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Nuclear pre-mRNA splicing, the removal of intervening sequences from pre-

messenger RNA, proceeds via two distinct, sequential transesterification reactions. A 

large and highly dynamic RNA-protein complex, termed the spliceosome, is required 

to catalyse these reactions. Despite years of extensive research, the identification of the 

spliceosomal components is far from complete. Although all participating RNA 

molecules are known, the number of identified protein factors is still continuously 

increasing. 

We set out to investigate protein-protein interactions within the spliceosome of 

the budding yeast Saccharomyces cerevisiae by performing exhaustive two-hybrid 

screens using well characterised splicing proteins as baits. This approach should allow 

the identification of i) novel splicing proteins, ii) novel interactions between known 

splicing factors and iii) links between splicing and other cellular pathways, especially 

processes of mRNA metabolism. 

Prp22p is an RNA helicase with at least two distinct functions in the splicing 

pathway. It is required for the second transesterification reaction to proceed and in 

addition it has a role during spliceosome disassembly. When Prp22p was used as bait 

in a two-hybrid screen, the most statistically significant interacting protein found was 

the Fun20 protein. 

The 42 Wa Fun20 protein was previously shown to be essential for cell 

viability, but no further characterisation had been performed (Fun = function 

unknown). In order to investigate whether the protein plays a role in pre-mRNA 

splicing, a strain was generated carrying a protein A-tagged and conditionally 

regulated FUN20 gene. Growing the strain under non-permissive conditions leads to 

an accumulation of pre-mRNA within the cell, showing that the Fun20 protein is 

indeed required for splicing in vivo. The protein was renamed Prp45p to indicate its 

role in pre-mRNA processing. Using the epitope-tagged version of the protein in 

coimmunoprecipitation experiments, it was found that Prp45p coprecipitates pre-

mRNA, splicing reaction-intermediates, the spliced exons and the excised intron from 

cell extracts. This strongly suggests that Prp45p is associated with the spliceosome 



throughout the splicing reactions. Furthermore the tagged-protein weakly 

coprecipitates the U2, U5 and U6 snRNAs from cell extracts, showing its association 

with a subset of spliceosomal snRNPs. Depletion of Prp45p from cell extracts 

completely abolishes splicing of added actin pre-mRNA in these extracts. However, 

splicing activity can be at least partially restored by adding back recombinant His-

tagged Prp45p, that had been produced in Escherichia coli and affinity purified. This 

shows that Prp45p is required for splicing in vitro and furthermore suggests a role for 

the protein before the first transesterification takes place. 

Prp45p was then used as bait in a two-hybrid screen and interacted significantly 

with a protein of unknown function encoded by ORF YPLI5Jc. Based on its amino 

acid sequence, the 50 kDa Ypl 151 protein can be grouped into a subfamily of WD 

proteins with nuclear localisation, which share extensive homology to the pleiotropic 

regulator proteins PRL1 and PRL2 in Arabidopsis thaliana. YPLI5Ic is essential for 

cell viability, as shown by deletion of the ORF from the genome. A strain with a 

regulated version of the YPLJ5Jc gene was constructed and it was demonstrated that 

depletion of the protein from the cells leads to a severe splicing deficiency. YpI 151p 

has been renamed Prp46p, to indicate its function in pre-mRNA splicing. 

Therefore, through the use of exhaustive two-hybrid screens, two novel pre-

mRNA splicing factors have been identified, that probably interact with each other. 

Some functional characterisation has been performed to determine at which stage of 

the splicing process they might act. 
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Introduction 



1.1 Nuclear pre-mRNA splicing 

In eukaryotes the primary transcripts of most nuclear protein-coding genes are 

interrupted by intervening sequences (introns) which are removed from the pre-mRNA 

in a process designated as pre-mRNA splicing. The protein coding regions (exons) 

become joined to yield the mature message which is subsequently exported into the 

cytoplasm where its information is read and translated into protein. Pre-mRNA 

splicing is an essential process for gene expression since the intron sequences in most 

cases contain in-frame stop codons which would cause premature termination of 

translation, leading to the production of shortened, non-functional proteins. For genes 

containing multiple introns, pre-mRNA splicing can also provide a means for 

regulation of gene expression. By alternative splicing a gene can be switched on and 

off or different isoforms of a protein can be generated from the same pre-mRNA in 

e.g. a cell cycle or tissue specific manner (for a review on alternative splicing see 

Valcarcel et al., 1995). In higher eukaryotes, a gene can contain more than 50 introns 

and the introns can be of immense size (up to 200,000 nucleotides in length). 

In the unicellular eukaryote Saccharoinyces cerevisiae, which will be referred to 

as yeast in this work, gene organisation is considerably simpler. Only relatively few, 

approximately 4% of the 6000 or so yeast genes, have introns and those which have, 

contain only one close to the 5' end of the transcript. Exceptions are the MATa1 and 

the ribosomal RPL8A genes, which both have two small introns. Nevertheless, 

splicing is an essential process in yeast, since many of the genes that contain introns 

are essential. Furthermore, a lot of highly transcribed genes (among which are many 

ribosomal protein genes) are interrupted. In fact, normally about 30% of all transcript 

present in a yeast cell is derived from intron-containing genes, illustrating the 

importance of the splicing process. 

The investigation of the mechanism of pre-mRNA splicing was facilitated greatly 

by the development of in vitro assays for both the mammalian and the yeast system 

(Kramer et al., 1984; Padgett et al., 1984; Ruskin et al., 1984; Lin et al., 1985). In 

addition, the application of numerous genetic approaches in yeast have contributed a 

great deal to the understanding of the splicing process (reviewed in Rymond and 

Roshbash, 1992; Beggs, 1995). It was revealed that introns are removed from nuclear 
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pre-mRNA in a two-step splicing reaction that is conserved in eukaryotes from yeast to 

man 

1.1.1 Pre-messenger RNA structure 

Surprisingly, there are only three short conserved sequence elements within the 

introns, which are important but not sufficient for accurate and efficient splicing. These 

define the 5' splice site, the 3' splice site and the so-called branchpoint sequence. In 

mammalian pre-mRNAs these sequence elements are less conserved than in yeast 

(figure 1.1), probably reflecting differences in the associated splicing machinery. A 

fourth element, which is less pronounced in yeast is a pyrimidine-rich region upstream 

of the 3' splice site. 

S. cerevisiae 

5' splice site 

UAUGU 
exon I 

branchpoint 	3' splice site 

I 	I___ 
UACUAAC 	YAGI 	I 

CX()I1 2 

Mammalian 
5' splice site 	 branchpoint 	3' splice site 

I AGIGURAGU YNYRAY—(Y)1 ----YAGIG I 
exon 1 	 exon 2 

Figure 1.1: 
Schematic representation of a yeast and a mammalian intron. The three 
conserved sequence elements, the 5' splice site, the branchpoint sequence and the 3' 
splice site are indicated. The branchpoint adenosine is underlined. Exons are 
depicted as grey boxes, the intron as a line. (Y) indicates the polypyrimidine tract. 
Y - pyrimidine, R - purine, N - any base. - -- - 
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The importance of these elements has been shown through site-directed 

mutagenesis and through the analysis of naturally occurring mutations within these 

regions both in vivo and in vitro (for a review see Nilsen, 1998 and references 

therein). It has to be noted, however, that additional cis-elements such as the exon 

sequences flanking the intron, sequences downstream of the 5' splice site as well as 

the intron length and the distance between the branchpoint sequence and the 3' splice 

site influence splicing efficiency (Pikielny and Roshbash, 1985; Newman and 

Norman, 1991, 1992; Luukkonen and Seraphin, 1997; Puig et al., 1999). 

The low information content within pre-mRNA introns is probably 

compensated by the interaction of numerous trans-acting factors, both RNAs and 

proteins, with the substrate to achieve accurate and efficient splicing. 

1. 1.2 The splicing reaction - a two step mechanism 

Introns within nuclear pre-rnRNAs are removed by two successive 

transesterification reactions (figure 1.2). The first step entails cleavage of a 

phosphodiesterbond at the 5' splice site to yield a free 5' exon intermediate (exon 1) 

with a free 3'-hydroxyl group. Concomitantly, the 5' end of the intron is joined to a 

100% conserved adenosine residue within the branchpoint sequence via an unusual 2'-

5' phosphodiester bond. This forms the second intermediate of the splicing reaction, a 

branched intron attached to the 3' exon (often referred to as lariat-intron exon 2 

structure). In the second step, the lariat-intron exon 2 structure is cleaved at the 3' 

splice site and the two exons become ligated via a 3'-5' phosphodiesterbond. This 

gives the products of the splicing reaction: the spliced exons and the excised lariat-

intron with a 3'-hydroxyl terminus. By incorporating modified nucleotides at the splice 

site junctions it was demonstrated that chemically, both transesterifications are SN2 

reactions (Maschhoff and Padgett, 1993; Moore and Sharp, 1993). Thus, splicing of 

nuclear pre-mRNA resembles mechanistically the removal of group II introns from the 

primary transcript in the genomes of organelles in lower eukaryotes, plants and also 

bacteria (reviewed in Michel and Ferat, 1995). Since group II introns have been shown 

to splice autocatalytically in vitro, i.e. the catalytic activity lies within the intron itself, 
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5' splice site 	 branchpoint 	3' splice site 

exon 1_G 	 A 
OH 

I I-9F1 Cl A• I 

Step  

IF 

0?-AG-OH ~P~  

Figure 1.2: 
Schematic representation of the pre-mRNA splicing reactions. Exon 
sequences are represented as boxes, the intron as a line. The dotted arrows indicate 
the sequential nucleophilic attacks of free hydroxyl groups on the phosphate groups 
(P) at the 5' - and 3' splice sites, respectively. 



an RNA-based catalysis has been proposed also for nuclear pre-mRNA splicing. 

However, nuclear pre-niRNA introns obviously do not fulfil the sequence 

requirements needed to allow autocatalytic splicing and thus numerous trans-acting 

factors are required to promote or support structural rearrangements (some of which 

consume ATP) to juxtapose the reactive nucleotides within the catalytic centre of the 

spliceosome (for review see e.g. Jacquier, 1990; Guthrie, 1991; Newman, 1994). 

1.2 The spliceosome - a dynamic ribonucleoprotein complex 

A myriad of trans-acting proteins and RNAs are required to excise introns from 

nuclear pre-mRNA. The majority of these factors assemble into five small nuclear 

ribonucleoprotein particles (snRNPs), which again assemble onto the substrate RNA 

in a highly ordered fashion to form an even larger complex, termed the spliceosome. 

The snRNPs, named UI, U2, U4, U5 and U6, each contain an essential snRNA 

molecule, the Ui, U2, U4, U5 and U6 snRNAs, respectively, and, with the exception 

of the U6 snRNP, share a number of small common core proteins. The U6 snRNP 

differs considerably with respect to biogenesis and basic composition from the other 

snRNPs (see below). In addition, a number of snRNP specific proteins have been 

identified, which are specifically associated with only one particular snRNP. Finally, a 

still increasing number of non-snRNP proteins contributes to the formation of the 

complex, its catalytic activity and its disassembly. A very recent, comprehensive 

overview on the spliceosomal components in yeast as well as in mammals, including a 

list of the protein factors involved, is given by Burge et al. (1999). 

1.2.1 Biogenesis and general composition of the snRNP particles 

After transcription by RNA polymerase II and export into the cytoplasm, the 

human U 1, U2, U4 and U5 snRNAs become tightly bound by a heteromeric complex 

of seven small core proteins B, Dl, D2, D3, E, F and G. Binding of the core proteins 

to the snRNAs plays a major role in the biogenesis and the transport of the snRNPs 



into the nucleus. The seven core proteins are collectively referred to as Sm proteins and 

were originally identified as targets of autoantibodies from patients suffering from 

systemic lupus erythematosus (Lerner and Steitz, 1979). All Sm proteins share a short 

conserved region of aminoacid residues, which was thus designated as the Sm motif 

(Cooper et at., 1995; Hermann et al., 1995; Seraphin, 1995). The Sm proteins bind to 

a short single-stranded sequence element, the Sm site, present in the snRNAs 

(Branlant et at., 1982; Guthrie and Patterson, 1988). The Sm site is sufficient for 

binding of the Sm proteins to the snRNA, however, it was demonstrated, that the 

efficiency of binding is influenced by snRNP specific proteins and cis-elements in the 

snRNA (Jarmolowski and Mattaj, 1993; Nelissen et at., 1994). Importantly, the Sm 

proteins promote the hypermethylation of the pre-mRNA cap structure and constitute, 

together with the cap, a nuclear localisation signal that is essential for transport of the 

snRNPs into the nucleus, where their maturation continues with the addition of snRNP 

specific proteins (Zieve and Sauterer, 1990; Plessel et al., 1994). 

This pathway of snRNP biogenesis is highly conserved in yeast, since a 

homologous set of Sm proteins has been identified and for some of the proteins 

functional homologies have been demonstrated (Ryrnond et at., 1993; Bordonne and 

Tarassov, 1996; Neubauer et at., 1997; Gottschalk et at., 1998). 

The distinct biogenesis of the U6 snRNP starts with the generation of its 

snRNA: the U6 snRNA is transcribed by RNA polyrnerase III, differs in its cap 

structure from the other spliceosomal snRNAs and furthermore does not contain an Sm 

site. The U6 snRNA is therefore not recognised by the canonical Sm core proteins and 

also does not become hypermethylated. As a consequence, it is thought, and at least 

for higher eukaryotes it has been demonstrated, that the U6 snRNA is retained largely 

in the nucleus (reviewed in Reddy and Busch, 1988). However, recently proteins have 

been identified which also contain Sm motifs and which (apart from one) associate 

with the U6 snRNA, comparably to the association of the canonical Sm proteins with 

Ui, U2, U4 and US snRNAs. Indeed, based on sequence similarity, 

coimmunoprecipitation experiments and extensive two-hybrid analyses, it has been 

proposed that these proteins form a complex analogous to the complex of Sm proteins, 

but which associates with U6 snRNA. Hence these proteins have been named Lsm 
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(for like Sm) (Fromont-Racine et al., 1997; Mayes et al., 1999; Salgado-Garrido et al., 

1999). The role of the Lsm proteins for the biogenesis of the U6 snRNP is not yet 

entirely clear, although is has been demonstrated that most of them stabilise the U6 

snRNA, maybe by promoting U4/U6 snRNA association and later on also the 

formation of the U4/U6-U5 tri-snRNP particle (see below; Mayes et al., 1999). 

However, not all of the Lsm proteins are essential for splicing (such as Lsmlp), 

although they are found complexed with the other Lsm proteins, which has led to the 

suggestion that the Lsm proteins could form different complexes with distinct 

functions. For instance, a role in mRNAdecapping has been proposed for Lsm lp (and 

associated proteins) (Boeck et al., 1998). 

The biogenesis of the snRNPs is then completed by the addition of snRNP 

specific proteins onto the snRNP/core protein complex. In many cases it has been 

demonstrated that the snRNP specific proteins are transported into the nucleus 

independently from the snRNA/core protein complex, suggesting that the addition of 

the snRNP specific proteins occurs predominantly in the nucleus (e.g. Kambach and 

Mattaj, 1992; Romac et al., 1994). In yeast, many of the snRNP specific proteins have 

been identified by genetic means, and their association with a particular snRNP has 

been demonstrated afterwards by coprecipitation of snRNAs together with the proteins 

(see Beggs, 1995 and references therein). In recent years, affinity purification of 

snRNPs using well characterised and tagged snRNP specific proteins and subsequent 

identification of the associated proteins by mass spectrometry, accelerated the 

identification of the snRNP components (Neubauer et al., 1997; Gottschalk et al., 

1998; Caspary et al., 1999; Stevens and Abelson, 1999). 

1.2.2 The spliceosome assembly cycle 

In the nucleus, the snRNPs assemble in a highly ordered manner onto the pre-

rnRNA to form a spliceosome capable of performing the two transesterification 

reactions. Major conformational rearrangements take place within the snRNPs as well 

as between snRNPs during the formation of an active spliceosome. These structural 



changes also require the action of numerous non-snRNP proteins, some of which will 

be discussed in detail later (section 1.4). A very simplified view of the order of events 

during the formation of an active spliceosome and its disassembly is depicted in figure 

'.3. 

The earliest specific event in the assembly of the spliceosome is the formation 

of the so-called commitment complex, i.e. binding of the Ul snRNP to the 5' splice 

site (Legrain et at., 1988; Seraphin and Rosbash, 1989). A short, conserved sequence 

at the 5' end of the U  snRNA base pairs with the 5' splice site sequence in an ATP-

independent manner (Seraphin and Rosbash, 1989). In yeast the interaction of the U 1 

snRNP with the pre-mRNA promotes subsequent binding of the U2 snRNP to the 

branch site. The U2 snRNP addition is ATP-dependent as are all subsequent steps of 

the splicing pathway. Nucleotides within the U2 snRNA base pair with the branch site 

sequence UACUAAC, but leave the branchpoint adenosine bulged out of the short 

helix. Therefore, the adenosine is available as the nucleophile for the attack of the 

phosphate at the 5' splice site later, to initiate the first transesterifiacton reaction (Parker 

ci' at., 1987; Query et at., 1994). The subsequent addition of a pre-formed tri-snRNP 

particle, assembled through association of a U4/U6 di-snRNP with the U5 snRNP, 

leads to the formation of the active spliceosome. Many ATP-dependent rearrangements 

within this complex take place before and during the course of the transesterification 

reactions that involve the action of numerous non-snRNP proteins (reviewed in 

Kraemer, 1995; Nilsen, 1998 and references therein). After completion of the splicing 

reactions, the spliced messenger RNA is released, the spliceosome disassembles and 

the snRNPs and non-snRNP proteins can assemble onto another pre-mRNA molecule. 

The intron-lariat becomes debranched and degraded. 

EG 



Figure 1.3: 
Schematic representation of the spliceosome assembly pathway. Ui 
snRNP binds to the 5' splice site (5'ss) to form the commitment complex. U2 binds 
to the branchpoint sequence (BP) to form the pre-spliceosome. A pre-formed tn-
snRNP particle consisting of the U4/U6-U5 snRNPs associates to form the active 
spliceosome, which then performs the splicing reaction. After completion of the 
reaction, the mRNA is released from the spliceosome, the components which 
disassemble and are recycled. The intron-lariat product is debranched and the RNA 
degraded.  
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1.3 Protein actions during spliceosome assembly and splicing 

This section will describe in more detail the complex actions of snRNP- and non-

snRNP proteins toward the assembly of an active spliceosome. The intention here is 

not to give a complete listing of the protein factors involved, but to give an idea about 

the complexity of protein-protein, protein-RNA as well as RNA-RNA interactions. The 

focus will mainly lie on factors that interact with important elements in the substrate 

RNA and on proteins that contribute to contacts between the snRNPs. The yeast 

system will form the basis of this summary, however, where appropriate, comparisons 

with the mammalian system will be made. 

1.3.1 Formation of the commitment complex 

As mentioned above, it was known for some time that base pairing of U  

snRNA to the 5' splice site plays an important role for the formation of the 

commitment complex (e. g. Seraphin and Rosbash, 1989). But until recently no direct 

protein contacts had been defined within this region of the pre-mRNA during this early 

stage of spliceosome formation. By using pre-mRNAs with 4-thiouridine-substituted 

5' splice sites (and surrounding regions) in crosslinking experiments, Zhang and 

Rosbash (1999) were able to demonstrate that at least 7 of the 16 proteins tightly 

associated with the UI snRNP bind to the pre-mRNA substrate. Among those are 

three core proteins SmB, SmD1, SmD3 and the Ui snRNP specific proteins Snplp, 

Yhclp, Snu56p and Nam8p (Raker et al., 1996; Smith and Barrel, 1991; Tang et al., 

1997; Gottschalk et al., 1998). The human homologues of both Snplp and Yhclp, 

U1-70K and Ul-C, have been shown to directly bind to loop 1 of the Ui snRNA 

(Hamm et al., 1988). For Snplp this has also been demonstrated in yeast (Kao and 

Siliciano, 1992). Depletion of Yhclp from the yeast cells does not effect Ul snRNP 

levels or Ui snRNP assembly, but in the absence of functional Yhclp, commitment 

complex (CC) formation in vitro is seriously inhibited (Tang et al., 1997). These data 

suggested, that Snplp and Yhclp might help in the formation or stabilisation of the 

short UI snRNA/5' splice site helix. Indeed crosslinking of Yhclp was observed 
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exclusively within the 5' splice site sequence within the intron but not with exon 

sequences. Snplp, however, crosslinked with exon sequences upstream of the 5' 

splice site, but not with intron sequences, suggesting that its function during CC 

formation does not include a direct binding of the U  snRNA/5' splice site helix. The 

crosslinking studies by Zhang and Rosbash (1999) identified Snu56p and Nam8p as 

the first U  snRNP associated proteins to bind to non-conserved regions downstream 

of the 5' splice site. Additional characterisation of Nam8p showed that it is non-

essential for cell viability and that it is not required for CC formation in a wild-type 

context. However, CC formation on uncapped pre-mRNA or on pre-mRNA with a 

mutant 5' splice site was significantly inhibited in cell extracts depleted of Nam8p 

(Puig et al., 1999), suggesting that Nam8p is required for the stabilisation of the 

commitment complex. (It is known that the cap binding complex (CBC) directly 

contacts the Ui snRNP and thereby stabilises the U1/pre-mRNA interaction (e.g. 

Fortes ci' at., 1999)). Puig et at. (1999) demonstrated furthermore by introducing 

substitutions into the Nam8p binding site of the pre-mRNA that alternative 5' splice 

site choice and splicing efficiency is effected in a Nam8p dependent manner. Therefore 

it seems that early 5' splice site recognition is established not only by Ul snRNP 

addition onto the 5' splice site of the pre-mRNA, but that other regions of the intron 

and additional protein factors that bind to these non-conserved regions have some 

influence. 

It was noted 10 years ago that in acrylamide gels, two commitment complexes 

(CC1 and CC2) can be resolved (Seraphin and Rosbash, 1989). For formation of CC  

the 5' end of the Ui snRNA as well as an intact 5' splice site was shown to be 

required. CC2, however, only forms when in addition to an intact 5' splice site, an 

intact branch site sequence is also present (Seraphin and Rosbash, 1991). These data 

suggested that apart from the UI snRNP and associated proteins, another factor (or 

other factors) binds to the branchpoint prior to U2 snRNP addition. A good candidate 

for this association was identified as the Mud2 protein (Abovich et al., 1994). 

Originally isolated as a mutant synthetic lethal with a deletion in the U  snRNA, it was 

demonstrated in immunoprecipitation experiments that Mud2 is not stably associated 

with the UI snRNP, but that it could be coprecipitated from CC2 in the presence of 

pre-mRNA. By introducing a mutation into the branch site sequence, the Mud2 protein 
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could no longer be co-precipitated, suggesting that it indeed binds to the branch site. 

When the non-essential Mud2 protein was used in a synthetic lethal screen, another 

protein was identified which was subsequently shown to bind to the branch site 

sequence during CC2 formation: the branchpoint bridging protein (BBP) (Abovich and 

Rosbash, 1997; Berglund et al., 1997). The MUD2 synthetic lethal screen not only led 

to the identification of BBP, but also revealed a genetic link of MUD2 with the U 1 

snRNP. The gene for the UI snRNP associated Prp40 protein (Kao and Siliciano, 

1996) was identified in this screen. Subsequent in vitro binding assays demonstrated, 

that BBP directly interacts with both Prp40p and Mud2p, but that Prp40p and Mud2p 

do not contact each other directly (Abovich and Rosbash, 1997). It is now widely 

agreed, that the three proteins form a cross-intron bridge through BBP contacting 

Prp40p in the U 1 snRNP as well as the branchpoint sequence and Mud2p (see figure 

1.4). This cross-intron bridge brings the 5' end of the intron in proximity to the 3' end, 

and forms the structural basis for subsequent U2 snRNP addition. The importance of 

this arrangement is reflected in the conservation of the components involved: 

mammalian homologues of Prp40p (mPrp40p), BBP (SF1) and Mud2p (U2AF65) 

have been identified and it was shown that they act in an analogous way (Rain et al., 

1998 and Abovich and Rosbash, 1997 and references therein). 
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Figure 1.4: 
The "cross-intron bridge" model. The 5'- and the 3'-end of the intron are 
brought into proximity by the formation of a molecular bridge in commitment complex 
2 (CC2). Exon sequences are represented as boxes, the intron as a line. Vertical lines 
indicate base pairing of the UI snRNA with the 5' splice site. The UI snRNP is 
depicted as octagon, the three other participating proteins Prp40p, Bbp and Mud2p are 
depicted as ovals/circles. Binding of Mud2p to the polypyrimidine tract (YY) and 
binding of Bbp to the branchpoint sequence (black square) is indicated. 

1.3.2. Formation of the pre-spliceosome 

Three essential U2 snRNP splicing factors, Prp9p, Prpllp and Prp2lp (Legrain 

and Choulika, 1990; Schappert and Friesen, 1991; Arenas and Abelson, 1993) play an 

important role not only for the formation and the stability of the U2 snRNP but also for 

the formation of the pre-spliceosome, i.e. for U2 snRNP addition onto CC2. Many 

independent genetic as well as biochemical studies proved the existence of a complex 

of these three proteins, which is directly associated with the U2 snRNA (Legrain and 

Champon, 1993; Ruby and Abelson, 1993; Wells and Ares, 1994). Furthermore, two-

hybrid studies established that Mud2p interacts with Prpllp and it was supposed that 

this interaction mediates the U2 snRNP addition onto CC2 (Abovich et al., 1994). The 

importance of the Prp9p/Prp 11 p/Prp2 ip complex is reflected in its conservation: the 

structural similarity and the immunological cross-reactivity of the proteins suggest that 

they represent the homologues of the three subunits of the mammalian splicing factor 

SF3a (SF3a60, SF3a66  and SF3a'20; Behrens et at., 1993; Bennett and Reed, 1993; 
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Kraemer et al., 1994, 1995). An important question that arises at this stage is, whether 

U2 snRNA association with the branch site sequence requires the replacement of BBP. 

Indeed, a recent study suggests that BBP as well as Mud2p are not present in pre-

spliceosomes and thus, that they are displaced upon addition of the U2 snRNP (Rutz 

and Seraphin, 1999). U2 snRNP addition is the first ATP-dependent step during 

spliceosome formation. Two ATPases (and putative RNA helicases) therefore came to 

mind, which could be required to structurally reorganise the U2 snRNA prior to its 

association with the branchpoint region: Prp5p and Sub2p. Prp5p, at least in vitro, 

structurally alters the U2 snRNA, making its branchpoint recognition sequence more 

susceptible to targeted RNase H cleavage (O'Day et at., 1996), suggesting that Prp5p 

action could increase the accessibility of the branchpoint recognition sequence for 

interaction with the intron. Sub2p is the putative yeast homologue of the mammalian 

splicing factor UAP56, which was demonstrated to be recruited to the spliceosome by 

U2AF65, the mammalian homologue of Mud2p (Fleckner et at., 1997). Thus, Sub2p, 

which was originally identified as suppressor of a cold-sensitive snRNP biogenesis 

mutant (Noble and Guthrie, 1996), could be at the site of action during pre-rnRNAIU2 

snRNA base pairing. RNA-helicases or unwindases would be expected to be 

particularly prone to cold, due to hyperstabilisation of their putative substrate. 

1.3.3 Assembly and association of the U4/U6-U5 tri-snRNP 

A number of proteins have been demonstrated to be required for the formation or 

the stability of the tri-snRNP. If they are mutated or depleted progression beyond the 

pre-spliceosome stage fails for that reason. Immunoprecipitation experiments revealed 

that both Prp3p and Prp4p are components of the U4/U6 di-snRNP and the U4/U6-U5 

tri-snRNP (Banroques and Abelson, 1989; Anthony et at., 1997). Later a direct 

physical interaction between these proteins was demonstrated by two-hybrid analysis 

and in vitro inimunoprecipitation assays (Ayadi et al., 1998). Using a heat-sensitive 

prp3 mutant strain, it could be demonstrated that under non-permissive conditions the 

level of free U6 snRNA in the cells decreased, the level of free U4 snRNA increased 

and the levels of U4/U6 snRNA hybrids only slightly decreased. Looking at the 
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snRNPs, a depletion of free U6 snRNP and tri-snRNP but not of U4/U6 and U5 

snRNP was observed. These results suggested a requirement of Prp3p for the 

formation of a stable U4/U6 di-snRNP and subsequent formation of the tri-snRNP 

(Anthony et al., 1997). Glycerol gradient fractionation of snRNPs from heat-

inactivated prp4 mutant extracts revealed that as well as there being hardly any free U6 

snRNP, there was also a strong decrease in U41U6- and tri-snRNP levels, suggesting 

that Prp4p is required for U4/U6 di-snRNP stability (Galisson and Legrain, 1993). 

Another protein, which is required for the formation of the tri-snRNP is Prp6p. 

Inactivation of a heat-sensitive mutant had no effect on U4/U6 di-snRNP levels but 

prevented tri-snRNP formation (Galisson and Legrain, 1993). 

The 280 kDa U5 snRNP protein Prp8p was demonstrated to be essential not 

only for the assembly of the tri-snRNP, but also for the association of the tri-snRNP 

particle onto the pre-spliceosome: cell extracts depleted of Prp8p or extracts containing 

inactive Prp8p contained severely reduced levels of tri-snRNP particles. However, by 

adding anti-Prp8p antibodies, which did not affect tri-snRNP formation in extracts, 

spliceosome formation was blocked, suggesting an additional, more direct function for 

Prp8p in spliceosome assembly (Brown and Beggs, 1992). 

Another two proteins have more recently been demonstrated not to be essential 

for U4/U6-U5 snRNP formation, but to be required for the recruitment of the tri-

snRNP to the pre-spliceosome. In cell extracts prepared from cells containing a heat-

sensitive mutant of the tri-snRNP-associated Prp3 1 protein, the levels of tri-snRNP 

were not significantly altered compared to wt cells, but the tri-snRNP failed to 

assemble onto the spliceosome, suggesting a direct role of Prp3lp in the 

transformation of the pre-spliceosome into an active one (Weidenhammer et al., 1997). 

The Of 1 protein (also named Syf3p) was shown to be a splicing factor required before 

the first transesterification reaction takes place. It interacted in two-hybrid analyses and 

in in vitro immunoprecipitation experiments with components of the commitment 

complex, Prp40p and Mud2p (Chung et al., 1999). In extracts prepared from Of 1 p-

depleted cells, pre-spliceosomes formed, but tri-snRNP addition is severely decreased. 

The authors suggested that the protein might be involved in structural rearrangements 

within the pre-spliceosome which could be needed for tri-snRNP addition. 

Coimmunoprecipitation experiments with a hemagglutinin (HA) tagged version of the 
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protein, however, failed to detect any association with snRNAs. It was therefore 

proposed, that either the HA-tag might not be accessible to the antibodies when the 

protein is bound to an snRNP particle or the association with snRNP(s) is only weak. 

Alternatively, it was suggested, that the protein could be part of a larger, non-snRNP 

complex, which was supported by the fact that only approximately half of the HA-

Of ip could be precipitated from extracts and that the remainder was sufficient for 

splicing. 

1.3.4 Toward an active spliceosome 

Concurrently with and immediately after the association of the tri-snRNP onto 

the pre-spliceosome, major conformational rearrangements take place which involve 

fundamental changes in snRNA-snRNA and pre-mRNA-snRNA interactions. These 

are probably the most important events in bringing the reactive sites into the correct 

positioning within the catalytic centre(s) to initiate splicing (reviewed in Newman, 

1994; Umen and Guthrie, 1995b; Nilsen, 1998). After binding of the tri-snRNP, the 

U41U6 snRNA helix is disrupted and the U4 snRNP becomes destabilised from the 

spliceosome. The U6 snRNA changes its secondary structure and forms a novel helix 

by base pairing with the U2 snRNA, which is mutually exclusive from the U4/U6 

snRNA-structure. The UI snRNA/5' splice site interaction is also disrupted and 

replaced by new interactions of the U6 and US snRNAs with the 5' splice sites prior to 

step 1. The U6 snRNA base pairs with a short intronic sequence, while U5 associates 

with exon nucleotides adjacent to the 5' end of the intron. 

Again a number of protein factors are known, which are present in or join the 

spliceosome at this particular stage and may promote the above mentioned 

rearrangements prior to the first transesterification. At least five proteins are implicated 

in supporting the U4/U6 snRNA dissociation, which is a prerequisite for all the 

subsequent steps. 

The best candidate to date which could be directly responsible for U4/U6 snRNA 

unwinding is the 246 kDa DEIH-box ATPase and RNA helicase Brr2p (for reviews on 

DExD/H-box proteins see Hamm and Lamond, 1998; de la Cruz et al., 1999). Brr2p is 
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unusual in that it contains two (instead of one for the other members of the family) 

conserved RNA helicase-like domains. Only the first one was shown to be essential 

for cell viability and pre-mRNA splicing (Kim and Rossi, 1999). Raghunathan and 

Guthrie (1998) immunopurified Brr2p in a native complex containing UI, U2, U5 and 

duplex U4/U6 snRNPs. They were able to show that upon addition of hydrolysable 

ATP to this complex the U4/U6 di-snRNP dissociated. However, if complexes were 

prepared from cells containing a mutation in the first helicase domain of BRR2 (brr2-

1), these rearrangements did not occur. Indeed, the investigation of the deproteinised 

RNA samples of this experiment by non-denaturing gel electrophoresis confirmed that 

in the wt preparations U4/U6 snRNAs were dissociated upon addition of ATP, but not 

in the preparations from the brr2-I mutant strain. These in vitro observations in yeast 

are strongly supported through investigations on the human homologue of Brr2p, the 

U5-200K protein (Laggerbauer et al., 1998). The authors showed that partially 

purified U5 snRNPs containing the U5-200K protein are able to unwind U4/U6 

duplex RNA in an ATP-dependent fashion. Depletion of U5-200K abolished 

unwinding activity. Furthermore they purified the U5-200K protein to near 

homogeneity and proved its ability to unwind the U4/U6 duplex in vitro. The first 

evidence for an U4/U6 unwinding function of Brr2p in vivo comes from a recent study 

in yeast: Kim and Rossi (1999) demonstrated that overexpression of dominant negative 

BRR2 mutant alleles (the mutations were located in the first helicase domain) leads to 

an accumulation of duplex U4/U6 snRNAs in the cells, whereas the total levels of U4 

and U6 snRNAs remained unchanged. Together with the in vitro data presented above, 

this provides good evidence for a direct role of Brr2p in U4/U6 snRNA unwinding in 

the cells. 

Interestingly, certain therrnosensitive mutants of the aforementioned tri-snRNP 

protein Prp4p do not prevent the formation of the tri-snRNP particle and its association 

with the pre-spliceosome, but nevertheless the formed spliceosome is not capable of 

splicing. In this case, as suggested by immunoprecipitation of spliceosomes from heat-

treated mutant extracts with anti-Prp4p antibodies, the mutations affect the dissociation 

of the U4 snRNA and Prp4p from the spliceosome and therefore, necessary 

conformational rearrangements cannot take place to promote splicing (Ajadi et al., 

1997). Thus, Prp4p has been implicated in the release of U4 snRNA from the 
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spliceosome. Whether the protein directly effects U4/1J6 snRNA unwinding remains to 

be determined. Prp38p, another tri-snRNP associated protein, seems to resemble the 

function of Prp4p quite well. Prp38p function is required for pre-mRNA splicing 

before the first transesterifcation reaction. In extracts made from a heat-sensitive 

mutant prp38 strain, spliceosomes assembled, as shown by resolving the complexes in 

a native gel, but the extracts were incapable of splicing (Blanton et al., 1992). 

Additional studies using a strain in which the expression of HA-tagged Prp38p could 

be conditionally regulated demonstrated the requirement of Prp38p for U4/U6 

unwinding (Xie et al., 1998). The authors used extracts either containing Prp38p or 

which were metabolically depleted of Prp38p and incubated these with a biotin-

substituted pre-mRNA substrate. At various time points the assembled complexes were 

recovered by streptavidin chromatography and investigated for snRNA content. It 

could be demonstrated, that the levels of U4 snRNA in the complexes were 

significantly increased at later time points when Prp38p was absent. Native gel 

electrophoresis of the HA-Prp38p-containing and -depleted complexes, under 

conditions in which the U4/U6 hybrid can be resolved from the free species then 

confirmed that indeed most of the U4 snRNA at late time points was found associated 

with U6 snRNA in the Prp38p-depleted extracts. Since both tri-snRNP proteins, 

Prp38p as well as Prp4p, are unlikely to have RNA-unwindase activity themselves, it 

could be that they in some way support Brr2p function in vivo, maybe simply by 

providing the structural requirements for Brr2 positioning in the spliceosome. 

An snRNA-free complex of at least seven proteins associated with the Prp 19 

protein is believed to join the spliceosome concurrently with or immediately after 

dissociation of the U4 snRNP (Tarn et al., 1993a; 1993b and 1994) and therefore 

might play a role in U4 dissociation or at least in a step of spliceosome assembly that 

could be linked with U4 dissociation. Besides Prpl9p, four other proteins of this 

complex have been characterised and were shown to associate with the spliceosome at 

the same time point: Cefip (Tsai et at., 1999), Snt309p (Chen et at., 1998), Ntc20p 

and Ntc30p (Tsai et al., unpublished results). The authors stabilise the normally very 

short-lived spliceosomal complex consisting of the U1/U2/U5/U4/U6 snRNPs 

(complex A2-1) by lowering the levels of ATP in splicing reactions. By using anti-

Prp4p antibodies to immunoprecipitate spliceosomes from splicing reactions performed 
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at different ATP concentrations, they showed that the amount of pre-message that can 

be coprecipitated from the reactions increased with decreasing concentrations of ATP. 

Since Prp4p was previously demonstrated to associate with the spliceosome only in 

complex A2-1, this showed that the transition of the A2-1 complex into complex Al, 

containing only U2/U5/U6 snRNPs, could be slowed down by decreasing the levels 

of ATP. 

Prp 19 was shown previously, not to be present in the commitment complex or in 

the pre-spliceosome but to be essential for splicing before the first transesterification 

(Tarn et al., 1993a). Since at high (2mM) ATP concentrations, coimmunoprecipitation 

of spliceosomes from splicing reactions using anti-Prpl9p antibodies precipitates pre-

mRNA, lariat-intron exon 2 and exon I intermediates as well as the excised intron, but 

at low ATP concentrations only very low levels of pre-mRNA were found in the 

precipitates, it was concluded that Prp I 9 must join the spliceosome concurrently with 

or after dissociation of U4 snRNP (Tarn et al., 1993b). Snt309p, Cefip, Ntc30p and 

Ntc20p exhibited the same pattern of spliceosome association as Prp l9p. Furthermore, 

far-western blot analyses revealed a direct interaction of Snt309p and Cef I p with 

Prpl9p and, notably, addition of anti-Ceflp antibodies prevents binding of Snt309p, 

Prp l9p, Ntc20p and Ntc30p to the spliceosome, it was supposed that these proteins 

join the spliceosome as a preformed complex immediately prior to the first 

transesterification reaction (Tsai et al., 1999). Prp l9p and Ceflp are essential genes, 

which highlights the importance of this complex during spliceosome assembly. 

Kuhn et al. (1999) reported that a mutation (U4-cs 1) within the region of U4 

snRNA that masks the ACAGA box in the U4/U6 complex conferred a reversible cold-

sensitive block on splicing before the first transesterification reaction. The ACAGA 

box is the sequence within the U6 snRNA that base pairs with the 5' splice site prior to 

the first transesterification. The U4-cs 1 mutation lies in a region of the U4 snRNA 

which lies opposite the ACAGA box in the U4/U6 RNA duplex and the mutation leads 

to hyperstabilisation of the helix by introducing additional Watson and Crick base 

pairings into the duplex. The authors show that in the cold not only U4/U6 snRNA 

unwinding but also Ui snRNA dissociation from the 5' splice site is prevented, 

suggesting that these processes are tightly coupled. In a search for trans-acting 

suppressor mutations a mutant allele of PRP8 (prp8-201) was identified (Li and Brow, 
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1996). It was suggested that the normal function of Prp8p at this stage would be to 

downregulate U4/U6 snRNA duplex unwinding. Contact of Prp8p with the short U6 

snRNA/5' splice site helix could induce conformational changes within Prp8p that 

would normally promote U4/U6 unwinding. In the mutant prp8-201 these changes in 

Prp8p structure might be prevented. Alternatively, the function of Prp8p could be to 

negatively regulate a factor that unwinds the U4/U6 duplex, maybe Brr2p. For both 

models there is some experimental support and certainly the models are not mutually 

exclusive: i) It was demonstrated through crosslinking experiments using 4-

thiouridine-modified pre-mRNA, that Prp8p indeed directly contacts the pre-mRNA 

substrate prior to the first transesterification reaction (Beggs et al., 1995; Teigelkamp et 

al., 1995). Contacts were observed with exonic nucleotides +1, +2 and + 8 upstream 

of the 5' splice site and thus Prp8p is in proximity to the 5' splice site/U6 snRNA 

duplex. ii) Prp8p was identified in a two-hybrid screen of a yeast genomic DNA 

library using Brr2p as bait and furthermore, the two proteins could be 

coimmunoprecipitated from cell extracts, making a contact of the two proteins during 

the splicing process likely (van Nues, unpublished results). 

Prp8p not only contacts the pre-mRNA at this stage of the splicing reaction, but 

also the US snRNA (Dix et al., 1998). Interestingly, the interaction of Prp8p with the 

U5 snRNA is strongest in a conserved sequence (loop 1) as shown by photo-

crosslinking experiments. It was demonstrated previously that indeed loop I of the US 

snRNA directly contacts exon sequences adjacent to the 5' splice site prior to step I 

(and step 2, see later) (Newman and Norman, 1991, 1992). A role in stabilising the 

fragile US snRNAlpre-mRNA interaction has therefore been proposed for Prp8p. 

Surprisingly, the conserved loop 1 of the U5 snRNA was shown not to be essential 

for the first cleavage reaction, suggesting that other functions of the US snRNA and 

Prp8p at this stage are maybe more important or simply that this structural arrangement 

is needed at later stages. Maybe this also suggests that Prp8p is the primary factor to 

hold exon 1 in position. 

The DEAD-box RNA helicase Prp28p is another good candidate to modulate the 

snRNAlpre-mRNA contacts at the 5' splice site prior to step 1. Staley and Guthrie 

(1999) generated reporter constructs in which the U  snRNA/5' splice site duplex was 

hyperstabilised, by introducing additional nucleotides thereby extending the length of 
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the duplex. This hyperstabilisation led to a moderate decrease in splicing efficiency, 

which was exacerbated in the cold. Interestingly, altering the U6 snRNA sequence in a 

way that allowed extended base pairing of U6 snRNA to the 5' splice site increased 

splicing efficiency again, suggesting a competition of U  and U6 snRNAs for binding 

to the 5' splice site. The authors then looked for mutants which could exacerbate the 

splicing defect by combining known splicing mutants together with the reporter 

constructs that conferred cold sensitivity due to the defect in 5' splice site cleavage. 

Among 15 splicing mutants tested, only a mutation in PRP28 (prp28-1) enhanced the 

defect in vivo. Further evidence for a direct involvement of Prp28p in the switch of U6 

snRNA for U  snRNA at the 5' splice site was provided: Hyperstabilisation of the 

U1/5' splice site helix leads to a stall of spliceosomes, containing all spliceosomal 

snRNP particles, prior to step I. These stalled spliceosomes could be activated by 

shifting the temperature to 35°C, whereupon UI and U4 snRNAs are released. 

However, upon immunodepletion of Prp28p spliceosome formation is not prevented, 

stalled spliceosomes do form, but increasing the temperature does not lead to activation 

of the spliceosomes in this case. Ui and U4 snRNAs remain associated. Addition of 

recombinant Prp28p reverts this effect, supporting the idea of a requirement for 

Prp28p for the switch of basepairing of U6 snRNA for U  snRNA at the 5' splice site 

prior to step 1. 

Another putative RNA-helicase, the DEAH-box ATPase Prp2p is required for 

promoting the first transesterification reaction in vivo and in vitro (Lustig et at., 1986; 

Plumpton et at., 1994). It could be demonstrated that Prp2p joins the spliceosome 

transiently after association of the tri-snRNP and leaves before the second 

transesterification is initiated (King and Beggs, 1990). After preparation of fully 

assembled spliceosomes lacking Prp2p from ATP-depleted extracts, it could be shown 

that only the combined addition of wt Prp2p and ATP, but not one of the components 

alone was sufficient to promote splicing and dissociation of Prp2p, suggesting that 

ATP-dependent action of Prp2p is required prior to step 1. Teigelkamp et at. (1994) 

expressed and purified a dominant negative form of Prp2p, which contained a single 

amino acid exchange in a conserved motif, putatively required for RNA-helicase 

activity of the DEAD-box proteins. By adding this dominant negative Prp2 protein to 

splicing extracts before adding ATP and radiolabelled precursor-mRNA, splicing 

23 



complexes form but splicing becomes stalled prior to the first transesterification 

reaction, suggesting that RNA-helicase activity of Prp2p is required for initiation of the 

first step. The demonstration that Prp2p can be crosslinked to a spliceable pre-mRNA 

(mutations in the 5' splice site abolished the Prp2p crosslink) and that the crosslink is 

not dependent on the presence of a 3' splice site, suggested that the pre-mRNA might 

be the substrate for Prp2p and that its role could be to either resolve secondary 

structures within the pre-mRNA or to help displacing U  snRNA from the pre-mRNA 

(Teigelkamp et al., 1994). In a high copy-number suppressor screen with temperature 

sensitive prp2 mutants, the SPP2 gene was identified (Last et al., 1987). Indeed, the 

initial analysis of the gene revealed that it is, like PRP2, required for splicing prior to 

step 1 in vivo and in vitro (Roy et al., 1995). In extracts prepared from the spp2-

mutant strain, spliceosomes assemble as normal, but are blocked prior to the first 

transesterification, showing that spliceosome assembly is not effected in the absence of 

Spp2p. When extracts containing these spliceosomes were depleted of ATP, it could 

be shown that again, as for Prp2p, only addition of both recombinant Spp2p and ATP 

could chase these extracts through splicing, indicating that Spp2p acts prior to or 

concomitantly with the ATP-hydrolysis required for step I of splicing. Using anti-

Spp2 antibodies to precipitate spliceosomes, which were assembled in wt-, mutant-

spp2 or mutant-prp2 extracts, it was demonstrated that Spp2 co-precipitated pre-

mRNA only in the mutant-prp2 extracts, suggesting i) that it associates with the 

spliceosome prior to Prp2p action and ii) that under wt-conditions it is only very 

transiently associated with the spliceosome, leaving after ATP-hydrolysis by Prp2p, 

maybe associated with it. Two-hybrid analyses indeed suggests a physical interaction 

between the proteins (Roy et al., 1995; Smith, 1999). 

The protein actions presented above help to support the essential structural 

rearrangements of pre-mRNA and snRNAs. Immediately prior to step 1, a situation 

can be expected in which U6 snRNA base pairs with the 5' splice site as well as with 

the U2 snRNA. The U2 snRNA also base pairs to the branchpoint sequence and thus a 

situation could be imagined, where the branchpoint adenosine residue is in proximity 

to the 5' splice site to initiate the first transesterification (see figure 1.5). 
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Figure 1.5: 
Schematic drawing of pre-mRNA/snRNA and snRNA/snRNA 
interactions immediately prior to step 1. Exon sequences are represented as 
dashed boxes, the intron as a fat line. U2, U5 and U6 snRNAs are depicted as thin 
lines. Short, thin lines indicate base pairing events: The U6 snRNA forms a helix with 
the 5' splice site as well as with the U2 snRNA (U6-5' ss helix and U6/U2 snRNA 
helix). U2 snRNA base pairs in addition with the branch sequence (U2-branchpoint 
helix). The U5 snRNA contacts the extreme 3' end of exon 1. The dotted arrow 
indicates the nucleophilic attack of the free 2'-hydroxyl group of the branchpoint 
adenosine (black square) on the phosphate group at the 5' splice site, which initiates 
the first step. 

1.3.5 The second step of splicing 

Although to date it is not clear whether the first and the second 

transesterifications happen in the same catalytic site, or whether two catalytic sites can 

be distinguished, at least some minimal rearrangements must be made in order to allow 
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the second transesterification to take place: i) the branchpoint must be displaced ii) the 

phosphodiesterbond at the 3' splice site must be brought into proximity to the free 3' 

hydroxyl group of exon 1 in order to allow the second nucleophilic attack for the 

ligation of the two exons to happen. Again, protein factors have been identified, which 

in some cases bind to the conserved cis-elements within the substrate pre-mRNA and 

which are specifically required for recognition and cleavage at the 3' splice site and 

subsequent linkage of the exons. 

In addition to the 5' splice site and the branchpoint, which are also required for 

the first step, the two additional conserved elements within the pre-mRNA are 

important for the second step: the nucleotides PyAG at the 3' end of the intron and a 

polyuridine tract preceding the 3' splice site in most yeast introns. It has been 

demonstrated that mutations in any of the nucleotides PyAG inhibit the second 

transesterification reaction (Yijayraghavan et al., 1986; Parker and Siliciano, 1993). 

The polyuridine tract preceding the 3' splice site seems to be required for 3' splice site 

selection. In constructs of introns with duplicated 3' splice sites in which only one is 

preceded by a polyuridine tract, it could be shown that this site will be preferentially 

used (Patterson and Guthrie, 1991). 

Interesting is the fact that the 5' splice site as well as the branchpoint consensus 

sequence are necessary not only for the first, but also for the second transesterification. 

Three suggestions have been made to explain a requirement for these elements for the 

second step: first, in the majority of yeast introns, the branchpoint lies in proximity to 

the actual 3' cleavage site, which led to the model that the branch serves as a marker 

that facilitates 3' splice site recognition. Indeed, at least in mammalian in vitro splicing, 

there is some evidence for a scanning mechanism initiating at the branch structure 

(Smith et al., 1989). Studies in yeast, however, using a number of reporter constructs 

which contain competing proximal and distal 3' splice sites, make a simple scanning 

mechanism unlikely (Luukkonen and Seraphin, 1997). Second, an inspection (or 

proofreading) mechanism has been proposed to enhance splicing fidelity, in which 

after the first transesterification, the branch structure is checked. Formation of the 

branch structure might be monitored by a protein binding (or trying to bind) to this 

structure, and if mistakes are recognised, the splicing intermediates become degraded. 
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A candidate monitoring protein for this mechanism could be Prp I 6 (Burgess and 

Guthrie, 1993). Mutations in the ATP-dependent RNA helicase Prp I 6 were isolated 

which allowed splicing of an aberrant lariat-intron exon 2 intermediate, that had formed 

due to a mutation in the branchpoint nucleotide. All seven isolated mutations within 

Prp l6p were located in a conserved ATP-binding motif, and ATP-hydrolysis or 

binding was severely reduced in these mutants. The mutant lariats formed are rapidly 

turned over in wt cells, but are stabilised in the prp]6 mutant strains. The authors 

proposed the existence of a discard pathway under genetic control of Prp l6p, through 

which in wt strains aberrantly formed lariat-intermediates are rapidly discarded. In 

prpl6 mutant strains, however, the decreased ATP-hydrolysis rate slows down the 

entry of these faulty intermediates into the discard pathway allowing more time for 

entry into a productive pathway. Third, evidence has been brought that nucleotides in 

the branch structure directly contact the conserved nucleotides PyAG at the 3' splice 

site (Parker and Siliciano, 1993). 

Besides a number of proteins which will be discussed later, the U2, U6 and U5 

snRNAs are essential transacting factors during the second step. Extensive mutational 

analyses have shown that both U2 and U6 snRNAs are required for the second 

transesterification to proceed. This is not surprising, because during the second step, 

both the U2 and U6 snRNAs maintain the base pairing interactions to each other and to 

the pre-mRNA, which have been established prior to the first step. It has to be noted, 

however, that certain nucleotides within the U2 and the U6 snRNA can be defined 

which are specifically required for just one of the transesterifications, indicating that 

the U2 and U6 snRNAs do not simply form a scaffold which is built before the first 

step and remains rather static in later stages of splicing, but that they are likely to take 

an active part in catalysis (for review see Umen and Guthrie, 1995b and references 

therein). Depletion of the US snRNA prior to step 2 blocks splicing before the second 

transesterification can take place (Winkelmann et al., 1989). It was demonstrated that a 

four nucleotide sequence CUUU of loop 1 of the U5 snRNA contacts both exons 

adjacent to the 5' and the 3' splice sites (Newman and Norman, 1992; Newman et al, 

1995). Photoactivated crosslinking using 4-thiouridine in the exon sequences revealed 

that the interaction of this loop can be detected with exon 1 prior to and during the first 

step as well as the second step. The interaction with exon 2 can only be detected after 
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completion of step I (Newman et at., 1995). A model for the function of the U5 

snRNA was proposed in which it fixes exon 1 in position after completion of the first 

step and then helps to bring the exons together through its interaction with exon 2. 

However, it is unlikely that both exons could be held together exclusively through 

these fragile base pairing events with the U5 snRNA. Additional factors are required. 

One obvious candidate to help juxtapose the 3' end of exon I and the 5' end of 

exon 2 is Prp8p since, as mentioned above, it contacts the U5 snRNA as well as exon 

I already during the first step. Indeed, it could be shown by photo-crossl inking that 

after completion of the first step, Prp8p contacts the branch site and intron and exon 

nucleotides surrounding the 3' splice site (Teigelkamp et al., 1995). One mutant of 

Prp8p (prp8-101) has been shown to be specifically defective in 3' splice site and 

polyuridine tract recognition and furthermore exhibits synthetic lethality with mutant 

alleles of a number of genes, encoding proteins that have been shown to be required 

for the second but not for the first transesterification such as Prp l'7p, Prp l6p, Prp 18p 

and Slu7p (Umen and Guthrie, 1995a), strongly supporting a role for Prp8p during 

the second step, in addition to its functions in spliceosome assembly and the first step. 

A first indication that Slu7p and the Prp F/p could be splicing factors came from 

their identification in a screen for mutants which are synthetic lethal with conditional 

alleles of the U5 snRNA (Frank et at., 1992). The authors then provided evidence that 

these mutant alleles lead to a specific block of the second transesterification reaction in 

vivo and in vitro. Furthermore they showed synthetic lethality of mutant slu7 and 

prp]7 genes with each other as well as with mutant alleles of prpl8 and prpl6. In 

addition to slu7 and prp] 7, synthetic lethality with certain mutations in the U5 snRNA 

loop 1 was also demonstrated for prp8 and prpl8, suggesting that the proteins are all 

involved in promotion of the second transesterification reaction. Indeed, evidence was 

provided that both PrpI8p and Prpl6p are bona fide second step splicing factors 

(Vijayraghavan and Abelson, 1990; Schwer and Guthrie, 1991; Horowitz and 

Abelson, 1993). 

Prpl6p was originally identified in a screen for suppressors of a branchpoint 

mutation (Burgess et at., 1990), suggesting that Prpl6p is involved in branchpoint 

recognition or binding. By now it is known that the DEAH-box protein has an RNA-

dependent NTPase and ATP dependent RNA-helicase activity in vitro (Schwer and 
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Guthrie, 1991; 1992; Wang et al., 1998). The use of non-hydrolysable ATPyS in the 

unwinding assay showed that indeed ATP-hydrolysis and not mere ATP-binding was 

required for unwinding of RNA-RNA duplexes, in a non-sequence specific manner. 

Extracts immunodepleted of Prpl6p are blocked after the first transesterification has 

taken place. The addition of recombinant wt Prpl6p can complement the second step 

block if ATP is present. However, if purified protein generated from the originally 

isolated prpl6 mutant was added to the extract prior to the wt Prpl6p, 

complementation was abolished. Moreover, immunoprecipitation of spliceosomes 

from these extracts with anti-Prpl6p antibodies demonstrated that the mutant Prpl6p 

was stalled in the spliceosome, and therefore intermediates were efficiently 

precipitated, whereas from wt extracts Prpl6p did not coprecipitate spliceosomes, 

showing its normally transient interaction with the spliceosome (Schwer and Guthrie, 

1992). The investigation of the mutant revealed that the mutation resided in a 

conserved nucleotide binding domain and that the ATP-hydrolysis activity of the 

mutant was severely decreased. These data led to a model for Prpl6p function, in 

which Prpl6p binds to the branchpoint, hydrolyses ATP to promote structural changes 

within the pre-mRNA (and maybe within the spliceosomal complex) which are 

necessary for the second step to occur. Prpl6p leaves the spliceosome immediately 

after this function. 

To date, the ATP-dependent action of Prp I 6 is still the first action that can be 

defined after the first transesterification is completed. Umen and Guthrie (1995a) set 

out to identify the order of events during the second step in crosslinking studies in 

mutant and wt extracts by using a mutant substrate pre-mRNA, which contained a 

single amino acid exchange at the 3' splice site. By using this substrate the kinetics of 

the second step were slowed down, which could be demonstrated by enhanced UV- 

crosslinking of Prp8p to the mutant 3' splice site compared to the wt 3' splice site. The 

authors demonstrated that crosslinking of Prpl6p to the 3' splice site is greatly reduced 

upon ATP-hydrolysis, as expected from previous observations (see above), but that 

crosslinking of Slu7p and Prp8p to the 3' splice site is greatly enhanced, suggesting 

that Prpl6p action promotes binding of Slu7p and Prp8p to the 3' splice site. 

However, Slu7p and Prp8p binding is also detectable without the prior hydrolysis of 

ATP, but without conferring protection of the 3' splice site to oligonucleotide directed 
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RNAse H digestion. After ATP-hydrolysis, the 3' splice site is protected, suggesting 

strong binding of SIu7p and Prp8p upon conformational changes promoted by Prp I 6 
action. When purified spliceosomes lacking Prp l6p or Slu7p or both were generated 

and Prp l6p, Slu7p and ATP were added back in a specified order it was shown that 

Slu7p action does not require ATP and furthermore it was confirmed that Slu7p acts 

after Prp 16p function (Ansari and Schwer, 1995). Interestingly, although both Prp I 6 
and Slu7p could be crosslinked to the 3' splice site, the removal of the corresponding 

region by RNase H digestion from preformed spliceosomes (generated by using wt 

pre-mRNA and extract immunodepleted of Prp l6p) did not prevent the subsequent 

association of Prpl6p and Slu7p with the spliceosome when they were added back. 

This suggested that at least the initial recruitment of the two factors might be mediated 

through protein-protein interactions. The same might be true for Prp l7p and Prp l8p, 

which could not be crosslinked to the 3' splice site at all (Umen and Guthrie, 1995a). 

In contrast to Slu7p and Prp l6p, Prp 17p and Prp l8p are not essential for cell viability 

and depletion of Prp l7p or Prp l8p from extracts leads only to a partial block of 

splicing in vitro (Vijayraghavan et al., 1989; Horowitz and Abelson, 1993). Prpl7p 

acts before or concomitantly with an ATP-dependent reaction, whereas Prp I 8 action 

is ATP-independent (Horowitz and Abelson, 1993; Jones et al., 1995). Thus, ordering 

the functions of the second step splicing factors strictly with respect to their ATP-

requirement, it would place Prpl6p/Prpl7p action (ATP-dependent) prior to 

Slu7p/Prpl8p action (ATP-independent). It was proposed that the non-essential factors 

Prp F/p and Prp I 8 might modulate the function of their essential partners, Prp I 6 and 

Slu7p, respectively. This hypothesis is supported by the fact that overexpression of 

PRP16 can suppress the phenotype of a prpl7 mutation and overexpression of SL U7 

can suppress aprpl8 mutation (Jones et al., 1995). 

Another DEAH-box protein was recently shown to be required for the second 

transesterification reaction: Prp22p (Schwer and Gross, 1998). When Prp22p was 

irnmunodepleted from whole cell extracts and splicing reactions were performed, the 

products of step I, free exon 1 and lariat-intron exon 2 accumulated, demonstrating 

that Prp22p was required for the second step to proceed. Addition of recombinant 

Prp22p restored full splicing activity to the extracts. By using a mutant substrate pre-

mRNA containing a nucleotide exchange at the 3' splice site to slow down the reaction 
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kinetics, the authors were able to demonstrate that, compared to wt extracts, in 

Prp22p-depleted extracts the 3' splice site was far more sensitive to oligonucleotide-

directed RNase H cleavage, suggesting that Prp22p acts at the 3' splice site. 

Earlier, Prp22p was identified as a factor required for the release of the mature 

message from the spliceosome (Company et al., 1991). In extracts prepared from a 

prp22 temperature-sensitive strain, heat inactivation prior to performance of splicing 

reactions led to an increased amount of excised intron as well as mRNA. By looking at 

the splicing complexes formed during the reactions it could be seen that in the heat 

inactivated extract, at late time points the spliced exons were found predominantly in a 

high molecular weight complex (the spliceosome), whereas in wt extracts the mRNA 

was shown to be present predominantly in lower molecular weight complexes. This 

suggested, that Prp22p was required to release the mature message from the 

spliceosome. 

Interestingly, by using pre-mRNA substrates with different spacings between the 

3' splice site and the branchpoint in Prp22p-depleted cell extracts, it was demonstrated 

that in vitro, Prp22p is dispensable for splicing of introns with 3' splice site-

branchpoint distances of less than 21 nucleotides (Schwer and Gross, 1998). Slu7p 

and Prpl8p exhibit a similar feature. Introns with short 3' splice site-branchpoint 

distances are efficiently spliced, but if the distance exceeds 11 nucleotides, Slu7p and 

Prpl8p are absolutely required for progression through the second step (Brys and 

Schwer, 1996; Zhang and Schwer, 1997). The authors propose that for those introns 

in which the 3' cleavage site is close to the active centre of the spliceosome, which is 

supposed to reside at the branchpoint after step 1, the Prp 1 6p-induced conformational 

change is sufficient to rearrange the active site for the second step. For 3' cleavage 

sites further away from the branch (and the active centre) S1u7, Prpl8p and Prp22p 

could form a molecular bridge between the branch and the 3' splice site. 

The general resemblance of the splicing pathway in mammals and yeast is very 

well illustrated by the conservation of the second step splicing factors. For all yeast 

second step splicing factors characterised to date, human homologues have been 

identified and for many, functional analogies have been described (Anderson et al., 

1989; Ohno and Shimura, 1996; Horowitz and Kramer, 1997; Zhou and Reed, 1998; 

Chua and Reed, 1999). 
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1.4 	This thesis 

In this work exhaustive two-hybrid screens of a yeast genomic DNA library 

have been performed to investigate protein-protein interactions within the spliceosome 

of Saccharomyces cerevisiae. The aim was, by using well characterised splicing 

proteins as baits, to reveal novel interactions between known splicing factors and 

possibly to identify hitherto unknown splicing proteins. Candidate proteins identified 

in the screens were investigated by generating null alleles of the genes, by constructing 

conditionally regulated alleles and/or by using the proteins in turn as baits in two-

hybrid screens. Indeed, this procedure led to the identification of two novel pre-mRNA 

splicing factors, Prp45p and Prp46p, the initial characterisation of which is presented 

in this thesis. Both proteins are essential and evolutionarily conserved from yeast to 

man, which emphasises the importance of the proteins for the cell. Through the 

generation of strains allowing the conditional expression of PRP45 and PRP46, it was 

demonstrated that both proteins are required for pre-mRNA splicing in vivo. By using 

a tagged-version of Prp45p in immunoprecipitation experiments, evidence was 

provided that the protein is an integral part of the spliceosome. When Prp45p was used 

as bait in a two-hybrid screen, it not only identified Prp46p, but also the proteins 

Syfip and Syf3p, which have been recently demonstrated to be required not only for 

splicing but also for the progression of the cell cycle. 
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Chapter II 

Materials and Methods 



H. 1 Materials 

11.1.1 General reagents 

11.1.1.1 Chemicals 

Chemicals were purchased from the following sources, unless stated otherwise: 

Amersham, Fischer, Fisons, Melford Labs., National Diagnostics, Scotlab, Sigma. 

11.1.1.2 Enzymes 

Restriction enzymes, polymerases and other enzymes used in this work were 

purchased from the following companies, except where stated otherwise: Boehringer 

Mannheim, Gibco BRL, New England Biolabs (NEB), Pharmacia, Promega, 

Quiagen. 

11.1.1.3 Growth reagents 

Reagents for all growth media were purchased from: Beta Lab, Difco Laboratories, 

Oxoid or Sigma. 

11.1.1.4 Antibiotics 

All antibiotics were purchased from Duchefa (Netherlands). 
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11.1.2 Bacterial and yeast growth media 

All growth media were autoclaved prior to use and stored at room temperature. For 

solid media, 2% (w/v) agar was added prior to autoclaving. 

11.1.2.1 Bacterial media 

Table 11.1.1 
Bacterial media 

Medium Components 

Luria-Broth (LB) I % (w/v) Bacto-tryptone 
0.5% (w/v) Yeast extract 
0.5% (w/v) NaCI 
adjust pH with 10 N NaOH to pH 7.2 

SOC 2% (w/v) Bacto-tryptone 
0.5% (w/v) Yeast extract 
0.06% (w/v) NaCI 
0.02% (w/v) KCI 
0.1% (w/v) MgSO4  
0.4% (w/v) Glucose 

lOx M9 salts 6% (w/v) Na2HPO4  
3% (w/v) KH2PO4  
0.5% (w/v) NaCI 
I% (w/v) NH4CI 

M9 -L 10% -L (w/v) drop-out mix 
0.2% (w/v) Glucose 
10% (v/v) lOx M9 salts '  

0.024% (w/v) MgSO4 a 

0.022% (w/v) CaC12 a  

a  added after autoclaving 
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IL 1. 2.2 Antibiotics 

Antibiotics were added to liquid media immediatly prior to use. For solid medium, the 

antibiotic was added after autoclaving of the medium, when it was cooled down to 

approximately 50-60°C. Ampicillin and chloramphenicol were dissolved in 50% 

Ethanol to prepare stock solutions of a concentration of 100 mg/ml. These antibiotics 

were added to the media to give a final concentration of 100 j.tg/ml. Tetracycline was 

dissolved in 100% Ethanol to give a stock solution of 6 mg/ml. The final concentration 

in the media was 5 jig/ml. All antibiotics were stored at -20°C. 

11.1.2.3 Yeast media 

Table 11.1.2 
Yeast media 

Medium Components 

YPDA 1 % (w/v) Yeast extract 
2% (w/v) Bacto-peptone 
2% (w/v) Glucose 
0.003% (w/v) Adenine sulfate 

YPD as YPDA w/o Adenine sulfate 

YMM 0.67% (w/v) Yeast nitrogen base w/o amino acids 
2% (w/v) Glucose 

YMGRSa 0.67% (w/v) Yeast nitrogen base w/o amino acids 
2% (w/v) Galactose 
2% (w/v) Raffinose 
2% (w/v) Sucrose 

SPM (sporulation) 0.3% KAc 
0.02% Raffinose 
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a: To grow yeast, YMM or YMGRS was supplemented with complete drop-out 

powder (11.1 .2.4). In this case, the medium was referred to as YMiMsup or 

YMGRSsup. Selective media were supplemented with nutrients from complete drop-

out powder but lacking the appropriate amino acid. In this case , the media will be 

referred to as YMM -X or YMGRS -x (X for any aminoacid), e.g. YMM -LW 

means, the medium contains all nutrients normally present in the complete drop-out 

powder mix, apart from leucine and tryptophan. Drop-out powder was added prior to 

autoclaving. For the preparation of solid medium 2% (wlv) agar was added prior to 

autoclaving. 

11.1.2.4 Nutrients and supplements (Drop-out mix) 

Drop-out powder was prepared by mixing 2g of each of the following nutrients: 

adenine, alanine, arginine, asparagine, aspartic acid, cysteine, glutamic acid, 

glutamine, glycine, histidine, isoleucine, lysine, methionine, phenylalanine, proline, 

serine, threonine, tyrosine, tryptophan, uracil, valine. If required 4g of leucine was 

included in the mix. The drop-out powder was intensively mixed and added to the 

media at 2% (w/v). To each 500 ml of medium containing drop-out powder, 325 tl of 

10 N NaOH (for solid medium) or 250 jil of 10 N NaOH (for liquid medium) was 

added to adjust the pH. 
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11.1.3 Commonly used buffers 

Table 11.1.3 
Commonly used buffers 

Buffer Components 

20x SSC 3 M NaC1 
0.3 M Sodium citrate 
unsterilised 

lOx TE 100 mM Tris-HCI, pH 7.5 
10 mM EDTA 

lOx TAE 0.4 M Tris-acetate. pH 7.5 
20 mM EDTA 
unsterilised 

lOx TBE 0.9 M Tris-borate, pH 8.3 
20 mM EDTA 
unsterilised 

Ix TBS 10 mM Tris-HC1, pH 7.5 
150 mM NaC1 
unsterilised 

lx TBS-TT 20 mM Tris-CI, pH 7.5 
500 mM NaCI 
0.05% (v/v) Tween 20 
0.2 % (v/v) Triton X-100 
unsterilised 



11. 1.4 Escherichia coli strains 

Bacterial strains used in this work are listed in table 11. 1 .4. DH5aF' was used for all 

cloning procedures and propagation of plasmid DNA. MC1066 was used for 

propagation of plasmid DNA rescued from yeast cells (section 11.3.2.4). 

BL2 1 (DE3)pLysS was used for the expression of a recombinant yeast protein (section 

11.3.4.6). 

Table 11. 1.4 
Escherichia coli strains 

Strain Genotype Source 

DH5aF' F, 080dlacZAM15, A(IacZYA-argF) U 169, deoR, Gibco BRL. 
recAl, endAl, hsdRl7 (rK, M K'), supE44, A, thi-1, 
gyrA96, relAl. 

MC 1066 i(lacI POZYA)74, galU, gal K, StrAr,  leuB6, trp P. Legrain 
C9830, pyrF74::Tn5(Kn), hsdR. 

BL21(DE3) F, ompT, hsdSB, (rB , MB-)I 
gal, dcm (DE3) pLysS Novagen 

pLysS 

39 



11.1.5 Saccharomyces cerevisiae strains 

Yeast strains used in this work are listed in table 11.1.5. 

Table 11. 1.5 
Saccharomyces cerevisiae strains 

Strain Genotype Source 

BMA38* MATa/(z, his3A200, leu2-3,112, ura3-1, trplAl, B. Dujon 
ade2-I, can]-100 Institute Pasteur 

BMA38n MATa, his3A200, leu2-3,112, ura3-1, trp]A1, This work 
ade2-1, canl-100 

BMA64* MATaIa, his3-11,15, leu2-3,112, ura3-1, trplAl, F. Lacroute 
ade2-1 CNRS/CGM 

BMA64n MATa, his3-11,15, leu2-3,112, ura3-1, trp]A1, This work 
ade2-1 

CG1945 MATa, ura3-52, his3A 200, ade2-101 , lys2 -801, Clontech 
trp] -901, leu2-3,112, 1ys2::GAL1 uAs-GAL1TATA  - 
HIS3, gal4-542, gal80-538, cyh'2, 
URA3: . GAL4 	nv(x3)  CYC1T-lacZ 

Y187 MATa, ura3-52, his3A 200, ade2-101, leu2-3,112, Clontech 
trpl-901, gal4 A, mef, ga180 A, 
URA3:: GAL4J7 fltIS(X3) CYC] ThTA-lacZ 

LAO MATa, his3A200, trpl-901, leu2-3,112, ade2, Hollenberg 
lys2 -801am, URA3::(lexA0 )8-lacZ, et at., 1995 
LYS2::( 1exA0)4-HIS3 



KY117 MATa, 	his3A200, 	trpIAl, 	ade2, 	lys2 -801, Chen and 
ura-3-52 Struhl, 1985 

KY1 18 MATa, 	his3A200, 	trplAl, 	ade2, 	lys2 -801, Chen and 
ura-3-52 Struh], 1985 

YMAI56/1* MATaIa, his3A200, leu2-3,112, ura3-I, trpIAl, This work 
ade2-1, can] -100, SSY5/ssy5A: .H1S3 

YMA156/2 MATa, his3A200, leu2-3,112, ura3-1, trpIz1, This work 
ade2-1, cani-100, ssy5A::HIS3 

YMA44/1* MATaIa, his3A200, leu2-3,112, ura3-/, trp 1/il, This work 
ade2-1, can]-100, YMR44c/ymr44cA::HIS3 

YMA44/2 MATa, his3A200, leu2-3,112, ura3-1, trpl2tl, This work 
ade2-1, canl-100, ymr44cA::HIS3 

YMA45/1* MATaIa, his3A200, leu2-3,112, ura3-1, trp]A1, This work 
ade2-1, can]-100, PRP45/HIS3Pg11j  - 
ProtA:PRP45 

YMA4512 MATa, his3A200, leu2-3,112, ura3-1, trpl/tl, This work 
ade2-1, can] -100, HIS3-P 11-ProtA :PRP45 

YMA151KO1* MATaIa, his3A200, leu2-3,112, ura3-1, trplAl, This work 
ade2-1, can]-100, PRP46/prp46 A::HIS3 

YJVIA151/2 MATa, his3-11,15, leu2-3,112, ura3-1, trp]A1, This work 
ade2-1, TRPI Pmet3 HA2.•PRP46 

* all diploid strains are isogenic for the auxotrophic markers described 
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11. 1.6 Oligonucleotides 

Oligonucleotides used in this work were purchased from Bioline Ltd. (London), 

Genosys Biotechnologies Ltd. (Cambridge) or Oswel DNA Service (Southampton). 

Table 11. 1.6 
Oligonucleotides 

Name Sequence (5'-3') Description 
(template) 

N3027 TCATCGGAAGAGAGTAG pAS2AA for. 

P5148 ATAAATCATAAGAAATTCGC pAS2AA rev. 
W2248 CTTCGTCAGCAGAGCTTC pBTM forward 

lexA reverse TTTTAAAACCTAAGAGTCAC pBTM reverse 

T3785 GAAATTGAGATGGTGCACGATGCAC pACTIT 3'PCR 

T3786 CGCGTTTGGAATCACTACAGGGATG pACTH 5'PCR 
JC90 GGCTTACCCATACGATGTTC pACTII 5'PCR 
U3exon2 CCAAGTTGGATTCAGTGGCTC U3 snoRNA 

U1 CAATGACTTCAATGAACATTAT U  snRNA 

T7-1 TAATACGACTCACTATAGGG pET 19b 

156-1 CTTTTTGCATGTACATAGTACTGGTGTAAA 
CTCGATATACCGCTCTTGGCCTCCTCTAG  

Assy5 

156-2 GCAAATCATCCATCTAGTTGTGGATCAATG 
TCCCATTGMTTTCGTTCAGAATGACACG  

Assy5 

44ko 1 TTGTTAACTACATTTTTCAGAACGGCGTGT 
CATTCTCCGATACTCTTGGCCTCCTCTAG  

Aymr44w 

44ko2 TATTGTTCAAAAGCAGAGTACTACACTGC 
A7TAGCAACAGGTCGTTCAGAATGACACG  

Ayinr44w 

PFun- 1 TTACCTTAACGTATTATTGTAATTCTTCAC 
GAATTTGATTCTCTTGGCCTCCTCTAGT  

PGALJ::PRP45 

PFun-2 CTTGAGATGTTTTGGAGGTGGTAGTCTGT 
TACTAAACATATTCGCGTCTACTTTCGG  

PGALJ::PRP45 

Func 1 TATG1AATTCATGTTTAGTACAGAC PRP45 cloning 

Func2 TATGTCGACCTAGGCGCCATAGTTATCC PRP45 cloning 

275A ATGAGCTCTGAGTGAACTGCTTGCC YOR2 75c 

275B TATAGTCGACTTTGAGGGATTCGGC YOR2 75c 

44A ATGAGCTCCTGAAGCGATATTCCAG YMR44 w 

44B ATATGTCGACATCAACTGCATAGC YMR44 w 

7A 	 iATCCATGGATGATGACTGGGACTCC SLU7 
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7B AAGAATTCCGTTCAAGTAAGCAGCC SL U7 

FCR- I TATGGATCCGAGCAATAGTTAAGCCC PRP45cr 

FCR-2 TATGGATCCTCGGATACGTCTCTTCC PRP45cr 

PLKO- 1 GAGGATGCAGACACTGTGTTACATGGAGATTAGT 
GAGACTCTTGGCCTCCTCTAG  

Aprp46 

PLKO-2 CACGTATACAGGGTAC GTACTTTTTCCATC TACT 
CCCATCGTTCAGAATGACACG  

Aprp46 

15 IMetA CCACACAAATCCACGATGACCTAAGAACATTCGT 
TCGCTTAATCCTTAATAAATACTACTC  

P MET:" 46  

15IMetB TGTCTACATCTCCTAAATTTTCGACTTTGTGATC 
ATTTCCGTCCATACGAGCTCCAGCGTZJTCTGGA 
A 

p METI:PRP46 

151-PR2 GTATAPAGCCGAAGTCC PRP46 3'UTR 
Met3 TTTAGCTTGTGATCTC 'M/?fl 
PGK ACCGTTTGGTCTACCCA1GTGAGAAGCCAAGACA PGK probe 
RP28A TCGTACTGATGCTCCATTC RP28 PCR 
RP28B TG?AACCCTTAGATCTTC RP28 PCR 
G8102 CACGCCTTCCGCGCCGT U  snRNA 
G8103 CTACACTTGATCTAAGCCAAAAG U2 snRNA 
483A CCGTGCATAAGGAT U4 snRNA 
485A AATATGGCAAGCCC U5 snRNA 
Taq6A TC(A/T)TCTCTGTATTG U6 snRNA 

11.1.7 Plasmids 

The plasmids used in this work are described in tables 11. 1.7 and 11.1.8. 

Table 11.1.7 
General plasmids 

Plasmid Features Reference 

pAS2M Two-hybrid bait plasmid. GAL4 DNA-binding Fromont-Racine 
domain (GBD) fusion expression vector: Multiple 

et al., 1997 cloning site, Amp', colEI ori, PA,,,, GAL4 DNA 
binding domain sequence, ADHJ transcriptional 
terminator, 2ji, TRPJ. 

pAS2AABg Two-hybrid bait plasmid. Frame shifted version A. Colley, 
of pAS2AA in (-1) reading frame. this laboratory 
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pBTM116 Two-hybrid bait plasmid. 	LexA DNA-binding S. Fields, 
domain 	fusion 	expression 	vector: 	Multiple S.U.NY. 
cloning site, Amp R, colE! ori, PA,,,, Stony Brook 
LexA sequence, ADHI transcriptional terminator, 
2ji, TRP]. 

pBTM1 16(-1) Two-hybrid bait plasmid. Frame shifted version A. Mayes, 
of pBTMI16 in (-1) reading frame this laboratory 

pGBT9 Two-hybrid bait plasmid. 	Multiple cloning 	site, Clontech 
Amp, 	co/El 	ori, 	PAfl.'J, 	GAL4 	DNA-binding 

Laboratories Inc. domain 	sequence, 	ADHI 	transcriptional 
terminator, 2.i, TRP]. 

pACTIIStop Two-hybrid prey plasmid vector. GAL4 activation Fromont-Racine 
domain 	fusion 	shuttle 	and 	expression 	vector: 

e al.,  1997 Multiple 	cloning 	site, 	Ainp', 	co/El 	or 	Pfl!)HJ, 
GAL4 activation domain 	sequence, HA-epitope 
sequence, ADHI 	transcriptional 	terminator, 	2j.i, 
LEU2. 

pTL27 Yeast-E. co/i  shuttle vector: Multiple cloning site, Lafontaine and 
Amp R, 	co/El 	ori, 	PGA, 	2x 	Protein 	A-epitope Tollervey, 1996 
sequence, CEN6, ARSH4, HIS3. 

pNOPPATA1L Yeast-E. co/i  shuttle vector: Multiple cloning site, Klaus Helimuth 
AmpR, co/El 	ori, 	P OP, 	2x 	Protein 	A-epitope 
sequence, 	TEV protease cleavage site sequence, 
ADHI transcriptional 	terminator, ARSI, CEN4, 
LEU2. 

pUCI9-55HA2 pUC19 based E. coli cloning vector. Modified: R. van Nues, 
PMET3, 2x HA-epitope sequence, TRPJ. 

this laboratory 

pET19b E. 	co/i 	expression 	vector. 	Cloning 	site, 	T7 Novagen 
promotor 	sequence, 	His-tag 	coding 	sequence, 
Enterokinase 	cleavage 	site 	sequence, 	T7 
transcription 	termination 	sequence, AmpR,  lad, 
co/El on. 
Modified 	pGEM1. 	Contains 	ACT] 	coding O'Keefe etal., 
sequence under regulation of the T7 promotor. 

1996 

Ylpi Yeast integrative vector : A,npR, HIS3. 
Struhi et al., 1979 

Table 11.1.8 
Modified plasmids 

Plasmid Features Reference 

pASSIu7 GBD::Slu7p 	encoding 	two-hybrid 	bait 	vector. I. Dix, 
Modified pAS2EtA: Full length SLU7 ORF fused to this laboratory 
GAL4 DNA-binding domain (GBD).  

NE I 



pASPrpl8 GBD::Prpl8p 	encoding 	two-hybrid 	bait 	vector. I. Dix, 
Modified pAS2A\: Full length PRP18 ORF fused to this laboratory 
GAL4 DNA-binding domain. 

pBSKS22 Modified pBluescript II KS+: contains Sad, KpnI Beate Schwer 
fragment 	of PRP22 	locus 	cloned 	into 	multiple 

(New York) cloning site via Sacl and KpnI. NdeI restriction site is 
introduced into ORF start: CATATG. 

pIVIA22 GBD::Prp22p encoding two-hybrid bait vector. This work 
Modified pAS2M: pBSKS22 was cut with KpnI and 
blunt 	ends 	were 	generated 	by 	T4 	polymerase 
treatment. 	After 	NdeI 	restriction, 	the 	PRP22- 
containing fragment 	was isolated and 	ligated 	into 
pAS2Az\ cut with NdeI, SmaI. The identity of the 
insert and the frame was checked by sequencing.  

pMA22s GBD::Prp22p(479-826) 	encoding 	two-hybrid 	bait This work 
vector. Modified pAS2z\: the prey plasmid insert 
from clone 7-111-5 	identified in two-hybrid 	screen 
S1u7-III 	was 	isolated 	via BainHI 	restriction 	and 
ligated into BarnHI linearised and dephosphorylated 
pAS2iA. Correct orientation and frame were verified 
by sequencing. 

pMA22I GBD::Prp22p(142-747) 	encoding 	two-hybrid 	bait This work 
vector. Modified pAS2AA: the prey plasmid insert 
from clone 7-111-9 identified in two-hybrid 	screen 
Slu7-III 	was 	isolated 	via BaniHI 	restriction 	and 
ligated 	into 	BarnHI 	linearised 	pAS2A.A. 	Correct 
orientation and frame were verified by sequencing.  

pMA275N Modified 	pAS2AABg: 	An 	n-terminal 	400 	bp This work 
fragment of ORF YOR275c was PCR-amplified from 
yeast genomic DNA using oligonucleotides 	275A 
and 275B. The PCR product was cut Ec113611 and 
Sail and ligated into SmaI, Sail cut pAS2AABg. 
Frame and integrity of the cloned PCR product was 
checked _by_sequencing.  

pMA275NC Modified 	pMA275N: 	An 	800 	bp 	fragment This work 
containing the c-terminus of ORF YOR275c was 
isolated from p7-IV-75 via Sail, NsiI restriction. The 
fragment 	was 	ligated 	into 	Sail, 	PstI 	digested 
pMA275N. The identity of the cloned fragment was 
verified _by_sequencing.  

pMA275 GBD:.Yor275p 	encoding 	two-hybrid 	bait 	vector. This work 
Modified pMA275NC: pMA275NC was linearised 
by 	Sail 	restriction 	digest, 	gel 	purified 	and 
dephosphorylated. 	The linearised vector was then 
transformed into yeast strain BMA38, where the 
YOR275c ORF was generated via gap-repair. The 
repair event was verified by sequencing.  
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pMA45 LexA::Prp45p 	encoding 	two-hybrid 	bait 	vector. This work 
Modified pBTM 116: The PRP45 ORF was PCR- 
amplified 	from 	yeast 	genomic 	DNA 	using 
oligonucleotides 	Funcl 	and 	Func2. 	The 	PCR 
product was gel-purified, cut with EcoRI, Sall and 
ligated into EcoRI, Sail restricted pBTMI16. The 
PRP45 coding sequence was verified by sequencing.  

pMA45cr LexA::Prp45p(259-286) 	encoding 	two-hybrid 	bait This work 
vector. Modified pBTMII6: The sequence encoding 
amino acids 259-286 of Prp45p was PCR-amplified 
from plasmid p22-I using oligonucleotides FCR-1 
and FCR-2 and the fragment was gel-purified and 
digested with BamHI. It was ligated into pBTM116, 
BainHI linearised and dephosphorylated. Orientation 
and 	integrity 	of 	the 	insert 	were 	verified 	by 
sequencing.  

pMA44AS GBD::Ymr44p 	encoding 	two-hybrid 	bait 	vector. This work 
Modified pAS2iVtBg: The YMR44c ORF was PCR- 
amplified 	from 	yeast 	genomic 	DNA 	using 
oligonucleotides 44A and 4413. The PCR product 
was gel-purified, restricted with Ecil 3611, Sall and 
ligated into Smal, Sall digested pAS2ABg. The 
YMR44c 	coding 	sequence 	was 	verified 	by 
sequencing.  

pMA44BTM LexA:Ymr44p 	encoding 	two-hybrid 	bait 	vector. This work 
Modified 	pBTM1I6(-I). 	Generation 	of 	YMR44c 
ORF as described for pMA44AS. The PCR fragment 
was ligated into SmaI, Sail cut pBTMII6(-I).  

pCR117 LexA::Syf3p 	encoding 	two-hybrid 	bait 	vector. i. Dix, C. 
Modified pBTMII6. The SYF3 ORF is ligated into 

Russell 
the multiple cloning site of pBTM 116 fused to the 
LexA coding sequence. this laboratory 

pGBT9/SNW1 GBD::SNW1 	encoding 	two-hybrid 	bait 	vector. Mike Hayman, 
Modified pGBT9: The SNW1 coding sequence is 

S U NY 
fused to the GAL4 DNA-binding domain sequence 
in the multiple cloning site of pGBT9. Stony Brook 

pETMA45 Modified pET1 9b (Novagen): The PRP45 ORF was This work 
isolated from pMA45 via EcoRI, Sail restriction. 3' 
recessing termini were filled in by Klenow treatment. 
The fragment was then ligated into pET19b, which 
had been linearised by NdeI restriction and blunted 
by Klenow treatment. 

pMA7c GAD::Slu7p(164-257) producing 	two-hybrid prey This work 
plasmid. Modified pACTIIStop: The sequence of the 
SLU7 ORF encoding amino acids 164-257 was PCR- 
amplified using oligonucleotides 7A and 713. The 
PCR product was gel-purified and cut with NcoI, 
EcoRI and ligated into pACTIIStop, which had been 
cut NcoI, EcoRI. The insert was sequenced.  



GAD::Prp22p 	encoding 	two-hybrid 	prey 	vector. This work 
pMA22 was linearised with NdeI, blunt ends were 
created by Kienow treatment, the fragment was cut 
with 	Sail 	and 	the 	PRP22 	containing 	fragment 
isolated. 	Subsequently 	it 	was 	ligated 	into 
pACTIIStop 	previously 	digested 	with 	Smal 	and 
XhoI.  
Two-hybrid library prey plasmid isolated in screen This work 
Slu7-III. Encodes fusion protein GAD::Prp22p(479- 

______________ 826).  
Two-hybrid library prey plasmid isolated in screen This work 
Slu7-III. Encodes fusion protein GAD: :Prp22p( 142- 

______________ 747).  

p7-IV-48 Two-hybrid library prey plasmid isolated in screen This work 
Slu7-IV. Encodes fusion protein GAD:: Prp l8p(IO1 - 
2 19).  

p7-IV-27 Two-hybrid library prey plasmid isolated in screen This work 
S1u7-IV. Encodes fusion protein GAD: :Ssy5p( 129- 

______________ 560).  

p7-IV-75 Two-hybrid library prey plasmid isolated in screen This work 
Slu7-IV. 	Encodes 	fusion 	protein 	GAD:fYor275p 
(108-661).  

pMl8-4 Two-hybrid 	library 	prey 	plasmid 	isolated 	screen This work 
M18. Encodes fusion protein GAD::Slu7p(1-279).  

pMl8-5c Two-hybrid library prey plasmid isolated in screen This work 
M18. 	Encodes 	fusion 	protein 	GAD::Ixrlp(341- 
535): :S1u7( 161-249).  

pMl8-45 Two-hybrid library prey plasmid isolated in screen This work 
M18. 	Encodes 	fusion 	protein 	GAD:: S lu7p( 165- 

_______________ 3 82).  
Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. 	Encodes 	fusion 	protein 	GAD::Prp45p(l- 

_______________ 350).  

p22-10 Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. 	Encodes 	fusion 	protein 	GAD::Prp45p(9- 

______________ 290).  

p22-13 Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. Encodes fusion protein GAD::Prp45p(194- 

_____________ 379).  
Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. Encodes fusion protein GAD::Prp45p(212- 

_______________ 379).  
Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. Encodes fusion protein GAD::Prp45p(262- 

_______________ 359).  
Library prey plasmid isolated in Prp22p two-hybrid This work 
screen. 	Encodes 	fusion protein 	GAD::Syf3p(592- 

______________ 687).  
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11.1.8 Antisera 

The antisera used in this work are listed in Table 11.1.9. 

Table 11. 1.9 
Antisera 

Antibody Description Source 

Anti-Ga14 Rabbit polyclonal antibodies. 1:1000 dilution for Santa Cruz 
DNA-binding western blots. 

Biotechnology 
domain 

Anti-Prp8p Rabbit polyclonal antibodies raised against a 35 This laboratory 
amino acid peptide of the n-terminal region of 
Prp8p. 15 p1 used per immunoprecipitation.  

Anti-His mouse monoclonal anti-Penta-Hi s antibody Quiagen 
(0.2mg/mI), 1:3500 dilution for western blots.  

Anti-rabbit Anti-rabbit IgG horse radish peroxidase linked Amersham 
IgG-HRP whole antibody (from donkey). 	1:5000 dilution 

for western blots 

Anti-mouse Anti-rabbit IgG horse radish peroxidase 	linked Amersham 
IgG-HRP whole antibody (from sheep). 1:5000 dilution for 

western blots 

Anti-rabbit Anti-rabbit 	IgG 	(Fc) 	alkaline 	phosphatase Promega 
IgG-AP 	I conjugate. 1:5000 for western blots. 
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11.2 Microbiological methods 

11.2.1 Growth of strains 

11.2.1.1 Growth of bacteria 

E. coli strains were routinely grown at 37°C in rich LB medium (table 11.1.1). To 

maintain selection for plasmid DNA, transformed bacteria were grown in rich medium 

containing the appropriate antibiotic(s) (section 11.1.2.2). 

11.2.1.2 Growth of yeast 

Yeast strains were routinely grown at 30°C in YPDA or YMGRSsup (Table II. 1.2). 

To maintain selection for plasmid DNA or to select transformants for integration of a 

reporter gene into the genome cells were grown at 30°C in YMMsup or YMGRSsup 

medium lacking the appropriate amino acid in the drop-out powder (YMM -x or 

YMGRS -X; section 11.1.2.3, table 11.1.2). 

11.2.2 Preservation of strains 

11.2.2.1 Preservation of bacteria 

E. coli strains were stored for up to two weeks on solid medium at 4°C. Strains were 

stored indefinitely at -70°C in 15% glycerol. A stationary culture of the strain to be 

stored was grown in the appropriate medium. Eight hundred microlitres of culture was 

mixed with an equal volume of 30% glycerol and snap-frozen on dry ice. 
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11.2.2.2 Preservation of yeast 

Yeast strains were stored for up to four weeks on solid medium at 4°C. Strains were 

stored indefinitely at -70°C in 25% glycerol. A culture of the strain to be stored was 

grown to mid-logarithmic phase in appropriate medium. Six hundred and forty 

microlitres of culture was mixed with 360 l of 70% glycerol and was immediately 

frozen at -70°C. 

11.2.3 Sporulation of yeast 

11.2.3.1 Growth of diploids and sporulation 

Diploid yeast cells of the strain to be sporulated were grown overnight at 30°C in 

YPDA medium. 1 ml of culture was transferred to a microcentrifuge tube and cells 

were sedimented in a benchtop centrifuge at 6000 rpm for 15 seconds. The supernate 

was removed and the cells were resuspended in 3 ml of minimal sporulation medium 

(SPM, table 11.1.2). In a test tube, placed on a rotating wheel, the cells were incubated 

at 23°C for 5 to 7 days. The cells were examined microscopically to determine whether 

sporulation and tetrad formation had occurred. 

11.2.3.2 Tetrad dissection 

Upon successful sporulation and tetrad formation, 200 l.Ll of cells were sedimented by 

centrifugation and resuspended in 200 .t1 of sterile, distilled water. After addition of 10 

tl 	-glucuronidase (1 OU/jil) the suspension was mixed gently and incubated at room 

temperature for 20-60 minutes. The suspension was serially diluted and spread in one 

line onto YPD or YMGRSsup (table H. 1.2) agar plates. Tetrads were dissected using a 

Singer MSM system micromanipulator. After dissection, the spores were incubated at 

23°C for 4to5 days. 
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11.2.3.3 Determination of mating type 

Haploid progeny (auxotroph for leucine, prototroph for lysine) were propagated on 

solid media (table 11.1.2). KY117 and K118 cells (Leu, Lys) were simultaneously 

grown on YPDA (table 11. 1.2) and then replica plated onto the cells of undetermined 

mating type on YPDA. The plates were incubated overnight and replica plated onto 

YMM -LK medium. Only formed diploid cells were able to grow. The mating type of 

the haploid progeny could thus be determined because only MATa cells can mate with 

KY] 18 (MATa), whereas only MATa cells are able to mate with KY1I7 (MATa) 

cells. 

11.2.4 Transformation of E. coli 

11.2.4.1 Preparation of electro-competent cells 

5 ml of LB liquid medium (table II. I .1) was inoculated with a single E. coli colony 

and incubated overnight at 37°C. An aliquot of this culture was used to inoculate 500 

ml of LB liquid medium to an optical density at 600 nm (0D600) of 0.1 units. The 

culture was grown to an OD600  of 0.6-0.8 units. The culture was then placed on ice for 

30 mm. The cells were transferred to pre-chilled centrifuge beakers and were 

centrifuged for 15 min at 4000 rpm (4°C, Beckman 10.500 rotor). The cells were 

washed twice in 250 ml of ice-cold sterile 10% glycerol and sedimented as before. 

Finally, the cells were resuspended carefully in 1 ml ice-cold GYT (10% (v/v) 

glycerol, 0.125% (wlv) yeast extract and 0.25% (w/v) tryptone), aliquoted to 40 il 

and frozen for at least 30 minutes at -70°C. The competent cells can be used for several 

months, if stored at -70°C. 

51 



11.2.4.2 Transformation of electro-competent cells 

Forty microlitres of electro-competent cells were thawed on ice and mixed with 2 lii 

(10-100 ng) transforming plasmid DNA. The cells were transferred to an 

electroporation cuvette (0.2 cm electrode gap) on ice. Residual ice on the outside of the 

cuvette was wiped off with a paper tissue to ensure the cuvette was dry prior to 

electroporation. The cuvette was tapped carefully several times onto the bench to 

remove trapped air in between the electrodes. Electroporation was performed using a 

Biorad Gene Pulser II set at 200 ohms, 25 .tF and 2.5 Kvolts. Immediately after 

electroporation, I ml of Soc medium (table 11.1.1) was added and the cells were 

transferred to a fresh microcentrifuge tube. The cells were allowed recovery by 

incubation on a rotating wheel for 45 min at 37°C. Finally, the cells were plated on 

solid medium supplemented with the appropriate antibiotic to maintain selection for the 

transformed plasmid. The plates were incubated overnight at 37°C. 

11.2.5 Transformation of yeast 

Yeast cells were transformed using the method described by Gietz et al. (1992). 

A 10 ml overnight culture of yeast cells to be transformed was grown to a cell density 

of 1-2 x 107 cells/ml at 30°C. The cells were then diluted into 50 ml of pre-wanTled 

medium to a density of approximately 2 x 106  cells/ml (approximately OD600  = 0. 1) 

and regrown to a density of approx. 2 x 10' cells/ml (0D600  = 0.7) at 30°C. The cells 

were harvested by centrifugation at 3,500 rpm (Mistral 1000 centrifuge) for 3 minutes 

at room temperature, washed with 25 ml of sterile destilled water and harvested again 

as above. The cell pellet was then resuspended in 1 ml of 100 mM LiAc and 

transferred to a microcentrifuge tube. The cells were sedimented by centrifugation for 

15 seconds at 13,000 rpm in a benchtop centrifuge. The supernate was removed and 

the cells were resuspended to a final volume of 500 tl (normally yields a cell density 

of 2 x io cells/ml) in 100 mM LiAc and subsequently split into aliqouts of 50 tl. The 

cells were sedimented as above and the supernate was removed. To each sample was 

added in the order listed: 240 il 50% PEG1150  (w/v), filtersterilised, 36 j.il 1M LiAc, 
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25J11 single stranded salmon sperm carrier DNA (2 mg/ml; boiled for 5 minutes and 

put on ice prior to use) and 5-25 pi DNA (0.1-2 tg/j.tl). Each tube was vortexed 

vigorously for 1 minute and incubated for 30 minutes at 30°C. The cells were then 

heat-shocked by transferring the tubes into a water bath at 42°C for 15 to 20 minutes. 

Subsequently, the cells were harvested by centrifugation (6,000-8,000 rpm, 15 

seconds). The supernate was removed and the cells were resuspended in I ml sterile 

water by pipetting up and down gently. Finally, 250 j.tl aliquots were spread onto the 

appropriate selective solid media (table II. 1.2). The plates were incubated at 30°C for 

2-4 days. 

11.2.6 ORF replacements and construction of conditionally regulated 

genes in yeast 

11.2.6.1 ORF replacements 

Replacements of open reading frames in yeast were performed using the method of 

Baudin et al. (1993). A linear DNA fragment containing the HIS3 gene as marker 

flanked by 35-40 bp of sequence identical to the regions immediately upstream and 

downstream of the ORF to be replaced was generated by PCR (section 11.3.2.8.1). 

The PCR was performed using genomic DNA of strain BMA38 (table 11.1.5) as 

template. The primers (table 11. 1.6) used were typically about 65 bp in length, 45 bp 

for the homologous flanking regions and 15-20 bp for priming the amplification of the 

HIS3 marker. The linear DNA fragment was transformed (section 11.2.5) into yeast 

strain BMA38. Transformants were selected on solid YMM -H medium (table 11. 1 .2). 

Histidine prototrophic diploids were streaked onto YMIVI -H medium for colony 

purification and were subsequently investigated for correct integration of the 

replacement cassette into the target locus by southern blotting (section 11.3.2.17) or 

PCR-analysis (section 11.3.2.8). Haploid cells with the replaced target locus were then 

produced by sporulation (section 11.2.3.1) and subsequent tetrad analysis (section 

11.2.3.2). 
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11.2.6.2 Construction of conditionally regulated genes 

Conditionally regulated genes were generated using the same principal method that was 

used for ORF replacements (section 11.2.6.1). To construct a conditionally regulated 

allele of a gene, however, an integration cassette was PCR-generated (section 11.3.2.8) 

in which the flanking regions were homologous to regions of the extreme 5' end of the 

target ORF and to a region approximately 100-200 nucleotides upstream of the target 

ORF. This should allow replacement of the native promotor of the gene (or at least 

partial deletion of it). The integration cassette was chosen to contain an auxotrophic 

marker (HIS3 or TRPI) to select for the integration, a regulatable promotor (GAL/  or 

MET3)' which allowed conditional expression of the target gene depending on the 

choice of the growth medium and, in addition, a sequence encoding an epitope tag (2 x 

Protein A or 2 x HA) to allow subsequent immunodetection (section 11.3.4.5) and 

immunoprecipitation (section 11.3.5.2) of the produced fusion protein. 

11.2.7 Growth curves 

To determine the effects of the metabolic depletion of a protein from the cells, cells 

were grown to mid-logarithmic phase under permissive conditions (galactose-based 

medium or medium lacking methionine). Then aliquots of the culture were used to 

inoculate media either providing permissive or repressing conditions (due to the choice 

of the carbon source or due to the presence or absence of methionine). The media were 

inoculated to an 0D600  of 0.05-0.1 and grown at 30°C. The growth rate was then 

monitored by measuring the OD6  at regular intervals, typically every two hours. 

Maintenance of logarithmic growth was ensured by diluting the cultures with pre-

warmed medium to keep the OD6  readings below 0.8. 
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11.2.8 Yeast two-hybrid screen 

The two-hybrid screens in this work were performed following a protocol designed by 

Fromont-Racine et al., 1997. 

11.2.8.1 Bait construction 

Two-hybrid bait fusions were constructed in plasmids derived from pAS2AA or 

pBTM1I6 (table 11. 1.7) using standard recombinant DNA procedures (section 11.3.2). 

All bait constructs were verified by sequencing prior to use. The auto-activation 

properties of each bait were usually tested either by performing directed two-hybrid 

mating assays (section 11.2.8.8), testing the bait fusion for two-hybrid interaction with 

a number of prey-fusions available in the laboratory or by performing a small-scale 

two-hybrid screen. A small scale two-hybrid screen ("mini-screen") was essentially 

performed as a full scale screen, but only one tenth of the cells were plated out after the 

mating procedure. From the ratio of cells able to grow on YMM -LWH (cells in which 

reporter gene expression is supported) to the number of diploids (cells able to grow on 

YMM -LW) screened, the auto-activating potential of a bait could be evaluated and the 

number of positive clones expected for a full scale screen could be calculated. 

11.2.8.2 The Fromont-Racine yeast libray (FRYL) 

The yeast library used in most two-hybrid screens described in this work was 

constructed by Micheline Fromont-Racine in the laboratory of Pierre Legrain, Institute 

Pasteur, Paris (Fromont-Racine et al., 1997). Genomic DNA was sonicated and 

treated with three modification enzymes (mung bean nuclease, T4 DNA polymerase 

and Klenow-enzyme) to produce blunt ended fragments. Adaptors were ligated to 

these fragments, producing a 3' overhang and the fragments were then ligated into the 

pACTIIStop plasmid (table 11.1.7), which had been previously cut with BamHI and 

"filled in" with dGTP by Vent (Exo) polymerase. Library was transformed into E. coli 
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cells MR32, transformed colonies were scraped from the plates, pooled and frozen. 

The cells were stored at -70°C. The Library DNA was then extracted and transformed 

into yeast strain Y187. Transformants were scraped from the plates, pooled and 

aliquoted. Aliquots were stored in 15% glycerol at -70°C. 

In this laboratory, the yeast transformation was repeated to increase the stock of two-

hybrid library. The yeast library derived from this transformation will be referred to as 

Edinburgh yeast library (ED'YL). 

11.2.8.3 Mating and collection of diploid cells 

Bait plasmids were transformed (section 11.2.4) into their respective carrier yeast strain 

(CG1945 for pASM plasmids; L40 for pBTMI16 plasmids (table 11. 1.7) and grown 

on YMM -w medium (table 11.1.2). A bait culture was grown to an 0D600  of 0.9 to 1 .0 

units. An aliquot of library cells (1 ml of FR'YL or 10 ml of EDYL) was thawed on ice, 

inoculated into 20 ml of YPDA + tetracycline (tet) (table II. 1.2 and section II. 1 .2.2) 

and incubated for regeneration at 30°C for 15 mm (on shaker, 120 rpm). Bait cells 

equivalent to 80 0D600  units (approximately 8 x 108  cells) were mixed with the library 

plasmid-containing cells and were concentrated onto twelve Millipore filters (45 mm 

diameter, 0.22 tm). Each filter was washed with 8 ml of fresh YPDA + tet medium 

and incubated for 4 hours on solid YPDA + tet medium at 30°C. The cells were then 

washed from the filters with a total of approximately 25 ml YMM -LWH medium 

(table 11. 1.2) and collected. The suspension was thoroughly mixed and 50 il were 

removed for the controls (These cells were serially diluted to 1:1000 in YMM -LWH 

medium and 50 111 spread onto each of YTVIIVI -L, YAM -W and YMIM -WL medium 

(table 11.1.2). The plates were incubated for 2 days at 30°C and the number of colonies 

on these plates was counted. For the calculation of the mating efficiency and the 

number of diploid cells screened, see section 11.2.8.4). The mated cells were finally 

spread onto YMM -LWH + tet medium at about 250 jil per plate and incubated at 30°C 

for 3 days. 
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11.2.8.4 Calculation of mating efficiency and number of diploids screened 

From the number of colonies counted on the control plates (section 11.2.8.3), the 

number of diploid clones (containing both bait and prey plamid) screened as well as the 

mating efficiency could be calculated: 

Diploids screened = colonies on YMM -LW x dilution factor x volume of culture. 

In order to ensure complete coverage of the FRYL within one screen, 1.5 x io 

diploids had to be screened. 

The mating efficiency was calculated as follows: 

mating efficiency (%) = number of colonies on YMM -LW x 100 
number of colonies on YMM -L 

11.2.8.5 The X-gal overlay assay 

In order to monitor the expression of the -galactosidase reporter gene, an X-gal 

overlay assay was performed. Ten millilitres of overlay mix (maintained at 50°C in a 

water bath) was pipetted gently onto each plate from the two-hybrid screen and 

allowed set at room temperature. The colonies were then incubated at 30°C and 

examined at regular intervals (usually every 3 hours at early time points, then every 6 

hours) for the development of a blue colour. 

Overlay mix (final concentrations): 0.5% (w/v) agar a  

0.1% (w/v) SDS 

3.55% (w/v) Na2HPO4a 

0.2 % (v/v) ortho-phosphoric acid 

6% (v/v) dimethyl formamide 

0.04% (w/v) X-gal (in dimethyl formamide) 
a  autoclaved independently and stored at 65°C until use. 
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11.2.8.6 The X-gal filter-lift assay 

Filter-lift assays were performed as described in Transy and Legrain (1995). Filter-lift 

assay solution for detection of 13-galactosidase activity was prepared fresh from stock 

solutions immediately prior to use. The cells were transferred to Hybond-C extra filters 

(Amersham), and the filters immersed in liquid nitrogen for 5 seconds. Filters were 

placed (cell-side up) onto Whatman 3MM paper soaked in assay solution, incubated at 

30°C and examined at regular intervals (usually every hour). The reaction was stopped 

by transferring the filters onto Whatman 3MM paper soaked in I M Na2CO1  for 1 

minute. The filters were then transferred onto Whatman paper soaked in sterile water 

for 1 min and air dried. 

Z-buffer: 	 100 mM NaP041  pH 7.5 

10 m KCI 

I mMMgSO4 x7H2O 

sterilised by autoclaving 

Assay solution: 	0.27% (v/v) J3-mercaptoethanol 

0.04% (w/v) X-gal (in dimethyl formamide) 

Prepared in Z-buffer 

11.2.8.7 Analysis of positive colonies from two-hybrid screens 

Colonies which were identified as "positive" with respect to the expression of the 

reporter gene(s) were analysed to identify the library-plasmid responsible for the two-

hybrid interaction. Plasmid DNA was rescued from the yeast cells by the method 

described in section 11.3.2.4 and transformed (section 11.2.4.2) into electro-competent 

MC1066 cells (table 2.1.6). These cells were plated onto M9 -Leu medium (table 

11.1.1), which allowed growth of only those cells carrying a library plasmid. The 

plasmid DNA was propagated in these cells and prepared as described in section 

11.3.2.2. The insert size was determined by restriction digest of the plasmid with 



BamHI (which cuts in the library adaptor sequence at both ends of the insert) and gel 

electrophoresis (section 11.3.2.10). The fusion between the vector sequence and the 

insert was determined by sequencing (section 11.3.2.16). Finally, the identity of the 

genomic insert was revealed using the Saccharomyces Genome Database (SGD; 

section 11.4). 

Alternatively to the above described plasmid rescue strategy, in some two-hybrid 

screens the identity of the library plasmid insert was determined via PCR-amplification 

of the insert directly from the yeast colonies (section 11.3.2.8.2), subsequent gel-

purification of the PCR product using the QlAquick Gel Extraction Kit (section 

11.3.2.11) and sequencing (section 11.3.2.16) of the fragment. 

11.2.8.8 Directed two-hybrid mating assay 

A directed mating strategy was used to test for potential two-hybrid interactions 

between cloned bait(s) and prey fusions. Yeast strains CG 1945 or L40 (table II. 1 .5) 

transformed with bait plamids and yeast strain Y187 transformed with prey plasmids 

were grown on selective media (table 11.1.2). Bait and prey strains were then mated by 

replica-plating onto YPDA and incubation overnight at 30°C. The resulting diploids 

were grown on medium selecting for both bait and prey plasmids. The diploid colonies 

were then suspended in 100 p1 of sterile distilled water filled into wells of a microtiter 

plate. The cells were then transferred onto medium selecting for a successful two-

hybrid interaction using a pronged metal inoculator. The stringency of the interaction 

was examined by assaying growth of the diploids on selective medium containing 

different concentrations of 3AT (usually 0-50 mM). 
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11.3 Molecular biology methods 

11.3.1 General methods 

11.3.1.1 Spectrophotometric determination of nucleic acid concentrations 

The concentration of DNA or RNA was determined by measuring the absorption of 

diluted DNA solutions at 260 nm using a Cecil CE 2040 spectrophotometer and a 

quartz cuvette. For double stranded DNA an 0D260  value of 1.0 represents a DNA 

concentration of 50 jig/ml. For single stranded RNA an 0D260  value of 1.0 represents 

an RNA concentration of 40 j.ig/ml. DNA purity was determined by measuring the 

absorption at wavelengths of 260 and 280 nanometres. Protein free preparations of 

DNA or RNA should give 0D260:0D280  ratios of 1.8 or 2.0, respectively. 

11.3.1.2 Extraction with phenol: chloroform: isoamylalcohol 

Nucleic acids were separated from protein in preparations by adding an equal volume 

of phenol: chloroform: isoamylalcohol (P/C/1) (25:24:1), vortexing 10 seconds and 

centrifuging at 14,000 rpm for 5 minutes. The upper, nucleic acid containing, aqueous 

phase was transferred to a fresh tube. 

11.3.1.3 Precipitation of nucleic acids 

Nucleic acids were precipitated from solutions by addition of 1/10 volume of 

3 M NaOAc (pH 5.2) and 2.5 volumes of ethanol (abs.) and freezing for 20 minutes at 

-70°C. The nucleic acids were sedimented by centrifugation at 14,000 rpm for 20 

minutes at 4°C with the pellet washed in 70% (v/v) ethanol. The pellet was washed 

again in ethanol (abs.) and air dried. 



11. 3.2 DNA methods 

11.3.2.1 Small scale preparation of plasmid DNA from E. coli 

This method is based on the alkaline lysis method of Zhou et at. (1990). 3 ml of LB 

medium (table 11.1.1) supplemented with the appropriate antibiotic (section II. 1 .2.2) 

was inoculated with a single colony of the plasmid-bearing E. coli strain and incubated 

overnight at 37°C with constant shaking. One and a half millilitres of the culture were 

centrifuged at 14,000 rpm for 30 seconds, the supernate decanted and the cell pellet 

resuspended in 150 tl of TENS solution by vortexing. Then, 75 pi of 3 M NaOAc 

(pH 5.2) was added and the sample vortexed again. Cell debris and chromosomal 

DNA were pelleted by centrifugation at 14,000 rpm for 5 minutes and subsequently 

removed with a sterile toothpick. The plasmid DNA was then extracted with P/C/I 

(section 11.3.1.2), precipitated, washed and dried (section 11.3.1.3). The cell pellet 

was resuspended in 25 .tI of sterile destilled water. 

TENS solution: 	10 mM Tris-HC1, pH 7.5 

IrThPrJEt 

100 mM NaOH 

0.5% (w/v) SDS 

11.3.2.2 Small scale preparation of plasmid DNA by spin column 

For automated DNA sequencing (section 11.3.2.16) plasmid DNA was prepared using 

the QlAprep kit (Quiagen), following the manufacturers' guidelines. DNA was isolated 

from 4.5 ml of E. coli cell culture, eluted with 100 p1 sterile distilled water and stored 

at -20°C. 
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11.3.2.3 Large scale preparation of plasmid DNA from E. coli 

One hundred mililitres of LB medium (table 11.1.1) supplemented with the appropriate 

antibiotic (section 11.1.2.2) was inoculated with a single colony of a plasmid-bearing 

strain and incubated overnight at 37°C with constant shaking. Cells were harvested by 

centrifugation at 6000 x g for 10 mm (4°C, Beckman JLAI0.500 rotor) and 

resuspended in 4 ml of GTE. Eight millilitres of lysis solution was added, mixed 

gently and incubated on ice for 10 minutes. Six millilitres of ice-cold KOAc (3 M 

KOAc, 11.5% (v/v) acetic acid) was added. This cell suspension was mixed gently 

and incubated on ice for 5 minutes. Cell debris and chromosomal DNA were pelleted 

by centrifugation at 20,000 x g for 10 minutes (4°C, Beckman JA25.50 rotor) in a 

polypropylene tube and the supernate decanted to a fresh 30 ml corex tube. Eleven 

millilitres of isopropanol was added, mixed and the tube centrifuged at 10,000 rpm for 

10 minutes at room temperature (Beckman JA25.50 rotor). The pellet was washed 

with 70% (v/v) ethanol and allowed to dry. The dried pellet was fully resuspended in I 

ml 1 x TE (table 11.1.3). and 1.13 g of CsC1 and 75 t1 of ethidium bromide (10 mg/ml 

stock solution) added and mixed. The mixture was transferred to a Quick-seal tube (11 

x 32 mm, Beckman) and centrifuged at 90,000 rpm for 16 hours (18°C, Beckman 

]LAI2O.2 rotor). The plasmid DNA band was collected from the CsC1 gradient with a 

syringe and needle and residual ethidium bromide removed by three CsCI-saturated 

isopropanol extractions. Plasmid DNA was precipitated by addition of 4 volumes of 

ethanol (abs.) and 1 volume of I M NH40Ac and centrifugation at 14,000 rpm for 10 

minutes at room temperature. The DNA pellet was washed with 70% (v/v) ethanol and 

dried under vacuum. The dried pellet was resuspended in 200 tl of 1 x TE. A second 

precipitation was performed by addition of 2 volumes of ethanol (abs.) and 0. 1 

volumes of 3 M NaOAc (pH 5.2) and centrifugation at 14,000 rpm for 10 minutes at 

room temperature. The DNA pellet was washed with 70% (v/v) ethanol, dried under 

vacuum and resuspended in 500 tl of sterile destilled water. The plasmid DNA was 

stored at -20°C. 

Lysis solution: 	0.2 N NaOH 

1% (w/v) SDS 
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GTE: 	 50 mM Glucose 

25 mM Tris-HCI 

10 mM EDTA 

11.3.2.4 Plasmid rescue from yeast cells 

Two mililitres of the appropriate selective medium (table 11. 1.2) were inoculated with a 

single yeast colony and incubated on a rotating wheel overnight at 30°C. One and a 

half millilitre of the cultures were transferred to a microcentrifuge tube and the cells 

were sedimented by centrifugation at 14,000 rpm for 5 minutes. Two hundred 

microlitres of extraction buffer and 400 tl of glass beads were added. Tubes were 

spun briefly with open lids (to remove residual glass beads from the edge of the tube, 

which do prevent closing the tube properly). Two hundred microlitres of P/C/I was 

added and the cells were vortexed for 7 minutes. The sample was then centrifuged for 

5 minutes at 15,000 rpm. One hundred and sixty microlitres of the supernate was 

transferred to a fresh tube and 600 III of ethanol (abs.)/7.5 M NH40Ac (6:1) was 

added and the sample vortexed for 10 seconds. The DNA was pelleted by 

centrifugation for 5 minutes (15,000 rpm, 4 °C), washed with 70% ethanol and 

ethanol (abs.) and air dried. The pellet was resuspended in 10 Ill  of sterile distilled 

water. 

Extraction buffer: 	2% (v/v) Triton-X- 100 

1% (w/v) SDS 

100 mM NaC1 

10 mM Tris-HC1, pH 8.0 

1 mMEDTA, pH 8.0 
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11.3.2.5 Preparation of yeast genomic DNA 

Yeast cells were grown overnight in 5 ml of the appropriate medium (table 11. 1.2) and 

transferred to microcentrifuge tubes. The cells were sedimented by centrifugation at 

14,000 rpm for 15 seconds, resuspended in 0.5 ml of buffer A and incubated at 37°C 

for 1 hour. The spheroblasts were centrifuged for 1 minute at 14,000 rpm and then 

resuspended in 0.5 ml of buffer B. Fifty microlitres of 10% (w/v) SDS was added, the 

sample mixed well and placed in a water bath at 65°C for 30 minutes. Then 200 111  of 5 

M KOAc was added and the sample was incubated on ice for 60 minutes. The tube 

was centrifuged at 14,000 rpm for 5 minutes and the supernate transferred to a fresh 

tube. One volume of isopropanol was added, the sample mixed and incubated for 5 

min at room temperature. The DNA was pelleted by centrifugation at 14,000 rpm for 

30 seconds and air dried. The pellet was resuspended in 300 .i1 of I x TE (table 11. 1 .3) 

and the DNA was precipitated again, this time by addition of 1/10 volume of 3 M 

NaOAc (pH 5.2) and 200 tI of isopropanol and centrifugation at 14,000 rpm for 30 

seconds. The pellet was air dried and resuspended in 100-300 j.tl I x TE. 

Buffer A: 	0.9 M Sorbitol 

0.1 MEDTA 

50 mM DYE 

500 U lyticase/ml 

Buffer B: 	50 mM Tris-HC1, pH 7.5 

50 mM EDTA 

11.3.2.6 Restriction digest of DNA 

Restriction endonuclease digestion of DNA was typically performed in volumes of 10 

to 100 .tl. These contained the requisite quantity of DNA and the appropriate buffer (as 

supplied by the manufacturer) at 1 x concentration. Between 2 and 5 units of restriction 
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enzyme were added, with the restriction enzyme volume kept below 10% of the total 

volume. The digestion was incubated at the temperature recommended by the supplier, 

typically for a period of 2-4 hours. The products of the digestion were either analysed 

by agarose gel electrophoresis (section 11.3.2.10) or extracted with P/C/I (section 

11.3.1.2) and ethanol-precipitated (section 11.3.1.3) for further manipulations. 

11.3.2.7 Removal of phosphates from DNA ends 

Plasmid DNA digested with restriction endonucleases (section 11.3.2.6) was incubated 

with 5 units of calf intestinal (alkaline) phosphatase (CIP) (for 20 p.1 reactions) for 30 

minutes at 37°C to remove terminal phosphate groups and thereby prevent the 

recircularisation of the vector DNA. 

11.3.2.8 Amplification of DNA using the polymerase chain reaction 

11.3.2.8.1 DNA amplification from prepared plasmid or genomic DNA 

Specific regions of DNA were amplified using the polymerase chain reaction (PCR). 

Template DNA was either a small quantity of plasmid DNA (typically 10 ng in 1 p.1) or 

one microlitre of genomic DNA, prepared as desribed in section 11.3.2.5. 

Oligonucleotides used for priming the reaction are listed in table 11.1.6. A typical 100 

p.1 reaction using genomic DNA as template was set up as follows: 

10 x polymerase buffer 10 p.1 

100 MM MgCl2* 2 p.1 

2.5 mM dNTPs (dATP, dCTP, dGTP, dTTP) 10 p.1 

Oligonucleotide primer 1 (10 pmollp.1) 10 p.1 

Oligonucleotide primer 2 (10 pmol/p.l) 10 p.1 

Template DNA (section 11.3.2.5) 1 p.1 

DNA polymerase (2 U/p.l) 1 p.1 
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Sterile distilled water 	 56 .tl 

MgCl2  concentration was titrated to 2 and 4 mM as required. 

(when plasmid DNA was used as template, normally 1 tl (lOng/jil) was used) 

The reaction mix was overlaid with a drop of mineral oil (Sigma) to prevent 

evaporation during the reaction cycles. All PCRs were carried out in a Hybaid Thermal 

Reactor or in a PTC- 100 Hot Lid reactor from Genetic Research Instrumentation Ltd 

(in this case the mineral oil was avoided). The reactor was programmed depending on 

the length of the desired product and the annealing temperature of the oligonucleotide 

primers used. Atypical programme is described below. 

Step 0. Denaturation: 95°C 3 minutes 

Step 1. Denaturation: 95°C 30 seconds 

Step 2. Annealing: 4060°C* 30 seconds 

Step 3. Extension: 72°C 60-180 seconds 

30 cycles of Step I- Step 3. 

Step 4: Final extension: 72°C 3 minutes 

The annealing temperature was calculated for oligonucleotides of up to 20 bases in 

length with the formula: annealing temperature = 4 x ((G+C) + 2 x (A + T)) - 5°C. 

11.3.2.8.2 DNA amplification directly from yeast colonies 

For amplification of a particular DNA region directly from yeast, one large single 

colony for each PCR was resuspended in 0.02 N NaOH, boiled for 5 minutes and put 

on ice. Two microlitres of this suspensions were transferred to fresh 0.5 ml 

microcentrifuge tubes on ice. A premix for 14 PCRs was prepared as follows: 
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Premix: 	344.4 j.il sterile distilled water 

44.8 tl 10 x PCR buffer 

9.8 jil 10 mM dXTP 

7 tl oligonucleotide primer 1 (15-20 pmol/il) 

7 p1 oligonucleotide primer 2 (15-20 pmol/jil) 

The premix was mixed well and kept on ice until use. 

The thermal reactor was pre-heated to 94°C, 7 III  Taq polymerase (5 U/jil, Boehringer 

Mannheim) was added to the premix and 30 p1 of premix were distributed to each 2 j.il 

of cell suspension. The tubes were then transferred to a PTC-100 Hot Lid reactor 

(Genetic Research Instrumentation Ltd) programmed as follows: 

Step 0: 	94°C 	3 minutes 

Step 1: 	94°C 	30 seconds 

Step 2: 	55°C 	90 seconds 

Step 3: 	72°C 	3 minutes 

31 cycles of step 1- step 3. 

Step 4: 	72°C 	5 minutes 

3 tl of the PCR was then analysed by agarose gel electrophoresis (section 11.3.2.10). 

The PCR product was purified as described in section 11.3.2.9. 

11.3.2.9 Purification of PCR products 

If the performance of a polymerase chain reaction led to the production of a single 

product, the product was purified from oligonucleotide primers, nucleotides, 

polymerase and salts using a QlAquick PCR purification column (Quiagen) as 

recommended by the manufacturer. The DNA was typically eluted from the column 

with 30 p1 of sterile distilled water. 
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If the PCR produced additional products apart from the desired one, the total PCR 

(section 11.3.2.8) was subjected to agarose gel electrophoresis (section 11.3. 10) and the 

desired band isolated and purified from the gel slice as described in section 11.3.2.11. 

11.3.2.10 Agarose gel electrophoresis 

DNA fragments produced by restriction endonuclease digest or generated by 

amplification in a PCR were analysed in 0.7-2.0% (w/v) agarose gels. Gels were 

prepared by melting agarose in I x ]AE buffer (table II. 1.3) and adding ethidium 

bromide to a final concentration of 0.5 ig/ml. Samples to be analysed were mixed with 

1/6 volume of loading buffer prior to loading. 

6 x loading buffer: 	0.25% bromophenol blue 

0.25% xylene xyanol FF 

15% Ficoll (Type 400) in water 

stored at room temerature 

11.3.2.11 Isolation of DNA from agarose gels 

To isolate and purify specific DNA bands from agarose gels, the QlAquick Gel 

Extraction Kit (Qiagen) was used, as recommended by the manufacturers' protocols. 

DNA fragments were separated by agarose gel electrophoresis (section 11.3.2.10) and 

the bands visualised on a UV transilluminator. The band to be purified was excised 

with a clean razor blade and purified. DNA was typically eluted in 30 j.iI of sterile 

distilled water and stored at -20°C. 



11.3.2.12 Creation of blunt ended DNA fragments 

11.3.2.12.1 Filling in recessed 3' termini 

To fill in recessed 3' termini of DNA fragments created in restriction digests, typically 

5 tl of 2.5 mM dATP, dCTP, dGTP and dTTP as well as 1 jii of Klenow fragment of 

DNA polymerase I (5 U/Ill)  was added to 40 i1 of restriction digest sample (in which 

the restriction enzyme had previously been heat-inactivated). If the DNA to be filled in 

was suspended in sterile distilled water, the reaction had to be supplemented with the 

appropriate 10 x Klenow DNA polymerase reaction buffer supplied by the 

manufacturer. The samples were incubated at 37°C for 30 min and the Klenow enzyme 

was heat-inactivated by incubation at 75°C for 20 minutes. 

11.3.2.12.2 Removal of 3' overhangs 

Three prime overhangs produced by restriction digests were blunted if neccessary by 

adding 1 Ill  of T4 DNA polymerase (3 U/RI)  to the previously heat-inactivated samples 

and incubation for 20 minutes at 37°C. The 3' to 5' exonuclease activity of the T4 

DNA polymerase cuts off the 3' overhangs and blunt ends are created. The enzyme 

was heat-inactivated by incubation at 75°C for 20 minutes. The DNA was precipitated 

(section 11.3.1.3) prior to further manipulation. 

11.3.2.13 Ligation of DNA molecules 

Ligations were typically performed in a final volume of 15 R1  containing 0.5-1.0 gg 

of total DNA, 1 x ligation buffer, 1 mM ATP and 0.5 units of Fast-Link DNA ligase 

(Epicentre Technologies). Vector and insert DNA were present in approximately 1:3 to 

1:5 ratio. Reactions were allowed to proceed at room temperature for 20 minutes and 

stopped by heat-inactivation of the enzyme for 15 min at 70°C. The reaction mix was 

ethanol precipitated and the pellet washed (section 11.3. 1.3). The pellet was 
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resuspended in 10 il sterile distilled water. Typically, I .tl was used in the subsequent 

E. coli transformation (section 11.2.4.2). 

11.3.2.14 Radio-labelling of DNA fragments by random priming 

DNA fragments were radio-labelled using the random priming method of Feinberg and 

Vogelstein (1983; 1984). The DNA fragment to be labelled was prepared by restriction 

digest (section 11.3.2.6) or generated by PCR (section 11.3.2.8) and gel-purified 

(section 11.3.2.11). Sterile destilled water was used to increase the volume of the DNA 

solution (containing 50-100 ng of DNA) to 27 jil, and the solution was then boiled for 

5 min and put on ice. The random priming reaction was prepared as follows and 

incubated for 6-8 hours at room temperature: 

Denatured DNA in water 	 27 tl 

OLB* 	 10111 

BSA (2 mg/ml) 	 10 p1 

[a-32P] dCTP (-5000 Ci/mmol) 	3 p1 

Klenow DNA polymerase 1(5 UIpl) 0.5 g] 

* OLB consists of a 1:2.5:1.5 mixture of solutions A:B:C prepared as follows and 

stored at -200 . 

Solution A: 18 uI f3-mercaptoethanol plus 5 p1 each of 100 mM dATP, dGTP and 

dTTP diluted to 1 ml with solution 0. Stored at -20°. 

Solution B: 2 M HEPES buffer, pH 6.6 (adjusted with NaOH). Stored at -200 . 

Solution C: Random hexadeoxyribonucleotides (Pharmacia) at 90 OD units/ml in 

sterile distilled water. Stored at -200 . 

Solution 0: 1.25 M Tris-CI, pH 8.0, 0.125 M MgCl2  

Random primed DNA was separated from unincorporated nucleotides using a NAP-5 

column (Pharmacia) according to the manufacturers' protocol. 
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11.3.2.15 End-labelling of oligonucleotides 

Oligonucleotides were labelled in a 20 tl reaction at 37°C for 45 minutes using T4 

polynucleotide kinase (PNK, New England Biolabs). The reaction mix was prepared 

as follows: 

Oligonucleotide 	 10 pmol (volumes vary) 

10 x PNK buffer 	 2 tl 

T4 PNK (10 U/Ill) 	 0.5 il 

[y-32P]ATP (-5000 Ci/mmol)* 	2 t1 

adjusted to 20 tl with sterile, distilled water 

11.3.2.16 DNA sequencing 

Plasmid DNA to be sequenced was prepared using QiAprep spin columns (section 

11.3.2.2) and quantitated by visualisation on in an agarose gel (11.3.2.10). Reactions 

were performed with the dRhodamine terminator cycle sequencing kit (Perkin Elmer) 

in a PTC-100 Hot Lid reactor (Genetic Research Instrumentation Ltd). A typical 

reaction mix was set up as follows: 

Template DNA (-400 ng) 	4 jil 

Terminator mix 	 4 pA 

Primer (3.2 pmol) 	2 Ill 

Twenty five cycles as described below were performed: 

Step 1: 96°C for 30 seconds 

Step 2: 50°C for 15 seconds 

Step 3: 60°C for 4 minutes 
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The DNA was precipitated from the reaction mix by adding 50 il of ethanol (abs.) and 

2 tl of 3 M NaOAc, pH 5.2, incubating on ice for 15 minutes followed by 

centrifugation at 14,000 rpm for 20 minutes at 4°C. The pellet was washed with 250 

t1 of 70% (vlv) ethanol, washed again with ethanol (abs.) and air dried. The samples 

were run by Nicola Preston (University of Edinburgh) on an ABI PRISM 377 DNA 

sequencer and the sequence analysed using the Gene Jockey II programme on a 

Macintosh computer. 

11.3.2.17 Southern blot analysis 

Yeast genomic DNA was prepared (section 11.3.2.5) digested with the required 

restriction enzyme (section 11.3.2.6) and resolved in an agarose gel (section 11.3.2.10). 

The gel was immersed in denaturing buffer (0.5 M NaOH/1 .5 M NaC1) for 45 minutes 

with gentle agitation, then transferred to neutralisation buffer (1.5 M NaCI, 0.5 M 

Tris-HCl (pH 7.5), 1 mM EDTA) for 45 minutes with gentle agitation. 

The DNA was then transferred from the gel to a nylon membrane as follows: 

Hybond-N nylon membrane (Arnersham) and four sheets of Whatman 3MM paper 

were cut to the same size as the gel. One strip of Whatman paper was saturated with 20 

x SSC (table 11. 1.3) and placed over a clean glass plate arranged so that it hung over 

the edge of the plate with the ends of the paper in a plastic tray containing 20 x S SC. 

The pre-treated gel was placed on top of the saturated Whatman paper and Saran wrap 

was carefully placed on top of regions not covered by the gel to prevent unneccessary 

evaporation. The nylon membrane was placed on top of the gel, and the four sheets of 

pre-cut Whatman 3Mlvl paper were saturated in 20 x SSC and placed on top of the 

membrane. On top of this arrangement, 4 cm of dry paper towels were placed and the 

whole structure weighted to provide even pressure. Transfer was allowed to take place 

overnight. After the transfer was complete, the membrane was briefly rinsed in 20 x 

SSC, blotted dry, and UV-irradiated in a Stratagene UV Stratalinker using the 

autocrosslink option (120 mjoules, 254 nm) to immobilise the DNA to the filter. 
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Hybridisation of randomly-labelled probes to the nylon membrane was then performed 

in adaptation to the method described by Church and Gilbert (1984). The 

hybridisations were performed in Hybaid "Hybridiser" ovens. The nylon membrane 

was pre-hybridised in 20 ml of SES 1 buffer for 2 hours at 65°C to prevent non-

specific hybridisation of the probe to the membrane. Fresh SES I buffer was added to 

the membrane immediately before the addition of the radiolabelled probe. The labelled 

probe (section 11.3.2.14) was added to the SESI buffer and the incubation continued 

overnight at 650.  The probe was decanted off and stored at -20°C for possible re-use. 

The membrane was then washed with SES2 buffer for 20 min at 60°C four times, with 

fresh pre-warmed buffer for each wash. The membrane was blotted dry, placed 

between Saran wrap, and the result of the experiment was visualised by 

autoradiography. 

SES1 buffer: 	7% (w/v) SDS 

1 mM EDTA 

0.5 M Sodium phosphate buffer, pH 7.2 

SES2 buffer: 	5% (w/v) SDS 

1 mM EDTA 

40 mM Sodium phosphate buffer, pH 7.2 

For removal of the probes from the membrane (which allowed reprobing), a boiling 

solution of 0.1 % (w/v) SDS was poured onto the Hybond-N nylon membrane to be 

stripped and allowed to cool to room temperature. The membrane was blotted dry and 

stored between Saran wrap for future use. 
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11. 3.3 RNA methods 

11.3.3.1 Total RNA preparation from yeast 

Total yeast RNA was prepared using the method of Schmitt et al. (1990). Ten 

millilitres of the appropriate medium (table 11. 1.2) were inoculated with a single yeast 

colony and incubated at 30°C. The cells were harvested by centrifugation at 3,500 rpm 

for 3 minutes (Mistral 1000 centrifuge) and resuspended in 400 pl of EA buffer (50 

mM NaOAc, 10 mM EDTA). Forty microlitres of 10% SDS were added to the cell 

suspension and vortexed. Five hundred microlitres of phenol, equilibrated with EA 

buffer, was added, the sample mixed and incubated at 65°C for 4 minutes. The 

samples were snap frozen on dry ice and allowed to thaw prior to centrifugation at 

14,000 rpm for 2 minutes. The aqueous layer was removed and extracted as described 

in section 11.3.1.2. The aqueous layer was again removed and precipitated as described 

in section 11.3.1.3. The precipitated RNA was dried under vacuum and resuspended in 

30 p1 of sterile distilled water. 

11.3.3.2 Northern blot analysis of mRNA 

Denaturing gel electrophoresis: Gels (1% (w/v)) were prepared by dissolving 1.5 g of 

agarose in 110 ml of water, allowing to cool slightly and adding 15 ml of 10 x HEPES 

buffer. The mixture was cooled to 50°C and 25 ml of 37% (v/v) formaldehyde added 

together with 10 t1 of 10 mg/ml ethidium bromide. Total RNA was prepared as 

described in section 11.3.3.1, mixed with 3 x loading buffer and heated to 65°C for 5 

minutes immediately prior to loading. Electrophoresis was performed in 1 x HEPES 

running buffer at 5 V/cm, with the buffer circulated slowly by a peristaltic pump. 

10 x HEPES buffer: 0.5 M HEPES (adjusted to pH 7.8 with KOH) 

1OniMEDTA 
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3 x loading buffer: 	50% (v/v) Formamide 

6% (v/v) Formaldehyde 

0.4 x HEPES buffer 

0.075% (w/v) Bromophenol blue 

0.075% (w/v) Xylene cyanol 

10% (v/v) Glycerol 

Alternatively, the electrophoresis was performed as described in section 11.3.2.10 

within an 1.2 % (w/v) agarose gel. Denaturing conditions were yielded by mixing the 

10 tl (10 ng of RNA) samples with 5 jil loading buffer and heating the samples for 10 

minutes at 650C prior to loading. The gel was run for 3.5 hours at 80 V. 

Loading buffer: 	16 ml Formamide 

4 ml 50 mM Tris-HC1, pH 7.6 

0.05 g Xylene xyanol 

0.05 g Bromophenol blue 

The RNA was then transferred electrophoretically from the gel to a Hybond-N nylon 

membrane at 60 V for 60 minutes in 0.5 x TBE (table 11.1.3). After the transfer the 

RNA was cross-linked to the membrane as described in section 11.3.2.17. 

The hybridisation of randomly labelled DNA probes (section 11.3.2.14) to the RNA 

were performed as described in section 11.3.2.17. 

Oligonucleotides, which had been end-labelled as described in section 11.3.2.15, were 

hybridised as follows: the nylon membrane was pre-hybridised in 20 ml of formamide 

hybridisation buffer for 2 hours at 37°C. Ten millilitres of fresh formamide 

hybridisation buffer was added to the membrane immediately before the addition of the 

end-labelled probe. The labelled probe was added to the membrane and the incubation 

continued overnight at 37°C. The membrane was washed with 2 x SSC (table 11. 1.3) 

for 5 minutes at 37°C four times, with fresh buffer for each wash. The membrane was 

not allowed to dry and was placed in between Saran wrap, and the result was 

visualised by autoradiography. 
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Formamide hybridisation buffer: 	50% (vlv) Formamide 

5 x SSPE 

5 x Denhardts solution 

I% (w/v) SDS 

200 tg/ml Salmon sperm DNA 

20 x SSPE: 	 3.6 M NaCl 

0.2 M NaH,PO4  

0.02 M EDTA 

pH adjusted to 7.4 with NaOH 

100 x Denhardts solution: 	2% (w/v) BSA 

2% (w/v) Ficoll 400 

2% (w/v) Poly vi ny 1pyrroli done (PVP) 

11.3.3.3 Primer extension assay 

An oligonucleotide was labelled by end-labelling. A reaction mix was set up as detailed 

below and the reaction incubated at 37°C for 30 minutes: 

Oligonucleotide (10 pmollpi) 2 111 

10 	kinase buffer 1.5 	tl 

100mMDTT 1.5 RI 

['y-32P] ATP 2.5 jil 

T4 PNK (10 U/i1) I i1 

Sterile distilled water 6.5 	j,l 

The labelled oligonucleotide was precipitated by adding 90 jil of ethanol (abs.), 8 i1 of 

2 mg/ml glycogen and 11.5 1.11 of 7.5 M NH40Ac and kept at -70°C overnight. The 

oligonucleotide was then pelleted by centrifugation at 14,000 rpm for 30 minutes at 
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4°C. The DNA pellet was washed with 70% (v/v) ethanol, allowed to dry and 

resuspended in 50 j.il of sterile distilled water. 

Primer annealing - Yeast total RNA was prepared as described in section 11.3.3.1. 

Typically, two labelled oligonucleotides were annealed to the target RNA, one to assay 

the levels of the RNA species under investigation, the other one to act as control for 

RNA loading. Ten micrograms of RNA was mixed with 2 tl of 5 x SS hybridisation 

buffer and 1 jtl of each of the labelled oligonucleotides in a total volume of 12 p1. The 

reaction was placed at 80°C for 5 minutes, before being incubated at 46°C for 90 

minutes. 

Primer extension - Forty microlitres of 1.25 x RT buffer (pre-warmed at 46°C) 

containing 0.5 il of reverse transcriptase (20 U/pd) and 0.5 !Il of RNasin was added to 

the annealed RNA sample and the reaction was incubated at 46°C for 40 minutes. After 

this time, 6 p1 of I M NaOH and I tl of 0.5 M EDTA was added and the reaction 

incubated at 55°C for a further 45 minutes. 

Polyacrylamide gel electrophoresis - The DNA molecules produced by the reverse 

transcriptase were precipitated by the addition of 250 p1 of ethanol (abs.), 2 p1 of 2 

mg/mi glycogen, 30 p1 of 7.5 M NH40Ac and 6 p1 of 1 M HCI, followed by 

incubation for 30 min at -70°C and centrifugation at 14,000 rpm for 15 minutes at 

4°C. The DNA pellet was allowed to dry and was then resuspended in formamide 

loading buffer. The sample was heated to 80°C for 3 minutes immediately before being 

loaded onto a 6% (w/v) polyacrylamide gel (Sequagel-6:Sequagel complete buffer 

reagent 4:1). 

The gel was run at 24 Win 1 x TBE (table 11.1.3) for approximately 40 minutes. The 

gel was covered with Saran wrap and exposed to autoradiography film. 

10 x kinase buffer: 	700 mM Tris-HC1 

100 mM MgCl2  
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5 x hybridisation buffer: 	1.5 M NaCl 

50 mM Tris-HC1, pH 7.5 

10 mM EDTA 

1.25 x RTbuffer: 	 12.5 mM Tris-HC1 

12.5 mM DTT 

7.5 mM MgC12  

1.25 mM each of dATP, dCTP, dGTP, dTTP 

formamide loading buffer: 	51% (vlv) Formamide 

20 mM EDTA 

0.3% (w/v) Xylene xyanol 

0.3% (w/v) Bromophenol blue 

11.3.3.4 In vitro transcription 

Preparation of DNA template - RNase free plasmid DNA p283 (table 11. 1.7) was 

linearised by digestion (section 11.3.2.6) with BamHI. Approximately 1 tg of DNA 

was digested in a volume of 20 tl. Following digestion, I il of the template DNA was 

used directly in an in vitro transcription reaction. 

Transcription reaction - the transcription reaction detailed below was set up in a 

microcentrifuge tube and was incubated at 37°C for 30 minutes. The transcript could 

be stored for up to 5 days at -20°C. 

Linearised template DNA 1 	1.11 

T7 buffer 1.5i1 

10 mM each of ATP, CTP, GTP 1 jil 

400 jiM UTP 1 jil 

[cx-32P]UTP I jil 

Sterile, distilled water 11.5 jil 

RNasin 0.3 jil 

T7 RNA polymerase (61U/jil) 0.5 pd 



T7 buffer: 	0.4 M Tris-HCI, pH 8.0 

0.1 M MgCl2  

0.1 MDTT 

0.1 MNaCI 

Precipitation of transcript - the produced actin transcript was diluted and used directly 

in an in vitro splicing reaction. Alternatively, the transcript was precipitated prior to 

use: the volume of the reaction was increased to 100 jtl by addition of sterile, distilled 

water. The diluted transcript was then P/C/I extracted (section 11.3.1.2) and 

precipitated with ethanol (section 11.3.1.3). The pellet was dried under vacuum and 

resuspended in 50 1.11 of sterile distilled water. 

11.3.4 Protein methods 

11.3.4.1 Crude extraction of total cellular protein from yeast 

Five millilitres of the appropriate medium (table II. 1.2) was inoculated with a single 

yeast colony and incubated at 30°C overnight. Twenty five millilitres of fresh medium 

was inoculated to an OD600  of 0.1 and incubated again. When the cells had reached an 

0D600  of 0.5-0.6, the cells were harvested by centrifugation at 3,500 rpm (Mistral 

1000 centrifuge) for 5 minutes at 4°C. The pelleted cells were washed with 25 ml of 

ice-cold, sterile, distilled water and snap-frozen on dry ice. The cell pellet was thawed 

by addition of 100 jil of pre-warmed (60°C) cracking buffer per 7.5 0D600  units. The 

cracking buffer was supplemented with I % (v/v) 3-mercaptoethanol and 1 x LPC 

protease inhibitor cocktail, both added immediately prior to use. The cell suspension 

was transferred to an microcentrifuge tube containing 100 p1 of glass beads (425-600 

jim) per 7.5 0D600  units and incubated at 70°C for 10 minutes. The suspension was 

then vortexed for 1 minute and subjected to centrifugation at 14,000 rpm for 5 minutes 

at 4°C. The supernate was removed to a fresh tube and the extract stored at -70°C. 
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Cracking buffer: 	8 M Urea 

5% (w/v) SIDS 

40 mM Tris-HC1, pH 6.8 

0.1 mMEDTA 

0.4 mg/ml Bromophenol blue 

1000 x LPC protease inhibitor cocktail: 

10 mg/ml 	Leupeptin 

10 mg/ml 	Pepstatin 

10 mg/ml 	Chymostatin 

prepared in DMSO 

11.3.4.2 Large scale extraction of total cell protein (splicing extract) 

Total yeast cell protein preparations (splicing extracts) were made using the method of 

Lin et al. (1985). Two litres of the appropriate medium (table 11. 1 .2) were inoculated 

with cells of a mid-logarithmic phase culture and the cells grown overnight with 

constant shaking to an 0D600  of 0.5-1.5. The cells were harvested by centrifugation at 

5000 rpm for 5 minutes (4°C; Beckman JLA 10.500 rotor), resuspended in 50 ml of 

50 mM KPO4  and transferred to a falcon tube. The cells were pelleted again by 

centrifugation at 3,500 rpm for 3 minutes at room temperature (Mistral 1000) and were 

resuspended in 40 ml of lyticase buffer. Two thousand units of Lyticase were 

suspended in 1 ml of lyticase buffer and added to the cell suspension, which was 

incubated (in a 500 ml flask) under constant shaking (80 rpm) at 30°C for normally 

30-60 minutes. When approximately 70-80% of the cells have formed spheroplasts, as 

determined microscopically, the cells were harvested by centrifugation at 3,000 rpm 

for 5 minutes at room temperature (Mistral 1000 centrifuge). The supernate was 

discarded and the spheroplasts were washed twice with 30 ml of 1.2 M sorbitol and 

once in 30 ml of ice-cold SB-3 buffer. After each wash the spheroplasts were 

harvested by centrifugation at 3,000 rpm for 5 minutes at room temperature (Mistral 



1000 centrifuge) and resuspended gently by using a sterile, sealed Pasteur pipette. 

After the wash with SB-3 buffer, the pellet was weighted and resuspended in 

approximately 1 ml of buffer A for each gram of cell pellet. The suspension was then 

transferred to a pre-chilled Dounce homogeniser and was homogenised by 13 slow, 

rotation strokes of the tight fitting pestle, with the homogeniser maintained on ice. The 

lysate was then transferred to a chilled sterile beaker and 1/9 volume of 2 M KCI was 

added dropwise, with continuous gently mixing of the lysate for 30 minutes at 4°C. 

The lysate was then transferred to a chilled polycarbonate centrifuge tube and 

centrifuged at 17,000 rpm for 30 minutes at 4°C (Beckman JA 25.50 rotor, pre-chilled 

to 40). Without disturbing the lipid layer, the supernate was transferred to a chilled 

Ultra plus polycarbonate tube (Nalgene) and centrifuged at 40,000 rpm for 70 minutes 

at 4°C (Beckman 70.lTi rotor (pre-cooled to 40C)). The final supernate was 

centrifuged at 14,000 rpm for 10 min at 4°C and the supernate was then transferred to 

a Slide-A-Lyzer dialysis cassette (10 kDa cut-off, Pierce) and dialysed against two 

changes of 1.5 1 of ice-cold buffer D at 4°C over a period of 4 hours. The extract was 

then transferred to pre-chilled microfuge tubes centrifuged for 10 minutes at 14,000 

rpm (4°C) and aliquoted into fresh pre-chilled microfuge tubes and stored at -700. The 

extracts were thawed slowly on ice prior to use. 

Lyticase buffer: 	1.2 M Sorbitol 

50 mM KP041  pH 7.5 

30 mM DTT (added immediately before use) 

SB-3 buffer: 	1.2 M Sorbitol 

50 mM Tris-HCJ, pH 7.5 

10  MN' MgCl2 

3 mM DTT (added immediately before use) 

Buffer A: 	 10 mM HEPES-KOH, pH 7.9 

1.5 mMMgCl2  

10 mM KC1 

0.5 mM DTT (added immediately before use) 



Buffer D: 	 20 mM HEPES-KOH, pH 7.9 

0.2 mM EDTA 

50 mM KCI 

20% (v/v) Glycerol 

0.5 mM DTT (added immediately before use) 

11.3.4.3 SDS polyacrylamide gel electrophoresis (SDS-page) 

All SDS polyacrylamide gels were run using two sealed 16 x 16 cm glass plates 

separated by 1.5 mm spacers and using 14 well combs. The resolving gel solution was 

prepared, poured between the plates and overlaid with water-saturated butanol. The gel 

was allowed to set at room temperature, the butanol was washed off with sterile, 

distilled water, the stacking gel was poured in between the plates and the comb was 

fixed into place. After polymerisation was complete, the seal was removed from the 

plates and the comb was gently taken out. The plates were firmly fixed in the "AlTO" 

electrophoresis apparatus and the chambers filled with I x protein gel running buffer. 

Protein samples were mixed with an equal volume of 2 x SDS loading buffer, heated 

to 96°C for 5 min and centrifuged at 14,000 rpm for 60 seconds. The samples were 

loaded onto the gel and run at 20-30 mA (or 7 mA overnight) until the bromophenol 

blue dye front had reached the bottom of the resolving gel. 

Broad range pre-stained molecular weight protein markers (6.5-175 kDa) were used 

(New England Biolabs). Thirty microlitres were loaded. 

2 x SDS loading buffer: 	100 mM Tris-HC1, pH 6.8 

200 mM DTT (added immediately before use) 

4% (w/v) SDS 

0.2% (w/v) Bromophenol blue 

20% (v/v) Glycerol 



10 x protein gel running buffer: 

250 mM Tris-base 

1.9 M Glycine 

1% (w/v) SDS 

12% resolving gel: 	16 ml 30% (w/v) Acrylamide/0.8% (w/v) bisacrylamide 

13.3 ml Sterile, distilled water 

10 ml Resolving gel buffer 

60 il TEMED 

200 il 10% (w/v) Ammonium persulfate 

6% stacking gel: 	 2 ml 30% (w/v) Acrylamide/0.8% (w/v) bisacrylamide 

5.5 ml Sterile, distilled water 

2.5 ml Stacking gel buffer 

6 il TEMED 

150 1.1!  10% (w/v) Ammonium persulfate 

Resolving gel buffer: 	1.5 M Tris-HCI, pH 8.8 

0.4% (w/v) SDS 

Stacking gel buffer: 	500 mM Tris-HCI, pH 6.8 

0.4% (w/v) SDS 

11.3.4.4 Coomassie staining of SDS polyacrylamide protein gels 

In order to visualise total protein in an SDS polyacrylamide gel, the gel was incubated 

in coomassie solution for 30 minutes and then destained by incubation for 7-12 hours 

in destaining solution under constant gentle shaking at room temperature. The 

destaining solution was replaced frequently. After destaining, the gel was dried on 

Whatman 3MM paper using a Hybaid Gel-Vac. 



Coomassie solution: 0.1% (w/v) Coomassie blue 

50% (v/v) Methanol 

10% (v/v) Acetic acid 

Destaining solution: 10% (v/v) Methanol 

10% (v/v) Acetic acid 

11.3.4.5 Western blotting 

Electrophoretic transfer of proteins to PVDF immobilion-P membrane - Proteins were 

transferred electrophoretically from the SDS polyacrylamide gel to Immobilion-P 

membrane (millipore) using a Bio-i'ad transfer system and following the 

manufacturers' protocol. All transfers were performed in 1 x western transfer buffer at 

100 V for 90 minutes. Transfer was confirmed by Ponceau S staining and the ponceau 

stain was removed by washing the membrane for 10 minutes with water and then for 3 

minutes in 1 x TBS. 

10 x Western transfer buffer: 	1.5 M Glycine 

200 mM Tris-HC1, pH 8.3 

Antibody binding - Non-specific interactions were blocked by incubating the 

membrane for 60 mm (at room temperature) in 80 ml of blocking buffer (3% (w/v) 

BSA in I x TBS (table 11. 1.3)) with constant shaking. The membrane was then 

washed twice in 50 ml of I x TBS-TT (table 11.1.3) and once in 50 ml of 1 x TBS, 

each time for 10 minutes. Primary antiserum was diluted in 15 ml of fresh blocking 

buffer (3% BSA (w/v) in 1 x TBS), applied to the membrane and incubated for 2 

hours at room temperature. The membrane was then washed again as above. The 

secondary antibody was applied to the membrane diluted in 10% (w/v) dry milk in 1 x 

TBS for 1 hour at room temperature. The membrane was then washed four times for 

10 minutes in 1 x TBS-TT. 
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(In experiments in which a protein A epitope was supposed to be detected on the 

membrane, the membrane was directly incubated with anti-mouse IgG horse radish 

peroxidase-linked antibody (table 11. 1.8) diluted in 1 x TBS, 10% (wlv) dry milk after 

blocking.) 

Immunodetection with enhanced chemiluminescence (ECL) - Four millilitres of 

developer solution was prepared as described by the manufacturer (Amersham), 

applied to the membrane and incubated for 60 seconds at room temperature. Care was 

taken to ensure the membrane was uniformly covered by the developer solution. After 

incubation, the developer solution was removed, the membrane placed in Saran wrap 

and exposed to autoradiography film. Exposure times were varied depending on the 

strength of the signal. 

Immunodetection with alkaline phosphatase - Five millilitres of NBTIBCIP stain 

solution were prepared and applied to the membrane. The assay was allowed to 

continue until the development was considered sufficient and was then stopped by 

removing the stain solution and washing the membrane in sterile, distilled water. 

NBT/BCIP staining solution: 0.5 ml I M Tris-HCI, pH 9.5 

4.3 ml Sterile, distilled water 

125 pJ4MNaCl 

50 tl 0.5 M MgCl2 

33 il NBT (Promega) 

16.5 tl BCIP (Promega) 

11.3.4.6 E. coli expression and purification of a His-tagged yeast protein 

Protein expression - Two litres of LB medium (table 11.1.1) containing the appropriate 

antibiotics (section II. 1 .2.2) were inoculated with 6 ml overnight culture of the 

expression plasmid-bearing E. coli strain. The culture was grown at 30°C to an OD6  00 

value of 0.3-0.4. For induction of the expression, IPTG was added to a final 



concentration of 0.75 mM and the culture was incubated for 12 hours at 30°C. The 

cells were harvested by centrifugation at 5000 rpm for 10 minutes at 4°C (Beckman 

JLA 10.500 rotor). 

Preparation of protein extract - The cells were resuspended in 60 ml of Lysis buffer A 

and 0.2 mg/ml lysozyme was added and the extract was stirred on ice for 45 minutes. 

After addition of 0.1% (v/v) Triton-X-100 and stirring on ice for another 5 minutes the 

lysate was transferred to polypropylene centrifuge tubes and centrifuged at 17,000 rpm 

for 45 minutes at 40C (Beckman JA 25.50 rotor). The supernate was transferred to a 

falcon tube and stored at -70°C. 

Ni-NTA affinity purification of the His-tagged protein - Two millilitres of Ni-NTA 

agarose (Qiagen) were washed with 10 ml [20 mM Tris-HC1 pH 7.5, 0.5 M NaCl] for 

45 minutes at 4°C on a rotating wheel. The Ni-NTA agarose was sedimented by 

centrifugation at 3,500 rpm for 3 minutes at room temperature (Mistral 1000 

centrifuge), the supernate removed and 35 ml of protein extract added. The mixture 

was incubated for a further 2 hours at 4°C. The Ni-NTA agarose was sedimented by 

centrifugation at 3,500 rpm for 3 minutes at room temperature (Mistral 1000 

centrifuge), the supernate removed and the Ni-NTA agarose resuspended in a residual 

ml of the mixture and transferred to a small disposable column. All manipulations from 

now on were done in the cold room at 4°C. The column was washed over 1 hour with 

10 ml of BC 100 buffer containing 20 mlvi imidazole (pH 7.9). The flow through was 

collected as a batch. A second, more stringent wash step involved the addition of 10 ml 

BC100 buffer containing 55 mM imidazole (pH 7.9). Again, the flow through was 

collected as a batch. Eventually, the His-tagged protein was eluted with 10 ml of 

BC 100 buffer containing 200 mM imidazole (pH 7.9) over 1 hour and the eluate was 

collected in fractions of 1.5 ml. 

Thirty microlitre aliquots of the eluates and the washes were then resolved by SDS 

polyacrylamide gel electrophoresis (section 11.3.4.3). The total proteins were 

visualised by coomassie staining (section 11.3.4.4) and the His-tagged protein detected 

by western blotting analysis (section 11.3.4.5). 

Fractions containing the purified protein were then dialysed against 2 1 of BC 100 using 

a Slide-A-Lyzer dialysis cassette (10 kDa cut-off, Pierce). 



Lysis buffer A: 	50 mM Tris-HCI, pH 7.5 

250 mM NaCl 

10% (w/v) Sucrose 

BC 100: 	 20 mM Tris-HCI, pH 7.9 

100 mM KCI 

20% (v/v) Glycerol 

Imidazole was prepared fresh immediately before use as a 1 M stock solution (pH 

adjusted to 7.9 with HC1) and was filtersterilised. 

11.3.5 Splicing methods 

11.3.5.1 In vitro splicing reaction 

A splicing reaction mix was prepared in a microcentrifuge tube as follows: 

5 x splicing buffer 5 	tl 

30% (w/v) PEG8000  1 	il 

Sterile distilled water I 	jil 

Splicing extract (section 11.3.4.2) 5 il 

Diluted, radiolabelled transcript (section 11.3.3.4) 1 	tl 

The reaction was incubated at 24°C for 25 minutes and terminated by placement on ice. 

Two microlitres of proteinase K solution was added to the reaction and the sample 

incubated at 37°C for 45 minutes. After that 100 tl of splicing cocktail was added and 

the resulting mixture extracted twice with 100 p1 of P/C/I (section 11.3.1.2) to remove 

protein debris. The aqueous phase was removed to a fresh microcentrifuge tube and 

the RNA precipitated by addition of 500 91 of ethanol (abs.), incubation at -70°C for 

30 minutes and centrifugation at 14,000 rpm for 20 minutes at 4°C. The RNA pellet 

was dried and resuspended in 3 p1 3 x loading buffer (section 11.3.2.2). The reaction 



products were heated to 90°C for 3 minutes before being loaded onto a 6% (w/v) 

denaturing polyacrylamide gel (section 11.3.3.3) at a setting of 24 W for approximately 

1 hour and visualised by autoradiography. 

S x splicing buffer: 	300 mM KP041  pH 7.5 

12.5 mM MgCl2 

10 mM ATP 

Proteinase K solution: 	I mg/ml Proteinase K 

50 mM EDTA 

1% (w/v) SDS 

Splicing cocktail: 	 50 mM NaOAc, pH 5.3 

1 mM EDTA 

0.1 % (w/v) SDS 

25 jig/ml E.coli tRNA 

E. coli tRNA: 	 20 mg/ml E. coli tRNA extracted five times with 

phenol and once with chloroform and 

precipitated with ethanol. 

11.3.5.2 Spliceosomal coimmunoprecipitation analysis 

Antibody binding to protein A-sepharose - An appropriate mass of protein A sepharose 

(8 mg per immunoprecipitation) was hydrated in 1 ml of NTN for 10 minutes and then 

washed 3 times in 1 ml of NTN. The protein A-sepharose was mixed with 300 jil of 

NTN and was incubated with an appropriate amount of antibody (table 11. 1.9) on a 

rotating wheel overnight at 4°C. 



Immunoprecipitation - 60 tl of IgG-agarose and an equivalent amount of agarose 

beads (without antibody, swollen for 10 minutes in I ml of NTN) and the protein A-

sepharose with the bound antibody (see above) were treated in parallel as follows: 

The samples were washed three times in 1 ml of NTN for each wash and were then 

incubated in 100 tl blocking solution for 1 hour on a rotating wheel at room 

temperature. The samples were washed 4 times with 1 ml NTN and once with I x 

PPT. The PPT was taken off and 45 tl of 2 x PPT and 0.5 j.tl RNasin were added to 

the samples, which were then mixed with 45 .il splicing extract (section 11.3.4.2) 

(With this extract an in vitro splicing reaction , as described in section 11.3.3.4, but 

scaled up 5 times, had been performed, using 1 tl of precipitated radiolabelled (2000 

cps/jil) actin transcript as substrate. 5 tI of this splicing reaction was subtracted from 

the extract after splicing to be deproteinised and run on a polyacrylamide gel (section 

11.3.5.1) to assay the splicing reaction (total control)). The samples were then 

incubated on a rotating wheel for 2 hours at 4°C for immunoprecipitation. After that 

the beads were washed twice with 1 ml of NTN and once with 1 ml of NT. The NT 

buffer was taken off and 50 il of proteinase K solution (section 11.3.5.1) was added to 

the beads, which were incubated for 30 minutes at 37°C. The samples were subjected 

to extraction with P/C/I and ethanol precipitation as described in section 11.3.5.1 and 

run on a 6% polyacrylamide gel. The coprecipitated, labelled RNA species were then 

visualised by autoradiography. 

NTN: 	150mMNaCI 

50 mM Tris-HCI, pH 7.5 

0.1% (v/v) Nonidet P40 

NT: 	150 mM NaCl 

50 mM Tris-HC1, pH 7.5 

2xPPT: 	12mMHEPES 

300 mM NaCl 

S mM MgCl2  

0.1% (v/v) Nonidet P40 

RE 



Blocking buffer: 	100 tg/m1 BSA 

100 ig/ml Glycogen 

100 tg/m1 tRNA 

11.3.5.3 Coimmunoprecipitation of snRNAs from protein extracts 

Immunoprecipitation - The coimmunoprecipitation of snRNAs was essentially 

performed as the spliceosomal precipitation (section 11.3.5.2) with the exception that 

the coimmunoprecipitation was done directly with 50 tl neat extract mixed with the 

antibody-beads in 50 tl 2 x PPT (section 11.3.4.2). After immunoprecipitation, 

washing, deproteinasing, extraction with P/C/I and precipitation of the RNAs, the 

samples were run on a 6% denaturing polyacrylamide gel as described in section 

11.3.5.1. 

Northern blot analysis of snRNAs - The RNA was transferred electrophoretically to 

Hybond-N nylon membrane at 60 V for 60 minutes in 0.5 x TBE (table 11.1.3) and 

cross-linked to the membrane as described in section 11.3.2.17. 

Hybridisation with end-labelled oligonucleotide probes - The membrane was pre-

hybridised for 2 hours at 45°C in SES 1 buffer (section 11.3.2.17). End-labelled 

oligonucleotide probes (section 11.3.2.15) for the U snRNAs (table 11. 1.6) were mixed 

and hybridised to the RNA in 20 ml of fresh SES1 buffer overnight at 30°C. (The 

temperature had to be adjusted to 5°C less than the lowest annealing temperature 

calculated for the oligonucleotides present.) 

Annealing temperature: 4(G + C) + 2(A + T). 

The membrane was washed five times (1 hour each wash) with SES3 buffer at 30°C 

and the result visualised by autoradiography. 
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SES3 buffer: 	5% (w/v) SDS 

1 mM EDTA 

0.5 M Sodium phosphate buffer, pH 7.2 

11.4 Computer analysis 

Yeast database searches were performed on the Saccharomyces Genome Database 

(SGD) network (http://genome-www.stanford.edu/Saccharomyces/).  

Protein database searches were performed on the NCBI network server using the 

BLAST algorithm (Altschul et al., 1990); (http://www.ncbi.nim.nih.gov/cgi-

bin/BLAST/nph-blast'?Jform=O).  

Pairwise protein alignments were done using the GENESTREAM ALIGN program on 

the GENESTREAM network server IGH Montpellier France (http://vega.crbm.cnrs-

mop.fr/bin/align-guess.cgi). Multiple protein sequence alignments were performed 

using the PILEUP program (Pearson and Lipman, 1988) in the GCG9 suite of 

sequence analysis programs (Devereux et al., 1984). Sequence identities and 

similarities were identified using the BOXSHADE 3.21 server 

(http://ulrec3.unil.ch/software/  BOXform.html). 
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Chapter III 

The Slu7p and Prpl8p 
two-hybrid screens 



III. 1 Introduction to the yeast two-hybrid system 

The two-hybrid system is a yeast-based genetic assay for detecting protein- 

protein interactions (Fields and Song, 1989; Chien et al., 1991; Fromont-Racine et at., 

1997; Brent and Finlay, 1997 and references therein). The assay takes advantage of the 

modular organisation of transcriptional activator proteins, which consist of two distinct 

functional domains, a DNA-binding domain (BD) and a transcription activation domain 

(AD). The BD localises the transcription factor to the promotor region of a gene, where 

the AD can then interact with additional components of the transcription machinery to 

activate transcription. In the yeast two-hybrid assay, the two functional domains are 

physically separated from each other and become non-covalently brought together 

again through the interaction of any two proteins to reconstitute a functional 

transcription factor. The application of the assay requires the co-production of two 

chimeric fusion proteins with one cell: i) the bait protein consisting of the BD fused to 

a protein of interest (X); ii) the prey protein consisting of the AD fused to a protein (Y) 

the interaction of which with protein X is the subject of investigation. If the proteins X 

and Y interact with each other, a functional transcriptional activator is reconstituted and 

this can be monitored by successful transcription of one or several reporter genes, 

which relies upon the functionality of this transcriptional activator (figure III. 1). The 

two-hybrid system can thus be used to investigate the interactions of two proteins or 

alternatively, by constructing a library of prey fusion proteins, a large number of 

proteins can be screened to identify proteins which interact with protein X. 

The two-hybrid system has advantages over other genetic screening 

techniques, which in many cases rely on the availability of a mutant phenotype such as 

screens for suppressor mutants, high copy-number suppressors or screens for 

synthetic (synergistic) lethal mutations. For non-essential genes or genes for which a 

conditional phenotype is not available, these techniques are not applicable. In contrast, 

in the two-hybrid system any wild type protein can be used. In Saccharomyces 

cerevisae, the whole genome has been sequenced (Cherry et al., 1997 and SGD, see 

chapter 11.4) which allows the rapid identification of all interacting factors found in a 

two-hybrid screen. The rapidly progressing sequencing projects in many organisms 
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will soon allow the immediate identification of any interacting prey also from libraries 

of other organisms. 

Certainly, the two-hybrid system has its limitations: Especially when using non-

yeast proteins, modifications of the proteins required for their function might remain 

undone and possible interactions will be missed for that reason. Problems might arise 

when using non-nuclear proteins, which may not fold into their native structure in the 

nuclear environment. In particular proteins with hydrophobic domains (e.g. integral 

membrane proteins) will be in many cases unsuitable for use in the two-hybrid system. 

prey 

bait 

Transcription 

 

BD 

g 
 M 

Figure 111.1: Basic scheme of the two-hybrid system. Two hybrid proteins 
are produced within one cell: the bait fusion protein, consisting of the DNA-binding 
domain (BD) of a transcriptional activator fused to a protein of interest X and the prey 
fusion, consisting of the transcription activation domain (AD) of a transcription factor 
fused to a protein Y. The interaction between the proteins X and Y brings the two 
previously separated functional domains of the transcription factor together and can 
thus be monitored through the successful transcription of a reporter gene. The BD 
binds to an upstream activation sequence (UAS) of the reporter gene promotor (prom) 
and thereby localises the AD, which is then able to promote transcription. 

The proteins used as baits in the two-hybrid screens performed in this work were 

either fused to the BD of the yeast Gal4p transcription factor or to the bacterial LexA 

protein. The preys were fused to the AD of the Ga14 protein. As reporter genes, the 

auxotrophic marker gene HIS3 and/or the LacZ gene were used. The fact that the BD 

and the AD do not need to be derived from the same protein nor from the same 



organism illustrates that for the functionality of a transcription factor its localisation is 

the primary requirement, structural constraints are often secondary. 

Some bait proteins do activate the transcription of the reporter genes even in the 

absence of any prey fusion protein (auto-activating baits). When using the HIS3 

reporter, this problem can be overcome by the addition of the competitive inhibitor 3-

aminotriazole (3AT) to the growth medium. This chemical increases the stringency of 

the selection for histidine prototrophy. Higher levels of HIS3 transcription (a good 

transcriptional activator) are required to overcome the histidine auxotrophy of the 

strain. 

In this work, two-hybrid screens were performed following a protocol by 

Fromont-Racine et al. (1997). Also the yeast genomic DNA library (FRYL) used in 

this work had been generated by the authors. Modifications of the basic two-hybrid 

assay by the authors allowed a rapid and exhaustive screening of the library. The 

FRYL comprises 5 x 106  clones, with randomly generated inserts of an average size of 

700 basepairs. Given the size of the yeast genome (14 x 106  bp) a fusion event occurs 

statistically once every 4 base pairs and thus, an in-frame fusion of a genomic DNA 

fragment with the GAL4 activation domain sequence can be expected once every 24 

nucleotides. Any given ORF should therefore be present in multiple fusion fragments 

in the FRYL. However due to the nature of the library, whether a given prey will be 

selected in a screen depends on the size of the interaction domain and on the location of 

the domain within the protein fragment. Therefore, to evaluate the statistical 

significance of an interaction all prey proteins are classified into one of 5 categories 

(figure 111.2, Fromont-Racine et al., 1997). The four A categories correspond to 

fusions beginning with the sequence of an ORF, while the B category relates to 

fusions of an intergenic region, an anti-sense strand of an ORF, in a non-protein 

encoding region (rDNA, telomeric DNA, mitochondrial DNA) or in a Ty 

retrotransposon element. The Al category presents the most statistically significant 

interactions. Proteins are classified as Al prey, if at least two independent overlapping 

fusion fragments of that protein were identified in a screen. The common region of 

these overlapping fragments might help to define the interacting domain within the 

protein. The three other A categories represent proteins, which were identified as only 
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one fusion within a screen, even if this fusion was found multiple times. The A2 

category consists of fusions starting close to the initiation codon of an ORF, and 

within a distance of 150 nucleotides from an upstream in-frame stop codon. These 

fusions represent n-terminal interaction domains and are expected to be 

underrepresented in the library due to the in-frame stop-codon which will interrupt 

translation. The A3 category represents candidates with large coding inserts (greater 

than 1000 nucleotides). These proteins might need a large interacting domain for a 

successful two-hybrid response. Again, these preys will be underrepresented in the 

library, which has an average insert size of only 700 bp. In the A4 category are all 

preys classified, which do not fall in any of the other categories. 

The classification of the preys is only possible due to the reproducible 

experimental protocol which allows full coverage of the library within one screen. To 

statistically cover the library 15 million interactions have to be screened. The mating 

procedure applied typically allowed screening of 20-60 million diploid cells. 

In this work both Ga14 as well as LexA baits were used to screen the FRYL. 

Important differences arise due to the strain background used to carry the baits: For the 

Ga14 system, the strain CG1945 was used. These cells have a double reporter system, 

containing both the HIS3 and the LacZ coding sequences under control of the GAL] 

upstream activation sequence (UAS). However, overexpression of some baits in this 

strain led to a severe flocculation of the cells, which made it unsuitable to use. These 

problems have not yet been encountered with the L40 strain, which was used as 

expression strain for LexA baits. Normally, the L40 strain gave a higher mating 

efficiency than the CG 1945 strain, when mated with the library strain Yl 87. However, 

the L40 strain is not mutant for the GAL4 and GAL80 genes, and therefore, when 

mated to Y187 cells, the expression of the LacZ gene under control of the GAL] UAS 

will become activated. Therefore in two-hybrid screens using the LexA system, only 

the HIS3 reporter could be used. 

The two-hybrid screens presented in this work were done as part of the TAPIR 

network (Iwo-hybrid  analyses of proteins involved in RNA metabolism) in which 

several groups set out to investigate protein-protein interactions in different processes 



of RNA metabolism (splicing, polyadenylation, transcription, RNA-transport) by 

performing numerous exhaustive two-hybrid screens. 

	

ATG 	 Stop 

A 	i 	 Al Multiple fusions, 
share common region 

--- 

	

A[C 	 Stop 	 Fusion starts close to 

	

I I 	 I 	 I 	A2 initiation codon 
A 	I I 	I 	

(underrepresentation 
expected) 

	

ATG 	 Stop 	
Large coding insert 

A I 	 I 	A3 (underrepresentation 
expected) 

	

ATG 	 Stop 	 Coding fusion, 
A 	I 	 I 	A4 not in A2 or A3 

-.. 	 categories 

	

ATG 	 Stop 	 Intergenic region, 

A 	I 	 I 	B 	anti-sense strand, 
non-protein encoding 
DNA 

Figure 111.2: Classification of prey proteins. Classification of prey identified 
in a two-hybrid screen of a yeast genomic DNA library. Depicted is a fragment of a 
yeast chromosome containing an open reading frame (ORF, open box) with start 
(ATG) and stop codon indicated. The arrows show the orientation and length of prey 
inserts identified. The shaded boxes represent the region coding for putative 
interacting domains. A potential in-frame stop codon upstream of the ORF is indicated 
(black triangle). 
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111.2 The Slu7p and Prp18p first round screens 

First round two-hybrid screens were performed using the full length proteins 

Slu7p and Prpl8p fused to the Gal4p DNA-binding domain (GBD::Slu7p and 

GBD::Prpl8p, respectively) as baits. The SLU7 and PRP18 open reading frames 

(ORFs) had already been cloned into the pAS2M vector and transformed into the yeast 

strain CO 1945 (I.Dix and R. van Nues, this laboratory). Two two-hybrid screens 

using Slu7p as a bait and one two-hybrid screen with the Prp I 8 as bait had already 

been done in this laboratory (R. van Nues), so the integrity of the ORFs within the bait 

plasmids as well as the production of the fusion proteins from the plasmids had been 

tested. Some of the results of these previous two-hybrid screens will be included in the 

discussion section below. 

111.2.1 The Slu7p two-hybrid screens 

Two additional Slu7p two-hybrid screens, using the GBD::Slu7p protein as 

bait, were performed for mainly two reasons: first, the original library DNA that was 

used to generate the FRYL had been transformed again into yeast strain Y187 in this 

laboratory to generate new stock of yeast library. Library derived from this 

transformation will be referred to as EDYL (Edinburgh yeast library). It seemed to be 

useful to test this library by performing a two-hybrid screen with a bait which had been 

used before in order to compare the results and to evaluate the quality of the library. 

Moreover, it turned out in the previous screens that GBD::Slu7p was a somewhat 

difficult bait to work with. In the n-gal overlay assay it was challenging to identify 

putative interactions because generally the blue colour was not very intense, sometimes 

more grey-greenish than blue. Cells had to be incubated with the toxic X-gal overlay 

mix for much longer than in screens with other baits in order to develop a blue colour. 

As a consequence a lot of the putative positive diploids did not survive the overlay 

assay. Performing additional Slu7p two-hybrid screens, i.e screening much more 

diploids than actually required to statistically cover the library, should ensure recovery 

of most positive diploids. 



Two-hybrid screen Slu 7-Ill 

In two-hybrid screen S1u7-11I, cells from 10 vials of EDYL were regenerated 

and mated with cells from the Slu7p bait culture. A total of 44 million diploid yeast 

cells were screened for histidine prototrophy. The haploid cells mated with an 

efficiency of 18.4%. A J3-gal overlay assay was performed. After 10 h of incubation 4 

blue colonies (clones 1-4) were identified and streaked to colony purify and after 24 h 

another 17 blue/greenish colonies were picked and streaked (clones 5-21). Three 

additional very faint blue colonies were identified after 48 h (clones 22-24). After 

streaking these putative positive clones onto YMM -LWH plates, 13 did not regrow 

and one was a yeast contaminant present in the library. The remaining 10 positive 

clones were subjected to a f3-gal filterlift assay and the intensity of the blue colour was 

noted (see table III. I, column "interaction"). The prey plasmids were rescued from 

these cells and the identity of the inserts was determined by DNA sequencing. The 

results of the S1u7-III screen are summarized in table 111.1 and will be discussed 

together with the results of the S1u7-IV screen (see below) at the end of this section. 

Two-hybrid screen S1u7-IV 

In two-hybrid screen S1u7-IV, cells of 1 vial of FRYL were regenerated and 

mated with cells of the bait culture and 29 million diploid cells were screened for 

growth on histidine-lacking medium. The mating efficiency was calculated to 24.8%. 

After 3 days 68 large colonies (clones 1-68) were restreaked onto YMM -LWH plates. 

These cells had not been subjected to a !3-gal-overlay assay in order to optimise 

survival of putatively positive clones. After 4 days, a large background of smaller 

colonies had grown. An overlay assay was performed and an additional 72 clones 

(clones 69-140) that turned blue were restreaked (here 50% more X-gal solution was 

put into the overlay mix compared to the standard protocol, in order to accelerate 

development of the blue colour and thus preventing a long incubation time of the cells 

in the toxic overlay mix). Clones 69-85 were identified as blue after 8 h of overlay 

assay, clones 86-97 after 13 h and clones 98 -140 after 24h of incubation. Of these 

140 clones, 22 did not grow again after restreaking, 4 were contaminants, and only 38 

turned blue in the subsequent 3-gal filterlift assay. The prey plasmids were rescued 

from these 38 clones and the identity of the inserts was determined (table 111.2). 
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Table 111.1: 
Results of two-hybrid screen Slu7-III. A Ga14 DNA-binding domain-Slu7 fusion protein (GBD::Slu7p) was used as bait to screen the 
EDYL for interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the 
Saccharomyces Genome Database, SGD. B category preys are listed at the end of the table. Chr - chromosome number; Strand: w - Watson 
DNA strand, c - Crick DNA strand (as defined by SGD); nt. from AUG - number of nucleotide at which fusion starts (A from the initiation 
codon AUG is 1); Insert size - insert length (nucleotides) determined by sequencing , * insert size has been determined approximately by 
restriction digest of the prey plasmid with BamHI and subsequent agarose electrophoresis; Interaction - relative strength of response in 3-gal 
filterlift assay: ++ strong response, + moderate response, +1- weak response. Preys were classified in categories Al, A2, A3, A4 and B as 
defined by Fromont-Racine et al., 1997 and described in section 111.1. 



Clone Gene OFF Chr Strand nt. from AUG ORF size (bp) Insert size (bp) Interaction Category Protein info 
7-111-19 NUP170 YBL079w II w 3238 4509 1200* +1- A3 Nucleoporin, involved in mRNA export 
7-111-5 PRP22 YER013w V w 1432 3438 989 + Al Splicing factor 
7-111-9 PRP22 YER013w V w 422 3438 1821 + Al Splicing factor 
7-111-16 DINI, RNR3 YIL066w IX w 960 2610 800* +1- A4 Ribonucleotide reductase, large subunit 
7-111-8 XDJI YLR090w XII w 376 1371 800* ++ A4 E. co/i DnaJ homologue 
7-111-24 SENI YLR430w )(II w 2950 6696 1400* +1- A3 Positive effector of tRNA-splicing endonuclease 
7-111-13 FAP1 YNL023c XIV C 814 2898 2000* + A3 Similar to human DNA-binding protein NFX1 (TF) 
7-111-4  YNL227c XIV c 734 1773 400* + A4 Similar to E. co/i DnaJ protein 
7-111-2  YOR275c XV c 294 1983 2800* + A3  

7-I11-1 ______  1100* ++ B Y-element, subtelomeric repeat 



Table 111.2: 
Results of two-hybrid screen S1u7-IV. A Ga14 DNA-binding domain-S1u7 fusion protein (GBD::Slu7p) was used as bait to screen the 
FRYL for interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the 
Saccharomyces Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency with which a fragment was 
identified in the screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from 
AUG - number of nucleotide at which fusion starts (A from the initiation codon AUG is I); Insert size - insert length (nucleotides) determined 
by sequencing, * insert size has been determined only approximately by restriction digest of the prey plasmid with BamHI and subsequent 
agarose electrophoresis; Interaction - relative strength of response in f3-gal filterlift assay: +++ very strong response; ++ strong response, + 
moderate response, +1- weak response. Preys were classified in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et al., 1997 
and described in section 111.1. 



Clone No. Gene ORF Chr Strand nt. from AUG ORF size(bp) Insert size(bp) Interaction Category Protein info 
7-IV-44 1 PKC1 YBL105c II C 412 3456 500* +1- A4 Protein kinase c-like protein 
7-IV-3 _2_ RAD16A YBR1 14w II w 1664 2373 400* + A4 Exision repair protein 
7-IV-43 1 LRE1 YCL051w III w 480 1761 n.d - +1- A Laminarinase resistance protein 
7-IV-4 1 MSH6 YDR097c IV C 278 3729 1300* + A3 Mismatch repair protein 
7-IV-131 1 MTH1A YDR277c IV c 401 1302 _1000* +1- A3 Repressor of hexose transport genes 
7-IV-47 1_1 GLN3 YER040w V w 633 2193 1500*  +1- A3 Transcription factor for pos. nitrogen metabolisr 
7-IV-48 _3_ PRPI8 YGRO06w VII w 299 660 _900* ++ A4 Second step splicing factor 
7-IV-55 1 CBP4 YGR174c VII c -331 513 _600* +1- A2 Ubiguinol-cyt. c reductase assembly factor 
7-IV-32 _1 - PFK1 YGR24Oc VII c 2328 2964 1970-7  +1- A4 Phosphofructokinase alpha subunit 
7-IV-2 _2_  YGR266c VII c 49 2106 500* +++ A4 Coiled-coil domain containing 
7-IV-140 _1_ MY01 YHR023w VIII w 3724 5553 _1400* + A3 Myosin heavy chain type II 
7-IV-23 _l_ SSY5 I 	YJL156c X c 1 	26 2064 _1184 ++ Al Amino acid transport protein 
7-IV-27 _l_ SSY5 Y.JL156c X C 384 2064 _1301 ++ Al Amino acid transport protein 
7-IV-90 1  YLL010c XII c 267 1284 1800* +1- A3  
7-IV-46 1  YLR320w XII w 1849 4365 2100* + A3  
7-IV-45n _1 PSE1 YMR308c XIII c 1432 3270 n.d + A Protein secretion 
7-IV-45c 1  (YLR225c) XII c  1224 n.d + A 
7-IV-58 I YOL089c XV c 241 1_3093 800* + A4  
7-IV-101 1 YOL091w XV w 484 _1830_ 1200* +1- A3 Similar to transcription factors. Zn-cluster 
7-IV-15 1 YOR191w XV w 1336 4860 950* +1 A4  
7-IV-75 - - YOR275c XV C 324 1986 2472* A3  
7-IV-86 2 ADR6, SWI1 YPL016w XVI w 1567 3945 1000* + A3 Transcription factor 
7-IV-50 - - MET31 	I YPL039w XVI w 27 951 1000* +1- 73 Regulates sulphur aminoacid metabolism 
7-IV-123 - - FA S2 YPL231w XVI w 1600 5664 2000* + A3 Alpha subunit fatty acid synthase 
7-IV-64 - - SPE3 YPR069c XVI c 98 882 600* + A4 Spermidine synthase 
7-IV-63 - - ENDI3 YPR173c XVI c -21 1314 600* + A2 Vacuolar sorting, ATPase motif 

7-IV-139 1= anti (YBR140c) II w  n.d. +1- B 
7-IV-60 - - anti (YFR020w) VI c  n.d. +1- B 
7-IV-79 - - anti (YNL065w) XIV c  n.d.  B  
7-IV-72 _1 - anti (YOR195w) XV c  n.d.  B  
7-IV-106 1  Ty-element  n.d.  B  
7-IV-25 _1_  Y-repeat  n.d. 	I ++ 	I B 



In the subsequent discussion(s) of the prey candidates that were found in the 

S1u7-III, Slu7-IV and any other two-hybrid screens that were performed in the course 

of this work, the focus will mainly lie on preys that were subjected to further 

investigation after identification in the screen. Some other candidates will be discussed 

briefly, if they are of particular interest. A basic description of the protein function of 

the preys, if known, is given in the tables. 

Prey-proteins found in the Slu7p screens 

The Slu7p bait was found to interact with two known splicing factors, Prp22p 

and Prpl8p in the screens. Two independent prey fragments of splicing factor Prp22p, 

a 130 Wa RNA-helicase of the DEAH-box protein family (Schwer and Gross, 1998; 

de Ia Cruz et al., 1999), were identified in screen S1u7-III (see figure 111.3). 

clone: fragment: 	 No. 

7-111-5: 	Prp22p(479-826) 	] 	 1 x 

7-111-9: 	Prp22p(142-747) 	I 	 1 x 

	

Prp22p I 	Isil  

	

1 	 479 	747 	1145 

Figure 111.3: Prp22p prey fragments identified with the Slu7p bait in 
two-hybrid screen S10-III. The common domain of the prey fragments is 
indicated as a shaded box in the full length protein. Numbers in brackets describe the 
amino acid boundaries of the fragment. No. - frequency with which a prey fragment 
was identified in the screen. A putative RNA-binding motif within Prp22p is indicated 
(Si, see text). 

The common region of the two prey fragments that may be important for the 

interaction with Slu7p stretches over the aminoacid residues 479-747. This region 

includes the motifs Ito IV (but not V and VI) that are conserved among the members 

of the DEAD/Fl-box family. A putative RNA binding motif, similar to that initially 

found in the bacterial ribosomal protein S1, but now known to be present in a large 

number of RNA-associated proteins (Gribskov, 1992 and Bycroft et at., 1997) does 
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not seem to be required for the interaction with Slu7p, because this motif is only 

contained in one of the fragments identified. 

In screen S1u7-IV, the 24 kDa splicing factor Prp l8p was identified as an A4 

candidate a total of 3 times. The prey fragment consists of the c-terminal 118 amino 

acid residues of the 219 aminoacid long Prp 18 protein (see also figure 111.6 B). 

The only other Al candidate found in the S1u7 screens was the 76 kDa Ssy5p, 

encoded by ORF YJL156c. The two prey fragments found in screen Slu7-IV are 

depicted in figure 111.4. The common domain of the fragments stretches from amino 

acid 129-404 of the 687 amino acid long protein. 

clone: fragment: 	 No.: 

7-IV-23: Ssy5p(1O-402) 

7-IV-27: Ssy5p(129-560) 

Ssy5p 

lx 

lx 

1 	129 	 402 	 687 

Figure 111.4: Ssy5p prey fragments identified with the Slu7p bait in 
two-hybrid screen S1u7-IV. The common domain of the prey fragments is 
indicated as a shaded box in the full length protein. Numbers in brackets describe the 
amino acid boundaries of the fragment. No. - frequency with which a prey fragment 
was identified in the screen. 

The SSY5 gene was first isolated in a screen for mutants sensitive to the amino 

acid analog and herbicide sulfonylurea and the protein has thus been implicated in 

amino acid uptake (Joergensen et al., 1998). Nevertheless, the protein was 

investigated for a putative role in pre-mRNA splicing and the results of this work will 

be discussed in detail in chapter IV. 1. 
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A protein with a predicted molecular weight of 75 kDa, encoded by ORF 

YOR275c, was found independently in screens S1u7-HI and Slu7-IV as A3 clones (see 

figure 111.5). 

clone: fragment: 	 No. 

7-111-2: Yor275p(99-661) 

7-IV-75: Yor275p(108-661) 

Yor275p 

lx 

lx 

1 
	

108 	 661 

Figure 111.5: Yor275p prey fragments identified with the Slu7p bait in 
two-hybrid screens S10-III and S1u7-IV. The common domain of the prey 
fragments is indicated as a shaded box in the full length protein. Numbers in brackets 
describe the amino acid boundaries of the fragment. No. - frequency with which a 
prey fragment was identified in the screen. 

The common region of the fragments consists of the amino acid residues 108-

661 of the protein. Since the protein was reported to interact also with the splicing 

factor Snplp in a two-hybrid screen (Fromont-Racine et at., 1997; Smith and Barrell, 

1991), it was chosen for further investigation. A "second round" two-hybrid screen 

was performed, using Yor275p as a bait. The results of this two-hybrid screen are 

presented in chapter IV.2. 

111.2.2 The Prpl8p two-hybrid screen 

In the two-hybrid screen using Prpl8p as a bait (screen M18), cells of 10 vials 

of EDYL were mated with the cells of the Prp I 8 bait culture and 31 million diploid 

clones were screened for histidine prototrophy. The haploids mated with an efficiency 

of 20 %. A p-gal overlay assay was performed and 17 blue colonies (clones M18-1 - 

M18-17) were streaked for colony purification after 6 h of incubation. An additional 31 
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blue colonies (clones M18-18 - M18-49) were picked and streaked after 24 h 

incubation with the X-gal overlay mix. Of these 49 putative positive clones, 31 clones 

survived the overlay assay. The relative strengths of the two-hybrid interactions were 

then investigated in a filterlift assay. The prey plasmids of these 31 clones were 

isolated and their identities determined. A summary of the results from this screen is 

given in Table 111.3. 

Prey-proteins found with Prpl8p 

The most striking result of the Prpl8p two-hybrid screen (M18) is the finding 

that Prpl8p strongly interacts with three independent Slu7p fragments (see figure 111.6 

A), which share an overlapping region of 85 amino acids (aa 165-249). This region 

lies downstream of a Zinc-finger motif (aa 122-135), which is similar to that found in 

retroviral nucleocapsid proteins (Katz and Jentoft, 1989). 

It must be noted that the most frequently isolated fragment, Slu7p(*  161-249), 

is n-terminally preceded by a 194 aminoacid long fragment, aminoacids 341-535, of 

the Ixrl protein (see clone M18-5n in table 111.3). The 67 Wa Ixrlp is a transcription 

factor with numerous stretches of glutamin residues and, in addition, it contains two 

HMG (high mobility group)-box domains, both features of DNA-binding proteins 

(Brown et al., 1993; McANulty et al., 1996). Indeed, the region preceding the 

fragment SIu7p(*161249),  almost entirely consists of the two HMG-box domains. 

Therefore, the question had to be asked, whether the region of amino acids 161-249 of 

Slu7p alone is sufficient to support an interaction with Prp l8p, or whether the strong 

activation of the HIS3 and LacZ reporter genes was due to a strong affinity of the 

Ixrlp fragment for the promotor regions of the reporters. Transcription factors are 

frequently found to cause false positive responses in the two-hybrid assay by 

autoactivating expression of the reporter genes (e.g. Fromont-Racine et al., 1997). To 

confirm that the small Slu7p fragment by itself does interact with Prpl8p it had to be 

separated from the Ixrlp fragment and checked for interaction with the Prpl8p bait. 

This test was performed and is described in the next section. 

107 



Table 111.3: 
Results of two-hybrid screen M18. A Ga14 DNA-binding domain-Prpl8 fusion protein (GBD::Prpl8p) was used as bait to screen the 
EDYL for interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the 
Saccharomyces Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency with which a fragment was 
identified in the screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from 
AUG - number of nucleotide at which fusion starts (A from the initiation codon AUG is 1); Insert size - insert length (nucleotides) determined 
by sequencing , * insert size has been determined approximately by restriction digest of the prey plasmid with BainHI and subsequent agarose 
electrophoresis; Interaction - relative strength of response in 3-gal filterlift assay: +++ very strong response; ++ strong response, + moderate 
response, +1- weak response. Preys were classified in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et al., 1997 and 
described in section 111.1. 



Clone No. Gene OFF Chr Strand nt. from AUG OAF sj() Insert size(bp) Category Interaction Protein info 
M18-4 1 SLU7 YDR088c IV C -79 1149 920 Al +.+ Splicing factor 
M18-45 1 SLU7 YDR088c IV C 492 _llj_ 1390 Al ++ Splicing factor 
M18-5c 6 SLU7 YDR088c IV C 480 _114 583+268 Al +++ Splicing factor 
M18-3 _3  YMR044w XIII w 533 1428 654 A4 + Glutamic acid-rich domains 
M18-33 1 BUB2 YMR055c XIII C 787 - 921 900 A4 +1- Cell cycle control protein 
M18-24 - 1-  VTH2 YHR202w VIII w 1513 _1809 450* A4 + 
M18-23c - - YJL082w X w  2196 3400* A 
M18-46 - - YJL107c X c -2 - 164 1200* A2/A3 +1-  
M18-15 1  YJL222w X w 3264 _4650 500* A4 +1- Putative membrane glycoprotein 
M18-5n _6_ IXRJ YKL032c XI c 1022 - 776 583+268 A4 +++ DNA binding protein 
M18-27 1 SEN2 YLR105c MI c 921 - 134 1000* A4 +1- Subunit of tRNA-splicing endonucease 
M18-13 _1_ CMP1 YLR433c XII C 1279 - 662 435* A4 	I + Calmodulin-binding subunit of protein phosphatase 2B 
M18-12 1_ MSH2 I YOL090w XV w 1 	2297 2901 800* A4 +1-  
M18-6 1 SLK19 YOR195w XV w 2114 2466 444 A4 ++ Synergistic lethal with kar3, required for mitosis 
M18-14 1_ ADR6 YPLO16w XVI w 1637 3945 900* A4 +1- Putative transcription factor 
M18-49 1 ORC4 YPR162c XVI c 1100 1590 1263 A4 +1- Origin of replication subunit, gene silencing 

M18-1 1  XIII w  n.d B n.d ORC1-RPS1B intergenic 
M18-23n 1_1_  XVI c  3400* B ++ YPLO64c-YPLO67c intergenic 
M18-36 	1_1_ e.g. 	Tyl-1  e.g I c 	I   n.d 	IB n.d 	I __ 



A) 

clone: fragment: 	 No. 

M18-4 Slu7p(1-279) 

M18-5c SIu7p(*161249) 

M18-45 Slu7p(165-382) 

Slu7p 

lx 

6x 

lx 

1 	 165 	249 	382 

clone: fragment: 	 No. 

7-IV-48 Prpl8p(101-219) 	3 x 

Prpl8pl___________________ 
1 	 101 	 219 

Figure 111.6: 
A) Slu7p prey fragments identified with the Prpl8p bait in two-hybrid 
screen M18. The common domain of the prey fragments is indicated as a shaded 
box in the full length protein. Numbers in brackets describe the amino acid boundaries 
of the fragment. No. - frequency with which a prey fragment was identified in the 
screen. Z - indicates the position of a Zinc-finger motif (amino acids 122-135). * - the 
fragment is preceded at the N-terminus by a 194 amino acid long fragment of Ixrlp 
(see table 111.3 and text). B) Prpl8p prey fragment identified with the Slu7p 
bait in two-hybrid screen S1u7-IV. Numbers in brackets describe the amino 
acid boundaries of the fragment. No. - frequency with which the fragment was 
identified in the screen. 

The only additional prey candidate of the Prpl8p screen, that was studied in 

more detail was a protein of unknown function encoded by ORF YMR044w. One prey 

fragment consisting of the amino acid residues 177-395 of the 475 amino acid long 

Ymr44p was isolated three times. For two reasons the protein was chosen for further 
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analyses, despite the fact that it was only identified as an A4 candidate: first, Ymr44p 

was also found in a Prp 18 screen performed previously in this laboratory (R. van 

Nues, personal communication). In that two-hybrid screen it was found also as an A4 

interactor, but the fusion was distinct from the one found in screen Ml 8. Second, the 

protein was found in multiple two-hybrid screens within the TAPIR network with a 

number of other splicing proteins. These interactions and the investigation of Ymr44p 

are described in chapter IV.3. 

111.2.2.1 The Prp 1 8p-Slu7p interaction 

Since the Prpl8p-Slu7p two-hybrid interaction was very likely to be of 

functional relevance, it was important to confirm whether indeed only the small part of 

Slu7p that was shared by all three prey fragments was able to interact with Prpl 8p. If, 

for instance, the fragment Slu7p(*161249) (see figure 111.6) was dependent on the 

Ixrlp fragment for an interaction, then it would be uncertain, whether the n- or c-

terminal regions of fragments Slu7p(l-279) or Slu7p(165-382), respectively, do in 

fact contain the interacting amino acid residues and not the common domain shared by 

these fragments. 

For this reason, a region spanning the amino acid residues 164-257 of Slu7p 

(Slu7p(164-257)) was PCR-amplified from plasmid pM184 (see table 11.1.8) using 

oligonucleotides 7A and 713, which contained NcoI and EcoRI restriction sites at their 

3' ends, respectively. The region was chosen slightly larger than the actual common 

region of the prey fragments, because nucleotides at suitable sites, which would 

guarantee good annealing of the primers, were rare. The PCR product was gel-

purified, isolated and subsequently cloned into the pACTllStop vector (table 11. 1.7) 

via the NcoI and EcoRI restriction sites present in the polylinker. The construct was 

checked by DNA-sequencing using oligonucleotide JC90 (pACTIIStop forward). No 

PCR-generated deviations from the wild-type sequence were found. The construct, 

named pMA7c, was then transformed into yeast strain Y187, where it should produce 

Slu7p(164-257) fused to the Gal4p transcription activation domain (GAD). 

Subsequently, a directed two-hybrid mating assay was performed to test whether the 



94 amino acid long fragment Slu7p(164-257), produced from pMA7c, was able to 

interact with the Prp I 8 bait. In order to monitor the strength of the interactions, the 

cells were spotted onto YMIVI -LWH plates, containing none, 5, 15, 30 or 50 mM 

3AT. The results of this directed two-hybrid assay are shown in figure 111.7. 

The experiment shows nicely the strong and reciprocal interaction between Slu7p 

and Prpl8p. The interaction of the Slu7p bait with the c-terminus of Prpl8p 

overcomes 3AT concentrations of up to 15 mM. The interaction between Prpl 8p bait 

(GBD::Prpl8p) and the two-hybrid fusions GAD::SIu7p(*161249) and 

GAD::Slu7p(1-279), which were identified in the screen, supports growth of the cells 

on 3AT concentrations of at least 50 mM. It is important to note, however, that the 

GAD::Slu7p(164-257) fusion protein also interacts strongly with Prpl8p bait (cell 

growth on 3AT concentrations up to at least 30 mM). This suggests, that the 

interaction of GAD::Slu7p(*161249) with Prpl8p is not dependent on the Ixrlp 

fragment, preceding the Slu7p fragment. It seems, though, that the presence of the 

Ixrlp fragment has some positive influence on the strength of the two-hybrid 

interaction or maybe on the level of production of the stability of the fusion protein. 

Taking into account that the common region of the prey fragments only includes 

residues 165-249, and having shown that the Ixrl protein fragment is not actually 

required for the interaction of Slu7p(*161249) and Prpl8p it is tempting to assume 

that the actual region of interaction within Slu7p does not extend beyond amino acids 

165-249. 
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GBDp 

GBD::Slu7p 	 - LWH 

GBD::Prpl8p 

GBDp _________ - 
LWH 

GBD::Slu7p [. 	 +5 mM 3AT 
GBD::Prpl8p 

GBDp
- LWH GBD::Slu7p M + 15 mM 3AT 

GBD::Prpl8p  

GBDp 	
- LWH GBD::Slu7p 	
+30 mM 3AT 

GBD::Prpl8p J[ ] 

GBDp 
-LWH 

GBD::Slu7p 	 +50 mM 3AT 
GDB: :Prpl8p 

Figure 111.7: Investigation of the Slu7p-Prpl8p interaction in a 
directed two-hybrid mating assay. CG1945 and Y187 yeast strains were 
transformed with pASAz\- or pACTIIStop-derived plasmids, respectively, encoding 
the depicted bait or prey fusion proteins. Transformants were grown on the 
appropriate selective medium and then mated on YPDA medium overnight at 300C. 
The resulting diploids were grown on YMM -WL medium for 24 h at 30°C and 
transferred onto YMM -LWH selective medium containing different concentrations of 
3AT. Cells were incubated for 2 days at 300C. Bait plasmids used were: GBDp 
(Gal4p DNA-binding domain), pASM; GBD::Slu7p, pASS1u7; GBD::Prpl8p, 
pASPrpl8. Prey plasmids used were: GAD::Prpl8p(101-219), p7-IV-48; 
GAD: :Slu7p(164-257), pMA7c; GAD::Slu7p (*161-249), pM18-5c; GAD::Slu7p(1 - 
279), pM 18-4. (GAD - Gal4p transcription activation domain). 
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U1.3 Discussion 

The performance of two-hybrid screens using the second step splicing factors 

Slu7p and Prpl8p as baits led mainly to two important findings: First, Slu7p and 

Prpl8p interact in a strong and reciprocal way in the two-hybrid screens. Second, 

Prp22p prey fragments were found to interact with the Slu7p bait. 

The Slu7p-PrpI8p interaction 

The reciprocal two-hybrid interaction between Slu7p and Prpl8p is a good 

confirmation of the previously reported genetic interactions of these second step 

splicing factors. Mutant alleles of the two proteins had been shown to be synergistic 

lethal with each other and furthermore, the same alleles were both synthetic lethal with 

a mutation in the U5 snRNA, suggesting a close functional relationship of the two 

splicing factors (Frank et al., 1992). In addition, biochemical experiments indicated 

that the non-essential Prp 18 protein somehow facilitates the function of the essential 

S1u7 protein: in cell extracts that are depleted of Slu7p and Prp 18p, splicing is blocked 

after the first transesterification reaction. Adding back excess S1u7 recombinant protein 

fully complements the second step block, showing that the requirement of Prpl 8p for 

the second step can be obviated by an increased Slu7p activity (Zhang and Schwer, 

1997). Adding back Prpl8p alone does not restore splicing activity of the doubly 

depleted extract. Umen and Guthrie (1995a) showed that crosslinking of Slu7p (and 

Prp8p) to the 3' splice site in aprpl8 mutant extract required prior ATP-hydrolysis by 

Prpl6p and furthermore, that crosslinking is strongest upon addition of Prpl8p, 

suggesting that the function of Prp I 8 might lie in supporting the association of Slu7p 

with the 3'-splice site prior to the second transesterification. 

The above data suggest a close functional relationship of the S1u7 and Prp 18 

proteins. However, experiments which proved a direct physical interaction had not 

been reported. The two-hybrid screen results presented in this work make it tempting 

to suppose such a direct interaction between the two proteins. First, the two-hybrid 

interaction is particularly strong, in terms of the intensity of the blue colour in the X-

gal overlay- and filterlift assays and in terms of the ability of the diploid cells, 

coexpressing the interacting fusion proteins, to grow on high concentrations of 3AT. 
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Second, the region of interaction could be narrowed down to 94 amino acids within 

Slu7p and to the c-terminal 118 amino acids of Prp l8p, which decreases the possibility 

that other proteins might bridge the interaction. In fact, some potential candidates that 

could be imagined to bridge an interaction of Slu7p and Prp l8p (such as the second 

step splicing factors Prp22p and Prp l6p) have been tested in directed two-hybrid 

assays for the interaction with the 94 amino acid core fragment Slu7p(1 64-257) and the 

c-terminus of Prp l8p,  but no interacting baits have been found for either of the 

fragments (data not shown). 

While the Slu7p and Prpl8p analyses described in this work were ongoing, 

Zhang and Schwer (1997), obtained results consistent with the data presented above, 

by performing directed two-hybrid studies with deletion fragments of Slu7p and 

Prpl8p. They were able to further narrow down the region within Slu7p that is 

required for the interaction and demonstrated that the region from amino acid 200 to 

224 is sufficient to support the Slu7p-Prp I 8 two-hybrid interaction. 

The Slu7p-Prp22p interaction 

In addition to the interaction with Prp l8p, the Slu7p bait interacted with two 

distinct fragments of Prp22p in screen S1u7-III. Although originally identified as a 

protein factor required for spliceosome disassembly (Company et at., 1991), recently it 

was demonstrated that Prp22p in fact has at least one additional function during the 

splicing process. Schwer and Gross (1998) were able to show in 

depletion/reconstitution experiments in vitro that Prp22p is required in an ATP-

independent fashion for the second catalytic step of actin pre-mRNA splicing. 

Furthermore, they demonstrated, that like Slu7p and Prp l8p, Prp22p functions after 

ATP-hydrolysis by Prp l6p. Prp22p protects the 3' splice site against oligonucleotide-

directed RNAseH digestion after ATP-hydrolysis by Prp l6p, suggesting that it binds 

to or is at least in close proximity to the 3'-splice site, just like Slu7p and Prpl 8p. 

Another feature common to Slu7p, Prp I 8 and Prp22p is that they are not required for 

splicing of all introns in vitro. Slu7p and Prp l8p are dispensable for splicing of 

precursor RNAs with distances between the branchpoint and the 3'-splice site of 12 or 

more nucleotides, whereas Prp22p is only needed if the distance exceeds 21 

nucleotides (Brys and Schwer, 1996; Zhang and Schwer, 1997; Schwer and Gross, 
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1998). Therefore it was supposed, that the three proteins are not essential for the 

general chemistry of the second catalytic step, but that they might act as a molecular 

bridge between the branchpoint and the 3' splice site, helping to bring the 3' splice site 

into proximity with the catalytic centre, if the 3' splice site is far away from the 

branchpoint. 

The observed Slu7p-Prp22p two-hybrid interaction gives further evidence for a 

close proximity and a functionally related action of the two splicing factors and even 

suggests that Slu7p and Prp22p physically interact with each other in the course of 3' 

splice site selection and cleavage. 

Prp22p was demonstrated to possess an RNA-dependent ATPase and ATP-

dependent RNA-helicase activity in vitro (Schwer and Gross, 1998; Wagner et al., 

1998). The putative interacting domain (the common domain of the two prey-

fragments found) with the Slu7p bait spans a region including amino acids 479-747. 

This region contains motifs I-IV, conserved among the DEAD/H-box family of 

(putative) RNA-helicases. Motifs I and II are thought to be responsible for ATP-

binding and hydrolysis, while motif III has been implicated in the helicase or 

unwinding function of the DEAD/H-box proteins (Pause and Sonenberg, 1992). It is 

therefore intriguing to suppose that Slu7p could directly modulate Prp22p action by 

interacting with these important functional domains. However, it has to be pointed out, 

that there is no proof that the interaction between Slu7p and Prp22p happens prior to or 

during the second step. It could well be, that what we see is an interaction of the two 

proteins at a stage of spliceosome disassembly. It has been shown previously, that 

Slu7p remains bound to the excised intron and to the mature message until the 

spliceosome disassembles, in a reaction that requires ATP (Brys and Schwer, 1996). 

Therefore, the two proteins might be in proximity, when Prp22p acts to disassemble 

the spliceosome. The finding that Slu7p interacts with domains which are important for 

the RNA-unwinding function of Prp22p, could support the latter model. 

Finally it has to be pointed out that the observed two-hybrid interaction might not 

be direct. Indeed, compared to e.g. the interaction of Slu7p with Prpl8p, the 

interaction of the Slu7p bait with the Prp22p prey-fragments is relatively weak. In a 

direct mating two-hybrid assay the diploids grow on histidine-lacking medium, but the 
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addition of only 5 mM 3-AT to the plates does not allow sufficient expression of the 

HIS3-reporter gene in the cells to overcome the more stringent selection conditions 

(data not shown). Although a weak two-hybrid interaction does not necessarily mean 

that the interaction is indirect (as a strong interaction does not prove a direct one), it is 

reasonable to ask whether there are potential candidates that might be bridging the 

observed two-hybrid interaction. One such candidate should at least be mentioned 

briefly here. In a two-hybrid screen with the Prpl6p bait performed in this laboratory, 

Prp22p was found as the only interacting prey protein (Alan Colley, personal 

communication). Two independent prey-fragments were isolated, that overlap with the 

Prp22p prey-fragments found with the Slu7p bait (see figure 111.8). The common 

region of these fragments contains the motifs IV and V conserved among the members 

of the DEAD/H-box protein family, thus sharing a region including motif IV with the 

common region of the prey-fragments found with Slu7p. 

479 	 1826 	lSlu7p  

142 I 	 747 	 j 
screen 

Prp22p I 	 iFa: 

Figure 111.8: Putative interacting regions of Prp22p with Slu7p and 
Prpl6p. Depicted are Prp22p prey fragments identified in two-hybrid screens using 
Slu7p as bait (light grey boxes) or using Prpl6p as bait (dark grey boxes). Both baits 
interact with regions within the helicase domain of Prp22p, which contains conserved 
sequence motifs (the position of these motifs 1-VI are indicated; see text for 
information on the motifs). The Prp l6p two-hybrid screen was performed by A. 
Colley, this laboratory. 

The reporter response produced by the Prp 1 6p-Prp22p two-hybrid interaction is 

much stronger than the one observed for the Slu7p-Prp22p interaction, withstanding 3-

AT concentrations of at least 10 mM (A. Colley, personal communication). This makes 

a triple ("sandwich") interaction imaginable, with Prpl6p being in between Slu7p and 
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Prp22p. However, a two-hybrid interaction of Prpl6p bait with Slu7p prey-fragments 

was not observed, neither in the Prpl6p two-hybrid screen, nor in directed two-hybrid 

mating experiments. From the two-hybrid data, another situation is more likely, in 

which Prp22p sits in between Slu7p and Prpl6p, or alternatively, in which Slu7p and 

Prpl6p bind side by side to Prp22p. But again, one has to bear in mind, that the two-

hybrid data do not give temporal information on the observed interactions. It is likely, 

that the Prp 1 6p-Prp22p interaction happens immediately prior to the second step, 

because Prpl6p is not detected in the spliceosome at other times. As mentioned earlier, 

for Slu7p and Prp22p it can not be predicted, at what stage of the splicing reaction the 

two proteins might contact each other. 

Other prey-candidates found in the Slu7p- and Prpi8p two-hybrid screens 

Two other potentially interesting candidates were found in two independent 

fusions in the Slu7p screens: For both the Yor275p and Ssy5p not much information 

was available. Therefore, these candidates were studied in more detail as described in 

chapters IV. 1 and IV.2. 

In two-hybrid screen Prpl8M, apart from Slu7p no other candidates were found 

in more than one fusion. Only Ymr44p, was found to be interesting for further studies, 

since it had been found also in a previously performed Prpl8p screen (R. van Nues, 

personal communication). The investigation of this protein is described in chapter 

IV. 3. 

Comparison of two-hybrid screens S1u7-III and S1u7-IV 

As mentioned in the introduction of this chapter, the two Slu7p two-hybrid 

screens were performed with different yeast libraries, the FRYL and the EDYL, which 

were generated from the same DNA stock but in separate transformations. Although in 

both screens a sufficient amount of diploid yeast cells was screened to cover the 

library, very little overlap between the screens was observed. Only one candidate, 

Yor275p, was found in both screens. This need not necessarily be due to a different 

quality of the libraries, but could be a consequence of the behaviour of the Slu7p bait. 

Looking at the tables III. 1 and 111.2, it can be seen that in both screens, a large 

collection of candidates was found only once in the screens and most of them produced 
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only a weak response in the filterlift assay. Potentially interesting candidates, which 

are likely to be biologically significant interactors, were also not found very often in 

the screen. Prpl8p was only found as one prey-fusion three times, Prp22p only as two 

independent fusions and these fragments only once. The other Al prey, Ssy5p, was 

also only found twice. In most other two-hybrid screens, Al candidates are 

represented in more than two fusions and furthermore, the ratio between the total 

number of identified fusions within the Al category and fusions of the other categories 

is generally much higher (own observation). This suggests, that the Slu7p bait is not 

ideal for use in this system, since it does not seem to function as a good component of 

a reconstituted transcriptional activator, even in cases in which a strong interaction with 

the prey could be expected. This behaviour means that it will be difficult with this bait 

to distinguish between "good or real" two-hybrid interactions among a large 

background of obviously random, aspecific interactions. With the Slu7p bait it is 

therefore difficult to predict qualitative differences between the EDYL and the FRYL. 

Further screens with the same baits need to be done using both libraries to evaluate 

whether there are major differences with respect to the number of prey fusions present 

in these libraries. 
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Chapter IV 

Characterisation of prey proteins 
found in the Slu7p and Prpl8p 

two-nyvrta screens 



IN. 1 Characterisation of the Ssy5 protein 

The protein Ssy5 (encoded by the YJL156c ORF) was found as the only Al prey 

in the two-hybrid screen S1u7-IV. Two overlapping fragments were isolated that 

interact with the Slu7 protein (see figure 111.4, section 111.2.2). The protein has a 

predicted molecular weight of 76 Wa and does not share any significant homology 

with any proteins in the databases. The YJLJ56c gene was originally identified in a 

screen for mutants that showed sensitivity to a sulfonylurea herbicide (MM) on rich 

medium (Joergensen et at., 1998). Cells growing on medium containing Mlvi are 

dependent on uptake of the amino acids isoleucine and valine from the medium, since 

this herbicide is a potent inhibitor of the biosynthesis of branched-chain amino acids. 

Although the above finding suggested an involvement of the Ssy5 protein in amino 

acid uptake, a more detailed investigation of a possible function of the protein in pre-

mRNA splicing was undertaken in this work, in order to clarify the meaning of the 

observed interaction of the protein with the Slu7p bait. 

The Ssy5 protein was also found as an Al prey candidate in a two-hybrid screen 

with the splicing factor Isylp, which had been recently characterised in this laboratory 

as a non-essential, spliceosome-associated protein (I. Dix, personal communication 

and Dix et al., 1999). This observation made a further investigation of Ssy5p even 

more intriguing. 

IV. 1.1 Deletion of the SSY5 open reading frame 

In order to study the function of the Ssy5 protein a deletion mutant was 

generated. Using the oligonucleotides 156-1 and 156-2 the HIS3 marker gene was 

amplified by PCR from the vector Ylpi and the purified PCR product was transformed 

into the diploid yeast strain BMA38, which is deleted for the HIS3 locus. Due to the 

choice of the primers, the generated PCR product contains 5' and 3'-ends homologous 

to regions just upstream and downstream of the YJLJ56c ORF respectively, so that 

integration of the HIS3 gene at the YJL156c locus can occur by homologous 

recombination, thereby replacing one allele of the SSY5 gene on the chromosome. 
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Histidine prototrophic transforrnants were then tested for integration of the HIS3 gene 

at the desired locus by southern blot analysis, as shown in figure IV. 1. The diploid 

strain deleted for one of the SSY5 alleles is referred to as YMA156/ 1. 

I 	2892 bp YMA156/1 wt 
In 	 . 	kb 

Figure IV.1:  
Replacement of the SSY5 open reading frame with the HIS3 marker 
gene on the chromosome. A schematic representation of the SSY5 wild-type 
locus as well as of the locus after insertion of the HIS3 marker gene is given and 
HindIII restriction sites are indicated (H). The region complemantary to the probe 
used in the southern blot is also shown (P). Genomic DNA was isolated from two 
independent transformants of strain YMA156/1 as well as from the parental wild-type 
strain BMA38. The DNA was digested with HindIII and resolved in a 1% (w/v) 
agarose gel and blotted to Hybond-N nylon membrane (Amersham). The blot was 
probed with a radiolabelled DNA fragment and the result visualised by 
autoradiography. The black arrow indicates the position of the fragment from the 
wild-type locus, the white arrow the position of the fragment from the locus after 
replacement of the SSY5 gene by the HIS3 gene. 

Subsequently, strain YMA156/1 was sporulated and the formed tetrads were 

dissected onto YPDA plates (figure IV.2 A). In seven cases all four spores germinated, 

leading to two small and two larger colonies for each dissected tetrad. In the other three 

cases, only three spores germinated and again one or two colonies displayed a slow 

growth phenotype. By streaking out the resultant haploid colonies onto YMM -H solid 
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medium it could be shown, that the HIS3 marker gene cosegregates with the slow 

growth phenotype (data not shown), showing that the growth defect results from the 

deletion of the SSY5 ORF. When cell growth of the haploid strain (designated as 

YMA15612) deleted for the ssy5 locus was tested at a range of temperatures on solid 

rich medium, it turned out that the growth defect upon deletion of the SSY5 gene is 

exacerbated at higher temperatures, leading to a severe temperature sensitivity at 37°C 

(figure IV.2 B). These data demonstrate that the Ssy5 protein is dispensable for cell 

viability, but that the protein is required for normal cell growth on rich medium. 

 

 

1 10-110-210-3  1  10-110-210-3  1 10-110-210-3 1 10.110-210-3 

BMA3S 

YMA156/2 

16°C 	 23°C 	 30°C 	 37°C 

Figure IV.2: 
Analyses of effects of SSY5 deletion from the chromosome. 

Tetrad analysis of strain YMA156/1. Strain YMA156/1 was grown overnight at 
30°C in YPDA, the cells collected and transferred to SPM sporulation medium. After 
5 days of incubation at 23°C the formed tetrads were dissected onto YPD agar plates. 
The spores were incubated for four days at 23°C. 

Haploid cells deleted for the SSY5 locus (strain YMAI56/2) as well as cells from 
the parental wild-type strain BMA38 were suspended in dilutions in microtiter plates, 
spotted onto YPDA agar plates and incubated at a range of temperatures for 2 days. 
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IV. 1.2 Effect of SSY5 deletion on pre-mRNA splicing in vivo 

In order to investigate a putative involvement of Ssy5p in pre-mRNA splicing, 

cells of wt strain BMA38n and of strain YMA156/2 were grown in rich liquid medium 

at 23°C and were then transferred to prewarmed medium of either 23°C or 37°C. 

Samples of these cultures were taken after 2 and 5 hours of incubation and total RNA 

was isolated from these cells. Processing of pre-mRNA was then studied by Northern-

analysis, using a radiolabelled probe for exon 1 of the RP28 RNA (figure IV.3). 

Figure IV.3: 
Northern analysis of the splicing capability of strain YMA156/2. 
YMA156/2 cells, deleted of SSY5, as well as BMA38n wild-type cells were grown in 
YPDA medium at 230C, sedimented by centrifuging at room temperature for 5 
minutes and then transferred to pre-warmed YPDA medium at 23°C or 37°C. 10 ml 
samples of the cultures were taken after different incubation times and total RNA was 
extracted from the cells. 10 ig of RNA was resuspended in formamide loading 
buffer, resolved in a 1.2% (w/v) agarose gel and blotted to Hybond-N membrane 
(Amersham). The blot was then probed with a radiollabelled DNA fragment, 
complementary to exon 1 of the RP28 gene. The result was visualised by 
autoradiography. (YMA45/2 - RNA isolated from strain YMA45/2 grown under 
repressing conditions was used as control; this strain was known to be splicing 
deficient under the conditions used). The positions of the RP28 pre-mRNA and 
mRNA are indicated. 
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No obvious splicing defect due to the deletion of the SSY5 ORF can be detected 

in this assay. Neither at 23°C, nor at temperatures at which the growth defect is 

pronounced, was an accumulation of pre-mRNA visible in strain YMA156/2. Strain 

YIvIA45/2 (lane 6) serves as a positive control. This strain has a splicing defect and 

thus accumulates unprocessed precursor RNA (upper band). Furthermore, the 

temperature shift does not lead to a significant decrease in the amount of mature 

message produced, supporting the idea that the exacerbated growth defect of strain 

YMA156/2 at higher temperatures is not a consequence of a pronounced defect in the 

splicing machinery. 

In figure IV.3 generally lower levels of mRNA are detected in the lanes from 

strain YMA156/2 compared to the wt strain BMA38. However, it has to be pointed 

out, that these differences are not likely to be due to defects in the splicing machinery. 

By looking at the ethidium bromide stained total RNA on the northern membrane it 

becomes clear that less RNA is present in the lanes 6-11 compared to lanes 1-5 (data 

not shown). 

IV. 1.3 Effect of SSY5 deletion on pre-mRNA splicing in vitro 

It was then tested whether the Ssy5 protein is required for splicing of actin precursor-

mRNA in vitro. For this purpose, whole cell extracts (splicing extracts) were prepared 

from cells of strains YMA156/2 (Assy5) and BMA38n (wt) grown at 23°C for 12 

hours. Splicing was performed at 23°C for 30 min with these extracts after addition of 

splicing buffer, ATP and labelled actin pre-mRNA. In a parallel sample, extract from 

strain YMA156/2 was preincubated at 37°C for 25 mm, before splicing was performed 

at 23°C. The result of this experiment is depicted in figure IV.4. 

It is clearly demonstrated that the Ssy5p is dispensable for splicing of actin 

precursor-mRNA in vitro, because the cell extract from the SSY5 deleted strain 

YMA156/2 splices the substrate pre-mRNA as efficiently as the wt extract. In the wt 

strain as well as in YMA156/2, both intermediate lariat-intron exon 2 and the excised 

intron are equally efficient produced. Preheating the YMA 156/2-extract to 37°C for 25 

min before the splicing reaction is performed does not have a negative effect on the 
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splicing capability of the extract. This again indicates, as for the in vivo result, that the 

exacerbation of the growth defect of the YMA156/2 strain at higher temperatures is not 

a consequence of a defect within the splicing machinery that becomes more 

pronounced at elevated temperatures. 

Wt 	YMA156/2 
I 	II 

U. 	 + 
- lariat-intron exon 2 

- lariat-intron 

- pre-mRNA 

Figure IV.4: 
In vitro splicing analysis of strain YMA156/2. Whole cell extracts (splicing 
extracts) were prepared from cultures of strain YMA156/2, deleted for SSY5, as well 
as from BMA38n grown at 23°C for 12 hours to an OD600   of 0.5. Splicing reactions 
were then performed at 23°C for 25 minutes using 5 jil aliquots of the extracts and 
adding radiolabelled actin pre-mRNA and splicing buffer containing ATP. 
Alternatively, YMA156/2 extract was heat-treated (h.i. +) by pre-incubation at 37°C 
for 25 minutes before the splicing reaction was set up. The samples were then 
deproteinised, the RNA precipitated and loaded onto a 6% (w/v) SDS polyacrylamide 
gel. The result was visualised by autoradiography. The positions of the pre-mRNA, 
the lariat-intron and the lariat-intron exon 2 intermediate are indicated. 
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IV. 1.4 Discussion 

The experiments described above strongly suggest that the Ssy5 protein, which 

was found as an Al prey in a Slu7p two-hybrid screen, is not required for pre-mRNA 

splicing. Deletion of the SSY5 ORF from the genome leads to a slow growth 

phenotype that becomes more pronounced at higher temperatures and leads to a severe 

temperature sensitivity at 37°C. For many splicing factors it has been shown that 

mutations in (or deletions of) genes encoding these proteins lead to temperature-

sensitive growth phenotypes of the cells. In northern blot analyses of RNAs isolated 

from such mutant cells an accumulation of pre-mRNA is normally evident already two 

hours after shift to the non-permissive temperature (e.g. Maddock et al., 1996, 

Vijayraghavan et al., 1989). For the SSY5 deleted strain YMA156/2, no pre-mRNA 

was detected after 5 hours incubation at 37°C, suggesting that the pre-mRNA was 

efficiently spliced even under non-permissive conditions. It has to be noted, that the 

YMA156/2 strain does not grow at all in rich liquid medium at 37°C (data not shown). 

From the in vivo data it could not be entirely ruled out, that Ssy5p might be a splicing 

factor required only for the second transesterification reaction to occur. If this was the 

case, one might not see an accumulation of pre-mRNA, because it would be efficiently 

processed into the intermediates, which are not detected in the northern analysis, since 

a probe for exon 1 was used. Due to the obvious loading differences of the samples a 

definite statement about the effect on the mRNA levels was also difficult to make. 

However, the result of the in vitro splicing assay strongly argues against this 

interpretation. Splicing intermediates do not accumulate in the absence of S sy5p, and 

the products of the splicing reaction are produced to wt levels. 

During the course of the experiments described above, some more information 

on the function of the SsyS protein became available from other work: after the initial 

identification of the ssy5 gene in a screen for mutants sensitive to the sulfonylurea-

herbicide MM, an inhibitor of the biosynthesis of branched-chain amino acids, the 

gene was cloned via complementation from a low copy number library (Joergensen et 

al., 1998). In more directed experiments it was shown that the ssy5 mutant strain was 
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deficient in the uptake of branched-chain amino acids such as isoleucine and valine, but 

that in addition the uptake of several other neutral amino acids, especially leucine and 

phenylalanine, was effected. If toxic analogs of these amino acids were added to the 

growth medium, the mutant strain showed resistance to these molecules, which gives 

further evidence, that amino acid uptake is reduced. 

The structural gene for the branched-chain amino acids permease had been 

identified by Grauslund et at. (1995) as BAP2. Truncation of Bap2p at its carboxy-

terminus leads to an increased uptake of branched-chain amino acids. Joergensen and 

collaborators found, that the ssy5 mutation is epistatic over the dominant Bap2p 

truncation, and they propose that Ssy5p might be involved in regulating the expression 

of BAP2. 

If the Ssy5 protein is not involved in the splicing pathway, the question remains 

why it was found as interactor with two known splicing factors in the two-hybrid 

screens? The Ssy5 prey fusion proteins identified with the Slu7p- and the isy I  bait do 

overlap to a large extend and they share a common region consisting of the amino acid 

residues 129-238. The region contains 33% charged residues, which might confer 

some nucleic acid binding capacity. Maybe this gives rise to an aspecific interaction 

with an RNA molecule that in turn interacts with Slu7p and/or Isy Ip. If one thinks of a 

role of the Ssy5 protein as a regulator of BAP2 expression, a nucleic acid binding 

activity could very well be imagined. 
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IV. 1 Characterisation of the Ssy5 protein 

The protein Ssy5 (encoded by the YJL156c ORF) was found as the only Al prey 

in the two-hybrid screen S1u7-IV. Two overlapping fragments were isolated that 

interact with the S1u7 protein (see figure 111.4, section 111.2.2). The protein has a 

predicted molecular weight of 76 kDa and does not share any significant homology 

with any proteins in the databases. The YJLI56c gene was originally identified in a 

screen for mutants that showed sensitivity to a sulfonylurea herbicide (MM) on rich 

medium (Joergensen et al., 1998). Cells growing on medium containing MM are 

dependent on uptake of the amino acids isoleucine and valine from the medium, since 

this herbicide is a potent inhibitor of the biosynthesis of branched-chain amino acids. 

Although the above finding suggested an involvement of the Ssy5 protein in amino 

acid uptake, a more detailed investigation of a possible function of the protein in pre-

mRNA splicing was undertaken in this work, in order to clarify the meaning of the 

observed interaction of the protein with the Slu7p bait. 

The Ssy5 protein was also found as an Al prey candidate in a two-hybrid screen 

with the splicing factor Isy Ip, which had been recently characterised in this laboratory 

as a non-essential, spliceosome-associated protein (I. Dix, personal communication 

and Dix et al., 1999). This observation made a further investigation of Ssy5p even 

more intriguing. 

IV. 1.1 Deletion of the SSY5 open reading frame 

In order to study the function of the Ssy5 protein a deletion mutant was 

generated. Using the oligonucleotides 156-1 and 156-2 the HIS3 marker gene was 

amplified by PCR from the vector YTp1 and the purified PCR product was transformed 

into the diploid yeast strain BMA38, which is deleted for the HIS3 locus. Due to the 

choice of the primers, the generated PCR product contains 5' and 3'-ends homologous 

to regions just upstream and downstream of the YJL156c ORF respectively, so that 

integration of the HIS3 gene at the YJL156c locus can occur by homologous 

recombination, thereby replacing one allele of the SSY5 gene on the chromosome. 
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Histidine prototrophic transformants were then tested for integration of the HIS3 gene 

at the desired locus by southern blot analysis, as shown in figure IV. 1. The diploid 

strain deleted for one of the SSY5 alleles is referred to as YMA156/1. 

I 	2892 bp 
	 YMA156/1 wt 	

kb 

Figure IV.!: 
Replacement of the SSY5 open reading frame with the HIS3 marker 
gene on the chromosome. A schematic representation of the SSY5 wild-type 
locus as well as of the locus after insertion of the HIS3 marker gene is given and 
HindIII restriction sites are indicated (H). The region complemantary to the probe 
used in the southern blot is also shown (P). Genomic DNA was isolated from two 
independent transformants of strain YMA 156/I as well as from the parental wild-type 
strain BMA38. The DNA was digested with HindIII and resolved in a 1% (w/v) 
agarose gel and blotted to Hybond-N nylon membrane (Amersham). The blot was 
probed with a radiolabelled DNA fragment and the result visualised by 
autoradiography. The black arrow indicates the position of the fragment from the 
wild-type locus, the white arrow the position of the fragment from the locus after 
replacement of the SSY5 gene by the HIS3 gene. 

Subsequently, strain YMA156/1 was sporulated and the formed tetrads were 

dissected onto YPDA plates (figure IV.2 A). In seven cases all four spores germinated, 

leading to two small and two larger colonies for each dissected tetrad. In the other three 

cases, only three spores germinated and again one or two colonies displayed a slow 

growth phenotype. By streaking out the resultant haploid colonies onto YMM -H solid 
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medium it could be shown, that the HIS3 marker gene cosegregates with the slow 

growth phenotype (data not shown), showing that the growth defect results from the 

deletion of the SSY5 ORF. When cell growth of the haploid strain (designated as 

YMA156/2) deleted for the ssy5 locus was tested at a range of temperatures on solid 

rich medium, it turned out that the growth defect upon deletion of the SSY5 gene is 

exacerbated at higher temperatures, leading to a severe temperature sensitivity at 370C 

(figure IV.2 B). These data demonstrate that the Ssy5 protein is dispensable for cell 

viability, but that the protein is required for normal cell growth on rich medium. 
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Figure IV.2: 
Analyses of effects of SSY5 deletion from the chromosome. 

Tetrad analysis of strain YMA156/1. Strain YMAI56/1 was grown overnight at 
30°C in YPDA, the cells collected and transferred to SPM sporulation medium. After 
5 days of incubation at 23°C the formed tetrads were dissected onto YPD agar plates. 
The spores were incubated for four days at 23°C. 

Haploid cells deleted for the SSY5 locus (strain YMA156/2) as well as cells from 
the parental wild-type strain BMA38 were suspended in dilutions in microtiter plates, 
spotted onto YPDA agar plates and incubated at a range of temperatures for 2 days. 
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IV. 1.2 Effect of SSY5 deletion on pre-mRNA splicing in vivo 

In order to investigate a putative involvement of Ssy5p in pre-mRNA splicing, 

cells of wt strain BMA38n and of strain YMA156/2 were grown in rich liquid medium 

at 23°C and were then transferred to prewarmed medium of either 23°C or 37°C. 

Samples of these cultures were taken after 2 and 5 hours of incubation and total RNA 

was isolated from these cells. Processing of pre-mRNA was then studied by Northern-

analysis, using a radiolabelled probe for exon 1 of the RP28 RNA (figure IV.3). 

Figure IV.3: 
Northern analysis of the splicing capability of strain YMA156/2. 
YMA156/2 cells, deleted of SSY5, as well as BMA38n wild-type cells were grown in 
YPDA medium at 23°C, sedimented by centrifuging at room temperature for 5 
minutes and then transferred to pre-warmed YPDA medium at 23°C or 37°C. 10 ml 
samples of the cultures were taken after different incubation times and total RNA was 
extracted from the cells. 10 jig of RNA was resuspended in formamide loading 
buffer, resolved in a 1.2% (w/v) agarose gel and blotted to Hybond-N membrane 
(Amersham). The blot was then probed with a radiollabelled DNA fragment, 
complementary to exon 1 of the RP28 gene. The result was visualised by 
autoradiography. (YMA4512 - RNA isolated from strain YMA4512 grown under 
repressing conditions was used as control; this strain was known to be splicing 
deficient under the conditions used). The positions of the RP28 pre-mRNA and 
niRNA are indicated. 

124 



No obvious splicing defect due to the deletion of the SSY5 ORF can be detected 

in this assay. Neither at 23°C, nor at temperatures at which the growth defect is 

pronounced, was an accumulation of pre-mRNA visible in strain YMA156/2. Strain 

Y1v1A45/2 (lane 6) serves as a positive control. This strain has a splicing defect and 

thus accumulates unprocessed precursor RNA (upper band). Furthermore, the 

temperature shift does not lead to a significant decrease in the amount of mature 

message produced, supporting the idea that the exacerbated growth defect of strain 

YMA156/2 at higher temperatures is not a consequence of a pronounced defect in the 

splicing machinery. 

In figure IV.3 generally lower levels of mRNA are detected in the lanes from 

strain YMA156/2 compared to the wt strain BMA38. However, it has to be pointed 

out, that these differences are not likely to be due to defects in the splicing machinery. 

By looking at the ethidium bromide stained total RNA on the northern membrane it 

becomes clear that less RNA is present in the lanes 6-11 compared to lanes 1-5 (data 

not shown). 

IV.! .3 Effect of SSY5 deletion on pre-mRNA splicing in vitro 

It was then tested whether the Ssy5 protein is required for splicing of actin precursor-

mRNA in vitro. For this purpose, whole cell extracts (splicing extracts) were prepared 

from cells of strains YMA156/2 (zssy5) and BMA38n (wt) grown at 23°C for 12 

hours. Splicing was performed at 23°C for 30 min with these extracts after addition of 

splicing buffer, ATP and labelled actin pre-mRNA. In a parallel sample, extract from 

strain YMA156/2 was preincubated at 37°C for 25 mm, before splicing was performed 

at 23°C. The result of this experiment is depicted in figure IV.4. 

It is clearly demonstrated that the Ssy5p is dispensable for splicing of actin 

precursor-mIRNA in vitro, because the cell extract from the SSY5 deleted strain 

YMA156/2 splices the substrate pre-mRNA as efficiently as the wt extract. In the wt 

strain as well as in YMA156/2, both intermediate lariat-intron exon 2 and the excised 

intron are equally efficient produced. Preheating the YMA156/2-extract to 37°C for 25 

min before the splicing reaction is performed does not have a negative effect on the 
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splicing capability of the extract. This again indicates, as for the in vivo result, that the 

exacerbation of the growth defect of the YMA 156/2 strain at higher temperatures is not 

a consequence of a defect within the splicing machinery that becomes more 

pronounced at elevated temperatures. 

Wt 	YMA156/2 
I 	II 

U. 	 + 

- lariat-intron exon 2 

- lariat-intron 

- pre-mRNA 

Figure IV.4: 
In vitro splicing analysis of strain YMA156/2. Whole cell extracts (splicing 
extracts) were prepared from cultures of strain YMA156/2, deleted for SSY5, as well 
as from BMA38n grown at 23°C for 12 hours to an OD600   of 0.5. Splicing reactions 
were then performed at 23°C for 25 minutes using 5 p1 aliquots of the extracts and 
adding radiolabelled actin pre-mRNA and splicing buffer containing ATP. 
Alternatively, YMA156/2 extract was heat-treated (h.i. +) by pre-incubation at 37°C 
for 25 minutes before the splicing reaction was set up. The samples were then 
deproteinised, the RNA precipitated and loaded onto a 6% (w/v) SDS polyacrylamide 
gel. The result was visualised by autoradiography. The positions of the pre-mRNA, 
the lariat-intron and the lariat-intron exon 2 intermediate are indicated. 
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IV. 1.4 Discussion 

The experiments described above strongly suggest that the Ssy5 protein, which 

was found as an Al prey in a Slu7p two-hybrid screen, is not required for pre-rnRNA 

splicing. Deletion of the SSY5 ORF from the genome leads to a slow growth 

phenotype that becomes more pronounced at higher temperatures and leads to a severe 

temperature sensitivity at 37°C. For many splicing factors it has been shown that 

mutations in (or deletions of) genes encoding these proteins lead to temperature-

sensitive growth phenotypes of the cells. In northern blot analyses of RNAs isolated 

from such mutant cells an accumulation of pre-rnRNA is normally evident already two 

hours after shift to the non-permissive temperature (e.g. Maddock et al., 1996, 

Vijayraghavan et al., 1989). For the SSY5 deleted strain YMA156/2, no pre-mRNA 

was detected after 5 hours incubation at 37°C, suggesting that the pre-mRNA was 

efficiently spliced even under non-permissive conditions. It has to be noted, that the 

YMAI56/2 strain does not grow at all in rich liquid medium at 37°C (data not shown). 

From the in vivo data it could not be entirely ruled out, that Ssy5p might be a splicing 

factor required only for the second transesterification reaction to occur. If this was the 

case, one might not see an accumulation of pre-mRNA, because it would be efficiently 

processed into the intermediates, which are not detected in the northern analysis, since 

a probe for exon 1 was used. Due to the obvious loading differences of the samples a 

definite statement about the effect on the mRNA levels was also difficult to make. 

However, the result of the in vitro splicing assay strongly argues against this 

interpretation. Splicing intermediates do not accumulate in the absence of Ssy5p, and 

the products of the splicing reaction are produced to wt levels. 

During the course of the experiments described above, some more information 

on the function of the Ssy5 protein became available from other work: after the initial 

identification of the ssy5 gene in a screen for mutants sensitive to the sulfonylurea-

herbicide MM, an inhibitor of the biosynthesis of branched-chain amino acids, the 

gene was cloned via complementation from a low copy number library (Joergensen et 

al., 1998). In more directed experiments it was shown that the ssy5 mutant strain was 
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deficient in the uptake of branched-chain amino acids such as isoleucine and valine, but 

that in addition the uptake of several other neutral amino acids, especially leucine and 

phenylalanine, was effected. If toxic analogs of these amino acids were added to the 

growth medium, the mutant strain showed resistance to these molecules, which gives 

further evidence, that amino acid uptake is reduced. 

The structural gene for the branched-chain amino acids permease had been 

identified by Grauslund et at. (1995) as BAP2. Truncation of Bap2p at its carboxy-

terminus leads to an increased uptake of branched-chain amino acids. Joergensen and 

collaborators found, that the ssy5 mutation is epistatic over the dominant Bap2p 

truncation, and they propose that Ssy5p might be involved in regulating the expression 

of BAP2. 

If the SsyS protein is not involved in the splicing pathway, the question remains 

why it was found as interactor with two known splicing factors in the two-hybrid 

screens? The SsyS prey fusion proteins identified with the Slu7p- and the Isyip bait do 

overlap to a large extend and they share a common region consisting of the amino acid 

residues 129-238. The region contains 33% charged residues, which might confer 

some nucleic acid binding capacity. Maybe this gives rise to an aspecific interaction 

with an RNA molecule that in turn interacts with Slu7p and/or Isy Ip. If one thinks of a 

role of the Ssy5 protein as a regulator of BAP2 expression, a nucleic acid binding 

activity could very well be imagined. 
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JV.2 Characterisation of the Yor275 protein 

The Yor275 protein was found as an A3 interactor in each of two two-hybrid 

screens with the S1u7 protein as bait. Two distinct fusions were identified in these 

screens (see also figure 111.4, section 111.2.2). In addition, the protein was reported to 

represent an Al prey candidate in a two-hybrid screen performed with the Snplp bait, 

the yeast homologue of the human U1 snRNP-associated 70K protein (Fromont-

Racine et al., 1997 and Smith and Barrell, 1991). 

No function had hitherto been assigned to the Yor275 protein, but it shows 

homologies to other proteins in yeast and other organisms, some of which have been 

functionally linked to signal transduction pathways. The conservation of the protein in 

different organisms will become important later and will be discussed in the final part 

of this chapter. 

The two-hybrid interaction with two known splicing factors made this protein an 

interesting candidate for further investigation. In order to find out more about a 

putative role in the pre-mRNA splicing pathway, it was decided to use the Yor275p as 

a bait in a "second round" two-hybrid screen. Confirming the interactions with the 

Slu7p and/or the Snp I  in the reciprocal orientation or finding other interactions with 

components of the splicing machinery would give some evidence for an involvement 

of the Yor275 protein in the splicing process. 

IV.2. 1 Construction of the Yor275p bait 

The YOR275c ORF was cloned into the pASAABg vector (see table II. 1 .7), 

which should allow expression of a GBD::Yor275p fusion protein. The bait was 

constructed via an in vivo gap-repair cloning strategy, which has the advantage that 

only part of the reading frame has to be generated by PCR, therefore PCR-generated 

mistakes in the ORF sequence can be minimised. An overview of the cloning 

procedure is given in figure IV.5. 
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Figure IV.5: 
In vivo gap-repair cloning of bait plasmid pMA275. 1) Oligonucleotide 
primers 275A and 275B were used to amplify and isolate an approximately 400 bp 
long fragment (275N) from genomic DNA encoding the N-terminus of Yor275p. 2) 
The fragment was then cut Eci13611 (E) and Sail (S) and ligated into plasmid 
pAS&Bg, previously linearised by SinaI (Sm), Sail digestion, to produce plasmid 
pMA275N. 3) A DNA fragment containing the 300 3'-terminal base pairs (C) of ORF 
YOR275c and about 500 bp downstream of the ORF was isolated from plasmid p7-
IV-75 by Sail and NsiI (N) restriction. 4) The fragment was then ligated into 
pMA275N, previously cut with Sail and PstI (P) producing plasmid pMA275NC. 5) 
pMA275NC was linearised by Sail digestion, dephosphorylated and transformed into 
yeast strain BMA64, where it is repaired via homologous recombination to produce 
bait vector pMA275 6) pMA275 is isolated from yeast (plasmid rescue procedure) and 
its identity checked by restriction digests and DNA sequencing. 
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After the gap-repair in yeast strain BMA64, the plasmids were reisolated and 

transformed into E. coli.. Plasmid "Mini" DNA-preparations were made and the 

plasmids checked for a repair event by restriction digest. One clone out of 64 could be 

identified, in which, as determined from the restriction digest pattern, the YOR275c 

ORE had been successfully repaired. The plasmid was sequenced using the 

oligonucleotides N3027 (pAS2AA forward) and P5148 (pAS2AA reverse), in order to 

verify the repair event. This confirmed that the gap in the YOR275c ORF had been 

repaired and no PCR-generated errors had been introduced into the n-terminus. 

Subsequently, the plasmid, designated as pMA275, was transformed into yeast strain 

CG 1945, in order to perform a two-hybrid screen using GBD::Yor275p as a bait. 

IV.2.2 Small scale Yor275p two-hybrid screen 

In order to check the bait construct for potential autoactivation before a full two-

hybrid screen was performed, a small scale two-hybrid screen was set up using the 

EDYL. A mating efficiency of 8 % allowed the screening of 90000 diploid cells for the 

interaction of the GBD::Yor275p bait with prey fusions. After 3 days only a 

background of very small colonies was visible on the YMM -LWH plates. After 4 days 

28 colonies were grown above background, picked and streaked onto fresh YMM 

-LWH medium. Two days later a 3-gal overlay assay was performed on these cells, 

but none of them developed a blue colour even after 24 h of incubation. Thus, the bait 

fusion did not autoactivate transcription of the reporter genes and it seemed reasonable 

to use the bait in a full scale screen. 

IV.2.3 The Yor275p two-hybrid screen 

A full scale two-hybrid screen with the GBD::Yor275p-bait was performed using 1 

vial of the FRYL. A total of 72 million diploid clones were screened. The mating 

efficiency was calculated as 33%. After 3 days the plates were overlaid with an X-gal 

agar mix and 37 blue colonies were picked after 3 h (clones 1-37), another 11 after 7 h 
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(clones 38-49) and an additional 8 light blue colonies after 19 h (clones 50-57). The 

positives were restreaked onto YMIM -LWH plates and the interaction was assayed 

again, this time in a 3-gal filterlift assay. The relative strength of the interactions 

(intensity of the blue colour in the filterlift assay) was recorded and is listed in table 

IV. 1, which summarises the results of this two-hybrid screen. Clones that do not 

appear in the table did not regrow after the overlay assay. 

The GBD::Yor275p bait behaved very specificly in the two-hybrid screen. Only 

four prey proteins were identified that fall into the A category. The candidates Ybr2 l6p 

and Ydr332p are hypothetical proteins, which were each found only once and must be 

classified as A3/A2 and A4 preys, respectively. These proteins do not share significant 

homologies to other proteins in the databases. 

The other two prey proteins both fall into the Al category. Mrpl 19p, encoded by 

the ORF YNLJ85c was identified 20 times in 5 independent fusions. Rim lp, encoded 

by ORF YHLO27w, was found 14 times in 6 independent fusions. Figure IV.6 shows 

the fragments of Mrpll9p and Rim lp which interacted with Yor275p in the two-hybrid 

screen. 

The carboxy-terminal 29 amino acid residues of the Mrpl 19 protein are sufficient 

to support the two-hybrid interaction with the Yor275 protein. Mrpll9p (also 

designated YmL19) is a 16 kDa protein that is part of the large subunit of 

mitochondrial ribosomes and shares extensive homologies to prokaryotic ribosomal 

proteins of the Lii subfamily (see Graack and Wittmann-Liebold, 1998 and references 

therein). 

For the Rimi protein, the c-terminal third of the protein (amino acids 404-625) is 

common to all prey fragments identified, and thus, is likely to represent the region of 

interaction with the Yor275 protein. The Rimi protein has been shown to be a 

transcriptional regulator of the IME] gene, which encodes a protein that activates the 

expression of a number of early meiotic genes (Su and Mitchell, 1993). The activity of 

Rimip requires proteolytic cleavage at the C-terminus and this cleavage is stimulated 

under alkaline growth conditions. Three proteins, Rim8p, Rim9p and Rimi3p are 

thought to modulate Rimip function, probably via a signal transduction cascade (Li 

and Mitchell, 1997). 
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Table IV.!: 
Results of the Yor275p two-hybrid screen. A Ga14 DNA-binding domain-Yor275 fusion protein (GBD::Yor275p) was used as bait 
to screen the FRYL for interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the 
Saccharomyces Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency with which a fragment was 
identified in the screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from 
AUG - number of nucleotide at which fusion starts (A from the initiation codon AUG is 1); Insert size - approximate insert length 
(nucleotides) determined by restriction digest of the prey plasmid with BamHI and subsequent agarose electrophoresis; preys were classified 
in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et at., 1997 and described in section 111.1. 



Clone No. Gene ORF Chr Strand nt. from AUG ORF size (bp) Insert size (bp) Category Protein info 
45 1  YBR216c 2 c 82 2024 1300 A3/A2  
12 1  YDR332w 4 w 838 _2069 400 A4  
57 1 RIM1 YHLO27w 8 w 1015 _1877 1200 Al Meiotic regulator 
17 5 RIM1 YHLO27w 8 w 1039 _1877 800 Al Meiotic regulator 
55 1 RIM1 YHLO27w 8 w 1069 _1877 800 Al Meiotic regulator 
3 4 RIM1 YHL027w 8 w 1159 1877 700 Al Meiotic regulator 
6 2 RIM1 YHL027w 8 w 1192 _1877 700 Al Meiotic regulator 
20 1 P/Mi YHL027w - 8 w 1210 1877 1100 Al Meiotic regulator 
47 1 MRPL19 YNL185c _lj C 112 476 500 Al Mitoch. ribosomal protein 
10 8 MRPL19 YNL185c 14 C 238 476 500 Al Mitoch. ribosomal protein 
7 4 MRPL19 YNL185c 14 C 304 476 400 Al Mitoch. ribosomal protein 
19 3 MRPL19 YNL185c _lj C 307 476 800 Al Mitoch. ribosomal protein 
11 4 MRPL19 YNL185c _lj c 324 476 500 Al Mitoch. ribosomal protein 

2 1 TY2-1  B  
4 _1_ TY2-1  B  
29 _1_ TY2-1  B  
31 _1_ TY2-1  B  
22 _1_ TYI-2  B  
27 _1_ TY1-2  B  
49 _1  en YPR204  B Subtelomeric encoded proteins, ATP/GTP-binding ? 



Figure IV.6: 
Al category preys identified in the Yor275p two-hybrid screen. 
The common domain of the prey fragments is indicated as a shaded box in the full 
length protein. Numbers in brackets describe the amino acid boundaries of the 
fragment. No. - frequency with which a prey fragment was identified in the screen. 
A) Mrpll9p prey fragments. B) Rim ip prey fragments..  
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Database homology searches give some evidence that the observed Yor275p-

Rimip two-hybrid interaction is indeed of functional relevance: 

The Rimi protein shares 22% amino acid identity over the whole protein sequence 

with the PacC protein of Aspergillus nidulans (A. nidulans). In particular, a region 

containing three C21-12 Zn-finger motifs is highly conserved between the two proteins 

(with 64% identity and 86% similarity among 86 amino acids). Figure IV.7 shows a 

sequence alignment of Rim lp and the PacC protein. 

The two proteins also seem to be functionally related: at alkaline ambient pH, 

PacC activates transcription of alkaline-expressed genes (including itself) and represses 

transcription of acidic-expressed genes (Tilburn et al., 1995). Furthermore, as for the 

Rim ip, the activation of the PacC protein in response to an alkaline pH requires 

proteolysis at the c-terminus (Orejas et al., 1995). In addition, proteins have been 

identified (PaIA, B, C, F, H and I) that might act as upstream regulators of PacC in a 

signal transduction cascade as do Rim8, 9 and 13p for Rimip (Shah et al., 1991; 

Negrete-Urtasun et al., 1997 and Arst et al., 1994). The Rim9p is homologous to the 

Pall protein and both proteins share four hydrophobic, putative membrane spanning 

domains. Therefore, these proteins might represent the most upstream elements of the 

signal transduction cascade, that sense the pH outside the cell (Denison et al., 1998). 

Recently, it was reported that the Riml3 protein actually is a calpain-like cysteine 

protease and it was renamed Cpllp (Futai et al., 1999). The authors show that 

disruption of the CPL1 gene leads to Rimip degradation and suggest that it might 

function in stabilising Rimlp. Cpllp is homologous to the PaIB protein of A. 

nidulans. 
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Figure IV.7: 
Sequence alignment of Rimip with the Aspergillus nidulans PacC protein. Sequences were aligned using the PILEUP 
program of the GCG9 suite of sequence analysis programs, with identities and similarities highlighted using BOXSHADE 3.21 (section 
11.4). Black boxes highlight identical residues, and grey boxes indicate the conservation of the nature of the amino acid at that site. Accepted 
conservative groupings were M=I=L=V, K=R=H, F=Y=W, S=T, E=D, AG and Q=N. 
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Negrete-Urtasun et al. (1997) noted a homology of the PaIA protein with the 

Yor275 protein of S. cerevisiae. A GeneStream alignment shows a 25% amino acid 

identity of the proteins over the whole sequence. In particular the n-terminal halves are 

very well conserved (37% identity and 64% similarity among 325 amino acids). 

Figure IV.8 shows a sequence alignment of the Yor275p and the PaIA protein. 

The finding that Yor275p interacts with the Rim  protein in the two-hybrid screen, is 

the first evidence that it could indeed be functionally related to the PaIA protein and that 

the Yor275p-Rimlp interaction in S. cerevisiae resembles the PalA-PacC interaction in 

A. nidulans. Furthermore, it supports the hypothesis that the two conserved signal 

transduction pathways might have evolved from a common ancestor. 
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Figure IV.8: 
Sequence alignment of Yor275p with the Aspergillus nidulans PaIA protein. Sequences were aligned using the PILEUP 
program of the GCG9 suite of sequence analysis programs, with identities and similarities highlighted using BOXSHADE 3.21 (section 
11.4). Black boxes highlight identical residues, and grey boxes indicate the conservation of the nature of the amino acid at that site. Accepted 
conservative groupings were M=I=L=V, K=R=H, F=Y=W, S=T, E=D, AG and Q=N. 	 - - -- 
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IV.2.4 Discussion 

The Yor275p was found to interact in a two-hybrid screen with the Slu7p bait. In 

addition it was identified with another well characterised splicing factor, Snplp, in a 

two-hybrid screen performed in Pierre Legrain's laboratory (Fromont-Racine et at., 

1997). On one hand it seems promising, if a protein is found in multiple two-hybrid 

screens with known splicing factors, this might suggest a contact with the spliceosome 

and an involvement in the splicing pathway. On the other hand, if the baits that were 

used in these screens, are known to act at different stages of the splicing reaction and 

no direct physical link has been established between these stages, it could be a concern 

that the observed two-hybrid interactions are based on non-specific contacts without 

functional relevance. In case of the Slu7p-Yor275p and the Snpl-Yor275p 

interactions, we have such a situation: the Snplp, the yeast homologue of the human 

U1-70K protein, is tightly associated with the U  snRNP but not with other snRNPs 

and is required for commitment complex formation (Smith and Barrell, 1991; 

Neubauer et at., 1997). The Slu7p, on the other hand, is known to have a function 

during the second step of the splicing process (e.g. Frank and Guthrie, 1992; Umen 

and Guthrie, 1995a) and no data are available to date that suggest a function earlier on. 

In fact, immunoprecipitation experiments with anti-Slu7p antibodies strongly suggest 

that the protein joins the spliceosome after the action of Prpl 6p, i.e. just before the 

second transesterification reaction (Brys and Schwer, 1996). Thus it can be expected, 

that Snplp has left the spliceosome together with the Ui snRNP, before the Slu7p 

associates with it. A complex between the three proteins Snplp-Yor275p-Slu7p is 

therefore unlikely to be found in the spliceosome. However, it could be that Yor275p 

interacts at different times with Slu7p and Snplp. 

The results of the two-hybrid screen argue against such an interpretation, in 

fact they suggest that Yor275p is not involved in pre-mRNA splicing at all. Neither 

interaction with Slu7p nor Snplp was found in the reciprocal orientation, nor any other 

interactions with known splicing proteins. The two-hybrid screen with the Yor275p 

bait gives the first experimental evidence for an involvement of the protein in a signal 

transduction pathway that is dependent upon ambient pH and that regulates sporulation 

in budding yeast. Two findings support this assumption: first, Yor275p interacts 
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significantly with Rimip, a transcriptional activator of the meiotic regulatory gene 

IME], which is the target gene at the end of the signal transduction cascade. Second, 

this pathway seems to be conserved and can be found in A. nidulans, where it serves 

to regulate the expression of genes that allow the fungus to respond to different 

ambient pH conditions. The Rim ip, Rim9p, Cpl I  and the Yor275p of S. cerevisiae 

and the PacC, Pall, PaIB and the PaIA proteins of A.nidulans, respectively are 

homologous and could well perform similar roles in these pathways. Figure IV.9 gives 

an overview of the two conserved pathways. 

The strong two-hybrid interaction between the Yor275p and the Rim ip supports 

the idea, although it does not prove it, that these proteins directly contact each other. 

The interacting region, common to all prey fragments found, comprises the amino acid 

residues 404-625. Thus, Yor275p might bind to the c-terminal fragment of Rimlp 

(amino acids 531-625) that is cleaved off for the activation of the protein. Although 

there is no reason to believe from the primary structure of Yor275p that it itself is the 

protease that activates Rimip, it could be well imagined that the protein is directly 

involved in the proteolytic step. 

Given the evidence presented above for the function of the Yor275p in the 

regulation of meiosis and sporulation, the second Al interaction found in the two-

hybrid screen, namely the interaction with the mitochondrial ribosomal protein 

Mrpll9p, is likely to be non-physiological. Why Yor275p interacts so strongly with a 

small c-terminal region of the Mrpl19 protein cannot be easily predicted, since this 

region does not contain any recognisable motifs or domains. 
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Figure IV.9: 
Putative order of events in two related signal-transduction pathways in 
S. cerevisiae and Aspergillus nidulans under alkaline conditions. 
Proteins with significant sequence similarity are boxed in the same shape; + 
transcriptional activation; - transcriptional repression; PC - proteolytic cleavage (? the 
responsible protease has not yet been identified); * - active protein; dashed arrows 
indicate other signal transduction cascades which are believed to influence IME] 
transcription; (see text for discussion). 
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IV.3 Characterisation of the Ymr44 protein 

The 55 kDa Ymr44 protein was identified in a two-hybrid screen with the 

Prpl 8p bait as an A4 candidate (Screen M18, table 111.3). The protein was chosen for 

further analyses for two reasons: first, in a previous Prpl8p two-hybrid screen 

performed in our laboratory, a different fragment of the protein was found, that shared 

an overlapping region with the fragment found in screen Ml 8 (R. van Nues, personal 

communication). Second, the protein was identified in two-hybrid screens with three 

other splicing factors within the TAPIR network (Fromont-Racine et al., 1997 and 

Pierre Legrain, personal communication). The significance of these interactions will be 

discussed later in this chapter. 

To get first clues about the function of the protein, a gene deletion was 

performed to find out, whether the protein is required for cell viability. If not, the 

deletion might cause a temperature-sensitive phenotype, that could then be further 

investigated for a defect in the splicing process under non-permissive conditions. 

Furthermore, the protein was used as bait in a two-hybrid screen in order to see 

whether the observed two-hybrid interactions with known splicing proteins could be 

reciprocated or whether other interactions could be found that might suggest a function 

of Ymr44p unrelated to pre-mRNA splicing. 

IV.3. 1 Deletion of the YMR44w open reading frame from the genome 

In order to delete the YMR44w ORF from the genome, oligonucleotides 44ko1 

and 44ko2 (see table 11.1.6) were used in a PCR to amplify the HIS3 marker gene 

from plasmid YIp 1. The 1.15 kb long PCR-product was gelpurified and transformed 

into the diploid strain BMA38, which is deleted for the HIS3 ORF. The 3' ends of the 

oligonucleotides were chosen homologous to sequences just upstream and downstream 

of the YMR44w ORF, and thus should allow the PCR product to recombine into the 

YMR44w locus, replacing the ORF with the HIS3 marker. Histidine prototrophic 

transforrnants were investigated by yeast colony-PCR for correct integration of the 

replacement-cassette into the YMR44w locus (see figure IV. 10) By using 
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oligonucleotides 44ko1 (with the 3'-end homologous to the HIS3 locus) and 44B 

(homologous to a region of the complementary strand just downstream of the 

YMR44w ORF), it could be confirmed that, in 7 out of 9 transformants which were 

tested, a replacement of the YMR44w ORF by the HIS3 marker gene had taken place. 

Subsequently, the PCR-products were purified using the QiAquick PCR-purification 

kit (Qiagen) and sequenced using oligonucleotide 44B. The identity of the PCR 

product was confirmed. 

Figure IV.10: 
PCR on yeast transformants to test for integration of the HIS3 marker 
gene into the chromosomal YMR44w locus. After transformation of the 
BMA38 strain with a linear PCR product containing the HIS3 marker gene flanked by 
approximately 40 base pairs of the YMR44w locus at either site, histidine prototrophs 
were streaked out onto fresh YMM -H medium for colony purification. Then a single 
large colony of the transformants and of the wt parental strain BMA38 was suspended 
in 0.02N NaOH, boiled for 5 minutes and an aliquot used in a PCR (11.3.2.8.2) using 
oligonucleotide primers 44ko 1 and 44B. The positions on the template at which the 
primers anneal are indicated in the upper schematic drawing of theYMR44w-locus 
(either wild-type or after HIS3-integration). Aliquots of the PCR reactions were run 
on a 1.0 % (w/v) agarose gel which has been photodocumented. (The white arrow 
indicates the position of the amplified 1. 15 kb fragment, which would be expected 
following successful integration of the HIS3 cassette into the YMR44w target locus.) 



A diploid transformant that had proven positive for the gene replacement (designated 

strain YMA44/1) was then sporulated. The generated asci were dissected onto YPDA 

agar plates and the separated spores incubated at 23°C for 3 days. The result of the 

tetrad dissection is depicted in figure IV. 11 A. 

Out of 11 tetrads dissected, in 5 cases all four spores grew to colonies of 

comparable size, in four cases only 3 spores germinated and in two cases, two spores 

grew to colonies. The fact, that for 9 of 11 tetrads, more than 2 spores formed colonies 

suggested strongly that the YMR44w gene is not essential for cell viability. 

Furthermore, since for the majority of the spores grew to similar size, the gene does 

not seem to be required for cell growth. 

To test this further, the spores of the tetrads, in which all four spores 

germinated were streaked onto histidine-lacking plates. In all cases, as expected only 2 

spores grew (data not shown). Cells from 8 of these histidine prototrophic haploids 

(deleted for YMR44w) were serially diluted into microtiter plates and spotted onto 

YPDA agar plates using a pronged metal inoculator. The plates were incubated at a 

range of temperatures for 2 days (figure IV. 11 B). This confirmed, what was already 

indicated by the tetrad analysis, namely that the deletion of the YMR44w gene from the 

genome, does not have a visible effect on cell growth in rich medium. The yrnr44w 

deleted strain, designated YMA44/2, grows at a rate comparable to the parental wt 

strain at 23°C, 30°C or 37°C. 
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Figure IV.11: 
Analyses of the effects of YMR44w deletion. 

Tetrad analysis of strain YMA44/1. Strain YMA44/1 was grown overnight at 
30°C in YPDA, the cells collected and transferred to Spm sporulation medium. After 
5 days of incubation at 23°C the formed tetrads were dissected onto YPD agar plates. 
The spores were incubated for 3 days at 230C. 

Haploid cells deleted for the YMR44w locus (strain YMA44/2) as well as cells 
from the parental wild-type strain BMA38 were suspended in dilutions in microtiter 
plates, spotted onto YPDA agar plates and incubated at different temperatures for 2 
days. (BMA38 cells were diluted in the same way as the cells from strain YMA4412; 
this dilution series is depicted here in vertical orientation) 
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IV.3.2 Cloning of the YMR44w bait vector 

In order to perform a two-hybrid screen with the Ymr44 protein, the YMR44w 

ORE had to be cloned into the bait vector. For this, the YMR44w ORE was amplified 

by PCR from genomic DNA of strain BMA38n using oligonucleotides 44A and 44B 

(table 11.1.6). The 1.4 kb PCR product was then cut with Ec113611 and Sail and ligated 

into vector pASAABg, which had been cut with Smal and Sail in the multiple cloning 

site. The insert was sequenced twice over its entire length using oligonucleotides 

N3027 (pAS2AA forward) and P5148 (pAS2M reverse) and no deviations to the wt 

gene sequence were detected. Also, by sequencing the junction between the GBD 

sequence and the start of the YMR44w-ORF, it was confirmed that the fusion was in 

the right frame to express the full-length fusion product. The plasmid was designated 

pMA44AS and was transformed into yeast strain CG 1945 for use in the two-hybrid 

screen. However, the strain containing the bait plasmid flocculated badly in YMM -w 

liquid medium and was unsuitable for use in the screen. Thus, the cloning procedure 

was repeated, but this time the Ecu 3611 and Sail cut PCR product was ligated into the 

pBTM 116(- 1) vector, which had been linearised before by digestion with Smal and 

Sall. Again integrity of the vector was checked by DNA-sequencing, for which the 

oligonucleotides W2248 (lexA forward) and the lexA reverse oligonucleotides were 

used. The resulting bait vector pMA44BTM was transformed into yeast strain L40. 

This time was no problem with flocculation of the cells when grown in YMM -w 

liquid medium. The LexA::Ymr44p (LA::Ymr44p) bait produced from this vector 

could thus be used to screen the two-hybrid library for interacting proteins. 

IV.3.3 The Ymr44p two-hybrid screen 

The Ymr44p bait was tested in a directed two-hybrid mating assay against 13 

different prey fusions of known splicing factors, but no interactions could be detected 

(data not shown). This suggested that the bait did not (strongly) autoactivate and that it 

was suitable to be used in a full-scale two-hybrid screen. 

151 



The FRYL was screened for interactors with LA::Ymr44p. A mating efficiency 

of 64% allowed screening of 120 million diploid cells for transcription of the HIS3 

reporter gene. No 3AT was added to the selective plates in this screen. Table IV.2 

summarises the results of the screen. Four proteins were identified as Al prey in this 

two-hybrid screen. By far the strongest interactor, with respect to the number of 

fusions identified in the screen, is the 104 kDa Fin I protein, which is encoded by ORF 

YER032c (figure IV. 12). The common region shared by all 5 prey fragments is 

confined to a small carboxy-terminal peptide sequence, namely to the amino acid 

residues 766-832 of the 925 amino acid long protein. There are no obvious sequence 

motifs within this region, that could give an indication for a protein-protein or protein-

RNA binding capacity of this fragment. 

Fir 1 p  was originally isolated by Russnak et at. (1996) in a two-hybrid screen 

using the polyadenylation factor Ref2p as bait (thus the name: Factor interacting with 

Ref2p). Ref2p was shown to be directly involved in mRNA 3'-end formation. In 

vitro, it is required for efficient use of weak poly(A) sites. Endonucleolytic cleavage 

occurs accurately, but at significantly lower rates in rej2z\ strains (Russnak et at., 

1995). Firip, like Ref2p, is not essential for cell viability, but deletion of the FIR] 

gene leads to temperature-sensitive growth and furthermore to a reduction of the usage 

of suboptimal poly(A) sites in vivo (Russnak et at., 1996). In Afirl/i\ref2 double 

mutants this effect is exacerbated, supporting the idea of an involvement of the two 

proteins at the same stage of 3'-end processing. 
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Table IV.2: 
Results of the Ymr44p two-hybrid screen. A LexA-Ymr44 fusion protein (LA::Ymr44p) was used as bait to screen the FRYL for 
interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the Saccharomyces 
Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency with which a fragment was identified in the 
screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from AUG - number of 
nucleotide at which fusion starts (A from the initiation codon AUG is 1); Insert size - insert length (nucleotides) determined by sequencing, 
* - insert size has been determined approximately by BamHI digestion of the prey plasmid and subsequent agarose electrophoresis. Preys 
were classified in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et al., 1997 and described in section 111.1. 



Clone No. Gene OFF Chr Strand nt. from AUG ORF size (bp) Insert size (bp) Category Protein info 
44-1 5 HE)(3 YDLO13w IV w 13 1860 1200* A3 Hexose transporter 
44-5 1  YBR223c II c 158 3438 989 Al  
44-6 1  VBR223c II C 252 3438 1821 Al  
44-9 1 FIR1 YER032c V c 1807 2778 776 Al Polyadenylation factor 
44-11 1 	l_ FIR1 VER032c V C 1957 2778 539 Al Polyadenylation factor 
44-29 _l_ FIR1 VER032c V C 1988 2778 753 Al Polyadenylation factor 
44-14 _l_ FIR1 YER032c V C 2125 2778 441 Al Polyadenylation factor 
44-30 2 FIR1 YER032c V C 2296 2778 330 Al Polyadenylation factor 
44-32 1 SAP1 YER047c V C 442 2694 500* A4 AAA-ATPase family 
44-18 3  VHR134w VIII w 406 810 800* Al  
44-19 1  YHR134w VIII w 268 810 600* Al 
44-10 2  YNLO78w XIV w 246 1224 1200* Al  
44-20 1  YNLO78w XIV w 988 1224 500* Al  

44-24 1 anti (YGR187c)  w  n.d B _____________________ 
44-23 1  YLL066c and others  n.d B Subtelomeric repeated Prot. 
44-27 2 ______ _____  n.d I 	B TO-element 



clone: fragment: No. 

44-9: Firlp(603-861) I 	1 	1 X 

44-11: Firlp(653-832) I 	1 X 

44-29: 	Firlp(664-913) 	 I 	1 X 

44-14: 	Firlp(709-855) 	
] 	

1 x 

44-30: 	Firlp(766-875) 	 - ] 	2 x 

Firip  
1 	 766 832 925 

Figure IV.12: 
Firip prey fragments identified in the Ymr44p two-hybrid screen. The 
common domain of the prey fragments is indicated as a shaded box in the full length 
protein. Numbers in brackets define the amino acid boundaries of the fragment. No. - 
frequency with which a prey fragment was identified in the screen. 

The other Al prey candidates identified with the Ymr44w bait are hypothetical 

proteins, encoded by ORFs YBR223c, YNLO78w and YHRI34w, respectively (figure 

IV. 13). 

The hypothetical 62 kDa Ybr223 protein was found twice as independent 

fusions, which share a small region of overlap from amino acid 85 to approximately 

amino acid 120-150 (the 3' ends of the library plasmid inserts have not been sequenced 

in this case). This region contains no recognisable motifs and exhibits no significant 

homologies to other proteins in the databases. The amino acids 98-542 of the protein 

exhibit a 22% identity with a C. elegans protein of unknown function (Acc.no. 

AAC68960). 

The Ybr223 protein was also identified as an Al candidate in a two-hybrid 

screen with the Rpc53 protein, an essential subunit of RNA polymerase III (Werner, 

M., personal communication and Mann ci' al., 1992). Since the two-hybrid interactions 

with Ymr44p and Rpc53p are the only information on Ybr223p available to date, the 
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significance of these interactions is difficult to evaluate. The protein will not be 

discussed further for that reason. 

YNLO78w encodes a hypothetical 46 kDa protein, which shares no homologies 

to other proteins in the databases. The protein is basic (p1 10. 16) and unusually serine 

rich (15% of all amino acids). The common region of the prey inserts consists of the 

carboxyterminal 77 amino acids (see figure IV. 13). 

The YHRJ34w ORF codes for a 30 kDa hypothetical protein, with no 

homologies to other proteins in the databases. The c-terminal half of the protein seems 

to be sufficient to interact with the Ymr44p bait (figure IV. 13). 

In summary, Ymr44p was found to interact with the second step splicing factor 

Prpl 8p in a two-hybrid screen and when it was used in turn as bait in a two-hybrid 

screen it interacted with the polyadenylation protein Firlp. Thus, the protein could 

function at a putative splicing/polyadenylation interface. Additional information yielded 

in two-hybrid screens performed within and outside the TAPIR network do indeed 

support this idea. These interactions will be discussed in detail in the next section. 
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clone: fragment: 

44-10: Yn178p(83-407) 

44-20: Yn178p(330-407) 

Ynl78p 
1 

clone: fragment: 
	

No. 
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lx 

Ybr223p 
1 85 	 545 

44-5: 	Ybr223p(85-?) 

44-6: 	Ybr223p(56-?) 

clone: fragment: 

44-18: Yhrl34p(136-269) 

44-19: Yhrl34p(90-269) 

Yhrl34p 
1 
	

136 
	

269 

Figure IV.13: 
Al category preys identified in the Ymr44p two-hybrid screen. 
Besides Fir ip (figure IV. 12), three additional Al preys were identified with the 
LexA::Ymr44p bait: Ybr223p, Yn178p and Yhr134p. The prey fragments which were 
found are depicted here. For the Ybr223p prey fragments, the C-terminal end point 
was only estimated from the size of the inserts in the prey plasmids, determined via 
BamHI digest and subsequent agarose electrophoresis). This is indicated by a thin 
"error line" at the end of the boxes depicting the fragments. The common domain of 
the prey fragments is indicated as a shaded box in the full length protein. Numbers in 
brackets define the amino acid boundaries of the fragment. No. - frequency with 
which a prey fragment was identified in the screen. 
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IV.3.4 Discussion 

In this work, the Ymr44 protein was shown to interact in a two-hybrid screen 

with the second step splicing factor and U5 snRNP-associated protein Prpl8p 

(Horowitz and Abelson, 1993). Additional two-hybrid screens performed within the 

TAPIR network using other splicing factors as baits also identified the protein as 

interactor: Ymr44p prey was identified in two-hybrid screens with the UI snRNP-

associated proteins Snplp (Neubauer et al., 1997) and Yhclp, the yeast U1C 

homologue (Tang et at., 1997) and in addition with the U2 snRNP-associated factor 

Rselp (Caspary et at., 1999; Fromont-Racine et at., 1997 and Pierre Legrain, 

unpublished results). It is questionable, whether all (or any one) of these interactions 

are (is) specific and functionally relevant. It may be not too surprising to find a protein 

interacting with U5 snRNP proteins (Prpl8p) as well as UI proteins (Snplp and 

Yhclp), because the proximity of the UI and US snRNPs and snRNAs within the 

spliceosome has been noted before (Gottschalk et al., 1998; Ast and Weiner, 1997). 

However, since Prpl8p acts at the stage of 3'-splice site recognition and cleavage, 

whereas Snplp and Yhclp both are involved much earlier, during commitment 

complex formation, it is unlikely that Ymr44p interacts with all three proteins. The 

same argument holds for a putative Rselp-Ymr44p interaction. Rselp has been 

proposed to be the homologue of the human splicing factor SF3b'3°  (Caspary et at., 

1999), since the proteins share extensive similarities in sequence and function. No 

interactions of the SF3b13°  protein with human second step splicing factors have been 

reported so far. Thus, it is unlikely that Ymr44p interacts with both Prpl8p and Rselp 

during the splicing process. 

Another point, which has to be noticed, is that the above mentioned two-hybrid 

interactions are not very strong with respect to the number of fusions found in the 

screens. In the Snplp-, Yhclp- and Rselp two-hybrid screens, Ymr44p was an A4 

interactor. In case of the Prpl8p interaction, two screens had to be done to find two 

independent fusions of the Ymr44p. The rarity of the interactions might reflect the fact 

that they (or some of them) are aspecific random interactions. This assumption is 

supported by the results of the Ymr44p two-hybrid screen. None of the interactions 

discussed above could be confirmed in the reciprocal orientation, nor were any other 
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splicing factors found with the Ymr44p bait. Instead, the results of the Ymr44p screen 

suggest a close link of the protein to the polyadenylation machinery. Two findings 

underline this hypothesis: 

First, the strongest interactor found, Firip, is a protein required for efficient 

polyadenylation. Firip was also found in two-hybrid screens with other 

polyadenylation factors, namely as Al interactor with Ref2p (Russnak et at., 1996), as 

Al interactor with the PolyA polymerase (Papip, del Olmo et at., 1997) and as Al 

candidate with Hrp Ip. Hrp 1 p  is the CF TB component of the cleavage factor CF I 

(Kessler et at., 1997), which has been shown to be required for accurate cleavage site 

choice, but not for cleavage per se (Minvielle-Sebastia et at., 1998). 

Second, two of the three additional Al prey proteins found with the Ymr44p 

bait, namely Yhrl34p and Ynl78p, were identified in two-hybrid screens with 

polyadenylation factors done within the TAPIR network (M. Minet and co-workers, 

unpublished results), suggesting a function of these proteins during 3'-end formation 

of the message. Both proteins represent A4 candidates in a Hrplp screen and 

furthermore, Ynl78p was found as Al interactor with Rnal4p, a component of the 

cleavage factor CF IA (Minvielle-Sebastia et at., 1994). An overview of the numerous 

two-hybrid interactions discussed in this section is given in figure IV. 14. 

In conclusion from the two-hybrid data available, it is most likely that Ymr44p is 

involved in polyadenylation of the messenger RNA. The protein is not essential and it 

could therefore be imagined, that it may have a modulating function like e.g. Firip and 

Ref2p. The two-hybrid data which link Ymr44p to the splicing machinery are 

somewhat diffuse and it is difficult to suppose at what step of the splicing process the 

protein could act. Moreover, the weakness of the two-hybrid interactions to the 

splicing factors might suggest that these interactions are random and aspecific. Further 

experiments need to be done to establish whether there indeed is a role for this protein 

in splicing and whether Ymr44p connects the two RNA processing events. 

159 



Figure IV.14: 
Two-hybrid network illustrating the interactions of Ymr44p with the splicing- and polyadenylation machinery. 
Known splicing factors are depicted in orange boxes, polyadenylation proteins in blue boxes and proteins of unknown function in yellow 
boxes. Bold arrows represent Al-, thin ones A4-interactions.* two independent fusions found in two screens. 
Symbols indicate who performed the screen: $ - Fromont-Racine et al., 1997; Pierre Legrain, unpublished results; % - Micheline Minet, 
unpublished results; & - Russnak et at., 1996; @ - del Olmo et al., 1997; r - Rob van Nues, this laboratory; £ - this work. 
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Chapter V 

The Prp22p two-hybrid screen 



V.1 Introduction 

The interesting finding that Prp22p fragments interacted with the second step 

splicing factor Slu7p in a two-hybrid screen suggested that the two proteins might 

interact with each other in the course of 3' splice site selection and cleavage. In order to 

investigate this hypothesis and possibly to reveal additional interactions, Prp22p was 

used as a bait in a "second round" two-hybrid screen. The performance and the results 

of the Prp22p two-hybrid screen will be described in this chapter. 

V.2 Construction of the PRP22 bait vector 

The full length PRP22 ORE was generously provided on plasmid pBSKS22 by 

Beate Schwer (table II. 1.8). This plasmid had been generated by cloning a Sacl, KpnI 

fragment of the PRP22 locus into the polylinker of plasmid pBluescript II KS+ 

(Stratagene). An NdeI restriction site had been engineered into the start site of the 

PPR22 ORF, in such way that the terminal three nucleotides of the NdeI recognition 

site (CATATG) represent the translational start codon of the PRP22-ORF. This 

allowed an easy transfer of the ORE into other vector systems. 

The plasmid pBSKS22 was cut with KpnI, blunted by T4 DNA polyrnerase I 

treatment and then cut with NdeI. The fragment containing the PRP22 ORE was 

separated from the vector via agarose gel-electrophoresis and isolated from the gel 

using the QlAquick Gel Extraction Kit (Qiagen). Subsequently it was ligated into the 

pAS2AA vector, which had been cut with NdeI and SmaT to generate the PRP22 bait 

vector pMA22AS. The identity of the vector and the correct frame of the GBD::PRP22 

fusion was checked by DNA-sequencing using oligonucleotides N3027 (pAS2AA 

forward) and P5148 (pAS2AA reverse). The pMA22AS vector was transformed into 

the yeast strain CG 1945 and crude cell extracts were prepared from the cells. The 

production of the Gal4p DNA-binding domain-Prp22p fusion protein (GBD;:Prp22p) 

was then checked by western blotting using antibodies against the GBDp. A protein of 

the expected size of 144 kDa could be detected (data not shown). 
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In a directed two-hybrid mating assay in which the Prp22p bait was checked for 

interactions with 19 random preys that were available in this laboratory, no interactions 

could be detected, showing that the bait fusion did not strongly autoactivate (data not 

shown). Thus the Prp22 bait was ready to be used in a two-hybrid screen. 

V.3 The Prp22p two-hybrid screen 

A full scale two-hybrid screen using the GBD::Prp22p fusion protein as bait 

was performed using I vial of the FRYL. 47 million diploid yeast clones were 

screened for expression of the HIS3 reporter gene by plating them onto YMM -LWH 

plates. The mating efficiency was calculated as 20 %. After three days, the plates were 

overlaid with an X-gal agar mix, and 26 colonies turned blue by 10 hours of 

incubation. No additional blue colonies could be spotted at later time points. When the 

26 colonies were streaked onto fresh YMM -LWH agar, I colony did not regrow. 

After restreaking the cells another two times, a 3-gal filterlift assay was performed. 

Five clones did not develop a blue colour in this assay and were discarded. The 

identity of the library inserts in the prey plasmids of the remaining twenty clones was 

determined: a yeast colony PCR was performed to amplify a region of the prey vector 

containing the insert. Oligonucleotides T3785 and T3786 were used for that purpose. 

The amplified inserts were subsequently gel purified and sequenced, using the same 

oligonucleotides (T3786 for forward-, T3785 for reverse sequencing). The positive 

candidates of the Prp22p two-hybrid screen are listed in table V.1, which also includes 

the relative strength of the observed interaction in the filterlift assay in column 

"interaction". 
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Table V.1: 
Results of the Prp22p two-hybrid screen. A Ga14 DNA-binding domain-Prp22 fusion protein (GBD::Prp22p) was used as bait to 
screen the FRYL for interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the 
Saccharomyces Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency with which a fragment was 
identified in the screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from 
AUG - number of nucleotide at which fusion starts (A from the initiation codon AUG is 1); Insert size - insert length (nucleotides) determined 
by DNA sequencing; Interaction - relative strength of response in f3-gal filterlift assay: +++ very strong response; ++ strong response, + 
moderate response; preys were classified in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et al., 1997 and described in 
section 111.1. 



Clone No. Gene OFF Chr Strand nt. from AUG ORF size (bp) Insert size (bp) Interaction Category Protein info 
22-1 5 FUN20 YAL032c - - C -23 1140 1073  Al Prp45p, splicing factor (this work) 

-19 1 FUN20 YAL032c - - C 632 1140 1243  Al Prp45p, splicing factor (this work) 
-10 _2 - FUN20 YAL032c - - C 25 1140  849  Al Prp45p, splicing factor (this work) 
-27 _1 - FUN20 YAL032c - - c 782 1140  298 + Al Prp45p, splicing factor (this work) 
-13 1 - FUN20 YAL032c - - c 580 1140 831 ++ Al Prp45p, splicing factor (this work) 

22-23 - - PMI40 YER003c V c 1024 1383 500 ++ A4 Mannose-6-phosphate isomerase 
2-14 2 DBP7 YKRO24c XI c 919 2229 882 ++ A4 RNA-helicase, 60S ribosomal large subunit 
2-12 _3_ SYF3 YLR1I7c XII c 1765 2064 377  Al Splicing factor 

-22 _l_ SYF3 YLR1I7c XII C 1862 2064 528 ++ Al Splicingfactor 
-29 _l_ SYF3 VLR1I7c XII c 1880 2064 1381 1 	 + I 	Al Iftlicina factor 
-25 1  YNL274c XIV c 97 1113 + A3 

-F- 
1 053::± 

22-20 	- 1 anti (YDR409W) I 	IV 	I c 	1 -20 2715 1 	1188 1 	++ I 	B 	I  



Two candidates were found to interact with the Prp22p bait that fall into the Al 

category: The 42 Wa Fun20 protein (referred to as Prp45p, see below), encoded by 

ORF YAL032c, was identified 10 times in 5 different fusions. The fragments found 

with the Prp22p bait are depicted in figure V.1 A. The putative interacting region, the 

overlap between the prey fragments spans the amino acid residues 262-291 of the 379 

amino acid long protein. It might be worth noticing that this small region of 30 amino 

acids contains two putative phosphorylation sites, which are also indicated in figure 

V.1 A. 

The protein was known to be essential for cell viability (Diehl and Pringle, 

1991), but no additional data about a putative function were available. Fun20p was 

extensively studied in this work and it has been demonstrated that it is a novel pre-

rnRNA splicing factor. It was therefore renamed and henceforth will be referred to as 

Prp45p in this work. It will be discussed in detail in chapter VI. 

The second Al prey candidate found was the 82 Wa Syf3 protein, encoded by 

ORF YLRI17c. It was found 5 times in 3 different fusions, which all share the c-

terminal 59 amino acids of the protein (figure V.1 B). 

Originally, the SYF3 gene was isolated in a screen searching for mutants 

synthetic lethal with a deletion of the gene for the second step splicing factor and cell 

cycle protein Prpl7p, also named Cdc40p (Ben-Yehuda and Kupiec, unpublished 

results). 

The Syf3 protein shows homology to the putative cell cycle regulatory protein 

crooked neck (Cm) of Drosophila melanogaster and was therefore alternatively named 

Clflp (for crooked necked like factor). It contains so called tetratricopeptide (TPR) 

motifs that might be involved in protein-protein interactions (for a review see Lamb et 

al., 1995; see also chapter VI. 10.3 for a more detailed discussion of the TPR repeats 

of Syf3p). Recently it was demonstrated that it is a splicing factor required for the first 

transesterification to occur and it was proposed to facilitate tri-snRNP addition during 

spliceosome assembly (Chung et al., 1999). The Syf3 protein was also found as prey 

of the Al category in a Prp45p two-hybrid screen (see chapter VI). 
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No. 

 

clone: fragment: 

1: 	Prp45p(1-350) I 	 = 	I 
19: 	Prp45p(212-379) 	 I 

10: Prp45p(9-290) I 	 = 
27: 	Prp45p(262-359) 	 = 	I 
13: 	Prp45p(194-379)  

	

Prp45p I 	 I 

	

1 	 262 291 	379 

common domain: 262 KFjKKQ11STV4RLKELA'%4SQGRDVSEKIILG 291 

 

clone: fragment: 

12: 	Syf3p(592-687) 

22: 	Syf3p(622-687) 

29: 	Syf3p(628-687) 

Syf3p I 
1 
	

628 687 

Figure V.1: 
Prey fragments of Prp45p and Syf3p found in the Prp22p two-hybrid 
screen. The common domain of the fragments is presented as a 
shaded box. The numbers in brackets indicate the amino acid boundaries of the 
particular fragment. No. - frequency with which a particular clone was found in the 
screen. A) Prp45p prey fragments. The primary structure for the Prp45p common 
domain is given and amino acid residues representing two putative phosphorylation 
motifs are boxed. Threonine (T) and tyrosine (Y) residues that are potential targets for 
phosphorylation are highlighted in bold type. B) Syf3p prey fragments. 

The protein encoded by ORF YNL274c was found as an A3 interactor with 

Prp22p. A strong sequence homology of the protein to dehydrogenases in a range of 

organisms from archaebacteria to higher eucaryotes suggests a function unrelated to 



pre-mRNA splicing. For that reason the protein was not considered for further 

investigation. 

The two A4 prey candidates found are both well characterised: Pmi40p is the 

mannose-6-phosphate isomerase (Smith et at., 1992) and Dbp7p is a putative RNA-

helicase involved in ribosomal biogenesis (Daugeron and Linder, 1998). 

V.4 Discussion 

In the two-hybrid screen with the Prp22p bait, two splicing factors have been 

found as Al candidates: the Fun20 protein, which is subsequently referred to as 

Prp45p, and Syf3p. Prp45p was extensively studied in this work and its 

characterisation and the significance of its interaction with Prp22p will be subject of the 

next chapter(s). 

Syf3p, the other Al prey candidate found with Prp22p, was also found as an Al 

prey in a two-hybrid screen with Prp45p as bait. Therefore, the Syf3 protein and the 

implications of the triangular two-hybrid interaction between the three proteins, will be 

discussed after the characterisation of Prp45p in chapter VI. 

The amino acid sequences of the proteins Yn1274 (a putative dehydrogenase) and 

Pmi40 (mannose-6-phosphate isomerase), which were found as A3 and A4 candidates 

respectively, do not give any clue as to why these proteins have been identified as 

likely false positives with Prp22p. For the Dbp7p, a DEAD-box protein involved in 

ribosomal biogenesis, however, it is possible that the interaction with Prp22p in the 

two-hybrid assay is due to the sequence homology of the protein with the DEAH-box 

protein and second step splicing factor Prpl6p. As discussed in chapter 111. 3, in a two-

hybrid screen using the Prp 16 protein as bait, Prp22p was found as Al prey candidate. 

In fact Prp22p was the only interacting protein found in this screen (Alan Colley, 

personal communication). The 294 amino acid long prey-fragment of Dbp7p, that was 

found to interact with Prp22p, comprises a very conserved region within the family of 

DEAD/H-box proteins, containing the conserved motifs 2-6 (for a recent review on 

DEAD-box proteins see Linder et at., 1999). The homology to Prpl6p in this region is 



rather small (only about 15% amino acid identity), but there might be common features 

within this region of Prp 16p and Dbp7p, that led to the isolation of Dbp7p with the 

Prp22p bait. However, the question must be asked why Prpl6p itself was not found 

with the Prp22p bait, but instead a distant member of the DEAD-box family, such as 

Dbp7p. It has been found for many two-hybrid interactions, that even in cases where 

the biological significance of the interaction is obvious, a reciprocal interaction could 

not be observed. Problems with the folding of particular fusion proteins or with 

instability of the fusion proteins could contribute to this behaviour. 

As for the Prp22p-Prpl6p interaction, the interaction of SIu7p with Prp22p, 

observed in the two-hybrid screen S1u7-III (chapter 111.2.2), was not found in the 

reciprocal orientation. Therefore, the Prp22p screen did not put further weight to the 

hypothesis that Prp22p contacts the second step splicing factors Slu7p or Prp 16p in the 

course of 3' splice site selection and cleavage. 
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Chapter VI 

Prp45p is a novel pre-mRNA 
splicing factor 



VI. 1 Introduction 

The Prp45 protein was found as the statistically most significant prey in a two-

hybrid screen using the second step- and spliceosome disassembly factor Prp22p as 

bait. Prp45p has a calculated molecular weight of 42456 Da and consists of 379 amino 

acid residues. The protein is hydrophilic; 30% of its amino acid residues are charged. 

Overall, Prp45p is of basic character with a predicted isoelectric point (p1) of 9.29. 

The charged residues are spread over the protein, with no large stretches of 

consecutive acidic or basic residues (see also figure VI. 1 for a summary of primary 

structure features of the protein). 

Prp45p was already known to be essential for cell viability (Diehl and Pringle, 

1991), but no additional functional data were available. In this chapter the first 

evidence will be presented that Prp45p is a pre-mRNA splicing factor. 

VL2 Prp45p has sequence homology to proteins in other 
eukaryotes 

An NCBI blast protein database search revealed that the Prp45 protein shares 

significant sequence homology to proteins in a range of eucaryotes from plasmodium 

to man. These proteins show a particularly strong conservation of primary structure in 

an n-terminallcentral region spanning approximately 170 aminoacid residues. No 

function has yet been assigned to this conserved region, which was previously named 

SNW-domain, paying tribute to a 100% conserved motif consisting of the amino acids 

SNWKN, present in all members of the group found to date. Figure VI.2 shows a 

sequence alignment of the conserved proteins. 
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Figure VI.1: 
Primary structure analysis of Prp45p. 
A) Schematic illustration of the positions of acidic (A) and basic (B) amino acid 
residues within the 379 amino acid long protein. B) Hydrophobicity plot after Kyte 
and Doolittle (1982) (windows of 11 amino acids were used for calculation). Positive 
values represent hydrophobicity, negative values hydrophilic stretches. C) Amino 
acid composition: n - number of times a particular amino acid is present in the protein; 
MW - molecular weight. (the above analyses were done using the DNA strider 1.2 
(GATC) program) 
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I 200 

379 Amino Acids MW : 42456 Dalton 

n n(%) MW MW(%) 

A ala alanine 35 9.2 2486 5.9 
C cys cysteine 1 0.3 103 0.2 
D asp aspartic acid 22 5.8 2530 6.0 
E glu giutamic acid 29 7.7 3742 8.8 
F phe phenylalanine 9 2.4 1323 3.1 
G gly glycine 16 4.2 912 2.1 
H his histidine 8 2.1 1096 2.6 
I ile isoleucine 15 4.0 1696 4.0 
K lys lysine 34 9.0 4355 10.3 
L leu leucine 29 7.7 3279 7.7 
M met methionine 7 1.8 917 2.2 
N asn asparagine 27 7.1 3079 7.3 
P pro proline 20 5.3 1941 4.6 

Q gin giutamine 19 5.0 2433 5.7 
R arg arginine 24 6.3 3746 8.8 
S ser serine 31 8.2 2697 6.4 
T thr threonine 17 4.5 1717 4.0 
V val vaiine 24 6.3 2377 5.6 
W trp tryptophan 2 0.5 372 0.9 
X ukw unknown - - 
Y tyr tyrosine 10 26 1630 3.8 
Z--- STOP - - 



Figure VI.2: 
Sequence alignment of Prp45p with putative homologues in other eukaryotes. Proposed homologues were identified by 
BLAST searches of the NCBI nr peptide sequence database (section 11.4). Sequences were aligned using the PILEUP program of the GCG9 
suite of sequence analysis programs, with identities and similarities highlighted using BOXSHADE 3.21 (section 11.4). Black boxes highlight 
identical residues, grey boxes indicate the conservation of the nature of the amino acid at that site. Accepted conservative groupings were 
M=I=L=V, K=R=H, F=Y=W, S=T, E=D, A=G and Q=N. A particular amino acid position is boxed if at least 6 of 8 residues at that position 
are identical or belong to the same conserved group. A dashed box indicates a conserved proline (P)-rich motif, the grey box the "SNW 
domain" (see text), which includes the 100% conserved amino acid residues SNWKN (highlighted by a black box within the grey box). The 
location of regions with high similarity to structural motifs of SH2-domains (helix A, 3-strand B, p-strand C and 3-strand D) is indicated by 
open boxes. Gene names or accession numbers are given in brackets; H. s - Homo sapiens, D. m - Drosophila melanogaster, C. e - 
Caenorhabditis elegans, A. t - Arabidopsis thaliana, S. p - Schizosaccharomyces pombe, D. d - Dictiostelium discoideum, P. f - Plasmodium 
falciparum, S. c - Saccharomyces cerevisiae. (note that the order of the H. s and D.m proteins has changed from the first to the second sheet of 
the alignment). 



H.5(SNW1) 	 1 ----- MALTSF 	ATQLSQDQLEA...EEKA.RSQRSRQTSLVSSR....R.EP-P GYKGWIRLL ' 	- 	4 VA. 	DM...GR 
P.m(Bx42) 	 1 ----- MSLSSL 	T- TNAIWDREDE...RRLV.ARGAP1cIGALVSAH....I.AAP GQKDWVHTDA 	 j 4 VA. 	GL APGN 
C.e(Q22836) 	 1 ---MSMKLRDI 	AVAADEAASQI...RRDPwFGGRDNEpSAALIJS....j(.Ep-p GKTSRRGP • 	4 $VA•F 	DL LGDM 
A.t(gi3540201) 	1 -----MRSLND AKSTTTTYYDH...5NDAWFKNRVTESETVKSSSIKFR.vv•A LNQGLSRKNP . 	4 LP. -  LM KNKS 
S.p W09882) 	 1. MALLSEELSSI 	...... DFDDE...EEDYV....ERETSHADERQIGVKFHIp GQKGWF-SSP-. 	 -4 	VA. 	GM RKRS 
D.d(SNWA) 	 1 ----MDSLSSL KKNVYSNEEEDPI.FQPKPKPQQQKQQQQQQQELNDKPRRVI.T G KGYL - KNI - . 	 I • 	GM RKGK 
P.f(gi3845299) 	1 ----MPDFLRNXKKKKAYDDENELI8D .......FKESNNSIKKREEIKKRNQCYE LKRHLRITCN ' QG 	Yl 	MN. 	HNI LKSD 
S.c (Prp45p) 	 1 

H.B(SNW1) 	 79 KKKM.SNA .............AIQVDSEKIKYD ARQGQSKDKVIYSKYSDLVPKEV.MNADDPDLQ 	DEE....AIKITEK RV DL 	Sv V.m(Bx42) 	 82 VGKK.SDA .............AVRLDDKKVKYD ARQGHGKDKIVYSSISQLLPAEV.LAEDADELQ •DEE....TVMflTPRE RLL 	LT 
C.e(Q22836) 	85 RGKP.ENT .............ATSQYGT 	KLQHD 	ARIGHVKDKVVYSKLNDM.KAKT.WNEDDBDIQ 	DDD...AVIDAPEIc RML 	IV 
At (gi3540201) 	87 NKPG.AKT .............PVTVDAQ NVVFD VRQNENSRKTVYSQHKDIIPKFL.KNEGDLGTVVDEEEELQKEIQDTAEE KAI 	Iv 
S.p (Q09882) 	84 AKSA.GNT .............ALQVTSS AVDY 	ARQGHEMGELVQASFRDLIPLRARLGVGEI5LEK3SDEQKQ....vANK KLL 	IL 
D.d(SNWA) 	 92 SKSSNSNTSNMNGGGTTTSIVPYSVDST RVKHE L....GEKGSLHSQYKDXZPKQ....HTEHELQR-DDDELQ...TLDR KNL IV 
P.f(gi3845299) 	85 NKNNIVLKYIDENNNVKYD ...INQQIHIYNNE DKIEPNERINKLRKKKILSDPKDREEKYNEPTyK. HNDEEN....DIIZN MMMI MIL 
S.c(Prp4Sp) 	 1 ---------------MFSNR PPPKHSQRV.STALSSDRVEPAXLTDQIAKNVKI.DDFIpKRQSNFELsvpLpTRAEIQflcTAR KSYIQRLV 

S.s(SNW1) 	156 SQ9VAAAMPVRA.ADKLAPAQI

vy 

H

91 . 

	

Q.GVAFNSGA.KQDV H EMQK.NE - 	...IN IRGPP 	•A M.5 -  MTVKE.QE 
D.m(Bx42) 	159 IQDITSALPVRH.AQKAGPAQHQ.GDTFNSGA.HQDV H EAQL.MM ....IN I- RGPPP

D 

A - L:. - S VT IcE.KE 
c.e (Q22836) 	161 	SVASALPVRR.ADKLAPAQHQ.NGA..AGS.QQ I H EEQK.ME ____ - . . INOv IRAPPA

ILE]MDGSNDRGEADPNE 

H:. - P MTAKB.NB 
A.t (gi3540201) 168 VRI.SAAQPSNI.ARQSGDSQKQ • SSAFNSGA.HE I BMPVLB .....H 	- HASGVH; 	p pVTVK B • QD 
S.p (Q09882) 	162 SKQIAQSQPKSAVVQQRDDPVRN.MG..QALS.KQ IK 	TAEQ.RE - 	.H.H - RGPPPL - 	P 	VSAQE.QD 
D.d(SNWA) 	175 IG IKSSKSTNYVEVEKKSATKN•LGSNNGSALNSKIVH DVAQ.LE 	

YJAR 

IKIME.HGAN:.T-  LSVQD.QB 
Pf(gi3845299) 173 E VNKSNIVNKKEEK.....RNKLN....NNLEEI HI EKGT.-LDVS 	...HLNIHNYLR. •T-  LHKEEENB 
S.c(Prp45p) 	79 	A tANS .......NNRASSR.HAPA.NLISLNNSHH E 	SKQM.L.L 	VG VAPTENDEVV  

S.s (SNW1) 	245 	- - I 	jA 	P • 	AA. R 	QT H.. 	EN 	- LA 	1 DR 5 	 A EMAQVEHKMAQ 	EKHEK REM QJ

V 

ER A 
D.m (Bx42) 	 248 	- -_. I 	A 	P •; AA. eH 	QQ H.. 	EK 	MA} 	1 DR A EA - SQLEHKLAQ 	ER DM RMM QEE A 
C.a (Q22$36) 	248 	- 	A 	p 	F VG .; AA

I-N 

	

R 	QQTH . . 	EN 	LAD 	I DR 5 	 E ET - AQLERRVAQNR SE AKMAEA AQE -  SA 
At (gi3540201) 256 	 Ii - 	P ______ p • 	AA H 	QG Q . . 	DH 	L S - 	V K QL 	A SM - SKVQREMVM 	ER QE HAL Q5M I
S.p (Q09882) 	249 	Q_s 	AP_____ P • 	AAH ND K.. 	DG 	FSI____ TVERQ 	ERY- AIMRQKMAE 	QE 	QR FML QED H 
D.d (SNWA) 	26 OT 	- .V 	'P 	A SI. • VS S 	QD K.. 	DX 	HFT 	I ESH 	E S - AELERKLAQ 	ER 	DM RKX, ENE - S 
P.S (gi3845299) 2 54 	- - 1v - 	N 	N P 	- IQSKK MN V. - 	EN 	ML S 	V K K 	- E IQ I - NS VHKQ RH L 	EE 	NV RNL I 	HER. 
S.c (Prpd5p) 	163 	• 	AAV 	'PN 	VA ER V.. .R 	DMENNT 	tAG M LS 	EN GE 	QEIRSRMELKRLAMEQ MLA 	SR KELSQYHNGT 

continued... 



...continued 

D.m (Bx42) 	 341 
5.8 (SNW1) 	 338 _______________________________________________________________________________________________ 
C.e(Q22836) 	 341 _______________________________________________________________________________________________ 
A. t: (gi3540201) 	349 _______________________________________________________________________________________________ 
S.p (Q09882) 	 342 _______________________________________________________________________________________________ 
D.d (SMWA) 	 358 IIQQRYTRKDNSD$DNDNDNDSSSDEDKNKRTPPMNRRSRSRSTERIPSRNDNDDDDDRYRIKDNRDNRGRDNIDSRDNRD$RDSRDSRDSRDSR 
s.f (g13845299) 	346 _______________________________________________________________________________________________ 
S.0 (Prp45p) 	 255 _______________________________________________________________________________________________ 

D.m (Bx42) 	 341 ----------------------------------------------LRNPEAAEPSGSCATG5EvRENDLAEDQjtERQRDRNLQR..AApE K 
S.s(SNW1) 	 338 ----------------------------------------- ------------IKTHVEKEDGEAREDDEIHI3R3t.ERQHDRNLSR..AAPD K 
C.e (Q22836) 	 341 --------------------------------------- --------------MRRKDDEDDEQVKVDEEIRDLDDIRKER5sIAR..sRpD A 
A.t(g13540201) 	349 ----------------AAMSMPVSSDRGRSESVDPRGDYDNYDQDRGREREREEPQETREEREKRIQDEKIEE - RRERERERRLDAKDAAMG K 
S.1) (Q09882) 	 342 ------------------RNAASSGPSHAKPRSTSVSSEERSRSRAGSFSHHSESENEDEDSEAFRRDQEIRE - RRQAEKDLRLSRMGA ER 
D.d (SNwA) 	 453 DSRDSRDNRDSRDSRDNRDNRDNRRRDDSNDRDRYSKRRSDSDSDSDSDSSDSEDERVRRERKEKLEDDKIflMEKKRELEREYRLE . . .ASGK 
P.S (g13845299) 	346 -----------------------------------------------------------------LAUSSLINDflKREIEREYRX..........N 
S.0 (Prp45p) 	 255 -----------------------------------------------------------------------------PQTGAIVKPXKQTSTVAR 

	

helix A 	 3—strand B 	3—strand C 	 3— tand D 
I 	 I 	 I 	I 	 I 	 I 

D.m (Bx42) 	 388 S L.QERE V II 
Dow Q • 	LP.AKSAGNGETLF.Q _TTK MD 	Y. .GD.EA 	.KPWRDSNTLGAHI K. SKQADSDNYGG. ..DLDA 

He (SNW1) 	 378 S L QRNEN I V_VP NPRTSN VQY Q_QSK MD FAGGE RI 	QAWRGGKDMAQSI K SKNLDKDMYGD 	DLEA 
C.e (Q22836) 	 381 D L.RKERE .1 K V LPDTNQKRTGEPQF.Q _DKTQ LD AM.. .DT 

I

-S AAWRGGDSVQQHV K. SKNLNDVYGG. ..DLDK 
A.t (gi3540201) 	428 S I .IRDRD II 	K 	MASTGGKGGGZVMY Q 	QDK MD 	FAA.. .DQ 	KGLFTAQPTLSTL K. KKDRDEEMYGNADEQLDK 
S.p (Q09882) 	 416 A LAED RP • VA R 	L. S KP SM SS DT MI • S 	QA S LG 	FQ . . DEDS 	K PWRAAP S. . S TL R. - GATL SR QV. . DASAEL ER 
D.d(SNWA) 	 544 S F.NRDQD 	I K 	QASIKR..TEDSIY.Q _'QSESLT 	F..GNDS 	KPLFGG.AVSNSI R.KSNQBDNTSIQDVLSNsR 
P.f(gi3845299) 	369 L KMKNYENYVE Q 	NKVNVSKNNN...IH•IT 	INE.QNNVTTTQD.DT QTALFNNKN.NANI 3tFSSERLRKNVQKIETRDTMQ 
S.0 (Pxp4Sp) 	 273 L ELAYSQG - I 	K I 	. .AAKRSEQPDLQY .SF . .TRANASAKRHE. . ..QNPIV.FVQQDI .ESI KTNYEKLDEAVNVKSEGASGS 

D.m(Bx42) 	 415 IV.N..KRFVP.Q S ASKEAAAGQRSG E EKEE....IPILDQFLNMAKK..APKRAEEKNNERS.SHSDRKRSKRD- "FV:::P_ ------
H.S(SNW1) 	 466 RI.K..I' 	E S SDRRQRG..REG 	Q ..EE....PLDKFLEEARQMGGSKRPSDSSRPKEHEHEGKKRRKE --------
C.e(Q22836) 	 469 IIEQ..KNRFV...A. G S AEGSSRG...SG 	Q EKDQ....VLSSLFEHTKE...KERGGDGGDSRGEs....KRSRRD--------- 
At (g3540201) 	519 TEN TERFK 	P 	1 ASERV GSKRDR E EKEEEQ 	PLEKWVSDLKKGKKPLDKIGSGGTMRASGGGGS55RDDDHGGSGRTK 
Sp(Q09882) 	 502 ITSE SRYDVLGNAH K K SDEVVES RAG 	T EKD IA 	PVDTFLNNVSSKKT --------------------------------- 
Vd(SNWA) 	 632 FGKEGGSGSGGVPRP E B 'SD 	RSKDRTG 	EKEKKKSDPFDDFSKKR 
P.S (g13845299) 	459 PVKYIKDISDPFGL. •SLLSQAKKK 
S.c (Prp45p) 	 360 HGPIQFKAESDDKS•NYGA 

D.m (Bx42) 	 547 
5.8 (0KW].) 	 537 
C.e (Q22836) 	 536 - - - - - - - - - 
A.t (0i3540201) 	605 INFERSDRR 
S.p (Q09882) 	 558 
D.d (SKWA) 	 688 
P.S (gi3845299) 	483 - - - - - - - - - 
S.0 (Prp45p) 	 380 



So far, the group consists of only 7 members, besides Prp45p: the 61 kDa 

protein Bx42 of Drosophila inelanogaster (D. melanogaster, Acc.no. P39736; Frasch 

and Saumweber, 1989), the human 61.5 kDa protein SNWI (U43960; Baudino et al., 

1998; Dahl et al., 1998), a hypothetical 78 kDa protein SNWA of Dictiostelium 

discoideum (D. discoideum; P54705; Folk et at., 1996), a hypothetical 62.7 kDa 

protein of Schizosaccaromyces pon2be (S. pombe, Q09882), a hypothetical 69.4 kDa 

protein of Arabidopsis thaliana (A. thaliana; gi3540201), a hypothetical 60 kDa protein 

of Caenorhabditis elegans (C. elegans; Q22836) and a hypothetical 482 amino acid 

long protein of Plasinodiumfalciparum (P. falciparum; gi3845299). 

Table VI. I summarises the sequence homologies between the proteins, giving the 

percentage of amino acid identities of the full-length proteins, as well as of the SNW 

domain (underlined with a grey box in figure VI.2). 

\ SNW1 
Rs 

Bx42 
D.m. A. t. \ C.e. D.d. S.P. P.f. 

Prp45p 
S.C. 

SNW1 
H.s 

N., 
\ 

50.8 35.7 45.9 28.4 38.2 27.8 22.8 
82.5 68.1 72.7 54.2 62.3 46.7 35.5 

Bx42 
D.m. 

50.8 43.6 

IN\ 
52.7 32.5 42.7 29.9 22.4 

82.5 65.1 66.3 53.6 61.9 49.8 34.4 

A. t. 
35.7 43.6 40.3 35.0 39.3 29.7 23.3 
68.1 65.1 60.2 54.2 60.2 51.1 40.0 

C.e. 

45.9 52.7 40.3 31.0 39.1 28.2 22.8 
72.7 66.3 60.2 52.7 58.5 41.6 34.5 

D.d. 
28.4 32.5 35.0 31.0 \ 35.4 23.7 18.6 
54.2 53.6 54.2 52.7 53.6 37.0 30.3 

S.p. 
38.2 42.7 39.3 39.1 35.4 31.3 21.9 
62.3 61.9 60.2 58.5 53.6 49.6 35.9 

P. f. 
27.8 29.9 29.7 28.2 23.7 31.3 24.5 
46.7 49.8 51.1 41.6 37.0 49.6 35.4 

Prp45 
S.C. 

22.8 22.423.3 22.8 18.6 21.9 24.5 
35.5 34.4 40.0 34.5 30.3 35.9 35.4 

Table VIA: 
Homologies between the "SNW" proteins. 
Pairwise sequence alignments were performed using the Genestream align program 
(section 11.4). Values give the percentage of amino acid identity of either the full 
length proteins (number above line) or of the SNW domains (number below line) as 
defined by the grey bar in figure VI.2. Abbreviations for organisms used as in figure 
VI.2. 
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From these comparisons the degree of relationship among the SNW proteins of the 

different species can be deduced. The strongest relationship with respect to their 

primary structure is between the Drosophila and Caenorhabditis proteins (52.7% 

identity over the whole sequence). Although both proteins have slightly less homology 

to the human SNW1 protein than to each other (50.8% and 45.9%, respectively), the 

amino acid sequence of the SNW-domain shows a higher degree of conservation 

between the human and the Drosophila Bx42 protein (82.5%) and between the human 

and the C. elegans protein (72.7%) than it does between the Drosophila and the C. 

elegans protein (66.3%). This shows the close relationship of the three proteins and 

suggests an important function of the SNW domain, which remained more conserved 

during evolution than other parts of the three proteins. 

The S. pombe and Arabidopsis proteins seem to be quite closely related. They 

both exhibit the highest homology to the Bx42 protein (42.7% and 43.6%), but are 

more distantly related to it than are the human and the C. elegans proteins. The 

Dictosteliurn protein has a 35% amino acid identity with the S. pombe and A. thaliana 

proteins, but shows less conservation with the other proteins. The SNW protein of P. 

falciparum exhibits approximately 30% amino acid identity to the human, the 

Drosophila, the Caenorhabditis, the S. pombe and the Arabidopsis protein and about 

24% to the Dictiostelium protein and Prp45p. It is therefore difficult to put it closer to 

one or the other of the proteins. 

The 24.5% identity to the P. palcfarum protein is indeed the highest score of 

amino acid identity of Prp45p to any of the SNW proteins. With the other SNW 

proteins, Prp45p shares slightly more than 20% identical amino acid residues, apart 

from the Dictiostelium protein, where the score is only 18.6%. For the SNW domain, 

the identities of Prp45p to the other SNW proteins range from 30-40%. 

From the high degree of primary structure conservation it could well be imagined that 

the human, the Drosophila, the S. pombe, the Arabidopsis, the Dictiostelium and 

maybe the Plasmodium proteins represent functional homologues. Prp45p, however, 

seems to be more distantly related. Generally, the similarity to the other proteins is 

relatively low outside the SNW domain. Prp45p is considerably shorter than the other 

polypeptides and lacks an n-terminal extension which, in the other proteins, contains a 

number of very strongly conserved residues and regions (see figure VI.2). 
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Furthermore, Prp45p, in comparison to its counterparts in other organisms, lacks a 

conserved proline-rich region, which constitutes a potential binding site for SH3 

domains (see dashed box in figure VI.2, e.g. Mongiovi et al., 1999). SH3 domains 

(src homology domain-3) constitute a family of protein-protein interaction modules that 

bind to peptides displaying an X-proline-X-X-proline consensus sequence. 

Considering the relatively low degree of sequence conservation, it seemed uncertain 

whether Prp45p is in fact a functional homologue of the other SNW proteins. To 

clarify this question it was attempted to complement the effects of Prp45p depletion 

from the yeast cells by producing the human homologue SNW1 in the cells. This 

experiment is presented in section VI.9. 

Apart from the strongly conserved SNW domain, the proteins contain a region 

further to the carboxy-terminus, which resembles the n-terminal half, from helix A to 

n-strand D), of the consensus sequence for the src homology domain-2 (SH2 domain; 

Waksman et al., 1992). SH2 domains are most often found in tyrosine kinases and 

play an important role by recognising specifically phosphotyrosines in signal 

transduction cascades. They complement the action of the catalytic (tyrosine) kinase 

activity by communicating the phosphorylation states of signal transduction proteins to 

elements of the signalling pathway. Signal transduction proteins, which contain SH2 

domains, but are not tyrosine kinases have also been found (for a review on src 

tyrosine kinases and SH2 domain function see e.g. Courtneidge et al., 1993). 

However, it remains to be determined whether the sequence conservation of part of an 

SH2 domain in the SNW proteins projects to a similar function. This is particularly 

questionable for Prp45p, in which this domain is rather degenerate compared to other 

members of the SNW proteins (see figure VI.2). 

To date, the functional analysis of the SNW proteins is still rudimentary. Apart 

from Prp45p, which will be discussed in detail later, the only members of the group 

for which experimental data are available are the Bx42 protein of D. melanogaster and 

the human SNWI protein. 

The Bx42 protein was identified as a nuclear protein that is tightly associated 

with nucleosomal chromatin (Frasch and Saumweber, 1989). It is widely expressed in 
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all tissues of the fly and was found to be localised to specific condensed sites on 

polytene chromosomes. Interestingly, this pattern of chromosomal localisation changes 

in response to the steroid hormone 20-OH-ecdysone (Wieland et at., 1992), 

suggesting that Bx42 may be a steroid hormone regulated transcription factor in 

Drosophila. 

For the human homologue, two groups independently also suggested an 

involvement of the protein in transcription. Baudino et at. (1998) isolated the SNWI 

protein (they named it NCoA-62) in a two-hybrid screen as interactor of the nuclear 

vitamin D receptor (VDR). VDR acts in a heterodimeric complex with the retinoid X 

receptor (RXR), which binds to vitamin D-responsive promotor elements to regulate 

the transcription of specific genes or gene networks. The authors were able to confirm 

a direct interaction of SNWI with the VDR ligand-binding domain in in vitro 

immunoprecipitation experiments using the recombinant proteins. Furthermore they 

demonstrated a dependence of the expression of retinoic acid-, estrogen- and 

glucocorticoid responsive reporter genes on co-expression of SNWI, whereas the 

basal level of transcription and transcription of unrelated genes was not effected. 

Another group isolated SNWI (they called it Skip) as interactor of the avian retroviral 

oncogene v-Ski, which is also postulated to act as a transcription factor (Dahl et al., 

1998). SNWI also interacted with the cellular form of the Ski protein in the two-

hybrid system. The authors confirmed the observed interaction in in vitro experiments 

and demonstrated a nuclear localisation of SNWI. An involvement of v-Ski in nuclear 

hormone receptor pathways can well be imagined, since it was shown that v-Ski could 

replace the nuclear hormone receptor family oncogene v-ErbA, which transforms avian 

erythroid cells (Larson et at., 1992). 

Surprisingly with respect to the above data yielded for SNWI, the protein was 

shown to be a component tightly associated with the spliceosome: Neubauer et at. 

(1998) identified the protein when they assembled human splicing complexes from 

HeLa nuclear extracts on a biotinylated, radiolabelled pre-mRNA and purified the 

complexes by gel filtration and affinity chromatography. The proteins were separated 

by two-dimensional gel electrophoresis, the spots excised from the gel and analysed by 

mass spectrometry. Interestingly, three distinct spots in the gel corresponded to the 

SNWI protein, suggesting that the protein might be subjected to phosphorylation or 
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other posttranslational modifications. The authors report furthermore, that a green 

fluorescent protein-SNW 1 (GFP: : SNW I) fusion protein colocalises with spliceosomal 

snRNPs. 

The fact that Prp45p was isolated in the two-hybrid screen with the well 

characterised splicing factor Prp22p and the finding that its potential human homologue 

SNWI (Skip, NCoA-62) was demonstrated to be component of the spliceosome, 

strongly suggests a role of Prp45p, SNW1 and possibly the other SNW proteins in the 

splicing process. 

VI.3 Prp45p interacts with Prp22p in the two-hybrid system 

The Prp45 protein was identified in a two-hybrid screen using Prp22p as bait 

(see chapter V.3). Five different prey plasmids were isolated that encoded fusion 

proteins containing different fragments of Prp45p (see also figure V. I A, Chapter 

V.3). Fragments Prp45p(l-350) and Prp45p(9-290) cover large parts of the n-

terminus and stretch into the c-terminus of the 379 amino acids long protein. These 

fragments are statistically most significant, because they were identified in the screen 5 

and 2 times, respectively. Three other fragments Prp45p(212-379), Prp45p(262-359) 

and Prp45p(194-379), that were each found only once, cover large parts of the c-

terminus, but do not contain n-terminal regions. The common domain of all prey 

fragments, comprises amino acids 262-291. The strength of the interaction of these 

fragments with Prp22p was investigated in more detail in a directed two-hybrid mating 

assay. Figure VI.3A shows the results of this assay in which the strength of the 

interaction was monitored by adding different concentrations of 3AT to the medium. 

It is demonstrated that all Prp45p prey fragments support a two-hybrid 

interaction with Prp22p up to 3AT concentrations of at least 15 mM. Prp45p( 1-350) 

even allows growth of the diploid cells up to a 3AT concentration of 50 mlvi. 

Furthermore it can be seen that the frequency with which the prey fragments were 

isolated in the screen is reflected in the strength of the two-hybrid interaction. 

Prp45p(l-350), found 5 times, interacts strongest with Prp22p. Prp45p(9-291), 

isolated twice, interacts slightly stronger than the c-terminal three fragments. 
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Figure VI.3: Investigation of the Prp22p-Prp45p interaction in a 
directed two-hybrid mating assay. CG1945 and Y187 yeast strains were 
transformed with pAS2AA-, pBTM 116- or pACTJIStop-derived plasmids encoding 
the depicted bait or prey fusion proteins. Transformants were propagated on the 
appropriate selective medium and then mated on YPDA medium overnight at 30°C. 
The resulting diploids were propagated on YMM -WL medium for 24 h at 30°C and 
transferred onto YMM -LWH selective medium containing different concentrations of 
3AT. Cells were incubated for 2 days at 30°C. A) Bait plasmids used were: GBDp 
(Gal4p DNA-binding domain), pASM; LAp (LexA protein), pBTMI 16; 
GBD::Slu7p, pASS1u7; GBD::Prpl8p, pASPrpl8; GBD::Prp22p, pMA22; 
GBD::Prp22p(479-826), pMA22s. Prey plasmids used were: GAD::Prp45p 
(1-350), p22-1; GAD: :Prp45p(9-291), p22-10, GAD: :Prp45p(l 94-379), p22-13; 
GAD:: Prp45p(2 12-379), p22-19; GAD:: Prp45p(262-3 5 9), p22-27; GAD: :Prp46p 
(16-45 1), p45-31; GAD::Prp46p(24-432), p45-3; GAD::Prp46p(33-451), p45-45; B) 
Bait plasmids used were: LA::Prp45p, pMA45; LA::Prp45p(259-286), pMA45cr; 
LA::Ymr44p, pMA44BTM; LAp, pBTMII6; Prey plasmids used were: 
GAD: :Prp22p, p22;  GAD:: Prp22p(479-826), p7-111-5; GAD:: Prp22p( 142-747), 
p7-111-9; 	GAD: :Prp4Sp( 1-350), 	p22- 1; 	GAD: :Prp45p( 194-379), 	p22-13; 
GAD:: Prp45p(262-3 59), p22-27; GAD: :Syf3p(592-687), p22-12; 	GAD: :Yjl 156p 
(129-560), p7-IV-27; (GAD - Gal4p transcription activation domain). 
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The insert encoding Prp22p(479-826), which was originally found as prey fragment in 

the Slu7p two-hybrid screen (see figure 111.2, chapter 111.2.2), was cloned into the 

pASM.BC bait vector to produce the fusion protein GBD::Prp22p(479-826). This 

central fragment of Prp22p contains all 6 conserved motifs of the DEAH-box family. It 

is shown here, that this fragment of Prp22p is able to interact with Prp45p, at least 

with prey-fragment Prp45p(l-350). However, the interaction of Prp45p(l-350) with 

this Prp22p fragment is not as strong as the interaction with the full length Prp22p bait, 

suggesting that although Prp45p interacts with Prp22p in the conserved region, the 

interaction is probably strengthened by contacts between the proteins outside this 

highly conserved region of Prp22p. 

Prp45p was also tested in this experiment for an interaction with Slu7p and 

Prpl8p, which are known to act at least at one point of the splicing process in close 

proximity to Prp22p. None of the Prp45p prey fragments interacts with Slu7p. They 

also do not interact with Prpl8p, except fragment Prp45p(212-379), for which a two-

hybrid interaction with Prp I 8 allows weak cell growth on a 3AT concentration of up 

to 5 mM. However, since Prp45p(212-379) differs from fragment Prp45p(194-379) 

only in that it contains 19 aminoacid residues less at its n-terminus, it is questionable 

whether the observed interaction is biologically important or an artefact of the system. 

Maybe, just in this particular fusion, the Prp45p fragment folds into a certain way 

distinct from the native structure, which is prone to form an aspecific interaction with 

the Prpl8 protein. Fusion proteins of Prp46p (GAD::Prp46p(16-451), 

GAD::Prp46p(24-432) and GAD::Prp46p(33-451), (see section VI.10.2, fig. VI.16) 

were used here as a negative control, in order to show that the Prp22p bait does not 

interact with any prey tested. 

The distribution of the Prp45p prey fragments found with Prp22p, a group of 

more amino-terminal fragments (Prp45p(1-350) and Prp45p(9-291)) and a group of 

carboxy-terminal fragments (Prp45p(2 12-379), Prp45p(262-3 59) and Prp45p( 194-

379)), that share a small overlap, leaves mainly two possibilities for the interaction of 

Prp45p with Prp22p. Either there are separate contact points of Prp22p with n- and 

c-terminal regions of Prp45p, or the 30 amino acid overlap between the prey-fragments 

is itself crucial for the protein-protein interaction. 



To address this question it was investigated whether the common domain of the prey 

fragments alone was sufficient to support a two-hybrid interaction of Prp22p with 

Prp45p. For this reason, oligonucleotides FCR-1 and FCR-2 were used in a PCR to 

amplify the region encoding amino acids 259-286 of Prp45p from plasmid p22-I 

(encoding fragment GAD::Prp45p(1-350)). The region deviates slightly from the actual 

common region of amino acids 262-291, since primer sequences were chosen that 

guaranteed optimal annealing to the template DNA. The amplified and gel-purified 

fragment was subsequently cloned into the polylinker of bait vector pBTM 116 via the 

BarnHl restriction site. The resulting plasmid was named pMA45cr and should 

express a fusion protein of Prp45p(259-286) fused to the LexA protein 

(LA::Prp45p(259-286)). The integrity of the insert (orientation and sequence) was 

checked by DNA sequencing. The plasmid was then transformed into yeast strain L40. 

A directed two-hybrid mating assay was performed to test the small fusion protein 

LA::Prp45p(259-286) for an interaction with Prp22p preys (figure VI.3B). Full-length 

Prp45p fused to the LexA protein (LA::Prp45p) produced from plasmid pMA45 was 

also tested (the cloning of pMA45 will be described in section VI. 10.1). 

The LexAp (LAp) as well as the LA::Prp45p has a potential to autoactivate 

transcription when produced together with a number of prey fusions in the diploid cells 

(bottom and top lane). For that reason the results yielded for the full length Prp45p 

fused to LAp are difficult to interpret (top lane). Although cell growth seems to be 

considerably increased when the proteins LA::Prp45p and GAD::Prp22p are co-

expressed, compared to cell growth upon co-expression of LAp and GAD::Prp22p, it 

cannot be stated clearly whether this weak difference can be accounted to a 

strengthened two-hybrid interaction or simply to different expression levels or 

differences in stability of the proteins. However, if the common region of Prp45p is 

fused to the LAp (LA::Prp45p(259-286), the activation of the reporter genes is more 

specific and an interaction can only be detected with the full length Prp22p prey 

(GAD::Prp22p). This suggests that indeed the region spanning the amino acids 259-

286 of Prp45p is important and sufficient for an interaction with Prp22p. The 

interaction is considerably weaker, though, than the interaction of the different Prp45p 

prey fragments with the Prp22p bait shown above (figure VI.3A). On plates containing 

5m1V1 3AT, cell growth is abolished, as is true of all interactions shown in figure VI.3B 



(data not shown). This indicates that additional amino acid residues in Prp45p might be 

involved in supporting the interaction or affecting the production or stability of the 

fusion protein. These residues are likely to be located further to the n-terminus of the 

protein, as is suggested by the strong interactions of the prey fragments Prp45p( 1-350) 

and Prp45p(9-291) with Prp22p. 

Interestingly, two putative phosphorylation sites are located within this Prp22p-

interacting region of Prp45p (see also figure V. IA, chapter V.3). A threonine residue 

at position 267 and a tyrosine residue at position 278 are potential targets for protein 

kinases, since the preceding amino acid residues constitute recognition motifs for 

serine/threonine and tyrosine kinases, respectively. 

VIA Generation of a conditionally regulated and protein A-
tagged PRP45 allele 

In order to investigate a potential function of Prp45p in nuclear pre-mRNA 

splicing, a chromosomal PRP45 allele was generated, the expression of which could 

be conditionally regulated. This should allow the depletion of the protein from the cells 

under non-inducing conditions and a subsequent investigation of the consequences of 

this depletion for the splicing process. At the same time the protein should be tagged, 

providing a tool to immunoprecipitate it from cell extracts in order to study a possible 

association with spliceosomal components. 

To achieve this aim a one-step PCR-mediated strategy for the construction of 

conditionally expressed genes developed by Lafontaine and Tollervey (1996) was 

applied. Using oligonucleotide primers PFun-1 and PFun-2, a cassette was PCR-

amplified from plasmid pTL27 containing the HIS3 marker gene, the yeast Gall-JO 

promotor region and a sequence that encodes two IgG binding domains of the 

Staphylococcus aureus protein A. The PCR product was separated from the vector by 

agarose gel electrophoresis and purified using the QlAquick Gel Extraction Kit 

(Qiagen). Subsequently, the cassette was transformed into the diploid yeast strain 

BMA38. The flanking sequences of the primers were chosen to allow homologous 
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recombination of the cassette upstream of the chromosomal PRP45 gene, in such way 

that the protein A sequence becomes fused to the ATG start codon of the PRP45 ORF 

and 100 bp of the PRP45 promotor region directly upstream the ATG is deleted. Thus, 

integration of the cassette at the desired locus should put the PRP45 ORF under control 

of the Gall promotor, i.e. one should be able to allow expression of this PRP45 allele 

by growing the strain with galactose as sole carbon source and shut off its expression 

by growing the strain on glucose-based medium. Transformants were selected by 

plating the cells onto medium lacking histidine and containing 2% galactose, 2% 

raffinose and 2% sucrose (YMGRS -I-I) but no glucose. 140 histidine prototrophic 

transformants were obtained. 

The integration of the cassette into the chromosomal locus was checked by PCR on 

one of the yeast colonies using oligonucleotides PFun I and PFun2. A DNA fragment 

of the expected size of approximately 3 kb could be amplified from this transformant 

but not from the wt parental strain, giving a first indication that the cassette had been 

integrated into the chromosome at the desired location in this clone (data not shown). 

This yeast clone was named YMA45/1. 

Subsequently a western analysis was performed to look at the production of the 

protein A-tagged Prp45p in this strain, to prove that the 3 kb PCR product was indeed 

derived from the cassette integrated in the promotor region of the PRP45 gene and to 

demonstrate that PRP45 gene expression can be shut off by growing the strain under 

non-inducing conditions. The YMA45/1 strain as well as the parental wt strain BMA38 

were grown for 15 hours in either YPDA or YMGRSsup liquid medium and 

subsequently crude cell extracts were prepared from the cultures. Aliquots of the cell 

extracts were then run on a 12% SDS-polyacrylamide gel and electroblotted. The 

protein A-tagged Prp45p was detected using anti-rabbit IgG-horseradish peroxidase 

linked antibodies and visualised by ECL (see figure VIA). 
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Figure VIA: 
Western blot analysis of protein A-tagged Prp45p. 
A) Schematic illustration of the expected integration of the HIS3-PGAL-protA 
regulation cassette into the genomic PRP45 locus in strain YMA45/1. B) Western blot 
analysis to investigate the regulative production of the protein A-tagged Pr45p fusion 
protein (ProtA::Prp45p). Strain YMA45/1 was grown for 15 hours at 30'C in either 
YPDA (Glu) or YMGRSsup (Gal) liquid medium and crude cell extracts were 
prepared (wt strain BMA38 grown in YMGRSsup was used as control). The proteins 
were fractionated on a 12% (w/v) SDS-polyacrylamide gel, electroblotted and probed 
with anti-rabbit IgG-horse radish peroxidase antibodies. Proteins were visualised by 
ECL. The position of the ProtA::Prp45p is indicated. 



It can be seen that under inducing conditions (growth in YMGRSsup) a protein 

which runs at about 65 kDa is produced in cells from strain YMA45/1. This protein is 

absent when cells of that strain were grown in YPDA . This strongly suggests, that 

indeed the cassette had been integrated into the PRP45 promotor region, thereby 

putting the PRP45 gene under control of the Gall promotor. Under inducing 

conditions, the protein A-tagged Prp45p can be detected as a clear single band. 

Glucose repression of the Gall promotor, however, prevents the production of the 

tagged protein, at least to an extent that makes it undetectable under the conditions used 

in this experiment. Protein A-tagged Prp45p runs slightly slower than expected. Its 

calculated molecular weight is 57.2 kDa (42.5 kDa for Prp45p + 14.7 kDa for the 

double protein A epitope). However, Prp45p is a highly charged and basic protein, 

which could account for its slightly abnormal electrophoretic mobility. 

In order to investigate the effects of the depletion of Prp45p on cell growth as 

well as on pre-mRNA splicing, a haploid strain containing the conditionally regulated 

PRP45 gene had to be generated. For this reason the diploid strain YMA45/1 was 

sporulated and the resulting tetrads were dissected onto YMGRSsup solid medium as 

well as onto YPD agar plates (figure VI.5). 

As expected, on YPD plates in any case at most two spores germinated. Obviously, 

depletion of Prp45p prevents spore germination and/or cell growth. On galactose-

based solid medium, under conditions that should allow the production of the tagged 

protein, in half of the dissected tetrads 3 or 4 spores germinated and grew to colonies, 

indicating that the production of the tagged protein is able to support cell growth. The 

cells grown from spores of tetrad 3 (figure VI.5A) were subsequently suspended in 

microtiterplates and spotted onto either YPDA- or YMGRSsup agar plates (figure 

VI.513). As expected, only in two cases the cells grew to colonies on YPDA agar, 

whereas on YMGRSsup agar plates all cells formed colonies. Two spores should 

contain the regulated PRP45 allele. On YPDA solid medium, the essential Prp45 

protein becomes depleted, therefore two spores do not form colonies. The fact that on 

YMGRSsup plates all colonies grew essentially equally fast at a range of temperatures 

(16, 23, 30 and 37°C) indicated that tagging Prp45p at its n-terminus does not effect 

its function, at least not to a significant extent in this assay. 
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Figure VI.5: 
Effects of metabolic depletion of Prp45p. 
A) Tetrad analysis of strain YMA45/1. Strain YMA44/1 was grown overnight at 
30°C in YMGRSsup, the cells collected and transferred to Spm sporulation medium. 
After 4 days of incubation at 23°C the formed tetrads were dissected onto either YPD 
(Glucose) or YMGRSsup (Galactose) agar plates. The spores were incubated for four 
days at 23°C. B) Haploid cells grown from the spores of tetrad 3 (Galactose, figure 
A)) were serially diluted in microtiter plates and spotted onto either YMGRSsup 
(Galactose) or YPDA (Glucose) agar plates and incubated at a range of temperatures 
for 2 days. 
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By restreaking all colonies depicted in figure VL5B onto YIvIGRS -H solid agar plates, 

it could be confirmed, that indeed the cells that did not grow on glucose were histidine 

prototrophs. This demonstrated that the growth defect on glucose segregated with the 

HIS3 marker gene and therefore is due to the insertion of the cassette into the 

chromosome (data not shown). The haploid strain containing the conditionally 

regulated PRP45 gene that encodes the tagged protein will be subsequently referred to 

as YMA45/2. 

To study the effect of Prp45p depletion on cell growth in more detail, the 

growth of the strains YMA45/2 and BMA38n was compared. Both strains were grown 

in YPDA- and YMGRSsup liquid medium at 30°C and growth was monitored by 

taking samples at different time points to measure the optical density at 600 nm 

wavelength (0D600). In figure VI.6A it is confirmed, what was already demonstrated 

in figure VI.513 for growth on solid medium, namely that there is no difference in cell 

growth of strain YMA45/2 and the wt strain BMA38n under permissive conditions. 

This means that neither changing the expression level of Prp45p (PRP45 is likely to be 

overexpressed under the strong Gall promotor), nor adding an n-terminal protein A 

tag effects the function of the essential protein to an extent that would be visible in 

these growth assays. Figure VI.6B shows the effect of Prp45p depletion on cell 

growth. After about 7 to 8 hours growth in YPDA liquid medium, growth of strain 

YMA45/2 starts to slow down compared to the wt strain and after about 13 hours the 

cells stop doubling, and growth levels off. The data of the Prp45p depletion 

experiments confirm the finding of Diehl and Pringle (1991), who demonstrated by 

disruption of the PRP45 ORF that FUN20 (PRP45) is an essential gene. 
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Figure VI.6: 
Effect of Prp45p-depletion on cell growth. 
Overnight cultures of strains YMA45/2 and BMA38n were grown in YMGRSsup 
liquid medium to midlogarithmic phase and aliquots of the cultures were used to 
inoculate pre-warmed 250 ml of either YMGRSsup- or YPDA liquid medium to an 

OD600  of approximately 0.1. The cultures were grown at 30°C and aliquots were 
removed in order to monitor growth by measuring the OD6  at different time points. 
The cultures were diluted at intervals to maintain logarithmic growth. A) Growth of 
BMA38n and YMA45/2 in YMGRSsup (Galactose-based) liquid medium. B) 
Growth of BMA38n and YMA45/2 in YPDA (Glucose-based) liquid medium. 
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In order to finally prove that the observed detrimental effect on cell growth in 

glucose-based medium is in fact solely due to the depletion of Prp45p, 

complementation of the growth defect of strain YMA45/2 by providing Prp45p was 

tested (figure VI.7). 
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Figure VI.7: 
Complementation of Prp45p depletion by the LexA::Prp45 fusion 
protein. pASAA- or pBTM1 16-derived bait plasmids encoding the depicted fusion 
proteins were transformed into the YMA45/2 strain. Transformants were selected on 
YMGRS -w medium, restreaked for colony purification and then suspended, serially 
diluted, into microtiterplates and spotted onto either YMGRS -w (Galactose) agar or 
YMM -W (Glucose) agar. Cells were incubated for 3 days. Bait plasmids used were: 
GBDp (Gal4p DNA-binding domain), pASAA; LAp (LexA protein), pBTMI 16; 
GBD::Slu7p, pASSIu7; GBD::Prpl8p, pASPrp18; GBD::Prp22p, pMA22; 
LA::Prp45p, pMA45; LA::Prp45p(259-286), pMA45cr; LA::Syf3p, pCRI 17. 

Indeed, transformation of YMA45/2 with bait plasmid pMA45, from which a 

LexA::Prp45p (LA::Prp45p) fusion protein is produced (section VI. 1O.1) complements 

the growth defect, whereas producing only LexAp (LAp) or other fusion proteins does 

not. Notably, overexpression of the second step splicing factors Slu7p, Prpl8p or 

Prp22p does not overcome the effect of Prp45p depletion. This suggests that Prp45p 
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does not simply support the function of these proteins by, for example, facilitating 

binding of these factors to the spliceosome, in which case overexpression of these 

factors might compensate for the loss of Prp45p function. Not surprisingly, the small 

fragment of Prp45p (Prp45p(259-286)), which was found to interact with Prp22p in 

the two-hybrid assay, is also not able to complement the growth defect of strain 

YMA45/2, suggesting that Prp45p has other essential functions, besides the binding of 

Prp22p. These data prove that in fact the depletion of Prp45p is responsible for the 

growth defect of strain YMA45/2 on YPDA solid- and in YPDA liquid medium. 

Furthermore, they demonstrate the functionality of the Prp45p bait fusion protein, 

which was later used in a two-hybrid screen to search for Prp45p-interacting proteins 

(section VI. 10.2). 

In addition, the above experiments illustrate that the regulated expression system 

works, i.e. that PRP45 gene expression can be effectively turned off by growing the 

cells of strain YMA45/2 in glucose-based medium. Therefore, the strain can be used to 

investigate whether the depletion of Prp45p has an effect on pre-mRNA splicing. 

VI.5 Prp45p is required for pre-mRNA splicing in vivo 

The strong two-hybrid interaction of Prp45p with Prp22p suggested a role for 

Prp45p in pre-mRNA splicing. Not only the strength of the interaction, but also its 

specificity was intriguing. Prp45p had not been identified in any previously performed 

two-hybrid screens within the TAPIR network, indicating that the protein does not 

contain any structural features or motifs, which would give rise to aspecific 

interactions with other proteins or RNAs that could provoke false positive two-hybrid 

responses. 

The generation of strain YMA45/2, in which the PRP45 gene can be conditionally 

expressed, now allowed the initial functional characterisation of Prp45p. To directly 

investigate a potential role of Prp45p in the splicing process, the effect of Prp45p 

depletion on pre-mRNA processing was studied. 
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Cultures of strains YMA45/2 and BMA38n were grown in either galactose-

(YMGRSsup) or glucose-(YPDA) based medium and samples were taken at different 

time points. Subsequently total RNA was prepared from those cells and the processing 

of pre-mRNA was monitored by Northern analysis (figure VI.8). 

When probing against exon I of the RP28 gene, a strong accumulation of pre-

mRNA was clearly visible in strain YMA45/2, when cells were grown under non-

permissive conditions, i.e. in YPDA liquid medium. After 8 hours growth under 

repressing conditions, unprocessed precursor mRNA could be seen and the amounts 

increased further after prolonged growth (see 10 and 12 hour time points). No pre-

mRNA could be detected in cells of either the YMA45/2 strain grown under permissive 

conditions (on galactose-based medium) or the BMA38n wt control strain grown in 

YPDA medium. These data show a clear splicing defect in cells depleted of Prp45p and 

thus demonstrate a requirement for Prp45p for the processing of pre-rnRNA. 

Concomitantly with the accumulation of the precursor mRNA a decrease in the amount 

of mature message was observed. This was most clearly seen for the 12 hours time 

point, in which the detected mRNA levels were decreased under non-permissive 

conditions compared to permissively grown cells, although the loading control (PGK-

mRNA, bottom panel) suggested, that even less RNA was loaded in the latter case. 

Therefore, it could be concluded that Prp45p is a bona fide splicing factor, required for 

efficient pre-mRNA splicing in vivo. 

The northern analysis confirmed, what was already suggested when the growth of the 

YMA45/2 strain was compared to wt growth under permissive conditions, namely that 

the protein A-tagged Prp45p (protA: :Prp45p) is functional. Pre-mRNA splicing in vivo 

does not seem to be effected by the n-terminal tag nor by putatively increased 

expression levels of the PRP45 gene under control of the strong Gall promotor. 
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Figure VI.8: 
Northern analysis of splicing upon Prp45p depletion. Cells of strain 
YMA45/2, as well as BMA38n wild-type cells were grown (as described in figure 
VI. 6) in YMGRS sup (Galactose) or YPDA (Glucose) liquid medium at 30°C. 10 ml 
aliquots of the cultures were removed after different incubation times and total RNA 
was extracted from the cells. 10 ig of RNA was loaded on a 1% (w/v) formaldehyde 
gel and blotted to Hybond-N membrane (Amersham). The blot was then probed with 
a radiollabelled DNA fragment complementary to exon 1 of the RP28 gene. The result 
was visualised by autoradiography. The positions of the RP28 pre-mRNA and 
mRNA are indicated. The blot was stripped and reprobed with a radiolabelled DNA 
fragment of the intronless PGK gene in order to control loading (bottom panel). 



Since Prp45p was found as a Prp22p interactor, the question arises whether it is 

a general splicing factor, required for splicing of all introns or, as for Prp22p, Slu7p 

and Prp l8p, whether its requirement might be dictated by the distance between the 

branchpoint and the 3' splice site. Prp22p for instance, is only required for splicing of 

introns in which the branchpoint-3' splice site distance is larger than or equal to 21 

nucleotides (Schwer and Gross, 1998). Therefore, if Prp45p interacted with Prp22p 

during 3' splice site recognition and cleavage, it would not be surprising to see a 

similar pattern of selective Prp45p requirement. 

The RP28 pre-mRNA, which was used in the northern analysis, contains an intron in 

which the branchpoint-3' splice site distance is 39 nucleotides. In order to test whether 

Prp45p might be dispensable for splicing of introns with very short branchpoint-3' 

splice site distances, splicing of U3 snoRNA was investigated. The distance between 

the branchpoint sequence and the 3' terminal CAG of the U3 intron is only 7 nt. Again 

cultures of YMA45/2 and the wt strain BMA38n were grown under permissive and 

restrictive conditions and samples were taken at different time points. Total RNA was 

isolated from these cells and the processing of U3 precursor RNA was investigated, 

this time by primer extension analysis. An oligonucleotide (U3exon2) hybridising to 

the extreme 5' end of exon 2 was used for the extension reaction, so that the removal 

of the U3 intron could be monitored. Extension products were expected to be 236 and 

209 nucleotides long for the U3A and U313 precursor RNAs, respectively, 79 

nucleotides for the mature U3 snoRNA and 78 nucleotides for the intron-lariat exon 2 

intermediate. The intron-free U 1 snRNA served as an internal loading control. Its 

extension product should be 165 nucleotides in length. The results of this primer 

extension assay are depicted in figure VI.9. 
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Figure VI.9: 
Primer extension analysis of splicing upon Prp45p depletion. Cells of 
strain YMA45/2, as well as BMA38n wild-type cells, were grown (as described in 
figure VI. 6) in YMGRS sup (Galactose) or YPDA (Glucose) liquid medium at 30°C. 
10 ml aliquots of the cultures were taken after different incubation times and total 
RNA was extracted from the cells. 10 jig of RNA was used in a primer extension 
reaction using radiolabelled oligonucleotide primers complementary to the extreme 5' 
end of exon 2 of the U3 snoRNA and to the (intronless) U  snRNA. The reactions 
were deproteinised, extracted with phenol/chloroform and the products resolved on a 
6% (w/v) polyacrylamide gel. The result was visualised by autoradiography. The 
positions of the extension products are indicated. 



It is clearly demonstrated here, that the depletion of Prp45p (YMA45/2 grown in 

glucose-based medium) leads to a strong accumulation of the two U3 precursor RNAs. 

Already after 6 hours growth under non-permissive conditions the two pre-U3 RNAs 

were strongly detectable. Only very weak bands of pre-U3A RNA appear at late time 

points in the control tracks (strain YMA45/2 grown in galactose-based medium and 

BMA38n grown in YPDA). Therefore, it could be concluded that Prp45p is required 

for splicing of U3 snoRNA in vivo and this finding strongly suggests that the 

requirement of Prp45p for pre-mRNA splicing is not restricted to introns with 3' splice 

sites distal to the branchpoint, but instead that Prp45p represents a general splicing 

factor, required all splicing reactions. Furthermore, this result argues against the 

hypothesis that Prp45p directly modulates Prp22p function in 3' splice site selection 

and cleavage. One would expect to see a similar selective requirement of Prp45p only 

for splicing of introns with distal branchpoint-3' splice site distances in this case. 

However, it is still possible that Prp45p acts as a general second step splicing factor in 

close proximity or even in contact with Prp22p at that stage of the splicing process. 

Equally likely would be that Prp45p interacts with Prp22p at another stage of the 

splicing reaction. 

To address this question, the association of Prp45p with the spliceosome and 

with spliceosomal snRNPs was analysed, in the hope to gain knowledge about the 

timepoint of action of Prp45p during the processing of pre-mRNAs. These 

investigations will be described in the next section. 

VI.6 Prp45p associates with the spliceosome 

V1.6.1 Prp45p coprecipitates spliceosomes 

In order to determine whether and at what particular stage of the splicing 

process, Prp45p is associated with the spliceosome, it was tested whether the protein 

A-tagged Prp45p (protA: :Prp45p) was able to coprecipitate precursor, intermediates or 

products of splicing. For that reason protA::Prp45p was produced in strain YMA45/2 

202 



and whole cell extracts (splicing extracts) were prepared. As control, a splicing extract 

was prepared from strain BMA38n expressing the double protein A epitope from 

vector pNOPPATAIL (kind gift of Klaus Heilmuth). Using radiolabelled actin pre-

mRNA as a substrate a splicing assay was performed. After 30 mm, 10 % of the 

sample was analysed for splicing activity, while the remaining 90 % was incubated 

with immunoglobulin agarose (IgG-agarose) or as controls, agarose beads or anti-

Prp8p antibodies. After the immunoprecipitation, the precipitates were treated with 

proteinase K, extracted with phenol/chloroform and analysed for the presence of 

radiolabelled RNA. The samples incubated with agarose beads (no antibodies) served 

as negative control to determine the background level of RNA precipitation due to 

aspecific binding of RNA to the agarose beads. The extract in which the protein A 

epitope (protA) was produced represented another negative control to establish the 

specificity of RNA precipitation by the Prp45p protein. Using anti-Prp8p antibodies 

served as a positive control. Prp8p is a U5 snRNP protein which is associated with the 

spliceosomes throughout the splicing reactions and should therefore precipitate pre-

mRNA, intermediates and the products of the splicing reaction as shown previously by 

Teigelkamp et at. (1995). 

To determine in more detail at which timepoint Prp45p might associate with the 

spliceosome, the coimmunoprecipitations with protA::Prp45p were also performed 

when splicing was blocked at a particular step. This was achieved by adding purified 

recombinant proteins of dominant negative (dn) alleles of the splicing factors Prp2p 

(dn Prp2Tp,  aminoacid exchange S378L) and Prpl6p (dn Prpl6KTp,  aminoacid 

exchange G378A) to the extracts before the splicing reaction was performed. Prp2p 

interacts transiently with the spliceosome immediately prior to the first 

transesterification reaction (Kim and Lin, 1993; King and Beggs, 1990). The dominant 

negative p2LATp  binds to the spliceosome but fails to function correctly. The protein 

cannot be released from the spliceosome and splicing becomes stalled prior to the first 

step (Plumpton et at. 1994). The dn Prpl6Tp  behaves in a similar way, but stalls 

splicing after the first but prior to the second step. The recombinant dn Prp 16 AKTP   was 

generated and purified by Ian Dix and Caroline Russell, dn Prp2Tp  was a generous 

gift from Margaret McGarvey (all this laboratory). In figure VI.10 the results of the 

coimmunoprecipitation experiments are presented. 
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Figure VI.10: 
Coprecipitation of spliceosomes by Prp45p. Whole yeast cell extract (splicing extract) was prepared from cells of strain YMA4512, 
grown in YMGRS5up liquid medium, producing the protein A tagged Prp45p (protA::Prp45p). As a control, an extract was prepared from 
strain BMA38n transformed with vector pNOPPATA1L, producing a double protein A epitope (protA). Splicing was performed in the 
extracts by addition of radiolabelled actin precursor-mRNA and splicing buffer (50 p1 total volume). The reactions were stopped and 5 jil was 
removed (splicing controls, input), deproteinised and the products kept at -70°C for precipitation until the immunoprecipitation had been done 
with the remainder of the samples: 45 p1 of the reactions were mixed with an equal volume of precipitation buffer containing either IgG-
agarose beads (I), agarose beads without antibody (B) or protein A sepharose beads with prebound anti-Prp8p antibodies (C) and incubated 
for precipitation for 2 hours at 4°C. The beads were washed in buffer containing 150 mM NaCl, deproteinised, extracted with 
phenol/chloroform and the RNAs precipitated. The samples from the immunoprecipitation (coIP) as well as the input samples (splicing) were 
then resuspended in formamide loading buffer and the precipitated RNAs resolved on a 6% (wlv) polyacrylamide gel. The labelled RNA 
species of the splicing reactions and of the precipiates were visualised by autoradiography. In two additional samples, recombinant dominant 
negative Prp2p or Prpl6p protein was added to the YMA45/2 extract prior to splicing (+ p2LATp  or + Prpl6 KTp)  and the samples were 
treated as described above. The positions of the labelled RNA species are indicated: LI-E2, Lariat-intron exon 2; LI, Lariat-intron; El, exon 1. 
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It can be seen that protA::Prp45p efficiently coprecipitated the pre-mRNA, the lariat 

intron-exon 2 and exon 1 intermediates as well as the excised intron (lane 4). Mature 

message was not detected in the precipitate. In both negative controls, using agarose 

without antibody and providing the protein A epitope but no tagged Prp45p, only very 

small levels of pre-mRNA were found in the precipitate (lane 5 and 21, respectively). 

These findings showed that Prp45p is associated with the spliceosome throughout the 

splicing reactions and that it stays associated with the spliceosome until after the 

second catalytic step, when it is found associated with the excised intron. 

When splicing was stalled due to prior addition of Prp2Tp  to the extracts (lanes 

7-9), the Prp45 protein still precipitated almost equivalent quantities of pre-mRNA 

compared to untreated extracts (lane 10 compared to 4). Therefore, Prp45p is already 

in the spliceosome, before Prp2p joins in to promote the first transesterification 

reaction. Small amounts of precipitated splicing intermediates, and excised intron from 

these stalled extracts must be accounted to residual splicing activity of the extracts, due 

to the presence of wild type Prp2p. 

Stalling splicing by addition of dn Prp l6 Tp prior to the substrate RNA (lanes 

13-18) did not give any more information on the spliceosome association pattern of 

Prp45p, but it nicely confirmed the data from the co-precipitation experiment of the 

unstalled reactions: in the extract in which splicing was stalled after the first but prior to 

the second transesterification, pre-mRNA and the intermediates of the splicing reaction 

were efficiently precipitated by Prp45p (lane 16). 

VI.6. 1 Prp45p coprecipitates spliceosomal snRNAs 

To investigate whether Prp45p is associated with any of the spliceosomal snRNAs, 

again protA::Prp45p was produced in strain YMA45I2 and whole cell extracts (splicing 

extracts) were prepared. The negative control was strain BMA38n transformed with 

vector pNOPPATA1L, which produces the double protein A epitope (protA). 

The extracts were either incubated with immunoglobulin-agarose (IgG-agarose), or as 

controls with agarose beads or anti-Prp8p antibodies, prebound to protein A-sepharose 

beads. After the immunoprecipitation, the precipitates were deproteinised, run on an 
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SDS-polyacrylamide gel and electroblotted. The membrane was subsequently 

hybridised with radiolabelled oligonucleotides complementary to regions of the U 

snRNAs. The result of this northern analysis is depicted in figure VI. 11. 

It was demonstrated that protA::Prp45p co-precipitated significant amounts of 

U2, U5 and U6 snRNAs but no UI or U4 snRNAs (lane 6). The agarose beads (no 

antibody) only precipitated background levels of UI, U5 and U6 snRNAs (lane 7) and 

the protein A epitope alone also did not precipitate any significant amounts of snRNAs 

(lane 3). This suggests that Prp45p associates with U2, U5 and U6 snRNAs under 

non-splicing conditions (no ATP was added to the extracts prior to the precipitation). 

Taking into account that only 40 % of the amount of extract that was used for the 

precipitations was used for the preparation of the total RNA, it becomes clear that the 

association of Prp45p with the U2, U5 and U6 snRNAs is relatively weak. The very 

efficient precipitation of U4, U5 and U6 snRNAs by antibodies against the tri-snRNP 

protein Prp8p showed that the precipitation procedure had worked (lanes 5 and 8). 

Considering that protA::Prp45p could be efficiently precipitated by IgG-agarose, as 

confirmed by western analysis (data not shown) and furthermore, the fact that it 

strongly precipitated spliceosomes, suggests that only a small portion of Prp45p is 

associated with snRNAs under non-splicing conditions. 
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Figure VI.11: 
Coprecipitation of snRNAs by Prp45p. Whole yeast cell extract (splicing 
extract) was prepared from cells of strain YMA45/2, grown in YMGRSsup liquid 
medium, producing the protein A tagged Prp45p (protA::Prp45p). As a control, an 
extract was prepared from strain BMA38n transformed with vector pNOPPATA1L, 
producing a double protein A epitope (protA). 50 p1 of the extracts were mixed with 
an equal volume of precipitation buffer containing either IgG-agarose beads (I), 
agarose beads without antibody (B) or protein A sepharose beads with rebound anti-
Prp8p antibodies (C) and incubated for precipitation for 2 hours at 4 C. The beads 
were washed in buffer containing 150 mM (or 75mM) salt, deproteinised, extracted 
with phenol/chloroform and the RNAs precipitated. The RNAs were then 
resuspended in formamide loading buffer, resolved in a denaturing 6% (w/v) 
polyacrylamide gel and electroblotted to a Hybond-N nylon membrane (Amersham). 
The RNAs were then probed with radiolabel led oligonucleotides complementary to the 
spliceosomal snRNAs. The positions of the Ul, U2, U4, USS, U51- and U6 
snRNAs are indicated. Total RNA (input): A 20 p1 aliquot of the extracts was 
deproteinised, precipitated and subjected to Northern analysis as the precipitation 
samples (coIP). 
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\T1.7 Generation of recombinant Prp45p 

From the experiments described in the previous sections it was determined that 

Prp45p enters the spliceosome prior to the first transesterification event, before action 

of Prp2p, and stays in the spliceosome until both transesterifications reactions are 

completed. Therefore, it could not be defined, whether Prp45p function was required 

for the first, the second or both transesterification reactions to proceed. To address this 

question, it was decided to produce Prp45p in Escherichia coli (E. coli) in order to use 

the recombinant protein in depletion/reconstitution experiments of cell extracts 

produced from strain YMA45/2. 

For the production of recombinant Prp45p the pET System (Novagen) was used, 

in which target genes are cloned under control of the strong bacteriophage T7 

promotor. The plasmids are then transformed into expression strains which contain a 

chromosomal copy of the T7 RNA polymerase gene for the expression of the target 

genes. Expression of the T7 RNA polyrnerase gene and consequently expression of 

the target gene is inducible by addition of isopropyl-3-D-thiogalactoside (IPTG) to the 

growth medium. The PRP45 ORF was isolated from the pMA45 vector (section 

V1.10. 1) via EcoRI, Sail restriction and recessed 3' termini were subsequently filled in 

by using the Klenow-fragment of E. coli DNA-Polymerase I (Promega). The fragment 

was then cloned into the E. coli expression vector pET 19b (Novagen), which had been 

previously cut with NdeI and blunted by Klenow treatment. The resulting construct 

was then checked by restriction digests and DNA sequencing using an oligonucleotide 

(T7-1 forward) as primer which allowed sequencing over the 5' junction of the 

inserted fragment. The plasmid, designated pETMA45 was then transformed into the 

E. coli expression strain BL2 1 (Novagen). In pETMA45, PRP45 is under control of 

the T7 promotor and the ORF is fused n-terminally to a region encoding 10 

consecutive histidine residues, which should allow Ni-NTA affinity purification of the 

produced protein. 

After overnight induction of PRP45 expression in BL21 by addition of 0.75 MM 

IPTG, the E. coli cells were harvested and cell extract was prepared. The extract was 

then passed over a Ni-NTA column (Qiagen). The column was washed twice with 

buffer containing first 20 then 55 mM imidazole to wash off any proteins aspecifically 
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bound to the column. Eventually, proteins still bound to the column were eluted by 

addition of buffer containing 200 mM imidazole. Aliquots of the fractions (and of the 

supernate and the washes) were subsequently resolved in a 12% SDS-polyacrylamide 

gel. Each fraction was run in duplicate on the same gel, which was cut in half after the 

run. One half of the gel was stained with coomassie blue for detection of the proteins 

present, the other half was subjected to western blotting to detect specifically the His-

tagged Prp45 protein, using mouse monoclonal anti-HIS antibodies (Quiagen). Figure 

VI. 12 shows the coomassie stained gel as well as the result of the western blot. 

A strong band in fractions 1 and 2 running at a molecular weight of 50-55 Wa 

is the main elution product present in the coomassie stained gel. This band also gives a 

strong signal upon detection by the anti-His antibodies (Quiagen) in the western blot, 

strongly suggesting that this band represents the His::Prp45 protein. Lower amounts 

of the protein are also present in fractions 3 and 4. The calculated molecular weight of 

the His: :Prp4Sp is about 45 kDa. Its decreased electrophoretic mobility could be 

accounted to its highly charged nature. The finding that the protein runs slower than 

predicted from the calculation of the molecular weight was actually expected, since as 

shown in chapter VIA, a protein A-tagged version of Prp45p also exhibits decreased 

mobility in SDS-polyacrylamide gels. The relatively strong bands at lower molecular 

weight which can be seen in fractions 1 and 2 are apparently breakdown- or 

prematurely terminated products of His: :Prp45p, since higher exposures show clearly 

that their amount decrease in proportion to the His::Prp45p in fractions 2, 3, 4 and 5 

(data not shown) and furthermore, no products of that molecular weight can be 

detected in the supernate. 

Fractions 1 and 2 were dialysed to remove the highly concentrated imidazole 

from the buffer. Aliquots of the dialysed fraction 2, containing purified, recombinant 

His::Prp45p were used in subsequent experiments. 
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Figure VI.12: 
Expression of His-tagged Prp45p in Escherichia coli. Two litres of LB 
medium containing the appropriate antibiotics were inoculated with E. coli strain 
BL21, bearing the expression plasmid encoding the His10::Prp45 fusion protein, 
pETMA45. The culture was grown at 30°C to an 0D600  of 0.4 and expression 
induced by addition of IPTG to a final concentration of 0.75 mM. The culture was 
incubated for another 12 hours at 30°C and a protein extract prepared. The extract was 
incubated with Ni-NTA agarose beads (Qiagen) for 2 hours at 4°C. The beads were 
transferred to a column and washed twice with 10 ml of buffer containing 20 and then 
55 mM imidazole. Finally, proteins were eluted in 1.5 ml fractions with buffer 
containing 200 mM imidazole. Thirty microlitres of the fractions as well as of the 
washes (W, combined) and of the supernatant (S) were then loaded in duplicate and 
resolved on a 12% (wlv) SDS polyacrylamide gel. The gel was cut in half with one 
part stained with coomassie blue and the other analysed by western blot analysis. 
His10::Prp45p was detected with mouse monoclonal anti-penta His antibodies 
(Qiagen) and visualised by ECL. 
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\T1.8 Prp45p is required for splicing in vitro 

As shown in section VI.5, depletion of Prp45p from the cells leads to an 

accumulation of precursor mRNA, showing that the splicing process is blocked at one 

point or the other. In order to define whether Prp45p function is required prior to or 

after the first transesterification reaction, whole cell extracts were prepared from strain 

'[MA45/2 grown under permissive or non-permissive conditions. Then splicing of 

uniformely radiolabelled actin precursor-mRNA was performed for 30 min at 23°C. 

Alternatively, I il of fraction 2 (see section VI.7) containing purified His::Prp45p (or 

1 III of a 1:4 dilution of fraction 2) was added to the previously depleted YMA45/2 

extract before splicing was performed. The extracts were deproteinised and 

fractionated by SDS polyacrylamide gel electrophoresis (figure VI. 13). 

It becomes clear, that the extract from cells depleted of Prp45p is incapable of 

splicing the actin precursor mRNA (lane 3), whereas the extract from cells grown 

under permissive conditions (producing protA::Prp45p) splices the precursor to at least 

60 % wt levels (lane I and data not shown). This finding suggested that Prp45p is 

required for pre-mRNA splicing in vitro and furthermore, since no intermediates are 

produced, that its function is already required prior to the first transesterification 

reaction. However, it had to be proved whether the incapability of the Prp45p-depleted 

extract to splice, was indeed a consequence of Prp45p depletion, or whether it was 

simply caused by an inadequate preparation of that particular extract. The addition of 

His::Prp45p indeed restores splicing activity of that extract, although only to some 

extent (approximately 10-30 % compare lanes 4 and 5 to lane 1). However, the result 

proves that suboptimal extract preparation is not the cause for the incapability of the 

extract to splice, but that in fact, the absence of Prp45p prevents splicing in this 

extract. Why splicing is only partially restored upon addition of recombinant 

His::Prp45p to the extract could have several reasons. First, maybe in the yeast cell, 

Prp45p is subjected to posttranslational modifications (such as phosphorylation or 

glycosylation), which are essential for full activity and which are not found on the 

recombinant protein. Second, maybe only a small amount of the purified recombinant 

protein is active. It was noticed that during the dialysis procedure of the isolated 
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His::Prp45p, the protein precipitated to some extent. Therefore, it could be imagined 

that a large part of the added protein was actually insoluble and inactive. It seems, 

though, that the amount of Prp45p is not limiting here, since splicing activity of the 

extract does not improve by adding four times more Prp45p (compare lanes 4 and 5). 

The addition of 3 tl undiluted fraction 2 also did not provide an increased splicing 

activity to the extract (data not shown). Another possible explanation for the poor 

splicing activity of the reconstituted extract might be that the breakdown products 

obviously present in fraction 2 (VI. 12) interfere with Prp45p function. They may 

occupy potential binding sites for the full length protein in the spliceosome, but are 

unable to perform its function, thereby decreasing splicing efficiency. Third, the His-

tag could effect Prp45p function. 

It was also tried to complement the splicing defect of strain YMA45/2 grown 

on glucose-based medium by providing full-length Prp45p fused to the LexA protein 

(LA::Prp45p). It was already shown (chapter VIA, figure. VI.7) that this does 

complement the growth defect of the strain under non-permissive conditions. Indeed, 

also the in vitro splicing activity could be restored by producing LA::Prp45p from 

plasmid pMA45 (lane 2 in figure VI.13). However, again as with the recombinant 

purified protein, splicing activity can only be partially restored by providing Prp45p. 

The fact that LA::Prp45p can rescue cell growth to almost wt levels (figure VI.7) but 

splicing activity in vitro only very weakly, suggests that LA::Prp45p is almost fully 

functional but that the in vitro requirements to achieve proper splicing are much more 

difficult to fulfil. The important qualitative message, however, gained from these 

depletion/ reconstitution and complementation studies remains: Prp45p is essential for 

pre-mRNA splicing in vitro and its function is required prior to the first 

transesterification reaction. These results certainly do not exclude the possibility that 

Prp45p may have additional roles at other stages of the splicing reaction, e.g. during 

the second step or in spliceosome disassembly as maybe suggested by the interaction 

with Prp22p. 
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Figure VI. 13: 
Complementation of Prp45p-depleted splicing extracts. Whole cell extracts 
(splicing extracts) were prepared from cells of strain YMA45/2 grown for 12 hours to 
an 0D600  of 1.3 in either YMGRS sup (Gal) or YPDA (Glu) liquid medium. Splicing 
of radiolabelled actin pre-mRNA was performed with 10 il (total volume 20 il) of 
neat extracts as well as with the extracts after prior addition of His10::Prp45p 
recombinant protein. Splicing was also performed with an extract from YMA45/2 
cells grown in YMM -W, which had been transformed with plasmid pMA45, coding 
for a LexA::Prp45 fusion protein. After splicing, the reactions were deproteinised, 
extracted with phenol/chloroform, the RNAs precipitated and resolved in a denaturing 
6% polyacrylamide gel. The result was visualised by autoradiography. The positions 
of the RNA species are indicated: LI-E2, Lariat-intron exon 2; LI, Lariat-intron. Gal - 
YMGRS sup; Glu - YPDA or YMM-W; 1 il - one microlitre of fraction 2 (figure 
VI. 13) after dialysis was added; 1:4 - 1 il of fraction 2 after dialysis was diluted 1:4 
in splicing buffer and added prior to splicing. 



VI.9 Functional homology between Prp45p and the human 
SNW1 protein 

In section VI.2 the primary structure similarity of Prp45p to a number of proteins 

in other organisms was presented. The human protein SNWI (also called Skip or 

NCoA-62) which shares 22.8% sequence identity with Prp45p was demonstrated to be 

a component of the spliceosome (Neubauer et al., 1998). In order to test, whether 

Prp45p and SNWI are in fact functional homologues, complementation of the growth 

defect of strain YMA45/2 (depleted of Prp45p) was attempted by overexpression of 

SNWI. 

Therefore, strain YMA45/2 was transformed with plasmid pGBT9/SNWI. 

This two-hybrid bait plasmid produces the DNA-binding domain of Gal4p fused to the 

SNWI protein (GBD::SNWI). Plasmid pGBT9/SNWI was kindly provided by Mike 

Hayman. As a control, plasmid pGBT9 (producing GBDp) was transformed in 

parallel. Figure VI. 14 shows growth of strain YMA45/2 containing pGBT9 or 

pGBT9/SNWI under permissive and repressing conditions. 

It is clearly demonstrated here that overexpression of the GBD::SNWI protein in 

YMA45/2 cells overcomes the growth defect on glucose-based medium. When the 

GBDp alone is produced, only a background level of growth can be detected. 

Although it seems that the human SNWI protein does not complement the growth 

defect as efficiently as the yeast Prp45p (LA::Prp45p), it can definitely be concluded 

that SNWI can to some extent substitute for the function of Prp45p in the yeast cells. 

This means that the human protein SNWI (Skip, NC0A-62) represents the functional 

homologue of Prp45p, and therefore will be henceforth referred to as human Prp45p 

(hPrp45p). 

The fact, that hPrp45p and Prp45p are functional homologues, although the 

amino acid identity between the proteins is only 22.8%, strongly suggests that also the 

SNW proteins of S. pombe, A. thaliana, D. melanogaster, P. falciparum and D. 

discoideum, which share a much higher degree of homology to hPrp45p are pre-

mRNA splicing factors. It remains to be determined whether maybe additional proteins 

in yeast compensate for the probable evolutionary loss of some domains in Prp45p, 

which are highly conserved in the other SNW proteins. Alternatively, some domains 
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might be redundant in yeast because regulatory functions (such as alternative splicing) 

are not required. 

YMGRS -HW 
	

YMM -HW 
	

YPDA 
I 	 I 

1 	10-1 10-2 10-3 
	

1 10-1 10-2 10-3 
	

1 	10-1 10-2 10- 

GBDp 

GBD::SNW1 

{ 

LA: :Prp45p 

Figure VI.14: 
Complementation of Prp45p-depletion by the human SNW1 protein. 
Yeast strain YMA4512 was transformed with either pGBT9 (producing the Gal4p 
DNA-binding domain, GBDp), pGBT9/SNWI (producing the human protein SNWI, 
n-terminally fused to GBDp, GBD::SNW1) or pMA45 (producing Prp45p fused to 
the LexA protein, LA::Prp45p). Transformants were selected on YMGRS -HW 
medium, suspended in serial dilutions in microtiterplates and then transferred onto 
either galactose- (YMGRS -HW) or glucose- (YMM -HW, YPDA) based media. Four 
independent transformants producing the GBD::SNW1 protein are depicted. - the 
bottom lane shows the untransformed YMA45/2 strain. The plates were incubated for 
2.5 days at 300C. 

V1. 10 The Prp45p two-hybrid screen 

In the previous sections it was demonstrated that Prp45p is a novel essential 

splicing factor. This section will describe the performance of a two-hybrid screen with 

Prp45p as bait. It was hoped to gain results which would confirm the Prp22p-Prp45p 
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interaction and maybe reveal additional interactions of the novel splicing protein with 

the splicing machinery. 

VI.10.1 Cloning the Prp45p bait vector 

In order to construct a bait vector containing the complete PRP45 ORF, 

oligonucleotide primers Fund I and Func2 were used to amplify the PRP45 ORF from 

genomic DNA of strain BMA38n. The PCR product was gel purified using the 

Quiagen gel extraction kit and subsequently cut with the restriction enzymes EcoRI and 

Sail. The resulting product was cloned into vector pBTM 116, which had been cut with 

EcoRI and Sail Then the product was sequenced using oligonucleotides W2248 (LexA 

forward) and LexA reverse. The complete ORF was sequenced twice, and no 

deviations from the sequence in the database were found. The vector, designated as 

pMA45, was transformed into yeast strain L40. pMA45 should express Prp45p fused 

to the LexA protein (LA::Prp45p). The expression and functionality of the bait fusion 

protein was tested via transformation of pMA45 into strain YMA45/2, which contains 

a conditionally regulated PRP45 allele. The plasmid was able to complement the 

growth defect of YMA45/2 under non-permissive conditions (chapter VIA, fig. VI.7) 

and furthermore it was able to partially complement the splicing deficiency of a splicing 

extract prepared from YMA45/2 cells grown under repressing conditions (section 

VI. 8, figure VI. 12). 

VI.10.2 The Prp45p two-hybrid screen 

Prp45p bait culture (plasmid pMA45 in yeast strain L40) was grown overnight to an 

OD600  of 1.1 and then mixed with I ml of FRYL in 20 ml of YPDA. The haploids were 

mated for 4 hours on filters and subsequently collected and spread onto 105 YMM 

-LWH plates. The haploid strains mated with an efficiency of 17 % and a total of 34 

million diploids were screened for expression of the HIS3 reporter gene. After 3 days 

approximately 2000 colonies had grown on the selective plates. 1542 large and middle 
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sized colonies were picked, suspended in microtiter plates and then spotted onto YMM 

-LWH plates containing either 5 or 20 mM 3AT to increase the stringency on the 

reporter gene expression. After 3 days, 115 colonies exhibited significant growth on 

20 mM 3AT, another 192 colonies grew on plates containing 5 mM 3AT. It was 

therefore decided to analyse the 115 clones, which obviously contained the strongest 

interacting preys. After purification of the colonies by restreaking them 3 times on 

YMM -LWH medium, the prey inserts were amplified by yeast colony-PCR. The 

resulting PCR products were gel-purified using the QiAquick Gel Extraction Kit 

(Qiagen) and their identity was determined by DNA-sequencing using oligonucleotide 

W2248 (lexA forward). In some cases lexA reverse primer was used in addition, to 

determine the exact 3' end of the inserts. Table VI.2 summarises the results of the 

Prp45p two-hybrid screen. 

Nine prey proteins that can be categorised as Al candidates were found to 

interact with Prp45p: 

ORF YDR141c encodes a 194 kDa hypothetical protein, which was previously 

classified as a putative integral membrane protein, due to the presence of several 

strongly hydrophobic domains in its primary structure (Nelissen et al., 1997). The 

protein was found only twice in the screen. 

The Firl protein, encoded by ORF YER032c, was found in two different 

fusions a total of four times. Firip function obviously influences polyadenylation-

cleavage efficiency. The protein has already been discussed in some detail in chapter 

IV.3, because it was also found in a two-hybrid screen, using Ymr44p as bait, which 

was identified in turn as a Prp 18p two-hybrid interactor. The two small c-terminal 

fragments of Firip, which were found to interact with Prp45p, had also been identified 

with the Ymr44p bait. This could mean that either Prp45p and Ymr44p bind 

successively to this c-terminal fragment or alternatively, Prp45p, Firip and Ymr44p 

act in a complex, which might connect the splicing and polyadenylation processes. 

However, as discussed in chapter IV.3, the connection of Ymr44p to the splicing 

pathway is somewhat dubious, since the protein interacts with splicing factors 

associated with U 1, U2 and U5 snRNPs and a sensible explanation of Ymr44p 
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function to link splicing and polyadenylation is therefore difficult to propose. In 

addition, the Firip was shown to interact aspecifically with a number of baits unrelated 

to splicing and polyadenylation in directed two-hybrid assays (del Olmo et al., 1997) 

and therefore it is questionable whether the Prp45p-Firlp interaction is indeed of 

biological relevance or whether the c-terminus of Fir lp is simply predisposed to cause 

false positive two-hybrid results. Additional investigations need to be done, preferably 

genetic assays, which do not depend directly on sequence and structure of the 

participating proteins, which could demonstrate connected functions of these splicing 

and polyadenylation factors. 

Three different fragments of a hypothetical 95 kDa protein encoded by ORF 

YGR198w were found to interact with the Prp45p bait. No function has as yet been 

assigned to the protein and it does not share significant homology to other proteins in 

the databases. 

The ORF YGR2 70w encodes the 157 Wa non-essential protein Yta7p. Yta7p 

was found in two independent fusions a total of four times in the screen. The protein 

belongs to a family of ATPases, whose members play diverse roles in cell cycle 

control, promotion of organelle fusion, protein degradation and gene expression (e.g. 

Tomoyasu et al., 1993; Thorsness et al., 1993). The cellular role of Yta7p is not 

known. 

The ORF YLR024c encodes a hypothetical 216 Wa protein, which shows 

similarity to the yeast ubiquitin-protein ligase (E3) Ubrlp. Its function is not known to 

date. The protein was found 4 times in two independent fusions in the screen. 

220 



Table VI.2: 
Results of the Prp45p two-hybrid screen. A LexA-Prp45p fusion protein (LA::Prp45p) was used as bait to screen the FRYL for 
interacting proteins. Preys of the A categories are ordered alphabetically according to their ORF name as defined in the Saccharomyces 
Genome Database, SGD. B category preys are listed at the end of the table. No. - frequency, with which a fragment was identified in the 
screen; Chr - chromosome number; Strand: w - Watson DNA strand, c - Crick DNA strand (as defined by SGD); nt. from AUG - number of 
nucleotide at which fusion starts (A from the initiation codon AUG is 1); Insert size - insert length (nucleotides) determined by sequencing, 
* - insert size has been determined only approximately via BamHI digest of the prey plasmid and subsequent agarose electrophoresis. Preys 
were classified in categories Al, A2, A3, A4 and B as defined by Fromont-Racine et al., 1997 and described in section 111.1. 



Clone No. Gene GF Chr Strand 	ft. from AUG ORF size (bp) l Insert size (bp) Category: Protein info 
28 2 CDC27 YBL084c 1 	II c 90 2277 	1148 	A2 	Component of anaphase promot. complex, 8 TPR-motifs 
27 1 PKC1 YBL105c II C 901 3456 	1000* 	A3 	Put, protein kinase 
12 1 RAD16 YBR114w II w 175 2373 	400* 	A4 	DNA-helicase, radiation repair 
106 1  YDLO01w IV w 1084 1293 	1200* 	A4 
68 1 NUP84 YDL1 16w IV w 508 2181 600 * A4 	Homology to mammalian Nupl07p 
36n 1  YDR141C IV C 1738 5097 n.d 	Al 
36c 1 YDR489w IV w n.d 885 n.d 
50 1  YDR141c IV c 1399 5097 1782 Al 
43 1 NGG1 YDR176w IV w 1524 2109 400* A4Transcription factor, histone acetyltransferase complex 
51 2 SYF1 YDR416w IV w 1325 	2580 1157 A3 	Splicing factor, syn. lethal with cdc40 
76 1 FIR I YER032w] V w 2125 	1 	2778 440 1 	Al 	3' 	end 	processing, 	polyA-cleavage 	Site efficiency 
1 3 3 FIR I YER032w V w 1 	1957 	2778 539 	Al 	3' 	end 	processing, 	polyA-cleavage site efficiency 
39 1 TRP5 YGL026c 	VII c I 

1 	1 850 	1 	2124 400 * A4 	Tryptophan synthetase 
65 1 ADE6 YGR061c 	VII c 1 	2374 	4097 1200* 	A3 	5-phosphoribosylformyl-glycinamidine 	synthetase 
61 1  YGR071c 	VII c 903 	2588 	1900* 	A3 
72 1  YGR198w VII I 	w 1351 	2454 	1071 	Al 
78 1  YGR198wI VII w 2233 1 	2454 	527 	Al 
90 1  YGR198wI VII w 2242 1 	2454 	534 	Al 
85 2 YTA7 YGR270wI VII -wl 2437 4140 	1156 	Al 	Member of cdc48/PAS1/SEC18 family of ATPases 
74n 2 YTA7 YGR270w' VII w 2503 4140 	1300 	Al 	Member of cdc48/PAS1/SEC18 family of ATPaSes 
54 1 YAPI80I YHR161c VIII w 334 1914 	300* 	A4 	Yeast assembly protein, binds Panip and clathrin 
57 1 SEC6 YIL068c IX c 298 1 	2418 	1500* 	A3 	Component of the exocyst component 
58 1  YJL103c X c 655 1857 	400* 	A4 
8 1  VJL149w X w 1522 1993 1 	400* 	A4 
109 1 APL1 YJR005w X w 475 2103 1100* 	1 	A3 	Beta-adaptin, clathrin-associated complex 
100 1  YJR061w X w 1 	1183 	2809 1500* 	i 	A3 
71 2 DYNI YKRO54c XI C 

i 
1 	2068 12279 2200 * A3 	Heavy chain of cytoplasmic dynein 

11 n 1  YLR024c XII C 2458 5620 900 * Al 	Probable 	membrane 	prot., 	ubiguitin-ligase 	(E3) 	like 
llc 1 CDC27 YBL084c II c 
47n 3 ___ YLR024c XII c 2500 5620 1800 - 	Al 	'Probable 	membrane 	prot., 	ubiguitin-ligase 	(E3) 	like 
47c 1 (SSP2) (YOR242c) ?2L_ y  B 	I 
4 3 SYF3 YLR117cl XII c 1 0 1 2064 	860 	Al 	Splicing factor, horn, to D.melanogasfer 	cm-protein 
22 3 SYF3 YLR117cl XII c 32 2064 	436 	Al 	Splicing factor, hom. to D.melanogaster 	cm-protein 
69 3  YLR187w XII w 498 3081 	400* 	I 	A4 
84 2  YLR320w XII w 1831 4365 1200* 	A3 
63 3  YLR386w XII w 798 	2643 1000* Al 
113 2 YLR386wl XII w 991 	2643 800* Al 
9 1  YLR424w XII w 93 	2187 	1200* A2/3 

11 1 NUPI88 I YML103c XIII c 3871 	I 	4968 	i 	1100W A3 	Nucleoporin 
67 1  YMR031c XIII c -208 	2532 	437+ 	A2 
82 1 ECM5 YMR176w XIII 	I w 2368 4236 	1600' 	A3 	Extra cellular mutant 
6 6 1 SGSI YMR19Oc XIII c 1507 4344 	709 	Al 	DNA helicase motifs, 	genome stability 
8 8 1 SGS1 YMR1 90c XIII C 1198 4344 	1 088 	Al 	DNA helicase motifs, 	genome stability 
92 1  YNL078w XIV w 809 1224 	1 	1500' 	A4 

continued... 



...continued 
Clone No. Gene I 	GF Chr Strand nt. from AUG I ORE size (bp) Insert size 	(bp)l  Category lProtein 	info 
49 1 SLA2 YNL XIV w 40243w 3 2907 1700' A3 lTransmembrane protein, 	cell polarization and endocytosis 
70 1  YNL246w XIV w 77 888 440+ A2 
30 1 BNII YNL271c XIV C 4441 5862 700* A4 'Formin homology domain, homol. to BNR1 
64 1  YNRO59w XIV w 583 1743 400* L 	A4  
89 1  YOR023c XV c 55 1701 850* A2  
62 1 N/Fl YOR156c XV c 1082 2181 900* A4 Interacts with cdcl 2 	(in 	two-hybrid) 

9 2  Y PL1 51 c XVI c 379 1356 1 	76 AlSplicing factor 	(this 	work) 
6 1  YPL1 Sic XVI c - 6 6 1356 1 802 Al ISplicing 	factor 	(this 	work) 

2  YPL151c XVI c 5 1 1356 1 4 95 Al ISplicing 	factor 	(this 	work) 
11  YPL151c XVI c 69 1356 1 2 29 Al 	Splicing 	factor 	(this 	work) 

3 1 2  YPL151c XVI c 45 1356 1894 	1 	Al 	Splicing 	factor 	(this 	work) 
4 5 1]  YPL1 51 c XVI ci 96 1356 1309 Al 	lSplicing 	factor 	(this 	work) 
105 iJ  YPR023c XVI C 682 1206 500* A4  
16 1 SKI3 YPR189w XVI w 1387 4299 1200* A3 	lAntiviral prot., contains 8 TPR-motifs 

6 1 anti (YALO17w)1 I C  1200' B 
99 1 I 	anti (YAL024c)I I w  1100' B 
93 1 L 	anti (YBR156c) II 1 	w  750* B 
18 1 L 	anti (YGLO64c) VII wi  1000* B 
19 1 anti (YGRO59w) VII c I  1100 B 
80 1 anti (YIL068c) IX wj  750' _B__  
44 21 anti (YJR109c)l wJ  2400* - B 
25 2 anti (YJR1 lOw) X C   j 3000' - B 
53 1 anti (YLR187w) XII C  300* B 
74c 1 anti (YLR439w) XII c  n.d - B 
21 3 anti (YML083c) XIII w  800' - B 
103 1 anti i (YNL14Oc) XIV w  1300' B 
96 1 anti (YOL022c) XV w I 	n.d - B 
48 2 1 	anti (YPLO22w) XVI c I 	200' B 
34 1 anti (YPL152w) XVI c L J 	500' - B 
40 1 anti I (YPL152w) XVI c L 1000' B 
29 2 IYHRC Tyl-1  n.d - B 
23 1 mito I  I 	800' B 



The Syf3 protein, a recently described splicing factor, also called Cifip (Chung et at., 

1999), encoded by ORF YLRJ]7c, was found six times in two different fusions 

(figure VI. 15). 

clone: fragment: 
	 No. 

22: 	Syf3p(12-156) 

4: 	Syf3p(35-320) 

Syf3p 

3x 

3x 

1 35 	156 	 687 

Figure VI.15: 
Syf3p prey fragments identified in the Prp45p two-hybrid screen. The 
common domain of the prey fragments is indicated as a shaded box in the full length 
protein. Numbers in brackets describe the amino acid boundaries of the fragment. 
No. - frequency with which a prey fragment was identified in the screen. 

This result reciprocates the interaction seen when Syf3p was used as bait in a 

two-hybrid screen: Prp45p was identified as an A2 prey candidate with the Syf3 bait 

(Ian Dix and Caroline Russell, unpublished data). Intriguingly, Syf3p was also 

identified as interacting factor of the Al category in the Prp22p two-hybrid screen 

(chapter V.3). The Syf3p prey fragments found to interact with Prp45p cover a region 

close to the n-terminus of the protein, whereas the fragments interacting with Prp22p 

share a common region at the c-terminus, suggesting that the recognised two-hybrid 

interactions are not due to a general "stickiness" of a particular region within the Syf3 

protein. The characteristics and known functions of the Syf3 protein, as well as the 

significance of the strong two-hybrid interactions of Prp22p with Prp45p and Syf3p, 

and of Prp45p with Syf3p, will be the subject of discussion at the end of this chapter. 
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The 100 kDa protein Ylr386p was identified in two prey fusions a total of 5 

times. Ylr386p had previously been identified as significant interactor in a two-hybrid 

screen with the U6 snRNP core protein Lsm4p and was studied in some detail in this 

context (Andrew Mayes, PhD thesis, 1999). The protein was shown not to be essential 

for cell viability, but disruption of the ORF leads to a slow growth phenotype at 37 °C. 

A link with the splicing machinery could not be confirmed in the investigations done: 

inactivation of Ylr386p function did not affect the cellular levels of snRNAs (in 

contrast to Lsm4p, which is required for maintenance of U6 snRNA levels in the cell; 

Mayes et at., 1999). Nor did a two-hybrid screen with Ylr386p as bait reveal any 

interactions which would suggest an involvement of Ylr386p in splicing (Andrew 

Mayes, PhD thesis, 1999). In addition, when one compares the preys isolated with the 

Ylr386p bait with the preys found in the Prp45p screen, there are no overlaps present 

at all, making an involvement of Ylr386p and Prp45p in the same cellular process, or 

even a biological relevant interaction between the proteins unlikely. 

Two clones were isolated, which contained prey plasmids encoding independent 

fusions of the Sgsl protein (ORF YMR190c). The 163 kDa protein is an ATPase of 

the DEAD-box family, binds DNA and RNA, has a DNA-helicase activity and is 

thought to act as gyrase in concert with DNA topoisomerase III (Gangloff et at., 1994; 

Ng et at., 1999 and references therein). The protein was also found as an interacting 

protein of the A3 category in a two-hybrid screen with the second step splicing factor 

and cell cycle protein Prpl7p (A. Colley, personal communication). 

The statistically most significant interacting protein found in the Prp45p screen, 

however, is encoded by ORF YPLJ51c. The protein was found in six different prey 

fusions a total of 19 times, suggesting a strong and possibly biologically important 

interaction with Prp45p (see figure VI. 16). Interestingly, the common domain of the 

Yp115 1  prey fragments (amino acids 127-432) consists entirely of 7 consecutive WD 

repeat units, a peptide motif found in many regulatory proteins (Smith et al., 1999). 

This suggests that one or more WD repeats mediate the interaction with Prp45p. It is 

likely that all 7 repeats are required, maybe in order to form a functional structure, 

since no smaller prey fragments have been found. 
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clone: fragment: 

56: Prp46p(1-451) 

3: Prp46p(24-432) 

31: Prp46p(16-451) 

45: Prp46p(33-451) 

59: Prp46p(127-451 

1: 	Prp46p(18-451) 

Prp46p 
1 	127 	 432 451 

Figure VI.16: 
Prp46p prey fragments identified in the Prp45p two-hybrid screen. The 
common domain of the prey fragments is indicated as a shaded box in the full length 
protein. Numbers in brackets describe the amino acid boundaries of the fragment. No. 
- frequency with which a prey fragment was identified in the screen. 

Intriguingly, Ypl15lp was also found as an A2 candidate in the two-hybrid 

screen with the Syf3 protein bait (Ian Dix and Caroline Russell, unpublished data), 

adding weight to the hypothesis that Ypll5lp functions in a complex with Prp45p and 

Syf3p. Some initial functional characterisation has been done in this work to determine 

whether Ypl151p is involved in splicing. The data indeed strongly suggest a 

requirement of the protein for processing of pre-mRNA. Ypl151p was therefore 

renamed Prp46p, to indicate its involvement in splicing. Chapter VII is dedicated to 

Prp46p and will contain a detailed presentation of its primary structural features, its 

homologues and the functional analyses performed. 
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Another potentially meaningful prey candidate is the 100 kDa Syf 1 protein, 

encoded by ORFYDR4I6w, which was found twice as A3 candidate. Syfip, as 

Syf3p, was originally isolated in a screen for proteins being synthetic lethal with a 

deletion mutant of the second step splicing- and cell cycle factor Prp I 7/Cdc4O (Ben-

Yehuda and Kupiec, unpublished results), suggesting a closely linked function of the 

proteins in splicing and/or the cell cycle. Indeed, it has been shown in this laboratory, 

that Syfip is an essential splicing factor required for splicing before the first 

transesterification reaction takes place (Caroline Russell, unpublished results). Syf 1 p 

and Syf3p are structurally related in that they both contain so called tetratricopeptide 

(TPR) motifs, which have been implicated in protein-protein interaction (discussed in 

section VI. 10.3). Both proteins have been demonstrated to be essential for the cells to 

progress from the G2-phase of the cell cycle to mitosis (Ben-Yehuda and Kupiec, 

unpublished results). Besides the identification of Syfip and Syf3p in the Prp45p 

screen, the two proteins have been identified together in two additional two-hybrid 

screens performed in this laboratory, namely with the Isy I protein and the Syf2 protein 

(Ian Dix and Caroline Russell, personal communication; Dix et at., 1999). The above 

data strongly suggest, that Syflp and Syf3p act in close proximity to each other and 

that the observed two-hybrid interactions of these proteins with Prp45p reflect a 

concerted action of the three proteins at a particular stage of splicing. 

In summary, the Prp45p two-hybrid screen led to the identification of a novel 

splicing protein Prp46p (chapter VII). Furthermore, interactions with two recently 

characterised splicing factors, Syfip and Syf3p, were revealed. Unfortunately, the 

strong two-hybrid interaction of Prp22p bait with Prp45p prey was not directly 

confirmed in the reciprocal orientation. However, the identification of a two-hybrid 

interaction between Prp45p and Syf3p indirectly confirms at least a close proximity of 

Prp45p with Prp22p, since Prp22p bait isolated both Prp45p and Syf3p (chapter V). 

Furthermore, a weak but significant two-hybrid interaction was observed, when the 

Prp22p-interacting region of Prp45p was produced from the bait vector and tested 

against full length Prp22p prey in a directed two-hybrid assay (see chapter VI.3, figure 

VI.313). This suggests that Prp45p interacts with Prp22p, but that maybe a large 

fragment of Prp22p is needed for the structural formation of the interaction domain. A 
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sufficiently large fragment may not be present in the two-hybrid library which has an 

average insert size of 700 bp. 

V1.10.3 The TPR motif protein Syf3p might form a scaffold for a 

multi protein complex 

In the Prp45p- as well as in the Prp22p two-hybrid screen the Syf3 protein was 

identified as Al prey candidate. The finding that Prp22p also identified Prp45p as Al 

candidate, supports the hypothesis that these proteins act in a complex. Indeed Syf3p 

belongs to a family of proteins which contain a degenerate 34 amino acid motif that 

promotes protein-protein interactions: the tetratricopeptide (TPR) motif (for a review 

see Lamb et al., 1995). The TPR motif is defined by 8 loosely conserved amino acid 

residues, namely -W-LG-Y-A-F-A-P, which are found at conserved positions within 

the motif. The motif is normally present as tandem arrays and is repeated between 3 

and 16 times within a protein. Das et al. (1998) solved the crystal structure of the three 

TPR motif-containing protein phosphatase 5 and were able to demonstrate that adjacent 

TPR motifs are packed together in a parallel arrangement such that a tandem TPR motif 

structure is composed of a regular series of antiparallel (X-helices. They suggest that 

this arrangement of neighbouring a-helices defines a helical structure and an 

amphipatic groove and they predict, that multiple-motif TPR proteins would fold into a 

right handed super-helical structure with a continuous helical groove suitable for the 

recognition of target proteins. Indeed, a significant number of TPR-containing proteins 

can be found in multiprotein complexes in which the TPR motifs are thought to form 

scaffolds to mediate protein-protein interactions. Examples of such complexes are the 

anaphase promoting complex, containing the TPR motif proteins Cdc 16, Cdc23 and 

Cdc27, the mitochondrial import receptor complex (MAS70), the peroxisomal import 

receptor complex (PAS8, PAS 10 and PXRI) and the transcription repression complex 

which contains the Cyc8 TPR motif protein (for references see Goebl and Yanagida, 

1991 and Lamb et al., 1995 and references therein). 
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Syf3p consists of 15 consecutive TPR repeats and is therefore a good candidate to 

mediate protein-protein interactions within a larger complex. Indeed, the multiple two-

hybrid interactions involving Syf3p suggest that the protein could serve as a scaffold 

for the formation of a large protein complex. Syfip, containing 9 TPR repeat units, 

could play a similar, or supporting role in this putative complex. Figure VI. 17 shows 

the modular organisation of Syf3p and furthermore indicates the putative sites of 

interaction not only with Prp22p and Prp45p, but also with five other proteins 

identified as interacting proteins in two-hybrid screens. 

Prp45p interacts with an n-terminal region of Syf3p, which covers most of TPR 

motif 1, motifs 2 and 3 and approximately half of motif 4. Three additional proteins 

interact with the Syf3 protein in essentially this region: Ceflp, Isyip and Prp46p. The 

Cef 1 protein is an essential splicing factor, which was isolated as a component of a 

protein complex associated with the splicing factor Prpl9p (Tsai et at., 1999). Like 

Prpl9p, Cefip joins the spliceosome after the addition of the U2 snRNP and 

concomitantly with or immediately after dissociation of the U4 snRNP, i.e. just before 

the formation of an active spliceosome. Cefip was also isolated in two-hybrid screens 

performed in this laboratory with the isyip bait, the Syf2p bait and the Syf3p bait (all 

interactions were Al category; Ian Dix and Caroline Russell, unpublished results). The 

Isyl protein was found as prey in two-hybrid screens with the Syfip bait (Al) and 

with the Syf3p bait (A4; Dix and Russell, unpublished). Isy ip is non essential for cell 

viability but its deletion leads to a mild splicing defect in vivo ( Dix et at., 1999). The 

authors showed that the protein is associated with the spliceosome throughout the 

splicing reactions and that it is weakly associated with US and U6 snRNAs. Prp46p, 

originally identified with the Prp45p bait (see chapter VI. 10), also interacts with the 

Syf3p when used as bait (Al interaction; this work, M. Mellor-Clark, A. Clark and C. 

Russell). This two-hybrid screen furthermore reciprocated the interaction of Prp45p 

with Prp46p, since Prp46p bait isolated three independent fusions of Prp45p. 

Three proteins putatively interact with regions further to the c-terminus of Syf3p: the 

Syf2 protein interacts within the region of TPR motifs 10-14; the Isyl protein seems to 

have a second site of interaction within Syf3p, located somewhere in the region of 

TPR motifs 7-14; and a protein named Ntc20p interacted with prey fragments that 
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overlap in the region of TPR motifs 9-14 (Dix and Russell, unpublished; Mellor-Clark 

and Russell, personal communication). 

The SYF2 gene, like SYF] and SYF3, was originally identified in the already 

mentioned screen for mutants which exhibited synthetic lethality with a deletion of the 

gene encoding the cell cycle and splicing protein Cdc40p/Prp l7p (Ben-Yehuda and 

Kupiec, unpublished results). In this laboratory it was shown that Syf2p is associated 

with the spliceosome and that it weakly coprecipitates the U5 and U6 snRNAs 

(Russell, unpublished data). However, unlike Syflp and Syf3p, the protein is not 

essential for cell viability, nor does a complete deletion of the gene lead to any 

recognisable growth- or splicing defects. When used as bait in a two-hybrid screen, it 

not only interacted significantly with Syf3p, but also with Ceflp and Syflp (all Al 

interactions; Dix and Russell, unpublished data). 

The Ntc20 protein (Ntc20: nineteen  complex, 20 kDa) was also shown to be part of the 

above mentioned Prpl9p-associated complex (Tsai et al., 1999). Ntc20p associates 

with the spliceosome in the same manner, i.e. at the same timepoint as Ceflp and 

Prp l9p, which led to the suggestion that the whole Prp l9p complex is added to the 

spliceosome as an integral, preformed complex. In addition to Syf3p, the Ntc20p two-

hybrid screen identified Syflp and Ceflp as Al and A3 interacting proteins, 

respectively (Mellor-Clark and Russell, personal communication). The Syf3p bait 

identified Ntc20p as interacting prey of the Al category, thereby reciprocating the 

interaction. 
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Syf3p 

C 
II 	 I 	I 

baits 	1 31 	 578 	687 aa 

Prp45p 	35 	 156 

Prp22p 	 628 	687 

Syf2p 	 370 	 515 

Cefip 	10 95EZZ22=145 

Isyip 	10 	 145 223 	 515 

Prp46p 	10 	 ? 

Ntc2Op 	 282 

- TPR motif (34 aa) 

- Al interaction 
EM - A2 interaction 

Figure VI. 17: 
Two-hybrid interactions of the Syf3 protein. Syf3p contains 15 TPR repeat 
units. The bars underneath the protein indicate the putative Syf3p interacting regions 
of several proteins used as baits in two-hybrid screens. For Al interactions the 
indicated region results from the minimal overlap of the prey fragments isolated. ? - 
exact end point of the interacting region is not known; the approximate end point was 
estimated from the length of the insert fragments in the prey plasmid, as determined 
by restriction digest and electrophoresis. For information on the proteins and 
references see text. 



The only interaction of Syf3p identified so far, which does not involve any of the 

TPR motifs is that with Prp22p. Prp22p seems to associate with the non-conserved c-

terminus of Syf3p. Surprisingly, Chung et al., 1999, demonstrated that the c-terminal 

third of Syf3p is required neither for splicing nor for cell growth. This could suggest 

that the observed interaction of the two essential splicing factors is simply an artefact of 

the two-hybrid system, i.e the interaction is of no biological significance, but occurs 

due to certain random sequence or structural features of the two proteins that promote 

an association. However, two arguments speak against this. First, Prp22p was found 

as a prey with the Syfip bait, adding some weight to the hypothesis, that the protein is 

indeed part of the above described network of protein-protein interactions. Second, 

PRP22 was identified, like SYF], SYF2, SYF3, in the synthetic lethal screen with the 

prpl 7 deletion mutant (Ben-Yehuda and Kupiec, unpublished). Thus, there is a strong 

genetic link of PRP22 to other genes coding for components of this putative protein 

network, suggesting a related function of the proteins. It could be imagined that the 

two-hybrid interaction of Prp22p with the dispensable c-terminus of Syf3p is only one 

half of the truth. Maybe other important binding sites for Prp22p exist within Syf3p, 

which are simply not accessible, not properly folded or not fully functional in the two-

hybrid fusion proteins or protein fragments, to allow recognition by Prp22p. 

In conclusion, numerous two-hybrid data suggest the existence of a multi protein 

complex required for pre-mRNA splicing, containing the newly identified factors 

Prp45p and Prp46p, which might be a discrete subunit of the spliceosome. It could 

well be imagined, that the TPR motif proteins Syf3p and maybe Syfip form a scaffold 

for the formation of such a complex by providing binding sites for a number of 

proteins, especially in the amphipatic groove formed by multiple TPR repeats. 
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V1.11 Discussion 

The previous sections described the initial functional characterisation of the 

Prp45 protein of S. cerevisiae. The protein was identified in a two-hybrid screen using 

the second step- and spliceosome disassembly factor Prp22p as bait. The construction 

of a strain carrying a conditionally regulated PRP45 allele allowed the metabolic 

depletion of the protein from the cells. In the absence of Prp45p, the cells accumulate 

unspliced precursor RNA, showing that Prp45p is essential for pre-mRNA splicing in 

vivo. In contrast to Prp22p, which is only required for splicing of introns in which the 

3' splice site is more than 21 nucleotides away from the branchpoint, Prp45p seems to 

be required for splicing of all precursor RNAs, since it was demonstrated that splicing 

of pre-U3 snoRNA, containing an intron with a very short (7 nucleotides) 

branchpoint-3' splice site distance, was seriously inhibited upon depletion of Prp45p. 

This suggested a requirement of Prp45p for the general structural formation of the 

spliceosome and thus for splicing of all pre-mRNAs. It furthermore might indicate that 

Prp45p does not directly modulate Prp22p function during 3' splice site selection and 

cleavage, since one would expect a similar intron-dependent requirement for Prp45p as 

it is exhibited by Prp22p during the second step. Possible is also that the two proteins 

interact at another stage of the splicing. The finding that, in vitro, Prp45p depletion 

does not lead to a typical second step block with the accumulation of exon 1 and lariat-

intron exon 2, but that splicing activity is abolished already before the first 

transesterification reaction supports this idea. In addition, no other known second step 

splicing factors were identified as interacting preys in the two-hybrid screen with the 

Prp45p bait, suggesting that Prp45p is not in proximity to the 3' splice site, when the 

second transesterification is carried out. 

The investigation of the association of Prp45p with the spliceosome revealed that 

the protein joins the spliceosome before the first transesterification reaction is 

performed and stays within the complex until after the intron has been removed from 

the pre-mRNA. Thereafter it can be found associated with the excised intron, but not 

with the message. Precipitating a protein A-tagged version of Prp45p from whole cell 

extracts under non-splicing conditions (no added ATP) co-precipitates small amounts 

of the U2, US and U6 snRNAs. The lack of U  snRNA in the co-precipitates suggests 
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that the protein is not a tightly associated component of the U  snRNP, i.e. is unlikely 

to play a role in the formation of the commitment complex. Since Prp45p strongly co-

precipitates pre-mRNA and since, in the absence of Prp45p, splicing in vitro is 

abolished before the first transesterification takes place, it can be supposed that the 

physical presence and function of Prp45p is required for the assembly of an active 

spliceosome. The question arises, why the U4 snRNA is not found in the co-

precipitates when protein A-tagged Prp45p is immunoprecipitated from cell extracts, 

although the U4/U6 and U5 snRNPs join the spliceosome as a preformed tri-snRNP? 

One possibility to explain this, would be to suggest that Prp45p joins the spliceosome 

just after the U4 snRNP has dissociated and before the active spliceosome performes 

the first transesterification reaction. However, after addition of the tri-snRNP, the pre-

mRNA becomes rapidly processed. It is therefore possible that the U2, U5 and U6 

snRNAs in the precipitates are actually derived from post-splicing spliceosornal 

complexes. Another possibility that could be imagined is, that the n-terminal protein A 

tag somehow interferes with the association of the U4 snRNP to the pre-spliceosome 

and therefore, the U4 snRNP is not as efficiently co-precipitated. Maybe it would be 

more conclusive to deplete residual endogenous ATP from the cell extracts before the 

immunoprecipitation is done, to ensure that spliceosome formation is prevented. This 

might give a clearer picture of Prp45p association with spliceosomal subcomponents. 

Additional clues about the function of Prp45p and the timepoint of its association with 

the spliceosome can be gained from the data of numerous two-hybrid screens 

performed in our laboratory, which allow the drawing of an extensive network of 

protein-protein interactions. Such network is shown in figure VI. 18. 
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Figure VI.18: 
Protein-protein interaction network revealed by exhaustive two-hybrid screening of a yeast genomic DNA library. 
The two-hybrid screens were performed by )( - I. Dix and C. Russell, • - C. Russell and M. Mellor-Clark, • - C.Russell and A. Clark; 
xI - A. Colley, 	- this work (all this laboratory). For references on the proteins and discussion see text. 
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The figure illustrates that via its interaction with Syf3p, Prp45p (as well as Prp22p and 

Prp46p) is linked with a putative complex of proteins, which again all (apart from 

Syfip) interact with Syf3p (see also chapter VI.10.3). The two-hybrid interactions 

which form the basis of this network are in most cases Al interactions, they are in 

many cases found reciprocated and furthermore, the proteins within this network have 

not been identified in any other two-hybrid screens within the TAPIR network, 

strongly suggesting that these interactions (or many of them) are indeed specific, 

probably biologically significant interactions. For some of the proteins, experimental 

data are available, which could give some indication of a possible role for Prp45p. 

As mentioned above, the Ntc20 protein as well as the Cef 1 protein are members of the 

Prpl9p associated complex, which contains at least 5 additional proteins (Snt309p, 

Ntcl2Op, Ntc90p, Ntc40p and Ntc30p; Tarn et al., 1993 and 1994; Chen et al., 1998; 

Tsai et al., 1999). For all members of the Prpl9p complex so far characterised, it has 

been shown that they associate with the spliceosome in the same manner, namely 

concomitantly with or immediately after dissociation of the U4 snRNP, but before the 

formation of an active spliceosome. This is exactly what could be expected for Prp45p, 

being a splicing factor required before the first transesterification reaction which does 

not associate with the U4 snRNP, but with the U2, US and U6 snRNPs. 

McDonald et al. (1999) coprecipitated a high-molecular weight protein complex 

with the S. pombe cdc5 protein, the homologue of the S. cerevisiae Cef I p. 

Interestingly, among the 9 identified proteins were the S. pombe homologues of 

Prp46p, Syfip, Syf3p and Prpl9p, which suggests the existence of related complexes 

in the two fungi. The authors furthermore showed that the cdc5 protein co-precipitates 

U2, US and U6 snRNAs from cell extracts, but no U4 and U  snRNAs. Again, this is 

in agreement with the data available for the S. cerevisiae counterparts of the Prp l9p 

complex and with the results yielded for Prp45p. The result of the snRNA co-

precipitation with cdc5p, also argues against the hypothesis that the protein A tag could 

be the reason for the lack of U4 snRNA in the protA::Prp45p co-precipitates. For 

cdc5p, the co-precipitation of snRNAs was performed with two different tagged 

versions (cdcshemaglutinin (HA) and cdc5myc) with the same result. Assuming that 

Prp45p and Cefip act at a similar step of the splicing reaction, the same snRNA 

association pattern could be expected. 
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The situation does not seem to be exactly the same for all components of the 

illustrated network. Chung et at. (1999) demonstrated a role for the Syf3p (Clflp) in 

the assembly of an active spliceosome. However, they show that in extracts depleted 

of Syf3p, pre-spliceosomes do rapidly form, but that the addition of the tri-snRNP is 

seriously inhibited, suggesting a requirement for Syf3p for the recruitment of the 

U5/U4/U6 snRNP to the spliceosome. This would mean that Syf3p acts slightly earlier 

than other components of the proposed complex, maybe recruiting the tri-snRNP first 

and then, after dissociation of the U4 snRNP, supporting the association of additional 

proteins. Considering the extraordinary structure of Syf3p, containing 15 TPR repeat 

modules, a function in recruiting numerous proteins and organising their interactions 

could be imagined. 

The question remains, why was Prp45p originally identified in the two-hybrid 

screen with the second step splicing factor Prp22p? Although for Syfip, Syf3p, Cefip 

and Prp45p a requirement for the first step of the splicing reaction has been 

demonstrated (Chung et at., 1999; Tsai et at., 1999; Russell, unpublished results and 

this work), it has to be noticed that three of the proteins in the above described putative 

complex indeed have been genetically linked to the second step splicing factor Prp 17p 

(see also figure VI. 18). SYFI, SYF2 and SYF3 (as well as the genes for the second 

step splicing factors PRP22, SLU7 and PRPI6) were identified in the aforementioned 

synthetic lethal screen with PRPI7 (Ben-Yehuda et at., unpublished results). It is 

therefore not unlikely, that Syfip, Syf2p, Syf3p and Prp45p have additional functions 

during the second step. All four proteins remain attached to the spliceosome until the 

second step is completed (Russell, unpublished data; this work) and therefore could be 

involved in the second catalytic step or even at a stage when Prp22p acts in releasing 

the mature message from the spliceosome. 
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Chapter VII 

Prp46p is required for 
pre-mRNA splicing in vivo 



VII. 1 Introduction 

The Prp46 protein was identified as the strongest interacting prey protein in a 

two-hybrid screen with the novel splicing factor Prp45p. A region containing 7 WD 

repeat units within Prp46p seems to be required for the interaction with Prp45p. This 

chapter will discuss putative homologues of Prp46p and what is known about their 

function. In addition, evidence will be provided that Prp46p is a splicing factor of S. 

cerevisiae. 

VII.2 PRP46 encodes a conserved WD protein 

Primary structure analysis of the 451 amino acid Prp46 protein revealed that it is 

a member of the ancient regulatory family of WD proteins (for a review on WD 

proteins see Smith et al., 1999). WD proteins are made up of highly conserved 

repeating units which usually end with the amino acid residues tryptophan and 

aspartatic acid (WD). A single protein can contain 4-16 of the WD modules. The 

proteins are present in all eucaryotes, but are very rare in prokaryotes. Despite their 

high degree of conservation and modular organisation, which also predicts a conserved 

three-dimensional structure, WD proteins are of diverse functionality and serve in 

numerous cellular processes. Several members have been shown to function in signal 

transduction pathways, such as the G13  subunit of the heterotrimeric G proteins, well 

characterised components of the transmembrane signalling machinery (Wall et al., 

1995). Others are transcriptional regulators, for example the TFIID subunit of the 

1A1A-box binding complex (Hoey et al., 1993). A number of WD proteins, such as 

Cdc40p and Cdc20p, are important for cell cycle progression (Farruggio et al., 1999; 

Ben-Yehuda et al., 1998), yet others regulate vesicle formation and vesicular 

trafficking (Pryer et al., 1993). Other proteins have been found to be involved in sulfur 

metabolism in fungi (Natorrf etal., 1998). Among the members playing a role in RNA 

processing are, for example, the mammalian cleavage-stimulation factor associated 

protein CstF, required for polyadenylation (Takagaki and Manley, 1992) or the yeast 

Mak 11p,  needed for double stranded RNA replication (Icho and Wickner, 1988). 



So far, two WD proteins have been shown to be required for pre-mRNA splicing in 

S. cerevisiae: the second step splicing factor Prpl7p/Cdc4Op (Jones et at., 1995) and 

the Prp4 protein, which acts at late stages of spliceosome assembly (Ayadi et at., 

1997). Both proteins have orthologs in human (Ben Yehuda et at., 1998; Wang et at., 

1997; Zhou and Reed, 1998). 

Besides the general degree of sequence conservation with other WD proteins 

(usually between 15 and 20% amino acid identity over the entire polypeptide), Prp46p 

shares a much stronger homology to a subset of proteins within the family, which are 

therefore likely to be functional equivalents: these proteins include a human protein 

(Acc.no. AF044333) of 494 amino acids (aa) with a predicted molecular weight of 57 

kDa, a hypothetical 513 aa mouse protein (AF044334) , the 473 aa long prp5 protein 

of S. ponibe (013615), a hypothetical 494 aa long protein of C. etegans (CAA98274) 

and the pleiotropic regulatory proteins PRL1 and PRL2 of A. thaliana (486 and 479 

aa). A primary structure alignment (GeneStream Align) reveals an amino acid identity 

of the full length Prp46p to the human homologue of 38.9%, to the S. pombe prp5p 

of 44.6%, to the C. elegans protein of 38.9% and to the plant PRL1 and PRL2 

proteins of 41.2% and 40%, respectively. 

(A complete alignment of these proteins was made by Nemeth et at., 1998). All 

proteins contain a c-terminally located cluster of seven WD repeat units, with no 

spacing between the repeats. The sequence of Prp46p, with the WD-repeats aligned, is 

shown in figure VII. 1. 

Although the homology of Prp46p to the other proteins is highest in the WD 

repeat cluster (amino acids 122-427; 50-59% amino acid identity), there is significant 

homology also at the n-terminus (aa 1-121; 18-21%) and at the small c-terminal 

extension (aa 428-451; 37-50%), underlining the hypothesis that these proteins 

represent functional homologues. 
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Figure VII.1: 
Amino acid sequence of the Prp46 protein. The seven WD repeats (amino 
acids 122-427) are depicted aligned and the positions of the WD repeat variable and 
constant regions a are indicated. Conserved residues are highlighted in bold. Amino 
acid residues on positions which define the regular expression pattern of the WD 
motif defined by Neer et al. (1994) are indicated in vertical boxes (see text). 

Intriguingly, the Prp46p homologues from human and fission yeast have been 

implicated in pre-mRNA splicing: As well as the Prp45 protein homologue Snw 1 (or 

Skip), as reported in chapter VI.2, Neubauer et al. (1998) co-precipitated the human 

Prp46p homologue with splicing complexes from HeLa nuclear extracts. In addition, 

they showed the in vivo co-localisation of GFP-tagged human Prp46p with splicing 

snRNPs by confocal fluorescence microscopy, confirming the precipitation result. The 

S. pombe prp5 protein was identified through isolation of the temperature-sensitive 

prp5-1 mutation which causes a defect in pre-mRNA splicing at the restrictive 

temperature in vivo (Potashkin et al., 1998). The mutant strain also exhibited a cell 

cycle defect. As shown by fluorescence-activated cell sorting (FACS) analysis, prp5-1 

mutant cells are stalled after DNA-replication, suggesting that they proceed normally 

through S phase at the restrictive temperature and thus, that the cell cycle is probably 

arrested in G2-phase prior to mitosis. Soon after, it was shown that the prp5 protein is 

122 
169 
211 
253 
295 
336 
378 
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present in the aforementioned (chapter VI.2) high molecular weight complex of 

splicing and cell cycle proteins, which was co-precipitated with the cdc5 protein, the 

homologue of the S. cerevisiae Cefip splicing factor (McDonald et al., 1999). Besides 

the observed physical interaction (the authors also show the reciprocal precipitation of 

cdc5p with prp5p in cell extracts), prp5 and cdc5 interact genetically with each other: a 

cdc5-120/prp5-1 double-mutant strain exhibits a reduced restrictive temperature 

compared to either of the single mutant strains. 

The biochemical function of the A. thaliana proteins PRLI and PRL2 is less 

clear. However, as the name suggests (PRL=pleiotropic regulatory locus), a recessive 

mutation (prl-1) that leads to truncation of the c-terminal 94 amino acids of the PRLI 

protein, induces a variety of defects in the plant, possibly due to an altered control of 

glucose and hormone responses (Nemeth et al., 1998). The authors show that the prl-1 

mutation results in changed carbon partitioning patterns and hypersensitivity of the 

plant to glucose and sucrose. High concentrations of external glucose or sucrose 

resulted in a reduction of root elongation and a decrease of shoot development as well 

as a stimulated accumulation of sugars and starch in the leaves. Furthermore hypocotyl 

elongation slowed down and a premature initiation of side roots was observed. The 

latter effect suggested an enhanced sensitivity of the seedling to auxins. Indeed, further 

investigation confirmed hypersensitivity of the plant to a number of growth hormones 

in addition to auxin such as cytokinin, ethylene and abscisic acid. The authors explain 

the observed phenotype by proposing a cellular function of PRLI as a suppressor of 

glucose responsive genes. Since there is a complex crosstalk between hormonal and 

metabolic regulation and because light signalling is modulated by glucose and 

cytokinin, and vice a versa, glucose and cytokinin metabolism is controlled by light, 

mutations relieving glucose repression are therefore expected to result in defects in 

cytokinin signalling, root development, general stress responses and chlorophyll and 

anthocyanin biosynthesis (for a review see Smeekens and Rook, 1997). 

The initial molecular characterisation of PRL 1 led to the identification of two potential 

interacting proteins. Nemeth and co-workers noticed the presence of a sequence motif 

within WD repeats 3 and 6 of PRL1, that shared similarity to a sequence mediating the 

interaction of RACK 1 receptor (another WD protein) with activated protein kinase C 

(PKC) in mammals (Ron et al., 1994). In in vitro binding experiments using a 
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glutathione-S-transferase (GST) fusion protein of PRL 1, indeed PRL 1, like RACK 1, 

bound specifically to PKC-1311, but not to PKC-f31 or PKC-7. The data also indicated 

that the interaction was mediated via the c-terminal 52 amino acids of PKC-3II, since 

apart from these 52 amino acids PKC-3II and PKC-131 are identical. Notably, the 

similarity of PRL1 (and therefore Prp46p) with RACK1 is very significant, going 

beyond the general similarities of WD proteins: first, the modular organisation of seven 

WD repeats, with only very little spacing in between the repeats is conserved. Second, 

the seven repeats are organised in such a way, that 4 repeats, which fit 100% into the 

regular expression pattern of a WD repeat, are followed by 3 WD repeats of relatively 

degenerate sequence homology with respect to the regular expression pattern. The 

regular expression pattern (as defined by Neer et at., 1994) was deduced from an 

alignment of hundreds of WD repeats, and describes which amino acids are most likely 

to be situated at certain conserved positions within a repeat. Figure VII. 1 illustrates in 

an alignment of the WD repeats of Prp46p, to what extent the amino acid sequence 

matches this regular expression pattern. It is supposed that a similar arrangement of 

WD modules (like for Prp46p and RACKI) reflects to a similar biochemical function. 

A two-hybrid screen of an Arabidopsis cDNA expression library using the full 

length PRL1 protein as a bait revealed a strong interaction with ATHKAP2 (Acc. no. 

Y09511), which shows remarkably high sequence identities to a-importins, such as 

ATHKAP1 of Arabidopsis, human HSRPI, Xenopus IMP1, yeast Srplp, involved in 

nuclear import of proteins and RNAs. Subsequent in vitro binding studies allowed 

mapping of the interacting domain to a carboxy terminal region of 74 amino acids, 

which includes the last WD-repeat and a putative SV40-type nuclear localisation signal. 

Indeed, it was demonstrated that PRL1 localises to the nucleus in Arabidopsis cells as 

well as in green-monkey COS-1 cells, illustrating also the remarkable conservation of 

the protein in different organisms. 

It remains to be determined to what extent the high degree of sequence homology 

of this novel subset of WD proteins reflects an involvement of the proteins in the same 

cellular process and a functional analogy. The fact that both the human and the S. 

pombe proteins are involved in pre-mRNA splicing suggests that the other candidates 

are also splicing factors. For the A. thaliana PRL1 protein it remains to be determined 
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whether the effects of the pr1-1 mutation seen on glucose metabolism and hormone 

regulation might be secondary effects, which originate in a malfunction of the splicing 

apparatus. 

The observed two-hybrid interaction with Prp45p adds even more weight to the 

hypothesis that the S. cerevisiae Prp46 protein is required for splicing. The next 

sections present its initial functional characterisation. 

VII.3 PRP46 is an essential gene 

In order to approach a functional analysis of Prp46p, a gene deletion experiment 

was performed. Using oligonucleotides PLKO-1 and PLKO-2 the HIS3 gene was 

PCR amplified from plasmid YIp 1. After purification of the PCR product, it was 

transformed into the diploid yeast strain BMA38. The primers contained flanking 

sequences homologous to regions just upstream and downstream of the PRP46 ORF, 

thus allowing replacement of the ORF by the HIS3 gene locus due to homologous 

recombination of the PCR product into the chromosome. Transformants were selected 

for histidine prototrophy and integration of the disruption cassette was checked by 

PCR using oligonucleotides PLKO-1 and 151-PR2, which is complementary to a 

region approximately 300 bp downstream of the PRP46 ORF. A single product of the 

expected size of 1.4 kb was amplified from the transformants, but not from the wt 

strain suggesting integration at the desired locus (figure VII.2A). The PCR product 

was gel purified and sequenced using primer 151-PR2, which confirmed the 

replacement of the PRP46 ORF by the marker gene. 

The diploid strain (designated YMA151KO1) was subsequently sporulated and the 

resulting tetrads were dissected onto YPD plates (figure Vll.213). 
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Figure VII.2: 
Deletion of the PRP46 ORF from the genome. 
A) PCR on yeast transformants to test for integration of the HIS3 marker gene into 
the chromosomal YMR44w locus. After transformation of the BMA38 strain with a 
linear PCR product containing the HIS3 marker gene flanked by approximately 40 
base pairs of the PRP46 locus at either site, histidine prototrophs were streaked out 
onto fresh YMM -H medium for colony purification. Then a single large colony of the 
transformants and of the wt parental strain BMA38 was suspended in 0.02N NaOH, 
boiled for 5 minutes and an aliquot used in a PCR (11.3.2.8.2) using oligonucleotide 
primers PLKO-1 (5') and 151-PR2 (3'). The positions on the template at which the 
primers anneal are indicated in the upper schematic drawing of the PRP46 locus 
(either wild-type or after HIS3-integration). Aliquots of the PCR reactions were run 
on a 1% (w/v) agarose gel. The white arrow indicates the position of the amplified 1.4 
kb fragment, which was expected in case of successful integration of the HIS3 
cassette into the PRP46 target locus. B) Tetrad analysis of strain YrvIAI51KO1. 
Strain YMAI5IKO1was grown overnight at 30°C in YPDA, the cells collected and 
transferred to SPM sporulation medium. After 5 days of incubation at 23°C the 
formed tetrads were dissected onto YPD agar plates. The spores were incubated for 3 
days at 23°C. 
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For all of the 14 tetrads dissected, at most two of the spores germinated and grew to 

colonies, demonstrating that PRP46 encodes an essential gene. All colonies grown 

were shown to be histidine auxotrophs, confirming that the lethal phenotype 

segregated with the HIS3 marker and thus is due to replacement of the PRP46 ORF 

(data not shown). 

VII.4 Generation of a conditionally regulated and epitope-tagged 

PRP46 allele 

In order to allow the initial functional characterisation of the essential Prp46p, a 

conditionally regulated allele of the gene was generated. Again the method developed 

by Lafontaine and Tollervey (1996) was used to integrate a cassette, containing a 

reporter gene, a regulatable promotor and a sequence encoding an epitope tag upstream 

the target ORF. Replacement of the native promotor region with such a cassette should 

allow repression or activation of transcription of the target gene depending on the 

choice of growth medium. In this case, a cassette was PCR-amplified from vector 

pUC I 9-55HA2  (constructed by R. van Nues, this laboratory), using oligonucleotides 

l5lMetA and l5lMetB. This cassette contained the TRPJ marker gene, the promotor 

region of the MET3 gene, which can be repressed by the presence of methionine in the 

growth medium, as well as a sequence encoding a double hemagglutinin A (HA) 

epitope tag. The PCR-product was gel-purified and subsequently transformed into the 

haploid strain BMA64n, which is deleted for the TRPJ gene. Tryptophan prototrophic 

transformants were picked and streaked once to yield purified clones. The colonies 

were then suspended in microtiter plates and dilutions transferred onto YMM -w 

plates, either without or containing 7 mM methionine (figure V11.3A). Although not in 

all cases, some clones indeed showed highly reduced growth on methionine-containing 

medium, suggesting that PRP46 transcription was repressed, and that Prp46p was 

depleted from the cells. 
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Figure VII.3: 
Conditional regulation of PRP46 on the chromosome. 
Yeast strain BMA64n was transformed with a linear DNA fragment (generated by 
PCR- amplification from vector pUC19-55HA2) consisting of the TRP] marker gene, 
the MET3 promotor region (M,,3)  and a double HA-epitope tag (HA2)

1 
 flanked by 

approximately 40 base pairs homologous to sequences upstream of the PRP46 locus. 
A) Transformants were selected on YMIVI -MW medium and streaked for colony 
purification. Single colonies were then suspended and serially diluted into microtiter 
plates and spotted onto YMM -M medium (-Met) or YMMsup medium containing 7 
mM methionine (+ Met). The plates were incubated for 2 days at 30°C. B) Yeast 
colony PCR on cells from clones 5, 6 and 8 (picture A) using oligonucleotide primers 
Met3 (5') and 151-PR2 (3'). The schematic drawing depicts the PRP46 locus after 
integration of the regulation cassette. The annealing positions for the primers are 
shown. The dashed box indicates the position of the sequence encoding the double 
HA tag. 
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To prove that integration had happened at the target locus, oligonucleotides Met3 

and 151 -PR2 were used in a yeast colony PCR to amplify a region of the PRP46 locus 

after integration of the cassette (figure VII.313). As shown for clones 5, 6 and 8, a 

PCR product of approximately 1.8 kb was obtained, which could not be amplified in 

wt cells, suggesting correct integration. The PCR product of clone 5 was subsequently 

gel-purified and sequenced using oligonucleotide Met3. Indeed, the sequence analysis 

confirmed the integration of the cassette upstream the PRP46 ORF (data not shown). 

The strain containing the regulatable PRP46 gene will henceforth be referred to as 

YMA151/2. 

The effect of PRP46 repression was then studied for growth in liquid medium 

either lacking or containing 7 mM methionine. A wt culture grown in the presence of 7 

mM methionine served as control. Samples of the cultures were taken at different time 

points and the optical density (0D600) of the cultures was measured. The resulting 

growth curve is depicted in figure Vll.4. It can be seen in medium without methionine, 

that strain YMA151/2 grows essentially like the wt strain (the growth rate of the wt 

strain BMA64n is hardly influenced by the addition of 7 mM methionine, data not 

shown). However, the presence of 7 mM methionine in the medium increases the 

doubling time of strain YMA151/2 from 3.1 to 5.5 hours. This suggests that PRP46 

expression is repressed to some extent upon addition of methionine, but that the 

repression is not very tight. The essential Prp46p probably does not become 

completely depleted from the cells and therefore cell growth is only slowed down, but 

not abolished. Even extended growth (24 hours) in medium containing 20 mM 

methionine does not lead to a further reduction of the growth rate (data not shown). 

The slow growth phenotype of strain YMA151/2 in methionine containing medium 

suggests that even partial depletion of Prp46p has a significant effect on the metabolic 

pathway in which it functions. Therefore, it was tested whether Prp46p depletion leads 

to a recognisable splicing defect, because the two-hybrid data obtained in this work, as 

well as the available data from putative homologues in other organisms suggested a 

role of the protein in the splicing process. 
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Figure VII.4: 	 - - 
Effect of Prp46p depletion on cell growth. 
Overnight cultures of strains YN4.A151/2 and BMA64n were grown at 30°C in 
YMM -WM or YlvIMsup liquid medium to midlogarithmic phase and aliquots of the 
cultures were used to inoculate pre-warmed 250 ml of either YlviMsup + 7 mM 
methionine (for BMA64) or YMM -WM and YMM -w + 7 mM methionine (for 
YMA1 51/2) to an 011)600  of 0. 15-0.35. The cultures were grown at 30°C and aliquots 
were removed in order to monitor growth by measuring the 0D600  at different time 
points. The cultures were diluted at intervals to maintain logarithmic growth. 



VII.5 Prp46p is required for pre-mRNA splicing in vivo 

Cells from strain YMA151/2 were grown in YMM -W liquid medium either with 

or without 7 niM methionine. As control, the parental wt strain BMA64n was grown in 

YMMsup liquid medium containing 7 mM methionine. At different time points samples 

of the cultures were taken and total RNA was prepared. The processing of the 

precursor of U3 snoRNA was assayed by primer extension analysis. Levels of U 1 

snRNA were also investigated as loading control. The results of this primer extension 

assay are shown in figure VII.5. 

Already after 4 hours growth under repressing conditions, clear bands 

corresponding to the U3A and U3B precursor molecules were detectable (lane 2). 

These bands did not appear when cells were grown under permissive conditions (lane 

1). This strongly suggests that repressing PRP46 expression, thereby depleting the 

protein from the cells, leads to a severe splicing defect that causes the accumulation of 

unspliced precursor RNAs. The accumulation is even more significant at later time 

points. The presence of methionine in the medium does not effect the processing of the 

U3 snoRNAin the wt strain (lane 3 at 4, 8 and 12 hour time points), confirming that 

the observed splicing defect in YMA151/2 is indeed due to the repressing effect of 

methionine on the MET3 promotor and not to a general toxicity of high concentrations 

of methionine. Therefore, it can be concluded that Prp46p is required for pre-mRNA 

splicing in vivo, and thus, that Prp46p represents a novel splicing factor of S. 

cerevisiae. 
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Figure VII.5: 
Primer extension analysis of pre-mRNA splicing in strain YMA151/2. 
Cultures of YMA15 1/2  and BMA64n were grown as described in figure legend VII. 4 
and 10 ml samples were taken at different time points. Total RNA was extracted from 
these samples and 10 ig of RNA was used in a primer extension reaction using 
radiolabelled oligonucleotide primers complementary to the extreme 5' end of exon 2 
of the U3 snoRNA and to the (intronless) Ui snRNA. The reactions were 
deproteinised, extracted with phenol/chloroform and the products resolved on a 6% 
(w/v) polyacrylamide gel. The result was visualised by autoradiography. The 
positions of the primer extension products are indicated; time (h) - time point of 
sample substraction; 1 - Yv1A151/2 cells grown in YMIN'I -WM, 2 - YMA151/2 cells 
grown in YMM -w + 7 mM methionine, 3 - BMA64n cells grown in YMIlVIsup + 7 
mM methionine. 



VII. Discussion 

The previous sections describe the characterisation of Prp46p, which was originally 

isolated in a two-hybrid screen with the Prp45p bait. It is demonstrated, that Prp46p is 

essential for cell viability. A strain was generated in which PRP46 expression could be 

conditionally regulated, which allowed (at least partial) depletion of Prp46p from the 

cells. Using this strain, it was demonstrated that Prp46p depletion leads to a splicing 

defect in vivo. Therefore, Prp46p is a bona fide pre-mRNA splicing factor of S. 

cerevisiae. 

The extraordinary and conserved primary structures of Prp45p and the WD 

protein Prp46p, as well as information that is available for their homologues, leave 

some room for speculation with respect to Prp45p and Prp46p function. Interestingly, 

for the A. thaliana homologue of Prp46p a specific interaction with protein kinase C-

011 was observed (Nemeth et al. 1998). Indeed, in a Prp46p two-hybrid screen, an A3 

interaction with a yeast Pkcl protein (ORF YBLI05c) has been detected (C. Russell 

and A. Clark, unpublished). In addition, Prp45p and Cefip baits interacted with 

Pkclp in the two-hybrid screens (A3 and Al interactions; Dix and Russell, 

unpublished; this work). These findings suggest that phosphorylation events might 

influence the interactions. Another finding in this context is intriguing: the mammalian 

RACK 1 protein, which is a receptor for activated protein kinase C, has been shown to 

inhibit the tyrosine kinase activity of src tyrosine kinases (Chang et al., 1998). As 

mentioned above, RACK I represents a WD protein which can be grouped into the 

same structural subgroup of WD proteins as Prp46p and its homologues. Prp45p, in 

turn, and in particular its homologues from higher eukaryotes, show a significant 

similarity to src tyrosine kinases, although it remains unclear whether they in fact have 

kinase activity: the proteins contain the n-terminal half of an SH2 domain (although to 

some extent degenerate), they (apart from Prp45p) have a conserved proline rich 

region, maybe representing an SH3 domain binding site and furthermore, they contain 

three absolutely conserved tyrosine residues, which could be potential targets for 

phosphorylation. Thus, it could be imagined that, just as activated PKC-1311 interacts 

with RACK1 which then in turn regulates the activity of src tyrosine kinases, Pkclp 

interacts with Prp46p, which then modulates Prp45p function. Interestingly, a 
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regulation of pre-mRNA splicing by the tyrosine kinase activity of src has been 

demonstrated (Neel et al., 1995). By overexpressing activated src, a significant 

reduction of splicing activity was observed. Partially spliced reporter constructs 

accumulated not only in the nucleus, but also in the cytoplasm, suggesting that also the 

export of incompletely spliced precursors was effected. Moreover it was demonstrated, 

that the regulation of transcription and pre-mRNA processing by src, can be 

uncoupled. Different domains of src are important for distinct processes, suggesting 

that different effector pathways might be involved, which regulate general 

transcription, pre-mRNA splicing or mRNA transport (Gondran and Dautry, 1999). 

A regulation of splicing activity via signal transduction cascades that involve the 

homologues of Prp45p and Prp46p in higher eucaryotes is therefore a possibility. 

Whether Prp45p, Prp46p or other splicing factors in yeast would also act via versatile 

mechanisms like this remains to be determined. 

Since Prp46p was shown to interact in a strong and reciprocal way with Prp45p 

as well as with Syf3p in the two-hybrid screens, it is likely to be functionally linked or 

an integral part of the putative protein complex that is discussed in some detail in 

chapter VI.l1 (see also figure VI.18). Furthermore, the S. pombe homologue of 

Prp46p (prp5) was shown to be a component of a related complex which was 

precipitated together with the cdc5 protein (Cefip in S. cerevisiae), supporting the idea 

of the presence of Prp46p in this putative complex of proteins (McDonald et at., 

1999). 

Interestingly, it was shown that a mutation in the S. pombe prp5 gene (prp5-1) 

not only leads to a splicing defect, but also to a clear block in progression of the cell 

cycle from G2 phase into mitosis (Potashkin et al., 1998). Cell cycle defects have been 

demonstrated for many of the proteins in the related complexes in S. pombe as well as 

in S. cerevisiae . In S. pombe, apart from prp5p, also cdc5p function is required for 

G2-mitosis transition (Ohi et at., 1998). In S. cerevisae, mutations in the SYFI and 

SYF3 as well as in the CEF] gene cause the cells to arrest in G2 phase (Ben-Yehuda et 

al., unpublished; Ohi et at., 1998). Furthermore, a requirement of the S. cerevisiae 

Prp22p and a homologous protein in S. pombe, cdc28, for the progression of the cell 

cycle from G2 to mitosis has been demonstrated (Lundgren et at., 1996; Hwang and 

255 



Murray, 1997). In the synthetic lethal screen with the prp17/cdc4O deletion mutant, 

which led to the identification of the three SYF genes, mutant alleles of the second step 

splicing factors slu7, prpl6 and prp8 were isolated (Ben-Yehuda et al., unpublished). 

For PRP8 is was shown earlier, that a mutant allele, dbf3-1 resembled the cell-cycle 

defect phenotype of prpl7/cdc4O strains, in which DNA replication was delayed and 

cells arrested in G2 at the restrictive temperature (Shea et al., 1994). 

The finding that numerous splicing factors are also required for cell cycle 

progression raises the question, whether simply one or more intron-containing genes 

become rate limiting for cell cycle progression, or whether these processes are linked 

in a regulatory manner? Different mechanisms could be imagined, to explain how cell 

cycle progression is effected by the splicing machinery, or vice versa: Maybe some 

defects within the splicing machinery are sensed by a cell cycle checkpoint and a cell 

cycle arrest results. Alternatively, the removal of certain introns at a specific stage of 

the cell cycle leads to the activation of a specific splicing complex, such as the one 

described in the previous sections. Since numerous protein kinases are involved in the 

regulation of the cell cycle, phosphorylation and dephosphorylation could play a major 

role in activating such a splicing complex. Prp45p and Prp46p, being plausible targets 

for regulation via phosphorylation, as discussed above, might therefore be candidates 

which connect the cell cycle with the splicing machinery in a regulatory manner. 
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Chapter VIII 

Overview and future work 



In this work Prp45p and Prp46p, two novel pre-mRNA splicing factors in 

Saccharomyces cerevisiae were identified through exhaustive two-hybrid screens. Both 

proteins are evolutionarily conserved and essential for cell viability, which emphasises 

their requirement for constitutive cell metabolism. Prp45p is associated with the 

spliceosome throughout the splicing reactions and is required already prior to the first 

transesterification reaction. This suggests that either it is simply the physical presence of 

the protein that is essential for a proper structural formation of an active spliceosome or 

that is has regulatory functions necessary for the catalytic activity of the spliceosome in 

step 1. Numerous two-hybrid screens performed in this laboratory revealed a network of 

protein-protein interactions (see figure VI. 18), which suggests the existence of a putative 

protein complex, of which Prp45p and Prp46p might be components, or at least, with 

which they associate at one point or another. 

For some of the proteins within this network it had already been determined, at 

what stage they join the spliceosome and what their functions might be: Syf3p (Cifip) 

seems to be required for the association of the tri-snRNP onto the pre-spliceosome 

(Chung et al., 1999), Ntc20p and Cefip join the spliceosome concomitantly with or just 

after dissociation of the U4 snRNA , i.e. slightly later than Syf3p (Tsai et al., 1999). 

Chung et al. (1999) furthermore found that Syf3p interacted with components of the 

cross-intron bridge, Mud2p and Prp40p (see figure 1.4), in directed two-hybrid assays 

and proposed a model for Syf3p action, in which it joins the spliceosome at the same time 

as (or even bound to) the U2 snRNP, thereby displacing the branchpoint bridging protein 

BBP from the pre-mRNA. This rearrangement then allows addition of the tri-snRNP. 

Indeed, Rutz and Seraphin (1999) showed recently that BBP cannot be found in pre-

spliceosomes, so it must leave upon U2 snRNP addition. Prp45p, being a strong and 

reciprocal two-hybrid interactor with Syf3p is a good candidate to be involved in 

promoting these rearrangements. Interestingly, Fromont-Racine et al. (1997) identified 

Prp22p as A3 prey in a two-hybrid screen with BBP as bait. This is intriguing, since in 

the work presented here, Prp22p is shown to interact with Prp45p as well as Syf3p. 

Thus, there are accumulating data, which suggest that Prp22p and Prp45p are involved in 

promoting the replacement of BBP upon Syf3p (and U2 snRNP) addition to the 

commitment complex. It would be interesting to investigate the effect of Prp45p-depletion 

on spliceosome formation by resolving splicing complexes from Prp45p-depleted extracts 
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by non-denaturing gel electrophoresis. From the above model, one would expect that pre-

spliceosomes do form, but that, like in Syf3p-depleted extracts, tri-snRNP addition is 

affected or prevented. Another point, that would be worth studying as a consequence of 

the above considerations is whether Prp45p does bind to the substrate pre-mRNA. If the 

RNA-binding BBP is in fact directly replaced on the pre-mRNA prior to tri-snRNP 

addition, Prp45p with its overall charged and basic character, might actually be the more 

likely candidate to do this than Syf3p. If Prp45p binds to the pre-mRNA close to the 

branchpoint (and thus close to the 3' splice site), this would give another alternative for 

the time point of the observed Prp22p-Prp45p interaction, namely during 3' splice site 

selection and cleavage. However, the fact that in the Prp45p two-hybrid screen, no 

interactions with known second step splicing factors was observed argues against a direct 

involvement of the protein in the second step. 

To date, it is not known whether Prp22p is associated with the spliceosome prior to step 

1. An important experiment that needs to be done is therefore to use Prp22p or an epitope 

tagged form of it to try to coprecipitate spliceosomes which are stalled prior to the first 

transesterification reaction in order to provide evidence for Prp22p presence in the 

spliceosome at this stage. However, if there is an interaction of Prp45p with Prp22p 

during spliceosome assembly, it would likely be non-essential for splicing, since Prp22p 

is not required prior to step 1 (Schwer and Gross, 1998). The requirement for Prp45p is 

not dependent on the branchpoint-3' splice site distance, in contrast to the requirement for 

Prp22p, which is dispensable for splicing of short, but required for splicing of introns 

with large branchpoint-3' splice site distances, as discussed earlier. Hypothetically, a 

situation could be imagined in which Prp45p is bound in the region of the branch 

sequence, where it acts as a general factor during 3' splice site recognition and cleavage. 

Prp22p, by binding Prp45p, could form a bridge between the branchpoint and the 3' 

splice site in introns, in which the 3' splice site is far away from the branchpoint, thereby 

supporting 3' splice site recognition. 

Whatever the exact function of Prp45p, the strong and reciprocal two-hybrid 

interaction with Prp46p suggests that the two novel splicing factors act in a concerted 

manner during pre-mRNA splicing. 
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Another line of experiments that should be followed is to verify the two-hybrid 

interactions identified in this work by testing the interactions in in vitro binding assays. In 

particular the Prp22p-Prp45p and Prp22p-Syf3p interactions should be tested again, since 

in these cases no reciprocal two-hybrid interactions (at least not in the screens) were 

observed. Furthermore, these interactions are the first data which suggest a link of 

Prp22p with factors that are required already prior to the first step and are thus important 

to be verified. In vitro binding studies could also reveal which of the two-hybrid 

interactions are direct, and which might be bridged by a third (or even more) protein(s). 

In particular for the triangular interactions Syf3p-Prp45p-Prp22p-Syf3 and -Syf3-

Prp45p-Prp46p-Syf3 it could be possible, that one of the proteins is actually 

"sandwiched" in between the others, so that two of them do not contact each other 

directly. 

Several observations suggest that phosphorylation events might influence the action 

of Prp22p, Prp45 and Prp46p: i) two putative phosphorylation sites are present within the 

only 30 amino acid long Prp22p-interacting region of Prp45p. ii) Prp45p shares similarity 

in its c-terminal half with src-like tyrosine kinases and furthermore contains 3 tyrosine 

residues which are 100% conserved among its putative homologues. iii) hPrp45p 

migrates as three distinct spots in 2D gels (Neubauer et al., 1998), which could represent 

different phosphorylation states. iv) the Arabidopsis homologue of Prp46p, PRL I, 

interacts in vitro with the protein kinase C-beta II isoform (PKC-3II) (Nemeth et al., 

1998). v) both Prp46p and Prp45p interact with protein kinase C protein (Pkclp; 

YbllO5p) in the two-hybrid screens (this work, A. Clark and C. Russell, unpublished). 

Therefore, initial studies should be performed to test a) whether Prp45p and Prp46p can 

be found phosphorylated in cell extracts and b) whether the proteins can be 

phosphorylated in vitro. If the proteins are indeed subjected to phosphorylation, deletion 

experiments or site-directed mutagenesis targeting the diverse putative phosphorylation 

sites should allow the determination of the residues involved. Thereafter, the effects of 

mutations within these residues on the interactions between the proteins and on pre-

mRNA splicing could be investigated. 
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To hypothesise phosphorylation events is particularly intriguing with respect to the 

putative cell cycle link of the described network of proteins. The absence of functional 

Syflp, Syf3p, Cefip and Prp22p leads to a cell cycle arrest in G2-phase. It would be 

interesting to investigate the effects of Prp45p and Prp46p depletion on cell cycle 

progression, using the conditional strains constructed in this work. Depletion of prp5, the 

putative Prp46p-homologue in fission yeast, also causes the cells to arrest in late G2-

phase (McDonald et al., 1999). Therefore, it is likely that S. cerevisiae cells would face 

the same fate upon Prp46p or Prp45p depletion. Interestingly, the Pkc I protein, identified 

in the Prp45p and Prp46p two-hybrid screens, is also required to promote progression of 

the cells from G2 to mitosis (Levin et al., 1990). An investigation of whether indeed a 

splicing checkpoint exists, through which the cell cycle regulates gene expression or 

whether the failure to remove specific introns elicits a cell cycle checkpoint response that 

arrests the cell cycle could be a challenging long-term project. 
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