosum-moelculare

(SLM) rather than in stratum radiatum. Proximal cells show distinctive termination

on the radial axis, confining most of their dendrites to the deep layers of the stratum
radiatum and stratum oriens.

However, each circuit on the transverse axis projects along the septo-temporal axis.
Radial termination and direction of CA3 connections also vary systematically with the
cell position on the transverse axis. Distal cells project in a temporal direction and
at temporal levels labelling is found deeper in stratum radiatum and oriens. At more
septal levels connections move out towards superficial radiatum. Proximal cells tend
to project septally, but show the same pattern of radial termination. The unresolved
issue is whether the positioning of the recurrent input on the dendritic tree has any

significance for information processing. The distant distal dendrites in SLM are further
away from the soma and also co-terminate with perforant path input. The issue will be
discussed further in the section 3.6.5 on perforant path input below.

A remarkable feature of almost all studies of intrahippocampal connections in the
1990s has been the reporting of patches of unexpectedly high density of arborisation
and, by implication, synaptic contact of the recurrent collaterals forming the CA3 -

CA3 connection. Ignoring the detail of the radial distribution ofCA3 input, the picture
of sparse random recurrence in CA3 connections needs to be replaced by the follow¬
ing picture. By extensive axon reconstruction and counting boutons, Li et al. (1994)
discovered that actually the CA3 recurrent projection had a peak area of very high
probability of synaptic contact at a different septo-temporal level. In a 1.5mm slice
containing 20,000 pyramidal cells, the axon showed perhaps 14,000 boutons. We do
not, of course, know that all the boutons, or potential active zones inside boutons, are
active. But these numbers mean in practice that a pyramidal cell may contact almost
all the cells within its area ofmaximum contact.

Data from Ishizuka et al. (1990) is shown in figure 3.5 that indicates the neigh¬
bourhood structure of these connection patches. What is not known is the probability
of reciprocal connection between these patches. However, it is possible to observe that
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Figure 3.5: This graph shows the distribution of dendritic tree in septo-temporal levels,
for the CA3 cell positioned at the black arrow. Note that peak axon distribution is
not at the same septo-temporal level as the cell, but in nearby levels. H is the hilar
region/proximal CA3, i.e., contains the back projection to the dentate gyrus.
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for temporally situated neurons there is a tendency to project septally, and for septally
situated neurons, a tendency to project towards the temporal pole. This has lead Ama-
ral and de Witter (1995) to remark that information flow along the longitudinal axis is
at least as important as output to CA1. It has also been reported (Hoz, 2000) that axon

propagation in temporal pyramidal cells is slower than in septal cells.
It is clear that the ratio of excitatory and inhibitory input to the pyramidal cells may

be different at the septal and temporal poles. To identify the functional consequences,
a theory about the relation of the proportion of inhibition to task related activity is
required. This type of theory has been provided in models such as Levy (1996) and
Hasselmo et al. (1996). However, it is not clear that the models put forward accurately
reflect the inhibition structure and, although they discuss the consequences of varying
the inhibition/excitation ratio, they do not relate it to longitudinal differences in CA3.

3.4.4 Projections to CA1

The extensive studies of intra hippocampal projections (Ishizuka et al., 1990, 1995)
show that schaffer collateral projections to CA1 were affected not only by the location
of the projecting cell on the temporal axis, but also by its position on the transverse
axis. Ishizuka's study is very detailed, based on labelling and then tracing the axons

of only a small number of cells. Figure 3.6 illustrates the pattern of the projection
from CA3 to CA1, which show the same gradients as the intrinsic CA3 connections,
but in the opposite direction. Again, the interesting issue here concerns the changing
position of inputs on the radial axis, shown in 3.7 e.g., movement from stratum oriens
in the septal levels, to stratum radiatum at temporal levels. In general, heavier labelling
(hence higher density of termination) is found within stratum oriens in the septal pole
of CA1. There are, however, variations due to the transverse structure of the projection.

3.4.5 Projections from CA1 to the subiculum

CAl projects topographically to the subiculum along the transverse axis. But the pro¬

jection diverges along the longitudinal axis. Cells at any given septo-temporal level
project along a third of the extent of the septo-temporal axis.
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Figure 3.6: This figure is adapted from Ishizuka et al. (1990). Based on the varying
distribution of inputs, the diagram needs to be decoded as follows:
Cell 1 in Proximal CA3 terminates as Oblique lines
Cell 2 in Mid CA3 terminates as dots

Cell 3 in Distal CA3 terminates as wavy lines
Cell 1 projects more towards septal levels. Cell 3 projects to more temporal levels,
where a is positioned towards the septal pole.
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a

c

Adapted from Ishizuka et al. (1990)

Figure 3.7: Picture (a) shows the radial distribution at a more septal level of cells 1,2,3.
Notice how the radial inputs more or less preserve the transverse topography, but move
deeper in to the stratum oriens in cell 3 at the septal pole. Picture (c) shows the radial
distribution at a more temporal level.
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3.4.6 The subiculum

The subiculum is still regarded as the major output region, projecting back to entorhi-
nal, perirhinal, retrosplinal and medial prefrontal cortices. It is engaged in the extra-

hippocampal circuits described below as the prefrontal and limbic circuits. In general
the projections from the subiculum preserve topographic organisation along the longi¬
tudinal axis (Amaral and de Witter, 1995).

The back projection to the entorhinal cortex is topographically organised along
the longitudinal axis. Temporal subiculum projects to more medial entorhinal cortex,
while septal subiculum projects laterally. The forward projection in the perforant path
(described below) shows the same topography. The projection to the amygdala orig¬
inates from temporal levels only, while the projection to perirhinal and retrosplinal
originates only from the septal two-thirds.

3.4.7 Summary

Three candidate elements of the intrinsic circuit vary along the septo-temporal axis:

• The ratio of granule cells to pyramidal cells

• The number and possible spread of basket cells

• The radial distribution of recurrent and projecting connections

The extent of CA3 recurrent and forward connectivity along the longitudinal axis
means that the old lamellar picture needs revision. However, if CA3 could be switched
out of the circuit, the adjacent circuits via the amygdala and the perirhinal to entorhinal
cortex to perforant path could be kept independent.

3.5 Hippocampus and extrinsic circuits

The hippocampus is involved in at least three extrinsic circuits that show different pro¬

jection to the septo-temporal axis, namely the visual, limbic and prefrontal areas. The
"limbic" system was originally thought to be concerned with olfaction. It is a horse¬
shoe shaped rim of cortex surrounding the junction between diencephalon and cerebral
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hemispheres, joined by the olfactory system at the base of the brain. In humans, it is

usually considered to comprise cingulate, the parahippocampal gyrus, septum, amyg¬
dala, hypothalamus and thalamus, olfactory system and the hippocampus. The system

is thought to govern both autonomic behaviours such as thermoregulation, hunger and
thirst signals and also the relationships between automatic responses, emotional re¬
sponses, memories and voluntary actions.

Moser's hypothesis primarily speaks of the preferential interaction between amyg¬

dala and temporal hippocampus and the apparent streaming of the input via the per-

forant path from the entorhinal cortex. A weaker form of the content streaming hy¬
pothesis is proposed by McNaughton and Gray (2000), relating to the so called dorsal
and ventral streams of "what" and "where" information in the visual system to dorsal
and ventral in the hippocampus. This is a huge hypothesis considered by Mishkin,
about the organisation of the entire visual system, and falls outside the scope of this
chapter.

3.6 The limbic system

3.6.1 The septum

Jakab (1995) in his review of the anatomy of the septum, describes the structure as

being involved in "a variety of physiological behavioural processes .... e.g., learning
and memory, emotions, fear, aggression and stress as well as autonomic regulation"
thereby encompassing almost the entire spectrum of behaviour relevant to the hip¬
pocampus. The septum projects to the hippocampus in a topographical fashion, medial
septum to septal hippocampus, and lateral septum to temporal. These projections con¬

tain cholinergic fibres (excitatory) and gabanergic (inhibitory) input, concerned with
the generation of the theta rhythm, as discussed in the chapter 5, section 3 on the theta
rhythm. The septal part of the projection, originating from the diagonal band, is signif¬
icantly more excitatory, composed of 50-70% cholinergic fibres. The temporal half is
more inhibitory, being 30-50% cholinergic (Amaral and de Witter, 1995; Freund and
Buzsaki, 1996).

The effects of lesioning the septum are very similar to those of lesioning the hip¬

pocampus. Lesioning the septum shows impairments on water maze radial arm maze,
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and conditioned freezing. Table 1 in Appendix C shows a table reproduced from Mc-

Naughton and Gray (2000) that gives an overview of tasks and lesioned areas. The
close resemblance of septal and hippocampal lesions, however, suggests that process¬

ing in the two regions is interdependent.

3.6.2 The amygdala

The amygdala is part of two circuits that project to the hippocampus.The direct projec¬
tion is reciprocally connected to the temporal third of CA1 hippocampus only. There
is also a second circuit via entorhinal cortex and the perforant path. But this also only

projects to the temporal part of the hippocampus.
It has been suggested that dopamine may selectively gate the activation of amyg¬

dala and the hippocampus and modulate their interactions with the prefrontal cortex
(Thierry et al., 2000). Conditioning and startle and avoidance responses are depressed
after amygdala lesions but unchanged after septo-hippocampal lesions. This suggests

that complete hippocampal lesions do not disrupt learning in the amygdala. Amygdala
lesions do not disrupt water maze performance, but do affect alteration tasks.

3.6.3 The hypothalamus and thalamus

Finally the hypothalamus also projects to the hippocampus, in a mutually inhibitory
circuit.

The thalamus provides excitatory drive to CA1 that appears to be independent and

complementary to the intra-hippocampal excitatory pathways. Projection to CA1 from
the thalamus is found in the SLM of CA1 pyramidal cells (mid to ventral regions)
and Bertram and Zhang (1999) found the fastest response latency to the excitatory
thalamic input in that area. Previously, it was thought that the thalamus provided only
a neuromodulatory affect to the hippocampus. Thalamic input appears to target the
GabaB interneurons along side pyramidal distal dendrites.

3.6.4 Prefrontal cortex

Prefrontal cortex lesions are associated with deficits in goal directed planning and

working memory. The prefrontal cortex is innervated by temporal CA1, which is also
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the area that receives a dopamine projection from the VTA, via the pathway referred
to as mesocortical-dopamine pathway. Both systems project to layers V-V1 in close

proximity (Gurden et al., 1999). Work by Thierry et al. (2000) has suggested that

hippocampal projections to prefrontal cortex are in apposition to the dopaminergic

projection. The possibility exists then that the dopamine system selectively gates the
interaction of prefrontal and hippocampus. Stimulation of the VTA, thought to release
dopamine in the pre-frontal cortex, appears to enhance long term potentiation of the
hippocampal projection synapses at some stimulation frequencies, while at other fre¬
quencies reducing the post synaptic response. Dopamine acting via the D1/D5 recep¬

tors is thought to enhance the NMDA receptor component of the response in prefrontal
cortex, the apparent opposite from its effect in CA1 (Seaman and Durstwitz, 2001).

3.6.5 Entorhinal cortex and the perforant path

The majority of cortical input travels through the perforant path from the entorhinal
cortex. As we have already said, the connections are roughly topographical from en¬

torhinal through to DG and then CA3. The cortical projection from peri and postrhinal
(or parahippocampal) areas is separated into projections from layer two and layer three
of the entorhinal cortex.

In a recent paper, Witter (2000) identified two different information processing
pathways through the hippocampus rostromedial areas, which do not divide neatly, cut¬
ting across what are referred to as the lateral and medial parts of the entorhinal cortex.
The layer II lateral entorhinal cortex (LEC) projects to the dentate gyrus and the CA3,
terminating in the outer layer, which is the stratum lacunosum moleculare (SLM). This
is shown in figure 3.9, while the projection from the medial entorhinal cortex (MEC)
terminates on the inner layer on the same cells in the stratum radiatum. This means the

inputs stratify on the radial axis of CA3, according to their origin. Proximal CA3 cells
do not have dendrites in the SLM, leading to speculation in Ishizuka et al. (1990) that
they do not receive input from the LEC.

In CA1 and the subiculum, layer II from the LEC and MEC stratifies along the
transverse access. This is shown in figure 3.8.

The temporal and septal parts of the hippocampus receive different projections.
Figure 3.8 illustrates the projection from the caudolateral zones of LEC and MEC
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Adapted from Amaral and de Witter (1995)

Figure 3.8: This figure shows the stratification of perforant path across the radial axis,
and the origin of the projections at the septal and temporal poles.

projecting to the septal pole. This half of the entorhinal cortex receives input from the
perirhinal and postrhinal cortex. This is the division in the pathway that has received

particular attention from Moser and Moser (2000, 1998a), as the postrhinal cortex has
been linked with recognition of spatial arrangements and is a major contributor of
spatial information, as well as novelty and familiarity signals for individual items (see

chapter 1, section 1.12.1). However, it is worth mentioning that spatial tasks such as

the water maze do not depend on the postrhinal cortex. The rostromedial zone receives
input from presubiculum and retrosplinal cortices and projects to the temporal pole of
the hippocampus.

More interesting from the point of view of this thesis is the distribution of inputs
on the radial axis.

The significance of this is that if we are thinking about the information processing
path of the information coming through the perirhinal and postrhinal cortices, we can
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Figure 3.9: Pyramidal cell illustrating radial positioning of temporammonic inputs to
the outer layers

see that it is being integrated in a different fashion in different areas. In DG and area

CA3 it is stratified to different positions within the same pyramidal cell, whereas in the
subiculum and CA1 it is distributed to different cells.

We can ask the question: what difference does stratification of inputs along the
dendritic tree make? Can we think of a way of exploiting the stratification of inputs?
These questions will be discussed in the following section, which looks at how synaptic
plasticity and neuromodulation differ in their effects on different strata of the dendritic
tree.

3.6.6 Summary

The septum, amygdala and prefrontal cortex are all associated with neuromodulatory
inputs to the hippocampus, the exact functions of which are unknown. Lesioning the
septum appears to disrupt all, or most, of the functions associated with the hippocam-
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pus, while lesioning amygdala, thalamus, hypothalamus or prefrontal areas produces
dissociated effects.

3.7 Hippocampal synaptic potentiation and learning

Models of synaptic plasticity at the network level are usually based on some form of
hebbian learning. In chapters 6 and 7, a number of simple rules for storing association
in a hebbian type way will be discussed. These rules usually exploit some simple way

of combining inputs, and a threshold that the combined sum must exceed to enable the
neuron to fire. In principle, this is what neurons do. The situation in a real neuron,
however, is that a great deal of variation in exactly how inputs are put together is
possible within the cell. The factors that control this variability (e.g the relative timing
of inputs or dopamine influx from the prefrontal cortex), give us information about
which signals (signals occurring at the same time) are important to a cell, and when
(e.g., the rat receives a reward) those signals are important.

As we said in chapter 2, long term potentiation is thought to be the biological
correlation of learning. The conditions under which synaptic plasticity occurs in the
hippocampus vary from pathway to pathway.

The protocol for inducing associative LTP is either tetanic, high frequency bursts
or paired pulse: depolarisation of target neuron, paired with afferent stimulation. The
resultant LTP can be dissociated into an early phase that lasts less than three hours,
induced by weak tetanus (one burst of 100Hz lasting Is) and a late phase, dependent
on protein synthesis, that lasts for much longer, induced by a strong or theta phase
tetanus (three 100Hz bursts) at 8Hz. Chapter 5 describes the theta rhythm and part
of the reason why that form of stimulation is optimal (Larson et al., 1986). LTD can

be induced with low frequency stimulation, or a paired pulse protocol where the post

synaptic neuron is depolarised prior to afferent stimulation - as one might expect from
Bi and Poo (1998).

The best documented, and most understood, form of LTP (both early and late) is
NMDA receptor mediated, as we have already outlined. The conditions that control
the direction of change at the NMDA synapse are actually the order of occurrence of
synaptic transmission, and postsynaptic depolarisation. This temporal asymmetry was
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Figure 7. Critical window for the induction of synaptic potentiation and
depression. The percentage change in the EPSC amplitude at 20-30 min
after the repetitive correlated spiking (60 pulses at 1 Hz) was plotted
against the spike timing. Spike timing was defined by the time interval (A/)
between the onset of the EPSP and the peak of the postsynaptic action
potential during each cycle of repetitive stimulation, as illustrated by the
traces above. For this analysis, we included only synapses with initial
EPSC amplitude of <500 pA, and all EPSPs were subthreshold for data
associated with negatively correlated spiking. Calibration: 50 mV, 10

Adapted from Bi and Poo (1998)

Figure 3.10: Bi and Poo (1998)'s synaptic modifications in CA3. The change in EPSC
amplitude is shown to depend on the order of the pre and post synaptic spike. Posi¬
tively correlated spiking means the post synaptic spike occured up to 50ms-1 after the
presynaptic spike.

first discovered by Levy and Steward (1983a); Levy et al. (1983); Levy and Steward
(1983b); Wilson et al. (1981) in dentate gyrus synapses and found to be a general
property of NMDA LTP (Wickliffe, 1991). Levy's results show LTP occurring if the
presynaptic neuron fires up to 50ms before the postsynaptic neuron and LTD occurring
if the postsynaptic neuron fires in the 10ms-l before the presynaptic neuron fires. A
more recent description (see figure 3.10) of this phenomenon is shown in the diagram
taken from Bi and Poo (1998). This data was, crucially, taken from CA3-CA3 synapses

in culture. The dependence of the amplitude of potentiation on the initial size of the
synapse is shown in figure 3.12. Bi and Poo (1998) also describe NMDA dependent po¬
tentiation in supra-threshold synapses that showed no corresponding LTD. The trigger
is thought to be depolarisation in the postsynaptic cell, causing the voltage dependent
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Time (min)

Figure 4. Effect of repetitive stimulation with negatively correlated
postsynaptic spiking on suprathreshold connections. A, Results from an
experiment similar to that described in Figure ZA, except that the synaptic
activation was capable of initiating spiking of the postsynaptic neuron.
The spike initiated by current pulse injection peaked at —10 msec before
the onset of each EPSP during repetitive stimulation. Calibration: 100
pA, 10 msec for EPSCs; 40 mV, 10 msec for the EPSP. B, Summary of all
experiments similar to that described in A. Data points represent mean ±
SEM (n ** 3). The mean percentage change in synaptic strength after
induction was 31.9 ± 93% (±SEM). Significant potentiation was ob¬
served (p < 0.05, t test).

Adapted from Bi and Poo (1998)

Figure 3.11: The behaviour of supra threshold synapses described in the same culture
in response to positively and negatively correlated spiking
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Adapted from Bi and Poo (1998)

Figure 3.12: The amplitude of potentiation depends on the initial size of the synaptic
current, indicating saturation occurs.
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Mg++ block of the NMDA receptor to disappear. This allows calcium entry to the post¬

synaptic cell, initiating the biochemical changes underlying LTP. These changes may

result in the phosphorylation of AMPA receptors, or even the recruitment of stored or

silent AMPA receptors to the cell membrane, thus increasing synaptic strength. Con¬

versely, NMDA mediated LTD is thought to be mediated by dephosphorylation, or the
removal of AMPA receptors from the membrane.

Depolarisation of the postsynaptic cell is caused by an action potential propagating
backwards in the dendritic tree from a spike at the soma. Therefore, control of spiking
at the soma by inhibition or neuromodulators and control of the active channels in axon

and dendrites that impede or facilitate backpropagation are crucial factors in synaptic

plasticity, sometimes called metaplasticity.
NMDA dependent receptor LTP has been found at schaffer collateral synapses in

CA1 and CA3, and also in the dentate gyrus, and the perforant path synapse.

In CA1 and CA3 pyramidals, postsynaptic firing is required to induce LTP in the
schaffer collateral synapses, in particular bursting in CA1 (Pike et al., 1999). The
same protocols applied to perforant path synapses do not induce LTP so readily. Low

frequency input produced NMDA dependent LTD very readily, but the usual LTP pro¬

tocols, although producing a recovery from LTD, did not potentiate above baseline,
except in the presence of bicuculline (i.e., Gaba suppression).

NMDA dependent LTP has also been found to propagate either to neighbouring
synapses, or synapses on the same presynaptic neuron, in a very un-hebbian type way

(Maccaferri and McBain, 1996; Engert and Bonhoffer, 1997). This may mean that the
colocation of synapses in the dendritic tree may prove to link them. However, this has
not been adequately demonstrated in vivo, and it is also not clear whether this can act

to link inhibitory and excitatory inputs.

3.7.1 NMDA independent LTP

NMDA mediated LTP is not the only form of synaptic potentiation found in the hip¬

pocampus. Non-NMDA potentiation has been found in mossy fibre synapses, probably
caused by a presynaptic rise in intra-cellular calcium, triggered by tetanus, but non as¬

sociative, in that it does not require postsynaptic activity.

Alongside NMDA dependent LTP, the basal dendrites and stratum radiatum ofCA1
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and CA3 also show a form of plasticity that is not NMDA dependent, but it usually
occluded by NMDA responses (Cavus and Teyler, 1998).

The next section describes some of the major neuromodulators that are known to

have meta-plastic effects within the hippocampal system.

3.8 Neuromodulation

There is a trend for the ventral/temporal pole to be favoured in the distribution of neu¬
romodulator (Martens et al., 1998) receptors. Of particular importance are muscarinic
acetylcholine receptors, and dopamine receptors. However, as we have seen, the tem¬

poral pole lacks NMDA receptors.

3.8.1 Dopamine

The mesocortical dopamine pathway from the VTA projects to stratum oriens of CA1,
at temporal layers, and also to the subiculum (Verney et al., 1985).

Dopamine has been shown to produce a potentiating effect on synaptic transmis¬
sion similar to early LTP by Yang (2000) and Otmakhova and Lisman (1996). Ot-
makhova and Lisman (1998) claim that D1/D5 agonists enhance early long term po¬

tentiation and reduces depotentiation. However, Kumar and Faber (1999) claim that
dopamine evoked potentiation (DEP) can be occluded by early LTP, if it is applied
afterwards. They conclude that it is a separate phenomenon that partially overlaps
mechanisms in LTP. They also showed that the AMPA component of the current which
is modulated by dopamine is voltage dependent, and maximally activates at a more

hyperpolarized voltage than the NMDA component. Their experiments were not con¬
ducted within the CAl/hippocampus system, but in goldfish mauthner neurons of the
reticularsplinal cortex. These neurons also show persistent LTP mediated both by
NMDA, and non NMDA mechanisms. However, the hypothesis that this is also true for
CA1 DEP/LTP interactions is also worth considering, due to the following evidence.

D1 receptors have been found to have an inhibitory effect on the CA1 perforant path
input (to SLM), while leaving the schaffer collateral input unaffected (Otmakhova and
Lisman, 1999a). In particular, it seems to be the NMDA component of synaptic trans¬
mission that is affected. These authors showed that CA1 perforant path synapses are
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composed of NMDA and AMPA receptors, but proportionally more NMDA receptors.

The excitatory postsynaptic potential (EPSP) was decomposable into two components.

Application of dopamine reduced the EPSP at the schaffer collateral slightly, while
suppressing the perforant path response almost completely. Paired pulse facilitation
at the schaffer collateral synapses was left intact. This suppression effect could be
ameliorated by D1/D2 receptor blockade. However, the enhancement of LTP found
by Yang (2000) in CA1 was found for currents mediated by both AMPA and NMDA,
but the NMDA activation was not needed to trigger this potentiation, whereas a rise in
intra-cellular Ca2+ was required.

It has also been reported that dopamine (Dl, D5) receptor agonists can enhance
late phase LTP, while Dl receptor antagonists block late LTP.

There is evidence that the effects of dopamine are region specific; Swanson-Park
et al. (1999) also looked at the Dl/ D5 receptor blockade in both CA1 and DG. Consol¬
idation of LTP in DG was not affected by the receptor blockade, while the persistence
of LTP in CA1 was reduced (presumably through interference with late LTP). Note that
exactly the reverse of this effect was found with blockade of Beta-adranergic receptors.

Overall, it is clear that dopamine can act as a learning trigger, (particularly, per¬
haps in the temporal hippocampus which lacks NMDA receptors) and also as a switch
between inputs (schaffer collateral and perforant path), particularly in the septal hip¬
pocampus.

3.8.2 Acetylcholine

Acetylcholine is particularly associated with theta rhythm, as cholinergic input comes
via the projection from the septum and is responsible for pacing hippocampal theta.
Acetylcholine can have both an inhibitory affect and an excitatory one. Acting via
muscarinic receptors, acetylcholine suppresses the postsynaptic response to schaffer
collateral intrinsic input, while enhancing the response to external input. It also has
been proposed as a switch between a recall and a learning mode in the hippocampus.
Models of this will be considered in the next chapter.
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3.8.3 Noradrenaline

Noradrenaline is primarily linked to mossy fibre input; the highest concentration is
found in the dentate gyrus, and then areas of CA3 where mossy fibres projects to stra¬

tum lucidium, SLM, and the hilus. The noradrenaline system therefore hypothetically
acts on CA3 cells that have dendrites in the appropriate regions; i.e., distal/septal (see
below). Noradrenaline and seratonin, however, act primarily by extra cellular diffu¬
sion (Vizi and Kiss, 1998), and therefore it is hard to conclude anything about the
distribution of action from the distribution of release sites. Only 15 (noradrenaline) to
20 (seratonin)% of release sites were synaptic. Hoz claims that there is greater dis¬
tribution towards the temporal end. Noradrenaline is taken up by the beta-adrenergic
receptors, and blockade of these has been found to affect the consolidation - or long
term persistence - of LTP (Swanson-Park et al., 1999), particularly in the dentate gyrus.

Noradrenaline also may suppress perforant path input to CA1 in the same manner

as dopamine (Otmakhova and Lisman, 1999b)

3.8.4 Common mechanisms and effects

Activation of beta-adrenergic, muscarinic and dopamine receptors (depending on den¬
sity of D1/D5 receptors) enhances the activation of protein kinase C and A. This had
the effect of increasing the amplitude of back-propagating action potentials in the dis¬
tal dendrites in CA1. Generally back-propagating action potentials attenuate due to
transient K+ channels. However, they provide a signal that increases local calcium
concentration, the key ingredient in almost all forms of NMDA and non-NMDA me¬

diated synaptic plasticity.
This has implications for the integration of perforant path and schaffer collateral

input in CA1, as these neuromodulators also enhance EPSPs travelling from the apical
dendrites.

Dvorak-Carbonne and Schuman (1999b) and Dvorak-Carbonne and Schuman (1999a)
have found that the entorhinal cortex inputs (Layer III) to the SLM are able to selec¬

tively suppress spiking in response to the schaffer collateral inputs, via a gabanergic
interneuron. It is known that the basal dendrites and stratum radiatum where the schaf¬

fer collaterals terminate in CA1 provide a stronger signal at the soma (reviewed and
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studied in Yeckel and Berger, 1998). Boosting the back propagating signal into the

apical dendrites potentially provides a way of enhancing the signal from the perforant
path, by enhancing LTP at these remote synapses. This appears to contradict the find¬

ing that dopamine suppresses perforant path input. Lisman and Otmakhova (2001)
take the view that perforant path input is suppressed during learning to prevent cur¬
rent sensory (via the perforant path) input from interfering with information buffered
in CA3 and CA1. Their argument partly depends on the assumption that dopamine
only enhances learning at schaffer collateral synapses through acting on NMDA re¬

ceptors. They therefore see dopamine as a learning from input/recall switch. As we

saw, dopamine can in the right conditions trigger learning independently. Dopamine
may therefore act as a switch between learning systems.

It is proposed here that the schaffer collateral are signalling retrieved memories
from CA3 and dentate gyrus. The stratified inputs are therefore also balancing two

types ofmemory signals. For input from the entorhinal cortex is not just sensory input
as such, but more like information about individual item and complex item recognition.

However, we propose here that CA1 can selectively learn from and output infor¬
mation to the schaffer collateral pathway or the perforant pathway, or combine the
information from both.

The lack of dendrites in the SLM in both proximal and temporal parts of CA1
suggests that these regions may not have the ability to selectively regulate perforant
and schaffer collateral inputs, and are therefore combining recalled information and
novel information in an incremental way.

3.8.5 Perforant path input

How does information coming from the distant distal dendrites in the SLM and those in
the stratum radiatum summate? This question has been addressed in the CA3 region,
where Urban and Barrionuevo (1998) found that inputs summed sub-linearly if the
mossy fibres were situated before the perforant path, and linearly otherwise. This
effect was thought to be due to transient K+ channels (Hoffman et al., 1997). Similar
results have been found in CA1, where schaffer collateral and perforant path inputs also
sum sublinearly if the schaffer collateral input arrives between 2ms before the perforant
path input, and up to 30ms after it. This study by Hoffman and Johnston (1999b) found
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that the sublinear effect was due to GabaA and GabaB activation, probably mediated
by feedforward and feedback inhibitory signals from both perforant and pyramidal
afferents. In the absence of GabaA and GabaB, summation was supra-linear in the

period of coincident stimulation. Although the normal situation is that the pyramidal
cell sums linearly, or sublinearly, in situations of disinhibition, (such as perhaps gamma
oscillations, see the next chapter) the cells may be able to take advantage of supra linear
summation

On the other hand, stimulation at the SLM perforant path afferents results in a

spike blocking effect of the response to schaffcr collateral input (Dvorak-Carbonne
and Schuman, 1999b). The same effect has been observed in CA3. This effect is
mediated by GabaB interneurons, targeted by perforant path and thalamic input.

3.8.6 Summary

It is known that back propagating action potentials, important signals forNMDA recep¬

tors, attenuate as they move away from the soma into the distal dendrites. In CA1, at
least, that attenuation can be removed by down regulation of the K+ channels, through
activation of the enzymes protein kinase C and A (PKC, PKA), regulated by the neuro¬

modulator systems (dopamine, acetylcholine, noradrenaline). We also know that these
very same neuromodulator systems can suppress transmission through the perforant
path synapses.

The overall picture here seems to be that inputs are stratified along the radial axis,
so that they can selectively suppress one another.

As proximal CA3 cells do not have dendrites in the SLM, it is possible that they
do not receive any perforant path input. This suggests there is a functional difference
in the way these cells (and perhaps cells in the temporal pole) regulate the balance
between current sensory input, and recognition signals coming through the perforant
path and internal recall within the hippocampus.

It is still, however, unclear what the functional difference between input positioned
in SLM, and that in stratum radiatum or stratum oriens, actually amounts to in the case

of a particular cell. This issue needs to be explored by accurate modelling work.
It is clear that in order to understand how information is integrated in principal cells

from different sources, we cannot neglect both the radial structure and the interaction
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with neuromodulators in these cells.

3.9 What the anatomy tells us

3.9.1 Consequence for Moser's hypothesis

We can already see that anatomical grounds for proposing two pathways through septal
and temporal hippocampus carrying different information sets are weak. The extensive

interconnectivity within CA3 and the spread through CA1 suggest the hippocampus

integrates more or less all the information it receives. There is perhaps a special circuit
relating amygdala, temporal hippocampus and prefrontal cortex. But that circuit is
more likely to be concerned with controlling the output of the hippocampus. This
negative conclusion helps to support the idea that the difference in learning between
septal and temporal hippocampus described in chapter 2 is due to differences in the
substrate of learning.

3.9.2 Mechanisms for interleaving learning and recall

In this chapter we have developed the idea that an individual pyramidal cell may se¬

lectively integrate its inputs, via neuromodulators that affect individual pathways. The
same mechanisms have been proposed to separate learning and cell firing, by prevent¬

ing signals passing along dendrites and axon. There is no doubt that these mechanisms
are plausible.

3.9.3 Supra-linear and sublinear summation

We have seen that the same cell can modulate whether its inputs sum sublinearly, or
supra-linearly. The mechanism postulated for this is amixture of feedforward and feed
back signals. In chapter 6, we will look at a very simple implementation of this idea.

3.9.4 NMDA LTP

The data we showed from Bi and Poo's paper is frequently cited. But one of the feature
of it is the presence of supra threshold synapses that do not depress. In chapter 7, we
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will make the case that such synapses, modelled as all-or-nothing binary synapses, are

the most suitable for the single trial, immediate recall that we propose is found in septal
hippocampus.

3.10 Conclusion

In this chapter we argue that on the basis of the known neuroantomy and connections
to and within the hippocampal region, it is very unlikely that spatial content is confined
to the dorsal hippocampus.
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Chapter 4

Spatial learning

4.1 Summary

In chapter four we consider the 'Spatial Hypothesis', that the hippocampus is preem¬

inently concerned with learning spatial layouts, and relationships. The importance of
this chapter for the thesis is that overall, we are arguing against the idea that the hip¬
pocampus deals particularly with information having a certain kind of content. We
therefore argue strongly against the spatial hypothesis- and critically review the evi¬
dence supporting it.

4.2 Cognitive maps

Discovery of precise place correlates (O'Keefe and Dostrovsky, 1971) of cells firing in
the hippocampal subfields CA1 and CA3 led to the idea that the hippocampus builds
a map-like representation of the rat's environment. Prior to the discovery and descrip¬
tion of place cells, it was already known that the hippocampus played an important
role in the rat's ability to navigate in a maze environment as reviewed in Best and
White (1999). The cognitive map theory, propounded at length in 1978 by O'Keefe
and Nadel, suggested that the place cell representation might potentially form a map of
the rat's environment. They also made the case that a map-like representation was the
most desirable mental representation for navigation. A map-like representation can be
understood as a perspective free, task free and perhaps even Euclidean representation

91
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of space. Task free and perspective free, means the map can be used in any task, and
from every view point. If the rat does not know in advance what problems the environ¬
ment is likely to throw forward then, arguably, its representation of the environment
should not contain many preconceptions either. This compares nicely with the idea of
context free and context restricted representations, discussed in chapter 1. The more

precisely a representation is configured to fit a particular environment, the fewer en¬
vironments it will be useful for. The idea is that spatial layout is constant across the
tasks in the same environment, and space has properties that are constants. Muller
et al. (1996) discusses the property of connectedness. Every two points in space are

connected by a third and are properties transitive: if A is accessible from B, and B
is accessible from C, then A is accessible from C. This is prior knowledge about the
structure of space that potentially might be innate, rather than learned.

O'Keefe and Nadel did not necessarily assume that the map-like representation
was purely spatial, but the spatial component was their particular contribution to un¬

derstanding the hippocampus.
Current hippocampal theory still draws on the idea that place cells form some sort

of a map. The idea of explicit spatial maps are found in a strong and weak version
in the modelling literature. The strong version is the preconfigured attractor map that
assumes maps are preconstructed in the hippocampus. A weaker version assumes that
some spatial elements that control place cell firing are preconfigured. The weak version
claims less about the overall structure of the representation, but seeks to model the
content of the place cell representation.

4.3 What is an attractor map?

Neural networks can sometimes be analysed as dynamic systems. The most famous
case is that of the Hopfield (1982) network, for which an energy function can be de¬
fined. The network updates the firing of each neuron between 1 and -1, untill eventually
settling into a low energy state, known as an 'attractor', as the network does not move
out of this state without a significant perturbation. Learning adjusts the attractors by
altering Wij between units i and j, to coincide with the pattern to be learned. When
the network is presented with a noisy version of the learned pattern, recall can occur
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as the network settles back into the attractor. The Hopfield model is a discrete system,

whereas most of the models of the hippocampus are continuous.

4.4 Map-like characteristics of the hippocampal repre¬
sentation

This section describes the characteristics of CA3 and CA1 representation that have
been heavily emphasised by experimentalists examining cell firing within the frame
work of a spatial task. This means that the experiment has been designed so that cell
firing patterns can be related to location and cue, and location information is also useful
in solving the task - the rat, for example, has to remember where something is.

The most basic task is a simple exploratory, or pellet finding task. Here, the rat
is simply placed in the area and encouraged to explore it. Early studies looking at
the control of place cell fields by cues such as entry point, darkness, coloured cards
used a simple cylindrical arena, with a curtain placed around the edge to limit the cues

available to the rat. Experimenters recorded the current position of the rat, and the
firing rats of selected cells. Figure 4.1 shows the typical firing field of a place cell
relative to the rat's location, and a controlling cue card. Peak firing is shown as the
darkest areas.

When the cue card is moved relative to the rat's entry point, the place fields move

with the cue (Muller and Kubie, 1987). However, when the rat is allowed to enter

from a different point, the fields remain stable. If the cue is moved in front of the
rat, however, the field remains stable, indicating that is (perhaps) tied more strongly
to location than to cue (Rotenberg and Muller, 1997). How to describe this finding
depends on interpretation as Sharp (1999b) regards this as the place field developing
a new relationship to the cue, and therefore a kind of remapping. The place fields are

tied to other cues besides visual. If the rat is allowed to explore the environment, then
placed back in darkness, the same place fields reappear, indicating that they depend on
olfactory and path integration input (Quirk et al., 1990). When the arena is expanded,
or contracted, place fields change in size, remaining in the same relative positions.
Place fields were also found to be remembered; a rat taken out and replaced in the
arena for short periods over six months retains the same pattern of place field firing
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Adapted from Muller and Kubie (1987)

Figure 4.1: Place cell firing.
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(Thompson and Best, 1990). Place cells are also affected by direction, but only where
the environment is constrained, so that the rat does not cross the place field from every

direction. For example, the rat is forced to run down a narrow track.

In summary, place cell firing appears to be controlled by distal (far) cues, environ¬
mental boundaries, multi modal sensory input, and the recent history of the rat (path

integration). None of this is inconsistent with the idea of a task independent map.
These studies are essentially descriptive, monitoring place cell activity rather than

explicitly testing the precision of the representation. The next step required a demon¬
stration that place cell representation is used in more demanding tasks.

Place cells have also been recorded in memory dependent tasks. One such task is
the water maze reference memory task. The Morris water maze is a circular enclosure
filled with milky water. It contains a submerged platform that the rat cannot see. Typ¬

ically, a rat is allowed to find the platform, or is placed on it, and then is repeatedly
released in to the water to navigate to the platform. This task depends on the hippocam¬
pus functioning (Morris, 1981), as hippocampal lesions result in the rats searching the
wrong part of the pool. Performance on the task is usually measured by the amount of
time the rat spends in each quadrant of the pool. A second measure sometimes used
is the number of annular crossings (crossing through the middle of the pool). Escape

latency is another possible measure.

However, rats with hippocampal lesions become relatively hyperactive and swim
faster than intact rats. The existence of place cells during the water maze task has
been verified. Hollup et al. (2001) adapted the water maze and compared it to a dry
task using the same distal cue set. Interestingly, they saw some of the place fields
transferred from the wet to dry version.

However, when the task was transferred to navigation to goals or, in particular,
variable food sources, indications found in Markus et al. (1995) and Gothard et al.

(1996) began to suggest that the place cell representation might not be entirely task
independent. Both papers reported the clustering of place cells around goal areas and
variability in place cell firing due to a change in the demands of the task. Gothard
et al. (1996) attempted to explain this phenomenon using the idea of multiple maps

controlled by different reference points. This theory has been used in the development
of a number ofmodels of the hippocampal representation. The next section will discuss
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these models briefly, before considering evidence that is incompatible with the idea of

multiple maps.

4.5 Strong spatial maps - preconfigur ed attractor net¬
works

The idea that the place cells were a coherent ensemble reached a peak in Muller et al.
(1996). Muller proposed that synaptic delays or the 'resistance' of a pathway between
two place cells should be set to represent, and be proportional to, the distance between
those two points. The cognitive graph can then find the shortest distance between

any two points, using the analogy of current flow. The graph has the ability to rep¬

resent both barriers by breaks of connectivity and scaling with size. A similar model
is proposed by Samsonovich and McNaughton (1997) that treats the CA3 region as a

continuous attractor map. They make the prediction that no two cells with overlapping
place fields after environmental distortion can be active simultaneously if their place
fields did not originally overlap. Both these models have in common the mapping of
place cell reference onto a pre-existing attractor structure.

The models assume no learning, the correspondence between a set of cells, and a

chart random assignment of cells to places. It was assumed that random assignment
of cells to places was needed to explain the lack of relationship between a cell's posi¬
tion in one environment, and another, and various theoretical arguments Rolls (1996)
about the need to orthogonalise similar environments for accurate retrieval have been
advanced to support that assumption. Models such as the hopfield network described
in section 4.3 and heteroassociative network, described in chapter 7 perform best on

orthogonal input data.
These models assume that the hippocampus does not contain one universal attrac¬

tor structure, or chart, to which an environment is mapped, but a number of different
charts, between which the hippocampus can rapidly switch. The assumption was origi¬
nally required to explain how the place cell structure can be set up almost instantly, and
then changed quickly when the rat is moved from one environment to another - known
as remapping. These three assumptions have been all challenged experimentally, as we
will discuss in sections 4.5.1, 4.5.2 and 4.6; The challenge to the last assumption has
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implications for modelling studies, as the possibility that input patterns are not uncor¬

rected must be considered. In chapter six and seven, we therefore consider the effect
of correlated data on simple hippocampal models.

4.5.1 Non topographic organisation of cells

Cells in CA1 and CA3 are unlike object recognition cells in perirhinal cortex, or cells
organised in columnar fashion in MT. Similar stimuli are not represented in a similar
location, either within an environment, or across environments. Part of the cognitive

map theory is that the identity of individual objects is not represented at all; rather,
only the layout or relative organisation.

A crucial test of this idea is to examine the relationship between the representations
of two visually identical environments. Skaggs and McNaughton (1998) examined
the relationship between two visually identical regions, and found strong correlation
between CA1 place cell activity in these two regions. These cells, the authors suggest,

cannot be assigned randomly. However, some cells remapped or, more accurately,
responded to different environmental features. Skaggs and McNaughton argue that
their results suggest that some cells respond to visual combinations, while others are

affected by a randomising effect. However, the regions were joined by a corridor, and
the rat was allowed to pass from one region to another. So, arguably, both rooms

were part of the same environment, and this experiment does not show anything about
relations between different assigned reference frames, but only relationships within a

reference frame.

In a second experiment reported in Tanila (1999), the rat was taken from one region
to another, visually identical but differently located. In this case, the two visually
identical regions are clearly signalled as separate. The rat presumably is able to tell
these regions apart using non visual cues. Tanila reports no overlap for CA3 cells
firing in the second environment and a small degree of overlap for a CA1 ensemble
recording. This means that cells that fired in the first region either did not fire, or fired
in a completely different region of the second chamber. This appears to support the idea
of random assignment, contra Skaggs and McNaughton. However, on returning the rat
to the original environment, the cells responded with an overlapping representation.
This means that some of the cells that fired in both the initial response to the first
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chamber and during the initial response to the second chamber, fired on the subsequent

presentation of the first chamber. Tanila does not report whether this representation
remained overlapping, on further presentations.

It is unclear how to interpret these results. One possibility is that the rat is recalling
the two separate regions, in response to the visually identical cues. This might indicate
the presence of interference in recall. However, it also suggests that the hippocampus
may be capable of simultaneously recalling more than one memory representation.
The multiple maps hypothesis put forward by Reddish (1996) and Wood et al. (2000)
claim that effects like the one described in Tanila are actually dual memories, rather
than interference. The question remains open, as to whether this is the explanation for
the correlations Skaggs and McNaughton observed.

Although these results do not directly contradict the idea of independent pre-configured
charts, they do suggest that information is available across environments about com¬
mon properties.

4.5.2 Place cell development and replacement

A link was thought to be established between LTP and spatial learning in water maze

type tasks, as rats treated with AP5 (NMDA antagonist) showed impairments on the
task. Bannerman et al. (1995), and independently Saucier and Cain (1995), showed
that the impairment on the task can be eliminated by pretraining on a similar type
of task. So rats treated with AP5 pretrained on a different water maze in another
room were able to learn normally on a new maze, even though the two water mazes

had no stimulus overlap. Bannerman et al. (1995) found that only specifically spatial
pretraining removed the learning impairment. So it may be possible to transfer the
spatial aspects of a task from one trial to another, but NMDA learning is still required
to learn them in the first place. These results also suggest that the hippocampus has a

very important role in identifying and learning the constraints of a task. Bannerman
et al. (1995)'s data alone suggests that NMDA receptors are critical for learning, but
not either retrieval, or maintenance and adaptation of learned material.

Additional evidence suggests that the medium term stability of place fields does
depend on NMDA LTP. Acute blockade of NMDA resulted in newly established place
fields disappearing. The fact that NMDA receptors are responsible for stability rather
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than initial learning does not return us to the idea that the map structure must be in¬

nately preconfigured. Place fields have been found to be very stable over repeated short
trials in the same arena (Thompson and Best, 1990). A recent study by Ludvig (1999)
tracked the behaviour of place cells over prolonged exposure to the same environment.
He found a number of place cells terminated their firing response between 6 and 12
hours after the rat was placed in the environment, while other cells that had been firing
at background level for the first few hours developed place fields during the same pe¬

riod. He also describes one cell that terminated its firing and then showed a new place
field response that remained stable until the end of the 24 hour period. Ludvig's data
do not give an impression of how much the ensemble changed over the 24 hour period.
But his results are more consistent with a learned representation that evolves with use.

4.5.3 Partial remapping

Remapping is the phenomenon of sudden global reassignments of cell firing correla¬
tions, when part of the environment is changed. In so far as this has been observed,
it has been argued that it is evidence of some global representation. The phenomenon
of partial remapping has also been observed, suggesting that the place cell represen¬
tation is not a single coherent entity. Shapiro et al. (1997) looked at the effect on the
location of place field of rotating and scrambling cues. They found that the majority
of cells rotated with distal cues (47%) and 16% followed distal cues. Repeated double
rotation trials pushed the number of cells that formed new representations (i.e., totally
re-mapped), from 10% to 60%. Shapiro et al. (1997) proposes a model whereby stimuli
compete to control place fields. The system has a bias towards distal cues, but that bias
is overridden by instability. Overall, they view the place fields as responding to cue

conjunctions, rather than encoding spatial relationships. The effect on performance er¬

ror of remapping due to cue manipulations has been examined in the alternation task in
a radial arm maze. Lenck-Santini et al. (2001) found that alternation errors correlated
with the degree to which place cell fields had been disrupted by cue changes.

Guazzelli et al. (2001) have a model that can dynamically remap the place cell
representation, using a mechanism designed to model the way the retinal map han¬
dles visual saccades. The model uses an environmental anchor and path integration to

remap relative to the environmental anchor.
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The unresolved issue is still the exact contribution the hippocampus makes to the
rat's performance on these tasks. Even Guazzali's model still relies on the 'forced
attractor' method of route finding. So to use the map, the crude method of activating
the desired location and allowing the next layer to compute a path is still required.
Map models rely on the output layers, (meaning the subiculum) to control them in
some unspecified way. It is possible that if there is a 'map' it is actually located in the
subiculum, as will be discussed in the section 4.8.

It is possible to design a map-type model that copies the behaviour of place cells.
However, there are two further problems. Firstly, such a model does not really address
the question of how this map is used by surrounding cortex. Secondly, the presence of
task related firing suggests that the map theory may be on the wrong track, or perhaps
only able to account for some of the hippocampus functioning. This last point gives
rise to the weak spatial approach.

4.6 Weak spatial maps

Some of the strongest evidence for the place cell representation acting as a coherent

body is provided by remapping and rescaling phenomena. The evidence for this, out¬
lined below, has given rise to the weak spatial map hypothesis, where a subset of hip-
pocampal cells are designated place cells, that are used to capture the spatial properties
of an environment.

4.6.1 Rescaling

Such a view is taken by O'Keefe and Burgess (1996), who also manipulated place
fields by altering the shape of the rat environment. Place fields were found to scale
as the environment grew larger, and stretch as the environment changed shape from
square to rectangle. They do not indicate what proportion of cells show this property.
A much earlier paper (Muller and Kubie, 1987) in addition to observing rotation of
place fields in response to rotating cue also observed scaling. In this case, 52% of cells
showed completely different behaviour. These cells showing rescaling behaviour have
formed the basis of a number of models.
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4.6.2 Place cell models

Place cells can be modelled directly, in terms of their representational content. This
approach is exemplified by O'Keefe and Burgess (1996). Place cell fields, as we have
already described, are controlled by relationships between particular cues. O'Keefe
and Burgess (1996) identify the cues controlling a cell's behaviour, and attempt to
model the geometric determinants of place fields, using boundary vector cells. Their
aim is to model the way the fields operate and distort in response to the shift in the
environment. They assume that each cell is controlled independently by a subset of
boundary vector cells. The model assumes no interaction between the cells. Each cell
has a threshold linear response to the summed inputs. Each cell has its representational
content determined independently.

This more qualified version of the spatial map theory assumes only that some of
the cells are used to capture objective spatial relations. A later model from the same

lab (Hartley et al., 2000) now claims to capture the behaviour of those true place cells.
They also assume that cell boundary vectors are predetermined. One consequence of
their view is that the location of place cells should be predictable across geometrically
different environments. They claim to have found that these cell locations are pre¬

dictable but, so far, these results are published only in abstract form. Their claim is
in direct contradiction to results published in Wood et al. (2000), who claim that cells
that are obviously place cells in one arena can be non place cells (have odour, or task
correlates) in another. Whether these specific boundary cells exist in the hippocam¬
pus, or in the subiculum (see below), a model of their behaviour is not an adequate
model of overall hippocampus functioning, as it considers only a small fraction of cell
behaviour.

4.7 Other correlates of4place' cells

Other features of the environment, such as odours, have fields associated with them

Wood et al. (1999). These are not significantly different from place fields, but simply
are controlled by a different modality. However, a change in experimental approach
has revealed a more exciting feature of the cell representation.

Most of the evidence we have considered so far has been from experiments where
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the rat has been allowed to explore freely, or given a simple memory task, that involves

correctly selecting the location of a food reward. The behaviour of place cells in more

demanding memory tasks has also been considered. In the T-maze, the Y-maze and the
radial arm maze, the rat can also be asked to perform a simple reference memory task.
These mazes can also be used for alternation tasks. Here, the rat is required to alternate
between the two ends of the T-maze to receive a reward. Again, successful navigation

depends on the positioning of cues outside the maze, but also on the rats memory of its

previous trip through the maze and on its memory of the task constraints.

There is a growing body of evidence from these types of tasks that the same cells
that appear to represent place can represent other invariants related to a particular task.
Wood et al. (2000) showed that the 'place cells' at a central location for an alternation
task were selective between left and right turn trials. Their data do not indicate whether
these cells predicted the expected direction of turn, or recorded the previous turn.

The DNMS task has also revealed a tendency in hippocampal cells to represent
abstract properties of the task. Rather than representing individual match, non match
cases, hippocampal cells fired for all match, or all non match cases, as described in

Hampson et al. (2000); Suzuki and Eichenbaum (2000). Kobayashi et al. (1997) found
task dependent correlates of hippocampal cells for different tasks in the same spatial
arena, as did Markus et al. (1995). Task dependent remapping supports the idea that
the rats may have multiple representations of the same environment. This is an ex¬

tremely difficult property to model - it raises the question of what exactly the learned

representation in the hippocampus contains.

In section 4.5.2 on LTP and learning, we saw that pretraining on a water maze led
to normal performance in NMDA blocked animals. This might also be interpreted as

indicating that the important contribution of the hippocampus is to supply important
information that has been generalised about the nature of the task. Further evidence
for this has come from consideration of the representations in the areas surrounding
the hippocampus. The simple model put forward by Burgess, Recce and O'Keefe in
1994 treated the entorhinal/perirhinal areas as supplying sensory information, and the
subiculum as supplying simple goal representation relative to the map. If the hip¬
pocampus is not a map, perhaps a better understanding of what the hippocampus does

supply can be achieved by comparing its representation with those the region receives,
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and those it outputs. As it turns out, the map idea may be better implemented in the
subiculum.

4.8 Place inputs and outputs of the hippocampus proper

Subiculum cells show place correlates very similar to hippocampal cells, but spread
over a wider area. However, under remapping conditions for hippocampal cells, subic-
ular place fields remain stable. Sharp (1999a) compared hippocampal and subicular
place fields in an experiment that involved placing the rat in a box, and then shrink¬
ing or enlarging the box. The majority (89%) of subicular cells followed the change
in dimensions of the box while only 16% of hippocampal cells did so. These ma-

neouvres were performed while the rat remained in the environment. This contrasts

with the results of the experiment by Burgess and O'Keefe (1996). Their model (see
below) assumes that subiculum place fields are formed by the superposition of hip¬
pocampal fields. However, the data found by Sharp suggest that subicular fields are

relatively independent and complementary to the hippocampal fields, and fields in both
regions may encode sensory information directly from the perforant path, as suggested
by Witter (2000). Sharp's hypothesis is that the subicular fields do something more

like hippocampal place fields were originally supposed to do: it is suggested that the
subiculum has a universal map, that computes distance and direction information by
combining path integration, and composite sensory cues.

Different representations have also been found in the entorhinal cortex, perirhinal,
postrhinal or parahippocampal region. In particular, entorhinal cortex has been found
to respond to conjunctions of features in context; perirhinal cells have been found to

respond to spatial arrangements and objects in place. The response of the perirhinal
cortex was found to reflect the demands of the task, but in a different fashion from hip¬
pocampal cells. Suzuki and Eichenbaum (2000) compared the behaviour of entorhinal
cells and hippocampal cells on match to sample and non-match to sample tasks. The
animals were presented with two variants of the task: a case where only the match was

repeated, and a case where the "filler objects" were also repeated between presentation
of the sample and the match. Changes in cell responses were item specific, indicating

recognition of a particular item. In the first condition, some cells in the perirhinal cor-
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tex showed an increase in firing to a match condition, while others firing suppressed

firing. This second condition was found to raise the proportion of cells that showed

suppressing responses to a match condition. These neural patternings lasted for the
duration of a trial, forming a short term memory. Suzuki and Eichenbaum do not

speculate on how a suppressed response could carry information. Speculation else¬
where has suggested that object recognition systems in perirhinal, hippocampus and

perhaps amygdala are in competition (Murray and Mishkin, 1998), as we have already
discussed in chapter 1.

In contrast, under the same pair of conditions, cells in the hippocampus responded
to match/non-match conditions in a way that was abstracted from the particular item
on trial; cells responded to either all match conditions, or all non-match conditions.
Suzuki and Eichenbaum suggest that the hippocampus contributes information about
the demands of the test, that feeds back and modulates the response of the perirhinal
cortex. They suggest that the representation in the hippocampus is as much a memory

for the constraints of a task as it is of an environment.

The subiculum, however, does not store information about trial type (Hampson
et al., 2000). Subicular cells store information across trials that persists after the hip-
pocampal cells ceased to fire.

The complex representations found in the cortical and subcortical areas surround¬

ing the hippocampus clearly play an important role in spatial and working memory

based tasks. The representation of place is not a property that the hippocampus alone

possess. If we want to isolate the contribution of the hippocampus, perhaps we should
turn instead to accounts of the computation performed in hippocampus, regardless of
the content of the inputs.

4.9 Consequences for Moser's hypothesis

We discussed in chapter 2 that Moser proposed that the hippocampus was divided into
a spatial and non spatial computational circuit. The evidence presented in this chapter

suggests that there is now evidence that the hippocampus does not store pure spatial in¬
formation. This is dorsal hippocampus as the majority of the cell recordings discussed
here have been recordings from the dorsal hippocampus. If there are two computa-
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tional circuits, they need to be characterised in a different manner. It was proposed
in the previous chapter that this difference was in terms of the speed of learning, and
perhaps in the degree of generalisation of particular episodes.

In the next chapter, we discuss the relationship of generalisation to prediction, and
the need for prediction to incorporate information about the relationships of events
over time.
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Chapter 5

Predictions, Anticipation and Theta

Rhythm

5.1 Summary

The purpose of chapter five is to consider the hypothesis that 'sequence learning' is a

primary function of the hippocampus. This hypothesis claims that the hippocampus is
specialised for learning the order of events. Evidence supporting this device is of two
kinds; deriving from the presence of endogenous rhythms in the hippocampus, that can
be used to store the order of events and evidence deriving from the interpretation of
hippocampal dependent tasks as tests of memory for event order. The conclusion of
this chapter is that evidence of both kinds is inconclusive. Nevertheless, the issue of
whether a structure like the hippocampus can store memories and recall them in the
order stored is usefully addressed in modelling studies.

5.2 Introduction

This chapter is about models of the hippocampus built around the idea that the hip¬
pocampus is concerned with prediction. The key point about prediction is that it in¬
volves anticipating one event following another. Most of the models considered in this
chapter have related this to the idea of sequence processing. In this view the mechanics
of prediction involve learning the order in which events (inputs) occur, and then being

107
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able to recall by replaying the order in which they occured. This enables anticipation.
It is not quite prediction, as prediction involves making a jump from a representation
about a past event to a future event. Anticipation may be only a conditioned response,

like the rat freezing in a box in which it has previously had an electric shock. To
claim that the rat is predicting an electric shock is a very strong claim. The cognitive
map hypothesis, as we saw, involved the claim that the rat has a mental representa¬
tion. However, models of that representation tied it very closely to current sensory

input. For it to be a full blown mental representation, that representation needs to
be disconnected from current sensory input. It needs to be capable of standing in for
the environment when the environment is not there. In philosophical terminology this
property is the property of aboutness. These remarks follow the tradition of philosophy
that defines meaning in terms of the conditions of correct application, or use. In order
for a representation to be a mental representation, itmust be capable of being evaluated
as a misrepresentation. An important part of being able to establish the content of a
representation is an examination of conditions under which that representation will be
revised, or corrected.

In the previous chapter, we discussed whether or not the case of the overlapping

firing patterns from two visually similar environments could be understood as a gen¬

uinely ambiguous representation. An ambiguous representation here means that the rat
is representing uncertainty about which of the two environments it is in - it represents
the ambiguity in the environment. For this, the place cell firing would have to have the
potential to represent two environments separately, but simultaneously. For the hip-
pocampal system to have the possibility of representing two alternative possibilities,
the system would have to somehow represent that the rat can only be in one environ¬
ment at a time, and that these possibilities are exclusive possibilities. Only if that were
the case could this be viewed as a case of prediction.

The alternative, less cognitive (but perhaps more plausible) possibility is that the
rat is confused, and then representation recalled corresponds not to both places, but
neither - rather some composite place that has the characteristics of both.



5.3 Formal prediction 109

5.3 Formal prediction

A population code representation can encode information that includes a probability
distribution across alternatives. A formal model is described in Zemel et al. (1998).
But as they rightly point out, the difficulty is not encoding this kind of information in
a population encoding but in decoding it. And, further, finding a method of decoding
that the rat brain might be using.

Whether or not the rat brain can perform some operation that corresponds to a

formal prediction model will only become an interesting question if the place cell
firing can be shown to be genuinely tied to the future, (anticipatory) and genuinely
representational, as that is the prerequisite for the encoding of events as alternatives.

Under some theories of representational content, the correlation of the environment
with the occurrence of the mental representation is enough to assign content to it. In
this case, it is the occurrence of the neural firing. Neural firing that correlates with
anticipated events has been observed in monkey prefrontal cortex, but not yet in the
hippocampus. The paradigm in which this has been observed, reported in Rainer et al.
(1999), looked at a paired pattern associative memory task, and a delay matched to

sample task. The animal was taught to associate pairs of patterned objects. Rainer
et al. (1999) distinguish neural responses controlled by current sensory items, from
neural responses based on expected sensory items. The animal was shown the first
of the learned pair and then a second object after a 1000ms delay. If it matched the
correct target object the animal pressed a lever to obtain a fruit juice reward. Neural
firing recorded in the lateral prefrontal cortex anticipated the appearance of the second
object and, more crucially, errors were predictable by the similarities between target

objects. Where two target items were similar, they interfered with one another by
creating false alarm responses. However, when the two items were used as sensory

triggers (i.e., the first items in the learned pair) they did not interfere with one another.
The interesting halfway house is the idea that the rat can recall a past sequence

of events and use it to anticipate a following sequence. The neural firing patterns

corresponding to a recalled sequence need not correspond to a predicted future event,
and therefore will not correlate with one. The rest of this chapter is concerned with the
data that has led to a theory of anticipatory recall, and a critique of the existing models.
Many of these models draw on the existence of theta and gamma oscillation within the
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hippocampus, as vehicles for indexing or ordering neural firing. Therefore the order of
this chapter is as follows. Firstly, a section will be devoted to the physiological aspects
of theta with a little about sharp wave and gamma waves. Then the evidence that place
cells anticipate the location of the rat will be discussed. Three models of the theta
rhythm based on the evidence will then be evaluated

5.4 Rhythms in the hippocampus

This section describes some of the in vivo firing characteristics of hippocampal cells.
Place cells are the pyramidal cells. They are characteristically complex spike cells
that produce a train of spikes in response to the place correlate. However, pyramidal
cells do not produce uniform responses to an artificially applied stimulus. Vinogradova
(1995) describes both tonic and phasic firing and, particularly in CA3, rapid habitua¬
tion to a repeatedly applied stimulus. Pyramidal cells are, of course, not the only type

of cell present in the CA3 and CA1 areas. The majority of cells are interneurons, most
of which are thought to be inhibitory, described extensively in Freund and Buzsaki
(1996). It has been found that some interneurons show place specific firing.

The hippocampus shows three forms of background oscillatory activity. Back¬
ground is taken to mean a mode of firing that is not associated with a particular en¬
vironmental stimulus. These forms of background population activity, theta, gamma
and sharp wave, are associated with certain phases of behaviour. Individual pyrami¬
dal cells show random low frequency firing. However, there are cells entrained to the
theta rhythm (8-12Hz) that is paced by cells in the medial septum (Vinogradova, 1995;
Freund and Buzsaki, 1996). The rhythmic input from the septum is, as described in
the previous chapter, both cholinergic and gabanergic. Acetylcholine acts both pre and

post synaptically via two receptor subtypes. Nicotinic and muscarinic receptors are

found presynaptically and modulate glutamate, producing an inhibitory effect. Mus¬
carinic receptors are also found postsynaptically, where the effect is on K+ current and
depolarises the postsynaptic neuron, producing an excitatory effect. Gaba (generally)
has an inhibitory (i.e., hyperpolarising) action, but the inputs from the septum may act
on inhibitory interneurons, thus producing an overall disinhibitory effect. The models
discussed in section 5.9 have attempted to capture some of the effects and mechanisms
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of theta, but there is not a definitive model.

In the developing rat, there are extra-synaptic Gaba receptors that have a depolar¬
ising action. There are speculations that these receptors are still functional in the adult
rat, and may be activated by 'overspill' of Gaba (Traub et al., 1999).

Place cells interact with the theta rhythm, and can sometimes become entrained to
it. Other cells, which may be interneurons but may also be pyramidal cells, turn off
during theta (Vinogradova, 1995). It is the place cell/theta interaction that has proved
of particular interest to modellers.

The second form of background firing is high frequency irregular activity known
as sharp wave. Regular oscillations known as gamma oscillations occur at 40-120Hz.
Sharp wave and theta are mutually exclusive, and occur in sequence in both sleeping
and resting animal. However, gamma oscillation is found during theta, and can be
detected in the dendrites of pyramidal cells that are also modulated by theta. This
subthreshold fast oscillation also occurs during sharp wave. Both sharp wave and theta
have been found to control the induction of LTP and LTD.

5.5 Prediction without theta

It does not help to view all forms of learning as forms of prediction, as we saw in
chapter 1. What we seek here is evidence that the rat is mentally ahead of its current
situation or location.

5.5.1 Coherence as a measure of anticipation

Usually the current location of the rat when the cell fires is used to assign the con¬

tent of the place cell. Muller and Kubie (1989) proposed a variation of this paradigm,
where place cell firing was used to predict the location of the rat. They devised a mea¬

sure of the coherence of place cell firing which, they proposed, measured the point at
which place cells made their best prediction, independently of the correlation between
location and firing.

If this prediction is then compared to the actual position of the rat when the place
cell showed its most coherent firing, the predicted location of the rat is slightly ahead
(120 ms) of the actual location of the rat. Muller and Kubie found this positive shift in
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about two thirds of cells recorded from both CA1 and CA3. This positive displacement
is small enough that it might be accounted for by the positioning of the tracking light
between the animal's ears, rather than its nose. It is also worth noticing that the rat's

computed position was based on partitioning the arena into a 64 by 64 grid, of about
3cm2, and the study did not take not account of running speed. Muller and Kubie
claim their effect is significant, but their analysis does not take into account the rather
coarse sampling of the data. However, their findings did lead them to speculate on the

possibility that the place cell ensemble represents 'what might be', in addition to 'what
is'.

Blum and Abbott (1996) claimed that a temporal asymmetry was an immediate

consequence of asymmetry in the NMDA dependent LTP. They modelled the Muller
and Kubie data on this basis. LTP was modelled as a function of cell firing rates, and
time interval between pre and post synaptic firing, that occurred only when presynaptic
activity precedes postsynaptic activity. However, they also used a kind of retroactive
reward system, where synapses were only potentiated after the platform was reached,
and the amount of retroactive potentiation decayed over four seconds.

5.5.2 Transitive reasoning as a form of prediction.

Two papers (Dusek and Eichenbaum, 1997; Bunsey and Eichenbaum, 1996) on tran¬

sitive inference in rats can be viewed as examples of predictive inference. These were

described as the flexible use of representations. As we discussed in chapter 1, transi¬
tive inference involves the transfer of properties between premise pairs. The subjects
are trained to select one of a pair of items: a is rewarded rather than b (represented
as a > b), and then three similar pairs b > c,c > d,d > e. They are then tested
on the pairs b > d and a > e. As b and d have been both rewarded and unrewarded
choices with equal frequency, the correct selection of b in test pair b > d is consid¬
ered an example of transitive inference between pairs. This task was compared with
Piaget's theory of human cognitive development, where relational transfer is usually
tested with the examples of relations like 'longer than', and does not develop until age
6 or 7. However, there are some important differences. The rats were tested using
odour discriminations. Therefore, the pairing between items was essentially arbitrary.
The rats are learning to associate arbitrary co-occurrences, just as the kind of path
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learning shown in Blum and Abbott (1996) resulted in transfer of association between

pairs of places.
The key thing that the rats need to learn is to associate the environments or episodes

in which the odours are presented. This distinguishes the demands of this task from
the exploratory task. Eichenbaum and colleagues found that rats learned to transfer
between odour pairs in a single trial, performing at above 80% success on the b > d
discrimination. However, hippocampal, fornix, or perirhinal and entorhinal lesions
abolished this transfer, without affecting performance or learning rate on the individ¬
ual pairs, or performance on the a > e pairing that can be learned as a reward stimulus
pairing. This was claimed as evidence that the hippocampus mediates a kind of infer¬
ence. It certainly seems to show the hippocampus has a role beyond simple recall of a
previous environment.

This task has been modelled as a form of sequence learning and recall, where it is
simply a matter of additive associativity. It looks like a case of genuine anticipation. It
may depend on the background context to create the chain of associations; this has yet
to be determined experimentally.

Representing this task as a sequence is fairly intuitive. The ordered pairs are pre¬

sented A followed by B, followed by 'rewarded B', as described in Smith and Levy
(2000).

5.6 The role of theta

It was proposed by O'Keefe and Recce (1993) that the theta rhythm provided a mech¬
anism of prediction, by moving the firing of place fields in advance of the rat's current
location. The observed phenomenon is now called the theta phase procession.

5.6.1 Phase precession

Theta, as we have said, is observed as rhythmic oscillations in the firing of cell popu¬
lations in the hippocampus, at a rate between 8 and 12Hz. The entire hippocampus is
not synchronised at this rhythm, although theta in the dentate gyrus is often considered
to be reference theta (it is the dentate rhythm that shows up in the EEG). Rather, the

peak of theta firing moves through the areas of the hippocampus, the response in each
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Figure 5.1: Theta phase precession. This figure shows the change in timing of a place
cell firing relative to the local phase of theta oscillation. The cell fires in advance of
the local peak before the rat passes through the field and after the local peak when the
rat is leaving the place field.

area being at some phase relative to the dentate theta. A particular cell fires at a point
in the theta phase, relative to the local peak of theta firing, and also at a point in phase
relative to the dentate theta. O'Keefe and Recce (1993) found that the timing of the

firing of an individual place cell moved relative to the local peak theta firing, as the rat
moved through the location correlated with the place field. In particular, when the rat
ran along tracks, the cell firing advanced in phase. The picture presented, illustrated in
figure 5.1, is that when the rat is approaching a place field the cell fires at the end of
the theta cycle, and when the rat is leaving the field the cell fires at the beginning of
the cycle.

The interpretation proposed by O'Keefe and Recce (1993), Burgess et al. (1994),

Skaggs et al. (1996) and Wallenstein and Hasselmo (1997) is that the cycle recalls a

series of locations in the order that the rat expects to traverse them. The cycle begins
with the locations the rat has just moved through, and predicts the future location.

It is important to recognise that this is only an interpretation. The firing of an
individual cell relative to the theta cycle will be related to the strength of excitatory
inputs, and the time constant of the cell. If the cell is oscillating faster than the theta

rhythm, it will move in relative phase. A number of modelling studies (Bose and
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Recce, 2001; Burgess et al., 1994) showed how to set up the theta phase procession
using a simple inhibitory circuit, and also how to set up phase locking.

Vertes and Kocsis (1997) found that oriens alveus interneurons fired ahead of the

pyramidal cells as did pyramidal layer interneurons, thus fitting the model described in
Bose and Recce (2001). This is sufficient to achieve phase procession.

The theta rhythm is generated partly by the external modulation of theta driving
input from the septum. It is also controlled by the basket cell/interneuron network, but
not the pyramidal cell population within each hippocampus region, as theta is sustained
even under conditions where pyramidal cell firing was blocked (Traub et al., 1999).

5.6.2 Behavioural correlates of theta

The theta rhythm occurs in the waking rat, during sniffing, exploring and grooming. It
has been suggested that theta is particularly associated with movement and also with
states of raised attention. However, it has also been argued that theta activity suppresses

hippocampal transmission (output), and therefore theta plays an important gating role
(Vinogradova, 1995).

Theta also occurs during REM sleep. Again, it has been proposed that this is during
the replay of memories during sleep that may be required for memory consolidation,
evidence for which was provided in Wilson and McNaughton (1994), discussed below.
However, it has also been proposed that consolidation occurs during sharp wave activ¬
ity, which occurs after exploratory, theta associated behaviours, and during slow wave

sleep (Buzsaki, 1989).

5.6.3 Theta and plasticity

Plasticity during theta appears to be critically dependent on NMDA receptors (Lynch
and Larson, 1989; Larson and Lynch, 1989; Larson et al., 1986; Wickliffe, 1991).
Wyble et al. (2000) found modulation of EPSPs in CA1 during theta rhythm. They
stimulated either CA1 directly, through stratum radiatum, or contra-laterally, via the
firing of CA3 cells, and they recorded from CA1 stratum radiatum. Overall, theta
phase depressed the size of EPSP's from both kinds of stimulation by 18%. The slope
of EPSP's varied with theta phase, so that peak slope was 18 — 90 deg after the positive
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peak of dentate theta, and after the negative peak of the local CA1 theta (as recording
electrodes were positioned to measure roughly anti-phase theta). This means that max¬
imum EPSP slope is during the rise of local theta rhythm. The minimum EPSP slope
occured about 90 deg later. Lynch and Larson (1989); Wickliffe (1991) originally iden¬
tified the cause of the timing of point of maximum EPSP as a refractory response to
the peak feedforward inhibition triggered by the granule cells firing at the dentate theta

peak. For more details about the connections between dentate gyrus and the pyramidal
cell layers, see chapter 3, section 3.4.1.

These results are consistent with the findings that LTP is preferentially induced on

the positive phase of local theta. They are also consistent with the idea that there is a

short window of simultaneous firing that might be modelled as synchronous updating
in a network model.

Stimulation in the negative phase of local theta results in LTD (in dentate gyrus) or
LTP reversal in the pyramidal cell layers (Holscher et al., 1997).

5.6.4 Evidence for sequence replay during sleep.

As already mentioned, theta also occurs during REM sleep. In humans, deprivation
of REM sleep affects both short term memory and cognitive functioning. Work in
McNaughton's lab found evidence of a correlation between the sequence of cell firing
patterns during waking theta, while the rat was running on a track, to sleeping theta
in the sleep session following exploratory activity (Skaggs et al., 1996; Wilson and

McNaughton, 1994). In later experiments (Kudrimoti et al., 1999; Poe et al., 2000), a

phase reversal of the firing patterns of these cells was observed. So the cells that had
fired in positive theta now fired in the theta trough, under the conditions that produce
depotentiation of theta induced LTP described in Holscher et al. (1997) and Xu et al.

(1998). Kudrimoti et al. (1999) and Poe et al. (2000) claim this as evidence that theta

plays a role firstly in storing sequences, and then in the necessary forgetting that is
required to prevent the associative memory in the hippocampus from overflowing.

In addition to the idea that theta phase indexes memories, thereby allowing meta

properties (such as order) to be represented, Buzsaki (1989); Sohal and Hasselmo
(1998) and Borisyuk et al. (1999) have proposed that theta modulated gamma is a

binding mechanism for simultaneous events. The idea of synchrony as a binding sig-
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nal was proposed early on by von der Malsburg, and has been used in models of all
levels. This is in line with Engel et al. (1991)'s proposals for the function of the 40Hz
oscillation in the cat visual system visual system. The idea that the phase of cell firing
relative to an underlying oscillation can carry information has also been proposed for
other systems. A phase coding system using oscillations has also been proposed for
the olfactory system (Hopfield, 1995), and also for working memory. The idea that the
order of cell firings represents the order of events is perhaps the simplest application
of a phase coding for memory.

5.7 Evidence for the role of gamma oscillations

The sequence learning models of Hasselmo and Lisman (Hasselmo et al., 1996; Sohal
and Hasselmo, 1998; Lisman, 1999; Lisman and Otmakhova, 2001) have taken up the
idea that gamma, within a theta envelope, may regulate the packaging of information
transmission. However, its functional significance is still uncertain.

Most of the study of gamma frequency oscillation in vitro in hippocampus has
come about through recognition of the role of gamma in generating epileptic type

synchronised population bursts (Penttonnen et al., 1998). A satisfactory link between
gamma and memory has not yet been established. Traub et al. (1999) attempt to link

gamma frequency with changes in plasticity in vitro, in the following manner. In order
to induce gamma oscillations, a one or two point tetanic stimulus is applied, close
to threshold. However, a twice threshold stimulus produces first gamma and then a

frequency shift to the beta range (10-30Hz) with gamma superimposed, that Traub
et al. (1998) speculate is caused by changes in AMPA receptors.

For the moment, the lack of evidence linking memory and plasticity with gamma

in vivo, and lack of information about the role of gamma in the hippocampus means

that its inclusion in models of sequence learning remains speculative. Indeed, there is
some negative evidence: LTP is not preferentially induced at gamma type frequencies
in CA1 and CA3, although high frequency stimulation in dentate gyrus has been found
to be sufficient to promote (NMDA independent) LTP in the mossy fibre pathway to
CA3. More evidence is available that suggests the creation of transient, fast synchro¬
nising patches of synchrony in the entorhinal, dentate and pyramidal cell layers, via
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gap junctions.

5.8 Sharp wave and plasticity

It has been suggested by Cavus and Teyler (1998) that repeated 200Hz tetanus is a

reasonable analogue of sharp wave stimulation. It induces non-NMDA LTP in area

CA1, in particular in stratum radiatum, and also in the stratum oriens and stratum
radiatum of CA3. It probably achieves this by elevating intracellular calcium. This
form of stimulation also induced NMDA LTP, whereas theta type tetanus did not appear
to induce non-NMDA LTP, suggesting that there might be oscillation specific forms of

plasticity.

5.9 Models of sequence recall

There are three network models that attempt to use sequence learning to model hip-

pocampal dependent tasks. Both Lisman and Hasselmo combine sequence learning
and neuromodulation to store and retrieve sequences within a theta cycle. Both models
are influenced by a conceptual model developed by Levy's lab (Minai and Levy, 1993;

Levy and Wu, 1996; Levy, 1996; Wu et al., 1996; Amarasingham and Levy, 1997;
Smith and Levy, 2000), which explores the way hippocampal architectures might store
and retrieve sequences.

5.9.1 Sequence learning and recall using theta modulation

Lisman's model used the idea of theta enveloped gamma to cycle through a sequence

of items. While similar to the models of Hasselmo and of Levy, using a different
mechanism it also utilises the perforant path to provide excitatory context. Items of
recall are primed by perforant path inputs to be close to threshold, and then detonated
by mossy fibres. As it seems likely that the perforant path and mossy fibre inputs CA3
are antagonistic, rather than reinforcing, there is good reason to reject this model as
it does not add anything to the ideas already discussed. Lisman does speculate on the
possibility of reverbatory activity between CA3 and DG, allowing for cycles of recall.
It is required to take place within a gamma cycle (i.e., very quickly). Although, as we
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saw, CA3 seems to use a rebound effect from inhibition from dentate gyrus to optimise

plasticity, this is at the rate of the theta oscillation.

Hasselmo et al. (1996) have proposed a model whereby the level of cholinergic

input gates learning by controlling output (pyramidal cell) firing and enhancing LTP by

modulating the GabaB current during theta. Heteroassociative memory occurs between
the patterns in CA1, by the perforant path, and the patterns of activity in CA3 induced
by mossy fibre firing. Retrieval was by presentation of CA3 activity. We have already
noted that the schaffer collaterals and the perforant path synapse are located in different
parts of the dendritic tree. Potentially this means they can be modulated independently.
Hasselmo used cholinergic input to achieve exactly this. Acetylcholine was used to

suppress transmission through the stratum radiatum, with lower suppression in the

perforant path's region of termination. Successful retrieval results in higher activity in
the CA1 region, which in turn suppresses the septal input. CA3 is assumed to be an

autoassociator.

An initial criticism of this model was that cholinergic input diffuses through the
extra cellular space; it may not be specific or rapid enough to mediate fast switching
between recall and learning. Sohal and Hasselmo (1998)'s version of the sequence

learning device uses GabaB as amechanism for switching between recall, and learning.
The model uses the gamma rhythm within the theta rhythm to cycle through possible
sequences, and slow acting inhibition acts as an annealing parameter to settle on the
final sequence. Particular attention is given to this model here, as it is very close to
the sequence learning model discussed in the next chapter, but at a lower level. In
Sohal and Hasselmo's model, CA3 is assumed to be a sequence memory, performing
heteroassociative recall through the recurrent connections, and the focus has switched
from the modulation due to cholinergic input, to GabaB dynamics. GabaB receptors

operate on a slower time course than GabaA. The model hypotheses that the GabaB
receptors are on an interneuron that receives only septal (theta) input. GabaA receptors,

however, are modulated by both theta and feedback excitation from pyramidal cells.
This input is disinhibitory and, as GabaB modulation decreases, GabaA modulation
increases, due to the feedback activity inhibitory cells that receive excitatory input
from pyramidal cells.

The difficulty with this model is partly that it incorporates some quite low level
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details, without incorporating all of them.The argument in the paper is that this popu¬

lation of GabaB theta interneurons is required for sequence disambiguation. However,
in principle (see next chapter) sequence disambiguation of overlapping sequences does
not require annealing. Levy and Hasselmo both use context units - units that do not

represent items in the sequence, but link items. The construction of these units means

that sequences that have some ambiguous section are recoded to be less ambiguous,
as they will activate different context units.

On the other hand, the level of Gaba inhibition will be affected by the gabanergic
and cholinergic inputs that carry the theta rhythm. However, other commentators have
stressed the fact that it is not known whether these have a primary effect on the pyrami¬
dal cells, or the interneuron population. The overall effect of GabaB due to the septum
could be either inhibitory, or disinhibitory.

A very similar inhibitory system, with a theta modulated disinhibition, is analysed
in Bose and Recce (2001), to explain phase precession of pyramidal cells. The diffi¬

culty with models at this level is simply that that different types of interneurons and
neurotransmitters provide too much freedom for model building.

5.9.2 Modelling at the conceptual level

In the next chapter, we shall consider a model of sequence learning in the hippocampus
that attempts to divorce the implementation from the biophysical mechanisms. Mod¬

eling the hippocampus as sequence learning device, has been approached from a top

down , and also a bottom up perspective. Firstly, from the top down, one can construct

the simplest computational model consistent with hippocampal anatomy, and show that
it performs the task adequately. The disadvantage of this approach is that the resulting
model is rather under-determined. If the consequences of this were that the model was

extremely simple computationally, then this might not matter. The model considered
the next chapter is of this kind. In fact, as we will see, the model has replaced bio¬
physical parameters (that may or may not be correct) with computational parameters
that are necessary to make the model work, but do not necessarily have any ground¬
ing in reality. In chapter seven we will reduce the parameter space by considering an

even simpler version of the model. Secondly, starting bottom up one can model the
hippocampus in full biophysical detail, including the theta rhythm, and show that it
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performs the task. However, this approach also leaves the model under-determined,
as there are inevitably bound to be gaps in the biophysical description. Models like
those described in this chapter(e.g Hasselmo et al. (1996)) are more bottom up than

top down, but the choice of the details incorporated has been guided by top down
considerations.

5.10 Conclusion

We need to keep three issues separate.

1. It needs to be shown conclusively that the oscillatory pattern in theta and gamma
are used for selective learning and recall. The evidence we have so far presented
merely suggests this. Abolishing theta by lesioning the septum damages nor¬

mal learning and recall. However, this will damage the overall behaviour of
inhibition in the hippocampus. It might be possible to do more delicate pharma¬
cological manipulations, e.g., slow the rhythm, or partially abolish it.

2. There is the issue of whether theta provides synchrony, or whether phase shift¬
ing relative to the oscillation is critical information bearing signal. The role of
gamma oscillations in creating synchrony is an exciting area of research, but it
does not fit comfortably yet into the rather simple network models.

3. There is an issue of interpretation. Is the hippocampal representational code
genuinely predictive? We gave an example of a genuinely anticipatory code in
the pre-frontal cortex. The evidence from, for example, Wood et al. (2000) dis¬
cussed in the previous chapter is still ambiguous as to whether it is controlled
by the rat's anticipated action or its previous action. We suggest that it is more

plausible that the hippocampus provides what we call anticipatory recall of the
previous, individual trial. This information may be used by the prefrontal cortex
for planning, and other parts of the hippocampus (the hypothesised slow learn¬
ing system, perhaps in the temporal hippocampus). This proposal needs to be
entirely divorced from speculation about the functioning of the theta rhythm. As
the next two chapters set out, sequence learning is possible in a hippocampus¬
like structure without imposed oscillations.
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Chapter 6

Sequence learning in the

hippocampus: Part I

Memory should allow the present situation to act as a retrieval cue, and
when presented with a situation that is similar to some previously encoun¬

tered situation, it should retrieve the consequences...Pentti Kanerva 1984

6.1 summary

The contribution of the modeling study in chapter six is twofold- First, we examine
an existing model of sequence recall in a network model based on hippocampus type
architecture. Firstly we replicate the results of a number of papers by W.B. Levy's
group, but give as different analysis of the internal behaviour of the model. Secondly,
we attack the basis on which the learning rule and threshold setting mechanisms were

selected. The choice of threshold mechanism means that the model does not converge

to a stable activity state.This in turn means that the weight values in the network as

not as predicated by the analysis proposed by Levy's group. Therefore, part of the
motivation for selecting a learning rule that computes the conditional probability re¬

lationships between pairs of input and output units is lost. The problem of learning
and recalling highly correlated sequences of data is better addressed by using the tools
that have been developed to allow recall of correlated pattern pairs in heteroassociative
networks. These mechanisms will be examined and tested in chapter seven. A Pseudo

123
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code appendix contains details of the exact procedures used for training and testing the
networks described in this chapter.

6.2 Episodic memory

Marr's 'Theory of Simple Memory' (1971), described in his paper 'A theory of Archicor-
tex', prescribes how the hippocampus should be understood as a simple memory. On
this view,

• Simple memory is a fast, perhaps even one trial method of storing associations.

• It is for events that only occur once

• No prior knowledge is represented in the memory. In practice this means that
the memory is connected randomly

• It does not generalise across similar events, or categorise them. That is one

reason why the memory is content addressable

• Storage is temporary

Many of these features are familiar from the description of episodic memory in
chapter 1. This is not surprising, as Marr's motivation was to fit the computational
nature of his simple memory to the requirements of an episodic memory. Marr's theory
is a paradigm example of a top-down approach to modelling the hippocampus (see
Willshaw and Buckingham (1990) for a useful explication of his theory). The subject
of this chapter is Levy (1996)'s model for the recall of sequences, which should be
viewed in the same spirit.

We are considering how memories can be used to inform and support action choices.
There is a top-down distinction we can draw between two different strategies for mak¬

ing use of past experience.

Anticipatory recall Cued by the current situation, this strategy recalls the last time a

similar situation was presented and the immediate consequence of that situation.
Hidden within this is a judgement of similarity between the current and past

situations, as this determines whether or not the cue will be successful.
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Predictive memory Essentially the difference here is that the similarity judgement is
represented explicitly. How similar the current situation is to a past event weights
the representation of how similar the consequence is predicted to be. Secondly,
the prediction of the consequence is based on considering all the events of a
similar type.

For simple memories, such as the associative network (Willshaw et al., 1969), the
(Hopfield, 1982) network, and the networks studied here, recall involves a clean up

operation. The network will either recall a pattern or fail. It will recall a pattern that is
more similar to the stored pattern than the cue was to the pattern part. In fact the more

dissimilar the cue is from the pattern to be retrieved for recall still to occur, the 'better'
the memory. However, if you are trying to predict a future consequence, you should
not be more certain about the consequence than you are about the observation. So
already we can see that consequence and sequential recall are opposed to one another.

In chapter 3 we discussed the temporal asymmetry of NMDA dependent LTP, and
in chapter 5 we discussed the use of this property to recall sequences. In this chapter,
we will examine the implementation of this idea, as explored by W.B. Levy's publi¬
cations (Amarasingham and Levy, 1997; Levy, 1996; Levy and Wu, 1996; Minai and
Levy, 1993; Smith and Levy, 2000; Wu et al., 1996, 1998). This network modelling
approach attempts to relate higher level tasks to general properties of the hippocampal
system. It does not, therefore, seek to model explicit neurobiology, or neurobiologi-
cal phenomena, such as the theta rhythm. However, it is important that the model be
consistent with known neurobiology, as the functional/computational properties need
to be preserved in a more realistic model, or real system.

In the previous chapter, we concluded that the theta rhythm provided a window
of synchronised activity, during which learning occurred. This model takes a step

back and invites us to consider the properties of more or less synchronous update
schemes, where the only two important properties are the order of neural firing and
the distribution of synaptic strengths.
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Figure 6.1: This is the recurrent network architecture used for the simulations in this
chapter.

6.3 A sequence learning model of the hippocampal CA3

First of all, a pattern of neural firing in the hippocampus is represented as a binary
string, for both input and output. To enable the model to learn transitions between a

sequence of binary strings, it is assumed that the interval between string presentation
is equal to the conduction time through the recurrent loop, and this time interval is also
equal to the delay for feed forward inhibition, and feed back inhibition (conduction
plus synaptic delays). As interneuron synapses appear to be faster than pyramidal
cells, this is not unreasonable.
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6.3.1 Architecture

The architecture is loosely based on CA3 and the Marr network (described below).
Pyramidal cells in a single layer are connected recurrently to one another. A pyramidal
cell integrates input from two sources: 'teaching' input cells, that directly fire the cell,
representing the required output, and weaker input from the previous output. Whether
the previous time step's input can fire the cell is controlled by an inhibitory neuron that
provides inhibition proportional to both the teaching input and the output.

Increased activity in the inputs results in both higher excitation and higher inhibi¬
tion. This is a realistic assumption.

Figure 6.1 shows the structure of the network. The dimensions of the network are

as follows. The input layer, X, has 1000 neurons, as has the output layer, Z. As
described in Levy (1996); Levy and Wu (1996); Amarasingham and Levy (1997) the
connection matrix is randomly constructed with a connection probability 10%.

Note that there is no explicit role here for the perforant path input. However, in
chapter 3, we did discuss the possibility that perforant path input might simply act to
raise the firing threshold of the neuron in response to the schaffer collateral input.

6.3.2 Symbol definitions

Variables definition

Wyv ij weight between neurons i,j
t time step at current input

*1 external input to neuron i

Yi output before step function

z\ value of output

Free parameters definition

e learning factor
Kj inhibitory factor

KjXi1 inhibition due to feed forward excitation

Kr inhibitory factor

krZ:j-1 inhibition due to recurrent excitation

e threshold of step function
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o 1 Pre(t-l) 0

1 +

(t)

0 0 0

Figure 6.2: Contingency table shown for the postsynaptic rule

6.3.3 CA3 and Levy model

The following points are assumed in the architecture of the model described in the

previous chapters.

1. One granule cell is capable of firing one pyramidal cell

2. No LTP in mossy fibre synapses.

3. One to one correspondence between pyramidal and granule cells

4. Mossy fibre input very much greater than recurrent input.

All these assumptions are false, except possibly the last one, but arguably they are

reasonable simplifications.

6.3.4 Learning rule

The learning rule that is used in the sequence model described in this chapter is known
as the postsynaptic rule. If Z\ denotes the activity of cell i at time t, the change in
weight Wij between presynaptic cell i and post synaptic cell j is given by:

AWn = eZ]{Z\-x - W*-1) (6.1)

For binary neurons, learning (weight change in either direction) can take place in re¬

sponse to four possibilities. The postsynaptic rule exploits only two of these; learning
occurs only when the output cell is active. Figure 6.2 shows this in table form, for ease
of comparison with the variants of this rule described in the next chapter. The post¬

synaptic rule is a simple possible rule interpreting the temporal asymmetry. Secondly,
it has the property that individual weights saturate at 1, thus realistically preventing
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the weights from growing indefinitely (as in the case of the Hebb rule). The amount
of potentiation depends on the size of the synapse. This has the consequence that the
amount of potentiation due to an input pattern depends on the patterns previously pre¬

sented to that synapse and the current state of the synapse. This is an interpretation of
the Bi and Poo (1998) data that we discussed in chapter 3, section 3.7.

The postsynaptic rule belongs to a family of simple rules customarily used in simi¬
lar architectures, where modification occurs at different places in the contingency table
shown in fig 6.2. The advantage in using this one is only its relative claim to realism.
There is no claim that this is the optimal learning rule for this problem.

Wij -> V „ 1 (6.2)

6.3.5 Interpretation of the parameters

One reason given for the particular form of the learning rule is concerned with its
convergence properties.
The activity of the postsynaptic neuron, Post, is given by Z\ in the model.
The activity of the presynaptic neuron, Pre, is given by Zj"1 in the model.
For AWij —> 0,

P(Post — 1, Pre = 1)
P(Post = 1)

This is just the conditional probability P(Pre\Post).
For anticipatory learning, one might think that a rule that set the weights to P(Post\Pre)

would be a more natural choice, as it is easy to see how such weights could be com¬

bined to select the most probable postsynaptic neuronal firing from presynaptic inputs.
In the next chapter we discuss such a rule.

Choosing a learning rule that reflects the conditional dependencies between firing
events is inconsistent with the original idea of simple memory. Marr selected binary
synapses for the hippocampus; he did so on the grounds that real valued synapses, re¬

flecting probabilities of occurrence were inappropriate. Why? The simple memory was

designed to be a one shot learning system, automatically storing and recalling events
that occured at most once. The notion that you could extract meaningful information
about the frequency of co-occurrence of singular events simply had no purchase.

One further point is that it is not clear what the function of LTD is. It may not be
to represent information but rather to erase previously learned information. Chapter 5
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outlined some evidence that LTD occurs during sleep, triggered in the negative phase
of theta, that may depotentiate LTP from the positive phase of theta. As we saw in

Chapter 3, the NMDA dependent LTD depends on back propagating spikes. It may be
that back propagating spikes are blocked (see discussion in section 3.8) and LTD does
not often occur. This would be consistent with the numerous observations that LTD is

very difficult to stabilise in vivo in schaffer collateral synapses.
In Levy's model, the sequence is presented over a large number of cycles. This

does not seem to be a realistic training paradigm, for two reasons. Firstly, it requires
too many iterations. Animals learn much faster, and they learn in the presence of noise.
Minai and Levy (1993) investigated learning in the presence of noise; we shall not con¬
sider it here. The use ofmultiple iterations is common to many neural network models.
Also, recall in chapter 1 that the standard of theory of learning via the hippocampus
assumes that the neocortex requires multiple iterations from the hippocampus. Here
we suggest that the fast learning part of the hippocampus might train the slow learning

part, by using the septo-temporal connections.
This particular network can be trained on sequence disambiguation cycles in a

single trial. Even so, in our experiments, we are interested in whether we gain any

usable information about the structure of the sequence over the long training time.
Therefore the question of whether the learning rule converges as expected and assumed
will be examined.

Even if the weights converged to the expected values, there is still the question of
whether the network uses the information stored in the weights effectively. We shall
return to this question in chapter 7.

6.3.6 Threshold setting

Marr (1971) proposed a dual threshold where the firing condition of a neuron depended
on (i) the absolute value of the weighted summed inputs (the dendritic sum) exceeding
threshold and (ii) the number of modified active synapses. This takes into account the
fact that a neuron that fires more often will have more modified synapses. Obviously, a
special case that has been much analysed, as discussed in the next chapter, is the binary
valued (clipped) network where weights are either 1 or zero, and the dendritic sum is
equal to the number of modified active synapses.
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Here, the network implements a similar dual-control setting strategy, as defined
in equation 6.3. Firstly, the quantity Y* is calculated, which depends on the global
activity. This transformed sum must exceed the threshold 6 for the neuron to fire. The
behaviour of the transform in response to variable levels of activity is shown for a range
of parameters in figure 6.3.

This threshold transforms the sum of active weights for each neuron to lie between
0 and 1.

input activity

fyiFzp
Y' ~

£iwt'2ri+ K'Exi + <6,3)
3 j

s
v ' v V '

feed forward inhibition recurrent inhibition

z\ = i if y? > e,
Z\ — 0 otherwise.

Intuitively, whether a neuron fires as part of the next pattern depends on how many

of the inputs it has successfully captured from the previous pattern. However, it also
depends on how many other neurons it "expects" to fire.This expectation is calculated
in the two inhibitory terms that count the number of neurons that fired last time step,

Kr Ylj Zj"1, and how many externally fired neurons there are at the current step,
Ki Ylj Xj. Kr and Kj are free parameters that dictate the slope of the transform
applied to the dendritic sum. The dependence of the Kr term on global activity means

that the neurons do not fire independently. Figure 6.3 shows the threshold dependence
on activity. At low activities the neuron i transforms its input in a supra linear fashion,
while at high activities it transforms its input in a sublinear fashion.
The effect on Y* of the values ofKj and Kr, for a given activity level, is shown below
in figure 6.4.

6.3.7 Choice of Parameters

Amarsingham and Levy (1998) chose parameters to produce the desired range of ac¬
tivity in the network but they did not explain how these parameters were determined.
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Figure 6.3: The shape of the transformed sum Y* as a function of its dendritic sum,

Zj, for different levels of input activity (10 : 10 : 150), with Kr = 0.016, KR = 0.016.
Each line relates to a particular level of activity.

m value for Y. when X. - 10, ^ = 10, W ^ = 10

■s

Figure 6.4: The effect of changing parameters Kr, KR, for fixed activities. As X1- is
of fixed size (in simulation) and much smaller than it is possible to treat it as a

fixed parameter, and scale KR accordingly.
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Figure 6.5: Sequence data: the in¬

put sequence. Only the first 260 of
the 1000 neurons are shown.

Figure 6.6: Sequence data: the re-

coded sequence

They give the value of 6 as 0.8, and values for Kr and KR as varying between 0.011
and 0.18. We found values for KR throughout this range that gave the same variability
in activity, with Ki constant at 0.016, in the middle of this range. The effect of varying
both parameters is shown in Figure 6.4. Ki has a very much smaller effect on the
behaviour of the network as KjX\ « KRZf~1^

It might be possible to think of a more principled way of choosing parameters. For
example, to take KR as a measure of the background probability of firing within a

connected patch. However, Levy and Amarsingham have not adopted this approach.
In the appendix is a pseudocode description Proceedure 0 of how parameter searches
were conducted.

6.4 Learning a single sequence

This set of simulations set out to replicate the results presented in Amarsingham and

Levy (1998).
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6.4.1 Sequence recall

There is a sequence of L input patterns, each input pattern being a set of M active
neurons, made up of consecutively numbered neurons. Each successive member of the

sequence is generated by turning off the Ch lowest numbered members of the given
pattern and turning on the Ch next highest numbered neurons that are not already
active. Thus adjacent patterns in the sequence have M—Ch active neurons in common,
referred to as the overlap. See figure 6.5 for an example of such a sequence of patterns.
Amarasingham and Levy (1997) and Levy (1996) are interested in the tolerance in the
recall of a sequence to the degree of overlap between patterns in the sequence.

The network is trained on this sequence, the criterion for convergence being how
the final output of the network trained on the complete sequence compares to the output
on the previous iteration of training. The final output from the last training sequence,

composed of the original sequence and the activity of the context units, is called the
recoded sequence by Amarasingham and Levy (1997); Smith and Levy (2000); Wu
et al. (1996). During the testing procedure, this is then taken to be the stored sequence.

Figures 6.5 and 6.6 show examples of the original sequence and recoded sequence.

None of the published papers Amarasingham and Levy (1997); Levy (1996); Levy
and Wu (1996); Smith and Levy (2000); Wu et al. (1996) gives a complete charac¬
terisation of the sensitivity of network behaviour to different parameter values. For
the purposes of comparison, the results of Amarasingham and Levy (1997) were repli¬
cated, and compared to the capacity estimates shown there.

Simulations

There were N = 1000 neurons and M = 8 active neurons per pattern. Parameter
searches were conducted across the range 0.008 < KR < 0.20 for sequence length
L = 36, for overlaps of 0, 2, 5, 6. The parameters that produced the best performance
were then tested over sequence lengths of up to 200. All simulations were written in
Matlab 5.0 and run on Compaq 600MHz 2-processor workstations. A typical single
run, involving storing and retrieving a single sequence, took 1 hour compute time.
Results from parameters searches are shown in the appendix, in table 1.

Storage. Each pattern in a sequence had a total of M active neurons, the next

pattern in the sequence having Ch neurons turned off and Ch turned on. This was done
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in two different ways in the experiments reported here: shifted sequences had neurons
1,2,3,M active in pattern 1, Ch, Ch +1, Ch+2,M, M +1,M +2,M +Ch
active in pattern 2 and so on; in randomly overlapping sequences, pattern 1 had M
randomly chosen neurons out ofN made active, pattern 2 had Ch of the active neurons
in pattern 1, chosen at random, switched off and a further Ch, chosen at random,
switched on to replace them; pattern 3 was generated from pattern 2 in a similar way,
and so on.

New sequences were created for each training run. Each network was created and
initialised for each individual training run with stated parameters.

Algorithm A in the appendix is a pseudo code description of the training and testing
procedures for this network.

Testing. Recall was tested by presenting the first transition in the sequence (i.e.
the first and second patterns of the recoded sequence). The network was then allowed
to retrieve the successive members of the sequence for the number of time steps of the
learned input sequence.

The recoded sequence consists of between 20 and 80 neurons per time step in a

typical run. Amarasingham and Levy (1997) define the activity as the average number
firing at a time. The original sequence therefore can account for a maximum of 50%
of the recoded sequence.

Amarasingham and Levy (1997) define successful recall as follows

the network produces a minimum of 75% ordered recall of the recoded
sequence during testing

This is taken to mean that 75% of the responses to the last presentation of the input
sequence are identical in the test condition. There is an ambiguity here, as to whether
this is 75% of the individual patterns or 75% percent of the neural responses in each
pattern; it is also not clear whether false positives during recall are included. Other
papers use 70% (Levy and Wu, 1996) to 85% (Wu et al., 1996) of the sequence.

Amarasingham and Levy (1997) further impose the requirement that successful
recall performance of this kind must be produced in 4 out of 5 randomly constructed
networks. The table of their results shown in Figure 6.7 gives the maximum length of

sequence that could be reliably recalled under the conditions stated, for a given amount



136 6 Sequence learning in the hippocampus: Part I

of pattern overlap between one pattern and the next in the original sequence. They call
this maximum length of reliable recall the capacity of the network.

Rather than classifying the results into successful and unsuccessful cases, the re¬

sults presented here show the quantitative relationship of performance to sequence

length - we are just as interested in what happens when recall fails as when it succeeds.
To capture the closeness of the input sequence and the recalled sequence, we decided
to use the normalised cosine and average it across all patterns in the sequence. The

figure of 75% overlap between input and recalled sequences cited by Amarasingham
and Levy (1997) corresponds to a cosine score of between 0.7 and 0.8.

To calculate the Performance involving vectors A and B of equal length, we calcu¬
late the normalised scalar product

Performance = A.B/|A||B|.

Presented below are results from networks trained on the original shifted sequences

used by Amarasingham and Levy (1997) and also on a set of randomly overlapping
sequences constructed to have the same amount of pairwise overlap, but where the
active neurons are selected randomly, as explained above.

6.4.2 Results

Figure 6.7 shows results from Amarasingham and Levy (1997). As their analysis is
based on the asssumption that each neuron is made active and then becomes inactive

only once in the recoded sequence, they included in the table the number of neurons
that violate that assumption. In addition, they included the number of neurons that do
not fire ever in the course of the recoded sequence.

6.4.3 Experiment 1 - shifted sequences

We replicated some of Amarasingham and Levy (1997) Amarsingham's results exactly,
for shifted sequences with giving overlaps of 0, 2, 5, 6. in batches of three. As already

explained, parameter searches had to be conducted for each value of overlap.
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Overlap Capacity Activity Unused Multiple
0 20 0.051 144 155

1 24 0.048 153 105

2 33 0.049 122 121

3 47 0.064 64 45

4 57 0.061 59 15

5 90 0.055 45 15

6 110 0.050 63 6

7 160 0.054 113 15

variable 22 0.138 77 15

Figure 6.7: Results reproduced from Amarasingham and Levy (1997). Capacity is the
maximum length of sequence for which there was good recall, according to the given
criterion.

6.4.4 Experiment 2 - randomly overlapping sequences

We ran an additional set of overlapped sequences, at the same set of overlaps: 0, 2, 5, 6.
The purpose of Experiments 1 and 2 was to compare our empirical estimates of the
capacity of the network with Amarasingham and Levy (1997) and Wu et al. (1996).

6.4.5 Results

Figure 6.8 shows successful performance on the two types of sequences (where an av¬

erage cosine score of 0.75 is taken as indicating successful performance) compared to
the results obtained by Amarasingham and Levy (1997). Our results showed great vari¬
ability and are averages over three different rounds. The discrepancy between Amars-
ingham's results (figure 6.7) and the results reported here may be caused by the fact
that in our case parameters were optimised for performance and additionally, training
was run for 500 rather than 300 cycles. We achieved better results with the random

overlap case.

Amarasingham and Levy (1997) argue that the network performs better on overlap¬
ping sequences than on sequences with zero overlap ifthe total number of neurons in-
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Overlap Capacity

Levy

activity Capacity

shifted(Exp. 1)

activity Capacity
overlapped (Exp.2)

activity

0 20 0.051 45 0.036 45 0.038

2 33 0.049 50 0.040 65 0.041

5 90 0.055 100 0.080 100 0.081

6 110 0.050 120 0.096 130 0.097

Figure 6.8: Capacity: results from experiments 1 and 2

volved in the retrieved patterns is taken into account. For example, for zero overlap, the

capacity is 20, meaning that 20 x 8 = 160 neurons are involved in successful retrieval;
for an overlap of 4, the capacity is 57, involving 4 -f- 57 x 4 = 232 neurons. However,
for our revised results it is a matter of interpretation. For example, if the number of
"free units" is taken into account, the network performs best on non-overlapping se¬

quences. A sequence of zero overlap with 45 patterns, requires 45 x 8 = 360, whereas
a sequence with overlap 6, and 130 patterns requires 6 + 2 x 130 = 266 neurons.

6.4.6 Quantitative investigation of performance

Figure 6.9 shows how the performance varies as the network exceeds capacity, for dif¬
ferent values of the parameter KR which yield stable behaviour. The network performs
better and at higher capacity with the lowest stable value of KR — 0.012. The outlying
points shown in red for KR = 0.011 apparently have best performance but the patterns
in the recoded sequence do not form a distinguishable sequence. These results illus¬
trate the sensitivity of the performance measure to the closeness of the learned pattern
to the original sequence and the importance of the network showing the correct dynam¬
ics. Tables of the results of training on sequences with different degrees of overlap are

included in the appendix, in table 2 together with graphs that show information about
the comparable structure of the two types of training sequences, in figures 2, 3, and 4.
Note that, since the more recurrent inhibition there is, the lower the level of activity,

activity is inversely related to KR.
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Figure 6.9: The figure shows the performance on sample sequences for an overlap of
2, over values of KR yielding stable behaviour. Outlying points in red show the cosine
performance of the degenerate case for KR — 0.011.
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6.5 Performance and Capacity

The expression given in Wu et al. (1996); Amarasingham and Levy (1997) for estimat¬

ing sequence capacity, C, is given in terms of E, the expected number of time steps on

which a neuron is active and a, the fraction of the N neurons active per time step.

C = - (6.4)
a

Wu et al. (1996) state this relationship but do not derive it. On their assumption
that during recall of the entire sequence, each neuron fires in a single burst of activity
for E successive time steps, the total number of occasions on which neurons are active

during retrieval can be calculated in two ways: the total number of neurons active per

time step (aN) multiplied by the number of time steps, C, giving aNC; or the number
of times for which each neuron is active, E, multiplied by the number of neurons, N,

giving EN. Setting these two quantities equal yields equation 6.4.
Their assumption is not justified; their own results show, for example, that some

neurons are never active (figure 6.7). Figure 6.10 shows the actual capacity of the
network compared with estimates using equation 6.4, for various different amounts
of pattern overlap. The crosses show the actual length of the input sequence, and the
circles are the expected maximum capacity from equation 6.4. This gives a spread of
capacity estimates. The empirically determined maximum is in fact (from figure 6.8),

roughly the lowest estimate.
The effect of the level of activity
The data in figure 6.9 suggests that the network performs better at higher activities

(lower value of KR). Although this isn't guaranteed, it suggests that capacity and ac¬

tivity are not inversely related. We therefore examined the effect of sequence length on

activity, as shown in figure 6.11, and then activity on performance, in figure 6.12. This
confirms the trend for higher activity to result in better performance. The explanation
is twofold. Firstly, activity is a dependent variable, and one of the things it depends on
is the length of the input sequence. The more patterns that are stored, the more con¬

strained is the recoded firing pattern. Secondly, the higher the activity of the recoded

sequence, the more the network behaviour is controlled by its internal dynamics, and
the fewer of the neurons in the original sequence have to be retained to give the same

performance score.
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Figure 6.10: Estimation of capacity derived from sequences of length 40. For a par¬
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60 80 1 00
sequence length

Figure 6.11: This graph shows how activity varies with sequence length, for networks
run for 3 different values of KR, with an overlap of 2, within the bounds of stable
performance.

Equation 6.4 describes a simple inverse relationship between activity and capac¬

ity. One might expect that performance at recall might show the same relationship, as
performance ought to be correlated with length. And in fact it is. But the relation¬

ship between capacity and length is not the relationship described in 6.4. Compare

figure 6.12 with figure 6.9. There is clearly a nonlinear transition between recall and
unsuccessful recall at the lower end of the activity scale.

A similar transition can be seen in the region of high activity. However, the sharp
red line in 6.9 shows that this transition is not detectable in the measurement of perfor¬
mance. In each case, these transitions reflect changes in the underlying oscillations in
the network.

6.6 Oscillations and performance

Amarasingham and Levy (1997) observe that the network oscillates, meaning that the
activity level fluctuates widely, from time step to time step. They assume that "the
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15 20 25 30 35
average activity in the last 50 epochs

Figure 6.12: This shows the data used for figure 6.11, plotted to show the effect of
activity on performance.

network's coding converges [stochastically] if the activity converges [stochastically]".
The importance of convergence is that only once this has happened can one expect the
learning rule to produce convergent weights. Amarasingham and Levy (1997) assume
convergent weights.

Figure 6.13 shows an example of successful recall, accompanied by non-convergence
of activity. Close inspection of the results of training over a long period reveals that the
criterion of 75% for successful performance is reached by the 300th cycle, by which
time the output is stable (green crosses, left hand diagram). Yet by the 300th cycle, the
activity is still oscillating wildly.

In Figure 6.13 we compare three ways of evaluating performance on the task. The
graph shows the similarity of the recoded sequence to the original sequence, alongside
the similarity between the recoded sequence and the recalled recoded sequence. Each
sequence was recalled twice, with the feed forward component threshold during recall
set either to zero to the level during learning. Systematic comparison of the threshold
showed the at the best recall generally occured with the threshold set at the value used
during learning. An additional example is included in the Appendix, figure 6.
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Figure 6.13: Network A: Sequences of length 40 and overlap 2 were stored over 500
cycles. Graphs show the evolution of performance (LHS) and activity (RHS) over
the training epochs. On the LHS; Green crosses: average similarity between each
output and the corresponding output on the previous cycle; red circles and dots in¬
dicate: performance on recall compared to the recoded sequence, for two different
threshold schemes; lower threshold: Feed forward inhibition disappears during recall
as Zi = zero, fixed threshold: Feedforward inhibition treated as constant, set during
recall to the value during learning. Blue crosses: similarity between the test output se¬

quence and the original input sequence. On the right, neural activity over the 40 x 500

timesteps of the 500 cycles of training is shown.
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The conclusion is that successful performance on this task does not require con¬

vergence of activity. Performance as calculated is summed over all patterns, thereby

ignoring the possible variation between individual patterns. The next section shows
that the underlying oscillations can be qualitatively characterised into four types.

6.7 Oscillations

There are four ways in which the number of active neurons changes over time. Here
we classify network oscillations qualitatively. In networks of type A, figure 6.13 both
the mean number of neurons and the oscillatory fluctuations from the mean drift over
time; in type B the oscillations are unstable; in type C, the oscillations are stable but
in recall the performance does not meet Amarasingham and Levy's criterion; in type
D the oscillations are stable and do meet the criterion. Degenerate non-oscillatory
behaviour is also seen where the same proportion of units (which may be 100%) are
active each time step. These behaviours are not illustrated.

We are interested in how stability in learning and testing conditions, as measured
by the performance criteria, compares with network stability. Ideally we want stable
conditions, which are also convergent conditions, to correlate with good performance.
In figures 6.14, 6.15, 6.16, (network B), oscillatory behaviour is illustrated that is un¬

stable yet correlated with good performance. This network would have been classified
as capable of successful recall at the 330th epoch. However, network C (figures 6.17,
6.18), run with sequence length L = 101 but otherwise the same parameters, produced
a stable oscillation, but did not perform above criterion on recall. Finally, network D
(L = 111; figures 6.19, 6.20) was both relatively stable and on average above crite¬
rion. However, at the 300th epoch it would have been classified as unsuccessful. The
divergence in behaviour of networks B and D is not predictable from the parameter
values.

These three examples serve to illustrate that the criterion employed by Amarasing¬
ham and Levy (1997) aren't nearly strict enough (even if the principle of assessing the
recoded sequence rather than the original sequence is accepted). The large oscillations
in the stable network suggest a reason why convergence may not occur. Although the
sums over all weight change within an epoch may (in fact does) converge to zero, the
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modulus of the sum may be quite large.
We conclude that the stability of the network is not predictable from input param¬

eters When learning is permitted, this is a response to the particular connection matrix
and the demands of the input sequence, both of which vary randomly. Smith and Levy
(2000) assume normally distributed dendritic sums and considers the network as a dy¬
namic system, and they show if the oscillation remains bounded between one standard
deviation of the expected mean activity, the network converges to a stable oscillation.
Although they show the relationship between mean activity and inhibitory parameters

in the case without learning, they do not show a relationship between the bounds of the

activity and parameters. Nor do they show that the relationship between mean activity
and parameters holds for the case of learning.

One implication of these results is that the learning rule cannot iearn' the condi¬
tional probabilities expected, if the network does not stabilise, as those probabilities
do not stabilise. The results shown in the next section confirm this.

6.8 Distribution of weight values

A realistic weight distribution in a pyramidal, hippocampal neuron should be either
flat or approximately normal. Amarasingham and Levy (1997) and Smith and Levy
(2000) claim that the learning rule produces an approximately flat weight distribution.
However, the weight distribution found empirically looks bipolar, as shown in figure
6.23.

In the situation when the network apparently converges, does the learning rule then

converge to produce the expected weight values? We calculated the expected weight
values given the final recoded sequence for two cases when performance had reached
criterion. Figure 6.21 shows the histograms of the distributions of the expected weight
values, for each particular weight value. If each weight value equalled its expected
value, then all points should lie on the diagonal. 6.13 shows the weight distributions at

800 epochs.

Figure 6.22 shows the typical distribution at the end of a 500 training cycle. To
confirm convergence of weight values, the network in 6.21 was trained for a further
1000 epochs, in 100-epoch slices. Weight convergence did not improve.
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Figure 6.14: Network B: Activity shown over the entire training time. Parameters:
Kr — 0.015, L = 131,overlap = 6, 40 x 131 = 65500 time steps. A sharp transition
between a relatively stable oscillation, and a stationary state is seen. This network
would have just failed to have been classified as successful by Amarsingham and Levy,

Figure 6.15: Enlargement of figure 6.14 for pattern presentations 38500 to 40600.
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Figure 6.17: Network C: This figure is an enlargement from a stably oscillating net¬
work Parameters are KR = 0.015, length = 101, the same parameters as above, at the

Figure 6.18: Network C, while stable, would have been classified as unsuccessful by
Amarsingham's performance criteria.
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pattern presentation 40500:41500

Figure 6.19: Network D shows a stable oscillation.Parameters are KR - 0.015, length
= 111, overlap = 6

Figure 6.20: While Network D shows a stable oscillation, and satisfies the recall crite¬
rion, it does not do so for every oscillation. In fact at the 300th oscillation, it is below
performance criterion, and would therefore have been classified as unsuccessful. Pa¬
rameters are KR = 0.015, length =11, overlap = 6
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0.5 0.6

weight values

Figure 6.21: Expected weight values versus actual weight values I: Contour plot of the
frequency histograms of the expected values of weights of a particular actual value. In
this case, convergence of weights and expected values is approximately correct.

0.5 0.6

weight values

Figure 6.22: Expected weight values versus actual weight values II: Contour plot of the

frequency histogram of expected weight values, of weights of a particular actual value,
for a network that is apparently in stable oscillation. In this case, weight convergence
is very poor.
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Figure 6.23: Weight distribution that is modelled as flat, rather than as bi-polar by
Amarasingham and Levy (1997)

The conclusion is that good performance on the task does not require convergence

of either weights or activity.

6.9 Conclusions

Amarasingham and Levy (1997)'s analysis is based on the assumptions that the weights
had converged and the weight distribution is flat. It turns out that in the cases they
considered the weights had not converged. We found that when there was convergence

the weight distribution was not flat.
The implications of the replication study above are as follows.

1. Convergence is not necessary for the sequence recall task.

2. This is fortunate, as this study shows that convergence, which has been claimed,
does not take place.

3. Lack of convergence means that the desired conditional distribution is not repre¬
sented in the weight matrix.

We noted at the beginning of the chapter that Levy's model was an attempt to marry

idea of the sequence recall with that of prediction. We also noted that this attempted
to combine two inherently conflicting goals. However, if the network is not required
to learn probabilities, the lack of convergence may not be very important, particularly
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if we view the hippocampus as a temporary memory store, which is thus necessarily
unstable. Part of the instability is caused by the wayward activity dynamics, caused by

activity based thresholding. The next chapter will consider a solution to this problem.
The remainder of this chapter will consider two other aspects of the model:

1. whether introducing a more structured weight matrix has any effect on the model;

2. whether sequence disambiguation really is a good model of transverse pattern¬

ing.

6.10 Changing the weight matrix

Ishizuka et al. (1995)'s data (see chapter 3, section 3.4.4) indicates that the CA3 re¬

gion of hippocampus is constructed more like a densely woven rug incorporating sev¬

eral layers than the random 'conjunction' box of the associative net-type architecture.
We have noted that temporally situated neurons tend to project septally and septally
situated neurons project temporally.

It is an assumption of the model that the network connection matrix is asymmetric.
In some circumstances, symmetric and asymmetrically connected attractor networks
can show very different dynamic properties. If the zones of maximum probability of
connection are roughly the same in both directions, as it appears from Li et al. (1994),
then the probability of symmetric connection becomes high, even if the connections
are sparsity of connections remains the same. The increased likelihood of reciprocal
connection lead us to experiment with the tolerance of this kind of network for sym¬
metrical connection.

The crucial dynamic behaviour shown by the network is that of aperiodic oscilla¬
tion. As we saw in the previous section, periodic oscillation, where the network oscil¬
lates stably through a series of patterns, does not necessarily converge to an oscillation
through the patterns in the learned sequence. Increasing the proportion of symmetri¬
cal connections allows the periodic behaviour to increasingly dominate the networks
behaviour. The dynamic behaviour of periodic and aperiodic oscillation is described
in Minai and Levy (1993) for fixed weights, controlled by the parameter settings that
control the relative strengths of the excitatory and inhibitory connection strengths. The
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learned sequence is imposed on these underlying dynamics, most successfully when
behaviour is aperiodic. Minai and Levy (1993) identify the ratio of excitatory and

inhibitory inputs as critical.

6.10.1 Experiment 3: symmetrical connection

For networks trained on an overlapping sequence of 25 patterns, we ran a parameter
search for the asymmetric weight matrix. We then ran a series of trials using sta¬
ble parameters taken from the middle of the stable range, for different proportions of
symmetrical weights. Construction and training of networks was performed according
to Algorithm A in the Appendix, with modifications described in the section in the
Appendix Experiment 3. Figure 6.24 indicates that the proportion of symmetrical con¬
nections that disrupts this behaviour is much higher than the 10% of the connections
being symmetrical which represents the amount of assymetry in a network with 10%
connectivity if the connectivions are distributed at random.

The issue of the extent of symmetrical connection in CA3 is one that must resolved
empirically.

This experiment does not show conclusively that this type of aperiodic oscillatory
behaviour cannot occur in symmetrical networks. It does however suggest that the pro¬

portion of symmetrical connection is a critical parameter in dictating the behaviour of
any particular network. Li et al. (1994)'s observations also suggest another intriguing
possibility. This is that some of the observed boutons are silent. Here the idea is that
the network is sparsely connected in the sense that only a few connections are active at

any one time, but each neuron has much larger set of potential connections that it can
activate; ie, these symmetrical connections do exist but are silent.

6.10.2 Conclusions

This section has considered oscillatory behaviours in this neural network in their own
right. However, it is extremely unlikely that CA3 ever shows these kinds of spon¬
taneous oscillatory behaviours. In the previous chapter, we discussed the nature and
biological control of oscillations in CA3; none of them is generated by the sponta¬
neous firing of pyramidal cells. Models of these oscillations, including this one, have
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all treated sequence recall as a property to be imposed on the underlying oscillations.
The next chapter will consider sequence storage and recall without oscillations. It turns
out that storing sequences is easy, whereas stabilising oscillations is much harder.

6.11 Learning more than one sequence

The problem of learning and recalling more than one sequence has been approached
using the sequence disambiguation problem as a model for certain kinds of configural
learning tasks. In particular the negative patterning task in Wu et al. (1996, 1998) and
the transitive reasoning task in Smith and Levy (2000); Levy (1996).

The possibility of modelling these configural tasks as sequence learning tasks has
been treated as indirect support for sequence learning models of the hippocampus. We
argue here that the sequence learning version of the negative patterning task does not
discriminate between the hippocampal, and nonhippocampal versions.

6.11.1 Multiple sequences

An experiment was performed to tested the performance of the network on discon¬
nected sequences to see how well a sequence survives when trained on a new episode.
A sequence of randomly selected patterns was divided into five separate input events,
and then each input sequence of ten 8 patterns trained and recalled separately. The
experiment was performed at five different values of KR.The accuracy of recall from
the network is shown in figure 6.25. The most recently stored sequence, shows the
best recall and the sequence stored first was recalled least well. This suggests that the
degradation of recall with further learning is a general property of the LTD, rather than
an effect of low capacity. A recency effect is also reported in Greene et al. (2002).
Greene et al. (2002) also claim to find a primacy effect at high levels of activity, but in
an overall context of poor retention.

These results suggest that the storage of separated sequences reduces the capacity
of the network. Greene et al. (2002) overload their network . They argue that this is
a realistic model of memory in list learning, as list recall and recognition tasks aim
to overload working and medium term memory. Although our results are consistent
with Greene et al. (2002), in our data at most activities sequences 'aged'. Were this an
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Figure 6.25: Recall of the first sequence was poor at all values of KR, remaining within
0.4-0.5. The graph shows the relative performance of the middle and most recently
stored sequences. All sequences improved slightly as KR increased, until the final data
point where all became suddenly worse, apart from the middle sequence.

accurate model of episode storage, it would be psychologically possible to judge the

recency of an event by the clarity of the memory! Recency effects in list learning are

usually limited to the last few, or last items.
The next section discusses how the sequence disambiguation problem has been

used to model configural learning tasks. We will also consider whether there serial
position effects in an underloaded situation. To do this, we invesitigate the effects of

string and recalling sequence in just one trial
We first discussed the configural learning problems in chapter 1, section 1.12.4,

as animal models of 'relational memory'. Wu et al. (1998) present a version of the

sequence disambiguation problem constructed to resemble the negative patterning task,
as described in Alvarado and Rudy (1995).

A+ vs B -

B+ vs C-

A- vs C +

This is essentially a sequence disambiguation problem with six se¬

quences, shown in Figure 6.26

Clearly, this is not only a model of configural learning, but an implicit theory about
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the role of sequence recall in action selection. Both rewarded and unrewarded action
selections contribute equally to the established memories. Errors during learning are

entirely due to interference between the recall of learned sequences with overlapping
elements. It seems unlikely that in the experimental case these memory traces in the
hippocampus are the only memory traces contributing to the hippocampus. Wu et al.
(1998)'s method of learning the problem is to stutter, or repeat each input pattern three
times. This doctoring of the input is necessary as they claim that otherwise the network
cannot form " context units" and therefore cannot learn the problem. We interpret this
rather ad hoc solution as a solution to the problem of controlling activity dynamics in
the network. In section 6.5 we mention that activity is dependent on length( or , more

accurately, the number of modified synapses in the network, pattern set pair- see next

chapter for explanation). If the sequences are too short, the network doesn't function
very well. Intuitively, this is because learning a small number of very sparse patterns
is not sufficiant to move the network into a region of stable activity.

However, there is a difficulty in interpreting this task. Wu et al. (1998) emphasise
the importance of this being a study of context dependent learning. They then equate
context dependent learning with learning to discriminate on the basis of recent past.
In Wu et al. (1998)'s problem, their representation is more akin to the presentation of
slightly similar inputs for discrimination. Stimuli A and B form a complex stimulus,
as do B and C, A and C. Discrimination based on complex stimuli formed by con¬

junctions of stimuli is not necessarily hippocampally dependent. In chapters 1 and 2
we discussed the 'feature' negative patterning task, where the rat has to use a context
feature to discriminate the cases where A and B are positively reinforced. Wu et al.
(1998) treat the reinforced and unreinforced training instances as equivalent.

X-> A+

A-

X->B -

B+

This version of the task is not hippocampally dependent.
There is also an important distinction to be made between an ordinary conditioning

task, and conditioning task plus context. Philips and LeDoux (1994) found that dorsal
hippocampal lesions affected conditioned freezing (a measure of the rat's expectation
of footshock) to context, defined as the box in which conditioning took place, only
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Some Inputs tor the Transverse-Patterning Problem
Unstuttered Stuttered

Adapted from Wu et aL (1998)

Figure 6.26: Sequence representation of the transverse pattern task
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when it was the background to a conditioning CS and US pairing within the task.
When the background was there in the foreground of the task (i.e., the direct stimu¬
lus) paired with a single element conditioned stimulus, this conditioned freezing was

unaffected by hippocampal lesions. Straightforward stimulus response, or fear condi¬
tioning, is not hippocampally dependent. This experiment reinforces the point that one
cannot necessarily treat any stimulus that provides means of discrimination as context.
It also cannot be assumed that interfering contexts necessarily have a detrimental effect
on task performance. In recall tasks studied by Gaffan and Parker (1996), interfering
contexts in fact removed them from consideration as relevant stimuli, thereby improv¬

ing the performance of intact animals on a hippocampally dependent task (Gaffan and
Parker, 1996).

However, in chapter 2 we saw that there was an effect on recall of the proactive
interference that was trial interval dependent. The negative patterning task showed
effects of interference from the previous trial, that we characterised as proactive inter¬
ference. This effect is hippocampally dependent. In chapter 2 we argued that this was

best explained as an example of recall from the previous trial acting to bias recall in the
next trial. In chapter 1 we discussed the importance of distinguishing effects of recall
from acquisition in these sorts of tasks, but observed that in practice it is impossible to

prevent new acquisition affecting a so-called test trail. In this section we follow Levy's

reinterpretation of the negative patterning task, and show that what appeared to be an

effect of recall, in Han et al. (1998), can be modelled as an effect of learning, provided
we assume that the rat continues to learn during the recall phase.

6.11.2 Disambiguation

Experiment 4.1 tested the network's ability, in one trial learning, to correctly disam¬
biguate two sequences with an common middle section. Two sequences which shared
three patterns in a sequence of eight were trained and performance was compared with
that in a control task involving a pair of independently constructed sequences. The
networks were tested, in 20 batches of 25, on these two versions of the task. Firstly,
a parameter search was run to check the parameters for performance on a continuous
sequence of length 18 (see also table included in Appendix A). Then the network was

trained on the first sequence and then tested on the recall of it. After training the net-
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work on the second sequence, it was retested on the first sequence. Assuming that
the requirement for success on the task is disambiguation, the number of patterns in
the part of the sequence following the common section that failed to be retrieved was

recorded (figure 6.27). Failure could occur in two ways: failure to recall any pattern,

or recall of the incorrect pattern.

The underlying failure to learn the sequence was taken into account for both first
and second trials, and was not different in the two cases. The results in Figure 6.27
were generated by subtracting the underlying failures of learning from the failures of
recall. The bars show the distribution of number of failures of recall across the 20 sets.

Failure is defined as failure to recall one or more patterns of the sequence.

This task was designed to ressemble the task described by Han et al. (1998) but
without representing reward contingencies specifically. The comparison depends on

the observation that it is the learning of the one half of the task that is impairing recall
of the other half.

This system thus possess the same qualitative behaviour as shown in the Han et al.
(1998) experiment, thus supporting the idea that learning of the previous test trial is in¬
terfering, or biasing recall of the second trial. However, this effect is partly accounted
for by the relatively low capacity of the system. The other contributing factor is prob¬
ably the fact that since the amount of LTD is proportional to the size of the synapses,

LTD caused by the overlap will have a relatively large impact on the synaptic weights.
The same behaviour is seen in decay across recall of sequences in the context unit

network. This is therefore a general property of the recall in the network with LTD that
does not converge.

6.11.3 Conclusions

The conclusion to be drawn from these experiments is two fold. Firstly, it is possible
to create proactive interference in models, However, this may be an artifact of this

particular learning rule, As we have seen, the Bi and Poo (1998) data suggested that
LTP was a proportionally much larger effect than LTD.

This does highlight, however, the need to keep the recall of previously learned in¬
formation apart from new learning. We know from recent studies on re-consolidation
in the amygdala that such information may not be kept separate. However, the hy-
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I interfering sequences
I control

failure rate

Figure 6.27: Failure rates on two overlapping versus two random sequences. This
figure shows a frequency histogram of failure rates, as defined in the text, for the first
stored sequence of the pair when retrieved on the second test trial compared to the first
trial. Two cases are shown: interfering sequences with an overlapping section (blue);
control case where the sequences were constructed randomly. There was zero failure
rate for the second sequence. Mean of initial weights: 0.03, Kj : 0.014, KR : 0.014,
9 : 0.8, e = 1
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pothesis developed in chapter 2 is that this may be the special contribution of the hip¬

pocampus, especially the dorsal hippocampus.

6.12 Summary of chapter

This chapter shows that sequence disambiguation may be performed in a sequence

learning network without any special reliance on physiological features such as theta

rhythm modulation. This tends to invalidate the arguments made in some of the more

biological models, e.g., Sohal and Hasselmo (1998), that something like the theta

rhythm, or acetylcholine modulation is necessary.
However, we also saw that the learning rule studied here does not produce the de¬

sired convergence in this architecture, probably due to unlearning through LTD, and
through unstable dynamics. Note that in our simulations, the parameters used con¬

strained the activity dynamics.
In the next chapter we shall consider what the minimum requirements are for a model
of sequence learning.



Chapter 7

Sequence learning in the

hippocampus: Part II

7.1 Introduction

The model described in the previous chapter, although it is presented as a simple con¬

ceptual model, is not the simplest one. For the purposes of comparison, this chapter
describes a simpler model, the Associative Net, a heteroassociative matrix memory

(Willshaw et al., 1969; Willshaw, 1971) with clipped weights. Although this is nor¬

mally used for a cued recall task it can be employed as a sequence recall device when
trained on a special set of a patterns where each recalled pattern acts as the cue for the
next pattern, a preliminary investigation of which is given in Willshaw (1971).

This simple device works surprisingly well. The second part of this chapter investi¬
gates how performance is affected by the use of real valued learning rules. Performance
with the learning rule and threshold scheme proposed in the Levy model is evaluated
against the simpler architecture.

The model is tested on its ability to learn and recall sequences over one trial, as one
trial learning is closer to the real situation in the hippocampus than using an algorithm
that takes many iterations.

We are interested in hippocampus-like models, and therefore we are interested in
the learning of sequences in partially connected networks. It is impossible for the
sparse networks considered in the previous chapter to learn and recall small size pat-

163



164 7 Sequence learning in the hippocampus: Part II

terns in a one trial situation, as the probability of neurons hitting modified synapses

is too low. Evidence was also presented in chapter 3.10 that sparsity levels in CA3

may have been over exaggerated. That chapter discussed the existence of patches of
very dense connectivity, between 50 and 70%. We suggest that a patch of CA3 (dor¬
sal, perhaps particularly proximal) is particularly suitable for sequence recall, so that

sequence order information can be passed to other parts of CA3. Proximal CA3 has
the local recurrence consistent with these memory models

The problem of recalling patterns from fully connected associative network type

devices has been well studied for binary and linear Hebb rules (Willshaw and Dayan,
1990; Dayan and Willshaw, 1991).

7.2 Matrix memory

The matrix memory shown in figure 7.1 stores the outer product of two vectors with

binary valued components on a grid of on/off switches. Each weight takes the value
1 when the corresponding components in the two vectors are 1, thus storing the cor¬

relation between the vectors. This matrix of on and off switches stores a binarised

superposition of outer products. To achieve recall, for each column of the matrix, rep¬
resenting one component of the required output, the scalar product of the input vector
('cue') is formed, with the weight column vector and then the columns are summed.
The sum is divided by the number of l's in the input. The network outputs 1 when this
fraction is greater or equal to 1 and outputs 0 otherwise.

The simple fully connected associative network of 1000 by 1000 weights, storing

pairs of patterns and using one pattern as a cue, can store up to about 6955 patterns.
An approximate capacity calculation is given by Willshaw et al. (1969) where:
R is the number of pattern pairs
Ma the number of active units out of Na per input pattern
Mb the number of active units out of Nb per output pattern

p is the probability of of synaptic modification
o= 1 - (1 -r L V1 Na Nb>

The number of pattern pairs that corresponds to a particular loading is
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Figure 7.1: Pattern pairs [PI; PP1] and [P2;PP2] are stored in the network. A partial
cue (part of P2) is presented, and the output is divided by the number of elements in
the cue, resulting in the successful recall of PP2.
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«=-KM1 -")
The error free limit on the value p is defined as

NbpM« = 1

Hence for networks of dimensions Na = Nb — 1000,

Setting Ma = 10 (close to optimal, calculated on information theory grounds)
R = =^ln(l - .5012)
= 6955

Setting Ma = 30
R = =|g^Zn(l - -7943)
= 1757

These are only approximate figures, as they do not take into account the fact that
the expected probability of synaptic modification, p, has a distribution that depends on
the actual number of times a unit is active in a particular pattern set, not the expected
unit usage (Buckingham and Willshaw, 1992). This dependence is given as

pi — 1 — (1 — Ma/No)* where output unit i is active on r occasions.
To turn this into a sequence recall device, the output has to be returned to the input

via a set of one to one connections (Willshaw, 1971). The condition for this to work is
that the recurrent feedback is silent during learning.

7.3 The sequence recall strategy

The sequence recall strategy is a good recall strategy in circumstances where the net¬

work is required to do not just pattern completion, but also prediction, ahead of the
changing external cues. However, it is a fragile strategy as the introduction of an er¬

ror may cause the remainder of the sequence to be lost. Figure 7.2 demonstrates the
fragility of this strategy, and that sequential recall works only when the network 1 is
underloaded.

One can think of this as impacting on the evaluation of the information efficiency of

'Further details of the experimental procedures used for training and testing networks in this chapter
are described in the Appendix in the sectionExperiments in Chapter 7
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Figure 7.2: The fragility of the recall strategy. Paired pattern recall is compared with
sequential recall of the same pattern set. Ma = 30, patterns are selected randomly

such a device. We know that the capacity of the basic (linear associative modification,
and binary valued) associative network decreases exponentially with noise in the cue.

Therefore for some level of external noise, sequential recall is going to be a better
strategy. However, this relies on the lack of noise during learning. Such a case pushes
us back into the issue of network dynamics. In the network of the previous chapter,
some random variation, or noise, was created by instabilities during learning. We
argued in the previous chapter this was partly created by the global threshold that varied
with the activity of the previous time step, and therefore lagged the actual activity in the
network. Winners take all thresholding, used in this chapter, eliminates noise during
learning.

Many of the problems faced by the sequence recall devices are already familiar
from other pattern completion devices. A pattern completion device such as the het-
eroassociative network requires a weight matrix and a firing threshold. The issue of
how to set this threshold for each unit is already a well described problem (Bucking¬
ham, 1992; Buckingham and Willshaw, 1993; Dayan and Willshaw, 1991; Willshaw
and Dayan, 1990; Graham and Willshaw, 1995, 1997) to which a number of solutions
are available.
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The aim of this work is to compare the biologically inspired thresholding strategy

of the previous chapter with strategies that have been developed for theoretical reasons.

7.3.1 Winners-take-all (WTA)

The simplest thresholding strategy for a network of this type simply lowers the thresh¬
old until the required number of neurons turns on in the output. This is frequently
assumed to be a reasonable approximation to activity-based thresholding, of the kind
deployed in the hippocampal model in the previous chapter.

A network of the same dimensions as the network discussed in the previous chapter
(Mq = 8, Na = Nb = 1000) was trained with winners-take-all thresholding. The
weights were trained incrementally with three different learning rules:

Clipped The Willshaw rule mentioned in the introduction Willshaw et al. (1969),
which is a binary hebb rule sometimes referred to as clipped learning;

Undipped A linear real valued hebbian rule, where the size of the weight is propor¬

tional to the number of correlations stored,

SWij — Pre * Post',

Presynaptic A rule similar to the post synaptic rule used in Amarasingham and Levy
(1997), except that modification takes place only when the presynaptic neuron is
active (Willshaw et al., 1996),

SW^ — Pre * (Post — Wtj)

As each weight used in the clipped rule contains only one bit of information, us¬

ing a real valued rule means that potentially more information can be stored in the

weights. However, the question is how successful this sequence learning device will
be in utilising this information.

Figure 7.3 shows the results of storing up to 6000 patterns with binary-valued com¬

ponents using the WTA threshold and these three learning rules. The relatively poor

results with undipped and presynaptic rules are due to WTA thresholding being un¬

able to exploit the information stored in the weights to discriminate learned patterns
from unlearned patterns. We can demonstrate this by measuring the potential degree
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Figure 7.3: Performance of the three types of hebbian learning with WTA thresholding,
using a sequence recall strategy. Ma = 10

of discrimination in terms of the signal to noise ratio (here called Q, which sidesteps
difficulties with setting thresholds.

Signal to noise is calculated from the two distributions of dendritic sums (the den¬
dritic sum is the scalar product of the input vector with the weight vector calculated
for each unit of each output). One distribution relates to the cases when the output unit
should be active ('high'), one to the case when it should be inactive ('low'). Signal
to noise is equal to the squared distance between the means of the two distributions
divided by the average variance.

Signal to noise, using standard symbols, is given by

(fih - Hi)2
^

1/2 (al + af)
This analysis suffers from the fact that in the clipped rule the two distributions are

markedly different. The high distribution has zero variance, leading to a low average

variance and therefore a high signal to noise. The distributions for the presynaptic
rule are different from these and it is therefore difficult to say which rule performs
better. A modified version of average variance uses a term that approaches the low
distribution variance as the variance of the high distribution approaches zero, as given

-e clipped
-©- undipped

presynaptic

3000 3500 4000
Patterns stored
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in Buckingham (1992), which we use here.

Hh. ~ w)2
c*

al +
(7.2)

Two different ways of measuring signal to noise are discussed in the associative
network literature - see especially Dayan and Willshaw (1991); Minai (1997). One way
is to calculate dendritic sums for each unit individually (Dayan and Willshaw, 1991).
This measure is appropriate where each unit fires independently. The second way is to
measure the discriminability of the units for a given pattern, which reflects the firing
condition in a winner takes all situation. Neither method gives the expected probability
of error, which depends on the shape of the distribution and on the threshold.

Signal to noise ratios for 1500 stored patterns with Na$ — 1000, Ma$ = 10 are.
Rule c C* error limit performance

undipped 66.7 (calculated) 45.5 ±0.5 0 1880 0.85

clipped 91.5 ±0.5 0 4000 0.70

presynaptic 46.5 ±0.5 23.3 ±0.5 194 ± 23 1600 0.22

For the undipped rule, the expected value of the signal to noise, £*, is shown only,
and is calculated from Dayan and Willshaw (1991). For the other two rules, the limit

(point where the recall strategy collapses) and the performance at that limit are also
shown in figure 7.3. The value of £* for the presynaptic rule, while less than for the

clipped rule, is sufficiently high to suggest it should perform better than it in fact does.

7.3.2 Sources of error

The difficulty with a winners-take-all thresholding strategy is that it relies on the high
units having numerically greater dendritic sums than the low units. For any pattern

set, the distribution of dendritic sums will, as already mentioned, reflect the individual
distributions of unit usages. Although we can say that an output unit is expected to fire

R(Ma/Na) times, we cannot know in advance how often a unit will actually fire. A
low unit (a unit that should be inactive for a particular recall situation) that fires often
in the storage of all the patterns presented will have a high dendritic sum, which may

be similar to that of a high unit (a unit that should be active in a given situation) that
fire infrequently. This is particularly the case for the undipped rule, as weights can



7.4 Comparison with Levy thresholds and learning rule 171

grow arbitrarily large. This may therefore account for the relatively poor performance
of the undipped rule. The LTD component in the presynaptic rule might be thought to
overcome this problem as it contains both saturation and LTD. However, LTD reduces
the dendritic sums of both low and high units. This will act to increase the variance of
both high and low distributions.

7.4 Comparisonwith Levy thresholds and learning rule

We are now in a position to compare these standard learning rules in our sequential
heteroassociative network with the threshold strategy and the learning rule that were
proposed in the previous chapter. The following results were obtained with Ma = 8
Kj = 0.1. Kr = 0.12 were adjusted to keep activity stable at Mb = 8 for at least one
iteration of the sequence. 9 was still fixed at 0.8.

7.5 Learning in one trial

A parameter search was conducted over different values of connectivity to try and get
the best performance for a particular length of sequence. The results are summarised
below with best performance found with the learning constant at 0.1.
The limit, the largest number of patterns that can be stored after which sequential recall
is no longer possible, is given together with the performance at that limit. Results of
the simulations with pre and post synaptic rules are given in tables7.1 and 7.3.

Inspection of these tables indicates that this postsynaptic system performs worse

than the associative network. The presynaptic rule applied to the heteroassociative
network with WTA produced a capacity limit of 1600 patterns in the fully connected
case, whereas both presynaptic and postsynaptic rules combined with the activity based
threshold used by Levy and colleagues store a maximum of 560 and 507 patterns re¬

spectively.
We now examine how the inhibition and the form of the learning rule influences signal
to noise properties and hence performance.



172 7 Sequence learning in the hippocampus: Part II

Connectivity performance limit

100 .955 ±.1 560 ± 40

50 .812 ±.24 132 ± 23

10 .74 18

Table 7. : Post synaptic rule
% connection performance limit

100 .997 507 ± 50

50 .77 68 ±13

Table 7.2: Presynaptic rule

% connectivity performance limit

100 .92 900 ± 50

50 .75 15 ±5

10 .86 0 ± 5

Table 7.3: Saturating Hebbian rule

7.6 Pre and Post synaptic rules

Figure 7.4 shows a sample plot of the high and low distributions in the absence of
the inhibition function. Figure 7.5 below shows the effect of adding the inhibition.
Clearly the dendritic sums are better separated after the inhibition has transformed the
sum. This suggests that the poor performance of the one trial postsynaptic network is
not due to inhibition but to the learning rule. Since the effect of LTD in the learning
rule in the associative network is to move the two distributions closer together, one
would predict that recall can be improved in this one trial situation, by removing the
contribution of the LTD, and approximating the clipped hebbian rule as

SWij = Pre * Post(I — Wij)

The characteristics of this rule are shown in the table 7.3:

Performance using this rule is still well below that using WTA. In this case the ac¬

tivity based thresholding strategy is not improving performance. Comparison of figures
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Figure 7.4: After 400 patterns the graph shows the dendritic sum distributions before
inhibition trained using the postsynaptic rule.

Post synaptic rule

Figure 7.5: b) After inhibition. Also shows the distribution of errors through the se¬

quence.
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Figure 7.6: Presynaptic rule: After 400 patterns, the graph shows the distribution of
mean dendritic sums before inhibition, £ = 30.5, £* = 34.2 and the distribution of
after inhibition £ = 22, £* = 25.6.

7.7a and b shows that the inclusion of inhibition is actually moving the distributions
closer together. The signal to noise goes from 90 to 15.

The explanation for the poor performance of the thresholding is embarrassingly
obvious. Consider figure 7.8. As the low dendritic sum falls in the region of the graph
that is steepest, effectively lowering the threshold. While this is a desirable property

where the creation of context units relies on 'low' units firing spuriously, it is clearly
undesirable under these conditions of constant activity.

7.6.1 Additional sources of error

The occasional appearance of spurious units during learning is an unavoidable conse¬

quence of the activity based thresholding strategy. The ideal threshold strategy/potentiation
would permit a context unit to form only when necessary. For this to work, aminimum
of two iterations may be necessary: learning, followed by recall, followed by compen¬

sation for the disappearance of activity. This would also assist recall in overcoming
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Figure 7.7: Saturating Hebbian rule: After 400 patterns,the graph shows the distri¬
bution of mean dendritic sums before inhibition, £ = 90; b shows the distribution of
dendritic sums after inhibition £ = 15.

Figure 7.8: Transformed dendritic sum at sample parameters Kr = 0.016, KR = 0.016
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failure on one pattern, as in the current architecture failure on one pattern can cause a

failure on all succeeding patterns, Recall on a lower threshold allows the network to

produce the remains of the sequence in a noisy fashion. This is a possible use for the
'annealing' properties of acetylcholine, proposed in Sohal and Hasselmo (1998) but
exactly reversed.

7.7 Conclusion

So far, we conclude that the postsynaptic rule threshold combination is not particularly
good at storing the structure of a long sequence of patterns, and enabling the sequence

recall strategy.

7.8 Improving performance

A strategy for improving recall in the single iteration can be taken from the Associative
Net.

It is easy to improve recall in theWTA situation for the linear hebbian rule. Graham
andWillshaw (1995) proposed eliminating the dependence of the dendritic sum (d) on
activity by normalising by unit activity (a). WTA is applied to the normalised sum

d'=d
a

This is only appropriate for partially connected networks, as in a fully connected
network there are no variations in input activity. In the sparse situation, dividing by
the number of active input lines should help distinguish the case of a few large weights
from a large number of small weights. Alternatively, the sum can be transformed
exploiting unit usage or transformed sum

d* = 1 — (1 )'
a

This second, more powerful strategy is not necessarily appropriate for a rule such
as the presynaptic rule. It is based on the fact that for the undipped rule, we know that
the relationship between the mean of the low distribution, and the unit usage holds,
as given in equation 7.2. This relationship does not hold for the presynaptic, and post



7.8 Improving performance 177

synaptic rules, where synaptic modifications are both positive and negative, and the
dendritic mean low sum is not simply proportional to unit usage.

A related way of improving the performance of the presynaptic rule is to exploit
information about the unit usage. Minai (1997) suggests a presynaptic covariance rule,
where each weight is adjusted by the probability of the output unit firing. In his study,
where weights were set directly, each weight is set to P(post\pre) — P(post). Using
a WTA thresholding strategy, this rule outperformed the presynaptic and clipped rules
on correlated data.

This rule is very close to the activity based 'theta rule' strategy (Willshaw et al.,
1996) which proposes a modifiable threshold calculated by

dthetdj — a(Pre * thetamax — theta)

to be combined with the presynaptic sum rule on a similar problem.
The theta rule and the presynaptic covariance rules are almost identical, the thresh¬

old being treated as an additional weight with input permanently one. It depends on the
thetamax parameter. In Minai's formulation, each individual weight has a covariance
(inhibitory) weight set alongside it. The presence of these inhibitory weights means

that the learning rule is robust to correlations in the data. For a fully connected network
theta and the sum of the covariance weights will approach one another. However, for
a sparsely connected network, the sum of the covariance term actually utilised for a
given unit will depend on the number of active existing connections, not just the unit
usage.

These strategies for sparse networks and correlated data are complementary. Minai
did not test the extent to which the incremental learning rule performs. He loaded the
probability values described straight into the network under test. In the case of the
correlation matrix from the clipped rule, this will have made no difference. However,
in the case of the presynaptic, and presynaptic covariance rules, we saw in the last
chapter that these rules do not converge quickly. It is likely that a number of iterations
of the learning rule will produce better convergence, and hence better results. The mis¬
match between the incremental rule and the calculated probabilities is demonstrated
in figure 7.9. This partly accounts for the discrepancy between the results reported in
Minai (1997), that show better performance for the presynaptic rules. A second, per¬

haps crucial, difference is that the Willshaw rule, and the presynaptic rules were being
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Figure 7.9: Frequency distribution of values of theta versus probability of output unit
firing for a given pattern set

compared well outside the level of optimal of sparsity for the Willshaw rule. They
are not therefore being compared in an error free regime. The sequence recall strategy

simply does not work under error-full conditions.

7.9 Sparse networks

It is apparent that learning sequences with a sparse matrix is going to be significantly
harder, as this introduces the possibility of errors cause by absent weights. However,
this is the case we are particularly interested in, as the hippocampus is partially, if not
sparsely connected. Here we briefly consider network of 50% connectivity. This is
not particularly more or less realistic than any other figure, but does give a reason¬

able indication of how well our threshold strategies are performing under incompletely
connected conditions.

7.9.1 Comparing thresholds

The addition of the covariance threshold makes a dramatic difference, under sparse
conditions with correlated data. Data below is for Ma = 30, for the overlapping case,

overlap = Data in the table compares signal to noise and errors at 75 patterns,

with the presynaptic rule with and without the covariance term.

Figures 7.10,7.11 show the effect on performance of the presynaptic covariance
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Figure 7.10: Performance in sparse networks of the presynaptic, presynaptic covari-

Figure 7.11: Performance in sparse networks of presynaptic, presynaptic covariance
and presynaptic covariance and activity transform, using overlapping sequence data.
The combined strategy of using the covariance theta term and an activity transform
produces the best results.
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Figure 7.12: The best of the presynaptic rules, using covariance and activity perfor¬
mance almost as well as the clipped rule. Performance compared over 5 runs, overlap
of 21

rule S/N cosine errors

Pre 126 ±5 .99 28 ±16

Pre.cov 142 ±3 .99 3.2 ±.8

Table 7.4: Signal to noise ratio at 75 patterns, over five runs.
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rule and also the addition of a divisive threshold, based on the normalised WTA strat¬

egy. Figure 7.12 shows that the clipped rule and the presynaptic-covariance rule are

now performing almost equivalently.

We now have a threshold system for recall that works much better than the scheme
described in the Levy model. So the next stage is to adapt this thresholding system
so that it can set its own activity level. We know in theory that we can set a firing,
non firing condition threshold at somewhere between high and low distributions for
each unit. The Levy model needs three threshold parameters to be hand tuned. KR
and Ki are contributing to a divisive threshold, while 0 is a subtractive threshold.The

presynaptic covariance rule plus activity needs only theta max to be prespecified for
the subtractive threshold, and replaces the activation function 6.3 by normalisation by
unit activity.

Considering the signal to noise ratio in each of these cases, it is clear that an even

better thresholding strategy should push performance much higher. The model in the
previous chapter proposed a thresholding strategy using a transform based on average

activity, and relied on setting a subtractive threshold by hand. We have already seen

that setting a subtractive threshold is unnecessary, given that the covariance term can

be used instead. Considerations from the real valued associative network suggest that
a good divisive strategy will be based on individual unit activity, rather than average

activity.

It is clear that for binary patterns, no advantage is conferred by using the condi¬
tional rules on this particular problem. There is a good argument, originating from
Marr (1971) put forward in the previous chapter, that for this type of learning, one
trial, or snapshot, the conditional probabilities purportedly represented in the weight
matrix have no real interpretation, even if they are trained over multiple iterations to

accurately reflect the input set.

There is the further question of realism. The presynaptic rule/post synaptic rules
seem to be closer to the behaviour ofNMDA LTP. However, some studies of LTP in the

hippocampal region suggest that real valued weights may not be an accurate reflection
of synaptic behaviour.
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7.10 Return to the hippocampus

The post synaptic rule is perhaps the most plausible from the point of view of ab¬
stracting from the temporally asymmetric mechanism of LTP in the region of CA3,
but how does it compare with more standard learning rules? The saturating hebbian
rule roughly corresponds to one interpretation of Bi and Poo's (1998) finding for supra
threshold synapses that did not show LTD.

These authors show that LTD (unlike in the rules considered here) is (not) synaptic

amplitude dependent. This may actually be better under the non convergent conditions.
It has been claimed that some forms of LTP in CA3 are effectively binary. Pe¬

tersen (1998), claims that the NMDA component of the schaffer collateral synapses is
in fact all or nothing, and that apparent graded potentiation, was due to the presence

of differing thresholds for potentiation. They discuss the fact that the associative net¬
work provided one example of an information storage device that improves with binary
weights. It is therefore interesting to observe that the learning of sequences by a simi¬
lar architecture is also improved, especially, as it is these very same NMDA receptors

that provide the inspiration for the graded temporal learning that the post synaptic rule
is intended to approximate.

7.11 Conclusion

One conclusion that can be drawn from this work is that under these one, or few trial

conditions, LTD is actually detrimental to learning. In chapter 3, the hypothesis that
the hippocampus supported different speeds of learning. The slow learning system, it
was suggested, combined small amplitude LTP, with greater LTD. The studies in this
chapter suggest this is not a suitable regime for one trial learning. However graded
synapses can be made to perform one tral learning, and recall with adjustment of the
theta threshold, as we show in figre 7.12. This implies a requirement for learning in

inhibitory interneurons to track the activity of the presynaptic neuron. The proximal
area of CA3 that shows local recurrence would be particularly suitable for sequence
strategy recall.
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7.12 Summary

In this chapter, we have developed the insight that the sequence learning device is a

heteroassociative network trained on a special conditions, and with a special pattern
set. We have observed that real valued learning rules, in particular rules like the presy¬

naptic rule, do not work particularly well in this architecture. However, the problem
of recall in heteroassociative type architectures has been studied well for the real val¬
ued rule. We also saw that the presynaptic rule performs better when modified into
the presynaptic covariance rule. Best results were achieved by the joint application of
these solutions. However, results with the clipped rule are still better.
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8.1 Part I: Inventing episodic memory: conclusions

Theories of event memory that we presented in chapter 1 suggested that hippocampal
memories are one trial, simple memories, (Marr, 1971), or sensory snapshots (Squire
etal., 2001; Frey and Morris, 1998; Norman and O'Reilly, 2001; McClelland and God-
dard, 1996). In chapter 1, we argue that episodic memory is not this simple memory,

but is instead a constructed event representation, that incorporates information learned
over many trials. Furthermore, this information is learned within the hippocampus
rather than borrowed from neighbouring cortex. However, we also argue that the hip¬

pocampus contains information about particular trials. We therefore propose that learn¬

ing mechanisms in the hippocampus run at multiple speeds, and that information about
individual and groups of trials is integrated within the hippocampus. We argue that this

integration takes place along the septotemporal axis.
Some slight evidence has appeared that suggests (Small et al., 2001; Strang et al.,

1999) that it may be possible to track effects of recall and acquisition on activation

patterns on the long axis of the hippocampus. The study Small et al. (2001) as it stands
shows experience dependent change in response to repeated trials of the same paired
stimulus. Their main conclusion is that the activation of a paired stimulus of name
and face does not decompose into name pattern and face pattern. However, the spatial

organisation of patterns on the long axis emerged only on the third block of testing.
The significance of the movement of activation patterns is still unknown, suggesting
that the final representation is gradually constructed, and is not recalled from the same

part of the hippocampus that is initially activated.
In chapter 2 we present further evidence that the hippocampus contains (at least)

two different learning systems that leam at different speeds. We propose that the ex¬

perimental work by Moser and Moser (2000) suggesting that functional differentiation
on the long axis of the hippocampus can be explained by attributing different learning
speeds to the dorsal and ventral regions. Moser and Moser (2000) explain their data
by a functional division between spatial and non-spatial processing, supported by an

anatomical division.

This argument is further supported by Chapters 3 and 4. Chapter 3 argues against
the functional division of the hippocampus, by firstly arguing against the lamellar
hypothesis needed to divide dorsal and ventral circuits. Secondly, Chapter 3 argues
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against the input/output connectivity described by Moser and Moser (2000). Chapter 3
also identifies two critical area of future research. Our proposal is that the input strati¬
fication on the dendritic tree of CA3 and CA1 pyramidal cells means that these inputs
can be selectively integrated and excluded. In particular we identify a role in this for
dopamine, a neurohormone associated with control of prefrontal lobe activity, a region
that is critical for planning, and therefore using hippocampal representations. We say

a little more in section 8.3 below on future work.

A critical component of integrating recall of past events with new input is the abil¬

ity to rapidly recall past events. One potential mechanism for this is based on the
NMDA learning mechanism outlined in Chapter 3. We call this the sequence recall

strategy: recall of ordered sequence of events learned over a single trial. Discussion
of the evidence for this recall strategy, and two models of how it can be employed in

hippocampal type architectures forms the later half of this thesis.
In Chapter 4, we examine the argument in Moser and Moser (2000) that tasks

requiring the dorsal hippocampus are best described as supporting a spatial map re¬

quiring special spatial input. We argue that too many non-spatial components of the
hippocampal representation have been found. However the map hypothesis has led to
a proposal that the hippocampus supports a predictive representation that exploits the
sequential recall strategy.

The conclusion of Part 1 of the thesis is that although there is reasonable evidence
for a functional distinction between temporal and septal hippocampus, the best way to
characterise this difference is in terms of the speed of learning in the two parts.

8.2 Part II: Mechanisms and models of anticipatory
recall

The second part of this thesis deals with how to perform exact recall of an exact se¬

quence of items in a hippocampus-like structure.

First we examine the evidence that such a strategy is used in the hippocampus.
Chapter 5 examines a case (of proactive, or predictive) representation in the prefrontal
cortex. We distinguish such a representation from anticipatory use of the sequence

recall strategy.
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We argue that although the case that the hippocampus uses a sequence recall strat¬

egy is still unproven (we discuss this in chapter 5), a structure that in principle uses the

paired recall strategy can use the sequence recall strategy.

Chapter 6 then discusses the merits of Levy (1996)'s model of sequence learning
and recall over repeated trials. We present an exact replication study, and some ad¬
ditional experiments, through which we explore the network's behaviour at capacity.
We show that the network fails to converge to a stable pattern over a long training
cycle, and therefore the weights of the network do not encode the information about
transitions in the patterns that Amarasingham and Levy (1997) propose. The model
successfully learns correlated (but recoded) input sequences, but performs rather less
well when multiple correlated sequences have to be stored separately. In this situation,
learning one sequence interferes with the recall of another. The negative patterning
task can be modelled as this sort of learning problem. We examine the performance
of the model on a negative patterning task. We argue that despite the apparent fit be¬
tween the behaviour of the model and results from Sutherland and Rudy (1989), this
cannot be treated as evidence for sequence learning as a model of the negative pattern¬

ing task. The argument can be summarised as follows: The representation of the task
does not distinguish between hippocampal and non hippocampal dependent forms of
the negative patterning task. Secondly, the models exploits assumptions about the hip-
pocampus's contribution to behavioural errors. We present what we think is an equally

good case for a an entirely, different contribution, argued from the results of the same

model and experimental results in Han et al. (1998).

Chapter 6 concludes that

1. the model does not fit the behavioural task

2. The behaviour of the model is controlled by the threshold and the learning rule,
and these perform poorly in the one trial situation that does not use a recoding

strategy.

Chapter 7 follows on from chapter 6, considering the model proposed by Levy
(1996) and working through an analogy to the heteroassociative network. On the basis
of this analogy, we examine five different learning rules, and two different thresholding
strategies that are used in pattern completion problems in partially connected heteroas¬
sociative networks. In particular, we evaluate the presynaptic covariance rule proposed
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by Minai (1997) on correlated input data in as sequence recall situation. This rule, ac¬

cording to Minai (1997) out-performs all other rules in a compression, or classification
problem. However, in an error free situation, we show that the clipped learning rule
still performs better, even on correlated data.

The conclusion of chapter 7 is that for single trial learning, where only the order
of inputs need be recalled, a binary valued learning rule is the best choice, even if the

inputs are highly correlated. We therefore argue that this kind of immediate recall of
single events, if it occurs at all, will occur only in the dorsal hippocampus, using all or
nothing potentiation at CA3 synapses.

8.3 Future work

The model described in chapter 7 could be embedded in a larger model that incorpo¬
rated a slower system of learning trained by the fast, one trial system.

In chapter 1, we argued that episodic memory has a special relationship to lan¬
guage, and memory construction. We also argued that it is extremely difficult to dis¬
tinguish affects of acquisition and recall in human subjects. One reason for this is that
recall can play a role in acquisition. For example, when learning a list of words, or
lines for a play, the best learning method is repeated testing. Practising recall helps
with acquisition. However, as illustrated in Chapter 1 proactive interference can mean

that recall may interfere with acquisition.
In chapter 2 we argued that learning and recall of general properties of tasks and

environment and immediate recall of a particular trial require different types of learn¬
ing. Fast learning is needed to capture a single trial; information from multiple trials is
stored more slowly in the temporal hippocampus. Information flow along long axis of
the hippocampus can be used to integrate information from different stages of learn¬
ing. This lead us to a new division of hippocampal tasks. Tasks where learning is
additive are those where a behavioural strategy based on what the rat did last time
works well are likely to be learned faster by the dorsal hippocampus. Tasks where
information about the previous trial is required are likely to be dorsal hippocampus
dependent. We are arguing here that the dorsal hippocampus provides something that
the ventral hippocampus lacks. In some situations, such as the interference tasks like
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negative patterning where the recall of previous trial consequently biases towards the
action rewarded on the previous trial, performance might improve with dorsal lesions.
This prediction might be tested by comparing pattern of errors of intact rats with the
errors of dorsal, ventral, and complete hippocampal lesioned rats in the early stages of
learning on an interference type task.

Chapter 3 set out some of the potential mechanisms of changing the integration
of information from different sources, that is stratified through the dendritic trees of
hippocampal pyramidal cells. It is an open question as to whether we should think of
these cells as switching between learning and recall (Hasselmo et al., 1996; Paulsen
and Moser, 1998; Lisman, 1999) or as switching between inputs (Dvorak-Carbonne
and Schuman, 1999b; Hoffman and Johnston, 1999a). It is these mechanisms that will
hold the key to understanding how information from multiple trials of a behavioural
task can be integrated.

An obvious development of ideas in these three chapters, would be to examine
whether dopamine could be used to switch between type of learning within a single
cell. Such a model needs to start by accounting for the effects due to the absence
of dendrites in SL-M in proximal cells. If mechanisms modulated through the SL-M
are crucial for switching between cell computations, then considering realistic models
with and without those dendrites should offer different predictions for the cells' be¬
haviours in response to inputs. A model developed by Lisman and Otmakhova (2001)
has modelled some of the behaviour shown in Otmakhova and Lisman (1999a, 1998)
in the context of his sequence learning model. His model does not take into account ad¬
ditional data available on the interaction between perforant path and schaffer collateral
inputs without dopamine.

There is a more basic issue that emerges from the outline of the change in radial dis¬
tribution of inputs along the transverse and septo-temporal axis. We claim that this may
be computationally significant. This claim needs to be further investigated.Hoffman
and Johnston (1999a) provide a basic model of dendritic integration that could be used
to compare cells from the dorsal and ventral poles.



Pseudocode

191



192 8 Conclusion

Pseudo Code

Part one of Appendix A describes training and testing for the networks in chapter six.

Part 1

Algorithm A

First specify the distance between input pattern pairs (e.g 6 bits), specify number of
pattern pairs (i.e L/2). Decide on number of desired trials of sequences (t) - usually
three or five. Construct t sequences of type " shifted" and t sequences of type "over¬

lapped".

Algorithm A

1. Construct an n by n weight matrix initialized to random values between 0.01,
and 0.3,with a mean value of approximately 0.1.

2. Create sparse matrix by deleting (say 90%) of connections chosen randomly.
Store a copy of the matrix.

3. Select parameters theta, e, KI, KR according to Procedure 0.

4. Present the first two pattern pairs to the network. The first pattern is clamped to

the output neurons. The second pattern is clamped to the input neurons.

5. Apply the learning rule for all w. Record the value of the sum of the weight

changes. Calculate the dendritic sums of all output units using equation 6.3 and
allow all units with a sum greater than theta to fire, each input unit is also capable
of firing one output unit during training. In practice, superimpose the current

input pattern on the output units. Thus the output unit fires if the recurrent input
from the previous time step puts it over threshold, or if it receives direct input.
This combined pattern forms the new output pattern.

6. Apply the next input pattern to the input units.

7. Repeat steps 5-7 for all patterns.
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8. At the last pattern in the sequence include a null step with no learning, and clear
the output.

9. Repeat steps 4-9 for as many trials as desired; until either the sum of dw has
reached zero or according to the criteria specified in procedures 3 and 4.

10. Repeat steps 1-10 for each sequence of type "shifted" and type "overlapped".

Procedure 0: Procedure for selecting parameters.

There are five parameters. Parameter theta, and parameter e the learning rate, were
treated as fixed as given in Amarsingham(1998), theta =0.8, e = .01. The mean of the
initial weights was also a parameter, and its value was selected to give approximately
the right number of neurons firing per time step, with a random input and no learning.
KI and KR were treated as free, and the procedures for setting their values were as

follows.

1. Set KI to a values between .001 and .1, in intervals of .002, then for each value

of KI, chose a set of values for KR at .001, to .2 in intervals of .02. The first
network will have parameters KI = .001, KR = .001, the second KI = .001, KR
.003 etc.

2. A run consists of a network for each parameter pair, with an input sequence
of length 20, trained for 500 trials. The activity of the network, defined as the
number of neurons firing per time step, was monitored at each time step. If the
activity increased above 50 percent, or dropped to zero, the parameter pair was
discarded.

3. The performance for each network of each parameter pair is measured according
to procedure two. Chose the five best performing parameter pairs

4. Repeat training with Algorithm A for five best pairs.

5. For sequence of different lengths,, but same correlation repeat with same five
parameter pairs. If performance appears to be better on the outlying parameter
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pairs, repeat with with fixed KI, but adjusting KR to the next five pairs, until
performance stops improving.

Plots of the parameter space indicated that activity and performance was very much
less sensitive to the value of KI than to the value of KR, as expected from equation 6.3.

Procedure 1: Evaluating performance.

1. On the last iteration of algorithm A for a given network, the output of the network
to the entire sequence, presented pattern by pattern, is saved. This is the recoded

sequence.

2. The first pattern pair, is then presented to the network, step six from algorithm A
is then performed.

3. Then, no additional patterns are presented, and the network output is calculated

only from the dendritic sums, based on the previous steps output.

4. Repeat 3) until a string of outputs has been created as long as the original input
sequence.

5. The output pattern is a sequence of the same length as the recoded output pattern
from step 1. Compare the output from step 4 and step 1 by taking the normalised
dot product of pattern 1 from step 4, and pattern 1 from step 1.

6. Repeat for all patterns. Discard the first pair of patterns.

7. Repeat testing procedure for each network with the same parameters, and then

average cosine scores.

8. Where the capacity of the network is to be determined for a particular set of
parameters, this is defined as the pattern length, that produces an average cosine
score, as calculated above, greater than 0.75.

Procedure 2

A measure of stability of the network is considered to be the similarity of the output

sequence produced in step 1 of procedure 2, to the output sequence produced on a step
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similar to step one, but applied earlier, or later, in the training procedure. A cosine
score, computed as step 5 in procedure 2 quantified this similarity.

Procedure in Experiment 3: Described in chapter 6.

The assumption made in Levy and Amarsingham is that parameters KI and KR control
the level of activity in the network. This assumption is not entirely true, as we discuss
in the chapter.

We used Algorithm A, with the following modifications. In step 2 in stead of delet¬
ing connections randomly, we deleted most of the connections, and then selectively
pruned the matrix, so that no symmetric connections existed. We then deleted connec¬

tions, until the number of existing weights 10 percent. For networks where a matrix
of a certain percentage of symmetric connections was required, we selected a random
weight, created a symmetric connection, and then deleted a randomly chosen weight.

The clarification of the kind of oscillations produced by the network was done
by hand. A stationary network is a network where any input pattern of the sequence

produces the same output. A periodic oscillation is where the network moves through
the output pattern in response to a randomly chosen input pattern from the sequence,

and this cycle is shorter than the length of the sequence the network is trained on.

Part II: Chapter seven

Chapter seven: Algorithm B

Algorithm B describes steps used to construct the one trial network.

1. Create a weight matrix, where the initial mean value of w is extremely small
>> 0.01 for the cases of the pre, post, pre-covariance, and saturating hebbian
rules.For the cases of the clipped, and undipped rules, the weight matrix should
initially be zeros.

2. Clamp the first pattern pair, pattern 1 to output, and pattern 2 to input, and cal¬
culate and calculate dw according to the learning rule, and update the weights.
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3. Repeat 2) for all pattern pairs.

4. Recall was tested after the addition of each 10 pattern pairs, parameters for
threshold during recall were set after parameter searches, described below. Re¬
call was tested as described in procedure 1.

Parameter search 2: For a one iteration net with levy threshold.

Parameter searches were performed as described in procedure 0, with the following
modifications. As training took a single iteration, and recall was also for a single
iteration, the parameters were not set to to keep activity stable of many iterations.
Instead they were set to mimic a Winners Take All threshold, and permit exactly the
same number of neurons to fire at a time as were firing in the input pattern. The region
of parameter space in which activity remained at the desired level was very large (see

Appendix, figure 7). This was established by a very large (but rapid) search through
values of KR and KI.00.1 to .2, in interval of .001. The exact values during learning
made very little difference, provided they were within this region. To determine which

parameters produced the best possible performance during recall, the lowest possible
values of KR, and KI was run and 20 additional pairs values were tested, on the trained
network. Fortuitously, the lowest possible value KR proved to be generally the best
values for recall. For recall, the value of KI is irrelevant. We experimented with
adding a constant as described in smith(2000), and found little difference.

Chapter 7: paired recall

Figure 7.2 describes an experiment comparing pattern paired recall, with sequential
recall. Each Sequence is made up of a string pair of input and output patterns. Paired
recall is assessed by looking at the response to each input pattern presented separately,
and comparing it to the clamped output pattern using cosine.

Setting thresholds

Setting theta max: For the interpretation of the presynaptic covariance rule, the value
of theta max is critical. For a given set of presynaptically trained weights, a range of
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theta max values were tried (0.1- 2, in intervals of 0.1) and the value that produced the
fewest errors selected. Where the strategy of training inhibitory weights is used in the

partially connected network,the problem is to set the learning constant of the weights,
but as the rule for setting the weights is linear, it could be scaled post hoc to the value
that yielded the best performance.

Figures 7.10, 7.11

Graphs show recall from the five same network and pattern pair sets. The weights are

set with the presynaptic rule, and recall is then compared using three different strate¬

gies: i) Dendritic sum normalised by unit activiy, ii) Weight subtraction using trained
inhibitory weights (Pre-cov), and iii) A combination strategy (Precov-act). Where we

compare the clipped rule to the presynaptic rule, the same five connection matrices and
pattern sets are used. This ensures that we really are comparing the performance of a
rule on a particular data set, as well, as the rules' performance on average.
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pairwise orthogonal sequences

—*— original sequences
—*- as above

new sequences

20 40 60 80 100 120 140 160 180 200

length

Figure 1: Sequences which are pairwise orthogonal (shifted), compared to randomly
selected sequences, overlap = 0

Part III: Additional data from chapter 6

Pairwise orthogonal sequence were constructed by both sequence generating programs,
show in figure 1 The results of the parameters searches are shown in table 1 The initial

weight distribution with mean .30, std .17. set the initial activity of the networks de¬
scribed in chapter 6, section 6.4.

Equivalent searches were also conducted for the shifted sequences, but the data
is not included here. Performance is compared in table 1 at two or three values of
Kr. The best performing parameters at length 20 were not guaranteed to give the best
results at longer lengths, as can be seen in table 2. Bold indicates the performance at

the best performing value.
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0.009 < Kr < .02, overlap = 0, Ch = 8 0.009 < Kr < .02, overlap — 2, Ch = 6

Kr state Cosine Kr state Cosine

.009 stationary NA .009 stationary NA

.011 osc .82 .010 stationary NA

.010 osc .84 .011 osc .89

.011 osc .82 .012 osc .87

.012 osc .77 .013 osc .76

.013 osc .74 .014 osc .65

.014 osc .71 .014 osc .65

.015 osc .65 .015 osc .46

.016 stationary NA .016 osc .22

.017 stationary NA .017 stationary NA

.018 stationary NA .018 stationary NA

0.009 < Kr < .02, overlap — 5, Ch — 3 .009 < Kr < .019, overlap = 6, ch = 2

Kr state Cosine Kr state Cosine

.009 stationary NA .009 stationary NA

.010 stationary NA .010 stationary NA

.011 stationary NA .011 stationary NA

.012 stationary NA .012 stationary NA

.013 stationary NA .013 stationary NA

.014 osc .91 .014 osc .92

.015 osc .89 .015 osc .90

.016 osc .84 .016 osc .84

.017 osc .68 .017 osc .75

.018 stationary NA .018 osc .73

.019 stationary NA .019 osc .69

Table 1: Parameter searches at length 20 for values of KR and overlap for overlapping
sequences.TVA = Not Applicable
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Kr values

overlap = 2 o?3- II overlap = 5, Ci 53- II CO overlap = 6, ch = 2

Length .011 .012 .013 .015 .016 .0185 .015 .016

20 .81 stat. .17 .77 .65 stat .80 .76

40 .86 stat .71 .83 .77 .54 .78 .75

60 stat .71 .63 .72 .74 .87 .77 .85

80 stat .58 .55 .84 .82 .16 .79 .81

100 .40 .12 .55 .78 .77 .63 .77 .87

120 - - - jumps stat stat .73 .87

140 - - - - - - .71 .75

160 - - - - - - .65 .40

Table 2: Bold shows the best result for a particular length. KR values were chosen
from the parameters searches as the best 2 or 3 at length 20.

Properties of Sequences

The properties of overlapping and shifted sequences are compared in figures 2,3 and
4. Overlapping sequence had a much wider spread of unit ON times i.e. the number of
time steps a neuron might be on consecutively. Figure 5 shows that as overal activity
increases, so does the standard deviation - this indicates the width of oscillation in

simulation.
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time steps

Figure 2: Distribution of unit ON times with in overlapping sequences with
overlap = 2, 6 and 0

Figure 3: Distribution of unit ON times in overlapping sequences compared to shifted

sequences, overlap — 2
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Figure 4: Distribution of unit ON times in overlapping sequences compared to shifted
sequences, overlap = 6

10 20 40 50

average activity

Figure 5: Standard deviation of activity against activity
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Figure 6: Maximum performance for a randomly selected set of sequences using 'high'
and 'low ' thresholds.

Thresholds

We compared two ways of setting the threshold for recall. The first way ('high'), set
the threshold equal to the threshold during learning, by setting the contribution from
the feedforward inhibition to level generated by the cue pattern. We compared this to

allowing the feedforward contribution to be zero during recall ('low').

x Maximum performance high
a Maximum performence low

a A

a
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Figure 7: Activity against parameters showing the planar structure of the parameter

space during learning. Best performance during recall occurs at the region of plane
just before it breaks up

Part IV: Additional data from chapter 7

Figure 7 shows parameter search for the one trial network, showing the settings of
parameters that kept activity to equal external input.
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