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I. 

PREFACE 

This thesis is concerned with the problem of obtaining a full 

description of the physiological variables of heart rate and blood 12. - 
pressure. The results should then be useful in the design of machines 

that measure or monitor these variables, and for research workers 

'who wish to analyse data derived from these variables. 

The original imp6tus for this thesis came from a desire by 

Mr. (now Professor) D. E. IMI. Taylor of the Department of Physiolomr, 

Klinburgh to improve the design of a patient monitoring device (PAIS). 

A large amount of data had been collected from post-operative patients 

in a coronary care unit. The electrocardiogram and arterial blood- 

pressure had been recorded continuously for periods of. upto an hour, 

and from these were derived the beat-by-beat heart rate and the mean 

arterial blood pressure. A description'cf the variability and stability 

of these two parameters would contribute to the design of a patient 

monitoring device and should improve the ability of the device to 

discriminate between normal and abnormal situations. 

It is well known that respiration can, on occasions, be a major 

source of variability of heart rate and blood pressure,, and a seperate 

studywas carried out to investigate the effect of respiration or. 

heart rate. The effects of respiration on blood pressure were not 

studied since this would have required catheterization ok healthy 

subjects. 

Further data were kindly supplied by Professor B. McA. Sayers 
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of Imperial College, London ( Aej- E. E. C. Contract No. 297/76/12 ECI UK. ) 

These consisted of the arterial systolic and end-diastolic pressures 

for. each heart beat from two healthy subjects. A two hour stretch 

of record was examined and during the monitoring the subjects conducted 

normal activities, hence the term 'ambulatory' monitoring. 

The questions that we are going to ask are concerned with the , 

structure and stability of the data. Clearly the sampling distributions 

of the variables need to be examined, and tha nature and properties 

of the outliers. We also wish to know how the sequential nature of. 

the data affects the amount of information contained in it and to, 

examine the sampling distribution of the mean and variance so that 

the effect of averaging can be estimated. Stability of the data is 

another aspect to be examined for how long does the blood pressure, 

for example, remain within defined limits and on average 'hot-i long 

does it remain*stationary? Further useful information can be obtained 

by studying the frequency distribution of the data. From this we can 

estimate the contribution to the variability of various frequency 

bands, for example the variability due the the respiratory effect 

and from activities such as the vasomotor response, 

The structure of this thesis is as follow3: Chapter I is 

concerned. with data collection and preprocessing, and with the detection 

and analysis of outliers. In Chapter 2 we examine the stability and 

stationarity -of the patient and ambulatory monitoring data and, in 

more detail, the structure of the patient data, Chapter 3 is concerned 

with the theoretical problems associated with the spectral analysis 
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of unequally spaced observations of which heart beats are an obvious 

example, in preparation for Chapter 4, where the analysis of t1ho data 

in the frequency domain is considered. Chapter 5 deal with the effect 

of respiration on heart rate and blood pressure and Chapter 6 discusses 

modelling aspe(; ts of the control systems involved. A summary and 
are 

conclusion / given in Chapter 7. Appendix A deals with the mathem- 

atical and practical aspects of spectral analysis and digital filtering 

and Appendix B gives a p1hysiological, background to the central and 

reflex control of heart rate gnd blood pressure. A description of 

the computer programs is given in Appendix C. The methods or analysis 

are described in detail, in the hope that the thesis may prove useful 

to workers wishing to apply time series methods to records of heart 

rate, blood pressure and respiration. 

S 

S 
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CHAPTER 1. 

IIMODUCTIOIT AND DATA COLLECTION 

Observations made sequentially in time form a time series. The 

analysis of time series is studied within a wide range of 

disciplines, includinZ engineering, statistics and physiolo&7. The 

objectives of time series analysis are classified by Chatfield (1975, 

P-7) as descriptiong explanationt prediction and control. The 

principall aim of this thesis is to apply the methods of time series 

analyrUs to provide a description and explanation of the physiological 

variables of heart ratet blood pressure and respiration in man. 

Jcnkins and Watts (1968, p. 10) state that there are basically 

two types of time series problems; those that require model building 

and those that lead to frequency responze studies. We have concentrated 

mainly on frequency rcsponse studies. lihere are several reasons for 

adopting this approach; firstly the heart rate is very often 

oscillatorj and a frequency approach would appear more natural; 

secondly there are difficulties in fitting accoptable models to time 

seriest ezpecially when dealing with large quantities of data and 

thirdlyp if an empirical model were fitted it woul d be difficult to 

Cive it a meanineful physiological interpretation. The main tool 

used in the frequency approach is spectral analysis and a description 

of this method is ai, ýen in Appendix A. 

Time series method3 were. firat applied in physioloCy to neuronal 

spike trains, and an extensive litorature hao 6-roirn up a=ou: nd this, 

Y. Iloore, Perkel and SaGundo (1966) cave a review of the subject. The 
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similarity of neuxonal spike trains to heart beats is close; neuronal 

spikes appear as a sequence of points in time. However, the number 

of external physioloCical factors influencing the heart beat is large 

and the simple models used for neuxonal spike trains are not readily 

applicable to heart beats. Vie reasons for this were discussed by 

Ten Hoopen and Bonsaarts (1969). 

Cyclic variations have-b6on demonstrated ýn heart rate since 

Ludwig's (1847) discovery of. sin-Lis arrhythmiap which is the variation 10 

of heart rate ascribed to respiration. %he literature on this is now 

extensive and will, be reviewed in Chapter 5. If we restrict attention 

to the spectral analysis of heart rate then the literature is 

comparatively recent. Loos (1968), referred to by Luczak and Laurie 

(1973), investigated heart rate variability with relation to mental 

workload, and found three main poaks in the heart rate spectrum: 

1) a peak around 0.1 Fz., which he cailod the basic frequency, 

2) a peak between 0.2 and 0-35 Ift-, whic; h corresponded to the 

respiration cycle, 

3) a poak. correoponding -to the mental workload. 

Luczak and Laurig (1973) dotemined the resp#ation cycle as 

lying bati-men 0,25 Rz-P and 0-4 Ez. t but in every case studied the 

peak was only a local maximum of the spectrum. The overall maximum 

lay at a frequezicy between 0-05 and 0.15 Ilz.,, mainly at about 0,1 Hz. j 

which they ascribe to-a fundwental frequency of the physiological 

system. Sayers (1971,1973) -, ave spectra of heart rate similar to 

those of Luczak and Laurig (1973). In addition to respiratory and 

fundamental (or vasomotor) peak frequencies, Sayers also described a 

peak at araxid 0.05 IN., which he attributed to the thermoregulatory 
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system, Ilyndman et gtl. 9 
(1971) described a feedback mechanism of 

the arterial blood-pressure control system in man which could explain 

the vasomotor oscillations. The system described was stronCly non- 

linear and they claimed that for this reazont if the rate of 

respiration were sufficiently high and the depth adequatet the vaco- 

motor oscillations would cease and only the respiratory frequencies 

would appear in the system. This would also occur if the respiratory 

frequency was near the vasomotor frequency. The authors backed up 

their arguments with experimental demonstrations of the effects. 

Sayers (19719 1973) and Kitney (1974) described a possible scheme 

for the thermorernilatory system. Superficial blood flow is altered 

to chang-- the rate of skin heat lossl and the flow chan_, res are raade 
W 

by adjustments in the blood pressure. Me oscillations occur at 

around 0.025 Hz-, and are presumed to p:: oduce heart rate oscillations 

at about this frequency. They claii: i that pedIcs in the heart rate 

spectrum do occur at about this frequency in man whe-a resting. Kitneý 

(1975)'described experiments involving a subject dipping his hand into 

hot and cold water at regalar intervals. He demonstrated entraining 

of the heart rate by the thermal stimulus at about 0,025 IIz. 

Unfortunately he did not Give a cross-spectral analysis to indicate 

coherency azid phase relationships. Sayers (1973) made the important 

point that the properties that enable the system to oscillate are also 

those that enable it to maintain precise con*ol over disturbances, 

and that the appearance or absence of osoillations''is irrelevant to 

its overall behaviour, 

Hyndman and GreCovy (1975) also chowed crectra similar to thone 

previously described, in this case for both heart rate -, nd blood 



7. 

pressure. They claimcd that ibe low frequency (0 - 0.2) Hz. power 

chan, god with the mental vrovkload. Poz. -ible reasons for this wore a 

change in the delay time of the feedback loop or a chan, -e'in 

sensitivity of the blood pressure roceptor3 with mental workload. 

Chess, Tam and Calore. Su (1975) conducted carefully controlled 

experiments on docerebrate ccats. Mey performed spectral analyses of 

the beart period (tile time between each beat), under four conditions 

of neural input to the heart; intact, veZal only, oympathetic only 

and no control at all. (Appcndix D L-ives an explanation of these 

terms). In con, -non with the othcr aiAho=s they found three easily 

identifi: ýble rbythins with --pec"tral peaks P, 0P 2' P 3* The peak P3 

corresp6nded to reopiratory sinus ýrrhytlniap and vill be discussed 

in Chapter 5- Tho other two peaks vero at much lower frequoncies. 

A correlation was found boti-men lo- P and loC.; ITP, where HP is the 

mean heart period in the interval of time considered. They also 

found a correlation between log P2 and IoC ITP. An increase in 1EP 

itas usually associated with increased wCal, activity. It uras also 

found that P1 and P2 were largcst for VaCal only aotivityp and were 

greatly reduced by va, -otomy. These findinCs su, -, Cvsted that the 

rhythms were part of - the closod loop v.,, L,!,,, al control of heart rate. 

It 'Was suCCested that the control was mediated via blood pressure and 

baroreceptors. It wass also thought that symýathetic activity did 

not contribute to these rhythms, but rather tended to oppose chanees 

in heart period. 

Orr and Hoff)-an (1974) gvvo a very clear exposition Of. ' time 

series methods applied to heart rate. They were investirutina a 



90 minute cycle in heart rate over 24 hours. They applied bias- 

free high pass filters to remove the ciroadian rhythri and then used 

periodograms to detect the cycle, and complex demodulation to 

investiCate changes in phase. (See Appendix A for a E; i, =ary of these 

me'tho4s). They found evidence for this rhythm in all 12 subjects 

that they studied. One theory is that this cycle is perhaps an 

endoGenous rhythm present throughout the 24 hour day, representinL,; a 

rest-act. A. vity cycle of the-norvous system. Ole amplitude of the 

rhythm seemed to be modtilated by a cir, -sdian (24 hr-) rhythm. However, 

the modulating ciroadian rhythm was not phase looked to the wakind 

sleeping cireadian rhythm of each subject. 

Womack (1971) applied modoni time scries methods to ýho analysis 

of sinus arrhythmia. For the rostine subject he obtained peaks in 

both the heart rate and reopiration spectra at about 0.1 Ez. 71.1e. 

major issue in Womack's paper seems nýt to elucidate facts about 

sinus arrhythmia but to confirm the power of the vixious statistical 

techniques involved. Ile simulated the heart rate from the respiration 

cycle by use of Fourier transforms. The simulations seemed to 

describe the oriGinal data wellp but in General pUbjoots differed 

- sufficiently that one subject could not be simulated from another's 

respiration data. The inverse problemp that of deterinu1ning the 

respiration cycle from the he, -xt rate data i-rds also tackled but not 

with such clear results. In conol usion, the last paper illustrated 

the use of spectral canalysis for investiCatina sinus a=hythriia but 

did not contribute anything new'to the theory of that phenomenon. 
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Initial ýrocessina of-post-o, ýerativo patipntla data 

The heart rate and blood pressure data used in this study were 

taken from patients at an intensive care ward, at the Rdinbur&i Royal 

Infirmaryl over the years 1972-1974. The t.,, -pe of operation 'Ltncl. erý: ono 

by each patient is given in Table 4.1. As part of routine coxa, the 

electrocardiogram and the arterial blood pressure of each patient 

were continuously monitored and it was a simple matter to record both 

onto an P. M. magnetic tape for subsequent analysis. The electro- 

cardiogram was taken from chest electrodes ai-id the arteriol blood 

preisure recorded from a radial artery by means of an indwelliný,, 

cannula 

The - methods of data collection given here are summarised in 

Campbell (1974). Analoaue procescýinC was carried out by rpoazis of a 

parallel hybrid computor (EAL T11148). Figure 1.1 Cives a block diar-, --c-aa 

CICE; CritinjS the methods by which the QX. S complexes were detected. rilia 

E. C. G.. was obtained from a4 lead electrode system described in 

Appendix B. Me OS complexes were detected by a serico of electronic 

filters and level discriminators and the 11-It interval calculated from 

a monostable timer. The heart rate tras calculated from tile 11-R 

interval by an inverse function Conerator. The heart rate an oppolo(l 

to the heart interval was calculated because the purpooe of the 

monitorinG was a clinical assessment of the pýtient, and the heart 

rate is more acceptable amonS doctors and nurses týan is the heart 

interval. If there was uncertainty in the location of a QRS comple: c, 

for example because of excessive nol. -e from the electroden, then the 

machine output a 1flaC1 of one nachine unit. This detection method 

has been tested in the. Physioloý7, r Department at Edinbur, ^, -h over n; ýuay 
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hours and it has been found that loss than 1, ý of all xo, -. dinC,; s vmro 

faulty in do. tectinC the QTIS coriplel-cles. Inie mean blood pressure was 

calculated as the ratio of the into, -, -ral of the arterial blood pressure 

recordina over one beat and the interval of that beat, the start of 

systole being taken as the start of the beat. She ccalinf., factor 

employed by the analog computer was that 1 machine unit represented 

either 200 bts/min. for the heart rate of 200 rim. 1ý,, T for the blood 

pressure. Thus the absolute acc=acy Of t'I-A 0 rric=urermcnts vw limited 

by the ac:! uracy of the diCital voltmeter. flýho error v. us estimated to 

be well within 1 bt/n, in and 1 mm. IýU. 

Oic boart rate and blood pres. sure I ýi, ýnals were output to a DART 

data logGer. 7hey werc held in otore for the duration of the next 

heart beat, after which the store was updatod. 11iis store vias. sampleu 

independently at a maximmi rate of 1 :; ample/coo. This metliod of 

sampling has the advantaCe that it is on-line and the diSadvantage that 

fast beats may be micsed and bea-to slowor th. 4n 60 bts/min. will be 

sampled twice. The biases due to this method of campline are discussed 

in Chapter 3- 

The data were initially processed to eliminate the 'flags' and 

replace thori with an exponentially troighted mean. However, when the 

data were. exa-,, iined it was found that, on occadionsq there appeared 

very fast beats which (lid not seom to come from the normal heart beat. 

These beats can be attributed to extrasyctoles, which are caused by 

premature depolarization of a secondary p--com, -, I-, er to the heart. They 

can be classified into atrial, nodal or ventricillar extrasystoloo 

dependinC on tho socondary pacenvo-or (Ganon. -, 1963)- Appendix B 
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describes the electrical activity of the heart. Atrial extracystoles 

can be distinguished from ventricular because tho'lattor are followed 

by a compensatory pause which is lon, ý; er than1he normal heart interval. 

The two can be described as follows. The vontricular impulse 

depolarises the ventricles prematurely, and the normal impulse from 

the SA node that would have discharC; od the ventricles does not 

produce a beat. It in not until the succeeaine SA nodal impulse that 

the heart beats again. In the ease of an'atrial extrasystoleg the 

impulse fron the atrium depolarises the SA nodet which rust repolarise 

and then depolarise to firing level before it can initiate another 

boat. Thus ventricular extrAsystoles do not intorupt the regular SA 

nodal diochareeg whereas atrial extrasystoles intercept and 'reset' 

the normal rhythm. They are 'quite common' in the normal healthy 

heart (Ganong 1963). An exatuple of extrasystoles is shoi-in in Figure 

1.2. The top photograph shows two atrial extrasystoles and one 

vontricular extrasystole, which is followed by a compensatory pause. 

Ilona of these appears to affect the moan blood pressure. The bottom 

photograph shows two ventricular extrasystoles, both followed by a 

compensatory pause. Both axtrasystoles appear to be coincident with 

a momentary drop in the nean blood pressure. 
6 

An analysis of extrasystoles war; Civen in Nanley (1973)- Ile 

doseribcd the theories of point process amlypis and evolutionary 

spectral cuialysis. 111-ie latter theory was oriCinally described by 

Priestley (1965). - Hanley applied these methods to extrasystole data 

from two patients, the data havinr- been collected imnediately prior 

to the death of the patients. Tho conclusion he drew wao that the 

point spect=a of the extrasystales becomes much nore va: ria7ble as 
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death approaches. However, the numbor of extrasystoles upon which 

each spectrum was calculated was extremely smallq the total for one 

subject being 46, and so it would be difficult to Ceneralise these 

results. Manley assertod that a point spectrum of the heart beats 

may be useful in a monitoring scheine. 

The presence of extrasystolen in the data, however, can 

severely affect the spectral. analysis of heart rate. It is demonstrated 

in Appendix A that if the iriput data contain large peaksq that is a 

relatively small number of points account for a large proportion of 

the vaxianco, then the spectrum will show oscillationst with a period 

uhich can be related to the distance between the peaks in the input 

data. Me effect of this is to lose any other information that the 

spectrum could reveal such as miall amplitude cycles in the input 

data. It was therefore felt necessary to remove the extrasyntoles 

from the input stream . 

Although they are easy to spot visually when the heart-beat 

intervals are plotted Graphically, and easy to spot by ear if the 

heart beats are'relayed through a loudspeaker, it is less easy to 

, vxite doirn a simple criterion for detecting extrasystoles. If they 

are . greater than 200 boats/min. they axe indistinguishable from 

machine IflaC-s'. 1 which we wish also to re-, iove,. The method employed 

was to compute a continuously updated exponentially weighted variance 

and exponentially weighted mean and to replace all points that were 

5 times the standard deviation fram that mean. 

A pro, -rxa SYSTOIj'!, (Appendix C) was , mitten to implerient this 
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method. Let us say that we have a finite time serie2 x1j** v 

X, go 6 13C n* 
lie denote the exponentially weighted nean at time t 

by et and the exponentially weiahted variance and standara deviation 

by vt and st respectively, with a weightinG factor. of a. The 

formulae employed were 

et= ax t+ 
(1-a)e 

t-l t ;ý2 

vt = a(xt et)2 + (1 a)vt_l t; ý*2p 0 aiC 1, 

and at ýYvt 

For t=1 we put et= :tt an 
.d 

Vt iras put at an arbitrary value of 10, 

which was felt to be a reasonable value based on observationt-. oý the 

raw data and previous calculations of the exponentially 

variance. 

A point xt was rejected if I xt - et_l 1 >5 st-l, In this cý-%so xt 

was replaced by e t-l' The proCrara printed all rejected poinw., f; o 

could be mado as well. Values of a wm: c that a visual chec on 

between 0,5 and 0-005 and it was found that a value of 0.01 a 

satisfactory correspondence betweon pointo rojeqted by tho pro, -: rom 

and thoso that would have been rcjooted visually. 

lilith such tixbitr. -xy startin, - values, tho functiorin will taho 

some time to settle dom to reasonable estimates. Thufj a partic-,, Iax 

scrutiny must be made of values rejected in, the first 300 points, 

An additional bazard is that if the series bqcomea very stablo c-7on 

slight perturbations would be rejected as extrasystolen. It vac; 

decided that if Ixt0 
t-114.1 10, then xt would not be rejected. 

Further trouble would arise if the first point in the rea: ies wore an 

extrasystole, and so these wore e. -"--dned before the otatrt of thc 

proLXara. In addition a sudden chan..,, c of levol would mcan that a 
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large number of points would be rejected consecutively. It was 

decided that-if more than 3 points were rejected in a row, then the 

prograra would be stopped and restarted at the new level. Replacing 

the exreptional (extrasystole or machine nolse) values with an 

exponentially weighted mean is not wholly satisfactory, because %e 

are. in effect passing the data through a filter which is not bias 

free. A better method výould be to take into account values 

occurring after the exceptional value as well as those before. 

Unfortunately it would be dif. Licult to determine whether the values 

after an exceptional point were themselves exceptional. Out of the 

15 patient data sets examined, only 2, patients 7-73 and 8-73 yielded 

more than, 9 detectable points in an hour, Týese two gave 32 and 19 

extrasystoles respectively in approximately an hour. However, sL-I... e 

it takes just two extrasystoles to upset a spectral analysis, it was 

felt ulorthwhile elizinating the in. 

, 
Initial prc, cessinF! _ 

of the ambulatorýv subjects' -data 
The data from the ambulatory subjects was collected from a 

continuous recording of arterial pressure using a smal. 1 Intra- 
"C3 

arterial catheter with a magnetic tape recorder developed by Bavar% et 

al (1969). The sub4ects were free to perform normal tasks whilst the 

data was recorded. Uses of this recorder are described in ISAM 77 (2nd 

Symposium, on Ambulatory Monitoring). The preprocessing of the data 

is described by Sayers et al (1978). Two subjects were studied. The 

records consfit of the peak systolic blood pressure and the preceeding 

end-diastolic pressurel from which the pulse pressure could be 

calculated. In each case there were about WOO data points, which 
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given a heart rate of about 70 bts/min., represents about two hour3 

of ccntinuous monitoring. The data. were aLmost artefact-free and the 

few artefacts found were replaced by the previous, normal blood presn'ure 

level. The data were searched for outliers in the same way as for th,., post- 

operative patients and the intervals between outliers were recorded 

and analysed in the next section. 

Analysis of extrasystoles 

Manley (1973) in his thesis claimed that i=ediately prior to 

death the patients he was studying shawed strong autocorrelations in 

the extrasystoles that they generated, In two patients . 7-73 and 8-73 

the nirribef of extrasystoles as determined by SYSTOLE was sufficient 

to enable an investigation to be marýe into possible autocorrelation. 

I'Ie wich to test whether the extrasystoles occurred randomly in tire, 

Vecause'if this is the case then autocorrelations may be a useful 

warning since our patients were not near death at the time of the 

recording. Table 1.1 gives the interval in seconds between cxtraSy3tO. "ýec 

detected by SYSTOLE. We also recorded tho interval between outliers 

above the mean in beats of the ambulatory subjects since these subjects 

were normal and provided a quantity of beats. The systolic pressure 

of Subject A2 was excluded because very few outliers were detectod. 

A point process can depart from rando, -, mess in time in several 

ways, and Cox and Lewis (1966) discuss three main types of test: 

a) tests for trend, 

b) tests for correlation between the intervals, 

c) tests for a Poisson process (Poisson processes will be discussý; -, 

in Chapter 3) 



16. 

If the tests all had equal power, then if a series satisfied 
(c) i. e. it was a Poisson process, At would clearly satisfy (a) mid 

(b). However,, in general the simpler tests are more powerful and it 

is usual to proceed (a), (b),, (c) 
. 

A general test for trend is, the Wald-Wolfowitz test for rtms 

above and below the median. If a trend were present in the extrasystole 

intervals then we would expect fairly long runs abbve or below the 

median intcrval. On the nul1hypothesis of'no trend, the number of 

runs, r, has expected value 

l=1+ (2n nn ir + 
A 

and variance a2 2) n+1 
r 

ljr Pr, 

where n+ and n_ are 

For rTa2-l values of r the significance limits have been tabulated 

(e. g. Siegel, 1956 

A simple, non-parametric 

intervals is given -,. n Cox and D 

rank-correlation statistic 

RI 

test of serial correlation of the 

-, wis (1966, p 166). 'We compute the 

n-1 
ri+lri 

i. -I -. 

where ri is the. rank of the i th interval. It. can be shown that for 

a renewal process ( i. e. independent intervals ) then 

E(RI) - (n - Mn +1 )(3n + 2)/12 

and Var(Rl) - On 6 
+16n5_', 4n 4-8on 3 

-35n 
2 
+64n+44)/720(n-1). 
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By ignoring the distribution of*the intervals we lose some 

efficiency. If the interval had come from an exponential distribution 

then a more efficient test can be devised. In place of the ranks ri 

we compute the so-called exponentially ordered scores 

i 
ei MI 1/(n-j+l) I inlo ... n, 

j-1 
n-1 

and f ind R, -. Ie, + 1 ei 
i-I 

Here-, ei is the exponentially ord(. red score associated with ris 

For a renGwal process 

E(Rjl) - n-2 + lop, n +y +1+0(I? - 
) 

n 2n 2 

132an 
and Var (R, ') n- 6n + 24n, - 2log n+ 0(--ý'ý 

n (n-2)(n-3) 

%hire Y is Euler's constant - 0.57'12 

The rank test will tend to emphasize correlations between short intervals 

whereas the exponential score test will emphasize correlation between 

long intervals. 

Finally vie examine whether the intervals could form a Poisson 

Process. One consequence of this would be that the mean interval would 

be approximately equal to the standard deviation of the intervals. 
t 

The coefficient of variation of 7-73 is 0.99 and that of 8-73 is 1.18. 

Cox and Lewis (19669P. 176) state that a ranga of values betv. een 0.8 

and 1.2 are consistent with a Poisson Process. 

A suitable test statistic is 

(n-i+ 1X tnW 
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where tn is the s um of all the intervals and XW is the i1th 

smallest interval. Under the null hypothesis of a Poisson Process 

the distribution of S tends rapidly with increasing length of time 

to a Gaussian distribution with mean In and variance 11/12. 

From Table 1.2 Ae can see that Uie series uf extrasystoles from 

subjects 7-73 and 8-73 satisfy all tests with regard to serial corre- 

lation. and non-Poisson behaviour, except a just significant result 

for RI for s-ibJect 8-73. From the data we can seo that there is some 

evidence for clustering of the longer intervals. However-, taking the 

tests together, there is little evi&:,. ýce that the extrasystoles are 

anythLig but randomly distributed a3 a roisson Process. 0 

Thus a useful adjunct to patient ruonitoring would appear to 

be the ý--xaminatioa of the intervals between extrasy3toles for serial 

correlation or trends . and soun-d the alarm if either becaire evident. 

However, further study is clearly needed, firstly because the sampling 

procedure that we enployed meant that almoft certainly we have not 

detected all the extrasystoles in the records, and secondly because 

we have only examined records from two natJent3.6 

lihen wi consider the tests on the outliers in the blood pressure 

variables in Table 2.1 we see that the only record to exhibit sigpificant 

correlation is the systolic pressure of subject Al. ' In fact this is 

caused almost entirely by the two very long periods with no outliers 

that are adjacent to each other at the end of the record, From these 

data therefore Vne outliers in blood pressure appear to bu randomly 

distributed in tizme. 
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TABLE 1.1 EktrAsystoles for patients 7-73 And 8-73 and olltllýlrs 

for ambulatory subj,, cts Al and A2 

Tntervals (secs) 

Patient 7-72 n='31 

200 422 37 159 ^cgl 3 84 16 109 33 171 80 202 6 52 87'79 121 15 51 31 

5 23 28 9 205 347 222-7 32 84 139 

Patient 8-73 n=18 

54 797 432 655 196 190 83 185 406 13 139 7 27 42 173 110 

Tntervals (beats) 

Subject Al Lsystolic 

899 329 495 285 183 141 139 63 107 37 137 116 145 162 156 118 163 1442- 

1322-6 
Subject Al (di-astolic) : 11---12 

377 1253 263 68 491 418 53 142 138 460 5'41 1605 

Subject A2 (diastolic) n-27 

247 56 63 49 41 32 151 50 16 58 12 76 47 49 65 17 : 27 9 75 7 18 24 4ý 

9 24 42-73 48 

1ý 



20. 

Table 12 Tests of ran(jomness on*intervals 

Extrasystoles 

Test Statistic Observed Expected 

Value X value E 

-Expected 

s. d. 3 

Z. X-E 
S 

Trend r ? -73 17 16.42 2.65 0.01 

8-73 8 10.00 1.95 0.77 

Serial Correlation R1 7-73 7636.5 7600 475 0.08 

8-73 1718.0 1507 127 1.66 

Serial Correlation 7-73 33.45 29.13 4.86 0, r7q 

d 
8-73 24.00 16.19 3.49 2.09 

Non-Poisson S 7-73 14.5 16.5 1.61 0.93 

8-73 8.65 9 1.20 0.13 

Ami-mlatory sublect- outliers 

Test Statistic Observed. Expected Expected z 

Value X Value E s. d. S 

Serial Correlation R, Al syst 2039 1770 145 1.85 

Al diast 459 452 300 O. Or- 

A2 diast 4900 5035 339.5 0.40 

Serial Correlation RI Al syst 24.62 17.19 3.61 2.06 

Al diast 10.89 10.26 1.80 0.35 

A2 diast 29.43 27,14 4.67 0.48 

Non-Poisson S Al syst 9.94 9.50 1.26 0.35 

Al diast 7.32 6.00 1100 1.32 

A2 diast 15.03 U-5 1.50 1.02 
.1 
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CHAPTER 2: PROBABILITY STRUCTUFRE OF BLCOD-Fr"tTS': )URE AND HEART RATE 

IntrMuction 

As variables, heart rate and blood pressure differ fundamental. 1y 

in that the heart beat is a dimensionless event i-lherea: ý blood pressure 

is a continuous variable in tire. We can Idiscretizel the blood 
I 

pressure by examining the signalonly at distinct points such as the 
I 

peak systolic point or the end-diastolic point. We can thert regard 

the sequence of peak systolic points and the sequence of end-dia3tolic 

points as values taken by two distinct random variables, and so 

consider their seperate and joint probability sýructures. In a 

slw. ilar manner we can consider the probability structure of the 

intervals between eacb beat# the heart interval, or the successive 

values of the heart rate, the reciprocal of the heart interval. 

I- The first device that one vould normally associate with the 

investigation of probability struQtures 1.3. the histogram. Particularly 

for short data stretches this will give some idea of the ClWturin,.; 

of the variables, and the proportion of outliers. For longer sections, 

non-stationarities in the mean tend to obscure many of. the details in 

the histograms. Hmlever, histograms do not display any of the tire- 

dependent features Of the data. We can 1pe the sample autocorrelation. 

function, defined Jn Appendix A to, give us a summary of the time- 

dependence although it is very susceptible to non-stationarities and 

is often difficult to interpret usefully, beyond telling us that the 

data are corr6lated. Also it only measures linear correlation. A 

useful question to ask is, because of autocorralation, hcw is averaging 

affected ? With independent ob3ervaticns we can reasonably assess the 
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accuracy of the mean, but not with autocorrelated variables. A 

further question about variables in. tjme is, given an observation, 

what is the distribution of the next oboervation, or the next two, 

etc.? An answer to these questJons should tell us something, about the 

stability of the variable, how often dOC3 It suddenly JL=. p, and how 

often does it exhibit slow chan,, es. We would also like to know, typically, 

vyhat length of data can be r(,, - 
., 
arded as stationary in both mean and 

variance. This is also concerned with averaging, where we want to 

- eli; -ninate short term variation 'out not confound it with the long 

term variation. The long terrj variation nxiy appear, from the short 

term point of view, as a non-stationarity. For example a long term 

cycle would appear as an abnost linear trend if viewý: d for only a 

short period of time. 

For'data that appear rea. sonably stationary we can make a more 

detailed examination of the probability distribution by using histo- 

grams. In particular, we shall. see in the literature review that this 

has of teen. been done in the past. We can Lhen attempt a more complete 

description of the data by fitting, theoretival distributions to the 

observed points. The most oWlous candidate is the For-mil distribution 

and it is useful to examine %%bether the observed points are Normally 

distributed because many statistical tests depend upon this assumption. 

Two ways in which a distribution may depart from Normality are when 

it is not symmetric and when a laq, ge number of points appear in the 

tails, Either can seriously upset a statistical test and so for the 

purposes of describing a signal these departures should be recorded. 
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For data that are not stationary in mf, ýan we can either study 

the probability distribution about a slow moving trend,, or split the 

data up into sections that are short enovgh to be regarded as 

stationary. We could then ask %-; hat kind of distributions best describe 

the variables and further, how do the parameters of tho distributions 

change with time. 

I 
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Literati)-re Review 

Early literat-L=e concerning hoaxt rate tended to assume that 

it was approximately constant and did not atbach a probability 

StrLICtI=O to it at all. The mean heart rate was calculated by 

countinsr the niraber of heart beats that occurred in one minute, or 

some shorter fraction. The idea of the. hezart interval, defined as 

the tiDic between ouccoosive peak-s. in the OJIS complex of the E. C. G., 

as a, randoin variable ILis only been explored more thoroufhly with the 

development of automatic methods of detectine the OS complex. A 

probability structure can then be associated with the raildom variable 

and the inean and ý-. riance calculated in the usual way. Varni et al. 0 

(1971) i,, IrvestiTated the variability of he. -at rate undcr, various 

physiolot. -Lcal controlv. 

Ir, rucent yc,,.:: s quite a few simple toohniquas have boon developc-fl 

pid aesessment of the variability of heart rate. 11iin f or a fairly ra- 

is oftca necessai-j for an. accurate diagnosis of a heart condition. 

The xiwit straiahtfon;, -xd method is the use of the cardiotachogram, 

., 
th aCainst in'l. which j-- iýýimply a plot of interval long xinral number, 

demonatr, -Oýed for instance by Werotr8m (1950). This method Cives 

a quick %nd easy indication of cha-n, -es in variability, raid of 

predor: iinant cycles. Other techniques that have been developed include 

the Interval histc--gji and the joint rate histoCram or acattererw. Q- Ili 

The latter is a. two dimensional plot of heart interval arainst the 

succeedingg adjacent, heaxt interval; that is, we plot the ith heart 

intex-val on the y wKin and the i+1 th interval on the x &-%is, for 

all intervals i ý-- 2,.. n say. A. discussion of the main foatures of 
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the interval histograxi hac been vf)ji by r--en Iloopon ana Boii,, aarta 

(1969). Froni the interval Iiistor,, rm wo crui readily aosess the 

chortest, lon, -est and the mean intenrals as well as the spread of 

the intervals, their standard deviation and skemess (defined as 

(mean-mode)/standard deviation). A possible drawback of this 

mothod of presentinL- the data ic that the orderinG of the data Is 

lost. Vb could obtain im idea of the ordering by plottinC two 

interval. li; -stoexams; one oj. intervals which oucceed an intervL1 

greater than the mean, -.: ad the other of intervals succeeding an 

interval joss than the mean. By coiiiparinj the two interval histograms 

we can Cot s, -. )jne idea of the inflopendence of the intervals. Total 

independence would, iriply more or lesc,!. dentical histo&T. 'Uns. Ton 

Hoopen and Donigaarts (1969) discuss poc-sible clans vidtho and the 

munbor of cla. ssea -to Io uued in cotimating the hirntotxam. The class 

widti-i j-ý pox-bly dete: mrdnod by the morxuring accurac, %,, * of the apparatus, 

but clearly ýt must ziolu bo taken too narrow or a histogy-m with a 

very imcvcm profile would be obtained. They illustrate the use of 

the intem-al histo,,! I-,? ja, the joint rate histogram and the c, -xdio- 

tachogram by considerino, healthy subjects and patients with atrial 

fibrillation who are producinC extr. asys toles. 

A coi-nnon feature of the histogramn is their multimodality. An 

osscillatin, -, time series will cive a hictoa: ran which has a U-shaped 

distribution. Newell (, 965) discusses an analomus problen, of 

finding the probability distribution function of a sinusold. 

Strictly spea! dng a det=ministic function does not havo a 

probability function, but it can be thoue; ht of as hping a froquency 

distribution. Alternatlively vic dan think of saxiplint; any point alonC 
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the curve at random and examininC the frequency diotribution of the 

values at this point. Let us say we have a variable x(t) =a+ boos(t). 

Sampling x(t) at random alone the t axis is equivalent to =iplinS at 

random in the ranae (0,10. Within thin ranGe the probability of 

sampling at a point on the t axis in a section of lenCth 6 ri is 6 s/Tr . 

Thus the probability of obtaining a value :% of x(t) in a section of 

length Sx 
0 

is 6x 
0 

for xo in (a t b). 

7r (b 2_ (x a) 

This equation describes a U-shaped curve. For a=O and b=1 the. 

distribution can also be described by what is known as a rearson 

Type I curve. The fittinC of Pearson curves to heart rate data will 

be discussed later. A characteristic of this type of curvo is that 

a large proportion of the observations are at the extreme ends of the 

range. It will be chom later that respiration can cause tho heart 

rate to behave as a sinusoid and produce bimodal histoGrams. It is 

only by careful balancing of the population size a6ainst the class 

width that we can hope to pick out multimodality. Ten Hoopen 

sugaested that tho skei-mess often encoiuitered in heart rate histo, --ram s 

may be a consequence of di4fuse and latent peaks. 

The joint rate histo, -raxa or scatterCTam (RowlandF39 1970; Stinton, 

1972) is raore easily employed as an on-line analogue deviýe rather 

than for retrospective calculationg and can be very useful in 

confirming various heart diagnoses. Thus for atrial fibrillation we 

find the joint rate histob=an, gives a circular cluster of pointog 

confirminG that the intervals axe approximately independent of each 

other. For normal sinus rhythn the joint rate hiotoe=wri shows a 

dense cluster of points lyin3 on ýhe main diwConal. For respiratory 
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sinus ari-ythmia wo'got a greator tondenc.?, for the points to form. a 

narrow ellipse. 

beats show up well thus: 

gX3) 

n th (i), " -o" (2) 
interval. 

(se6onds) 

n+1 th interval (seconds) 

PiMLxe 2.1. The joint'rate histoCraza (froti Rowlandsl. 1970) 

Four main clusters are shoi. m., The cluster on the dia, -onal ro. prouents 

normal sinus rhyýhm. An ordinary beat followed by a premature beat 

is plotted. to the left of the diagonal in cluster (1). This is 

followed by a compensatory pauso wll-dch is plotted in cluster (2) and 

then an ordinary beat$ cluster (3). This method of presentation is 

-well suited to the analysis by statistical cluster techniques. 

For a very large number of pointsv histoGrams tend to have very 

similar shares. Ten Hoopen (1969) shows that a compaxison of histo- 

grams composed of fewer pqints would indicate that they had different 

distributions. However, care inust be taken because with too few 

points only the variability of the intervals would be precented. 

Ton Hoopen (1969) points out the difficulties of applying the theories 

of stochastic procespes or random rhenomena to heart interval 

distributions, w., -, 'ch are dependent on a large number of factors and 

which are restricted in both upper and lower limits by plrysioloCical 

considerations. 
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Jermin, gs et al. , (1974) havo compared heart interval and heart 

rate distributions for 10 subjects, each with about 2s500 intervals. 

A munbir as. large as this is likely to obliterate any multimodality 

since the sianal would probably not remain stationary for so lonc. 

They found that 4 out of 10 heart period distributions satisfied 

Y. olmogorov-Sinirnov tests for goodness-of-fit to a normal distribution, 

whereas none of the heart rate curves did. They also found that the 

heart period curves were skew6d neCativelyt i. e. the left tail was 

disproportionately lar, -e, whereas the heart rate curvoo were uýewed 

positivelyt and also leptolcurtiog which means there were Liore 

observations clusterina around the mean than with the normal 

distribution. For these reasons, they -advocate the use of heart 

interval instead of heart rate for assessing cardiac perfomance. 

Taylor (1971) and Taylor ot al_*j (1975) ctate that the eUstribution 

about an exponentially weighted mean of both heart rate and blood 

pressure showed no si,, -nific, --nt difference from a normal distribution 

uP to 3 standard deviations from the mean. Taylor ot al., (1975) 

studied 27 patients and stated that in the 54 heart rate and blood 

pressure records obtained, 50 could be described by a normal 

distribution except for the extreme tails, as judC; cd by aX 

goodness of fit test. This would imply that the weiChted mean 

elimirýated factors which, can cause skevmecs, such as trends or slow 

oscillations. Hovever it is difficult to see how a factor ouch an 

leptokurticity could be corrected by this method. 

I lethods 

The data collection methods are described in Chapter 1 and also 
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Appendix B. We have three distinct types of data. The post-operative 

patient data-consist of heart rate and blood pressure sampled at one 

second intervals by a data logger for periods of upto an hour. The 

data from ambulatory subjects is of the systolic and end-diastolic blood 

pressure for a period of about two hours. The healthy subjects' , data 

consist of successive heart intervals for periods of about 5 minutes. 

The main analyses in this Chapter will be of the blood pressure 

variables, principally because we have extensive blood pressure recoris 

of the ambulatorýy subjects, but also because these have been less 

intensively studied in Vie past. In addition physicians pay more 

attention to blood pressure than heart rate, and it is likely for 

reasons to be discussed later that the former gives more information 

about the condition of a subject. 

Preliminarýv analysis of blood pressure 

The first step in any analysis was to print the data on a line- 

printer, and then perfoiTa a line-printer plot (u3ing the program GRAPH) 

to examine Chem visually. In thisuay we can very often spot outliers, 

and look-for trends. 

Table 2.1 gives some summary Statistics of the variables recorded 

from the ambulatory subjects, and from the mean blood pressure of 

those poskl-operative subjects with substantial data sets. -Irom. the5e 

we can see that subject A2 has Vile same overall diastolic pressure 

as subject Al; but that the mean systolic pressure is higher-, giving, 

a correspondingly greater mean pulse pressure. In addition his data 
5 

are much more variable. The overall rrean blood pressin-P. of the po3t- 
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t 
operative patients are quite close, mainly abou/100 irm. and Vhey 

show less variability than the amb-aatory subjects, not surprisingly 

since the patientswere confined to bed. 

In order to examine the short term variability the data were split 

into succes3ive sections of 200 points. For each section, the mean and 

standard deviation (s. d. ) were-calculatod, giving two seluences from 

which the overall mean and the s. d. of the mean' can be calcalated, 

and also the overall s. d. and the s. d. of the s. d. s. These ficares 
e.? 

are also given in Table 2.1 . They show that about a short term mean 

the variability of systolic blood pressure is similar for the two 

subjects at-about 10 =. Hg, although subject A2 has a less variable 

diastclic pressure. The variabilities of the blood pressurd of the post- 

operative patients are in fact quite close to each other at ab--ut 8 

mm. 11g, except for subjects 11-73 and 1.5-73 who had less variable 

results than the others. 

Cutliers of ambulatory subjects 

In Chapter 1 we described methods of detectirig outliers and tests 

for possible randomness in the interval5 between outliers. In this 

section we briefly examine the effect of outliers on the variance of 

ýhe blood pressure of the ambulatory subjects. Values of 0.90 and 0.99 were 

tried for tha exponential weighting con3tant -&.. The s=s of squares 

due to. the outliers about the moving average, and also the sums of 

squares of the other points from the moving avarage are given in 

Table 2.2 . The tOtal SUM3 of squares are computed about the aritIrcetic 
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mean. From the total we subtract the sum of sjuareý due to outliers 

and the sum of squares abouL the moving average to obtain the residual 

sum of squares due to the moving average. This is not strictly correct 

because a was not chosen to minimise the residual sum of squares, and 

so we do not have orthogonality between the partitions. In particular 

a poor choice of . aýmay re5ult in a negatlive sum of squares. However, 

we can think of the ratio of the re3idual sum of squares to the total 

as the amount of variability accounted for by the moving average, ýzp 

'Ilia choice of a-0.99 picks out most of the outstanding outliers, 

and while a=0.90 picks out many more minor ones, their contribution 

to the sum of squares due to outliers Is not great. By comparing the 

two sets of values in Table 2.2 we cwi see that , by giving more 

weight to the recent events, the. valuo a-0.90 follows the procoss 

I more closely and so reducc-3 the fabout. moving average' row. 

Th-I squared absolute value of the transfer function of the 

exponentially -weighted f ilter is given by 

fl(w) 12a)p 
.2 1- 2aco-9 2 7rw +a 

for example Chatfield (1975). For a-0.99 the half power point iu 

W 0.0016 cycles/beat or a cycle Iength or about 625 beats; for 

a 0.93the half power point is w=0.017, cycle length - 58 beats. 

Thus by using a-0.90 we are removing a wider band of low frequencies 

than for a-0.99 

The results fl, (, m T-able 2.2 show that, for subject Al at least, 
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0 
the outliers, although only 1% of the populationt amount in some 

cases to 11% of the total s= of squares. It is perhaps worth noting 

that for a random sequence of normilly distributed variablef, the 

contribution to the sums of squares of those values four standard 

deviations from the mean is 0.1/10. A hi, e,, h proportion of the variability 

associated with the systolic and diastolic pressures of Subject A2 

can be accounted for by a slowly f1tictuating mean level. Allowing 

for this trend, th6 variability of tho systolic. pressures for Al and 

A2 are surprisingly cloý; e with a standard deviation of about 10 m. Hg 

which is about the same as the standard deviations about the short 

terri mean given in Table 2.1. In er, ý-, h case tbe diastolic pressure 

and. the, pulse pressure exhibit less vari. atior, than the systolic 

pressure. rrom visual inspection oil the data it was noticed that 

an outlier in pulse presoure can be caused by either a high systolic 

or a high diastolic point. However occasionally they occur together, 

so that the two outliers produce a pulý'o pressure of normal size. 

Stationarity 

A major question that was posel in the Prefaco concorned the 

length of data that could be regarded as stationary in mean and in 

standard deviation. A method for te5ting station3rity is described 

by Kendall and Stuart Vol 111 (1967). 

If we have a sequence of values x 11 x 21***IXN then a reverse 

arran, gement is defined as occurring when 

Xi >Xij> 

We write Ai as the total number of reverse arrangements for xi and 
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put A Ai If -, Lhe sequence %,, -ere ran dom, then E(A) - N(N-Q/4 

and the variance is (a, 3 
+ 311 2_ 5N)/72. For U> 10 and for a random 

sequence the distribution of A is approxi;, nately Gaus3ian. Mis Irethoj 

is more appropriate for testing for trends and abrupt changes in level 

than for other types of non-stationarity where the lcvel returns to 

Its original value. However these types of non-stationarity may give 

clues about the state of a subjýýct. 

For the ambulatory sabje. 'cts' data wo considered ohort sequences 

of 5# 10,15 or 20 beats. For each we computed the mean and variance 

and then considered them over lengths oC 10D, 300 and 500 beats. 

Kendal. 1's 'reverse arrangement' statistic i;., as calculated for each 

sequence of short term means and variancc-- over the different nLrabers 

of beats. For each case, the means and variances were tested for trend 

at the 1,1 level. The approximate percentoge of sequonces that were 

found not significant 13 given in Table 2.3 for both the means and 

the variancea. 

In addi-Ition to the blood pressuro data, a set of artificial data 

was tested to see what kind oil non-stptionary seqticnces the test 

detec. ted. The form of the artificial data was a set of random nw. bers 

of variance unity, with an added deterninistic variable defined by 

x0 1-11100 

: ýj (i-lOCj')xO. 02 i=101 P230 

xim1 i=201,30O , 
This was repeated 20 times, to produce 6000 data points. 
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The random data show that the test correctly decides that the 

variance is stationary for all sets. When we look at the serie3 Of 

means in the 300 beat period, none of the series Is con3idered 

stationary, which is correct. For sets of length 1CO beats, about two- 

thirds are considered stationary by the test, which is again correct. 
However, for sets of length 500 we find that as the nunber of points 
taken in each average-is increased, so does the nunber of stationary 

sequences. This is because the sequence of points from -300 to 500 of 

a set of 1,: ýngth 500 has the same moan level as the soluence from-1 

to 200 and from this the test iray decide that the sequence is 

stationary. 

Table 2.3 shoi4s the expected result that longer averages 3how 

fewer significant trends, but that if we consider the results over 

loýiger periods we are more likely to find trends, In cauidition, oriLly 

a small proportion of the long periods for nean3 'L. 'Or subject A2 cLui 

be regarded as trend-free, aswould be expected from the re ult -5 on 

the suns of squares about the moving averages. However, what ia 

irmediately apparent from the Table is Chat the variances are much 

more often stationary than the means. For example, for sets of length 

300, -the smallest percentage of variances that are stationary in 75% 

whereas for means the corresponding Ugure 13 25% 

This result confirms the impression given by looking at the 

line-printer plots of the data, that the awrage level varies by quite 

an amount.. but that the variability about that averaEe is relatively 

stable. 
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Distr1hution of run lcnýZths 

A run is defined as a sequence of observations x such that 
.t 

Xn- Xt <k for t>n, 

where k is a specified parameter. 

A run of length m is one in 'trý, hich there are m-1 successive values 

of xt within k of xn. For each-value xn ,n >0 we have a run of a 

particular run length, although the run length may be constrained by 

the end of the sequence. From histograms of run lengths we can derive 

tables showing the proportion of times that a sequence of a given 

lenl-th is within a certain distance of the original -value. This is 

useful for measuring the stability of the data. 

ThCre are several methods of calculating the frequencies of 

run lengýhs. One method would be to consider each point in the series 

In turn an(! compute the run lengths from itF building up a frequency 

table of run lengths. Cne disadvantage of this is that any outlier 

is likely to be the termination point of several runs. An alternative 

woald be to count only non-overlapping runs. Again we have to beware 

of outliers, since the point followilig an outlier is likely to be 

unusual, so the procedure that was followed was to allow a point in 

between runs. Both methods produced similar histograms, and the non- 

overlapping runs were studied in more detail since these are less 

likely ýo be correlated. 

Figure 2a shows the proportion of sequences withill 3,6,9 and 

12 m. 11g, of - the starting value f or. each run length for the systolic 
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pressure of subject A2. The curves are strongly sup. Xestive of an 

exponential decline and so the natural logarithmwas plotted a, -, ainst 

run length, , as in Figure 2b. The logarithmic transrormation produced 

a very nearly linear relationship between log p and run length. 
I 

We investigated a number of possible explanations for this 

phenomenon. 

Let Pi -. Prob ( IXt., - Xt 

p2m Prob ( IX 
t+2 - Xt I>k and Ix 

t+l xt 14 "k 

p3- Prob ( IX t+3 - Xtj >k tlXt+2 -Xt I<k and IXt+l - Xtl< Qr 

etc. . 
Then,, given that we can estimate probabilities from proportions$ the 

plottO. proportions estimate the quantitAes P1, P 21***' Pn. Now let 

P 2/1 - Frob Xt+2 - Xtl>kgiven that IX 
t+I -Xtk) and 

similarly for P3/21 etc. 

Men we can show that 

F2p?, /l 0p1 

p3 P3/21 (1 P2/1) (1 - pl) 

p (I 
4 P4/321 - P3/21) (1 - P211) (1 - pl'j' 

In order to prcduce the observed relationships vie require 

Pri ='sPn-1 I where a 13 a constant. 

From the above we require, in geheral 

n/n-1 
(i -p n-1/n-2 

P 
n-1 

Pn-1/n-2* 
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so that 
s. 

1Pn/n-I(1 - Pn-1/n-Z) 

P 
n-1/n-2 

In order for this expression to be constant we need 

'pn/n'l Pn-1/n-2 w`N P2/1 -r (say) 
. 

To examine the theoretical implications of this result we consider a 

random sequence of Normally distributed variables XjjO@O9XtfXt, 
+J#*. *# 

with variance Cr2 

Nov) let P 
n(8) = Prob ýt+n-Xtl - Sn 

v 
I' X t+n-I -XtI a sil-i 0 etc. 

and 'n/n-IýS) - Prcb {IX t+n _xtl= Sn givenj X t+n-I _xtl- S 
n_, and 

Ix 
t+n-2 _x tI = Sn-2 etc. 

Then we can show that 

S2 SS P (S) a eXP -2 ý2 (n+Nvi . C2 { 
nill i 

In 

and p 
-1 

Q)a exp -n 
Cr 2(S. 

S2 
n/n 2(n+l) n n 

Mus we see that the conditional-distributions are not equal 

to eacil other,, but will converge as n increases, in the sense that 
#%-I they are Normal distributions, mean Si/n and variance'(n+l)/n. 

An alternative way of looking at the situation is to ccnsider 

that IXt, - Xn>k is an event occurring at time t, or at time t-n 

from an origin at time n. 1ý, looking at non-overlapping run lengths 

we are considerina tin-es from an arbJtrar7 startino point until an 

event. In this kind of situation it is common practice to plot the 

logaritl= o'L what is known as the Survivor Function a3ainst tizie (CCx 

and Lewis, 19.66, Chpt 1). 
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0. 

The survivor function in this ease is 

p" Prob Run length is >n n 
Prob -xt . <kt ... pIX -Xtj k I 

t+n 
(1 1- P ý/n-l )p 

n-1 '* 

I When the proportion of run lengths greater than n is plotted 

against n. we again find that the log proportion is'linear in n. 

Cox and Lewis (1966) discuss this sitaation , and show that if a 

process is Polsson , then the distribution of intervals is exponential. 

However, the"converse is not necessarily true and the intervals need 

not be independent when distributed exponentially. However, they 

require one property of a Poisson process, namely that 

Prob ( interval <t)=1- e- 
Xt 

, where X'is the rate of occurence of the events. Thus the slope ot 

the graph of'log I-P against t is and X can be shoum to be the 

Jnverse of the expected run length, arA so measures the degree of 

variability in'the series generating the runs (since a highly variable 

series wouLl be expected to have only short runs. ) 

Thus we Could look upon the termination of a run as an event in 

point process theory, where a run would be equivalent to an interval. 

The fact that the runs are distributed approximately exponentially: 

means that the probability of an event,, i. e. a blood pressure 

exceedina a Aimit is the same for each beat, and so the probability 
,a 

of an event occuring gets steadily greater the longer the interval 

la3tS. 

Table 2.4 gives the slopes of. the straight lines fitted in 
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figure 2a, for subjects Al and A2, and also the mean arterial pressure 

for patients 9,12,15 and 16-73. The intervals chosen for the ambulatory 

subjects are 3,6,9 and 12 mm. Hg, to give a range of values across 

one standard. deviation. Yhe variability of the patients' blood pressure 

was much lovert and so the range studied here was 1.2,3 and 4 mm. 11g. 

In the case of patient 15-73 this range was too great and only 

the first limit produced a monotonically descending graph. Above 

this , some of the run lengths became very long indeed. The table 

can be used. either to compare subjectz or to examine the distribution 

of a particular signal. The greater the absolute value of the slope, 

the greater the proportion of the signal which is outside the set limits 

We can see from the table that diastolic pressures tend to ba 

less variable than systolic pressures, with pulse pressure in the 

middle. Of the four patients, three h:? d very similar mean bloorl 

pressure distributions, -and the other,, 15-73, was much less variable. 

Finally we examined the autocorrelation structfire of the runs 

to see whether the length of a run is independent of any other run. 

The aatocorrelations are presented in Table 2.5 for subjects Al and 

A2, for the run limit of 3 mm. 11g. If the intervals were iridependent, 

then each autocorrelation can be shown to have exTected value zero, 

and appro-kimate standard error I/ y/n, where n is the number of points 

in the series. We can see from the table that the only significant 

autocorrelatiýns appear in diastolic blood pressure for subject Al. 

However, for both systolic and diastolic pressure, all but one of 

the autocorrelations are positive, indicating that fox- this subject 

run lengths close to each other are positively correlated. For subject 
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A2,, however, none of the autocorrelations are significantp and the 
distribution-of the negative signs would indicate that we have no, 

evidence that the run lengths are anything but random. 

The Positive autocorrelations for subject Al probably reflect a 

greater stability, especially in diastolic blood pressure. When. the 

system has settled down, the runs will tend to be long. with only 
the occasional point interupting the run, and so startinIg a new one. 

DeRrees of freedom 

Me concept of the number of degrees of f, ýeedom per point seems T 

closely linked to the correlation structure of the series. If the 

Ist autocorrelation is near unity, then a po nt can be almost exactly 

predicted from the preceding one, little nw information is gained 

from new points, and so the degrees of fr edom per point are low. 

On the rither h-and, if the autocorrelation structure is zero, then 

the series is random, and so the degrees of freedom per point is 

hi,,.,,, h. 

Degrees of freedom are usually associated with variances from 

Gaussian distributions and indicate the number of linearly indtponient, 

squared terms into which the variance can be divided. It can then be 

shown t1hat the variances are distrbuted as chi-zquared distributions, 

the form of the distribution being detemined by the number -of degrees 

of freedom. Blackman and Tukey (19ý9, p2l) discuss the use of degrees 

of freedom for applications to time series analysis, especially 

spectral analysis. Given the mean and variance of some Positive 
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estimate, they suggest that the distribution of the estimate can be 

approximated by'a chi-squared distribution. We can estimate which 

chi-squared distribution by choosing it so that, apart from a C) 

co=on scaling factor, it has the same mean and variance as the 

as the estimate. Ax2 distribution has mean k and variance 2k. k 
The estimated parameter k is caUed the el-uivalent number of degrees 

of freedom of the eatimate4 

For example, given an estimate of a variance which has mean 

M and variance V. We wish to find k such that M- ck and V- 2c 2 kp 

where c is an arbitrary constant, Eliminating c we find that 

k- Z42 / V. 

One problem is to link this concept, which necessarily deals 

with variance -like quantities distribAed as chi-squared to an 

ordinary time series which is possibly Gaussian. A suggested method 

is via the variability of the mean of a sequence of points. If the 

estimated variance of the mean of r successive points is S2, and r 
2 

the variance of the individual. points is estimated as S. then we 

have 

s2. s2/d. o. f. (2.1) 
r 

In the similest case of independent-Nomally distributed points 

with constant variance a2 this is consistent with the Blaclanan-Tukey 

definition. In this case the expected variance of the mean is 

14 - 02 /r, and we can show that the expected variance of this 

variance is V-2 a4 / r3 , 
(for example Kendall and Stuart, 1967, VJT-ff 

P56 ). Thus the equivalent n=ber of degrees of freedom is PIN? /V-r. 



42. 

We have not shown the equivalence holds for correlated structures 

but it seems reasonable that in this case d. o. f. < r, so that 

d. o. f. /r<1. Further work is also needed to see how closo the 

distributions from real data are to chi-squared distributions. 

One problem is that it is unlikely that d. o. f. /r would be 

independent of r. Vie will have to estimate S2 and 32 from the data. 
r 

Given that the total number of observations N is much bigge r than 

r we can calculate the means of successive sets of, r observationsp 

I and then compute the variance of these by 11 21" m 
mmm 

S2 (m_, ) E. 2 ki )2/m } /(m-l). (2.2) 
r Xi 

i-I ini 

Table 2.6 shows the variance of the means of different length 

sequences, and also the degrees of freedom per point for the blood 

pressure of the ambulatory subjects and for that of the intensive 

care patients. It is clear that the variance de6rease3 much less 

rapidly than the sequence length n. Ibis is due to the non-stat- 

ionarities in the data which will not be removed by averaging. We 

see for example, that subject A2, for výhich a large proportion of 

the variability of systolic blood pressure could be accounted for by 

a slow moving average, has a much smaller percentage reduction in the 
Q. a 

variance of the mean than Al. 

'An example of the connection between the idea of degrees of 

freedom and the correlation structUre is given by the following 0 

series of equations. 
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1 Var - (x *�, +x Vn mý 0% 
1 Var(x ) +*. i (n- 11-11 ) Cov( x 1nn t- ii i-ýj 

ý, i 
)jý 

If we assume the xis are identically distributed we get, 

var (x 
1+0**+Xn)/n -L2 { nC 0+ 2(n-l)C I++ 2Cý_j 

n 

where Co is the variance of the xis and C 11 C21 ... OCn_l are the 

covariances of order 1.2 etc.. 

We then got 

n2C d. o. f. /pt 

nCo + 2(n-l)C, + 

0+ 
20 

x 

n-1 

d. o. f. / pt. - 
1+ 2Ln-11 R+... -1 2 It 

n. 
Iý n-1 

p (2.3) 

where R1=CI/ CO etc.. 

In particular if all the xis are random then E(Rj) - E(Iý, ) OP 

and the expected d. o. f. /ra1. 

0 

We can observe the accuracy of equation (2.3) by sub3tituting 

the observed autocorrelations, given in table 2.7, and comparing the 

results to Table 2.6. For a sequence of length 10, from equation (2.3) 

we find the following 

Al A2 

Systolie diastolic sy3tolic d1astolic 

d. o. f. pt 0.1681,0.1858 0.1088 0.1103 
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These are very close indeed to the values given in Table 2.6. 

7he formulae show that an asymptotic value for the d. o. f. /-pt. 

can be obtained if 
n 

: ýn (n-i)Ri /n converges 

In the case of the ambalator7 subjects' datap non stationarities 

mean that the Ri do not rapidly tend to zero, so that Sn diverges 

and d. o. f. pt. tends to zero. 

A simple case where convergence holds is when 

xt aX t-1 +Ct0 where Ct are'i. i. d. 

In this case'E(R nan and d. o. f. pt can be shown to be 

d. o. f. / pt. a0 (2-4) 

+. a 

If we substitute an estimate of R, for a in equation (2-4) the 

followin-, results are obtained. 

d. o. f. /pt. 'Systolic Diastolic Pulse Fressdre 

Al 0.163 0.175 0.337 

A2 0.018 0.036 0.111 

Mean Pressure 

9-73 0.185 

12-73 0.141 

15-73 0.099 

16-73 0.049 
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These values compare with those of Table 2.6, generally falling 

at about thelo level, or between 10 and 30 seluence length. Since a 

disadvantage of definition ý2.1) is that the value is dependent, in 

general, on the sequence length, I su-gest that (2.3) is more useful 
.g .9 

as a working linear approximation to what is usually a non-linear 

situation. Clearly the data are not necessarily 1st order autoregressi've 

but Table 2.7 shows that the autocorrelati4ons are declining steaJily 

with increasing lag, so that it should be ade, 4uate as a rough indication 

of the rePI situation. The definition in (2-3) is a rather more, 

precise statement of the ideas discussed at the beginning of this 

section. 

A comparison of heart rate and heart interval distributions 

The heart intervals wero measured for a period of time whern the 

I subject wag resting and also when the subject was breathing regularly 

to a metronome' Histogrems of both the intervals and the corresponding i C> 
heart rates were calculated fron, the resting period by the program 

VIIIIST. The mean, variance,, standard deviation and range were also 

calculated. In general the class width used for the heart-interval 

histogr&T. s was 0.02 seconds and that used for the heart-rate hiSto- 

grams was 2 bts/min. Extrasystoles were easily spotted in the 

histogram, and when these occurred the mean and standard deviation 

Viere recalculated omitting these points. A clear distinction'Was 

found between the heart-rate histograms obtained when the subject was 

resting, and those obtained when the subject was breathing in time to 

a metronorre. All of the former were unimodal, but the latter in general 

were bimodal. This point has been discussed in. the literature 
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review. Aii'exanple and co-n, -)cxiso,. i of the heart rate wria heart 

interval histoCpýrws is shmm for one cubject'in Pi_o-ure 2.2. 

A test for norinality mas carried out on all the heart rrate nnd 

. ýX2 t. t heart interval distributions for the rerting subjects. A eD 4. ) 

was used, and not the Yolmogorov-Smi3niov test described in some of 

the literature, for several roacons. The Yolmoaoroir-Snirnov test 

requires, the raw data to be'ordered -aid n ciinulative frequency 

distribution to be calculated; a I)2? oc,, -r, -Ln to do this for larae 

sections of data was not rc,. vlily available. In addition Cox md 

Hinkley (1975, p. 69) state ihat often the tect is not very sonsitive 

pothesis in the tails of the dist ibution. to depm-riures from the mall hýr 

We are p, )xticulaxly interestod in departures from nomality in the 

tail (see for Taylor, 1971)- Kendall and r)tu. -Irt (1,067, 

Chapter 30, discuss tho arplibati-on and limitations of the X2 test. 

., e is that the obse2-vatlonc must be 
, -roupc nto One disadvantaZ 

classes, Since we are mmpline from a continupus distribution vie 

must lose infor. nation by such a GToupinC. However, vo crin only 

measure the heart interval with finite accuracy veoich natitrally Civas 

us some form of grouping. For &-ly r-; oodncns-of-fA toot whore only 

the raw data is sg-iven, the par, =etcrr, of the distributiont the mean 

and variance for the nonnal dictAbution, have to be ectimated from 

the data. Illie use of the X2 test enables a simple adjuý;; tmcnt to be 

made to allow for the fact that the pv-ra-, leters h-, vve been estimated, 

whqreas tho pr6cerlure is not *so simple for tho Fol::, n-,, Orov-S, A3-nov 

tesli. or other Coodness-of-fit tests. Kendall and Stuart (1967, P-440) 

recommend that classes with approximately equal probabilitico should 

be used for the X2 testv and they discuris methods for 
. 
cletexnMing, 
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the optimum number of classes. It was decided not to follow this 

recommendation, but rather to use equal, width class intervals, because 

the groups had already been calculated for plottine histograms. This 

also meant that each subject would have the same class intervals. 

The number of points in the distribution of the heart beats for healthy 

subjects was roughly 350 and so the effect on the power of the test 

by following the above procedure was small. If, in any class, the 

expected number of points predicted by the no=al distribution was 

less than 5, then neighbouring classes were combined so that each 

class had an expected frequency of at least 5. The mean and otandard 

deviation used in the tect were calculated from the revised grouping. 

The class intervals, in grouping the heart interval and heart rate 

distributions were 0.02 seconds and 2 bts/min. respectively. It was 

found that the range of the heart rate distribution was roughly 

20 bts/min. and so the interval chosen gave about 10 classes. This 

produced a reasonable number of deCree3 of freedom for the X2 test. 

A further description of the curves can be obtained by calculating 

the moments about the mean and the Pearson beta coefficients. Yule 

and Kendall (1965) Chapter 7,, discuss these methods. If zi is the 

mid-point of the i th Croup in a frequency table of r classec, with 

correzpondin, - frequency fi then the n th order moment is defined as 
r 

Mn f i(zi -zn 

Here 11 is the total. number of points appearing in the frequency table 

and z is the mean of the distribution. It can be seen that M, =0 

and m2 equals the variance of the distribution. If the underlying 

assumption is that the histogram is = approzimation to a continuou. - 
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frequency di--tribution, mid the dlstributioa taper-- to zero in both 

directions, theii we can apply a correction for the CroupinC effect 

Bu, rý-, ostcd by Sho- ppard (1898): 

0 m2=m2- h2/12p 

m0 3 

a ý= m- -jh2m + --7- 
0 

N42 240 

where. m? , i=2,3,4 are the corrected moments Pna h iii the cormon I 
width of the groups. 

rearson's bota coefficients. are defined as 

(me )2 (me )3 

I-It, c-url be shoun that for a uniraodal, moderately skmiod ounre, 

such as thoce of the heart interval'tmd heart rate distributions the 

definition of Civen at tho bcýiruiinC of the cImptor 

( (mcan - mode)/stard, -=d deviation) can be --. hmn to be 

b, (b 
2+ 3) 

2(5b 2- 6b 1- 9) 

51he sign can be jud,, -ed from the position of the mode relative to 

the mean. The coofficient b2 meautros a property knoi-m as lo, =tosis. 

For the normal distribution b23. Distributions with valucs or b2 

Create= than 3 are called leptokatrtic and tho--e with values of b less 2 

than 3 are called platyk-artic. A pro, =, cn IWIMT was %xitten to 

calculate the mom-enta with Shoppard's corrections, Pearson's beta 

and the coefficient of- slýewnecs- can n" Vic Ibeta ct. -, of ficicntr ar! 

X2 an add-4tional tezt for no=aliiy. Since the 0 oil tho 
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squared difference between the obsAx-ved and expected frequenciea, it 

does not ta1ze into account any retýular distribution in the slLn of 

the differences. The distribution of b1 and b2 when taken from a 

normal population axe tabulated in Table 34c of 'Biometrika Tables 

for Statisticians, Vol I. The siLpificancc levels of these tables 

are calculated for ungrouped data. We presume that the grouping 

effect would not affect the sigpificance levels groatlyp since 

Grouped data was used in Lxample 35, p. 63 of the tables. -Vats scej. 'Is 

reasonable if the estimate for the kurto--is using Grouped data is 

closa that -which would be obtai=d usinC unZwouped data. 

Table 2.8 gives the result of the- X2 test for the null 

hypothosic of a normal aiotribution with the mcan and standard 

deviation calculated from the c=oupod data. Here Sheppard's 

correction was not used in computin- the standard deviation. 

Tabulated are the X2 statintic, the (leC--ces of freedom rand the 

appropriate ci, ---qificance level. Iflia dc,, =. ec-. of freedom axe calculated 

from the number of classes in the (, -xouping. We have to subtract one 

der, ree of freedom since civen a fixed sanple cize all bi; t one of the 

eroup -=%plc frequencies are independent and two dearccc of freedom 

mu3t be deducted for the two parameters ectim. ated. from the obcerVations. 

I, '5: ori the table vie see that in 7 out of 21 cases the heart interval 

distribution does not differ sirnific, -,, ntly from no=all and in 10 out 

or 21 caces the heart rate distribution does -not differ vicnificant1z., 

from normal. On 5 occasions both tho heart rate aid the heart 

interval distributions from the same cubject are not --it, -nificantly 

different from normal. For 2 subjects the heart interval distribution 

c, --, n bo described as noinal Vneroas tl, c corre. -Pondin-- heart rate 
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distribution does differ from normal and on 5 occasions the reverse 

situation occurs. From this we can only conclude Bat for these 

data the normal distribution will describe the observed distribution 

for about one third of the cases and there does not seem to be a 

justification for stating that the heart intervals are more often 

distributed normally compared with heart rates., 17able 2.9 shows the 

coefficient of skewness and the denee of Wtoois for both the heart 

interval and heart rate distributions. In 11 out of 21 cases the 

heart interval distribiltion is neGatively skewed and the heart rate 

distribution for the same subject is positively skewed. On 4 

occasions the reverse situation occurs. The remainine 5 are either 

both positively or both neCatively skewd, bnt in these cases one 

coefficient was very close to zero. Me Icurtosis coefficientn axe 

all in the reGion of 3, except for s,.,. bjoct no. 12. ýýccludina this one; 

the Piean kurtoser. were 3.84 and 3.64 for the heart interval end heart 

rate distributions respectively. TI-Wheart interval distribution for 

subject 99 which satisfied the X2 criterion for normality, had a 

kurtosia uhich, from the Biometrika tables, waE: signifiow-it at -the 1;,. ') 

level on the null hýTothesis of a nonnal. distribution. 
.A 

si M-ilar 

level of siL; nificance was obtained for the Imrtopes of the heart rate 

dictributions of subjects 18 and 24(2), so that out of 21 zubjects 6 

heart interval distributions and 8 heart rate distributions could be 

described as normal. 

The overall impression is that there is very little to chose 

between heart interval and heart rate distributions for closeness to 

normality. It cennot be asserted with any Creat confidence tbat the 

heart interval dist: --ibution 1-3 neratively skewed ancl, the heart rate 
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distribution positively skovied in Coneral, as mentionod in the 

literature. Ityould appear that for both dýstributions the deCrec 

of kurtosis is in the reCion of 3, with a bias Creator than 3- That 

is, for the majority of the distriktionsg the observations clustered 

closer to the mean than would be predicted by the no=al dict=ibution. 

Por a series of heart intervals with a small variance compared 

with the nean (i. e. a m. all 'coefficient of variation) tho'non-linear 

operation of taking the inverse, to transform the heart interval to 

a heart rates can be appro:,. imýnted by a linear oreration. Write yt 

for the heart period in seconds at -6imo t and assume yt is 

2 
distribi)ted noxinallyp mean !P and variance Let us say that 

where c is sinall and positive. 11be tra=formation to heart rate is 

t= 
601 yt 

There is a finite probability tnat yt -- 0 and thus xt = 00 

wItich would ne, -n that xt does not have a finite mmn. However, by 

Tchebychcvls inequ. -aity (Feller Vol. I, p, 233) 

P {IYt -111* >, r)C cy 
p/r 

cr2/ 112 c2 and in particula= P(yt 4 0) -ý P(ýYt -p> 

which is very s=all. 

In practice, of course, the heart interval distribution ic bounded 

and we can never have a heart interval of zero length. Thus the 
CA 

operation of t. -?!,: inC the inverse is quite lea-Itimate. The moment 

gen erating function for yt is E(c 
vyt 

exp (v P+a2V2), (see for 

example Mayer (1970) ý. 212). 2 

to 03 
Cýl 

"--ý )Ji-ll 
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The momont Cenerating function of xt is 

vx 
60v 1 -f 60v 

B(e . 
t) E(e* 3rt 

42 -Tr Q0 
e 3rt e2 Cy 2 d3r t 

Pat s= 
Yt 

cr 

- 11 
7 cr ds = dy t and we got 

vx ý(Ov 2 60v 
,s E(e t10" 

cr do ds 
Cof 

eaE--+Il W 
7r 

We can ex-pand (i + cr s )-l as Cs+C. 
202.... 

and if we ignore 

2 11 
terms in C-' and greater we get 

60v 
CO 

I E(e ep Cr a2) ds 
-x exp 60v 

vrý -Tr 

100 

11 

( Lov 
,, 

60v 22 00 
) 2(ls 

= ... 
60v , 60v 2, % , eDm exp - ý: (s + 60va 

727-t 

This is the moment Peneratin.. - function of a Nor-aal dicti. -ibution with 
60a) 2 

mean 6o axid varianco This result Pan be denonc-trated by use 
T 

of the data from subject 22. In both hoqxt rate Paria he, ýqxt interval 

the derivoa frecraency distribution does not differ sicnificantly from 

normal with the subject at rest. This result occurred for both 

r1o experiments (2) and Wt i.. rpich will be described in Cl'-'Pter 5. 

heart interval data for subject 22(2) has mcan 0.86 secorido and 

standard deviation 0-043 seconds, and usinl- the approximation Civon 

above the correspondin, - he, -z'L, rate, dist. -ibution shwild havo mean 

69-77 btc/ri4. n. and stcndard deviation 3.488 bts/min. The uwnplo mc,!! _n 

and stand, --trd doViation of heart rate axe 70.21 and 3-506 bts/min. 

tribution ha! 3 nean 0.82 sc For 22(3) the heaxt interval di-ot 
-on., with 

*h wc-LV. ir: iplyt 'r standa--d deviation 0.047 sees. i-iln-icl tho fo=111l. -., a 

mean and ctandn=d deviation of 73-17 bt_-/iýdn E, nd 4-194 
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This comparc. - with the zample mcnan and stm-idaml deviation Of 73-12 

bts/rain and 4.188 bts/jain. rospectivaly. A comparison of the 'Ica b w 

interval c.. nd heart rate curves for subject 220) is given in figure 

2.2. 

Reg-ular roopiration 

The onset of reZulax breathin, - in- timc to a motronon, a Ir, -- a 

marked effect on the rate and interval distribution. The 

effect is shovm in figare 2-3 for subject 21(2) for four different 

respiraticii frýquenc. Le:; with decp and shallow breathin.,,, -,. The 

quantitative results be discu: 3. -od in more detail in Chapter 5. 

Ezoh histogram in fiEpre 2.3 consists of apprxtimately 120 points, 

.. about one third tho mimbcr of points in tho hi--to, -Tams for the 

subje-As cat rezt. Bimodality is apparent in all 4 histocTin, s for 

deep breathin, -, but is only proo--nt at 0-07 117,. respiration frcqp; cncy 

for c1hallow breathin_n and in this case tho bimodality is not as 

clearly mcxh-ed ax for the deep breathin, -. It is clear fxom the 

Cra:, )hs that the spread of the di-stributionn, is much Creator for Jeep 

breatuanC thm for shalloi. j. Tho main modc of both di--tributions is 
I 

lower for the slowest froquency thazi for the fastest, tho difforence 

beiný3 greater for doep breathin, -. Illuatrations of the boart rate 

during pacod respi=ation are Given in ChaPtcr 5, and it is evident 

that the bimodality that is shoi-r-i hcre results from samplina a 

rograilarly oscillatin, -, variablo. 

', Loný term heart-rate distributions from post-operative p-stients 

The'data collectea from the post-operative patients, in the 

fo--m heart rate ---id blood preccure canpled at one second intcrvals, 
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was dcscribed in Chaptcr 1 and the offact of sanpling on the 

distribution was discussed there. In this section discussion is 

restricted to the typo of distributions resultina from the smplin- 

operation. A list of the patients studied is -iven in Table 4-1. 

Between 2,000 and 3,500 points were available for cubjects 7-73 - 

10-74, with abýut 900 points each for 2-73,3-72 mid 4-72. Vhe 

heart rates were not converted baCIAZ into heart intervals, partl.,, 

because mnch of the medicý-d literature in this ax-ca only dilsc--i--ses 

he. Ext rate, and al. -o to avoid introducin, -4- further. errors by diyi-. ion 

on the computer. 

One previous analysis of h-eext intorvaa and heaxt rate 

dictributions shows that it does not seem to matter i-4hich dictribution 

is falzen with, renrd to the aprrorriatenersa'of the normality 

assumption. 

An initial frequency table for the heart rata rmd blood pressure 

of eacil patient was compiled containinr, at least 000 con-ccoutive 

points. The claos widths were 2 bts/min and 2 mm. Ha. resp-octively, 

The heart rate distributions yielded 3 cases 7-73t 10-73 --ind 15-73 in 

which a normal curve Cave a Good fit over tho i4iole distribution as 

2' level. Two of the' jud, g-Od by the X goodness-of-fit test at the 5jIA 

remainin, -- 10 distributions were markcdly bimodalt aad 9-73 iau not 

described by a normal distribution because the nodo of the 

distributioij was considerably in excecs of that predicted by a nomal 

diotribution with th-c same mean ond vsxiance. Uio othor 7 

dictributions Kad lar_-er tails thnn would be predicted by the normal 

distribution. Fi, -, lre 2.4 illustrates the care of exec,,:: sive I. - lcxZe 



55. 

tails for subject 13-73- it wan fonn%'A that the X2 sta-tictic vras 

onl- exceeded if the distribution outside two-standard doviations 

from the mean was included. This is in a,,, reem, -nt with what has been 

found by other author--g for example Taylor (1,071): 

M. Te data ware then sectioned into Croup-- of 200 points cacti, 

and successive histoG--anis of the heart rate were calculatodg to, -other 

with Vae correspondino me= and varipnce. The num ber 200 represents 

a conrro. r. use between takina too many point6 and losinC ',, he finer I 

features of the distriNit. lon through non-otationaritiesp and takino 

too few points in which case, even rross features may be lost in the 

sagq)ling variaýbility. Ten Hoopen and Don, -, wirts (1971) and Campbell 

(1974) Aso discuss this feature. A proerain SUCCHIST iair, i-rcitten 

to compute the historTanw,. A cla-ýis width of 1 bt/min wan tra: en, 

which mas juclCccl to be considerably wider than the measurement error 

in the heart rate. An example of the output of SITCCJTIST in C: iven 

in PiCure 2-5 fOr SIlliect 9-73. The ficm=e disrlays an muoUal type 

of frequency distribution. The heart x. -ate is virtually raonstant at 

92 bts/min I-iith 95't-', of the distrib-ation concentrated within t1 bt/Min. 

of the mean. The other 5ý, -ýý arc scattered within 1.20 bts/nin. of the 
4. 

me, wiq the scatter bein- more widespread above than below the mean. 

A Craph of the raw data also reveals a very constant heart rate. It 

is very probable that this result is due to a cardiac pacom-0-cor 

inplanted in the hea=t. 

Ciirve fittinir, 7 to the hertrt rate (lintributions 

Tile records for many of the pationts extmided over Pan hour, 

which meant that . 0out 19 hintoCrmrm nf 200 points each 



FIGURE 2.5 SUCCESSIVE HEART-RATE HISTOGRAMNS 
OF 200-POINITS EACH FOR SUBJECT 9-73 
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could be calculated from each pationt. it was found that the heart 

rate data from 6'patients: 7-73,10-73,12-73't 13-73,14-73 and 16-73 

showed unimodal distributions witli an apvroximately bell nhapcd Curve- 

The others were either multimodal or of the form displayed in PiEvre 

2-5. In the unimodal cases however, it was foiuid that there were a 

few points, arriountino to 2-3ý'I of the dictribution which lany away 

from the main body of the distribution. Some of these outliers were 

identifiable as extrasystoleýq sometimeo with a compen Sato?. -, " panse, 

because their values were very much hi_-her than the overall mean. 

However, other points, althouCh not in the main body of the 

di--trib, -, ticng lay within :t 20* bts/1-11in. of tho mein. It I-- possible 

tiiat these are also extrasystoles, in the sense that thege beats may 

not be triggered by the s. a. node alid so are not 'normal' but It Is 

impossible to chccl. c without a record of the T,,. C. G. It watj decided 

to onit those roints Vncn fittinC theoretical distributions to the 

observed ones. This is Justifiable if vre want to dercribe the main 

feature-- of the dist=ibiition. A theorAical ditAribution Vnich 

accounted for all of the points would be extremely complicated. 

The most common unimodal distribution with ml approximatelybell- 

shaped curve ins of courset the normal distribution. A tent-of 

normality was applied to all the successive histo_rrams which Cave 

unimodal frequency distributions. Table 2JO giver, the roGults of a 

x2 test applied to each distribution, torrether with the de_-rees of 

freedom, the si,, jiificance level Etnd the percent. ný_-e of points that have 

been omitted in each case. The class width of 1 bt/jain. mewit that 0 

in some cases, where thp Variance was small, a low nunbcr of dt-ý! raen 

of freedarn v-as obt-ained for the 'X 2 test. Ilowevor, bacm2ce of the 
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limited accuracy of the measurements, it was not felt Jnutifiable 

to decrea2e the class width in order to increase the deCrees of 

freedom. it was found that for patients 10-73,12-739 13-73 mrid 

14-73 a normal distribution would successfully describe the observed 

distribution approximately two-thirds of the time. Per a total of 

73 IlistOL"T=s of 200 points each, 52 historrams Cave non-niGnifice-rit 

results for aX2 test for normality. Some care is needed in 

interpretinS this-rosult becal'ise at the 5, ý siCpiricralce level we 

ificantly differci t fron would expect about 4 1-11stoCrams to bo sim 

normal even 6-ion. all the histoGronn are, in factý Cencrated by a 

normally distributed random variable. The Iii-stoCranis fron patients 

7-73 and 16-73, although unimodal -=id rouriily bell-shapod are not 

well deccrilborl by the normal di--t2ýibution. 1,16 ex. -mincd the tokewne-cs 

and IcLirtozis coefficients (definod on paae 45) for each htsstozram. 

Table 2.11reveals that t, %e histopTamo of 16-73 in Ceneral have both 

a high okei-aness co. efficient and a hiýýh hurtosin coefficient, so that 

it io not n=prisinS; that the norr: ial distribution was not Cuccomsful 

in descriibin, - them. Tho non-normal di-stributi oils of 12-73 and 14-73 

pro all leptokuttic, with only a s--all shei-niecs coefficient. 11-lose 

for 7-73,10-73 and 13-73 can be cit'ler leptokur. tic or platy%tirtic. 

Tim skewneca ca-id I=tosi-- coofficiento for 7-73 cuc, -, ost -a naar 

noinal distribution. it i..,, aE; decid, -d to. fit a wider warLp of 

theoretical ,. rcqu. ̂ ncy distribution= to the datat in the hope of 

seeing ; 
-;. Tadual changes in the'rarameters with times and porhaps link 

chcxi, ges in cU-, txibution vith cliniev-1 chan,. r; e-- 'in the patient. The 

theoreti ca-1 distributions were chosen from the Pearson act of curves. 

Elderton wid Johncon (1,060) ý; ive detaila for fJ. ttinZ thc! ce curves, 
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The advzantaCe of this set is that the normal distribution is a 

special case, ancl they can represcnt a wide ciass of lulimodal- 

frequency distributions. Other pOssible two-parameter distributions 

are the lo,, -normal and the Cauchy distributions. The criteria for 

deciding which curve to fit is diucussed below. For the first few 

histoCrams a Pearson Type I, or beta distribution was selected. 

The curve equations werd 

P(x) =x0 2-1(1-x) 0 3-1 0 ex <19 (25 ) 

B(02103) 

wheýo D(o2'03) = 
fo 

x -. x )3 clx 0 

The range of x is between 0 and 1. In order to ccale the be=t 

rate distribution wo sWotract from each class interval the valuo of 

the lower cul, -o of the lourest clans intdrval and. divide the intcrvals 

by the ramCe of the distribution. A third parameter G1 iras also 

included in the. above formulat to enable an arbitrary zero point to 

be taken. The effect was to replace x by x-O 1 and the =anE; e of 

integration was then By including 01 %ve were able to 

apply the same translation to each hi. 9toCram of 7-73 and examine 

shifts in position of tho distribution. 

.A 
progTam MUCHE 11 (Firincy and Lawley) was uced to obtain the 

values of the parmeters. Tho proCram employed a nuncrical routille 

to find. the values that mraximined tho lilcoli'hood functiont and a X2 

goodness-of-fit test was also c? xried out. A series of histo-T-. ns 



FIGURE 2.6 
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from 7-73 and the best fitting beta curves are showi in Figure 2.6 

together with the parameters 01,0.210 3 and the recult of the X2 test. 

A non-significant result indicates a good fit. The beta 

distribution cannot deal with unusually large modes, so that in 

Fig=e 2.6 we find that the distribution can describe histoCrccma 

1,2,3 and 4 but not 9 and_10. Overall the beta distribution 

successfully described histograms 1-8 and histoGram 17. The main 

reason for a lack-of fit was that the modes of the curves were 

greater than would be predicted by a Pe. -xoon curve with the sane 

mean and standard deviation. Examination of the data in the rct; ion 

of histog-rams 9 and 10 revealed long strinS. - of constant values, 

the result of a machine fault. PoSsibly the store in the data loCCF, t- 

stuck at one value for periods of time for this subjeot. In this 

case we ilave detected a machine fault by departures from an ob:; erved 

distribution. 

A mo--e useful method of detoctin: y chanaes in divtribution would 4J 

be, if possible, to define a sinClo value parametor. which could be 

plotted within given limits. Elderton and Johnson (1969) describe a 

Pearson coefficient kappa eatinated by 

*' 
= 

bl(b + 3) 2 
k2-I 

4(4b 2 3b, )(2b 
2- 3b, - 6) 

T'his coefficient is ýised to determine which type of Pearson curve 

would best describe the observed distribution. There are three main 

types of Pearson curve, labelled Type Il Type IV and T,, To VI. Tbo 

beta distribution is a Type I form. The use of kappa is similar to 

the method of detennining whether a 2nd order curve'iz; elliptic, 
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circular or hyperbolic by ob-lerving, whether the roots of its 

generating equation are real and unequal, real and equal or 

imaGinary. In this case we have that k4 09 0 <.. k91 and k>1 

indicates a Type 1, Type IV and Type VI respectively. If 1.0 

the distribution is classed as T, 1rpe II and if in addition b23 

then the best fit distribution would be the normal distribution. 

Prog-ram, MOMENT calculates the coefficient karpa after calculatine 

the momonts of the distribution*and the beta coefficients. FiGure 2-7 

shows k for 15 successive histograms for 7-73- lie see that, out of 

the Pearson set, a Type I or Tljpe II would fit at the start of the 

period and then a Type IV, until histogram 9 when the distribution 

clhanEes abruptly, to return to a Typo I at histogram. 16. Vnis 

. explains the reason for chosinC a Type I to fit the initial histo- 

grams. Por histogram 7 and 8a DTe IV distribution was also fitted, 

but with only riiarginal improvements in Goodness-of-fit test compcx, -d 

with fitting a Type I distribution. Eistogrccva 9 was the point at 4 

, Ihich the strine of constant values appeared. It seems from this 

example, that in the case of. unimodal heart rate di3tributiorisp 

the coefficient kappa could provide a uceful indication of chmm, -ea J. n 

distribution. 

Ci)-rve fittinr, - to blood 
_prossiLre 

distributions 

The blood *pressure distributions vore treated in the c=c vtV an 

the heart rate distributions. Histograms of goo or more consecutive 

points with a class width of 2 m. 11g. were plotted end for each 

subject an attempt was made to fit normal curves. Out of 15 subjects 

only two, 13-73 md 16-73, could bo described as havinG nonial 
2 

distribution jud, -ed by the X test anplied at the level of 
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significance. The other distributions were rather flat-toPped and 

broad for a normal distribution, i. e. they were platykurtic. The 

'. blood pressure distributiong together with the best fit normal 

curveg is shoini in Figure 2.8. 

Successive histograms of 200 points were plotted with a class 

width of 2. mm. Hg , except for 16-73 where the variance was low and 

was used, It was found that for all patients so a, value of 1 mm. Eg, 

except 9-73,8-749 9-74 and 10-74 the successive hintoCrams were in 

general unimodal; a X2. test for normality was applied to each of 

these histograms. The results df X2 test are given in Table 2.10. 

Mere the historTam is multimodal: the X2 statiotio was not calculatcd 

but the significance level was Given as P<0,01. There were far 

fewor points that could be described as 'outliers' than in the heart- 

rate distributionsq and in general all the points in the frequency 

table were included in the curve fitting. Out of a lootal of 145 

histograms of 200 points each, 94 were judged not significantly 

different from normal by the X2 test at the 5, ý', level of significance. 

At this level, aobout 7 histograms would have been rejected even if 

all the histoZrams had been generated by a normally distributed random 

variable. At the 11'ý level, 107 out of 145 histograms would be 

acce*pted as normal. The figure Given for the 5111) level is comparable 

-to that for the successive heart-rate histograms at the same 

significance level. 

10 
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Discus. gion 

What we have attempted in this Chapter is to obtain a description 

of the various signals under study in the time domain. The main method 

of de3cription was the use of summary statistics such as the mean, 

variance and first order autocorrelation. Within tha-ze we also describ, ýd 

some of the sampling characteristics of the mean and variance. From 

these we went on to study how autocorrelation affects the variabUity 

of averages. A further feature of time-series is non-stationarity, 

which implies that the mean and variance are evolving in tiL,. e( for 

stationarity defined as 'weakl. (Appendix A)). We studied the series 

for departures from stationarity and also for stability. 

One of the difficulties of calculating swmiar7 statistics is that 

they are often quite numerous, and viliat one would like, in place of 

pages of tables and graphs are a few I su=aries of a su=ar-y' . This 

g was the reasoning behind the attempts to su=, arize Ithe run-length grap, '13 

with a simple best-fit straig t line ; the appr ýh oximation of the d. o. f. 

per point by a sin, ýle number and the classification of saccesesive 

histograms by beta distributions. Clearly an overall statistic is 

rather simplistic, it does not describe -', he data as well as a graph 

or a table. Jlowever. it can be useful because the detail in a eraph or 

table may obscure the general description of the data. In particular 

it may help in discrimination for example, to distinguish between 

different subjecILISwhere to compare two numbers is much ea3icr than 

to compare two graphs. 

Sometimes, 1.1he fact*that the data appear to have a co. --. on 
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form leads Us to a greater generalization, For example, the empirical 

observation that the proportion of run lengths, when plotted as a 

logarithm. against run length, is approximately linear leads us to the 

idea of the termination of a run as an event process. 

Our data were not chosen with discrimination in mind. The ambul- 

atory subjects and the post-operative patients differed in many ways 

and the measurement of blood pressure was different in the two cases. 

Because of this it was surprising that the degrees of freedem per point 

were similar in each case, lying between 0.1 and 0.2 fcr an average 

of 10 observations. From this we can perhaps infer, from equation (2.3) 

that their correlation struct-ýres are quite similar. This we can 

confirm. from Table 2.7, where subject Al (systolic) compares with 

patient 9-73 and subject AZ (dia3tolic) conpares with patient 16-73. 

Carnparin,, g, the two systolic pressures of subjeets Al aml A2, the effect C3 Ili 

of the slow trend in A2 was to reduce to d. o. f. per pjint from nearer 

0.2 to nearer 0.1. 

Although for both patients and subjects the general result that 

the means vere less stationary than the variances was tkue, it waq clear. 

that the means of the pcst-operative patients were more often stationar-J 

than those of the ambulatory subjects. This is what we woAd expect 

from their different situations. As a corollary of this we found that 

the short term variabili-ty of the data, exclulinc, outliersp was juite 

similar for the ýwo ambulatory 'subjects, and that the range of variab- 

ility for the post-operative patients was not great, 
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Plotting histograms is useful in screening for wild points and 

for giving an 'at a glance' picture of how a distribution is behavinc, 

under different conditions. Continuously updated electronic displays 

of these are useful in patient monitoring although much information 

is lost, 

Vihen discussin,, -,, the sampling distribution of heart beat intervals,, 
C. 

we mustremember that the intervals are not necessarily independent. 

It is difficalt to make aliy general statements comparing the distribution 

of heart interval and heart rate. Jennin-, s et al. (1974) have suggested 

that for long sets of data the heart interval is to be preferred for 

Normality assumptions to the heart rate, but we have found that for 

5 minutq stretches of data from healthy subjects there is little to 

chose between the two. We also showed theoretically that given a low 

coefficient of variation then if the heart interval is distributed 

Normally, then. so is the heart rate, with the s=o coefficient of 

variation. This has not been mentioned previously in the literature. 

For the post-operative patients we have stLxlied both long data 

sets and consecutive short data sets. The heart rate distributions 

of 2DO points were seen to fall into 3 categories: nearly constant 

unimodal and multimodal. The unimodal distributions were sometimes 

' points outside the main distribution. accompanied by a tnoisel o. L 

This is in contrast to the healthy subjects, who when at rest and 

not breathing ýn time to a metronome, gave unimodal heart rate distr'L- 

butions with a ilery.. =41 proportion of extrasystolea, which were 

clearly marked when they occurred. Six of the post-operative patients 
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showed heart rate distributions which were unimodal and of these the 

Normal curve successfuUy described 70% of all cases. However for -- 

patient 7-73 onlv 4 distributions out of 18 could be described as 

Normal. Further examination for this subject revealed that a Pearson's 

beta curve would well describe the data for 9 out of 18 histograms, 

and that for the others a machine fault had disrupted the distributions. 

It would appear that for these patients the distributions contained 

two sets of points. Cne set, the majority, displayed a unimodal distri- 

bution, and the other a scattering of points within + 20 bts/min. -of 

the mean. Perhaps the latter set result from a heart rate control that 

is less efficient and rigid than that of the healthy subjects. It may 

be that the blood pressure control system is still efficient in the 

post-operative patient since there is not the same scatter of points 

outside the main body of the distribution for blood pressure. About 

twice as inany blood pre3sure histograms as heart rate histograms were 

approximately bell-shaped, and about 70% of these could be described 

by the Normal distribution at the 5%level. 

Heart rate and blood pressure are both controlled by homeostatic 

mechanisms. Any variable that is subject to feed-back control would 

be expected to show clustering around some pre-set point, which would 

result in a unimodal distribution unless some powerful disturbance, 

such as respiration, caused it to oscillate. The Normal distribution 

can often describe biological distributions, usually of independent 

variables which is not the case here. As can be seen, it is only 

moderately successful 
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TABLE 2.1 SIRT'ARY STATI,., TICS CF BLCCD PRES3UHE 

OVERALL 

Subject Al 

Mean Minimum Maximum S. D. 
Systolic Pressure 102.83 24 195 13.65 

Diastolic Pressure 54.67 13 129 10.10 

Pulse Pressure 48.15 0 ill 10.91 

Subject A2 

Systolic Pressure 128.81 68 266 27-03 

Diastolic Pressure 58.30 x 173 16.60 

Pulse Pressure 70-50 0 174 13.85 

Mean Blood Pressure 

7-73 94.93 17 168 13.96 

9-73 97.94 28 165 14.89 

11-73 81.92 61 97 7.30 

12-73 108.33 35 155 10.09 

15-73 93.16'. - 81 139 6.18 

16-73 106.40 36 157 76-06 

STi-TS OF 200 POINTS 

Sub. iect--Al 

s. d, of mean mean s. d. (nith s. d. of s. d. ) 

Systolic Pressure 8.31 10-59 (2.86 

Diastolic Pressure 5-ý'32 8.45 (2.19 

Subject A2 

Systolic Pressure 24,. '61 10.32 2.36 

Diastolic Pressure 15.15 6.67 2.20 

Mean Blood Pressure 

7-73 4.62 8.84 5.43 
9-73 7.07 8.37 5.80 

11-73 0.83 4.23 0.27 
12-73 5. ý'8 9.59 6.98 
15-73 2.99 It. 12 0.83 

16-73 6.2o 7.44 4.12 
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TabI e 2.2 

Distribution of sums of squares due to outliers (with riumbe 

and moving average 

.. a . 0.99 

Subject Al Sys tolic Diastolic Fulse Pressure 

SISO % BOB* % 305 % 

Due to outliers 158 11.1(47) 38 4.807) 105 11.6 (53) 

About moving avera3e 804 56.5 578 73.4 616 67.9 

Residual 462 32.4 171 21.8 186, 20.5 

Total 1424 787 906 

Subýcct A2 

Due to outliers 41. 0.77(8) 57 2.7(38)'247 16.5 (28) 

About moving average 918 16.3* 353 16.5 492 32.9 

ReSidual 4675 83.0 1725 60.8 757 50.6 

Total 5634 2133 1494 

a . 0.90 
Subject kI 

Due to outliers 177. 12.4(88) 50 6.4(42) 107' '11.8(75) 

About movim& averaze 588 41.3 440 55.8 507 55.9 

Residual 656 46.3 298 37.8 292 32.3 

Total 1424 787 906 

. gubLact A2 0 
Due to outlier3 42 0.7(21) 69 3.3(69) 65 4.3(43) 
About movin-f average , Z) 518 9.2 206 9.7 350 23.4 
Residual 5074 90.1 1859 87.1 1080 72.3 

Total 5634' 2135 1495 
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Table 2.3 Percentage of sections containing stat-Al-onary r., -, 3. n3 

and variances 

(mean, variance) 

SubJect Al: Systolic 

length of ave 

5 10 

length of section 

100 70986 81pgo 

300 50,73 58#77 

5C, 10 40,80 47,80 

rap,, 3(bts) 

15 20 

82090 gh, g,? 

77,81 73sSl 

44#94 53 , SO 

Subject Al: Diastolic 

100 76091 75,91 73,91 92,97 

303 65,77 73,81 73,96 77#88 

500 60,67 60,60 56,75 67,67 

Subject A-2: Systolic 

100 61,94 76ploo 82, c;, )O 96,99 

300 38s92 50o77 58#85 73,8-0 

500 0,93 13,60 19; 88 13,93 

Subject A2: Diastolic 

100 70,91 84,89- 90092 95099 

1100 '31,96 46#85 5Ot8l 69,922 

5^ 00 20s87 20,87 31,94 200100 

* For example, for each section of length 100 beats we take seluences 

of length 5 beats, and compute the mean and variance of each. We then 

apply the test to decide if tha sequences of 20 means and 20 variances 

depart significantly from stationarity, 
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Table 2.3 (ctd. ) 

Sub. 1 ýct _9--22 
length of average (bta) 

5 10 15 20 

length of section 

100 66,89 82p8jý 91,91 95095 

300 ý7P83 67p83 75#83 75f83 

500 
. 
0,43' 29,43 43,43 

Sub. jec'u 12-73 

100 91j95 91, ý, 5 92p88 10OP97 

57#86 57,1'JO 71P100 43plOO 

500 25#50 25925 25P75 25t5O 

SubJec-, -. 15=73 

100 82#87 87s95 0#95 10OP97 

300 67#92 83s, 00 83000 83olOO 

500 29,86 43,86 29,100 4.3oploo 

Subject 16-73 

100 82#67 84p 87 93p95 89#97 

300 25pICO 32,75 50#100 32#83 

'500 29p7l 29,57 29,86 29,86 

Artificial data 

100 63,98 62#100 67p94 75000 

300 0,95 M5 0,95 0,95 

500 33,100 75,92 100ý100 100#100 
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Gradient: log proportion/run length 

70. 

Subject Al 
Systolic Diastolic Pulse Pressure 

Limit (mmHg) Slope Slope Slope 

3 -0.806 -0.613 -0.769 
6 -0.342 -0.253 -0.313 
9 -0.182 -0.128 -0.118 

12' -0.092 -0.063 -0.064 

Subject A2 
Limit (mmHg) 

3 -1.070 -0.500 -0.776 
6 -0.331 -0.157 -0.297 
9 -0.127 -0.161 -0.132 

12 -0.082 _-0.030 -0.059 

Limit (m: -nHg) 

2 

3 

4 

Patient 9-73 

mean B. P. 

-1.442 
-1.043 
-0.761 
-0.601 

12-73 

blean B. P. 

-1.301 
70.800 
-0.600 
-0.533 

15-37 

Mean D. P. 

-0.698 

16' -73 
Mean B. P 

-1.397 
-0.829 
-0.726 
-0.585 

Tabulated are the slopes of the best fit straight lines of log 

proportion against run length as shown in figurc 2b 

.I 
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Autocorrelation of run length: limit 3 mmllg 

Al A2 

laS Systolic Diastolic Systolic Diastolic 
1 0.030 0.071 0.029 0.037 
2 0.039 0.078 0.021 -0.011 
3 -0.004 0.060 0.010 -0.008 
4 0.027 0.034 0.039 0.001 
5 0.024 0.004 -0.000 -0.009 
6 0.018 0.036 -0.021 0.002 
7 0.036 0.059 0.043 0.009 
8 0.016 0.032 0.038 -0.002 
9 0.014 0.049 -0.010 0.273 

10 0.023 0.019 -0.001 0.018 

2xs. e 0.043 0.046 6.043 0.047 



TEXT BOUND INTO 

THE SPINE 
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Table 2.6 

DegreeLof'freedom per point 
Subject Al 

Systolic Diastolic Pulse Pressure 
Sequence Var. d. o. f. /pt- Var. d. o. f. /pt Var. d. o. f. / length 

1 186.32 - 102.01 - 119.03 - 
10 111.53 0.17 54.66 0.19 55.34 0.22 
30 94.69 0.07 40.49 0.09 42.29 0.09 
50 87.89 0.04 37.07 0.06 41.48 0.06 
7o 86.20 0.03 34.48 0.04 39.87 0.04 
90 80.42 0.03 32.49 0.03 36.36 0.041 

110 79.79 0.02 31.17 0.03 34.99 0.031 

Subject A2 
systolic Dias tolic Pulse Pr essure 

Sequence Var. d. o. f. /pt Var. d. o. f. /pt Var, d. o. f. / length 
1 730.62 - 275.56 - 191.82 - 

10 673.46 0.11 250.48 0.11 131.51 0.15 
30 647.17 0.04 242.44 0.04 121.20 0.05 
50 638.68 0.02 239.43 0.02 117.52 0.034 
7o 630.29 0.02 236.62 0.02 3.15.15 0.02: 

90 620.09 0.01 236.03 0.01 114.01 0.02i 

. 110 626.89 0.01 234.50 0.01 113.59 0.02 

Post-operative patients - Mean blood pressure 
Patient 9-73 12. -73 15-73 16-73 

Sequence Var. d. o. f. /pt Var. d. o. f. /pt Var d. o. f. /pt Var d. o. f. /I 
length 

1 146.12 - 202.93 - 25.95 - 600.91 - 
10 92.31 0.16 110.10 0.183 18.37 0.141 521.71 0.115 
30 80.53 0.07 62.31 0.109 13.07 0.066 484.43 0.041 

50 66.26 0.04 57.97 0.070 11.59 0.045 490.59 0.024 

70 60.50 0.04 45.25 0.064 10.68 0.035 447.94 0.019 



TAM,, 7,2.7 Low laq autonorrelations of blood pre-, 33ure frc,. m 
73. 

ýLmbulatory subjects 

A2 

lag systolic diastolic systolic diastolic 
1 0.7203 0.7019 0.9646 0.9299 
2 0.6103 0.6061 0.9420 0.9091 
3 0.5593 0.5203 0.9304 0.8952 
4 0.5088 0.4217 0.9246 0.8885 
5 0.4509 0.3434 0.9163- 0.8812 
6 0.4235 0.2997 0.9059 0.8743 
7 0.4091 0.2792- 0.8978 0.8690 
8 0.4093 0.2710 0.8901 0.8635 
9 0.4167 0.2832 0.8838 0.8589 

10 0.4391 0.3017 0.8797 0.8547 

9-73 12-73 15.73 16 . 73 

mean mean mean mean 
1. 0.688 0.572 0.819 0.906 
2. 0.643 0.639 0.678 0.883 
3. 0.583 0.546 0.621 0.861 

, -4. 0.551 0.449 
. 
0.646 0.840 

5. 0.525 0.369 0.698 0.844 
6. 0.500 0.316. 0.654 0.826 
7. 0.494 0.277: 0.586 0.813 
8. 0.483 0.267 0.465 0.807 

9. 0.465 0.250 0.433 0.798 

10. 0.475 0.234' 0.447 0.791 



TA13LE 2.8 Result of chi-square tr-st -onthe di. -ý,, -tvibution m hoart 

intervals and heart-rate for theresting sub,. ject 

Heart Interval Heart Rate 
SubJect No. 2 

stat. d. o. f. Sig. level 2 
stat. d. o. f. Sig level 

Ix-x- 

6 66.4 17 25.1 10 
7 17.4 6 ýPk 37.8 

1 

4 *-x. 
8 169.0 7 55.0 4 
9 18.7 12 NS 29.8 7 

10 61.0 9 i14t 78.3 11 -x* 
11 22.1 5 223.1 6 
12 185.0 3 306.0 2 

13 34.2 13 44.3 il >* 
1-4 13.9 8 7.5 7 NS 
16 27.5 17.3 12- NS 
17 45.4 11 i"-ýb 23.5 14 NS 
18 26.7 10 iabt 7.9 10 NS 
19 13.8 ý8 US 1.4 4 NS 
2D 54.0 12 -k* 67.5 12 - *X, 
2l(2) 28.0 9 18.1 13 NS 
21(3) 24.0 13 17.0 12 NS 

22(2) 3.6 5 lis 2.7 4 NS 

22(3) 13.9 8 lis 4.3 7 NS 

24(2) 8.7'. 9 N . 33 17.2 10 NS 

25(2) 11.3 11 NS 21.7 9 x* 

250) 52.1 9 69.5 5 

The figures in brackets denote the 2nd or 3rd series of experiments described in 

Chapter 5. Givena frequency table for each subject with r groupS. Where there is 

an expectation of at least 5 ob3ervations in each group, then the X2 statistic 
r 

is calculated from X2 (0 where 01 are the number of ob3ervations 

E 

in group i and Ei are the corresponding number pradict-Cd by a normal distribution with 

the same mean and variance as the observed distribution. The degrees of freedom(d. o. -L, 

- r-3. The significance level indicators are (prob. < 0.01), * -(0.05< probc 0.01) 

and TIS - (prob' ý; 0.05) 
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Table 2.9 okewness and kurtosJs Por lipart-rate and henrt intuirval 
distr-JbutJpLi. n-f. or restjr- 

_nuýLr-f,. 
ts. 

SubJect No. 

Skewness 

HORG H. I. li. R. 

Xurtosis 

1 11.1, 

6 -0-511 +0.188 2.83 22-34 
'7 -0.030 +0-115 6.31 4.75 
8 +0.183 -0.082 4.72 4.38 
9 -0.354 +0.670 4.07 6.02 

10 +0-732 -0.416 7.95 4.69 
11 +0.487 -0.259 . 3-44 2.88 
12 -T. 385 +5.418 340 .32 46.87 
13 -0-510 +1.244 2.64 3.16 
14 +0.080 +0.133 3.11 3.43 
16 +0.266 +0.009 2.69 2.92 
17 AO. 317 -0-017 2.87 2.4.3 
18 -0.383 +0-135 7.76 )+. 02 
19 -0.035 +0.023 2.80 
2D -0.354 . 

40.540 Z-59 2.88 
21(2) 

. -0.221 +0-097 3.03 2.84 
21(3) +0-367 +0.068 3.73 3. oo 
22(2) +0.059 -0.177 3.44 3.68 

-2Z(3) -0.039 +0.136 2.98 3.13 
24(2) -0.141 -0.198 2.68 4.60 
25(2) -0.109 +0.247 2.87 3o42 
25(3) -0.565 +0.756 4.3ý 5.46 

The figures in brackets denote the 2nd or 3rd series of experiments 

described Li Chapter 5. Pearson's beta coefficients are definod as 
2 

C/ 
114 

3c 
ý' 32 and b2 92 11 4 

/01 

where C /Ic and c are the second, third and forth order moments )-' 2 ý" 4 

about the mean respectively (with Sheppard's correction). 

The skewness -b I( b, 3) 
and 

"kurtosis 
-b 2 

2(5b2 - 6b, - 9) 
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Table 2.10 Results of X2 test for normality on successive histo(,, ra_,, s 

of-200 points each of heart rate for the post-operative 

patients 

7r73 

Ilist. no. . 1 2 3 4 5 6 7 8 9 
2 

5-8 2.4 8.9 9.8 7.7 1-5 9.6 13-3 l' 
- 

l3-8 
dooof.. 3 1 2 3 3 2 3 4 

sig. level NS NS NS NS j 
i 

exel. 17. 12. -5 4-5 4 0-5 0 2-5 2-5 

iii: 3t. no* 10 11 12 13 14 15 17 18- 

36.3 8.7 9.7 3.7 12#5 24.4 12.9 
-3 

19-61 
d4, o. f 22 23 4 3 

sig. level 

54 excl. 1-5 11.0 19 4 01 11-5 4*5 
PAIýS 6-73 

Hist. no. 1 2 3 4- 5 67 8 

Ix 2 47. 61. 76. 679. 81-- 
1 

11.8 Ji. 3 - 
d. o. f. 2 3 4. 3 5 3 3 

sig. level 

% excl. 1 2 1-5 2 0 3 2 

A" .S 10-7 

ilis't. no. 1 2 3 4 5 67 9 

Ix 2 12.3 4.0 15.1 7.9 7.8 12@5 150.2 

d. o. f. 3i 4 7 6 5 8 8 

sig. level NS NS NS NS 

%e x6l. 0 1 5-5. 1-5 0 1 2 

Hist. no. 10 11 12 13 14 15 16 17 

, Ix ot, 7.9 10.7 2-3 ig. 6 2*2 7-7 9-4 30-4, 

d. o. f. 5 5 4 6 4 5 6 

sig. level ITS NS NS 113 NS NS 

excl. 1 2-5 0 0 0-5 0 0-5 0 
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PATUS 12-73 

77. 

ias-c. no. I e b 1 9 10 

-? ( 2- 
4.6- 11 .1 -1*. 6 11.2 4-3 6.2 5-7 5.6 

CI*O*f 4 4 3 5 3 4 4 3 

sig. level NS NS 11's NS NS 11,15 

excl. 0-5 0-5 1 *5 4- 0-5 1-5 0 0 

Ilist. no. 11 - 12 ý 13 14- --15 16 17 18 19 

-4. -5 2.0 1-3 7-5 '1-1 - 
14.2 0.9 2.6 - 15 9 - 

3 4 3 4 4 5 3 3 6 

si�. level NS NS NS NS NS NS NS 

%eXc1.2 1-5 0 1 9-5 1 0 0-5 0-5 

PK-Z, S 13473 

Hist. no. -1 2 3 4 5 6 7 a, 
2 7-9 7-1 , -3.2 -1.1 5-5 9-7 10-9 -7 

d. o. f. 7 8 6 8 8 6; 7 7 

sig. evel ITS NS NS NS ITS NS 11,01 IT N. -S 

06 excl. 0 
j, 

0 0 0-5 -0 .0 0-5 0 0 

Ilist. no. 10 11 12 , 13 Ill. 15 
2 

5.8 7.8 -14.5 13-1 12.6 7-7 

d. o. f. 6 6 8 6 3* 11- 

sig. level KS LIS Ns Ns 

jo, excl 0 0 0 1 2 0 

PXNS 14,73 

Hist. no. I- 2- 3- 4 5 6 7 9 10 
2 ?(- 0.96 8.9 1*2 2-5 6-7 - 3 -h- 8.3 5.7 

dooofe 3 5 3 4 3 3 3 3 3 

sig. 2evel NS NS NS . ]IS NS ITS Ilfs .: - %t 

excl 1 2 1 1-5 0 0 0 0 1-51 
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P90,14-73 

Hist. 11 12 13 14 15 16 17 is 19 
ýx 

2 8-4 2-3 3-8 3-9 7-4 5-4 5-9 15-5 1.9 

cl. o. f. 3 3 3 3 3 3 4 3 2 

sig. level * ITS ITS ITS ITS ITS ITS ITS 

excl 0 0 2-5 2 2 0-5 0 
PAWS 15-7ý 

Hist. no. 1 2 3 4 5 6 7 
ýY, '2 102.1 38-1 47.8 - 69.0 - 

dsoofe 4 3 4 3 

sig., Ievel ** 

% excl. 5- 6 4 6 

RtI1,73 16 -73 

Hist. no. 8 9 10 11 12 13 14 15 16 

Ix 
2 15*9 2.6 6. )+ . 9.9 1.7 6-3 6-3 10.6 9*2 

1 

d. o. f. 2 2 2 3 3 2 3 2 2 

sig. lev, ýl ** ITS ITS ITS 

56' excl 2 4 0 0 0 0 0 0 0 

Hist. no. 17 0 19 
%2 8.1 15.6 

d*o. f. 3 3 

. 
sig. level * 

% excl. - 00 5-5 

9-74 

His t. no. -1 2 3 4 5 6 7 8 

-x 
21 27 11.1 8.1 86*0 10.8 11.5 11.9 4.4 

d. o. f. 3 3 3 3 3 

sig. level NS 

01 ,6 excl. -2 -5 .2 -5 3 3 6 5 4 0-5 
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The -A2 test was not carried out if the histograms were clearly non-normals 

for example if they were bimodal, and in these cases the result was either 

not tabulated or left as a blank and the sighificance level given as 

Significance level (sig. level) NS-(P) 0-05); *40-05ý P' 0-0i); **-(P-ý 0.01 

The rovi labelled excl. I gives the percentage of points that were omitted 

from the goodness-of-fit test for a normal distribution because they were 

not part of the main body of the distribution. 

0 

. It 



Table 2.11 Skeviness and kurtosir, statistics, for hon-norm, 11 

distributions of Table fý. 3 

7-73 

His t. no. 3 4 7 9 10 . 11 12 

Kurtosis 2-5 3-8 2-5 2-3 2-5 2.9 5-5 4-1+ 

Skeuness +0-27 -0-W +0.27 -0.22 -0-09 +0-1 P13 +0.23 +0-34 

Hist. no. 13 15 16 17 18 

Kurtosis 6.5 4-8 5. *2 2.9 3-. 3 

Skeyine3s -0-33 +O-Y+ -0-32 +0.14.. -0-1,10 
- 

0-ill 

10-73 

Hist. ho. 1 3 9 121- 20 

Kurtosis 1.9 369 2.7 3.2 3-8 

, Skevmess - 0.01 +0.09 -0.16 -0-55 -0 -3 -5 
12-73 

Ilist. no. 2 5 16 19 

Kurtossis. 5.2 5-3 3-1 9 

Skewne3s -0.11 -0-02- +0-02 +0.06 

13-73 

Ilist. no. 13 lj+ 

Kurtosis 2-83 2.7 

Skewness 0.01 +0.02 

15-73 

Ilist. no. 8. 10 11 

Kurtosis 4-8 
. 
12.7 5-1 9-4 

Skewness -0-22 -0.01 +0.00 +0-48 

IL-7j 

'r. 

Hist. no. 1 2 3 4 5 6 7 8 

Xurtosis 5 -h- 6. o 4-9 7.0 9-4 11.2 9-11- 8.1 

Skewness +16-5 +9-0 -2.8 +1 -4 +2-7 +6.0 +9.5 +8 



Table 2. -11(Ctd. 
) 

16-73 

Hist. no. 10 11 13 15 16 17 18 19 

! Kurtosis 2.2 
- 

3-4, 2-3 2-5, 3 -0' 27.6 M 2-7 

Skewness, -0-02 0.14 
-0-13 Oo4O 0.27 -37o)+ -M, -0000 

1 



Table 2.12 Results of 2 test for normality on successive histo, -rar,. s 

of 200 points each of blood pressure for the post-operative 

patients 

PAI. NS 7-7 3 

IiIst. no. 1 23 4 5 6 78 

, X2 12.4 330- 6.4 8.0 13-5 

d. o*f. 6 7 6 6 7 

sir, level. ** - - ** NS NS NS NS 

Hist. no. 10 11 12 13 1 Jý 15 16 17 18 

p 25-1 9-8 21.9 10-5 10-1+ 7-9 15-9 

d. oo'f 7 7 8 6 8 8 5 

siL;. level ** I NS .*$. It NS NS "ITS 

P. CMS B-73 

Ilist. no. 1 2 -3 4 5 67 8 

6.5 11.0 10.1 4.2 2*5 11-0 - 

d. o. f. 7 6 9 6 6 7 6 

sig. levol NS NS NS NS NS NS NS 

10-73 

Ilist no. 1 2 5 7 8 9 

*ýÄ 2 

c1.00: ve 

sig. level 

13-1 

ý 

10-9 

, NS 

10-4 

9 

NS 

14-1 

11 

NS 

10-5 

10 

NS 

25-3 

11 

Hist. no. 10 11 12 13 14 15 16 17 la 19 20 

sig. level 

23-7 

7 

** 

10-7 

7 

NS 
. 

14.0 

7 

NS 

31 -4 36.6 

11 8 

82 

7 

NS 

14-4 

6 

3-8 

6 

NS 

68.2 

7 

17.5 

11 

11.3 



Table 2-1? (Cýd. ) 
830 

PAV's II 

flist. no. 1 2 3 4 5 6 7 9 
2 6*2 11 -4. 5-5 4.8 6-5. 7-7 10-3 3-ý 12*0 

d. o. f. 7 7 7 5 6 6 7 6 6 

sig. level Ns NS NS NS NS NS NS NS DT ,. 

Hist. no 10 11 12 13 14 15 16- 

*x 
2 9-1+ 4-0 11.2 15.1 16.8 8.5 6.8 

CIOO*fo 7 9 

sig. level NS NS NS. * NS NS i 

P, V, f 12-73 

Ifist no. 1 2 3 5 67a 10 

Ix 
2 6-1 3-7 6. o 5.2 

. 
12.6 -- 3-9 

dooefs 7 7 5 5 9-- 

sig. level TIS NS NS NS ITS 

PAII, 'S 13-73 

flist no. 23 5 

, -x 
2 7.9 5-7 8.4 7.3 -. - 5.6 4.8 23.6 

CI*Oefo 7 7 6 7 7 

sigi level NS NS NS NS NS ' NS 

Hist. no. 10 11 12 13 14 15 
2 17.2 5.2 ; 9.9.. ' 5-8 - 6.1 88.7 

d. o. f. 7 6 10 

sig. level *. Ný NS NS NS 

PAI, ýS 14-73 

Ilist. no. 1 2 3 4 5 6 7 a 9 10 

10.6 7.8 * 10.8 1+. 9 11 -3 14-0 9-4 13.4 3.5 11.0 

deo of 0. 9 10 7 7 8 6 8 11 ' 

sig. level NS NS Ils NS NS NS NS NS NS 
1 
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'Nlile 2.12 (Ctd) 

Ust. Y- no. 11 12 13 lj+ 15 16 17 18 19 
2 

i 'X 4.5 13-4 25. 2 9.7 3.6 2-3 12-5 14-9 14. 

do. f. 7 8 13 7 9 7 7 7 

Sig. level 110 V's ITS NS ITS ITS 

%P, 
1ý117S 15-7 3 

Hist. no. 1 2 3 4- 5 6 7 8 9 10 

14-1 11 -2 4-9 13- 1 10-3 5.6 9.9 7-3 16.6 31.8 

cl. o. f. 5 5 7 3 3 5 5 6 6 

tnig. level NTS NS ITS NS ITS ITS 

Miat. no. il 12 13 14 15 16 17 18 19 

5-1 9.4 11-5 5-3 21.8 80-8 39.9 15.8 47.1 

11. 6 6 6 '6 9- 7 5 6 

NS r" S NS NS 

16-7" 

2 3 4 5 6 7 8 9 

9 17-h- 3.1 8-3 -7.7 3.5 7.6 5.6 6-3 

d. o. f. 6 7 8 6 6 6 6 6 5 

Big. level ITS NS ITS INS LIS NS NS NS 
____j 

ldst. no. 10' 11 12 13 14 15 16 17 18 19 
2 5-3 16-7 8.9 5-0 9.2 18'. 9 9.0 - 7.2 22-4. 

d-O. f. 4 5 4 5 6 4 4- 6 7 

Sig. level N5 Ns Ns NS NS Ils 
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SAMILlifC A:, 7) POI'-, -""' 11 : *., WCi,; 39 LI'A! Y: 3TS OF 

Heart beats, w'-. cm Jcfincd by the p-alc of the (ýZS complex, can be 

ký, ought of as evpn-.: ý occurrinU at 1. iniqua 1)e). nt: 3 in time. The times of 

hs the cvento cor, 'PlO. c. 1- describe, tJ)e rrocer3 . T! i i. in contrast to 

thO normal situati. onc dealt w.,. jI., tim , C, ý-, Crifas analysis vrhero either 

a continuou-. scumple(ý at equid. f-tant points in time or the 

nimber of events i)l I. fj. XOd Antoj, vel. of tir - is recorded. An e ple .1 -1r, xan 

of the foi-Pý, or in n. bl,,, st fuir),; ýcc- X: 7peraturC 11hich ir, recorded at 

reaular intervals mi examplo. of tlic is tho humber of 

'Ie, 1, cl i b,, r t'fl f, H, Id. -Ion Day Company. In Inc Cmadian %mx furs 

dealing- with. he, -xt two aýýjr. nachcn -ýco possible. Either wo can 

sample the in rzorfic mannor at eqiddistmit points and 

then proceed with coi, -7ý%nii. onal analysic or wo c= use the 

more recently devc. Wo thod .i(,. fI point proress analycis. 

Literature- 

In this rcview tliore. that 11ave been employed to 

obtain an axialysiL; o. 1' bcalrr, will "ba covered. tio Yilain source 

of papers and Vc, 1.16 (1973)o Others include 

Sayors (1971), Loos and z T,, v, ) wid Caleresu (1975)- 

Various met"I'lods of c0n6, u0t1. n1rr, oq*. -,. ýrl. istwit of hexrt beats 

are describcd by Lixcz,! ý tnd La,, ix, j.. - '1973)- 



86. 

1) Constant inten2olation. 

Xk 

(seconds) 

PiaEe ý. lConstant interpolation method of sa. 2plinG heart beat 

(from Luczak and Laurig, 1973). Let be a series of heart 'xat 

intewals so that Dý = tk - tk im C _j, where the boats occur at t, as 

tlP*"* Itko and let (r. ) be the interpolated values at equally 

spaced intervals A t. For a cumpletely rcmdom time scriec the best 

pred-ation for a value at tinic k+At is the value at time k. Mus 

we taice r, = xk if tlc_l <iAt iý tk . 

2) Linear interpolation 

XIC 

(seconcis) 

0tt2t3t45 
Time (seconds) 

Pi, f-Me 3.2 Linear interpolation method of samplinG heart beat (from 

Luczak and Laurict 1973). 

lie can look upon hcart rate as beinC proportional to external factors 

which affect it and prestune that the hearxt rate chlazn7, cs in order to 

adapt to chaxiginZ; external parroete3zo. 3: 11 tjiýý cLFo it would be 

0 tl 
. 

t2 t3 t4 t5 Time (secondi) 
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better to interpolate b. ý, a linear function thoji by a constant 

function. We a6sume that the value of the hbart in. terval is 

associated with the end of the interval. In thic case we put 

(i At- bk if t. At 
-'ý 

tk + kk 1, 

tic - tl-, -l 
Hulder (1973) used Lagrange interpolation and Lromack (1971) "sed 

2nd and 3rd order polynomials but showed there was no real improvement 

over linear interpolation. 

3) Ili, /, -, Li rate sanT)lin,. - 

Because we can only measure the poalc of the OX complex with 

finite accuracy we can look upon each heart beat as havina finite 

i-, idth At and a finite height. Classical spectral analysis of such 

proces ses is quite valid. Thus we can take a s., ople (ri) at 

successive intervals At, w%ich is zero evei-JI-thoro except when therc 

is a iieart beat in A t, when (r 
I)t, -I: cj a finito'valuop say 1. The 

problem with this method is that a large araount of E; tora_-e 13 

required. 

0 

4) Point Crocess aý-. nroach 

We consider 'events' occurrin,, - in a haphazaid vray in space or 

time. For example an event could bo an electrical zpiko from a neu: ýon 

or a heart beat. If the i th event occurs -at time ti vie define the 

counting process ( N(t) ) as' 

if Or ti <t6 ti+l 
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Thus IT 

, 
(t) is, the number of events up to time t, startinC at 0. 

assume in all that follows that two events cannot happen simultaneously 

and put 

N(t + St) - 11(t) and dll(t) = lim 6 1, T(t) as 6t -ý 0 

This definition was Given by Bartlett (1963a) and is aloo given in 

Cox 
- 
and Lewis (1966; P-73). Since we arc considerinS intervals open 

at the loi.. rer end and closed'at the hiGher endl and the limit is 

taken only for +ve values of 6t as 6t -ý 01 it is cloar that the 

limit exists and is equal to 0 or 1 dependinC on i1nether an event 

has occurred at time t or not. Othcr authors, for exw-iple Lewis 

(1970) make the definition dIT(t) = lim 6 11(t) as t -) Op i. e. a 
t 

formal differential. Mis leads to 15roblems since 11(t) is not 

differentiable unless one is prepared to admit Dirac delta functions. 

The Baýrtlett definition, which we will adopt, enables ono to think of 

the process (dFI(t) ) as beina zero evei-ji-there e: ccept where an event 

occurs, in which case it takes the value 1. 

Priestly (1963), in the discussion of Bartlett (1963) 

, generalized the problem of rclatinj a point process to a continuous 

process. lie consider a linear tratisfonnation of dIT(t) of the fona 

"0 00 
Y(t) =f 

CO 
w(t- T )dll( T)=I W(t-T 

S) I 
S -. 00 

where the weight function w(t) satisfies 

00 
w(t) --- og t<0; w(t)dt = ig 'w 2 (t), it 

CO CO 0 

This method has been developed, apparently independently, by 
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French and Holden (1971) for the sar., iplin.,, of neuronal spike trains. 

The method could also be applied to heart beats. V'e assume that vie 

wish to sample n events at intervals At. In this case the MC-hest 

frequency we can examine is f IT = 1/2 A t, (see for ox-unple Appondix A). 

Effectively what we want to do is to replace each of the spikes by a 

continuous function, and to sum these functions at the s, ý-tmpling points. 

Any symmetrical peaked curve would suffice, even the normal curve. 

French'and Holden chose the fýmction w(G) = sin 0/0 because this 

leads to considerable simplification. ApplyinG this form of w(t) wo 

get that 

00 

Y(t) s ili< (t -c.. )2 iT fT) dlT (T 

(t -T2 7T fil 
CO 

This becomes Y(t) sin((t - t, )27rf,, A t) 

(t-ti) 2 Tr f,, At 

which reduces to Y(t). = sin{(t ti) 7T) 

i=i 
Tr 

(t ti) 

If this function is calculated at points t=m, Were m is an inteVr, 

this further reduces to 
n 

Y(m A t) -sin 7r t 

7T (m 
- ti) 

This is computationally simple since, Civen the ti Is, the sincs ne-ed 

only be calculated once. Sayers (1971) mid Chess, et al'., (1975) 

calculated the spectrum of intervals as if they were equidistant. 

This f; ives a --pectrLin in ter-is of cycles/interval. In order to 
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convert the frequency to cycles/soc., it is necessary to mult-1ply 

by the mean heart interval. 

It will be demonotrated that for calculating the heart rate 

spectrum each method gives approximately the same results. If a 

periodicity is present in the data, a spectral vaialysis of the data 

sampled by each method will show a pook at the frequency of the 

periodicity. Howevert when'correlatin. - the heart beats iiith other 

variables such as blood pressure or respiration, care iv needed to 

ensure that the method of sE4npling does not induce phase chanLes 

between the variables. 

Spectral anal;: sis_of 2oint 2rocesmes 

SamplinC the data by the methods Given above does appc, = rather 

artificial and it would be more satisfying to perform an analysis 

directly on the data. In addition uorllzing directly uith the data .01 

may lead to a closer understandino of'tha undc=1y--JnC stnicturo of the 

data. We can worl. either with the counting process N(t) or with tho 

interval series (xt). Bartlett (1963a, 1963b) Ewe a spectr, 11 

analy3is for the caunting process N(t). Cox and Lewis (1966) 

developed this theory and also included a co. riplor. ontary o-via! ysis of 

the interval process. 11ore recently Cox (1972) has discuo-sed the 

problem where a point process is depondent on a nimber of fiunctions, 

deterministic and stochastic. 

Definition 

A point process is said to be completely stationany if the joint 

distribution of the numbor of events in k fixed intox-val. is invariant 
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under traiislation for all k :=1,20, ... A point process in said to 

be weakly stationary or 12nd order stationa3*1 if 

a) The distribution of the number of events in a fixed interval 

(t, t +: T ) is invariant under a tranclation of the interval on the 

time axis, that is the distribution of (IT(t +T)- IT(t) ) is 

identical to ihe distribution of (IT(t +T+ h)-N(t + h))for any 

tjT and h. 

b) The joint distribution of tho numbor of ovents in tvid fixed 

intervals (tl, tl + Tj) and (t 
21 t2 +T2) are invariant under a 

translation of both intervals on the time axis. That is, the joint 

distribution of (1,1(t +T IT 11 ) is identical 1 1) 
ý- 11(tl)4 (t2 +r 2) - (t2) 

to the Joint dictribution of (1,1(t +T + h) -1,7(t, + h), (. 'T(t +T + h) 22 

11(t 2+ h) ) for any tj, T 11 t2l T2 ana h. 

Eszentially we will follow the development Civen by Cox and Levis 

(1966))ChaPters 4 and 5. Since we are basically interested in how the 

heart-beat is behavinj3 in time, and hovi it rel4tes to other variables 

NA in time we will only consider the time dependent countinC process E j. 

Cox and Lewis (1966) mr-87-112, also develop the analysis of intervals 

and demonstrate how each approach is useful and how each gives 

differin- but complementary results. Mien considering the probability 

structure of a process it is helpful to imagine an infinity of 

realizations. "When a statement of probability is made about a 

function at a particular point t, thin is theoretically derived by 

considerina all posaible realizations at that time t. In practice, 

of courie, we have only one realization and it is only with 

assumptions such as stationarity C. iven above that infe2ence about the 

variable at time t can be tiade -frorm the performance of thf, variable 
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at other times. 

lie can put E(dIT(t) ) =. X (t). For a stationary point proces. s 

(t) =A, say, a constant. 'Ve c, %n define a covariance Amotion, 

for T: >0 as 

11(tpt + E( (dN(t) - B(dN(t) (dN(t +T )- E(cUT(t + T) 

E(CIN(t)dlT(t +T E(M(t) )E(dil(t +T 

E (dIT (t) XT (t +T (t) X (t +T 

If we a., js=e stationarity then th, -- autocovariance is indepondmit 

of t and we Get 

p(T=2 (dII (t) d1l (t +T))-X29 T> 00 

How since dIT(t) 0 or 1 vie have that B(dll(t) P(dIT(t) 1) 

djT (t 12 Thus T Prob (dIT (t) 

X Prob(dIT(t +T 1 dII(t) 1) X2 (3.2) 

1-. Ie define e(t) Prob (event at t levont at 0) 

Then )I (T X e( r) -A 
2 for T>0 

1,. 'e also have that for T<0,11 (T r- P (-T 

The asswiption that raore thmi one event do not occur simult. meously 

is formalized to the assumption that the probability of more than 

one event occurrin. -, in a swall interval of lenoth 6t is o t), as 6t -ý 0 

(Cox and Lewis 1966, p. 60) 

Iffnis implies that Prob. (dIT(t + 6t) = dII(t) 1) is o( 6 t) as 6t -P 0, 

which for finite X implies e( 6 t) 40 as t 0. However, clearly 

T-Irob (event at 0-levont at 0) =: 1 and so e(t) is a discontinuoun 

function of t at t=0. A way around this difficulty is to make e(t) 

a continuous fmiction by definina e(O) =0 and to define the complete 
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autocovariance as T) XD (e (-r 

where D( T) is the Dirc--ýc delta Amotion D( 'r 10 

=0T 
+0 

ry analo, -, y to the continuous spectral density function (Appendix A) 

we get the spectral density function for 11(t) as 

f0 (w) =1 
_jw 

e-i TW 110 (, r ) dr 
2 7r 

0 -r w and a(w) =2 7r fe (w) +fM e-' 11 (, r )dr (3-4) 

where V( -r ) is continuous nt -r =o. 

If consistent eutkaatei cma bo. made of the first and second 

order moments of the process from a single realizationt then the 

process 
-is 

termed ers,, Odic. (See for w=-., plýYaulom (1%2, P-3-8)-) 
1 

12 

It can be shown that the series is crgodic if lim fa V(T )(IT/T 0 

as T -) oo . This caji be satisfied if p (, r ) .)0 as T- -ý - Or if (T) 

is the surn of a function approachin, ", zcro as T increases and savoral 

periodid I ýerms. 

For w defined for non-nejative values only wo vrrite 

g (w) = 2, X +2fe -i TWp(, 
r )dT ý3-5) 

+ co 6 

An estimate for Cý, (vr) coan be derived by analormj to ths pc2: iodC,. r--n for 

eqýlidictant time series. 

t, it w nit a 

t S'l 
"'dll(t) 

= 
f2 

e Define ill (1-1) e 

n 

rind then ill(w) 

where the ovents occuý at ti-mos t, tnI the subcoript :T rofers 
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to-tho countinC process 11(t) and denotes complex conju, -ate. 

n n-s 

We can estiinate o( T) by 6( T n7l D(t 
s+k -tk -T 

S =, l k=0 

and show that (w) (w) 

whore g+(ý, r) is the estimate of C+ (w) obtained by substituting 

0(*-r ) for e(-r) in (3-5) and (3-3)- 

Cox and Lewis (1966, p. 12 9) show that E {a (w) 1; (w) for 
+ 

w >01 but thatat, w=O B (e, 
n) 

2 
+(0) 4 -E(N(t tn 

which is'not g+ (0). It is difficult to avoid this bias and in the 

followina smoothing procedure to obtain consistent estimates for the 

theoretical spectrump tho value of zero in omitted. The uniform 

weighting, method for smoothing hao the advantaCe of cimplicity. Ub 

qalculate the spectrum at frequenoieu w= 27rp /n and calculate P 

C+j I k-j 
(wi) 

p=c--I2k+j 
where Ic is the number of points over which the smoothina is perfon-ned 

and c is an intoUor if k is odd and an integer plus if k is even. 

Bartlett (1963b) derived a quadratic weijfhtin4; scheme where the 

weiGhts are given by hp = n(l _ 
2N 

where A i-nd B are constants. Cox P- j 
A 

and Lewis (1966, P-131) point out that for n not very lar, -e the mean 

square error for the quc iAratically weighted estimate will usually 

not be stmall. er than the mean square error for the =iformly woi&ted 

estimate. 
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Approximation to theLoint-process perlodop,, ram 

Given a series of points Y(t), t. 0, j,..., -I,. vhere Y(t) is 

computed by the French-Holden algoritlm given by equation (3.1), we 

can compute a finita Fourier, transform 

X(w) J. Y(t) e 
iwt (3.6) 

t n 

We made an investigation'Campbell (1979) into how closely X(w) 

approximates JN(w) p defined in the previous section, in magnitude and 

phase for all 0<w< Tr . If we substitute the general expression for 

Y(t). just before equation (3.1) into equation (3.6) we get 

Tn iwt 
sin --. r (t-td e 

tn 
t-o 1.1 Tr (t-ti) 

Reversing the order of su=ation, this can be rewritten as 

n ildi T iw(t -t J. P-n e sin Tr (t te (W) 
t10 (t t 

If we write the, second sum a3 Z(t W) then we have 

/2 ri 
x (w) 

th 
Xe Z(titl, 4) 

% j. 1 

Clearly we would'like Z(tipw) to be close to 1 for all values of ti 

and w. 

If we substitute 9- T/2-ti 
p and a1a Tr +W I ot 2=V- wf 

then Z(tisw) can be, v. rit 
. 
ten 
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T/2 
sin( t+Q) a, 1.1 

2 
t. -T/2 7v( t+0 

T/2 
.1 '9n( t+0 0ý 2 

2 
t, _T/2 'ý( t+9 

T/2 
1 -Cos( 

7/2 
ixi11- Cos( t+Q )a2 (3-7) 
2 2. 

t _T/, 
A( t+9 t--Tle( t+0) 

where 0< a2-. <al <2 Tr . 
Convergence follows from the fact that, for O< a< 27t 

OD OD 

X sin( t+Q )a-1 
and II, - coo( t+Q )a 

a00 
t, 4 - 00 

7r( t-f 9)tIa 
-00 7T k t+ Q) 

for any value of 0. (See for example, Sneddon 1961, 'Fourier oerics', 

Routledge0and Kegan Paul). 

I 

Estimation of bias 

'We-can make (3-7) as close to unity as we wish simply by 

computing the function Y(t) for large negative throLkr.; h to large 

positive values of t. Since Y(t), -ý- 0 as Itl .. CO it is worth 

investigating how far (3.7) is from unity for finite T. French and 

Holden (1971) evaluated Y(t) for t between 0 and t. so that the upper 

limit of the summation is the integer part of t/At, where A t*is U, T1 
the sampling interval. Let as assume that T is this upper limit, and 

also, without loss of generalization that it is divisible by 2,, so thA 

0-7) can be written as a symmetrical sum. Let T/2 k It can then 

be shown that 

rs 
sin. ( t +G)ci 

a 
C03 03 sin (k+ J)s ds (3-8i 

t+ýTi sin ý, s 0 

I 
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and that 
K1- 

Cos (t+0 [(ISin res sin (ks ds 

t -K t+9 7r sin is 
0 

If we integrate the right-hand side of (3.88) by parts we get 

cos k+a 

k 

(3.9) 

C03 oa4 O(k-2) 

sin jc% cx 

and since a 
'>0 this expression is I+ 0(k-1). 'When a- IT , 

cos (k+ 
, 
12): Ct- 0, and so for fixed k this value of a yields the 

closest value of the expression to unity. The distance from unity is 

determined by (k ct '-' which is largest . when both a and k are snall. 

a 

In a similar manner we can intejp-ate the right-hand side of (3.9) 

by parts to give 

cos (k+I)a sin 9a 20 -2 2+ 0( k). 

k sin ak+ 

Happily the term 2 Q/( k+ which need not be small, is e'Liminatcd 

when we zubstitute the above expression into the ima3inary part of (3-7) 

and get 6 

cos k+ cl 2 sin a2 cos k+a, sin a 

k+ lz )8 jn 12 ak+ sin ja 

This expression is 0(k-1) and is zero when aa 7r 

From the def initions off aI and aw is small when a, and 

are near Tr and w is near IT when a, and a2 are small. 

(I 
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Thus (3.7) becomes 

ti rw+ 0(( k( 7T +1 0(( k( Tr - W) 

This means that both the amplitude said phase distortions of X(w) 

are 0(( k( Tr and thus small if either k is large or w is 

not close to 7r . This has been programmed as a subroutine INTE2. 

(Campbell 1979b) and Appendix C' 

Use of the algorithm 

We have shown that the point-process periodogram, calculated via 

the French-Holden algorithm is close to the periodo., ram I,,, (w) calculated 

directly, provided we chose the Nyquist frequency well above all 

frequencies of interest. Note that we have not investigated how closely 

the estimated spectrum may resemble a postulated theoretical one, 

given the right data. As Lewis(1970) has pointed out, calculating the 

, ram directly can be very costly in computer time, and using periodog 

ram to be calculated equidistant sampling points enables the periodog 

via the Fast Fourier Transformi which can prove very much faster for 

long series.. 

One disadvantage with the algorithm is that we have band-limited 

the signal, and so that anything occuring faster than the Nyquist 

frequency vill be aliased at a lower frequency., In particulart if 

were examining the heart-rate spectrum we would not be able to discover 

if the system. generating the heart beats operated faster than about 

0.5 Hz. which is the usual upper limit. One feature worth mentioning 

is that Y(t) can be calculated for any value of t and gives us an 

easily interpretable tintensity' function, since the more frequent the 

events, the lbLrger Y(t). 



99. 

Point process models 

Ten Hoopen and "Lteuvor (1.9167) fit a probabilistic model of heart 

rate to the intensity function e(t). They consider heart beats to be 

the result of a stationary point process where the beats are subject 

to random delays. These proccs, seý.; are also discussed by Cox and 

Lewis (1966, p. 204) and by Srinivasaai (1973). Ten Hoopen and Reuver 

(1567) def ine a fund. -wiental prococs n to be a stationary sequence 

of events with a joint probability density of k succossive intervals 

T, k(alga 21" a, ). In addition they define a Tl'*process of delay,, i, 

independent of the n processt also stationary and with joint 

probability density fuzaction of k s., iccessive delays n* (b, lb bl, k 21**' 

The auth. pro derive proporties of this process when the intervals are 

normally distributed and either fo. i. 1", i a Marikov proceso or are 

independently distributed. This ii. odel would room to dcLicribe a 

beatinr, heart quite whero tho fw-Ldamcntal Iroces-1; could doocribe 

the electrical impulses comin. jr, from the sinoatrial uodc wid the 

is the time taken for an impulse to reach the vcntriclo. Ten Hoopen 

and 2ouver (1967) otato that aziother aavanta6., e of the model is V-. at 

in rnany dases the probability density function of the A-PL intervals 

is nearly nonnal. From the svnplo intensity function the stand&rd 

deviation of the n anL Ie n* procoso c, -m be cotimated for different I th 

assumptions about the probability distributions. The aathors compared 

. three patients with atrial fibrillation'and three nonnal subjects. 

They tentatively concluded that the pacema3cer varlability was greater 

foe the patients thcui for the no=ial person. ýuccessivc intervals 

for the patients appeared to be indepondent of one anothorl whereas 

for the no--n, i--l subject appearod to be negatively correlated. 
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The-time dependent Poisson process 

A fundeniental model in point processeo lo the Poiracon r. -, rocess. 

The conditions for a point process to be a Poisson process are that 

as hj 

P (N (t + h) N (t) 01h+o (h) 

P(N(t + h) 1) h+ o(h), 

and that the random variable (11(t + h) - 11(t) ) is independent of 

the niunber and position of the events in (Olt). 

A generalization of thio model is the time dependent Poisson 

process, discussed by Cox aýd Levýis. (1966, p-78) where now we assume 

that ia a function A (t) of time. In this caoc we can show that the 

probability that the next event is at tj+j given an evont at ti is 
t 

P(t 
14l 

Iti) =. X (ti) exp -fýX (u) du 

Also it can be shoim that th,, ý serie3 of events F where 
t, 1 

(01"21' 

s It rate. i=-f0 A(u)du form a Poisso-n r-rocess' of const. "t un-, 

Lot (0, %A) be a time interval in which the events at times t llt2l***tn 

occur. We can write the joint probability distribution fanction of 

the events in the time interval (Otu ) and the nimiber of evonts. as 

nu 
f (tl I t2l, n) Oxp f0A (U) LIU (3.6) 

It will be shown that for reCalar, deop respirationp the heart beats 

show clea= evidence of cyclinc. A possible model. for this, discussed 

by Lewis (1970)'is the time dependent Poisson process with cyclically 

varyinZ rate X(t). 

U, 0 pu t (t). = e-xp (a+i: 
S cin wýt + ka cos klot) 

.=x cxp(�4, - sill (ilot + 0) ) (3-7) 
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vrh ere aX8 and Xc are constants, vr 0 
is the frequoncy of the cycle, 

X= (K2 + X2)2 and 0= tan-'(IC IX 
s S) 

Lewis (1970) states that (3-7) is to be preferred to 

X(t) a+k. sin wot +k0 Cos w0t (3-8) 

because (3-7) leado to simpler results and (3-8) could give a 

negative X(t), whUch would be difficult to avoid. 

If -via substitute. (3-7) into (3.6) and take lo's vie jvt the log 

likelihood 
n 

log Ik(t 1 1600st n ; n) =na-e toLO(K) + I' cos Q'I t3in(viot. ) + ICsin 0 1. 

S-1 

cos(viots). (3-9) 

In this equation and the following oneo Li (K) ic a modified Bessel 

function of the first kind of order J. This is not the unual 

notation for a modified Bessel function, but in used to avoid a 

conflict with the notation for a periodoC,, ram. A description of 

Dessel fimotion is Civen in Jeffries wid Jeffries (1962, Cha-pter 21). 
nn 

The observations enter only throu, -Ii n, sin(w ts) and Y cos(w t) 
0 

Sal 
06 

and so these are sufficient statistics for the raramoters Y,, 0) 
nn 

at frequency wo. We put A(w 
01 cos(t 

S 
1.1 

0) 
and B (ir 

0)=I sin(t 
sw0 Sal Sal 

and-differentiate (3-9) to obtain tho. maximum likelihood ectimators. 

These are 0= tan-'(A(wo) / B(wo) )t 

and Anx1 
t0 Lo (10 

where K is the solution of tho equation 

(A 2 (w + 13 2 (w L, (K) 

Lo (K) 
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A(w 
0) and 33 (w 

0) arc the componenta of the raw opectrum C+(1,10) given 

before, and so the phase of the heart rate siLmal is just the phase 

associated with the Fourier transform of the cotinting process. 

Point 32rocesses with ancillEy Variables 

Bartlett (1966) Cave an analysis of what he termed 'line 

processes'l which essentially are point processes with ancillary 

variables. An e=ple would be the times of vel#oles passina a 

particular point on a ioad, and associated with those would be the 

velocities of. the vehicle. q. In our care we consider an ancillary 

variable Y(t) where Y(t) could be either the mean blood p=essare 

associated with each heart beat, or the respiration depth at the tinc 

At 
of each heart beat. !,, Ie consider Y(t) to be a continuous vvxia1ble 

in time mid assume we 
. 
can only observe it as Y1jy2j ... at times tjot 21'" 

of the point process. In the swo way as for the point process vie 

can ca-loulate Vila Vourier trans-forin of the process (Y(t)dlT(t) ). 

put jy (W) 
t0 

e-t'-'Y(t)d! l(t) =/-. 7 
n it 

r XT f Z. ý. 11 Y, n0 
th S. I- 

Then we can define the peri-odog-rm of the prooer., s as 
t 

02nn 
ly(w) 

f Y(t)dll(t)e: "'t aI 3's coo Ilt s+ 
il y,, rin vit, 

0 ýn 8-1 S-1 

n 
c 11 y 
2(w) 

+ D2(w) ), where C(w) y cos wt. and D(wr 
tn Sal B-1 

Wo can define the cross-reriodo, rrroo between (dll(t) ) and (Y(t)dll(t) ) as' 

I,, y(w) = Jj(W) *y(W) 
where * denotes the complex conjuaate. It is jy 

easy to show that the croso-periodof-, rxa phace is given by 
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I 10 ýCw) = tan-' A (y) D (w) 
-P-C, 

1) 
B(W)D(w) + A(w)C(w) 

ýW) 
= tan-' A(wj -. tan-' 

-10) 
B(W) D'(W) 

The phase is the difference between the ar, -mcnts of the Fourier 

transforins of the processes (O(t) ) and (Y(t)cUT(t) ). 

However, ass-Lune that the continuous function Y(t) is 

deterministic with an added random error and io, of the form r 

Y(t) Asin(w 
0tE: t where ct iß 1�r(09 cr 

2) 

where YIt) is defined in the interval (Otto) and Y is the mean of 

Y(t) in that interval. We can estimate ý from the observed values 

of Y(t)' Y11 Y2 .... yn, I)y the method of least squares. We Cet th at 

tan-1 C(wo) I siAi 0 
ts - D(w 

0 sin wot. cos Wots - (3-12) 

D(w ) jcos2 wt-C. (w) sin vrotrcos wots 00s 

The summation is tal-cen fron, s=1 to s=n. 

The estimated phase difference between Y(t) and dIT(t) at w is C, 0 
iven 

byyl(wo) =0 -T which is not the ouAe as (3-10) forw=, vto 

If the observations t 9t L were equally spaced in time 1 21""n 

-then join vt 0ts coo 1.1 0tsv0 and I sin%ts cos2w 0t n/2 and so 

would simplify to tan_1(C(w 
0 

)/D(w 
0 and so would be the cross- 

periodoZram. phase at v0. Vho result (3-12) shows that if we assume 

(d11(t) ) to be a time dependont Poisoon process with par-rmneter X(t) 

Civen by (3-7) and thA the mcillary wxiable ir, of the form ,,, iven 
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by equation (3-11) then we would have to ostimato the phase between 

them by ý. 
l 

(w 
0 

)-and not from the cross-periodoGram phase givon by 

ý (WO). 

A further complication would occur if the heart intervals were 

viewed as comine from a continuous proce6s X(t) where X(t) is Civen 

by 

X(t) Bsin(w t++c -* (3-13) where c* in -11(op 
2) 

anc, 0tt 
is the mean of X(t) in (Ot 

0 
). Acain we assume we can only observe 

the process at times tly ... #tn with values xlp..., xn. In the ccwie 

way as before a least squards estimate of 0 is given by 

2 
. 

tan 'tE(w ) Isin wo) I sin vtot, coo w. t. %ow0t 13 _p(ý (3-14) 
F(w coAv t- 33(w sin wt cos viot, 00S00s, 

) 

whera E(wo) xcos wot, and F(wo) xrsin wotr and the surrm, -ttion 

is taken from s=l to s=n. 

Again, if the observations were equally sraced In time, then a 

reduces to tan-1(E(w 
0 

)IF(w 
0)) and the estimated cross-periodocram 

phase betv. reen X(t) and Y(t) at w0 is equal to 

Tn. 
I 
all the above models the assumption is that the frequency w 10 

of the model is known. In many cases this may be true, for instanco 

in queuein. - there is often a time-of-day effect. Tor paced 

respiration howýever, the freqiiency is only lmo= approximately and 

will have to be estimated more accurately. For this purpose the 

periodo, =am is in many. cases more effective than the spectrum. 

because the latter tends to di: rfuze paal: s over a rLn, -, e of frequencies. 
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It can be shown that a time dependent Poisson process with parameter 

X(t) given by equation (3-7) will Conerate*a series of points 

whose periodorTaz IN (w) will have'maximum ordinate at frequency we. - 

In the same way the periodogram of-the process Y(t) and of the 

intervals X(t) given above, will also have a maximum at frequency w0 

Probability distribution of point rocass models 

11be intervals between eVents coming from a Poisson process with 

parameter can be shown to have a probability don. -ity firiction 

P(x x) =X e- 
Xx 

jx >ý o. Por a time-dependent Poisson proces3 

with parameter X (t), civen ýhat an pvent occurred at time tj 4en 

the probability density function of the interval to the next event 
t+X 

is X (t + x) exp {-fX (u) du I- 

If the heart beats fonn a Poisson process, or a time-dopendent 

Poicson process, then we would havo'cxpeoted the interval hiotogr=ams 

of Chapter 2 to show an exponential foj: m which, they clearly do not. 

A model of the form (3-13) may be more appropriate to describe the 

heart intervals under forced respiration. Howevert the choice of an 

underlying model does not affect the methods of computin, - the spectrum 

of a point process. We will not discuss the sampline properties of 

the theoretice-I spoctram for various models because there axe 

considerable difficulties beyond the simple Poisson model. Vne 

samplin, - properties of spectra calculated from time series vith 

equ#paced points will be discussed in Appendix A. 

klethods used in this study 

The data for the healthy Emibjects mas obtained in the forra of 
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the intervals between the heart boato and the depth of respiration 

at the time of 6ach heaxt beat. Purther detkils are Civen in 

Chapter 5- With these data it wass possible to try three different 

methods 'of spectral analysis; of the counting process, of the 

intervals, and of equidistant sanipled points. 

SMpl. in--: healthX subjoct-, 

Suppose we are given a-series of intwnals x 19 x 21*""'ý, ' in 

seconds, together with a series of respiration records yl, Y21**-Yrl 

in mm. IT,, -. The sijýpal y. it; measured at a time t x139 We 

sample the siCnals at the points j4 t#j=1p2j ... I where At in 

the samplinC interval. We calculate the results in beats/min in 
a 

order to be able to compare them with tho-so of the post-operative 

patients. If t K-1 <jAtgt,,, then the sampled values of the 

heart rate and respiration are jgivon by 

60 +j At f. 6o - 6o (3-15) 

itK -t IC-1 
( XY, Xhl- 

yj ý-- YK-1 .11At- tK-1 (yx -yy,, ) 

tK - til-i 

A computer prorTam SMIPLE was vxitten to implement these equations. 

There remain several questions - how often do we sample and do 

we. get different re-ulto from calculatina the heart rate instead of 

the heart interval? 1-, 'e have to balance between Samplin. g. too 

frequently, introducino a high correlation between the date. pointso 

and samplinr too infrequently Pnd losing information from the hiGhor 
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frequencies. One method that would compromise befween the two is 

to take as many'sampling points as there are'events, and so the 

sampling interval would be t0- /n, where n is the number of 

points in the total time t0 lloýmver this would moan chaneing the 

sampling interval for each subject. A ranf,, e of samplinS intervals 

between 0-5 and 2.0 seconds was tried bn one subject, with no marked 

difference on the resulting spectra. For convenience 1.0 seconds 

was chosen as the sampling interval for the remaining subjects w"hich 

is quite close to the avem,, rre heart interval for a normal person of 
1 

aboat 0.8 sees. Since heart rate is simply the inverse of heart 

0 ft intervalt the two variables should Iýo exactly 180 out of phase. 

This war.. verified by calculatina the cross-spectral phase from both 

the sazipled heart rate data and the ow., pica heart interval data by 

NIDX92 as described in Appendix A. Seto of data fron, 3 different 

subjects were examined and the phase between respiration and heart 

interval and the phase between respiration and heart rato were 

calculated. In cach care the difference betwoqn the two measuremento 

of phase was almost exactly 100 0 at each frequency. Tbo renults of 

Chapter 2 show there is nothing to chose between heart interval -tnd 

heart rate for normality assumptions, 
6 

Anot'ller question is whether the mumplinC introduces any bias 

into the phase between heart ralkO and rcspiration. l3quation 3-15 

can be vwitten as 

6o 11 
xy, i 

At -j xi) 
2 

XX 

(J 

This is a h-ighly non-1 *near refationship between the x.. ' s and the 

Ibis would imply that frequencies above 0.5 Hz. would be aliased. 

Reasons for believing this to. be unimportarit are discussed in Appendix A. 
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ri Is -md the standard technique of investif; atin. - plimoc chan. of 

linear filters by taking Fouiier transforms iqould not- be practical 

in this case. 

Sam2lin! 7: Post-onerative patients 

The method of salipling- the data-from the post-oPorative patients 

described in Chapter 1 implied that the heart beat is not sampled 

until after the second beat, of the intervial has occilrred. ' Uais 

method is similar to the constant interpolation method of Luczclk and 

Laurie except if t k-I <iAt IC till we put ri= 6o/xk_, ' Tile - 4. 

ancillary variable yk_1 in thio casq is the mean blood preesuro over. 

the period (tk-21 t k-1 
). It would be of interest -to know whether, 

the phase between Vie heart rate and blood press-LLro is affected by 

the mothod of scam-pling. This is investiCated later by a simulation 

teolmique. 

Point-n'nu-otnwi and Is, xnledl s-, )e tram. ' 

A pro, -Tam PSPEC was written which calculate(l the periodo, -ram of 

the countino process as 

(W) cos wts 
2+ {I sin ut a 

tS 
n 

The spectrLum was then estimated by either a linear or quzidratio 

smoothina of I,, (w) as described previously. FiV=e 3-3 shows the 

smoothed point zpectrwa applied to heart intervals from Subject 10 

of the respiration study. The subject was breathin,, -, regmlarly to a 

natronome at a rate of one breath every 10 seconds. 1.1c can sce how 

the point spectrum is. cuccessfiil in detectin, - a cycle in the hoart 
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beats of the saine frequency. The data were also sarmpled by S., U, ZPM. 

and the apectr= then calculated by B:. MX921 as described in Appendix A. 

This is also displayed in FiC=e'3-3, where ire can see that there is 

a close relation between the two spectra. Both types of spectra are 

successful in detecting cycles in the-heart beat, but it is of 

interest to note that 13DIDX92, which uses the Past Fourier a,. anr, -form, 
took 2.5 seconds CPU time on an IBI-1370, compared with about 2 minutes 

CPU time for PSYEC on an ICL S7yotera 4. This is one of the major 

reasons for calculatinC the spectrum via S2,1PIX, and BI, MX92 rather 

than directly by PSPBC. Unfortunately the Past Fourier transform 

cannot be applied to non-equispaced data points. 

Simulation study 

In an attempt to investiCate possible phase chanCes induced by 

the sampling methods a simulation study was undertaken. A pror_. 'rar 

SMUL iras written to vinulate heart iattla and mspiration/blood pressure. 

The as-sumptions wore that the heaxt interval and respiration/blood 

pressure siGnals were of the form (3-13) and (3.11) respectively. 

Two sinusoids of given mean, amplitude and relative phase were 

generated, and the randorn variation ,., as simulatqd by a subroutine 

GAUSS (IDTI Scientific-Subroutines). The siGnals were converted to a 

point process by a fom of backward extrapolation. Any point t was 

chosen on the -time axis and the corresponding interval 

x 
60/ ý+ Bsin(w t) + ct) calculatedg where V and B are the tk(x01x 

input mean and Emplitude of the siCnal and ct is the Cencrated 

Gaussian random noise with mean zero and Civen standard deviation. 

The ancillary variable yt : %-p y+ 
Acin(ii 

0t+a) vt= also calculated 

where a is tho relative pl-kaso between the oi3nals. ' We then calculatod 
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t-xt which, is the time the previous beat occurred and from which 

we can calculate the previous heart interval and so on. Me 

res-ulting intervals and the correspondinC ancillary variable formed 

the input to - SAITIM, and the output of SATTLE processed by B:., D, (92 

as described in Appendix A. A ýrogs-xam SJUMLEM was written to 

simulate the method of sampling employed by the data logf; er, and 

the output of thic program was also processed by BT. MX92. Ube heart 

rate was simulated with a meal, 72 bts/min and amplitude 5 btr. /inin., 

and the blood pressure with mean 90 mm. 116. and amplitude 5 mm. Ha. 

The added random noise had zero mean and a standard deviation 

varying from 1 to 10 bts/min. The phase between the two si(ýMý, as 

was fixed for a given frequency. In each case about 120 points were 

. generated. 

Table 3-1 s1hows the simulated frequency, phase and noise 

standard deviation. In every case týe maximum ordinate of the H-M 

spectrum was in the region of the simulated frequency. The values 

of the phase and coherency given in the table are those at the maximurn 

cross-spectrum ordinate. Column 2 of the table gives the phase and 

coherency resulting from the data sampled by the method Civen in 

equation 3-15- Column 3 gives the sane statistics for the same data 

for the heaxt intervalg i. e. with Teplaoins 601x in 3.15. xic I -k 

Column 4 givez, the results for the same data but in this case the 

data was sampled by SAMPLE2, in order to simulate the DART procedure. .0. 

A 

Collum" 5 gives the phase at Che simulated frequency w0 where 

(3-14) resi)eotively. and are obtained from (3-12) and 

It will be seen from the table that all methods detect cycles 
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in the data with reasonable accuracy. The frequency associated with 

the spectral peak is in each case close to the simulated one. The 

phase results are not quite so accurate, but this is not surprisina 

since the additive random noise will have a direct effect on the 

phase. The phase appeais to be measured less accurately at a 

0 simulated phase of zero than for a phase of 50 , For the limited 

type of data provided by the simulation, both the linear interpolation 

and the beat-delayed constani interpolation methods give quite 

reasonable results, and it appears that we have not been misled by 

the sampling mothods of the D. A-11T data locCer. It was also found 

that the cross-periodo, -ram. I,, Y(w) had a cloarly marked pcak at the 

simulated frequency. The p1hase results calculated directly from th.? 

point process were a, -ain in a, --reement with the simulated phase, 

althou, 31i the cross-periodogram phase, without the benefit of smoothing, 

scems more valnerlble to disturbance by the added noise. If the 

heart intervals, which were output fýojr, SII, TJL, were input directly 

into DIM92 as if they were at one second intervals, then the cross- 

spectrum showed a peak at about w0x, where x is the mean heart 

interval in seconds and w0 is the frequency of the simulated series. 

The value of the phase at the cross-spectrm peak was in n6reement 

with the simulated phase in each case. 

An additional analysis ', -7as conducted on the heart interýval data 

of 3 healthy, restir. C; subjects who tool-, part in the sinus arrhythmia 

study described in Chapter 5. The observat-lons were proceszed by 

SMPIS' for linear interpolation to equidistant data points, and also 

processed by SA1,21,22, to simulate the method of sanplinC employed by 

the D-KM The spocti-Lun and the cross-spactrum of the two series were 
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then calculated by JID)X92. It was found that for each subjcct the 

heart interval spectra for the two methods were very sinilar. The 

heart-interval spectrum for the DART simulation wan not as smooth as 

the constant interpolation spectrum, but the basic features and the 

main peaks were preoent. in each case. The phase of the cross- 

spectrum is interestinC, as illustrated in FiC. 're 3-4 for subject 20 

of'the sinus arrhythmia study. It was found that the phase 

difference betveen the two data sets increase roufffil 
., 

ly linearly from 

0 degrees as the frequency increased from, 0 to 0-5 Hz. If the two 

series werb', identical, but had bý, on la, -, red by a conotant amountp then 

we would have expected a linear phaso relationship, with the phase/ 

frequency graph passing throuCh the 'orb-, in. In fact, the lvU is one 

heart boat, which is variable, but still Gives us an approximately 

linear phase. For interest we can derive an approximate mean heart 

rate from the Craph. If we take the gradient of the phace/frequency 

curve to be 3.00 deZroes / liz. p then this can be shoi-. rn to be equivalent 

to a la, - of 3001360- -- 5/6 seconds. If we axe prep. oxed to asauma. that 

the heart rate distribution ia symmetric about the mean, tl)L-n it is 

shovm in Appendix A that the mean hcart rato Is civen by 601(516) 

72 bts/inin. 

The theory of point processoo lwas boon developed in so, -Ie detail 

because it would seem to provide a natural base for an analysis of 

heart beats. Hovever, in all the medical literature on the subject 

the implicit assumption has been that the heart rate is a continuous 

function of time w1hich could only be vioviod at particular points in 

time whic. 'a -were the heaxt beats. -This underlies the interpolation 
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techniques covered in the literature review. It has been choi-m that * 

for analysinC the spectra of regularly recurrinC point processes the 

spectra calculated from, equidistant mmpled data points is probably 

as effective for detectin, - cycles as the direct point spectrum. In 

addition the fo=er Lietbod has the overwholminC advantaGe in speed 

and efficiency. However the results from these two approachor. differ 

considerebly for phase measurements. We have shoun that the I natural 

measure of phase for a countin, - process dlf(t), the axcument of the 

Fourier transform of dN(t), in the maximum likelihood estimate of 

the paran6ter 9 in the time dependent Poisson process with paxameter 
A 

(t) Given by (3-7). This ic very different from the parammotora 

the least squares estimate if the intervals are assumed to be sinusoiclal. 

A have shown that tho cross-spect= phase obtained by samplin the 

data and processin, - with pro,,, rara NOX92 gives an accurato estimate of 

the phase when sinusoidal mode . 10 of the fona (3-11) and 3-13) are 

, ýAopted. This meamre of phase seemm more closely associated with a-I 

intuitive measure such as would be obtained if wo ex, -jained the 

tachiocaxdio, F=n, m and the respiratory siVial together. However, it 

is difficult to Imow how to interpret the phase 0. 

The original. contributions in this Chapter are : 1) we have shc., un 

that the method of French and Holden giveg auymptotically unbiased 

estimates of the point-process spectrum, and we have prcvtded estimates 

of the bias in the finite case; 2) by simulation and theoretical studies 

we have shoAn that the two approaches of viewing the heart beat as 

a point prodess and as a continuous variable which is irregularly 

sampled in time produce similar spectra but different phase estimates; 

3) the method of sampling by the DART data lo:,;? 7er will re3ult in a 

useful spectrum but with a phase distortion which increases approximataiy 

linearly with frequency. 
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TABUS, ý. 1: PHASE, ATM COIT'ýUv'-"CY `L',, 3, JLTl') P O-lZ D DATA 

'2 3 4 5 

Simulated IT. R. Swnpled Tlo=t Rate, analysed by BMW92 

F req. Phase Iloise 
(bto/miii. Phase Coh. Phase Coh. Phase Coh. Phase 

0.07 50 1 51 1.00 130 1.00 48 0.99 49 

0.07 50 5 52 0.99 129 0.99 51 0.99 53, 

0-07 50 10' 52 0.99 130 0,09 45 0-109 53 

0.10 0 1 -1 1-00 -179 1.00 0 0.99 -1 
0110 0 5 -4 0-99 -176 0.99 -3 0.98 1 

0.10 0 10 1 MIT 170 0.98 2 0.90 -5 

Colurmi 1- Simulated data, pha: 3e in dcG3zees, s-kl;, --ndaxd deviation of noise 
in bts/min. 

Column 2- Lincar interpolation of heart rate 

Column 3 Linear interpolation of heart interval 

Column 4- Constant interpolation of heart ratop one boat delayed 

colu; mn 5- Dircat astirriate of phase at freqtioney of simulation. 
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CHAPTER 4. Frequency analysis of. the records of the Rost- 

operative patients and the, nunhalatory subjects, 

Spectral amilysis -of heart r%to md blond prezsure 

In Chapter 1 we dealt with the initial processing of the heart 

rate and blood pressure iecords, and in Chapter 3 we investigated 

methods of equidistant sampling. We are now at the stage to apply the 

methods"of spectral analysis and digital filtering to the data, These 

methods axe reviewed in Appendix A. The reasons for employing spectral 

analysis Lave been touched upon in Chapter 1. There is strong 

evidence that oscillations are present in both heart-rate and blood 

pressure 'and we wish to determine three aspects of the oscillations: 

how many of the data records exhibit cycles, what proportion of the 

variance can be attributed to cycles and whether there is a reguArr 

phase relationship between the heart-rate and blood pressure cyclea. 

Initialli a spectral analysis using. program BM02T (Dixont 1970) 

was carried out. sets of 300 consecutive points were analysed. 

Aftcrwardat howevert all the data were processed by EIDX92 (Dixon, 1972). 

The reasons for preferring EIDX92 are given in Appendix A, The 

treatment of the data for spectral analysis was similar to the 

treatment for the frequency distribution study, Initially the entire 

data set for each patient was subject to a spectral analysis, The use 

of the Fabt Pourier Transform by MDX92 meant that this computation 

was possible. It was foundt however, that non-stationarities became 

readily apparent and dominated the result. Only where marked 

oscillations persisted throughout the data sett such as the respiration 

cycle in the blood pressure records for patients 13-73 and 16-739 were 

these apparent in the overall spectrum. The spectrum for the heart 
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rate records of patients 15-73 and 16-73 displayed a large peak at 

zero frequency and comparatively low power elsewhere. It would be 
I 

possible to remove this peak by the use of high-pass filteringr but 

-the filters available with the EM programs were not suitable. Any 

temporary oscillations in-either the heart-rate or blood pressure 

would be detected by the overall spectrum. Thust the next part of 

the analysis was to section the data into non-overlapping lengths of 

between 4 and 8 minutes and to analyae ý., onsecuiive data se*ts. Program 

B14DX92 operates more efficiently if the number of points in the data 

set is a power of 2t and so sets containing 256 or 512 oonnecutive 

points were employed. The spectrum was calculated at intervals of 

0.008 Hz., which in general yielded 4 degrees of freedom for each 

spectral estimate. This value would be quite low if we were 

investigating the spectrum of a random prooess, but vie are in effeot 

looking for deterministio signale and we wish to obtain a high degree 

of resolution. 

The type of operation undergone by each patient is given in 

Table 4-1. At the time of the analysis all the patients were in a 

clinically stable state; there were no periods of abnormal fibrillation, 

neither were there large numbers of ectopic beats. The patients were 

either free breathing or on demand respirators. The fifteen patients 

contributed a total of 111 sections of data, with 256 points in each 

section. To interpret the spectra it was decided to put each into one 

of three classes'. A Class 1 s'pectrum implied that there were clear 

peaks in the spectrum which were mignificantly greater than would be 

expected on the underlying assumption that the data were random noise. 

A Class 2 spectrum implied that'peaks were presentg but that there was 
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much background variation which meant that although the peaks were 

identifiable by eyet it was within the bounds of possibility that they 

were due to random events. A Class 3 spectrum was one of two types; 

either there were no distinguishable peaks present at a119 or the only 

peak was at zero frequency. In cases where doubt existed whether a 

peak was present or not, the spectrum was classified as Class 3- 

Table 4.2 shows how the. spectra from each patient were 

classified. The Ill he6xt rate spectra divided into Classes 1,2,3 in 

the proportion 13: 33: 65 whereas the blood pressure spectra in tha same 

way were divided 79: 21: 11. This meant that 597- of the heart rate 

spectra were indistinguishable from random noisel and only leý., showed 

clearly identifiable peaks. The reverse situation occurred for the 

blood pressure spectra, with 71c, ýo showing clearly identifia ble peaks 

and only 10% being totally uninfoxmative. 

I 

Rxamples of the heart-rate and blood pressure spectra are shoun 

in FieLzres 4-1 and 4,2 a. The top half of Figure 4-1 shows Class I 

spectra for subject 4-72(l). -In both the heart rate and blood pressure 

there appear to 'be two peaks. one centred at about 0-055 IN. and a 

larger one at 09275 Ez. - It is apparent from the discussion in 

Chapter I that the peak at 0.275 Hz- in due to respiration. There is 

no other physiological explanation for a cycle with such a high 

frequency. The other peal-, may be the so-called vas6motor peakt 

resultinu from oscillations in the blood pressure control system, but 

it is . at a lower frequency than. that reported by Sayers (1973). It 

is possible that this peak- could result from the thermal control cyotela 

described by Sayers (1973) and Kitney (1974). Unfortunately it would 
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seem impossible to decide retrospectively which mechanism is responsible 

for the peak.. The lower half of FiGure 4.1 showe Clas3 1 upeotra, for 

12-73(2). These are very similar to those presented by Sayers (1973). 

We see now that the respiration peal-, hair disappeared from the blood- 

pressure spectrumt and it is only faintly marked in the heart-rate 

spectrum, possiblyp at 0,23 llz-. In this case we find that both 

spectra are dominated by a peak in the region of 0.06 Hz.. AGain, it 

is impossible to ascribe a definite cause to this peak but it in clorer 

in frequency to the thermal component quoted in the literature than to 

the vasomot or component. The top half of Figure 4*2ashows a Class 2 

heart-rate spectrum and a Class I blood-pressure spectrum for 7-73(l). 

The heart-rato spectrum reveals two peaks in the low frequency range, 

at 0.04 and 0.07 11Z. - Also present is a larger peak at 0.24 Rz.. The 

blood-pressure spectrum shows only one peak, at about 0.27 IIz-- This 

is interesting becaum, if the high fiequency peaks in each spcct=. 

were duo solely to respiration, we would expect them to be at the eiamo 

frequency. The lower half of Figure 4.2ashows a Class 1 blood- 

pressure spectrum and a Class 3 heart-rate spectrum for 14-730). 

We see that there are no apparent peaks in the heart-rate spectrum at 

allp whereas the blood-pressure spectrum shows two clearly marked 

peaks at 0-03 Hz- and 0.18 liz.. 

Tablo 4.2 gives the frequencies at which the spectral peaks 

occur. It will be noted that respiratory peaks in blood pressure 

occurred for. subjects 4-72,7-73,8-73P 11-73P 13-73P 14-73P 15-73 and 

10,74. These appeared sometimes with, ý. nd sometimes without$ a lower 

frequency peak. It is possiblet for those subjects with no higher 

frequency p*eak in the blood-pressiiro spootr=p that respiration was 
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slow and the respiration peak was oonfused with the vasomotor peak. 

Out of the 46, Class 1 and 2 heaxt-rate spectra, only 11 showed peaks 

at frequencies attributable to respiration. 

Further information was obtained from the heart-rate and blood- 

pressure data by calculating the crons-spectrum, pha--e and coherency 

between them. These statistics are defined in Appendix A. A peak in 

the crous-speotral amplitude at a particular frequency would indicate 

a cycle In either or both of the two series. The coherency measures 

the degree of linear correlation between the two series, and gives an 

indication of the intensity of the common signal between them s6t a 

particular frequency. It attaches a dc! gree of confidence to the phase. 

A high coherency at a particular frequency between the two series does 

not necessarily imply that there, is a common cycle at that frequency 

in the data. The criteria for detecting a coyinon cycle In both heart 

rate and blood pressure were coincident peaks in both tha heart-rate 

and blood-pressure spectra, together with a pealc in the cross-opectral 

amplitude and a high coherency value at that frequency. Table 4.3 

gives the spectrum amplitude and the cross-spectrtra-statistics where 

these. criteria were met. A negative phase implies that the blood- 

pressure is in advance of the heart rate. The coherenoy estimates in 

some cases are possibly underestimated when the phase was changing 

rapidl y viih frequency; methods of avoiding this are discussed in 

Appendix At one method being to align the series to bring them more 

closely in phase. Peaks attributable to reopiration in both the 

heart-rate and blood-pressure spectra were found in 4-72(1)9 4-72(2)t 

7-730), 14-73(1)9 15-73(4) and 10-74. The respiration frequency 

00 ranged from 0.18 11z. to 0.25 Hz. and the phace from -31 to -143 
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This meant that in'each case the heart-rato cycle laTCod behind the 

blood-pressure cycle. With only 6. points it is difficult to test for 

a correlation between phase and frequencyp but this seems unlikely 

since subjects 4-72(l), 4-72(2) and 10-74 all showed a respiratory 

peak at 0,273 Hz,, with phases -1430, -121 
0 

and -860 respectively, 

Another factor which would influence the phase of the blood- 

pressure signal relative to'the hoart-rate nigxial-is the position of 

the cannula in the radial artery. For cach patient, 'the tip of the 

transducer was placed as close to the heart as was feasible. For the 

majority of patients this was where the artery entered the chost, but 

for come it was possible only to go as far as the elbow. The lag 

between the actual heart beat and the recorded blood-presqure pulse 

will depend on the distance and the pulse velocity. It could range 

from 20 io 120 milliseconds, which at a frequency of, vPzq 0.25 ITz., 

could produce a chanCe of phase of botixen 2 and 10 Thin fact was 

borne in mind when the phase results were interpreted. 

Several subjects displayed two low-frequency peaks in the cross- 

spectral amplitude wl. -Lich corresponded to bigh values of the coherency. 

For example 10-73 showed several cross-spectra with pecaal at 0-055 rIz. 

and 0.070 Hz- and the cross-spectrum from subject 9-740) showed peaks 

at 0.023 Hz. axid 0-078 HZ-- It is tempting to ascribe the higher of 

these two peaks to the vasomotor frequencyt and the lower to fliermal 

variation. Indeedq a frequency of 0,023 Hz, would correspond to a 

cycle leni; th of 40 seconds# a fiindamental of the thermal control Oystem 

mentioned by Kitney (1974). However, where the frequencies are fairly 

close toeether, such as the panIcs fo. - 10-74, we cannot place too much 
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confidence in the presence of two peakst especially since the spectral 

resolution was only 0.08 Hz., The phase results at low frequencies 

were not consistentt possibly because the cycles were not all Generated 

by the same mechanisms. In general the phase between heart rate and 

blood pressure in the region of 0-055 Hz- was positivev but there . vre 

exceptions, for example the phase of 15-730) is -760 at 0-055 Hz- and 

the phase of 15-73(4) is -680 at 0.047 IIz-- For subject 12-73(12)t 

the spectrum showed two low-frequency peaks. The. phase for the pealc 

with lower frequency is negativeg-wherean. that for the other is 

positive. The degree of confidence that we can place in these results 

is discussed in the next section. 

Sirnificance tests 

A pertinent question with regard to the detection of cycles is 

whether the peaks in a spectrum could bo due to random events. Testa 

of significance of spectral peaks are7desoribed in Appendix A. For 

clearly-marked spectral peaksp we were confident. that they represented 

cycles in the, datat but for less clearly marked peaks the following 

test was used. The periodogram ordinate I(w ) wan calculated at each 

frequency vj =27rj/ng J=1j20--., n , where n is the number of points in 

the series (assumed evon for arithmetical convenience). The value of 

An-j 
max ( I(wj)/ I 

J=l 
I(wd ) was found. 

<j< in-1 

On the null hypothesis that the observations are independent normal 

random variables with zero mean. and a common variance the distribution 

of k can be found (Pisherg 1929). It can be shownt for example Hannan 

(1970P P-472) that the test is asymptotically valid. for non-normal 
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observp, tions. A value of 256 should prove a sufficiently lar nu; mbor Ge 

of points'to justify an asymptotic approximation. A discussion of the 

test is given in Appendix A and the results in Table 4.3 indicate 

which peaks are not significant (NS) according to this test. 

Distribution of vaxiance over freguency 

The spectrum of a time series can be thouCht of aa a device for 

allocating components of variance to different frequenciem. ' It is 

shown in Appendix A that if. the periodnaram I(v 6) is calculated at 

discrete frequencies wj=2 Tr 61n ,1<64 n/2 , whero n1a the nwaber 

of points of the series (taken as even) then each ordinate can be 

regarded as a component of vaxiance with 2 decrees of freedbm (except 

at J=0, n/2 where ire have only 1 degree of freedom) =d the sum of 

all the ordinates is equal to the variance of the-series. If we make 

an allowance for the smoothing then we can oxprcs-- the spoctrum In the 

same way. It was decided to divide týe frequency rs-nCa 0- 0-5 1TZ- 

into three. The first interval was taken to be-(O - 0.016)liz. and it 

was assumed that any variability in this region would be due to lone 

term trends and non-stationarities. Any larCe peak at zero frequency 

would tend to contaminate neighbouring peaks. The second interval was 

taken to be (0.023 - 0.125)11z. This region was deemcd -,. he Ovasom,. notorl 

region, since all cycles to do with vasomotor activitr ocaurred in 

this region. The remaining interval ums (0*133 - 0.500)Il"-., and this 

was termed the respiratory interval since all recognizable respiratory 

activity occurred in this region. The intervalq are disjoint because 

of the finite resolution of the'spectrum. 

Table 4.4 shows the distribution of the variance ever these 
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frequency bands for each subject. The figures in each frequency band 

for a particular subject were obtained by taking the average of the 

varianee, in that band for each 256 point segment for that subject. 

The sum of the variances in the three bards for a particular segment 

is, in fact, less than the total vaxiance for the data of that segment 

because the proCram XMX92 automatically subtracts a linear trend from 

the points. In most easesp however, the overall variance was close to 

the sura-of the spectral estimates in the three sections# despite the 

approximation made to allow for the smoothing of the spectrum. If the 

input data were completely randomp we would expect each fundamental 

frequency of the form wi= 27rj/n to have the same expected value, and 

the variances in the three frequency bands would be in the proportiou. 

4: 22: 74. It can be seen that this ratio is approximated quite closely 

by the heart rate spectra of 8-73,9-73P 11-73t 16-73 and 8-74 and by 

the blood pressure spectrum of 8-74. It is confirmed in Table 4,2 

that thq spectra from these subjects all belong to Class 3, that is, 

there were no discernable peaks in the spectrum.. Note that each of 

these subjects had had a mitral valve replacement operationg although 

there is no practical reason why this should affect the result. 

lie exclude subjects 8-73,9-739 11-73P 16-73 and B-74 and compute 

the average variance for the heart rate for each frequency group. The 

result shows a fairly even distribution of variance over the three 

groups, in proportion. 0! 95: 1.07: 1.99 (bt a/min)2 . Thus about half the 

variance about a linear trend is accounted for over a 256 second 

period by cycles between 2 and 12 seconds in length, and cycles up to 

about 50 seconds in length accounted for about 75% of the variance. 

Implicit in this statement is the assumption that there is very little 
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contribution to total variance at frequencies higher than 0-5 Rz. - It 

is impossible to investigate t1lus possibility with data that has been 

sampled, every second, but, for example, Taylor et al., (1975) lend 

weight to this asexuaption. One problem in the interpretation of the 

above result is that a respiratory peak in the spectrum is likely to 

increase the cont=ibution to total variance from the respiratory 

interval but random noiris, which has an even distribution of variance 

ovor freTaency, will also contribute more to the respiratory interval 

since that contains a wider frequency r9nge. 

I The distribution of the varience over a longer time period was 

also calculated. 7his has previously been considered by Taylor et a1i, 

(1975)- Th e long -W-rm spectra were restricted to the '73' irabjects, 

since more data was &77ailable for them. The number of consecutive 

points for each subj8ot &I - was 2048t a power of 2, which is about 35 

minutes of data. r; pectr= ordinatýs were split into 4 grouPs: 

(0 - 0.004) 11z. to correspond to Taylor's greater than 5 minutes cycle 

length; (0.006 - 0-033) IIz- to correspond to cycle lengths between 5 

minutes and 30 seconds; (0-035- 0.125) Hz- for vasomotor activity and 

(0.127 - 0-5) I-Iz- fo= respiratory activity. Following Taylor et al., 

(1975) the results exe given as percentages for each, subject and shown 

in Table 4-5. She po=centages are easily obtained as the ratio of the 

sum of thexpectral oxx1inates in each frequency interval to the sum of 

all the spectral amplitudes. From the Table it is immediately apparent 

that there is a wide variation between cubjects. It has been pointed 

out that only on rz-, -o occasions'were discernable peaks present in the 

overall spectrum# ana that the spectrum was either wildly varying or 

concentrated most of the variance at zero frequency. ' The heart rate 
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, spectra for subjeCt3 12-73 and 15-73 show a very high concentration 

of variance at frequencies less than 0.004 Hz.. The averaýýe percentage 

variance'less than 0.004 Hz. is about 23%. which is a figure comparable 

to those given by Taylor. However, the standard crror is so I arge 

that not ýuch reliability can be attached to this value. 

Of the blood-pressure spectra for the data sets of 256 points, 

only two, 2-72 and 8-74 show approximately the. distribution cxpected 

for random noise, and Table 4.3 shows C, at. the spectra from these 

subjects are all in Class 3. acluding these two, the averace variance CA 
in the 3 frequency groups (0 - 0.016), (0.023 - 0.125). 

, 
and (0.133 - 

0.50) are 7-3,9.5 and 9.2 (m. Hg) 2 
resfpectively. This is a fairly 

even distribution and shows that about 74--of the variance. about a 

linear trend over 256 point3 can be accounted for by frequencies 

greater than 0.023 lIz.. Blood-pressure upectra, frow, the longor data 

sets of 2048 points a&, %in show a wide va J- nriation b3tv4een sub,, scts. 

Overall 35% of the variance is concentrated in a frcý: Iuency Umd beb,; een 

0 and 0.004 Hz., a Ifigure comparable with that given by Taylor et al. 
(1975), but again the standard error is large. 

7he observation that the blood-presoure spectra are relatively 

noise free compared with the heart-rate' -spectra appears to be a new 

result. The fact that heart rate is subjact to random noise not found 

in the blood pressure-would suggest'that it is the afferent signal 

and that blood pressure is the efferent. Blood preý-sure and heart rate 

are to some extent interdependent, however, in the Nering-Breuer reflex 

for example. The emphasis in the rest of this chapter ivill be on the 



126. 

the blood pressure records, and then look, for the'intensive care records, 

at the relatiVe phases between heart rate and blood pressure. 

Analysis of ambulatory subýect recorxis 

The blood pressure records taken frcm the ambulatory subjects 

were. of a different form to the intensive care patient records. The 

systolic and diastolic pressures were recorded, but not the heart rate 

or the time of the beats. In this case the spectral analysis wiLl have 

to be of the form cycles/beat instead of cycles/second. As point d u. 

by Cox and Lewis (1966, p86) , analyses of intervals are not equivalent 

to analyses of counts and so contribute different information about 

the system. However both methods should reveal cycles, and if we know 

the mean interval we can convert from cycles/beat to cycles/unit tivac. 

Tre; nrl removal 

The program INMX92 automatically remo. ves a linear trend, but in 

this case, in tile light of the way the data was seen to behave on a 

line-printer plot, we decided to remove the trend initially, usin-g 

a double exponential filter as described in Apperdix. A. 

Given that 
( 

xt 
ý 

is the original time series vie calculate 

Yt - '-Yt-i +0 -a)x t 
(4-1) 

then zt- azt+l + (1-a)y 
t 

(4.2) 

2 
and finally U=Z (1-a)' (4-3) 

tt 
1+a2 

The initial values are yj - x, and 7n 0 lyn , and O< a<I. 

Equation (4.1) represents the first*or,, Ier autoregressiev filter going 

forwards, equation (4.2) represents*the same filter goinjg, backwards.. 
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and ut is the final output trend; it is preferable'to zt beCaU3e it 

gives a transfer function 

fl(w) - 
b cos w where b 2a 

2 1-bcos w 1+a t 

which is simpler than the transfer function of zt, given in Appendix A. 

Since the transfer function is real valued there has been no 

overal. 1 shif t in phase introduced by the procedure. In or4er to obtain 

trend-free data we calculate 't 

Two values of a were tried, 0.8 and 0.95, which gave filters with 

half power poin ts of 0.034 and 0.008 cycles per unit time respectively. 

The former follows the data more closely than the latter, and so clearly 

will remove a set of frequencies, with a higher upper limit. 

Spectral analysis of-blood pressure from ambulAtory siibJects 

Spectral analysis of the filtered blood pressure data wau carried 

out using program BIOX92, Dixon (1972), as dc-scribed in Appendix A. 
Cý 1ý 

Me spectra of the first 512 detrended points are shown in Figure 4.2b 

'0*. 95. for subjects Al and A2. The detrendtie, was carried out using aM 

It is i=ediately apparent that the greatest power appeared at the 

low frequency end of the spectr=. For subject Al there appear to be 

three low'frequency peaks, at 0.016,0.056 and 0.072 cycle3 / beat, 

or wavelengths of about 62 
, 

18 and 14 beats, in both systolic and 

diastolic pressure. For subject A2, the power of th3 systolic pressure 

is concentrated in a norrower band, with peaks at about 0.024,0.040 

and 0.056 cycles/beat. Again the diastolic-pressure z; pectrurn reflects Q# 
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the systolic except for-the peak at 0.01,0 cycles/beat and at a 

lower level. The systolic-pressure spectm-n for subject A2 was also 

calculated using the autoregressive filter with a-0.80. The results 

were as expected the peak at 0.024 cycles was eliminated and the 

oUier two appeared at a reduced level. 

One problemuith these spectra is that they are at low frequencies, 

where contamination by leakage from the filter. and.. rr= the taper are 

likely. An attempt was made to shift thA frequencies up the scale by. 

looking at every third beat for a period of 1536 beats. However, in 

this case the peaks disappeared and we decided that this was probably 

too long a period in which to study cycles in blood pressure,, especial1y 

in view of the stationarity results given in Chapter 2. Iihen every 

third beat over a period of 512 beats was examined, we obtained the 

spectra given in Figure 4-22c. Me spectra largely confirm thooo given 

in rigm-e 4.2b. For subject Al in Figuýe 4.2c there unexpectedly appears 

a local peak at about 0.042 cycles per beat. For subject A2 we aga: hi 

hive three peaks, at about 0.024,0.036 and 0.052 cycles per beat. 

With diastolic pressure there are peaks at 0.052 and 0.073 cycles/beat 

for subject A2. For both subjects, the cross-spectrum between systolic 

and diastolic pressure peaked at the same frequencies as the Wo uni- 

variate 5pectrap axxI the phase between the cycles at these frequencies 

was zero in each case. 

For subject Al we could postulate thi presence of a themoregulatory 

cycle at about 0.018 cycles/beat-and a vasomotor cycle at 0.055 cYcles/ 

beat which produces two side lobes at 0.055 1.0.018 cYcles/beat as 
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a result of modulation of the vasomotor cycle by the thermoregulatory 

one. A similar state of affairs may be acting in the case of subject 

A2, but here we do not have a side lobe above the postulated vaso. -lotor 

frequency of 0.052 cycles/beats except a very minor one at 0.073 

cycles/beat. Possibly the peak at 0.036 is the main vasomotor cycle 

(although most unlikely since it is so slow) and the peak at 0.052 

is the result of modulation of the vasomotor cycle and the thermo- 

regulatory one at 0.024. cycles/beat. 

Dlp, itAl filterine, 

Effects that do not persist throug 01 ghout the length of the data 

may not show up in the spectrLm. A closer look was taken at the heart 

rate/blood pressure data, firstly by the simple expedient of plotting 

them against tir-0, and thtn filtering the data to reduce random 

noise and to be more frequency speciric. Tho progrwa employed was 

34DOlT (Dixon,, 1970) and its method of operation is doscribed in 

Appendix A. It is pointed out in the Appendix that inde3crlninate use 
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of filtering can give very misleading results (cee also Granger and 

Hatanoha 1964# P-41). An example of this can be shown by applying the 

rectangular filter of BIM01T to the heart-rate data of 14-73. As can 

be seen from Figure 4.2p the spectrum in the region of 0-077 Hz- is 

close to zero and the overall spectrum*does not appear to contain any 

deterministic components. Howevert the output from NED01T was a 

clearly oscillating series of quite large amplitude. Superimposition 

of the raw and filtered series-seemed to indicate little relationskip 

between the two. A further demonstration was obtained by applying the 

filter to dhta made up of artificially generated and shuffled Gaussian 

random noise. Again the filter produced a regularly oscillating 

function which isp of courseg totally misleading. 

-It may appear, from the above examplesq that filterinC is of no 

intrinsic value. However it can be valuable in isolating dete=inistic 

components of a signal. A program SIDIUL was used to generate two 

artificial series to simulate heart rate and blood pressure, and these 

were sampled by SAIIpLr,, to produce equidistant data poiilts, as 

described in Chapter 3. The heart rate series was generated as a- 

sinusoid with mean 72 bts/min and amplitude 5 bts/ming and the blood 

pressure series was also generated as a sinusoid, with mean 90 mm 1ý-, 

and amplitude 10 mm Hg. The random noise was added to theLart rate 
I 

data and was approximately normally distributed, and had zero mean and 

standard deviation 5 bts/min. The frequency of the deterministic 

0 components was 0-07 Hz-9 with a phase between signals of 50 " The 

top half of Figure 4.3 shows the raw data of the two series plotted 

against time. It is difficult by eye to determine the frequency and 

phase. The-upeotra, of the two series showed clearly marked peaks at 
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about 0-07 Hz-, and so the data was filtered with an approximately 

rectangular filter, centered on 0.07 TIz-, with bandwidth 0A Hz, 

The bottom half of I? ig=e 4-3 shows the two filtered series plotted 

together against time. It can be seen that the two filtered series 

show cycles with frequency 0-07 Hz., and that the measured phase between 

themp estimated as a lag of 2 seconds in a cycle of length 14 seconds, 

is about 500- It was felt, therefore, that it would be of value to 

filter data which have well defined spectral peaks. This was because 

the filtei- would Emooth irregularities from the data and indicate how 

the amplitude and phase of the series were changing through time. It 

seemed sensible, howevert to take the precaution of plotting the raw 

and filtered data together to ensure that the filter was not 

generating its own cycles. 

A rectangular filter centered at the respiratovj spectral peak 

was applied'td the heart-rate and blood-pressure data from subjects 

7-73 and 4-72. Figure 4.4 shows the heart-rate and blood-pressure 

records for 7-739 where the raw data and the filtered data are plotted 

together against time. The filter seems to follow the cycles in the 

data reasonably well. This was also the case for 4-72 (not shoun). 

Figure 4-5 shows the results of the filter for 7-73 and 4-72. In each 

case we see that the phasic relationship between heart rate and blood 

prescure. is not constant. 

We can-soe that an advantage of týcing filters is that many of 

the irregularities have been smoothed out. When plotting heaxt rate 

against blood pressurev as in Ficure 4-5, we cannot compare amplitudes 

since the two quantities are not measured in the same units9 but we 
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can examine the phase between the twa signals. It would appear that 

the heart rate cycle is quite regular for 7-73, whereas the blood- 

pressure cycle appears to change phase and amplitude quite qaickly. 

At one point in time the two cycles are completely in phase,, but at 

another they become the reverse. The cros, s-spectrum phase at 0.234 11Z. 

is given in Table 4.3 as -410 , which is possibly an averaging over 

-1800 to 00 . The fact that the heart rate and blood presswe change 

phase relative to each other mV explain the peaks at separate freq- 

uencies in Figure 4.1. SubJect 4-72 show5 a more constant relationshJp 

with either the blood pressure leadina7, the heart rate by about one 

third of a cycle, or 120 0, or the heart rate leading the blood pressure 

by two thirds of a cycle. This is approximately in agrew. ent with the 

cross-spectrum estimate of phase in Table 4.3. which gives-a phas,, t 

or -1430. We cannot determine which came first in this type of situation 

I 
but if we restrict the phase to 180 0 either side of 00, then'the sign 

on the cross-spectrum phase indicates bloqd pressure leading heai-t rate, 

It is not easyAo make any generalizations about the cycles at 

the vasomotor frequency. The top half of figure 4.6 shows the heart 

rate and blood pressure of subject. 12-73, -plotted at a, section where 

vasomotor oscillations appear to be present. ' The bottom half shows 

the results of the filter, centred at 0.06 11z. and with bandwidth 

0.07 Hz.,. for both signals. Comparing the two graphs it appears reas- 

onable that the filter is rea3; y following a low frequency cycle and 

that it is not generating an artefact. Again we find that the cycles 

are not'in phase and that the phase is changing. In this case it 

,,, 
the blood pressuret a3ain in appears that the heart rate 13 leading 
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agreement with the. cross-spectral analysis of Table 4.39 which gives 

a relative phase of about 520 at frequency 0.063 Hz. . with coherency 

of 0.939. 

Discussion 

This Chapter is complementary to Chapter 2 in that there we 

investigated the time dependent aspects of the data and hereue invest- 

igated the frequency dependent aspects. Cycle3 in the data can be 

regarded as a sort of non-otationarity in that the mean level is changing 

with time, and if the cycle amplitude alters the variance of the signal 

will also be non-stationary. We have shown that cycles often appear 

in both tlu-. post-operative patients and the a: mbulatory subjects. This 

is important for patient monitoring in "that it helps characterise the 

signal. It is also interesting in its oun right. Previous investigators 

have shown that cycles e'xist in healthy subject3; we have shown that 

they stiU exist after subjects have undergone cardiac surg pry. 

The mechmisma in vasomotor and sinus arrhythmia phenomena are 

not independei3t but interact. Sinus arrhý, thmia will be discussed in 

Chapter'5 vjhere it will be shown to depei, d on the frequency of 

respiration. Sayers (1971) points out that sinus arrhythmia will only 

be distinguishable from the vasomotor frequencies if a) the frequencies 

are sufficiently far apart and b) the amplitude of the respiration 

signal is not so high as to entrain the heart rate signal. Mis is a 

possible explanation of the lack of peaks due to respiration in the 

heart-rate spectra but it does not explain, for example, why in 14-73 

we have a'clearly n-iarkeTreopiratory peak in the blood-presaure spectrum 

but not in the heart-rate spectrum. It should not be too surprising 
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to find a comparative lack of cycles in heart rate and blood pressure 

at the vasomotor frequency for the intensive care patients. The patients 

were observed lying peacefully in bed, and cycles normally only result 

from negative feed-back control systems when the system is disturbed 

in some way. The cycles after a disturbanca should disappear after a 

short time as system regains normality. 

However, there were clear vasomotor signals from the ambulator7 

subjects and also what would appear to be modulation by the thermo- 

regulatory signal. This is in confix-naticn of CMrhock (1977) and 

would appear to be a new observation for ambulator-j subjects. 

0 
The problem in allowing, for cycles in a patient monitoring 

system is that they are episodic. We fourd no general rule to determina 

when thýy would occur or how long they would persist. Clearly we should 

design a system so that it could cope with variables IlUctuating at 

these frequencies ; it should'also, function when-they are not. 

A final point is to, consider alternatives for looking at cycles. 

The combination of the power spectrum and digital filtering is reascn- 

abla in that it can cope with changing phase. However,, it is possible 

to envisage phase changes that would upset a power spectrum, for example 

a 1800 phase shift at the mid-point of the series. The phase zipectrum, 

defined via the phase of the Fourier transformmay deal with this 

situation but, without kn, -win,,, 7, whether a cycle is present in the first 

place, it is difficult to know via the phase spectrum whether a cycle 

does ex13t. 
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In su=ary, 13 out of I 11 heart-riate and 79 out of 111 blood- 

pressure spectra gave results that could be clearly interpreted as 

indicating the presence of cycles. The cycles were loosely divided 

into three groupý, those due to trend, those due to vasomotor activity 

and those due to respiration. Mere were 6 cross-spectra in which the 

heart rate and blood pressure could. be correlated at a frequency so 

high that it could only be due to, respiration. There t: ere 26 cross- 

spectra with peaks between 0.0ý3 IN. and 0.0086 Hz., and with a 

correspond, itigly high coherency value. The phases for the respiration 

frequencies were consistentýin that the blood pressure was al%ays in 

advance of the heart rate. At the vasomotor frequencies, howevers 

there did not seem to be any consistent results and the digital 

filtering indicated that heart rate and blood pressure nay change 01 

phase relative to each other. For data sets of 256 points, 2ZZ of 

the heart rate variance and 2% of the blood pressure variance was 

concentrated in cycles with frequency less than 0.016 Rz.. However, 

subjects varied greatly within and between themJPclves. 

I 
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TABLE-4.1 PATIM DATA 

Name 

2-72 

4-72 

7-73 

8-73 

9-73 

10-73 

11-73 

12-73 

13-73 

14-73 

15-73 

16-73 

8-74 

9-74 

10-74 

Type of operation 

Mammary artery inplant 

Mitral valve replacement 

Coronary artery surgery 

Mitral valve replacement 

Mitral, valve replacement 

Aortic valve replacement 

Mitral valve replacement7 

Aortic valve replacement 

Aorta-coronary bypass graft 

Aortic valve replacement 

Aortic valve replacement 

Mitral. and aortic valve replacement 

Mitral and aortic valve replacement 

Mitral and aortic valve roplacement 

Ilitral. and aortic valve replacement 

6 



137. 

TABLE 4.2 WARD RECORDS: A SUIMOY OF THE SPECTRAL ANALYSES 

Patient Identification 
Number (and spectrum 

number) 
HOR. 
Class 

Peak frequencies 

., 
(IIZ. ) 

B. P. 
Class 

Peak frequencies 
(Hz. ) 

2-72 2 0-109# 0-273 2 0.109 

4-72(l) 1 0.063p 0.273 1 0-0559 0.273 

4-72(2) 1 0.063p 0.273 1 0-047t 0.273 

4-72(3) 1 0-070t 0.258 2 0.258 

7-730) 2 0.063p 0*242 2 0.0639 0.266 

7-73(2) 2 0.023 3 

7-73(3) 3 3 - 

7-73(4) 3 2 0-047, 0*297 

7-73(5) 3 - 2 0-070# 0.271 

Z-73(6) 2 0-055op 0.242 2 0-039 

7-73M 3 2 o. o63, 0*273 

7-73(8) 2 0-055 1 0-055t 0.266 

8-730) 3 1 0-0399 0-156 

8-73(2) 3 1 00188 

8-73(3) 3 1 0-055t 0-188 

8-73(4) 3 1 0*188 

8-73(4). 3 1 0.188 

8-73(5) 3 1 0-055, 0-188 

8-73(6) 3 2 0.108 

8-73M 3 1 0-055, 0-188 

8-73(8) 3 1 0.078, 0-195 

8-73(9) 3 1 0-055, 0-0789 0.203 

8-7300) 3 1 0.078, 0*203 

8-7301) 3 1 0.0399 0.086,0.133 
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Patient Identification 
Number (and spectrum HOR. Peak frequencies B. P. Peak frequencies 
number) Class (Hz. ) ' Class (11Z. ) 

9-730) 3-- 2 0-031 

9'73(2) 2 0*320 3 

9-73(3) 3- 3 

9-73(4) 3- 3 

9-73(5) 3- 2 0-070 

9-73(6) 3- 3 

9-73(7) 3- 2 0.016 

9-73(8) 3 2 0-039 

9-73(9) 3 2 0-039 

a 

10-730) 3 1 0-055 

10-73(2) 2 0.086 2 0-055 

10-730) 1 0.023,0-0391 1 0-047 
0,102 

10-73(4) 1 o. ol6,. 0.102 1 0-055 

10-73(5) 1 0.031 2 0.008 

10-73(6) 2 00008 3 

10-73(7) 2 0.008 2 0-055 

10-73(8) 2 0,023 2 0-039 

10-73(9) 2 01008 2 0.055 

10-73(10) 1 0.016,0.070 1 0-070 

10-7301) 2 01008 1 0-031 

10-73(12) 1. 0-031 1 0.016,0-070 

10-7303) 2 0.008 1 0-0311 0.063 
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TABLE-4.2 CONT. 

Patient Identification 
Ihmber (and spectrum 
number) 

H. R. 
Class 

Peak fre uencies ZHz. 
) 

B. P., 
Class 

Peak frequencies 
(LYZ. 

11-730) 3 1 0-055p 0.211 

11-73(2) 3 1 0-055v 0.203 

11-73(3) 3 1 0-055p 0-195 

11073(4) 2 0.063 1 0-195 

11-73(5) 3 1 0-0701 0-180 

11-73(0) 3 - 1 0-039t 0.172 

11-73(7) 3 - 1 0.164 

11-73(8) 3 - 1 0-156 

1 '(9) 1-71 3 - 2 OeO239 0-195 

11-7300) 3 - 2 0-055t 0.203 

11-7301) 3 - 1 0-070p 0-203 

12-730) 2 0-070 1 0-055 

12-73(2) 1 0-031 1 0-055 

12-73(3) 3 1 0.063 

12-73(4) 3 1 0-047 

12-73(5) 2 00008 1 0.063 

12-73(6) 2 0.023 2 0-031p 0-055 

12-73(7) 2 0*008 2 0.016 

12-73(8) 3 1 0-055 
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TABLE, 4.2 CONT. 

Patient Identification 
Number (and spectrum H. R. Peak frequencies B, P, Peak frequencies 
number) Class (Hz. ) Class (HZ. ) 

13-730) 3 - 1 0-063p 0.203 

13-73(2) 3 - 1 0-055p 0-195 

13-73(3) 3 - 1 0.0169 0.0679 0-195 

13-73(4) 2. 0.273 1 '0-047t 0.203 

13-73(5) 3 - 1 0-203 

13-73(6) 3 - 1 0*0169 0.203 

13-73(7) 3 - 1 0.016,0.063, 0.203 

13773(8). 2 0.008 1 0-008p 0-055, 0.203 

13-73(9) 2 0,016 1 0.016p 0.0639 0.203 

14-73(. 1) 3 1 0-0319 0-180 

14-73(2) 2 0"008 1 0-039p 0-180 

14-73(3) 2 00008 1 0.008p 0-031p 0.203 

14-73(4) 2 01000 1 0-008p 0-195 

14-73(5) 2 0.008 1 0-039t 0-195 

14-73(6) 3 - 1 O-OOSP-0-033P 0. -195 
14-73(7) 2 0-172 1 0,023#. '0-188 

14-73(8) 2 0#023t 0.234 1 0-008p 0-031p 0-195 

. 14-73(9) 3 - 1 0.023p 0-047, 0-188 

15-730) 1- 0.016t 0-039 1 0*023t 0-172 

15-73(2) 3 1 0-031p 0-172 

15-73(3) 3 1 0-031t 0-172 

15-73(4) 2 0.041 1. 0-039t 0-168 

15-73(5) 3 1 0.016t 0.180 

15-73(6) 3 1 0.016o 0.160 

'r A 
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TAM!!, 4.2 CONT. 

Patient Identification 
V=ber (and cpectrum 
number) 

II. R. 
Class 

Peak frequencies 
(11z. 

B. P. 
Class 

Peak frequencies 
(11Z. 

16-730) 3 1 0-375 

16-73(2) 3 1 0-375 

16-73(3) 3 1 0-375 

16-73(4) 3 1 0-375 

16-73(5) 3 1 0-375 

16-720(6) 2 0-055 1 0-398 

16-73(7) 2 0-031 1 0-398 

16-73(8) 3 1 0-398 

16-73(9) 3 1 '0-398 

16-7300) 3 1 0-156, 0-398 

16-7301) 3 1 0-, 398 

8-740) 3 - 3 - 
8-74(2) 3 - 3 - 
8-74(3) 3 - 3 - 
8-74(4) 3 - 3 - 

9-740) 2 0-078 1 0-039# 0-078 

9-74(2) 3 1 0-078 

9-74(3) 1 0.063p 0-076 1 0-078 

9m74(4) 2 0.006 1 0-031p 0.086 

9-74(5) 2 0-078 1 0.070' 

9-74(6) 1 0-070 
.1 

0.0399 o. o63 

10-74 1 0#055,0,261 0.273 
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H*R. = Heart rate 

B. P. = Blood Pressure 

Class 1= Clearly identifiable peaks in'the spectrum 

Class 2= Peaks possibly presentp but large amount of random noise, 
making identification difficult. 

Class 3, = Spectrum wildly varying, no interpretation in terms of 
cycles possible. 

S 

6 



TA13LE 4 . 3. PRAYS IN IRID, CLASS 1 ISTECTRA 

143. 

Spectrum amplitude Cross-spectrum 

Name Freq. B. P. Preq. Amp. Phasoo Coh. d. of 
(Hz. (HZ. ) 

4-72(l) 0-055 7-4 2-4(N-IS. ) 0-055 3.5 -16 0.823 4.6 

o. o63 9.6 2*1(N. S. ) 0.063 3-3 -21 0-725 4.6 

0.273 15.0 3-9 0.273 4.2 -143 0-551 4.6 

4-72('2') 0.063 4.6(N. S. ) 3-80LS-) o. o63 11.5 -61 0.864 4.6 

0.273 10-5 24.3 0.273 48.6 -121 o. 962 4.6 

10-73(3) 0.039 20-94 224.8 0.039 45.4 69 
. 
0.662 4.0 

0,047 12.05 337.4 0-047 55.6 , 8-0 0.072 4-0 

0,102 6-7 27-901-S-) 0,102 9.5 124.7 0.699 4.0 

0.109 6. o 65-9(N-S-) 0.109 9.0 ý 77.9 0.455 
'4-0 

10-73(4) o. oj6 30,2 176.4 0.106 47.6 -121 0.652 4.0 

0-055 4-9(N-S-) 167.9 0.055, 25,2 ý88 0.878 4-0 

0.102 7,2(N. So) 25.0(N. Se) 0.102 10.2 99 0.765 4.0 

10-7300) o. o16 . 47.6 41.4 0.016 36.5 -22 0.822 4.0 

0-070 9.7 125.4 0-070 30,2 '51 0.866, 4.0 

10-73(12) 0.070 7.1 44.0 0-070 16.4 80 0*926ý 4.0 

9-740) 0-078 10-5 39.2 0.078 19-4. 121 0-959- 6.0 

(3) 0.063 5.7 25.5 0.063 10.7 i29 0-085- 6. o 

0.078 5.8 33.0 0.078 11-8 go 0.851 6. o 

(4) 0-086 8-1 38-0 0.086 17.0 87 0.976 6. o 

(5) 0.070 6.9 55.0 0.070 15.7 90 0-804 4.0 

0.078 7.04 28.3 0.078 13.5 -108 0.957 4.0 

(6) 0.063* 4.4(N. S. ) 35.3 0.063 11-1 86.7 0-889 4-0 

0-070 10-3 24.1 0.070 15-1 75.5 0.960 4-0 

15-730) 0.172 1.54 a6. i 0.172 5.8 -114 0.609 4.0 

Abbreviations H. R. Heart rate spectrum (units (bts/min) 2 /Hz. ) 

B. P* Blood pressure spectrum (units (mm. H,, )2/Hz. ) 

Coh. Coherency. 
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TABLE A. 4. AVERAGE VARIANCE IN MIDQUENCY BAIMS 

Name 

Heart rate (bts/min) 2 

o-o. W 0.023-0-125 0-133-0-500 

Hz. Hz. IN. 

Blood presmure (mm 
. PC)2 

0-0. -16 0.023-0-125 0-133-0-500 

Ez. Hz. Rz. 

2-72 0.1 0.9 6.1 0-5 2*0 5.0 

4-72 001 1.9 3-8 4.4 1.6 3.4 

7-73 0-4 0.2 0-5 7? 9 14.2 16.9 

8-73 0-3 1,0 2*8 1.4 2-7 2.4 

9-73 0*2 018 1.9 39-5 2 1-4 29.0 

10-73 1*7 2sO 019 23-9 13-9 a. 6 

11-73 3-9 2191 67-8 192 6-4 1C. 0 

12-73 1-4 018 1.1 17.6 40-9. 19.8 

13-73 018 1.4 3-5 8-5 8-7 900 

14-73 0.9 0-5 1-3 1.8 2-5 3-4 

15-73 3-1 1-3 1-4 4-1 5-1 3-9 

16 73 0.4 1.6 6.1 0-3- o. 6 2*9 

8-74 1161 49-8 207-0 3-0 13-8 44.8 

9-74 018 0-7 o. 6 2*1 3.4 0-5 

10-74 0.2 0419 0-7 0,1 2-4 918 

1 0.95 1.07 1.99 7-3 9-5 9.2 

14ean values excludinG 8-73t 9-73P 11-73 Mean values excludina 2-72 and 

16-73 and 8-74 8-74. 
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TABLE 4.5 PERCENTAGE VARIAIMP, OVER 2048 POINTS 

(frequency bands in Hz. ) 

Heart rate (bts/min )2 Blood pressure (mm. 116-) 2 

Name 0 0.006 0-035 0.127 0 oxo6 0,035 0.127 
11111111 
0-004 0-033 0.1- 25 0-500 0.004 0-033 0.125 0-500 

7-73 24.1 16. e 
. 

15.6 43.5 49.9 13.4 13-9 22.8 

8-73 9.1 14.5 16.6 59.8 33-8 18-7 19.1 28.4 

9-73 5.3 8.4 22.3 64.0 13-1 36.5 14-4 35-8 

10-73 '20-4 42.7 17.3 19.6 74-3 14.6 6.2 4.8 

11-73 2.5 6.5 18.5 72.4 5.4 7-5 31.4 55-8 

12-73 70.5 7.8 6.8 14.8 47.4 17.6 19.0 10.6 

13-73 7.2 16.4 19.3 57.1 19.5 18.2 30.2 32.1 

14-73 8.4 18.2 16.5 56.9 22.1 19.4 16.5 42,0 

15-73 84.8 5.7 3-5 5.9 62.0 19.5 5.3 13,2 

16-73 1.9 5*2 18.7 74.2 17.9 5-1 M5 64.4 
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CIMME'll ý TTIE BYATCT OF Rl, ',. 'j'PTRATION 014 IMART RATE, JUM BLOOD PRESSURE 

The literature review will cover the effect of respiration on 

both heart rate -, md blood pressure, since they are equally important 

aspects of the c, -xdiovasculax system. However for the analysis 

section of this chipter it proved impossible for ethical rea-zons to 

obtain sigmals for'respiration, heart rate and blood pressure, aiid so 

only the heart rate recponse-to respiration has been studied. 

Literature review 

It has long beeri e. stablinhed that respiration affects both 

heaxt rate and blood presc; ure in man and. animals, and to study tho 

systems involved we need to consider both effoots toeether. However, 

these systems concern'the v7hole subject of cardiovascular control, an 

area which is very complicated and etill botly debated, for example in 

Mauck and Hockman (1967)- We therefoie rostrict ourselves to a fairly 

brief review, and discuss some of the basic physiolognr in Appendix B. 

The vexiation of he, =t rate with respiration was first 

discovered in 1b47 by C. Ludwia and is now termed sinus arrhythmia. 

Heymann (1929)9 quoted in Davies and Heilson (1967a) vuCCested three 

possible mechanisms to explain the effeatt 

a) a central tran--mission of neural excitation from the respiratory 

to the heart-rate. centres in the brain; 

b) the effect of blood pressure chanees caused by inspiration. on 

pres-, =e receptors either o-, -T the venous side or the left side of 

the heart: 

o) impul, ý, es fron stretch receptorr. inside the lunas'affecting the 

vag-al centre both directly and indirectly via the respiratory centre. 
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No alternative mechanisms have been proposed which are radically 

different, and all subsequent literature has been devoted to 

ascertaining the extent to which each of the three is important. 

Bainbridge (1920) proposed that factor (b) was the Gole cause 

of sinus arrhythmia: he experimented on cats and claimed that the 

regulation of the response was primarily by the heart itselfp via 

the 'Bainbridge' effect* Thist he postulatedg wzýs a reflex action 

by the heart to increase the heart ratep triggered by increased venous 

return. In Appendix B recent results on the 'Bainbridge' effect are 

discussed. The results of Bainbridget howeverp were ignored and 

contradicted by Anrep etal. t 
(1936) who conducted a careful study of 

Binus a=. fthmia in dogs and came to the conclusion that tho respiratory 

effect is mediated mainly through the vagus. They decided that 

factors (a) and (c) inhibit the vacal tone, thereby increasing the 

heart --ate. Factor (c) also producod an opposite, but lesser, effect 

due to afferent impulses from the lungs and thorax atimulating the 

respiratory centre and thus reduoing its inhibitory effeot on the 

vagal tone. 

Anrep et al., associated a rise of heart rate with inspiration 

and a fall of heart rate with expiration. The fact that blood 

pressure changes could not be associated with respiration in the 

same way was shown by Visscher et al., (1924), also working on dogs. 

They showed that the respiratory wave in arterial blood prescure is 

the reEultant of a number of factorS affeeting the output of the 

heart, some causing increased pressure and some opposing it. On 

inspiration the most important effect is the lowering of tho intra- 
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thoracic pressure facilitating the flow of blood to the atria of the 

heart. This gives an increased venous returno increasing the cardiac 

output and thus increasing the arterial pressure* In opposition to 

this is the increased resistance to the flow In the blood vessels in 

the lung during inspiration,, due to the vessels being stretched. ThiF; 

latter effect is not significant compared with the former in normal 

breathing. 

It emerges that the time scale of events is as follows; at the 

beginning of inspiration there in a slight fall in arterial blood 

pressure due to the increased resistance in the pulmonary circuit. 

After about 3 beats the increased blood flow has crossed the lungs 

and arrived at the left side of the heartt causing the arterial 

pressure to rise. Expirationg on the other hand, after a preliminax. 

risep causes a fall in pressure. The rise is duo to the freer 

passage of blood through the lungs in the first or second beat of 

expiration, and the fall due to decreased supply of blood to the 

right heart. This latent period means that if there are about 6 

heart beats per respiration cyclep the Inspiratory effect is not 

apparent until expiration thus givine a rise in pressure during 

expiration and a fall during inspiration. The depth of respiration 

and the extent of change in pressure within the thorax are also 

factors to be considered; the Creator the depth of respirationt the 

greater the variation in arterial pressure and the sooner a breath 

will counter-act the effects of the previous breath and establish its 

w ow effects. 

Laiison et al. 9 (1946) to d large extent confirmed Visscher's 
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findings in man: in quiet breathing. they found only very slight 

rhythmic variations in blood pressure, which might easily be missed. 

They showed that expiration does not give the same large change in 

blood pressure as does inspiration, partly, it is believedg because 

of venous valves which do not allow large decreases in blood supply. 

Manzotti (1953) measured sinus arrhythmia during breath 

holding experiments. Ile showed that marked fluctuations continued 

for about, 5 seconds after a subject took a deep breath and held it. 

From this he concluded that in this case a central mechanism is 

unlikely, since the fluctuations ceased after 5 secondst and that a 

stretch mechanism, is also unlikely a delay duo to stretch 
I' 

receptors would be well below 1 second. Thus he adopted the 

hypothesis that sinus arrhythmia is-most probably caused by chanGea 

in blood flow and blood distribution* Thus it would be possible to 

link sinus arrhythmia with the respiratory blood pressure wave of 

Visscher. This hypothesis is attractive since 14anzotti found that 

the delay in the response of the heart rate to respiration in of the 

same order as that'of the blood pressure wave to respiration. 

Manzotti suggested that the aortio baroreceptors were the sensory 

receptors for the blood flow/heart-rate response. 

Clynes (1960) dismissed the blood flow effect in man on the 

grounds that the heart rate response to a rapid negative impulse 

breath (out-in) is quite marked, and yet the blood would not have 

had time to move far whilst the lungs were deflatinC and inflating. 

Clynes showed that the heart rate response to inspiration was 

biphasio in nature. There was an immediate increase in heart rate 
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at inspirationg reaching a peak after 3 beatsp followý-d immediately 

by a alow'beat and then gradually increasing to normal, He also 

found that the heart rate response to expiration was similar but with 

a smaller amplitude. 

Davies and Neilson (1967a)q In a ceries of controlled experiments, 

obtained direct contradictions to these results. They obtained a much 

smaller increase in the heart rate responoo t9 inspirationg and the 

drop below normal heart rate was only of Ahe order of 1 or 2 beata/min 

compared with Clynes' 15 beats/min. The moot dramatic differencet 

however, was the heart rate response to expiration. Davies and 

Neilson found it vory difficult to mcasuro this response and conolu:! ed 

that, in factt the response was negligible or non-existent. Injis 

fact was also concluded by Manzotti, The differencos are hard to 

explainp but Davies and Neilson show that posture is an important 

faetor; their subjectri were seated whýereaa those of Clynes were lyina 

down. In additionp Davies and Neilson took precautions to keep the 

subject's glottis open whilst breath-holdingo whereas Clynes does not 

mention it. This avoided increasing the pressure inside the lungs. 

The averal,; e response obtained by Davies and Neilson to an inspiration 

showed a emall delay, never more than 1 second, before the onset of 

a fast rise in heart rate. The maximum was reached within 3 heart 

beats and for . the next 6 heart beats the heart rate deceleratedg 

going below normal after 5J seconds and then gradually returning to 

normal. 

The mochaniem they invoked for sinus arrhythmia is directly 

related to the work- of Visscher. On inspirationt the fall in blood 
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pressure could give rise to an immediate increase in heart rate. 

S The rapid drop after 3 beats in heart rate corresponds directly to 

the increased blood pressure as the extra blood provoked by 

inspiration crosses the lungs and arrives at the left side of the 

heart. Davies and Ileilson thus concluded. that the stretch receptor 

mechanism for heart rate increase was not proven, and that sinus 

arrhythmia in resting man was brought about solely by inspiration 

producing changes in blood flowt thus, to an extent in agreement with 

BainbridZfj (1920). 

In a succeeding paper in the came journal, Davies and Neilson 

(1967b) lnvcsti, -ýatod tho rhythmical fluctuations In heart rate that 

occur after exercise in man. They concluded that the phonoiranon was 

respiratory in origin and was an exaSgerated form of sinua a=lythmi%. 

They decided that the greater part or the effect in thin case Was 

probably due-to bouts of vagal aotivit-yt reinforced by the blood 

preszure effect. They also stated that breath-holding for periods 

of about 16 seconds abolished the fluctuationst although tho graphs 

presented in the paper do not conclusively demonstrate this fact. 

The result Of Davies and Reilson (1967a) Uvat there is a 

constant lag in the heart rate response to respiration in in 

agreemers'.; with the findings of Angelone and Coulter (1, q64). They 

e+udied one subject only and determined the heart rate response for 

renpiration. frequencies ranaing frorn I to 40 breaths, per minute. 

They measure respiration by the thorax diameter, and studied 

constant amplitude respiration i. e. the maxim, = and minimum thora. -c 

diameters were constant. In view of the importance of their 



11. 

results we reproduce their main graph as figure 5-1 

30 

25 

20 

15 

10 

5 

3600 

3000 

.j 
240* 

ISO-, 

120- 

606 

00 
50 

Figure'5-1. Amplitude and phase of. the heart rate response to 

respiration (reproduced from Anaclone and Coulter (1964) 

figure 3 P481). Vortical lines on tho phase and 

amplitude graphs ropresent standard deviations. 

The amplitude was measured simply as the difference botw; en 

the maximum and minimim heart rates averaged over the fixed frequency 

respiration period. %be phase as measured directly from tho 

respiration and heart rate tracinCs and zero phase defined 'When the 

heart rate and expiration cycles were in phasep which occurred for 

very low respiration ratesp Angelone and Coulter described the 

results as if respiration were a forcing function to a system of 

which heart rate is the response. Prom Plaure 5.1 it can be seen 

10 20 
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that for quite a wide range the phase increases linearly with the 

respiration rate. At about 10 breaths/minute we have a phase 

difference of 180 0f which implies that at this frequencyo which is 

about that of normal respiration, the heart rate is increasing with 

inspiration and decreasing with expiration. This is the stato of 

affairs described in many medical textbooks. At first sight these 

results are entirely in agreement with those of Davies and Veilson 

(1967a) and were discussed by them, in that a constant lag between 

inspiration and heart rate would lead to a phase chanaing linearly 

with respi ration rate. However, this would not Civo the rasults 

reported by Angelone and Coulter; the in-phase relationship between 

expiration and heart rate at low respiration rates, or the 180 0 out- 

of-phase relationship at about 10 breaths/minute. 

Phase meaauremont. s between heart rate and reapiration. were 

also made by. Levy et al., (1966). They used dogs with bypassed hearts 

in their experiments. They measured phase as the time between the 

onset of inspiration and either the minimum of the heart rate curve 

or the maximum of the heart rate curvet expressed as a percentage of 

the respiratory period. The results indicated that with intact vagi 

the heart rate began to accelerate slightly, beforo the beginning of 

each respiratory cycle. Mien the vagi were seotionedt the heart 

rate increased approximately synchronously with the onset of 

inspiration. Howeverg after vagotomy the respiratory period 

approximately doubled# the'averaGe heart rate Increased and the 

amplitude of the respiratory heart rate response was decreased to 

one third of its original value. Thus they concluded that the 

interaction between the respiratory centre and the he=, t rate centrea 
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in the brain (factor (a) ) was the main influence in sinus arrhythmia. 

The results of vaCotomy show that the effect is principally mediated 

through the parasympathetic nervous oystem, but that the sympathetic 

system is also to be considered as having a part in the effectj since 

vagotomy does not totally abolish tho eýfcot. 

We return to the respiratory waves in blood pressure with a 

paper by Ylanoach et al., (1971). He showed that there were two 

possible sources of respiratory blood Pressure waves. Mien 

respiration in cats was paralysed by curare, blood pressure waves 

still occurred at the rate of central respiratory activity, as 

measured by electrodes on the phrenic nerve. However he also 

obtained waves if central respiratory activity werz paralysed and 

artificial respiration applied. The former lie associated with 

vasomotor waves and statea that a rise in arterial blood presaure is 

accompanied by vasoconstriction. Thý latter he called peripheral 

respiratory waves, and stated that a rise in arterial blood pressure 

is accompanied by vasodilation. Joels and S. -oueloff (1956) have 

shown that the pressure variations that continue when mechanical 

respiratory activity is abolished are themselves stopped when central 

respiratory activity is stopped. Manoach (1971)t, in acreement with 

Visseher (1924)t but not with Lauson bt al., (1946)9 showed that 

inspiration axid expiration each produco effects in the blood pressure 

lastinC about 8 seconds for the cat; both'biphasio but opposite in 

direction. Thus if the inspiration time lies between 0-5 and 8 

seconds then we got interference between the two sianals. However, 

he claimed that these blood prescure effects were independent of 

sinus arrhythmia. 
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An excellent paper by Valentinuzzi and Geddes (1974) described 

experimento. on both h=ans and anaesthetized dogs. The humans were 

asked to conduct different breath-holding experimentsp after 

inspiration and after expiration, following either natural or deep 

breathing. In each case the heart rate was seen to continue 

oscillating, at about the respiration rate or slightly lower. This is 

in direct contradiction to the results of Manzotti (1958) and also to 

that of Davies and Neilson (1967b). The differences axe hard to 

explain, although Hanzotti conducted positive pressure breath-holding 

and showed that this increased the mean heart rate. Vais increase 

may have obscured any oscillations that were present. Valentinuzzi 

and Geddes (1974) also obtained resultz, showing an oscillating heart 

rate from spontaneous apnoea (held respiration) in anaesthetised doCs. 

The same results were obtained when respiration was paraly'ned in doCn 

by the use of drugs. These results lAd them to proposo a central 

mechanism Zor-sinus arrythmiap consisting of two oscillators (the 

respiratory centre and the heart rate centre) loosely connected by a 

network; the degree of couplina is probably modified by aignals 

arriving from the periphery. This model enables the effect of 

frequency and depth of respiration to modify the respiratory heart rate 

response. They fouhd that deep, slow breathinG increased the * 

amplitude response of the heart rate to respirationg but either fast 

or shallov breathing or both did not affect the heart rate very much. 

Thus an important new extension of factor (a) above is the possibility 

that the carcUac centre may cycle by itself as well as beinG coupled 

to the respiratory centreo Unfortunately they did not consider an 

earlier paper by Sroufe (1971)- He investigated the effects of depth 

and rate of breathing on the heart rate and the heixt rato variability. 
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He measured the mean and standard deviation of the heart rate of 

hunjan subjeetsp ýho took part in fixed-frequency breathing experiments 

for periods of 5 minutes for each'frequency. The frequency range 

considered was (0,23-0-30) Hz.. Ile stated that the respiration rate 

affected only the heart rate variability, faster breathing producing 

a less variable heart rate than normal breathing. He claimed that 

respiration rate does not affect the mean heart ratep but that 

respiration depth affected both the mean heart rate and the heart 

rate variability. Deep breathing produced a faster and more variabl" 

heart rate than did normal breathingg and shallow breathing had the 

opposite effect. Sroufe (1971) was oniv interested in how the 

respiration could affect the hecwrt beat as an indicator of mental 

stress in phychological experimentev and did not investigate the 

physiological implications of his results, or measure the phase or 

frequency response between heart rate and respiration. 

A paper in which the physioloMr'of sinus-arrhythmia is studied 

la one by Chessp Tam and Calereou (1975). TI-ds paper is also 

discussed in Chapter I with regard to low frequency rhythms. The 

authors experimented on cats in various states of neuronal control. 

The cats were decerebrate to avoid tho use of drugs which may affect 

the vagal tone. An important difference between their methods and 

those of previous workers is that they allowed the animals to breathe 

naturally,, and were able to elucidate the heart-rate/reapiratory 

effects by crosý-spectral analysis. There were four fitates of control: 

intact, vagal onlyp sympathetic only and none. They showed that with 0 

vagal. only control sinus arrhythmia was present but with sympathetic 

only controlt or with no controlt the sinus arrhythmia was much 
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reduced. They concluded that sinus arrhythmia was mediated 

principally through the vagus nerves, but that there was also some 

contribution via the sympathetic nerves and to a lesser extent from 

non-neural factors. This is in agreement with Levy et al , 
(1966) 

and was also found by McCrady et al. 9 
(1906) who showed that there 

was a heart rate response to inspiration after vagotomy but that the 

time taken to respond was increased. 

Recent investigations by Freyschuss and Melcher (1975,1976) 

and Melcher (1976) are directly related to the work of Manzotti (1958) 

and Davies and Neilson (1967b). They conducted breathing experiments 

on healthy males in which they measured heart ratel tidal vol=e and 

oesophageal pressure. They were unable to demonstrate any sinus 

arrhythmia effect during inspiratory ani expiratory apnoeat or during 

positive pressure ventilation. In order to eliminate any possible 

central component, and yet to stimulate breathing urder natural 

conditionsp they enclosed the subjects in an tiron lung'. which 

reduced the pressure on the outside of the chestt to produce 

inspiration. When the subjects reported that they were not concioualy 

breathingt the heart rate was measured and a marked sinus arrhytl=ia 

effect was observed., They attributed the response entirely to a 

cardiovascular reflexv or Bainbridge reflexp and discounted the 

central component almost entirely. 

Finally, another paper which describes the application of 

modern time-series techniques to the study of sinus arrhythmia is 

that of Womack (1971)t. which has already been mentioned In Chapter 1. 

He sampled respiratoxy data at ýqual tivie intervals and used first 
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and second order polynomials to extrapolate the heart rate. He 

calculated the frequency response function and the phase for the 

system and obtained similar results to those in figure 4.1, except 

that at low breathing frequencies Womack's frequency response function 

decreased with decreasing frequency. This discrepancy could be 

explained either because AnGelone, and Coulter studied only one 

subjects compared with Vlo-zaack's sixteen, or because Womack doen not 

seem to have ensured that constant amplitude breathing wis maintained. 

Discmc3ion of literature review 

It would appear from the recent literature that the main 

mechanism for sinus arrhythmia is still disputed. The papers by 

ValentintLzzi and Geddes (1974) and Freyschuss and Melcher (1975) seem 

to be directly contradictory when connidering inspiratory and 

expirato, -. 7 apnoea. It is impossible to be s=e that the exTerimental 

I conditions were exactly the same, but Valentinuzzi and Geddes 

expressed surprise that their results differed rrom those of Mqnzotti 

(1958) and Davies and Neilson (1967a). It is difficult to deny a 

positive result9 and so the question is why the other authors 

failed to note the heart rate oscillations durina apnoea. Yjanzo%ti 

(1958) noted'a, rise in heart rate associated, with positive pressure 

breath holding and this could obscure the oscillations. Body 

position is another important factor in any effect related to tho 

lungs; the subjects of Davies and Neilson (1967a) and Manzotti were 

sitting, whereas. those of Valentinuzzi and Geddes (1975) and 

Freyschuss and Melcher (1975) were supine. The subjects of 

Valentinuzzi and Geddes hold their breath for, comparatively long 

lodst and it is perhaps bec=ie the heart rate oscillations were peri 

0 
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not given time to establish themselves that they were not discovered 

by the other authors. The experiments employingýnegative pressure 

induced respiration by 1reyschusS and Melchor (1975) appear to give 

a convincing demonstration of a reflex component# but it does not 

necessarily follow that there was no central component present simply 

because there was no respirational effort by the subject. Conversely, 

it is difficult to imagine how the results of Davies and Neilson 

(1967b) can be due to a central component. 

It is important to note the differences between experimental 

animals and the in-tact human. The animals are being treated in 

highly imaatural circumstances and any inferences drawn from the 

animal experiments to intact hmnans must be made with caution. 

Indeedq Helcher (1976) postulated that the heext rate changes found 

in animals by eaxlier workers vas of a different nature to those in 

the intact humang paxtly because of species differencet but also 

becauýe anaeathesia could have a major influence on the results. 

Perhaps it is unfortunate that authors tend to emphasize one 

effect at the expense of the others. Whilst we can safely discount 

the pulmonary stretch receptor effectj at present caution would 

indicate that the case for a sinGle effect Is not proven* The 

concensus of opinion is that respiratory sinus arrhythmia is 

probably a reflex action of the heart, but that the effect can be 

influenced by c: entral nervous7activity in the medulla. 

The justification for the present study is twofold. It would 

be of interest to continue the"work of Angelone and Coulter (1965) 
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6 

to investigate the various hypotheses related to sinus arrbythmia. 

Their method of measuring phase by taking the time between onset of 

inspiration and the heart rate maxima and minimag also described by 

Levy 2t al. p 
(1966) is open to criticism in that when dealing with 

peaks in a cycle vie are dealing with abnormal rather than normal 

phenomenat as pointed out by Granger and Hatanaka (1964, p211). 

The measurements of the phase and the frequency response function 

could be made more accurately using cross-spectral. analysisj and it 

was decided to make an attempt to quantify the sinus arrhythmia offe: A; 

by these methods. These results might then be used to assess the 

contribution by respiration to heart-rate variability of intensive 

care pat-1. cnts. If the normal Eunplitude and frequency response 

function could be made more accurately using croso-spectral analysis, 

and it was decided to make an attempt to quantify the sinus 

a=hythmia effect by these methods. These results might then be used 

to assess the contribution by respiration'to heart-rate variability 

of int6nsive care patients. If the normal-amplitude and frequency 

range of. sinus arrhythmia could be identifiedp then it may be possible 

to incorporate these, statistics into a better design for patient 

monitoring devices. Respiration data for the post-operative patlents 

were not available and so experiments were set up to measure the 

respiratory heart-rate response of normal healthy individuals. 

I 

býcperimental methods used in this study 

The expeiiments were cýrried out in -four corles. In the 

initial series only the ECG was recorded. in the aecond the heart 

interval and the respiration were recorded for a rest period wid 8 

different breathing frequencies: In the third cories the heart rate 
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and respiration were recorded for a rest periodg. 8 different 

breathing frequencies at normal breathing depth, 4 breathing 

frequencies with deep breathing, and then 4 breathing frequencies with 

shallow breathing. Several of the, subjects were studied in more than 

one series. The physical data of the subjects is given in Table 5-1- 

Tbe experiments were conducted at various times of the day, 

this faclor being thought, unlikely to affect. lhe. resultas The 

electrodes used, to measure. the ECG warn a4 lead system described in 

Appendix B. Each subject was given a few minutes rest period after 

the electrodes had been fastened to his chestv both to improve the 

conductivity of the electrodes and to alýay any nervousneas felt by 

the subject. 

In the first series the subjects, consistipG of 4 males and 

4 females, cat quietly out of sight oi instruments, and the ECG was 

recorded onto an RI tape recorder for periods between 15 and 20 

minutes. No instructions were given with regard to breathing. This 

was to simulate, to come extentg the-ward patients' data. The tape 

recording was afterwards run back and the output fed to an analog 

device for detecting the OS complex which also timed the intervals 

between heart beats. The intervals as they occurred or the 

instantaneous heart rate obtained by (21.1viding the interval in seconds 

into 60 could be output onto paper tapet or the heart rate sampled 

at one second intervals by a DART data loCger could be output. 

These methods are discussed in bhapter 3- UsinC the tape recorder 

and parking the magnetic tapet it was possible to play the r, =. e 

section of tape through the data lo, 2: Cer several times and so be able 
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to check the repeatability of the instantaneous estimatest or to 

compare the sampled data with the. instantaneous. The data from two 

subjects were treated in this way. A rough comparison between two 

different estimates of the instantaneous heaxt-rate was made in each 

case, The rates were expressed in terms of 1 volt, the scale being 

1 bt/minute equivalent to 0,005 volts. The results were expressed to 

4 decimal places. In the comparison the last two decimal places 

appeared to be somewhat axbitrary, but the firot-two had a very high 

degree of repeatability. Thus the results were accurate to about 

I bt/min.. A comparison between the instantaneous and the. samplod 

data is discussed in Chapter 3- 

In the second and third series of experiments the BCG waa fed 

directly to the analog device and the heart beat intervals and the 

respiration signal fed directly to the data logger. This outputted 

the interval and the value of the reapiration signal at the time of 

the second beat of the interval onto paper tape. ' The signal was also 

displayed on an oscilloscope so that the instrument settings could be 

adjusted and the subject's performance continuously monitored. The 

breathing cycle was monitored using a chest bellows. This was 

connected to a micromanometer (Greer 1958)9 which outputted a 

continuous voltage proportional to the pressure in the tube. Ficure 

B, 2 in Appendii B gives a photograph of-the set-up. In this way, an 

analogue of the inspiration sig4al could be measured. AnZelone and 

Coulter (1965) criticised this method because the thorax could be 

held expanded whilst breathing was continued and so give misleading 

results. However this did not happen for normally breathing Mbjects. 

The method is considerably less sophisticated than measuring the 
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expiratory volume or even the thorax diameter, but it does give an 

accurate indication of the onset pf inspiration and expiration, and 

a somewhat less accurate measure of depth of breathing. It has the 

advantage of being relatively comfortable for the subject and easy to 

set up for the experimenter. The time lag, due to the volume of air 

in the rubber tube between the signal and effect, was judged to be 

negligible. 

In the second and third series Lie subjects were seated out of 

sight of the equipment except for the manometer. It was found that 

by watching the manometer the subjects could easily adjust their 

breathing to a regular and steady cycle. About five minutes duration 

of heart intervals and breathing depth were recorded before any fixed 

frequency breathing was startedo as a control for the fixed frequency 

breathing and also as a test for the equipment settings. The subjects 

were then requested Vo listen to a prex-ecorded tape of a motronome 

and to breathe in time to the boats, counting 5'beats during 

inspiration and 5 during expiration. The first part of the tape wan 

for practisingt and gave the fastest rate (15 breaths/min) and the 

slowest (4-ýý breaths/min. ). If the subject had riot mastered the 

breathing by then, the practice section could be replayed. In fact 

all the subjects learnt the exercises within a few minutest althou'sh 

several found aifficulty with one or other exercise. 

Initially in ilia second series, subjects were analysed for 

four different frequencies. Howeverv p: ýeliminary results indicated 

a need for more frequencies after which eir,. bt were analysed. %Onus, 

after the practice the tape contained eiCht sections of recorded 
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metronome frequencies, for periods of between 3 and 6 minutes each. 

Between eac4 section there was either a Cap or tho tape was stopped, 
both to give the subjects a rest and to try to ensure some degree of 

independence between the results. The order of the metronome 

frequencies in Hz. was 0,240,0.1009 0.143P 0-078P 0.1259 0-091, 

0.111 and 0-083. The order was deliberately selected to mix low, 

mediumýand high frequencies and to try and avoid compounding errors. 

Howeverl because the beats were prerecorded all subjects were given 
e the same order of frequencies to brea*ý This is a potentially 

serious source of error if the heart rate of each subject performed 

to a particular time pattern, say a steadily decreasing trend 

throughout the experimentg because th,, ý pattern would be indistinguish- 

able from the frequency effects. Howoverp before the experiments this 

was felt to be unlikely and the results do not appear to chow any 

paxticular time-dependent effects. The advantaGes of the recorded 

beats are convenience, and accuracy, since if the metronome were to 

be continually reset it would require to be retimed on each occasion. 

It was decided to alter the metronome frequency rather than, say, 

having the subject count different numbers of beats to try and reduce 

the amount of conscious timing by the subject. 

In the third series tho initial procedure was identical to 

that of. t. he second. However, on completing this the cubjeoto rooted 

and were then requested to breathe the first 4 frequencies aCain, 

watching the manometer needle. Mey were asked to breathe shallowly, 

keeping the manometer needle in the top quadrant of the dial. Mey 

were allowed to stop after 2 minutes at each frequency, co that none 

became breathless. After a rest, they aCain repeated the first 4 
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frequencies, this time breathing as, deeply as they could, trying to 

give a full. scale deflection to the manometer needle, Againp they 

only kept this up for about 2 minutes at each frequency. 

Fig-5? shows the data as output to the data logger. The top 

tracing in each photograph shows the manometer output. The centre 

one is a step function relating to the value of the heart interval, 

the length of each step being the duration of the following interval. 

However -'t was unavoidable that the plot should be an inversel. that 

is the longer intervals are plotted. downwards. This means that the 

upwards curve indicates an increasing heart rate. The bottom tracing 

shows the ECG with the QRS complex sharply defined. Thu3 we see that 

the machine seems to be tracing the peaks very accurately. Photograph 

(a) illustrates how the breathing signal can have a very erratic 

nature. We can see inspiration with no corresponding MR, increase 

and also heart rate change with no apparent breathing change. 

Photograph (b) illustrates the sometimes grave difficulties in 

applying phasic methods to the signals. The heart interval is clearly 

periodic, with the same period as the breathing cycle. However it in 

almost monotonic for the whole cycle increasing for pa, # of the 

expiration cycle and all of the inspiration cycle. An analysis of 

lags may be more fruitful in this case. PhotoeTaph (o) shows a 

olearly. oscillatine heart period, in which the heart-rate is in 

advance of the respiration sienal. In this case a phase analysis is 

more easily-interpreted. The results in (b) occurred in one subject 

only, 
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The fourth series of experiments was conducted some time after the 

other three, and was an attempt to repeat the results of Valentinuzzi 

and Geddes (1974), and resolve some of the contradictions in the 

literature with regard to breath-holding experiments. Six subjects 

were studied, and their electrocardiograms and respiration were 

measured as before. Each subject went through a uequence of exercises 

in which he was asked to breathe normally for about two minutes and 

then to hold his breath for as long as possible, In some sequences Cop 
the respiration was paced with a, m,! AMnome, Vaich was stopped when 

the subject held his breath. In these cases, the subject was given 

either a6 or a 10 second respiration cycle. In some sequences the 

subjects held on inspiration and in others on expiration. They were 

given. practice runs-to try ýand keep the glottis open and to avoid. 

building up pressure in the lungs. In a further sequence, hyperventil- 

ation, for one minute preceeded the brlath-holding zranouvre. The subýects 

conducted the exercises lying down and then repeated them sitting. 

The purpose of these experiments was tp explore some of the 

differences in methodology mentioned in the literature such as posture, 

the effect of hyperventilation and whether the subject hield his breath 

on inspiration or on expiration. 
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Data processing 

The data were sampled either by the data logger or by the 

program SAMPLE (see Appendix C). The sampled data were processed by 

NW X92 (described in Appendix A). The output of the program gave 

the spect= of the heart rate for series 1 and of the heart rate and 

breathingt the cross-speotrumt phase and coherency between the two 

signals for series 2 and 3- In general a resolution of between 0.08 

and 0,16 Hz. was used, which gave between 4 and 8 degrees of freedom 

per spectral estimate. 

The means and standard deviations of the raw data for both 
I 

heart rate and respiration were calculated using IIIIIIST (Appendix D). 

As indicated in Chapter 39 it was decided to use the standard 

deviation of the heart rate as a measure of heart rate variability 

and the standard deviation of the respiration signal as a measure of 

breathing depth. 

Results: description 

The series 1 experiments did not produce very clear results. 

Figure 5.3 Cives the heart rate spectra for two succesnive nets of 

data of 300 points each. The spectra in this case appeared not to_ 

differ from those produced by a random signal with Added trend. It 

was felt that since heart rate can depend to a large extent on 

respirationg a p9ssible reason for the widely varying heart rate could 

be that respirationp which was unmonitoredq was also widely varying, 

It was for this reason that the series 2 experiments were devised to 

monitor and also to control the respiration. The series 3 experiments 

followed to give control of the depth of b--eathin(;. The differenepa 
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between the results for controlled and uncontrolled respiration will 

be discussed later. 

0 

Out of the 20 subjects. studied In the series 2 and 3 experiments, 

the 74 year old subject, no. 15P gave no recognizable spectra and so 

has been excluded from the discussion. A total of 4 subjects were 

studied twice, and so there were 23 separate studies in total. The 

spectra of the heart rate for the resting subjects gave 3 different 

types of graph which are illustrated in fierare 5.4. Thero were four 

subjects who failed to show any signs of sinus arrhythmiap and of 

these three did not show any regular breathing pattern. The spectrum 

of the fourth, subject no. 12, is illustrated in figure 5-4a. A 

further 14 subjects Cave non-significant local peaks. in the heart 

rate spectrum which could, however, be correlated convincingly with 

the respiration because of the high coherency values at the 

frequencies correspon, ý, 'Ling to the peaks. Pigure 5-4b illustrates this 

type of spectrum. The third type of spectrum, occurring in 5 

subjeetst is shown whon the only peak in the heart rate spectrum in 

correlated with a peak in the respiration spectrum. Mis is 

illustrated in figure 5.40. 

. In the 18 spectra exemplified by figures 5-4a and 5-4b# a 

peak in the reCion of 0.007 Hz- was present. This has been discussed 

in Chapter 1 and Chapter 4 and is almost certainly the vasomotor 

oncillationsg related to the blood pressure oscillations vtich are 

independent of the respiration. In some cases this peak will also be 

compounded with the thermal peak at a lower frequency. Independence 

of respiration is indicated both by the low coherency with respiration 
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and by the lack of a corresponding peak in the respiration spectrum, 

at this frequency. For subject 12, (figure 5.4a)p the peak in the 

respiration spectrum at around 0.23'Hz. indicated that the respiration 

was fairly regular at around 15 breaths/minuter but there was no 

apparent effect on the heart rate at this freqaency. The wnplitude 

of the respiration spectrum. peak at this point is low compared with 

the respiration spectra peaks of all the other subjeotst save subject 

240), which may account for the lack of effect in the heart rate, 

When a cubject started breathing in time to a metronome, it was 

noted that the heart rate was almost immediately entrained by the 

respiration signal. This is reflected in the spectra, as shown in 
0 

figure 5-5a, again for subject no. 12. We see that almost all the 

heart rate energy is concentrated at the respiratory frequency and 

the amplitude of the heart rate and respiration peaks have. increased 

by factors of 25 and 100 respectively, Figure 5-5b shows a situaticn 

where the heart rate is not totally entrained by the paced respiration, 

and we obtain two peaks in the heart-rate spoctrump vasomoto= and 

respiratory, 

I 

PiMe 5.6 show the cross-spectrwn, phase and coherency 

(defined in Appendix A) for the same data used to produce ficure 5.5a. 

Note that the cross-spectrum and coherency are both maximum at the 

respiratory frequency of 0.25'lIz- Ile have 4-38 degrees of freedom 

for the phase estimate, and a coherency greater than 0.9 at the 

respiration frequency. Table 5-1 of Granger EuVI Hatanaka (1964) 

would give us a maximum 9Va confidence interval for the phase of 1,40. 

The assumptions for this result are not met by the data in this care, 
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as shown in Chapter 4t but nevertheleas'we can be reasonably confident 

in'the accuracy of the results. ' It is noticeable that the phase/ 

frequency graph is fairly smooth and constant in the region of the 

respiratory frequency. 

I Fi&mme 5-7 illustrates how the frequency and phase calculated 

by cross-spectral analysis correspond closely to that which would be 

estimatea from the raw data. ' The output from. the dicitiser, sampled 

every second by SOPLEt for two respiration frequencies for subject 

no. 625 are shown. From the first, measuring the respiration, via have 

6 peaks in a period of 36 seconds, giving us an estimated frequency 

of 0-139 Hz-- If %: a estimate the lag-between the respiration peaks 

-and the heart rate peaks, the average lag is-1 second, which 

corresponis to a phase of -1 x 360 x 0.139 = -50 
0, negative since 

we are measuring relative to the heart rate. She cross-spectrum poak 

is at 0-137 Hz. and gives a phase of 450. The second graph shows 

2 cycles in the space of 28 seconds, giving a frequency of 0-071 Hz- 

The average lag between peaks this time is 1 second, giving a phase 

of'I x 360 x 0.071 = 260. The cross-spectrum peaks'is at 0*074 Hz- 

0 and the phase is 51 It is not surprising that the phase estimate 

from the graph is not very accurate since we are estimatinG it from 

only two points. However the cross-spectrum phase still shows the 

heart rate in ýdvance of respirationg which is interestincs 

especially when compared with the faster respiration frequencyg when 

heart rate lags respiration. Although the estimates seem fairly 

good for frequency and phase in this exampleg it should serve to 

show the difficultie3 of measuring them from a gTaph, where we have 

no standardization as to measuring from peaks, troughs or a median 
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line. In addition measuring the amplitude response from the graph 

would be very difficult. 

There are several methods of determining the respiration 

frequency more accurately ffom the respiration spectrumg but 

ultimately limits are imposed by finite record length. The spectrum 

was usually calculated at intervals of 0.08 ITz. and if it appeared 

that the peak lay'between two consecutive spectr= estimates, a 

weighted mean was taken as. the frequenq7estimate. Thusp if we 

obtained respiration spectrum amplitudes p, and P2 at frequencies 

f1 and f 21 where p, and P2 are of the same order, and are greater 

than all other amplitudes in the spectrum and f2-f, = 0.08 Hz. then 

F 
the estimated frequency is given by f= (Pl'fl + P2f2)1(Pl. + P2)* 

Di3tribution of heart-rato vEEiýabilLtx 

The heart-rate data taken when7the healthy subjecte were 

resting can be compared with that of the post-operative patients. 

For healthy subjects 6,7 and 8 the data were sampled with sampling 

intervals 0-59 0-75 and 1.0 seconds, yielding spectra with frequencies 

up to 1. oo, o. 67 and 0-50 Rz- respectively. It was found that the 

heart-rate spectrum above 0-5 Hz- was virtually zero. This was in 

agreement with, for examplej the results of Hyndman and Gregory (1975)- 

Thus a samplin&r interval of 1.0 second. uould produce all the 

information required. 

The heart-rate spectrum ý, ras divided into three frequency 

intervalst as in Chapter 4. The three intervals were (o - 0.016)p 

(0.023 - 0,125) and(O. 133 - 0-500) llz- to correspond to the trend, 
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vasomotor and respiratory components of the heart rate. The interval3 

are disjoint because we have a finite resolution of the spectrum. 

The heart-rate variance was calculated for each frequency band for 

edch subject and is given In Table 5-9- It can be seen that the 

subjects vary quite considerably between themselves. The results for 

each spectrum were expressed as a percentage of the total spectrum 

variance. Overall the mean percentage in each of the three groups 

was 19-9: ý1-qt 50-31*3.1) 30.0t 2.9 respectively. Thunt for the 

resting subjectso approximately half the variance about a linear 

trend in a5 minute interval could be found in the frequency band 

(0.023 - 0.125) Hz- 

0 
The effect of respiration on the heart-rate 

We wish to investigate the effec-l-. 3 that frequency and depth of 

respiration have on the level and variability of the heart rate. Prom 

the series 2 and 3 experiments we have a laree numbcr of observations 

of the heart rate for a given subject and respitation frequency. 

However, because the heart beats are hiGhly correlated, we cannot 

reCard the series of heart beats as independent replicates of the 

experiment and so we simply took the mean and standard doviation-of 

the series as measures of the level end variability of the heart- 

rate, These two statistics give a very crude summary of some of the 

information available in the series; clearly other statiatics could 

also be computed and analysedg' ouch as higher moments or correlation 

coefficients. However,, the mean and standard deviation appear to be 

of immediate physiological interest. 

The data were analysed by means of the analycia of variance. 
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Components of the total variance of the observations are associated 

with variance between subjects and between frequencies. The 

observations are assumed to result from a model where the subject 

and frequency effects are additivet and the variance of the residual 

term, having allowed for the subject and frequency effoots, if; the 

same for each subject/frequency cell. Por exact significance testing 

we require that the residual term is normally distributed. Tables 

5.2 and 5-3 give the mean and standard deviation of the heart rate 

for uncontrolled respiration depth at each metronome frequency. 

Tables 5-4 and 5.5 give the mean and standard deviation of the heart 

rate and the standard-deviation of rospiration for deept challow and 

uncontrollod respiration depth. 
0 

Analysis of I-leans 

The mean heart rate of all the subjecta at rent was tcated for 

male/female ordering. RepresentinC female by F and male by 11 the 

means 'areýordered If we assign ranks 1,2,3 etc. 

to the results and sum the female ranks we get cum=74- Applying the 

Wilcoxon rank test (Documenta Geia 1971 p124) with m=8 and n=12 we 

Cot a 51j4 confidence interval of (58-110)- Since Our result lieq in 

this ranget we cannot, cay that tho male/female orderine is anything 

but random. 

The data analysis was oonducted by means of the GENSTAT 

computer packagb (Hothamstead'Exporimental Stationj 1973)e This 

program uses a technique of iterative weighted linear regression to 

obtain maximum likelihood estimates of the paramatern of a linear 

model used to describe the datT. The advantage of the p-rogram it) 

that it onablea different models to be tried eaoily. The importance 

0 
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of different effects can be estimated and the residuals can be 

exzmined for outliers and departures from normality, The output of 

- the program can be used to give an analysis of variance for the data. 

The first six subjects to bo tested with fixed breathing 

frequencies were subjects numbers 7,11,12,13,24 and 25. Only four 

fixed respiration frequencieu were taken and also a section of non- 

paced respiration. It was found that this did not give very many 

points for the frequency/phase analysist and so after this 8 

frequencies were analysed. A two way analysis of varianco vras 

conduoted firstly on these six subjepts with the following results 

Source Sum of squares D. O. P. Mean Square Mean Square Ratio 

Between subjects 4079-18 5 815-84 110-70 

Ba- t -vie en 
frequencies 33-19 4 8-30 1-13 

Residual 147-37 20,7-37 

Total 4259-74 29 

F5,20(0-05) = 2.71 F4g20(o. O5) = 2#87 

0 

The analysin shows that practically all the variance of the 

observations can be associated with the variability between subjects, 

and that no real frequency effect can be diocorned, 

FollowinC this result, a greater number of cubjects and a 

greater range of frequencies were studied. Subjects 21-25 appeared 

in botli the Series 2 and Series 3 experiments and co we have 

replication in come ok the colitMa. There were tilree missina valueat 

0 



'174. 

and these were estimated by the program to minimice the residual sum 

of squarest and then the analysis was conducted with the estimated 

values, The estimates were 81.9,81.9 and 60.7 bts. /min for 

subjects 23(2), 23(3) and 19 respectively. The analycis of variance 

table in Civen bolow. 

source S= of squares D. O. F. Mean Square Mean Square Ratio 

Between cubjeots 8785-34 14 627-52 50-49 

Between 
frequencies 859-09 8 107-39 8.64 

Recidual 1690; 22 
. 
136 12-43 

Total 11334.65 158 

Provided the analysis of variance requirements are satisfied 

by the. datap we can test for the subject and frequency effects by 

comparing the mean square ratio to an P statistic with the appropriate 

degrees of freedom. It can be seent however, from Table 5-39 that 

the standard deviations of tho observations vary considerably between 

subjects and frequencies. The individual heart-rate values are 

correlated# so we cannot deduce the va=iance of the mean heart tate 

from those figures, but it is apparent that this variance will'varV 

considerably between subjects and frequencies, However# in view of 

the larCe number of Individual values that make up the mean, the 

variance of the moan will be much emaller than the variance of the 

observations. For example, the largest standard deviation in Table 

5.3 is 16-4 bts. /min, which ic close to the residual mean square in 

the above analysis of variance, and we woull expect tbc wxiancc of 

the mean to be much smaller thLi this. 
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We can test for homogeneity of the variance of the sa,, aple 

means between subjects and between frequencies by methods described 

by iian (1969) and Sbukla. (1972). In general these required large 

amounts of computation, but Han described an approximate test which 

employed a variance ratio statistic. In order to test for homogeneity 

for columnsp the row effects axe removed from the observed mean heart- 

rate by subtracting the row mean from each observed mean in that row. 

The column variances are then-computed and the ratio of the maximum 

to the minimum variance found. Ilan (1969) gives an approximate 

distributibn for this ratio on thu assumption of equal variances. 

Prom our data, for the columns the ratio is 7-1 and for the rows it 

is 4-41 neither of which is siCnificcomt at the %ý, level. Wo can 

estimate the residuals by removing the frequency and subject effects, 

and a histogram plot of these did not appear sienificantly different 

from a normal curve. Howeverl a plot of the residuals aCainst the 

fitted values indicated that possibly the spread of the residuals 

increased with the mean. The analysis of variance was then conducted 

on the loýpxithms of the means, which Cave the followina rosUlt: 

Source Sum of squares D. O. P. Mean Square Mean Square Ratio 

Betmen trabjeots 1.6034 14 0.1145 55-45 

Between 
frequenoics 0-1443 a 010180 (3-74 

Residual* 0,2809 136 0.0021 

Total 2.. 0286 158 

As can be seent the moan cquare ratio is almont unchanged by 

this transtormation. From statistical tables (a-C- 'Biometrikzý' 
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tables (1966) it can be seen that even at the 0.17', level, the 

tabulated values of F 14,136 and F., 136 do not approach the levels 

attained by the mean square ratio. The conclusion in that there is 

a highly j3ignificant frequency of breathing effect on the mean heart 

rato. 

The mean values of the untransfonned data for the oiCht 

frequencies were estimated to be 72,83,72-38p 72.16P 74-57P 72.109 
W, 'I, S. O. I. IL 414-1- 

73-43v 75.231 79-56 bts. /min in order of increasing frequencytLOO 

that it can be soon that there is a f,, Tadual increase in mean heart 

rate with breathinC frequencyl with the highest broathinC rate, 

0.24 liz., giving the highest mean value. 

The residual term in the analysis of variance of the tranofo=ed 

data c. -. m be further split by allowing for a between repetitionag &nd 

a repetition x subject interaction component of vaz. -iance with 1 and 

2 degrees of freedom respectively, since tIrco itere 3 subjects who 

performed the experiments twice. 

Tho analysis then becomes 0 

Source Sum of Nean Mean Squrxe 
OquareG D. O, F. riquare Ratio 

Between subjects 1.6034 14 0.1145 84.8 
Metween frequeiicico 0.1443' 8 0.0100 13.3 

Between repotitiona 0-0344 1 0., 0344 25-5 

Repetitions x 
subjects 0.0669 2 0.0335 24-8 

Residual 0.1796 
-1 

3ý 0.0014 

Total 2.0206 158 
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The residual sum of squarea has been reduced by about one 

third for the loss of only 3 dearoes of freedom. The larGo mean 

square ratios associated with, tho'between repetitions and repetitions 

x subjects interaction implies that there wore significant 

differences in the mean heart rates for the subjects on the two 

occasionsp and that-different subjects reacted in different ways. 

These effects are probably due to a large extent to subject 23 whoce 
fWV 

overall untransformed mean heart rates for thokoccasions'were 75-00 

and 86.44 bts/min. 

The series 3 experiments vmrQ conducted to analyse the effect 

of depth of breathing on the level and variability of the heaxt rate. 

The results are given in Table 5-4 for deep (D), shallow (S) and 

uncontrolled depth (U) respiration. No respiration record vias taken 

from subject 23, becauso of a recording error. The respiration signal 

v, ras measured by cheat bollowst as hao been described previouslyt and 

the standard deviation of the digitised sienal. is diaplayod in 

Table 5.5. This standard deviation is ýntendod as a measure of depth 

of breathingt although clearly the correspondence is not prefect. 

Howevert looking at Table 5-5t it is clear that ctandard deviation in 

much larger for deep than for shallow broathinCt although the depths 

varied considerably between subjects. The mean values of the standard 

deviation of breathing (SdBr) (with standard errors) were estimated 

to be 134(6) mm IJg9 260(22) mm. %, - and 369(21) mm, 11C for j3hallowg 

uncontrolled and deep breathing reopectivelyt which agrees with the 

order wo would expect. %be corrospondinG mean values for the 

frequency of breathin,, effect wore 253,2429 250 and 269 mm ITgg each 

with a standard error. of about-30 mm 11g, at frequencies 0.24v 0-149 

4 
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0,10 and 0-07 IIz- respectively. Thus it appeared that there was a 

small increase in SdBr at the lowest frequency, This would 

correspond with the observation that it is easier to breathe deeply 

when breathing slowly. 

Ilrom Table 5-4 it is clear that depth of breathinC has an 

important effect on the mean heart rate. %be overall means were 

77-32P 70-05, and 77.01 bts/min for deep, shallow and uncontrolled 

breathing, with standard errors of abcut-1-5 bts/mine Uius it would 

appear that shallow breathing decreased the mean heart rate below 

normal. It is possible that the frequency of breathing effect on 

the mean heart rate could be accounted for by the variation with 

frequency of depth of breathing. However, thig is unlikely for 

several rzasons. A previous result showed that slower breathing was 

accompanied by a decroase in heart rate. If this effect were duo to 

depth of breathing, wr would expect the depth of breathing to have 

decreasedt but in fact the oppocito had occurred. Another reason was 

that the mcqm values of the Sd73r did not appear significantly 

different at the different frequencies compared with the standard 

error, and this result was confirmed by an analysis of variance of the 

SdBr. 

Sbus we*could conduct a otraigh-L-forward analysis on the mean 

heart rates of Table-5-4. The design of the experiment suggested a 

split-plot analysis. However, depth of breathing cannot be roCarded 

as a treatment which is uniford over all subjects and the 

requirements of the split-plot model are unlikely to be mot* A two- 

way analysis of variance was conductod, but the error distribution of 
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the residuals appeared markedly non-normal, and no suitable 

transformation seemed likely to make it so. However, the mean 

effectso subtracting the overall mean, were estimated as 3-45,0-42t 

-0.81 and -3.06 bts/min at frequencies 0*25,0-149 0-10 and 0-07 Hz- 

respectively, each with standard error of t0eq bts/min. Thus, once 

again we can say that the mean heart rate increased as the breathing 

became more rapid. 

A comparison between the mean heart rqtes under controlled 

breathing and those for the subject at rest Is of Interest. Including 

the rest period there were 13 separate sets of observations made on 

each subject in series 3, and so we ranked them from I to 13 in order 

of increasing magnitude of mean heart rate. Ties were awarded with a 

fractional rank so that the total sum remained 91. The mean ranks 

are qhown in the following table. 

Metronome setting Hz. ) 

0.24 0.14 0110 0-07 

Resting D 11-875 9.250 6.875 5.625 

8.000 S 5.000 3.625 3-000 2.250 

u 11.250 10.000 a. 625 5.625 

This shows clearly the effects of deep and shallow breathing, 

and the effect of frequency of breathing on the mean heart rate. The 

rank for the unpaced resting subject is higher than any of the ranks 

for the shallow breathing subjects? and lies in the mid-frequency 

ranae for the deep and uncontrolled depth breathing*, 
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Thus we can say that, for the subjeotEr studied, fast 

respiration. increased mean heart rate above the resting levelq and 

slow breathing decreased it below the resting level. Shallow 

breathing reduced the mean heart rate. The results for uncontrolled 

depth respiration suggested that the subjects breathed deeply when 

the respiration was paced, since the ranks for deep (D) breathing 

are very similar to those for uncontrolled (U) breathing, but this 

cannot be confirmed since the respiration depth was not measured for 

the resting subject. 

Arialysis of heart-rate variabLliI7 

The standard deviation (s. d. ) of the heart-rate %,, as taken as 

a measure of heart-rate variability. 'Die fieures in brackete in 

Table 5.4 are the s. d. s co=esponding to the mean values in the 

table. Hovievert we cannot analyso the figures in the same way; since 

a model with normally distributed c=ors to analyse the means would 

be in conflict with the same model used to analyse the aed, ls. If a 

sequence of independent random variables were normally distributed, 

then the mean would be normally distributed, but the standard deviation 

would not. The variancet in factt would be distributed, proportionally 

to a chi-square distribution. One method of dealing with this would 

be to transform the standard deviations. It can be shown (for 

example,. Kendall and Stuart (1966) Vol. III p. 9 1)t that for a series 

of independentv normally distributed random variables of size, with 

variance 62 oLnd sample variance 02, then for larCe n lof,,. S ic 

approximately normal with mean loCL6)and variance 2/(n-1). This is 

not necessarily the case for correlated variablost but it is 

reasonable to suppose that the IoCarithmic transformation will imp-rove 

the shape of the distributibn towaxds normality. The same 
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transformation has been employed by Day and Pisher (1936) in an 

analysis of variability of plant sizes. ' 

The analysis was conducted in the loes of the s. d. 's of 

heart-rate for the 15 subjects who tried the 8 different breathinc 

frequencies. The missina values were estimated as 5.22, '5.22 and 

4-84 bts/min for subjects 23(2), 23(3) and 19(2) rospeotively. by the 

GENSTAT program. -The values were'inoluded in thq analysis of 

vafiance with the following result: 

Source , S= of squares D. 0. F. Ills, IT. S. R. 

Between subjects 20-95 
. 
14 1-50 28-30 

Between frequencies 5-86 8 0-73 13-77 

Residual 7.22 136 0-053 

Total 34-03 158 

A histogram plot of the residual-i did not reveal any gross 

departure from normality except for one extreme point for subject 

15(2)p frequency 5. A plot of the residuals against the fitted 

values also did not reveal any systematic deviat ions. In view of 

the-very large value of the mean square ratio, when compared with 

the tabulated values at the 0,1% level of P 14-P136 and F8-136 '" can 

have no hesitation in saying that both the between subjects and the 

between frequencies variability contributes vignificantly to the 

total variance. 

In ascending order of frequencyo the mean values of the"s. d. 's 

for each frequency are 2.20t 2.15t 2.18t 2.13t 2.02p 2-07t 1-93t 
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0,41ý SOL 011t 

1*68 bts/mintso that it can be seen that the large betwen frequencies 

mean square is. not due to a single frequency# but to a general 

progression of decreasing s. d, with increasing frequency. 

Once again we can subdivide the residual am of squares to 

allow for the fact that three of the subjects were tested twice. 

Source Sum of squares D. O. F. M. S. MIG. R. 

Between subjects 

Between frequencies 

20,95 

. 5-86 - 

14 

0 

1-50 

0-73 

33,2 

16.2 

Between repotition3 0-55 1 0-55 12.2 
I Repetitions x subjects 0.66 2 0-33 7-3 

Residual 6.01 133 0-045 

Total - 34-03 158 

Again we see that there in a large contribution to the sum of 

squares for between repetitionsg and also for repetitions x subjects 

interaction. These effects axe probably due almost entirely to 

subject 239 whose mean untransformed v. d. 's for the two occasioýs 

Were. 9-87 and 5.96 bts/ming whereau the other two subjeoto had valuen 

that were close each time. 

An2]Zsis of covariance 

in an analysis of plant size variabilityt Day and Pisher (193G) 

point out that two populationa that differ greatly in their avor W 

ciza would naturally differ in their variancest and they civ, 4; eat 

that an allowance for the different moans be nade by an analysis of 
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covaxiance of the means and standard deviations. in the populations 

observed. We would expect the standard deviation to be roughly 

proportional to the meant and for this reason a logarithmic 

transformation was suggested, which might also improve the 

distributions towards normality. The log (mean) will be regaxded as 

the independent variate and the log (sods) as the independent 

variate, since it is the variation of the latter that is required, 

after allowance has been made for variation in the mean. 

The'overall regression tenn was calculated to be -0.21 units, 

which shows that log (s. d. ) decreased for a unit increase in log 

(mean). 

The analysis of the log (Sod, ) (adjusted for log (mean) 

became: 

Source Sum of squares D. O. P. Nean square Nean 13q. Ratio 

Between subjects 16.69 14 1.19 22-45 

Between frequencies 4.25 8 0-53 10000 

Regression 01008 1 0.008 0-15 

Residual 7.21 135 0-053 

Total 20.16 

The regression has a very small effect on the residual sum of 

squares and the effect of allowing for the mean has clearly not 

altered the analysis. If the s. d. had been proportional to the mean, 

we would have ýxpeoted a positive regression term. Ifeverthelessp the 

analysis on the corrected log (s. d. -Is) is still worthwhile in case 
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the frequency of breathing effect in the lot; (s. d. ) could have been 

aooounted for. by variations in the mean heart rate. 

Depth of breathina effect 

From Table 5-5 it is clear that depth of breathing has an 

important of-feat on the standard deviation of heart rate. However, 

for the same reasons as those given for the analysis. of the moan 

heart rate an analysis of variance would, be difficult to interpret, 

and so the analysis was restricted to computing mean effects. The 

average s, d. Is for the deep, uncontrolled depth and shallow breathinc 

were estimated as 8-73,6.57 and 5.35 bts/min with approximate 

standard error 0.4 bts/min, and thus it appeared that in increased 

breathing depth was accompanied by can increased otandard deviation of 

heart rate. The mean frequency e-L'fdots were estimated to be 

5.05 (0-37), 6,71 (0-59)s 7-50 (0-53)and 8-27 (0-55) bts/min., (tc. c. ) 

at frequencies 0,24,0-149 0,10 and 0-07 Hz- respectively, 

suggesting that the s. d. of heart rate increased with decreased 

breathing frequency. A bivariate regrossion wao conducted on heart 

rate s, d. against breathing frequency and SdBr. The regrossion 

coefficients were estimated as -18.4-0 , 44 (bts/min)/Hz. for breathing 

frequency and 0.009: tO, 002 (bts/min)/unit pressure for Sdl3r. Since 

both coefficients are large in comparison to their standard errors 

they support the previous remarks that increased breathing depth and 

decreased breathing frequency are accompanied by increased heart 

rate variability. Compared with the resting level, a paired It' 

tesi showed a significant decrease at the Jýj level in tho s. d. at 

0.24 ITz. and a non-significant increase in s. d. at 0-07 IIz- for 

uncontrolled depth breathing. 
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Again it is of interest to examine the relative ranking of the 

results. The mean ranks were: 

Hetronomo setting (Hz. ) 

0,24 0-14 0110 0.07 Hz. 

Resting -D 
6.31 10.69 11.12 12.25 

5.06 S 1-94 3-50 5.94 7-56 

U 4.06 5.63 7-75 9.19 

The results are aGain uniform. in both respiration depth and 

frequency. The standard deviation of heart rate increased with 

decreasing respiration frequency for each of the three breathing 

depths. It was increased above resting level by deep breathing and 

reduced by shallow breathing. Comparing the results of uncontrolled 

depth respiration with those of the restinC state, it appeared that 

fixed-frequency respiration increased the standard deviation of heart 

rate at all but the fastest frequencies. 

Cross-spectral anal. vsis and rhase 
4 

Table 5-7 gives, the cross-spectral amplitudes for each subject 

at each of the breathing frequencies. They are the maximurA peaks in 

each cross-spectrum. U"hen a peak was evident over several adjacent 

resolved frequencies then the cum of the amplitudes at these 

frequencies was-taken. Frequency 0 indicates where there wau no 

conscious breathing control. The figures in this column were shown 

if there was a definite peak in the heart-rate spectrum. Vie overall 

mean of the amplitudes at each frequency for deepp shallow and 

uncontrolled depth breathing were calculated and the standard error 
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of the mean for the uncontrolled depth breathing obtained. The 

results were plotted against frequency and are displayed in figure 

5.8a. The frequency estimaten were the metronome settings and are 

only approximate since the subjects did not all follow the metronome 

exactly. 

The graph appears similax to that of Angelone and Coulter 

(1964), as illustrated in the-literature review in figure 5-1. It 

can be seen that the amplitude decreases with increasing frequency 

and that there appear to be two peaksp one at 0.07 Hz. and the other 

at 0*1 lIz. p althouCh these must be regarded with caution because of 

the large standard errors. Because it is physically impossible, or 

very difficult, to breathe much slower than 0-07 Rz. it is not very 

meaningful to ask the result of extrapolating the results below that 

figure. The means of the deep and shallow breathing cross-opectral 

amplitudee are also shown but these are not sufficiently resolved 4. o 

distinguish peaks, and just show a decreasing amplitude with 
I 

Increasing frequency, the deep breathing amplitude being sliGhtly 

higher' 
- 
thLui the overall mean and the ohallow breathing amplitude 

much lower. 

The cross-spoetral amplitude between heart rate and respiration 

ic influenced by both these si&mals and in an attempt to measure only 

the heart rate response to respiration the cross-opectral amplitudes 

of Table 5-7 were divided by the corresponding respiration spectral 

amplitudes. The respiration amplitudes were calculated as a sum over 

the name frequencies as the cross-spectrum. The mean and the standard 

error of the mean were calculatod-and the results displayed in 

figure 5-8b, which shows that the mean is decreasing with increasin&P 
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frequency* This is to be comparod with the results of Womack (1971) 

who gave the same results for only a single subject. The results 

appear to be more or less in agreement except that Womack showed a 

peak at about 0.1 Hz,, with the amplitude decreasing at lower 

frequencies. However, we can also choose one subject who gave 

similar results, as illustrated by subject 22(3) in fieure 5-8b. 

Tho mean heart rate response appeared to be much flatter than 

the mean cross-spectrum amplitude, with no marked peak at 0A HzO as 

before. One reason for the compaTative lack of peaks is that vubjects 

vary considerably in their heart rate response function, and the 

averaging simply reflects the wide variety. If we restrict attention 

to frequencies 1-4 which are clearly separated and for which we havo 

the most data, then in 36 data sets the peak frequency occurred 18 

times at frequency (4), 10 times at frequency (3) and 6 times at 

fi? equency (2)9 with 2 equal within the limita of accuracy. 

C= noticeable feature of the results is that deep breathing 

produced a smaller frequency response than the shallow, in contrast 

to the results for the cross-spectrum amplitudes. A It' test of the 

differencies between the responses at deep. and shallow breathin& 

gave an estimated It' statistic of 4-1 with 27 degrees of freedom, 

which under the null hypothesis of equal frequency responses is 

sienificant at 0-5, 'o% The results show that the increase in the 

respiration spectnm in going from shallow to deep breathing at a 

particular breathing frequency is considerably larger than the 

correuponding increase in the cross-spectral amplitude. 
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RelZps!: -, Ion of -phase -Lqainst frp.,, jiio. rjcjý 

The phase between heart rate and respiration was obtained from 

the cross-spectrum and is shown in Table 5.6 together with the 

frequency of the cross-spectral peak. The frequencies in each column 

agree quite well with the metronome frequency save the first column 

where there is a fairly large range in the highest frequency, It is 

also clear from inspection that on some occasions subjects varied 

quite considerably in their phase for deepq shallow and uncontrolled 

depth breathing, but no consistent pattern could be detected. A Graph 

of phase against frequency showed a well-defined downward trend, but 

with the phase scattered quite widely at each of the respiratory 

frequencies. An illustration for one subjeot ia given in fiCare 5,9- 

There was a suggestion of a tflattening off' at the higher frequoncies 

suggesting either a higher order-curve or a non-linear relationship. 

In the an. -lysis a logarithmic transfermation of frequoncy ims tried 

and this concurred with engineering practice of plotting phase against 

log frequency. 

The analysis was conducted using the GLIN computer packaCe 

(Nelder and Wedderburny 1972)9 which computed the residual sum of 

squares for a number of different regression models. The advantav 

of the proCramis that it enabled different models to be tried 

easily. 

The dýfferent hypotheses were the following: 
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H0: 

H1 : 

H 2 

3 
11 4 

0 ijk -- a 

oijk a+ bx 
ijk 

Oijk ai + bxijk 

Q4 41_ a. + b., x, ,, 

i c-- 19 979 lo Ot 
k= 1ý233 - 

where aipb i aml ci are 

constants, 

Lj "II 

Qjjk a, + bixijk + o, xij 
2 

where 91, jk is the measured phase for subject i at metronome frequency 

j and depth kv and xijk is the frequency or log (frequency) of 

respiration. The residual sum of squares under each hypothesis R(II) 

was computed. 

SOURCE S. S. DIP. mm'T squ= 

Linear R(%)-R(Hl) 184700 1 184700 

R(H, )-R(H 
2) 24100 6 4017 

R(li 2)-R(H 3) 21150 6 3525 

R(H 3 
)-R(H 

4) 10720 7 1531 

11(114) 49330 63 783 

)-R(II, ) Log R(17 187800 1 187800 
0 

R(Hl)-R(H2) 16510 6 2752 

"(H2)-"(H 3) 32610 6 5435 

R(II 3) 53080 70 756 

Total '290000 83 

The residual sum, of squaros for the quadratic model and the 

log model are comparable, but the log model requires fewer parameters 

and also has a smaller mean square; thus it is to be proferred. The 

ratio of the quadratic sum of squares with the residual is not 

significant when compared with an P statistic with 7 and 63 deCrees 

of freedomp. and so a linear model. would appear to describe the data 
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quite well. There are Ver7 significant differences between subjects 

with regard to their phase/frerjuency relationships. 

To investigate the effect of depth of breathing on the re,,, r,, ression, 

a different series of models was set up. 

1121 
* 

ijk " Ck + dxijk' 

113. ijk a Ck + dl? cijk 

k-102,3 , for deep, shallow 

and uncontro2led respiraticn 

The analysis of variance'bec=e 

'depth. 

SOURCE S. S. D#F. N. S. N. S. R. 

L-og R(H 
0 _R(II 1) 187800 1 184700 

R(I. T 12 6640 2 3320 2.72 
R(H 2 

I)-R(H 
3 460 2 230 41 

R(H 3 1) 95100 78 1219 
Total R(H 

0) 
290000 83 

The 71'o" point of F 2,78 is 3.13 so that we could not conclude Chat 

there was any depth of respiration e^Lfect. For controlled depth respiration, 
it was noticed that for'6 Out 01' 7 cases the depp breathing produced a 

steeper gradient than the-shallow, and in the one exception, subject no. 
17# the error was very large. However, even on the assumption that deep 

and shallow breathing produce the steeper gradient equally probably, the 

probability of 6 out of 7 is still quite large (0.125) and so there is 

no ev'idence of -a difference between deep aml shallow breathing in this 

respect. 
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We can also test whether the sex of a subject influences the 

. phase/frequency relationship. We have 

11311 Oijk m ck +. el. 2cijk where m-1 if the subject 

is male and m=2 if the 

subject Is female. 

We then find that 

SOURCII; S. S. D. F. M. S. M. S. R. 

R(H 2 -R(F- 3 780 780 <1 

R( H 3") 94780 79 1200 

The mean square' ratio is less than one, so we conclirle that there 

is no significant difference between the sexes, 

A linear phase/ frequency relationship would indicate a fixed 

lag between the respiration signal and the heart-rate. 'For example, 

if the heart-rate at time t could be P=. ressed as proportional to the 

respiration signal at time t-k. then the phase ON in radians at 

frequency w could be written 
O(w) - Q(O) - 2-. k 

If this were the case then the regression coefficient between phase L. 
and frequency would give a suitable estimate of the lag, between respiration 

and heart-rate, and the intercept would indicate where in the breathing 
1; 

cycle the heart-rate response began. 

Melcher (1976) gave a figare of about 3 seconds for the lag, 

and if we combine this with Angelone and Coulter's (1964) result of 

zero phase at 0.1 liz. thenwe obtain G(O) - 36Ox3xO. l. - 1080. This 

, would imply that the heart-rate response began about one quarter of 
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a cycle in advance of the respiration peak, or about half way through 

inspiration. From our results the least-squares straight line was 

estimated as G(w) - 1080 - 8130W 
, with standard er-rors of 10 0 and 

680 respectively for the two estimated parameters. The intercept 

compares well with that obtained from the literature. The lag estimated 

from the slope was 2.26 t 0.19 seconds, which compares with the 

result 2.28 t 0.21 seconds as the average lag from the regression 

coefficients calculated for each row of Table 5.6. The range of these 

lags was (0.73 - 4.2.8) seconds. This large variation does not appear 

to depend on any physical characteristics, since the lags var7 consider- 

ably within subjects. However, corresponding to the. previous result 

for gradJents, deep breathing was associated with a longer lag thmi 

shallow breathing in 6 out 0: 7 cases. 

tie. have shovin previously that with fixed frequency breathing both I 

the heart rate and respiration signal are cyclic in =st cases and that 

phase measures a real lag in the system. Thus it woix1d appear that 
C2 

the lag is anything but stable, and about the only consistent fact to 

emerge is that it is positive, It is likely that the lag depends not 

only on the time for blood to cross the pulmonary circuit but also on 

many other factors which at present we have been unable to discover. 

Analysis of breath-holding, experiments 

A typical result from the breath-holding'experiirents is shown 

in figure 5.10.7he top lirie shov)3 the heart rate resulting from a cil 

respiration cycle of length six seconds, with the subject supine and 

breathing to a metronome. It shows 
4norrnal heart-rate cycle seen in 
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the previous experiments, with a slower rise in heart rate than fall 

and an amplitude of about 10 beats. The second line shows the heart 

rate follow-ing breath-holding on inspiration after the paced respiration. 

We can see a clearly oscillating heart rate, with rather longer cycles 

than the previous line. The third line sho"- , again, a clearly oscillating 

heart rate, this time the respimtion unpaced, followe. d by the heart 

rate after breath-holdin)- on expiration. Cn this occasion it is difficult 

to see any cycle in the tracing. The last line shOW3 the result Of 

breath-hold . ing , after hyperventialtIon. Again it is difficult to see any 

cycle in the heart rate. 

1-igure 5.11 shows another subject with similar results. Again the 

first two lines show normal cyclic heart rate due to respiration 

followed by a less well marked cyc3e when respiration ceases on 

I inspiration. The second pair show a slower heart rate cycle with a 10 

second period due to paced respirationt Which this time is not folloued 

by any Ynarked heart beat cycle after breath-holding2 on inspiration. Ilie 

third pair of lines show. the heart rate after hyperventilation and 

display a rather interesting phenomenon. The subject irana,,,, cd to hold 

his breath for twu minutes and for the first minute there is not much 

evidence of any cycles in the heart rate. However in the second 

minute displayed below, the subject started to show very definite 

heart rate oscillations. 

There was no clear evidence of heart beat cycles during breath- 

hcldin,, y when the subjects were sitting. ror one subject during all 

exercise3 the heart rate simply rose and then steadied, suggesting 
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possibly that his throat was closed and pressure was building up in 

his lungs. 

One of the problems with these signals is trying to decide whether 

a cycle is really present or not. The standard techniques for detecting 

cycles are based on the idea of a regularly occuring cycle together with 

a large amount of random noise. Periodogr. m analysis with Fisher's te3t 

(1929, Appendix A) are difficult to inte rpret in the present situation, 

as we shall. show. The data for subject 26 was converted to fixed time 

intervals by the subroutine INTM. (Appendix C) and then the periododgram 

calculated. These are shom in figure 5.12 for the data in the top 

two lines of figure 5.10. The first periodogram shows clearly the effect 

of the paced respirationt witli a peak at about 0.17 cycles/sec. 7j. -e 

second shows a Feak at 0.14 cyolcs/sec. rnd a lesser one at 0.17 cYc-les/ 

see.. Together they are just significent. The graph in figure 5.10 shows 

that the rcbon for two peaks is that the cycle is changing frequency, 

and is slou-ing doiAm near the end of the line. The problem in applying 

Fisher's test is that it was designed for constant frequency cycles and 

may have low power if the cycles changefrequency. 

A non-parametric test for general cyclic behaviour has been descr- 

ibed by Kendall and Stuart(Vol III, 1967j P410) For each point in the 

series x we calculate a marker u such that 
. llx2l***txn i 

ui -I 'f xi ý- xi+ 1 'ý' xi+ 2p 

if x>xx i i+l <' 1+2 

-0 other-Wise . 

Aies are treated as single observations. T 
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Thus ui W es the value I at turning point in -the series, i. e. a peak 
n-2 

or a trough, and 0 otherwise. lie calculate p- )7.1 u, and it can 

be shown (e. g. Kendall and Stuart(1967)) that for a random series 

I,; (p) a 2(n-2)/3 

Var(p) - (16n-29) / 90 

and that the distribution of p tends rapidly with increasing n to a 

Noxval distribution. 

The test was applied to the seven breath-hoiding periods shown 

in figures $. 10 and 5.11 with the following, results. 

Subject P E(P) s. d. (p) Z-(p-E(p))/s. d. (p) 

26 (on inspiration) 16 35.3 4.61 4.19 

26 (on expiration) 16 25.0 3.86 2.3^) 

26 (after hypervent. ) 21 26.0 3.96- 1.26 

27 (on insp. ) 18 32.0 4.39 3.19*il 

27 (on insp. ) 25 32.0 4.39 11-59 

27 (after hypervent. 1) 20 28.7 4.16 2.09 

27 (after hypervent. ?) 17 30.0 4.25 3.06" 

This confirm the observation that there were cycles present after 

breath-holding on inspiration. One slightly unexpected result is that 

the test indicat6s the presenc6 of cycles in ihe heart rate after expir- 

ation for subject 26. This would concur, with the results in the liter- 

ature, but possibly is the result of studyin,,, several significance tests CJ 

simultaneously, 
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Thus we have confirmed the presence of cycles in the heart rate during 

breath-holding. Another interesting result is the appearance of cycles, 

confirmed by the test, during the second minute of breath-holling by 

subject 27 afterhyperventiltion. In fact, this phenomenon is also 

shown by ValentiýUzzi and Geddes (1974, p94, fig. 4d), where a subject 

gave cycles in the heart rate some 30 seconds into breath-holdin"g, after 

hyperventilation. However,, Valentinuzzi and Geddes do not co=ont on 

the fact that the heart-rate preceeding the oscillation is level and 

not cyclic. 

Discussion 

The heart-rate spectra of the resting subjects compare well with 

those found by other authors. The low frequency peaks found in 18 out 

of the 23 spectra displayed a frequency range of (0-031 - 0.125) 11z. # 

which indicated not only that subjects varied considerably within 

them3elves bub also that the peaks were probably not all due to the 

same source. The contrast between the heart-rate spectr= of figure 

5.4a and that of figure 5.5a for the same subject is interesting; the 

first spectriLm was calculated when the subject was resting and the second 

when he was breathing in time to a metronome. It: gives a convincing 

demo. nstration that the sinus arrhythmia-effect can'be readily elicited 

by regalar respiration but that it is not necessarily present when 

the subject is not breathing consciously, even when he is breathing 

regularly. In only'5 out of the Z3 heart-rate spectra were there 

'ined spectral peaks corresponding to respiration. However, clearly de, 

concious respiration is clearly a very effective method of entraining 

the heart rate. 
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The analysis of-the heart rate means and standard deviations has 

to a large extent confirmed and quantified the results of Sroufe(1971). 

For the subjects studied it was shown that deep breathing increased the 

heart rate variability,, an average by. about 2.15 bts/min and that 

shallow breathing reduced the mean heart rate by about 7 bts/min and 

the heart rate variability by about 1.2 bts/min. We also demonstrated 

that a high respiration rate reduced the standard deviation of heart 

rate and increased the man heart rate by 0.2 and 4.5 bts/min respect- 

ively, and a low respiration rate increased the s. d. by about 4.5 

bts/min. arti lowered the mean by 2.3 bts/min on'average. The latter 

results were not found by Sroufe and-appear to be new to the literature. 

Sroufe only considered a limited range (0.23 - 0., 'ýO ) for respiration 
0 

frequency, which could explain his negative results. 

'rho design of the experiment could hive been improved by including 
.j 

a second resting period at the end of the'breathing cxercise3. This would 

have provided an additional control to check the physiological response 

to the stimulation of being made to breathe in time to a metronome. It 

could be argued that the responses are partly due to psychological 

factors ; that the constraint of regular breathing 
., produces stre; s, for 

example. However, it is unlikely that the responses would be two-way, 

for example a reduction as well as an increase in mean heart rate. Also 

it would be difficult to explain the fact that the responses are , in 

general, uniform with the stimulus. For example, the response to 

uncontrolled respiration lies Inbetween deep and shallow breathing and 

the variability of heart rate decreases uniforzly with increasing 

respiration rate. 
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It is difficult to determine to what extent these results can 

be generalized to the population. The subjects studied were in no way 

a random sample and were comparatively few in number. In general the 

subjects were younger than the average population, and were fit and 

h ealthy at the time of the experiments ( except for subject no 15). 

The increased heart rate due to rapid and deep breathing probably 

reflects the effects of hyperventilation; this is also mentioned in 

Melcher (1976) and by. Donevan et al., (1962). Possibly there is also 

a response due to the increased work of breathing. The decrease in 

heart rate with slow and shallow breathing is less easy to explain 

and we have fowid nothing in the literature to supply a physiological 

explanati6n. It is possible that with shallow breathing an increase 

in vagal tone reduced the heart rate. The changes in heart-rate 

0 

varaibility reflect the effect of sinus -irrhythmia which, as was 

shown by the frequency response function, was greater for deep and 

slow than for fast and shallow breathing. 

The frequency response and Phase results obtained by Aneelone 

and Coulter (1964) and Womack (1971) have been studied carefully. 

These authors presented evidence for a peak in the frequency resronse 

function at about 0.1 Hz.. This peak was not apparent in the overall 

frequency response fuction in the present study. However, both Womack 

and Angelone and Coulter only display one subject and, as illustrated, 
0 

it was possible for us to select one subject who showed a similar sort 

of frequency res'ponse functiori. At first sight it was disappointing 

not to obtain a local maxitmum in the frequency response function at 

0.1 Hz., because of the implication that this Aould iniic3te a system 
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resonance at the vasomotor Lrequency. However, the results of the 

heart-rate spectral analysis for-the relaxed subjects showed such a 

wide variation in the frequency of the vasomotor cycle that we would 

expect any resonance to appear with an equally wide frequency range, 

and also the frequency of the vasomotor cycle did not necessarily 

coincide with the fr&4uency of the largest response for controlled 

breathing. For example, the vasomotor peak for subject, no. 6 was 0.1 

Hz. but the maximum frequency response výas at'0.14 11z.. 

The phase results ware not-as clear as those obtained by 

Angelone. ard Coulter or Womack. At low frequencies heart rate was in 

advance of respiration and at higher frequencies it laggged behind, 

'with the zero phase point in the region (0.07 - 0.13) Hz. '7'nc average 

phase declined at a rate of 810 for every six cycles per minute increase 

in the breathinZ frequency. 

The breath-holding experinents two a large extent conf irm the 

results of Valentinuzzi and Geddes (1974) and contradict those authors 

Nho claimed there was no heart rate cycle during breath-holding. Ne 

have shown, however, that the'response can be diýficult to elicit, and 

is best displayed vhen the subject Is supine and holds on inspiration. 

The main question is whether this cycl6'is evidence for a central 

component in re; piratory sinus arrhythmia. The answer would be that 

the cycle appears different from the nomal respiratory cycle. It is 

usually sloiver-than'the normal uycle and fluctuates considerably in 

frequency. Since we have shovm in Chapter 4 and in the first part of 

this one that heart rate is often subject to vasomotor oscillation3l 
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it is --nore likely that this is %hat we are seeing at present, particular3y 

since in most situations the clearly observed respiratory-heart rate 

response ceased i=ediately on breath holding. However, the frequency 

of these cycles was rather Afaster than the normal vasomotor cycle and 

for subject 26 in one sequence the cycle3 continued for a shortWhile 

at near the respiratory frequency, so that the effect of an entrainment 

on the vasomotor oscillations would seem to only gradually disappear. 

The bottom -tuo picturez in figure 5-22, showing the heart rate increasing 

during expiration can be explain6d if we postulate an expiratory effect 

on the heart rate, and although this has been denied by Davies and 

Neilson (1967) 
, it has been claimed by Valentinuzzi and Geddes and 

also by Freyschuss and Melcher (1976). Thus our results are broadly 

in agreement with the hypothesis that respiratory sinus arrhytIlmia 

is brought on by inspiration and expiration cauý4ng blood pressure 

changes, which affect the cardiac or arterial reflexes. 

We do not know the origin of the slowly developing heart rate 

fluctuations after hyperventilation. Possibly they have the same 

breath-holding,. They may re3Ult mechanism as other cycles during 

from strain on the subject as he uses up his available oxy, -gen and 

builds up carbon dioxide in the blood,, but if the subject had been 

stressed we may have expected the heart rate to rise, which did not 

happen. 

From the view point of signal analysis we have shovýn that respir- 

ation. can accol for 30% of the ýeart rate variability, and so for 

patient ronitoring it would appear advantageous to monitor respiratien 
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. 

in addition to heart rate and blood pres.,; ure in order to improve 

trend detection algorithms. The presence of a heart-rate response 

indicates a responsive baroreflex system, amd perhaps breathing 

experiments similar to the ones we have conducted could be employed 

with post-operative patients to test for this responsiveness. 

0 

0 
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TL13T, r,, 5.1 PHYSICAL CIURACTIEMISTICS OP SUB. Tr,, 
_Clo' 

Subject 
ITO. 

Initials Height 
ems 0 

Weight 
. ka. 

Age 
yrs 0 

Sex 
1 

Series 
2 3 

I K. G. 165 73.0 20 m X 

2 F*J*Co 174 60.3 20 it X 

3 AIL, 173 60.6 20 111 X 

4 K. H. 168 57-3 24 F X 

5- 163 54.1 21 p X 

6 H. M. H. 168 54.0 19 p X 

7 mose 179 65-3 20 111 

8 Il. V. 180 65-5 19 F X 

9 A. Mo. V. 169 64-4 18 111 X 

10 Joce 174 71.2 21 m X 

11 C. 14c. D. 173 61.7 20 p X 

12 W. T. W. 179 69.9 26 m X 

13 PIE. 173 71,2 19 m X 

14 S, B. 172 71-0 59 14 X 

15 T. C. 180 57.3 74 14 X 

16 J. Cal. 150 45.9 35 p X 

17 J. Moll. 174 57-3 22 m 0X 

18 ',, T. HcG. 16a 63-5 21 F X X 

19 J. UI 187 72.1 24 it X X 

. 
20 J. P. W. 175 6o-5 24 p X X 

21 Me 173 6o-3 22 M X X, 

22. C. T. 170 74.0 29 F X X 

23 X. J. C. 175 71-7 24 M X X 

24 D. J. H. 178 64-0 31 11 X X 

25 IIIH. 164 57*0 21 F X X X 

a 
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Table 
- 
5.4 IVAN ATM STANDARD 

-TD-- 

D, I 1-A T 1014 

-0F- -Hf, 
', TT ILITS_ (Bro/mM. ) 

SvTIES ý PJT, 1MM4TS 

Subject Resting Frequency (liz. ) 
N=ber state 0.25 0.14 0.10 0.07 

89. o (6.6) D 93.0 (4-22-) 84.9 (8.6) 85.1 (10.6) 83.4 (1100) 
S 79.7 (3.8) 74.0 (5-0) 77.5 ( 6.2) 71.3 ( 5.1) 
U 90.7 (5.7) 86.4 (7.4) 83.3 ( 9.1) 90.1 ( 9-7) 

2 75.3 (7-3) D 86.2 (9.8) 
S 75.4 (6.7) 
U 85.4 k6.0) 

3 59.1 (11,3) D 70.0 (7.6) 
S 61.2 (3.5) 

U 64.7 (4.5) 

4 

13 

6 

7 

8 

77.7 (3-5) D 89.8 (6.8) 76.9 (6.33) 73.4 (8-9) 75.4 (8-7) 
77.8 (4-3) 77.0 (4.3) 73.6 '2) (6. 72.2 (7-5) 

U 78.8 (3.3) 79.4 (4.2) 80.6 (6.5) 76.2 (8.0) 

85.2 (7.5) D 94.3 (7.2) 81,6 (11.2) 77.2 (12.2) 72.1 (11.3) 
S 67.4 (2.0) 3 70.. (6.7) 71.5 ( 7.6) 7.4.2 ( 9.0) 
U 82.3 (6-4) 78.1 (8.5) 76.8 (10.1) 74.9 (12.1) 

87.8 (4.9) D 85.0 (4.8) 87.7 (9.3) 82.7 ( 8-5) 80.8 60.0) 

3 81.0 (4-1) U. 5 (5.0) 78.4 ( 5-4) 80.9 (4.8) 
U 88. o (5.9) 89.6 (5.3) 1 88.2 ( 5-0) 87.7 (5.9) 

75.9 (13.9) 78.1 (11.2) 75.5 (13.0) 
71.1 9.7) 69.7 ( 9.5) 69.3 (10.0) 
TS-8 8.8) '77.9 (11.3) 74.3 (10.0) 

68.1 (9.3) 61.5 (8.6) 62.0 (7.9) 
5?. l (2.7) 62.9 (4.4) 57.4 (5.4) 
59.2 (2.5) 60.0 (4.4) 58.6 (5.2) 

67.4 (6.6) D 69.4 (5.8) 1(0.0 (8.4) 63.7 (7.8) 
S 58.1 (3.6) 58.1 (3.2) 56.1 (4-1) 
U 79.7 (h. 0) 71.3 (7.3) 67.8 (9-0) 

73.1 (4.2) D 83.3 (5-3) 
S 71.2 (1-8) 
U 74.2 (4.2) 

77.2 (5.3) 

71.5 (3.7) 

74.8 (4.4) 

71.9 (5.2) 
67.3 (4.8) 
74.0 (3-5) 

68.6 (12.8) 
57.0 5.0) 
63.8 8.1) 

69.4 (8.0) 
69.0 (6.0) 
68.6 (4.0) 
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TAMLE 5.5- WAIMULD DZVIATION OF BREATHING SIGNAL (mm. Tlr,. ') 

Subject Prequency Hz ) ý 
No. l(O. 25) 3(0-14) 2 O.; O) 4(0-07) 

24 D 298 370 366 452 

S 127 124 160 152 

U 211 255 295 311 

16 D 332 238. 244 311 

S 108 101 119 lo6 

U 152 170 165 177 

. 25 D 297 263 264 260 

S 87 92 81 79 

U 159 93 128 150 

20 D 355 257 195 274 

S 150 144 129 135 

U 124 158 220 203 

17 D 597 605 556 554 

S 117 146 166 207 

U 367 302 318 331 

23 

S- 

u 

21 D 449 422 430 500 

s 172 144 139 150 

u 524 448 523 450 

22 D 358 355 329 386 

s 136 161 132 174 

U. 208 244 297 294 
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TABLE 5.6 PITOM, BrWWEN 1111POIT PUTTý' BI'DI&VINI SMINAL (WITIT M''QUIMICY 

(Frequency in brackets is the respiration spectrum peak) 

"'lubjeot - 
No. 1(0*25) 2(0.14ý 3(0-10) 4(0-07) 

24 1)-' ---81(0.242) -39(0.125) 34(0.102) 88(0.074) 

'S -132(0.249'-) -430-141) 48(0.101) -46(0.071) 

N -110(0.235) 5'0-131) 20(0.098) 97(o. 068) 

16 D -29(0.174) 32(00(ý-2)' 66((, '. 087) 76(o. 086) 

S -118(0.2? 7) -48(0.156) -7(0.11'6) 62(o. 067) 

N -99(0-302) -40(1). 13'1) 38(0.099) -60(o. 149) 

25 D -58(0.196) -13(0.136) 0(0-097) 26(0-070) 

s -79(0.229) -34(0-136) -2-70-099) 10(0.078) 

11 -72(0,199) -39(0.153) '-33(0-098) -6(0-072) 

20 D -48(o. 166) -9(0-114) 6(0,090) 29(0.065) 

s -17(0.194) -22(0.1-4rl) -6(o. 102) 16(0.074) 

11 -17(0.200) -32CO. 14c)) -17(0-100) 22(0.075) 

17 D -44(0. iCl) 630-1.37) 65(0-100) 128(0-074) 

S -173(0.242) -43(0.1,11) 5(0.090) 115(0.072) 

li -97(0.247) -5, -(()-137) 3(0.100) 39(0.072) 

23 

s 

N 

21 D -20(0.149) -14(0.135) 55(0-093) 53(0-078) 

S '-50(0.198) 
-31(0.133) 8(0.094) 46(o. 077) 

11 -12ý0*193) 4(0.153) 47(0-099) 83(0.071) 

22 D -63(0*203) 13(0.142) 61(0-103) 79(0.078) 

s -43(0,234) 27(0.141) 52(0&099) 86(0.075) 

11 -44(0,238) 29(0.157) 90(0.100) 05(0-072) 
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Cross-spectral 5-implitudes, between hntwt-rate Rrd respirAtion' 

((bts/min), *m, n. H7, ) /Hz X, 0-4 

Subject Frequency (liz. ) 

0.240 0.100 0.143 0.078 0.125 0.091 0.111 0.063 

6 '06-2 5.4 6, w. 4 15.7 21.6 5.8 2. ", 4.4 
7 0.1 o. 3 3.2 1.1 4.0 0.6. 1.3 C'. 1 0.1 
8 - 0.6 13.0 7.0 15.0 1.1 2.3 6.5 8.5 
9 0.1 0.8 5.0 3.2 9.7 3.2' 4.0 2.1 10.0 

10 - 1.7 13.0 
. 
4.9 22.0 10.0 12.0 11.0 15.0 

11 0.1 0.7 4.0 2.3 4.3 
12 - 1.1 5.8 1.9 14.0 
13 0. ý 0.9 4.2 5.1 4.6 
15 No spectral peaks 
16 0.4 0.9 90 1.5 p-. 5 
16(D) - 3.0 8.3 5.1 
16(S) - 0.2 1.7 1.6 2.5 
17 0.6 0.7 13.4 6.0 13.7t 
17(D) - 2.1 13.2 12.7 10.4 
17(S) - 0.1 1.4 1.1 2.1 
18 0.2 1.9 16.22 12.5 7.2 
19 0.04 0.7 2.8 0.7 3.1 
20 0.4 0.6 2.2 1.5 7.4 
20(D) - 2.3 3.5 1.6 6.6 
20(S) - 0.8 2.1 0.9 2.9 
21(2) 12.4 14.5 20. g: -' 14.4 8.6 
210) 2.0 5.3 26.1 14.3 15.5 
21(D) - 4.1 7-33 6.4 11.1 
21(S) - 1.0 1.2 1.7 
22(2) 0.5 0.7 3.0 3.8 3.3 
22(3) 1.3 4.3 3.7 9.1 

. 22(D) 0.4 3.4 3.1 4.4 
22(S) 0,5 1.2 0.7 1.5 

3.0 2.3 2 .5 

2.5 6.5 2.5 Jý. 8 

9.3 10.5 3.2 11.0 
0.5 8.9 6.7 
0.7 2.1 0.9 3.5 

5.8 8.8 6.22 5 -'o' 
5.1 9.3 5.1 9.0 

1.5 3.7 1.3 -., 0 
101 1.2 3.8 
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Table 5.7 (Ctd, ) 

Subject Frequency (liz. ) 

0-240 0-100 0.143 0.078 0.125 0.091 0.111 O. C83 

23(2) i'll 8.7 8.9 13.0 3.9 3.1 5.2 5.1 
24(2) 0.2 0.6 12.0 3. c 4.0 
24(3) 0.4 0,5 5.7 3.4 3.0 2.7 3.7 '4.7 3.2 
24(D) - 1.7 9.5 5.3 8.6 
24(3) - 0.4 2.9 0.7 1.2 
25(2) 0.4 0.8 4.8 4.5 1.7 
25(3) 0.2 1.1 4.1 3.5 2.0 0.3 2.6 0.2 0.8 
25(D) - 3.8 3.9 2.3 3.8 
25(S) 0.2 0.4 0.3 0.4 

Mean J. 14 1.61 6.84 4.35 6.83 4,29 5.34 3.66 5.93 
s. e. o. -16 0.42 0.97 0.65 0.88 1.29 0,81 0, "Jo 1,01 

(2) - Series 2 (3) - Series 3 uncontrollod depth 
(D) - Series 3 deep breathing (3) - Series 3 shallow breathing 

6 

6 
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Table 5.8 Heart-r, -Ae responne ( Cross-snectrum mnlitude/ 

re. 5niration spect, mn. 
((bts/min)/mr.. Hsý, )/Ilz. 

Subject Frequency (liz. ) 

0.24,0 0.100 0.143 0.078 0.125 0.091 -0-111 0.083 

6 0.005 0.038 0.049 0.037 0.015 0.029 0.028 0.020 
7 0.020 0.009 0.010 0.023 0.016 0.041 0.034 0.032 
8 O. GO6 0.02J+ 0.017 0.026 0.024 0.031 o. 028 0.030 
9 0.018 0.022 0.042 0.028 0.050 o. o28 0.048 0.041 0.043 

10 - O. Cog 0.028 0.016 0.022 0.026 0.023 0.024 0.021 
11 0.020 0.1027 0.058- 0.050 0.123 

12 - 0.007 *0.011 0.003 0.005 
13 0.023 0.014 0.035 0.025 0.038 
14 - 0.018 0.021 0.031 0.015 o. o? -l o. o18 0.014 0.012 

15 Nt) spectral peaks 
16 0; 036 0.025 0.077 0.055 0.057 0.071 0.069 0.104.0.0% 
16(D) - 0.011 0.044 0.049 0.038 
16 (. S) - 0.036 0.093 0.088 0.094 
17 0.035 0.009 0.0310 O. C26 0.033 0.032 0.037 0.034 0.032 
17(D) - 0.005 0.018 0.018 0.017 
17(S) - 0.005 0.038 0.031 0.026 
18'. 0.044 0.022 0.045 0.034 0.048 0.051 0.060 0-090 0.045 

19 0.005 0.004 0.006 0.014 0.013 0.016 0.021 0.019 0.020 

20 0.032 0.015 0.022 0.015 0.042 0.023 0.038 0.029 0.041 

20(D) - 0.010 0.020 0.0; M 0.073 

20(S) - 0.018 0.043 0.023 0.056 
21(2) Respiration frequencies do not correspond with metronome settings 
210) 0.020 0.005 0.016 0.014 0.015 0.016 0.018 0.017 0.018 

21(D) - 0.008 0.015 0.013 0.016 
21(s) - 0,018 0.026 0.020 0.032 
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Subject Frcquency (11z. ) 

0.240 0.100 0.143 0.078 0.125 0.091 0.111 0.083 

22(2) 0.013 0.007 o. 016 0.012 0.010 0.017 0.018 0.014 0.015 
22(3) - 0.007 0.010 0.010 0.018 0.013 0.019 0.013 0.017 
22(D) - 0.004 0.012 0.009 0.013 
23(2) - 0.014 0.031 0.0^ 

.; ý2 0.032 0.036 0.041 0.004 0.039 
24(2)' 0.017 0.012 0.035 0.026 0.030 
24(3) 0.067 0.012 0.026 0.036 0.029 0.024 0.040 0.029 0.035 
24(D) - 0.009 0.025 . 0.020 0.020 
24(S) - 0.0000 0.043 0,0'ýO 0.028 
25(2) U. 9? 4 0.024 0.050 0.054 0.055 

25(3) 0.012 0.024 0.020 0,015 0.021 0.029 0.017 0.018 0.0ý0 

: 25(D) - 0.019 0.023 0.017 0.022 

25(S) - 0.019 0.022 0.012 0.036 

36 0.0306 0.0266 0.0347 0.0269 0.0334 0.0318 0.0311 I'lean O. OU 

Standard error 0.0013 0.0032 0.0029 0.0041 0.0037 0.0037 0.0064 0.0039 

of mean 
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TABLE, 5.9 DISTRITUIvION OF VkRlAT, 'Ct,, ' FOR MTBJj,: (, TS 

Subject Varic-mce (bts/min )2 ý'o of total 
No. Frequency rance (11z) Fxequency wanao (Hz. ) 

0.0 0.023 0-133 010 0.023 0-133 
f I I I 1 1 

0.016 0.125 0-500 Total 0.016 0.125 0-500 

6 98.8 214-3 106.8 419-9 23-5 51-0 25-4 

7 9.0 69.9 21-3 100.2 9.0 69. a 21-3 

8 17-5 58.6 58-3 134-3 13-0 43.6 43-4 

9 50-0 248.2 87.5 385.7 13-0 64.4 22.16 

10 *170-7 214-4 106.8 491-8 34-7 43.6 21-7 

11 30.2 70.6 54-6 155.6 19-4 45-4 35.2 

12 9.9 28-5 810 46,4 21.4 61-4 17.2 

13 90.8 99.2 33-8 223-8 40.6 44-3 15-1 

14 15-0 28.3 17-8 61.1 24-5 46-4 29*1 

16 96.9 240-0 378-6 715. '( 13-5 33-5 52*9 

17 136.8 520-0 209.5 869-3 15-7 60.2 24-1 

64-1 183-1 180.0 427.2' 15-0 42.9 42.1 

19 7-9 39.4 5-0 52-3 15-1 75-3 9.6 

20 48-5 24-1 91.0 163.6 29-7 14-7 55.6 

21(2) 152a. 0 359-3 260-5 771-8 19-7 46.6 33-7 

21(3) 54.3 457-0 170-8 682.1 810 67-0 25-0 

22(2) 3-8 27-0 41-5 72-3 5.2 37-4 57-4 

24(2) 71-7 204.4 89-3 365-4 19.6 60.0 24-4 

25(2) 108-3 190.6 150-3 449.2 24-1 42.4 33-5 

25(3) 36.1 75-4 32.0 143-5 25.2 52-5 22-3 

24(3) 58-0 193-9 52-3 304.2 19.1 63-7 17.2 

22(3) 59-7 82-7 62-5 203-9 29.1 40.4 30-5 

mc an c, '. ', 19.9 50-3 30.0 

variance 8-7 14-0 13.2 
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car, Tm 

Ehysiological models 

The previous chapters have been devoted mainly to a description 

of data taken from the post-operative patients and the healthy 

subjects. It would be useful also to fit models to the data. This 

would not only help to understand how the data behave, but also 

describe the data more succinctly. In effect the number of points 

describing the data would be reduced to the few parameters of the 

model. 

Literature review 

The application of mathematical models to physiolo, mical systems 

is fraught with difficulties. In maaiy cases tho systems aro uo 

variable that a very co. 'Ilplex model is required to dezoribe the system. 

adequately. Physiological modellin, -, contrasts with modelling in 

other subjoct. areas. In engincerinCp for examplet the correct model 

to apply in any one situation is very often knom and we may wish to 

examine this model in a large number of simulated circumstances to 

discover any effects that cannot be tested in the real system. A 

model of a nuclear power station can be tested for the effects of a 

system overloadp-for exazaple. In economicst models are very often 

uced for prediction in tine. In physiology, howeverg neither of these 

uses of models is of vaich interest. In General the data from a 

physiological model are compared with the results of the real system 

in order to hif,, hlielit relationships between the various physiological 

parts that have been built into the model. Howevert the fact that a 

particular model describes the data viell does not imply thaL tho 

model is corr'ectly interpreting reality. In one of the first papers 
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on heart-rate modelling, Clynes (1960) described tho phenomenon of 

sinus arrhythmia by assuming that. it was effected only through 

stretch receptors in the lungs. He obtained a very good description 

of the data using this model. However, the model was shown to be 

built upon false premises by Davies and Neilson (1967) who proposed 

that sinus arrhythmia in man at rest was mainly dependent on blood 

flow changes. 

Valentinuzzi et al., (1972) give ý& block diagram for a model of 

the blood pressure control system. Although not a mathematical model, 

it does give an indication of the pathways that miCht mediate the 

blood pressure. An outline of their model is given below in fig. 6.1. 

r 1 cordlo I I heort 
I inhibit. 

JI-4 4 

centre 4 p I 1 1.. ond x 
cordio f 

11 1 C. e. 
Occel. T V. C. 0 
ceritre 1"m 

C----------------I pr 
vasomcitor r-T -. 1 c. e. '- 

x 
centre L- J 

L -'Wý ' --- 
c rierioles b. p. 

B 

ed-illa bororeceptors: * 

ref. I 
--olternotive A , 

T4 
I 

-neurol side hydromec'honical side 

Figure 6.1. Blood pressure re, ýalatina system (Valentinuzzi et al., 1972) 
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A description of the physiological principles underlyinG the 

model is given in Appendix B. Note that the model is one of feedback 

control, with at least three branches descending from the medulla. 

The cardiovascular variables that directly affect the blood pressure 

are peripheral resistance (p. r. ), stroke volume (s. v. ) and heart rate 

(here). The boxes marked T1, T2 and T3 are thought of as elements 

(transducers) capable of translatinCneural information into 

physiological effects ench as heart-rate changes, mid contraction 

variations. The box T4 represents the baroreceptors, transiaitUng 

information to the medulla. The circles with crosses inside represent 

'multipliers' condensing heaxt-rate and stroke volume to produce 

caxdiae output, and then cardiac output and peripheral resistance to 

produs. e blood pressure. The resultant blood pressure is compared 

with a hypothesised reference value in the medulla or in the baro- 

receptorsq and the control centres tal, -,. p action to reduce any 

measured difference. One possible criticism of the model is the 

probability (for example Ganong (1963 P. 442) that there is no 

eeparate cardio-acceleratory centre and that an increase in heart 

rate is due to discharge of the sympathetic nerves to the heart. 

Howeverg models of this type are of value because they clearly 

describe the methods by which physiological control is achieved. 

Valentinuzzi et al., (1972) quote a linear model due to Royston 

which describes the relationhips between heart rate and blood prosiuare 

as 
Ro + SO(PO-P(t) S, (dr-(t)/dt) 

where li(t) is the heart-rate averagedover a short period of time cmd 
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P(t) is the average blood pressure over a cardiac cycle. The 

constants Po and Po refer to the basal heart-rate and a reference 

blood pressure respectively. In the light of the feed-back model, 

-ion which will hold this relationship is clearly only an approximat 

provided the peripheral resistance and stroke volume remain constant. 

Valentinuzzi et al., (1972) use the equation to estimate the 

constant S0, termed the heart-rate sensitivity in nituations where 

the blood pressure was held constant at two different levelog and 

the hear'u rate difference observed. The heart rate sensitivity In 

then the ratio of the heart rate difference to the blood pressure 

difference, since dP/dt = 0. Hyndman et al., (1971) show a much 

simpler feed-back control model for blood pressure control, but with 

essentially the same ideas. They make the point that feed-back 

mechanisms are subject to spontaneous rhythms as the controlled 

variable oscillates about the preset reference point. Ilyndman et al-t 

(1971) illustrate the phenomenon of entraiment; in this case the 

blood pressure oscillations entrained by respiration. They show 

that the magnitude of the disturbance required to produce entrainment 

is much higher for frequencies slower than the spontaneous frequency 

than for those faster or near the spontaneous one. Hyndman (1972) 

gives a detailed model of the human cardiovascular system by building 

up a series of differential equations relating to various components 

of the system. Kitney (1974) proposes a very similar model to that 

of Hyndman to explain the human thermoregulatory system. Under 

normal circumstances the system can be said to be 'free running', and 

produces a number of frequency components in the heart rate spectrum 

spread throuehout the frequency ran, -e (0-0. lHz. ). 1101, revOr, W110n 

subject to a strong external influence the system can be entrained. 



217. 

Ritney's method of producing entrainnent was to have the person dip 

his hand alternately into cold and warm water, Ile showed that the 

mathematical model correctly predicted the entrainment of the heart 

beat by the external signal, 

Chick and Womack (1975) have attempted to model the human 

respiratory/heart rate system using a mathematical model. They jised 

equidistantly sampled data points of heart rate and respiration 

obtained in the same way as in Chapter 3. A description of the model 

is as follows. Let x 19 x 21 x ý`* be the heart rate observations with 

corresponding respiration FJ'Olal y1PY2'y3' ... and let the predicted 

value of -the heart rate by the model at time n be v. Then the model 
Vn 

employed by the authors is 

vn=a0yn+.... 4Vn-k -b lvn-1 -0**O-b Zn-k* (6,2) 

They presume that the initial values vj, ... vk are -*, alcen as equal to 

the observed values xj, ... jxk but this is not stated explicitly. The 

parameters (a 
0 9*999a 

) and (b1t 
... 9b 

) are estimated by miniraising 

the sum I (x 
n -V n 

)2 
. Thus, effectively, a model is built and the 

parameter estimated by comparing the output of the model with the 

output of a real system. Presumably the initial valueI3 V, P*S*VV 

are taken as equal to the observed values. A slight generalication 

of the model is to allow an 'added' signal corresponding to the non- 

respiratory part of the heart rate signal. This donsists of adding 

a function rn to the right-hmd side of equation 6.1, where rn can 

be written 

rn= copo (n) + ei Pl(n) + ... +cI�(n). 

In this equation c0,,,, CZ arý'Unjmowjj parameters of the added 
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are orthogonal polynomials of order J. signal and the Ps (J--01 y 

Chick and Womack imply that the numberpt t of parameters required in 

equation (6-3) can be chosen as the value that gives the most 

satisfactory estimate of the added signal. However they do not show 

how the non-respiratory signal is measured in the real system, and 

,,,,, 0, are estimated together with the imply that the parameters 00 
A, 

other parameters by minimising tho total squared error as before. the 

number k can be taken as a've'lue that given a satisfactori ly Emall 

squared error sum. However, they do not justify the fact that the 

number of parameters a00... jak in equation (6.2) is one plus the 

number of parameters bj9*9e9b k, or discuss whether a better fit might 

be obtained if this restriction were lifted. ThG authors give a 
v 

visual demonstration that a resonable fit to some real data cen be 

g Unfortunatoly they do not give values achieved using k=5 and 1=3- 

of the coefficients, or demonstrate convIncingly the Coodneso of fit 

of the model. 

Model fittins,, to the intonsive-care Ratient data 

Prediction of the immediate heart rate from the respiration is 

unlikely to be of much practical help in patient monitorinC9 and. does 

not give much insight into the physiological mechanisms involved. This 

may not be the case with the patient heart-rate/Blood-pressure data, 

where we have equation (6.1) describing a possible theoretical model 

which could be investiCated. Howeverv an important difference between 

the-heart-rate/ýlood-preasure'data and the heart-rate/reopir. ation data 

is that the former involves feedback, i. e. the heart-rate affects the 

blood pressure as well-as vice versa, whereas for the latter the 

respiration is conscioiisly contiolled and is unlikely to be affected 
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by the heart rate. Chatfield (1975, p. 224) warns against the use of 

cross-spectral analysis when feedback is present and also comments 

on difficulties in parameter estimation. Valentinuzzi et al., (1972) 

avoid the problem by keeping the blood pressure constantp effectively 

opening the loop. 

Given that the data had already been collectedg it scoined 

worthwhile to see whether a model such as (6.1) could describe the 

data at all. Writing dP(t)/dt a's (P(t)-P(t-1)) /At where At in the 

sampling interval., we can rearrange (6.1) to cive 

R(t) =a+ bP(t) + op(t-1) 

where a, b and c are constants. 

The data, consistina of the heart rate and mean artorial blooa 

pressure sampled every second from patient 4-729 were divided into 

Groups of 50 points each and the abovo model fitted by the GLIN 

computer program (Nelder and Wedderbuzrný 1972)- 'The program used a 

method of modified least-squares to find parameter estimates that 

minimised the mean square error between the observed and predicted 

heart rate. It was found -that the parameter values varied considerably 

frop group to group, but that for a section of 5 consecutive group. - 

comparative stability was obtained, A regression model was fitted to 

the data from the first. 3 groups combined. The regression terms were 

added to the model one by one and each time the total squared 

difference between the observed and predicted heart rates was 

calculated. It was found that P(t) did not give a si6mificant 

reduction in the sum of squares, but that F(t-1) did. This is not 

curprising. if we consider figure 4-5P where the data for thin patient 
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are shown, filtered in the region of the respiration frequency. The 

blood pressure peaks are in many cases 1 second behind the heart rate 

peaks. Further terms were added to the model until only small 

reduction in the sum of squares were obtained. The reoultine model 

is given below. 

7.6 - 0-172(t) + 1.03P('t-1) + 0,12P(t-2) + 0,26p(t-3) 

-0.0o'P(t-4) + 0.92P(t-5) - 0,20P(t-6) - 0,82P. (t-7) - 0-31P(t-8) 

(6-4) 

The residual sum of squ? xes was reduced from 787.2 (bts/min)2 with 

149 d. qf. to 365-9 (bts/min)2 with 140 d. of. The heart-rato and 

blood pressure spectra of 4-72t shown in ficure 4.1, show a laree 

peak at about 0.275 Ilz attributablo to respiration. FiCL=e 4-5 shows 

a cycle of approximately 4 seconds which may explain the laree 

coefficient at P(t-5), 4 seconds from P(t-1). By takinG the Pourier 

transform of (6-4) vre can obtain the frequency interpretation of the 

model, as described in Appendix A. Vie find that in the frequency 

domain, the equation has 3 local maxima, at 0-050P 0.2o6 and 0.297 TIz, 

with increasing ma., -nitude. We can see from figure 4-1 that the first 

and last correspond to the thermal and respiratory peaks of the 

spectrum, althouCh the frequencies are not quite exact. The second 

peak may possibly be an artefact due to the fact that the equation 

does not describe the data exactly. 

The same model vras fitted to the succeeding 150 data points, 

with the followina result. 
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R(t) = 40.7 - 0.69P(t) + 0.29P(t-1) + 0.45P(t-2) - 0,24P(t-3) 

0,26p(t-4) + 0.57P(t-5) 0.06P(t-6) - 0-11P(t-7) 

0,12P(t-8). 

The residual sum of squares in this case was reduced from 816.1 

(bts/min)2 with 149 d. of. to 532.8 (bts/min)2 with 140 d. cx. In 

the frequency domain this equation shows only two peakep at 0.125 11z 

and at 0.297 Hz, lie can explain the latter as the respiration peak, 

but cannot explain the former; possibly it corresponds to a vasonotor 

component. We can see that most of the parameter values have charged 

considerably, showing that the system cannot be regarded as 

stationary. 

Pitting models of this kind is the tirie domain equivalent of 

qross-spectral analysis in the frequency domaint and in General we, 

require fewer parameters with these models to describe the data 

adequately. However, as with cross-spectral analycist vie have the 

problem of estimatinC the transfer function in the presence of feed. - 

back, as mentioned earlier. This is one of the reasons why it 

seemed more expedient in Chapter 4 to consider the two. spectra 

simultaneously, rather than the cross-spectrum on its oun. At most 

" of the we have shown that it is possible to accouht for about 40', ': l 

heart r4te variability by prediction from the blood pressure. This, 

in itself, does not necessarily imply a direct physiological link 

since both can be affected by external factors, such as respiration. 

The problem of feedback led to the approach described in the next 

section. 
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Box-Jenkins Model fitting 

Granger and Morris (1976) give an example where two variables 

are generated by a bivariate, autoregressive scheme with feedback, 

and they show-that the model obeyed by one variablep eliminating the 

other, can be described by what is known as an autoreeressive, moving 

average model. These models can be fitted by a scheme due to Box and 

Jenkins (1920). The method is mainly intended for forecasting and for 

assessing the parameters. of control systems.. Howeverv Box-Jenkins 

modelling has been successfully applied. to describe ecological data 

by Jenkins (1975), where feedback is definitely operating. For these 

reasons it was felt that a Box-Jenkins model might be useful for 

describing the heart-rate/blood-pressure data, exid in highlighting 

the correlations structure of the data. The process of fitting and 

estimating Box-Jenkins models is quite involved and it was felt that 

since the models are adequately described elsewhere a detailed review 

was not appropriate here. The methoas are dealt with in detail in 

Box and Jenkins (1970) and outlined in Chatfield (1975)9 Chapters 3 

and 4. A useful worked example is given in Chatfield and Prothero 

(1973). The Box-Jenkins programs for identification and estimation 

of the paramet6rs are available as USID and USES. 

Given a univariate time series x19 X2 9 ... tx n 
the basic Box- 

Jenkins model is of the form 

xt +a1x t-I + 9. ee + apxt_p -b0Ct '+ b, Ct_j +.,. +bq Ct-q , 
(6-5) 

Defining the backward shift operator B as B(xt) = xt_,, vie can write 

equation 6-3 as 

(1 a1 B+ .... + ap BP)xt = (bo + biB + ... +bqB q) ct 0 
(6.6) 
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In equation (6-5) and (6.6) a, .... ap 9bo 9blp ... ýb q are paraneters to 

be estimated from the observations. The ct are unobserved, independent 
2 

random variables with common mean 0 and common variance a. The 

right-hand side of equation 6.6 is termed the moving average (MA) and 

can be thought of as the output of a finite linear filter with random 

input. The left-hand side of equation 6.6 is termed the autoregression 

(AR). An autoregressive model is similar to a multiple regression 

model except that xt is regressed not on inde pendent variables but on 

past values of xto E4uation 6.6 is described as an autoregressive- 

moving average (ARI-TA) model. Box and Jenkins (10,70) show that this 

kind of model can be used to describe a large number of time series 

with only a small number of parameters. 

For data that are not stationaryt Box and Jenkins sucaest a 

differencin, S operation given by Vxt=Xt-x t-l The difforencine 

operator is arplied, more than once i7f necesearyg until the resultinE; 

differenced data do appear stationaryt and then. an AM-1 model is 

fitted to the differenced data. If marked oscillations, or 

seasonalitieeg are present in the data then these can be removed by a 

differencina op'erator of the form V 
(s) 

=xx, where s is the t t-s 

period of the osoillations. For seasonal data with a period that is 

not an integral number of the sampling interval more complicated 

procedures are-required to remove the seasonalities. 

An attempt was made to examine Viether a simple Box-Jenkins 

model could explain blood pressure occillations. One particular 

patient, 13-73v was chosen, because of a large poak- in tho blood 

pressure spectrum at 0.2 Hz. which neant that the periodicity could 
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be removed simply by a differencing operation V 
(5) 

=xt-X t-5 *A 

section of data containing 200 points was examined. It was found 

that sections longer than this gave unacceptably long computer 

processing times. 

After following the Box-Jenkins procedure a model was obtained 

with the equation 

5 (i - 0.628B) wt =. (l 0.948B)(1 - 0-945B ) Ct 

where wt= VV(5)xt (6-7) 

The 33ux-Jenkins program gives a X2 goodness-of-fit test for one step 

a-head predictions based on the sum of squares of the autocorrelations 

of the residuals. The estimated X2 for model (6-7) was 5-2.2 With 37 

degr: ýes of freedom, which is non-significant at 5ý,;, implyinC that the 

model is adequate for one step ahead predictions. In addition the 

residuals were plotted and did not givc; any visual indication of non- 
4 

randomness. The residual variance was 2-42 x 10 units. 

The factors 0-948 and 0.945 axe close to 1, and sueGest that we 

should difference the etthat is calculate VV 
(5) ct . If this 

(5) 
were done the factors VV would effectively cancel on each nide 

of the equation which would imply that a first order autoregTession 

would suffice. The parameter for this model was estimated and the 

resulting equation was 

(1 - 0.68B)xt =* ct* (6.6) 

In this case however the X2 goodness of fit statistic was 100.4 with 

48 d. o. f., which is sianificant at 0-5ý'% and implies that the model 

does not adequately describe the data. The residual variance in this 

case was 3.62 x 104 units. 
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Following the Box-Jenkins proacdureq a model was fitted to the 

next section of 200 points, usinC the same differencing aG before. 

The model that eras obtained was 

(1 + 0-75B)(1 + 0-15D 5)wt 
= (1 0.96B)(1 - 0-03B5) C: t 

where wt VV5xt 

Thi ri gave aX2 statistic of 84-5 with 36 d. o. f. which is SiGmificant 

at 0.5%S, implying an inadequate fit to the data. The residual 

variance was 3,83 x 104 units'. 

It is apparent that the model has changed considerably. This is 

one aspect of non-stationary which is also clear from the succecoive 

spectra of the data which show a change, scmetimes abrupt, from one 

spectnm to the next. 

The results from Box-Jenkins moaellina were rather disappointing. 

Perhaps the rion-stationa=ities were such that we could not ro. -ard tho 

data as stationary, for even short reriods of time. The method 

requires skill and time, and possibly the rather complicated models 

obtained, and the unsatisfactory nature of the fit, is evidence of 

lack of skill rather than any short-cominGs in the method for 

encompassing these data. No further model fitting was attempted. 

Discussi! 511 

ribe work on empirical model fittinp to the sampled data was 

very limited-and met with limited success. It was felt that the 

heart-rate/blood-pressure system is too complicated to hope that 

fairly simple models based solely on the heart-rate and blood pressrxe 

would be ad equate. The models are likely to be constantly evolving, 
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in time and vary considerably from person to person. In Conoral it 

was felt that a picture of the heart-rate and blood-pressure spectra 

is likely to be more useful for obtaining information about the 

patientq than a string of parametric models. 

w 

0 
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CHAP7UZ 7 

Summary and conclusions 

In summary, the heart rate and blood pressure records of 15 

post-operative patients, the blood pressure records of two normal, 

ambulatory subjects and the heart rate and respiration records of 

25 healthy subjects were studied. The purpose of the study was to 

obtain a reasonable description of the variables so as to provide 

useful information for patient monitoring and physiological r 

assessment. 

The initial step in any analydis was to plot out the data 

and examine it visually for trends, abrupt changes and outliers. 

Two patients, nos-7-73 and 8-73 displayed a large number of outliers, 
v 

tentQ-.. ively identified as extrasy+les. In these two cases'the 

interval between extrasystoles appeared random and could be de3cribed 

by a Foisson distribution. This is potentially useful since other 

studies indicated that non-random extrasystoles are possible signals 

of an impending patient crisis. The outliers from the ambulatory 

blood presdure records are also reasonably random, except that there 

were long stretches in which no outliers appeared, so that the data 

were not well described by a Poisson distribution. When free from 

outside disturbances, the heart rate from healthy subjects displayed 

a unimodal distribution, which coald, be described by a Normal curve 

in about one third of all cases. Neither the heart-interval distribution 

nor the heart-rate distribution was consistently closer to a NoiMal 

distribution. Of the post-operative patients, only 3 subjects , 7-73, 

10-73 and 15-73 gave overall heart-rate distributions that could be 
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described as Normnally distributed and 2 subjects, 1373 and 1673, 

gave overall. blood-pressure distributions that could also be 

described as Normally distributed. Fatient 9-73 displayed a very 

constant Ileart rate, possibly the result of an implanted cardiac 

pace-maker. The heart-rate distributions of the healthy subjects 

displayed very few outliers or vild points. In contrast, the heart- 

rate d1stributions of the post-operative patients contained a large 

number of outliers. These distributions showed a 'scatter' of points 

about the wain body of the distribution, possibly the result of less 

efficient heart-rate control. M(cluding these points, ',, he heart- 

rate distributions from the post operative patients were in general 

unimodal but with a smaUer dispersion than those of the healtliy 

subjects. The effect of conciom respiration was to make the 

distributions markedly bimodal. 

IA nore detailed examination was made of flne sampling statistics 

of the various blood prqssure measurements of the post-operative 

patients , vid the ambulatory subjects. The effect of averaging on the 

variables was considered, for example what gain in precision J. 3 obtained 

from considerLng the half-minute averages as opposed to the individual 

observations? This has a bearing on the interpretation*of clinichl 

observation aal the design of measuring inotrwzients. Tile concept of 

the number of degrees of freedom per point was exanined theoretically 

and empirically, and it was shown that in general the degrees of freedom 

per point are noli-linear with increasing nunber of data points. However, 

for the simpie cases of independence and Markov processes, an expression 

could be obtained. 'Ilie degrees of freedom were calculated for different 

data lengths for Ithe blood preosare records of the ambulatory sub, '; acts 

and the post-Operative patients. For short data lengths, the value 

was found to-lie btýtween 0.1 and 0.2 d. o. f. / pt.. 
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The stability of the blood pr6ssure data was examined by 

considering the distribution of run lengths, i. e. the proportion of 

the data that lie within say, ±ý mm. Hg for a given number of beats. 

It was found that in most cases the distribution showed a character- 

istic negative exponential shape with increasing run length. This 

would imply that the probability of a beat terminating the run was 

approximately constant for each beat of the run, and so the probability 

of obtaining a run of a given length decreases steadily as the run 

length increases. For the ambulatory subjects the stability of 

different variables differs, but it was found that at least 87% of 

observations viere within 12mm, 11g of the preceeding observation, for 

both subjects for systolic and diastolic pressures. 
I 

A further investigation was. conducted into the stationarity of 

thp, means and variances of the blood pressure variables. The mean 

and variance w*qre calculated over short data sets, and then considered 

for stationarity over different intervals of time, Using Kendall's 

reverse arrangement statistic. The results showed the expected result 

that the longer averaS. -es were more stable; and that the percentage of 

stationary sections decreased as the length of each section was 

increased. A further interesting result was that the variances showed 

a much higher percentage stationarity than the means for both the 

ambulator-I subjects and the post-operative patients. For exairple, for 

data sections of length 300 beats, the smallest percentage of stationary 

setswau 25% for the means, and 75% for the variances. This confi=3 

the impression gained from observing, the raw data, that although the 

blood pressure level nay change for one reason or another, such a3 
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24 hour cycles, the variation about that level is not subject to 

the same influences. 

Various methods of calculating the spectrum from the heart beats 

were discussed and it was proved that the method of French and Holden 

gave asymptotic4lly unbiased results in amplitude and phase when 

compared with the point process spectru; n,,, 11owe1er for short data stretches 

biases were likely and suggestions were made to avoid them. It was 

empirically demonstrated that with the type of data expected, all 

methods gave approxiinately the same result. When calculating the 

heart-rate spectra, a linear extrapolation between the beats was 

taken with digital sampling at the rate of one sample/sec as this 

provided a fast algorithm and a useful-method of interpreting the 

relativo phase between heart rate and respiration. 

The spectral analysis of the heart rate from the healthy sulbjectz3 

gave. clear results with many of the features mentioned in the literature. 

At least two peaksuere apparent in the spectrum; one in the region 

(0-05 - 0.10) Hz. which has been termed the vasomotor frequency, and 

the other in the region (O. ZO - 0.30) Hz., which correlated with 'res- 

piration, These peaks were not apparent in the majority of the heart- 

rate spectra from the post-optrative patients. However, a much larger 

proportion of the blood-pressure spectra from the patients gave 

results that could indicate the presence of cycles, particularly in 

the respiratory, but also in the vasomotor region. In addition, spectral 

analysis of the blood-pressure records from the ambulatory subjects 

also revealed peaks in the vasomotor region and in the so-olled ther. -,,. o- 

regulatory region. 
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Mis suggests that blood pressure is closely involved in 

-cardiova3cular control, and is susceptibld to various (; ontrol mechanisms. 

7"he fact that heart rate does not show these influences so clearly 

may mean that heart rate is independent of them, or more likely, is 

subject to many other disturbing influences which are not reflected 

back directly to blood pressure but which disguise or swamp the 

effect of the control mechanisms. The phase results from 6 records 

of 4 patients who displayed a respiratory heari-rate response su'-, ested 

that in the region of a respiratory frequency of 0.2 Hz. the blo-A 

pressure cycle was in advance of the heart rate cycle. 7he results 

from Chapter 5 showed that with healthy subjects breathing at this 

frequency, the heart-rate cycle lagged the respiration. This wouIA 

s ug , gai. t that at this frequency the blood pressure cycle was more 

closely in phase with respiration than was the heart-rate cycle. 

In Chapter 5 we attempted to quantify t1he respirator7 heart rate 

response. We showed Uiat the heart rate --an be easily entrained by 

respiration, and that respiration affected both the level and the 

variability of heart rate. The responses were consistent in tie sense 

that, compared with the resting state, if a greater stimulus than 

normal has one effect then a lesser stimulus has the opposite effect. 

For example, a high respiration rate reduced the heart-rate variability 

by about 4.5 bts/min on average, whereas a low rate increased it by 

about the same amount, Deep breathing increased the heart-rate 

variability by about 2.2 bts/min and shallow breathing reduced it 

by about 1.2 bts/Min. The phase/respiratory-frequency graphs were 

linear in the range (0-07 - 0.2) 111z., doclinirZ throaah about IDDO in 
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that range, and passin, -. Y,, through the zero phase point at about O. lHz.. 

The breath-holding experiments revealed that, contrary to maily 

claims, there may be cycles In the heart rate during voluntary apnea. 

Howeverp because the cycles appear infrequently and different to those 

of respiratory sinus arrhythmia, it was concluded that tlthe main 

mechariism for the respiratory heart-rate response is unlikelýr to be 

a central one. Instead, týe evidence appears*to'be in favour of a 

cardiac or baroreceptOr reflex, qLnd the cycles appearing during brea-L'a- 

holding are due to other factors , such as vasomotor oscillations. 

It was of interest that prior to voluntary respiration, the sinus 

arrhytllmia effect did not play a major part in the heart-rate variability 

'but At the onset of regular respiration in time to a metronome, 

practically all the heart-rate variability could be accoanted for by 

respiration. 

We examined the distribution of variance over freqaency for the 

post-Operative patient records in both short (256 sec. ) and long 

(2048 sec. ) sections. For heart rate we found that about 25% of the 

variance about a linear trend for short records was concentrated at 

cycles of greater than 50 seconds cycle length. For long records about 

23% of the variance was concentrated in cycles longer than 250 secondso 

In blood pressure the corresponding results were 28% for short records Ci 

and 35, - for long records. 



233. 

PiirV, lpr work 

A study that would be of particular intere. 9t would be the 

simultaneous analysis of heart rate, blood pressure and respiration, 

in both the healthy subject and the poat-operative patient. For the 

ambulatory subjects, clearly studies of the kind described in this 

thesis need to be carried out on more subjects., in order tb establish 

broadly based criteria of stability and resolution. For patient monit- 

oring, it would appear that a measure of-the respiration would sometimes 

enable a large proportion of the variance to be accounted 'Aor. In 

addition to monitoring for trend, it may also be useful to monitor 

for. changes in diptribution by such parameters as the variance, kurtosis 

and Pearstn's kappa. 

Spectral analysis could prove useful for patient monitoring, but 

does hide real effects such as phase charges. It is best supported C3, 
by additional information such as plots. of filtered data, or pha3e 

plots. Signs of thermoregulatory, vasomotor or respiratory activity 

can provide evidence that these control --mechanisins are at least 

functioning, which may be useful in assessing a, patient's condition. 

The distributional study carried out here, considering run 

lengths, degrees of freedom and short-term. distribations, together with 

the more traditional statistics such as the mean and variance ,, is one 

that could be carried out usefully on many types of physiological 

measurement, and in fature this type of study is likely to be carried 

out on other physiological variables besides blood pressure and heart 

rate. 
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APPENDIX A 

Spectral AnaIZ: sis- and Diaital Pilterinf, - 

This appendix covers the general theory of the nethods of 

spectral analysis and digital filtering which have been applied in 

the previous chapters. A description of the computer proCrans that 

have been employed is included and also the proofs of some results 

which had been deferred to the appendix. For further reading Kendall 

(1973) and Chatfield (1975) Cive basic introductions to time series 

analysis, Jenkins and Watts (1968) and Graneer and Hatanaka (1964) 

are valuable works on spectral analysis and Yarmah (1960,1970) and 
Anderson (1971) are very useful reference bookr, for the mathematical 

theory of time series analysis. 

11tsfinitinns 

A discrete-tine dependent randon pr. ocess nay be defined as a set 

of ravtdom variables (Y-t, t= 0-ttl vt2,.... 
) where (t=O,: tl pt2j ... 

) are 

the times at which the process is defined. In practicet we can often 

make only one observation at a given time, resulting in a finite 

observed sample (xt, t=1qe**jn). It is helpful to think of the 

observed series as just one realization of an infinite cat of time 

series that might have been observed. A major part of tin, e series 

analysis- in the estimation of the statistical properties of the 

generating process from the observed series. I-, e will assume here 

that the obs6rvations are equidistant in time. 

We wil 
.1 

adopt the notation E( 
. 
Xt) for the expootation, of xt 

(see for example Cramer (1946) P-170-71). The moan and variance of 
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a random process may then be defined as 

t E(xt .2tt 
mt)2) (Al) 

we can also define the autocovariance as 

y (t 
Is) = L., ( (xt 

- 11 t) 
(XG 

- 11 
13) 

)0 (A2) 

In general Pt'a 
2tp 

y(tts) will be functions of time, but an 

important class of series are those in which the first-order and 

second-order moments are not functions of the time of observation. 

A series is said to be 'weakly stationary' or 'stationary to the 

second order' if E(Xt) = jig Ipt 
2) 

=CY 
2 independently of 

tj and B(xt -P)(x. -P) =Y (t-s) =ý(k), where t-s = k. 

We define the'autocorrelation function at; p (k) =Y (k) /Cr 2 W) 

Many of 
; 

he results in time serien analysis are derived by assuming, 

the series to be stationary in the abow sense. 

Given a realization (xt, t=1,,,,, n) of a sta-c. ionary process, 

we can'estimate the meant vaxiance and covariance as 

-n X= xt /n (A) Z1 

2=n(, 
t_R) 

2 /n (A5; ) 

a nd Ck =nIk (Xt (xt+k /n (A6) 

The factor (n-k), instead of n in (A6) would give an unbiased 

estimate of the autocovariance function (i. e. E(Ck') =Y (k)q where 

Cks r- nck /(n-k) ). I-Iowýver, Parzen (1964) and Jenkins and Watts 

(1968t P-179) state that the denominator n in many cases gives an 
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estimate with a smaller mean square error defined by E( (y (k) _ Ck)2). 

Frequency analysis and the spectrum 

The major part of this thesis is devoted to the analysis of 

variouc phenomena in the frequency domain. We are lookinC for 

cyclical events in the datat for reasons discussed in Appendix B. A 

nat-wral model for this Icind of data is one of the form 

xt= Acos(w 
0t+ 

9) + Zt . (A7) 

In this equation, w0 is called the frequency of variation, 0 is 

called the phase and Ztj t=1,2,.. are a series of independent 

random variables representinG the superimposed noiseg with the 

assumption that B(Zt) =: 0. In this case wo is measured in radians/ 

unit. time and so w0t+0 is measured in radians. Jenkins and Watts 

(1968) put fo = wo/27T which has units of cycles/unit timet usually 

cycles/see. or IIz.. Note that for ary frequency w, with wt in radians 

and t an integerl we have for the discrete process that 

COS(14 +k 7T)t = c013 Wt for k an even inteCer, 

= coa(Tr -w)t for k an odd integer. 

co that any model with a frequency &=eater than W radians/unit time 

can be expressed In terms of a model with a frequency between 0 and w. 

For sampled data, therefore, all information about cycles in 

the data Is contained in the frequency band (O, Tr ) radians/unit time. 

Any higher frequency cycles in the ceries will appear as cycles in 

that ranae. Tbe frequencyn radians/unit time is termed the Ilyquist 

frequency and if the observations are At seconds apart, then the 

11yquist frecjj: uency is 7TA 7T2 At) =. l/(2 At) cycles/second. This 
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means that if vie were sampling the data once every second we would 

be unable to fit models with frequencies higher than 0-5 Hz.. Clearly, 

before the sampling interval is decided it is important to discover 

the range of possible cycles in the heart rate. The usual method for 

a continuous signal is to chose a small value of At so as to Give a 

wide frequency range. However, since heart beats are a discrete 

signall sampling more often than the fastest beat will not yield 

additional information, It: i s possible that the process Generating 

the heart beat oscillates at high freq: acncy, but to examine this 

would require more information than that offered by the inter-beat 

interval. We can examine heart beats as a time-dependent Poisson 

process, discussed in Chapter 3t mid froia this and from physiological. 

considerations (Appendix B) we can show that we almost certainly do 

not introCoace any important aliases if we sample once every second. 

If wo consider A and 0 fixed constants in (A7), then Xt in not 

stationary according to the definition Civen earlier because E(Xt) 

will change with time. To apply the theory of stationary random 

processes A is assumed a random variablep mean zerog and 0 is assumed 

to have r- unifonyi distribution on (0,2 w). We assume E(Z t2) =a 
2 
z 

and that ZtpA and 9 are mutually independent. These are then fixed 

for a single realization of the procesa. We then find that E(Xt)-O 

and y-E (i Xt )= iirE (A 2) 
cos Wk +c, 

26, 
where (k) t +Ic 0Z ok 

6ok =0 'if 

1-1 =0 and 6 
ok =1 if Ic = 0. 

This result has been generalized to all stationary process as 

the I-Ilener-MAntchine theorem which states that the sequence of 

autocovariances y for a discrete stationary proceas with finite (k) 
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variance can always be representod in the f o2m 

(1c) =] coo wk dT, (w), (AB) 

0 

where F(w) is a monotonically increa2ing function and bounded. It 

can be shovm that P(w) has a direct physical interpretation as the 

contribution to the variance of the serips ifiAch is accounted for by 

frequencies in the r-mige (O, w). For k---O, y(O) =02 dp(w) = F(, u 

Thus the total variance of the serics is. vu-c-ounted for by the 

contributions in (0, Tr ). Mien F (w) is difj. 'ý-, ý:? eutiable vo put 

dF(w)/dw =f (w). The function F(w) io call, ýfý the spectral 

distribution function ruid f(w) tho speotr. -, l aensity function (or 

simply the spectrum). Pox continuous f(w), (0) can be thought of 

as a cosine transform. 11he inverse transforri to obtain f(w) is 

given by the formula 
co 

f (w) = .11e -Y 0<w :ý ir 

7r k=- oo 

y(o) +21 y(k) comfIc ) vinoo y(Ic) y (-k). (A9) "0 

Tr k=1 

Thus vre define the spectrLun as the Fourier trarisform of the 

autocovaricance function. 

Estimatinfr the vrectrun 

The most straight-foruraxd mothod of ectimating the cpectrum from 

observationa (xt, t=1 (1)n) "'Oula bo to r'u"s t"tuto Ck for y (k) in 

(Ag) for valuer; of k up to n-1. This can be writtm, 

f(w) = (Co +2n, 
i C IC cos wk) / 7t e* 

(Al 0) 

kZ-1 
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This cc-ui be re-arrnnged an 

(x -R)Coswt ý2 + ýn (xt-; )sinwt ý2 /n 
t 

(All) tI 
t=l t=l 

= ln("') - 

Pormula (All), has been used by several of the earlier workers in 

time series such as Schuster (1897)- Schuster tenned In (w) the 

periodogram, but a better ten-! i is perhaps the sample spectrumf Given 

by Je)-l-, in. - and Watts (1968). Alternative derivations of (All) can 

be obtained either as an estimate of D-(A 2) 
when fittinC a model of 

the forin (AI) by the method of least squares for various values of w, 

or as the square of the modulus of the finite Pourier transform of 

the orig ,, 
inal series at each frequency w. 

It is easy to show that ao n tendo to infinity lim E(In(w) 

Trf(w) but unfortunately the varianca of In (w) about f(w) does not 

decrease with'n. Pisher (1929) showed that if the data were normally 

distribui. ad independent random variables with mean zero and variance 

Cr 
2, then 21 

n(w) 
/a2 is distributed a. 3 a X2 - with 2 degrees of 

freedom (except for w=o, n, when the distributions have only 1 

degree of freedorl). The theoretical spectrum of the da ta in this 

case is f (1.7) =a2/ 7r . The variance of a X2 distribution with 2 

degrees of freedom is 4 and is independent of n. We can see that 

the variance of In (w) about f(w) does not decrease as n increases and 

so in no nense can In (w) be thour, -ht of as a Good estimator of f(w). 

Smoothin! T the 
_Uectrm 

Daniell (1946) suggested that to re(luce the variance of the 
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spectral estimate the ordinates of the periodogram should be avere-,,, ed. 

Let w be the frequency at which we wich to estimate the spectrwn and 

m be the number of consecutive ordinates over which we wish to 

average. We assume that w is not equal to 0 or Tr and that m is even. 

Ile then construct a set of consecutive integers, Bw, such that half 

the set (w 
j :wj =27rj/n, jeB 

w) 
is less in value than w. 

We then put 

f (W) In (w 
j 

for all j in Bý (A12) 
m3 

For w near Ol where j may be less than zero, we use tho faot that 

In("ýJ) = In(w )' For w near 7r , where j may be greater than n/2, 
Wj 

we have that cos ( Tr +2 Tr j/n) = cos ( -ff -2 7T J/n) and co from (Al 1 

ln ( Tr +2 7t J/n) = In( Tr -2 7ri/n) . Neiahbouring periodo, -ram 

ordinates 2-Tr/n rads. /unit time apart can be sho,, m to be a'symptoti- 

cally uncorrelatedo so the variance of (A12) will be of or(ler I/m. 

Thus v by makina m -*co and m/n-* 0 as ýi-*(* we obtain a consistent 

estimator for the spectrum. The estimator (A12) may be Wased 

because 

E (f (w) )= 
.1Xf 

(wj 
m3 

which is not equal to f (w) unless f (w is linear for j in B. Tý, us 

in order to estimate the spectrum vie have to choose a suitable value 

for m. A large value of m will result'in a small variance but a 

large bias and in addition we would obtain only (n/m) indopendent 

spectral estimates in. (0,7T ). Another difficulty with too large a 

value of m is that Genuine peaks in the spectrum may be sinoothed out. 

An alternative method of reducing the variance of tho periodo, -T, -iin 

is to apply weights to the coefficients Ck in (A10). A stcndard 
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weighting function, named Takey-Hanning after J. Takey and J, VHann, 

is 

'ý k 2, - (1 Cos 7r L],, --) k= Op 911 

ýk m0k ->M , 

Here M is an arbitrary integer to be chosen by the user, but 
A 

Generally N< n/3- It can be shovm thatq for f(w) estimated by the 

Tulcey-IlanninC method from a series of indepenont random variables x t 

with variance Cr 
2r that Vaxiance (ýf (VI) 41-1,0 2j 

Wý0,7r 
5n 

We also have that E(fF(w) )- f(w) and so by making n; *- faster 

than 11 -ý. w we can obtain consistent estimators for the spectrum. 

This method is equivalent to calculating -a truncated version of (A10) 

M 
f1 (w) (CO +21 Ckoos wk wj= 0) 

... 914 p 
IT k=1 

I and then smoothing these by weights (j-, LP , 14. 
) to give 

f (W) - if 11 
(w 

- 7r + if, (W) + if, (w + Tr/m) w+0, IT 

£(0) = 
ýfl(0) efl( 

IT/1.1) 9f( Tr )= ir, ( 7r )+;. 
d-: r, ( ir -' 

/1.1) 
- 

There are similar problems in deciding a value of 7.1 as there are in 

determining m for smoothing the periodogram, Since only N 

autocovari., Lnees have to be calculated, the Tukey-41anning method 

offered considerable computational advantages and was used frequently 

in the past. Recently, however, a superior method of computing the 

periodogTam knýwn as the Past Fourier Transform (see for example 

Chatfield 1975, P-145) has become available and has meant that it Is 

now computationally easier in many cases to calculate the raw 

periodogram and then smooth it. 
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Di-otribution of vixiance over froquency 

If ve mm (A10) over frequencien w 27rj/n we get 

nnn n-1 I in(wi )-X CO +211 Ck 001) wi k0 
J=1 J=1 J=1 k--1 

The double summation in the right-hand expression is interchangeable, 

so the second torm of this expression is equal to zero since 

n 
cos wk= Op k+0. 

Thus nIWn (xt 2 
Z n( J) 

J:: -1 

Usiriýg ibe fact that In( n+ L--rr, 1) -I( iT - LIJ. ) we can write the 
nn 

above equation as 

n/2 n 21 In(wi /. n I (xt - FC /n 
, assuming n to be mven. (A13) 

t=1 

This is the sample equivalent of the theoretical result displayed 

after (A8) that the variance of the time series can be accounted for 

by the opectrum in (0,7r) 
. Thus, we can see how the variance may 

be split into frequency bands (w = 27rj/n) by using the periodogram 

ordinates. 

Sip, mi-fic'.. "Ice tests 

In Chapter 4 we needed a test to examine whether a time series 

contained one or more strictly periodic components. If the 

observations are normally distributed random variables with mean 

zero and varjance Cr 
2, 

then 21 
n(w)/a 

2 
is distributed as aX2 with 2 

degrees of freedom. However# we cannot use this result directly to 

test the maximum ordinate of a periodogram because we do not know CF2 t 
2 

and the maiimum of a set of X variables will itself not be 
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distributed as a ý2. Fisher (1929) discuwýed the distribution of 

gr=r th greatest of I(wj)/ I(wj) ,0< jký where square 
J=l 

'brackets donoto Integer part, and n is the number of points in the 

series. As n P(gr > n7l (x + log 
0 n) ) earyverges to 1- exp(-e-'). 

In. many cases studied in Chapter 4 we have n= 256 which at the 0-05 

and 0*01 probability levels gave eifniifican-. points of g as 0-0333 
x 

and 0-0396. Coneralizations of this result cuce discussed in Jenkins 

and Watts (1968, p. 253) and also in IT&nnan (1971, P-467). I-, e assumG. 

that 
(10 co 

xt =p+p cos(tQ ++y. where yt h,, 9 11 , 16< 16 t-i hI Ij - 6>0 
C, 4 CO 

Here V0 Pf QI Ot and the hir, are unIcnown c(-,, i-. tant3 and the ct axe 

normally dictributed independent randora variables. The random 

variables yt expressed as a linear co. mbination of the Ct3 are known 

as a linear process. The null hypothef. -v is p =0 9 pgainst p>0 

withil, 0 and unknown. Urder the riull*hyfothosis it is demonstrated 

in Hannan (1970) that the above asymptotic expro3sion for 

IP(c. > n-1 (x - rt 
logen) ) holds true if I(w j) in veplaced by I(w i 

)/. f(wj), 

where f(wj) is the theoretical opcetral value at wj. The assumption 

of normality can be removed provided momento 'of oufficiently high 

order' exist (Hannan, 1970, P-472). nis would ceem to be a 

reasonable requirement for the obsorvations with which we are dealing. 

It is futher shown that if the spectrLm is cotirated by Daniell's 

method andq in the notation of the previous section$ we have m-ý. O* 

n -+co and m/n 40 then the asymptotic results are true when f(w i 

is replaced by f(w 
j 

the estimated spoetral value at frequency w je 
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Bivariate processes 

When analysingf cayl heart rate and blood pressurep we are 

interested in the relationships between the two series. Let us say 

that we have n observations (x,, yl), ... 9 
(xngyn) of a discrete 

random process (Xtpyt)# In a similar manner to the univariate case 

we can define E(Xt) , pX9 E(yt) =p yt L,, (Xt- 11 X) 
(Xt+k- p X) 

)=y 
XX(k) 9 

E( (Yt- 11 y) 
(Yt+k- 11 y) y y(k) and E( (Xt-p 

X). 
(Yt+k- 11 y) =y Xy(k) 

The cross-co=olation Amotion is defined as 

Pxry(k) =y Xy(k)/ 
V(y 

XX(O) y yy(O) 

By analogy with equation (A9) we can define the cross-spectrum as 

the Fourier transform of the cross-covariance functionj thus 

f; C 
00 _iwk (A13) 

,, 
(w) = .11y Xy(k)e 0 

IT k= -()o 

Note that this is not necessarily a real quantity, because y XY(k) Is 

not necesaarily equal to y (-k). Thýs the cross-spectrum can be xy 

split into real and imaginary parts; fy (w) = O(W) - iq(w)p whore r 'y 
00 o(w) = .11y xy 

(k) cos wk (A14) 

7r k---, - 
CO 

and q(w) = 1.1 y xy 
(k) sin wk (Al 5) 

Ir k-- - co 

This enables us to write 

f XY 
(w) =Mxy(w)exp(ifýr(w) (Al 6) 

with aXY(w) =v/(02(w) +q 
2(w) ) (AM 

and 0 
xy 

(w) = tan-'(-q(w)/c(w) )t (Al 8) 

where ay(w) is termed the oroes-spectral amplitude and 0 
xy 

(w) is 

termod the phase spectrum. 
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Another useful quantity is the coherency defined as 
i 

Ch(w) = cjiy(w)/(fX(w)fY(w))where fX(w) and fy(w) are the spectra 

of the individual processes XtYt . It can be shown that 0g 
. 
Ch(w) <1 

and that the coherency measures the linear correlation between two 

components of a bivariate process at frequency w. For Ch(w) near 1, 

the two processes are closely correlated at frequency w. Therefore 

in order to describe completely a cross-spectrum we need three 

measuresp the cross-spectrum amplitudep the phase and the coherency. 

As an illustration of these definitionap lot us consider two 

processes given by 

xtZ 
ilt 

and Yt X t-d +Z 2pt 

where (zl, 
t) and (Z 

2, t) are uncorrelated random prooesses with mem. -le 

zero and varianoes d2Z and where d is*ai integer. 

Then we find that yXy(k) =a 
2Z. k=d, 

=0 otherwisev 

and P Xy(k) = 1/Y'2 k=d 

=0 otherwise. 
2 iwd #1 

Thus fXy(w) = Cr Ze- Tr , axy(w) cr '71 7r 

fx(W) = Cr 
2/ 

7r 9fY 
(w) = 2cr 2z /7r 0 

Thus if one time series is simply a time delayed version of the other 

with lag d, then the phase between them is a linear function of 

frequency with gradient -d. This result can be generalized for 

integer random variable d. In this case 

E(Z lot z ltt+k-d 
)a2 Prob(d = I-) . 



246. 

CO 00 Thus fXy(w) = .1. X YXr(k)e-iwk . CT 
21 

Frob(d--k)e-'Wk- =Cr 
2 
7L, d(e-iwd . 1. Tr k-- -- Tr 

z 
k---- ' 

Ir 
, 

This can be simplified by making ýhe assumption that the distribution 

of d is symetric about d=d0. Then 

C» 

£XY(w) . 02 Z 
-iwd 0j P(d-d 

0= 
k-do)e-i'VI(k-do) 

k-- - Co 

Putting kI= k-d 
0 we ge t 

00 
f (W) 2e -i,, Ido I P(d-do = kl) e-iwk 1 XY z 

k= - co 

=a 
2z 

e-'Wdo(P(d-d 0= 
0) +2 P(d-d 

0 
kj) cos w1c, 

The quantity inside the summation is real ond so the phase is simply 

OXY(w) = -wd 0 as before, 

In general the phase will be 

0,, (w) - -tan-, 1,, (sin wcl 
E(cos wd) 

If we reduce the angle (wd) by a fixed Funount wE(d) , then we have to 

compensate the phase by the same amount. 6 

Thus oXr(w) = -wE(d) - tan7l E(pin w(d-E(d)-- ý 
E(cos w(d-B(d) )I 

Estimation of the crosr. -spectrum and comiDuter j2roc., I!, =c 

The methods of estimating the cross-speotrum are the same as 

for the speotr=. Bither a Pourier transfona of the weighted cross-co- 

variance is takent or the cross-Periodog-ramt dofined by 
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Inx iwt)( n yto-'Wt) /n is calculated, and smoothed XY(w) =(It 
W 

by the methods used in periodogram analysis. 

For large scale computing of the spectrum there are many 

advantages in pre-programmed packages. nie disadvantages are that 

one is restricted in range and scope to the package limitations 

because they are not easy to alter. The two methods of calculating 

the spectrum, via the autocovariance coefficients and. by directly 

smoothind the periodogram have been written into the BM Bio, -. Iedical 

Computer Programs series as B1002T and BMDX92 respectively (Dixon 

1970P 1972). Both programs have been used in the analysis of heart 

rate and blood pressure. 

The restrictions of BMD02T a=e that only 1000 points/series 

; aay be inpit, and the ma imum lag M to which the autocovariances are 

calculated is 199. The advantages are that the original series, the 

autocova: ciances and the cross-oovariances are printed and plotted 

as well as the spectrum, cross-spectral amplitudep phaoe and 

coherency. Large advantages are gained from plotting the data cince 

General effects can be seen at a glance and 'odd' points or outliers 

can be readily detected. The program containo several optional 

procedures for preprocessing the data, Rreprocessing is usually 

carried out when prior knowledge has been obtained about the spectrum. 

Factors such as known cyclic behaviour produce peaks in the spectrum 

and since most estimation procedures are efficient throughout the 

spectrum only for relatively flat spectra, it is considered better to 

remove the cyclic effect first. Of courve this is not necessary if 
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it is only the cyclic effect that one is interested in, The program 
IV BlID02T permits. a tran3fo=ation of the fo='x t= Xt+, -B xt where 

IB 1<1*0. The factor B would be. chosen to produce a relatively flat 

speotn=. In practice the transformation is too restricted to be of 

much use. It would have been useful to transform with B= t19 and 

also to include 'seasonal' differencing of the form xt=X t-xt-zt 

where kis the cycle length of the 'seasonal' effect, necessarily an 

integer. 

A more useful optional procedure given in MID02T is a detrending 

of the serics by subtracting a linear trend 

xtxt b(t - T)q 

a 
where R and T are the means of xt nnd, t, and b is the least-squares 

linear rebTession coefficient. If this procedure is not carried out, 

a simple mean is subtracted from the data. Havine read the input 

series, say (xt, y. ), t= 19 ... n, the program computes the auto- 

covariances and the cross-covariance up to the prescribed lag Mt and 

then calculates the raw spectrum by equation (All)# and the cross- 

spectrum by the same method with Ck replaced by the cross-covariance 

function. Pinally the cross-speotral mplitude, phase and coherency 

are printed and plotted. 

Program E. IDX92 has better subroutines available for preprocessing 

the datap but is surprisingly limited in the procedures for plotting 

the output information. The data may be prefiltered using the moving 

average filter of the form Phx The values of h determine IM t+m m 
M=. p 
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the type of filter applied to the data. A discussion of filtering 

is given later in this Appendix. Program BMDX92 allows for both low 

pas-3 and b. -md pass filters, and on specification of the frequency 

response function requiredg will calculate suitable coefficients hm 

of the moving averagn. The series is detrended in a similar manner 

to B1002T although in this case the detrending is not optlonalq and 

the regression coefficients are not output. The detrended seriee is 

then multiplied by a cosine taper of the form 

0-50 - Cos( (t - Wr) t 1900*tr 
tr+ It ... n-r 

',,, 
0-5(l - cos( (n -t+ J)/r) t n-r+l, ... ,n 

where r= Cn/101 and [x] denotes intecer 'part of X. 

If we look upon the finite ceries an the result of viewing an 

infinite series through a rectangular windowq then the Fourier 

tr=sform of the finite series will have certain undesirable features 

coripa=ed witb the Fourier transform of the infinite series becauce 

of the rectangular window. For example# the speatzvm of an infinite 

nirrasoid would theoretically display a single spike at the sinueoid 

frequency. The spectrum of a finite sinusoid of length n would 

di-. play a broader peak at the sinusoid frequency and side lobes 

spaced 27r/n radians/sec. apart around the main peak. The cosine taper 

is dosiglied to reduce these effects by 'smoothing' the edges of the 

rectangular window. The resulting series :Z=W- is followed by t txt 

zeros until ýhe aeries contains a total of N elementsp where N is 

the smallest powor of 2 greater than n. Program BMDX92 employs the 

Fa. 3t Fourier transform algorithm ; fhich is only efficient when the 
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number of points in the data is highly composite i. e. n=abc where 

a, b9o are integers. In this case we require N=23 which is achieved 

by adding zeros. We are not introducing false information by this 

method because when dealing with a finite series all points outside 

the series are implicitly assumed zero. The finite Pourier transforms 

of the resulting series are computed two at a time. Let (xt) and (yt)j 

t= 09 ... X-19 denote the two sories. The finite Fourier traneform 

of tha complex series(vi) i--(: xtý +(iyt) is obtained by means of a sub- 
00 ) are routine. The finite Fourier transformzýxtý and(yt)of(xt) and(yt 

obtained from the fonaulae 

0000 1 
't)/21 .t= (v 

t+ vN_t)/2 Yt Vt - V1, 

which axe evaluated only for t Here vt is the complex 

conjugate of vt, If the total number of series is odd then an all 

zero serius is created to complete the last pair to be transfo. -mad. 

The spectrum for xt is estimated from 

(k+-, Ie-) doo* 
aIxtxt (Al 9) 

t= (k4) d 

where k= 09... I'b ;d IV2b ;co (s(d-1) nw= 2v ks/2b, y t. k 
t=1 

k= 0994oopb; s is the sampling rate after prefiltering and b (a powor 

of 2) is the number of frequency bands specified by the user. Tha 

program description of EMX92, (Dixon, 1972) incorrectly includes a 

divisor of 4 in (A1q)* The actual program does divide (A19) bY 4y 

but computes xt and yt without the divisor of 2 given aboveo In 

evaluatinG (A19) use is made of the fact that 

0*00 . 9- 

xt= : ý-t and xt-, 2 XN-t 0. 
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The spectrum for y is estimated in the same way and the crozs-spectrum 

calculated from 

(k+ý-) d00. 
fXY("rk) =a 

t-ýk-j)d 
X t4l 

It is easily seen that this is a simple averaging of the exoss- 

periodogram over m= 2d frequencies wk . The appropriate number of 

degrees of freedom in the X2 distribution is thus n/b. 

The spectrum estimates fx (wk) and fy (wk) are printed and plotted 

against v. The cross-spectral parameters are: k 

amplItude =w k) 
A 

phase = 180 arg (f 
-V 

(wk) 0 

and coheronce =wwr 'ýy( 
k) 

/I/ (: ýc( Ofy(lk) 

These values are. printed but unfortunately the prograim does not provida 

an option for plotting them. 

It is important to realise that the spectral estimAtes computed 

by 32MX92 contain common factors. Per examples when d=2 both f 
fzc(wk) 

and fý(wk+, ) will contain the factor ý2k+jx"; the former as the 2k+1 I 

first torm in the mmmation and the latter as the last term in the 

summation of (A19). This fact has important consequences if we wish 

to estimate the variance contributed by a cyclic component. For 

examplo if we have a cycle with frequency 27T2k/4b then we would 
*1 to be large and *A expect I and to be x2kx: ý, ýac-l 

2k-1 2k+lx2k+l 

relatively small. Thus we could estimato & variance due to tho 

cyclic component by dividina thc- cpoetral estimate fx (wk) by c. 
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Howeverg if the frequency of the cycle wore 2w (2k+-I)/4b then 

00* xx would be largeg and the contribution to the spectrum 2k+1 2k+1 

would appear in both fx (wk) and fx(wk+, ). If we added the spectral 

ordinates at wk and wk+l to estimate the variance in that frequency 

bandt then we would double the contribution due to the cyclic 

component. Howevert for series which do not seem to contain fixed 

frequency cycles, the variance estimate obtained by adding all the 

spectral ordinates was close to the sample vaxiance. In general it 

was lower than the scample variancer bcoause of the effecto of the 

cosine filter and the detren4ing. The user has to select a value b, 

the number of frequency bands to be resolved. This automatically 

gives the bandwidth m apd thus the vaxiance of the spectral 

estimates. Selecting a value of b is thus equivalent to deciding 

the maximum lag M to calculate in B1002T but usually there is a ruch 

greater restriction in choice. It is wise to select a value of b so 

that the number of degrees of freedom n/b is at least 4, and 

preferably greater than 6. Of course too small a value of b, will 

give a ve--y poor resolution and a large bias. In deciding a value 

of 14 the recommended procedure is to try several in the region 

11204 11/nC 113 and to try and compromise between too smooth and"too 

erratic a curve. 

When analysing Iong serieu, the rather artificial procedure of 

adding zeros used in BDIDX92 can be avoided by dividinC; the serice 

into lengths equal to a power of 2. It was found that a straight- 

forward analysis of a long seriesq say 1000 points ums. unproductive, 

partly because wo rqxeiy obtained 'good' recordings for that Ion, -. r,, th 
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of time and also because the signals were unlikely to remain 

stationary over the period. In generall series of lengths 512 and 

256 were tr-Ocen with BDIDX92 resolving Into 64 or 32 frequency bands 

between 0 and 0-5 Hz., which Cave either 4 or 8 degrees of freedom 

for each frequency. For BTM02T, series of length 300 and 900 were 

examined. The lags chosen for the former were between 50 and 90 

point3, with 60 as a compromise. A comparison between the two 

methods for veries of about the same length showed that they both 

gave approximately the same shapee4 spectra. Major peaks in one would 

be reflected in the other. However,, it was found that BMD02T seemed 

to be more sensitive to transients and in several cases gave an 

uninfonnative spoctrum compared with WDX92, due to the presence of 

odd large beatz which had not been removed as extrasystoles. 

Program B'HDX92 required lose control cards for its operation, 

took half the tinie and cost to run as B1002T and had better 

precautio, is againot leakage. In some circumstances, for instance 

when the two aeries are identical for a long lag d between them, 

then it is advicable to realien the two series to be more nearly in 

phase, that is replace. sayyt by yt+dq before calculating the cross- 

spectrum and phase. This is discussed in Jenkins and Watts (1968, 

P-399)- In this case the lag d is beat estimated from the cross- 

covaxia. nce function which is calculated by BOOM However, in most 

cases, for reasons of speed and ease of application BIIDX92 was used 

for calculating the spectral and cross 

spectral eatimateo. 
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Effect of extrasystoles 

In Chapter 1 it was pointed out that'occasionally there occurred 

very fast beats in the heart rate signal, called extrasystolest which 

were not part of the normal process. The fact that they can completely 

distort the spectrum is shown if we consider twoo at uay twice the 

normal heart rate, j seconds apart. These may be ten times the 

distance from the mean of normal beats that might have occurred at 

these times. Then froý A6 Ck will be considorably greater when kj 

than when k: ýJ. If we estimate the spectrwn by the Tukey-11anning 

method of applying weights to the Ck in AJO then fl(w) will be 

dominated by, Cj provided JgM and the coefficient of Cj is 2A j coo wj. 
IT 

Thus the spectrum will appear to oscillate with period equal to the 

distence between extrasystoles. This unusual phenomenon was observed 

in several heart rate spectra which had been calculated before the 

I extrasystoles had been removed. 

Digital filtering and complex demodulation 

Cross-spectral analysis is a very useful tool for determining the 

phase between two time series. However the methods are dependent on 

the assumptions of stationarity, and if tho phase is changing over 

the period of time in considerationt the results will chow only tho 

overall effects. A theory has been de veloped (Priestley 1965,1970; 

Subba Rao and Tong, 1973) to deal with certain types of non- 

stationarity, when týe non-stationary changes are slow in comparison 

with the frequencies being examined, However the theory is 

computationally quite difficult to implement and we have considered 

here only the computationally simpler but more primitive methods of 

filtering and complex demodulation. 
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Digitalfiltprs 

The principal u3e of filtering, digital or otherwise, is to 

smooth tho data to be analysed. In general a filter acts on the 

time hi-c-tozy of the data in come way. The moot usual form of the 

filter if; a linear one, and for discrete data the general 

rolations'lUp between the raw data xt and the smoothed data 3t t is 

00 
t t-j h (A20) 

where the hi lo axe known constants. We are assuming that the data 

axe sampled e-iary second, and so all frequencies will be expressed in 

Hz. . 
If we t, -.,. ke v. Pou'rier trmcfona of A20 we get a relationship of the 

orm 
0 

: ý. (W) =H W) xo(%., ) 
IT ý'W 7r 

(A21) 

Here H(w) is called the transfer function or the frequency response 

I of the filtsx, raid describes the way the filter mod5fies the data at 

differpnt fre0oncies. In a similar n6tation to that of the cross- 

spectrum ve can plit H(w) -G w)e-O(w) where G(w) = JH(w)j in termed 

the gain of the filter, and O(w) is tho phase. 
I 

If h_j in A20 then 

H(w) will be real and JI(w) = G(w) . In this case H is called a* 

symietric fil-bar and the phase is thus 0 or multiples 'Of Ir 
. For 

examplep the Tcacey filter, from A12 is given by xt = 0-5xt + 0,25 

N-1 + 't+i) - The frequency response is H(w) = 0-5 + 2(0.25)cos w 

cols 
2W 7T 4w ý< Tr 

2 

A computationally noZe efficient filter is obtained by using 

recursive techniques. We can describe a recursive filter by the 

formula x=ax+ Ot )X. 
L - t t-1 

(0.9 a41 
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The frequency response is H(w) -1-a which is complex and 
1- as-"' 

will phase shift the data. The gain is given by G(w) =I-a 
+C, 2)2 0-2a cosw 

-7r 4W 1-1ý Ir, This is symmetric about w= 09 monotonically 

decreasing from w=0 to w =7T, This type of filter is termed a low 

pass filter, meaning that it gives greater weight to the lower 

frequencies in the data. By. decreasing a9 increased weight will be 

given to the higher frequencies. We can use two recursive filters 

to obtain. a zero phase-shift filter, by filtering once forwards and 

filtering the second time backwarda. Thus 

xt = a: ýt_j + a)xt 
z &I 
xt = al t+l + (i -a )2t 

The 'transfer function between ýt and xt is H(w) . 11 _a )2 

1-2 acý., s w +a 

ýhis is a real function and so has phase of zero or multiples of7T, 

and thus the filter does not phase shift the data. 

A high pass filter is one that removes low frequencies and 

trend from the datag and transmits a greater proportion of hiCher 

frequencies. One method of obtaining high pass filtered data is 

simply to subtract the output of a low pass filter from the original 

data. Orr and Hoffman (1974) employed this method to obtain zero 

phase-shift highpass filtered data. In this way they were able to 

remove low frequency effects such as ciroadian rhythms in order to 

examine a postulated 90 minute cycle. 

Often we wish to examine data in the region of a particular 
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frequency, and to exclude both higher and lower frequency effects. 

One method of doing this is to select weights hi in equation A20 so 

as to give a frequency response function with a peak at the frequency 

of interest. Por example, if we wished to examine data in the region 

of frequency w0, we could put 

hi= cosw 0j -11 0 1< M 

h0 11 I> ?. I. 

Then if the original data was xt= Cos wt then A20 becomes 

-m xt=I Cos woj cosw(t-J) 
J=-m 

which can be shown to be equal to 

t. -w))x con wt YC = sin 
(21.1+1 (wo 

2 

si w0 -W) 
2 

thus the transfer function in this case is 

H(W) = Sill -21-411 (wo-W) 
2 

sinfWO-W 

Thin equation is illustrated'in figure Al. 

0.5 
jt-Bandýidth-A 

4I 

w- 21T 
02 T47 1 

V 
0 

+27T 
0 I-M +i 

(A22) 

6 

0 

Figure Al. A transfer function given by equation A22. 
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From figure Al we can see that the maximum weighting is given 

to frequencies in the region of wo. This methodp with modifications, 

has been programmed as WID01T. The first modification is to'reduce 

the side lobea as shown in figure Al by the application to the hi is 

of a cosine taper of the form (0-54 + 0-46cos 4P - This is almost 

identical to the cosine taper used in BDIDX92. This will give rna imilin 

weight to the observations near the time boing considered. In order 

to study a greater range of frequenciest and to obtain a more nearly 

rectangular filter, several of the above triangular shaped filters 

are employedl spaced7r/M units apart. If p is the number of 

triangular filters that make up thd general filterp the weighting 

coefficients become 
0 

h0= 2p 
m 

[0-54 
+ 0.46 cos iv cosiwo sin(pj7r /M) -M 4 JýC N9 J+ 0. (A23 lij =A mI ain(j ?r /14) 

The bandwidth of this filter is defined, in this cLsog to be I wl-W 21 

where H(wj) = H(w2) = 0-5 and w, +w2, 

Filtering must be'undertaken with care to avoid inducing cycles 

in the filtered data that were not in the oriCinal. The fact that 

cycles may be induced was shown by Slutsky in 1937 and is discussed 

in Granger and Hatanaka (19649 P-41)- If we have a relationship of 

the form A21 for a filter, and f(w) is the spectrum of the raw data 

and fl(w) is the spectrum of the smoothed data then it can be shown 

2A that fl(w) =H (w) f(w). Thus if the input data were random noise 

and we applied a filter with transfer function A229 then the spectrum 

would resemble the square of figure Al. This would imply that the 

filtered data were nearly cyclic with frequency w0, especially if 
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the bandwidth of the filter were fiarrow. If the filterinC effect 

were not taken into account, the oriCinal may be thouCht cyclic as 

well. For this reasont the original spectral shape must be taken 

into account before filterine, and for band pass filterine the centre 

of the filter should be at a spectral peak. 

Hannan's I"- eqtimation 

A simple model for the heaxt-rate/respiration system would be a 

lead-lar model, where possibly we could put respiration leading heart 

rate by a fixed, amount. Methods of estimating lags between signals 

have been developed by Hannan and Thomson (1971,1973). Their methods 

avoid the necessity of estimating the phase between the signals, which 

may be an advantae. -e if the phase is changing rapidly with frequency 

(Jenkins and Watts, 19689 P-399-400)- 

Given a-bivariate time-series (xltyl)t,,, 
t(x gy n 

), we find the 

Pourier t=ansforms 
0nn 
X(O) xj exp Si yj exp5is2n J 

11 ýn 
v/ n J=I Yn j=1 

00 
we put IýX) (w x )ý*(13) II(y) (W, 

3) = 
ý(e)pjs) and (a x 

(s)y (a)p vibere* denoteo complex conjugation and w,, 2, Tp (w. ) = x* 
n 

These definitions differ from those given in (All) in that the 

mean has not been subtracted from the data. We wish to estimate the 

IaC between the two signals at frequency w0, which is between 0 and 

In the same way as Daniell's method of smoothing periodograns we 

consider a-band of frequencies, centred at w0, and containing m 
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fundamental frequencies w, 3 
27re/n. %, he cross-spootrum f XY 

(w) is 

estimated at w w, +0, Ir by 

A 
fxi(wo) 

il- 

where is the uum over m fundamental frequencies in the bandq as 

before. lie put pý( T) It(X -i To /m and estimate the lag 
Y) 

(ws)e 

between the two signals at frequency wo as the value ToofIrwhich maximises 

2 
q( -I, 

(A24) 

Lannan and Thomson (1971P 1973)*derive properties of 
Aq(, 

r ) and 

showed that under certain conditions it is a consistent estimator of 

the lag between the two signals at a particular froquency. 

7he justification for the method is quite simple. In the 

following equations the summations axe from 1 to n unless indicated. 

0 )2 For s0 we have that x(O) xj /, /n and so -Ixl(O) Ix 
j 

/n 

Thus from (A13) wo have that 

I IXI(w 11(0) 2 Ix )2 /n 

5Sx 
xi i 

We can also show that 

1,, iyj -II (A25) 

5n 

and this is the oovariance between the two series. 

We define CI(r) as 
XY 

CnT n- rx n- T 

-V( 
r) 1 "Jyj+ IiI yj+. r 

J=l J=j J=l 
n 

0 

and so the left hand side of (A725)can be expressed as C' (0). 
XY 
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Let (yj) be a tirae-delayea version of xiV tilus yjý Xj-d ý for J> d. 

Asswe the relationship i., ý, not definod for Oý, i4d. 

0 'r, 
Then Y(S) x exp i-d 

n J=l n 

n IT exp 2 Ir cl ex"p(is27r (J-d L---) 'j-d 

v/n 
nIn 

j=l 

Thun exT is2 d) y(s) - x(£; ) --- IX 
nLý' 

L J=l-d 

n xi exp(iF, 27r xjcxpýia-22r j 
nn 

J=n-d+l 

For fixed d, the expression in squ, -xc brackots is bounded and so as 

n increases we have approxigiatoly 
0 0 

n 
As) 

Thur., for large n, It I 
-V 

(W 
s) C"; q) (-i 'r w E; )=I. I(w. )exp(-iw 

S(T -d) 

Mc maximum of q( in thic c, -tE; c,. would occur when T= dq and 

could be related to the variance of (-. c in the froquency band around 

W0. By restricting the Dum to a bana of frequencies in the region of 

w0, we can consider the lag between two signals at specified frequencies. 

This method of meauaring lak; I-Las anothcr advantaCe over the method of 
,0 

maximising the cross-covariance function in that the IaC estimates 

are not rostricted to intogor mounts of the campling interval. 

A 

A program LAG (Itppendix C) was irritten to calculate q(T ) for 

vari ous values of 7'using a Nottinahcoi AlCorithms Croup subroutine to 

calculate the Fast Pourier transforms. The data were the heart ratep 

xt, and the respiration, yt. 'Týc rxixirium could be estimated by an 

iterative technique. An attempt was made to estimate the lag between 

6 
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heart rate and respiration by this method. It was found that, for Ithe 
A 

regular respiration data, q( T) had a very flat peak in the region 

of the expected lag, and that could not be identified with wiy 

great accuracy. A possible explanation for this is to be found when 

the cross-periodogram is examined in the region of the respirati. on 

frequencyl w, sayj For reCular respiration V (w) has a large peak 
0 XY 

at w= wo and is small elsewhore. Thus we can write 

A 
-iTw 0 P( T IWWO 0 

m 
*1 "r) 12 -11 Iýr(wo) 12 le -iTwo 2 

Therefore P( 
II 

2 
m 

-i TWO 
2 

Now e1 so that I p(T 0 
2 

m 
A 

Thus in this case q( T) is approximately independent ofT and so 
A 

obuld not be used for estimating T 

Hanr. zm and Thomson (1971), in the proof of the properties of 

q( T) required the series (xn) and (yn) to have abso3utely continuou: s 

spectra and also for them to be purely non-deterministic in the sense 

that no component was purely predictablep linearly or non-linoexly. 

A cyclic signal contains a deterministic componýnt, and ao this 

method does not seem to be the best one for estimating the lap between 

the sign . als. A better method would seem to be to derive the lac from 

the phase of the cross-spectrum at a pe,, ac of the cross-spectral 

amplitudeq and this was carried out in Chapter 5- 
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APro'INDIX B 

2ioj2Ly A short review of cardiac TAly, 

The purpooe of this appendix is to cover the methods of 

mea, surino the 'E. C. G. and to describe the principles of hcart rate 

Control. The appendix fon. qs a backCrawid. for a discussion of the 

results of the heart rate and blood pressure analysis and the 

results of the sinus arrythmia study. A basic doscription of cardiau 

63) and a remlable, thoursh somewhat physiology is Civen in Ganong (190' 

sirplified account is given in Borne zn; id Levy IL) 
(1972). For a more 

detailed description of reflex control of heart rate lloyinano vvid 

Neil (1958) remains a standard -text. 

Blood circulation in the bocIX 

Right atrium 

Right ventricle 

Hepatic 

portal 

and neck 

Mal 

trium 
ory 

miricle 

Ic 

c 

r (afferent) 

(efferent) 

Dr9ons 

F. Iflluro BI 
(see over) 
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Figare B. 1. Schematic diaLýTan of the circulation of the blood 

tl=oujh the body. The arteries are draim in heavy print on the 

right and the veins in light print on the left. (Reproduced from 

Berne ond Levy (1972) P-4)- 

Fia-axe D. 1. shows the pathway of the blood throu3h the body. The 

heart in man has four chambers; the left and ri(, ht atria and the 

left and right ventricles. The heart consists of two pumps in 

series; the right heart to'propol blood throu5h the lungs for 

exchýu-ige of oxyCen and carbon dioxide (the pulmonary circulation) 

and the left heart to propel blood to all other tissues of the body 

(the systematic circulation). The parts of the heart normally beat 

in requence. Contraction of the atria (atrial systole) is followed 

by contraction of the ventricles (ventricular systole) and during 

diastole all four chambers are relaxed. 

Electrical activity 

The nervous system exercises control over various aspects of 

the behavioixr of the heart including the frequency at which it beats. 

However, cardiac function is not completely dependent on the intact 

nery0lis cystera. Cc-rdiac tissue has an inherent property to initiate 

and regulate its oira beat and the heart will continue to beat even 

when removed from the body. At least some colls in the wallo of all 

four cardiac chambers are capable of initiatin,,, beats. 'The region of 

the mamnalian heart that ordinarily di-ccharjos most rapidly is the 

sinoatrial or ISIA nodel which is the natural pacemtcdker of the heart. 

Othe-- recionc that m,,, initiate beats undor special ciromastaices =e 

called ectopic po. comakers. rnie moot important of these is the 
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Figure B. 2 Position of the electrodes used in the respiration experiments 

on healthy subjects. 

1.0 

0.5 

t 
0 

-0.5 

sc 

Figure 13-3 A normal E. C. G. (Reproduced from Ganong (1963) P401. ) I 
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atrioventricialar (AV) nade. It contains the same cell types as the 

SA node, btýt fewer pacemaker cells.. 'Me electrical impulses 

oriainate at the SA node, and dopolarize the atria first. T! hey 

then travel to the AV node, where after a delay# they procedo 

throu, -, I-1 Mors Iciown as the bundle of His to the root of the heart, 

wlýen the ventricles dopolarize. Both the AV and the SA nodes are 

located in tho right hovxt. Muscular contraction closely follows 

the depolarization of the muscle. 

The PIect-vocnxdionT, -u-n 

ilia bocly i-- a Cood conductor of electricity and so the 

fluctuationq in potentical that represent the al(, vbraic suni of the 

action potentials arouna the heart c, -zi be recorded from the rtx=:, a-. L- 

of the body. 1.3ho rocord of these fluctuations is the elootrocardio- 

6T, -u-n or -" ý. C. G. ln the c;,.. pcrimcnts on licalthy sabjects an au3pented 

un. Ll')Ol cad rYj'U(-, -a was emplo,,, red. TI. ie position of the ar 41 electrodes 

ont *hni, chavt is shova-i in FiCure 13.2. In the order left to riTht, 

top to bottui those wore labPlled A, DýC and D and then -we have lead r) 

over the aT)c,: of the heart, the fifth intercostal space in what is 

knovm as the V4 position. In a volume conductor, the sum of the 

potentials of on equilateral trian_rle with a current source at the 

contre is zero at all times. Thus if leads A, B and C arc connected 

to a conmon toi-viin, -d xi indifferent electrode with near zero 

potential is obtained. 'I"Iric Potential at D, the activo or explorina 

cloctrode is Vien moamxcd relativo to this zero potential. In this 

way artafact mur3cle noiso can be t, -J. on into acco-Lu-it since it will 

affoct. all olcotrodoo, in so, 7, ie uuy. Thus with unipolar 1, -., LZs tlio 

a0t'Lýal 'DO'LCALIal at th,: ý mite of tho live electrode can bo m. easwred. 
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The B. C. G. iss usually r-oa-, ixod in )-Allivolts craid displayed on an 

oscilloscope. A typic%1 E. C. G. is dioplayed in 11irq=e 33.3. j1he 

presents the (lepolarization oý P wave re f the atria, triccered by 

the SA node. Ulne vcnt2: -; cu1ax depolarization produces the (; ý10 

complex and the ST cc3ýicnt -ind the T wave are the result of 

ventricular repolarization. The effecto produced by atrial re- 

polarization aro noimallv submerGed in the Qý?, S complex. 'I'lie timins 

of the heart beat-- jui ',! -in o%perimen-Lo was taken, from the top of the 

R vrave. The method of Oj.,,, t, -ction of this R wave peak is described 

in Chapter 1. 

Nervous control. of lic. -Lr-V r-%te 

Mpny bodily ftuictions are controlled within fairly narrow 

limits. Thoce such a-, blood pressure, heart rate and temperature 

involve the autonomic ncivous system. This consists of both the 

efferent (or'motor) pathways, fro., *. i the brain to Cho oreans and also 

the ýfferent 
pathways in the opposite direction. 11-io efferent 

pathi-., ays are shom-i in C,, a-iongr (FicLu? o 33-41 which in reproduced from 

Gauriona, 1963, P-147). T', -l, -- autonomic nervous system in divided, 

functionally and structurally, into the sympathetic system, witil 

neurons loavin, 3 the mJ. ddle Lu-id lourer spinal cord and the para- 

srnpath. cstic with nourons coninC fron the medulla oblongata of the 

brain stem and also from the sacral seeyionts of the spinal cord. 

As can be seen f: com the fi, -ure, the main pathway for the p=asympathetic 

system to the heart is tho va, -us nerve. Me va, -, us arises in the 

medulla obloneata, and at the heart divides into two, the rigr1it 

seCnent passino to the SA Tiode and tho loft to the AV node. Un(ler 

normal conditions the Sil nodo is tuiclor a continuous infl. uenco from 
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both divisions of the autonomic nervous system. ' The sympathetic 

aystem exerts an acoeleratory influence on the pacemaker, whereas 

the paras,, anpathetic oystem imposes an inhibitory effect. Changes 

in heart rate usually involve a reciprocal action between the two 

divisions. Thus acceleration of the heart beat is produced by a 

diminution of parasýmpathetic activity and a concomitant increase 

in sympathatic activity; deceleration is usually evoked by a reversal 

of the mechanisms. Ordinarily, in healthy, restine subjects the 

parasynpathetic discharý, -e, or 'tone', is predominant. Abolition of 

parasympathetic influoncos usually elicits a pronounced heart rate 

increase, vhcreao decrease of sympathetic activity usually results 

in only a rýlieht slowing, of the heart. Tim nucleus of the va, -us in 

the mod-L1.11-a is sonetimoo Imown as the cardioinhibitory contre 

t'he heart rate centre. 

Res, piration is also subject to neural control from the medulla 

oblonCat, -., from an al., ca lmo-vm as the respirato. -. r centre. UAs is 

madc up of com inspirratory and ca-i expiratory centre. The hu-irs 

contain stretch receptors that relcvj impulses via the efferent 

fibres in-the vagus. In this =j, durinC an inspiratibn an 

inhibitory effect acts on the inspirator,, r centrev causin, - inspiration 

to cease and expiration to begin. Depth of breathinr- increase 

after v: a,,, otomy (sectioning the vaCas) in othex-i-tise intact animals. 

Iloi-,; ieostatie control of blood presoure can be b3: ourht about by 

another p, -=ý of the medulla oblonr-at-a knoi,; n as the vasoinotor centre. 

This gives a contimious discha-r,,.., -e ti=ouGh the syMpathetic vasco- 

constrictor nerves to naintain a deZ; ree of constriction in the 

blood vessels. 



268. 

The control n, echanism by which the autonomic nervous fj, rrtem .0 

operates is knoim as closed-loop neCative feedback. Feedback is 

the return of part of tho output of a system to the system. itself 

for the purpose of influencinC and automatically reZulatin, ý-, the 

further operation of the system. A practical example of this is 

the operation of a central heatine system in a room. Information 

about the room temperature is-fed to a Lhermostat and coi, ýpacred to 

the preset temperature-control. If the room temperature is below 

the preset valuep the heatina comes on until the preset value ij 

oýeached, and if it is above the preset value the heating in not 

switched on. In practice the actual room temperature will oscillate 

about the preset value. ghe feedback is described ao neC; ative 

because an inerea-. e in room tomperatiLre is followed by reduced 

aotivity of tha heatinG system, whereas a decroace in roora temponatwou 

results in increased activity of tho hoatinS systom. 

A comprehensive review of central nervous control of hca---t rate 

has been given by Mauck -aid Flochnan (1968). 112ey discuss the 

relative importance of sympathetic and parasympathetic control and 

point out a large number of controversies and contradictions in the 

literature. They stress the inporta:, icp of workinL-; with -LuIxiaesthetized 

preparations and point out difforenceo of species, type and dept. ft 

of anaesthesla stimulus parameters and recordin, /; procedures 

that mcdý. e interpretation caid comparison of experimental results very 

difficult. They state that the pxbitrary division of certain neural 

cxcas as leentroal imDoses severe limitations upon attenli)t to 

undox-stcand the inteCrative aotion of the nervous system as a Viole. 
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Reflex control 

There are several areas in the heart, itself that are in part 

responsible for control of the heart rate. These are described 

extensively in Heymana and Neil (1958). A well knoi-rn phenomenon, 

known as Marcy's law of the heart, shows that an increase in arterial 

blood pressure can produce a decrease in heart rate. This has been 

described as a baroreceptor reflex, and it has been deriono-trated 

that the effect is depondent on areas known as baroreceptorn. Tho 

latter axe stretch receptors located in the walls of the heart 

itself and in the blood vessels enterinj and leavinC the heart. 

The current theory (Berne and Levy, 1972j P-145) is that for 

relatively large increases in blood pressure vaCa-1 activity is 

primaxily responsible for the heart rate response, but that for 

small increases of blood presonre within the ronnal ranCe recip: oocal 

changes in both sympathetic and vaGal activity occur. Another refle. -.:, 

Imown as the chemorecptor reflex has a conplicated historj and in 

the subject of some controversy. The chemoreceptors are receptor 

cells also located on blood vessels in the region of the heart 

(the carotid sinus and the aortic arch) and are. sennitive to changes 

in the chemistry of the blood. They play an important part in the 

regulation of respiration. 7heir stimulation can produce either an 

increase or a-decrease in heart rate dependino on factors such as 

the rate of respiration. The vasoraotor centre inteGrates efferent 

impulses from both the arterial baroreceptors and from the chomo- 

receptors. 

An excuraple of the interaction of the chomoreceptors wad the 
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vasomotor centre is provided by the phenomenon of Nayer waves 

(incorrectly described also as Tratibo-Hering waves in some literature, 

for example Ganon,, -,, 19639 P-443)- Diesse are slow, reCalar 

oscillations in arterial pressure that occur with a period of 

about 20 to 40 seconds in situations of low blood pressure. They 

are especially common after hemorrhw,, e. Mien blood presoure is low 

the blood flow in the region of the chemoreceptors is poor. The 

sta, Cnation of the blood stimulates the chemoreceptorsq resulting in 

vasoconstriction, an increase in blood pressure and an improvement 

in blood flow. This removes the stimulus and so the pressure falle 

and a new cycle is initiated. 
0 

Finally we describe two reflexes which Neymans and ITeil C; iei aa 

'of uncertain origin'. In 1915 it was chom by BainbridCe that an 

intravenoas injection of blood or saline produced increased heaxt 

rate in miaesthetized dogs. Since that time a large amount of 

contrcverky has been generated by the phenomenon. Heytians mid ! -Toil .4 
(1953) state that they believe that the phenomenon exists and is 

important in conditions of increased circulationj whereas Ganong 

(1963) states that it is an inconstant phenomenon of doiabtful 

physioloCical significance. The other reflex discussed by Neynans 

and Neil (1958), is respiratoi-y sinus axrythmia, the variation of 

heart ra: te with respiration. This is discussed in much more detail 

in Chapter 5. It has been postulated that intertliracic pressure 

decreases duýing inspiration and this causes an increased venous 

return Vaich elicits the BainbridC-; o reflex. It is not certain, however, 

that this is simply a reflex and the relative : U; iportance of central 

control and reflex factors iiivolvqd in respiratoirj sinus arl-ythnia 

are also discussed. in Chapter 5-' 
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Appendix C or-Programs 

All. programs in this Appendix were written in FORTRAN 4 and were designed 

to be run on the Edinburgh Multi-Access System (=) using an I. C. L. 4-70 

computer. In general, the programs wera run from a teletype, which is 

defined by Fortran sream FT5. The program contained a subroutine (usually 

named HD) which gave instructions via the teletype to the user, The data 

input from the teletype can be read in format-free specification (i. e. 

READ X)which has the advantage'that any kind of-data may be read 

separated merely by spaces. Mierc data procassing was required the data 

file. which was stored on disk, was defined as FT6 and the processed 

data was written as a file on disk as FT17. I'there a large amoant of output 

was expected, the printing was carried out on the line printer. 
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Subroutine MAN 

This subroutine'computes a frequency table for an array, given the group 

interval width and the number of points in the array. The maximum and 

minimum values of the array are found and the range printed. The lower 

bound of the first group interval is takeh as the integer part of the 

lowest value in the array. This will usually ensure a simple spacing, since 

the specified group interval in general will be 0-5,1-0 or 2.0 . Group 

intervals containing no points are not printed. 

Structure 

Gk01(XjMj, ýTEP) 

x REAL ARRAY (M) (Input) : data 

K INTEGER ARRAY(500) (Output)': number of points in each group 

interval. 

M INTEGER (Input) : number of points in series. 

STEP REAL (Input) : group interval zidth. 

A REAL (Outpat): larost value in data. 

B REAL 11 : smallest value in data. 

NI INTEGER (work) : integer part of A. 

N2 INTEGER Be 

Restriction3 

Maximum number of points = 2000., 

Maximum number of groups = 500, 

Kipimum range bf variable = 1.0 units. 



Listing. GWI(X, N, STEP) Z73- 
Language : FORTRAN Streams : (FT6,. LP) 

Dl=iSION X(N), K(500) 

A--X(l) 

B=X(l) 
DO 3 I=lj500 

3 K(I)=O 
DO I I=I)N 

IF(X(I). GT. A) A--X(I) 

IF(X(I). LT. B) B=X(I) 

I CONTINUE 

N1 =INT (A) 

N2=INT(B) 

IF(B. LT. O. 0) N2=N2-1 

MUTE (6,9)N 

9 FOlVAAT(' THE NUmBER OF POINTS ISI, I6) 

WR ITE(6,10)B 

10 FORXAT(l LO'-iloEST POINT EQUALS', F7-3) 

- Nr=TE(6,11)A 

11 FORLAT(l HIGHEST POINT EQUALS', F7.3///) 

DO 2 1=1 IN 
C=N2 
J=O 

6 C=C+STEP 
J=J+ 1 
IF(X(I). GT. C) GOTO 

K(J)=K(J)+l 

2 CONTINUE 

J=O 

C 2=N2 

C2=C2+ST2P 

J=J+ 1 
IF(K(J). EQ. 0) GOTO 5 

P=C2-STEP 

VvTJTE (6,7) (P, C 2, K (J)) 

FOMIA-T (2Fl 1 . 5, Il 2) 

IF(C2. LT-A) GOTO 5 

RETURN 

FIT D 
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Pror. ram (GRAPH) 

Thlb program is used to produce line printer plot, 5 across the 

page of any time series. "I"he program uses a subroutine FLOTX to do 

all the work and so this is the only program listed. Scaling is automatic 4.10 

and after 12D points have been plotted a new page is automatically 

selected. 

Structure 

Formal Par; uaeters 

N INTBGER 

IA INTEGME 

X(N)* REAL ARRAY 

(Input) number of points in series 

(Input) name of series (4 characters) 

(Input) time series 

6 

0 
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Program GaPH 

Language ; Fortran 

Listina CD 
SUBROUTINE PLOTX(N, IA, X) 

c 
C 10 PLOT GRAPH. ') ACRCSS THE PAGE 
c 

DIMENSION X(N), A(120) IS(12) 
DATA AST, BL /Ifi*, lH 
NP-0 
J-1 

!V )a-IIN-X(J) 
ma-x(j) 
IF (X(J). NE. 0) GOTO 6 
J-J+l 
GOTC 7 

6 CONTINUE 
DO 211 VII IF (X(! ). LE. )alIN) XlMIN=X(I) 
IF (X(I). GT. D=) MM-X(I) 

2 CONTIMUTE 
C 
C TO 001TUTE SCALIM FACTOR. TlMRE ARE 50 PLOTTING LINES PER PAGE 
C. 

XSCAL- (, YYAX-IC4IN)/50.0 
ISCAL=lj%'T(XSCAL)+l 
TOP r-MIN+ 50.0*ISCAL 

18 WRITE(6, I) IA 
1 FORMAT(ll SUBJECT 10-'IBER', 3X, A4///) 

IT1 -INT(TOP) 
T2-FLGWIT1)+ISCAL/2.0 
DO 12 K-lo5l 
TlwT2 
T2-T2-ISCAL 
DO 31 J-Y20 

31 A(J) =Bu 
DO 11 1-1 120 
IF (X(I)'Il) 4,4,11 

4 IF (X(I)-T2) lltllo5 
5 A(l)=A3T 

It CCll TI NUE 
c... 
c -, o CO IT U Mlz . THOSE VALUES THAT LIE WITHIN THE REQUIRM LINF3 
c 

K1 -K15 
Kl-K-Kl*5 
IF(Kl-l) 13,14,13 

14 VAL-Tl-ISCAL/2.0 
UTRITEE(6,15) VAL, A 

T9 FORMAT(F10.0,1 +1,12OA1) 
GOTO 12 



Program GRAPH (subroutine PLOTX) (Ctd. ) 

13 IMM(6#16) A- 
16 FGRMAT(11X, ' -1,12OAl) 
. 
12 CONTINUE 

WRITE(6#19) 
19 F0R', MAT(13Xp12(9XvlH 

N3=10+120*NP 
NT, -12O*(NF+l) 
imi 
J)020 I-NS, NT#10 
ISM-1 

20 J. J+ 1 
c 
C ANMTi%TIIZ X AXIS 
c 

WRITE(6 21) IS 
21 FOFl, ' AT(1'3x p 12110) 

N=11-1 20 
IF(N) 22p22t23 

'TINUE 23 00N 
DO 24 I=1#N 
IE-120+1 
AX=X(IE) 

24 X(I)=Af 
IF(N-123) 25,26t26 

25 CONTINUZ 
DO 27 I-Ntl2O 

27 X(I)-O. O 
26 NF--14? + 1 

GOM 18 
2-2 RE TURN 

MD 

276;,. 

0 

0 
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Desci-I i)tion 

The input data for this program are the heart intervals and respiration 

depths from tho'exIeriments described in Chapter 5. The different sections 

of data are separated by a pair 6f zeros and a positive real numbers, and 

the data are terminated by two pairs of zeros. The program computes the 

mean and standard deviation of the heart rate and respiration and employs 

the subroutine GRJU-1 to compute the frequency table for each section. 

Structure 

Formal Plqrameters 

STZP RE11. 0 
(Input) : eroup interval for heart rate. 

STEP1 RE, AL (Input) : respiration. 

T, AG TML (Input) : name of data set. 

x REAL ARRAY (2000)(Input) : heart interval data. 

Y REAL ARRAY (2COO)(InpUtý : respiration data. 

S REAL (woric) sum of X 

31 RE AL Y 

CS REAL (work) sum. of squares of X 

031 REAL it to to it it Y 

SD 11TAL (Output): standard deviation of X. 

SDI REAL (Output): standard deviation of Y. 

Listiný; 

Lan&ua,,, e : FOICRAN Streams (BT5v TT), (FT69 DATA) s 
OMP LP) 

DIMMION X(2000) J-(2000) 

READ , STEP, STEPI 

R, EAD(5,15)T, AG 

15 FOPJ,: tT (2AQ 

MTE(-7,16) T, AG 

16 FORLAT(I h'1STOG1? -; 
J-'S FOR 1,2AQ. 

2 11=0 

S=O 

0 



Prop "NIýT (otcl. ) 
.,, ram D- 

SI=o 
SS=O 

ssi_-o 

DO 3 J=1,200,0 

4 FORMAT(3x, l, 7. (), WF6.0) 

Al -. X (J) 

IF(Al. --, Q-D-C, ) GOTO 13 

X(J)=60/(AI*O-C)0003) 

U-- MI+ I 

S=S+X(i) 

sl=sl+y(j) 
ssl=ssl+y(v 

13 SS=SS-S*S/, ', ' 

ýD=SQRT(SS) 

SDI=SQP, T(SS'j) 

WRITE (7,5) S3,, S3, S ;D 
5 FORIOAT(I lv, -2fi: -l, VARIANC3 AND S. D. OF XS', 3Fi2.6) 

CALL GP, 43. f(Xjl,,, "lTEP) 
MITE(7, Qsl SDI 

6 FORI'LAT(I 1, TjJ;, VARIlVCq, 114D S. D. OF YS1,3FI2.6) 

RE. u-(6,4)Xl, X2 

IF(XI. NE. O. 0) GUfO 2 

STOP 

END 

278. 
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Subroutine TIMER 

Description 

This subroutine is used to interpolate a point proce5ýs by 

means of the French-Holden algorithm, with modifications discusbed in 

Chapter 3 and described by Campbell (1979b) 

SUBROUTINE INTER T, 111D, T, Z, ]ý, IFAULT) 

. Formal ), waramaters 

N Integer input number of evcnts 

M Integer output number of nampled valucs as 

n po-wer of- t wo 

141 -Integer output number of sampled values 

inside interval, defined 

by point process 

ISIZE Integer input 'maximum store available f=- 

sampled values 

T Real array(N) input times of events 

1.7 r1c a1 input upper limit of spectrum in 

cycles per unit time 

DT real output sampling interval 

Z* Pteal array(N) output.: values of the sincs, 

Y Real array (M) output sampled values 

XrAULT integer output fault indicator 

XPAULT =0: no error 

XrAULT =I: 1.1 exceeds 21**21 

XrAULT =2: M exceeds IS!, ". '., 



2LO. 

SUBROUTINE lt4TER(Npýi. PMIoISIZEPTjVIPDTPZPYP 
IFAULT) 

c 
C TO INTERPOLATE A POINT PROCESS a To TO INTERV, 6LS SPECIFIED BY DT 

C 
REAL T(N)PZ(N)PYCISIZE) 
DATA P IoSMALL/ 3.1/41 59265P 1 -OE-6/ 
DT=0.5/W 
Vjl=(T(N)-T(l))/DT+l 
11=2 

c 
C TO COMPUTE NUMBER (IF INTERPOLATED VfýLUES AS A POWER OF TWO 
c 

DO I K=2p2l 
II=II* "I., 
IF(Ii-G*T. Mi) GOTO 2 

I CONTINUE 
IFAULT=l 
RETURN 

2 M=Il 
IFAULT=2 
IF(M. GT. ISIZE) RETURN 
IFAULT=0 
PLUS=ioo 

C COMPUTE NUMBER OF SAMPLING'POINTS PRECEEDING POINT PROCESS. C. 
M2=( M-M) )/L> 
IF (MODCMP.,,, 

-, ) E0.0) PLUS=-PLUS 
DO 3 1=2*N 
TCI) = CT(l)-T(l))/DT 
ZCI)=SINCPI*T(l)) 

3 CONTINUE 
Zcl) = 0.0 
TCI) = 0.0 - 
B=-M2 
DO 5 K=I ,M 
Y(K) = 0.0 
DO 4 J=IPN 
A=B- T(J)' 

c 
C THE NEXT TWO -INSTRUCTIONS AVOID DIVISION BY VERY SMALL NUmr3EN. s 
c 

X=PI PLUS 
IF C ABSCA) *GT* SMALL) X =-Z(J)/A 
Y(K) = Y(K) +X 

4 CONTINUE 
Y (K) =Y (K) *PLUS/P, I 
PLUS=-PLUS 
B=B+1.0 

5 CONTINUE 
RETURN 
END 

***END 



Progrn, m LAG 
281. 

Descripticn 

This program computes the coefficient q(, ̂ r) for Hannan's method of estim- 

-ating lags which is described in Appendix A. For a given frequency w0 

the spectra. at w0 are estimated for the two series (x(t),, y(t)) by Daniell's 

method of averaging periodograms. The coefficient q(T ) is outpul. - in steps 

DT from T to T1, which are set by the user. The periodograms are calculated 

by means of a subroutine C06NAAF (Nottingham Algorithms Group). 

Rc3triction 

The number of pcints for each-series must be a power of 2. 

, 
Structure 

Porn, al _parameters 
FOUR SUBROUTINE : to calculate Fourier transforms. 

TI SUBROUTINE : instructions to user. 

X REAL ARRAY(1024) (Input): first series of input data. 

Y REAL ARRAY(102+1) (Input): second series of input data. 

ILIST INTEGER ARRAY (21 (Work) : work space for C06NAAF. 

A, B, Al,, Bl DOUBLE PRECISION(513) : Fourier coefficients calculated. 

by C06NAAF. 

M INTEGER (input): number of periodograms in spectral 

estimate. 

N INTEGER (Input): number of points in series (a 

power of 2) 

)JI MEGER (Input): M1=2*LOG? 

V1 REAL (Input): frequency of spectral estimates. 

T REAL Unput): initial value of 

T1 REAL (Input): final value of 

DT REAL (Input): step value of 

FERI * RSAL (Wbrk): periodogram of X. 

PER2 REAL (work): periodogram of Y. 

RCROSS' REAL (Woric): real and imaginary parts of cr03S- 

AlCROSS pariodograme 



Prorr. tm LAG 

IE 

AIM 

Q. 
coin 

Listin 

Language : Fortran 

282o 

REAL (Work) : parameters for estimating q(-r). 

RE ý (',,, ýork) : -lag function of "r 

REAL (Work-) : coherency 3quare. 

Streams : (Y. V5ooTT)s(F-L6, D. kTA)p(FT7,,. LP)o 

DOUBLE PRECISION A(513)PB(513)jAI(513), BI(513) 

DIMENSION X(1024)jY(1024), ILIST(21) 

CALL TT 

ldýAD I. I, N, Mi 

PXAD(6,1)(X(I), Y(I), I=IjN) 

12 READ , ', 7sTjTlpDT 

IF(TI. EQ. 0) GOTO 11 

I FORITAT (2F-I 04) 

N2=fT/2 

Ni--N2+1 
CALL FOUR(ApBpAl. BiplllpN, NlsN2pX, Y, ILT ST) 
FR: EQ=N*W 
INTIT=K-111/2-1 

IFIN=K+T, l 
, 
/2-1 

Sul-11 =0 
SIM12=0 

C CALCULATMIG PERIObOGM.! S 

DO 4 I=INIT, IFIN 

PEPi=A(I)*A(I)+B(I)*B(I) 

PER2=Ai(I)*AI(I)+Bl(I)*BI(I) 

SUM, I=SUM1+11ERt 

4 SUM2=SW, 12+PER2 

SUMI =SUMIJ& 
SUMMU142/11' 

WRITE(7,6) SUM1, SUM12p7l 

6 FORMA-T(11,1 SMOTHED FERIODOGRAN VALUES lp2FI5.4,1 AT FREQUENCY 

lvo. )ý.,, liz. 1) 

WRITE (7,8) 

8 Foidlgr (///' , LAG(SECS) VALUE OF Q COH* SQ. 

10 COINT32APE 

SU Y, RE=0 



P 
. 
Lro, nram LAG (Cta. ) 

CALCUL20ING Q (TAU) 

DO 5 I=TI'TIT, IYMI 

RCRO3S=A(I)*Al(I)+B(I)*BI(I) 

AlCROSS=B(I)*AI(I)-A(I)*BI(I) 

wl = (1-1) *3 . 110 592*T/N 

C=CO3 (,. vi 

S =, e,, 121 Oul 

Rh'=C* 11, CROSS+ S*Al CROSS 

AIIJ=C*AlCROSS-S*RCROSS 

SUN-R: -; =SUNWl, '+RE 

5 SUIl'INj=, '3UlJIhl+AIM 

Q=S'ý"I"IZE, *SMM+ Suldl; *SUAIIIII 

COIlLS=Q/(SUMl *SUM2) 

VMITE(7,9)T, Q, COHS 
9 F0.1111, WTON2.5) 

T=T+DT 

IF(T. I, E. Tl) GOTO 10 

GOTO 12 

ST OP 

END 

283. 

SUBROTHINEZ TI 

T, Irli ýa E(5,2) 

VIRITE (5,1 ) 

i FORVAT (I ENTER TIIE CENTPE FREQUENCY, IN IIZ 

21 TIIB LOWER L'ID, MPPER BOUNDS OF TIE LAG ESTIMATE 1 

3' 91D MY, LAG INCPEIZ',,, NT 1) 

2 FOMIAT(11' ENTIAM THE MIER OF BANDS PER ESTIMATE (EVISN) 

41 TM NU14, BER OF POINTS (POW. M OF TVIO)pAND Mj=2*LOG2(N) 

RE TUPN 

MID 

SUBROWINE FouR(A, B, A1, BI, MI, N, N1, N2, X, YILIST) 

DOUBLE PRECISION A(NI)sB(NI)oAI(Nj), BI(NI) 

DII. 7,11TSIOIT X(N), Y(IT), TLIST(21) 

DO 2 I=1,112 

A(I)=X(I) 

2 B(I)=X(I+112) 

CALL COu'AAF(AB, Nl,, FALSE., 1111, IVIST) 

a 



Llc-MEI' 
Al 

B-1 (NI ) =B (N! 

DO 3l 1= 1p1 T2' 

Al (I) =A(I) 
Bl (I) =B(T) 
A (I) =Y (1) 

3 B(I)=Y(Ii. V2) 

Ct,. LL 

ILETUTIT 

END 

284. 



1rQLaJ1 FJC 

The prograv. computes tho point 31,; ctrum of a point process (xjj=l n) qhere T 

xj is the tii-, ie of Occurrence of the j th heart beat. The periodograin is 

calculated-as 

)2 ,. 
h1 

)2 Cos ivx sin ivx -22 -n 

for V; k= 
27k RES/8, where RES is the required resolution of the spectr-. Im 

and must be greater than or equal to 8n-1 to ensure uncorrelated spectral 

estimates. The maximurn frequency ocalculated is w= 7T . 

The periodogram is cynoothed and the spectrum estimated either ýy 
S. -F 

(W 
j)/8 0 f ry) = Z, In 
, 

or f M) = (-31 
n 

67 
s+ 

3In(w, 
+, 

) + 7, 
n(ws+2 

)+ 91 
n 

(W 
s+3 

)+ 91 
n 

(W 

s+d 
+ 71n (W 

S+5 
)+3, 

n(ws+6) -3, n(ws+7) 
V 32 

second 
The first method is iim,, )le unifcxml smoothing and the/is quadratic smoothing I 

af ter Bai-tlett (1963) The frequency 'W at which the spectrum is estimated 
47 

is calculated as2: W/.. 8 . The fx-equcnoies were grouped so that s= 8p+1 

where p 'is an inte,, -, er. 7'e do nob wish to calculate the periodogram at 

frequencies less than 27)-/n and vie use the parameter STOP to ensure Lhi3.. 

Structurc 
Formna ray-narietens 

TID 

TI 

N 

x 

y 

SUBROUT32TE 

to 

. Tl, rfp-jCER 

M AL ARRAY (1000) 

REAL IJIRAY (8) 

: instructions to user. 

RES 1611 

K INTLACER 

JITT E GE R 

: titles for output. 

(Input) : number od data points. 

(Input) : data. 

(Work) : periodograms. 

(Input) : resolution of spectrum. 

(Input) : =0 for uniform smoothinx- w 

=1 for quadratic smoo#ýg. 

: count parameters 



-'tot; r3 Ili FS1C . 

w REAL 

171 REAL 

v REAL 

z REAL 

STOP REAL 

Florchart 

Read : N, RES, K 

W=0 24,: D 
Read X(I I=Ij 

--- 
L- 

V=2 -u IES/81 

STOP 2 /ýf 

Wl = lel =0 
a 

Vi W es 

Calculate I (W) 

Wl V11 + W/2 

7? 

Yes)4 '19, No 

Uniform smoothingi 
; N- -1 

Wl = Wl /81 
4 

Print wl ,f (V"i 

Is V71 0-5 ? 

No No 

STOP 

: frequency of spectral estijnate in radj 

: average frequency in degrees. 

:p eri6dogram frequency. 

: smoothea spectral estimate. 

: minimum perioaogram frequency. 

6 

Quadratic smoothing 

Yes 

a 



-87. 
Listin 

DIUENSION X(1000), Y(8) 

CALL lID 

READ N 

READ RES 

READ ,K 
READ(6,2)(X(I), I=1, N) 

2 FOPJVC(4X#FIO. 3) 
V=6-2831853*R7--S/8 
STOP=6.2831853/N 

0 
1=0 
sq=6.2831853*N 
SQ=SQP. T, ISQ) 

7 Mr-O 

Tvl=O 
9 711ý--W+v 

IF(W. LT-STOP) COTO 9 
X= 

A-- 0 
B=O 

C CALCULATING. PERIODOGRAN 

DO 4. J=1,14 
T=W*X(J) 

A=A+COS(-, ) 

4 B=I4SIN(T) 
vm=vi/6-2831853+Wl 
Y(M)=A*A+B*B 
IF(M. LE-7) GOTO 9 
IF(K. LE. 0) COTO 11 

C QUADRATIC SMOOTHING 

7, --3*(Y(2)+Y(7)-Y(l)-Y(8))+7*(Y(3)+Y(6)'-ý9*(Y(4)+Y(5)) 
7, =7, /(32'SQ) 

GOTO 12 

C UNIFORM SIOCTHING 

11 Z--Y(I)+Y(2)+Y(3)+Y(4)+Y(5)+Y(6)+Y(7)+Y(8) 
Z=Z/(8*SQ) 

12 v"i =T"l/8 

WRITE (7 
v 8) (1 

s vil v Z) 

IF(Wl LT-0-5) COTO 7 



Prop, mm PSPEC(C*td. ) 

8 FORVAT(A-, Flj'-3, F6.2) 

STOP 

END 

SUBROUTME IID 

YTII'E (5,1 ) 

1 FORNAT(' ENTER NO. OF POINTS AND RESOLUTION IN IIZ. (G:. E 81N) 1) 

MITE (5,2) 

2 FORMALT(I ENTER A) FOR Tjl\TIFOP14 SMOOTHING OR A* FOP. QUADRATIC 

RETURN 

END 

SUBROUT3M TI 

WRITE (7,1 ) 

I FORMAT(' POMT SPECTRUL, 

WRITE (7 
p 2) 

2 F0121AT (I I MIQ. SPECTRUM 

RETURN 

END 

288. 

4 

0 



P ro r rarri, SAKPLE 
28 

Description 

This program carries out the sampling operation on the hear". -z-ate and 
by line4r inte,. 1, -olation 

respiration data to obtain equi-distant data pointrj and j. L.. i3 described 

in detail in Chapter 3- Precautions have to be taken when tho he_-rt irlterval 

is very much shorter than the samplinr,, interval, and al3o vihen tile heart 

interval is longer than the bampling interval. In the first c. ]: ýSe the heart 

interval may be overlooked by the sampling operation and in the second ý 

the heart interval would be sampleJ more than once. These operations are 

best described by means of a. flow chart. 

Flow chart 

B=O, P=Opt--Osi=l 

--T 
Read: sampling interval STEP 

B= B+ STF1 

Read: heart interval x. 
'ýý 

no 

0? STOP 

t-- t+ X. 

CIs 
t-less than B Yes i=i+l 

--. 
"I 
-0 

r--- ---4 -=. <-Ist less than B+STEFT">ý No I. D=B+S'PE7ý -ý-FT7 

Yes 

Is P=O? No B-=, B-STEP*J-' 

y 
P=F-I 

ILinear - interpolation between t and 
It 

at B 

Yes No 



vrogroxi 

The data consist- of pairs of numbers corresponding to the inst&zýýftneou3 

heart rate and respiration depth of the healthy subjects and'-are output 

by the data logger. The different seotion3 of data correspond to different 

respiratioii rates and are separated by a pair of zeros and a positive real 

number on separate cards. The pair of zeros informa the program that a 

section has ended and the positive real number informs it that there is 

more data to be analysed. 

S tru c tu re 

Formal parameters 

RE. AL Input : heart interval* 

Y REAL Input : respiration depth. 

X1 REPAL ARRAY Ou. tput: sampled heart rate. 

yl PEAL ARRAY Output: It respiration depth. 

STEP RE A Input : sampling interval. 

T RFUJJ Work : time of next beat. 

Z M7,11 last beat. 

B REAL time of sample* 

REAL count for number of beats between sampling 

points. 

I BTECER array parameter. 

Listinp 

Language . FORMIT Streams (Fr5. -. TT), (FT6, DATA), UT7.. SAYPDATA) 

DIJZNSION XI (2000), Yl (2000) 

PS AD , STE P 

11 1=0 

T=O 

B=O 

P=O 

I B=B+STEP 

I=I+l 

3 Z-- T 

pZ00,10 Y? X 
Y2=Y 

'X2-X 



rroýrai Sivakli, B, 

4 FOlalAT(3X. -F7-0A-XF6.0) 
S=X*0-00003 
IF(X. EQ-0.0) GOTO 7 

X= 60/8 
IF(I. ITE-1) COTO 10 

X1 M=x 

G6TO 3 
10 C ONT. UMB 

T=S+T 
IF(T. LE, B) COTO 3 

9 IF (T. LE . 
(b+ STEP)) GOTO 8 

P=P+ I 
B--B+STEP 
GOT 09 

8 CONTIIM 
2 TIETA= (B-STEP*P-Z)/S 

XI(I)=X2+TIIETA*(X-X2) 
Yl (I) =Y2+TIIETA* (Y-Y2) 

IF(P. EQ. 0) GýOTO 1 

P=P-l 
GOTO 2 

7 I=I-I 

WUTE(5p5) I 
5 FoRmAT(iQ 

TMITE (7,6) (XI (J) 
,Y1 

(J) J= I I) 
6 FOldtlAT(2Fl0. l+) 

C=0.0 

WRITE (7,6) C, G 
IC-AD(6,12) X 

12 FOM=(4XpF6.0) 
IF(X. NE. O. Oj GOTO 11 
STOP 
END 

I 



Propran, SILUL 

This program is usýd to generato two sinusolds with a given phase difference, 

00, to test the accuracy of the cross-srectral phase measurements and the 

filtering techniques dc3cribed in Chaptero 4 and 5, Normally distributed 

random noise of given standard deviation is added to the heart rate signal* 

At time t the heart rate and re*piration are given by 

X(t) = Bsin(2 7T Y; t) + A+ V, 

Y(t) = BI sIn(2 -r, (w-t+ 01360) + Al 

where V is a normally distributed random variable with zero mean and (; iven 

standard deviation and A, A1, B, Bl are given constants. 

Vie calculate the heart. interval as 60/X(t), and then compute the above 

formulae again at t= t-60j, 'X(t) 
. The program employs two IBY Scientific 

Subroutines, GAUSS and FAND, to simulate the random variable. 

Structure 

Forma j2cirameters 

HD SUBROUTINE instructions to user. 

A M, AL (Input): rean heart rate. 

B REAL (Input): amplitude of heart rate sinusoid. 

Al FEAL (Input): mean of respiration signal. 

B1 RE11- (Input): amplitude of respiration sinusoid* 

17 R13AL (Input): frequency of sinusoids in Hhe 

PHASE RE IJI (Injut): phase between signals. 

T REAL (Inrut): starting value in time. 

R REAL (input): standard deviation of added noise. 

11 MEGER (InFu t) : number of points to be simulated. 

Ix INTEGER (work) : arbitrary 9 digit integer. 

V REWT, (work) : value of random variable. 

X(500) RZ. I-J, ILRIRAY (Output) : simulated heart rate. 

Y(500) REPAL PJtRAY (Output): simulated respiration. 



Program SD. AJL 

Listing 

Language : FOl? 2RM 1+ Sti%3a,,,, a (FT5,. TT), (Ff7, SI? dDATA) 

DIIMNSION X(5()O), Y(5()O) 
CALL IM 

IX=369258147 

READ sNýW, PllASE, TjApB., Al, Bl 

READ ,R 
NI, T=N 

1 D=lh'*T*6.2831853 

DI = (W*T+l-llAS'E/360) * 6.2831853 

C. ALL GAUSS(IX, R, V) 

X(N)=B*SIN(D)+A+V 

y(N)=Bl*, SJ21(Dl)+Al 

S=601X(N) 

c IMAIM INTERVALS SCIIED AS Il' ourl-'uil BY DATA LOGGER 

T=T-3 

N=N-1 

3: F(N. NE. 0) GOTO 1 

YTLITE (7,2) (Y (I) 
,X 

(I) 
, 1= 1p NM) 

2 FORYAT(. 7, Y... F-l-0,4Xj. F6.0) 
STOP 

END 

SUBROUTINE HD 

VvRITE (5,1 ) 

EYTER N, FREQUENCY OF CYCLE3(HZ), PITASE BETWEEN 

I SIGNALS (D2GR7-, ES), TIf, -', E, OF ENDITIG, IZIV AND S. D. HEART RATE 

"MITE (5,2) 

2 FOIWAT(l AND MEAN IJID Dq7LITUD2 OF M-SPIPUTION AIM S. D. NOISE 

RETUIM 

END 

0 



Prot-ram 

SUBROUTIM 

A--O .0 
DO 50 I=1., 12 

CALL 1UND(iX, R, Y) 
ix_- IY 

50 A--A+Y 
V=(A-6.0)*S 
RETURN 
END 

SUBROWINE RtJTD(IX, IY, YFf, ) 

IY=IX*65539 

IF(IY)5,6,6 
5 IY=IY+ 211+7483u)+7 
6 YFL=IY 

YFL = YFL 465 6 61 3E, -9 
RETUTIT 

END 



Propram SUCCIIIST 
295. 

Description 

This program employs the subroutine GRAY, to compute successive heart-rate 

and blood-pressure frequency tables with a given number of points in each. 

The program terminatcs when a zero is readt 

Restrictions 

The number of points per frequency table must be less than ICOO. 

AtructUre 

Formal ýa 

TI 

GPJJ. f 

STEP 

STEPI 

N 

1% WS 

SUBROUTME *: imtruotions to user* 

SUB1,11OUTUTE : calculates frequency tables. 

Pv, L Input : group interval width for heart rate. 

RE . 11 Input : 11 
.I 

of it it blood pressure. 

JMTGER Input: number of points in eaph frequency table. 

FOIWAL Input: name of data set* 

L is ting 

DMENSICal X(1000)., Y(1000) 

RUEGER COUNT 

CALL TI 

P-1", AD(5,5) PA, W3 

5 FORIU3 (2A4) 

READ N 

FtEAD STEP, STEPI 

COUllT=l 

WRITE(6,6) PA, ws 

6 FOPJV,. T(I SUCCESSIVE HISTOGRAMS FOR ls2A4///) 

7 DO I 1=1 jN 
READ(7,2) X(I), Y(I) 

2 FOPj,! AT (4Xr, ),. O, 6X, 1, '4.0) 

IF(X(I). EQ-0-0) COTO 3 

Y(I)=Y(I)/50.0 

YialT-l'(6, )+) COUNTsPAvWS 

4 FOXIAT (///' THE BATCH NULILER EQUALS', 14P FOR' p 2AQ 

COUllT=COUNTT+l 

CALL G'R-'Xfk. l., N. STEP) 

A 

GOTO 

3 STOP 

E, TD 



Program SYSTOLE 

Description 

This program is used to remove machine noise and extrasytoles from heart 

rate and blood pressure data which was supplied by the DART data logger. 

The data were in the form of two 4 digit numbers which corresponded to 

millivolts on the analogue computer. A value of 50 mV. represented 1bt/min. 

heart rate or I mm. IIg blood pressure. Machine noise was occasionally outýut 

from the data logger with a different format from normal, in which'case 

the program would output error messages and stop. Alternatively, when the 

system was uncertain of the position of a QRS complex, a value 9399 mV. 

was output from the data logger and detected by SYSTOLE. 

The detection of extrasystoles is discussed in Chapter 1, and the algorithm 

used is given there. The advantage of the method is the the data are pro- 

cessed sequentially and so larbe amounts of storage are not required. 

Structure 

Formal ýarameters 

X REAL ARRAY (2) 

Y IMAL ARRAY (2) 

F REAL ARIULY (2) 

S REAL ARRAY(2) 

T ILEAL ARRAi(2) 

N D. rE GER 

(Input) heart rate and blood pressure values. 

(Input) initial values of heart rate and blood 

pressure. 

(Qutput) : exponentially weighted mean. 

(Work) variance. 

('1voric) square root of S. 

(Input) number of points to be analysed. 

Starting values 

S ='10 F(2)=O. Olx 2+0.99X 1 
If a zero value for X(1) is read then the program terminates* 



Ligtin T OLE (6 

Laiiguage: F, C, 'PTrV, IT 4 3t rcam: 3 : (FT 5., . TT) , 
(F'-" 6, DATA) , 

(FT. ' LP) 

'(2), Y(2), F(2), S(2), T(2) DIMENSION 

OAL(5,9) N 

.9 FOPMAT M) 

READ(6,2) Y(l), Yi', 2) 
Rr, AD(6,2) 

DO 10 I=1,2 

X(I)=X(I)/50 

s(T. )=10.0 

F(I)=0.01 *X(I)+O. 

10 T(I)=SQRT(S(3: )) 

DO I I=1, N 

Rr-,, A. D(6,2) X(l), X"(21) 

2 FOlUJJT (4X, F4.0,6x, m, 

DO I I=I, N-2 

P, EAD(6,2) X(l),,, %: (2) 

2 

DO 11 J=1., 2 

IF (X(J). EZ-0.0) GUN, 6 

Y, (J)=X(, T)/50 

. IF (X(7). Nr,,. 199.5-6) C-CY. 'N fl, 

IIP. JTE(5,3) ; r, (J), l 
3 FGlMd(-NOl, ", E' 

4 G=X(. T)-F(J) 

IF(aS(G). LE. (5. C'l'T(, '))) GCTO 5 

lr(ABS(G). L2,,. lQ. 0) C-C79 5 

7-TYETE (5,6) X (J) 
, 1, J 

6 POIWAT(' EY3RASY. ')TC,. l*-,,: ` , 1? 10.5,1 AT I='PI5sI5) 

X(J)=F(i) 

5. F(J)=o. oi*x(i)+0.99- r, ý. T) 
S (J) =0.01 * (X (J) -F (i))"(X (J) -F (J) 0.99* S (J) 

11 T(J)=SQRT(, S(J)) 

Z%fTE(7,7)X(l), X(2) 

7 FOlMNf (2FI 0.5) 

1c OIN7 I ITUE 

8 CQUINUE 

6 

0 

STOP 

END 
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TIME AND ACCURACY 

The time taken by the algorithm is proportional to N 

and to NxM. On an ICL 4-70 we found that for (N, M) 

between (26,32) and (780,1024) the time t, in E. T. U. s is 

approximately given by 

t =-0.00037 N (M+B) 

The accuracy of the Fourier transform of the interpolated 

values as an approximation to the Fourier transform of 

the counting process at a particular frequency will depend 

on u and on M. However for u less than half the Nyquist 

frequency and M greater or equal to 32 the error in 

the amplitudes of the Fourier transform was found to be 

within 2%. 
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[From the Proceedings of the Physiological Society, 13-14 September 1974 
Journal of Physiology, 244,17-18P] 

Processing and analysis of beat-by-beat estimates of heart rate 
and mean arterial pressure In man 
By M. J. CAMPBELL. Department of Physiology, University of Edinburgh, 
Edinburgh E118 9AG 

In studying the cardiovascular system it is unusual to examine records 
running over several hours, because of problems of data storage and of 
achieving adequate reliability over the whole length, especially in the face 
of fluctuating e. c. g. patterns. We have made records of the electrocardio- 
gram and arterial blood pressure continuously for 8 hr, from patients after 
major heart surgery. The arterial blood pressure was recorded from a radial 
artery by an indwelling carmula. Initial storage was done by an F. m. tape- 
recorder. 

Analog processing was carried out by a parallel hybrid computer 
(EAL TR48), where the QRS complexes were detectedwith- better than 
99 % reliability and the instantaneous heart rate in beats/min thus derived 
from the QRS intervals. If there was uncertainty in the location of the 
QRS complex an indication was given by outputting a 'fla 'a'of one machine 
unit. The mean blood pressure was calculated as the ratio of the integral 
of the arterial blood pressure recording over one beat and the interval of 
that beat, the start of systole being taken as the start of the beat. The 
instantaneous heart rate and blood pressure were sampled by a DART 
data logger (General Automation) and the results punched on to paper 
tape, either at regular intervals or for each heart beat. 

The first stage of the digital analysis was to process the data to eliminate 
the 'flags' and replace them with an exponentially weighted mean, 
because, although only I% of the results, they can seriously affect the 
spectrum estimates. Thespectra and cross-spectrum were determined using 
the WID X 92 program and from these sinus arrhythmia, Mayer waves 
and other phasic fluctuations could be detected. Successive histograms of 
the sampled heart rate and blood pressure, and also of the beat-by-beat 
recordings were calculated. The accuracy of the heart rate recording 
was estimated to be within I beat/min, and so this was taken as the 
interval width for that histogram. Approximately 200 points were taken 
for each histogram, so that the general shape of the histogram would not 
be affected by trend effects (Ten Iloopen & Bongaarts, 1969). Histograms 
of the recordings about a5 min exponentially weighted mean (Taylor, 
1971) and joint-interval histograms were also calculated. These methods 

[P. T. O. 



are lcadng to a mathematical description of short-term biological vari- 
ability in pulse rate and mean arterial blood pressure. 

This Work was supported by grants from the Scottish Home and Health Depart. 
mont, and the basic TR48 computer was provided by the Wellcome Trust. 
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A NOTE ON THE SAMPLING OF A POINT PROCESS FOR SPECTRAL ANALYSIS 

1. INTRODUCnON 

Lewis [1] has described the spectral analysis of point processes, computing the spectrum 
from the Fourier transform of the event sequence. In particular he mentioned (p. 370) 
that it was not possible to use the fast Fourier transform algorithm to compute the periodo- 
gram, and this could lead to severe problems with computing time. French and Holden [2] 
have described a simple and quick method of transforming the series by convolving it 
with the function sin xlx to form a continuous function which can then be sampled at 
equidistant time intervals. The advantage of this method is that then the periodograrn of 
the point process can be estimated by the fast Fourier transform. Lewis [3] also described 
this method but mentioned the possibility of bias when using the method, as compared 
with computing the periodogram, directly. The method has attractions even for compara- 
tively short series, since one can think of the transformed series as a kind of continuous 
intensity function, taking large values in the vicinity of an event and becoming small when 
events are infrequent. The purpose of this note is to investigate the degree of bias, and to 
suggest a method of reducing it for short series. Practical considerations when imple- 
menting the method are described by Peterka et aL [4]. 

CONVERGENCE OF THE METHOD 

Given a realization of a point process with events occurring at times t. = 0, tIq ... 0 to 
and with counting process N(t), the spectrum of the process can be computed via the finite 
Fourier transform [5]: 

e"I dN(t) 
7771.0 7ý7r r 

Using the method of French and Holden [2], one computes 
I 

lwr 
- F, x(r) e JI-RD 11 -- 

where 

x(r) 
i sin u (rAt - 

0u (rA t-Q 

The variable X(r) gives the sampled values of the process at the points rAt, where At is the 
sampling intervaL The frequency u is chosen so that it becomes the Nyquist frequency of 
the sampled process, i. e., u= 7r/At, and one evaluates Y(CO) in the interval (0, u). In practice 
u is chosen to be greater than the highest frequency of interest in the process and from u 
one can find At. Substituting the formula for X(r) into Y(co) one obtains 

I, " inn (ndt 
- tVdt 

elc-dl. 

ra -0 7r(rdt - QlAt Y(" ý 7nýtj 7- 
.. 
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tvasing the order of summation, this can be rewritten as 
R 

lot, 
b sin 7r (r - tjA t) 

Ee Y- 
tjA ,e Y(co) 7R-C. ) 80r. 

a 7r (r - 

If & second sum is written as Z(t., co) then one has 

I 
eiWt. Z(t,, Oj Y(CO) E 

Clearly one would like Z(t,, w) to be close to unity for all values of t. and 0). 
Hone substitutes 0 =TtjAt, oe, = 7r + coAt and 0(2 = 7r - a)At then Z(t,, co) can, be 

Wrillm as :- 11 
1 

.Lj 
Sin (r + O)al 

+ 1. 
b sin (r + O)a2 i"I- cos (r + O)oc 

1 
x(r + 0) 2rEa 7r(r + 0) 

+ý 

rz-a 
, (r + 0) 

ib'1- cos (r + 0)22 

i 
Y- 

7r(r + 0) 
P-a 

where 0< a2 < a, <ým Convergence follows from the fact that, for 0<a< 27r 

co sin (r + O)oc 
=I and 

co I- cos (r + 0)(x 
=0 

X(r + 0) n(r + 0) 

(2) 

(scý for example, references [6], p. 404, and [7], p. 27), so that as a oo and b- ao, 
Y(W) - 4(w). 

ESTIMATION OF BIAS 

The value of expression (2) can be made as close to unity as one wishes simply by com- 
puting the function X(r) for large negative through to large positive values of r. Since 
X(r) -+ 0 as Irl -+ oo, it is worth investigating how far expression (2) is from unity for finite 
a and b. French and Holden [2] evaluated X(r) for rdt between 0 and t,,, so that the upper 
limit of the summation in expression (2) would be the integer part of t. ldt. Assuming that 
ni, the number of values of X(r), is odd, one can put k= (m - 1)/2 and rewrite expression 
(2)as a symmetrical sum by changing the dummy variable to p=r-k and 0 to - t. ljt + k. 
It can 1V shown [7] that for 0<a< . 2n 

sin(p + O)a 
=I 

in (k + '21) 

X 
Cos Ot s 

sin JLt 
dt, (3) 

P. -k 
n(P + 0) 

1, 

Cos (P + O)Ot 1" in(k + -21) t 

sin Ot s dt. (4) 
P. -k 

X(P + 0)_ ý7r sin It 

fo 

2 

If the right-hand side of equation (3) is integrated by parts one obtains 

cos (k + I)a f cos Ooc 4 
12+ O(k-2), 

- __ý _(k + 12) 1 'sin 
flat 

- 

lal 

and since (z >0 this expression is I+ 0(k-'). When a= ir, cos (k + -21)(x = 0, and so for 

, fixed k this value of a Yields the closest value of the expression to unity. The distance frorn 
unity is deternlined by (ka)- I which is largest when both a and k are small. 
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In a similar manner one can integrate the right-hand side of equation (4) by parts to give 

cos (k + 12)OC sin Oa 
+ 

20 
+ O(k-2). 

(k + 12) 
sin 12oc k+ -21 

Happily the term 20/(k + -1 which need not be small, is eliminated when one substitutes 2ý 

the above expression into the imaginary part of expression (2) to give 

i fcos (k + -I)ct sin a0 cos (k + 12)al 
sin a 01 2221 

22 (k + . 21, ) sin -21a, 
j 2t (k + -1) sin'IOC2 

This expression is O(k and is zero when a, =a2= 7r' 
From the definitions of at, and a2, to is small when a, = a2 = 7r and o) is near 7r when a2 

is small. Thus expression (2) becomes 

Z(tsg co) =I+ 0((k(n - co)) +i 0((k(7c - co)) 

This means that both the amplitude and phase distortions of H(CO) are 0((k(7C - 0))) and 
thus small if either k is large or co is not close to 7r. 

DISCUSSION AND CONCLUSION 

In this note it has been shown that the difference in the periodogram. ordinate of a point 
process computed directly or via the French-Holden algorithm is negligible if the number 
of sampling points is large, or the frequency of the ordinate is not near X. This is in agree- 
ment with Peterka et aL [4] who suggest that the upper 2% of frequency components 
should be rejected. I*f the number of sampling points is not large, then a method of increasing 
them is to sample X(r) outside the interval (0, Q. One useful method is to compute equal 
numbers either side of (m - 1), Jt/2 such that the total number of sampled points is a power 
of Z to facilitate the use of the fast Fourier transform. 
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