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Abstract 

This thesis presents an ab initio calculation of masses of light hadrons composed 

of up, down and strange quarks in lattice QCD. 

The results are obtained from a series of simulations performed in the quenched 

approximation to lattice QCD, at different lattice spacings and lattice sizes, which 

enables us to extrapolate to zero lattice spacing (i.e. the continuum), and to es-

timate any finite-size effects. Our simulations employ the Wilson gauge field 

action, the Sheikholeslami-Wohlert 0(a)-improved Wilson fermion action with 

two choices for the clover coefficient, and two lattice volumes. Comparisons are 

made where possible, with simulations from other groups using unimproved Wil-

son fermions to investigate the effects of improvement and to compare continuum 

results. Systematic errors in the calculation are investigated in detail. Finally a 

comparison is made between our results and experiment to estimate the effects 

of the quenched approximation. 
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Chapter 1 

Introduction 

In particle theory today there is a highly successful model of particle interactions 

called the Standard Model (SM). In the SM the fundamental particles of nature 

are fermions interacting with each other via exchange of virtual gauge bosons. 

To understand the interaction requires gauge invariance and the SM demands 

invariance under SU(3) 0 SU(2) 0 U(1) rotations. The unbroken, non—Abelian 

group SU(3) describes Quantum Chromodynamics (QCD) the strong interaction 

of coloured quarks and gluons. SU(2) 0 U(1) is the electroweak force describing 

the interaction between the leptons and the W and Z particles with spontaneous 

symmetry breaking at low energies to the U(1) of electromagnetism and the weak 

interaction. 

Traditionally to calculate quantities of physical interest, such as scattering am-

plitudes and matrix elements, requires the use of perturbation theory where a 

power series in the coupling constant between the appropriate fermion and gauge 

boson is used. Higher terms in the series represent more complex possibilities for 

exchange of virtual gauge bosons between fermions. Collectively these differing 

processes are called Feynman diagrams. For Quantum Electrodynamics (QED) 

the characteristic coupling constant ae 1
13 

 the series is asymptotic making 

QED relatively simple to solve. QCD has the property of asymptotic freedom, as 

a consequence of the non—Abelian structure of the gauge group [1, 2, 3, 4], where 

the typical coupling constant increases as the momentum scale at which one wants 

to solve QCD decreases. The opposite is true for QED. One probable consequence 

of asymptotic freedom is that the quarks are confined into bound states called 

hadrons. The coupling constant increases as the separation of the quarks increases 

1 
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and the typical momentum exchange between such quarks decreases (z.px 1). 

Perturtubation theory accurately describes QCD processes at short distance, i.e. 

high energy physics. However, the correct theory of the strong interaction, must 

also describe the low energy, mass spectrum of particles and matrix elements 

between particles states, which are observed experimentally. At the length scales 

relevant to observable quantities the coupling constant is a 0(1) and pertur-

bation theory becomes unreliable, making a non-perturbative formalism of QCD 

essential. 

To date, Lattice QCD [5, 6, 7, 8] is the most successful non-perturbative theory 

of the strong interaction. Formulating QCD on a lattice provides a theory in 

which ab initio calculations of physical observables can be made, to an accuracy 

limited only by the available computational resources. 

This thesis is concerned with a determination of the light hadron spectrum 

(hadrons made from u, d and s quarks). This is a central goal of Lattice QCD: 

such a successful calculation would be both a validation of QCD, as the theory 

of the strong interaction and of Lattice QCD as a computational tool. The first 

calculation of the light hadron spectrum was reported in 1981, where the cal-

culations were done on computers capable of sustaining about 1 Megafiop [9]. 

Today, computers exist that can achieve over one million times that speed, but 

progress appears to be slow in achieving this goal, as a large amount of effort is 

required in controlling the systematic errors arising in the calculation of physical 

observables. 

In this chapter, a brief overview of Lattice QCD is given, focusing on discretising 

the continuum theory to the lattice, on the calculation of observables and the 

associated systematic and statistical errors and finally how to relate quantities 

calculated on a lattice to the continuum. The approximations that are made 

can be systematically improved. This improvement can occur not only because 

of increases in computer power, which allows larger lattices to be used in the 

simulation, but also due to analytical advances, e.g "improving the action" so 

that we can work with larger lattice spacings without increasing the errors due 
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to discretisation. The improvement of the Lattice QCD action will be another 

subject discussed in this chapter. 

1.1 QCD in the continuum 

The strong interaction of quarks and gluons is described by the QCD Lagrangian 

£ = 	 - mqk)k -  Iiva  
4 (L11 

where b are the quark fields and 1, 3' = 1,2,3, is the quark-colour index (the Dirac 

index is dropped for clarity), and a = 1....., 8 is the gluon colour index. Repeated 

colour indices are summed over. 

The covariant derivative which makes the action invariant under local gauge 

transformations is given by 

D, = 0,, - igA and P = 	 ( 1.2) 

The gauge fields, A, are elements of the .su(3) the Lie Algebra of SU(3) and are 

collected in a matrix 

	

A,=A- - a=1.....,8, 	 (1.3) 

where the A' are the Gell—Mann traceless, hermitian matrices which are the 

generators of the SU(3) symmetry and which satisfy 

[\a6] = jfabcAc and Tr()\b) = 2 a6 	 (1.4) 

The f are the structure constants. The gauge part of the action is described 

by the field strength tensor 

F = F:Ta = -[D, D] = ap A, - 	- ig[A, A u ], 	 (1.5) 

where the last term arises from the non—Abelian nature of the theory, in which 

gluons, like quarks, carry colour charge. 

The Lagrangian in equation (1.1) is invariant under local gauge transformations, 
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A(x) E SU(3), in which the quark and gluon fields transform in the following 

way, 

(x) —+ A(x)1'(x), 	 (1.6) 

(x) —f 	(x)A'(x), 	 (1.7) 

A. (x) 	A(x)A(x)A 1 (x) — 	(aA(x))A1(x), 	(1.8) 
tg 

F,(x) —+ A(x)F,(x)A (x), 	 (1.9) 

DO(x) —+ A(x)D,,(x). (1.10) 

The gauge fields, A 1,(x) have the same function as the Christoffel symbols (con-

nections) in general relativity. To compare two infinitesimally separated quark 

fields (x) and (x+dx) they must be considered at the same point in space-time 

using parallel transport. An SU(N) matrix associated with a path in spacetime, 

which parallel transports the field /(x) along a curve, C to the field '(x + dx) is 

defined by 

U(C) 	I — igA,,(x)dx". 	 (1.11) 

The effect of many parallel transports can be generalised from the above, to 

describe how a finite path is traversed, as [10], 

U(C) = AAdxA .
( 1.12) 

P is a path ordering similar to the time-ordering operator in ordinary quantum 

mechanics, acting on matrices, A,,(x) such that A,,(x i ) is placed to the right of 

A,,(x 2 ) if the curve C reaches x 1  before x 2 . The parallel transport is a useful 

geometric concept', inherent in any gauge theory. The parallel transport over a 

finite interval 

P(x',x) =exp{igf A(y)dy} E SU(3), 	 (1.13) 

where the line integral is ordered along the path joining x and x'. Under parallel 

transport b(x) picks up a path-dependent phase factor. Thus, for every path 

'The relationship between QCD and geometry is explained in detail in [11] 
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there is a corresponding group element. From equations (1.6) and (1.7) the 

parallel transport operator transforms as follows: 

P(x,x') —* P'(x',x) = A(x')P(x',x)A 1 (x). 	 (1.14) 

The quantity /(x')P(x', x)i&(x) is clearly gauge invariant. Another important ge-

ometrical concept is the "curvature tensor" on the group space. A space has non-

zero curvature if a vector experiences a change under parallel transport around a 

closed path. This change is proportional to the vector itself, to the area bounded 

by the path, and to the curvature tensor. By considering parallel transport 

around an infinitesimal rectangle 

Po  = P(x,y;x,y+dy)P(x,y+dy;x+dx,y+dy)x 

P(x + dx, y + dy; x + dx, y)P(x + dx, y, x, y), 	(1.15) 

and using the following matrix identity 

e 	= e 	+ 	+ O(\), 	 (1.16) 

it can be shown that 

Po  = exp{igF v dx'dy"}, 	 (1.17) 

which suggests identifying F,LV  as the curvature tensor in group space. From 

equation (1.9) it is clear that parallel transport around any closed path is a 

gauge invariant operation. 

1.2 Euclidean Field Theory 

Lattice calculations are performed in Euclidean space which is related to Minkowski 

space through the Wick rotation 

t —+ r = it, 	 (1.18) 
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which is accomplished by continuing the signature of the space-time metric from 

(1, —1, —1, —1) to (1, 1, 1, 1). The gamma matrices of the theory are defined to 

satisfy the algebra, 

(1.19) 

Et_ E 
'-yli —'Y/ , 	 (1.20) 

for the Hermitian choice 

'yo=yf, —iyj=-yand'y5=7. 	. 	 ( 1.21) 

With this choice the Euclidean, continuum QCD action is 

S - f d 4 	F + (x)( + m)(x)]. 	 (1.22) 
- 	[4 

The move from Minkowski to Euclidean space has two advantages. Firstly, the 

integrand in a Minkowski path integral exp(iSM), is complex. In contrast, the 

Euclidean integrand is, real and positive, the Euclidean action, SE = iSM. Thus 

in the Minkowski integral there are large cancellations between different regions 

of configuration space, and these make it hard to simulate all but very small sys-

tems. This is an algorithmic, not a fundamental, issue. Secondly, the generating 

function in Euclidean space 

ZE = ffield 	
e, (1.23) 

 configurations 

where sources are suppressed, looks like the partition function of statistical me-

chanics. This analogy between Euclidean Quantum Field Theory and classical 

statistical mechanics is exploited to use Monte Carlo techniques to calculate ex-

pectation values of operators in terms of classical fields: 

(O(, 0 1 A)) = - f DV; f Do f DAO((, 0 , A)exp[ — SE(, 0 , A)]. (1.24) 
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The Feynman path integral is written in terms of the variables of Lattice QCD, 

the quark fields VT and 0 , and the gauge fields A,. 

1.3 Lattice Field Theory 

To perform numerical simulations a discrete four-dimensional hypercubic lattice 

of space-time points separated by the lattice spacing a is introduced. The ele-

ments of this lattice are the sites and connections between the sites called links. 

The variables of the Lattice Field Theory are defined on the elements of the lat-

tice; quark fields on the sites and gauge fields on the links. The integral over 

space-time in equation (1.23) is approximated by 

f dx -+a, 	 (1.25) 

where the sum is over all lattices sites, labelled by a four-vector x = ( n, n, r, fit). 

On a finite lattice, field theory has a finite number of degrees of freedom and is 

thus amenable to computer simulation. 

The discretisation of space-time provides a natural ultraviolet cut-off on momenta 

which are restricted to a domain bounded by 7r/a; wavelengths less than twice 

the lattice spacings have no lattice representation. Furthermore, the introduction 

of periodic boundary conditions quantises the allowed values of three-momenta: 

2ir 
j5= —(nx,n y ,nz ), 	 ( 1.26) 

aN8  

where n, nt,, and n are integers, and N8  is the spatial dimension of the lattice. 

As with any cut-off prescription, there is considerable freedom in the lattice for-

mulation. This allows the regulation of unwanted lattice artifacts by the addition 

of non-continuum terms to the lattice which vanish in the continuum limit. 

Lattice QCD is defined as a theory which has as its limit the continuum theory 

of QCD, when the lattice spacing a is taken to 0 and the volume of the lattice is 

taken to infinity in a prescribed way. This will be discussed further below. 
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1.4 Lattice Gauge Theory 

Discretising a gauge theory by replacing the continuum gauge fields, A'(x), by 

gauge variables at the sites of the lattice, breaks gauge symmetry. This would 

necessitate establishing its restoration in the continuum limit. Wilson [12] in-

troduced the following formulation in which the gauge fields are represented by 

elements of the SU(3) gauge group. 

Recall from section 1. 1, a field 0 (x) picks up the following path-dependent phase 

factor under parallel transport from x to x' 

x l  

U(x',x) = exp{igf A(y)dy}, 	 (1.27) 

and that every path can be associated with an SU(3) group element. On the 

lattice, Wilson introduced the link variable defined as: 

U,(x + fi) 	U(x) E SU(3), 	 (1.28) 

which represents parallel transport between nearest-neighbour sites, from x to 

x + fi, where /1 is a lattice unit vector (length a), pointing in the i direction. The 

gauge transformation properties of the link variables 

U/' W = V(x)U(x)V(x + fi), 	 (1.29) 

where the V(x) E SU(3) are gauge transformation matrices which live on the 

sites. The relation between these link variables and the gauge fields, A't(x), is 

given by 

U(x) = I + igaA(x + fl) + 0(a 2), 	 (1.30) 

where the mid-point rule is used to approximate the line integral in equation 

(1.27). The phase factor associated with parallel transport across the lattice is 

the path-ordered product of link variables traversed. 

There are two types of gauge-invariant objects which can be constructed from 

the link variables on the lattice: 
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a string terminated by a fermion at one end and an antifermion at the other, 

7(x)U(x) ........ U,(y - 	 (1.31) 

the trace of the path-ordered integral around any closed path, a closed string, 

these are called Wilson loops, the simplest of which is the plaquette, 

= Tr[U(x)], 	 (1.32) 

with UAOV 
	= U(x)U(x + )U(x + £')U(x). 	 (1.33) 

1.4.1 Pure Gauge Action 

We shall now be concerned with the discretising the pure Yang-Mills part of the 

continuum QCD action. Using these gauge invariant definitions and recalling 

from section 1.1, parallel transport around an infinitesimal closed path is propor-

tional to the field strength tensor, FA,, lead Wilson to suggest the following pure 

gauge action: 

SG = - Tr[U° (x) + U° t(x)], 	 (1.34) 
g 

where U' (x) is the Wilson loop in equation (1.33) and the sum 	is for A V 

1 < v < i. The bare coupling is related to the strong coupling constant as 

g2  = 4rra. 

Wilson showed that equation (1.34) gives 

SG = f d4X{F wF + O(a2)}, 	 (1.35) 

which corresponds to the continuum action with a discretisation error of 0(a2 ). 

The Wilson pure gauge action is usually written in the following parameterisation 

SG = [1 - - ReTrUjx)], 	 (1.36) 
C 
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with 

16 	
2N, 	

(1.37) 

where N is the dimension of the SU(N) gauge group. 

+ 1') 

U1 (x) 
	

U(x+/) 

U1 (x) 

Figure 1.1: An elementary plaquette. 

1.5 Lattice Fermions 

1.5.1 Naive Fermions 

Naively discretising the fermionic part of the action: 

SF 
= J dx (x)( + m)(x), 	 (1.38) 

by replacing continuum derivatives with a central difference approximation gives 

SNF= 	
{ 	

U11, 	+ ) - U"' (X - 	(x - 

(1.39) 

If the naive lattice Lagrangian is Taylor expanded in the lattice spacing, the 
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following continuum result is obtained: 

£NF = (x)( + m)'çb(x) + 0(a2). 	 (1.40) 

The naive lattice fermion action is equal to the continuum Dirac action, up to 

0(a2 ) corrections. The harmless looking action of equation (1.39) gives rise to an 

infamous problem: in d dimensions, it represents 2d  degenerate Dirac fermions, 

rather than one. This sixteenfold replication in 4 dimensions is referred to as the 

"fermion doubling problem". Consider the naive lattice fermion propagator in 

momentum space 

1 	— 	y,jsin(p) + m 
C(p) = ___   

isin(p) +m — 	sin2(p)+m2 	
(1.41) 

It is useful to reinstate factors of a, so that m = amhS and p = apphys . In the 

continuum limit, for fixed physical quark mass, m —+ 0. There is thus a pole near 

p = 0, and we can expand sirt(p,) = ap,h( 1  + 0(a2 )), yielding 

aG(p)
— 	P,t,phys + Mphys  

— Phy s + mPhYS 
(1.42) 

This has a pole at P2phy s = mPhYS , representing the fermion that we expected 

to find. The lattice momentum function sin(p,ja) vanishes at p,, = ir as well as 

AU 0. In the neighbourhood of the momentum (7r, 0, 0, 0), if we define new 

variables p'1 = it - Pi, pi' = 	= 2-4, then 

 
—ip+m 

(1.43) 

To bring the propagator into the standard continuum form, we have introduced 

new gamma-matrices, -y,' = —y, 'y = i = 2 — 4, unitarily equivalent to the 

standard set. Equation (1.43) shows that there is a second pole, at p12  = — m 2 , 

which also represents a continuum fermion. This is our first "doubler". 

The saga continues in an obvious way: sin(p) vanishes if each of the four compo- 

nents of k, equals 0 or it. There is a pole near each of these 16 possible positions. 
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Our single lattice fermion turns out to represent 16 degenerate states. 

A theorem by Nielsen and Ninomiya [13] (the "No-Go" theorem) says that such 

doubling is a feature of any reasonable, lattice regularisation scheme. The theo-

rem states that for a local lattice action that is bilinear, translationally invariant, 

Hermitean and with chiral symmetry, the continuum limit will contain multiple 

fermion species in opposite chirality pairs. 

The naive lattice fermion action equation (1.39) satisfies the criteria of the "No-

Go" theorem. Can this be fixed up? There are various ways to circumvent these 

problems each with their own problems: 

• explicitly break chiral symmetry right from the start, and aim to recover 

it only in the continuum limit, which is akin to rotations and translations. 

For fermions in vector representations this is the approach originally taken 

by Wilson [15], which will be discussed in more detail next, and is the 

approach which we shall take; 

• keep the extra doublers and divide their effects out by hand. This is the 

approach taken by "staggered"or Kogut-Susskind fermions [16]. In this 

formulation one reduces the number of fermion flavours by using one com-

ponent staggered fermion fields rather than four component Dirac spinors. 

The Dirac spinors are constructed by combining staggered fields on different 

lattice sites. 

1.5.2 Wilson Fermions 

The formulation of Lattice QCD used in this study is based on the Wilson action. 

Recall from section 1.3, there is freedom in the lattice formulation which allows 

terms to be added to the action which vanish in the continuum limit. Wilson [15], 

exploited this ambiguity by adding irrelevant operators, ones which vanish in the 

classical continuum limit, to reduce the fermion content of the lattice theory to 

one fermion. 
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Wilson's choice was to add a second derivative term to the naive action, 

SWF = SNF + SW, 	 (1.44) 

where the Wilson term is, 

SW = —
ar 	

(x)b(x), 	 (1.45) 

with the Wilson coefficient, r, and Li is the lattice discretisation of the second 

derivative, 

A(x) = 	(U,,(x),O(x + ) - 2(x) + U(x)(x - a)). 	(1.46) 

The Wilson fermion action is 

SWF = 

+(r + )U(x)(x — )] + (2ma + 8r)(x)(x)}. 	(1.47) 

For computational purposes, SWF can be rewritten in matrix form as 

	

SWF = 7i(x)MWF(x,y)'cb(y), 	 (1.48) 

where we have redefined the quark fields, ' —+ 	The Wilson fermion matrix 

MWF(X, y) is defined as 

MWF(x,y) = 6(x,y) - ic(x,y), 	 (1.49) 

where 5(x, y) is the Kronecker delta, 

(x )  y) 	 (1.50) 

and ic is the "hopping parameter", which measures the strength of nearest neigh- 

bour interactions in the lattice theory. In practical lattice calculations, this is 
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the input parameter which controls the bare quark mass and will be referred to 

frequently in the following. For free fermions, 

1/1 = 	
1 	

= m = -(- - 8r
)' 	

(1.51) 
2m+8r 	2k  

in the presence of gauge interactions the bare quark mass is given by 

1 1/ 	1" 

	

m q  = —i - - -). 
	

(1.52) 
k 

The Wilson term explicitly breaks chiral symmetry. This has the consequence 

that the zero bare quark mass limit is not respected by interactions; the quark 

mass is additively renormalised. The value of n,, is not known a priori before 

beginning a simulation; it must be computed. in general, this is that the pion 

mass vanish in the critical limit. 

The effect of adding this irrelevant operator is to introduce an explicit mass 

term which breaks the degeneracy of the doublers. In terms of the free quark 

propagator, the naive continuum limit is modified to 

G(p) - —iysin(p, j ) + m - r(eos(p) - 1) 
(1.53) - 	sin2 (p) + (m r((cos(p) - 1) 2 ' 

with only a single pole (at p1  = 0) in the continuum limit. On the lattice, 

the extra fermion species acquire masses of 0(r/a), which are infinite in the 

continuum limit and thus decouple from the low energy behaviour. 

If the action in equation (1.47) is Taylor expanded in the lattice spacing, the 

following continuum action is obtained 

	

)O(X)  SWF = d4x(x)P + m 
- 2 

arD2 
	+ 0(a 2). 	(1.54) 

From the continuum action, it can be seen that a price is paid for the removal of 

the species doublers, the addition of an 0(a) correction to the action. 
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The Lattice QCD action can now be written 

SQCD = SG + SWF. 	 (1.55) 

The Wilson r parameter is set to 1 throughout the rest of this thesis. 

1.6 Lattice Simulations 

Having formally defined the Lattice QCD action, a practical means of numerically 

simulating the theory must be developed. The generating functional for Lattice 

QCD is 

Z = f DV;DODUexpf - SG(U) —M(x,y: U)}, 	(1.56) 

where M(x,y; U) is the fermion matrix. VU is constructed from the Haar mea-

sure, so the measure in the functional integral is: 

VU = flVU,(x), 	 (1.57) 

The Haar measure has the following property: 

f dUf(U) = f D(UV)f(U) 
= f d(U)f(UV') 

= f D(VU)f(U) 
= f d(U)f(V 1 U), 	(1.58) 

required to make the functional integral gauge invariant. VJJTh/' is defined over 

the Grassmann variables at every site, given by 

VLJVçb = fl  (FO (x)dib(x). 	 (1.59) 

In the functional integral of equation (1.56), the Grassmann-valued quark fields 

' (x) and 7k (x), cannot be evaluated in a stochastic process and must be integrated 

out before any numerical simulations can be attempted. This creates an effective 
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action, which depends only on the gauge fields, so the path-integral is 

Z = f DUdet Me-SG(U). 	 (1.60) 

The vacuum expectation value of an observable is expressed as 

(O(, q,  U)) = f DUdetMe_SG(U)O(, , U). 	(1.61) 

Since the action has been rotated to Euclidean time a Monte Carlo algorithm 

can be used to determine vacuum expectation, using techniques developed for 

statistical mechanics. 

1.6.1 Monte Carlo Techniques 

A "generic" Monte Carlo simulation in QCD breaks up naturally into two parts. 

In the "configuration generation" phase one constructs an ensemble of states with 

the appropriate Boltzmann weighting: we compute observables by averaging N 

measurements using the field variables q()  appropriate to the sample 

(F) 	iR 	
1N 	

(1.62) 

As the number of measurements N becomes large the quantity F will become a 

Gaussian distribution about a mean value. Its standard deviation from [17] is 

2 1 
Orr _

( 1 N 

	r2) 	 (1.63) 

The idea of essentially all simulation algorithms is that one constructs a new 

configuration of field variables from an old one. One begins with some field con-

figuration and monitors observables while the algorithm steps along. After some 

number of steps, the value of observables will appear to become independent of 

the starting configuration. At this point the system is said to be "in equilibrium" 

and equation (1.62) can be used to make measurements. 
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The simplest method for generating configurations is called the Metropolis algo-

rithm, [18]. It works as follows: from the old configuration {g} with action S, 

transform the variables, in some reversible way, to a new trial configuration 

and compute the new action S. Then, if 5' < S make the change and update all 

the variables; if not, make the change with probability exp(—(S' — S)). How does 

this generate the right probability distribution? In equilibrium, the rate at which 

configurations i turn into configurations j is the same as the rate for the back 

reaction j —+ i, this is the additional constraint which the algorithm must satisfy 

known as "detailed balance". The rate of change is (number of configurations) 

x (probability of change). Assume for the sake of argument that Si < S3 . Then 

the rate i 	is NP(i 	with P(i —+ j) = exp(—(S — Si)) and the rate 

j —+ i is N3 P(j —+ i) with P(j —+ i) = 1. Thus Ni/Na = exp(—(S — Sj)). 

Let us now consider the generation of configurations for the Lattice QCD partition 

function in equation (1.60), P cx VUdetMe 	(U)  The determinant' introduces 

a non-local interaction among the U's, whereas the variation of the gauge action 

involves only a local calculation, i.e. one involving links close to that being 

changed. The present algorithm of choice for simulating QCD is the "hybrid 

Monte Carlo" algorithm [19]. We can estimate that the time it takes to generate 

an independent configuration is roughly 

NS

) "( 1) 	) 

( 1 '\ 
cost cx 

( - --a 	' 	
(1.64) 

where the first factor is just the number of lattice sites in the grid, and the 

remaining factors account for "critical slowing down" of the algorithms used 

in the numerical integration [20]. As the quark mass decreases, so does the 

pion mass, m Oc Tfl q . Naively, it is necessary for the lattice length to exceed 

the pion Compton by a factor of a few, so N3  cx 1/m,. Using this, one finds 

CPU cx m 3 . The cost of generating dynamical gauge configurations at light 

'To obtain a positive measure one can either simulate degenerate pairs of quarks, in 
which case the measure contains the square of the single quark determinant or simulate with 
detM = det(MtM)°S. 
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quark masses is computationally expensive, even with today's computers. To 

make progress an approximation must be made, and this is what know as the 

"quenched" approximation, 3  this amounts to 

detM = constant = 1 7 	 (1.65) 

so that equation (1.60) becomes 

Z = j E)Ue—s-  (U) . 	 ( 1.66) 

This corresponds to throwing away internal quark loops, while keeping the valence 

quarks, which now propagate through a modified distribution of gauge configu-

rations. Quenching reduces the CPU requirement by a factor of 102 - io at 

current parameter values. Furthermore the time to generate new gauge configu-

rations only grows as CPU cx N,5 cx m 225 , so that it is easier to go to smaller 

quark masses. The quenched approximation will be used in the remainder of this 

thesis. 

1.6.2 The lattice Quark Propagator 

On the lattice, particle masses and matrix elements are extracted from correlation 

functions. ' These correlation functions are constructed from quark propagators 

computed for a fixed number of gauge configurations. The quark propagator is 

the basic building block in Lattice QCD. 

In QFT the quark propagator is defined as follows: 

G(x,y) 	(0IY(x)(y)0), 	 (1.67) 

where the Greek and Latin indices denote the spin and colour components of 

the quark fields respectively, and Y is the time ordering operator. In Euclidean 

'Many of the artifacts of the quenched approximation can be absorbed through a shift of 
the coupling. This is explained in more detail later on in the chapter. 

'Correlation functions are discussed in detail in the next chapter. 
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space, using the Feynman path integral formalism equation (1.67) is given by 

(0I(x)(y)I0) = 	f DUDDb (x)(y)e M)  

= fDUG(X ' Y;U)C_ SG (U)  

= f DUM -1  (X, Y -  U)C-S G (u) , 	 (1.68) 

where G(x,y; U) is the quark propagator in a given configuration U, and is com-

puted from the inverse of the fermion matrix M` (X, y; U). 

The Monte Carlo estimate of equation (1.68) is given by 

C(x,y) = (07_(x)(y)0) 	M'(x,y;U), 	(1.69) 

where U is a statistically independent sample of N gauge configurations generated 

with the following probability distribution 

(U) 
	

(1.70) 

In subsequent chapters and sections if a lattice quark propagator is used to cal-

culate a correlation function the summation of gauge configurations is assumed, 

to reduce the notation. 

The local (point) source quark propagator is computed using iterative methods 

to solve the linear equations of the form 

M(x, y, U)G(y, 0; U) = 5ac5( 0). 	 (1.71) 

In practice, G(y, 0; U) is computed for all twelve spin-colour combinations of 

point source, which describes the propagator of a quark from a fixed origin. The 

source function can be non-local to produce a smeared propagator and shall be 

discussed in the next chapter. 
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1.7 From Lattice QCD to Continuum QCD 

Lattice QCD is a theory with the following free parameters. 

. The bare lattice coupling g. 

• The hopping parameters Fcf, f = 1. ...... . nj, where nj is the number of 

flavours. 

Clearly with so few free parameters, the predictive power of such a theory is high, 

however an experimental measurement is needed to fix each parameter. 

By formulating a field theory on a finite lattice, a regulator is introduced limiting 

the range of momentum values, the ultraviolet cutoff being A 1/a, where a 

is the lattice spacing and all the coupling constants in the action are the bare 

couplings defined with respect to it. When we take a to zero we must also specify 

how g(a) behaves. The proper continuum limit comes when we take a to zero 

holding dimensionless ratios of physical quantities fixed, not when we take a to 

zero holding the couplings fixed. 

If we compute on the lattice, masses of physical particles at several values of the 

lattice spacing. Ratios of these masses will depend on the lattice cutoff. The 

typical behaviour will look like 

(am i (a))/(am 2 (a)) = ml(0)/m2(0) + O(m i a) + 0((mia)2) +... . 	(1.72) 

The leading term does not depend on the value of the UV cutoff, while the other 

terms do. The goal of a lattice calculation is to discover the value of some physical 

observable as a —+ 0, so the physics is in the first term. Everything else is an 

artifact of the calculation. We say that a calculation "scales" if the a—dependent 

terms in equation (1.72) are zero or small enough that one can extrapolate to 

a = 0, and generically refer to all the a—dependent terms as "scale violations." 

Lets now consider QCD at zero quark mass, where there is only a single parameter 

the bare coupling. We can express each dimensionless combination am(a) as some 
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function of the bare coupling {g(a)}, am = f({g(a)}). As a -+ 0 we must tune 

the set of couplings {g(a)} so 

lim f({g(a)}) 	constant. 	 (1.73) 

From the point of view of the lattice theory, we must tune {g} so that correlation 

lengths 1/ma diverge. This will occur only at the locations of second (or higher) 

order phase transitions in the lattice theory. 

The Callan-Symanzik /3-function is defined by 

dg(a) 	dg(a) 
(1.74) 

da 	dln(1/ALATa)' 

where ALAT is a cutoff independent, renormalisation-group-invariant mass pa-

rameter describing the strength of the strong interaction. At a critical point 

= 0. Thus the continuum limit is the limit 

lim{g(a)} -+ {g}. 	 (1.75) 
a-O 

In QCD the fixed point is g = 0 so we must tune the coupling to vanish as a 

goes to zero 

The two-loop /13-function is prescription independent, 

= — 00g3  + 01g5  + 0(g7 ), 	 (1.76) 

where  
11 - flf 	 _______ _________ 	 _______ 	38 \\ 

and /3i = F1 67r 
(102 _ 	flf) 	 (1.77) 1 6ir 2  

At small enough coupling so that the two-loop beta function is approximately 

correct, if the lattice theory is reproducing the continuum, we might want to 

observe perturbative scaling, or "asymptotic scaling", m/A LAT  fixed, or a varying 

'Note that when working in the quenched approximation the number of flavours, n1  is zero. 
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with g as 

aALAT = (/3og2(a)) 2$ 	213092(a) (1 + 0(g2 )). 	 (1.78) 

Asymptotic scaling is not scaling. Scaling means that dimensionless ratios of 

physical observables do not depend on the cutoff. Asymptotic scaling involves 

perturbation theory and the definition of coupling constants. One can have scal-

ing without asymptotic scaling. 

In practice, one proceeds as follows: 

• at a given value of the lattice spacing, data are generated at different quark 

masses (different ic). This is done at unphysically heavy quark masses which 

must be extrapolated to the critical quark mass at t. 

• The value of r, is determined non-perturbatively. To first approximation 

using the PCAC relation, the square of the pion mass is proportional to the 

mass of the light quark, m cx m q , and the criterion that m. = 0 at the 

critical point, ic e, is extracted. 

• The p mass at the critical point is then found by extrapolating to its value 

at tc. The number is compared with its experimental counterpart to set the 

scale for this particular lattice calculation. In principle any dimensionful 

quantity can be used to set the scale and clearly it is best to find a choice 

which is most insensitive to the lattice mass. 

• Scaling has to be verified by calculating the same physical quantity at dif-

ferent values of the lattice spacing a(g). If scaling violations are seen, an 

extrapolation to a -+ 0 has to be performed. 

1.8 Errors: Systematic and Statistical 

In a reliable calculation of hadronic masses ratios and other physical observables 

from lattice data, it is essential to understand the possible sources of systematic 

and statistical errors. 
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1.8.1 Systematic Errors 

The Quenched Approximation 

The quenched approximation sets the fermion determinant detM in equation 

(1.61), equal to a constant, i.e. detM = 1, as discussed in section 1.6 and this 

represents a significant saving in computer time. This amounts to throwing away 

internal quark loops, while keeping the valence quarks, which now propagate 

through a modified distribution of gauge configurations. It is a priori not possible 

to determine the effect of quenching on the theory since it does not constitute 

a systematic approach: different quantities will be affected differently. Most 

importantly one hopes that the main features of full QCD, confinement and 

asymptotic freedom, remain intact in the quenched theory. 

One of the unphysical effects of quenched QCD is that resonances in QCD, e.g. 

the p meson, become stable states in quenched QCD. This is because internal 

quark loops are necessary to obtain the on-shell intermediate states (e.g irrr in 

the case of the p) which give rise to the imaginary parts of the propagators, and 

thus to the width of the resonances. However discarding these intermediate states 

affects not only the imaginary part, but also the real part of the propagator. In 

other words, not only is the width of the state changed to zero, but the mass 

is shifted. The most naive estimate is that 6m Jr' = F, the width of the p 

meson at 151.5 + 1.2 MeV indicates its coupling to pions and correspondingly 

these dynamics must have significant influence on the p-meson mass. This mass 

shift will not be uniform in sign or magnitude, since it depends on the available 

thresholds, and possible cancellations. The change in the p mass may in fact be 

small [21]. 

In the quenched approximation the gauge coupling runs differently to that of the 

full theory. Lattice calculations adjust the quenched gauge coupling at the scale 

of the cutoff I to agree with a coupling at the scale of physics, say for example at 

the mass of the p meson. One of the drawbacks of this procedure, called "setting 

the scale", is that different quantities used in this procedure lead to different 

spacings. This will be discussed further in chapter 4. 
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Finite Volume Effects and Chiral Extrapolations 

It is not possible to calculate the quark propagators at the physical values of the 

masses of the u- and d-quarks. In this limit the system of linear equations for 

the quark propagators becomes more and more singular. The physical reason 

for this effect can be seen as follows: the size of the light particles is given 

approximately by 
AQCD 

0.8fm whereas the spatial length of the lattices used 

here 1.8fm. However, due to periodic boundary conditions there will be many 

copies of the hadron and volume would have to be very large for them not to 

interact with each other. The range of such interactions is of the order 0( 1  ) the 

pion Compton wavelength, which is the lightest particle of the system. The most 

important consideration for light hadron spectroscopy is that the lattice size at 

which simulations are done is bigger than the pion. To avoid these interactions 

one works with unphysically high masses of the light quarks. Correlators are 

calculated at several value of the hopping parameter ic and extrapolates in tc 

according to chiral perturbation theory to the physical quark masses. Therefore 

this procedure has introduced a systematic error. However, the chiral behaviour 

is modified due to quenching effects and this procedure is not as straightforward 

as it first seems and this too is discussed in chapter 4. The systematic error due 

to finite volume effects can be quantified by doing calculations at the same value 

of the lattice spacing but different physical volumes and comparing the results 

and this is explained in more detail in chapter 4. 

Discretisation Errors due to Non-zero Lattice Spacing 

This will be discussed in detail in a later section. Simulating with the Wilson 

gauge action and fermion action introduces discretisation errors of 0(a). Thus 

simulating at a finite lattice spacing has introduced a systematic error. There are 

two possible approaches to this problem. The first is to do the lattice simulations 

at different values of the lattice spacing and then extrapolate the results to the 

a -* 0, continuum limit. The second is to work with an improved action which 

reduces the discretisation errors, see section 1.9 
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1.8.2 Statistical Errors 

With the chosen discretised action, the functional integral is evaluated using 

Monte Carlo techniques outlined in section 1.6. Expectation values are calculated 

on a finite sample of N gauge configurations. For N statistically independent 

configurations the statistical error falls off only as . A large set of gauge 

configurations however is computationally very expensive. To save computer 

time, propagators at different values of the hopping parameter ic are calculated 

on the same set of gauge configurations. Clearly different physical quantities 

will be highly correlated. This is also true of data for the same quantity but on 

different timeslices. We shall therefore briefly describe how the correlation of the 

data is taken into account in the fitting of the data. 

Fitting Correlated Data 

The covariance matrix is estimated from the data by 

1 	N 
0- (t i , tj) =

1' 	
(xk(t) - (t))(xk(tj) - (t)), 	(1.79) 

N(N— )k=1 

where Xk(t) are values of some lattice quantity calculated on a sample of k = 

1..... , N configurations and on timeslice t, i = 1....., N. The quantity (t) is 

the configuration average of xk(t). It is often more convenient to work with the 

data correlation matrix, defined as 

p(t, t) 
= 	a(t, t) 	

(1.80) 

FU  (ti ta(t, ti)' 

because the elements of this matrix are normalised in such a way that p(t, t) = 1 

and p(t 1 , t) E [-1, 1] so that it is easy to read off how strongly correlated the 

data on different timeslices is. For uncorrelated data, equation (1.80) reduces 

to the identity. In practice, equation (1.80) is computed because the correlation 

matrix is easier to invert numerically. 

To fit the data to an analytical model function, f(t; ), parameterised by in pa- 

rameters, a i  = a1 , a2 ...... , am , to the data Xk(t), the fit is performed by minimising 
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the following chi-squared function with respect to the model parameters, : 

X 2  = 	[f (ti; ) - 	x cr'(t, t) x [f(tj; ) - (t)],  
ti,ti 

where the sum is over all timeslices t the fit is performed on. The goodness of a 

fit is estimated by the ratio X 2 /d.o.f. where d.o.f. denotes the number of degrees 

of freedom, in this case d.o.f. = t - m. A usual indication that the best fit to the 

data has been found is a 

X2 /d.o.f. 	1. 	 (1.82) 

Bootstrap Resamp 

To estimate the error on a fitted parameter, the simulation should be repeated 

(many times) for different gauge configuration samples. In practice, this is pro-

hibitive since both gauge configurations and quark propagators are computation-

ally expensive. The error on a fit parameter can instead be estimated using 

Bootstrap methods [22]. Assume the complete simulation has been performed 

many times with different sets of N configurations. Performing a chi-squared 

minimisation procedure on each of these hypothetical simulations would yield a 

distribution for each parameter a i  which could be used to estimate the error in 

selecting the one particular configuration. To mimic this setup using the Boot-

strap method one can proceed as follows. The N configurations are resampled 

randomly, allowing for repetitions, to generate a large number, typically 1000, 

of new simulated ensembles. For each bootstrap ensemble the covariance matrix 

is recomputed using equation (1.79) and the chi-squared minimisation procedure 

is performed. The bootstrap ensembles yield a distribution of fitted parameters 

a. The quoted error corresponds to the 68% confidence limit of the bootstrap 

distribution. 
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1.9 Improvement 

For the Lattice QCD action SQUD = SG + SWF, as discussed above, the discreti-

sation errors of the gluonic part of the action are 0(a 2 ), whereas those of the 

fermionic part of the action are 0(a), so the residual cut off effects are 0(a). 

To simulate at fixed physical volume the computation cost of generating gauge 

configurations in full QCD, 6,  equation (1.64) rise as: 

1 
cost cx -. 	 (1.83) 

a6  

Therefore the computational overhead can be reduced if we work at a coarser 

lattice spacing, but at the cost of increasing the discretisation errors in the mea-

surements of physical observables. The aim of the improvement program is to 

reduce the cutoff effects of the Lattice QCD action, make the action more contin-

uum like. The benefits of such an exercise are enormous, especially for simulations 

in full QCD where the computational overhead is much greater than in quenched 

Q CD. There are two types of improved actions. 

• Fixed point actions; the aim is to find the "perfect action", a trajectory in 

coupling constant space where there are no corrections at all. The method 

relies on the renormalisation group and blocking along a renormalised tra- 

jectory to a fixed point, see [23]. 

• An improvement scheme proposed by Symanzik [24, 25] uses the non-

uniqueness of the lattice action (and composite fields) to remove cutoff 

effects systematically order by order through the addition of local higher-

dimensional irrelevant counter-terms to the lattice action and the composite 

fields of interest. He has shown that the approach of Green's functions to 

their continuum limit can be accelerated using an improved action and 

improved composite fields. 

'Full QCD is that which corresponds to the continuum QCD, i.e. fermion loops are included. 
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In this thesis improved actions and improved composite fields constructed un-

der the Symanzik program to remove the leading 0(a) cutoff effects shall be 

investigated. A considerable simplification is achieved if the improved continuum 

approach is only required for on-shell quantities such as particles masses and ma-

trix elements of improved fields between physical states [26, 27, 28]. The structure 

of the counter-terms is governed by the symmetries, 7  their coefficients have to 

be fixed by improvement conditions. Although they can be estimated in pertur-

bation theory, a non-perturbative determination of the improvement coefficients 

through Monte Carlo simulations is clearly preferable. 

1.9.1 Tree-level 0(a) improvement 

Two-link Action 

Hamber and Wu [29] suggested adding the following "two-link" term: 

= a 	
{ - 

[(x)U(x)U(x + /b(x + 2/i) 

+ (x + 2)U(x + )U(x))(x)] 
}, 	

(1.84) 

which cancels the 0(a) term in the Wilson action. The Two-Link action is 

S ' D = SG + SWF + ASH, 	 (1.85) 

which differs from the continuum action by terms of 0(a2 ) at tree-level. Heatlie 

et at. have argued [30] that correlation functions computed with the Two-Link 

action have no discretisation errors of 0(a) or 0((g2 )'a1oga), to all orders in 

perturbation theory, since in the asymptotic scaling limit g 2  1/loga. Unfortu-

nately, the Two-link term is difficult to implement on a parallel machine because 

it requires next-to-nearest-neighbour communications. 

7The counter-terms are invariant under gauge parity-and charge-conjugation transforma-
tions and discrete rotations. 
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Sheikholeslami-Wohlert Action 

Sheikholeslami and Wohiert proposed the following nearest-neighbour action: 

SW = S + SWF + ASSW , 	 (1.86) 

where /SSW  is a Pauli-interaction term: 

SSW = a 4 E [_ igk(x)a v P u (x)]. 	 (1.87) 
x,,LlI 

F,, is an appropriate lattice definition of the field strength tensor, F, for ex-

ample the one given by the average over the four plaquettes lying in the plane 

(it, ii) and stemming from the point x [31], shown in figure 1.2 and is defined as 

F = 	
2iga2 

[u + U t]. 	 (1.88) 
i  

V 

Figure 1.2: Graphical representation of the products of gauge field variables 
contributing to the lattice field strength tensor in equation (1.88). 
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The key observation made by [28, 30] is that the Sheikholeslami-Wohlert Action 

is related to the Two-Link action by the following rotation of the quark fields 

	

= [i_ _m)] 0 + 0(a2 ) , 	 ( 1.89) 

a - 
-* 	= [1 + ( P +m)] + 0(a 2), 	 (1.90) 

where the forward and backward lattice derivatives are defined as 

= 	 + ) - U(x - A MX - 	 ( 1.91) 

= {(x + /)U(x) 	- 	- 	 (1.92) 

These rotations simply constitute a change of variable in the functional integral; 

and thus results concerning the discretisation errors for the Two-Link action also 

hold for the SW action. The advantage of using the SW action it is nearest-

neighbour and can be implemented efficiently on a parallel machine. 

The improved QCD action, called the Sheikholeslami-Wohlert (SW) action is 

QSW 
 = SG + SWF - 	Ca(x)F(x). 	(1.93) 

S,/L11 

The coefficient of the clover term, C is a function of the bare coupling, g, with 

tree-level value C = 1. An initial study of the effect of the clover term in the 

action, using the tree-level value, on hadronic observables and matrix elements 

was done in [32] and substantial improvement was found. The residual cut-off 

effects in the tree-level 0(a)-improved SW action are 0(g2 a) in perturbation 

theory. 

1.9.2 The Tadpole-Improved SW Action 

One can use perturbative ideas to motivate non-perturbative improvement schemes. 

Perturbative expansions in terms of the bare coupling are useless for most quan-

tities, because of large contributions from tadpole graphs. If these tadpole con- 
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tributions are treated non-perturbatively, e.g by writing U = uo [1 + iagaA ,. 

with u0  = ((TrU° )) 1 /4  from the simulations, and the perturbative expressions 

are adjusted to remove the one-loop contribution from u0 , then the perturbative 

estimates are more reliable [33]. The mean-field, or tadpole, prescription for the 

action is to replace 

U(x) 	
U(x) 

UO  (1.94) 

everywhere, and then to use perturbation theory (excluding the perturbative 

contributions from uo ) for the coefficients. Applying this prescription to the SW 

action in equation (1.93) we obtain the coefficients, 

g2  =  

K= 
ic
- , 	 (1.96) 
U0 

C 
=

(1.97) 3 1  
UO 

then k and Z should be close to their perturbative values of 1/8 and 1, respec-

tively. In other words, 

C = -, 	 (1.98) 

which is tadpole-improved value of the clover coefficient. 

The 0(a) tree-level improvement of matrix elements for the tadpole improved 

action requires the rotation of the quark fields 0 and , as follows 

= [i_ 	_m)] 0 + 0(a2), 	 (1.99) 

a 	- 	1 
= 	+ 	+m) I + 0(a2). 	 (1.100) 

4u0 	 j 

For an on-shell observable the equation of motion can be used to rewrite the 

rotated operators, which are bilinear in the quark fields as [30, 34] 

am 	- 	a 
0 	= (1+ —(1— z))(F + z—( F - F)),  

u0 	 2u0 
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with z G (0, 11. However, for z 1 it is not clear what lattice quark mass am to 

use in equation (1.101). The authors of [35] show that the bare unrenormalised 

quark mass amq  is a reasonable choice in the case z = 0 equation (1.101) becomes 

/ am 
0 	= (1 + - 

U0 	
&F, 	 (1.102) 

	

\ 	 ) 

the rotation of the operator is an additive renormalisation which vanishes in the 

chiral limit, and is required to improve matrix elements at non-zero quark mass. 

1.9.3 Full 0(a) Improvement 

In a number of publications [36, 37, 38, 39, 40] the ALPHA collaboration have 

calculated non-perturbatively the improvement coefficients for the 0(a) counter-

terms to the action and composite fields to remove all leading cut off effects in 

the Wilson action, equation (1.55). 

The Wilson fermions violate chiral symmetry which is more directly seen by 

studying the conservation of the isovector axial current A,. The current and the 

associated axial density on the lattice are defined through 

	

A(x) = 	(x)y 1 75 0(x), 	 (1.103) 

	

P(x) = 	'(x)y 5 (x). 	 (1.104) 

The PCAC relation 

2ihP(x) + 0(a), 	 (1.105) 

IL 

- 1 	+ a), 	 (1.106) 

	

- 	 /2 ll 

then includes an error term of order a. Above, ô/L  and ö% denote forward and 

backward lattice derivatives and th is the unrenormalised current quark mass at 

scale 1/a. 

The isospin symmetry remains unbroken on the lattice and there exists an as- 

sociated conserved vector current. However, it is often advantageous to use the 
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current which is strictly local, 

= 	 (1.107) 

The conservation of this current is then also violated by cutoff effects, and a finite 

renormalisation is required to ensure that the associated charge takes half-integral 

values. 

Symanzik's local effective theory 

Near the continuum limit the lattice theory can be described in terms of a local 

effective theory [25], 

SeffSo+aSl+a2S2+..., 	 (1.108) 

where S0  is the action of the continuum theory, defined e.g. on a lattice with 

spacing E << a. The terms Sk,  k = 1, 2,..., are space-time integrals of Lagrangians 

Lk(x). These are given as general linear combinations of local gauge-invariant 

composite fields which respect the exact symmetries of the lattice theory and 

have canonical dimension 4 + k. A possible basis of fields for the Lagrangian 

£ 1 (x) then reads 

01 = 
-- - 

02 = DD+D,2 Db, 

03  = mtr IF, F,}, 

DD 04  = m_,&}, 

05  = m 2 	 (1.109) 

where 	is the field tensor and o = 	-yr,]. 

When considering correlation functions of local gauge invariant fields the action 

is not the only source of cutoff effects. If ç5(x) denotes such a lattice field, one 

expects the connected n-point function 

G(x 1 ,. ..,x) = (Z 	 1 
	 (1.110) 
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to have a well-defined continuum limit, provided the renormalisation constant Zcj, 

is correctly tuned and the space-time arguments x 1 ,. .. , x are kept at a physical 

distance from each other. 

In the effective theory the renormalised lattice field ZO O(x) is represented by an 

effective field, 

eff(X) = Oo (x) + a i (x) + a'02 (X) +..., 	 (1.111) 

where the ct k (x) are linear combinations of composite, local fields with the ap-

propriate dimension and symmetries. For example, in the case of the axial cur-

rent (1.103), 0 1  is given as a linear combination of the terms 

(O6) = —1 	—* 	4— 

= T p[D+ 	 (1.112) 

= MT-Y,,-Y5b. 

The convergence of G(x 1 ,. .. ,x) to its continuum limit can now be studied in 

the effective theory, 

— a 
j 

 d 4 
Y(00(xl) ... OO(X'0 ,C1(Y)).on 

n 

+ a(o(xi) ... 	 + O(a 2 ) ,  
k=1 

(1.113) 

where the expectation values on the right-hand side are to be taken in the con-

tinuum theory with action S0 . Contact terms arise if any of the points xk and 

y coincide. Generally we need only consider correlation functions at non-zero 

physical distances and any contact terms coming from the integration over y can 

be absorbed in a redefinition of 0. 

Using the field equations 

It is then possible to make use of the classical field equations to reduce first the 
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number of basis fields in the effective Lagrangian L and, in a second step, also 

in the 0(a) counter-term 01  of the effective composite fields. 

We may eliminate two of the terms in equation (1.109). A possible choice is to 

retain the terms 01, 03  and 05 , which yields the effective continuum action for 

on-shell quantities to order a. Having made this choice one may apply the field 

equations once again to simplify the term qi in the effective field as well. In 

the example of the axial current it is then possible to eliminate the term 06 in 

equation (1.112). 

Improved lattice action and fields 

The on-shell 0(a) improved lattice action is obtained by adding a counter-term 

to the unimproved lattice action such that the action S 1  in the effective theory 

is cancelled in on-shell amplitudes. This can be achieved by adding lattice rep-

resentations of the terms 01, 03  and 05  to the unimproved lattice Lagrangian, 

with coefficients that are functions of the bare coupling g only. Here note that 

the fields 03 and 05  already appear in the unimproved theory and thus merely 

lead to a re-parameterisation of the bare parameters g and m. In the following, 

we will not consider these terms any further. Their relevance in connection with 

massless renormalisation schemes is discussed in detail in [37]. 

Here again we arrive at the Sheikholeslami and Wohiert improved action 

S 'D = SG + SWF - 	Ca(x)aP(x). 	(1.114) 

With a properly chosen coefficient C(g), this yields the on-shell 0(a) improved 

lattice action. The perturbative expansion of C reads C = 1 + C(1)92  + 0(g4 ), 

with [41] 01 ) = 0.26590(7). 

The 0(a) improved isospin currents and the axial density can be parametrised 8  

'The origin of the 2k comes from the rescaling of the quark fields 
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as follows, 

A = ZA 2Ic(1 + bA amq){A, z  + acA ÔP}, 

V  = Zv2ic(1 + bv amq){V, + acv ÔT,,}, 

pR = Zp2ic(1 + bpamq)P, 	 (1.115) 

where 

Till 

The normalisation constants ZA,V,P,  have to be fixed by appropriate normalisation 

conditions [42]. Again, the improvement coefficients bA,V,P  and CA,V are functions 

of g only. At tree level of perturbation theory, they are given by bA = bp = 

by = 1 and CA = CV = 0 [30, 41]. Lüscher, Sint and Weisz have calculated these 

coefficients to one-loop [41, 43]. 

Non-p erturbative determination of the Improvement Coefficients 

The ALPHA collaboration have determined C and CA non-perturbatively [38] by 

requiring the PCAC relation, equation (1.106), holds irrespective of the states 

between which it is sandwiched, i.e, 

3(A(xo)0) = 2nR ((P(x o )O) + 0(a2 ),  

for any product 0 of renormalised improved fields, separated from x 0 . The 

calculational tool employed is the Schrödinger functional [44, 45, 46, 47, 48], 

where field configurations taking specified values at x 0  = 0, T are considered. 

The advantages of the Schrödinger functional are as follows. 

• For finite lattice size L there are corrections of order a/L, so simulating 

at large 3 with fixed L is safe allowing contact to be made with lattice 

perturbation theory. 

• The Schrödinger functional contains a number of "kinematic" variables, 

including L and T, which should not affect final physical answers: varying 
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these provides a systematic error check. 

. It also has a built in infra red cutoff, allowing zero mass quarks to be 

simulated. 

The renormalised quark mass MR  appearing in equation (1.116) is then given by 

ZA(1 + bAamq ) 
= m 	 + 0(a2 ). 	 (1.117) 

Zp(1 + bpamq ) 

At fixed bare parameters, in-R,  and hence also the unrenormalised mass ñi should 

be independent of the kinematical parameters such as T, L and x 0 . This will be 

true up to corrections of order a2 , provided C and CA have been assigned their 

proper values. 

In the range 0 < g 2  < 1, the non-perturbative results for C are well represented 

by, [38] 
= 1 - 0.656g2  - 0.152g4  - 0.054g6 	

(1.118) 
1 - 0.922g 2  

and 

CA = —0.00756 xg2' —0.748g2 (1.119) 
1 - 0.977g2  

'To calculate a non-perturbative value for the renormalised quark mass; the renormalisation 
constants and improvement coefficients need to be determined through a non-perturbative 
calculation. 
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Correlation Functions and Smearing 

2.1 Correlation Functions 

2.1.1 Interpolating Operators 

Correlation functions are constructed from time-ordered products of field oper- 

ators, chosen such as to possess the desired quantum numbers of the particle of 

interest. The necessary requirement for these interpolating field operators is that 

(OI(0)H,p 	0 1 	 (2.1) 

i.e. (0(0) has a non-zero overlap with Hj)), or 

	

(0)IH()) = a(0)I0 + a(1)I1)  + ........., 	 ( 2.2) 

	

where a(0) 	0. The arbitrariness in the field operator 1 	can be exploited 

practically to maximise the overlap with the desired state and minimise this with 

respect to radial excitations, and is the subject of the next section. 

For mesons this suggests that 4D is a colour singlet with the same spin, parity 

and valence quark content as the particle of interest. The most general form for 

a meson interpolating field is 

	

= f dydZ ,a (y)X ab (X : y, z)F(z), 	 (2.3) 

where 0 1  and '/'2  can be different flavour valence quarks with colour indices a and 

b, and F is one of the 16 Dirac matrices which has the correct spin and parity 
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properties. The simplest form of the interpolating field 4D m is of a point operator 

where x is given by 

x ° ( x : Y, Z) = 	 ( 2.4) 

and inserting gauge fields to maintain gauge invariance is unnecessary. 

Two-point meson correlators 

A two-point correlation function describing the propagation of a meson, from a 

fixed origin, is defined as 

	

GM(x,O) = (OIT[M(x)(0)]O), 	 (2.5) 

with a time ordering operator '1. The operator at the source 	creates the 

meson, and the operator M  annihilates the meson at the sink. 

Pseudoscalar Two-point Functions 

Taking F = -y5  in equation (2.3) to ensure the operator transforms with parity 

-1, gives the following pseudoscalar operators 

P(x) = 	x)750d(x) 	 (2.6) 

	

= —(x)'y s 'çb(x). 	 (2.7) 

Substituting these operators into equation (2.5) one obtains the pseudoscalar 

propagator 

Gpp(x,O) = (O[P(x)(0)]O). 	 (2.8) 

We can Wick decompose the pseudoscalar propagator in terms of quark and 

anti-quark propagators 

0 — Y Gpp(x, 0) = 	 0) 
1 = - f vuvm 	 5 5  e 

= 	f VUG(u; 0, x; U) 5 G(d; x, 0; U) 5 e 
= Tr(G(x, 0)y 5  G(0, x)-y') 
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= Tr(G(x,0)G(x,0)). 	 (2.9) 

To condense the notation here we have defined the quark propagator G(x, y) as 

f 

(OT 	
i 

	

'(x)(y)I0) = 
- J DUD

- 
 Db(x)(y)e 	-M 

1 

 J 
i  

= 	
VUG(x,y;U)e 5', 	 (2.10) 

where G(x, y; U) is the quark propagator in a given configuration U. In equation 

(2.9) we have used the hermiticity property of the lattice quark propagator 

	

G p (x,0) = 	Gö(0,x)'y, 	 (2.11) 

and Tr is the trace over spin and colour indices. We assume exact isospin sym-

metry in the u and d quarks, therefore after the flavour contractions have been 

performed, at the quark propagator level, the flavour index can be dropped here, 

in this case. The problem of calculating meson propagators becomes one of 

calculating simple quark propagators, tracing the appropriate spin and colour 

components, and summing over the gauge field U. 

2.1.2 Meson Two-Point Functions 

On the lattice a generic meson operator is bilinear in the quark fields, 

	

O(x) = 
	

(2.12) 

where F 1  is one of the 16 independent Dirac matrices. The Dirac structure of the 

F matrices does not need to be the same at the source and sink, but must have 

the same JP' quantum numbers, so we take the meson operator at the sink to 

be 

O(x) = ((x)F 2 (x))t 

= bt(x)Ftytb(x) 

= 	x)' 4 F'y4 (x). 	 (2.13) 
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Thus for a general meson two-point function we can express this in terms of quark 

propagators following the Wick decomposition in equation (2.9) 

G01  02 (x,0) = (0Y[Oi (x)O(0)]I0) 

—G5(0, x)F,G,(x, 0 )( -y4 11'y4)a 

= —Tr(G(x,O)( 4 F'y4 )-y5 G(x,0)y 5 F1 ). 	(2.14) 

In table 2.1 we list all the meson operators which are used in this thesis. 

Channel JPC  

_ 
Operator 
______ 

Lightest state 
(MeV) 

P 0_+ b'y5 b 71 (140) 
V 1 yi?b p (770) 
A4  
A 

0 
1 

4 75 0 
b750 

71 (140) 
b 1 (1235) 

S 0++  ao(980),fo(980) 
T 1 

1 --  
00-j40 
jJojji4' 

a l (1260) 
p (770) 

Table 2.1: Summary of the meson operators and their relationship to the lightest 
particle states. 

2.1.3 Meson Masses 

Let us consider for example the meson two-point function given in equation (2.5). 

"Timeslicing" the two-point function to project out momentum' by a Fourier 

transform, one obtains 

CM(p,t) = 

= 	(0M(x)(0)I0)e, 	 (2.15) 

'Periodic spatial boundary conditions quantise the allowed values of the lattice momentum 
as 1= - (p1,p2,p3) where P1, P2 and p3 are integers and 0 < pi <L. N. 
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inserting a complete set of states gives 

CM(p,t) = 	 ____ (0IM(x) I, q)(n,  q1L1(°) 10), 	(2.16) 
. 2E1 (ji) 

with the lattice completeness relation defined as follows, 

I EE 
1 

	

= - 	 (2.17) 
L n . 2E(q) 

where the sum n is over all states. 

Using the translational operator invariance in Euclidean space, 

0( _, t) = eHt+iO(0)e t , 	 (2.18) 

where 1J1 and j3 are the lattice Hamiltonian and the three momentum operator 

respectively, together with the lattice relation 

= L6(— Id), 	 (2.19) 

yields 

e_(')t 

CM(p,t) = >2Efl&)0M(0 

Ane_E (PI t 

	

= 	
2E(p) 	

(2.20) 

En  (pj is the energy of the meson state In, pj with momentumj. The lowest energy 

state in the large t limit dominates the sum. For the case of zero three-momentum 

then E(t5) = Mn, we arrive at the key formula for hadron spectroscopy on the 

lattice 

lim CM(,t) = t-+co 	 2m1 
(2.21) 

the subscript 1 denotes the lightest meson state with the quantum numbers of 

the operator M•  Thus we have shown that, in the Euclidean space of the lattice, 
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a correlation function decays exponentially with time with an exponent equal to 

the energy of the hadronic state in question. 

When analysing the timesliced correlator CM(t) a useful tool in finding the point 

in time at which all the higher-mass states have decayed away is the effective 

mass function: 
\ mej(t) in 

( 
CM (t) 

cMt+ i)) 	
(2.22) 

As t —+ oo this function levels out into a plateau at m 1 , enabling one to identify 

the ground state. 

2.1.4 Fitting Meson Two-Point Functions 

From its creation point a meson can propagate both forwards and backwards in 

time. For a meson which is created at t = 0, its maximum propagation time 

is only T/2, where T is the temporal size of the lattice, due to the imposition 

of antiperiodic boundary conditions in time. For an infinite number of gauge 

configurations the meson correlator is exactly mirrored about the mid-point of 

the lattice. Prior to fitting, the configuration data is 'folded' by averaging  the 

corresponding timesiices from the two halves of the lattice. 

We fit a zero three-momentum meson two-point function to the form 

C0 1 02  (t) = >(0TOr, (, t)Qjt.2 (0) 0) 

1 
= 

+ (O0'r2  (0) 	(0) O)m(T_t)] 

= 	lim A0102 [e_mit + 12e_m1(T_t)], 	 (2.23) 
T,t-400 

where 0' = ijO with i = +1 being given by TFT 1  = r,F, where T = _Y475 is the 

time reversal operator. The 77 factor tells us how 0 behaves under time reversal 

i.e. whether the two-point function is symmetric or anti-symmetric with respect 

2 Thjs depends on the time reversal symmetries of the operators of the meson. 



Chapter 2. Correlation Functions and Smearing 	 44 

to t —4 T - t. For example we fit the pion correlator to 

Cpp(t) = App [_m1t + e_miT_t)], 	 (2.24) 

which we can write as 

Cpp(t) = 2A 	e_TmI/2 cosh [m i ( - t)J. 	 (2.25) 

2.1.5 Baryons 

We begin with the flavour octet which is the more difficult case since it has mixed 

symmetry. Assume we have three flavours of quarks labelled by u, d and s. To 

create spin-i  baryons we can use the interpolating operators 

°(ij)k,) = ( a(X)(C5)(X))b(X)€ a5c , 	 ( 2.26) 

where a, b, c label colours, i, j, k label flavours and a, 3, € are Dirac indices. C 

is the charge conjugation matrix. We shall suppress the Dirac indices. 	is 

antisymmetric under the interchange i 	j, and creates octet and singlet states. 

To project against the singlet state we form 

Bk = O(i)k + O(ik), 	 (2.27) 

i.e. allows the first two quark indices to be combined into an anti-quark index 

W. O( Eijk'Bk, 	 (2.28) 

following the formalism used in [49, 50]. The overall normalisation is arbitrary, 

while the relative normalisation is fixed by SU(3) symmetry, and we use 

1 
'3ijk = 7(fijk'Bk + ckk'B'). 	 (2.29) 
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The octet baryons are related to the B field as follows 

p=bi2 , 

	

= b 1 , 	Eo  = b(+), 	- 

	

—0 	L 	 L = p31, 	 = °32, 

A °  = b(_). 	 (2.30) 

and we have used the symmetry relations to define 

	

= NF6Bjjj= —Bj 	(i j) 	 (2.31) 

b() 	\/(8123 + 13231) = —\/B312 = \/(5132 + 13213) = — '/13321, 	(2.32) 

b(_) 	(B 123  - 13231) = (13132 - 13213). 	 (2.33) 

We consider two types of correlators ' E like' and 'A like', the first can be exempli-

fied by the ° state which is S{UD} = S{ DU}, where this notation means that 

the wave function of this state is symmetric in flavours up and down. We have 

now switched from labelling the flavour indices of quarks from 1,2,3 to explicitly 

giving each quark a flavour u,d,s which reduces the number of indices, but we 

need to re-introduce the Dirac indices which were suppressed earlier. Following 

the definitions in equations (2.29) through to (2.32) we obtain 

CEo(x,0) = (0l(x)(0)l0) 

= 

(0 (O()d,(x) + 0(sd)u,(')) (O()d,(0) + 0(sd)u,. (0)) 0) 

= (0I0(SU)d,(x)(9( 8 )d,(0) 0) + (0I0(3 )d,(x)O( Sd),(0) 0) 

+'(0 1 O(sd)i, (x)O()d,(0) 0) + (0 	 10) 

[(s(0)(C 5 )d (0))u(0)] 0) 

	

+(0lCijk Elmn (3(X) (C 5 )u(x))d(x) 	 0) 

+(0 l jkE1mn(S(X) (C 5 )d(x))u(x) [(s(0)(C 5 )d (0))u(0)] 0) 
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+(0 	 0) 

= (01 - 

(01 - 

(01 - 	 (x)U(0)d 6 (0)(Cy s iY3,(0) 0> 

(01 - 6ikElmn S(X)(C75) d(X)U(X)d(0)U (0)(C s )s(0) 0) 

= 	k€lmn(C5)(C'Y5i X 

{—(0Is(x)(0) u(x)(0) d(x)(0)l0) 

+(0Is(x)(0) u(x)ii(0) d(x)(0)I0) 

+(0Is(x)(0) d(x)(0) u(x)i4(0)I0) 

—(0ls(x)(0) d(x)(0) u(x)(0)}l0) 

f1 	\c3/\yS 
= ijk1mn L1 75) 	L"75) X 

1_G  in (s, x, 0) G(u, x, 0) G(d, x, 0) 

kn 

1 

+G(s,x,0) G(u,x,0) G(d,x,0) 

kI +G(s,x,0) G(d,x,0) G(u,x,0) cry 

—G(s,x,0) G(d,x,0) G(u,x,0)} 

= (us)d + (usd)  + (dsu) H- (ds)u. 	 (2.34) 

The bar over a quantity, 	is the usual Dirac notation for 	following the 

rules in Minkowski space 

	

O(su)d,( 0 ) = 	 (2.35) 

where U3 = (C y5 )t 74 . The correlation function GE0 (x, 0) can be express in 

terms of two basic types of contractions. The first type (ud)s = (du).s using 

the notation in [51], corresponds to quarks of flavours u and d contracted into 

a closed loop, while the propagator for s carries the spin quantum numbers of 

the baryon. The notation (dus) corresponds to an ordered contraction of three 

quarks. On calculating the correlation function for this state, the other ' like' 

states, the proton, neutron, , , ° and , can now be obtained easily by 

replacing the s, u and d quarks in the E 0  with the required quark flavours. 
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15 
	 15  

C 
U 	S 5 

15 
	 15  

<du>s 
	 (dus) 

Figure 2.1: The two different types of contractions for the baryon states. 

The A°  state which is S[DU] = S[UD], where the notation means that the wave 

function of this state is anti-symmetric in up and down flavours of quark. This 

state corresponds to the 'A like' correlator which is the second type of correlator, 

GA-(x,0) = (0lA(x)A(0)10) 

1 
= 	K0I(Bd s ,(x) - 	 - Bd,(0))I0) 

= 	 0) - (0l(B ds ,(x)B dsu , e  (0)10) 

—(0lB cisu,(x)B tcis ,e(0)l0) + (0IBdsu ,(x)Bd s ,(0)l0)}. 

(2.36) 

Each of these terms will be looked at individually and the correlation function 

GAO (X, 0) will be constructed at the end. Once again we shall suppress the Dirac 
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indices. The first term in equation (2.36) is 

(0lBd 5 (x)Bd 5 (0) 0) = (01(0( d ) 3 (x) + 0(15)d(X))(O(d) 3 (0) + O()d(0)) 10) 

(01Q(d) S (x)O( Ud)(0)I0) + (0jO(d)S (x)O()d(0) 0) 

+(0I0( S )d(x)O(d) S (0)I0) + (0I0( S )d(x)Q( S)d(0)l0) 

= (ud)s + (dus) + (sud)  + (us)d. 	 (2.37) 

The second term in equation (2.36) is 

(0lBd S (x)Bd S (0) 0) = (0I(0( d ) S (x) + 0( 3)d(X))(O(d 3)(0) + ( O(d)(0)) 0) 

= (0I0( d ) 3 (x)O( d )(0) 0) + (0l0( d) S (x)O( d ) S (0) 0) 

+(0l0( S ) d (x)O( d )(0) 0) + (0I0(U8)d(x)O(d) 8 (0) 0) 

= —(0J0(d,)(x)O(d)(0)I0) - (0I0( d)(x)O( d)(0) JO) 

+(010(d)(x)O(d)(0) 0) - 	 0) 

= —(uds) - (ud)s + (usd) - (sud). 	 (2.38) 

The third and fourth terms of (2.36) can be obtained through interchanging u 	d 

in equations (2.37) and (2.38) respectively, thus 

GA- (x,0) = 	[(us)d + (ds)u  + 4(ud)s - (usd) - (dsu) 

+2(sud) + 2(sdu)  + 2(uds) + 2(dus)J. 	(2.39) 

To extract the spin-i positive parity I° and A° states from the correlations 

functions given in equations (2.34) and (2.39) we average the (c) = (11) and 

(22) components. The (33) and (44) components yield the spin4  negative parity 

states. The signal of the negative parity states is noisy and makes it difficult to 

determine the ground state mass. 

The representation containing the spin- 2  baryons is simpler to construct. The 
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decuplet baryons are represented by a symmetric three-index tensor in QCD, 

a b a,c + 	+ 	
' 	I abc(Cy'). 	(2.40) 

The interpolating operator Dk = (aC L1)bb)Eabc?/C creates states in the 10 

representation D has both a Lorentz and a Dirac index, and the tensor 'T 

can be expressed in terms of the D operators as follows 

7jk o Dk + Dk +kii 
	 (2.41) 

For the decuplet baryons the relation to physical fields is just as for the usual 

tensor field, for example 

= T111, = 	13 = V 3 71 31 = 

= 	'7_333 = 	= \/'T3i3 = v"Y33i . 	 (2.42) 

To calculate the correlation function for the decuplet baryons let us consider a 

generic state made of three non-degenerate quark flavours A, B and C which has 

the tensor field YABC•  Thus 

= 6(0I'7 Bc (x)'T Bc (0)J0) 

= 6 (0I[ DBc(x) + DcA(x) + D 11  

[DBC(o) + D cA (0) + D AB  (0) 10) 
— u 1\"v 1 DABCX) ABCU) n

/ \ J ABC/ X\  
BCA  

+ (0ID Bc (x)D Afi (0)I0) + ...................}, 

— ' 	D 	 n\ 1 0 ) —  — 	\Y ABC
/

) ABC ('-') 	- \ J BAC /
X) BCA 

'D 	/ " 	' 	( fl\1i 	I 	 1 - \V 	ABCIX) 	ACBk'-') U/ 	................... 

= 6 {(AB)C + (ABC) + (BAG) + ...................}, 

= 6 {(AB)C + (ABC) + (BAG) + (BC)A + (BCA) + (ACB) 

+ (CA)B + (CAB) + (CBA)}. 	 (2.43) 
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The abbreviated notation for the contractions used here is similar to that used 

in the spin-i case, the underline denotes that -y" is used instead of -yb, and the 

p index is suppressed. The correlation function for all decuplet states can be 

obtained by appropriate replacements of A, B, and C with the required quark 

flavours. Here again we average over the Dirac spinor combinations (CO = (11) 

and (22). The fourth Lorentz component, GABc},  is pure spin- i- and can be used 

to project out the desired pure spinA state: G{ABc}() = GABc} + GABc} + 

GABc) - CABc}/3. 

Channel I(J P ) Operator 1 Lightest state 
(MeV) 

N 1 + 
) nucleon(940) 

2  
/' 

) 2 
'(1 . N(1535) ______________ 

2Q+)  (1 +  2' Ce L(1232) 
/flP() 

() L(1700) 
3(1+  

) 2 ' (1750) 
AflP(l) 

() (1 - 74)€ijk(UC'Y4U)U A(1900) 

Table 2.2: Summary of the baryon operators and their relationship to the lightest 
particle states. 

2.1.6 Fitting Baryon Two-point Functions 

In table 2.2 we show the basic operators which are used to interpolate the octet 

baryons and the A baryons. These simple operators couple to both parities and 

therefore the asymptotic form contains the lowest contributions of both parities, 

with masses mB and MB—  for the positive and negative parity states respectively. 

In the definition of the baryon operators, the factors of (1 + )/2  are the Dirac 

projection matrices arising from the spin sum at zero three-momentum. By 

extracting these factors from the baryons operator we can write the baryon two-

point function as follows: 

CB (t) 	= 	>(0IB(r,t)B(0)0) 
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,T—oo 
—~ (i + Y4) [C B+C_mB+ t  - CB _C_mB_(T_t)] 

	

+ (1 - 	 - CB+e_mB+(T_t) + CB _ e_mB_t]. (2.44) 

Thus we are able to see how the baryon operators couple to both parities. For 

example to fit the positive parity spin-!- two-point function, given in equation 

(2.34), we fold for t < T/2 the 
() 

(11), (22) componentsanti-symmetrically 

with the (33), (44) for t > T/2 and fit this combination to 

lim CB+(t) = CB+e_m B+ t  (t < T/2). 	 (2.45) 
t ,T—oo 

It is fairly clear how one would fit the negative parity state, and the other baryon 

states. 

2.1.7 Monte Carlo Measurements: Signal vs. Noise 

Let us consider a general correlation function CH(t).  A Monte Carlo estimate is 

formed by calculating GH(,  t) from the quark propagators and averaging over all 

N gauge configurations. We can estimate the size of the statistical fluctuations 

in CH(t) using the standard formula for the variance: 

Na(t) 	>[(GH(x,t)GH(x,t)) - (GH(x,t)) 2 ] 

- (CH (t)) 2 . 	(2.46) 

Let us first consider the case of a meson; the first term involves four quark 

propagators going from time zero to time t, and so its falloff is governed by the 

lowest energy state containing at least two quarks and two anti-quarks, i.e two 

pions. Thus the first term falls off as e_2mt.  In the case of the pion also the 

second term falls off as e2mhrt In the case of the rho the first term falls off more 

slowly at large t. Thus the signal to noise ratio for a meson is 

	

CM(t) 	e_(mM_m. 	 (2.47) 
UM(t) 
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For a pion this is a constant in time, but for a rho this means the statistical errors 

grow in time. 

For the case of a baryon, in equation (2.46) the first term is dominated at large t 

by the lowest-energy state consisting of three quarks and three anti-quarks, that 

is, one composed of three pions, so up to constants we expect 

0N(t) '-i e_(3m2)t. 	 (2.48) 

Therefore the ratio of signal to noise in the case of a baryon is 

CB(t) 	
e_(mB_3m2)t. 	 (2.49) 

UB(t) 

As in the case of the rho meson, the statistical errors of the baryon correlators 

grow in time, which means the masses of these states are harder to measure than 

in the case of the pion. 

2.2 Smearing 

Equation (2.20) shows how the mass can be determined from the propagation of 

a hadronic state in Euclidean time. Provided sufficiently large Euclidean time 

t is taken, the mass determination is independent of the particular hadronic 

creation operator used, since the ground state always dominates. There are two 

approaches one can take to extract a good determination of the ground state 

mass. 

• The first is to use a large temporal extent T for the lattice. This increases 

the computational overhead, in both memory and runtime for a simulation. 

Firstly the actual time for computing a single propagator increases. Sec-

ondly the fluctuations of the correlators, between configurations, increases 

with the propagation separation in Euclidean time from the creation point 

at the source. Therefore, if a correlator plateaus at large Euclidean time, 

more configurations will need to be generated for the signal to have the 

same statistical noise as one that plateaus at earlier Euclidean time, which 
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means an increase in runtime. 

• The second approach is to enhance the overlap with the ground state wave-

function, A 1  >> An  for n> 1, where A n  = l(0I M (0)In)I 2  in equation (2.20). 

This is achieved using spatially extended interpolating field operators 'M 

The ground state will then dominate at smaller Euclidean time t, with all 

the advantages of a better signal to noise ratio. This is the technique known 

as Smearing. 

Obviously, the most economical way of achieving the desired goal, if the compu-

tation overhead involved is relatively small, is the second approach. 

The original proposals [52, 53] for smeared interpolating fields comprised a sum 

of point operators over all spatial sites on the source timeslice and are non-gauge-

covariant; while improving the signal at small times, they lead to increased noise 

at later times. The problem of statistical noise can be alleviated by fixing the 

gauge so that non-covariance is no longer an issue, yielding cube [54, 551 and wall 

[56] smeared operators. However, fixing the gauge on the lattice raises the pos-

sibility of Gribov copies [57]. Choosing gauge-covariant operators eliminates the 

possible problems in gauge-fixing; such operators were first discussed in [58, 59]. 

In this section, two different gauge-covariant-smearing techniques are investi-

gated, which are fuzzing [60, 61] and Jacobi smearing [62, 631, and these tech-

niques will be referred to in subsequent chapters. The Jacobi smearing algorithm 

is a variant of the Wuppertal smearing described by Cüsken [58]. 

It is worth noting that these smearing algorithms are conceptually different. 

• The Jacobi smearing algorithm aims to increase the overlap with the ground 

state by approximating the wave function of the S-wave ground state. Since 

the S-wave wave function is spherically symmetric with some characteris-

tic non-zero radius, an acceptable choice of operator would be any finite 

sized operator with maximal reflection and rotation symmetry. The lattice 

only possesses a finite cubic sub-group of the usual reflection and rotation 

symmetries, this could be realised as some form of cube or octahedron. 
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• The fuzzing algorithm uses the observation that the main contamination 

to the ground state using point interpolating fields is from the first excited 

state. The fuzzing procedure constructs fuzzed gluon flux tubes and uses 

these, in the case of a meson, to join the quark and anti-quark by a colour 

flux string. The quark propagator is spatially extended at distance ±r 

along the lattice axes with the appropriate fuzzed gauge links and combined 

together in both the forward and backward spatial directions. The tunable 

distance r is taken to be the spatial extension at which the wave-function 

of the first excited state has a node. 

2.2.1 Source and Sink Smearing 

On the lattice two-point functions are calculated by creating the hadron at a 

point source and annihilating the hadron at all sink points, the location of the 

source is usually taken to be the origin of the lattice at t=0. The timesliced 

hadron correlator is calculated by summing together all the sink points in the 

three spatial directions on every timeslice. The mass of the hadron is calculated 

from the exponential decay of the hadron correlator. In the case of the meson 

this is represented by 

C0 1 02 	—Tr (G(x,0)( 4 F 4 )y5 Gt(x,0) 5 Fi ). 	(2.50) 

To smear a hadron, the quark propagators comprising it are smeared. The quark 

propagator can be either smeared at the source creation point, or sink annihi-

lation point or both. Smearing at the source is computationally cheaper than 

sink smearing, as the source only lives a on single timeslice and sink smearing 

requires smearing at every annihilation point. In the limit of an infinite number 

of configurations the approaches of source and sink smearing will become equiv-

alent. However, in practice this is not the case because smeared functions are 

constructed from the gauge fields and these fluctuate between timeslices. Thus 

the signal from timesliced correlators constructed from propagators smeared at 
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Figure 2.2: Schematic representation on the left of source smearing and on the 
right for sink smearing on a single timeslice. The hatched area indicates a smeared 
operator 

the sink will be noisier than those constructed from source smeared propagators. 

The smeared-quark field operators are defined as follows: 

= 	S(,'W,t), 	(,t) = 	 ( 2.51) 

for the sink and source quark fields respectively. A sink-smeared quark propagator 

is then 

G'(x,O) = (OI&(x)(0)IO) 

=(OIS(, 	(y)(0)IO) 

= 	S()M'(y,O) 

= 	(M(o,y)S'()) 
1• 	

(2.52) 

Calculation of G'(x, 0) is obtained from the solution of the matrix equation 

	

[M(o,y)s_1(,))]cLS(x,o) = 1, 	 (2.53) 
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i.e. 

	

M(O,y)G(y,O) = 1, 	 (2.54) 

where G(y,O) is the usual point to point propagator and 

G'(x,O) = 	Sp, /)G(y,O). 	 (2.55) 

Thus a sink-smeared propagator can be obtained from a local propagator simply 

by convoluting with the smearing function. 

The source-smeared propagator is obtained from 

G''(x,O) = (OIi(x)(0)lO) 

= 	(OJ(x)(y)St(g,O) 

= 	M (x y)S(y, ö) 

= 	((St (,o)) 'M( y , x )) 1 . 	
( 2.56) 

Thus, the propagator which must be solved is 

> (st(y ))1M(yx)CSL(xo) = 1, 	 (2.57) 

i.e. 

M(y,x) G s' (x,O) = St(,O'). 	 (2.58) 

So in this case, the point source is replaced with a smeared source and to calculate 

the source-smeared propagator the above matrix equation must be solved. 

At this point we will explain the nomenclature that will be used throughout the 

rest of this thesis when describing smeared propagators and correlators. The 

different smearing types are labelled by L, S and F, which are point or local, 

Jacobi smeared and fuzzed respectively. The smearing class of a propagator is 

described by the source and the sink, for example SL stands for a Jacobi smeared 
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source with a point sink. The naming conventions used for smeared correlators 

used in the thesis is shown schematically in figure 2.3. The meson (FL,FL), for 

example, has propagator one fuzzed at the source and sink, with propagator two 

being a point source and sink. 

Naming convention for smeared mesons 

source of 	source of 
propagator 	propagator 

one 	two  

sink of 	sink of 
propagator 	propagator 

one 	two 

Naming convention for smeared baryons 

source of 	source of 	source of 	sink of 	sink of 	sink of 
propagator 	propagator 	propagator 	propagator propagator 	propagator 

one 	two 	three 	 one 	two 	three 

Figure 2.3: The conventions used for the smearing types of hadron correlators. 
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2.2.2 The Jacobi Smearing Algorithm 

The Wuppertal group [58] proposed obtaining, for example, a smeared source, by 

solving the three dimensional Klein-Gordon equation 

K(x,il)S(!7,O) = 	 (2.59) 

where 

K(th, ) = 	- 	 (2.60) 

and 

	

= 	- j) + S +aU,(x)}. 	 (2.61) 

Each quark is effectively localised about the origin in a region of radius r controlled 

by the scalar hopping parameter ic. The rms radius, r, is defined by 

2 _____________ = 	 (2.62) Eg  IS(,)l2 

For each hadron ground state, an optimal radius is expected, corresponding to 

the smeared source which best approximates the lattice ground state. Wuppertal 

smearing was investigated in [62] at 3 = 6.2 for r, = 0.180 and 0.184, corre-

sponded to r 2 and r 4 respectively. Large radii correspond to values of 

n,c  that are close to a critical value ii i , and the inversion of K(x, ) becomes 

computational expensive in computer time. 

A computational inexpensive gauge-invariant smearing can be obtained by ex-

panding equation (2.59) as a power series in ic. This series can be obtained 

using the Jacobi iteration and results in the smearing function J(): 

N 

=(2.63) 
n 

For ii less than ,çt,  this series can be iterated to convergence, i.e. N -+ c and 

the resultant smearing function would be that of the Wuppertal algorithm. For 

ic greater than ,çt,  the series diverges, but nevertheless still provides a valid 
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smeared source, for any choice of N. The rms smearing radius is now dependent 

on N and ic. Each successive iteration of the Jacobi procedure extends the 

smearing function along each axis by one link, and thus a minimum value of N 

exists for a particular radius. 

For the Jacobi smearing algorithm, the rms smearing radius depends on two 

parameters ic and N. In figure 2.4, the rms smearing radius is plotted against 

ic 5 , for different N, it is clear that the rms smearing radius has little dependence 

on i when '8  is greater than 0.25. However, the rms smearing radius has strong 

dependence on N, which is the same conclusion reached in [63]. In figure 2.5, the 

smearing function 

F(x, y) = 	
1 
	 Tr St(x,  y, z; (0))S(x, y, z; (a)), 	(2.64) 
Volume z 

where x,y,z refer to the three Cartesian coordinate directions and the function is 

normalised by the the total volume 

	

Volume = 	/Tr St(x,  y, z; (0)S(x, y, z; (a), 	(2.65) 
x,y,z 

is plotted, which demonstrates that the Jacobi smearing algorithm produces 

an acceptable smearing function, as the reflection and rotation symmetries are 

clearly observable. 

At this point it is useful to outline the various criteria one should adopt when 

choosing the parameters for Jacobi smearing ic and N. This will ultimately de-

pend on the computational resources available. In the ideal scenario of having a 

large amount of computational resources both in speed and memory one should 

compute all possible smearing combinations for a given state. Thus, for a me-

son correlator one could compute the following smeared correlators: (SL,LL), 

(SS,LL), (LL,SL), (LL,SS), (SL,SL) and (SS,SS) for example which requires the 

inversion of two quark propagators. There is an even larger number of smearing 

combinations for the baryon correlators. However, in the situation where compu-

tational resources are at a premium one could compute the (SS,LL) and (SS,SS) 
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Figure 2.4: The rms smearing radius, r, against ic., for various values of N. 

IL 

(a) 

Figure 2.5: The smearing functions F(x, y) = 	, normalised to unit 

volume, on a 24 3  x 48 lattice using Jacobi smearing with 's = 0.250, N = 50, 
taken from [62]. 
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meson correlators, which only requires the inversion of one smeared propagator. 

If one wants to compute not only hadron masses, but also meson decay constants 

correlators constructed from propagators smeared at both the source and the sink 

will be required. This will have a large effect on the choice of Jacobi-smearing pa-

rameters as smearing at the sink produces a noisier signal. In the case where the 

only the (SS,LL) and (SS,SS) are computed the second correlator has approx-

imately double the smearing radius, so it is impossible to get both correlators 

to have an ideal overlap with the lightest hadronic state required. In the case 

where all possible smearing combinations are computed these constraints are also 

relevant. However the signal-to-noise ratio for the (SL,SL) correlator, which is 

required for decay constants, will not be as bad as in the previous case. 

To investigate the approach to the ground state plateau a comparison was made 

between correlators constructed from local propagators and from Jacobi-smeared 

quark propagators, in an attempt to find the optimal smearing radius for a given 

hadronic state. The study is based on an analysis of 41 configurations generated 

at 3 = 6.0 on a 16 x 48 lattice, using the non-perturbatively improved SW 

0(a)-improved fermion action at two values 0.13344 and 0.13455. The 

Jacobi-smeared propagators were smeared at the sink using a point source with 

= 0.25, and with a range of values of N corresponding to 10, 15, 30, 40, 50, 60, 

75 and 100. Two sink smeared propagators (LS) were combined to form (LL,SS) 

meson correlators, and the baryons were constructed from three sink smeared 

propagators to form (LLL,SSS) baryon correlators. In the case of the meson the 

non-degenerate ic combination was calculated. 

In figures 2.6, 2.7, 2.8 and 2.9, a selection of the values of N used in the sink 

smearing at the highest quark mass for the pion, rho, nucleon and L, are shown 

respectively. It is worth noting that the qualitative features of these effective mass 

plots are the same for all the simulated quark masses, except that, at the lighter 

quark masses, the data is noisier. The effect of changing the number of smearing 

'The physical pion masses which these hopping parameters correspond are given in section 
3.1. 
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iterations N on the approach to the ground state plateau is qualitatively the same 

for each of the hadrons. When N is increased the contamination from the excited 

states is reduced and the signal plateaus at an earlier timeslice. However, the 

signal becomes noisier as more gauge links are used in the smearing algorithm. 

For the pion the local correlator plateaus at timeslice 10. Sink smearing, with 

N=60, causes the plateau to start at timeslice 5. Increasing N beyond this causes 

the signal to be noisier with no additional gain in an earlier plateau. The rho 

meson has a similar behaviour to the pion except the signal is noisier and more 

statistics are needed to make a clear quantitative statement. The lack of statistics 

also makes it difficult to make a similar statement for the baryons except that 

with N=100, there is a clear plateau starting at timeslice 9, even though the 

signal, as anticipated, is noisier. This highlights one of the problems faced when 

choosing the optimal parameters for a particular smearing algorithm; they differ 

between the different hadronic states one would like to measure. Therefore in the 

case when one cannot compute all the different smearings one would like, a trade 

off has to be made, in choosing the smearing parameters to have a good overlap 

with the ground state of a number of hadrons. 
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Figure 2.6: Effective masses for the pion, with varying numbers of smearing 
iterations N used in the Jacobi smearing procedure, ic = 0.25, at 0 = 6.0 and 

= 0.13344 from 41 configurations, and the smeared correlators are (LL,SS). 
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Figure 2.7: Effective masses for the rho, with varying numbers of smearing it-
eration N used in the Jacobi smearing procedure, ,c. = 0.25, at 0 = 6.0 and 
r. = 0.13344 from 41 configurations, and the smeared correlators are (LL,SS). 
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N used in the Jacobi smearing procedure, ic = 0.25, at 3 = 6.0 and ic = 0.13344 
from 41 configurations, and the smeared correlators are (LLL,SSS). 
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2.2.3 Fuzzing 

The rationale behind fuzzing was discussed at the beginning of this section; the 

fuzzing method in detail is described as follows. Fuzzed gluon flux tubes are 

created through an iterative fuzzing scheme. At each iteration, a each spatial 

gauge link is replaced by a multiple of itself plus sum of the four neighbouring 

spatial staples: 

U(n) 	U(n) =Psu(3){cU(n)+ 	 (2.66) 
p 

v4 

where a projection of a matrix M to the SU(3) matrix U is carried out iteratively 

by maximising ReTr(MUt) over U using a Cabibbo-Marinari approach. To gen-

erate the fat fuzzed gauge links we iterated equation (2.66) five times with c = 2. 

The idea of spatially smearing the gauge links was used successfully to measure 

glueballs masses and the string tension by Teper [64] and the APE Collaboration 

[65], and in the study of the static potentials of heavy quarks [66]. 

A fuzzed quark propagator at a site (, t) is defined as the average of the prop-

agators to the sites given by the six spatial displacements of distance +r from 

(, t) along the lattice axes, parallel transported in a gauge-covariant way using 

the fuzzed gauge links, 

= I ft U1(x_n(x_r)+  ft U(x+(n_1)(x+r)}. (2.67) 
,z=1 n=1 	 n=1 

The sum over all six orientations in the three forward and three backward direc-

tions results in an isotropic spatial dependence. This is illustrated in figure 2.10, 

which shows a schematic representation of a fuzzed source. 

Meson propagators are formed analogously for the case of the Jacobi-smeared 

propagators. However, in [61], it was noted that contracting two fuzzed propaga- 

tors with the same value of r is not likely to be useful since the fuzzed links will 

partially cancel giving a component which will have an overlap with the purely 

local hadronic operator. So these correlators were not studied. 
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(0, r, 0) 

(-r, 0,0) 

0,-r) 

(r, 0,0) 

(0,-r, 0) 

Figure 2.10: Schematic guide to fuzzing. The source is composed of six points 
around the origin. The dotted lines indicate typical paths that will be used in 
the average. 

Once again, for the baryon states there are a large number of fuzzed correlators, 

made from combinations of fuzzed propagators and local propagators. In [61], 

it was again noted that a correlator composed of three fuzzed propagators has a 

component which is unfuzzed. 

The benefit of using fat fuzzed gauge fields to join quark and anti-quark, is 

that if a straight-line path is used the signal from the correlator is noisy, as 

this has a poor overlap with the hadronic state because there is only a small 

probability amplitude for the gluon field to be so localised. As in the case of 

Jacobi smearing, with only a finite ensemble of configurations, the signal of the 

sink fuzzed correlators will be noisier, compared with, with those which are source 

fuzzed, due to the fluctuations between timeslices of the gauge fields which are 

used in the fuzzing algorithm. Thus, with a finite sample, to produce the cleanest 

signal or if we wish to measure meson decay constants, we require the inversion 
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of two quark propagators, with one been fuzzed at the source and the other 

as been local, which is computationally more expensive than the case of Jacobi 

smearing. However, the number of computations to create a fuzzed propagator 

is considerably less than the case of Jacobi smearing whether at the source or at 

the sink. 

To investigate the fuzzing algorithm, sink fuzzed meson correlators (LL,FL) were 

computed, as the calculation of sink fuzzed propagators from a local propagator, 

is inexpensive computationally. The study is based on the analysis of 419 config -

urations generated at / = 6.0 on a 16 x 48 lattice, using the non-perturbatively 

improved SW 0(a)-improved fermion action at two Ic values 0.13344 and 0.13455. 

' The sink fuzzed propagators were computed with a fuzzing radius r from 0 to 

14, however it was found that increasing the fuzzing radius beyond half of the 

spatial dimension of the lattice the signal becomes noisy. A selection of effective 

mass plots of the pion and rho calculated from meson correlators at different 

values of r are shown in figures 2.11 and 2.12 respectively. For the pion as r 

increases the effective mass begins to plateau at an earlier timeslice. Thus in-

creasing the fuzzing radius is decreasing the overlap with the first excited state. 

On increasing r from 4 onwards the effective mass begins to approach the plateau 

first from below and then from above, which means that there is a negative over-

lap with one or even more of the higher excited states. When r=6 the effective 

mass approaches the plateau purely from below which means the amplitude of 

the first excited state is either negative or small in comparison with the other 

amplitudes. We can observe a similar picture for the rho effective mass plots, in 

this case there is an approach to the plateau purely from below when r=7 and it 

is easy to see that the signal becomes noisier than for the pion as r is increased, 

as expected. 

The gauge invariant zero-momentum meson correlation function (LL,FL) is de- 

'The physical pion masses which these hopping parameters correspond are given in section 
3.1. 
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fined as 

C(t, r) = > 	(° I( + r, t)FM(, t; r)(x, t)(O', 0)F/(ö 0)0), 	(2.68) 
j=1 

where M(, t; r) denotes the product of fuzzed links of length r originating from 

site i in direction i for a given timeslice t. The pion and rho correlation functions 

are fitted to a double exponential fit: 

C(t,r) = ci(r)[e_mlt + e_m1(T_t)]  + c2(r)[e_m2t  + e_m2(T_t)l ' 
	

( 2.69) .1 
where m 1  is the mass of the ground state and m 2  is the mass of the first excited 

state. A simultaneous fit was made to data of all r values from 0 to 8. Correlated 

least x 2  fits were performed, over the largest number of timeslices that gave an 

acceptable X 2 /d.o.f.. Uncorrelated fits were also used to check that the fitted pa-

rameters were consistent from both fits, and consistency in the fitted parameter 

through changing the minimum fitting timeslice by +1 were also taken in con-

sideration. Statistical errors were determined by means of a bootstrap analysis, 

where 100 bootstrap samples where generated. The chosen fitting range 5  was 

from [7,23] in most cases. Examples of these fits for the pion and rho are shown 

in figure 2.14, where the simultaneous fit is superimposed on top of the effective 

masses for all values of r in the fit, the quality of these fits are X 2 /d.o.f. 	1.4 

and X 2 /d.o,f. 	1.2 respectively. The values obtained from the fit are normalised 

so that c i (0) + c2 (0) = 1. The ground state and first excited state amplitudes are 

shown for all quark masses simulated for the pion and rho in figure 2.13. We can 

observe that changing the fuzzing radius, r, has a large effect on first excited state 

amplitude. The observations made from the effective masses plots are verified 

here in that, on increasing the fuzzing radius r from 0 to 6, the overlap with the 

first excited state decreases. The node in the first excited state wave function of 

the pion is around r=6 and for the rho is around r=7. This highlights again the 

problem faced when choosing the optimal parameters for a particular smearing 

'The fitting range is specified as [tmin, mavJ, where these refer to the first and last timeslice 
in the fit. 
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algorithm; they differ between the different hadronic states one would like to 

measure. The optimal fuzzing radius suggested from [61] is r6, this analysis 

shows that taking this value there still will be excited stated contamination in 

the rho. 

It has been observed by [67], that the optimal fuzzing radius may not occur at 

a integer value of the lattice spacing. To improve the fuzzing algorithm at a 

relatively small increase in computer time it is proposed that the contributions 

of propagators fuzzed to different radii are add together, each radius is weighted 

by factor. The weighting factors are obtained through assuming that the wave 

functions of a particular system obey a particular model like the Quarkonium 

wave functions in the case a heavy-heavy quark system, for example, therefore 

another tunable parameter is introduced into the smearing algorithm. This new 

smearing algorithm is called "Boyling" [67]. 

The relative amplitude is usually called the Bethe-Saltpeter (or BS) wave function 

of the hadron. It is the overlap between a quark and antiquark at distance r apart 

and the hadronic state which is an eigenstate of the Hamiltonian, transfer matrix 

on a lattice. For a pion the Bethe-Saltpeter wave function is defined as 

	

BS(r) = (0 13(i + r)M(x; )u() ir), 	 (2.70) 

where M(; i) is a path-ordered product of gauge links that joins points +i?  and 

and makes the amplitude gauge invariant. The Bethe-Saltpeter amplitudes are 

normalised such that BS(o) = 1. There the ground state and first excited state 

Bethe-Saltpeter wave functions are related to the fitted amplitudes as: 

,BS 	 BS (r) - Ci(T) 	/)(r) - C2 
(r)  

(2.71) 
- ci (0)' 	 - c2 (0)' 

and are shown in figure 2.15 for the pion and rho. The results for the ground 

state wave function are in good agreement with [60, 68]. 
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Figure 2.11: Effective mass of the pion from the (LL,FL) correlator using dif-
ferent values of r, the fuzzing radius, at 3 = 6.0 and. it = 0.13344 from 419 
configurations. 
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Figure 2.12: Effective mass of the rho from the (LL,FL) correlator using different 
values of r, the fuzzing radius, at 3 = 6.0 and ic = 0.13344 from 419 configura-
tions. 
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Figure 2.14: The effective mass plots for the pion and rho are shown on left 
and right respectively. Each plot contains values of r ranging from 0 to 8, at 

= 0.13344. The data is fitted from [7,23] using a double exponential fit, the 
results of which are shown. 
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Figure 2.15: The ground state and excited state wave functions are shown on the 
left and right respectively at Ic = 0.13344. The ground state and first excited 
Bethe-Saltpeter wave functions for the it meson are represented by the (Ky) and 
(x) respectively and for the p meson are represented by (fl) and (0) respectively. 
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In the baryon sector a minor investigation of the effects of changing the fuzzing 

radius has been undertaken. The baryon data was generated using the same 

simulation data as previously, but source fuzzed propagators were generated at 

0.13417. The analysis is based on the study of 7 configurations, the fuzzed 

baryons correlators are of the type (FFL,LLL) and the following fuzzing radii were 

used: 2, 4, 5, 6 and 7. Effective mass plots for the nucleon and L& with a selection 

of these fuzzing radii are shown in figure 2.16. We can observe that increasing 

the fuzzing radius causes both baryons to plateau at an earlier timeslice, the data 

with r=7 was not shown as this data was too noisy. A similar analysis as to that 

of the mesons will be need to find the optimal fuzzing radius. 
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Figure 2.16: The effective mass plots for the nucleon and A are shown on left 
and right respectively. Each plot contains a number of different values for r, the 
fuzzing radius, = 0, 2, 4, and 6, and correspond to the symbols (*), (0), (x), and 
(O'). The data was generated at /3 = 6.0 and ic = 0.13417 from 7 configurations, 
using (FFL,LLL) correlators. 



Chapter 3 

Simulation Details and Fitting Hadron Masses 

3.1 Simulation Details 

Before going into detail about each of the data sets used in the simulation, it 

will be worthwhile giving a brief overview of the simulation and discussing the 

points which are common to each of the data sets. The gauge configurations were 

generated with the standard Wilson gauge action at three values of 0, which are 

5.7, 6.0 and 6.2. The lattice sizes were chosen so that the physical spatial length 

is fixed at around 1.8fm; any continuum extrapolation of a —p 0 is independent 

of finite size effects. To study finite size effects, at fixed a, gauge configurations 

were generated on larger lattices at /3 = 5.7 and 6.0. 

Propagators have been generated with the Sheikholeslami-Wohlert 0(a)-improved 

Wilson fermion action' with two values of the clover coefficient corresponding 

to the tadpole prescription (C=TAD) and the non-perturbative value (C=NP), 

which removes all 0(a) discretisation errors. The tadpole improved propagators 

were generated at 0 = 5.7, 6.0 and 6.2, and on the larger volume at 0 = 5.7. The 

non-perturbative improved propagators were generated at ,@ = 6.0 and 6.2, and 

on the larger volume at 3 = 6.0. Propagators were generated at am/am ratios 

of 0.5, 0.6 and 0.7 which corresponds to physical pion masses of 500, 600 and 800 

MeV respectively, except at 0 = 5.7 where propagators were only generated at 

the two heaviest pion masses. In the following, the data on the smaller volumes 

will be referenced without specifying the lattice size, and the larger volumes will 

'The Sheikholeslami-Wohlert 0(a)-improved Wilson fermion action is discussed in detail in 
section 1.9. 
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be referenced by explicitly stating the volume. 

,B N x Nt NOR:NCM Nsep  a/ a 1  N Number of 
______ __________ _____ ___________ (Gev) fm configurations 

5.7 12 	x 24 5:1 600 0.4099(23) 1.042 2.227 482 
5.7 16 3 >< 32 5:1 600 0.4099(23) 1.042 3.029 145 
6.0 16 3  x 48 7:1 800 0.2265(55) 1.885 1.674 499 
6.0 32 3  x 64 7:1 1000 0.2265(55) 1.885 3.347 76 
6.2 1 24 3  x48 5:1 2400 1 0.1619(19) 1 	2.637 1 1.795 228 

Table 3.1: Gauge configurations generated with the ratio of combination of OR 
and CM steps. Ns ep is the total number of updates separating the configurations. 
The values of the string tension as/i? were taken from [69], the physical value is 
taken as 427 MeV. 

The gauge configurations and propagators at ,B = 5.7 were calculated on a 16-

and 64-node i860 Meiko Computing Surface at Edinburgh. At B = 6.0 and 6.2 

the data were calculated on a 512-node Cray T31) at the Edinburgh Parallel 

Computing Centre. The gauge configurations were generated with a combina-

tion of the over-relaxation (OR) algorithm [70, 71] and the Cabbibo-Marinari 

(CM) algorithm [72]. The parameters used are listed in table 3. 1,  2 and periodic 

boundary conditions were imposed. 

The quark propagators were generated with a number of different algorithms: 

Over-Relaxed Minimal Residual (MR) detailed in [73], bi-conjugate gradient 

(BiCC) exploiting symmetry of the fermion matrix, quasi-minimal residual 

(QMR) again exploiting -yr, symmetry of the fermion matrix, and stabilised bi-

conjugate gradient (BiCGstab), all of which are detailed in [74]. All algorithms 

use a red-black preconditioner and the boundary conditions were set to periodic 

in space and anti-periodic in time. 

The propagators generated on the 1860 Meiko used the MR algorithm. The other 

algorithms were developed during the propagator generation program on the T31). 

A considerable saving in computer time was found in using BiCGstab over MR 

'The motivation for the physical value of the string tension is discussed in section 4.5.2. 
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when solving the quark propagator at the lighter quark mass. For example, at 

/3 = 6.0 in the case of the tadpole data set, the number of iterations required 

to invert the fermion matrix to a fixed residue were reduced by around 30%. In 

addition, computational savings were made by switching from 64-bit to 32-bit 

arithmetic and writing key routines, like matrix multipliers, in assembler for the 

T31). This speeded up the code by around 70%. The computational resource 

required to generate this data set, which is about 5 Tbytes in size, is well over a 

million processor hours of computer time. 

In table 3.2 are listed the parameters which were used to generate the propaga-

tors. For C=NP at 0 = 6.0, exceptional configurations were found on both the 

small and large volume, at the lightest quark mass simulated. The presence of 

these exceptional configurations was initially found through the inability of the 

BiCGstab solver to solve to a fixed residual, certain spin and colour components 

of the quark propagator, even after a large number of iterations. On these config-

urations the MR and BiCO solver algorithms were used with the lightest quark 

mass and a similar behaviour of the algorithms breaking down and not been able 

to converge the quark propagator was observed. However the quark propagator 

was calculated successfully using QMR(75 ). In [74] other solver algorithms have 

been investigated to solve the quark propagators on these configurations. 



Data-set N x Nt  Number of 
configurations 

C K Pararameters 
used in 

smearing  

Propagators 
types 

C=TAD 5.7 12 3  x 24 482 1.5678 0.13843, 0.14077 = 0.25, N=16 LL,SL 

5.7 16 3  x 32 145 1.5678 0.13843, 0.14077 n,, = 0.25, N=16 LL,SL 

6.0 16 3  x 48 499 1.4785 0.13856, 0.13810 1  0.13700 r=6 LL,FL,LF,FF 

6.0 16 3  x 48 218 1.4424 0.13745, 0.13710, 0.13640 r=8 LL,FL,LF,FF 

C=NP 6.0 16 3  x 48 496(3) 1.7692 0.13455 7  0.13417 1  0.13344 r=6 LL,FL,FL,FF 

6.0 32 3  x 64 70(2). 1.7692 0.13455 1  0.13417, 0.13344 ic 3 , = 0.25 1  N=30 SL, SS 

6.2 24 3  x 48 216 1.6138 0.13530 7  0.13510, 0.13460 r=8 LL,FL,LF,FF 

Table 3.2: List of all propagators generated.The smearing of the propagator is denoted source/sink, where 
the different smearing types L, F, and S are point, fuzzed and Jacobi smeared respectively. The number of 
exceptional configurations which were found is given in brackets, and is additional to the quoted number of 
configurations. 
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These exceptional configurations present us with a problem; let us consider the 

pion two-point function G(x) = Tr{G( x ,O)Gt( x ,O)}. For an ensemble of N 

configurations the pion propagator fluctuates about G(x) = j_ 1  G)(x) with 

some variance a 2 . The problem occurs when the generated ensemble of gauge 

configurations contains a few exceptional configurations, where G(x) shoots up 

to values that are orders of magnitude above the normal level of fluctuations 

characterised by a. A reliable estimation of G(x) is impossible. The lowest 

eigenvalue of the exceptional configurations are orders of magnitude lower than 

the normal size of the lowest eigenvalue [75]. In figure 3. 1, a comparison is made 

between the pion effective mass plot on a non-exceptional configuration and a 

exceptional one. For the exceptional configuration, the lowest eigenvalue of the 

fermion matrix, called a zero mode, dominates the quark propagator, and hence 

the pion propagator. From the pion effective mass plot we can observe that the 

zero mode is localised between timeslices 11 and 12 due to the change in sign in the 

effective mass. As these exceptional configurations cause unbounded fluctuations 

on the measurement of O(x), these configurations have been removed from the 

ensemble where measurements have been undertaken. This is in-line with the idea 

that the presence of these zero modes is one of the pathologies of quenched QCD. 

In full QCD the zero modes are suppressed by the fermion determinant, and so 

eliminating these exceptional configurations which are an artifact of quenching, 

is not so bad. In [76, 77], a procedure for correcting these quenching artifacts 

by first isolating the contributions of zero mode poles to the quark propagator 

and then shifting the sub-critical poles to the critical point, is described. This 

procedure results in a Modified Quenched Approximation (MQA), where it is 

stated that "calculations can be carried out for arbitrarily small quark mass". 

The presence of these exceptional configurations is in agreement with the obser-

vations of [38], where it is stated that the fraction of exceptional configurations 

grows as g, C, or Na /a is increased, or as the quark mass is made smaller. For the 

exceptional configurations small changes were made in the values of C and the 

hopping parameter ic. However, it is difficult to make an quantitative study as 

parameters like 'crjt  will be needed to calculate the quark mass at each value of 
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Figure 3.1: Plot (a) shows the effective mass of the pion for one normal con-
figuration at 3 = 6.0, 16 x 48, with C=NP and is = 0.13455. Plot (b) shows 

the data for an exceptional configuration. For the exceptional configuration we 
can observe that the effective mass is negative for t less than timeslice 11 and is 
positive at t greater than timeslice 12. Therefore there is a change in sign of the 
effective mass between timeslices 11 and 12. This is consistent with the picture 
that the pion propagator is dominated by its lowest eigenmode. 

C, which requires simulations for a number of configurations. But either a small 

decrease in C at ic = 0.13455 or decreasing ic at fixed C alleviated the problem. 

The propagators in table 3.2 were contracted together to form meson and baryon 

two-point functions. Meson correlators were formed with degenerate and non-

degenerate quark mass combinations. The smearing combinations will be de-

scribed shortly. Degenerate quark mass baryon correlators were generated at all 

19 values, and on the 3 = 6.0 and 6.2 data sets, the non-degenerate quark mass 

combinations were computed. At 19 = 6.2 with C=TAD, there was an initial 

problem with the code which meant for the first 18 configurations some of the 

non-degenerate baryon correlators were not generated and so these configurations 

have not been used in the analysis. 
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The smearing combinations of the meson and baryon correlators are shown in the 

effective mass plots in figures 3.3 to 3.9, for each of the data sets. The (LL,LF) 

meson correlators are not shown in these plots as they approach the plateau along 

the same path as the (FL,LL) meson, and would cause the figures to be messy. 

For the non-degenerate baryons, the sink fuzzed correlators were not calculated, 

due to the computational overhead required to calculate them, but these smearing 

combinations were computed with the degenerate code and are shown in figure 

3.2 for the nucleon. These correlators supply us with only a limited amount of 

additional information that one could use in a determination of the nucleon mass, 

as these correlators are noisier than those which are already computed. 

The tadpole-improved data have been analysed by other members of the UKQCD 

Collaboration; the 0 = 5.7 data have been analysed with other values of C=1 

and C=0 the Wilson case, to look at the effects on spectral quantities of changing 

the clover coefficient at fixed a, and appears in [78]. Preliminary results of the 

C=TAD data set have appeared in [79, 80, 81]. The analysis of both the C=TAD 

and C=NP data sets presented here is independent of all these publications, and 

therefore any conclusion reached is independent of these. 

The effective mass plots are shown in figures 3.3 to 3.9 at the heaviest quark 

mass simulated, for each of the data sets. There is no significant change in their 

behaviour in going from the heaviest to lightest quark mass, except that the sig-

nal becomes noisier. In comparing the effective mass plots for the C=TAD data 

at all 3 values, using the (LL,LL) pion as an example, it can be observed that 

the pion reaches the plateau, at timeslice 7, 12, and 16, for /3 = 5.7, 6.0 and 6.2 

respectively. The explanation of this is that in the continuum, the zero three-

momentum pion propagator, with a physical ground state mass in the range of 

pion masses simulated, takes a fixed amount of time to decay exponentially to 

the ground state state. The physical length scale, which on the lattice can be 

obtained through multiplying these timeslices by the lattice spacing, is roughly 

6 (GeV) - '. The consequence of this is that simulations at higher /3 values require 

'The inverse lattice spacings are listed in table 3.1. 
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Figure 3.2: Effective masses for the nucleon at 3 = 6.0, with C=TAD and 
ic = 0.13700, (0), (0), and (x), are the (LLL,LLL), (LLL,FFL) and (FFL,FFL) 
correlators respectively. These correlators were computed with the degenerate 
baryon code, in comparing with the nucleon in figure 3.5 the (LLL,FFL) is only 
noisier at the final timeslices, in comparison with (FFL,LLL), but the (FFL,FFL) 
gives a far noisier signal. 

a larger temporal component, in comparison with those at lower 1 values, in order 

for the correlators to decay to the ground state, and means that any measure-

ment of a hadron mass will be statistically noisier, at higher 0 values. Smearing 

will significantly improve the determination of hadron masses from these lattices. 

From the effective masses one can observe that, as expected, the sink smeared 

data produces a noisier signal in-comparison with the source smeared data, irre-

spective of whether one uses fuzzing or Jacobi smearing. 
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Figure 3.3: Effective masses for the pion, rho, nucleon and delta particles at 
0 = 5.7, with C=TAD and ic = 0.13843. For the pion and rho plots the (), 
(0), and (x), are the masses obtained from the (LL,LL), (SL,LL) and (SS,LL) 
correlators respectively. For the nucleon and delta plots the () and (0) are the 
masses obtained from the (LLL,LLL) and (SSS,LLL) correlators respectively. 
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16 3  x 32 lattice at 3 = 5.7, with C=TAD and ic = 0.13843. For the pion and rho 
plots the (0), (0), and (x), are the masses obtained from the (LL,LL), (SL,LL) 
and (SS,LL) correlators respectively. For the nucleon and delta plots the (0) 
and (0) are the masses obtained from the (LLL,LLL) and (SSS,LLL) correlators 
respectively. 
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Figure 3.9: Effective masses for the pion, rho, nucleon and delta particles at 
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3.2 Fitting Hadron Masses 

Determining accurate measurements of the hadron masses from fitting the ap-

propriate two-point functions and investigating the systematic errors involved in 

such a procedure is an essential part of any hadron spectrum calculation. This 

section first covers the principles involved in a general procedure, then explains 

the specific procedure which has been adopted in fitting the correlators which 

were computed. 

3.2.1 The Multi-Exponential Fitting Procedure 

In [82], effective mass plots from an ensemble of 1000 configurations at 3 = 6.0 

on a 24 x 64 lattice, with Wilson fermions, show the phenomena of "wiggles" in 

the ground state plateau for point and wall sources, where by in the region of the 

plateau there are fluctuations on neighbouring timeslices larger than one standard 

deviation. Wiggles are present in the plateaux of the fitted mass plots shown in 

figures 3.3 to 3.9. The wiggles are explained through modelling the averaged 

propagator of a hadronic particle state for an ensemble of N configurations as a 

combination of the true propagator (obtained from a two exponential fit to the 

data) and independent random eigenvectors of the data covariance matrix (which 

was generated in the fit to the data) which are Gaussian distributed on every 

timeslice. The effective mass plots for any finite sample exhibit deviations from 

the plateau by more than one standard deviation, as does the real data. Thus the 

existence of such large fluctuations is a property of the covariance matrix, through 

having a finite ensemble size N. The consequences of this are that a plateau  is 

rarely long lived and the definition of such a region is questionable. This causes 

problems when choosing the range of timeslices [t mjn , tmax] for fitting the hadron 

correlator to a single exponential in order to obtain the ground state mass. As 

more than one plateau could exist, stability of the fitted mass over different fitting 

ranges is a problem. This causes various groups [83, 51, 84, 85, 86] to adopted a 

number of different procedures to determine the fitting range, such as choosing 

4 1n this context the plateau is defined to be where the effective mass m ejj(t) does not 
fluctuate more than one standard deviation between timeslices in that region. 
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the start of the fitting range at the timeslice where the plateau begins and the 

end of the fitting range is chosen where either the errors of effective mass have 

doubled in size or the signal shows a clear break, is the procedure used in [51]. 

Clearly a reliable method is needed for the determination of the ground state 

mass. It is clear in figures 3.3 to 3.9 that fitting the hadron correlators to a 

single exponential in the region of the plateau, does not make the most of all the 

timeslices computed and at later timeslices the signal becomes noisier for the rho, 

nucleon and delta. Therefore, one would like to move tmin  to earlier timeslices 

and push the fitting range as far out as possible while still maintaining a good 

chi-squared. However, a multi-exponential fit to a single correlator is usually 

unstable. It is much easier to do multi-exponential fits to several correlators 

simultaneously, and if each exponential has a significant amplitude in at least 

one correlator, life becomes a lot easier. At lower 0, values the ground state 

plateau appears at earlier times and the use of many exponentials to get to early 

times is not as important at 3 = 5.7 as at 0 = 6.2 

The method which we shall investigate makes use of multi- correlat or multi-

exponential fits, which are detailed in [87, 88] as follows. The general method 

which has been adopted to fit most of the data sets is to compute the local (point) 

correlators, denoted as L here, and the smeared correlators which have a good 

overlap with the ground 1 S-state, denoted as 1 here. Ideally one would like 

the smeared correlators which have a good overlap with the first excited state, 

called the 2 S-state, and even those which had an overlap with the higher radial 

excitations too, which would push tmm  even further out, and would be useful 

at the higher 3 values. 

The information provided by our fits cannot make any firm predictions for the 

masses and amplitudes of the 2 S-state, when fitting to more than one exponential 

and this is treated purely as noise, as there is no correlator included in the fit 

with a good overlap with this state. For mesons, in most cases all combinations 

of smearing types are computed, such that all elements of the 2 x 2 matrix 

'Pushing tmin out means in this context starting the fit at an earlier timeslice. 
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MS with entries {correlator source n, correlator sink nk}  and n=nk=L,1 are 

constructed. To expand on this further, the smearing matrix in the case of fuzzing 

is 
Ms=  ( LL Ll' 'LL LF 

1L 11 ) 	FL FF) 	
(3.1) 

The first type of fit one can do is to a matrix of correlation functions: 

Nexp 

CM(n5n3k; t) = 	a(n8, n) a*(n  n) (e_m 	 (3.2) sk, 	t + e_mT_t)) 

n=1 

here one is assuming that 7l72  = I in equation (2.23), i.e. the case of a pion. 

The 2 x 2 matrix is fitted with = 1 and 2. The second type of fit is a row 

of correlation functions, which are fitted to 

Nexp 

CM(n5n8k;t) = 	b(nn,n) (e_mnt + e_.mn(T_t)). 	 (3.3) 
n=1 

This can be used to fit simultaneously a number of different combinations of 

correlation functions (n8n3k),  with Nex p = 1 and 2; usually the (LL) and (1L) 

correlators are fitted together. The second type of fit can be used for the baryon 

correlators. The four correlators which are the elements of the (2 x 2) matrix 

that are fitted in a matrix fit can be fitted in a row fit too, the fitted amplitudes 

are related through b(n3n3k, n) = a(n8 , n ) a*( nsk , n); the matrix fit reduces the 

number of fitting parameters by constraining the amplitudes such that b(L1, n) = 

b(1L, n). 

Another approach, which may prove fruitful, would be to include all the operators 

which had the overlap with the same state. In the case of the pion, this would 

correspond to fitting simultaneously the correlators with the F structure of the 

usual pseudoscalar ('y&)  operator together with the axial-vector ('y'y)  and the 

corresponding cross correlators at the source and sink; here 771 772 = — 1 in equation 

(2.23). However in the case of the pion, the correlators introduced into the fit 

are noisier, so the additional information provided by these channels is limited 

and therefore does not reduce the error in the fitted masses. 
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The numerical procedure to determine the fit parameters from minimising the x2  
is the Levenberg-Marquardt algorithm [89, 90]. When fitting a number of correla-

tors to more than one exponential, problems were experienced with this algorithm 

due to near-degeneracy of the minimum, so that the algorithm wanders around 

doing steepest descent in rather flat degenerate valleys. In [91], a number of dif-

ferent schemes are proposed to circumvent these problems with modifications to 

the algorithm. However these were found to be difficult to implement in practice. 

To tackle this problem a different approach was taken. The parameter space of 

variables, 6  which the algorithm relied upon, were investigated by spanning the 

space of these variables and finding the region where the fitted parameters were 

consistent, and the variables were chosen from this region which did not unduly 

cause the algorithm to take a long time to converge. This study was carried out 

on all the different fits to the different hadron correlators. Different fitting ranges 

were used, so not to bias a particular value of [tmin ,tmax ]. The resultant fitting 

algorithm is not optimal, and rogue fits do occur, but they are infrequent and 

can be identified after looking at all the fitted parameters in a sliding window 

analysis when [tm in , tmax] are varied. 

An alternative procedure one can use to determine the initial fitting parameters, 

which are used as input to start the fitting algorithm, is to use the fitted pa-

rameters which have been obtained from a particular fitting range, and use this 

in the fits on all other fitting ranges; we denote this procedure as a 'hard-wired 

guess'. It was found that using a hard-wired guess caused the fits using the other 

fitting ranges to be biased in some way, as the fitted masses obtained in a sliding 

window analysis were relatively stable whilst the amplitudes varied wildly. The 

6 1n the algorithm itself, using the notation of [89] on page 683 onwards, there is the start-
ing value of A and the amount by which \ is increased or decreased when finding the global 
maximum. It was found in this case, starting with a larger value of A around 1 rather than 
0.001 suggested, and reducing the increment factor from 10 to 5, were a better choice in most 
cases. Secondly, the initial estimate of the fit parameters, which were used as input in the 
algorithm, played a role in finding the global minimum and these was investigated too. The 
main problem, encountered in the routines, is that it is difficult to a find a relatively good 
estimate of the excited state mass and amplitude. The excited state mass was estimated to be 
some multiple of the ground state mass, hence introducing another variable, the excited state 
amplitudes could then easily be determined through modelling the correlator in the fit. 
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procedure that is implemented, to determine the initial fitting parameters was to 

determine a good estimate for the ground state mass and amplitudes from all the 

correlators in the region of the plateau, and to determine the excited state masses 

and amplitudes from these. After some work on the routines, it was found that 

the fits converged over the fitting range without any human intervention required 

to tune the fits, such as hard-wire guesses. Correlations between all time slices, 

and types of operator for simultaneous fits, were included. The covariance ma-

trix was inverted using Singular Value Decomposition, without eliminating any 

eigenvalues. A comparison was made between using correlated and uncorrelated 

fits, and the two were found to be consistent, but as one might expect the errors 

from the correlated fit were smaller. The bootstrap algorithm [22], using 1000 

bootstrap subsamples, was used to estimate the error on the fitted parameters at 

the 68% confidence levels, regenerating the covariance matrix for each subsample. 

On performing all the possible multi-exponential fits to the hadron correlators 

on a given data set, using a sliding-window, a fitting range was chosen satisfying 

the following criteria: 

• acceptable values for the quality of fit, Q, and x2 /d.o.f.; 

• stability of the result for the ground state mass; 

• agreement between the results obtained using a single exponential and a 

double exponential fit, and the fitting ansãtze of using a row or matrix fit; 

• ability of the fitting algorithm to resolve two masses; 

• good agreement in the range of fitting window visually looking by eye at a 

plot of the fitted masses obtained from each of the correlators used in the 

fit and the appropriate curves produced from the fit parameters. 

The variable Q, which is a function of x2  and v = d.o.f. is defined [89] as 

1 	0o 

Q(") x2 ) = 	
e_tt 2 _ldt . 	 (3.4) 

F(v/2) f.2/2 
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It represents the probability that i' normal, random, uncorrelated variables, with 

a mean of 0 and unit variance, have a sum of squares which is greater than X2 . 

An acceptable value for Q lies around 0.5; a much smaller value indicates that 

the model used is incorrect, whereas a value approaching 1 indicates that too 

many parameters are being used. The stability criterion which we used is that 

the mass obtained does not change noticeably when the minimum time slice of 

the fit is changed slightly. 

Fits to the hadron masses at 3 = 6.0 and 0 = 6.2 

The data sets at both these 3 values and with the clover coefficients C=TAD 

and C=NP, on the smaller volume at 8 = 6.0, have the common feature that 

the meson and baryon correlators have been computed with the same smearing 

combinations using local and fuzzed propagators. It therefore seems appropriate 

to discuss these data sets together. The (LL,LL), (FL,LL), (LL,FL) and (FL,FL) 

meson correlators have been fitted in a row fit to the first two correlators alone 

and to all four correlators. In addition a matrix fit has been performed to all the 

correlators. Single exponential and double exponential were used with each of 

the fitting ansätze. Using more than two exponentials in the row fits is unstable, 

as there is no correlation with a strong overlap with the first excited state, so 

such a fit is unstable and the algorithm experiences problems with convergence. 

Sliding window plots for the pion and rho at 13 = 6.0 with C=TAD at the heaviest 

computed quark mass are shown in figures 3.10 and 3.11 respectively; the value 

of tmax has been set to timeslice 23 and tmjfl, is varied. For the case of the pion 

the signal is very clean out to this timeslice, and for the rho the error bars grow 

with time. Therefore the choice of tmax should not have any real affect on the fit. 

The sliding window plots display the fitted ground and excited state masses, Q, 

X 2 /d.o.f., and the ground state amplitudes for (LL,LL) and (FL,LL) correlators 

against tmjfl. The amplitudes are given in the form which would be obtained from 

the row fit. Thus the fitted amplitudes from the matrix fit are related as follows: 

G.S ALL = b(LL, 1) = a(L, 1)a*(L,  1), 	 (3.5) 
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G.S AFL = b(1L, 1) = a(1, 1)a*(L,  1). 	 (3.6) 

In the case of the pion, the fitted ground-state masses become stable after the 

excited state contamination has died away at tmin = 5 for the double exponential 

fit and tmin = 12 for the single exponential fit. There is agreement in the fitted 

mass between these regions. In these regions, we see there is clear agreement 

for the masses at the la level, between all three fitting ansätze used, which is a 

good indication that the systematic errors in this procedure are under control. 

However the fitted amplitudes only agree within 2a between the three fitting 

ansätze, which could indicate some minor systematic effects in this procedure. 

As the statistical noise does not grow with time for the pion, the errors on the 

fitted parameters are roughly equal for all tmin. The X 2 /d.o.f. in the stable regions 

are constant with t m . The fit which was chosen for the pion was a row fit to 

(LL,LL) and (FL,LL) correlators using a double exponential with the fitting range 

[6,23]; as this fit has the smallest X 2 /d.o.f. and the best Q value, and one can see 

that this gives a good fit to the data in figure 3.17. 

In the case of the rho, there is a similar picture to the pion for the tmin  at which the 

fits stabilise, and for the agreement between the different fitting ansätze. However 

there are a number of clear differences: the single exponential fitted masses are 

not as stable as for the pion with varying tmn. In this case the statistical errors 

do grow with time, so there are advantages in using a double exponential fit over 

using a single exponential fit, both in the stability of the fitted mass and in the 

size of the error bars. There is no qualitative difference in the quality of the fit 

in the stable regions; the row fit to the (LL,LL) and (FL,LL) correlators was 

chosen, as the errors bars from this fit are smaller and are more symmetric than 

the other fits. Here again we can see that this choice gives a good fit to the data 

in figure 3.17. The fitted masses from this analysis are tabulated in appendix 

A. The data at the different clover coefficients C=TAD and C=NP have been 

generated with similar pion masses and the same smearing parameters, and it is 

no surprise that the type of fits chosen and fitting ranges are very similar. 

The sliding window plots which have been discussed so far are at fixed 0 and at 
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a fixed quark mass which is the heaviest computed. On going to lighter quark 

masses, the only visible difference in the sliding window plots is that the quality 

of the fits becomes worse, as one would expect as the data becomes noisier. The 

fitting range and type of fit is the same at all the computed quark masses. To 

illustrate these last two points the chosen fits for the rho at all quark masses for 

C=NP and 0 = 6.0 are shown in figure 3.12. 
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Figure 3.10: Sliding window plots for the pion at /3 = 6.0, with C=TAD and 
0.13700. The fits corresponding to fitting the various combinations of the 

following correlators (LL,LL), (FL,LL), (LL,FL) and (FL,FL). The 2 corrs fit 
is a row fit to the first two correlators, the 4 corrs fit is a row fit to all the 
correlators and the con fit is a (2 x 2) matrix fit to all correlators. The chosen 
fit is a 2 corrs fit over the range [6,23], with 2 exponentials. 
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the masses obtained from these correlators are represented by the (), and the 
(0) respectively. 
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Figure 3.13: The plots show the row fits to the pion at 0 = 6.2, with C=TAD, 
and ic = 0.13640. The (LL,LL) and (FL,LL) correlators are fitted with 2 expo-
nentials from [6,23] and [8,23] in the plot on the left and right respectively. The 
masses obtained from these correlators are represented by the (), and the (0) 

corresponding to (LL,LL) and (FL,LL) correlators respectively. 

At 0 = 6.2, in the sliding window plots for the pion, which have not been shown 

here, the ground state mass stabilises at a larger value of tmin for both the single 

exponential and double exponential fits, as the local correlator takes longer to 

plateau. Therefore trying to push tmin  out further in the fit will contain excited 

state contamination, as the local correlator has an overlap with all the S-states, 

so contains contamination from the second excited state in this case. Taking this 

into consideration the sliding window plots are essentially similar to the case of 

pion at /3 = 6.0, and therefore a row fit is chosen to the standard two correlators 

from [8,23]. The sliding window plots for the rho at 0 = 6.2, with C=TAD, are 

shown in figure 3.14. The same situation applies here in comparing the sliding 

window plots at ,B = 6.2 and /3 = 6.0, as just described. Again the row fit to 

the same correlators over the same fitting range as in the case of the pion is 

preferred. In figures 3.13 and 3.14, using the chosen row fit, a comparison is 

made between fitting from [6,23] and [8,23] for the pion and rho respectively. For 
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the pion one can see that the fit from [8,23] gives a slightly better fit to the data. 

For the rho there is a large difference between the fits to the data over these two 

ranges and this highlights the danger of not fitting over the right window. The 

plateau for the rho (FL,LL) correlator is not as good for the pion, and looks to 

still contain contamination from the first excited state, as there is a small rise in 

the plateau, before falling off with second excited state. To push tmin  further out 

at 0 = 6.2, one would be required to fit to more than two exponentials and this 

was not untaken as there was no correlation computed which had a good overlap 

with the first excited state, and therefore fits to three exponentials would become 

unstable, but should be considered if one wanted to improve this study. 

The baryon correlators are fitted to a simultaneous multi-correlator multi-exponential 

fit as follows: 

CB(n3, 3k; t) = 	b(n8Cnk, n)e_m2t. 	 (3.7) 

At 3 = 6.0 with C=TAD, sliding window plots for the simultaneous fit to the 

(LLL,LLL) and (FFL,LLL) correlators to one and two exponentials for the '-

like' and L\ correlators are shown in figures 3.15 and 3.16. The fits stabilise at a 

similar tmin as for the case of the pion at this 3 value. In the figures, the chosen 

fitting range is indicated by an arrow, and the double exponential fit is chosen, 

as the error bars are smaller than for the single exponential fit. We can see how 

well these fitted parameters fit the masses obtained from the correlators in figure 

3.17. Sliding window plots have not been shown for the fits of 'A-like' correlators 

as they show quantitatively the same features as the 's-like' plots. 
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Figure 3.14: Sliding window plots for the rho at 3 = 6.2, with C=TAD and 
r. = 0.13640. The fits correspond to the same as given in the caption of figure 3.11. 
The plots are the bottom show effective mass plots for the rho, superimposed are 
curves that correspond to fitted parameters which are both obtained with a row 
fit to the (LL,LL), (FL,LL) correlators using a double exponential fit, the fitting 
ranges are labelled on each graph. 
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Fits to the hadron masses at 3 = 5.7, with C=TAD 

Using the (LL,LL), (SL,LL) and (SS,LL) meson correlators row fits were per-

formed to the first two correlators and to all correlators for the pion and vector. 

It was found that double exponential fits started to stabilise at tmin = 3 and 

single exponential fits at tm in  = 6. In this region there is good agreement be-

tween the single and double exponential fits and between both types of row fit. 

A typical sliding window plot is shown for the heaviest pion on the small volume 

is shown in figure 3.18. The double exponential fit to the (LL,LL) and (SL,LL) 

correlators using the range [3,12] for the pion and [4,12] for the vector on the 

small volume and [3,16] for the pion and [4,16] for the vector on the large volume 

were chosen, ' as these fits had better x2 /d.o.f. and slight smaller error bars in 

the fitted masses over the other fits. In the case of the rho on the smaller volume, 

it was found that fitting simultaneously the interpolating operators which have 

an overlap with the rho and correspond to interpolating operators hi-linear in 

quark fields with F structures 5  and  5'y, reduced the error on the fitted ground 

state mass. 

Like the rho on the small volume, the best fit to the nucleon is obtained by fitting 

the (SSS,LLL) to a double exponential fitting simultaneous the interpolating 

operators 

= (,b(x)C'y s (x)),b(X)€ abc , 	 ( 3.8) 

and 

O()k(x) = ( 3.9) 

reduced the error in the fitted mass. The fitting ranges chosen are [2,11] and 

[2,15] for the small and large volume respectively. The spin- 2  decuplet masses 

were fitted using the (LLL,LLL) and (SSS,LLL) correlators with a double expo-

nential with the fitting range of [5,11] and [6,15] on the small and large volume 

respectively. 

7The data on both lattices was studied extensively in [78], we draw slightly different con-
clusions on the choice of fit and fitting ranges, because of a slightly different fitting procedure. 
However the results of the fitted masses are consistent with their results. 
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Figure 3.18: Sliding window plots for the pion on the 12 3  x 24 lattice at @ = 5.7, 
with C=TAD and ic = 0.13843. The fits corresponding to fitting the various 
combinations of the following correlators (LL,LL), (SL,LL), and (SS,LL). The 
2 corrs fit is a row fit to the first two correlators, the 3 corrs fit is a row fit 
to all correlators. The chosen fit is a 2 corrs fit over the range [3,12], with 2 
exponentials. 
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Fits to the hadron masses on the 32 3  x 64 lattice at /3 = 6.0, with C=NP 

This data set is unique in that only smeared propagators were computed. There-

fore in general multi-exponential multi- correlator fits could not be used. For the 

pion and rho a single exponential was fitted to (SS,LL) correlator from [9,19] and 

[10,15], respectively, and these fits are shown in figure 3.19. Double exponential 

fits to these correlators were unstable and including the (SS,SS) correlators caused 

the error bars to increase on the fitted masses. The fitting ranges were chosen by 

fixing tmin  at where the effective mass begins to plateau, the value of tmaz  was 

taken at an acceptable value of X 2 /d.o.f. and where the error bars on the fitted 

mass where relatively symmetric. It is worth commenting that the central value 

of the fitted mass is stable on changing tmar . Increasing tmax  to later timeslices; 

reduces the errors for the pion, but the error bars become asymmetric and the 

error on the fitted rho mass is unchanged. This procedure is not as systematic 

as the multi-exponential fitting procedure at determining the fitting range and 

therefore taking the result with the larger errors is the safest option. 

The 's-like' correlators and the 'A-like' correlators are similar, so they are in-

cluded in this discussion. It was found that the best fit was to the (SSS,LLL) 

and (SSS,SSS) with a double exponential from [2,18], after considering fitting 

the correlators to a single or double exponential fit, and including in the fit the 

additional interpolating operators to the one given in equation (2.26) that have 

an overlap with spin- 1  baryons, like 

= 	 (3.10) 

which has a good overlap with with the spin-! baryons. For the z correlators a 

double exponential fit from [2,16] to the (SSS,LLL) correlators was found to be 

the best. 
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Figure 3.19: Fitted masses for the pion, rho, sigma and delta particles on the 
32 3  x 64 lattice at 0 = 6.0, with C=NP, ,c = 0.13344. For the pion and rho plots 
the (0), are the masses obtained from the (SL,LL) correlator. For the sigma and 
delta plots the (0) and (x) are the masses obtained from the (SSS,LLL) and 
(SSS,SSS) correlators respectively. The fitted curves to the masses, in each of 
the plots, are from row fits to the data with the chosen fitting range, given in 
appendix A. 
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3.2.2 Some comments on the other hadronic states measured 

To finish this section it is worth mentioning the other particles which were calcu-

lated. In the meson sector there are the scalar S(0++),  axial A(l), and tensor 

T(1+- ) operators, which have an overlap with the a 0 , a 1  and b 1  meson states, 

respectively. The effective masses of these states at 0 = 6.0 and C=TAD are 

shown in figure 3.20. At the heaviest quark mass computed we can see there 

is a clear signal at earlier timeslices which become noisy at later timeslices, but 

can be fitted successfully with multi-correlator multi-exponential fits. At lighter 

quark masses the signals for the S(0) and T(1+)  become very poor, as can 

be seen in the effective masses at ic = 0.13856. At this quark mass the signal 

for the A(1) is also very poor too, but can be fitted using multi-exponential 

multi- correlator fits. We will not discuss fits to these states any further. 

The other baryon states which are calculated in addition to those which have 

been already mention in this chapter are listed in table 2.2 with the interpolating 

field operators used to create each state. The additional baryon states are as 

follows: the () with I(JP
) 

= 31+ ), the negative parity partner of this state 

A-P() with j(JP)
= () and the negative parity partners of the 's-like', 'A-

like' and z() correlators. In figure 3.21, examples of the effective masses of 

these correlators are shown which were calculated at /3 = 6.0 with C=TAD, at 

degenerate quark masses, so the parity partners of 's-like' and 'A-like' correlators 

are represented by The picture here is similar to the mesonic correlators 

just discussed, in that the signal disappears in going to lighter quark masses for 

the and correlators In the case of correlator and its negative- 2 	 2 

parity partner the signal at the heaviest quark mass ic = 0.13700, is very poor 

and it seems there is a discrepancy between the effective masses obtained from 

the (LLL,LLL) and the (FFL,LLL) correlators. In light of these problems of the 

poor quality of signal, these states shall no longer be considered in this analysis. 



Chapter 3. Simulation Details and Fitting Hadron Masses 	 114 

p 	i 

	

S 	(0 	), K = 0.13856 

0 10 20 0 10 20 
t t 

	

1.5 
	

1.5 

	

1 1 . 0 
	 1 1 . 0  

	

0.5 
	

0.5 

	

fin 
	

A  

I 	 1 

	

1.5 	 1.5 

	

1 1 . 0 	 1 1 . 0  

f-T 

	

0.5 	 0.5 

	

nfl 	 fin 

• 	A(1), ,c = 0. 13700 
- 

x 

- 

xA(1), K = 0.138 e 

- - 	- -- 

-G - 

- 	G 

x 411  

DI I:: 

El J 
0 10 20 0 10 20 

t t 

I X,1,1+_ 
K = 0.13700 

—r 

0 

- 

—: 1 	 I 

111 1 1 11  

	

1.5 	 1.5 

	

1 1 . 0 	 1 1 . 0  

XO 

El 

	

0.5 	 0.5 

fin 

11 1 1 _I l 

K - 3856 

0 

0 

- 	z oo  - 

• 	El 

El 

0 	 10 	 20 	 0 	 10 	 20 
t 	 t 

Figure 3.20: Effective masses at 3 = 6.0 and C=TAD for the S(0), A(1), and 
T(1+), mesons calculated with degenerate quark propagators at the heaviest and 
lightest quark masses simulated corresponding to n = 0.13700 and ic = 0.13856. 
The (Ky), (0) and (x) correspond to the masses obtained from (LL,LL), (FL,LL) 
and (FL,FL) respectively. 
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Figure 3.21: Effective masses at 6 = 6.0 and C=TAD for the NnP, AP(), 

and Anp  baryons calculated with degenerate quark propagators at the 
heaviest and lightest quark masses computed corresponding to tc = 0.13700 
and k = 0.13856. The (Ky), and (0), correspond to the masses obtained from 
(LLL,LLL) and (FFL,LLL) respectively. 



Chapter 4 

The Light Hadron Spectrum 

4.1 Finite Volume Effects 

An extensive theoretical study of finite volume effects on field theoretic calcula-

tions has been carried out by Liischer [92]. Consider, for example, the effect on 

the mass of a particle, m. For large enough volume, the leading effect is due 

to the propagation of the lightest mass meson (e.g. pion) "around the world," 

leading to the expression for m(N3 ), the particle mass in an N3  x N3  x N3  box, 

	

mp(N 3 ) = mp(oo) + A N. 
	

(4.1) 

where the exponent ) is determined by the mass of the pion, and A is given 

in terms of the on-shell irPP coupling. This finite volume correction can be 

interpreted as the effect of squeezing the pion cloud surrounding the particle. A 

somewhat different situation takes place when the particle P is a loosely bound 

state of constituents. In this case, the finite size effect is caused by the squeezing 

of the bound-state wave function [93]. As pointed out by Liischer [92], this 

situation falls into the same general framework as that which led to equation 

(4.1), except that, in this case, the particle that travels around the world is one 

of the constituents of the bound state. Recently, it has been argued [94] that, 

in intermediate ranges of volume, where the asymptotic behaviour predicted by 

Lüscher's volume formula has not yet set in, the volume dependence might be 

expected to exhibit a power law dependence of the form 

	

m(N 3 ) = M(C)O)

const.
o) + N ' 	 (4.2) 

116 



Chapter 4. The Light Hadron Spectrum 	 117 

instead of the exponential falloff of Lüscher's result. This power law form is also 

found by the authors of [94] to fit better to their data on light hadron masses 

(in full QCD). At this stage we are unable to quote infinite volume results from 

fitting to either form for the volume dependence, as we have only two volumes at 

/ values 5.7 and 6.0. Thus we can only investigate the presence of a finite volume 

effect in our calculations. Therefore to improve this study will require additional 

volumes at both ,3 values. 

4.2 Chiral Extrapolations 

4.2.1 Pion Chiral Extrapolations 

The bare unrenormalised quark mass, m q , is defined as follows: 

1/1 	1\
, 	 (4.3) am q =—(---) 

2 \ ,c 	'cJ 

where K, is the critical hopping parameter and is an undetermined function of 

. It is important to obtain an accurate determination of the critical hopping 

parameter, as the extrapolation or interpolation of the calculated hadron masses 

to the physical point are all reliant on the quark mass. Therefore any systematic 

effects in the determination of n, will pass over to the lattice measurements of 

physical states like the nucleon and rho meson, for example. The method to 

determiner, here is to express m 2  in terms of m q , and so determine n, from 

the fit. However this is dependent on the chiral behaviour of the pion mass. 

The chiral behaviour is modified due to quenching effects, and is the subject 

of quenched chiral perturbation theory QCPT [95, 96, 97], where there are two 

distinct effects. 

1. Quenching removes loops which, at the underlying quark level, involve in-

ternal quark loops. This changes the values of the coefficients in the chiral 

expansion and may remove some terms completely. 

2. Because of the absence of an anomaly, the j '  is a pseudo-Goldstone boson 

in quenched QCD, so there are new contributions coming from ?]' loops 
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that give rise to chiral logarithms which make the quenched approximation 

singular in the chiral limit. 

The result of QCPT for the mass of a pion composed of quarks of mass mi and 

M2 is 

	

MPS = C,(rni + m 2 )(1 - Slog[(m i  + m 2 )1) + 	+ ...., 	( 4.4) 

with c,, e, and S constants, and the ellipsis represents higher order terms in the 

chiral expansion. The m term is shorthand for analytic terms, i.e. those pro-

portional to the quadratic terms (rni  + rn2)2, M2  and m, and non-analytic chiral 

logarithms of general form mlog(m q ). The S term is an artifact of quenching; it 

arises from ij '  loops, and is divergent in the chiral limit, but its effect is small, 

and becomes noticeable only at quark masses smaller than those we use. Thus 

when fitting the pion masses we ignore the S term. The pion masses for each 

data set tabulated in appendix A are fitted to following ansätze. 

. Fit 1: The three lightest pion masses are fitted to 

m ps =Ci (—+__—C o). 	 (4.5) 
2ic 2  

. Fit 2: All pion masses are fitted to 

rn s =Ci(+-- -Co. 	 (4.6) 
\2K 1 	2K2 	I 

. Fit 3: All pion masses are fitted to 

MPS 	 (4.7) 
(2n, 	2ic 	/ 	\2k 1 	2r-2) 

• Fit 4: All pion masses are fitted to 

GKI
(4.8)  

2k 2  1 \21c 1  2tc2  I 
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. Fit 5: All pion masses are fitted to 

3 

	

mps =Ci (—i--C o)+C2 (—--C o')+C3 (----_Co). 	(4.9) 
\'eff 	/ 1 eff 

. Fit 6: All pion masses are fitted to 

2 
(-±__ c0) + c2 (-±-_ c0) MPS  = c1  
\ISeff 	 I'eff  

If 

+C4(--Co)

2 
logI( 

1  
--Co

)] 	
(4.10) 

\eff 	 L \k eff  

. Fit 2': All pion masses are fitted to 

Uzi
m=Ci+ 1 —Co 	 (4.11) 

22 	)1 2K, 	2k 2 1 

• Fit 3': All pion masses are fitted to 

1 	1 	 1 	1 	2 
MPS = C1  —  + ------  + c2 —+---c0 

	

(2k 1 	2k2 
CO) 	(2k 1 	2,c 2 	) 

- _J + 	- j__12 	 (4.12) 
2K 1 	2/2 	2k 1 	2/ 2  

• Fit 4': All pion masses are fitted to 

1 	1 	 1 	1 
rn2Ps = C1  —+--- +c3 —+---c0 

	

(2k 1 	2k2 
CO) 
	(2k 1 	2,c 2 	) 

cl 	- 	+ 	- _Li3• 	 (4.13) 
2k 1 	2ic 2 1 	2k 1 	2K 2  

The critical hopping parameter, r, = 11CO3  and the effective k is defined as 

1 	11 	1) 
(4.14) 

k€jj 	'\2k1 	2k2 
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The parameterisation of these fits is in terms of quark masses rn1  and M2, such 

that fit 2' is 

2 	 1 2 m s  = Ci (mi  + m 2 ) + C2 (rni  + rn2 ) 2  + CIrni - 77221 + C(rni - rn2). (4.15) 

One could have written all of these fits 1-9 in terms of rn1  and M2, but it is 

important to stress the relationship with the fitted parameters. 

The results for all of these pion chiral extrapolations using correlated fits at 

= 6.0 with C=TAD are given in table 4.1. This data set will be discussed as an 

example; the results for fits 1-5 on all the data sets are in given in appendix B. 

The results indicate the inclusion of these higher order terms in rnq  in equation 

(4.4) is important. As an example, the linear fit to all six quark masses (fit 2) 

gives a X 2 /d.o.f. of 7 which is large. This significantly decreases when going to 

the higher order fits in m q  (fits 3 and 4), for example, where the X 2 /d.o.f. are 2 

and 1 respectively. The coefficients of the higher order terms are a large number 

of a from zero and there is a significant change in r, from fit 2. Therefore the 

statistical quality of the data is sufficiently good to merit the use of these higher 

order fits. However is the data good enough to determine which of these chiral 

forms to use? 

A linear fit in rnq  to three lightest quark masses gives a good fit to the data and a 

low X 2 /d.o.f., a consequence of the larger statistical errors on the pions calculated 

at these lighter quark masses. The higher order terms in rnq  in equation (4.4) 

become more important as the quark mass is increased. Therefore one criteria 

one can use in comparing the higher order fits is that there is relatively good 

agreement been the ics determined from that fit and fit 1. Before going any 

further it would be worthwhile eliminating some of the fits. The fits which are 

denoted by the prime after the number test the assumption that the mass of a 

meson made from different masses rn1  and rn2  is exactly the same as one composed 

of identical quarks of mass (rn1  + rn2 ). The last assumption has been made in 

the fits without the prime. In all three cases where this assumption is tested, 

the primed fits have a larger X 2 /d.o.f. and the coefficients of all terms which are 
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some power of IMI - M21 are within 2a of zero. Thus the assumption made in fits 

1-6 is valid at the current level of statistics. Fit 6, which includes a non-analytic 

term, gives the lowest X 2 /d.o.f. of the fits to all the quark masses. However the 

coefficient of the rn10g(mq ) is within 2a of zero, and on reducing the number 

of quark masses in the fit there is a significant change in the fit coefficients, 

indicating that this fit is unstable. Including more quark masses in the fit may 

will remedy this problem, and one should consider this in further studies. 

Fits 3 and 4 which include quadratic and cubic terms in m q , in addition to the 

linear term, have acceptable X 2 /d.o.f. of 2 and 1 respectively. The coefficients 

of these higher order terms are a larger number of a from zero and these fits 

are stable under removing quark masses from the fit. In fit 5 a full cubic fit is 

performed. However, the coefficients from this fit differ considerably from those 

obtained for the higher order terms in fits 3 and 4, and this fit is unstable to 

removing quark masses from the fit. Hence, although we are seeing curvature in 

the pion chiral extrapolation, as can be seen in figure 4.1, the number of quark 

masses is insufficient to discriminate between fits 3 and 4. The values of ic, 

obtained from fits 3 and 4 are within la, and these are within 2a of the value 

obtained from fit 1. 

The value 'ic,  which has been taken is that obtained from fit 3 over the one 

from fit 4, as one could argue that the higher order terms follow order by order 

in equation (4.4) when going to higher quark masses, and one should take the 

difference between these its as the systematic error in this procedure. 



Cr, 

aq 

C 

Cr, C, 

Cr, 

Fit C1  C2  C3  C4 C' 1 C4  C' 2 C3 ' 

X2 

1 0.139267 1.415 0.2/1 
-21 

2 0.139245 	': 1.463 28.1/4 

3 0.139305 1.323 0.77 6.0/3 
-16 

4 0.139288 1.379 3.14 3.2/3 

5 0.139262 +32  1.462 -1.03 +'05 7 24 	+277 1.8/2 
69 —414 

6 0.139243 +31  1.580 2.45 1.66 1.3/2 
-97 

 0.139247 	+14  1.457 0.0142 19.9/3 
-50 

 0.139285 +28  1.350 +12  0.62 -0.0003 -0.081 3.1/1 
-15 -44 -31 

 0.139278 +23  1.386 2.93 0.0001 +31  0.54 1.6/1 

Table 4.1: Chiral extrapolations for the pion calculated at 3 = 6.0, C=TAD and on the 16 3  x 48 lattice. 
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Figure 4.1: Chiral extrapolations of the pion at 0 = 6.0 and C=TAD; the plot 
on the left is a linear extrapolation in m q , and the plot on the right is for an 
extrapolation with a linear and quadratic term in m q . In comparing the two 
plots the quadratic fit is clearly giving a better fit to the data. 

At 13 = 5.7, with only three quark-mass combinations, the information that one 

can obtain is limited, as not all the fits can be performed. For the quadratic fit 

the coefficients are obtained from solving the equations and no minimisation pro-

cedure is performed, which explains the large error bars on the fitted parameters 

in this case. The data at 0 = 6.2 lend support for the need to include higher 

order terms in m q  in the pion chiral extrapolation. There is no difference in the 

overall picture when comparing the different fits between C=TAD and C=NP at 

fixed /3. 

Finite Volume Effects in the Pion 

The pion masses on the two volumes at each of 13 = 5.7 and 13 = 6.0 are shown 

in figure 4.2.1. At 0 = 6.0, C=NP, the masses decrease between the small and 

larger volume by 0.5% at the heaviest quark masses and by 3% at the lightest 

quark mass. At 0 = 5.7, C=TAD, the masses increase by 0.6% between the small 

and large volume at the lightest quark mass computed. Therefore the results are 
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Figure 4.2: Comparison of the effective masses of the heaviest pion at /3 = 6.0, 
with C=NP on the 16 x 48 lattice, computed from a sink-fuzzed correlator 
(LL,FL) with r = 6 and a sink smeared correlator (LL,SS) with the number of 
smearing iterations N = 30 and is = 0.25, corresponding to the (0) and the 
(x) respectively. The results were computed from 21 configurations. 

somewhat conflicting, but the physical volumes of the lattices at both 0 values are 

different and at /3 = 6.0 the lightest quark mass computed is considerably smaller 

in physical units. At 13 = 6.0 the finite volume effect is in the direction that the 

mass decreases in going to a larger volume, which has been observed by [86] and 

is what you would expect. The effective masses for the pion at the lightest quark 

mass with both volumes superimposed is shown in figure 4.4. It is questionable 

as to whether a finite volume effect is observed here, more volumes and higher 

statistics are required. Another possible source of discrepancy between the pion 

masses on the two volumes at 0 = 6.0 is the different smearing procedures used 

for each volume, i.e. fuzzing on the small volume and Jacobi smearing on the large 
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volume. To investigate this further, the smearing study in section 2.2 generated 

data on the small volume using both Jacobi smearing and fuzzing. Therefore, at 

the smearing parameters used in this simulation, the effective masses for heaviest' 

pion computed with the different smearing types superimposed are shown in figure 

4.2. We can observe that in the region of the plateau there is good agreement 

in the central values of the masses from both smearing types. Thus, this results 

suggests that the discrepancy between the small and large volume cannot be 

attributed to using different smearing types at each volume. 

Simulation N x N 

/3 = 5.7, C=TAD 12 3  x 24 0.143519 	+104 - 93 

16 3  x 32 0.143543 	±66 
—42 

= 6.0, C=NP 16 3  x 48 0.135335 	±20 
—17 

32 3  x 64 0.135290 +27  
—12 

Table 4.2: Finite volume effects on 	is determined from fitting the pion 
masses to equation (4.7). 

At /3 = 5.7 the Ic's  measured in the two volumes are within statistical errors, 

while at /3 = 6.0 there is roughly a 2o-  difference between the two volumes. The 

consequences of this difference at 0 = 6.0 are as follows. In the calculation of 

lattice hadron masses there is another possible source of discrepancy between 

the two volumes which is different from a finite volume effect in that, for a fixed 

ic value, the bare unrenormalised quark mass m q  which this corresponds to is 

different on the two volumes. Therefore, in the extrapolation or interpolation of 

the calculated hadron masses to the physical point, the quark mass to which this 

corresponds will be different on the two volumes. 

'Though we are primarily concerned with the discrepancy at the lightest pion mass, one of 
the results of the smearing study was that the optimal smearing parameters were unchanged 
in the range of quark masses simulated here. 
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Figure 4.3: Investigation of finite volume effects in the pion. The plot on the left 
shows the pion masses calculated at 0 = 5.7 with C=TAD, the (0) and the (x) 
corresponding to the 16 x 32 and 12 x 24 lattices respectively. The plot on the 
right shows the pion masses calculated at 0 = 6.0 with C=NP, the (0) and the 
(x) corresponding to the 32 3  x 64 and 16 3  x 48 lattices respectively. 
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Figure 4.4: Each plot contains a comparison between the effective masses for the 
lightest pion calculated at each of the two lattice volumes at 3 = 5.7 and 0 = 6.0. 
The effective masses are represented by a (x) and a (0) for the small and large 
volume, respectively. The masses are obtained from the (SL,LL) correlator at 
/3 = 5.7, and from the (SS,LL) and (FL,LL) correlators on the large and small 
volumes, respectively at 0 = 6.0. 
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Measure of the 0(a2 ) effects in the Non-perturbatively improved action 

This simulation I  ALPHA [38] 

6.0 0.135335 	±20 
-17 I 0.135196(14) 

6.2 0.135895 	+14  
-55 0.135795(13) 

I 

Table 4.3: Comparison of the measured value of r, on the small volumes with 
C=NP from this simulation with those obtained from a different non-perturbative 
procedure given in the text. This gives an indication of the residual 0(a2 ) dis-
cretisation errors. 

The ALPHA collaboration [38] have determined the value of r, through a different 

procedure. This procedure uses the PCAC relation  on the lattice 

+ ö)(A')(x)0) = 2ñ((P')(x)0), 	 (4.16) 

where P' and A' are the on-shell 0(a)-improved pseudoscalar density and the im-

proved axial current respectively, and 0 denotes an on-shell 0(a)-improved field 

localised in a region not containing x. The k value at which the unrenormalised 

current quark mass ñi vanishes is taken to be tt. This calculation has been per-

formed in the framework of the non-perturbatively 0(a)-improved fermion action, 

so we can compare the results for r., computed in this simulation and those calcu-

lated with C=NP, as shown in table 4.3. The PCAC in equation (4.16) holds to 

0(a) therefore the discrepancy between the two values of r, acts as an indication 

of the residual discretisation errors at each of the 3 values, modulo systematic 

errors in the case of the results from our simulation. 

4.2.2 Vector Meson Chiral Extrapolations 

The quenched chiral expansion for the vector-mesons masses, predicted in [51] 

from the chiral expansion in full QCD [98], has now been calculated using the 

2 The improved fields are defined in section 1.9. 
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formalism of quenched chiral perturbation theory [99] giving 

MP  = a,, + £b,,m 2  + c,,(m i  + m 2 ) + d,,m 2  + em +••• . 	(4.17) 

Once again we drop the S term arising from quenched chiral logarithms. The 

vector meson masses are fitted to the following ansätze: 

Fit 1: mv = m + Cimq  fitted to the three lightest quark masses, 

Fit 2 : mv = mc,, + Cimq  fitted all quark masses, 

Fit 3 : mv = mc,, + Cimq  + C2 m/ 2  fitted to all quark masses, 

Fit 4 : mv = mc,, + Cimq  + C3m 2 fitted to all quark masses, 

Fit 5 : mv = mc,, + Cimq  + C2m'2  + C3m fitted to all quark masses. 

Here again, the results of the fits at 0 = 6.0 and C=TAD are used as the repre-

sentative data set and are shown in table 4.4. A linear fit to all six quark masses 

gives a good 2 /d.o.f. 0.7. The higher order fits, 3-5, give a lower X 2 /d.o.f. 

as would be expected, but the values of mc,,  from these fits are still within lu 

of fit 2. The coefficients of the higher order terms are non-zero, but have large 

error bars, and are a little over 10 from zero. Therefore the statistical quality 

of the data is not yet good enough to support these higher order fits. However 

non-linear terms have been observed by other groups [51, 1001. The linear chiral 

extrapolations are shown in figure 4.5 for this data set and for that at 0 = 6.2 

with C=TAD. In both cases we can observe that the fits appear reasonable. The 

chiral expansion for the rho we shall use in the rest of the analysis is fit 2: 

MV = mc,, + Cimq , fitted to all quark masses. 	(4.18) 

Finite Volume Effects in the Rho 

In figure 4.6 are plotted the rho masses at volumes at both 0 = 5.7 and 0 = 6.0. 

Once again, the results of this finite volume comparison are conflicting. For 

0 = 5.7, at the heaviest quark mass, the rho mass is over 10 smaller on the larger 

volume than on the smaller volume; this increases to 2o, at the lightest quark 
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Fit m Ci  C2  

Fit 1 0.391 	+14  2.42  0.02/1 -12 -36 

Fit 2 0.391 + 2.47 	j 2.64/4 

Fit 3 0.377 	+15  3.24 	±62 -2. 2 	+20  1.41/3 -13 -73 -18 

Fit 4 0.379 	+13  2.91 - 4 0 1.29/3 -10 -42 -31 

Fit 5 0.396 	+30  0.50 	ii 15 i. 	
±214  +498 -30.4  0.90/2 -34  -284   -365 

Table 4.4: Chiral extrapolations for the rho calculated at /3 = 6.0, with C=TAD 
on the 16 3  x 48 lattice. 

mass. However at 3 = 6.0 the rho masses are within statistical errors at all quark 

masses, as can be observed in figure 4.6. The effective masses for the rho with 

both volumes superimposed is shown in figure 4.7, here once again it is unclear 

whether a finite volume effect is observed, which is in line with [101, 102]. 
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Figure 4.5: Linear chiral extrapolation of the rho, plot (a) shows the data at 
0 = 6.0 and C=TAD and plot (b) shows the data at 0 = 6.2 and C=TAD. 



1.0 	r1 

0.9 - 

0.8 

0.55 

0.50 

t 

- 	0.45 

Ok 

0.9 

0.8 0.8 

0.5 

0.4 

Chapter 4. The Light Hadron Spectrum 
	

130 

amq 	 amq  

Figure 4.6: Investigation of finite volume effects in the rho. The plot on the left 
shows the rho masses calculated at 0 = 5.7 with C=TAD, the (0) and the (x) 
corresponding to the 16 3  x 32 and 12 3  x 24 lattices respectively. The plot on the 
right shows the rho masses calculated at 3 = 6.0 with C=NP, the (0) and the 
(x) corresponding to the 32 x 64 and 16 3  x 48 lattices respectively. 
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Figure 4.7: Each plot contains a comparison between the effective masses for the 
lightest rho calculated at each of the two lattice volumes at 0 = 5.7 and 3 = 6.0. 
The effective mass are represented by a (x) and a (0) for the small and large 
volume, respectively. The masses are obtained from the (SL,LL) correlator at 

= 5.7, and from the (SS,LL) and (FL,LL) correlators on the large and small 
volumes, respectively at 0 = 6.0. 
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4.2.3 Spin4  Octet Baryons Chiral Extrapolations 

The two types of spin-k correlator were computed with all the combinations of 

computed quark masses, but not all these correlators are independent, as the 

correlators of the form A[AB] and A{AB} are related through 

A[AB] = 1 (3B[AA] + B{AA}), 

A{AB} = (B[AA] + 3B{ AA}). 	 (4.19) 

We can think of the results for the masses of A{BB} and A[BB] as being those 

for the E and A, respectively, with m = MA and rnu  = md = mB. Unlike in 

the real world, we have the freedom to set MA = MB. However, in this case the 

and A are also degenerate, i.e. m(A{AA}) = m(A[AA]); the contractions in 

the two cases are identical, the contractions are given in equations (2.34) and 

(2.39), respectively. There is agreement between the fitted masses of the E and 

A correlators, which are degenerate in quark mass at 0 = 6.0, C=NP and on the 

32 3  x 64 lattice; see tables A.29 and A.30 respectively. But, we can observe up to 

a 2a discrepancy between the fitted masses for the E and A correlators which are 

degenerate in quark mass on the smaller volume 16 x48; see tables A.24 and A.25 

respectively. How can we explain this? On the larger volume the correlators are 

computed using Jacobi smearing algorithm and are of the type (SSS,LLL) and 

(SSS,SSS), but on the smaller volume the correlators are computed using the 

fuzzing algorithm and are of type (FFL,LLL). Therefore in the case of the fuzzed 

baryon correlators even though the correlators are constructed from propagators 

that are degenerate in quark mass there still exists a non-degeneracy between 

the propagator types. Thus, when there is a finite sample, m(AF{AFAL}) 

m(AF[AFAL]), and this will only agree in the case of an infinite ensemble. 

The interpretation of the results for the completely non-degenerate correlators, 

A[BC] and A{BC}, requires more thought, as the situation is complicated. Be-

cause isospin is broken, the °- and A-like states mix, with both correlators 

containing contributions from physical states. Let M+ and M_ be the masses of 
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the heavier and lighter states, respectively, and 6M the mass difference. At long 

times, the effective masses for both correlators will asymptote to M_. However, 

at times short compared to the inverse mass difference, i.e. SMt << 1, there will 

be an approximate plateau at a value which is a weighted average of the two 

masses. To see this, we pick the A correlator and write it as 

CA(t) = Ae_M_t(cos2O + sin2Oe_SMt) 	, 	 ( 4.20) 

where tan 0 is the ratio of the amplitudes to create the two mixed states, and the 

ellipsis represents excited states. The effective mass is 

- dlnCA(t) 
= M_ + sin2  08M(1 + O(SMt)) m(A)j1(t) 

= 	dt 

	

cos 0M_ + sin 2 0M  . ....  , 	 (4.21) 

Thus the effective mass is almost constant, and given our errors, we cannot 

distinguish it from a plateau. We discuss below the interpretation of the resulting 

"mass". 

The chiral form for the baryon masses is [49], 

MN = aN + 6[bNm/  + b'mq ln(m q )] + cNm q  + dNm 2  + eNm q  +...., (4.22) 

where 6 is the same constant as in equation (4.4), while aN - eN are additional 

constants. The expansion has the same form in full QCD, except that the 6 term, 

which again comes from if loops, is absent. Like the pion and rho, we ignore the 

6 term in all fits. If we keep only constants and linear terms in quark masses, 

then it is straightforward to show, using quenched chiral perturbation theory [49], 

that 

m() = M(S{UU}) = M0  + 4Fm + 2(F - 

	

2D 	 D 
m(A) = M(S[UU]) = M0  + 4(F - )m + 2(F + 	(4.23) 

Here M0  is the spin-1/2 baryon mass in the chiral limit, and F and D are the usual 
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reduced matrix elements of scalar densities. Note that there is no dependence on 

md, since the d quark does not enter the correlators. These formulae apply to all 

the states that are considered, for example, the proton mass is m(D{UU}), and 

is obtained by replacing m 5  with md in the formula for m(>1). 

At this order in the chiral expansion, it is simple to extend the results to baryons 

composed of three non-degenerate quarks. The mass matrix in the (>0,  A) = 

(S{UD}, S[UDJ) basis is 

2D 

	

(a 	- M0  +4FW1+2(F - D)m 	 y=(Mu - md) 

	

'y 	 (m12—md) 

(4.24) 

Diagonalising this matrix gives the eigenvalues M, with mixing angle 0. If we 

assume that the same mixing angle applies for the interpolating fields, then 0 

is the angle appearing in the previous expressions for the A correlator equation 

(4.20) The "short-time effective mass", equation (4.21), is then 

M(A) eff cos OM_ + sin  0M = ?. 	 (4.25) 

A similar argument shows that 

m() eff sin 2  OM_ + cos2  0M = a. 	 (4.26) 

Thus we find the surprising result that the short-time effective masses are insen-

sitive to the isospin breaking term y. Furthermore, the expressions for a and 3 

are exactly the same as the formulae applicable when isospin is unbroken, except 

that m a  is replaced by the average mass, 77T. Thus we assume that for baryons 

composed of completely non-degenerate quarks, the effective masses satisfy 

m(A{BC}) = m(A{DD}) and m(A[BC]) = m(A[DD]), 	(4.27) 

where MD = (MB + mc)/2. We make clear in the following where we are using 

this assumption and where not. 
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Following the discussion below equation (4.19), the degenerate nucleon masses are 

taken as the average of the fitted A and E mass at the appropriate quark mass. 

The degenerate nucleon masses were fitted to the following ansätze, following 

equation (4.22) 

Fit i: rnN=Mo+Clmq , 

Fit 2: mN M 0  + C1 m q  + C1 m/2, 

Fit 3: mN=Mo+Clmq +Cn1m. 

The 's-like' A{BC} are fitted to the following ansätze, assuming the relation in 

equation (4.27) 

Fit 4: rnE=Mo+CI4 mA+C?mD 

fitted to all 'E-like' masses of type A{ BB}, 

Fit 5: rnE=Mo+ CIA  mA+CPmD 

fitted to all 'E-like' masses of type A{ BC} 
3/2 

Fit 6: mE M0  + C mA + C m + C m + C m 2  

fitted to all 's-like' masses of type A{ BC}, 

Fit 7: mE 

fitted to all 'E-like' masses of type A{ BC}. 

The 'A-like' A[BC] masses were fitted to the same form as fits 4-7, but here we 

expect the coefficients to be different. The higher order fits which are used in the 

extrapolations of the '-like' masses do not have any firm theoretical foundation, 

but enable an investigation of the presence of non-linearity in the chiral expansion. 

A detailed investigation of the octet mass splitting has been performed in [51], in 

which the fits to the mass splittings have a greater sensitivity to the higher order 

terms in the chiral expansion than in the case of the chiral extrapolations of the 

nucleon masses. Therefore, the mass splitting should be investigated in a further 

studies. 

The results of the fits at ,B = 6.0 with C=TAD, are shown in tables 4.5 to 

4.7. In the case of the linear chiral extrapolation to the 'E-like' masses, there is 

consistency between the nine point fit to masses of type A{BB} and the eighteen- 
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Fit #points M0  C1 C1 X 2 /d.o.f 

1 3 0.534 4 	8 	+ 15 
• 0.2/1 10 -14  

2 3 0.521 	+27 ±254 
- '6 	+49  

-159 -79 

3 3 0.523 	+24  
0 .0 0. 07 	+146 2 	+ 96 

- g . 	-158 

Table 4.5: Chiral extrapolations for the degenerate nucleon masses calculated at 
= 6.0, C=TAD and on the 16 x 48 lattice. 

Fit #points M0  CA __ CA I 
 

n 
CID C'  x 2 /d.o.f 

4 9 0.533 	+11  1.73 	t _________ 2 92 	± 
-10 3.6/6 

5 18 0.536 + 1.71 2.89  8.8/15 

6 18 0.542 	+14 
-14 1 . 81 	+42 

-40 -0.3 2.45 	t i 	
+14  

 -15  8.0/13 

7 18 0,541 	+13  
-13 i 	

+23  
-23 -0 7 	+24  

-26 2 65 	+27 
. 	-28 

+26  
-26 8.0/13 

Table 4.6: Chiral extrapolations for the 's-like' masses calculated at 3 = 6.0, 
C=TAD and on the 16 3  x 48 lattice. 

point fit to A{ BC} under the assumption that MD = (MB + mc)/2. This is an 

indication that this assumption is reasonable, and this is also seen in the fits 

to the 'A-like' masses. We can see that in the chiral limit there is consistency 

between the extrapolations of the degenerate nucleon, 'A-like' and 'E-like' masses, 

as expected. 

The non-linear chiral extrapolations yield higher X 2 /d.o.f.'s than the linear fit, 

and the coefficients of the higher order terms are within la of zero. Furthermore, 

the chirally extrapolated masses agree with those from the linear fit. Therefore we 

use the linear chiral extrapolations. In figure 4.8 the linear chiral extrapolation of 

the degenerate nucleon masses is shown, and an indication of linearity of the ex-

trapolation of all eighteen 's-like' A{BC} masses is shown through extrapolating 

in MD  keeping MA  fixed. 

Finite Volume Effects in the Spin-! Octet Baryons 

The masses of the degenerate nucleon for both volumes at 3 = 5.7 are plotted 

in figure 4.9, together with a plot of the 's-like' masses computed at degenerate 

quark mass at both volumes from 0 = 6.0 with C=NP. At 0 = 5.7 the masses 
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Fit #points M0  CA nA CD 
1 

nD 

4 9 0.534 	+12  
"-"-' 139 	+ i 	+12  

).1) 1.0/6 -12 - 7 -11 

5 18 0.537 1.36 	+ 6 
" 

ii 	+10 7.0/15 6 -10 

6 18 0.544 	±17  1. 05 	+61  
' A 	+18 2. 96 	+64 +18  6.7/13 "-' -18 -56 .0 	-19 . 	-66 '-'S  -19 __________ 

7 18 0.543 	+16 1 . 19 	+36 1  9 	+35 
1. 04 	+35  0. 7 	+33  6.7/13 -16 _33 -36 _35  

Table 4.7: Chiral extrapolations for the 'A-like' masses calculated at 3 = 6.0, 
C=TAD and on the 16 3  x 48 lattice. 
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Figure 4.8: Chiral extrapolations for spin-f octet baryons at /3 = 6.0 and 
C=TAD. The plot on the left shows part of the chiral extrapolation for the 's-like' 
A{ BC} masses, keeping MA  fixed, and extrapolating in MD = I  (MB + mc). The 
plot on the right shows the chiral extrapolation for the degenerate nucleon masses. 

from both volumes agree within statistical errors. At 0 = 6.0, there is agreement 

between the masses computed at heavier quark mass. At the lightest quark mass 

computed at /3 = 6.0 there is a 2a discrepancy between the masses, with the 

'>I-like' being lighter in the larger volume by 5%; although the error bars on 

the fitted masses from 32 x 64 lattice are a factor of two larger than those on 

the smaller volume. The effective mass plots for this case are shown in figure 

4.10, and indicate that we are observing a finite volume effect in this case in the 

direction observed by [101], but smaller error bars are required to be certain. 
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1.1 . . 
0.05 	 0.10 	 0.15 	0.01 	0.02 	0.03 	0.04 	0.05 	0.06 

amq 	 amq  

Figure 4.9: Investigation of finite volume effects in the spin-! baryons. The plot 
on the left shows the nucleon masses calculated at 3 = 5.7 with C=TAD, the (0) 

and the (x) corresponding to the 16 3  x 32 and 12 x 24 lattices respectively. The 
plot on the right shows the 's-like' masses calculated at 0 = 6.0 with C=NP, the 
(0) and the (x) corresponding to the 32 3  x 64 and 16 3  x 48 lattices respectively. 
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Figure 4.10: Each plot contains a comparison between the effective masses cal-
culated at each of the two lattice volumes at 0 = 5.7 and 0 = 6.0 for the lightest 
nucleon. The effective mass are represented by a (x) and a (0) for the small 
and large volume, respectively. The masses are obtained from the (SSS,LLL) 
correlator at 3 = 5.7, and from the (SSS,LLL) and (FFL,LLL) correlators on the 
large and small volumes, respectively at /3 = 6.0. 
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4.2.4 Spin- 2  Baryons Chiral Extrapolations 

The chiral expansion for the spin- 2  masses for the case of 3 non-degenerate quarks 

is [50, 51], 

m{ABc} = M + c ' (mA + m + mc) 

d'6'(M B  + 	+ MA) + d6'(MA  + MB + M) 

e(AB + 	 c + 	cA) + fm e(m + m 	+M2),  (4.28) 

where terms like MAB are for the mass of the non-degenerate pion made with 

quarks A and B, and terms due to quenched chiral logarithms have been ignored. 

The L\ masses are fitted to the following ansätze: 

Fit 1 	MA = M + Ci  m q  fitted to all masses of type {AAA}, 

Fit 2 : MA = M + C1  m q  fitted to all masses of type {ABC}, 

Fit 3: MA = M + C1  m q  + C2 m/2 

fitted to all masses of type {ABC}, 

Fit 4: MA = M + CI m q  + C3  m 

fitted to all masses of type {ABC}, 
32 Fit 5: MA = M + CI m q  + C2 m/2 + C3  m 

fitted to all masses of type {ABC}, 

in all fits we take rnq  = (mA + mB + mc)/3. The higher order fits, 3-5, are 

to enable a test for non-linearity in the chiral expansion and originate through 

making some assumptions in the chiral expansion (4.28) that do not have any firm 

theoretical foundations. Once again a detailed investigation of equation (4.28) 

would require a study of the mass splittings between the spin- i  baryons. 

The results of the fits at /3 = 6.0 with C=TAD are shown in table 4.8. The 

picture here is the same as for the spin- i  octet baryon extrapolations in that 

there is consistency between the fits to data with degenerate and non-degenerate 

quark masses, and the data do not support the use of the higher order fits. The 

linear chiral extrapolations to the ten non-degenerate spin- 2  baryons masses for 

C=TAD at /3 = 6.0 and 3 = 6.2 is shown in figure 4.11. 
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Fit #points M0  Ci  C2  2 /d.o.f. 

1 3 0.676 	15  
• 	—18 0.9/1 

2 10 0-6;68 	
+17 

• 	—16 
+21  
—20 7.8/8 

3 10 0.680 	+30 
 • 	 35 3.03 	+188  

. 	—130 2. 07 	+382 
• 	544  7.6/7 

4 10 0.679 	+26 
—29 ' 	i 	

±103 
t?.t' 	 - 72 4. 13 	4679 

• 	—972 7.5/7 

5 10 0.645 	t 8 28 	+803  
—898 -32. 0 	+569 

—490 61 	+ 86 
—103 7.2/6 

Table 4.8: Chiral extrapolations for the Li masses calculated at /3 = 6.0, C=TAD 
on the 16 x 48 lattice. 

Finite Volume Effects in the Spin- 2  baryons 

In figure 4.12 the spin- 2  baryon masses are plotted for both volumes at /3 = 5.7 

with C=TAD and /3 = 6.0 with C=NP. There is excellent agreement between 

the masses from both volumes at 0 = 6.0 and the masses agree within statistical 

errors at 0 = 5.7, as can be observed in the effective mass plots for this state 

calculated at the lightest quark masses and shown in figure 4.13. Therefore we can 

conclude that there are no observable finite volume effects in the spin- 2  baryon 

masses on our lattices. 
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Figure 4.11: Linear chiral extrapolation of the ; plot (a) shows the data at 
13 = 6.0 and C=TAD and plot (b) shows the data at 0 = 6.2 and C=TAD. 
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Figure 4.13: Each plot contains a comparison between the effective masses cal-
culated at each of the two lattice volumes at 0 = 5.7 and 0 = 6.0 for the lightest 
A. The effective mass are represented by a (x) and a (U) for the small and large 
volume, respectively. The masses are obtained from the (SSS,LLL) correlator at 
/3 = 5.7, and from the (SSS,LLL) and (FFL,LLL) correlators on the large and 
small volumes, respectively at 0 = 6.0. 
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Figure 4.12: Investigation of finite volume effects in the A. The plot on the left 
shows the A masses calculated at /3 = 5.7 with C=TAD, the (0), and the (x) 
corresponding to the 16 x 32 and 12 x 24 lattices respectively. The plot on the 
right shows the degenerate A masses calculated at 3 = 6.0 with C=NP, the (0) 

and the (x) correspond to the 32 x 64 and 16 x 48 lattices respectively. 
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4.3 A Brief Investigation of Scaling 

Section 1.7 describes the renormalisation group prediction for the approach to 

the continuum i.e. g(a) -4 0 as a —+ 0. In this regime, ratios of dimensionless 

quantities should be independent of the coupling. QCD should have a well-defined 

continuum limit for any specific choice of quark masses. 

Simulations are usually carried out for a range of quark masses and the data 

extrapolated/interpolated to physical quark mass values. For simplicity, if we 

consider a single quark flavour, then we can fix the quark mass by fixing mps/mv, 

say. The spectra obtained at different lattice spacings may be compared in an 

Edinburgh Plot [103] in which one mass ratio, MN/MV  is plotted versus the 

ratio used to fix the quark mass, mps/mv. Scaling corresponds to these data 

falling on a universal curve independent of a. The data are compared with a 

phenomenological quark model [104] 

3 	 - 	-. 

Mbary on = Mb + E m + b (4.29) 
i=1 	 mm3 

Mmeson = Mm  + 	m + em3 	, 	 ( 4.30) 
mrnq  

where the parameters, M, in and 6 are taken from experiment. This is expected 

to be a good model, for large quark mass, but does not have the correct chiral 

behaviour. 

The Edinburgh Plot is shown in figure 4.14, for data from the small volumes at all 

/ values with C=TAD and C=NP. To illustrate the effects of using an improved 

fermion action we also show data with C=0, taken from [86]. We first observe 

that there is extremely good agreement between the data at all 0 values using the 

0(a)-improved fermion actions. This is not observed in the case of when C=0, 

where there are clear scaling violations, the points lie above the phenomenological 

curve, which is well reproduced by the data from the 0(a)-improved fermion 

actions. 
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Figure 4.147- The Edinburgh plot for C=NP; G=TAD and G~=OF at all 0 values. 

The C=O data are taken from [861, the 3 values in this case correspond to 5.7, 
5.93-and 6.17. There is-clearly improved-scaling behaviour- for-the 0(&)4m proved 
fermion actions where -  there- is- ext remelr good agreement betweerr the-  results at 

all-/3-values, which is not observedTñ the case ofC=Q. 

A novel - way of looking at the possible scaling violations in the meson sector is 

to-take a- chiral- extrapolation- for a_-pion-, for example, and-set-the scale using the 

string tension given in table 3.1. A similar plot is made for the rho data and 

these- are both-shown-in figure 4.15 -, for-data from -the-  small volumes-at-  alt ft values 

with- C=TAD and-. C=NP. We. observe excellent agreement- between the data for 

the pion with C=NP; the data at CTAD are not in as good agreement, and 

there- is -indication- of scaling violations at- /3=-5-7. For- the-rho--we again observe 

that the scaling.violations are reduced. using C=NP over that with C=TAD. 
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Figure 4.15: Comparison of the chiral behaviour of from the amps/a/k and 
amv/a/k, between the /3 values with C=TAD and C=NP and all the, quark 
masses computed. 
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4.4 Determination of the Light Quark Masses 

We have obtained the chiral behaviour of the computed hadron masses, as a 

function of the bare, unrenormalised quark mass in section 4.2. The next step 

is to calculate the masses of physical states like the 7r meson, which requires the 

interpolation /extrapolation to quark masses of the constituent quarks of these 

states, in this case an extrapolation to the mass average of the up and down 

quarks. Therefore the masses of the light quarks on the lattice are required as 

input. 

4.4.1 The Normal Quark Mass 

In early lattice calculations, the masses of hadrons containing light quarks were 

obtained by extrapolating the up and down-quark mass to the chiral limit, m. = 

0, i.e. setting ic = Kd = lc. Of course, the physical mass of the ir meson is 

137 MeV, which is non-zero. Hence, a somewhat more reasonable procedure is 

to extrapolate to the so called "normal" quark mass, which corresponds to the 

isospin symmetric mass Th = (m + md)/2, since electromagnetic effects are not 

included in the simulations. We fix i to be at the experimental' ratio of M,,. 

with M, through solving the chosen chiral expansions of the pion and rho given 

in equations (4.7) and (4.18), respectively, at 

amps - 	
= 0.1786. 	 (4.31) 

MP amy 

The normal quark mass 'flu can be related to ic through the bare unrenormalised 

quark mass 

aTiT 	 (4.32) 
2 lc 

and is tabulated in appendix B. The systematic errors in determining rn  could 

be investigated using a different experimental ratio of hadron masses composed 

of up and down quarks. If we use, for example, Mr/MN, the statistical errors in 

'The convention which is adopted here is that masses denoted by, "M", refer to experimental 
quantities whereas, "m", refers to lattice values. All experimental values are taken from [105], 
unless otherwise stated. 
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the determination of i' are large and so this was not taken any further. However, 

the advantage of using the ratio M,/MN over Mir/Mp is that, in full QCD, the p 

meson decays, whereas the ir meson and nucleon are stable. 

4.4.2 The Strange Quark Mass 

A similar procedure to the above is adopted in the determination of the strange 

quark mass, m 5 . In this particular case we use experimental values of mesons 

composed not only of strange quarks, but also those composed of a strange quark 

and either an up or down quark. Though in the latter we need to use m, we can 

then investigate the systematic errors in the determination of m 5 . 

In the determination of m 8  we have again set the lattice scale from M = 

769 MeV. The experimental masses we use are the strange pseudoscalar me-

son mass MK = 494 MeV, where K is composed of a strange quark and a normal 

quark, the corresponding vector meson mass Mk = 894 MeV, and the s vector 

meson' Mci, = 1019 MeV. In the case of the pseudoscalar, the ratio m,s/m, 

where am is the vector chirally extrapolated to the normal quark mass, is inter-

polated to the experimental ratio MK2 1M 2 ,using the chiral form given in equation 

(4.7) thus obtaining m q  = (m + m)/2. Similar interpolations are performed in 

the case of the vector channels. The results for m 3  are given for 3 = 6.0 with 

C=TAD in table 4.9, and in appendix B for all data sets. The strange quark 

mass quoted in the final column is calculated from 

1(1 	\ 
m., (a)= 	- - 1 -1, 	 (4.33) 

a i 

At fixed lattice spacing a, there is a 10% difference between the values of m 3  and 

they are not within statistical errors, presumably because of a combination of 

quenching and discretisation errors. 

4 1n full QCD, there is mixing between the omega and phi vector mesons which means that 
the phi might not be a pure s state, see [105] page 99. This does not occur in the valence 
approximation. However this is another source of systematic error, which has been neglected 
here. 
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Qty m. 
(MeV) 

MK/M 0.13754 90 	t 

MK*IMP 0.13739 98 

M/M 1  0.13732 102 

Table 4.9: n, determined using different mass ratios at 0 = 6.0 with C=TAD. 

The strange quark mass m 3  is determined in the lattice regularisation scheme. 

4.5 Scaling Behaviour 

4.5.1 How to set the mass scale 

In quenched Lattice QCD, the inverse bare coupling 3 is the only free param-

eter. Thus the value of 3 fixes the mass scale (or lattice spacing a), which is 

determined by measuring a physical mass m in lattice units, and comparing with 

the corresponding experimental valueMph,, yielding a(/3) = Mh,5/m(/3). On 

repeating this procedure for various 0 we can determine the dependence of the 

lattice spacing on the bare coupling a(g 2 ), or, by inverting the relation, extract a 

running coupling g2 (a). As soon as behaviour according to perturbation theory 

is observed (asymptotic scaling), the running lattice coupling can be translated 

into any other renormalisation scheme perturbatively. 

4.5.2 The String Tension 

We shall also fix the physical mass scale from the string tension o- = K/a2  which 

is defined to be the slope of the potential between heavy quark sources V(R) at 

large q-separations 

- 	(r) 
(4.34) 

	

K = - urn F(r) 	F(r) 

	

W(r)
, 	- 	ar 

The advantages of using the string tension are that it is a purely gluonic quantity 

and therefore the discretisation errors are of 0(a2 ), finite size effects are small, 

and the string tension is the most accurately measured dimensionful quantity on 
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the lattice [69], The draw-back in using the string tension is that the experimental 

value is ambiguous: 

• Regge trajectories suggest a value 	400 - 450 MeV [106]. 

• Potential related information can be gained from the Charmonium and Bot-

tomium spectra by integration of the Schrödinger equation [107, 108, 109]. 

The spectra are determined predominately by the potential between dis-

tances r about 0.2 fm and 1 fm, since the corresponding wave functions al-

most vanish for smaller or larger separations. This is fortunate as for smaller 

r relativistic corrections to the Schrödinger equation have to be taken into 

account. For larger separations, differences between the quenched potential 

and full QCD potential are expected due to creation of a q?j pair from the 

vacuum, a phenomena known as "string breaking". The phenomenological 

potential is well described by the Cornell parameterisation 

V(r) = Vo  - + Kr. 	 (4.35) 
r 

Before the discovery of the TI', typical fit parameters were 	= 455 MeV, 

and e = 0.25 [107]. After inclusion of the T mass splitting, these parameters 

moved rapidly to values like = 412 MeV, e = 0.51 [108], or = 427 

MeV, e = 0.52 [109]. 

We take \/ = 427 MeV as, the physical value of the string tension and assume 

the error in this value is of the order of 5%. 

4.6 Light Hadron Masses and Continuum Extrapolations 

4.6.1 The p mass in the continuum 

The lattice value of the rho mass is calculated by a chiral extrapolation of the 

vector masses, my,  to the normal quark mass, m q  = Th, and is tabulated in 

appendix B. The lattice spacing dependence of the p mass in units of the /17 

is shown in figure 4.16, where the results from other simulations with different 
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Figure 4.16: Continuum extrapolation of the amp  with the lattice scale set by the 

string tension aVh, for the CTAD and C=NP data sets. Also shown, to demon-
strate the scaling behaviour of different fermion actions, are data for the Wil-
son fermion action C=O [86] and the tree-level-improved Sheikholeslami-Wohlert 
fermion action C=l [78]. The physical value is shown by a burst, as will be in 
the case in all other plots unless otherwise stated. 

values of the clover coefficient in the fermion action are plotted for comparison. 

We observe a reduced lattice-spacing dependence for the 0(a)-improved fermion 

actions, compared to the Wilson case, C=O. 

The tadpole-improved-prescription is expected to reduce the leading discretisation 

error in physical quantities, but not to eliminate it completely, so that some 

0(a)-dependence should remain in this data. Therefore we perform a continuum 

extrapolation with 

arn/a/k = (]0 + C/k a. 	 (4.36) 

2.0 

1.5 

1.0 

In contrast, the leading lattice spacing dependence for the non- pert urbative im- 
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provement prescription is 0(a2 ), so we fit to 

am/a/A = Co  + Ca2 K. 	 (4.37) 

The continuum extrapolations are performed using uncorrelated fits. The er-

rors from the fit to the C=NP data are large as no minimisation procedure has 

been performed, since there are no remaining degrees of freedom. The ratios 

m//k(a = 0) obtained from the continuum extrapolations to the NP and the 

tadpole-improved data are in very good agreement, and consistent with a linear 

extrapolation to the Wilson data. The data using the Wilson fermion action 

shows a much stronger lattice-spacing dependence. At a fixed lattice-spacing 

6.0 there is a 20% increase in this quantity towards the physical value in 

using C=NP over C=0. The plot of am/a\/I? is a very good demonstration of 

the efficiency of 0(a)-improvement. 

The errors in the values of aV7?, listed in table 3.2, were not included in the 

continuum extrapolations. Therefore the errors in the extrapolated values are 

underestimated, but on changing the values of a/i? consistently to a/17 ± a, 

the central values of these fits are within the statistical errors of the values quoted. 

Investigation of the Continuum Extrapolations of am/a'/i 

To investigate the systematic errors in the continuum extrapolations, more 0 

values are required so that higher-order terms in a can be included in the fit. 

In the case of the tadpole-improved data the need for higher order terms can be 

justified by the fact that, while 0(a) discretisation errors have been significantly 

reduced the 0(a2 ) discretisation errors are important. We have already observed 

when fitting both actions independently the continuum values are consistent. 

Therefore a simultaneous fit to both actions constraining the continuum value to 

be the same is worth exploring. This procedure allows a X 2 /d.o.f. to be quoted 

in the following fits: a fit including the C=TAD data set to a full quadratic fit in 

a and a fit including the C=NP data set to the form given in equation (4.37). 

A number of different independent and simultaneous fits were performed to the 
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Independent fit to the C=TAD data set 
Fit 1: am,/a/k = Co  + CT as/k 
Fit 2: am TAD /a'/i? = Co  + C2T a 2  K 
Fit 3: amD/a/I? = Co  + CT a/t? + C2T  a 2  K 

Independent fit to the C=NP data set 

Fit 4: am/a'/i? = Co  
Fit 5: am/a\/k = Co  + C a 2  K 
Simultaneous fit to both the C=TAD and C=NP data sets 

Fit 6 : am'/a/i? = Co  
am/av'k = CO + C? a/i 

Fit 7: am'/'/a\/k = Co  
am ' /av'k = Co  + C a 2  K 

Fit 8: am "/a'/k = Co  + C2N  aK 
amD/a/J? = Co  + C as/T 

Fit 9: am/a/k = Co  + C' a 2  K 
amD/a\/k = Co  + C2T  a 2  K 

Fit 10: amf'/aVt? = Co  + C2N  a 2  K 
TADam/a/k = Co  + C a/i + C a2 K 

Fit 11: am/a'/k = Co  + C a 2  K 
am/a/i? = Co  + C a/i?+ C a 2  K 

Table 4.10: Ansätze used in the continuum extrapolations of amp/a7?. For fits 
12-15 we repeat fits 6-9 but without the point at /3 = 5.7 for the C=TAD data 
set, the fits are repeated in the same order. 

C=TAD and C=NP data sets for the continuum extrapolations of amp/aft?, 

the ansätze which were used are given in table 4.10. The results of the fits are 

given in table 4.11 and the extrapolated values are shown in figure 4.17. In the 

simultaneous fits there are correlations between the C=TAD and C=NP data as 

they were generated from the same gauge configurations. However, by looking 

at the data-covariance matrix we find these correlations to be very small, and 

therefore do not include them in the fits. 

We first observe that with the exception of fit 3 all the extrapolated values are 

roughly consistent. The errors on the fitted parameters are large and therefore 
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Fit CO CT 
1 C2  2  /d.o.f. 

1 1.884 62  -0.50 t 0.79/1 -50 

2 1.812 -082 ±24 1.24/1 -30 -29 

3 2.155 +368  -2.52 +192  3.33 +439 
-257 -268 -314  

4 1.829 33  0.02/1 -25  

5 1.844 +152 -032 +217 
97 _ _________ 333 _______ 

6 1.841 28  -0.39 t 1.66/3 -20 

7 1.821 25 _ 0. 88 +16 1.41/3 -18 -21  

8 1.877 +58  -0.49 +12  -1.03 +105 0.88/2 39 . -17 -140  

9 1.814 +39 -083 +22  C).29  + 86 1.30/2 - -27 . -28 -101 

10 1.847 +30 
 -0.26 +19 

 -0-36 -0.36 0.99/2 -21 -18 . -52 -52  

11 1.886 +151  -0.56 + 72 0.13 +187  -1.20 +199 0.87/1 - 89 -111 . -123 -316  

12 1.834 ±31 -030 ±18 1.33/2 -24 . -18 

13 1.835 +30  -1.51 0.73/2 -24 -78 

14 1.905 +134  -0.63 +38  -1.61 +171 0.78/1 75 . -65 -278  

15 1.887 t -2.60 +134  -1.23 +137 0.20/1 209 -211  

Table 4.11: Results for continuum extrapolations of am/a/J?, from fitting the 
C=TAD and C=NP data sets to a number of different ansãtze given in the table 
4.10. The physical value of M//i? = 1.800. 

we cannot rule out one fit as been better than any other; smaller errors bars 

on the points in the fit and more points are required in the fit to do this. The 

results of the independent fits to the C=TAD data indicate the following: the 

linear extrapolation (fit 1) and the extrapolation to Co  + C'a' (fit 2) give good 

2 /d.o.f.'s, slightly better in the linear case; there is a 2a discrepancy in the 

extrapolated values between the fits. The full quadratic fit to the C=TAD data 

gives coefficients with large error bars. The results of the independent fits to the 

C=NP data set show that the fit to the constant term only (fit 4) gives a very low 

X2 /d.o.f. which shows this model is incorrect, and the extrapolated value from 

fit 5, given in equation (4.37), is consistent with the values obtained from the 
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Figure 4.17: Results from continuum extrapolations of am/as/J? to a -+ 0, from 
fitting the C=TAD and C=NP data sets, to a number of different ansätze given 
in the table 4.10. 

other fits. The extrapolated values obtained from the simultaneous fits to both 

C=TAD and C=NP data sets are within 2o of each other. 

The point at 3 = 5.7 with C=TAD has the smallest errors of all the points in the 

simultaneous fits, and has the largest scaling violations, so simultaneous fits were 

investigated without this point in fits 12 to 15. The continuum values from these 

fits are within errors of the other fits, so we can conclude at the current level of 

statistics including the point at 3 = 5.7 is not introducing any systematic error 

in the fit though including a point not the scaling region. Fit 11 has the best 

X 2 /d.o.f. of the simultaneous fits and is within errors of most of the other fits, this 

fit is shown in figure 4.18 This fit is consistent to order 0(a2 ) and following the 

discussion above is the fit which one would derive from the leading discretisation 
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Figure 4.18: Continuum extrapolation of arn/a'/A to a -* 0, fitting the C=TAD 
and C=NP data sets simultaneously, corresponding to fit 11, which is consistent 
to 0(a2 ), given in table 4.10. 

errors present in each action. However, the quality of the data is insufficient 

to draw any firm conclusions on the continuum extrapolations one should use. 

Therefore in the continuum extrapolations for the other physical states calculated 

we shall proceed as follows. 

4.6.2 Conventions used in future continuum extrapolations 

Before going on to look at other physical states, it will he worth stating in light 

of the results of the continuum extrapolations which have been investigated thus 

far, how future fits are going to be presented. For a lattice determination of the 

physical state aR, with the lattice scale is set by the quantity aS, the continuum 

extrapolated value of the ratio R/S will obtained, in the first instance, from an 
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independent fit for each action to the lowest order of their discretisation errors 

i.e. 
aRTAD 	 aRNP 

aSTAD 
= Co  + CT a, 	aSNP 

= Co  + Ca2 , 	 (4.38) 

to check that both actions are consistent in the continuum limit. If any plot of 

continuum extrapolations is shown it will correspond to the independent fits in 

equation (4.38). Whenever a simultaneous fit to both actions is mentioned it will 

refer to fit 11 above, which corresponds to the fit: 

aRTAD 	 aRNP 

aSTAD 
= Co + CTa  + Ca2  and 

aSNP 
= C0  + C'a2 . 	 ( 4. 39) 

4.6.3 Strange Meson Masses 

The K pseudoscalar meson is calculated by interpolating the pion chiral ex-

pansion to m 1  = WI and m 2  = m 8 , which we shall denote by the expression 

m g (WI, m 8 ). The K*  vector meson is calculated at mv(WI, m 3 ) and the q  is cal-

culated at mv(m 8 , m 3 ). In section 4.4, it was observed that, at fixed a, there is a 

large systematic error in the calculated value of am,, which may be attributable 

to quenching effects and discretisation errors. To investigate this further, we 

chose to consider the lattice value of the K*  mass. The computed values of am, 

by matching lattice and experimental values of MK/M p , M,/M and M/M, are 

given in table 4.9. The value of am,, computed from MK*/M is in between the 

values computed from MK/M and MK*/M p . Therefore the discrepancy between 

the lattice value of the K*  mass determined from the two remaining definitions 

of the am, will be the largest. 

The continuum extrapolations of Is mass from the two definitions of the strange 

quark mass using a's/k to set the scale is shown in figure 4.19, and the same quan-

tity using am to set the scale is shown in figure 4.20, but without the continuum 

extrapolations, which are however listed in tables 4.12 and 4.13 respectively. We 

observe the improved scaling behaviour for amK*/av"k of the action with C=NP 

over that with C=TAD which was seen for amp/a'/k. This improved scaling 

behaviour is not observed in the case when the rho mass is used set the scale. 
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Figure 4.19: Continuum extrapolation of amK* with the lattice scale set by the 

string tension a',/K, for C=TAD and C=NP. using two different definitions of 

the strange quark mass. 

How can this be explained? The approach to the continuum for the K*  mass, p 

mass and the string tension 	can be written as 

TAD C 	+ C,,,a + C,a 2  + ........ 

NP = C + 	C,a2  + 	+ ....... 

TAD -  f-0çI 	C2-
2 

- 	'-'T ,K 	 ....... 

CJ,K. + 
2

CT,K.a 2  + CI,K.a3  + ....... 

= CO
±  

 2 
Cri2  +-Ca3  -I-....... , 	 (4.40) 

where the coefficients- C are dependent on whatever quantity is- used to set the 

scale; lets suppose the scale was set from a quantity with no discretisation errors. 
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Figure 4.20: K" mass in units of m, calculated using from two different defini-
tions of the strange quark mass as input. 

Using the expansions in equation (4.40) we examine how the tadpole-improved 

mass approaches the continuum when the scale is set from the p mass 

TAD 

nAD = 
C ,  ,  

+  
( 	 ,p*)mK* 

-

C  
)a+ (_ C2  C',C}K. 	2 

(C , )  2 	
)a 	+ .......... 

CC K   

(4.41) 

The K*  and p were calculated from the same channel. Therefore one would expect 

that these states will have a similar approach to the continuum limit and CK* 

and CT1 ,P  to be of the same size, as can be seen comparing tables 4.11 and 4.12. 

Thus the 0(a) term is small, and corresponding cancellations could be occurring 

for the higher order terms. For the C=NP case the K*  mass approaches the 

continuum when the scale is set from the p mass as 

NP 
MK* 	C,K. 

	( CN2 ,K * 	iJ,P '\ 2 

m = 	
+ 	- ____ 
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C3  I 	N,K 	CJ,PCJ J,K. \ 3 

(C,)4 
 ) + 	 (4.42) + CO(co )2 

We can use an analogous argument to that above to explain why the 0(a2 ) 

term and possibly higher order terms are small. The tadpole-improved K* mass 

approaches the continuum when the scale is set from the as 

TAD 
MK- 	C,K. C,K. 	

( C~KCX 

C,K* 	C/jC,
+ 	a + 	

* - (C)3)a +..., (4.43) 

and the 0(a) term is dependent on the leading cut off effects of this action. The 

same quantity for the NP case approaches the continuum as 

NP C1,1<. 

+ 
( C~ ,K* 	C/y 

- C} 

+( 	 C 	
0 CN,K* 

) 
\ 3 

\4 	a + ......... , 	(4.44) 
CO  (CNO,K* - (C1 

in this case the 0(a2 ) term is dependent on the leading cut off effects of the NP 

action and the action from which the string tension was computed, we would 

expect the two to have different approaches to the continuum limit and therefore 

no cancellations to take place in the 0(a2 ) term. 

The next observation that we make is that the two definitions of the strange quark 

mass agree in the continuum limit for both actions, and the quoted values from 

the two actions for mK*/V'7? and mK*/mP  agree within one standard deviation. 

To investigate this further, the strange quark mass was fixed from the ratios 

(MK - m)/m and (m e1, - m)/m. The J* mass in units of amp , obtained using 

these definitions of am, are plotted in figure 4.21 and the values in continuum 

limit are listed in table 4.14. 

The authors of [851 proposed a different procedure to determine the iC mass 

which does not use the bare unrenormalised quark mass m q , and so is not de- 

'The string tension is computed from a lattice version of the gluonic action as discussed in 
section 4.5.2. 
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Qty. m fixed 
from 

COC CT 
1 Ci" 2 /d.o.f. 

M 3//k MK/Mp  2.169 -0.68 	t 1.2/1 

M/Mp  2.177 	-60 -0.59 	-20  0.7/1 

mç/fk MK/Mp 2.118 	428 
405 -0.75 	-1134 

-82 

Mçt,/M P 2.133 	413 -0. 39  
. 	 488  

Table 4.12: Results for continuum extrapolations of amK./a\/J?, from fitting the 
C=TAD and C=NP data to the form in equation (4.38). The physical value of 

MK*/vR = 2.093. 

Qty. 
from 

m 8  fixed CoC0 CT CN 2 2 /d.o.f. 

TAD/ 	TAD 
MK- 1m MK/M 1.1526 -0.032 	t 0.03/1 

M/M 1.1567 	ji' 0.002  0.40/1 
M NPI.NP 

K* 	p MK/M p 11494 	+104 
339 -0.061 	+216 

M/M 1.1574 	210 
152 -0.0003 + 93 

-127  

Table 4.13: Results for continuum extrapolations of amK */arnP , from fitting the 
C=TAD and C=NP data to the form in equation (4.38). The physical value of 

MKs/M = 1.1631. 

pendent on the determination of 'ce;  we denote this method the "APE method". 

This method plots aMy against (amps) 2  and imposes that the ratio MK./MK. 

attains its physical value C 1 . This corresponds to finding the intercept of the 

curve 

aMy = C1/aMps)2. 	 (4.45) 

The intercept of the curve and computed data defines aMK and aMK*, but only 

one of these is an independent prediction. The values aMK. using both linear 

and non-linear fits to the data were found to be in agreement within statistical 

errors; we take the value from the linear fit due to the smaller statistical errors. 

In the continuum limit, the different definitions of the strange-quark mass yield 
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Figure 4.21: I(." mass units of m, calculated using from two different definitions 
of the strange quark mass as input and results for the APE method of determining 
the lattice K*  mass are shown. 

values for mKs/m agreeing to within two standard deviations. This is very 

good agreement, and suggests that at fixed a the differences between the different 

definitions of the strange quark mass are a discretisation effect which extrapolates 

away in the continuum limit. Furthermore, agreement between the APE method 

and the definitions using the bare unrenormalised quark mass, m q , is a verification 

of the chiral expansions used for the vector and pion. To illustrate this further, 

a pion chiral extrapolation which was linear in quark mass, (amps ) 2  = bmq , was 

used instead of the non-linear fit, (amps ) 2  = brnq  + cm. Using the linear fit, 

am and amK*, were recalculated and the K*  mass in units of m is plotted in 

figure 4.22. We observe that the K" mass determined from the two definitions of 

the strange-quark 'mass do not agree in the continuum limit, and if a continuum 

extrapolation were done by eye for the K*  mass calculated using m 3  fixed from 

MK/M p , its value would not agree with that of K*  mass calculated the APE 

method. 



Chapter 4. The Light Hadron Spectrum 	 160 

Qty amK/am P  extrapolated to a -* 0 
C=TAD C=NP 

MK/M P 1153 ±6 
-12 1.149 +10  

-34 

MO/MP  1.157 1.157 

(MK - M)/M 1.149 t 1.154 +10  
-33 

(M - M)/M 1.163 1.156 ±10 
-12 

APE method 1 . 157 ±13 
-18 1.163 +14  

-49 

Table 4.14: The results of the continuum extrapolations of amK./am at a = 0, 
using the various prescriptions to fix am,,, for both actions. The physical isospin 
averaged value of MK*/M = 1.163. 

4.6.4 The J parameter 

The J parameter is defined as [110] 

J=mv ö 
Mv
2' 	 ( 4.46) 

Dmp5 

and is determined at the experimental ratio 

MK* 18  

MK 
(4.47) 

The motivation for the introduction of the parameter J is that it allows a compar-

ison of lattice spectrum results with experimental data, without an extrapolation 

to the chiral limit. The experimental value of J, using the the K', p and K, 7r 

with differences to determine amv /amps , is J = 0.48(2). 

In figure 4.24, we show the values of J determined on the lattice using a variety 

of methods and the continuum values from a linear fit to the C=TAD data 

set are given in table 4.15. The first method uses a linear fit to amy against 

(amps) 2 , and J is the slope multiplied by amy at my = 1.8mp s . The continuum 

extrapolation of J shows little a dependence, and extrapolates to a value many 

standard deviations below the experimental value. This is surprising since the p 
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Figure 4.22: K' mass units of m. This plot highlights the dependence of the 
chiral expansion used has on outcome of predictions of hadron masses, in this 
case the pion was fitted using a linear fit to the quark mass, therefore results in 
changes of 'c,  and m 5  which are used to determine the K*  mass. 

and K*  mass extrapolated to the continuum are not that far from experiment. 

The chiral expansions used for the pion and the rho, as a function of the quark 

mass, imply that 

amy = b a2 m ps  + c a4mps . 	 (4.48) 

This non-linear fit to the lattice data is the second method, a plot of equation 

(4.48) at /3 = 6.0 with C=TAD is shown in figure 4.23 and suggests that there 

is some non-linearity in the data, which is supported by [51, 100, 111, 112, 113]. 

The values of J calculated using this non-linear fit have larger errors as a result 

of the relatively large errors on the vector masses, and differ from the values 

calculated using a linear fit; on extrapolating to the continuum yields a value 

in better agreement with experiment. The J parameter inspired the authors of 

[85] to develop the APE method, used in the last section. The reason why the 

J parameter is more sensitive to the fitting ansãtz used than the APE method, 



Chapter 4. The Light Hadron Spectrum 
	

162 

is through the dependence on the slope of the vector to the square of the pion 

mass. 

0.60 
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a2rn2p9  

Figure 4.23: Plot shows a quadratic fit to amy against a2 MPS) calculated at 
= 6.0 with C=TAD. 

The final method determines J using 

J 
= amK. (amK* - amp) 	

(4.49) 
(a2m. - a2m)' 

where MK*,  m ) MK  and m ir  are obtained from our lattice simulations. Here 

we use m 8  determined by ratio m,6/MP.  The errors in J from this method are 

relatively small and the value extrapolated to the continuum limit is within errors 

of the experimental value. This lends further support to the chiral expansions 

used in the case of the pion and vector. 
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Method 	 J 

Linear fit to amy .vs. (amps) 2 	0.387 +8
-10 

Quadratic fit to amy .vs. (amps) 2 	0.423 +122 
-132 

From amK*, am and amK, am, like expt. 0.462 +'9  
Table 4.15: Results of the linear continuum extrapolation to the C=TAD data 
set for the J parameter, which is determined using a number of different methods, 
as described in the text. 

4.6.5 The Hyperfine Splitting 

Heavy Quark Effective Theory (HQET) predicts that for heavy-light mesons, 

the vector-pseudoscalar mass splitting, LV.ps = m - ms, is constant. This is 

borne out by experiment; MD. - M 0.53GeV 2  and MB2 . - M 0.49GeV2 . A 

somewhat unexpected experimental result is that the trend is continued into the 

light quark regime, where the hyperfine splitting, /V_ps,  remains approximately 

constant at 0.55GeV 2 , for example M  - M = 0.57GeV 2  and M. - M K2 = 
p 	 7r 

0.55GeV2  

The vector-pseudoscalar mass splittings for both C=TAD and C=NP at all 3 

values computed, together with data at /3 = 6.0 with C=0 and C=1 from [51] 

and [85] respectively, are shown in figure 4.25. The mass-splittings are plotted 

with the scale set from amK, 6  which is obtained from amK = (MK/M) x m and 

a '7?. Once again we observe in the case where the scale is set from the string 

tension that increasing the value of the clover coefficient causes Ay—p to increase 

towards the experimental values, a further demonstration of the improved scaling 

behaviour of the 0(a)-improved fermion actions. Using the p mass to set the 

scale, we can observe little difference between the different actions. Note that 

the slope a(a2 Lty_ps)/a(amps) 2  is independent of the clover coefficient. The 

worry is the decrease in v-ps with increasing quark mass and the implications 

'The scale is set using arnjç instead of am as it easier to compare the results with the case 

when the scale set from a/R. 



Chapter 4. The Light Hadron Spectrum 
	 164 

this has for the charmonium system. There are two possible sources for this 

feature, either discretisation errors or quenching effects; as we observe no change 

in the slope with the different fermion actions, it is more likely to be an artifact 

of the quenched approximation. 
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Figure 4.24: Plots (a), (b) and (c) show the J parameter. In plots (a) and 
(b), dmv/dm s  is computed using a linear and a quadratic chiral extrapolations 
respectively as described in the text. The plot (c) corresponds to J calculated 
from the lattice determination of am, amK, am p , and amK.. 
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Figure 4.25: The vector-pseudoscalar mass splitting as a function of quark mass. 
The scale is set in two ways, the first uses the amK which is derived from the 
amp, and the second uses the string tension av'7?. The data at 3 = 6.0 with 
C=0 and C=1 are taken from [51] and[85], respectively. 
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4.7 Light Baryons Masses 

4.7.1 Spin-! Octet Baryons 

Using the preferred form of the chiral expansion of the 's-like' A{BC} masses, 

mEA{BC} = M0  + CIA  MA + Cl'MD, 	 (4.50) 

where MD = I  (MB + MC), the lattice isospin-averaged masses of physical spin-i 

octet baryons are calculated by extrapolating/interpolating the chiral expansion 

to the following 

amA -+ ai, arnD -+ aWl yielding amN, 

amA -+ am,, amD -+ aWl yielding am, 

amA -+ aWl, amD -+ am, yielding am. 	 (4.51) 

The lattice value of the A °  mass is obtained through an interpolation of the chiral 

expansion of the 'A-like' masses to the constituent quark masses amA -+ am, and 

amD -+ awl. At 0 = 5.7 baryon masses were obtained only for degenerate quark 

masses, and therefore these lattices can only be used to determine the nucleon 

mass and none of the strange-octet masses. The continuum extrapolations of the 

nucleon mass, amN, with the scale set from both the string tension and the p 

mass, are plotted in figure 4.26. The E and A °  masses are plotted in units of the 

string tension in 4.27. 

Like the meson sector we observe that at 0 = 6.2 the central values for the octet-

baryon masses computed with C=TAD and C=NP are in very good agreement. 

In comparing the nucleon mass scaled by the string tension at 0 = 6.0 computed 

with C=TAD and C=NP there is only a small improvement towards the contin-

uum value for the NP case, and the values are within statistical errors. However, 

in the meson sector we observe a noticeable improved scaling behaviour for the 

masses computed with C=NP over that with C=TAD. The relative magnitude of 

the statistical errors are smaller for the meson masses than in the baryon sector. 
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Therefore, on increased statistics the effects of improvement may become notice-

able for the nucleon at beta=6.0. The spin-4- strange octet-baryons, the and A, 

show conflicting scaling behaviour when displayed in units of the string tension. 

We observe an improved scaling behaviour in the case of the E computed with 

C=NP over that with C=TAD, but for the A a similar trend is observed as in 

the nucleon. When the nucleon masses are scaled by the nz, we observe a milder 

a dependence in the approach to the continuum limit, like the meson sector. 

The values in the continuum limit for mN/rn  are given in table 4.16, where a 

comparison is made with C=O data; there is agreement within statistical errors 

between all these values However, another 0 value is really required with the 

C=NP action. to reduce the error bars and increase the confidence in these fits. 

Increasing the number of quark masses computed at 13 = 5.7, and calculating the 

baryons which non-degenerate are in quark mass, would increase the confidence 

in the chirally extrapolated value of the nucleon mass on this data set. 

N: 

X C= 

c=NP. 23x64. 

ept 	 : c—TAD 

I 	
c=TAD. 

0.0 	 0.5 	 1.0 
arn 

Figure 4.26: Continuum extrapolations of the arnp.r with the lattice scale set by 

the string tension a/R and the rho mass am in the right plot are shown in the 

left and right plots respectively. 
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Extrapolated value to a -+ 0 expt. 
 C=TAD C=NP Simult. C=0 value 

E

Physical 

 1.41(6) 1.37(12) 1.35(11) 1.38(7) 1.22 
1.71(8) 1.71(18) 1.71(18) 1.73(10) 1.60 

 1.22(6) 1.26(13) 1.27(13) 1.31 

Table 4.16: A comparison between the physical values in the continuum limit 
of baryons obtained from these simulations with 0(a)-improved fermion actions, 
using independent and simultaneous fits to both actions, with the results obtained 
using a Wilson fermion action presented in [51] and the experimental values. 
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0.0 	 0.2 	 0.4 	 0.0 	 0.2 	 0.4 
aVK 	 aVK 

Figure 4.27: Plot are amE and amA masses in units of the string tension av'7?, 
in the left and right figures, respectively. 
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4.7.2 Spin- 2  Decuplet Baryons 
As these states are symmetric in flavour the lattice values of the physical masses 

are calculated by an extrapolation/interpolation of the linear chiral expansion, 

m{ABC} = M + Cim q  where mq = (MA + mB + mc)/3, to 

	

amq  —+ affE 	yielding 	ama, 

	

amq  —4 a(m + 2W)/3 	yielding 	amE*, 

	

amq  —* a(2m 5  + i)/3 	yielding 

	

amq  —* am, 	yielding 	amç. 	 (4.52) 

Continuum extrapolations for mA are shown in figure 4.29, where the scale is set 

from the string tension, m and mpr. In figure 4.28, the amE and am&2 masses 

are shown scaled by the string tension. The approaches to the continuum the 

limit obey the same behaviour as the meson sector: when the masses are scaled 

by /t? we observe improved scaling for the masses computed with C=NP over 

that with C=TAD, and a much reduced a dependence when the scale is set from 

either am or amN. There is excellent agreement between both actions in the 

continuum limit, which can be seen for the values given in table 4.16. 
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Figure 4.28: Plot are amE and amç masses in units of the string tension av'k, 
in the left and right. figures, respectively. The strange quark mass was fixed from 

MK./M. 
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Figure 4.29: Continuum extrapolations of amzi with the lattice scale set by the 
string tension aV'K, the rho mass am and the nucleon mass arnN are shown in 

plots (a), (b) and (c) respectively. 



Chapter 5 

Summary and Conclusions 

5.1 Improvement and the continuum limit 

We have calculated the light spectrum using the Sheikholeslami-Wohlert (SW) 

0(a)-improved fermion action with two choices for the clover coefficient C=TAD 

and C=NP, and we have compared the results from these simulations with simu-

lations using Wilson fermions, C=0, and tree-level improved SW fermions, C=1. 

We have observed in the approach to the continuum the following behaviour: 

• hadron masses scaled by the string tension show an improved scaling be-

haviour for the 0(a)-improved fermion actions, in comparison with the 

Wilson fermion data. There is no visible difference at 3 = 6.2 between the 

hadron masses computed with C=TAD and C=NP. But there is a noticeable 

improvement at 0 = 6.0 for the meson masses computed with C=NP over 

that with C=TAD and there is improvement in the baryon sector towards 

the continuum value; 

• hadron masses scaled by a different hadron mass, calculated from the same 

action, show a milder a dependence, and in some cases there is no a depen-

dence at all, which has been observed by [51]; 

• hadron masses extrapolated to the continuum limit are consistent between 

the different fermion actions. 

We conclude from this behaviour that there is some evidence that the improve- 

ment program is working and reducing the cutoff effects for the 0(a)-improved 

172 
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fermions. But, further calculations are required to further support this. Comput-

ing the light hadron spectrum at additional 0 values will reduce the errors in the 

fitted parameters for the continuum extrapolations and increase our confidence 

in the fits. A stronger test to verify that 0(a)-improvement is working is through 

comparing the matrix elements (decay constants) calculated with the different 

actions. Improvement of the matrix elements is not only dependent on the im-

provement of the lattice action, but also on the improvement of the correlation 

functions (composite fields), as discussed in section 1.9. The improved correlation 

functions are dependent on the improvement coefficients (CA, bA. .... ). Comparing 

the continuum results obtained from the different actions for the matrix elements 

is not as straight forward as in the case of the hadron masses, renormalisation 

constants are required to match the lattice and the continuum theories, see [42], 

which need to be calculated so introduce additional systematic errors in their 

determination. The results of such an analysis are presented in [114]. 

5.2 Can we see the effects of the Quenched 

Approximation? 

The continuum results for the quenched light hadron mass spectrum are pre-

sented, so that a comparison can be made with the experimental data. Contin-

uum extrapolations are performed independently to the C=TAD and C=NP data 

sets and a simultaneous fit is performed to both data sets. The lattice scale is set 

in each continuum extrapolation using different quantities: the p mass, s/it? and 

the nucleon mass. The results are shown in figure 5.1 and tabulated in tables 5.1 

and 5.2. 

In comparing the extrapolated results between when the scale is set from the 

p mass and the string tension, we find there is a small discrepancy, but taking 

into account the 5% uncertainty in the physical value of /k which has not been 

included, the values agreement within statistical errors. In contrast when the 

scale is set from the nucleon mass the extrapolated results differ by up to 15% 

from those when the scale is set from either the p mass or This can be 

explained by the fact the continuum quenched nucleon mass is 15% larger than 
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the experimental value. Can this discrepancy be attributed to quenching errors? 

In [115, 116, 117], results are reported from the CP-PACS Collaboration. They 

simulate with Wilson fermions, C=0, at m,/MP  ratios of 0.75, 0.7, 0.6, 0.5 and 

0.4 on lattices with N3  3fm and at 0 values of 5.9, 6.1, 6.25 and 6.47. The 

number of configurations generated vary from 800 to 100 going from the lowest 

to highest 0, so the statistical quality of their data is superior to ours. They find 

curvature in the nucleon and A chiral extrapolations, and chirally extrapolating 

the nucleon with a cubic fit in quark mass. This reduces the continuum extrapo-

lated value obtained from a linear fit by 15%. The curvature in the spin-i octet 

chiral extrapolations is observed on going to lighter quark mass and only became 

apparent on including the point at = 0.4' in the fit. This claim needs 

to be checked in our simulations by simulating at lighter quark masses, 2  and 

improving the statistical quality of our results. We shall now concentrate on the 

continuum extrapolated results when the scale is set from the p mass. There is 

agreement between the continuum extrapolated result for the A baryon from our 

and their simulation which is 5% larger than the experimental value. With the ex-

ception of the A baryon the extrapolated values for the other strange baryons are 

in relatively good agreement with the experimental values. In the meson sector 

the extrapolated values are in good agreement with the experimental values. 

In light of these points the question still remains open as to how much quenching 

affects the light hadron mass spectrum, our results show that quenching effects 

could be as large as 15% in some quantities. But as already mentioned higher 

statistics, smaller quark masses and additional points in the continuum extrapo-

lation are needed to quantify this. 

'This is smaller than any quark mass in our simulations. 
'However this presents problems using C=NP and possibly using C=TAD, in that simulating 

with a lighter quark mass increases the possibility of generating exceptional configurations, as 
explained in section 3.1 and therefore the method mentioned in that section for correcting these 
quenched artifacts need to be investigated. 
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2.0 

0.5 

Figure 5.1: A comparison of the quenched light hadron mass spectrum with the 
experimental data indicated by horizontal lines. The continuum extrapolated 

values represent by (D), (x) and (0) correspond to an independent fit to the 
C=TAD data, an independent fit to the C=-NP data and a simultaneous fit to 
both data sets C=TA1J and C=NP respectively. The scale in the continuum 
extrapolations was set from the p mass, /1 and and the nucleon mass, which 
corresponded to the symbols coloured in red, green and blue respectively. Strange 

hadrons were calculated using in fixed frorn MK*/Mp. 
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Light Meson Masses in GeV  

Hadron Fit Scale set in cont. extrap. from expt. 
m  mp.J  

K C=TAD 0.488 
• 

0.515 -24 • 
0.417 -29 0.494 

C=NP 0.495 +67  
-20 0.508 +103  

-43 0.441 ±92 
-42 

C=TAD and C=NP 0.492 17 • 
0.518 +101  

-36 0.445 -39 

P C=TAD • 
0.805 +27  

-22 • 
0.663 ±31  

35 0.768 

C=NP 0.788 t 65 
 

42 • 
0.685 ±69 

-58 

C=TAD and C=NP 0.806 +65  
-38 • 

0.692 +65 
56 

C=TAD 0.880 ' 1 0 921 ±31  
-25 0.761 -43 0.894 

C=NP 0.884 -2 0.906 +76  
-49 0.788 +81 

-66 

C=TAD and C=NP 0.885 0.927 44 0.799 ±76 
-64  

C=TAD 1.000 t 2 
 

2 1.046 -28 0.865 -47 1.019 

C=NP 0.999 1.023 0.890 +93 
 

C=TAD and C=NP 0.999 2 • 
1 047 +87  

-50 0.901 +88 
____ 

Table 5.1: A comparison of the quenched light meson spectrum with the experi-
mental data. The ansätze used in the independent fits to the C=NP and C=TAD 
data sets is given in equation (4.38) and the ansätz used in the simultaneous fit 
to both data sets is given in equation (4.39). Strange hadrons were calculated 
using m 5  fixed from MK./M. 
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Light Baryon Masses in GeV  

Hadron Fit Scale in cont. extrap. set from expt. 
m _ mJ\r ________ 

N C=TAD 1.080 46 
43 1127 -30 0.940 

C=NP 1.060  + 78 
-106 1.079 +70 

-66 

C=TAD and C=NP • 1.048 -95 
1.085  +69 

-58  

A C=TAD • 
1173 +131  

-119 1.327 ±131  
-87 i. 091 +55  

-57 1.116 

C=NP 1.210 • 

+60 
-66 • 1.239 +86 

-57 
1. 080 +50 

-31 

C=TAD and CNP 1.210 60 
-66 • 1.239 +86 

57 1.080 -31 

C=TAD • 1139 +130  
-112 • 1.304 +146  

-80 • 1.063 +82  
-89 1.193 

C=NP 1.213 +66 
57 1.242 • 

±98 
47 • 1.082 +76 

-38 

C=TAD and C=NP 1.213 +66 
57 1.242 1.082 -38 

C=TAD 1.338 +108  
71 • 

1.428 +159  
-96 • 

1.244 ±118  
-124 1.315 

C=NP 1.370 +63  
-40 1.403 +131  

-65 1.222 
• 

±110 
-64 

C=TAD and C=NP 1.370 +63  
-40 1.403 ±131  

-65 1. 222  +110 
-64 

C=TAD 1.314 +66 
63 • 1.377 ±61 

-45 1136 -63 1.232 

C=NP 1.331 ±154  
-126 • 1.362 ±162  

-81 • 1188 ±155 
-104 

C=TAD and C=NP • 
1. 315  +152 

-121 • 

+152 
75 • 

1188 ±144 
97  

C=TAD • 
1.430 -48 1.501 -36 1.241 +58  

-57 1.383 

C=NP • 
450 +120  

_95 • 
1.486 +139  

55 1.295 +140 
-96 

C=TAD and C=NP 1.441 ±120  
-91 • 1.509 ±136  

55 • 1. 302  ±132 
-82 

C=TAD 1.545 +45  
34 1.626 -31 i 

±58 
-57 1.532 

C=NP • 1.569 +89  
-68 • 1.609 +137  

59 1.402 
• 

±142 
-92 

C=TAD and C=NP 1.565 +88  
-65 • 1.641 +127  

-51 • 
1.415  ±136 

-85  

ci C=TAD 1.661 t 36 
 

23 • 
1.746 +58 

-33 1.443 +66  
-64 1.673 

C=NP 1.687 ±69  
-50 i 

+141 
-69 • 

1.510 +151 
-104 

C=TAD and C=NP 1.688 66 
44 i• 

+141 
-55 • 1.528 ±141 

-93 

Table 5.2: A comparison of the quenched light baryon spectrum with the experi-
mental data. The ansätz used in the independent fits to the C=NP and C=TAD 
data sets is given in equation (4.38) and the ansätz used in the simultaneous fit 
to both data sets is given in equation (4.39). Strange hadrons were calculated 
using m 3  fixed from MK./Mp. 
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5.3 What have we achieved? 

The main aim of this work has been achieved which is the ab initio calculation 

of the light hadron spectrum using Lattice QCD. 

One of the main achievements of this calculation are that the systematic errors 

have been throughly investigated: 

a systematic approach has been applied to fitting the hadron two-point 

functions to determine the lattice hadron masses; 

• the chiral behaviour of each of the different particles has been investigate 

by fitting to a number of different ansätze; motivated from quenched chiral 

perturbation theory; 

• finite volume effects have been studied; 

• continuum extrapolations have been performed using different fits and we 

have checked that the different actions are consistent in the continuum limit. 

We state the conclusions from this analysis as follows: 

• we observe that there are no significant finite volume effects in the hadron 

masses computed using the volumes in these simulations; 

• we have demonstrated that 0(a)-improvement seems to be working and 

reducing the cut off effects for light hadron masses; 

• we observe a discrepancy between the different ways of fixing the strange 

quark mass m 3  at a fixed lattice spacing, but these all agree in the contin-

uum limit, i.e. taking a -4 0; 

• we find that the continuum value of the J parameter in agreement with the 

experimental value; 
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• we find that vector-pseudoscalar mass splitting is not constant with the 

quark mass as is seen with the experimental data, but there is a small slope 

which means that this quantity is smaller at higher quark masses. We find 

the size of this slope to be the same for unimproved Wilson fermions and 

0(a)-improved fermions, which suggests that this is a quenching effect and 

not a discretisation effect; 

• the quenched spectrum disagrees with experiment by as much as 15% for 

some particles, like the nucleon and A, but is in better agreement for the 

meson sector. 



Appendix A 

Fitted Lattice Hadron Masses 

The fitting procedure described in detail in section 3.2, have been implement 

throughly on each of the data-sets. Multi- correlatormulti-exponential simulta-

neous fits have been made to as many different combinations of the correlators 

as possible. After careful examination of the sliding window plots, which have 

been produced for each entry in the proceeding tables and examples of which are 

shown in figures 3.10 to 3.16, the type of fitting ansätz is chosen together with 

the appropriate fitting range. This appendix contains tables for the fitted masses 

obtained from fitting the pion, rho, L, 's-like' and 'A-like' correlators, for each 

of the data-sets as listed in table 3.2. 

IM 
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KI K2 amps Fit Range X 2 /d.o.f 

0.13843 0.13843 0.7336 	i
+1 3-12 -13 13.8/14 

0.14077 0.13843 0.6385 	-12 3-12 9.0/14 

0.14077 0.14077 0.5290 3-12 6.1/14 -15 

Table A.3: Pion masses on the 12 x 24 lattice at 0 = 5.7, with C=TAD, obtained 
from a double exponential fit to the (LL,LL) and (SL,LL) correlators. 

KI K2 amy Fit Range X 2 /d.o.f 

0.13843 0.13843 0.9381 	-21 4-12 46.2/26 

0.14077 0.13843 0.8776 	-26 4-12 39.6/26 

0.14077 0.14077 0.8153 4-12 39.6/26 

Table A.4: Rho masses on the 12 x 24 lattice at /3 = 5.7, with C=TAD, obtained 
from a double exponential fit to the channels 	 and 
with the (LL,LL) and (SL,LL) correlators. 

amA Fit Range X2 /d.o.f 

0.13843 1.545 	t 5-11 8.3/8 

0.14077 1.357 	-13 5-11 3.2/8 

Table A.5: Degenerate delta masses on the 12 x 24 lattice at 3 = 5.7, with 
C=TAD, obtained from a double expoential fit to the (LLL,LLL) and (SSS,LLL) 
correlators. 

amN Fit Range X 2 /d.o.f 

0.13843 1.413 2-11 2.4/14 

0.14077 1.172 	10 2-11 6.8/14 

Table A.6: Degenerate nucleon masses on the 12 x 24 lattice at 3 = 5.7, with 
C=TAD, obtained from a double expoential fit to the (SSS,LLL) correlators. A 
simultaneous fit was to both the interpolating operators €abc(CStJ)b)bC  and 

which have an overlap with the nucleon. 
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KI K2 amps Fit Range X 2 /d.o.f 

0.13843 0.13843 0.7352 	14 3-16 20.2/22 

0.14077 0.13843 0.6409 	-15 3-16 21.4/22 

0.14077 0.14077 0.5322 	-15 3-16 25.4/22 

Table A.7: Pion masses on the 16 x 32 lattice at /3 = 5.7, with, obtained from a 
double exponential fit to the (LL,LL) and (SL,LL) correlators. 

K 1  K2 amy Fit Range X 2 /d.o.f 

0.13843 0.13843 0.9338 	-33 4-16 10.2/20 

0.14077 0.13843 0.8689 	-47 4-16 11.7/20 

0.14077 0.14077 0.8052 	-58 4-16 15.1/20 

Table A.8: Rho masses on the 16 x 32 lattice at 3 = 5.7, with, obtained from a 
double exponential fit to the channel with the (LL,LL) and (SL,LL) 
correlators. 

amA Fit Range X 2 /d.o.f 

0.13843 1.531 	-13 6-15 8.0/14 

0.14077 1.340 	-27 6-15 11.0/14 

Table A.9: Degenerate delta masses on the 16 x 32 lattice at 0 = 5.7, with, ob- 
tained from a double expoential fit to the (LLL,LLL) and (SSS,LLL) correlators. 

F 	ic amN Fit Range X 2 /d.o.f 

0.13843 1.424 2-15 17.6/22 

0.14077 1.186 2-15 23.1/22 12 

Table A.10: Degenerate nucleon masses on the 16 x 32 lattice at /3 = 5.7, with 
C=TAD, obtained from a double expoential fit to the (SSS,LLL) correlators. A 
simultaneous fit was made to both the interpolating operators 
and Eabc 

C y475 b/ ' c, which have an overlap with the nucleon. 
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K 1  K2  amps Fit Range X2 /d.o.f 

0.13700 0.13700 0.4129 	-10 6-23 23.8/30 

0.13810 0.13700 0.3569 	t 6-23 26.7/30 

0.13856 0.13700 0.3317 	-12 6-23 32.6/30 

0.13810 0.13810 0.2930 	I
+1 6-23 -12  34.3/30 

0.13856 0.13810 0.2625 	-13 6-23 39.2/30 

0.13856 0.13856 0.2276 	-14 6-23 44.1/30 

Table A.11: Pion masses on the 16 x48 lattice at 3 = 6.0, with C=TAD, obtained 
from a double exponential fit to the (LL,LL) and (FL,LL) correlators. 

amy Fit Range X  2/d.o.f 

0.13700 0.13700 0.5406 	-17 6-23 46.5/30 

0.13810 0.13700 0.5048 	-24 6-23 44.8/30 

0.13856 0.13700 0.4903 	t 6-23 40.1/30 

0.13810 0.13810 0.4671 	-37  6-23 45.5/30 

0.13856 0.13810 0.4525 	-48 6-23 40.7/30 

0.13856 0.13856 0.4382 	-68 6-23 35.6/30 

Table A.12: Rho masses on the 16 x 48 lattice at j3 = 6.0, with C=TAD, obtained 
from a double exponential fit to the channel aa  with the (LL LL) and 
(FL,LL) correlators. 
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KI  K2 /c3 amA Fit Range X 2 /d.o.f 

0.13700 0.13700 0.13700 0.893 	t 7-23 33.1/28 

0.13700 0.13700 0.13810 0.858 7-23 34.8/28 

0.13700 0.13700 0.13856 0.849 7-23 38.6/28 

0.13700 0.13810 0.13810 0.822 7-23 37.1/28 

0.13700 0.13810 0.13856 0.812 	10 7-23 41.6/28 

0.13700 0.13856 0.13856 0.794 	-12 7-23 39.9/28 

0.13810 0.13810 0.13810 0.787 	+11 7-23 43.4/28 

0.13810 0.13810 0.13856 0.775 	t 7-23 47.4/28 

0.13810 0.13856 0.13856 0.756 	-17 7-23 46.8/28 

0.13856 0.13856 0.13856 0.733 	-20 7-23 44.7/28 

Table A.13: Delta ({iciic2ic3}) masses on the 16 x 48 lattice at 13 = 6.0, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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K1 K2 K3 amr Fit Range X2 /d.o.f 

0.13700 0.13700 0.13700 0.812 6-23 47.7/30 

0.13700 0.13700 0.13810 0.770 	1 6-23 53.8/30 

0.13700 0.13700 0.13856 0.753 6-23 53.5/30 

0.13700 0.13810 0.13810 0.726 6-23 52.6/30 

0.13700 0.13810 0.13856 0.712 6-23 45.7/30 

0.13700 0.13856 0.13856 0.693 6-23 37.9/30 

0.13810 0.13700 0.13700 0.763 	t 6-23 45.3/30 

0.13810 0.13700 0.13810 0.718 6-23 59.0/30 

0.13810 0.13700 0.13856 0.701 	t 6-23 58.3/30 

0.13810 0.13810 0.13810 0.676 6-23 48.2/30 

0.13810 0.13810 0.13856 0.658 +9  6-23 47.9/30 

0.13810 0.13856 0.13856 0.640 	+9 10 6-23 41.8/30 

0.13856 0.13700 0.13700 0.742 6-23 48.8/30 

0.13856 0.13700 0.13810 0.700 	t 6-23 49.7/30 

0.13856 0.13700 0.13856 0.686 	t 6-23 43.1/30 

0.13856 0.13810 0.13810 0.658 6-23 47.2/30 

0.13856 0.13810 0.13856 0.639 	t' 6-23 51.8/30 

0.13856 0.13856 0.13856 0.615 	t 6-23 42.1/30 

Table A.14: 's-like' (ici{ic2ic3}) masses on the 16 x 48 lattice at 3 = 6.0, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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K 1  K2  K3 amA Fit Range X 2 /d.o.f 

0.13700 0.13700 0.13700 0.809 7-23 25.0/28 

0.13700 0.13700 0.13810 0.762 7-23 37.8/28 

0.13700 0.13700 0.13856 0.741 7-23 41.0/28 

0.13700 0.13810 0.13810 0.719 	t 7-23 39.1/28 

0.13700 0.13810 0.13856 0.695 	t 7-23 45.3/28 

0.13700 0.13856 0.13856 0.683 	t -11 7-23 42.3/28 

0.13810 0.13700 0.13700 0.767 	t 7-23 44.0/28 

0.13810 0.13700 0.13810 0.724 7-23 41.5/28 

0.13810 0.13700 0.13856 0.703 	t 7-23 44.7/28 

0.13810 0.13810 0.13810 0.678 7-23 41.3/28 

0.13810 0.13810 0.13856 0.657 	+9 10  7-23 43.1/28 

0.13810 0.13856 0.13856 0.641 	+9 13  7-23 45.4/28 

0.13856 0.13700 0.13700 0.751 7-23 46.7/28 

0.13856 0.13700 0.13810 0.705 	II 7-23 52.0/28 

0.13856 0.13700 0.13856 0.685 	t 7-23 47.1/28 

0.13856 0.13810 0.13810 0.657 	-11 7-23 48.4/28 

0.13856 0.13810 0.13856 0.635 + 11 17 7-23 44.7/28 

0.13856 0.13856 0.13856 0.623 	-15 7-23 48.5/28 

Table A.15: 'A-like' (ici[iczic3]) masses on the 16 x 48 lattice at 0 = 6.0, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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Ic2 amps Fit Range x 2 /d.o.f 

0.13640 0.13640 0.3015 	t 8-23 39.5/26 

0.13710 0.13640 0.2630 	II
+2 8-23 -16 32.3/26 

0.13745 0.13640 0.2430 	-18 8-23 27.6/26 

0.13710 0.13710 0.2191 	t 8-23 25.5/26 

0.13745 0.13710 0.1955 	23 8-23 24.9/26 

0.13745 0.13745 0.1682 8-23 27.5/26 

Table A.16: Pion masses on the 24 x48 lattice at /3 = 6.2, with C=TAD, obtained 
from a double exponential fit to the (LL,LL) and (FL,LL) correlators. 

K1 K2 amy Fit Range X 2 /d.o.f 

0.13640 0.13640 0.4006 	t 8-23 34.1/26 

0.13710 0.13640 0.3764 	-31 8-23 29.3/26 

0.13745 0.13640 0.3646 	-42 8-23 25.4/26 

0.13710 0.13710 0.3526 +50  8-23 27.2/26 

0.13745 0.13710 0.3417 	-63 8-23 24.7/26 

0.13745 0.13745 0.3314 	-102 8-23 28.4/26 

Table A.17: Rho masses on the 24 x 48 lattice at 3 = 6.2, with C=TAD, obtained 
from a double exponential fit to the channel a/)a with the (LL,LL) and 
(FL,LL) correlators. 
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l3 amA Fit Range X 2 /d.o.f 

0.13640 0.13640 0.13640 0.669 	t 9-23 37.9/24 

0.13640 0.13640 0.13710 0.642 9-23 35.2/24 

0.13640 0.13640 0.13745 0.629 	t 9-23 34.3/24 

0.13640 0.13710 0.13710 0.617 	t 9-23 32.6/24 

0.13640 0.13710 0.13745 0.603 	t 9-23 31.8/24 

0.13640 0.13745 0.13745 0.589 	-10 9-23 30.2/24 

0.13710 0.13710 0.13710 0.591 	±10 9-23 29.4/24 

0.13710 0.13710 0.13745 0.576 	-11 9-23 28.2/24 

0.13710 0.13745 0.13745 0.562 	-13 9-23 27.0/24 

0.13745 0.13745 0.13745 0.549 	-16 9-23 26.7/24 

Table A.18: Delta ({!c1k2ic3}) masses on the 24 x 48 lattice at i3 = 6.2, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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K 1  K2  amr, Fit Range X2 /d.o.f 

0.13640 0.13640 0.13640 0.602 8-23 54.5/26 

0.13640 0.13640 0.13710 0.572 8-23 49.7/26 

0.13640 0.13640 0.13745 0.556 8-23 44.1/26 

0.13640 0.13710 0.13710 0.543 8-23 50.0/26 

0.13640 0.13710 0.13745 0.530 	t 8-23 40.6/26 

0.13640 0.13745 0.13745 0.512 	+10  8-23 35.5/26 

0.13710 0.13640 0.13640 0.566 	t 8-23 56.1/26 

0.13710 0.13640 0.13710 0.538 	t 8-23 45.2/26 

0.13710 0.13640 0.13745 0.520 8-23 37.4/26 

0.13710 0.13710 0.13710 0.509 8-23 45.7/26 

0.13710 0.13710 0.13745 0.492 8-23 39.0/26 

0.13710 0.13745 0.13745 0.477 	-12 8-23 33.2/26 

0.13745 0.13640 0.13640 0.547 8-23 51.8/26 

0.13745 0.13640 0.13710 0.515 8-23 46.6/26 

0.13745 0.13640 0.13745 0.498 	t 8-23 46.8/26 

0.13745 0.13710 0.13710 0.480 8-23 45.0/26 

0.13745 0.13710 0.13745 0.457 	+16  8-23 45.3/26 

0.13745 0.13745 0.13745 0.454 	-14 8-23 30.5/26 

Table A.19: 'E-like' (ic 1 {ic 2 i 3 }) masses on the 24 x 48 lattice at /3 = 6.2, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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 /t3 amp Fit Range X 2 /d.o.f 

0.13640 0.13640 0.13640 0.601 8-23 60.5/26 

0.13640 0.13640 0.13710 0.568 	t 8-23 58.5/26 

0.13640 0.13640 0.13745 0.550 8-23 52.8/26 

0.13640 0.13710 0.13710 0.537 	t 8-23 56.4/26 

0.13640 0.13710 0.13745 0.515 	t 8-23 43.5/26 

0.13640 0.13745 0.13745 0.496 8-23 41.8/26 

0.13710 0.13640 0.13640 0.574 8-23 40.8/26 

0.13710 0.13640 0.13710 0.539 	t 8-23 61.7/26 

0.13710 0.13640 0.13745 0.520 	1I 8-23 51.8/26 

0.13710 0.13710 0.13710 0.504 8-23 58.7/26 

0.13710 0.13710 0.13745 0.483 	+11  8-23 47.3/26 

0.13710 0.13745 0.13745 0.459 	t 8-23 43.1/26 

0.13745 0.13640 0.13640 0.560 8-23 33.9/26 

0.13745 0.13640 0.13710 0.528 8-23 31.0/26 

0.13745 0.13640 0.13745 0.507 	+10  8-23 26.7/26 

0.13745 0.13710 0.13710 0.495 	+11  8-23 30.4/26 

0.13745 0.13710 0.13745 0.476 	13 8-23 25.8/26 

0.13745 0.13745 0.13745 0.435 	10 8-23 37.0/26 

Table A.20: 'A-like' (ic 1 [ic2 ic3]) masses on the 24 x 48 lattice at 3 = 6.2, 
with C=TAD, obtained from a double exponential fit to the (LLL,LLL) and 
(FFL,LLL) correlators. 
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K I  K2 amps Fit Range X 2 /d.o.f 

0.13344 0.13344 0.3982 6-23 34.8/30 

0.13417 0.13344 0.3560 	t' 6-23 31.1/30 

0.13455 0.13344 0.3330 	-11 6-23 29.8/30 

0.13417 0.13417 0.3090 + 15 10 6-23 29.4/30 

0.13455 0.13417 0.2822 	-12 6-23 28.3/30 

0.13455 0.13455 0.2517 	-14 6-23 32.6/30 

Table A.21: Pion masses on the 16 x 48 lattice at 0 = 6.0, with C=NP, obtained 
from a double exponential fit to the (LL,LL) and (FL,LL) correlators. 

Il  amy Fit Range X 2 /d.o.f 

0.13344 0.13344 0.5406 	t 6-23 40.8/30 

0.13417 0.13344 0.5149 	I
+3 6-23 -28 39.1/30 

0.13455 1  0.13344 0.5018 	-34 6-23 36.2/30 

0.13417 0.13417 0.4877 	t 6-23 40.4/30 

0.13455 0.13417 0.4743 	-49 6-23 37.9/30 

0.13455 0.13455 0.4615 	-62 6-23 35.3/30 

Table A.22: Rho masses on the 16 x 48 lattice at /9= 6.0, with C=NP, obtained 
from a double exponential fit to the channel >I a/,a with the (LL,LL) and 
(FL,LL) correlators. 



Appendix A. Fitted Lattice Hadron Masses 	 192 

K1 K2 /c3 amA Fit Range X 2 /d.o.f 

0.13344 0.13344 0.13344 0.889 	t 7-23 37.0/28 

0.13344 0.13344 0.13417 0.865 7-23 41.0/28 

0.13344 0.13344 0.13455 0.857 7-23 45.8/28 

0.13344 0.13417 0.13417 0.838 	t 7-23 42.3/28 

0.13344 0.13417 0.13455 0.830 	13 7-23 45.7/28 

0.13344 0.13455 0.13455 0.815 	-16 7-23 43.3/28 

0.13417 0.13417 0.13417 0.812 	13 7-23 45.2/28 

0.13417 0.13417 0.13455 0.802 	-16 7-23 47.8/28 

0.13417 0.13455 0.13455 0.785 	t 7-23 47.0/28 

0.13455 0.13455 0.13455 0.767 	iJ 7-23 46.0/28 

Table A.23: Delta ({k1ic2/c3}) masses on the 16 x 48 lattice at 0 = 6.0, with 
C=NP, obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) 
correlators. 
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K 1  K2 /c3 amr, Fit Range X 2 /d.o.f 

0.13344 0.13344 0.13344 0.799 	t 6-23 43.7/30 

0.13344 0.13344 0.13417 0.769 6-23 46.3/30 

0.13344 0.13344 0.13455 0.754 6-23 42.5/30 

0.13344 0.13417 0.13417 0.737 6-23 43.0/30 

0.13344 0.13417 0.13455 0.725 6-23 39.2/30 

0.13344 0.13455 0.13455 0.709 6-23 32.6/30 

0.13417 0.13344 0.13344 0.762 	t 6-23 35.9/30 

0.13417 0.13344 0.13417 0.732 6-23 45.6/30 

0.13417 0.13344 0.13455 0.718 6-23 39.3/30 

0.13417 0.13417 0.13417 0.702 	t 6-23 40.6/30 

0.13417 0.13417 0.13455 0.689 6-23 37.3/30 

0.13417 0.13455 0.13455 0.674 6-23 32.3/30 

0.13455 0.13344 0.13344 0.743 	+8 6-23 38.5/30 

0.13455 0.13344 0.13417 0.713 6-23 36.7/30 

0.13455 0.13344 0.13455 0.700 	t 6-23 41.8/30 

0.13455 0.13417 0.13417 0.684 6-23 35.6/30 

0.13455 0.13417 0.13455 0.671 	t 6-23 44.6/30 

0.13455 10.13455 0.13455 0.659 	t 6-23 30.1/30 

Table A.24: 'E-like' (ic1{ic2ic3}) masses on the 16 x 48 lattice at 0 = 6.0, with 
C=NP, obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) 
correlators. 
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 amA Fit Range X 2 /d.o.f 

0.13344 0.13344 0.13344 0.798 	t 6-23 18.3/30 

0.13344 0.13344 0.13417 0.763 6-23 22.2/30 

0.13344 0.13344 0.13455 0.744 6-23 23.3/30 

0.13344 0.13417 0.13417 0.728 6-23 20.1/30 

0.13344 0.13417 0.13455 0.708 	t 6-23 24.2/30 

0.13344 0.13455 0.13455 0.690 	+10  6-23 22.2/30 

0.13417 0.13344 0.13344 0.767 	t 6-23 36.3/30 

0.13417 0.13344 0.13417 0.735 6-23 19.5/30 

0.13417 0.13344 0.13455 0.715 6-23 19.9/30 

0.13417 0.13417 0.13417 0.699 	t 6-23 19.3/30 

0.13417 0.13417 0.13455 0.679 	+11  6-23 22.1/30 

0.13417 0.13455 0.13455 0.662 6-23 25.5/30 

0.13455 0.13344 0.13344 0.752 6-23 37.0/30 

0.13455 0.13344 0.13417 0.718 6-23 33.4/30 

0.13455 0.13344 0.13455 0.700 	t' 6-23 34.0/30 

0.13455 0.13417 0.13417 0.683 6-23 30.8/30 

0.13455 0.13417 0.13455 0.666 	t 6-23 30.7/30 

0.13455 0.13455 0.13455 0.647 6-23 27.7/30 

Table A.25: 'A-like' (ici[ic2ic3]) masses on the 16 x 48 lattice at 0 = 6.0, with 
C=NP, obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) 
correlators. 
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KI K2 amps Fit Range X 2 /d.o.f 

0.13344 0.13344 0.3963 +21  
-15 9-19 17.3/9 

0.13417 0.13344 0.3529 	-17 9-19 17.7/9 

0.13455 0.13344 0.3283 	-18 9-19 17.2/9 

0.13417 0.13417 0.3044 +25  9-19 17.8/9 

0.13455 0.13417 0.2759 	-18 9-19 17.0/9 

0.13455 0.13455 0.2443 	16 9-19 16.6/9 

Table A.26: Pion masses on the 32 x 64 at ,@ = 6.0, with C=NP, obtained from 
a single exponential fit to the (SS,LL) correlator 

K1 K2 amy  Fit Range X 2 /d.o.f 

0.13344 0.13344 0.5399 	t 10-15 5.0/4 

0.13417 0.13344 0.5138 	47  
-50  10-15 4.5/4 

0.13455 0.13344 0 . 5016 	±51 
-56 10-15 4.6/4 

0.13417 0.13417 0.4876 +57  
-60 10-15 3.7/4 

0.13455 0.13417 0.4753 	±67 
-68  10-15 3.6/4 

0.13455 0.13455 0.4634 	83 10-15 3.1/4 

Table A.27: Rho masses on the 32 x 64 at /3 = 6.0, with C=NP, obtained from 
a single exponential fit to the channel >= 	ia  with the (SS,LL) correlator. 
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11  K3 amA Fit Range X 2 /d.o.f 

0.13344 0.13344 0.13344 0.884 2-16 12.8/12 

0.13344 0.13344 0.13417 0.857 	10 2-16 13.0/12 

0.13344 0.13344 0.13455 0.844 	10 2-16 13.0/12 

0.13344 0.13417 0.13417 0.830 +12  
-10 2-16 13.3/12 

0.13344 0.13417 0.13455 0.818 	-11 2-16 13.4/12 

0.13344 0.13455 0.13455 0.805 	1I 2-16 13.9/12 

0.13417 0.13417 0.13417 0.804 	-10 2-16 13.8/12 

0.13417 0.13417 0.13455 0.791 	-10 2-16 14.2/12 

0.13417 0.13455 0.13455 0.778 2-16 15.1/12 

0.13455 0.13455 0.13455 0.766 	t 2-16 16.3/12 

Table A.28: Delta ({kiic2ic3}) masses on the 32 x 64 at 0 = 6.0, with C=NP, 
obtained from a double exponential fit to the (SSS,LLL) correlator 
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K1 K2 /c3 amE Fit Range X 2 /d.o.f 

0.13344 0.13344 0.13344 0.794 	i' 2-18 62.0/28 

0.13344 0.13344 0.13417 0.762 	i' 2-18 62.8/28 

0.13344 0.13344 0.13455 0.745 2-18 60.5/28 

0.13344 0.13417 0.13417 0.720 2-18 61.4/28 

0.13344 0.13417 0.13455 0.713 +13  2-18 54.9/28 

0.13344 0.13455 0.13455 0.676 	t 2  2-18 55.0/28 

0.13417 0.13344 0.13344 0.753 	t 2-18 61.7/28 

0.13417 0.13344 0.13417 0.720 	+15  2-18 61.4/28 

0.13417 0.13344 0.13455 0.703 	+17  2-18 58.5/28 

0.13417 0.13417 0.13417 0.687 	t 2-18 57.0/28 

0.13417 0.13417 0.13455 0.670 	+18  2-18 51.1/28 

0.13417 0.13455 0.13455 0.643 2-18 48.2/28 

0.13455 0.13344 0.13344 0.730 2-18 59.6/28 

0.13455 0.13344 0.13417 0.696 	+19  2-18 58.6/28 

0.13455 0.13344 0.13455 0.697 	+13  2-18 47.9/28 

0.13455 0.13417 0.13417 0.662 	t 2  2-18 53.8/28 

0.13455 0.13417 0.13455 0.655 	+18  2-18 44.4/28 

0.13455 0.13455 0.13455 0.628 	t 2  2-18 42.2/28 

Table A.29: 'E-like' (ici{tt2ic3}) masses on the 32 x 64 at 3 = 6.0, with C=NP, 
obtained from a double exponential fit to the (SSS,LLL) and (SSS,SSS) correla-
tors. 
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9 1  K2 K3 amA Fit Range X2 /d.o.f 

0.13344 0.13344 0.13344 0.794 2-18 62.0/28 

0.13344 0.13344 0.13417 0.756 	+13  2-18 62.1/28 

0.13344 0.13344 0.13455 0.735 	t' 2-18 60.0/28 

0.13344 0.13417 0.13417 0.726 2-18 60.8/28 

0.13344 0.13417 0.13455 0.695 	iui 2  2-18 59.0/28 

0.13344 0.13455 0.13455 0.690 	t 2-18 51.2/28 

0.13417 0.13344 0.13344 0.765 	+11  2-18 63.1/28 

0.13417 0.13344 0.13417 0.726 	+13  2-18 60.8/28 

0.13417 0.13344 0.13455 0.705 2-18 56.8/28 

0.13417 0.13417 0.13417 0.687 	+17  2-18 57.0/28 

0.13417 0.13417 0.13455 0.665 	i2 2-18 53.1/28 

0.13417 0.13455 0.13455 0.651 2-18 46.0/28 

0.13455 0.13344 0.13344 0.750 	i' 2-18 60.4/28 

0.13455 0.13344 0.13417 0.712 	+13  2-18 55.9/28 

0.13455 0.13344 0.13455 0.669 2-18 54.7/28 

0.13455 0.13417 0.13417 0.673 +17  2-18 50.0/28 

0.13455 0.13417 0.13455 0.640 	i 2  2-18 48.8/28 

0.13455 0.13455 0.13455 0.628 	t 2  2-18 42.2/28 

Table A.30: 'A-like' (XI  [k2/c3])masses on the 32 x 64 at 3 = 6.0, with C=NP, 
obtained from a double exponential fit to the (SSS,LLL) and (SSS,SSS) correla-
tors. 
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ici  amps Fit Range X 2 /d.o.f 

0.13460 0.13460 0.2779 	t 8-23 32.4/26 

0.13510 0.13460 0.2472 	18 8-23 27.8/26 

0.13530 0.13460 0.2346 	-21 8-23 26.7/26 

0.13510 0.13510 0.2131 	t 8-23 25.0/26 

0.13530 0.13510 0.1988 	t 8-23 25.5/26 

0.13530 0.13530 0.1831 	29 8-23 26.2/26 

Table A.31: Pion masses on the 24 x 48 lattice at 0 = 6.2 with C=NP, obtained 
from a double exponential fit to the (LL,LL) and (FL,LL) correlators. 

K 1  K2 amy Fit Range X 2 /d.o.f 

0.13460 0.13460 0.3890 +33  
-32  8-23 33.5/26 

0.13510 0.13460 0.3711 +44  
-41 8-23 28.9/26 

0.13530 0.13460 0.3642 	t 8-23 26.5/26 

0.13510 0.13510 0.3535 	t 8-23 29.5/26 

0.13530 0.13510 0.3477 	-72 8-23 27.9/26 

0.13530 0.13530 0.3422 	i 8-23 30.9/26 

Table A.32: Rho masses on the 24 x 48 lattice at /3= 6.2 with C=NP, obtained 
from a double exponential fit to the channel >I a/)a with the (LL,LL) and 
(FL,LL) correlators. 
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K 1  K2 Ic3 amA Fit Range X 2 /d.o.f 

0.13460 0.13460 0.13460 0.644 9-23 28.9/24 

0.13460 0.13460 0.13510 0.625 9-23 28.2/24 

0.13460 1 0.13460 0.13530 0.618 	+11  9-23 31.3/24 

0.13460 0.13510 0.13510 0.606 	-10 9-23 30.7/24 

0.13460 0.13510 0.13530 0.599 	-10 9-23 34.0/24 

0.13460 0.13530 0.13530 0.590 	-10 9-23 35.5/24 

0.13510 0.13510 0.13510 0.585 	t 9-23 31.9/24 

0.13510 0.13510 0.13530 0.578 	-11 9-23 35.1/24 

0.13510 0.13530 0.13530 0.569 	t 9-23 35.8/24 

0.13530 0.13530 0.13530 0.561 	13 9-23 36.0/24 

Table A.33: Delta ({ic i ic2 63 }) on the 24 x 48 lattice at f = 6.2 with C=NP, 
obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) corre-
lators. 
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 amr, Fit Range X2 /d.o.f 

0.13460 0.13460 0.13460 0.579 	t 8-23 43.1/26 

0.13460 0.13460 0.13510 0.557 8-23 40.0/26 

0.13460 0.13460 0.13530 0.548 8-23 38.1/26 

0.13460 0.13510 0.13510 0.538 +6  8-23 37.3/26 

0.13460 0.13510 0.13530 0.529 	t 8-23 36.6/26 

0.13460 0.13530 0.13530 0.521 8-23 29.5/26 

0.13510 0.13460 0.13460 0.553 	t 8-23 48.1/26 

0.13510 0.13460 0.13510 0.533 	t 8-23 35.2/26 

0.13510 0.13460 0.13530 0.524 8-23 32.3/26 

0.13510 0.13510 0.13510 0.513 	t 8-23 35.6/26 

0.13510 0.13510 0.13530 0.504 8-23 32.8/26 

0.13510 0.13530 0.13530 0.495 	t 8-23 30.1/26 

0.13530 0.13460 0.13460 0.542 	t 8-23 43.4/26 

0.13530 0.13460 0.13510 0.517 8-23 43.0/26 

0.13530 0.13460 0.13530 0.506 	t 8-23 44.8/26 

0.13530 0.13510 0.13510 0.489 8-23 43.6/26 

0.13530 0.13510 0.13530 0.475 8-23 42.2/26 

0.13530 0.13530 1 0.13530 0.483 	14 8-23 29.7/26 

Table A.34: 'E-like' (Ic i {!s 2 !c3 }) on the 24 x 48 lattice at 0 = 6.2 with C=NP, 
obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) corre-
lators. 
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X 1  K2  K3 amA Fit Range X 2 /d.o.f 

0.13460 0.13460 0.13460 0.580 	t 8-23 52.7/26 

0.13460 0.13460 0.13510 0.554 8-23 48.8/26 

0.13460 0.13460 0.13530 0.544 8-23 43.7/26 

0.13460 0.13510 0.13510 0.530 	t 8-23 46.2/26 

0.13460 0.13510 0.13530 0.518 	t 8-23 38.9/26 

0.13460 0.13530 0.13530 0.506 8-23 39.8/26 

0.13510 0.13460 0.13460 0.558 	t 8-23 34.4/26 

0.13510 0.13460 0.13510 0.532 	t 8-23 52.2/26 

0.13510 0.13460 0.13530 0.522 8-23 45.8/26 

0.13510 0.13510 0.13510 0.506 	t 8-23 49.0/26 

0.13510 0.13510 0.13530 0.493 8-23 42.2/26 

0.13510 0.13530 0.13530 0.480 	V1  8-23 39.4/26 

0.13530 0.13460 0.13460 0.550 +7  8-23 33.0/26 

0.13530 0.13460 0.13510 0.529 8-23 29.9/26 

0.13530 0.13460 0.13530 0.520 	t 8-23 22.4/26 

0.13530 0.13510 0.13510 0.507 	t 8-23 27.7/26 

0.13530 0.13510 0.13530 0.497 	t 8-23 24.4/26 

0.13530 1  0.13530 1  0.13530 1  0.467 8-23 36.9/26 

Table A.35: 'A-like' (tc1[t2ic3]) on the 24 x 48 lattice at 0 = 6.2 with C=NP, 
obtained from a double exponential fit to the (LLL,LLL) and (FFL,LLL) corre-
lators. 



Appendix B 

Light Hadron Spectrum Results 

Pion Chiral extrapolations 

The pion masses for each data set tabulated in appendix A, are fitted to following 

ansatze. 

. Fit 1: The three lightest pion masses are fitted to 

MPS C1 (Ml + m 2 ). 	 (B.1) 

. Fit 2: All pion masses are fitted to 

m s  = CI (MI + m2). 	 (13.2) 

. Fit 3: All pion masses are fitted to 

m s  = C1 (Ml + m 2 ) + C2 (mi  + rn2 ) 2 . 	 ( 13.3) 

. Fit 4: All pion masses are fitted to 

ms = C1 (Ml + m2 ) + C3 (m 1  + rn2 ) 3 . 	 ( 13.4) 

. Fit 5: All pion masses are fitted to 

ms = Ci (rni  + m2 ) + C2 (m i  + rn2)2  + C3 (m i  + rn2 ) 3 . 	( B.5) 
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In these fits m, i = 1, 2, are parameterised as 

(2ri 

1 	Co\
ms =-----) 	 (13.6) 

so that r,, = 1/Co . 

II Fit  I I 	C1 I 	C2  I x 2 /d.o.f 

2 0.143388 +27  2 150 	+ 8 
I 	-101 2.1/1 

3 0.143519 	t1  2 007 	+108  
I 	-1001 

0.37 	t 

Table B.36: Chiral extrapolations for the pion calculated on the 12 3  x 24 lattice at 
= 5.7 with C=TAD. In this case there are only three pion masses so not all fits 

could be performed. In Fit 3, as there are on degrees of freedom no minimisation 
on the parameters could be performed, and the quadratic equations are solved 
for the best fit and for each bootstrap clusters. 

Fit I 	r. , C1  I 	C2  I X 2 /d.o.f I 
2 0.143444 	±28  

-231 2.145 	-12 4.9/1 

0.143543 	±66  
-42 2.023 	±50  

. 	-66 0.31 	±15 
-13 

I 
I 

Table B.37: Chiral extrapolations for the pion calculated on the 16 x 24 lattice at 
0 = 5.7 with C=TAD. In this case there are only three pion masses so not all fits 
could be performed. In Fit 3, as there are on degrees of freedom no minimisation 
on the parameters could be performed, and the quadratic equations are solved 
for the best fit and for each bootstrap clusters. 
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Fit  Ci  C2  C3  

1 0.139267 	+21  
11 1 415 	+14  

- 21 ________________ ______________ 0.2/1 ____________ 
2 0.139245 +14 1.463 	t  28.1/4 

3 0.139305 	+22  
-16 1.323 	+31  

. 	35 0 	+16  
-16 6.0/3 __________ 

4 0.139288 1.379 	t  3.14 	-63 3.2/3 

5 1  0.139262 1.462 	+56  
87 -1.03 	+105  

-69 7.24 	+277 
 -414  

Table B.38: Chiral extrapolations for the pion calculated on the 16 3  x 48 lattice 

at 3 = 6.0 with C=TAD. 

Fit K, Ci  C2  C3  2 /d.o.f 

1 0.137957 	i
+15  1.06 	t  0.1/1 

2 0.137910 	+14  
-17 115 	1  

-2  10.1/4 

3 0.137968 	t 0.99 	+8  
4 i 	+2  

. 7 2.6/3 

4 0.137947 	+15  
30 1.07 	-2 

+14  
-35  3.0/3 

5 1 0.137976 	+29  
55 0.97 	+16 

-10 1.8 	+19 
 -27 -2.6 	+150 

-117  2.6/2 

Table B.39: Chiral extrapolations for the pion calculated on the 24 3  x 48 lattice 

at 13 = 6.2 with C=TAD. 

Fit K, C1  C2  C3  X 2 /d.o.f 

1 0.135310 	+16  
-16 1.520 	+21 

-17  4.0/1 

2 0.135299 	+12  
-9 1.557  19.7/4 

3 0.135335 	+20  
-17 1.452 	+38  

-40 0.64 	+22  
-23  11.5/3 

4 0.135324 	+17  
-13 1.491 	+21  

-23 3.10 	-87 8.7/3 

5 0.135262 	+28  
-23 1.707 	+87  

95 -2.95 	+126  
-118 16.15 	+546 

557 2.9/2 

Table B.40: Chiral extrapolations for the pion calculated on the 16 3  x 48 lattice 

at 0 = 6.0 with C=NP. 
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Fit I _______ C1  C2  C3  X 2 /d.o.f 

1 0.135243 	+23  
-11 i. 571 	±22 

-30 0.1/1  __ 
2 0.135259 	±17  

-10 1 573 	±14 
-12  11.9/4 

3 0.135290 	±27  
-12 1.448 	+36  

-55 
+31 
-18 _0. 78  4.9/3 

4 0.135275 	±21 
-10 1 507 	±22 

-30 
+117 

. 	-65  4.5/3 

5 0.135225 	+50  
-24 1.667 	+116  

. 	-174 -1. 96 	+216 
. 	-162 

93 	±709 
-894 0.03/2 

Table B.41: Chiral extrapolations for the pion calculated on the 32 3  x 64 lattice 

at 3 = 6.0 with C=NP. 

Fit  C1  C2  C3  X 2 /d.o.f 

1 0.135873 	+9  -40 1.078 _____________  
 0.1/1 

2 0.135823 +15  
-19 1 . 167 	±15 

-14  7.9/4 

3 0.135895 	+14  
-55 0.969 	±129  1 8 	± 2 

-11  
1.6/3 

4 0.135869 	±13  
-39 1.061 	±70 

-20 10.9 	+16  
-65 1.7/3 

5 0.135896 	±41  
-86 0.966 	±295  

-156 1 8 	+31 
. 	-56 

_0.1 
	

±351 
 -217  1.6/2 

Table B.42: Chiral extrapolations for the pion calculated on the 24 3  x 48 lattice 

at 6 = 6.2 with C=NP. 
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Quark masses and Lattice Hadron Masses 

Action /3 N x Nt   i(1/a) 

TAD 5.7 12 x 24 0.143366 	+100 
 -88 41- 20  	+19  

-19 

TAD 5.7 16 x 32 0.143400 	±64 
 -40 4. 04 	+13  

. 	 -10 

TAD 6.0 16 x 48 0.139231 3.68 	±10 

TAD 6.2 24 x 48 0.137914 	±16  
37 3. 67 	+13  

-25 

NP 6.0 16 x 48 0.135266 	+20  
-16 3. 50 	+10  

. 	 -10 

NP 6.0 32 x 64 0.135223 	-11 
+12 
-10 

NP 6.2 24 x 48 1  0.135842 	+13 
-52 

+14 
-40 

Table B.43: Estimates of the "normal" quark mass obtained by matching 
amps/amy with the physical value of MI-IMP.  Results are given for (1) i 
and (2) the lattice quark mass TT evaluated at 1/a. The quark mass is given in 
MeV. 
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Qty Action 0 	1 N,3  x Nt  ,c3  m(1/a) 

MK/M,, TAD 5.7 12 X 24 0.13986 	t 103 

MK/Mp TAD 5.7 12 X 24 0.13929 	+17  
-18 119 	-3 

M/M TAD 5.7 12 x 24 0.13914 	+17  
-18 124 	-3 

MK/M P  TAD 5.7 16 x 32 0.14011 100 	t 
MK ,,  IMp 

 
TAD 5.7 16 X 32 0.13964 	±22  

-21 113 	4 
-4 

M,/M TAD 5.7 16 x 32 0.13950 	+22  
-21 117 	-4 

MK/Mp TAD 6.0 16 X 48 0.13754 	+6  
-6 90 	+2  

-2 

MK/M TAD 6.0 16 x 48 + 9 0.13739 8 	+4 
 

M/M TAD 6.0 16 x 48 0.13732 	+11  - 102 	-4 

MK/M TAD 6.2 24 x 48 0.13668 	+6  
-7 90 	-5 

MK ,,  IM TAD 6.2 24 x 48 0.13662 	+8 -15 
+6 

 94 -5 

Mq,/Mp  TAD 6.2 24 X 48 0.13657 	+ 8 
-15 

+6 
-5 

MK/Mp NP 6.0 16 X 48 0.13365 	+6  
-5 88 	+2  

-3 

MK ,,  IMp  NP 6.0 16 X 48 0.13350 	h1 
-12 

+4 
-5 

M/M P  NP 6.0 16 x 48 0.13343 	+11 
-12 

+4 
-5 

MK/Mp NP 6.0 32 x 64 0.13369 	+6  
-6 84 	-2 

MK ,,  IMp  NP 6.0 32 x 64 0.13360 	+10  
:: 	7 89 	-4 

MO  IM NP 6.0 32 x 64 0.13354 	+10  
-7 92 	-4 

JVIK/M p  NP 6.2 24 X 48 0.13466 	t 88 	t 
Mj,c ,,  / Mp  NP 6.2 24 x 48 0.13461 	+21 - 92 	-7 

M/M NP 6.2 24 x 48 + 10  0.13455 	21 . 6 	+9  

Table B.44: Estimates of the strange quark mass obtained by matching different 
quantities with their physical values. Results are given for (1) ic 5  and (2) the 
lattice quark mass m evaluated at 1/a. The quark mass is given in MeV. 
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ME 

amK amK amK* amK* am am 

Action 3 N x Nt  am am from from from from from from 

MK*/M p  M/M MK/Mp M/M MK/Mp MK*/M p  

TAD 5.7 12 x 24 0.1225 0.6857 +81 

 
0.4736 0.4820 0.7753 0.7941 0.8647 0.8944 

-123 -71 

TAD 5.7 16 x 32 0.1188 0.6649 0.4551 0.4632 0.7531 0.7697 0.8413 0.8668 +155  

TAD 6.0 16 x 48 0.0709 0.3964 0.2650 0.2700 0.4517 0.4589 0.5069 0.5165 
-76 

TAD 6.2 24 x 48 0.0530 0.2964 0.1946 0.1985 0.3391 0.3429 0.3818 0.3857 +120 

1 -11 

NP 6.0 16 x 48 0.0739 +13  0.4136 0.2769 0.2821 0.4711 0.4788 0.5286 0.5390 
-102 

NP 6.0 32 x 64 0.0730 0.4087 0.2696 0.2749 0.4680 0.4739 0.5263 0.5330 
-120 

NP 6.2 24 x 48 0.0531 +21  0.2971 0.1952 +184  0.1994 +183  0.3398 0.3438 0.3824 0.3865 
+160 

Extrapolated/interpolated values of meson masses in lattice units. 
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CD 

Action 0 N,3  x N t  amN amA amE am= amA amE. am= * amcl 

TAD 5.7 12 x 24 0.913 +'9 1.155 +21 
 1.262 +21  1.369 1.476 +20  

TAD 5.7 16 x 32 0.928 1.132 +44  1.232 +14  1.332 +21  1.432 6  

TAD 6.0 16 x 48 0.546 0.612 0.627 
+10  0.696 0.676 0.736 - 0.796 0.856 

16 10 

TAD 6.2 24 x 48 0.401 +13  0.456 +14  0.462 0.510 +17  0.499 0.547 0.595 
+17  0.643 +20  

NP 6.0 16 x 48 0.553 +12  0.622 0.645 0.721 0.689 0.754 0.819 +16  0.883 
+17  

NP 6.0 32 x 64 0.551 0.625 +17  0.625 +16  0.699 +15  0.690 0.749 +16  0.808 0.867 +15  

NP 6.2 24 x 48 0.402 0.457 0.466 +17  0.524 +23  0.505 0.551 +21  0.598 0.644 +27  

Extrapolated/interpolated values of baryon masses in lattice units. In calculating the 

strange baryons, m was determined by fixing MK/M. 

0 
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CD 
C) 

CD 
Cl) 

Cl) 

I, 



References 

D. Gross and F. Wilczek. Phys. Rev. D, 8, 3688, (1973). 

D. Gross and F. Wilczek. Phys. Rev. Lett, 30, 1343, (1973). 

H.D. Politzer. Phys. Rev. Lett, 30, 1346, (1973). 

G. t'Hooft. Unpublished remarks at the (1972) Marseille Conference on 

Yang-Mills Fields. 

M. Creutz. Quarks, Gluons and Lattices. Cambridge University Press, 

Cambridge, 1983. 

C. Rebbi. Lattice Gauge Theories and Monte Carlo Simulations. World 

Scientific, Singapore, 1983. 

H.J. Rothe. Lattice Gauge Theories. World Scientific, Singapore, 1992. 

I. Montvay and G. Miinster. Quantum Fields on a Lattice. Cambridge 

University Press, Cambridge, 1994. 

H. Hamber and G. Parisi. Phys. Rev. Lett, 47, 1792, (1981). 

I. Montvay and G. Miinster. Quantum Fields on a Lattice. In [8], 1994. 

Given by Dyson's formula, see page 96. 

T. Cheng and L. Li. Gauge theory of elementary particle physcs. Oxford 

University Press, Oxford, 1984. 

K.G. Wilson. Phys. Rev. D, 10, 2445, (1974). 

H.B. Nielsen and M. Ninomiya. Nuci. Phys. B, 185, 20, (1981). 

L. H. Karsten and J. Smit. Nucl. Phys. B, 183, 103, (1981). 

211 



REFERENCES 	 212 

K.G. Wilson. in New Phenomena in Subnuclear Physics, 1975. 

L. Susskind. Phys. Rev. D, 16, 3031, (1977). 

G.P. Lepage. in From Action to Answers-Proceedings of the 1989 Theoret-

ical Advanced Summer Institute in Particle Physics, 1990. 

N. Metropolis et al. J. Chem. Phys., 21, 1087, (1953). 

S.Duane et al. Phys. Lett. B, 195, 216, (1987). 

G.P. Lepage. Redesigning lattice qcd. Lecture course at Computing Particle 

Properties School, March 1997. 36 Internationale Universitatwochen fur 

Kern und Teilchenphysik, Schladming, Austria. 

D. Leinweber and T. Cohen. Phys. Rev. D, 3512, 3512, (1994). 

B Efron. The jacknife, the bootstrap and other resampling plans. Society 

for Industrial and Applied Mathematics, (1982). 

P. Hasenfratz and F. Niedermayer. Nuci. Phys. B, 414, 785, (1994). 

K. Symanzik. Mathematical problems in theoretical physics, volume 153. 

Springer, New York, 1982. 

K. Symanzik. Nuci. Phys. B, 226, 187,205, (1983). 

M. Lüscher and P. Weisz. Comm. Math. Phys., 97, 59, (1985). 

M. Lüscher and P. Weisz. Comm. Math. Phys., 98, 433, (1985). 

B. Sheikholeslami and R. Wohlert. Nucl. Phys. B, 259, 572, (1985). 

H.W. Hamber and G.M. Wu. Phys. Lett. B, 136, 255, (1984). 

G. Heatlie et al. Nuci. Phys. B, 352, 266, (1991). 

J. Mandula et al. Nuci. Phys. B, 228, 8, (1983). 

UKQCD Collaboration, C.R. Aliton et al. Phys. Lett. B, 284, 377, (1992). 



REFERENCES 	 213 

P. Lepage and P. Mackenzie. Phys. Rev. D, 48, 2250, (1993). 

E. Cabrielli et al. Nuci. Phys. B, 362, 475, (1991). 

UKQCD Collaboration P.A. Rowland. Nuci. Phys. B (Proc. Suppl.), 53, 

308, (1997). 

K. Jansen et al. Phys. Lett. B, 372, 275, (1996). 

M. Lüscher et al. Nuci. Phys. B, 478, 365, (1996). 

M. Liischer et al. Nuci. Phys. B, 491, 323, (1997). 

M. Liischer et al. Nuci. Phys. B (Proc. Suppi.), 53, 905, (1997). 

R Sommer. To appear in the proceedings of "Lattice QCD on Parallel 

Computers", University of Tsukuba, March, 1997. hep-lat/9705026. 

M. Lüscher and P. Weisz. Nuci. Phys. B, 479, 365, (1996). 

M. Lüscher et al. Nuci. Phys. B, 491, 344, (1997). 

S. Sint and P. Weisz. hep-1019704001. 

K. Symanzik. Nuci. Phys. B, 190 [FS3], 187,1, (1981). 

M. Lüscher. Nuci. Phys. B, 254, 365, (1985). 

M. Lüscher et al. Nuci. Phys. B, 384, 168, (1992). 

S. Sint. Nuci. Phys. B, 421, 135, (1994). 

S. Sint. Nuci. Phys. B, 451, 416, (1995). 

J.N. Labrenz and S.R. Sharpe. Nuci. Phys. B (Proc. Suppl.), 34, 335, 

(1994). 

J.N. Labrenz and S.R. Sharpe. Phys. Rev. D, 54, 4595, (1996). 

T. Bhattacharya et al. Phys. Rev. D, 53, 6486, (1996). 



REFERENCES 
	

214 

R.D. Kenway. in proceedings of XII International Conference on HEP, 

Leipzig, 1984. 51, eds. A. Meyer and E. Wieczore. 

A. Billoire, E. Marinari, and C. Parisi. Phys. Lett. B, 154, 160, (1985). 

APE Collaboration, P. Bacilieri et al. Phys. Lett. B, 214, 115, (1988). 

APE Collaboration, P. Bacilieri et al. Nuci. Phys. B, 317, 508, (1989). 

G. Kilcup. Nuci. Phys. B (Proc. Suppi.), 9, 201, (1989). 

V.N Gribov. Nuci. Phys. B, 139, 1, (1978). 

S. Gusken et al. Nuci. Phys. B (Proc. Suppl.), 17, 361, (1990). 

E. Eichten C. Hockney and H. B. Thacker. Nuci. Phys. B (Proc. Suppi.), 

17, 529, (1990). 

R. Gupta et al. Phys. Rev. D, 48, 3330, (1994). 

P. Lacock et al. Phys. Rev. D, 51, 6403, (1995). 

C. Ailton et al. Phys. Rev. D, 47, 5128, (1993). 

R.M. Baxter. New Approaches to Particle Spectra in Lattice QCD. PhD 

thesis, University of Edinburgh, 1993. 

M. Toper. Phys. Lett. B, 183, 345, (1987). 

M. Albanese. Phys. Lett. B, 192, 163, (1987). 

S. Perantonis et al. Nuci. Phys. B, 326, 544, (1989). 

P.A. Boyle. Heavy Meson Phenomenology. PhD thesis, University of 

Edinburgh, in preparation. 

K.B. Teo and J.W. Negele. Nuci. Phys. B (Proc. Suppl.), 34, 390, (1994). 

G.S. Bali and K. Schilling. Phys. Rev. D, 47, 661, (1993). 

M. Creutz. Phys. Rev. D, 36, 2394, (1987). 



REFERENCES 	 215 

F.R. Brown and T.J. Woch. Phys. Rev. Lett, 58, 163, (1987). 

N. Cabibbo and E. Marinari. Phys. Lett. B, 119, 387, (1982). 

A.D. Simpson. Algorithms for QCD. PhD thesis, University of Edinburgh, 

1991. 

S.M. Pickles. Algorithms for Lattice QCD. PhD thesis, University of 

Edinburgh, in preparation. 

D.A. Smith. PhD thesis, University of Edinburgh, in preparation. 

W. Bardeen et al. hep-1019705008. 

W. Bardeen et al. hep-1019705002. 

UKQCD Collaboration, H.P. Shanahan et al. Phys. Rev. D, 55, 1584, 

(1997). 

UKQCD Collaboration, C.M. Michael and H.P. Shanahan. Nuci. Phys. B 

(Proc. Suppi.), 47, 337, (1996). 

UKQCD Collaboration, R.D Kenway. Nuci. Phys. B (Proc. Suppi.), 53, 

206, (1997). 

S.M. Ryan. Light Hadron Spectroscopy and Soft Covariant Gauges in 

Lattice QCD. PhD thesis, University of Edinburgh, 1996. 

JLQCD Collaboration, S. Aoki et al. Nuci. Phys. B (Proc. Suppi.), 47, 355 1  

(1996). 

UKQCD Collaboration, C.R. Aliton et al. Phys. Rev. D, 49, 474, (1994). 

QCDPAX Collaboration, Y. Iwasaki et al. Phys. Rev. D, 53, 6443, (1996). 

C.R. Ailton et al. Nuci. Phys. B, 489, 427, (1997). 

F. Butler et al. Nuci. Phys. B, 430, 179, (1994). 

C. Davies et al. Phys. Rev. D, 50, 6936, (1994). 



REFERENCES 	 216 

A. Duncan et al. Phys. Rev. D, 51, 5101, (1995). 

W.H. Press et al. Numerical Recipies in C. Cambridge University Press, 

New York, 2nd edition, 1992. 

D.W. Marquardt. Society for Industrial and Applied Mathematics, 11, 431, 

(1963). 

R. Fletcher. Pratical Methods of Optimization. John Wiley & Sons, New 

York, 2nd edition, 1981. 

M. Lüscher. Comm. Math. Phys., 104, 177, (1986). 

D. Hochberg and H.B. Thacker. Nucl. Phys. B, 257, 729, (1985). 

M. Fukugita et al. Phys. Lett. B, 294, 380, (1992). 

S.R. Sharpe. Phys. Rev. D, 41, 3233, (1990). 

S.R. Sharpe. Phys. Rev. D, 46, 3146, (1992). 

C. Bernard and M. Golterman. Phys. Rev. D, 46, 853, (1992). 

E. Jenkins et al. Phys. Rev. Lett, 75, 2272, (1995). 

M. Booth et al. Phys. Rev. D, 55, 3092, (1997). 

S. Collins et al. Nuci. Phys. B (Proc. Suppl.), 47, 378, (1996). 

S. Gottlieb. Nuci. Phys. B (Proc. Suppi.), 53, 155, (1997). 

MILC Collaboration S. Gottlieb et al. To appear in the proceedings of "Lat-

tice QCD on Parallel Computers", University of Tsukuba, March, 1997. 

hep-lat/9707014. 

K.C. Bowler et al. Phys. Lett. B, 162, 354, (1985). 

S. Ono. Phys. Rev. D, 17, 888, (1978). 



REFERENCES 	 217 

R.M. Barnett et al. Review of Particle Properties. Phys. Rev. D, 54, 1, 

(1996). 

IF Donoghue et al. Dynamics of the Standard Model. Cambridge Uni-

versity Press, Cambridge, 1992. 

E. Eichten and K. Gottfried. Phys. Lett. B, 66, 286, (1977). 

C. Quigg and J.L. Rosner. Phys. Rept. C, 56, 167, (1979). 

K. Gottfried et al E. Eichten. Phys. Rev. D, 21, 203, (1980). 

UKQCD Collaboration, P. Lacock and C. Michael. Phys. Rev. D, 52, 5213, 

(1995). 

S. Collins et al. Nuci. Phys. B (Proc. Suppi.), 53, 881, (1997). 

M. Cöckeler et al. Phys. Lett. B, 391, 388, (1997). 

M. Göckeler et al. hep-101970 7021. 

H. Wittig. Verification of 0(a)-improvement. To appear in the proceedings 

of "Lattice 97". 

CP-PACS Collaboration T. Yoshie et al. CP-PACS results with the Wilson 

action. To appear in the proceedings of "Lattice QCD on Parallel Comput-

ers", University of Tsukuba, March, 1997. 

T. Yoshie. Review of Light Hadron Spectroscopy. To appear in the pro-

ceedings of "Lattice 97". 

CP-PACS Collaboration S. Aoki al. To appear in the proceedings of "Lat-

tice 97", hep-lat/9709139. 


