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ABSTRACT 

The aim of this work was to investigate by X-ray interferometer 

techniques the strain induced in silicon after thermal oxidation and 

boron diffusion processing. An elasticity model was developed by 

which the resulting strain and interferometer moir6 fringe pattern 

could be predicted when the oxidation or diffusion took the form of 

a circular disc. By this means, the stress in oxide thermally grown 

at 950°C was measured to be 1.65 x 10 dynes/cm2. Double crystal 

techniques were used to measure the wafer bowing after oxidation, 

giving good agreement with the interferometer measurements. The 

solute lattice contraction coefficient for boron was measured by 

interferometry and found to be 6.0 x 10- 
24 
 cm3/atom. Combining this 

result with four point probe measurements, the mobility of holes in 

degenerate silicon was found to be 122 cm2/volt sec. By keeping the 

total dose of boron below the critical value of 3 x 1015  atoms/cm2 

in order to avoid lattice dislocation, it was found by double crystal 

measurements that this was insufficient to produce a significant 

diffraction peak from the diffused region under conditions of total 

Bragg reflection. The possibility of using oxidation or diffusion 

processing to alter the lattice parameter of silicon or germanium 

suitably in order to construct an X-ray monochromator or resonator 

capable of performing at room temperature was shown to be impracticable. 

Finally, the Burgers vectors of dislocations appearing in an 

interferometer after oxidation were successfully determined. 
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CHAPTER 1: INTRODUCTION 

In recent years, the growth of the semiconductor industry has been 

advancing at a considerable rate, particularly in the USA, Europe and 

Japan. For example, in 1965 in the US the total sale of semiconductor 

devices amounted to $670M, climbing to $3253M in 1977. This trend is 

shown in Fig 1.1 with predictions for 19811.  As a consequence of this, 

solid state physics has flourished from a mostly theoretical science 

into an essential applied science in order to meet the technological 

demands of the industry. It is interesting to note,for instance, the 

number of occasions when theories developed many years ago, and until 

recently mostly untested in practice, are now fundamental to device 

processing and to device diagnostics. 

However, owing to the high consumer demand and the fierce compe-

tition, a significant amount of physics associated with integrated 

circuit processing is still not properly understood, and only empirical 

information is available. For instance if a certain processing 

technique is known to give consistent good results, it is of no 

interest to a semiconductor manufacturer to know why or how the 

process works. 

It is a well established fact that stress in a silicon substrate 

or for example in an oxide grown on it has a significant effect on 

fundamental electrical parameters. This becomes apparent when it is 

realised that the energy levels associated with conduction and valence 

bands can shift independently of each other as a function of stress. 

In fact the valence maximum can become degenerate in some stress 
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year 

FIGURE 1.1: Growth of U.S. semiconductor industry. 
Total sales of semiconductor devices between 1965 and 
1977 with projection to 1981. 

(Ref 1) 
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states. Resistivity, mobility and carrier concentration are all stress 

dependent. An example of the magnitude of the effect of stress may be 

found in Wolf 2: a silicon crystal diffused with boron with a surface 

concentration equal to that of maximum solubility introduces a stress 

of about 1O10  dynes/cm 2  into the silicon. The effect of this is to 

increase the minority carrier density by an order of magnitude 

Another serious effect of stress is to cause dislocations within 

the silicon which give rise to leakage paths due to impurity precipita-

tion along the dislocation line and hence to poor device yields. 

Failure mechanisms of this type, because of their severity, have been 

studied in detail by many workers31. However, since stress per se is 

not a failure mechanism of devices but only has the effect of changing 

parameter values which are empirically determined anyway, there has not 

been the need for quite such close investigation. 

The existence of stress within a crystal may be seen most easily 

by X-ray examination. Since the X-ray wavelengths such as CuKct, MoKa 

are about 1/3 and 1/7 of the lattice parameter of silicon respectively, 

diffraction is able to take place from the electrons associated with 

the atomic sites, and so any strain of this lattice may be instantly 

detected. Fig 1.2 illustrates this point well. The intensity varia-

tion is due entirely to strain induced within the silicon substrate by 

processing. Although this circuit is a digital MOS circuit, the 

effect on electrical parameters will be more marked for analogue 

circuits or those involving charge transfer such as CCDs. 

Early experiments to determine the stress in an oxide involved the 

oxidation of one surface of the silicon and measuring the forces 

12  needed to cancel the resultant bowing of the silicon wafer. Later 
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( a ) 

(b) 

FIGURE 1.2(a): X-ray topograph of MOS chip (220 reflection, MoKa 
radiation) 

jj: Photomicrograph of same chip 
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work involving the measurement of the induced radius of curvature of the 

silicon by X-ray methods has been carried out by Schwuttke and Howard13, 

and Brotherton et a114. Blech and Meieran15  measured oxide induced 

strain by the technique of measuring the intensity contrast of an X-ray 

topograph image. 

Similar experiments have been performed using slices with impurity 

atoms such as boron or phosphorus diffused or implanted into their 

surfaces1619. The stresses within a silicon substrate arising from 

effects other than oxidation or diffusion (eg metal films) have also 

been measured 20-24 

However, it must be stressed that by using X-ray techniques, the 

detailed analysis of strain within a crystal becomes extremely 

complex since the diffraction of X-rays is dependent on the strain 

itself. Much work has been done with strained crystals, not primarily 

to study the strain, but in order to study the effect of strain on 

X-ray diffraction2538. Some of this work will be discussed later in 

order to interpret the information gained from the measuring technique 

used in this thesis. 

One feature of all the methods discussed so far for analysing 

strain is that they are all indirect methods, and that up until now,  

those using X-rays are dependent on the X-ray wavelengths used. The 

technique under discussion in this thesis is essentially one which is 

used for analysing strain in materials, by the superposition of ruled 

gratings, namely moir6 fringe analysis39'40. (Of course, the strains 

associated with silicon processing are several orders of magnitude 

smaller than those analysed with the classical ruled grating). The 

ruled grating' in this application is the silicon lattice itself. 



Hence the strain analysis will be seen to be directly dependent on the 

strained lattice, and it is this feature combined with a sensitivity an 

order of magnitude greater than achieved with other techniques which 

makes this moir6 fringe technique so attractive. 

By considering the silicon lattice as a 'ruled grating', some idea 

of the sensitivity may be obtained. The range of moir6 fringe spacings 

which may be observed is between about 2 cms maximum to about 0.2 mm 

minimum. With an effective lattice spacing of 2 x 10_8  cm, the range 

of strains (/) which are measurable is between io_8  to  l06 	This 

is much more sensitive than a direct topographic method, such as used 

by Blech and Meieran15. In their experiment only the high strain 

regions close to the oxide edge could be measured. 

The instrument by which moire fringes may be obtained is the X-ray 

interferometer. The first interferometer was constructed by Bonse and 

Hart in 196541  and has been developed by them and other workers since4276. 

However, it has been used mostly as a tool for X-ray diffraction 

analysis rather than for strain measurements. Considerable interest has 

been shown in recent years in using the interferometer for direct 

measurement of lattice parameter without resorting to measuring it in 

terms of the X-ray wavelength, which has been the only possible way 

up until now5052' 56-59 

Although in this thesis interest is centred on X-ray interferometry, 

some experiments are performed using a double crystal spectrometer. 

This is also a very sensitive instrument but measurements made with it 

do not yield 'direct' measurements of strain as is the case with the 

interferometer. The experiments made with the instrument are therefore 

either to reinforce the interferometric measurements or to be 
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complementary to them. 

The basic aim of this thesis is to measure the strain associated 

with oxidation and diffusion of silicon with this new technique and 

to compare the results with those already published. It is also pro-

posed to investigate the feasibility of using diffused or oxidised 

samples which have had their lattice parameters suitably changed as 

X-ray monochromators or resonators. 

Chapter 2 contains a brief outline of the nature of the oxidation 

and diffusion of silicon in order that the origin of stress may be 

properly understood. The dynamical theory of X-ray diffraction is 

applied to the X-ray interferometer in Chapter 3 and to the double 

crystal spectrometer in Chapter 4. Chapter 5 describes sample 

preparation and experimental techniques used. Chapter 6 analyses in 

detail, by interferometric techniques, dislocations generated during 

processing. Chapter 7 analyses the strains induced by thermally grown 

oxides and develops an elasticity model to describe the strain in a 

thin slice of material induced by any shape of thin film or diffusion 

in one surface. Observations are made on diffused samples in Chapter 8 

and the results obtained in this thesis are discussed in Chapter 9, 

together with suggestions for further experiments. 

One interesting feature of this thesis is the inter-disciplinary 

nature of the work 

integrated circuit 

standpoints. Also 

firmly grasped in 

and, possibly most 

must be studied in 

involved. A good understanding is required of 

technology, both from the processing and electrical 

the complexities of elasticity theory must be 

rder to attempt to compare observations with theory 

important of all, the theory of X-ray diffraction 

depth in order to interpret the results. 



CHAPTER 2: THE OXIDATION AND DIFFUSION PROCESSES 

2.1 OXIDATION 

The oxidation of silicon plays a very important part in the 

fabrication of integrated circuit devices. There are several quite 

independent roles which may be played by an oxide layer. In 

bipolar processes, the oxide may be used to mask off areas of the 

silicon substrate leaving the remaining areas to be diffused or 

ion-implanted with the appropriate impurity. The final stage in 

the process is to cover the entire chip with a pyrolytic oxide in 

order to protect it, and also to provide electrical passivation. 

More recently, a further, but fundamental, application lies in its 

use as the dielectric in field effect transistors which are the 

basis of the MOS structure. Since the electric field in these regions 

must be high, the oxide is made as thin as possible. In order to 

avoid a yield hazard on account of this, the technological develop-

ment behind this aspect of the process has become very advanced. It 

is fortuitous that silicon oxide fulfils these functions well, since 

its growth on the silicon substrate is in principle a very simple 

task. 

There are twenty two phases of silica of which the oxide of 

silicon, or silica glass is one 77. Thermally grown silicon oxide, 

Si02, being a glass, is therefore amorphous rather than crystalline. 

Much research has been undertaken in the analysis of the structure 

of glass. Some theories, such as those of Zachariasen78. regard 

the structure as consisting of tetrahedra of oxygen atoms surround-

ing a silicon atom (as in the crystalline quartz) but with the 



tetrahedra linked together by their vertices in a random fashion 

(Fig 2.1(b)). Other theories 
79 
 maintain that although there is no 

long range order, there does exist short range order, even to the 

extent of the formation of small crystallites of quartz (Fig 2.1(c)). 

Since the structure is irregular, the strength of the atomic 

bonds is not constant. Thus, different energies are required to 

break them. For this reason there is no sharp melting point as 

there is with quartz. The irregularity of structure also leads to 

the existence of 'holes within the structure and to unbound oxygen 

atoms which are free to become attached to impurities. Thus many 

types of extrinsic glass exist, resulting from impurities such as 

boron, aluminium, phosphorus and lead, and the physical properties 

associated with each can be very different. Table 2.1 shows, for 

example, the coefficients of thermal expansion for a selection of 

these glasses. This is an important parameter as will be seen later 

when assessing the stress induced in the silicon by an oxide. In 

this instance, however, only oxides free from such impurities will 

be considered. 

TABLE 2.180 

Corning Code No Type of 
Glass 

Thermal 	Expansion Co- 
efficient 	(XI 	/°C) 

(0-300 C) 

7940 Fused silica 5.6 
7900 96% silica 8 
7740 Heat resistant borosilicate 32.5 
7070 Low loss borosilicate 32 
1720 Aluminosilicate 42 
0080 Soda lime 92 
0010 Lead 91 

Silicon 38 
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FIGURE 2.1: 	Two dimensional schematics of - (a) silicon crystal 
network, (b silica glass network as described by 
Zachariasen 'and (c silica glass viewed as a polymer-
crystalline network 



2.1.1 Oxide Formation 

Before oxidation, the silicon substrate must be carefully pre-

pared and cleaned by chemical or mechanical polishing. The actual 

oxidation process may be performed in several ways. Thermal 

oxidation, which is the standard method for most of the oxides 

grown in the IC process, involves passing oxygen or steam over the 

silicon in a furnace. This is the type of oxidation which will be 

treated in detail here. Anodic oxides are grown by applying an 

electric field to induce the transport of mobile ions. Oxides may 

also be formed by vapour deposition or sputtering techniques. 

The arrangement used for steam oxidation is shown in Fig 2.2. 

High purity water is boiled, and the steam passed to the furnace 

which is heated to typically 1050°C. Initially, a very thin oxide 

is formed on the silicon surface due to chemisorption of water 

until an effective barrier is set up between the oxide-silicon 

interface and the steam. Oxidation now proceeds by two methods. 

Water molecules effectively diffuse through the oxide until it 

becomes positioned interstitially between two silicon atoms. The 

following reaction now takes place. 

H 
2 
 0 + Si-Si - Si-U-Si + H2  

Alternatively a reaction takes place at the oxide-vapour inter-

face to produce silanol, 

H20 + Si-U-Si - 2 (Si-OH) 
	

(2.2) 

The silanol now diffuses through the oxide until it reaches the 

silicon interface to build up the oxide once again, 



Thermocouple 

Thermometer 
oxidation furnace 

High purity 
water 

FIGURE 2.2: Open-tube steam oxidation apparatus 
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2(Si-0H) + Si-Si - 2(Si-0-Si) + H2 	 (2.3) 

In both reactions, the hydrogen diffuses rapidly away as may be 

seen from the diffusion coefficients at 1050°C given in Table 2.2. 

However, it is possible for the hydrogen to form hydroxyl groups 

after reacting with other silica groups. 

TABLE 2.280 

Diffuser Diffusion Coefficient at 1050°C 
(cm'/sec) 

02 2.82 	x 	10-14 

H20 9.5 	x 	10- 10 

H2  2.2 x 	l06 

At high temperatures when the oxidation reaction is very fast, 

the factor limiting the speed of growth is the availability of water 

molecules or silanol groups at the silicon-oxide interface, and so 

the growth rate follows the parabolic rule, 

x = 	 (2.4) 

where x is the oxide thickness, t the oxidation time and c a 

constant. 

When the limiting factor is not the availability of oxygen, but 

the speed of oxide formation as may be found at lower temperatures 

before the oxide has become too thick to start limiting diffusion, 

the growth rate becomes linear. The speed of reaction is also a 

function of the availability of bonds as well as temperature, so 

that at low temperatures the orientation of the silicon has 
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a significant effect. Fig 2.3 shows a graph of typical growth 

rates for different furnace temperatures. 

Steam oxidation of silicon is therefore a relatively fast 

process. If a thin oxide is required with some control over its 

thickness, it is desirable to slow down the process. This may be 

conveniently done by dry oxygen oxidation. Pure oxygen is now 

passed through a dryer and a filter to the furnace. This is 

illustrated in Fig 2.4. From Table 2.2, it will be seen that the 

diffusion coefficient for an oxygen molecule is much smaller than 

that for a water molecule resulting in a slower oxidation. 

Wet oxygen oxidation is probably the most common technique used. 

It effectively combines steam oxidation with dry oxygen oxidation by 

passing pure oxygen through a water bath. The temperature of the 

water bath may be controlled such that at room temperature, the gas 

present in the tube is almost entirely oxygen with only a small 

trace of water vapour. As the temperature is raised, the water 

vapour content increases until at boiling point the oxidation is 

effectively steam oxidation. For controlling the thickness of very 

thin oxides an inert gas is passed through the water bath so that 

only a very small amount of water vapour enters the tube. 

After oxidation, photoresist methods are used to define areas 

to remain as oxide. The remaining oxide is etched in hydrofluoric 

acid which is capable of breaking the loose bonds in the amorphous 

material but not the stronger crystalline structure of the silicon 

substrate.In this way, islands of oxide remain. 

If the oxide is removed from only one side of a silicon slice, 

then quite a pronounced warpage results. The strain in the silicon 
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can be shown to be purely elastic with no plastic deformation by 

removing the remaining oxide, when the slice becomes perfectly 

flat again. This effect is entirely due to the discrepancy in the 

thermal coefficients of silicon and its oxide as will be seen in 

Table 2.1. As the silicon wafer cools, so conflict results between 

the two layers. It would be expected therefore that the warpage 

would be a direct function of the oxidation temperature. It will 

be seen at once by studying the coefficients of thermal expansion 

that the silicon contracts more than the oxide so that at room 

temperature the silicon underneath an oxide is in tension and the 

oxide and silicon surrounding the oxide in compression. A full 

analysis of these phenomena will be given in Chapter 7. 

2.2 DIFFUSION 

The diffusion process is an essential part of the fabrication of 

integrated circuits by which many electrical characteristics may be 

realised such as conducting paths, junction diodes and channel stops 

with suitable choice of p or n type dopants. However, a high degree 

of control is required in order to achieve desired junction depths 

to a small fraction of a micron and surface concentration to close 

tolerances. It is from a knowledge of diffusion constants and 

surface impurity concentration, together with precision of time and 

temperature control, that these requirements may be met. 

The observed diffusion results compare favourably in general 

with those predicted by theory except in the case of shallow 

diffusions or high surface concentrations (greater than about 1019 

atoms/cm 3). Reasons for deviations under these conditions are 
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understood qualitatively to be due to factors such as a dependence 

of the diffusion constant on impurity concentration and structural 

imperfections. Other causes of error are due to interactions 

taking place between impurity atoms and the fact that boundary 

conditions applying to the theory may not apply rigourously in 

practice. These causes of error, rather than being understood 

quantitatively, tend to be treated empirically. Even when quantita-

tive analysis is undertaken - for functions such as the temperature 

dependence of the diffusion coefficient on temperature - the results 

tend to be applicable only to the experimental environment under 

which they were measured and are far removed from the real life 

world of the diffusion furnace. 

The technology of diffusion as applied to silicon integrated 

circuits is centred on the open-tube diffusion method. Initially, 

solid sources (such as P205  and B 
2  0  3 

 for phosphorus and boron 

diffusion) were used until it was found that better reproducibility 

could be achieved with liquid and gaseous sources. Of course, the 

best controllability of impurities (of both concentration and 

profile) may be realised with ion-implantation, thus rendering 

standard diffusion techniques obsolete for a majority of uses. 

2.2.1 Introduction to Diffusion Theory 

It is interesting to note that the theory of diffusion was 

developed long before the advent of semiconductor device technology, 

so that only recently has the theory been tested experimentally. 

Fortunately, many simplifications may be made in the theory when 

applied to integrated circuitry. For example, the single crystal 
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nature of the solid in which diffusion takes place allows the effects 

of grain boundaries to be ignored. Also, since the ratio of con-

centrations of impurity atoms to silicon atoms is very small, 

dimensional changes may be ignored. Finally, the planar nature of 

the devices results in a considerable simplification in the 

mathematics. 

The process of diffusion is concerned with the movement of atoms 

within a crystal lattice. The primary concern, required here, is 

limited to the movement of impurity atoms which are introduced on 

the crystal surface in order to alter the electrical properties of 

the substrate. This movement of atoms takes the form of random 

jumps in all three dimensions, their net flow being the statistical 

average over a period of time. Although there are many mechanisms 

by which diffusion takes place, only the two primary ones - 

interstitial and substitutional diffusion - need be considered here. 

Interstitial diffusion is that in which atoms jump from one 

interstitial site to the next (Fig 2.6(a)). Substitutional diffusion, 

on the other hand,occurs when impurity atoms move between lattice 

sites of the host material (Fig 2.6(b)). However, it is necessary 

for an adjacent site to be vacant. In other words, vacancies must 

exist for substitutional diffusion to take place. These vacancies 

are provided by thermal fluctuations within the lattice. Since the 

concentration of vacancies tends to be quite low, the rate of sub-

stitutional diffusion is much slower than that for interstitial 

diffusion. 

In general, diffusion through a crystal is anisotropic and the 

81  diffusion coefficient D 	is a second order tensor, 
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J.= 	0.. 
1 	 13 ax3 

(2.5) 

where J is the flux density of impurity atoms, C the concentration 

of diffusing atoms. However, it can be shown 
80 
 that for a cubic 

lattice, the diffusion is isotropic. Since diffusion takes place 

from a planar boundary, the diffusion is essentially one dimensional 

(ie depth into the crystal). Equation 2.5 may therefore be 

considerably simplified, 

J 	= 	-D - ax 
	 (2.6) 

This is the fundamental law of diffusion and is known as Fick's Law. 

The negative sign in Equation 2.6 indicates that the diffusion occurs 

in the direction of decreasing concentration. 

The change in dopant concentration as a function of time can be 

given by the equation, 

- dJ 	
(2.7) 

If the diffusion coefficient D is not a function of dopant 

concentration, then it will be constant for all x, ie 3D/ax = 0 so 

that by comining Equations 2.6 and 2.1, 

(2.8) 

This is Ficks second law of diffusion and by application of boundary 
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conditions is fundamental to the study of the diffusion process. 

Since typical diffusion depths are of the order of microns and slice 

thicknesses are of the order of hundreds of microns, the silicon is 

assumed to be a semi-infinite solid with diffusion taking place from 

one surface (x = 0). 

2.2.2 Diffusion from a Constant Surface Concentration 

The boundary conditions for a fixed concentration C5  at the 

surface x = 0 are, 

C>0 t = 0 	
0.  

Cx=O t > 0 = 
	

(2.9) 

Solving Equation 2.6 with these boundary conditions gives 

C(x,t) = C S erfc 	
x 

 
2v1 

(2.10) 

If there exists a non-diffusing bulk impurity of opposite type 

(p or n), then 

C(x,t) = Cs erfc 	- CB 
24-t— 

(2.11) 

The junction depth is defined as that point where the effective 

impurity concentration is zero and so may be calculated from 

Equation 2.6, ie 

x. 2/erfc CB 
3 	 () 	 (2.12) 
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Fig 2.7 shows typical impurity concentrations calculated from 

Equation 2.9 as functions of depth (x) and time (t). 

The rate of impurity flow through the surface (x = 0) is given 

by 

DC S 
 J(t) = - 	= 	exp( 	

)2 	
(2.13) 

X x=0 v1Yf 	27DE 	x=0 

so that the total amount of material to have entered the solid after 

time t may be calculated to be 

t 

Q = 	J(t)dt = 2C  /Dt/r 
	

(2.14) 

Experiments involving the diffusion of boron into silicon have 

been undertaken by many workers 
82-87 

 in order to measure its 

diffusion coefficient and associated activation energy. Table 2.3 

shows some of these results for D and E in the equation 

D = D0  exp (j..) cm2/sec 
	

(2.15) 

TABLE 2.3 

Date Worker D 0 
E D at 11000C 

1954 Dunlop et al 82 -7.0 3.5 -lOxl0 3  

1956 Fuller and Ditzenberger83  .001 2.52 -6xl0 3  

1956 Fuller and Ditzenberger83  10.5 3.69 3.0x10'3  

1960 Yamaguchi et al 84 17.1 3.68 5.3x10 13  

1960 Kurtz and Yee 85 2.5 3.51 3.3x10 13  

1961 Williams 86 16.0 3.69 4.6x1O 3  

1972 Ghoshtagore87  2.46 3.59 1.6x10'3  
-j 
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It will at once be apparent that the diffusion coefficient, when 

experimentally determined as in Table 2.3, has a wide range of 

experimental variation associated with it. Fig 2.8 shows a typical 

graph of diffusion coefficient vs temperature (Kurtz and Yee 85). 

2.2.3 Diffusion Techniques 

The most common form of diffusion furnace is that which employs 

an open ended tube. The impurity source may be either a solid, 

liquid or a gas, the liquid and the gaseous sources providing the 

better controllability and reliability. For the experiments 

described in Chapter 8, the diffusion was carried out using a liquid 

source and this is the diffusion technique to be described here. 

Boron tribromide (B Br 
3
)is the liquid source used in this 

case. Since the liquid is maintained at room temperature, only one 

furnace zone is required. A typical apparatus is illustrated in 

Fig 2.9. A large flow (2 litres/mm) of inert gas such as nitrogen 

flows down the tube and when diffusion is required to take place 

another flow of nitrogen (-30 cc/mm) passes over the source in order 

to transport impurity atoms into the furnace tube. 

A major advantage of this system is that the silicon slice may 

be loaded into the furnace tube and allowed to reach thermal equi-

librium before the impurity is admitted to the tube. 

The process of diffusion is now performed by growing a Boron 

glass B 
2  0  3 

 from the B Br  on the silicon to act as a local impurity 

source. This is achieved by introducing oxygen gas as shown in 

Fig 2.9 at a rate of about 200 cc/mm. Diffusion without the oxygen 
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may result in insoluble black deposits on the silicon surface. This 

oxidation has the advantage that the underlying silicon surface 

becomes protected from evaporation or chemical reaction. Also, it is 

found that the oxide layer facilitates the production of a diffused 

layer that is uniform and reproducible as well as showing little 

surface damage or pitting. Oxides so formed may be easily removed 

by etching in hydrofluoric acid. 

Methyl borate (a mixture of methyl alcohol with boric acid) may 

also be used as a liquid diffusion source. In this case, however, 

the carrier gas (N2) is actually bubbled through the liquid before 

passing into the diffusion furnace. A result of this is that the 

surface concentration tends to be the maximum possible (the solid 

solubility which is -5 x 10 °for  boron in silicon). 

In general, the surface concentration of impurity may be 

controlled by adjusting the nitrogen flow rate or the furnace temper-

ature. It is found that better control may be achieved by leaving 

the nitrogen flow fixed and adjusting the temperature. 
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CHAPTER 3: INTERFEROMETER THEORY 

It is only in the last ten to fifteen years that X-ray inter-

ferometry has established itself in the repertoire of techniques 

available for crystal analysis. This may seem surprising since inter-

ferometry has been used extensively in optics, and X-ray theory has 

been worked out in detail for many years. However, the reason 

becomes apparent when it is realised that the refractive index for 

X-rays is close to unity by an amount of the order of 10 	to 10 6. 

In other words, standard lens techniques relying on refraction for 

beam recombination are out of the question (although early work on 

these lines has been achieved 88). From X-ray theory of diffraction, 

however, it is seen that the beam division and recombination 

(essential in interferometry) may be achieved by diffraction from 

a crystal lattice, but this leads to another severe problem - the 

perfection of the crystal lattice. It is only with the advent of 

solid state electronics and the need for highly perfect single 

crystals of silicon,quartz and germanium that the concept of an X-ray 

interferometer becomes realisable. With suitable crystal costing 

in the region of $1/gm, single crystal interferometers may be made 

extremely cheaply. 

Before considering the use of such an interferometer, it is 

necessary to review some of the theory relating the propagation of 

an X-ray wavefield and its interaction with a regular crystalline 

structure. This theory is the dynamical theory of X-ray diffraction 

and extensive work has been done developing it8998. A brief outline 

of the theory, showing how Maxwell's equations are solved in the 
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periodic dielectric medium of the perfect crystal lattice, is given 

in Appendix 1. It is shown how the wave vectors with significant 

intensity within the crystal may be calculated, by finding the inter-

section of the incoming wave vector and the dispersion surfaces 

(tiepoints). 

The application of the dynamical wave theory which is required 

here predicts results for the interferometer in the case of both 

'thick' and 'thin' wafers (as defined later) and also indicates the 

constraints on its construction - eg the maximum wafer roughness 

which may be tolerated. 

3.1 APPLICATION OF DYNAMICAL THEORY 

The dynamical theory shows how an incoming wave can excite no 

fewer than eight separate waves within the crystal if both states of 

polarization are taken into account. Since X-ray interferometry in-

volves the eventual recombination of these waves, the resulting wave 

pattern can become extremely complex. For an initial analysis of 

interferometry, it is desirable therefore to simplify matters as far 

as possible. Fortunately, the dynamical theory shows how this may 

be done by utilising the phenomenon known as the Borrmann effect 

associated with 'thick' crystals 97. 

The symmetric Laue geometry occurs when the 'Bragg' diffracting 

planes (with reciprocal lattice vector h) are normal to the crystal 

surface. The Bragg condition is met when the incident beam strikes 

the diffracting planes at such an angle that the difference in wave 

vectors within the crystal (j  and K h 
 in the forward and diffracted 

directions respectively) equal the reciprocal lattice vector h. These 
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conditions may be expressed as 

	

= L!l 	 (3.1) 

and 	K h - K = h 
—-0 - 

When these conditions are met the absorption in the direction of 

energy propagation S is given by 98 

Xh' 
-. 	- cos 0 (1 .:: C_- xo 

r,-) (3.2) 

where 0 is the 'Bragg' angle, C the polarization factor which has the 

value 1 or cos 20 for the a polarization state (E perpendicular to the 

plane of incidence) and the ii polarization state (E in the plane of 

incidence) respectively. x" is the imaginary part of the susceptibility 

X. The choice of + in the expression depends on whether the wave has 

tie point on branch l(+) (that nearest to the origin of the 

reciprocal lattice) or branch 2(-) of the dispersion surface. 

Hence it will be seen that ii(S) is a minimum for waves associated 

with tie point on branch 2 of the dispersion surface under conditions 

of a polarization. Batterman and Cole 
98 
 calculate values for n(s) for 

the various branches of the dispersion surface for a 1 m slab of 

germanium with reflection of CuKa radiation from 220 planes. Table 

3.1 gives these results. 

TABLE 3.198 

Dispersion Surface p()t 	- 

a Polarization, 	branch 1 1.9 

Tr Polarization, 	branch 2 12.5 

a Polarization, 	branch 2 63.5 

Tr Polarization, 	branch 1 74 

Normal 	photoelectric absorption 38 
(1.i0  t) 
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For any material which may be considered to be thick (ie Ij0t > 5), 

only waves with tie points on the 2cy dispersion surface need be con-

sidered since all others will suffer photoelectric absorption. This 

is the anomalous transmission or Borrmann effect97 , and only these 

waves will be considered in the ensuing discussion (Fig 3.1). 

3.1.1 The 'Thick' Crystal Case 

The two waves generated from the 2a dispersion surface may be 

expressed as 

V 
o2 	o2 

= D 	exp 2iri (\T - -
02 	

(3.3a) 
—  

2h2 = Dh2 exp 2T (VT - h2• r) 	 (3.3b) 

The wave amplitudes are connected by (see Appendix, Equation AlY), 

Dh 2 

= 	
(3.4) 

2 177 
o2 

and their wavevectors are connected by the Laue equation, 

= 	h2 - ..o2 	
(3.5) 

The total standing wave field within the crystal therefore becomes 

2 	 2 

=2h2 + 
V 	a[1 + 	+ 2 

2 
 cos (2h.r)] 	(3.6) 

Since by convention 	is negative for branch 2 of the dispersion 

surface, the electric field is at a minimum when h.r is an integer or 
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Brillouin Zone Boundary 

FIGURE 3.1: Locus of tie points (such as A) defining 
the dispersion sheets 
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zero. In other words, the field intensity minima occur in the 

planes of the diffracting atoms. The effect of anomolous absorption 

may now be given a physical interpretation - there is a minimum of 

interaction between the electric field and the electrons localised 

close to the atomic sites (Fig 3.2). 

By the same token, the increased absorption of the waves 

emanating from the branch 1 dispersion surface may be explained from 

the fact that with C positive,the electric field intensity maxima now 

coincide with the atomic sites. Hence absorption is stronger due to 

the greater interaction between them. 

3.1.2 Laue Case with 'Thin' Crystals 

In the case of diffraction involving thin crystals (pt < 1), 

the standing wave pattern within the crystal becomes more complex 

since eight waves make a significant contribution to the exit waves 

instead of two as found in the 'thick' crystal case. With the crystal 

'thin' and weakly absorbing, the crystal waves for each polarization 

state are 

hl = 	Dhl 	exp 	2iri (VT - (3.7a) 

= D01 	exp 27i (v - 301.r) (3.7b) 

2.h2 = Dh2 exp 2Ti (VT - 	h2-) (3.7c) 

2o2 
= D02  exp 2Ti (VT - 	2 .r) (3.7d) 

As before, the amplitude ratios between pairs of waves generated 

from the same dispersion surface are connected by 



FIGURE 3.2: Outside waves in the case of Laue diffraction by a thick crystal. Note position of standing wave pattern - 

(a) exact Bragg position; (b) slightly off Bragg position. 
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= Dh2/DO2 	 (3.8a) 

= 	 (3.8b) 

Also, two Laue equations give 

.hl 	- !h2 	-K-o2  =i 	
(3.9) 

In addition, it is possible to relate the waves belonging to the two 

dispersion surfaces by Snell's Law, 

h2 - 	l = 	- 	
= A' n 
	

(3.10) 

where n is the unit vector normal to the crystal surface, A 1  is the 

distance in reciprocal space between tie points on the branches of 

the dispersion surface as illustrated in Fig 3.3. The simultaneous 

solution to these equations can be greatly simplified by restricting 

the incoming wave to the exact Bragg angle such that 	
= 

Since the waves are all phase coherent (they are all generated from 

the same incident beam) the resulting intensity may be written as, 

Vt 2 
=

I Phl + V-01 + 	+ 	
a 1 + sin(2h.r) Sin(2At) -  

(3.11) 

If this result is compared with Equation 3.6, some very interesting 

deductions can be made. The intensity maxima/minima now occur not 

half way between the atomic planes (a distance d/2 away) but d/4 

away (Fig 3.4). This standing wave pattern is now modulated with 

depth into the crystal by the term sin 2T1A
1
t. This can be thought 
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FIGURE 3.3: Geometrical relationships between allowed wavevectors 
in the Laue case, shown for just one state of polar-
isation of the incident wave 
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FIGURE 3.4: Outside waves in the case of Laue diffraction by a thin crystal. Crystal thickness varies in steps of the 
extinction distance A . Incidence at exact Bragg angle OB. Note the position of standing wave pattern 
which is different for (a) and (C). m is an integer 0,1,2,3 ..... 



of as beating taking place between waves generated from the points on 

the two branches of the dispersion surface. A further modulation may 

be observed from beating taking place between waves in the two polar-

ization states but this is at a much lower frequency. For At = 

p/2 (p  is zero or an integer) the intensity is constant. In other 

words there does not appear to be an interference pattern set up by 

the two waves K and K 
h• 
 This can be explained by considering the 

intensity functions in each wavefield separately, 

012 	
!Lh l + 	

a sin  (At) 	 (3.12a) 

V 12 = 0 	+ v—a2 
2  a cos2  (At) 	 (3.12b) 

—cl  

It can now be seen that for At = p12 the intensity will be totally 

within one beam or the other, hence the absence of a standing wave 

pattern. 

By applying the necessary boundary conditions for the existing 

beams, it can be seen that the X-ray intensity will swap back and 

forth between the forward and diffracted beams with varying crystal 

thickness (t). This is known as the Pendellösung effect. It should 

be noted, however, that in general the incoming wave will have spher-

ical and not planar wavefronts since the origin of the X-rays will be 

a point source at a finite distance from the crystal. This has the 

effect that the standing wavefield within the crystal is made up of 

the superposition of plane waves, but with a range of incident 

angles (the range which is considered to be significant is that sub-

tended by the diameter of the dispersion surface at the origin of the 

reciprocal lattice - ie -2). Hence, A will not be a constant and 
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so the swapping of intensities will not be total99. 

3.2 	L-L-L INTERFEROMETER 

The construction of an interferometer with three wafers giving 

Laue-type diffraction is shown in Fig 3.5. Three crystal wafers are 

required. The first, the beam splitter, generates two coherent 

waves. The second acts as a mirror to divert the two beams together 

and the third, the analyser, interprets the resulting standing wave-

form. As became apparent in Section 3.1, the standing wavefield at 

the recombination of the beams is a spatial function of the atomic 

lattice within the different parts of the interferometer. Obviously, 

if the standing wavefield is to be periodic over a wide area, then 

a high degree of matching, both in lattice parameter, rotation and 

translation as well as lattice perfection is required between all 

three wafers. The variation in thickness of the wafers (the rough-

ness) must also be controlled, otherwise there will be an associated 

phase variation resulting in a distorted wavefield. In the case of 

'thin' crystals, this roughness will result in intensity variation 

due to the Pendellsung effect and hence variation in contrast. 

Bonse and Te Kaat62  have considered the degree of defocussing as a 

function of positional stability and phase coherence which may be 

tolerated for interference still to occur. 

Fortunately all these problems can be overcome without too much 

difficulty. Dislocation free single crystals of silicon are readily 

available and so an interferometer can be easily made out of a mono-

lithic block with the unwanted crystal regions between the wafers 

either sawn away or milled out. 
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Splitter 

FIGURE 3.5: Definition of interferometer wafers. The splitter wafer is 
nearest the X-ray source 

Analyser 

Mirror 

Splitter 

FIGURE 3.6: Arrangement of interferometer wafers with arbitrary 
separation and thickness 
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Fig 3.6 shows an interferometer with arbitrary wafer separation 

and thickness.(In this analysis the wafer separations must not be 

considered equal since even by accurate cutting they will not be 

equal on the X-ray scale). At the first entrance surface the wave 

amplitudes can be matched giving 

o 
	= 	D ol + D o2 
	 (3.13a) 

0 	= Dhl + Dh2 	 (3.1 3b) 

The waves themselves may be obtained by multiplying the amplitudes 

by factors of the form exp (2Tri (VT - K.r)). 

Since Dhl/Dol 	and Dh2/DO2 = F2, the wave amplitudes within 

the crystal surface may be expressed by the relations 

002 = l 	l - 	
D 
	

(3.1 4a) 

Dh2 	l 	2 	l - 
	

(3.1 4b) 

This process may be repeated for each wafer (Bonse and Hart 43) to 

obtain the wave amplitudes at the exit face of the analyser wafer. If 

the origin is taken to be the entrance surface of the splitter wafer 

then the phases of the two waves (considering only the weakly 

absorbed waves - a valid assumption for the 'thick' crystal case) may 

be calculated by considering the dot product r.n where n is the 

surface normal vector. At the entrance surface of the analyser wafer, 

r.n = t + X1 + tHI +YJ =  t5  + X11 + tMII + y11 	 (3.15) 

The amplitude ratio of the two beams combining to give 
	
and 
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the two giving2 may be expressed as 

le lie 	le lie 
D 

0 	0 
ID 	= D  /Dh 	= exp -2i k [21(y1 - y11) + 

(3.16) 

where 

k = K1  2 	- K 	 (3.17a) -0 —o2  

2
k = 4-42 

(3.17b) 

Hence it can be seen at once that the two beams are in phase over 

the whole interferometer width provided that y1 = y11  and x1  = x11, and 

hence from Equation 3.15 tMI = tMII. The results of work by Bonse 

and Te Kaat62  show that the wafers must be cut accurately to within 

a few microns if high contrast fringes are to be observed. 

It will also be seen from Equation 3.16 that if a 7 phase shift 

is introduced into one of the beams, then destructive interference 

will occur and nothing will be observed in the exit beam. 

The wafer roughness can also have a significant effect, since a 

phase change will be introduced due to the refractive index of the 

material from which the interferometer is made. For a maximum 

allowable phase change of, say, 27r/10 to occur, then it is possible 

to calculate the optical path length necessary to give this phase 

change. For silicon, this length works out at 4.5 pm for MoKc 

radiation and 2.1 pm for CuKa radiation. Hence optical smoothness 

is perfectly acceptable and the required polish may be easily 

achieved with readily available chemical etches. A point that should 

be rioted is that the roughness is more critical when CuKci radiation 
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is used rather than MoKct. 

It can now be seen that if perfect mirrors are assumed, then 

the standing wave pattern at the exit face of the splitter is trans-

ferred to the entrance face of the analyser crystal. Any lattice 

variation or rotation in the splitter will be present in this wave-

field. These standing wavefields are represented in Fig 3.7. The 

interaction between the standing wavefield and the analyser crystal 

is now an exact optical equivalent of the superposition of two sets 

of finely ruled gratings to give moir6 fringes. For example, in the 

case of a 'thick' crystal interferometer, when the intensity maxima 

of the standing wavefield are positioned midway between the diffract-

ing planes of the analyser crystal, an X-ray beam will be trans-

mitted, but when the maxima occur on the atomic planes, the analyser 

crystal will see this as a beam generated from branch 1 of the 

dispersion surface. High attenuation will take place so that no 

intensity will be present at the exit surface. Lattice mismatches 

in any part of the crystal (splitter, mirror or analyser) will 

therefore show up as moir6 contrast. 

The mechanism of interference in the 'thin' crystal case, 

however, is completely different. Whereas in the 'thick' crystal case 

no intensity is observed in the exit beam when the electric field 

maxima coincide with the atomic sites due to absorption,so in the 'thin' 

crystal case it is the relative position of the electric field maxima 

and atomic sites which determines the ratio of intensities in forward 

and diffracted directions due to the Pendellsung effect. le zero 

intensity in the 'thin' crystal case is a result of all the energy 

being diverted out of the observed beam rather than being due to 
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FIGURE 3.7: Schematic diagram of standing wavefields in an ideally perfect Laue case interferometer 
('Thick' crystal case) 
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absorption. It is for this reason that, in the thin crystal case, 

fringes observed in forward and diffracted directions are 

complementary. 

The sensitivity of the instrument is now obvious. Not only 

will minute variations in lattice parameter (At/i 	10-8)  and 

rotation 	10_8  radians) be observable, but also single dislocations. 

Much work has been done involving the translation of the analyser 

crystal resulting in the exit beam alternating between maxima and 

52 
minima of intensity .In this way an Angstrom scale may be realised. 

One point which must be stressed, however, is that the standing 

wavefield immediately outside the analyser crystal is constant in 

relative position (there will be a small (d/4) translational effect 

when moving from 'thick' to 'thin' crystal cases) for all X-ray wave-

lengths. Thus, results obtained by interferometric techniques are 

wavelength independent. 

3.2.1 Fringe Contrast 

A rigorous treatment of the wavefield intensities as a function 

of wafer thickness taking into account the fact that the incoming 

wave is really spherical (ie illuminating the whole dispersion 

surface as the integral of a range of plane waves) rather than a 

plane wave, is extremely complex. However, an initial simplification 

may be made by considering the 'thick' crystal case - ie lit > 10. 

If the transmitted beam is denoted by T and the reflected beam 

by R, then the exit beam in the forward direction will consist of 

the superposition of the two beams Ts R  RA and R5 R  TA (Fig 3.8). 

If the splitter and analyser wafers are made the same thickness, 
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then RA = Rs and  TA = T5  so that the two beams will have the same 

maximum intensity allowing 100% contrast to occur in the thick' 

crystal case. The exit beam in the reflected direction will be 

composed of the beams T 
S  R  TA 

and  R 
S 
 R  RA and so will not necessarily 

be matched in intensity with the result that poorer contrast is 

obtained. 

Kato 
100 

 has calculated the intensity profiles expected from a 

section topograph in both the forward and diffracted directions for 

different values of pt. These profiles (after spatial averaging of 

the Pendellösung effect) are shown in Fig 3.9. For large pt (>10) 

only one beam (2G) is transmitted through the crystal and its 

intensity is essentially the same in both transmitted and reflected 

beams. Thus, in the thick crystal case, fringe contrast in the 

forward direction may approach 100% (as deduced from the simple 

approach outlined above). 

However, in the thin crystal case (pt <5) it will be seen from 

Fig 3.9 that the intensities in the forward and diffracted directions 

do not match each other - the intensity being symmetric over the 

width of the reflected beam, but not the transmitted beam. The 

result of this is that the contrast between the nodes and anti-nodes 

of the standing wave pattern, and hence the contrast of moire  

fringes, gets progressively worse with decreasing 'it. 

From a practical point of view, however, the crystal thickness 

and X-ray wavelength must be chosen such that the fringe contrast is 

acceptable (bit >'l) but also such that the X-ray intensity is 

acceptable (pt <..10). 
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FIGURE 3.9: Intensity profiles of section patterns according to Kato 100 
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3.2.2 Diffraction from Strained Crystals 

The theory which has been developed so far has assumed a 

perfect crystalline structure. Naturally, if an interferometer is 

to be used for measuring the effects of strain, then the X-ray 

wavefield will be propagating through an imperfect medium. It is 

therefore relevant to assess the validity of the theory under these 

conditions. 

The adaption of the dynamical theory to the strained crystal 

25 28 
case has been performed by Penning and Polder , Bonse 	and 

Takagi33, and experimental work testing the theory by observation 

26,27 	 31,32 
of Pende11isung fringes has been undertaken by Kato 	, Kuriyama 

and Hart29'30. Since the theory is long and complex and since inter - 

ferometry is not dependent on the details of the theory, such as the 

precise trajectory of wave paths, only a brief summary will be given 

here. 

The interferometer is only sensitive to small strains 

(ie l0 8  - 10_6) so that the strains within the crystal must be very 

small and slowly varying if they are to be observed. When this is 

the case, then a local dispersion surface will always be definable 

at every point in the crystal and will itself only vary slowly in 

space. Hence, a dynamical- wavefield will always be present with a 

variable reciprocal lattice vector h 

In optics, it is well known that the variation in the wave 

vector of some particular wave in a medium of varying refractive 

index is proportional to, and lying in the same direction as, the 

gradient of the refractive index. 

I) 
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AK a Vn 
	

(3.18) 

By analogy, in the X-ray case (Penning and Polder 25), 

AK a V(h.Kh) 
	

(3.19) 

Fig 3.10(a) shows how the variation in the wave vector AK and 

reciprocal lattice vector Ah affect the excitation of tie points on 

the dispersion surface. A ray entering the crystal excites the 

appropriate tie points dependent on the surface normal and deviation 

from the Bragg angle as shown in Appendix 1. As the ray progresses 

through the crystal with slowly varying strain, so the tie points 

effectively migrate about the dispersion surface. Since the direction 

of energy flow lies in a direction normal to the dispersion surface 

at the selected tie point, it also will vary as the tie points sweep 

across the dispersion surface. Thus there will exist two X-ray 

paths (ignoring polarization) through the crystal, one for each branch 

of the dispersion surface as shown in Fig 3.10(b). It was shown 

earlier (Section 3.1.2) how beating takes place between waves 

associated with the two branches of the dispersion surface to produce 

Pendellösung fringes. Now. that the ray paths associated with these 

two branches follow independent trajections strongly dependent on 

the strain within the crystal, the Pendellösung fringe pattern will 

also be dependent on the strain. It is by analysing this pattern 

that the theories of ray trajectories through strained crystals 

may be checked26'27'29'30. 

When the strain gradient is large, as would be found in the 



53 

1B 	

T 

dh 

S 	 S 7i -2B 

1B 

FIGURE 3.10: Showing migration of tie points in a region of 
slowly varying refractive index 
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vicinity of an imperfection such as a dislocation, the crystal is 

unable to support the dynamical wavefield. A boundary is effect-

ively set up and the boundary conditions applicable to an exiting 

beam apply. This beam then propagates through the high strain area 

until the crystal is able to support a dynamical wavefield again 

when entrance boundary conditions are applicable. 

However, in this analysis it is only necessary to observe that 

near the exit surface of a slightly strained crystal there exists a 

dynamical wavefield which is independent of the strain in the rest 

of the crystal. If the angular width of the incident beam (S2) is 

much greater than any angle of curvature of the crystal (a), 

(this is certainly true for an interferometer application - Q = 3' 

and a 	lOU  typically) then the wavefield near the exit surface will 

exist only as a function of the local dispersion surface. 

In Section 3.2 it was shown that the moire fringe pattern 

observed with an interferometer arises from the interaction between 

the standing wave pattern at the inside surface of the splitter 

wafer and the lattice of the analyser wafer (assuming a perfect 
Ifl 

mirror wafer). \It has just been shown that the standing wave pattern 

at the inside surface of the splitter wafer is dependent only upon 

the strain at the exit surface (assuming that the strain is small 

enough to allow a dynamical wavefield to exist) and not upon strains 

elsewhere in the wafer. Fig 3.11 illustrates the maxima of the 

standing wavefield on the inside of the strained wafer. This 

standing wavefield is a result of the interaction between the for-

ward and diffracted beams determined by application of exit 

boundary conditions to the dynamical wavefield within the crystal. 
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FIGURE 3.11: Maxima of standing wavefield for a strained crystal 



The effective position of the analyser wafer is also shown (again 

assuming a perfect mirror crystal). The 'focussing' effect of the 

distorted crystal should be noted. It is shown quantitatively in 

Chapter 7 that the error introduced into the moire fringe pattern 

by the 'bowing in' of the electric field maxima is negligible. 

3.3 INTERPRETATION OF MOIRE FRINGES 

It has been shown in Section 3.2 that the moire fringe contrast 

arises due to the interaction between the standing wave pattern set 

up in front of the analyser crystal and the crystal lattice of the 

analyser wafer itself. This section uses the analogy of superposed 

linear gratings to analyse the moire fringes themselves. 

The phenomenon and underlying theory of moire fringes has been 

studied for more than 100 years, notably by Focault101 , Lord Rayleigh
102 

 

and others. The widest application for moire fringe analysis is in 

mechanical engineering where finely ruled gratings are employed to 

detect strains in materials whilst undergoing load tests. The first 

observation of moire fringes resulting from atomic planes was by 

Pashley, Menter and Basset 
103 

 using an electron microscope to view 

appropriately oriented thin lamellae. In their experiment it was 

possible to observe individual dislocations appearing as extra half 

fringes. 

In this analysis, only straight line regular pitch gratings will 

be considered. These ruled gratings consist of alternate light and 

dark bars of equal width. When two such gratings are superposed with 

slightly different pitch and angle, there will occur areas where the 
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dark bar of one grating exactly coincides with the light bar of the 

other. These continuously dark areas link up to form the moir 

fringes. Figs 3.12(a) and (b) illustrate purely rotational and 

dilatational moire images respectively. Figs 3.12(c) and (d) 

illustrate the effect of translation of two identical gratings 

directly superposed upon each other. These are typical of the 

kinds of pattern presented by the X-ray interferometer. The first 

task towards analysing these fringes is to establish equations 

which yield the rotation and dilatation parameters from the observed 

moire data. 

Let the reference gratings be defined by the family of curves 

R(x,y) = k where k may represent any integer from - to -i-°. The 

scale is represented by the pitch p. Similarly, let the sample 

grating be defined by the family S(x,y) = Z. In this case, however, 

the grating is distorted in the sense that its pitch is p (1-i-A) where 

At<<l, (ie A  may be positive or negative). A system of cartesian 

coordinates is referred to both gratings with its y axis coinciding 

with line k = 0 and with origin occurring at the coincidence of line 

k = 0 and 2.= 0 (Fig 3.13). 

The equation of the family of lines in the reference grating is 

given by 

x = pk 
	

(3.20) 

If the sample grating is rotated through a small angle 0, then the 

equation of the family of lines in the sample is given by 

y = (x cot 8 2. Pçl+A) 
sin 	) 	

(3.21) 



FIGURE 3.12(a): Moire pattern by two identical gratings 
angularly displaced by a small angle 0 
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FIGURE 3.12(b): Moird pattern by two gratings of different pitch but 
no angular displacement 

(c): Two identical gratings superposed exactly 
Two identical gratings but displaced by half their pitch 
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FIGURE 3.13: Schematic representation of formation of a moire 
pattern by two gratings of different pitch 
angularly displaced through angle 0 
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This may be rewritten 

(y cos U - x sin 0) = 9p(l +x) 
	

(3.22) 

The effective moire fringes run along the shortest diagonals of the 

parallelograms formed by the intersections of the rulings. Let the 

angle between the moire fringes and the y axis be 	and let their 

pitch be f. The equation representing the family of moire fringes 

may be written 

y = (x cot 	
+ mf 

	

sin 	
(3.23) 

where m is an integer between - and +c. This index may be related 

back to the indices k and k of the reference and sample gratings by 

the simple expression 

m = k- 
	

(3.24) 

This is obvious from Fig 3.12. 

Eliminating the indices k and 9 from equations 3.20, 3.22 and 

3.24 yields the following equation for the moire fringes 

Y = x[c05O 	 + mp(i+? 
sin U 	 sin  

(3.25) 

Equations 3.23 and 3.25 are identical. Therefore, by equating 

coefficients, it is deduced that 
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-] 
2 	2 

f = p(1 +A)[X2  cos2  0/2 + (2+x) 
2 
 sin 0/21 	 (3.26) 

sin 	= sin q [A 2 
	2 	 2 	2 
cos 	0/2 + (2+A) sin 0/2] 	 (3.27) 

If S and A are very small - as the case would be with X-ray inter-

ferometry, then Equations 3.26 and 3.27 reduce to 

f= 	p 	 (3.28) 

/2 + 

and 

sin 	
=a 	

(3.29) 

These equations may now be expressed as 

rotation: 	= p 	 (3.30) 
f 

dilatation: 	= 	C05 	
(3.31) 

Now it can be seen that the dilatation and rotation parameters are 

inversely proportional to the components of the moire fringe spacing 

in the x and y directions respectively, and therefore may be 

measured very easily. One important point which may be deduced 

immediately from Equations 3.30 and 3.31 is that if the moire fringes 

are vertical ( = 0) then the distortion in the sample grating is 
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purely dilatational with no rotation. Conversely, if the fringes are 

horizontal ( = 900) then the distortion is purely rotational. 

It is now possible to calculate the degree of performance which 

may be expected from the X-ray interferometer. The 220 atomic plane 

spacing in silicon is -'2 R. Suppose that an interferometer is cut 

from a 2" diameter boule of silicon, then the fringe spacing could be 

as great as 2 cm. This represents a dilatation of one part in 108 

or a rotation of 10 8  radians (-'2 x lO 	seconds of arc) depending 

on whether the fringes are vertical or horizontal. On the other 

hand, the smallest readily measurable fringe spacing is about five 

fringes per mm implying that the maximum dilatation and rotation 

which may be observed is one part in 106  or  106  radians. 

3.3.1 Dislocation Patterns 

As indicated earlier, moir6 fringes may be used to interpret 

atomic dislocations. Again, an optical analogue may be used 

(Pashley, Menter and Bassett 103). The number of extra half fringes 

N observed from a dislocation with Burger's vector b using diffraction 

from Bragg planes h is given by 

N = h.b 
	

(3.32) 

Since the dislocation length is an integral number of Bragg planes, 

then N will always be an integer. It can be seen from Equation 3.32 

that if the dislocation Burgess vector lies within the diffracting 

Bragg planes then h.b = 0 resulting in the dislocation being invisible. 

If b is written as the vector [UVW] then its solution obviously 
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requires three independent equations. These may be realised by 

choosing three sets of non-coplanar diffracting Bragg planes h. 

Typical dislocation images are shown in Fig 3.14. 
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FIGURE 3.14: Typical moir4 dislocation images. The symbol 	represents 
the extra half plane. 



CHAPTER 4: DOUBLE CRYSTAL SPECTROMETER THEORY 

The double crystal spectrometer consists essentially of two 

crystals which are Bragg reflecting, ie the diffracted beam exits 

from the same face that the incident beam enters. Uncollimated 

X-rays are diffracted first of all from a 'perfect' reference 

crystal and then from the crystal under study. By this means, 

far better resolution is obtained than with the conventional single 

crystal methods employing a well-collimated beam of X-rays,as will 

be shown later. 

This principle of using a preliminary crystal to select the X-

ray beam has been in use for many years, among the early experimen-

ters being Compton
104

, Bragg, James and Bosanquet105  and Davis and 

Sternpel 106. 	These early experiments were aimed at determining the 

reflection coefficients and widths of the reflection curves from 

crystals such as calcite. Later, the instrument became very popular 

when it was realised how high its resolving power could be. The 

first attempts at a theoretical understanding were made by Davis and 

107 	 108 
Parks 	and also (independently) by Ehrenberg and Mark 

Before analysing the particular benefits of the Double Crystal 

geometry, it is important, first, to study the nature of the Bragg 

reflection. A brief outline of the development of the dynamical 

theory and the solution of the waves propagating within the crystal 

is given in Appendix 1. Darwin 
89 

 was the first to develop a 

theoretical approach to the scattering of X-rays from a perfect 

crystal. Ewald 
90,91 

 and Von Laue92  later developed the dynamical 

theory predicting the energy flow within the crystal and also by 
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taking absorption into account. 

In Fig 4.1(a) and (b) it will be seen how the surface normal 

selects the incident and diffracted exit beams from its intersection 

with the Ewald spheres about 0 and H respectively. In Fig 4.1(a) 

the diffracted beam lies in the direction away from the surface 

normal and giving, by definition, the 'Laue' geometry. However, in 

Fig 4.1(b) the diffracted beam lies in a direction back towards the 

entrance surface and so is defined as 'Bragg' geometry where entrance 

and exit beams enter and leave the same face. It can now be seen 

that the limiting condition occurs when n is perpendicular to 

When the surface normal becomes perpendicular to LO the symmetric 

Bragg case results, and this is the condition which will primarily 

be considered here. 

4.1 THE BRAGG CASE REFLECTION CURVE 

Fig 4.2 represents a crystal in the symmetric Bragg condition 

with two possible cases of incident wave, K (i) and 	(ip2) where 

l' 2 are the angles of incidence. At i 1 , it will be seen that two 

tie points are selected on the same dispersion surface with their 

Poynting vectors directed into and out of the crystal respectively. 

However, it has been shown by Kohler 
109 

 and Authier °  that only one 

of the tie points gives a physically meaningful solution and that 

is the one where the energy flow is directed into the crystal (in 

this case, Al). At 'p2, however, no tie points are selected indicating 

that there no longer exists a solution for the propagating wavefield 

within the crystal. In this case the incident X-ray beam is totally 

reflected away from the crystal; the angular range over which this 



FIGURE 4.1(a): Laue case geometry 

FIGURE 4.1(b): Bragg case geometry 
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FIGURE 4.2: Bragg reflecting geometries 
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occurs may be found geometrically (as in Fig 4.2(b)), being a direct 

function of the diameter of the dispersion surface. 

D csceB  
---F— (4.1) 

where e is the Bragg angle, k = l/X and D the diameter of the dis-

persion surface which is given by 

D = kJcI(Xh )() 	sec 0B 
	 (4.2) 

where c = 1 or cos 20 for a and ir polarization respectively, and 

Xh is the Fourier coefficient of order h in the expansion of the 

susceptibility (see Appendix Equation AlO). 

In Table 4.1 the angular widths over which total reflection 

occurs in the symmetric Bragg reflecting case are calculated from 

Equations 4.1 and 4.2 for a range of reflections and wavelengths. 

TABLE 4.1 Angular widths (seconds of arc) for selection of 
reflections and wavelengths 

hk2. Cu Kot MoKa AgKa 

111 6.40 2.87 2.26 

333 1.96 0.65 0.50 

440 2.69 0.80 0.61 

422 2.89 0.89 0.78 

It is now convenient to normalise the parameters relating to the 

dispersion surface. The difference in radius of the Ewald spheres 

before and after correction for the average refractive index is 
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kx. From purely geometrical consideration of the dispersion 

surfaces, it will be seen at once that the angular divergence () be-

tween the symmetric Laue and symmetric Bragg case reflections is 

X0 
 /sin 20 radians. The parameter n  is now defined as a function 

of the deviation from the symmetric Laue case reflection AG such 

that ri is zero when AD gives the symmetric Bragg condition (A0= 

and n = ±1 at the two limits of total reflection. It then follows 

quite naturally that 

- ) + AD 
fl - 	/2 	

(4.3) 

Hence 

x + AD sin 20 
Tj 

= °IcI Xh 	
(4.4) 

It is shown in Appendix 1 (Equation A19) that the ratio of the 

field amplitudes Dh/DO  may be expressed by 

D 
2co 	Cxhk 

DO 	= 	 2ah 	
(4.5) 

Hence 

	

Dh 	oj Xh 

	

u ) 	 (4.6) 

	

0 	 Xh 

Now that the dispersion surfaces have been normalised by the parameter 
cc 

the ratio 	i may be calculated from geometrical considerations of 
h 

Fig 4.3 to yield, 

D2 
h\  

	

(i 	= (n ± 	
1)2 	

(4.7) 

	

0 	 xc 
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For a centrosymmetric crystal x = 	-. Since Xo  and Xh  have real 

and imaginary components associated with them when absorption is 

taken into account, so n is complex (from Equation 4.4). An 

analysis of Equation 4.7 now shows that for complex n, (Dh/DO )2  is 

always less than it would be for n wholly real. In particular, 

there is now no longer total reflection in the range -1 < n < +1. 

This may be understood in physical terms by considering energy con-

servation. In the zero absorption case the direction of energy 

flow, as determined from the Poynting vector being perpendicular to 

the dispersion surface, lie along the crystal surface in the region 

of total reflection. When absorption is taken into consideration, 

there exists a component of energy flow directed into the crystal 

resulting in the reflection now being less than total. Fig 4.4 

shows the ratio of beam intensities as a function ofR(n) with and 

without absorption calculated from Equation 4.7. This is known as 

the Darwin-Prins reflection curve. It will be seen that in the 

absorbing case, the reflection curve is no longer symmetric. This 

is due to the fact that the linear absorption coefficient varies 

significantly over the range of 'total' reflection in a manner some-

what akin to that associated with the Borrmann effect. 

4.2 THE DOUBLE CRYSTAL ROCKING CURVE 

Having established the shape of the Bragg reflection curve, 

this section is now devoted to the geometry of the double-crystal 

arrangement and hence to the shape of the rocking curve which may 

be obtained from it. 

Fig 4.5 shows the parallel arrangement of the two crystals where 
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1no absorption 

+2 	+1 	0 	-1 	-2 	Re(n) 

FIGURE 4.4: Reflection curve from Bragg reflecting crystal with 
and without absorption 



Crystal A 

FIGURE 4.5: Showing geometrical arrangement of double crystal 
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the two sets of diffracting planes are the same and parallel to each 

other. In this analysis, crystal A is fixed and the intensity 

diffracted from crystal B is calculated as a function of its angular 

deviation from the parallel condition. The X-ray source has a 

finite divergence of both beam angle and wavelength and both these 

points must be considered. For simplicity, they will be considered 

separately so that in the first instance, the wavelength will be 

assumed to be homogeneous. 

Let the incident beam contain rays with a range of incident 

angles such that one ray makes an angle which is diffracted in the 

centre of the reflection curve and let this angle be 
0. 

 It was 

seen in the last section that the angular range over which sig-

nificant diffraction takes place is only of the order of seconds of 

arc. On the other hand, the range of incident angles will be many 

times greater than this. For the present, only rays in the hori-

zontal plane will be considered. Let a ray with angular deviation 

from 0  of a strike crystal A. If the incident beam has an 

intensity function of I(a), then its diffracted ray will have 

intensity 1(a) RA(a)  where  RA(a)  is the reflection curve of crystal 

A. If crystal B is rotated anticlockwise from the parallel position 

by , then this ray will make an angle of (0 + a-13) with its 

diffracting planes, and so its intensity will become multiplied by 

where RB()  is the reflection curve of crystal B. Hence its 

intensity will become 

I = 1(a) RA(a) RB(a-6) 
	

(4.8) 

In order to obtain the total power which will be detected in the 
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diffracted beam, it is necessary to integrate over the whole angular 

range of the incident beam. 

a2  

ie 	P(ç) = 	f I(a) RA(a) RB(a_) do, 	 (4.9) 

a1  

Since R(a) only has a significant value for a close to zero, and 

since 1(a) is (relatively) a very slowly varying function of a, the 

term 1(a) (= I(0)) may be taken outside the integral. By the same 

token, since the contribution of R(a) for large jal is negligible the 

limits of integration may be extended to --° (for small r3). 	Thus 

P(s) = 1(0 0 )  I R(a) RB(a-)  dot 	 (4.10) 

This equation will at once be recognised as the correlation function. 

In other words, the measured rocking curve will be the correlation of 

the reflection curve from crystal A with that of crystal B. If the 

two reflection curves are equal, then the autocorrelation function 

will be obtained. 	In this case 

CO 

P(13) = I(0) f 	R(a) R(a-) da 	 (4.11) 

- cx:, 

If the substitution q = (a+3) is made, then 

CO 

= I(0) 
f 
R(-) R() d 

-00 

= P(B) 	 (4.12) 

This implies that the function P(3) is always symmetric about =0 

even if R(a) is non-symmetric, which was shown to be the case for an 



ill  absorbing perfect crystal in the last section. Laue 	has shown that 

a knowledge of the shape of the rocking curve P(s)  is not sufficient 

to enable calculation of the original reflection curve. 

It will now be shown that the rocking curve obtained with 

parallel geometry is independent of the small range of wavelengths 

associated with a characteristic line. The assumption which has to 

be made is that the reflection curve is not a function of the wave-

length. This is valid for the small range of wavelengths involved 

here although in general it would not be. Consider two wavelengths 

present in the incident beam A0  and X + AX. The centres of the 

reflection curves will occur at a and 6 + AG respectively. 

A ray with wavelength X + AX making an angle 0 + AU + ci. with 

crystal A will cause a diffracted ray to strike crystal B at an 

angle e 
0 
+ Ae  + 	Hence, the expression for the rocking curve 

is 

00 

= IA+AA(e+Ao) I R(a) R(a-) d 	 (4.13) 

-00  

which is identical with the expression given in Equation 4.10. In 

other words, the contributions from rays with different wavelengths 

exactly superimpose. This result is particularly important when it 

is realised that the width of a spectral line is greater than the 

angular range over which total reflection occurs. This is parti-

cularly marked in the case of the Kai  and Kc2  lines whose spectra 

are very close together. 

It will now be seen that the width at half height of the double 

crystal rocking curve is a direct function of the width of the Darwin- 
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Prins reflection curve. For example, by calculating the auto-

correlation of the zero absorption Darwin curve it is found that its 

width at half height is 1.40 times the width of the total reflection 

region. By referring to Table 4.1, it will be seen that very narrow 

rocking curves may be obtained, indicating the high resolution which 

may be obtained with the instrument. The width of the rocking 

curve may be further reduced by using non-symmetric Bragg geometry. 

The effect of this is to reduce the angular range of incident beams 

which do not excite a tie point on either branch of the dispersion 

surface. Hence the width of the total reflection region of the 

reflection curve is correspondingly reduced. 



CHAPTER 5: SAMPLE PREPARATION AND EXPERIMENTAL TECHNIQUES 

5.1 INTERFEROMETER PREPARATION 

All the interferometers used in these experiments were cut 

monolithically from the same 2  diameter boule of Monsanto float-

zoned intrinsic silicon (resistivity >1000 cm) grown in the <111> 

direction. A slice coaxial with the silicon boule (ie <111>),12mm 

thick, was first cut from the boule and then oriented on an orienting 

rig so that it could be cut across a diameter forming a <211> flat. 

These two pieces were then in turn oriented and halved again, this 

time forming a <110> flat. The four blocks of silicon thus formed 

made up the embryos of four identical interferometers. All that now 

remained was to cut out the three wafers. This was achieved with a 

Capco precision diamond saw by using a thick blade to saw away the 

silicon between and on the outside of the wafers, so that the 

required wafers were left standing. The blade could be positioned 

to an accuracy of about 10 pm and so was well within the tolerance 

calculated in Section 3.2 which is 	required to achieve good 

focussing and hence good image contrast. The wafers were cut with 

separation of 3 mm and thickness 0.5 mm. This thickness was chosen 

so that with appropriate X-ray wavelength, the interferometer could 

present thin, intermediate or thick crystal characteristics as shown 

in Table 5.1 (shown overleaf). 

Here t is taken as 1.5 mm although after etching it reduces 

slightly. Fig 5.1(a) shows the interferometer dimensions together 

with the axial conventions assigned to each. 
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FIGURE 5.1(a): Dimensions and orientation of interferometer 

FIGURE 5.1(b): Interferometer (with 3.5 mm diameter oxide disc 
on splitter wafer) 



TABLE 5.1 

Wavelength pt 

AgKci 1.1 thin 

MoKa 2.2 intermediate 

CuKa 21.2 thick 

After cutting, the interferometers were cleaned thoroughly to 

remove silicon grit and grease, and then etched chemically in 19 

parts HNO3  to 1 part 48% HF for about half an hour. This etching 

not only polishes the saw damage (which is only a few tens of 

microns deep) but also renders the silicon very strong (after 

cutting, it is fragile). During etching, the silicon must always be 

kept in the etch, otherwise a bloom forms on the surface. Also, 

the silicon must be continuously agitated to give an even etch. 

Figs 5.2(a) and (b) show the effect of an uneven etch on the inter- 

ferometer image in which the varying wafer thickness causes a built-

in phase pattern. 

5.2 INTERFEROMETER OXIDATION AND DIFFUSION 

The experiments which were performed in order to study the 

strain field in the silicon required only one wafer to have a thermal 

oxide grown on it, the others to be oxide free and thus unstrained in 

order that moir4 fringes should be observable. In all instances it 

was the splitter wafer which was chosen to be oxidised, although as 

seen in the theory presented in Chapter 3, no difference in image is 

to be expected by turning the interferometer round such that the 
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FIGURE 5.2: 	Effects of poor etching of interferometers 
Vertical grooves (022 reflection, MoKcz radiation) 
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FIGURE 5.3: The relief of strain by etching, (a) before etching, 
(b) after etching. The strain remaining in (b) is due to 
an optically visible crystal fault in the splitter wafer. 

(022 reflection, MoKoc radiation) 
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oxidised face becomes the analyser wafer. In any case, the first 

step involved the complete oxidation of the interferometer. 

The theory behind the growth of thermal oxides has been pre-

sented in Chapter 2, together with a brief outline of the oxidation 

furnace. In this section, details of the experimental procedure are 

given. 

The initial step in any semiconductor processing is to clean 

and degrease the samples thoroughly. In device manufacture this is 

possibly one of the most critical steps of all since any dust will 

immediately render the best of processing useless. Hence the need 

for a dust-free environment for all sample handling and preparation 

at this stage. The standard cleaning procedure is outlined below: 

	

1. 	Slice clean 

20 minutes at 850C in 6 parts H20, + 2 parts H202 , + 

1 	part NH 40H. 

5 minutes wash in 'Super Q' water 

10 seconds dip in 5% HF 

5 minutes wash in 'Super Q' water 

15 minutes at 110°C in HNO3  

Quartz beakers to be used throughout to prevent sodium contamination. 

	

2. 	Oxidation 

15 minutes dry 02 

Appropriate length of time for required oxide thickness, wet 

(ie, 02  bubbled through 'Super Q' at 95°C). 



10 minutes dry 02 

10 minutes pull-out in N2  

The oxidation experiments involved the removal of all oxide except 

for a disc (3.5mm in diameter on the splitter wafer) so that photo-

resist techniques were now required. 

3. 	Photo-resist (Positive 

Shipley AZ1350H applied with small artist's brush 

Dry for 30 minutes at 85°C 

Black circle (Bishop Graphics symbol) applied to photo resist 

to act as mask 

10 minutes exposure to UV 

3 minutes develop 

Wash in DI water 

30 minutes post bake at 1100C 

18 minute etch in 5% HF 

5 minute wash in 'Super Q' water 

10 minutes in fuming nitric acid to remove photo-resist 

5 minute wash in 'Super Q' water 

Since it was not possible to spin the interferometers, it was 

necessary to bake the resist for longer than would be normal. The 

oxide was measured initially with a talisurf using control slice in 

order to determine the approximate thickness (to about 20%) and then 

colour charts 
80 
 were used to give a more accurate measurement (to 



about +0.01 pm. 

The diffusion experiments involved selective boron diffusion 

(see Section 2.2)and so a SiO2  masking procedure was required following 

the same techniques as outlined above except that negative photo-

resist was used (this was so that oxide was removed only where the 

diffusion was to take place). The masking oxide was .7 pm. This is 

quite sufficient to prevent any boron diffusion through it. 

4. 	Diffusion 

Load devices and leave to heat for 10 minutes in N2  

Diffuse for appropriate length of time at 11000C with the 

following gas rates: N2  (main) -2.0 litres/mm 

02 - 200 cc/mm 

N2  over BBr3  - 30 cc/mm 

10 minutes pull-out in N2  

10 minutes dip in 5% HF to remove both masking oxide and 

boron glass 

This kind of diffusion is known as predeposition diffusion. Since 

only a total dose of impurity atoms was required, it was unnecessary 

to perform a drive-in diffusion. A standard four point probe was 

used to measure the sheet resistivity of a control slice in order 

to determine the total impurity dose (see Chapter 8). 

5.3 INTERFEROMETER EQUIPMENT 

Since the X-ray interferometer is a very sensitive instrument, 



as shown in Chapter 3, it is necessary to mount it on an antivibrational 

platform. For this reason the standard Lang traversing technique 

cannot be used. Instead, it is the X-ray source which traverses past 

the stationary crystal, as shown in Fig 5.4. In these experiments, 

the source makes just one pass across the crystal driven by a stepper 

motor linked via a gear box to a precision micrometer. The pulse 

rate to the stepper motor could be controlled by dividing 100 Hz by 

powers of 2 up to 2. The overall gearing was such that the traverse 

was caused to move 1 iim by 5 pulses to the stepper motor. The X-rays 

were generated in a Philips vacuum tube by an ultra stable Enraf 

Nonius HT supply (40 Ky, 20 mA) and were then collimated to form a 

ribbon beam 0.4 mm wide and up to 40 mm in height. The collimator 

length was 43 cm, resulting in an angular divergence of X-rays at 

the crystal of 3.2 minutes of arc. Since this is very much larger 

than the diameters of the dispersion surfaces pertaining to the wave-

lengths used here (-2 seconds of arc), the incident beam was treated 

as being spherical rather than planar. 

It will be seen from Fig 5.4 that six beams leave the inter-

ferometer - three in the forward direction and three in the diffracted 

direction. Of the three beams, only the central one contains the 

moir6 image. It was shown in Chapter 3 that the better fringe 

contrast is to be found in the beam in the forward diffracted 

direction. Slits were constructed out of tantalum sheet and arranged 

such that the central beam in the forward direction could be selected 

as shown in Fig 5.4. When MoKct is chosen for a 1220 reflection 

(as used for most experiments) the three beams are only separated by 

1.7 mm. Hence the need for both narrow slits and a well collimated 
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FIGURE 5.4: Lang travelling source 
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beam. It was found that background radiation could be improved by 

using a double slit arrangement as illustrated. 

A scintillation counter was used in conjunction with pulse 

counting equipment for setting the crystal on the chosen Bragg peak. 

For topographs requiring high resolution (ie those with closely 

spaced moire fringes) Ilford nuclear emulsion plates were used. 

However, with this film an exposure of six  days was required to 

obtain a 2 cm scan of the crystal so that topographs requiring low 

resolution were taken with Kodak dental X-ray film (4S-150 ESTAR). 

This film, although very grainy (grain size -lO pm) was found to be 

about eight times faster than the nuclear emulsion film. 

The overall experimental set-up is shown in Fig 5.5. 

5.4 INITIAL INTERFEROMETER EXPERIMENTS 

5.4.1 Refractive Index 

A standard test which can be made to verify that interference 

is taking place within an interferometer is to insert a wedge of 

some absorbing material into one of the beam paths. This will intro-

duce a phase advance with the other beam which will vary linearly 

over the beam height. The standing wavefield in front of the 

analyser wafer is effectively rotated by this phase advance 

resulting in equally spaced horizontal moire fringes. This is 

indeed the observed result, shown in Fig 5.6. 

This technique has been used by Bonse and Hell kötter54  to 

measure the refractive index of various materials using CuKa 
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11 

FIGURE 5.6: Interference fringes as a result of a 
silicon wedge being introduced into the 
path of one X-ray beam 

(027 reflection, MoKa radiation) 
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radiation and also by Creagh and Hart 
61

to measure the refractive 

index of lithium fluoride with various wavelengths. In this 

experiment an interferometer with negligible built-in phase con-

trast was chosen and a collimated ribbon beam of MoKc radiation was 

used. The wedge was cut from silicon and its angle was measured to 

be tan' (0.195 ± .004) Kodak dental film was used because of its 

high speed - the large grain size and resultant relatively low 

definition was deemed unimportant in this application. 

If f is the fringe spacing then it can easily be seen from 

Fig 5.7 that the path length (Z) over which there is a phase change 

of 21T radians, is given by 

= f tan 0 	 (5.1) 

where f is the fringe spacing. 

Since the refractive index is simply a correction factor by 

which the X-ray wavelength in some material may be calculated, then 

A 
-n 

(5.2) 

where n is the refractive index. The concept that the refractive 

index is less than unity for X-rays (ie the phase velocity of X-rays in 

materials is greater than the velocity of electromagnetic waves in 

free space) has been known since Darwin 
89 
 originally postulated the 

theory. Hence 

f tan 0 = 	
A 

______ 
(1-n) 

(5.3) 
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FIGURE 5.7 
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36 fringes were counted in 8.40 +0.05 mm by using a travelling 

microscope. This yields an average fringe spacing (f) of 0.233 

+ .001 mm. With A (for MoKct) = 0.709 R, ( 1-n) was calculated to be 

1.56 + .04 x 10-6. 
	

James 
94 
 shows that (1-n) may be calculated for 

a crystal with cubic symmetry from the expression 

(1-n) = 1 
	e2 	

2  - 
	

(5.4) 
mc 

where e2/mc2  is the classical electron radius (2.82 x 10 
-15 

 m) and 

P 	is the electron density. 

The measured result would be accurate if the experiment had been 

carried out in a vacuum. Before it can be deemed valid, the 

refractive index of air at SIP must be calculated using Equation 5.4. 

In fact (1-n) is found to be 8.7 x 10-10  for MoKc, and so has 

negligible effect. 

The refractive index for silicon with MoKct radiation may also 

be calculated from Equation 5.4, p = 	Z/a where 7 is the number of 

electrons per unit cell (112). This expression yields (1-n) to be 

1.58 x l06  which gives excellent agreement with the observed value. 

5.4.2 Pendellösung Effect 

It was shown in Chapter 3 how the ratio of beam intensities in 

the forward and diffracted directions during Laue geometry diffrac-

tion varied with crystal thickness, when the crystal was thin' 

enough for waves associated with all four dispersion surfaces only 

to be weakly absorbed. This is known as the Pendellösung effect. 



M. 

With MoKa radiation (pt = 2.2) this phenomenon has a significant 

effect on the X-ray intensity from the interferometer. (Pendellsung 

fringes may be seen round the edge of the interferometer topographs 

due to the rounding of the wafers after etching). The distance 

between Pendellisung maxima, A, is related to the diameter of the 

dispersion surface and may be calculated from 

ia cos e 
0 

reX 	h F- 
	C 

(5.5) 

where c = 1 or cos 20 depending on o or iT polarization. 

For A= 0.709 x 10- 
10 
 m (NoKa radiation) A = 36.5 pm (o polarization) 

In order to vary the effective wafer thickness, the interfero-

meter was tilted about h, the vector normal to the diffracting Bragg 

planes. The intensities were compared for five different angles of 

rotation and are shown in Fig 5.8. The angles of rotation and 

corresponding increased wafer thickness are given in Table 5.2 for 

a wafer thickness to  of 350 +5 M. 

TABLE 5.2 

q) At 	(pm) 

00 0 

40 
0.9 

8°  3.4 

12°  7.8 

16°  14.1 

where At = to  (sec 	- 'I). By using a microdensitometer it appeared 



3Y :17 
- 

7; 

(a) 	 (b) 	 (c) 	 (d) 	 (e) 

0° 	
= 4

° 	 = 8 	 = 12° 	 = 16°  

FIGURE 5.8: Contrast variation as a function of rotation of interferometer about the normal to the 
Bragg planes 

(022 reflection, MoKa radiation) 



that there was a significant variation - the intensity appeared to be 

a maximum for q= 80.  As a result of this experiment, all inter - 

ferometry topographs involving MoKct were optimised for maximum 

intensity. Theoretically this occurs for wafer thicknesses (m+flA 

where m is an integer and A = 36.5 pm. From these results, it would imply 

that the present wafer thickness is 352 pm (with m = 9). 

5.5 DOUBLE CRYSTAL EXPERIMENTAL TECHNIOUE 

The geometrical arrangement of the double crystal spectrometer 

has been described in Chapter 4. Although the instrument may be 

used most effectively for topographical work, in these experiments it 

was used in order to gain information about the shape of the rocking 

curve. As shown in Chapter 4, the width of the rocking curve for 

perfect sample and reference crystals is of the order of 1-2 seconds 

of arc. For accurate measurements of these curves, it is essential 

to have a very stable system. As with the travelling source 

arrangement of Fig 5.4, the crystal rotation is controlled by a pulse 

stepper motor connected to a micrometer via a gear box. The micro-

meter then rotates the axis on which the crystal is mounted,by a lever 

arm. With this arrangement, the crystal is caused to rotate by 1/20 

second of arc for every pulse to the stepper motor. 

Since this system is. so sensitive, it is necessary to enclose 

the whole double crystal spectrometer in a water jacket in order to 

maintain a constant temperature. Despite this, it was found that 

the angular position of the rocking curve would drift during the 

course of its measurement. It was also found that the measurement 

of many rocking curves by manual methods became tedious. 

For these reasons a system was designed to automate the process 

completely, with rocking curve data being outputted on paper tape 



so that 	computer analysis could be immediately available (Fig 5.9). 

A Racal pulse counter was linked via a pulse-height analyser to 

an X-ray scintillation counter monitoring the intensity of the 

diffracted beam from the crystal. The counting period could be 

chosen (10, 1, 0.1 seconds, etc), and the number of counts stored 

for a length of time (variable up to 10 seconds) when a new count 

cycle would be automatically initiated. During the holding period, 

a predetermined number of pulses would be passed to the stepper 

motor in order to rotate the crystal such that a new reading could 

be taken. The circuitry for this was built using TTL components and 

is illustrated in Fig 5.10. 

The Racal pulse counter had a parallel BCD output which required 

an interface to the teletype. This was essentially a parallel to 

serial converter and is shown in Fig 5.11. A typical output from the 

teletype is given in Fig 5.12, and after computer processing, in 

Fig 5.13. 

An added refinement was a shutter arrangement to select 

alternately two points on the sample crystal for analysis. 

The distance between these two points could be varied between 2 mm 

to 3 cm. Thus, for example, diffused and undiffused regions of crystal 

could be analysed simultaneously. Also, the variation of angular 

position of the rocking curve across the crystal (due either to 

angular variation or spacing of the Bragg planes) could be measured 

by keeping one point on the crystal fixed as a reference,and scanning 

across with the other. 

The shutter was controlled by a solenoid which changed state 

with every burst of pulses to the stepper motor. The shutter and 
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FIGURE 5.9: System for automatic rocking curve measurements 
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FIGURE 5.10: Step/scan electronic circuitry 
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FIGURE 5.12: Teletype output giving rocking curve data. 
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FIGURE 5.13: Data of Figure 5.12 after computer processing. 
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slits were constructed out of tantalum sheet and the main body of 

brass. The experimental arrangement for the double crystal is 

shown in Fig 5.14 together with the automatic shutter described 

above. 



FIGURE 5.14: Double crystal experimental arrangement showing automatic shutter. 
An interferometer is acting as sample crystal. 
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CHAPTER 6: ANALYSIS OF DISLOCATION IMAGES 

After two preliminary attempts at selective oxidation of an 

interferometer, some dislocation images were noticed and analysed 

(after removal of the oxide). Hart 
66 
 performed similar work, but 

since the dislocations which he observed lay in different wafers of 

the interferometer, their images superposed in some instances 

resulting in complex and sometimes ambiguous interpretation. As it 

will be shown later, all the dislocations observed in these experi-

ments were to be found in the same wafer, namely the splitter. Hence, 

all the dislocations could be unambiguously identified in each 

topograph. 

Dislocations are imperfections which are invariably found in 

great numbers in all naturally grown crystals. It is only with the 

requirement for dislocation free crystals such as silicon, germanium 

and quartz in the semiconductor industry that the technology for 

growing such crystals has been developed. The appearance of just a 

few dislocations in originally dislocation free material is there-

fore particularly interesting. 

There are many different forms of dislocation (Cottrell 2), 

but the two basic types are known as edge-type and screw-type dis-

locations. An edge-type dislocation is shown in Fig 6.1(a). This type 

of dislocation can be considered to arise as a result of partial 

internal slip in the plane ABCD along the direction BC. The vector 

in the direction BC is called the Burger's vector, b, and has magni-

tude equal to the slip distance, which in the figure is one inter-

planar spacing. Obviously the magnitude may be any multiple of this 
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FIGURE 6.1: Schematic diagram of (a) an edge-type dislocation and 
(b) a screw-type dislocation 



depending on the number of extra half planes (such as ABEF) which are 

caused by the dislocation. From energy considerations, it can be 

shown that for crystals with the diamond structure (eg germanium and 

silicon) the most likely edge-type dislocation has slip plane fill 
with Burger's vector in the direction <110>. It will be seen from 

Fig 6.1(a) that the crystal lattice is in a state of mechanical strain 

around the dislocation edge AB such that the material is in tension 

below and in compression above the edge. Since the presence of an 

impurity atom will tend to ease this strain and thereby lower the 

energy state, impurity precipitation will occur along the dislocation 

edge. Since electrical conduction paths are formed as a result of 

this precipitation dislocations may be a serious yield hazard and are 

to be avoided in semiconductor fabrication. 

Fig 6.1(b) is a schematic illustration of a screw-type dislocation. 

In this structure the slip takes place parallel to the line of the 

dislocation rather than perpendicular to it as is the case with an 

edge-type dislocation. 

It will be seen from Fig 6.1 that atomic planes with their 

normals perpendicular to the Burger's vector b will be unstrained by 

the dislocation, and so the dislocation will be invisible when 

diffraction takes place from these planes. This condition alterna-

tively may be written 

h.bj = 0 
	

(6.1) 

By similar arguments, it can be shown that the number of extra 

half fringes N observed in a moir6 topograph can be expressed as 



	

N =+ 
	

(6.2) 

In Burger's vector determination three unknowns must be solved, 

	

(u, v, w). 	Hence three independent equations must be obtained. By 

algebraic manipulation it can be shown that for this to be the case, 

the three chosen values of h must not be coplanar. 

The reflections used in this experiment are indicated in the 

stereographic projection of Fig 6.2, together with an illustration of 

an interferometer to show its orientation. In order to show up the 

dislocation in a moire topograph it is necessary to introduce a small 

twist to one of the wafers. This has the effect of producing hori-

zontal rotation fringes by which the dislocation image may be defined, 

and even dislocations lying close together may be resolved. A com-

parison between Figs 6.3(a) and 6.3(b) will illustrate this. Table 6.1 

lists the conditions under which the topographs of Fig 6.3 were taken. 

TABLE 6.1 

Fig 6.3 radiation h moment 	(about 	111) 

a MoKcx 022 - 

b MoKo 022 ACW 

C CuKa 022 ACW 

d CuKa 072 AN (150  rotation about h) 

e CuKa 220 CW 

f CuKa 202 CW 

g MoKa T3T AN 

Fig 6.4 defines the positions of the dislocations (A-M). 

The first task is to establish in which wafer the various dis-

locations lie. This was achieved by taking two topographs using the 
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FIGURE 6.2: Stereographic projection showing reflections (underlined) 
used for Burgers vector determination 



 

 

FIGURE 6.3(a): Dislocation images 
(b): Same as (a) but with a small torque applied to introduce 

rotation moir6 fringes 
022 reflection; MoKcx radiation 
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(f) 

FIGURE 6.3: Dislocation, images - 207 reflection, CuKct radiation 
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(g) 

FIGURE 6.3: Dislocation images. Dislocations C-M are too indistinct 
to be seen in this topograph. 

T3T reflection, MoKet radiation 
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(a) 

FIGURE 6.4: Dislocation images labelled A-M (see Figure 6.3(b)) 
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FIGURE 6.4: Plotting of dislocation co-ordinates 
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same reflection, but rotating the interferometer through 150  about 

h for the second topograph. In this way, the relative displacements 

of the dislocation images yield their positions (Fig 6.5). Table 

6.2 lists the dislocations under study and gives the mean coordinates 

(mm) of the projected dislocation images in Figs 6.3(b) and 6.3(c) 

(correcting for the image projection) compared with the coordinates 

measured in Fig 6.3(d) (ie after 15°  rotation about h) 

TABLE 6.2 

Dislocation (b) (c) x y (d) 

A 1.9,4.8 1.9,5.0 1.9 4.9 2.1,4.8 

B 3.9,4.8 3.9,5.0 3.9 4.9 2.1 ,4.8 

C 9.7,5.9 9.7,5.9 9.7 5.9 10.0,5.7 

0 10.0,5.3 9.3,5.6 9.9 5.5 9.7,5.4 

E 10.1,5.0 10.1,5.2 10.1 5.1 9.8,5.0 

F 9.6,4.7 9.3,5.0 9.5 4.9 9.2,4.8 

G 10.4,4.5 10.1,4.8 10.3 4.7 10.0,4.5 

H 10.1 ,3.8 10.0,3.8 10.1 3.8 9.9,3.5 

I 11.2,3.5 10.9,3.7 11.1 3.6 10.8,3.4 

J 11.7,2.3 11.8,2.1 11.8 2.2 11.6,2.0 

K 11.9,1.7 12.1,1.8 12.0 1.8 11.7,1.6 

L 12.2,1.2 12.2,1.4 12.2 1.3 12.1 ,l.2 

M 12.4,0.7 12.3,0.9 12.4 0.8 12.4,0.6 

If a dislocation is in the splitter wafer, its projected y 

coordinate remains unchanged. If it is in the mirror wafer the 

projected y coordinate will decrease by 0.9 mm. In this case one 

dislocation will produce two images- originally, it was thought that 

images A and B were such a dislocation, but their positions remained 

constant irrespective of reflection. If the dislocation is in the 

analyser, its projected y coordinate will decrease by 1.8 mm (Fig 6.5). 
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FIGURE 6.5: Effect of rotation about h on moir6 images 
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It can be seen at once, however, that in each case the y coordinate 

remains unchanged implying that all the dislocations are in the splitter 

wafer. 

By studying all the topographs it may be seen that dislocations 

A and B are a complementary pair since the extra half fringes are 

always in opposite directions, ie bA = - 	. Each reflection yields 

an equation, by which Ih.bl = +N may be solved. For b = [uvw] 

	

-2v +2w = +4 	(Figs 6.3(b),6.3(c),6.3(d)) 	(6.3a) 

-2u +2v 	= 2 	(Fig 6.3(e)) 	 (6.3b) 

2u 	-2w = 2 	(Fig 6.3(f)) 	 (6.3c) 

-u 	+3v -w 	= 4 	(Fig 6.3(g)) 	 (6.3d) 

It can be seen that the first three equations are not independent - 

eg Equation 6.3c = -(Equation 6.3a + Equation 6.3b). This is to be 

expected since the three reflections used are in the same zone. 

Solving these four equations yields bA = +a 	and and hence B = 

a0 0lT3. This result is not surprising since <110> type dislocations 

are by far the most common. 

Unfortunately, it is impossible to count the extra half fringes 

corresponding to dislocations C-N in Fig 6.3(g) and so a little more 

ingenuity is required to solve their Burger's vectors. If their 

coordinates of Table 6.2 are plotted (Fig 6.4(b)), it will be seen 

that dislocations CDEGIJKLM all lie on a straight line at exactly 

60°  from the horizontal (2T1). This line has vector direction lOT. 

It is reasonable to suppose that this line lies in the dislocation 

slip plane S [abc]. Hence for dislocations CDEFGI 
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S.[1OT] 	= 0 - a - c = 0 (6.4a) 

S.b 	=0-au+bv+cw=0 (6.4b) 

-2v 	+2w 	= +1 (Figs 6.3(b), 	6.3(c), 	6.3(d)) (6.4c) 

-2u 	+2v 	= +1 (Fig 6.3(e)) (6.4d) 

2u 	-2w 	= T2 (Fig 6.3(f)) (6.4e) 

The solution of these equations gives 

S = iTl and b = + a Cl OT] 

or 	S = 121 and b = ± a0[1OT] or 	a0[123] or + a0[3211 

Since <110> type dislocations with <111> type slip planes are 

most common, the dislocation Burger's vector may be classed as follows: 

Dislocation Burger's vector 

A +a[0lT] 

B Ta0  [olT] 

CDEFGI + a/2 [10T] 

HJKLM T a0/2 [lOTJ 
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CHAPTER 7: OXIDE INDUCED STRAIN 

It is a well known phenomenon that an oxide grown on a silicon 

wafer induces strain in the substrate. In fact, strain will always 

be present when one material is grown, vapour-deposited or plated 

on another. One of the first studies of electrodeposited layers was 

carried out by Stoney 113 who showed how the stress may be calculated 

from measurements of the radius of curvature arising from mechanical 

warpage. When SiO2  is thermally grown on a silicon wafer, this warpage 

may even be observed with the naked eye for thick oxides (>1 pm) grown 

on thin substrates (150 pm), after the oxide has been stripped from 

one face. 

The origin of the stress has been attributed to several causes, in 

particular physical mismatch between the oxide and the substrate and 

also to the different coefficients of thermal expansion of Si and 

Si02  when the oxide is thermally grown in an oxidation furnace. 

Experiments 
12-15 

 conclusively show that for thermal oxides, this 

latter cause is by far the dominant effect. 

The thermal •expansion coefficients for both silicon and SiO2  are 

very dependent on temperature, so that care must be taken in calculating 

the contraction which takes place from, say, 950°C to room temperature. 

For example, a si = 2.5 x 106  at 293°K and 4.3 x l06  at 1000
0K. The 

American Institute of Physics handbook 
114  quotes the expansion AZ/k at 

various temperatures. 	For a cooling from 950°C to room tempera- 

ture, silicon contracts by an amount iQ/i = 3.63 x iO 	and SiO2  by 

= 4.95 x 10- 
4. 
 Hence the oxide will be in a state of compression 

and the substrate in tension under the oxide and in compression 
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elsewhere. This stress is relieved by mechanical warpage resulting 

in a convex bowing (Fig 7.1). 

Using the above figures the net strain in the oxide is therefore 

calculated to be 3.14 x 1O. Jaccodine and Schlegel12  measured 

Young's modulus in such an oxide as 6.6 x 
iO11 

 dynes/cm2  and Poisson's 

ratio as 0.18. In any stress system, the extensions in the directions 

of the axes (E) and the normal stresses across planes at right-angles 

to the axes () are connected by the equations (Love115 ) 

1 
- v ( 	+ G)} 

1 
Cy  = 	- V (Gz  + Ox ) 	 (7.1) 

1 
£ z 
	E 
= - 
	

- V (o + 

where E is Young's modulus and v, Poisson's ratio. 

For an oxide grown on a silicon substrate, the strain occurs only 

in the plane of the slice and not in the direction normal to it since 

it is not constrained in this direction. Hence, assuming isotropy in 

the plane of the slice (this will be shown later) cx  = 	and cz  = 0. 

Also ax  = Gy  and uz  = 0. This leads to the stress-strain relationship, 

o 	
1v 	

(7.2) 

Using these figures for an oxide grown at 950°C, the stress in the oxide 

may be calculated to be 2.5 x 10 dynes/cm2. 

Jaccodine and Schlegel 
12 
 oxidised slices at temperatures ranging 

from 855°C to 1200°C and determined the stress by measuring the bowing 

caused by an oxide grown on one side and also by using an unsupported 

Si02  window as a balloon and measuring the strain as a function of air 

pressure inflating the balloon. The stress was found to range from 
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(a) 

FIGURE 7.1: Silicon wafer before (a) and after 
oxidation, (b) showing mechanical 
warpage 
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2.1 x 10 dynes/cm2  at 900°C to 3.2 x 10 dynes/cm2  at 1100°C. 

Blech and Meieran 
15 
 measured the lattice distortion underneath an 

oxide film by observing the anomolously enhanced intensity of X-rays 

diffracted by the substrate. In so doing, they developed a model from 

elasticity theory to predict the strain as a function of position within 

the substrate. This model is developed by Love 
115 

 for a semi-infinite 

isotropic body. As such, it is only applicable to the region of sub-

strate in the immediate vicinity of the oxide (ie to a depth much less 

than the slice thickness). The model is therefore able to explain 

the relatively high strain field at the oxide edge which Blech and 

Meieran observed, but does not predict the strain fields which may be 

34 
found through the depth of the slice. Hashizume 	uses this model to 

predict strain within the whole slice but is unable to correlate 

theory with experimental measurements. Blech and Meieran measured a 

compressive stress of 3 x 
109 

 dynes/cm2  for an oxide grown at 1200°C. 

Brotherton et al 
14 
 investigated the relationship between oxide 

stress and the density of interface surface charges. The model that 

they developed was based on bimetallic strip theory, and by making 

lattice parameter measurements found the stress in an oxide grown at 

1200°C to be 2.5 x lO dynes/cm2. 

Kato and Patel 
35-37, 

 by observing the trajectories of X-ray beams 

through a strained wafer and adopting the model for a semi-infinite 

body proposed by Blech and Meieran15, obtain the high value of 

o 
4 x 10 

9 
 dynes/cm  2  for oxides grown at 950 C. 

1.1 ELASTICITY MODEL 

The use of an interferometer for measuring oxide induced strain is 

therefore the first 'direct method in which the strain may be 
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immediately seen' as moird fringes. The bimetallic strip model of 

Brotherton et a114  was ruled out since it does not predict the strain-

field surrounding an oxide region. It was not possible to use the 

theory for a semi-infinite body used by Blech and Meieran15  since a 

300 pm wafer with a 3.5 diameter disc grown on it should be considered 

as a thin plate. 

Love 
115 

 develops an expression relating the displacements u and 

v in the directions x and y respectively as a function of position in 

a two-dimensional elastic system when a force is applied at the origin. 

He then applies a correction factor such that the theory may be 

extended to a thin plate. 

If an element of area within an oxide film is under stress, then 

it will exert forces in all directions on its elemental neighbours. 

Within the oxide shape, therefore, all these forces will cancel out 

(provided that the oxide is uniform) but there will be resultant 

forces acting at and perpendicular to the oxide edge (Fig 7.2), so that 

only these forces need be considered. 

If a force of -2A71 dynes/cm acts in the positive direction of the 

x axis, then provided that the body is isotropic, the displacements u, 

v at the point x, y are given by (Love 5) 

X-i-3p 	 X+p 
U 	

2p(+2p) A n r 
	

2p(X+2p) 
 A 2 

r 

A+p 
V 

= - 2p(X+2p) A 
Xy  

(7.3) 

r 

2 
where r= v'x +y 2  

and where A  	
Ev 	

E 

where E is Young's modulus of elasticity and v Poisson's ratio. 
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FIGURE 7.2: Elemental forces within oxide disc cancel. 
Forces acting on substrate effectively act 
around and normal to the oxide edge 
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These equations are valid for a two-dimensional elastic system. 

When the theory is extended to cover the displacements in a thin 

plate, A must be substituted by A' where A' = 2Ai/(A+2). 

It is reasonable to assume that the silicon wafer undergoes 

mechanical warpage such that it is uniformly curved through its 

thickness. For the wafer to be in equilibrium the net force must be 

zero and the total moment must also be zero. 

Let the stress in the oxide be a. If the thickness of the oxide 

is very much less than the thickness of the wafer, the force acting on 

an element dydz of the oxide edge can be considered constant throughout. 

The magnitude of this force is F0 = (ady)dz (see Fig 7.3). Since the 

wafer is assumed to bend uniformly, the forces acting in the substrate 

will be linear with depth (z) and so may be written 

F(z) = cz + Ft 	 (7.4) 

where c is a constant and Fint  the force acting in the substrate at 

the Si-SiO2  interface. 

By resolving moments about y, 

tsi 	
tox 

f F(z) z dz + F 
ox 	f z dz = 0 	 (7.5) 

0 	 0 

ie 

Ct3 . 
51 + 	

t2 	F 
ox ox 

	

Fint 2 	- 2 	
(7.6) 

By resolving forces in x 
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tsi 	
tox 

f 	Fdz+F ox 	f 
dz=0 	 (7.7) 

0 	 0 

ie, 

Ct2  
Si 

+ F. t  t Si 	OX OX 
= - F 	t 	 (7.8) 

By solving Equations 7.6 and 7.8, 

F(z) 	6z 
F 	

4] tox 	 (7.9) 
OX 	 Si 	 Si 

This force diagram is illustrated in Fig 7.3. 	It will be seen at 

once that the force in the substrate immediately underneath the oxide 

edge is opposite in sign to the force in the oxide. This means that 

whereas the oxide is in compression, the substrate is in tension. 

However, on the opposite side of the wafer the silicon is in compression 

with a neutral plane two-thirds of the wafer width from the oxide. 

This is due to the warpage of the wafer. As seen in Section 3.2.2 the 

interferometer is sensitive to strain on the inside of its splitter or 

analyser wafers, so that it is this compressive force that is of 

consequence here. From Equation 7.9, this force will be seen to be 

t ox 	 t ox 
F(t.) = 2 	F 	= 2 (ody) dz 	dynes 	 (7.10) 

Si 	t. ox 
Si 	 Si 

This force may now be substituted in Equation 7.3 in order to cal-

culate the resultant displacements at any point (x, y, t5 ). An 

alternative way of arriving at the same solution is to constrain the 

wafer from bending such that the force acting in the substrate is 
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FIGURE 7.3: Schematic illustration of forces acting in an oxidised silicon slice 
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constant throughout its depth and is determined simply by resolving 

forces in y. The strain at the inside surface is then calculated by 

resolving the moments of stress at every point in the wafer as before. 

By either method, the displacement du in the direction of x at a 

point (x, o, -t)  resulting from a force ((jdi)dz acting at a point 

on an element di on the edge of an oxide disc, is given by 

(see Fig 7.4), 

du 	at 

- 	Si 	
2p(A+2p) in r + __ 

	
sin 	2 

2p (X+2) 	r 

A+ij 
(x-r 

0 
 cos 	)r 

0 
 sin 	 (7.11) 

2 	 }sin] 
r 

where r2  = (x - r0  cos q)2  + (r0  sin c)2  = x2  + r 
0 
2 - 2xr0  cos 

This simplifies algebraically to 

-o t 	 (A+)xr sin2  du 	 ox 
= 2i(A+2i) t 	

[(A+3p) in (r) 	cos 	
+ 	2 	

(7.12) 
si r 

In order to calculate the total displacement at a point (x,o) it 

is therefore necessary to integrate this expression around the border 

of the oxide shape by putting di = r0  dc, ie 

Tr 
u(x,o) = _______ atox ro 

	f [(+3)in(r) cos 2irp(A+2p)  
-11 

(X+p)xr sin  
0 + 	 I d4 (7.13) 

If the oxide disc is circular and the material isotropic, it is 

only necessary to calculate u(x,o) in order to determine the displacement 
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u(x,y). If X-ray diffraction takes place from Bragg planes normal to 

the direction of x, then the resultant moire fringes in the interfero-

meter are insensitive to v(x,y). 

This technique may be used for calculating the strainfield result-

ing from any shape of oxide (provided that the oxide dimensions are much 

greater than the wafer thickness), simply by integrating the effects of 

the forces acting round the oxide. 

It would appear, at first, that the 2n function in Equation 7.13 

causes the displacement to increase with distance from the origin of the 

force. However, for a pair of opposing forces at a distance r and r2  

from (x,o) the function is in reality n(r1/r2) which tends to zero as 

the distance increases (r1/r2  -- 1). The theory of plane strain as a 

function of a force acting at a point by Love 
115 

 assumes that the force 

acts in a cavity within the body. Therefore, when x = r0, the integral 

of Equation 7.13 must not include the condition when= 0, ie 

2r-S 

u(r0,0) = 2(+p) 	
r 	f [(A+3) fl (2r02 (l-cos 	)) Cos 

(A+p) r 
2 
 sin 	

(7.14) 

+ ---2--] d 
r 

where 6 - 0. 

The theory developed so far assumes that the substrate material is iso-

tropic. In general, however, all crystalline materials are anisotropic and 

silicon is no exception to this rule. However, elasticity theory (Love115) 

shows that Young's modulus is a minimum in the directions of the principal 

axes (ie <100>) and a maximum in the directions equally inclined to the 

principal axes (ie <111>). However, it is constant in directions whose 

directions cosines £., m and n are given by the expression 2±m±n = 0. This 

means that all directions lying within the 11l plane have the same 

elastic parameters, and so the theory developed above is valid after all. 

Wolf  quotes the following values for Young's modulus (E): 
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TABLE 7.1 

Direction E (dynes/cm2) 

<100> 1.301 	x 	10 12 

<111> 1.878 	x 	10 12 

<110> 1.690 x 	10 12 

<211> 1.690 x 	10 12 

A computer programme was written to perform the integral of 

Equation 7.11,  and this is given in Appendix II. Young's modulus, 
/çyy2 

E = 1.69 x 10 
12 
, and Poisson's ratio, cy = 0.262 were used. The 

oxide disc radius and thickness and substrate thickness were read into 

the programme. The measured fringe spacing was also read and the 

oxide stress required to give this fringe spacing calculated. The 

fringe pattern was then produced as line printer output. 

7.2 RESULTS 

Five interferometers were used, having been constructed in the 

way described in Section 5.1. 	These were labelled 11-15. Initially 

they were examined with the Lang traversing source arrangement 

(Fig 5.4) in order to check for built in strainfields and dislocations 

(Fig7.5(a) to (e)) and then submitted for cleaning and oxidation 

(as described in Section 5. 2). By using photoresist techniques, all 

the oxide was etched off the interferometers except for a disc 3.5 mm 

in diameter on the splitter wafer. Table 7.2 gives details relating 

to each interferometer. 
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Interferometer Ii 
Note dislocationsresulting from 
previous oxidation 

Interferometer 12 

FIGURE 7.5: Interferometers after cutting and etching 

(022 reflection, MoKcx radiation) 



Interferometer 13 

4 : 

I) 

I 

7 

I 	 -4 

Interferometer 14 

FIGURE 7.5: Interferometers after cutting and etching 

(02 reflection, MoKcx radiation) 
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(e) 

FIGURE 7.5: Interferometer 15 after cutting and etching. 
Note high strain region in upper corner. The 
opposite corner, however, is relatively strain 
free and is therefore usable. 

(027 reflection, MoKa radiation) 
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TABLE 7.2 

Interferometer 
Oxide 

thickness 
(pm) 

Wafer 
thickness 

(pm) 

Oxide disc 
diameter 
(mm) 

Typical 	IC 
Application 

Il .12 315 3.5 Gate oxide 

12 1.18 378 3.5 Field 	oxide 

13 .19 302 3.5 - 

14 .37 337 3.5 Masking oxide 

IS .72 346 3.5 Masking oxide 

The oxide thickness was determined using colour charts 
80 

 giving 

an accuracy of -1-.Ol pm. The wafer thicknesses and oxide disc diameters 

were measured using a travelling microscope. 

The strain patterns were observed as moir6 fringes and are shown 

in Figs76(a) -710(a) together with those predicted by the theory 

developed above (Figsl.6(b) -7.10(b)). Topographs relating to the inter-

ferometers Ii and 13 were taken using Kodak dental film and those 

relating to interferometers 12, 14 and IS on Ilford nuclear emulsion 

film in order to resolve fringes close together. Since the X-ray 

intensity was relatively low, nuclear emulsion films required an 

exposure of about three days/cm of traverse. 

It must be noted that there are two effects which cause the 

topograph image to become distorted. The first is that the inter-

ferometer must be rotated through the Bragg angle (10.6°  for 220 

reflection with MoKa radiation) and the second is that the X-ray beam 

which originates from essentially a point source has angular 

divergence. The effect of this is to enlarge the vertical scale by a 
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. 

(a) 

FIGURE 7.6(a): Observed moir6 fringe pattern (Ii) - note 
dislocations analysed in Chapter 6. 
t0  = .12 im, t5. = 315 irn. 

(022 reflection, MoKa radiation) 
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FIGURE 7.6(b): Calculated fringe pattern 
t0< 	= .12 .im, t si = 315 pm 

Gox = 1.92 x lO9dynes/cm2 
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.h. 

j 

) 

(a) 

FIGURE 7.7(a): Observed moire fringe pattern (13) 
t0  = .19 urn, t 1  = 302 urn 

(022 reflection, MoKc radiation) 
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FIGURE 7.7(b): Calculated fringe patterns 
t0< 	= .19 pm, t si = 30211 m 

= 1.69 x io dynes/cm2 
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(a) 

FIGURE 7.8(a): Observed moire fringe pattern (14) 
tax =.37 pm, t 

si 
= 337  pm 

(022 reflection, MoKci radiation) 
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FIGURE 7.8(b): Calculated fringe pattern 
t0, 	= . 37 pm, t si = 337 pm 

G ox = 2.06 x 10 dynes/cm 
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FIGURE 7.9(b): Calculated fringe pattern 
t ox = .72 pm, t 1  = 346p m 

G ox = 1.60 x io dynes/cm2 
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FIGURE 7.10(a): Observed moire fringe pattern (12) 
t ox = 1.18 ti 	

Si 
m, t 	= 378 im 

(022 reflection, MoKcx radiation) 



FIGURE 7.10(b): Calculated fringe pattern 
t0  = 1.18 Pm, t 1  = 378 pm 

0 ox = 1.62 x 10 dynes/cm' 



150 

factor of about I.I. The calculated fringe spacings are distorted 

in similar fashion to give exact correlations. 

The results obtained from the moird topographs are presented in 

Table 7.3, and in graphical form in Fig 7.11. A least squares 

TABLE 7.3 

Interferometer (dynes/cm2) t0 	dynes/cm 

Il 1.92 	x 	10 2.30 	x 	10 

12 1.62 	x 	10 1.91 	x 	10 

13 1.69 	x 	1O9  3.22 	x 	10 4 

14 2.06 x 	10 7.62 	x 	10 

15 1.60 x 	10 1.15 	x 	10 

analysis gives 	= 1.65 x 10 dynes/cm2. This value is significantly 

lower than that predicted by thermal contraction considerations 

(2.5 xlO9  dynes/cm 2). This may be due to the fact that the oxide was 

grown on a chemically etched surface rather than a mechanically polished 

one resulting in a rougher surface. This would allow some of the 

compressive stress in the oxide to resolve itself. However, a comparison 

between Figs 7.6(a) 	7.10(a) with 7.6(b) - 7.10(b) shows that the 

elasticity model predicts the moire fringe pattern with good accuracy. 

It should therefore be possible to calculate the relative strain 

(if not the actual strain) in a silicon substrate for any shape of oxide 

pattern grown on it (provided of course that the oxide lies well within 

the boundary of the substrate since the model is valid only for a thin 

plate infinite in extent). 

By using the elasticity model for calculating relative strain, 
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contours of equirotation (Fig 7.12) and equidilatation (Fig 7.13) 

were calculated for the results obtained with interferometer 13 

(t0 = .19 pm, t5. = 302 pm). 

An idea of the lattice distortion may be gained from Figs 7.14 

and 7.15 which were also calculated using the elasticity model. 

Fig 7.14 represents the distortion of the lattice immediately beneath 

the oxide disc where the lattice is in a state of tension. Fig 7.14 

on the other hand, represents the opposite side of the wafer which, due 

to warpage, is in a state of compression. These figures can not relate 

to any particular moir6 topograph since the distortion is obviously 

greatly exaggerated. 

7.3 DOUBLE CRYSTAL MEASUREMENTS 

The interferometer topographs give information about the strain 

within the plane of the wafer but the warpage or curvature predicted by 

elasticity theory may only be inferred from these results. It is 

important to establish the curvature in order to find out if it has any 

significant effect on the X-ray standing wave pattern within the inter-

ferometer by the focussing effect described in Section 3.2.2 and Fig 

3.11. A more direct method of measuring the curvature may be achieved 

by using a double crystal spectrometer. The theory behind this 

instrument has been outlined in Chapter 4. 

The X-ray incident beam was diffracted initially from a perfect 

reference crystal and then from the splitter wafer of interferometer 12 

(t ox = 1.18 pm). Both crystals were diffracting from f3333 Bragg 

planes under conditions of symmetric Bragg reflection. With CuKa 

radiation, this represents a Bragg angle (0) of 47.480 . 
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FIGURE 7.11: Theoretical and observed force/cm of oxide length 
vs oxide thickness. 
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FIGURE 7.12: Calculated contours of equi-rotation (radians) 
(non-oxidised side of wafer) 
t ox = .19 pm, t5. = 302 pm 
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FIGURE 7.13: Calculated contours of equi-dilatation (A/2) 
(non-oxidised side of wafer) 
t0  = .19 pm, t 	= 302 pm 



FIGURE 7.14: Lattice distortion immediately beneath oxide disc 



FIGURE 7.15: Lattice distortion on non-oxidised side of wafer 
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The shutter system described in Section 5.5 was used. Two 

small holes (.25 mm x .25 mm) in the shutter were arranged such that 

one allowed a beam, diffracting from a point -5 mm from the centre of 

the oxide disc, to pass to the counter to act as reference while the 

position of the other could vary horizontally, scanning across the 

crystal. By rotating the crystal through the Bragg peaks of the two 

beams and alternately recording the X-ray count in each beam using 

the automatic measuring technique described in Section 5.5, the angular 

displacements between the two peaks could be determined. The effects 

of crystal drift were thus minimised. Two 	effects can cause angular 

displacement of the Bragg peak. The first is variation in tilt of the 

lattic planes, and the second is variation in the spacing between the 

Bragg planes normal to the surface. 	In this application, it is the 

lattice tilt which is the dominant effect. Under the oxide disc, 

the spacing of the Bragg planes is constant since the stress is 

constant (as shown by the interferometer topographs) but elsewhere a 

second order effect will be introduced. Although the forces are acting 

in the plane of the surface, variation of Bragg plane spacing normal 

to the surface will occur by an amount determined by the value of 

Poisson's ratio. 

Table 7.4 shows the angular variation (a)  between the centre of the 

diffraction peak of the reference and sample beams as a function of 

distance between them, after correcting for projection of diffracted 

X-ray beam. 



TABLE 7.4 

Ax (mm) a (secs) Ax (mm) a (secs) 

0.0 0.63 4.15 1.01 

0.35 1.72 4.50 -0.58 

0.69 1.36 4.84 -2.32 

1.04 2.47 5.19 -3.83 

1.38 3.60 5.54 -3.39 

1.73 4.31 5.88 -4.79 

2.08 4.32 6.23 -5.81 

2.42 4.44 6.57 -5.92 

2.77 4.31 6.92 -4.48 

3.11 3.17 7.27 -6.13 

3.46 4.85 7.61 -3.94 

3.81 1.77 

By assuming uniform bending of the wafer with a neutral plane 

two-thirds of the wafer thickness from the oxide the variation of angle 

across the wafer was calculated and the results are presented in Table 

7.5 with a as a function of distance from centre of the disc. 

The measured results are only relative to one another and not 

related to absolute position with respect to the oxide disc. However, 

this may be deduced from symmetry considerations. It must also be noted 

that the measured results are in fact the convolution of the actual 

angle function with a square pulse of unity area and width equal to the 

slit width. 

Figure 7.16 compares measured and calculated angle of tilt across the 

oxidised wafer. 	The important point to notice is that the radius of 

curvature of the disc is close to that predicted from the interferometer 

experiments (46 metres). Some variation, however, does occur towards 



FIGURE 7.16: Angle of tilt across slice with 3.5 mm oxide disc 

(t ox 
= 1.18 pm, t si = 378 pm) 

- calculated from moir6 fringe topographs 
x measured with double crystal spectrometer 
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TABLE 7.5 

Ax (mm) ci 	(secs) Ax 	(mm) a (secs) 

0.0 0.0 2.80 5.02 

0.17 0.80 2.97 4.72 

0.35 1.61 3.15 4.46 

0.52 2.41 3.32 4.23 

0.70 3.21 3.50 4.02 

0.87 4.02 3.67 3.82 

1.05 4.82 3.85 3.65 

1.22 5.62 4.02 3.49 

1.40 6.42 4.20 3.35 

1.57 7.23 4.37 3.21 

1.75 7.90 4.55 3.09 

1.92 7.30 4.72 2.97 

2.10 6.69 4.90 2.87 

2.27 6.18 5.07 2.77 

2.45 5.74 5.25 2.68 

2.62 5.35 

the edge of the disc, but this may be due to the traverse being dis-

placed by a small amount vertically. Fig 7.17 shows the wafer curvature 

predicted by the calculated values of lattice tilt - obviously in the 

figure this is grossly distorted. 

These results obtained so far relate to the largest measured dis-

tortion - ie the distortion in interferometer 12 with an oxide thick-

ness 1.18 pm - and enable the determination of the error introduced into 

the interferometer moird fringe pattern by 'focussing' of the X-ray 

standing wave pattern and the curvature of the wafer. The maximum error 

occurs at the edge of the oxide disc where the displacement of the 

wafer in the direction normal to the unstrained crystal surface (z) 

is estimated to be 0.2 pm (from Fig 7.17). With a lattice tilt (a) 
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FIGURE 7.17: 	Distortion of wafer (warpage) vs distance from 
oxide disc centre (calculated) 
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of 7.9", this represents an error (A) of 0.2 tan (7.9") pm = .077 	. 

The curvature of the wafer causes an error equivalent to the 

difference between the arc and chord of a circle (-w) in Fig 7.18). 

This may be calculated to be .004 R , resulting in a total error of 

.081 R. 	Interferometer topographs (Fig 7.10(a)) show that the dis- 

placement at the disc edge due to strain is 25 x 1.98 . Hence 

the error is only -.16% and so the effects of curvature on the 

moird fringe pattern may be neglected. 
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FIGURE 7.18: Error introduced in moird fringe topograph 
image by 'focussing' of the X-ray standing 
wave pattern. 
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CHAPTER 8: DIFFUSION INDUCED STRAIN 

When diffusion of impurity atoms takes place in a crystalline 

material the material becomes strained due to the resultant distortion 

of the lattice. In Chapter 2, the two basic mechanisms of impurity 

diffusion, interstitial and substitutional diffusion, were described. 

The strain resulting from substitutional diffusion may be calculated 

simply by considering the atomic lattice as the packing together of 

spheres (Vegard's Law) and is expressed as 

C 	ra 
EN[l 	iJ (8.1) 

where r   is the covalent radius of the impurity atom, r   that of the 

host material atom; C the concentration of impurity atoms and N the 

density of atomic sites of the host material. The solute lattice con-

centration coefficient, , is expressed by 

[l ra 
	1 Ar 
H 	N Ir 

b  1 
	 (8.2) 

In the experiments performed in this chapter, boron diffusion was 

used on account of the large discrepancy in atomic radius between the 

boron and silicon atom (0.88 R and 1.17 	respectively) in order to 

maximise the strain for a given dose of impurity. Boron diffusion 

being substitutional, Equations 8.1 and 8.2 may be applied in order to 

calculate the expected strain in the silicon substrate. The density 

of 	silicon atomic sites, N, is 5.00 x 1022  cm 3  (Wolf 2). Using these 

-24 3 values for atomic radii, 	may be calculated to be 5.0 x 10 	cm 

Many workers have performed experiments in order to measure the value 
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Early work (eg Pearson and Bardsen
116

, Horn
117

) was concerned 

with observing the effects on the silicon lattice of impurity 

diffusion among which the variation in lattice parameter was measured 

by X-ray techniques. McQuhae and Brown 
17 
 have derived values for 

from their results. Cohen 
16 
 used double crystal X-ray techniques to 

observe diffraction peaks simultaneously from the thin diffused region 

in the surface of a silicon wafer and from the undiffused region 

beneath. By measuring the angular displacement between peaks he was 

able to calculate the relative change in lattice parameter. Table 8.1 

gives the results quoted by McQuhae and Brown17. 

TABLE 8.1 

(cm3) 

Calculated 5.0 	x 1024 

Pearson and Bardsen116  2.5 	x 1024 

Horn 117 5.6 x 1024 

Cohen 16 2.3 	x 1024 

McQuhae and Brown 17 5.2 	x 10 24 

The stresses and forces acting in a silicon wafer may be calculated 

in exactly the same fashion as in Chapter 7 for an oxide grown on its 

surface. However, in this case, since the boron atom is smaller than 

the silicon atom, the diffused region is in a state of tension, as 

will be the region of silicon surrounding the diffused area. Conversely 

the silicon immediately beneath the diffusion but too far from the 

surface for any significant diffusion to have taken place will be in 

a state of compression. The effect of this will be to cause the wafer 
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to bow, but this time the bowing will be concave rather than convex 

as in the oxidation case (Fig 8.1). As in the oxide case, the forces 

acting into the substrate lie round the periphery of the diffused 

area. 

The stress at the diffusion edge G is given by 

EE 
-v (8.3) 

where c is the strain, E Young's modulus (= 1.692 x 1012  dynes/cm 2) 

and v Poisson's ratio (= 0.262). Combining Equations 8.1 8.2 and 8.3 

13C E 
= T 	 (8.4) 

As shown in Chapter 2, the impurity concentration after a pre-

deposition diffusion has a complementary error function profile with 

depth into the silicon. The total force acting at the diffusion edge 

may be found by integrating the stress with depth, ie 

F = fcTdz = 
j C(z)Edz 

1-v (8.5) 

where z is directed normal to the crystal surface. 	, E and v are 

independent of z, ie 

F = 	JC(z)dz 
	

(8.6) 

It will now be realised that C(z)dz represents the total dose of 

impurity diffused into the silicon. In other words, the force is in-

dependent of the diffusion profile. Let the force now be represented 
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Diffused reqion 

(b) 

FIGURE 8.1: Silicon wafer before (a) and after boron diffusion 
(b) showing mechanical warpage. 



as a function of the dose Q, 

EQ 
F --- dynes/cm 	 (8.7) 

The stresses in the silicon at the diffusion edge are represented in 

Fig 8.2. 

8.1 LATTICE CONTRACTION COEFFICIENT MEASUREMENTS 

The experimental procedure for the diffusion experiments was very 

similar to that for the oxidation experiments and is outlined 

in Chapter 7. Masking oxides were grown on the interferometers, this 

time using photoresist techniques of the opposite sense such that 

the interferometers were covered in oxide (-'-0.7 jim thick) except for 

a 3.5 mm disc on the outside surface of the splitter wafer. After 

diffusion, the masking oxide and boron glass were removed by techniques 

described in Chapter 5, leaving a circular diffused area in the centre 

of the splitter wafer. 

The diffusions were carried out at 950°C for times ranging from 

15 minutes to 135 minutes. The gas flows were arranged such that 

there was an excess of boron atoms at the silicon surface giving the 

maximum surface concentration (Wolf2  gives CBmax = 4.0 x 1020  cm3 

at 950°C). 

The moird topographs arising from the diffusions are given in 

Figs 8.3 - 8.6. Using the elasticity model derived in Chapter 7, the 

total force acting at the diffusion edge may be calculated. Assuming 

a complementary error function profile (see Chapter 2) the dose may be 

calculated from knowledge of the diffusion constant D, diffusion time 
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FIGURE 8.2: Schematic illustration of stresses acting at edge of boron diffused region in a silicon 
slice (c.f. Fig 7.3). 
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t and surface concentration by the expression (Equation 2.14) 

Q = 2C 

At 950°C, Wolf  gives D = 5.0 x 10-15   cm2/sec 
	

These results are given 

in Table 8.2. 

TABLE 8.2 

Inter- 
Diffusion Q Fringe spacing/ 

Force acting 
at edge of 

ferometer 
time t 
(seconds) 

(cm  2C5V 2) 
disc radius 

fir 
diffusion 

(calculated) o dynes/cm 

13 900 0.96 	x 	l0' .383 1.56 	x 	10 

15 2100 1.46 	x 	1015 .354 1.94 x 	lO 

Il 3600 1.91 	x 	1015 .243 2.56 x 	10 4 

14 8100 2.87 x 	i015  .221 3.37 x 	10 

It is interesting to note that in Figs 8.3 and 8.4 a small rotation 

has been introduced into the lattice by the diffusion. However, it 

was shown in Chapter 3 that the dilatation and rotation effects are 

independent of each other and it was also shown how the dilatation may 

be calculated from the components of moire fringe spacing in the hori-

zontal direction. Fig 8.6 is interesting in that the characteristic 

fringe pattern is absent. For this reason the measurements made from 

this topograph were suspect and were not considered in the ensuing 

calculations. The characteristic fringe pattern is probably absent due 

either to the masking oxide being too thin or to some strain centre 

imposing an overriding dilatational moire effect. 



FIGURE 8.3: Moir6 topograph of boron difused disc. 
15 minutes diffusion at 950 C. 
(022 reflection MoKcx radiation) 
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- 

FIGURE 8.4: Moird topograph of boron difused disc. 
35 minutes diffusion at 950 C. 
(022 reflection, MoKc radiation) 



FIGURE 8.5:8.5: Moir6 topograph of boro8 diffused disc. 
1 hour diffusion at 950 C 
(022 reflection, MoKct radiation) 

'73 
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FIGURE 8.6: Moir6 topograph of boron diffused disc 
214 hours diffusion at 950 C. 
Note absence of predicted fringed pattern 
(022 reflection, MoKa radiation) 
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The results of Table 8,2 are presented graphically in Fig 8.7. 

By using least squares analysis, the gradient of the straight line 

11 through these points is calculated to be 1.38 x iü. Hence, from 

Equation 8.7, may be calculated to be 6.0 x 1024 cm3. 

The total impurity diffusion dose was deliberately kept low on 

account of work by Queisser7  and Schwuttke and Queisser8  who showed 

by both etch and X-ray techniques that dislocations resulted in 

diffused samples, not as a function of impurity concentration, but as 

a function of the impurity dose. In the case of boron diffusion, 

15 	 2 they found that the critical dose was about 3 x 10 	atoms/cm 

Although no dislocation images are obviously visible in the topograph 

of Fig 8.6, the resultant fringe pattern may be due to some 

irregularities taking place in the lattice since the dose is just 

about the critical value. 

Interferometer 16 was subjected to a two hour diffusion at 1100°C, 

the diffusion being allowed to take place on the outside of the whole 

splitter wafer, the rest of the interferometer being covered by masking 

oxide. The dose corresponding to this diffusion was calculated to be 

2.1 x 1016 atoms/cm2. Fig 8.8 shows how the silicon has dislocated 

to such an extent that no moir6 fringes are visible, only dislocation 

images. It is interesting •to note that these dislocations are 

arranged in triangular fashion as one would expect with a P113face. 

Similar dislocation images were also observed in silicon slices 

diffused with boron for 30 minutes and 15 minutes at 1100°C. The 15 

minute diffusion corresponds to a dose of 7.4 x 1015  atoms/cm2. It 

is interesting to note that McQuhae and Brown 17 reported that they did 

not observe dislocations, even with boron doses as high as 2 x 10l6 



3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

[II 

41 

Force 
dyne/cm 
x 10 

176 

0 	 0.5 	1.0 	1.5 	2.0 	2.5 

Dose (Q) 2CsV!f7 (xlO'5) atoms/cm3 

FIGURE 8.7: Force acting into substrate at diffusion edge as a 
function of dose (assuming an erfc diffusion profile) 
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FIGURE 8.8: Dislocations resuting from a 2 hour 
diffusion at 1100 C. Note that dislocation 
density is too high for a moird fringe pattern 
to form (022 reflection, MoKa radiation) 



atoms/cm 2. 

8.2 MOBILITY MEASUREMENTS 

Silicon slices were diffused with boron at the same time as the 

interferometers. Since silicon becomes p-type after boron diffusion, 

n-type slices were chosen with resistivity of 50 acm. This was so that 

after diffusion a depletion region would form causing conductivity to 

occur only in the surface diffused region (typically within 0.5 pm 

of the surface). Wolf  quotes the equivalent background concentration 

for 50 Qcm material as being 2 x 1014  atoms/cm3. The slices which 

were available were lOO orientation float-zoned phosphorus diffused 

samples. The orientation in this application is unimportant since 

diffusion rates and resistivities are not dependent on orientation. 

After diffusion, the samples were subjected to a standard four-point 

probe test, in order to determine their sheet resistance (R0). 

The resistivity is related to carrier mobility by the following 

relation 

P = q(np, + pp 
	 (8.9) 

where p n and p, are electron and hole mobilities respectively, and n 

and p are electron and hole concentrations respectively. q is the 

electronic charge (= 1.6 x 10 
19 
 coulombs). For heavily doped regions, 

the minority carriers may be ignored. The mean resistivity in a 

doped region of varying carrier concentration may therefore be calculated 

by suitable integration, 

178 
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z. 
J 

I - I I 	C(z)dz 
p 	3 0 

(8.10) 

where z is the junction depth. In this instance, the majority carriers 

are holes - hence p in the expression. 

Carrier mobility is a function of impurity scattering mobility 

() lattice mobility 	and charge carrier scattering mobility 

1=1 +1 +1 
i 	L 	11C: 

(8.11) 

At low impurity concentrations, the mobility is due to the lattice 

mobility, but as the concentration increases, the overall mobility 

decreases. At high concentrations, the silicon becomes degenerate and 

the mobility is practically constant with impurity concentration. 

Hence 

1 - Pp  

- 	z. 
P 	j 

(8.12) 

It will be seen at once that the integral now represents the total 

impurity dose (Q), or number of carriers within the surface region 

which give rise to conduction. (/z) is the effective sheet 

resistivity, so that under conditions of high impurity concentration the 

impurity dose (Q) and sheet resistivity may be connected by 

R0 = 
	qQ 

	
(8.13) 

The values of Q were those calculated from the moir6 fringe topo- 

graphs of Figs 8.3 - 8.6 using the value of 6.0 x 10- 
24 
 for 	as 



calculated in Section 8.1. The data is presented in Table 8.3. 

TABLE 8.3 

Sample Dose 	(Q) 
(Measured) 

Sheet Resistance 
R0  (Q/o) 

l/q 	R 

13/D3 1.13x1015  47.1 1.33x10'7  

15/D5 1.41x1015  34.3 1.82x1017  

Il/Dl 1.86xl015  27.9 2.24x1&7  

14/D4 2.45xl015  23.4 2.67x1017  

These results are plotted graphically in Fig 8.9. Least squares analy- 

sis yields the gradient to be 122 - this is in fact the mobility 

(cm 2/v.sec). This result gives good agreement with Wolf  who quotes 

the mobility of holes in degenerate p-type silicon as being 115 cm2/v.sec 

at room temperature. However, this does not agree well with early 

measurements of hole mobility in degenerate silicon by Horn 117  who 

measured values ranging between 46 and 71 cm2/v.sec. This may be due 

to his samples not being completely dislocation-free. 

In order to check the mobility of dislocated samples, samples 

were diffused with boron for 2 hours and 30 minutes with boron at 

1100°C and both were found to contain dislocations (the result of the 

2 hour diffusion is shown in Fig 8.8). The results may be seen in 

Table 8.4. 

TABLE 8.4 

Diffusi3n time Dose Q Sheet resistance p 	(cm 2/volt sec) 
at 	1100 C 2C 5/Dt/Tr R0  (Q/D) 

= l/qQR0  minutes 

30 1.05x1016  7.3 82 

120 2.lOxlO16  4.0 74 
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FIGURE 8.9:
1 	

as a function of dose calculated from moir6 topograph q 0  
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This would indicate that the presence of dislocations would have 

the effect of reducing the mobility and would account for the apparent 

discrepancy in the result. 

8.3 DOUBLE CRYSTAL MEASUREMENTS 

The measurements made from the moire topographs yield informa-

tion about the strain in directions lying within the plane of the 

silicon slice. It is by using the double crystal spectrometer that 

information about strain perpendicular to the wafer surface may be 

readily obtained. Since the silicon is not constrained in this 

direction, the stress will be zero allowing the atomic spacing to con-

tract due to the smaller atomic radii of the boron atoms. It was 

from measuring the diffraction peaks simultaneously from the diffused 

and undiffused regions beneath the surface that Cohen 16  was able to 

measure the peak separation and hence the lattice contraction 

coefficient . A repeat of this experiment was attempted using the 

control slices diffused with the interferometers. 

The extinction coefficient 	determines the reduction in intensity 

per atomic plane of an incident beam while undergoing total Bragg 

reflection. The intensity reduces by a factor of e 2 . For a 400 

reflection 2C = 6.06 x lO 	per plane. With a junction depth of 

0.4 pm (assuming an erfc diffusion profile and using graphs in 

Wolf 2) for the most heavily diffused sample (2J hours at 9500C) this 

corresponds to a depth of 3000 atomic planes. If the impurity 

concentration is at a constant value over this depth, the ratio of 

intensities of main and satellite peaks will be 0.17. This is not in 

fact the case, the concentration following an erfc profile with 
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depth. The effect is that the satellite peak will broaden out with 

resultant reduction in intensity. Figs 8.10(a)-(d) show rocking 

curve measurements made on a reference sample, and samples D5, Dl 

and D4 respectively where the satellite peak has broadened out to 

such an extent that it is manifested only as an asymmetry of the 

rocking curve. Cohen was able to observe separate peaks since he 

was working with much higher doses of impurities (2 x 1016  atoms/cm2) 

such that the surface regions have much more significant effect. 

It should be noted, however, that the rocking curve asymmetry of 

Figs 8.10(a)-(d) increaseswith impurity dose, and therefore junction 

depth, as would be expected. 

The rocking curves were observed through a narrow slit 0.5 mm 

apart in order to minimise any effects of warpage of the silicon 

slice and the intensity profiles recorded on paper tape. No 

significant variation in the rocking curve width at half height could 

be detected, the average width being 6.0 seconds of arc. This may 

be compared with the theoretical width at half height of 4.9 seconds. 
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CHAPTER 9: CONCLUSIONS 

It has been the aim of this thesis to use X-ray interferometers 

to measure the strain induced in silicon by two fundamental processes 

necessary in the fabrication of integrated circuits, namely oxidation 

and diffusion. By developing an elasticity model and comparing 

observed moir6 fringe patterns with those predicted by theory, it 

has been shown that the resultant strain within a silicon slice gives 

fairly good agreement with theory. 

Using X-ray interferometer techniques, it was possible to 

measure the stress within a thermally grown oxide and the stress 

which this induced in the silicon substrate. The stress within the 

oxide was measured to be 1.65 x lO dynes/cm2  compared with the value 

of 2.5 x lO dynes/cm2  predicted by considering the relative thermal 

contractions of Si02  and Si. Using double crystal techniques it was 

possible to measure the radius of curvature of the silicon immediately 

underneath the oxide. The value of 46 metres for an oxide thickness 

of 1.18 pm and slice thickness of 378 pm agreed well with the 

curvature which would be expected from analysis of the moird fringe 

pattern. The double crystal technique was also able to show that the 

mechanical warpage of the wafer was convex on the oxidised side, 

confirming that the oxide stress was compressive. 

The results from the boron diffusion experiments appeared to 

give better agreement with theory than the oxidation experiments. 

The lattice contraction coefficient for boron diffusion, , was 

-24 
measured to be 6.0 x 10 	compared with the value of 5.0 x 10- 24  

calculated from consideration of the relative covalent atomic radii 

sizes of boron and silicon atoms. From four point probe measurements, 
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it was possible to measure the mobility of holes 	in degenerate 

p-type silicon. pp  was found to be 122 cm2/volt sec, giving good 

agreement with the value of 115 cm2/volt sec given by Wolf2. The 

values measured by Horn 
117 

 ranging between 46 and 71 cm2/volt sec 

are probably due to his samples not being dislocation free. 

It was found that there exists a critical impurity dose above 

which lattice dislocation occurred. This was found to be between 

2.9 x 1015  and 7.4 x 	l5 atoms/cm2. This agrees well with the 

observation by Queisser7  who determined the critical dose for boron 

15 	2 
to be 3 x 10 	atoms/cm 

An attempt was made to repeat the experiment by Cohen 
16 
 to 

detect separate diffraction peaks from both the diffused layer and 

undiffused region underneath using a double crystal spectrometer. 

However, no distinct peaks were observed since the impurity dosage 

was deliberately kept low to prevent dislocation of the lattice from 

occurring. 

Several dislocations were observed in one interferometer and 

their Burger's vectors were analysed. These dislocations arose after 

two heavy oxidations and much handling. It is interesting to note 

that despite three further subjections to furnace temperatures they 

remained immobile. 

9.1 APPLICATION TO RESONATORS/MONOCHROMATORS 

In Chapter 1, it was proposed that it would be interesting to 

study the possibility of using oxide or diffusion induced strain to 

change the silicon lattice parameter by appropriately controlled 

amounts in order to realise a monolithic resonator or monochromator 
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which would function at room temperature without needing to be tuned. 

The simplest monolithic resonator and monochromator structures 

are shown in Figs 9.1(a) and (b). The arrangements shown in the 

figures are Bragg reflecting geometry (i.e. incident and diffracted 

beams are on the same face of the crystal). Similar arrangements 

also exist for Laue case geometry (incident and diffracted beam on 

opposite sides of the crystal) after correction for refractive index, 

but since this correction is typically only a few parts per million 

it will be ignored here. The conditions for a resonator or mono-

chromator to work are that diffraction takes place from two sets of 

atomic planes cut monolithically from the same crystal. If the beam 

is caused to turn through more than 1800, resonator geometry is 

realisable, otherwise monochromator geometry. For successive 

diffractions to occur and if the X-ray beams are to be coplanar, the 

following conditions apply 

2d1  sin 81 = 2d2  sin e = A 

(9.1) 

where d is spacing of the Bragg planes and 8 the Bragg angle. a is the 

angle between the pair of diffracting planes. These conditions relate 

the X-ray wavelength A with the crystal lattice parameter, so that a 

chosen wavelength immediately determines the lattice parameter for a 

given pair of diffracting planes. 

Hart 
64 
 has calculated possible reflections in germanium and 

silicon for certain X-ray wavelengths, together with the mismatch 

between the actual and ideal lattice parameter. His results are given 

in Table 9.1 for silicon and germanium. For a resonator or 



(a) 

[0 

FIGURE 9.1: (a) Typical resonator geometry 
- 	 (b) Typical monochromator geometry 
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TABLE 9.1 	(Hart 64) 

Radiation 

Wavelength(A) 	Designation 

Reflections a Mismatch 	(ppm) 

Silicon 

0.158 971 Au K 1  444, 553 12.27°  + 70 
0.475 106 Cd K 1  624, 462 38.21°  + 1 
0.475 106 Cd K 1  606, 246 40.89

0 
 1 1 

0.499 544 Sn Kai  624, 535 40.050  1 114 
0.520 559 Pd K01  555, 511 38.94

0 
 1 75 

0.563 855 Ag Ka2  715, 117 48.76
0 

 + 54 
0.613 297 Rh Kai  733, 351 47.04

0 
 - 130 

1.254 210 Ge Kai  606, 111 90.000 - 125 
1.254 210 Ge Kai  533, 044 90.00

0 
 -125 

1.312 876 Pt Lai  515, 1-55 119.35
0 

 + 123 
1.662 860 Ni Ka2  404, 041 120.000 - 670 

Germanium 

0.545 610 Rh K01  913, 75-5 56.05°  - 9 
0.563 786 Ag Ka2  844, 351 46.36°  + 21 
0.613 243 Rh Kul  422, 531 34.09°  + 59 
1.287 730 Au La2 511, 17 97.190 - 79 
1.312 976 Pt La1  606, 133 130.45°  + 46 
1.313 007 Pt Loci  202, 335 149.61

0 
 + 24 

1.392 284 Cu K 1  711, 132.41
0 

 - 47 
1.789 067 Co Kai  202, 401 90.00

0 
 - 58 

2.289 371 Cr Kai  111, 221 118.12
0 

 - 145 
2.289 349 Cr Kai  422, 313 159.48

0 
 - 153 

2.507 767 V Ka2  111, 3T 97.61
0 

 - 153 
3.771 667 In La  111, 02 144.73

0 
 + 66 

monochromator to work therefore, it is necessary to alter the lattice 

parameter by some means. The easiest way to achieve this is by 

varying the temperature appropriately, but this could be inconvenient 

for ordinary laboratory use. The other possible method is by 

straining the lattice by appropriate oxidation or diffusion. 

It has been shown in this thesis that the strain within an 

oxidised or diffused slice is caused by the resultant bowing of the 

slice. This bowing obviously rules out Laue geometry devices since 

the angles between successive diffractions will vary over the width 
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of the diffracting X-ray beam. The alternative is to use Bragg 

geometries with oxidation and diffusion taking place on the 

surfaces of thick blocks of crystal so that bowing does not occur. 

After oxidation the forces and therefore the greatest strain is directed 

in the plane of the surface but variation in lattice spacing 

perpendicular to the surface will arise, however, and may be derived 

from the strain in directions lying in the surface, by applying 

Poisson's ratio. However, this amounts to not much more than one 

part per million and since this can be accounted for by a change in 

temperature of 0.4
0
C, is not worth considering. The only remaining 

possibility lies in the use of impurity diffusion into the surface 

of thick blocks of crystal. Cohen 16 
 has shown that diffraction 

peaks may be obtained from suitably diffused samples which are 

angularly displaced from the peak resulting from the host material. 

However, it was shown in Section 8.1 that if dislocation is not to 

occur in the host material (the effect of which is a broadening of 

the reflection curve - the opposite effect from that intended with a 

resonator or monochromator) the total impurity dose must be kept 

below a certain limit. In Section 8.3, it was shown that the dose 

then becomes too small for a significant satellite diffraction peak 

to occur. For these reasons, it is not feasible to alter the lattice 

parameter of germanium or silicon by suitable oxidation or diffusion 

in order to meet the requirements for a working resonator or 

monochromator. 

9.2 FUTURE WORK 

It is interesting to note that interferometer measurements agreed 

with theory much better in the diffusion experiments than in the 
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oxidation experiments. Since more assumptions had to be made for 

the former experiments (eg complementary error function diffusion 

profiles) more weight should be applied to the 'poorer' result of 

the oxidation experiments than to the 'good'results of the diffusion 

experiments. Further checks should be made to see if the elasticity 

model is at fault or if indeed, under the present experimental con-

ditions, a lower stress did exist in the oxide than would be expected. 

Once this has been established, then greater confidence can be gained 

for the results from the diffusion experiments. 

In the diffusion experiments, the assumption has been made that 

the diffusion profile has been a complementary error function profile 

as predicted by theory. It is well known that minor deviations can 

occur depending on the exact processing conditions. The exact 

profile may be determined accurately by experimental methods but 

this involves the use of sophisticated techniques not available here. 

A modern processing technique which was not considered is ion 

implantation. By this technique any chosen diffusion profile may be 

programmed into a silicon slice. The possibility of its use for 

suitable lattice parameter alteration in a resonator or mono- 

chromator has not been considered here, and until recently would have 

been inappropriate due to the severe lattice damage which is caused. 

However, there now exists a technique of laser annealing which is 

capable of removing this damage. By using ion implantation, problems 

associated with ordinary diffusion techniques may be avoided. Also, 

by this technique, the total dose of impurity may be controlled 

accurately, and so interferometer studies of ion implantation would 

make interesting comparison with the diffusion results obtained in this 

thesis. 
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APPENDIX 1 DYNAMICAL THEORY OF X-RAY DIFFRACTION 

The classical theory of X-ray diffraction (the kinematical 

theory) considers incident and diffracted beams within a crystal 

but does not take into account any interaction between these beams. 

This theory works well for calculating intensities of diffraction 

from a powdered crystal or from very imperfect crystals but breaks 

down when attempts are made to predict phenomena associated with 

large 'perfect' crystals such as those associated with the semicon-

ductor industry. This is because interaction is now able to take 

place within the crystal between beams in the incident and diffracted 

directions and standing wavefields are set up. The dynamical theory 

is now able to predict accurately phenomena such as the anomalous 

transmission effect and the so-called Pendellösung interference 

fringes. 

The theoretical work behind the dynamical theory was originally 

89 90,91 	 92 undertaken by Darwin , Ewald 	and Von Laue 	at the beginning 

of the century and it is interesting to note that only with the 

recent advent of perfect crystals such as silicon has it been 

possible to obtain experimental evidence of phenomena originally 

predicted by them. More recently, Zachariasen93, James94  and 

Hirsch 
95 
 have extended the scope of the theory to highlight specific 
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crystal lattice, is triply periodic. The wave vectors in the forward 

and diffracted directions, K and K 
h 
 may be related by Bragg's 

Law, 

Kh —o  K + h — 	- (A.l) 

It is the coupling of these waves and their magnitudes and relevant 

phases that the dynamical theory is primarily concerned with. 

The electric displacement vector D may be written as 

D 

where E is the dielectric constant, 6  the permittivity in free space 

and E the electric field. 

The polarization P may be defined by 

= EoE  +P 
	

(A.3) 

Hence, the dielectric constant may be written 

= 1 + /E E = 1 + X 
	

(A.4) 

where x is the susceptibility. 

If a sinusoidal electric field of amplitude E0  and frequency w 

acts on an electron with a natural frequency of oscillation w0, then 

the amplitude of the induced motion is 



E 
0 x=() 

m 2: 2 
W -w 
0 

(A. 5) 

A3 

When the radiation is X-radiation, then w>>w02. The polarization 

amplitude is related to the amplitude of the induced motion by 

P = pex 	 (A.6) 

where p is the electron density and e the electronic charge. 

Hence, 

2 	2 
A 

mc 4ç 	
(A.7) 

0 

Now, for an infinite 'perfect' crystal, the electron density is 

triply periodic and so may be expressed most conveniently as a 

Fourier sum. 

P(r) = ()Fh exp (-2iii h.r) 
	

(A.8) 

where v is the volume of the unit cell, h a reciprocal lattice 

vector and F   the structure factor, and where the summation is over 

all h. 

The quantity (e2/4 	mc2) is the classical electron radius re. 

Combining this with Equations A.7 and A.8, 

c( r) 
re A2 

= 1 -  
irv 	Fh exp (-2Tri h.r) 	 (A.9) 

The susceptibility may also be expressed as a Fourier sum in the 
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same way as the electron density, ie 

X = 	Xh exp (-2i 	 (A.lO) 

From Equations A.4 and A.9 it will be seen at once that the 

Fourier component of the susceptibility 

re  
Xh = 	TFV 	Fh 	 (A. 11 

A.] 	SOLUTION OF MAXWELL'S EQUATION 

In the ensuing theory it will be assumed, unless otherwise 

stated, that the incident beam is a plane wave, ie points in space 

with identical phase and amplitude will be coplanar, the plane so 

defined being normal to the beam direction. 

Since it may be assumed that the electrical conductivity is zero 

at X-ray frequencies and that the magnetic permeability p is the 

same as that for free space, ji0 9 then Maxwell's Equation may be 

written in the form 

	

DB 	 3H 

VxE= -- 	= _p 

(A.12) 

VxH= 
 

- 	t 	
0 	Dt 

The parameters E, D, H and B may all be expressed as Fourier sums over 

reciprocal space multiplied by the time dependence term exp(2iri ut). 
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The incident and diffracted beams are connected by the Bragg 

condition of Equation A.I. By combining Maxwell's equations (A.12), 

the Bragg condition (A.l) and the expression for the dielectric 

constant (A.9) a set of equations describing the total wavefield 

within the crystal may be obtained. By limiting this to the case 

when only one diffracted beam is significant, ie when only one 

reciprocal lattice point is near the Ewald sphere, this set of 

equations reduces to a pair of equations giving the field amplitudes 

of the two waves D and D 
o 	h 

(k2(l+ 0 ) - K .K) D + k x D  = 0 

k2á Xh  D0  + (k2(l+0) - 
	0h = 0 

where k = l/X (in vacuum), K and K are the internal wave vectors 

and c the polarization factor. When the electric field is perpen-

dicular to the plane of incidence (defined by K and 
'h 
 the polari-

zation is said to be in the j state and c = 1. When the electric 

field is parallel to the plane of incidence,71 polarization results 

and c = Icos 201. 

The non-trivial solution to A.13 may be expressed as the 

determinant (Batterman and Cole 
98
), 

k2 	(1 + x 0 ) - K .K 	 k2c X -0 --C  

= 0 	(A. 14) 

k2c X 	 k2  (1 + x0) - 

where the wave vectors K and K 
h 
 may be taken to be complex 



quantities to account for absorption. 

Within the crystal, the radius of the Ewald sphere must be 

corrected for the average index of refraction, n, so that instead of 

being k (= 1/A where A is the wavelength of incident radiation) it 

becomes kn. But n2 =c where c is the dielectric constant, so that 

in terms of the susceptibility x' the radius of the Ewald sphere may 

be approximated by k (1 + J x0 ). Equation A.14 defines the wave 

vectors K and K 
h  within the crystal which do not lie exactly on 

their respective Ewald spheres but deviate slightly from them. This 

deviation may be expressed as the difference in the mangitude of 

or K and the radius of the Ewald sphere k (1 + 	xe ). Thus two -0 	-LLh

new parameters are defined. 

a = (K .K ) 
0 	-0-0 - k(l + I x) 

(A. 15) 

= 
	 - k(l + J x) 

1 2 
These two equations may be multiplied by [(K.K ) + k(1 + 	x )J 1 	 O-0 	 0 

and [(Kh.) + k(l + 	xe )] respectively to give 

a (K .K ) + k(l + 	x) 0 -0 -0 

{(K .K ) - k(l + I x )} {(K .K ) + k(l + 	x)} -0-0 0 	-0-0 

(A.16) 
1 

ah 	 + k(l + 	x0)} 

= 	-h--h 	
- k(l + 	x0)} -h--h + k(l + 	x0)} 
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{(.j) + k(l + 	 2k since the refractive index is very close 

to unity (x0 = 0). Equation A.16 may therefore be written 

260 = 
	

- k2 (1+  x0 ) 

(A. 17) 

2kch = 	
- k2(1 + x0 ) 

Hence Equation A.14 may now be written as a function of these new 

parameters u, and cLh to give 

aOah=kcXhX 	 (A.18) 

A.2 THE DISPERSION SURFACES 

Equation A.18 is the fundamental equation describing the dis-

persion surface by which allowed wave vectors within the crystal may 

be determined. Fig M(a) illustrates the geometrical interpretation 

of these equations and Fig M(b) shows in detail the locus of 

allowed wave vectors which makes up the dispersion surfaces. 

Equation A.18 is the equation of a hyperbola which in this case has 

the spheres about 0 and H as its asymptotes. Since both states of 

polarization must be accounted for, Equation A.18 in fact yields two 

hyperbolae. The refractive index for X-rays in a crystal differs 

from unity only by a factor of the order of one part in 106  so that 

the spheres about 0 and H may be approximated to planes in the region 

of the dispersion surfaces. 

The parameters a and cth depend on the product Xh >. For 
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A9 

centrosymmetr-jc crystals Xh =xh,but Xh may be a complex quantity 

with 	its 	real 	and imaginary parts closely associated with the real 

(directional) and imaginary (absorptive) parts of the wave vector. 

Hence the parameters a and a
h will also be complex. 

Having established the allowable waves which may be set up within 

the crystal, it is from applying the boundary conditions that the 

actual wave is selected. These solution points on the dispersion 

surface are known as 'tie points'. The convention is applied such 

that the branch of the dispersion surface nearest the Laue point 

(L in Fig A.l(a)) is branch 2, and that furthest away branch 1. 

A.3 BOUNDARY CONDITIONS 

Since the index of refraction is so close to unity, any 

reflection from the physical boundary of the crystal may be neglected. 

Hence the tangential components of the field vectors E and H will be 

the same inside the crystal as they will outside. From Maxwell's 

equations, it can also be shown that the longitudinal components of 

the field vectors may be neglected. Thus it can be said that for 

these vectors the physical surface does not exist. 

However, the boundary does have an effect on the wave vectors. 

Thecomponents of the wave vectors inside the crystal K 	and 

along the surface must equal the surface component of the wave vector 

incident on the crystal j< .  Since the incident wave travels in a 

vacuum there is no absorption and the wave vector (magnitude k) is 

entirely real. In order to obey the boundary conditions, the imaginary 

part of the inside wave vectors must therefore lie along the direction 
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of the surface normal. In other words, planes of constant absorption 

must be parallel to the physical crystal surface. 

The incident wave vector has magnitude k and so, with its tip on 

0 can originate from any point on a sphere centred at 0 which will have 

the Laue point on its surface. Thus, in order to maintain these 

boundary conditions, the tie points of the excited waves (A and B in 

Fig A.2) and the intersection of the incident wave with the Ewald 

sphere must all lie in the direction of the surface normal. In this 

way the tie points may be generated from knowledge of the angle of 

incidence and the direction of the surface normal. The deviation 

from the true Bragg angle may be seen from Fig A.2 to be given by 

LP/k. In the same fashion, boundary conditions may be imposed at 

the exit surface in order to determine the existing wave vectors 

and jih . In this case, a different exit wave will be produced for 

each tie point selected unless the entrance and exit surfaces are 

parallel. 

It must be stressed, however, that the properties associated 

with a wave originating from a selected tie point are invarient and 

do not in any way depend on the manner in which the tie point was 

selected. 

If a wave is incident upon a parallel sided slab of crystal, 

then there are two possible faces from which the diffracted beam may 

exit. If it exits from the same face as the incident face, then 

this is known as the Bragg diffraction case, but if it exits from the 

opposite face, then it is known as the Laue case. The appropriate 

geometries may be seen in Fig A.3. In the Bragg case it will be 

seen that either only one branch of tfle dispersion surface will contain the two 
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FIGURE A.2: Selection of tie points A,B for boundary conditions 
defined by deviation from Bragg angle O(= LP/k) and 
by crystal surface normal n. 
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FIGURE A.3(a):  Symmetric Laue case, (b) Symmetric Bragg case. 

represents exit beam,making angle 
0L 
 with atomic 

planes in Laue case and 03  in Bragg case. The 

difference between 
0L 
 and 

 0B 
 is grossly exaggerated 

here. In the Bragg case, only one or other branch of 

the dispersion surface may be excited by an incoming 

wave. In the case illustrated here, neither branch is 

excited and total reflection results. 
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tie points or no tie points at all will be exited over a certain 

range of incident angles. If neither branch is exited, then there 

does not exist a propagating solution within the crystal and total 

reflection results (apart from the absorptive component directed into 

the crystal). In the Laue case, both sheets of the dispersion 

surface are available for excitation. 

A.4 FIELD AMPLITUDES 

By combining Equations A.13 and A.17 an expression relating 

the ratio of the field amplitudes Dh/Do  to the dispersion surface 

parameters c and ah  will be obtained. It is convenient to define 

the parameter C as this ratio. Hence, 

2a0 	cXhk 

ie, 

2aoXh 	
(A.20) 

From Equation A.15 it will be seen that for branch 2 of the dis-

persion surface a and 
cchare  positive. In the zero absorption case, 

and Xh  are real and negative, so that 	is always negative on 

branch 2, and by similar argument always positive on branch 1. Thus 

there is always a 1800  phase shift between waves generated from tie 

points on the two surfaces. 

Equation A.20 enables the relative amplitude of the diffracted 
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beam to be deduced as a function of the angle of incidence. In 

Fig A.4 it will be seen that for tie points A1  and B4, c 	0 

and so 	-* + 0. 	This means that no diffracted beam is generated 

and only p propagates through the crystal. At A4  and B1 ah 	0 

implying that F, - 	--<x •  This indicates that if these tie points 

are excited, a very large diffracted beam would result from the 

presence of an incident wave. Since this cannot happen from con-

servation of energy considerations it must be assumed that D tends 

to zero. This implies that the boundary conditions, after selecting 

the appropriate tie points, distribute the energy between the dis-

persion surfaces such that energy is conserved. For an incident 

angle a long way from the true Bragg angle (P4 in Fig A.4) nearly all 

the energy is diverted into branch 2 of the dispersion surface such 

that only a wave K02 propagates through the crystal. As the Bragg 

angle is reached, so the energy is shared equally between the two 

dispersion surfaces giving equal intensity waves 	and j.  As P1 

is approached, so most of the energy becomes diverted into branch 1 

of the dispersion surface, and only j2 
 is allowed to propagate. 

In the symmetric Laue case, the excited tie points lie on the 

diameter of the dispersion surface and F = 1 so that incident and 

diffracted beams have the same amplitudes. In this case the maximum 

diffraction occurs. Of course, this corresponds to the exact Bragg 

condition. 

The imaginary part of 	 is closely associated with the 

absorptive part of the wave vector 	and Batterman and Cole 
98 

 show 

how the absorption related to each sheet of the dispersion surface 

deviates at or near the Bragg angle from the absorption coefficient 
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FIGURE A.5: Absorption for each branch of the dispersion surface 
as a function of deviation from Bragg angle. 
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in the crystal for a general angle (Fig A.5). The absorption 

associated with branch 2 decreases as the Bragg angle is approached 

and at the exact Bragg angle can become very much smaller. 

Conversely the absorption associated with branch 1 increases until 

it is almost double that associated with a general direction in the 

crystal at the Bragg angle. 

A.5 ENERGY FLOW AND THE PUNTING VECTOR 

If the incident angle is close to the Bragg angle such that 

transmitted and diffracted waves are generated with amplitudes of 

the same order of magnitude, then interference will take place 

between the two beams. Perhaps the best way to understand this 

coupling between the waves is to consider the ray directions 

associated with the direction of energy flow in each case. The 

vector which describes this is known as the Poynting vector. The 

instantaneous Poynting vector is given by 

	

S=(ExH) 
	

(A.2l) 

This is a complicated function and in this application only the 

Poynting vector averaged over time and space is required here. This 

averaging process has been calculated by Von Laue 8to yield 

2" 

	

( E0 1 	so + Eh12 
c 	

) exp (4ir Irn(3).r) 	(A.22) — 

If the electric fields 10and  4are taken to be the sum of the 
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electric fields associated with each dispersion surface, then S 

will be seen to be the sum of three components, 

= 	-1 + 2 + S  12 
	

(A.23) 

where S is the Poynting vector associated with branch 1, S2  branch 

2 of the dispersion surface and S 12 represents a coupling term between 

the two. This coupling term is modulated by the function 

cos 271(o2ol)•r] where r represents some point in real space, 

resulting in a periodicity, 

O2Ol 
	 (A.24) 

Since the boundary conditions demand that 	) is perpen- 

dicular to the entrance surface of the crystal then S 
12 
 is constant in 

planes parallel to the crystal surface. The interference fringes so 

formed are known as Pendellösung fringes. 

It will be seen from Equation A.22 that the Poynting vector is a 

function of the field intensities, and in fact it has been shown by 

Ewald 91, Kato 
 99 

 and others that the direction of the Poynting vector is 

always normal to the dispersion surface. For example, in the case of 

the incident beam being at the exact Bragg angle, then the Poynting 

vector will lie perpendicular to the reciprocal lattice vector. The 

result of this is that the energy flow is directed exactly along the 

atomic planes responsible for the reflection. 
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S 
—10 

FIGURE A.6: Poynting vector S 
la 
 as a vector sum of the energy flows in 

S and S directions. A represents the angle between the 
—h 	—o 
direction flow and the atomic planes. S 

la 
 is normal to the 

— 
dispersion surface at the tie point. 



A.6 	PLANE WAVES - SPHERICAL WAVES 

The development of this theory has assumed so far that the 

incident beam has been a plane wave infinite in extent. However, in 

practice, any wave originating from a point source must be spherical 

A valid plane wave approximation can be made, however, if the angular 

width of a coherent incident wave Q is much less than w,  the angular 

width of the reflection. For a typically collimated beam of X-rays, 

Q is about lO 	radians and a typical value for w might be lO 

radians so that a plane wave approximation is invalid. Kato 
100 

 has 

shown that a spherical wave can be thought of as the superposition of 

plane waves each with an infinitesimally small angle between them 

such that the constant phase points lie on the surface of a sphere 

(ie the waves all originate from the same point source). This implies 

that the whole dispersion surface becomes illuminated with coherent 

radiation. Hence the direction of energy flow will cover the 26 

range of angles between S and S for only a small angular range of 

incident beams. This region is known as the 'X-ray fan'. 

It is interesting to compare the Pendellösung effect in both the 

spherical and plane wave cases (Fig A.7). In the spherical wave case, 

the incident beam width is small compared with the thickness of the 

crystal. Hence the superposition of plane waves (or wave bundle) 

which is associated with vectors terminating in a region dT of the 

dispersion surface give rise to energy flows which are physically 

separated from those resulting from neighbouring regions of the dis-

persion surface (except near the incident surface). This means that 

Pendellösung interference cannot take place in the manner described 

Al9 
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cd) 

(b) 

FIGURE A.7: Beams which interfere to give Pendelibsung fringes in the 

plane wave (a) and the spherical wave case (b). In (b) the 

whole dispersion surface is excited andand S 
A 
 represent 

two of the infinite number of beams filling the X-ray fan 

between S 
0 
 and 

— 
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for a plane wave infinite in extent. However, interference does take 

place between waves whose Poynting vectors are in the same direction 

(A and A' in Fig A.7), and the Pendellösung fringes are a consequence 

of this interference. 

A fundamental difference between Pende1lsung fringes arising 

from the plane wave and spherical wave each may now be illustrated. 

In the plane wave case, the vector (.!o2ol)  is a minimum at the 

Bragg angle and increases with angular deviation from it. Thus the 

period P = l/(j 2-j
-10 1 ) is a maximum at the Bragg angle and decreasing 

with angle away from it. However, in the spherical wave case, the 

normal to the fringe fronts lies in the direction of the interfering 

beams and so the period is the inverse of the component of 

in that direction. This is represented by the inverse distance 

in Fig A.7. For interference in the direction perpendicular to 

the reciprocal lattice vector (ie the equivalent of the exact Bragg 

angle in the plane wave case) the period is a minimum and increases 

with deviation from this angle. Hart and Milne 
119 

 were able to obtain 

both plane wave and spherical wave Pendellösung fringes simultaneously 

in the same wedge-shaped crystal. 



APPENDIX 2 

Appendix 2 contains the fortran computer programme written to 

calculate the moir6 fringe pattern associated with the strain caused 

by the growth of a disc of thermal oxide on one interferometer wafer. 

The measured moire fringe spacing under the oxide disc is entered 

into the programme and the overall moire fringe pattern is 

calculated from the model developed in Section 7.1, and the oxide 

stress required to produce this pattern computed. The fringe 

pattern is produced as line printer output. 

A2.l 
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1 UPLICIT 	FE/L*(,\_ ri ,O_L) 
2 1 NTFGER 	CHAP (101 ,6l), SPACE!' 	'/ 	3jP/ 	* '/, z 	R G/ 
3 
6 DI Pt N S 	C N 	H F (200) , I U I S P (200), X XI 2 (1 00) 	P XI 2(10 C) 
5 J iENSICH 	ALPHA(151 ) ,X(15l) 
6 C REAH 	IN 	jf'TA 
7 
0 200 	FCRi.IAT 	A F E F 	TUCKNE3S 	(tM) 	?') 
c READ(5, 100)TsJ 

10 TSITSI*0.1 
11 NRITC(5,201) 
1? 201 	F C fl -,T (' 	CXI D E 	THICK N ES S 	( 	IC PC N S ) 	? ') 
13 PEA)(5, 100)Tux 
14 TCX=TOX*1 .JE—C4 
15 tJRITE(5,2(,'2) 
1 2C2 	FORIAT ( 	DISC 	R 	j US 	1M) 	? • 
17 

1  

NRITE (5, 203) 
2C 203 	FCPMAT(' 	RATIO 	CF 	FRINGE 	SPACING 	TO 	DISC 	RADIUS 	?') 
21 REA1)(5, 1OC)RAT 
22 NP.ITE(5,204) 
23 204 	FcptAT(' 	D 	y ci 	WANT 	TO 	CORRECT 	F 	IRAGE 	PROJECTION 	?') n ,r 	

1400 [ 	, 	+ 0 	/ I A N 
25 400 	FCHVIT (Al) 

C DJSTCNTI 	FACTN 	JI. 	TO 	IMAGE 	PRCJECrICN 
27 0sTRx1.0 
CS STFY1 . 
20 IF(IANS.NF.YEs)ouTosn 

31 OSTRANCCS(ANGLO) 
DSTP'z 1.11 

33 5 	MSTPN=DSTPY/DSTpx 
:4 c CALCULATE 	STRESS 	WICH 	WILL 	GIVE 
35 C 1-:101 J1001 	FRINGE 	SPACING 
36 S IIJ YA=3. 4 76r0' 	( TS I ITox) / (PAT*N3) 
37 iCo 	FORt'AT(F1fl.) 

C CONSTANTS 
30 
4 Ez16.00011 
41 Xt:U=0.262 
42 C 
14 X L'D=EXNU/ ((1 	j+X,J) * (1 .0-2.o 	XNU)) 

44 XIW= 	/ (2.0 	Xrt't) 
C CPRPCCTIW, 	U) 	L\D,\ 	F)R 	PLATE 	OF 	FINITE 
C THICKNESS 	- 	SEE 	LCVC 	PAGE 	203 

47 X LAID 	2.0 * XL OP 0* X 11,U / (XL AM U 	2 • 0 	X MU) 

60 DA * (X LOt 0+ X iAU) / (X LAP!) 	3 • 0 * XMU) 
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50 	C ITLF6TL X FPOM 0 TO 3.0 	00 

51 	 6021=1, 151 

52 
53  

5'. 	C PRE PI4R[ CONSTA:JTS POIOR TO INTEGOATING 

55 	 xP0=X**2+R6** 2 

DJsrL=0.0 

57 	C I1',TE6FATE 	T 'H1 F  11 0 TO P1 PANIANS 

58 	 c 11 AN02, I 	. 2 
59 	 XAIJG1Atj 

60 	 3.14159*(XA6-1.0)/130.0 

61 	 H AD 1) SO F T ( X o 0-2 . 0 * X * P0 * D CO S ( A NO ) ) 

62 	 1 DISPL  U 1SPL_t*JCOS(AN3) *DLO(FAD) 

63 	 1_t*XR0*(0S1H(A:JG))**2/(RA6**?) 

6I 	 )PH i =2.0'3 .141 5/1S0.0 

65 	 FDISP( )=DIspL*s1GLA*Tox*RO*6rI*2.0/(SpAC*3.1415cTSI 

(.6 	 2 CONTINUE 
C CALCJLATE ANGLE VS X 

X(1)0.0 

69 	 ALPA( 1 )0. 

70 	 j20I=2,151 

71 	 X11-1 
72 	 xx( I )=x1*RQ/5. 

73 	 AL P N 2 .063 L, OS (3 .0 * S PA C * (F u I S P  (1) - F 01 S P (1 -1))) / I S I 

74 	 2 	ALPHA( I )ALPU( 1-1 )+DALPH 

75 	C PFEPARL CONTOUR 11,1 P 
.7 , 	 '7 	-.1 

77 	 YJ=J 

72 	 Y=(YJ_LO)*5.C/(3.("*DSTPN) 

79 

 

L F 0 
CHflR(1,J)ST/'R 
C3 I 2 , 161 

23 	 X J X = 6 SOFT ( X * * 2 + y * * 2) + 1 • P 

24 	 JX=XJX 
05 	 xxjx=Jx 

2 	 X K F F P 15 P (J X) + Cx. J X - X X J X) * ( F I S P (J x + 1)- F P 1 S P (J x)) 

27 	 KFXF/)SORT(1.O+((/X)**2) 

Cio (I ,J ) =SPACE 
I F ( F • 01 • L F) C H / 	( j , J) 	j A P 

I F ( F. LT • L F) CH/F (1-1 , J ) S T A P 

91 	 . IF(F.LT.PF(I).ANi).J.NL.1)CHAP( I,J-1)=STAR 

3 LFKF 

94 	C CALCULATE OXIPE DISC POSITION 
95 	 6C13'1 ,17 

TIJZN 

97 	 THET(TH-1 •0)".C9$17 

92 	 Ix=5O.0NC0S(T'1OTA)+1.5 

93 	 1Y30.0*DSTRN'*DSIN(TNETA)+1.5 

100 	 13 CIIAR(IX,IY)LERO 
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101 C 	CALC III LATE 	FRINGE 	PMSITICHS 
1(2 11F1)ISP(51 

103 L1 
104 006V1 ,IF 
105 X KK 
106 )071L,52 
107 IF(F[)ISP( I) .GT.XK)GOTOa 
10 7 CONTINUE 
ioc a L  
lic x1i=I_1 
111 X 12= (X K - FL) ISP (I-I)) / (Fur SP (j) -FU is P(1-1)) + X Ii 
112 XXI?(K)=(X 12-1 .J)*DSrPx*R0/5.O 

113 6 Hx12(K)=(XI?-1.0)/50.O 

114 C 	PRJHT-OUT 

15 TSITSI*10.) 

116 RITL(ó,301)TSI 
117 1CXTOX*1 .01:04 

M1ITL(6,302) rcx 
i1 
12 rITE(6,303) kC 

121 SPAC2SPAC* 1 .CL )3 

122 HRITE(O,34)SPAC2 
123  
124 p1TE(6,3C7)XNJ 

125 3 C 1 FCEVAT(///I, ' 	HAFER 	THICKNESS 	', 15.3,' 
126 302 FCfJMAT(' 	CXJOE 	THICKNESS 	',F5.3,' 	'ICRCrJS') 

127 3C3 FCRP.\1 C ' 	DISC 	PAD I US 	' , 15.3. ' 
12 304 FORMAT(' 	LAT rICE 	SPACING 	=', F5.3, ' 	ANGSTROM' 
12 rl 305 FCRMAT(////1,' 	OXIDE 	STLSS 	= '.E8.3.' 	COY) 

13C 306 FCRJ'AT (' 	Y)UNGS 	MODULUS 	= ' , E 	.3. ' 	COS 
131 307 FCRMAT(' 	PiJISSONS 	RATIO 	=',F5.3,////) 
132 DO11J=1 .61 

133 MR I T 	(6,312) (C:IoR (I. ô2-J), 1=1,1 01) 
34 11 CCNT I HUE 

135 312 FCRPAT(131A1) 
136 D012J2,61 
137 MR I T L (6 , 3 1 2) (C H , 	p ( I , J). I = 1 , 1 C) 1) 

13. 12 CCLJTIHUF 
ITL(6. 305) SIG:IA 

1 4 0 V R I T E (6, 300) 
141 309 FCRJ'AT( ' 	FRINGE 	10. 	X(4) ' .lCx, 'X/O' 
142 000K1 ,IF 
1 43 9 . 	IT u (a , 313) K • x 	12 ( K) , R x 12 C K) 

310 FCRPAT(I6,2F15.3) 
145 MiITL(6,30) FUjsP(51 ) 
146 3CS rcRvAT(' 	FXINGE 	'JUMREP 	AT 	EDGE 	OF 	DISC 	',F6.2,///// 
147 NPITE(á,313) 
14 313 FGRTAT(SX, 'X(MM) ' ,6X, 'ALPHA 	(SECS) 

,r 	e 




