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Abstract 

Ships navigate in Greenland waters all year round. Cruises to Greenland due to tourism 

and educational purposes have increased the last decade. Hence, it is essential for ships 

that navigate through Sea Ice in winter to use reliable and accurate information on sea ice 

conditions. An accurate classification of Sea Ice types is an ongoing problem. Many 

classification algorithms depend only on the SAR image intensity for discriminating the 

sea ice types. Different Sea Ice types exhibit similar backscatter signature which makes 

the algorithm unable to correctly classify them.  

In this study, two dual-polarization SENTINEL-1 images with a spatial resolution of 40 x 

40m acquired over the East part of Greenland in February and May of 2016. Support 

Vector Machine (SVM) classifier was used to perform the classification. In order to 

improve the discrimination of ice types, texture analysis was performed using Grey Level 

Co-occurrence Matrix (GLCM) algorithm. Ten GLCM texture features were calculated. 

The analysis revealed that the most informative texture features for the sea ice 

classification are Energy, mean, dissimilarity for HV polarization and Angular Second 

Moment, variance and energy for HH polarization. 

The classification results for the SAR images acquired during winter and spring period 

were compared against the sea ice charts produced by DMI. A good agreement between 

the classification results and validation data is shown. The results show that the overall 

classification accuracy for both SAR images amount to 91%. The most hazardous for ships 

navigation sea ice types (old ice and deformed first year ice) have been successfully 

discriminated. 
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1 Introduction 

 

1.1 Overview 

Sea ice monitoring in North regions (Greenland, Arctic, Baltic Sea, etc.) has been of 

interest for many years. Many groups, including scientists, explorers, oil and gas 

companies and tourists travel to the Polar Regions regularly for training, educational and 

leisure purposes. The growing interest of tourists and their desire for exotic destinations 

has led to a higher level of activity in remote areas. When planning a journey to remote 

places, navigational information as well as knowledge about the area of operation (ice 

formation and weather conditions) must be taken into consideration. 

The major goal of sea ice information is to optimize and safeguard ship operations as well 

as to select the safest sailing routes and reduce the risk involved (Alexandrov et.al 2007). 

This implies the need for detailed sea ice data (ice thickness and sea ice types) specifically 

for small ships and fishing vessels on locations with the most hazardous sea ice 

phenomena (Alexandrov et.al 2007). In general, sea ice information is of importance for 

operational activities throughout the year, specifically in severe sea ice conditions 

(Alexandrov et.al 2007). 

Navigation in Greenland waters differs significantly from navigation in other (non-Arctic) 

waters (International Marine Organization 2009). Sea ice conditions along the East coast 

are characterized by being more dynamic than in other parts of Greenland waters (DMI 

2015). This happens due to the movement of big amount of Polar ice induced by currents 

of East Greenland. If an accident occurs at a remote area of Greenland Sea ice, assistance 

may possibly be far away, if available at all. In order to avoid accidents, detailed maps of 

sea ice conditions at the area of operation are needed.  

Remote sensing is the primary tool for monitoring and retrieving information about the 

ice, especially, for regions located in remote locations. The extreme climate conditions 
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prevailing in those remote regions where sea ice exists, spaceborne remote sensing is the 

only tool that can be utilized for sea ice monitoring (Sinha and Shokr 2015). 

Remote sensing by imaging radar systems on satellites is the most important method of 

observing sea ice on a regional scale independent of cloud cover and day light conditions 

(Alexandrov et.al 2007). Radar sensors are independent of solar radiation because they 

provide their own source of illumination in the form of electromagnetic waves which can 

penetrate though clouds and precipitation. This is particularly important for sea ice 

monitoring in the Polar Regions were cloud, fog and darkness significantly limit the use 

of visible data. The availability of SAR images has replaced the use of expensive 

helicopters for local ice reconnaissance to optimize the sailing route (Alexandrov et.al 

2007).  

For more than two decades, SAR has been the primary source of data for monitoring sea 

ice characteristics. In past years, sea ice centers were relied on data acquired from 

RADARSAT-1 or ENVISAT (ASAR) satellites (single polarization data operating at C-

band) as they could deliver data in relatively high spatial resolution as well as covering a 

large area on the ground using wide swath mode. More recently, SENTINEL-1 SAR 

mission has been launched by European Space Agency (ESA) in 2014 delivering good 

quality SAR data. 

 

1.2 Research problem and background 

Many ships and vessels operate in the East part of Greenland waters (fishing vessels and 

cruise ships) throughout the year encountering problems in navigating though the ice.  

The population of Greenland is heavily relied on fishing. Hence, fishing vessels operate 

in this region all year-round in severe weather conditions. Due to their small sizes, they 

encounter serious problems navigating though the ice covered waters. 

On the other hand, cruises to Greenland have increased and gained popularity the last 

decade due to its wild life and scenery. Due to the fact that cruise ships are not specifically 
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designed for navigating in sea ice, extra care must be taken in order to avoid the hazardous 

areas.  

Expeditions for educational purposes in this region of Greenland waters have also been 

increased. Students from different places around the world that show an interest in science 

are taken to places where they are introduced to elementary sea ice experiments by 

teachers. Greenland has always been popular destination for scientific purposes. 

A detailed navigational ice chart is necessary for ships and vessels to avoid getting trapped 

in the ice. The greatest danger for ships traversing in the ice is to get trapped in a highly 

deformed sea ice where they lose the propulsion or maneuverability.  

Organizations such as Ocean & Sea Ice Satellite Application Facility (OSI SAF), Danish 

Meteorological Institute (DMI) and Polar View (PV) constantly monitor the Greenland 

waters producing sea ice charts regularly. The sea ice charts produced by these 

organizations are of low resolution. Sea ice products of coarse resolution fail to 

discriminate all the different sea ice types over an area and this can be problematic for 

ships navigation. 

OSI SAF provides sea ice products (sea ice concentration, sea ice edge and sea ice types) 

globally with a resolution of 10 Km. The sea ice products of OSI SAF are based on the 

Special Sensor Microwave Imager (SSM/I) as well as ASCAT instrument which is a C-

band scatterometer with a resolution of 12.5 Km. Such low resolution products cannot be 

used by ships for safe navigation because they fail to detect potential hazardous areas. 

DMI is focused on ocean currents, ocean waves and sea ice observations. The sea ice 

charts of Greenland waters produced by DMI (medium and high resolution sea ice charts) 

is for navigational purposes. Sea ice charts are manually produced by sea ice experts based 

on satellite data (SAR and IR/optical). These ice charts lack detailed information of sea 

ice types. The DMI sea ice charts mainly display the three major sea ice types that are 

present in the area. 
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1.3 Aim and objectives 

The principal goal of this study is to develop an improved and detailed sea ice 

classification map for safer ship navigation using SENTINEL-1 dual polarization data. 

For the achievement of this goal, the following objectives have been set: 

 SENTINEL -1 SAR images acquisition over the area of interest. 

 SAR images pre-processing. This step involves, applying precise orbit file to the 

datasets, thermal noise removal, radiometric calibration, incidence angle 

normalization and speckle noise removal.  

 Texture analysis. In texture analysis, texture measures for sea ice are extracted 

which give us valuable information about the texture of each sea ice type. 

 Classification of sea ice types using support vector machine classifier and texture 

analysis 

 Validation of the results using sea ice charts from Danish Meteorological Institute 

(DMI) 
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2 Background and literature review on sea ice 

monitoring for marine navigation 

 

2.1 History of remote sensing in monitoring the East part of Greenland 

waters 

In this chapter, brief history of sea ice monitoring in Greenland waters is given with an 

emphasis on sea ice discrimination for marine navigation.  

The interest of sea ice monitoring in Greenland waters started back in 1984. The Technical 

University of Denmark (TUD) carried out a research on microwave signatures of sea ice 

types for the East part of Greenland waters using a multi-frequency airborne microwave 

radiometer (5, 17, 35 GHz) which has been flown over the area. This instrument could 

discriminate well between sea ice and open water but data had to be integrated over large 

footprints (Sinha and Shokr 2015).  Due to its large footprint (47 x 73m at 34GHz and 94 

x 146m at 17GHz) it was impossible for the radiometer to discriminate the different sea 

ice types that were present in Greenland waters. In areas where Multi-year ice was present, 

the instrument was not able to establish a clear signature, as the multi-year ice floes consist 

of broken and re-frozen smaller floes of different age, including also first year ice 

(Pedersen, T.L and Skou, N 1984). This instrument was able only to establish clear 

signatures between water and first year ice or between multi-year ice and water. As 

Pedersen and Skou (1984) concluded after conducting this experiment, the data collected 

by the microwave radiometer were not very useful for sea ice classification but it could 

be used for sea ice concentration. 

After the pioneer work of Drinkwater and Carsey (1991) that demonstrated the capability 

of space-borne SEASAT radar scatterometer to detect sea ice, it has been shown that 

space-borne scatterometers can be employed for sea ice detection. The mission of 

SEASAT ended three months later due to power failure. Despite the fact that this 

instrument was primarily for ocean wave imaging, images of Arctic were also acquired. 

The 25m fine resolution imagery data from SEASAT were used to produce the first 
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detailed sea ice motion maps (Sinha and Shokr 2015). The drawback of SEASAT was that 

it operated in a single channel (vertical polarization) and the discrimination of different 

ice types was difficult due to the overlapping of backscatter signatures from the ice surface  

 A research carried out by Ezraty (2002) demonstrated how the QuickSCAT satellite 

carrying the SeaWinds scatterometer can be utilized in detecting new ice in in East 

Greenland Sea. SeaWinds is a two-beam scatterometer operating at Ku band (13 GHz) 

with a footprint size of 37 Km x 25 Km (Ezraty, R 2002). The inner beam is HH 

(horizontally transmitted and horizontally received) and the outer beam is VV (vertically 

transmitted and vertically received). For the sea ice discrimination, polarization ratio, 

mean, and normalized standard deviation have been used. Sea ice areas were clearly 

identified on the map of mean backscatter (Ezraty 2002). The difficulty was to set 

quantitative criteria for the discrimination of the low backscatter values of forming new 

ice which are in the range of open water backscatter for any wind speed (Ezraty 2002). 

SeaWinds instrument proved capable of detecting new sea ice using polarimetric ratio. 

Combining scatteromer and radiometer polarization rations, it helps on locating new sea 

ice within a grid size of 25 Km x 25 Km (Ezraty 2002). 

Since 1980, the sea ice observation of Greenland waters has been carried out using 

scatterometers. Scatterometers proved useful tools in identifying the sea ice covered the 

East part of Greenland but it could not provide detailed maps of sea ice types due to its 

low resolution. The Danish Meteorological Institute (DMI) was established in 1872 and 

provides meteorological services of the realm of Denmark, Faroe Islands, Greenland and 

surrounding waters (DMI 2015). It produces weather, wind and sea ice maps.). At that 

time, many studies have been carried out by DMI around Grrenland waters using 

scatterometer and radiometer instruments (Tonboe and Ezraty 2002; Toudal and Tondoe 

2005). With the advance of remote sensing instruments, DMI is now heavily relied on 

SAR data for sea ice monitoring due to its high resolution which allows very detailed ice 

maps. DMI contributes to sea ice monitoring of Greenland waters providing medium 

resolution navigational sea ice charts using SAR imageries for safer navigation.  
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The most recent SAR platform for sea ice monitoring is SENTINEL-1. It is a polar, sun-

synchronous orbiting SAR satellite with a revisit frequency higher than 1 day at high 

latitudes. The SENTINEL 1 SAR platform can operate in dual polarization (HH + HV or 

VV+ VH) where sea ice observation can be improved. The first sea ice study was carried 

out by DMI in 2014 and the satellite demonstrated the capability of delivering SAR data 

(a few weeks after its launch) at a quality sufficiently for operational ice charting 

(Pederson et.al 2015). Now, SENTINEL 1 data is the primary source for sea ice 

observation by DMI and other organizations such as Norwegian Ice services.  

In 2003, Polar View, an Earth Observation (EO) programme started which has been 

focused on both Arctic and Antarctica providing services to users for improved 

environmental and security related monitoring (Cheek 2009). Polar View provides high 

resolution ice charts for the Barents Sea on a weekly basis with a focus on Svalbard area 

and are used primarily for marine safety and environmental research (C-Core 2010). These 

ice charts provide information about ice edge and ice concentration. Regional ice charts 

for Greenland Sea of medium resolution are produced based on SAR data. These charts 

contain information about sea ice parameters such as ice edge, ice concentration, ice 

thickness and icebergs (C-Core 2010).  

 

2.2 Sea ice types in the East Greenland  

The sea ice along the East part of Greenland can be grouped into three zones: 

1. Land-fast ice.  Land-fast ice forms along the coastline and stays in place during 

winter time. Normally it breaks up and drifts away or melts in spring, but under 

exceptional circumstances it may stay in place the whole summer and survive the 

next year (DMI 2000). 

2. Pack ice. The drifting pack ice in the East Greenland is composed of ice floes 

(thickness of each floe varies) originating from various places in the Arctic region 

(DMI 2000). 
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3. Marginal Ice Zone (MIZ). The MIZ is a region that forms at the boundary of the 

open and frozen oceans (Wikiwaves 2010). MIZ may consists of large or small ice 

floes drifting over a large area and is affected by weather conditions (wind, 

currents). The process that produces the MIZ is when the open sea interacts with 

the sea ice. 

 

Multi-year ice (between 2.5 and 4m thick) originating from the Arctic Ocean is being 

transported through the Fram Strait (between Greenland and Svalbard) into the Greenland 

sea and it drifts along the East coast of Greenland (Torben and Carsten 2003). The sea ice 

exported to East Greenland through Fram Strait consists in general of multi-year ice with 

a little contribution from glaciers and sea ice that is formed locally. 

Therefore, the formation of Polar Ice in the Arctic Ocean plays a crucial role for the net 

balance of the sea ice concentration in the Greenland Sea (Hinkler 2005). The largest part 

of the Arctic is covered by ice during the year, and the two circulation systems responsible 

for the ice flux towards Greenland are the transpolar drift and Beaufort Gyre (ocean 

current driven by wind located in the Arctic) as shown in figure 2.0 

 

Figure 2.0: Circulation systems that transport the sea ice to Greenland. The blue arrows show a 

clockwise circulation of Beaufort Gyre due to winds. The long yellow arrow illustrates the sea 

ice transporting to Greenland waters (source: 

https://www.google.co.uk/search?q=beaufort+gyre&sa=X&biw=1366&bih=606&tbm=isch&tbo=u&sour

ce=univ&ved=0ahUKEwjo-ILb0ejLAhVDthQKHVtIA5gQsAQIKw#imgrc=1LOVp8lPDHOFKM%3A) 

https://www.google.co.uk/search?q=beaufort+gyre&sa=X&biw=1366&bih=606&tbm=isch&tbo=u&source=univ&ved=0ahUKEwjo-ILb0ejLAhVDthQKHVtIA5gQsAQIKw#imgrc=1LOVp8lPDHOFKM%3A
https://www.google.co.uk/search?q=beaufort+gyre&sa=X&biw=1366&bih=606&tbm=isch&tbo=u&source=univ&ved=0ahUKEwjo-ILb0ejLAhVDthQKHVtIA5gQsAQIKw#imgrc=1LOVp8lPDHOFKM%3A
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As the ice drifts in the gyre, it follows a clockwise circulation forced by the surface winds 

and ocean currents around the Beaufort high and then it continues towards the Fram Strait 

(Hinkler 2005). The ice volume flux transferred to East Greenland is estimated to 2846 

K𝑚3 y𝑟−1 on average, but varying between 2046 and 4687 K𝑚3 (Torben and Hansen 

2003). Due to the inflow through the Fram Strait, sea ice distribution and formation in the 

Greenland Sea is much more complex and dynamic in nature than for instance the ice 

formed in West Greenland (Hinkler 2005). 
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3 Principles of Radar and Synthetic Aperture Radar 

 

3.1 Introduction 

Active microwave systems are instruments that transmit microwave signals from their 

antennas. This outgoing packet of energy eventually interacts with the landscape and some 

of it is backscattered to return towards the antenna (Lusch 1999). The components of an 

imaging radar system include a transmitter, a receiver, an antenna array and a recorder 

(Campbell and Wynne 2011). A transmitter is designed to transmit repetitive pulses of 

microwave energy at a given frequency (Campbell and Wynne 2011). A receiver accepts 

the reflected signal as received by the antenna, then filters and amplifies it as required 

(Campbell and Wynne 2011). An antenna array transmits a narrow beam of microwave 

energy (Campbell and Wynne 2011). Such an array is composed of waveguides, devices 

that control the propagation of an electromagnetic wave such that waves follow a path 

defined by the physical structure of the guide (Campbell and Wynne 2011). Finally, a 

recorder records and displays the signal as an image (Campbell and Wynne 2011). 

Active systems do not rely on external radiation sources such as solar radiation, thus, the 

presence of sun is not relevant to the imaging process, although it may affects the target 

scattering characteristics (Curlander and McDonough 1991). Furthermore, the radar 

frequency can be selected such that its absorption by atmospheric molecules (oxygen or 

water vapors) is small (Curlander and McDonough 1991). The figure 3.0 shows the 

absorption bands. 
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Figure 3.0: Diagram of the electromagnetic radiation absorption (Curlander and McDonough 

1991) 

 

As we can see, for the frequencies between 1-10 GHz (3-30 cm) the transmissivity is very 

high (approaches 100%). Thus, independent of the cloud cover or precipitation, a radar 

sensor operating in this frequency range is always able to image the earth’s surface 

(Curlander and McDonough 1991). As the radar frequency is increased within the 

microwave spectrum, the transmission attenuation increases (Curlander and McDonough 

1991). 

The selection of the radar wavelength, however, is not simply governed by resolution and 

atmospheric absorption properties (Curlander and McDonough 1991). The interaction 

mechanism between electromagnetic (EM) wave and the surface is highly wavelength 

dependent (Curlander and McDonough 1991). The EM wave interacts with the surface by 

a variety of mechanisms which are related to both surface composition and its structure 

(Curlander and McDonough 1991).  
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3.2 Radar image resolution 

As a radar illuminates an area by transmitting pulses of microwave energy, it precisely 

measures the time difference between the transmitted pulse and the receipt of the reflected 

energy and it is able to determine the distance of the reflected object (called slant range) 

(Jackson and McCandless 2004). The range resolution of a radar system is its ability to 

distinguish two objects separated by some minimum distance (Jackson and McCandless 

2004). 

Spatial resolution in the range direction is a function of the processed pulse-width (τ) 

multiplied by the speed of light (c) and divided by two (Jackson and McCandless 2004). 

 

 Range Resolution = 
𝑐𝜏

2
 = 

𝑐

2𝛽
 

 

(3) 

Where β is the pulse bandwidth  

In slant range terms, range resolution is constant and solely dependent on pulse duration 

(Lusch 1999). The shorter the pulse duration, the narrower the transmitted energy packet 

and the better the slant range resolution. Figures 3.1 and 3.2 depicts the pulse duration and 

range resolution respectively. 

 

 

Figure 3.1: Diagram of pulse duration (Lusch 1999) 
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Figure 3.2: Diagram of range resolution (Lusch 1999) 

 

Azimuth resolution refers to the ability of a radar to discriminate different targets in the 

azimuth direction (direction of the satellite’s flight) and is defined by the beam width (β) 

(figure 3.3). The azimuth resolution is higher in the near range and it becomes coarser as 

the distance from sensor increases. 

 

Figure 3.3: Azimuth resolution in RAR (Source: 

http://ecoursesonline.iasri.res.in/mod/page/view.php?id=2068) 
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In figure 3.3, the three objects at near range are located outside the beam (the distance 

between the objects itself is greater than the size of the beam), the return signal of those 

targets will be received separately, hence, these targets are resolved. At the far end, the 

three objects will not be able to be resolved because they are all located inside the beam. 

The azimuth resolution is defined as: 

 

 
Ra = 

𝐻∗𝜆

𝐿∗𝑐𝑜𝑠𝜃
 

(3.1) 

 

Where: 

H = Height of the platform 

L = Length of the antenna 

λ = Wavelength of the pulse 

θ = Incidence angle  

 

The above equation shows that, as the altitude of the platform increases, the azimuth 

resolution decreases. In order to achieve a better azimuth resolution, a very long antenna 

(L) is required. By increasing the physical length of the antenna is impractical. Hence, the 

resolution can be increased by increasing the antenna length virtually, which is known as 

Synthetic Aperture Radar (SAR) (e-krishi Shiksa 2014). 

The synthesis term refers to a method of processing the returned echoes to improve the 

azimuthal resolution by utilizing the Doppler beam sharpening approach allowing spatial 

resolution of the imaged scene (Woodhouse 2006). The SAR system saves the phase 

histories of the responses at each position as the real beam moves through the scene and 

then weights, phase shifts, and sums them to focus on one point target (resolution element) 

at a time and suppress all others (Jackson and McCandless 2004). SAR achieves a very 
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high signal processing gain because of coherent (in-phase) summation of the range-

correlated responses of the radar (Jackson and McCandless 2004). All of the signal returns 

that occur as the real beam moves through each target can be coherently summed as shown 

in the figure 3.4 (Jackson and McCandless 2004).  

A Doppler shift (fD) imposed on the backscatter from each target and is determined by the 

motion along the line of sight (LoS) between the SAR antenna and the target (figure 3.5) 

(Lusch 1999). As the platform is constantly moving, the echoes returning from objects in 

the front part of the beam are Doppler shifted to higher frequencies, while echoes from 

the aft part of the beam are shifted to lower frequencies (Woodhouse 2006). During the 

time that any target is illuminated in the fore beam zone, its backscatter is upshifted (fD +) 

because the range between the antenna and the target is diminishing (Lusch 1999). After 

passing the zero Doppler shift line, the range between the antenna and the target is 

constantly increasing and its backscatter signal is downshifted (fD -) in frequency (Lusch 

1999). 

 

 

Figure 3.4: Synthetic Aperture Radar. As the platforms moves along, the target located inside 

the beam is constantly illuminated improving the azimuth resolution. (Jackson and McCandless 

2004) 
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Figure 3.5: Doppler shift effect (Jackson and McCandless 2004) 

 

 

3.3 The radar equation 

The radar transmitter (figure 3.6) generates a brief (microseconds) high power burst of 

radio frequency electromagnetic energy and this is conveyed to an antenna through 

appropriate microwave ‘plumbing’ (Curlander and McDonough 1991). Once the pulse has 

been transmitted, the transmitter turns off until the receiver receives the pulse returned 

from the earth’s surface. Any perceived echo has its time of reception noted, relative to 

the time of transmission of the pulse (Curlander and McDonough 1991). The time delay τ 

is interpreted in terms of range to target, R = cτ/2, providing another spatial dimension for 

localization (Curlander and McDonough 1991). 
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Figure 3.6: Radar system (Curlander and McDonough 1991) 

 

The power of the signal returned to the antenna after interacting with the surface of the earth is 

given by the radar equation: 

 

 

𝑃𝑟 = 
𝜎

𝐺2 𝑃
𝑡  𝜆2

(4𝜋)3 𝑅2  

(3.2) 

 

 

Where: 

𝑷𝒓 is the power of the received signal returned to the antenna from the Earth’s surface. 

R is the range between the target and the antenna 

𝑷𝒕 is the transmitted power 

λ is the wavelength 

G is the antenna gain (the ability of the antenna to focus outgoing energy into the beam) 

σ is the backscatter coefficient 
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All of these variables are determined by the design of the radar system and are known 

quantities apart from variable σ (Curlander and McDonough 1991). The variable σ is 

controlled by specific characteristics of the surface of the earth. The value of σ conveys 

information concerning the amount of energy scattered from a specific region on the 

landscape as measured by 𝜎𝜊, the radar cross section. The backscattering coefficient (𝜎𝜊) 

expresses the observed scattering from a surface area as a dimensionless ratio between 

two real surfaces; it measures the average radar cross section per unit area (Curlander and 

McDonough 1991). 

 

 

3.4 Geometry of imaging radar 

The geometry of an imaging radar is illustrated in figure 3.6. The radar antenna is oriented 

parallel to the flight direction; it is looking sideward to the ground (Wang 2008). The radar 

is moving along the flight path above the earth with height H, at velocity V and the radar 

antenna which is assumed to be a phased array, has dimensions of length L and width W 

(Wang 2008). The ground surface area from which the radar pulse is reflected is called 

footprint and swath is the ground surface area covered by the consecutive radar pulses 

(Wang 2008). The radar transmits short pulses with duration 𝑇𝑝and repeats at period PRI 

= 1 / 𝑓𝑃𝑅𝐹to the ground, where 𝑓𝑃𝑅𝐹  is the pulse repetition frequency (Wang 2008). The 3-

dB beam-width along the track is 𝜃𝛨=λ/L, while across the track it is 𝜃𝑣=λ/W and the 

wavelength of the transmitted signal is λ (Wang 2008). The pulse is directed at some angle 

off nadir called the look angle or incident angle (Wang 2008). 
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Figure 3.7: Geometry of an imaging radar (Wang 2008) 

 

 Geometric distortions of the radar image 

Because the radar measures the distance to features in slant range rather than the true 

horizontal distance along the ground, radar images inherently contain geometric 

distortions (Wang 2008). Some of the geometric distortions are, layover, foreshortening 

and shadow.  

 

3.4.1.1 Layover 

Layover occurs when the radar signal reaches the top of an object before it reaches the 

base (figure 3.7). The return signal from the top of the feature will be received before the 

signal from the bottom will (Wang 2008). As a result, the top of the feature is displayed 

towards the radar from its true position on the ground, and ‘lays over’ the base of the 

feature (B’ to A’) (Wang 2008). 



20 

 

 

Figure 3.8: Radar layover in a mountainous terrain. The point B is closer to the radar antenna 

than is point A, so it is shown closer on the image (Source: 

http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html) 

 

3.4.1.2 Foreshortening 

Foreshortening occurs when the radar beam reaches the base of a feature before it reaches 

the top (Wang 2008). As the radar measures distance in slant-range, the slope A-B of the 

figure 3.8 appears as compressed in the image and the slope C-D is severely compressed. 

 

 

Figure 3.9: Image foreshortening. The projection of A’, B’ into the slant-range domain distorts 

the representation of the slope A, B (Source: 

http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html) 

http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html
http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html
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3.4.1.3 Shadowing 

The shadowing effect occurs when the radar beam cannot reach part of a tall feature as 

illustrated in figure 3.9 (Wang 2008). Shadow in a radar image usually occurs due to small 

depression angles 

 

 

Figure 3.10: Shadow effect. The blue area of the image on the left represents the shadow as the 

beam cannot reach this part of the feature (Source: 

http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html) 

 

 

3.5 Backscatter 

Radar backscatter is the amount of energy returned to the sensor after interacting with the 

surface of the earth and it is determined using the quantity called backscattered coefficient 

(σo) where the σo values are expressed in decibel scale. The radar signal that interact with 

a surface will be reflected back to sensor in a manner that depends on the radar wave 

properties, look angle of the sensor and the characteristics of the surface (rough or smooth 

surface). The incidence angle (θ) is defined as the angle between the axis of the incident 

radar signal and a perpendicular to the surface that the signal strikes (figure 3.10) 

(Campbell and Wynne 2011).  

http://hosting.soonet.ca/eliris/remotesensing/bl130lec13.html
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Figure 3.11: Incidence angle is shown in (a), surface roughness in (b) (Campbell and Wynne 

2011) 

 

If the surface is homogeneous with respect to its electrical properties and smooth with 

respect to the wavelength of the signal, then the reflected signal will be reflected at an 

angle equal to the incidence angle, with the most of the energy directed in a single 

direction (specular reflection) (Campbell and Wynne 2011). For rough surfaces, the signal 

will be scattered in all directions (diffuse reflection), and it will not depend only on the 

incidence angle. One definition that defines a rough surface as one in which the surface 

height (h) is greater than the wavelength (λ) of the radar signal divided by 4.4 (constant 

value) and the sine of grazing angle (γ). While, a surface can be characterizes as smooth 

when, surface height (h) is less than the wavelength (λ) of the radar signal divided by 25 

(constant value) and the sine of grazing angle (γ) as shown in the equations 3.3 and 3.4 

respectively. 

 

 
h > 

𝜆

25 𝑠𝑖𝑛𝛾
 

(3.3) 
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h < 

𝜆

4.4 𝑠𝑖𝑛 𝛾
 

(3.4) 

 

Where: 

h is the height of the surface 

λ is the wavelength of the radar signal 

γ is the grazing angle between terrain and incidence vector 

 

As the roughness of the surface depends not only on its physical characteristics but also 

on the wavelength (the radar wavelength varies between different sensors) of the signal 

and the incidence angle (table 3). 

 

Roughness category K-band (λ=0.86cm) X-band (λ=3cm) L-band (λ=25cm) 

Smooth h < 0.05cm h < 0.17cm h < 1.41cm 

Intermediate h = 0.05-0.28cm h = 0.17-0.96cm h = 1.14-8.04cm 

Table 3: Surface roughness defined for different wavelengths (Campbell and Wynne 2011) 

 

3.6 Polarization 

Polarization is an important property when discussing the propagation and scattering of 

microwave energy, and is a key determinant of both microwave backscatter and emission 

(Lubin and Masson 2006). Polarization describes the locus of the electrical field vector in 

the plane perpendicular to the direction of propagation (Lubin and Masson 2006). If the 

vector is aligned to a certain plane according to a predictable alignment while the EM 

wave is propagating, the wave is called polarized (Sinha and Shokr 2015). If, on the other 
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hand, the wave has a random time-varying electric vector, it is called un-polarized (Sinha 

and Shokr 2015). 

 

 Polarization in radar systems 

Imaging radars can be configured to transmit EM waves either in vertical or horizontal 

polarization and to receive the energy scattered by the surface either in horizontal or 

vertical polarization. However, some radars are designed to transmit horizontally 

polarized signals but to separately receive the horizontally and vertically polarized 

reflections from the landscape (Campbell and Wynne 2011). Those radar systems produce 

two images for the same Earth’s surface that has been imaged. One image is produced by 

transmitting horizontally polarized wave and receiving a horizontally polarized wave. 

This is referred to as like-polarization (HH image). A second image is formed by 

transmitting horizontally polarized wave and receiving a vertically polarized wave. This 

is referred to as cross-polarization (HV image). 

By comparing the HH and HV images, Features on the ground that depolarize the 

microwaves can be identified. The terms depolarizations refers to the situation when the 

dominant polarization of the scattered signal is different than the polarization of the 

transmitted signal (Sinha and Shokr 2015). Areas that tend to depolarize the signal are 

identified as bright regions on the HV image due to the effect of the depolarization. On 

the other hand, the same areas will appear as dark regions in the HH image. Depolarization 

of the radar signal that is scattered from the surface of the Earth depends on the surface 

structure. Depolarization of a radar signal is caused by multi-scattering process (Sinha and 

Shokr 2015). For sea ice, multiple scattering can be caused by an ice blocks of ridge or 

when the microwave interacts with old ice (due to the volume scattering).  
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4 Physical and microwave remote sensing properties of 

sea ice 

 

4.1 Physical properties of sea ice 

Understanding the physical process and properties of sea ice is important in order to 

interpret microwave signatures. The ice temperature is the main physical property that 

affects the sea ice characteristics. For example, floating sea ice sheets are found to be more 

flexible or elastic than freshwater ice covers because of the finer structure of the sub-

grains (Sinha and Shokr 2015). The sea ice physical properties are strongly depend on the 

characteristics of the sub-grains. Physical properties of sea ice are different for different 

ice types (Sinha and Shokr 2015). Table 4.0 shows the most important equations for 

determining the sea ice parameters and in the table 4.1 approximate values of properties 

of sea ice types are summarized.  

The incorporation of salt in the form of brine inclusions in the ice makes sea ice a vastly 

different material than freshwater ice (Drinwater et.al 1992). Brine drainage begins 

immediately after ice formation, occurring slowly during the growth season but increasing 

considerably during summer (Drinwater et.al 1992). Enhanced surface melting, coupled 

with increased interconnectivity of the brine inclusions, almost completely flushes the salt 

from the ice in the upper layers, leaving air voids and channels; a process that greatly 

increases the ice’s porosity (Drinwater et.al 1992).  
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Density (Kg/𝑚2) 𝜌𝑠𝑖 = 917.8 – 0.14T 

Salinity(‰) versus ice thickness(m) 𝑆𝑠𝑖 = 14.24 – 19.39ℎ𝑖 ,  ℎ𝑖 <= 0.4m 

𝑆𝑠𝑖 = 7.88 – 1.59ℎ𝑖 ,  ℎ𝑖 > 0.4m 

Porosity (%) p = 𝑆𝑠𝑖 (0.05322 – 4.919/T) 

Specific heat (Kj/Kg*K) 𝐶𝑠𝑖 = 2.11 + 17.2 (𝑆𝑠𝑖/𝑇2
) 

Thermal conductivity  𝐾𝑠𝑖 = 
𝜌𝑠𝑖

𝜌𝑝𝑖
 (2.11 - 0.011T + 0.09 

𝑆𝑠𝑖

𝑇𝑠𝑖
  - 

𝜌𝑠𝑖− 𝜌𝑝𝑖

1000
) 

Latent heat of fusion (Kj/Kg) 𝐿𝑠𝑖 = 𝐿𝑝𝑖 – 2.117 – 0.1145 + 18.1(𝑆𝑠𝑖/𝑇𝑠𝑖 ) 

Effective heat capacity (J/K*Kg) ℎ𝑐𝑠𝑖 = 2113 + 0.00172 (𝑆𝑠𝑖/𝑇𝑠𝑖
2

 𝑇2
) 

Enthalpy of sea ice (KJ/Kg) 𝑒𝑠𝑖 = -332.4 + 2.12𝑇𝑠𝑖 + 0.008𝑇𝑠𝑖
2

 

Melting temperature of sea ice 𝑇𝑚 = μ𝑆𝑠𝑖 where μ=0.054 

Energy needed to melt a unit volume of 

ice 

q = 𝜌𝑠 𝐿𝑠 (1 + 
0.054 𝑆𝑠𝑖

𝑇𝑠𝑖
2 ) − 𝜌𝑠𝑖 𝐶𝑝𝑖(0.054𝑆𝑠𝑖 +

 𝑇𝑠𝑖
2

) 

Table 4.0: Equations to determine the sea ice parameters (Sinha and Shokr 2015) 

 

 New Ice Young Ice First-Year 

Ice 

Multi-Year 

Ice 

Thickness (m) <0.1 0.1 – 0.3 >0.3  >2.0 

Bulk salinity (‰) 14 9 4 0.5 

Density (Kg/𝑚2) 920 900 900 750 - 910 

Dielectric constant 

(10GHz) 

5.65-j 2.25 4.0-j 0.81 3.32-j 0.23 2.77-j 0.03 

Therm conductivity 

(W/m*K) 

2.14 2.14 2.09 1.88 

Brine volume fraction 0.20 0.08 0.05 0.0 

Table 4.1: Physical and electrical properties of sea ice types (Sinha and Shokr 2015) 
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4.2 Sea ice formation and growth 

Ice grows mostly thermodynamically due to the colder temperature of the atmosphere with 

respect to the temperature of the sea water (Sinha and Shokr 2015). The rate of the 

thermodynamic growth of sea ice depends mainly on three factors that can be measured: 

air temperature, ice thickness and snow cover (Sinha and Shokr 2015). Other factors 

include the solar radiation, wind conditions and the density and albedo of snow (Sinha 

and Shokr 2015). One of the most important process that occur during sea ice growth is 

the brine rejection to the underlying sea water and the brine entrapment within the ice 

mass (Sinha and Shokr 2015). 

Sea ice is broadly similar to freshwater ice in its physical characterization, though some 

significant differences are introduced by the presence and by the dynamic environment in 

which it exists (Rees 2006). The first major difference between sea ice and fresh water ice 

is that the freezing point for the sea ice is around -1.8 oC for a typical salinity of 34 part 

per thousand (Rees 2006). For salinities above 25 parts per thousand, the temperature at 

which sea water attains its maximum density is actually less than the freezing point (Rees 

2006). As a consequence, the continued removal of heat from the water results in an 

unstable distribution of density, leading to convective1 overturning until the whole water 

column has reached the freezing point (Rees 2006). Figure 4.0, depicts schematically the 

sea ice evolution from thin ice up to first year ice. 

The development of sea ice can be divided in several categories such as: new ice, nilas, 

young ice, first year ice, second year ice and multi-year ice. Each of these types can be 

further sub-divided into more sea ice types. Increase in the ice thickness and changes in 

its structural and salinity properties and surface roughness during its growth causes 

changes in its backscatter coefficient (Alexandrov et al 2007). Sea ice types can be 

identified in SAR images based on their different backscatter statistics.  

The main stages of sea ice formation are described below: 

                                                 
1 Convection is the transfer of internal energy into or out of an object by the physical movement of a 

surrounding fluid that transfers the internal energy along with its mass 
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Figure 4.0: A schematic of the sea ice formation. The capital letters depict the ice types, while 

the brackets contain the related environmental process (Lubin and Masson 2006) 

 

 New ice 

Sea ice recently formed on the water surface includes frazil ice, grease ice, slush and shuga 

(Alexandrov et al 2007). Under calm atmospheric and oceanic conditions, frazil ice is 

formed (Sinha and Shokr 2015). Frazil ice is formed as small, elongated crystals in the 

form of plates where it continues to grow (during the freezing period) until they touch 

each other and cover the whole surface of the water (Alexandrov et al 2007). It does not 

change the backscatter coefficient (σο) of the water surface, and therefore cannot be 

detected in SAR images (Alexandrov et al 2007).  In the absence of waves, the number of 

crystals rapidly increase forming a continuous layer called grease ice which is 

characterized by its low reflecteivity and cannot be distinguished from calm open water 

in SAR image (Alexandrov et al 2007). Grease ice inhibits the formation of capillary 
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waves (Figure 4.1) and can be detected by its dark signature, often among bright areas of 

pancake ice (Alexandrov et al 2007). 

 

 

Figure 4.1: New Ice formation near Arctic (source: https://www.asf.alaska.edu/sea-ice/) 

 

 Nilas 

Nilas, which is formed from grease ice and represents an elastic ice crust bending under 

wave and swell action, is subdivided into dark and light nilas with thickness of less that 

5cm and 5-10cm respectively (Alexandrov et al 2007). Nilas are usually broken into large 

pieces (a few meters to tens of meters wide) due to wind effect or oceanic conditions 

(Sinha and Shokr 2015). While floating and moving, the fractured pieces may slide over 

each other to form what is known a surface rafting (Sinha and Shokr 2015). Due to the 

near specular reflection of Electromagnetic (EM) waves from its surface, nilas has a low 

backscatter coefficient in the range from -24 to 28 dB for the C-band (Alexandrov et al 

2007). 

 

 

https://www.asf.alaska.edu/sea-ice/


30 

 

 

        

 

        

 

 

 

 

 

 

 

Figure 4.2: (a) Nilas with a formation of rafting, (b) nilas with a smooth surface and low 

backscatter inside the circle (Alexandrov et al 2007) 

 

 

(a) 

(b) 
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 Pancake ice 

When the ocean surface is rough at the time of initial ice formation, turbulence will not 

allow consolidation of the frazil crystals into nilas, instead, it causes frazil to undergo 

cyclic compression following the wave action (Sinha and Shokr 2015). The ice crystals 

rapidly freeze together to form near circular 5-10cm scale discs on the ocean surface 

(Alexandrov et al 2007). These pancakes raft and freeze together to form aggregates 

meters across and eventually form a consolidated  ice cover tens of centimeters thick 

(Lubin and Masson 2006). Pancakes are usually notes as having rough edges that result 

from constant collisions with neighboring pancakes due to wind or wave action (Comiso 

2010). During growth stages, the open water areas between pancakes are usually filled 

with frazil ice which serves to eventually glue the pancakes together (Comiso 2010). 

Figures 4.3 illustrates different stages of pancakes’ growth. 

 

 

Figure 4.3: Pancakes and grease ice. On the left, small pancakes with diameters of 10-20 cm and 

grease ice is illustrated. On the right, freely floated pancakes with diameters of 50-100 cm are 

illustrated (Sinha and Shokr 2015) 
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 Young Ice 

Young ice, which has a thickness between 10 and 30 cm, is subdivided into 10-15 cm 

thick grey ice and 15-30 cm thick grey-white ice (Alexandrov et al 2007). Gray ice is 

formed from nilas during its growth or when circular pieces of pancake ice are frozen 

together (Alexandrov et al 2007).  As the grey ice continues to grow thicker, it becomes 

grey-white ice. Typically, it forms elongated ice floes with a length in the range from 1 to 

10 Km separated by fractures (Alexandrov et al 2007). 

These fractures can be detected in SAR images as dark lines (Alexandrov et al 2007). 

Grey-white ice has a medium backscatter value, which is lower than of grey ice 

(Alexandrov et al 2007). 

 

 First Year Ice 

All sea ice developed from young ice from previous summer is defined as first year ice 

(Alexandrov et al 2007). The length of transition from young ice to first year (FY) ice 

depend on temperature, wind and location (Comiso 2010). At some stages, young ice and 

first year ice are difficult to discriminate especially when the ice sheet is un-deformed and 

has only few centimeters of snow cover (Comiso 2010). The first year ice is subdivided 

into thin, medium and thick first year ice types, with thickness of 30-70 cm, 70-120cm 

and more than 120 cm, respectively (figure 4.4) (Alexandrov et al 2007). During winter, 

ice thickness increases and thin ice becomes medium and later, first year ice (Alexandrov 

et al 2007). With an increase in its thickness, the backscatter of first-year ice slightly 

decreases (Alexandrov et al 2007).   

In most cases, first year ice can be separated from both young and old ice, but, it is very 

difficult to separate thin, medium and thick first year ice from a SAR image (Alexandrov 

et al 2007). Cross-section of first-year ice is illustrated in figure 4.5 
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Figure 4.4. First-year ice in different stages. Upper left images shows the thin-first year ice, 

upper right image shows the medium-first year ice and on the bottom is the thick-first year ice 

(Alexandrov et al 2007) 

 

 

Figure 4.5: Cross-section of first-year ice (Onstott 1992) 
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 Old ice 

Most of the first year ice melts completely in the summer, but some are thick enough to 

survive the melt period and become second year ice (Comiso 2010). Old ice in subdivided 

into second-year (SY) ice and multi-year (MY) ice. The first-year ice that become second-

year ice depends on cold the temperature gets in winter and how much rafting and ridging 

occurred before the summer melt period (Comiso 2010). The cycle repeats itself during 

the next winter period and the second year ice that survived becomes third-year ice 

(Comiso 2010). Multi-year ice is referred to the ice that survived at least two summers 

(figures 4.6 and 4.7). Cross-section of multi-year ice is show in figure 4.8. 

 

 

Figure 4.6: Multi-year ice (Alexandrov et al 2007) 
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Figure 4.7: ScanSAR wide image from RadarSat showing old ice in the East Siberian Sea. 

Multi-year ice is illustrating in the area A which can be discriminated from first-year ice located 

in the area B. Floes of old ice are located in areas C and D (Alexandrov et al 2007). 

 

 

Figure 4.8: Cross-section of multi-year ice (Onstott 1992) 
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 Sea ice deformation 

Except for land-fast ice which freezes along the coastline, sea ice usually undergoes a 

complex motion at different scales (Sinha and Shokr 2015). The mobility of the ice is 

caused by one or more of the following geophysical forces: wind stress, ocean current 

stress, inertial ice resistance, sea surface tilt and tidal force (Sinha and Shokr 2015). The 

motion and interaction of ice floes result in ice deformation (Sinha and Shokr 2015). 

Small scale deformations range from a few hundred meters to a few kilometers and are 

manifested in the forms of fracturing, rafting, ridging and rough ice surface (figure 4.9) 

(Sinha and Shokr 2015).  

 

Figure 4.9: Pressure ridges in the Beaufort Sea (Hibler 2001) 

 

At this scale, the deformed ice represents hazardous conditions for both marine navigation 

and offshore structure (Sinha and Shokr 2015). Medium scale deformations are defined 

by a spatial scale that extends a few tens of kilometers and are usually manifested in the 

forms of heavy and extensive ridging as well as cracks and leads in the ice sheet (Sinha 

and Shokr 2015). Large scale deformations with characteristic dimensions in the order of 

hundred to several hundred kilometers are caused by large circulation systems, 

particularly in the Arctic (Sinha and Shokr 2015). 



37 

 

Rifting and pressure ridging are the most common forms of ice compression at small and 

medium deformation scales and they contribute to the increase of ice thickness (Sinha and 

Shokr 2015). They occur when two ice sheets are pushed against each other (Figure 4.10) 

(Sinha and Shokr 2015). If the sheets are thin, rafting is more likely to occur and if they 

are thick, a pressure ridge will form (Sinha and Shokr 2015). Thin ice thickness that 

deforms into rafting is a few centimeters to a few tens of centimeters, although, rafting 

can be found with thicker ice when relatively small floes collide (Sinha and Shokr 2015). 

In rafting a moving thin ice overrides another sheet when they collide and continues 

ridging under compression force and against a frictional force and eventually stops when 

the frictional force between sheets stops (Sinha and Shokr 2015). 

 

Figure 4.10: Ice cracking due to sheer forces on the left. Rafting and pressure ridging are 

illustrated on the right (Sinha and Shokr 2015) 

 

 Sea ice decay 

The term ice decay refers to the decay or melting of first-year ice before it becomes 

second-year ice. The onset of ice decay depends on the latitude (Sinha and Shokr 2015). 

The overlying snow of FY ice starts to melt in mid-June and by the end of July or August, 

most of the FY ice would have melted (Sinha and Shokr 2015). 

The prime factors that trigger the ice decay are the air temperature, incoming solar 

radiation and melting of snow cover (figure 4.11) (Sinha and Shokr 2015). Secondary 
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factors include rides, albedo, mechanical disruption (ice break up due to wind), and water 

temperature (Sinha and Shokr 2015). The (surface) albedo describes the fraction of the 

radiation reflected by the surface of sea ice (Stoffels and Wackerbouer 2012).  

Sea ice decay starts at the surface in the form of melting initiated by two heat sources: (1) 

the absorbed solar radiation and (2) the conductive heat from the surrounding air (Sinha 

and Shokr 2015). The amount of absorbed solar radiation is determined by surface albedo, 

which varies with the type of surface (Sinha and Shokr 2015). 

 

Figure 4.11: Land-fast ice decay during melt season (Source: 

http://seaice.alaska.edu/gi/observatories/barrow_breakup/Petrich_etal_2012_Barrow_break-

up.pdf) 

 

In the sea ice ocean system, the albedo can range from 0.9 for fresh snow to 0.07 for Open 

Ocean (Stoffels and Wackerbouer 2012). Values for ice lie within this interval, with young 

sea ice albedo around 0.7, melting ice and melting ponds down to 0.4 (Stoffels and 

Wackerbouer 2012). Water absorbs 90% or more of the incoming solar radiation, while 

melting snow absorbs 40%-60% and dry snow absorbs 10%-20% (Sinha and Shokr 2015). 

Higher absorption of solar radiation leads to greater increase of local temperature of the 

surface (Sinha and Shokr 2015). Figure 4.12 shows the decay process of sea ice 
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Figure 4.12: Decay process of sea ice. It usually takes between 3 to 4 weeks from the onset of 

surface melt for the appearance of thaw holes (Sinha and Shokr 2015) 

 

4.3 Electromagnetic properties of sea ice 

The electromagnetic properties of sea ice are governed by its physical state. The physical 

development of sea ice is governed by thermodynamic forcing of the ocean such as 

currents, water temperature, wind and all these variables contribute to the eventual sea ice 

roughness which determines its electromagnetic (EM) signature. 

A dielectric medium can be either ideal or non-ideal. Ideal dielectrics possess no free 

charges to establish any conduction current, so, their conductivity is zero (Sinha and Shokr 

2015). Non-ideal dielectrics possesses a very small number of free charges, hence, their 

electrical conductivity is small but no zero (Sinha and Shokr 2015). Permittivity is another 

important factor in those cases. Conductivity and permittivity of a dielectric material is 

combined in a single parameter termed complex dielectric constant ε, (complex 

permittivity) and is defined as: 

 𝜀 = 𝜀′ − 𝑗𝜀′′ (4.0) 

 

The real part of the complex dielectric constant is the permittivity and is denoted by ε’ 

and the imaginary part is the conductivity denoted by jε’’. Permittivity determines how 

much energy penetrates through the material and electrical conductivity determines how 

much energy is lost or scattered inside the material. High permittivity means less 
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penetration of energy (hence more scattering at the surface), while high loss means more 

energy dissipation inside the material (Sinha and Shokr 2015).  

 

 Pure ice 

For pure ice, the real part of the complex dielectric constant is independent of frequency 

between 100 MHz and 900 GHz with weak dependence on temperature (Sinha and Shokr 

2015). On the other hand, the imaginary part of the complex permittivity depends on both 

temperature and frequency of the EM signal. For calculating the real part of the complex 

dielectric constant, the following model is used: 

 R𝑒(𝜀 𝑖𝑐𝑒) = (3.099T – 992.65) / (T – 318.896)  (4.1) 

Where T is the ice temperature. 

The imaginary part of pure ice can be calculated as follows: 

 Im𝜀𝑖𝑐𝑒 = 
𝐴(𝑇)

𝑓
+ 𝐵𝑓 (4.2) 

Where f denotes the frequency in GHz and the letters A and B are the coefficients that 

depend on the ice temperature. The values for A (T) and B (T) are calculated as follows: 

 

A(T) = 
𝑒

[12.5− 
3.77 103

𝑇 ]

𝑇
 

 (4.3) 

 

 B(T) = 10−4𝑅𝑒(𝜀𝑖𝑐𝑒)(273.41 − 𝑇)−1/2  (4.4) 

 

The presence of impurities (dust particles, ash particles, Sodium and Chloride ions) on ice 

can influence the values of permittivity. Impurities in the ice can change the values of both 

imaginary and real parts of the complex dielectric constant. 
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 Dry snow 

Dry snow can be seen as a mixture of ice and air, with permittivity depending on the 

permittivities of the single constituent materials and fractional volume (Sinha and Shokr 

2015). Snow that has undergone several melt-freeze cycles tend to form multiple clusters 

and its density slowly increases with time due to metamorphism and melt-freeze cycles 

(Hallikainen and Winebrenner 1992). The real part of snow permittivity remains constant 

with temperature and frequency and is affected by the fractional volume of the snow. 

Hallikainen, et.al (1986) proposed two equations for the real part of the dry snow. 

 𝜀′𝑑𝑠 = 1 + 1.83𝑝𝑑𝑠                   𝑝𝑑𝑠 ≤ 0.5𝑔/𝑐𝑚2 (4.5) 

 𝜀′𝑑𝑠 = 0.51 + 2.88𝑝𝑑𝑠              𝑝𝑑𝑠 ≥ 0.5𝑔/𝑐𝑚2 (4.6) 

 

Where 𝑝𝑑𝑠 is the density of dry snow in g/𝑐𝑚2 

 

 Wet snow 

Wet snow can be seen as a mixture of dry ice and liquid water, which can appear as free 

or bounded and is therefore more difficult to characterize electromagnetically than dry 

snow (Sinha and Shokr 2015). The snow permittivity can be written as: 

 

 ε = 𝜀𝑑𝑠 + 𝛥𝜀 (4.7) 

 

 The  𝜀𝑑𝑠 term denotes the permittivity of the dry snow and Δε denotes the presence of 

liquid water.  

 

The table 4.0 shows the empirical relations between the presence of liquid water Δε, and 

snow wetness. 
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Table 4.2: relation between ε’’ or Δε and snow wetness (Sinha and Shokr 2015) 

 

 Brine inclusions 

As the sea ice grows thicker, it rejects brines to the ocean. Any brine within sea ice is 

contained in millimeter to centimeter scale enclosures and tubes between the crystals of 

recently formed sea ice (Haskell et.al 2012). These tubes provide a route for salt to leave 

the ice. As these networks close off, their remnants are the small brine inclusions that 

determine many of the physical properties of sea ice (Haskell et.al 2012). The brine 

inclusions of the sea ice have high permittivity that affects the electromagnetic properties 

of sea ice. Brine has a high dielectric loss factor which attenuates the EM signal. For 

instance, the backscatter from a thin saline ice will be low, while, the multi-year ice which 

is less saline produces higher backscatter.  

 

 Air bubbles 

Air bubbles in the sea ice which exist at depths above the water level influence the 

dielectric properties of sea ice, as a result increasing the scattering effect. The saline-free 

nature of the upper layer of multi-year ice allows more microwave energy to penetrate and 

interact with air bubble (Sinha and Shokr 1994). As microwave energy interacts with air 

bubbles, multiple scattering occurs, which, together with the surface scattering, gives the 

total backscatter received by the SAR sensor.  

Empirical relation Remarks 

Δε = 0.206 * Wv + 0.0046W𝑣2 0.01  ≤  freq ≤ 1 GHz 

Δε = 0.02 * Wv + (0.06-3.1*10−4𝑓𝑟𝑒𝑞 − 4)2)𝑊𝑣1.5 4 ≤ freq ≤ 12 GHz 

Δε = 0.089Wv + 0.0072W𝑣2 freq = 1GHz 

e’’ = 0.073 * (𝑒′)1/2𝑊𝑣/𝑓𝑟𝑒𝑞 4 ≤ freq ≤ 12 GHz 

e’’ = 0.073 * Wv + 0.0007W𝑣2  freq = 1 GHz  

e’’ = c (freq) * W𝑣1.5  
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4.4 Microwave interaction with sea ice 

Sea ice types, leads, ridges, icebergs and other geological features have their own unique 

microwave signature that can be discriminated from radars. Hence, backscatter is 

influenced by different aspects of sea ice structure (Onstott 1992). The microwave energy 

can interact with the snow surface, the interior of the snow, the upper layer of the ice sheet 

(as the microwave penetrates through the snow), the interior of the ice sheet and the water 

surface. The way in which sea ice forms, its history, and its age are important in 

determining its microwave properties (Onstott 1992). When the ice is young, it exhibits a 

thin layer of brine on its surface, thereby limiting electromagnetic wave propagation to 

depths of a wavelength of less (Onstott 1992). The volume of the brine reduces as the ice 

gets older which enables the electromagnetic wave to penetrate further in the ice. Also, 

the selection of radar polarization (Horizontal or Vertical), its wavelength (X-band, C-

band or L-band) and viewing angle can help in determining the dominant scattering 

mechanism of sea ice (surface or volume scattering). The figure 4.14 illustrates the 

interaction of electromagnetic wave with different sea ice types. 

 

 

Figure 4.13: Interaction of electromagnetic wave with first year ice, multi-year ice and 

open water (Onstott 1992). 
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 Microwave scattering from New and First Year Ice 

New ice is composed of a thin layer of ice of few centimeters up to 10-20 cm thick. As 

the ice forms, the amount of brine is considerable high. Hence, new ice can be 

characterized by a high fractional brine volume and an effective dielectric constant that, 

while considerably smaller than that of seawater, is large relative to that of thick ice 

(Hallikainen and Winebrenner 1992). 

As the ice gets thicker, passing the stage of grey ice and becomes first year ice, its salinity 

reduces, the surface becomes rougher and it acquires snow cover. The backscatter 

intensity of sea ice depends on different factors such as surface roughness, dielectric 

constant, incidence angle and the radar frequency. The dominant backscatter mechanism 

associated with first year ice is surface scattering (Onstott 1992). Its lower absorption of 

electromagnetic wave, the lower amount of brine volume and the surface roughness tend 

to increase scattering. Observations show that snow on sea ice plays an important role in 

determining the backscatter response from first year ice (Hallikainen and Winebrenner 

1992). The dry snow on top of the sea ice is transparent to electromagnetic wave (for 

frequencies of 5.5 GHz which corresponds to C-band of radar instrument) due to low 

dielectric permittivity and the small grains compared to microwave length. The snow as 

well as the ice surface cause a specular reflection to horizontally polarized waves, whereas 

vertically polarized waves are transmitted through the sea ice. Backscatter cross sections 

for first year ice are roughly 5 decibels (dB) higher than for new ice at frequencies from 1 

GHz up to at least 10 GHz (Hallikainen and Winebrenner 1992). A sea ice core from first 

year ice is illustrated in the figure 4.15. The upper layer of FYI contains some amount of 

brine (roughly 10 ‰) which prevent the microwave from penetrating through. 
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Figure 4.14: FYI core with diameter 100 mm. The brine is ejected through the drainage channel 

(Sinha and Shokr 1994) 

 

 Microwave scattering from Multi-Year Ice 

Multi-Year Ice is the ice that has survived a summer melt season and continued to grow 

thicker. The upper part of MYI consists of fresh, raised areas (hummocks) with bubbly, 

low-density upper layers and lower lying, higher density areas that are refrozen melt ponds 

(Hallikainen and Winebrenner 1992). The small sized bubbles in the MYI (the size of 

millimeter) as well as its low absorption leads to volume backscattering. The intensity of 

the backscatter (σo) of the MYI is stronger than that of the FYI at wavelength of 5.8 cm 

(C-band) and above. Hence, volume scattering occurs when the microwave energy 

interacts with the sea ice and the energy is scattered by the bubbles inside the old ice. The 

figure 4.15 illustrates the volume scattering of the sea ice. The considerable amount of 

bubbles exists in the upper part of MY hummock ice is responsible for the strong 

backscatter of the microwave.  
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Figure 4.15: .MYI cores (Sinha and Shokr 1994) 

 

When a significant part of the electromagnetic wave is scattered itself and re-scattered 

inside the medium then multiple scattering occurs. Multiple scattering takes place when 

there is a little absorption to soak up energy and when individual scattering events redirect 

a significant amount of energy (Hallikainen and Winebrenner 1992). On the other hand, 

single scattering tends to dominate when the medium is lossy so that multiple scattered 

waves are strongly attenuated (Hallikainen and Winebrenner 1992). The look up table 

below (table 4.1) shows the backscatter coefficients of sea ice types that were derived 

from measurements carried out in different frequencies. 

 

 

 Optimum frequency and polarization 

During winter, the critical mechanism in separating first-year and multi-year ice is 

discriminating backscatter dominated by volume scattering from that dominated by 

surface scattering (Onstott 1992).  Despite the fact that the surface texture of these two 
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sea ice types is similar, the volume scattering from multi-year ice enables us 

discriminating it from first year ice. Surface scattering increases with frequency.  The 

optimum frequency will be one that exploits the fact that volume scattering dominates 

(Onstott 1992). Hence, one should choose a wavelength (λ) such that surface scattering 

remains the principal backscatter mechanism for first year ice, also, the wavelength should 

be short enough for strong multi-year ice volume scatter (Onstott 1992). In summer, high 

frequency wavelengths (X-band with frequency of 9.6 GHz) are not suggested because 

they cannot penetrate the wet snow. On the other hand, longer wavelengths such as L-

band (23cm) are less sensitive on the dielectric constant of the wet snow and can interact 

with sea ice. Hence, using L-band the sea ice discrimination is feasible.  

Apart from choosing the ideal frequency on sea ice observations, polarization choice plays 

an important role as well. For sea ice discrimination, HH and VV polarizations are similar. 

However, for open water and calm conditions, the cross section at VV polarization is 5 to 

7 dB greater than at HH polarization (Onstott 1992). For thin ice, the backscatter 

coefficient at HH polarization is 2 to 3 dB lower that it is in VV polarization.  

An accurate interpretation of a single polarized SAR images is hard to achieve. Dual 

polarization improves the discrimination of the sea ice features due to the fact that two 

polarization channels as used (HH + HV) instead of one (HH or VV). Cross-polarization 

has been shown to increase the range between multi-year and first year returns by an 

additional 3 dB (Onstott 1992). This is attributed to the very weak depolarization that 

occurs over smooth and slightly rough surfaces (Onstott 1992). 

A research conducted by Abreu et.all 2006 at Beaufort Sea has shown that HV channel 

produced a greater contrast between MYI and the rough FYI compared to HH channel. In 

the HH polarization channel the rough FYI was almost indistinguishable from the MYI. 
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Table 4.3: Look up table of backscatter coefficients (Shokr and Sinha 2015) 

 

 

 

 

. 

 

Season Ice type 
Thickness 

(cm) 

X (HH) - 

𝝈𝟎 

C (VV) - 

𝝈𝟎 

L (HH) - 

𝝈𝟎 

winter MY >220 -3.6 -8.6 -7.0 

TKFY 70-220 -14.2 -11.5 -23 

TNFY 20-70 - -13.5 -23.4 

OW 0 <-29.7 >= -29.7 <= -30.7 

Late spring MY >220 - -10.7 -15.5 

TKFY 70-220 - -13.2 -23.4 

OW 0 <-29.7 <-19.7 <= -30.7 

Early summer MY-TKFY >70 -15.9 -16.3 -15.1 

TNFY 20-70 -15.1 -13.1 - 

OW 0 <-29.7 <= -19.7 <= -30.7 

Mid-summer MY >220 -15.7 -16.3 -22.7 

TKFY 70-220 -15.7 -14.7 -19.8 

TNFY 20-70 -14.7 -13.1 -19.8 

OW 0 <-29.7 <= -19.7 <= -30.7 

Late summer MY >220 - -16.8 -21.9 

TNFY 20-70 - -18.6 -28.1 

OW 0 <-29.7 -19.7 <= -30.7 
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5 Methodology 

 

5.1 Introduction 

This chapter describes the methodology that has been followed for performing sea ice 

classification. An overview of this procedure is illustrated in the scheme below. 

 

 

SAR image 

 

Data pre-processing 

 

Calculation of texture features 

 

       Test data       Classifier selection (SVM)        Trainig data 

 

SAR image classification 

 

Accuracy assessment 

 

Validation of the classification results 

Figure 5.0: A workflow of the steps for the SAR data processing 
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5.2 Area of study 

The study area is located in the Eastern part of Greenland with coordinates, 

71.81𝑜 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒 , 21.47𝑜 longitude (upper left), 67.60𝑜 𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒, 21.08𝑜 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 

(bottom right). Ittoqqortoormiit is the only settlement located along the coast of the area 

of interest. It attracts many tourists every winter as well as people interested in sports such 

as climbing and hiking. 

 

 

Figure 5.1: Area of study. The red rectangular on the map indicates the area of interest.  

 

 Climate and oceanography  

Greenland is an island where strong winds are present all year round, especially in winter. 

Strong and cold winds descent from the North Pole to the southern part of Greenland. For 

the South-East part of Greenland, it is exposed to high and strong winds as well as to gale 
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forces which occur 15-20 % of the time. The velocity of winds can reach 25m/s or even 

higher. 

The surface layer in the Eastern part of Greenland Sea is dominated by the northward 

flowing Norwegian Atlantic Current (Pedersen et.al, 2004). Atlantic waters recirculate 

and are transported to the South-East part of Greenland through the Fram Strait region 

(figure 5.2). The East Greenland current flows southern along the coast of East Greenland 

(Pedersen et.al, 2004). Currents, known as Irminger current, turns westward along the 

west coast of Island (Pedersen et.al, 2004). 

Sea ice in South-East part of Greenland primarily occurs as multi-year drift ice of Polar 

region is carried to Southern Greenland. The Northerly winds cause fresh polar water from 

the Arctic Ocean with large amount of Polar ice to be carried along the East coast of 

Greenland by strong currents (Buch, 2000).  

 

 

Figure 5.2: Ocean surface currents in Greenland’s waters (Pedersen et.al, 2004) 
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5.3 Data description  

SENTINEL -1 data are used for this study. SENTINEL-1 was built for acquiring data that 

can be used in many applications. One of these applications include sea ice monitoring. 

The satellite can capture data in high and medium resolution that can be used for 

generating sea ice maps for the safety of ships navigation. The radar can distinguish 

between thin and a thicker sea ice as well as thick from the hazardous much thicker ice 

providing valuable help and safety into the ice covered Artic zones. 

Two SENTINEL-1 Extra Wide Swath (EW) images acquired over the same area of the 

South-East part of Greenland waters (71.81𝑜 𝑙𝑎𝑡 , 21.47𝑜 long (upper left), 67.60𝑜 𝑙𝑎𝑡, 

21.08𝑜 𝑙𝑜𝑛𝑔 (bottom right)) in HV and HH polarizations in February 23 of 2016 and May 

25 of 2016. The second image was captured three months later where it will give us an 

indication of how much the sea ice has changed in a period of three months. The spatial 

resolution of the products is 40m with an incidence angle range from 20o to 47o.  The 

detailed description of the data are given in the table 5. Figures 5.3 and 5.4 depict the 

SENTINEL-1 SAR images. 

 

Parameters SAR configurations 

Product type Ground Range Detection (GRD) 

Acquisition mode Extra Wide Swath (EW) 

Incidence angle 20 – 47 (degrees) 

Polarization Dual (HH+HV) 

Swath 410 Km 

Azimuth looks 3 

Range looks 6 

Spatial resolution 40m 

NESZ -22 dB 

Table 5: SENTINEL-1 data description 
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Figure 5.3:  SENTINEL-1 image acquisition in satellite geometry captured in February 

23 of 2016 

 

 

 

 

 

 

 

 

 

 

 

            

Figure 5.4: SENTINEL-1 image acquisition in satellite geometry captured in May 25 of 

2016 
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5.4 Data pre-processing 

Satellite imageries acquired by SAR sensors contain uncertainties which have to be 

properly corrected before proceeding to SAR image post-processing. The pre-processing 

steps of the SENTINEL-1 image include, applying precise orbit file for more accurate 

geolocation of the SAR image, thermal noise removal, calibration, incidence angle 

correction and speckle noise reduction.  

These steps are described in detail below. A general scheme of the pre-processing steps is 

illustrated in figure 5.5. 

 

SAR image 

 

Apply precise orbit file 

 

Thermal noise removal 

 

Radiometric Calibration (sigma0) 

 

Incidence angle normalization 

 

Speckle noise suppression 

 

Figure 5.5: Flow chart of pre-processing steps for the SENTINEL-1 data 
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 Precise orbit file 

Precise orbit information is necessary for accurate geolocation of the SAR product. The 

location accuracy of the SAR image depends on the orbit information, incidence angle 

and the Digital Elevation Model (DEM) that is used for ortho-rectification. In order to 

retrieve the highest location accuracy, the best orbit information that is available should 

be used. 

Precise orbit state vectors has not been applied for the SENTINEL-1 images as they are 

available days or weeks after the product generation. Hence, precise orbit ephemerides 

(POEORB) has been applied to both SENTINEL-1 datasets for a precise geolocation of 

the SAR images. 

 

 Thermal noise removal 

Ground Range Detected (GRD) SENTINEL 1 SAR images suffer from thermal noise. The 

noise can be noticed in areas of low backscatter signal (calm waters, lakes, etc.). The cross 

polarization (HV) images are mostly affected by thermal noise because the signal received 

from the sensor is too low (close to the noise floor) and too noisy to be useful. Moreover, 

in multi-swath acquisition modes this noise has typically a different intensity in each sub-

swath, causing an intensity step at inter-swath boundaries (Piantanida et.al 2016). During 

raw data focusing, a range varying radiometric corrections applies on SAR data resulting 

in a re-shaped noise contribution in a range varying fashion (Piantanida et.al 2016). 

Hence, the thermal noise can be removed improving the quality of the SAR image. The 

thermal noise level vectors are given in the metadata file of the SAR product and this 

enables us to remove it. The equation shown below is applied for subtracting the noise 

from the image. 

𝐸[𝑠(𝑅, 𝜂)2] = 𝐸[(𝑠(𝑅, 𝜂) + 𝑛(𝑛𝑠 ; 𝜂))2] 𝐺𝑡𝑜𝑡
2  (𝜂𝑠) 

R, η - 𝜎𝑛
2 (𝑛𝑠, η) 𝐺𝑡𝑜𝑡

2  (𝑛𝑠,R, η) 

 

                                  (5.1) 
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Where: 

R: slant range 

η: slow time 

𝑛𝑠: sub-swath number 

𝑠(𝑅, 𝜂): received backscatter signal 

 𝐺𝑡𝑜𝑡
2  (𝑛𝑠,R, η) : total gain applied to the data during SLC processing 

 𝑛(𝑛𝑠 ; 𝜂): bi-dimensional white thermal noise for a given swath                                                    

 

 Radiometric calibration 

The SAR products used for this study are characterized as level 1. For this type of product 

radiometric calibration has not been applied. The objective of radiometric calibration of 

SAR images is convert the digital number (DN) of each pixel into physical units. After 

the interaction of radar wave with the surface of the earth, factors such as system loss, 

antenna gain and the aperture of the antenna should be accounted for, otherwise a 

significant radiometric bias in the SAR image is introduced and renders it unsuitable for 

use in applications that entail quantitative use of SAR data (El-Darymli 2014). 

Radiometric calibration provides for converting the pixel values in the SAR image from 

being qualitatively representative of the biased backscatter signal to being quantitatively 

representative of the backscatter coefficient (El-Darymli 2014). Also, radiometric 

calibration is important for comparing SAR images captured with different SAR sensors. 

The calibration parameters for SENTINEL 1 images are given in the Look Up Table 

(LUT). In order to radiometrically correct the product, the equation below is used. 

 

𝜎𝑜=
𝐷𝑁2

𝐴𝑑𝑛
2  𝑘

sin (𝑎) 
5.2 
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Hence, the radar cross section (Aσ) is written as: 

𝐴𝜎= √
𝐴𝑑𝑛

2  𝑘

sin (𝑎)
 

 

5.3 

The other values in the LUT are defined as: 

𝐴𝛽= √𝐴𝑑𝑛
2 k 5.4 

 

𝐴𝛾= √
𝐴𝑑𝑛

2  𝑘

tan (𝑎)
 

 

5.5 

Where: 

a, is the local incidence angle 

𝐴𝑑𝑛, is the product final scaling from SENTINEL 1 Single Look Complex (SLC) to final 

Ground Range Detected (GRD) product 

K, is the calibration constant 

 

It is also possible to calibrate the SAR image using the calibration parameters directly 

from LUT. The equations are described below 

𝜎𝑜= 
𝐷𝑁2

𝐴𝜎
2  

 

5.6 

 

𝛽𝑜= 
𝐷𝑁2

𝐴𝛽
2  

5.7 
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𝛾𝑜= 
𝐷𝑁2

𝐴𝛾
2  

 

5.8 

 

After deriving the values for 𝜎𝑜, 𝛽𝑜 and 𝛾𝑜, we can convert these values into decibel (dB) 

units as follows: 

𝜎𝛾𝛽
𝜊  = 10 𝑙𝑜𝑔10 𝜎𝜊 5.9 

 

The SENTINEL-1 products come with four look up tables that allow for Aβ, Aσ, Aγ, and 

Adn.  Aβ is used to transform the radar reflectivity into β0 where the area normalization is 

aligned with the slant range (Miranda. and Meadows 2015). β0 is known as radar 

brightness coefficient and is dimensionless. Aσ is used to transform the radar reflectivity 

into radar cross-section σo where the area normalization is aligned with ground range plane 

(Miranda. and Meadows 2015). σo is the radar cross section per unit area in the ground 

area (El-Darymli 2014). Aγ is used to transform the radar reflectivity into gamma γ0 where 

the area normalization is aligned with a plane perpendicular to slant range (Miranda. and 

Meadows 2015). γ0 is the radar cross section per unit area of the incident. Figure 5.6 shows 

schematically the three scattering coefficient5 

 

Figure 5.6: The relationship of three scattering coefficients (β0,γ0 and σo).  (El-Darymli 

et.al 2014) 



59 

 

 Incidence angle normalization 

The Extra Wide (EW) swath mode of SENTINEL-1 acquires data over a wide area with 

a swath over 400 Km. The main problem related to EW mode is the degrease of 

backscatter energy from near to far range of the SAR image. The backscatter coefficient 

values, depend to a great extent on the incident angle. This means that the backscatter 

energy at low incidence angle is higher from that at high incidence angle. Therefore, 

incidence angle normalization is required to reduce the variation of backscatter energy 

over the SAR scene.    

Topouselis et.al 2016 suggested a methodology for correcting the incidence angle for 

images acquired in wide swath mode. Incidence angle correction can be carried out 

according to equation 5.10. 

σθref
0  = 

σθ  
𝑜 +(σθ

0)−1

2
 5.10 

 

Where, σθref
0  is the normalized backscatter coefficient at a reference incidence angle, 

θ𝑟𝑒𝑓, σθ
0  is derived by using a linear regression model which describes the relation of σ0 

values and incidence angle and (σθ
0)−1 is the symmetric function of σθ

0 . The σθ
0 parameter 

is derived by: 

σθ
0 = 𝑎θ + b 5.11 

 

Where, a and b are the linear coefficients. The (σθ
0)−1 parameter which is the symmetric 

function can be derived as follows: 

 

(σθ
0)−1 =  −𝑎θ + 2aθ𝑟𝑒𝑓 + 𝑏 5.12 
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 Speckle noise removal 

All SAR images suffer from speckle noise. The presence of speckle noise in the image 

degrades its quality and the image interpretation becomes more difficult. The speckle 

noise comes from the fact that scatters within the resolution cell interfere destructively.  

The speckle effect in SAR images varies over homogeneous areas. If we consider a case 

of a distributed target, such as  agricultural field that has characteristics such as surface 

roughness that are statistically homogeneous, the adjacent pixels in the SAR image will 

exhibit a different backscattered echo (Woodhouse 2006). Despite the fact that an 

agricultural area looks homogeneous in the SAR image, the scatterers between two 

adjacent homogeneous pixels will differ changing the scattered interference pattern.  

The speckle noise is based on the assumption that the resolution cell contains a large 

number of scatterers with a wavelength hat is comparable to the roughness of the terrain 

(Mascarenhas 1997). In this case, the returned wave is the result of the superimposition of 

all these reflected components (Mascarenhas 1997). A vector representation of speckle 

noise is illustrated in figure 5.7 

 

Figure 5.7: Contribution of different scatterers in a resolution cell (Mascarenhas 1997) 

 

It is necessary to apply a de-speckle filter on SAR data for noise suppression before using 

it for further processing. Many speckle suppression filters have been developed for 

remotely sense data the last years. Regarding a radar image, a performance of a filter 

should not be assessed only on suppressing the noise, but preserving the edges of the 
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features in the image as well. Filters such as median and mean have been developed to 

suppress the noise but they have poor performance and fail to preserve the edges. 

More complex filters are necessary for effectively removing the speckle effect from SAR 

images. Some of the most popular filters that have been extensively used on SAR images 

are the Frost, Lee, Lee sigma, median and boxcar filter. An extensive research on assessing 

the performance on these filters on SAR images has been carried out by many authors (De 

Leeuw and de Carvalho 2009, Qiu et.al 2004, Lee 1981, Lee et.al 2009, Joshi and Garg 

2012).  

The simplest de-speckle filter is the median in which the central pixel of a moving window 

is replaced by its median. The median filer successfully suppress the noise of a SAR but 

it does not preserve single pixel wide features, which will be altered if speckle noise is 

present (Qiu et.al 2004). Adaptive filters, such as Lee filter, are based on the assumption 

that the mean and variance of the pixel of interest are equal to the local mean and variance 

of all pixels within the user selected moving window (Qui et.al 2004). The Lee filter 

suppresses the noise by minimizing either the weighted least square estimation or the 

mean square error (Qui et.al 2009). The frost pixels replaces the pixels of interest with a 

weighted sum of the value within the moving window, the weighting factors decrease with 

distance from the pixel of interest and increase for the central pixels as variance within 

the window increases (Qui et.al 2009).  

The Lee sigma filter on the other hand is simple but superior to the other sophisticated 

filters and it one of the most widely used suppression filters in SAR images. It first 

computes the sigma (standard deviation) of the entire scene, and the replaces each central 

pixel in a moving window with the average of only those neighboring pixels that have an 

intensity value within a fixed sigma range of the central pixel (Qui et.al 2009). Also, The 

Lee sigma filter is superior in preserving the edges, linear features and texture information. 
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6 Texture analysis 

 

6.1 Introduction 

Developing automatic ice classification methods for SAR images has been a long-standing 

goal for sea ice research and operational ice charting services (Alexandrov et.al 2013). 

The objective of sea ice classification of SAR images is to identify the main sea ice 

features related to ice types and surface roughness and classify them into a set of pre-

defined categories (Alexandrov et.al 2013). An efficient classification method, which it 

can be either supervised or unsupervised, involves choosing the ideal image parameters 

for classifying sea ice classes effectively. These parameters should be chosen before the 

implementation of the classification algorithm. The two type of parameters that are widely 

used in remote sensing for describing a satellite imagery are the tonal and textural 

parameters. Tonal parameters describe the reflected energy received by the satellite sensor 

(gray tone) after interacting with the surface of the Earth. Texture contains important 

information about the structural arrangement of surfaces and their relationship to the 

surrounding environment (Haralick. and Shanmugam 1973). 

At the early stages of sea ice discrimination, attempts of using first order statistic approach 

have been made. This technique utilizes the backscattering coefficient (σο) of the SAR 

image for sea ice type separation. Using this method, the discrimination between First 

Year (FY) ice (which is about 0.3m thick) and Multi Year (MY) ice (where its thickness 

ranges between 2 and 4m) is possible but it is hampered by ambiguities in separating 

different FY ice classes because of the similar backscatter signatures. Several studies that 

have been carried out suggest that using first order statistics alone is not able to 

successfully discriminate all the different sea ice types (Holt et.al; Robert et.al 1987; 

Kwok and Cunningham 1994; Fettere et.al 1994). 

As tonal statistics have failed in clearly discriminating sea ice types, researchers used the 

texture information of the image. Texture statistics helped in improving the discrimination 

of sea ice types. Some of the widely used texture feature extraction methods are the 
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wavelet transform, Grey Level Co-occurrence Matrix (GLCM) and Gabor filters. There 

are evidence to indicate that texture is more suitable than tonal features for extracting 

information from SAR sea ice imagery (Clousi 2002; Soh and Tsatsoulis 1999). However, 

texture analysis alone may not be sufficient for discriminating the SAR sea ice data 

(Clousi and Deng 2004).  

 

6.2 Grey Level Co-Occurrence Matrix 

Grey level Co-Occurrence Matrix describes how often a combination of two pixels (grey 

level values) occur in an image within a pre-defined computational window. GLCM takes 

into account the relation between two adjacent pixels, the reference and the neighbor pixel. 

GLCM is considered as second order statistics. Unlike first order statistics (Kurtosis, 

Skewness), second order statistics consider the relationship between the reference and the 

neighbor pixel in the image. Once the GLCM matrix is calculated, statistical parameters 

can be derived from the matrix to characterize texture (Shokr 1991).  

For the creation of GLCM matrix, four important parameters are considered. These 

parameters are the orientation, displacement, grey level values and a window size. The 

GLCM is a square matrix of dimension N and is computed using a number of quantized 

levels within a given computational window (Shokr 1991). An entry 𝑃𝑖𝑗 of the matrix 

represents the number of occurrences of two neighboring pixels, at locations (X1, Y1) and 

(X2, Y2) within the window which have grey levels equal to i and j respectively (Shokr 

1991). The two pixels are separated by a distance (in pixels) δ and an orientation θ. Four 

orientations are available 0o, 45o, 90o, 135o.  The entries of each matrix are normalized by 

dividing each entry by the total number of paired occurrences of quantized levels along 

the given direction (Shokr 1991). The mathematical equation of GLCM is given below. 

 

𝑃𝑟(𝑥) = {𝐶𝑖𝑗 | (δ, θ)} 6.1 

 



64 

 

Where 𝐶𝑖𝑗 is the co-occurrence probability between gray levels i and j and is defined as, 

𝐶𝑖𝑗 = 
𝑃𝑖𝑗

∑ 𝑃𝑖𝑗
𝐺
𝑖,𝑗=1

 
6.2 

 

Where 𝑃𝑖𝑗 represents the number of co-occurrence of gray levels i and j within a 

computational window with defined δ and θ values and G represents the number of gray 

level values. The denominator represents the total number of co-occurrence of gray levels 

i and j.  

 

 GLCM parameters 

As we have already mentioned above, four parameters (orientation, displacement, gray 

level values and computational window) should be considered before calculating the 

GLCM matrix. Each of these values should be carefully selected in order to achieve the 

best separation between sea ice types. These parameters are described below in more 

details. Table 6.0 shows what GLCM parameters have been chosen by different authors 

for the interpretation of SAR sea ice image. 

Authors δ θ G 
Co-occurrence 

statistics 

Barber and 

LeDrew (1991) 

1*, 5, 10 0, 45, 90 16 CON,COR, 

DIS, ENT, UNI 

Holmes, et.al 

(1984) 

2 Average 8 CON, ENT 

Shokr (1991) 1 ,2*, 3 Average 16, 32 CON,ENT, 

IDM,UNI,MAX 

Table 6.0 Selected number of studies for GLCM parameters. The asterisk indicated the 

preferred choice (Clausi, 2002) 
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6.2.1.1 Orientation 

Orientation describes the direction in which the co-occurrence matrix will be computed 

as shown in figure 6.0. 

 

NW   N   NE 

       

       

W      E 

       

       

SW   S   SW 

Figure 6.0. Orientation 

 

The diagram shows eight different orientations that can be chosen but only four (N, S, W, 

E) are widely used. The orientation parameter is less significant compared to the other 

factors in co-occurrence matrix. A few studies have been conducted on what orientation 

should be used (table 6.0 above). The majority of the authors used the average among the 

four orientations.  For SAR sea ice imagery, there are no symmetric patterns based on 

orientation (Soh and Tsatsoulis 1999). Sea ice feature rotate in all directions in given 

weather conditions, therefore, the orientation factor is not so important in SAR sea ice 

research (Soh and Tsatsoulis 1999). 

 

6.2.1.2 Displacement  

The displacement parameter plays an important role in the computation of GLCM. 

Applying a large displacement to a fine texture would yield a co-occurrence matrix that 

does not capture the textural information (Soh and Tsatsoulis 1999). High displacement 

values (above 10) result in decreasing the classification accuracy. Barber and LeDrew 
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(1991) demonstrated that a displacement value of 1 produced superior classification 

results when compared to displacement values of 5 and 10. Also, Shokr (1991) after 

experimenting with different δ values concluded that δ=2 is the most appropriate.  

 

6.2.1.3 Quantization  

The number of quantization levels is one of the most important factors in the computation 

of GLCM. The decision that we have to make is how many levels are needed to represent 

a set of textures successfully (Soh and Tsatsoulis 1999). The higher the number of gray 

levels involved in the computation, the more accurate the textural information. If the 

number of quantized levels is too high (over 64), this leads to an increase in computational 

cost since the dimensions of GLCM matrix is indicated by the number of gray levels.  On 

the other hand, using a low number of gray level values (below 8), the texture information 

of a SAR image is reduced but it accelerates the computation of co-occurrence texture 

features. It is expected that coarser quantization would reduce both classification accuracy 

and seperability of the sea ice classes (Clausi, 2002).  On the other hand, finer resolution 

increases both the accuracy and seperability of sea ice classes.  

6.2.1.4 Window size 

The computational window is effectively a sub-image of the SAR imagery moving across 

the image calculating the co-occurrence matrix.  

 

 

 

 

 

Figure 6.1. Computational window size. The cell in red receives the value of the 

calculations 
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Figure 6.2. A moving computational window 

 

In texture analysis, it is important that the textural features of the various class types need 

to be extracted over a local area of unknown size and shape (Pathak and Dikshit 2010). If 

the areas are not large enough with respect to the texture element, then one cannot expect 

these local analysis to provide feature values that are invariant across the textured region 

(Pathak and Dikshit 2010). Hence, it is preferable the texture information to be extracted 

over a large area. Existing studies suggest that large window sizes (11 x 11, 13 x 13 or 

even larger) provide better results in sea ice class seperability (Pathak and Dikshit 2010, 

OTUKEI, et al 2012). Window size is crucial parameter for image segmentation and 

classification where large window sizes have higher possibilities of overlapping more than 

2 classes. One cannot ensure that the window size selected will not overlap more than 2 

classes. If this is the case, then the features would be representing a hybrid value and this 

leads to the so-called window effect (Pathak and Dikshit 2010). This situation usually 

occurs for linear features where its spatial extent is smaller than the window size (ridge or 

leads) and at the boundaries of classes. 

 

 GLCM computation 

For the calculation of GLCM matrix, fourteen texture features have been defined by 

Haralick (Haralick and Shanmugam, 1973) to extract characteristics of texture statistics 

of remote sensing imageries. For the classification of remotely sensed data, eight texture 
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features out of fourteen are usually used. It is worth mentioning that some features are 

correlated to each other, hence, a careful analysis on the feature selection should be carried 

out. Below, figure 6.3 and figure 6.4 illustrate the construction of the GLCM matrix. 

Consider a gray tine image with a size of 4 x 4 pixels (figure 7.3). 

 

 (a)                                                                                   (b)  

Figure 6.3: Matrix 4 x 4 pixels. (a) Shows an image with 3 quantized gray tones and (b) 

illustrates the corresponding pixel values of the image. 

From the image above, GLCM matrix can be obtained as follows. 

 

 

 

 

 

                                                                                      

                                                                                       

 

 

                 

                         

 Figure 6.4. GLCM computation. (a) Initial image, (b) GLCM computation and (c) 

Normalized GLCM 

    

    

     

    

0 2 1 0 

2 1 3 0 

3 0 1 2 

0 2 2 1 

   n/bor 

ref 0 1 2 3 

0 0 1 1 0 

1 1 0 1 1 

2 0 2 0 0 

3 2 0 0 0 

0 2 1 0 

2 1 3 0 

3 0 1 2 

0 2 2 1 

0 0.111 0.111 0 

0.111 0 0.111 0.111 

0 0.222 0 0 

0.222 0 0 0 

(a) (b) 

(c) 
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The dimensions of GLCM depend on the number of gray level of the initial image. In the 

example above, four gray levels are shown in the image, hence, the dimensions of GLCM 

will be 4 x 4 as shown in the figure 6.4b. The top row and the column at the far left of the 

figure 7.4b illustrates the quantized gray levels of the initial image. In this example, δ = 1 

and θ = 0o are chosen for the computation of GLCM. The number 2 in figure 7.4b 

represents the frequency of the pixel pair values 2 and 1in the initial image. Finally, the 

GLCM matrix should be normalized (figure 6.4c) by dividing each value of  𝑃𝑖𝑗 with the 

total gray level values in the GLCM matrix. As it was mentioned above, fourteen texture 

features have been developed to describe the properties of an image, but only the most 

important ones that are used for classifying remotely sensed data will be mentioned in this 

study. These texture features are described below. 

1. Mean 

∑ 𝑖(𝑃𝑖,𝑗)

𝐺

𝐼,𝐽=1

 7.3 

 

The GLCM mean refers to how many times the reference pixel value occurs in 

combination with the neighbor pixel. The GLCM mean feature is considered one of the 

best features for discriminating different sea ice types. 

2. Variance 

∑ 𝑃𝑖,𝑗(𝑖 −  μ𝑖)
2

𝐺

𝑖,𝑗=0

 

7.4 

 

Variance is a measure of the dispersion of the values around the mean of combinations of 

reference and neighbor pixels (Patrola 2013). GLCM variance is strongly correlated to the 

first order statistics.  This statistic is a measure of heterogeneity and increases when the 

quantized gray level values differ from the mean. 
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3. Correlation  

∑
(i −  μ𝒊)(j −  μ𝒋  ) P𝒊𝒋

√σ𝑖
2 σ𝑗

2

𝑮

𝒊,𝒋=𝟎

  7.5 

 

Correlation expresses linear dependency between the gray tones within the image 

(Haralick and Shanmugam 1973).  High values (close to 1) indicate a linear dependency 

between the brightness levels of pixels in the computation window and can be obtained 

for similar gray level regions (Zakhvatkina et.al 2016).  Hence, the correlation increases 

when there are uniform surface on the image such as smooth first year ice.  

4. Angular Second Moment (ASM) 

∑ (𝑃𝑖𝑗)2

𝐺

𝑖,𝑗=0

 
   

7.6 

 

ASM increases when there are uniform surfaces in the SAR image. When features in the 

image have similar gray level values, then energy increases. On the other hand, ASM 

decreases when there is a lot variation in a SAR image. For instance, for non-structured 

areas such as calm waters, energy receives high values (close to 1). 

 

5. Energy      

Energy = √𝐴𝑆𝑀 7.7 

 

Energy behaves the same as ASM. In uniform areas, ASM produces high values and low 

values for areas with a lot of variation      
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6. Entropy 

∑ 𝑃𝑖𝑗  (𝑙𝑜𝑔𝑃𝑖𝑗)

𝐺

𝑖𝑗=0

  7.8 

 

Entropy measures the disorder in an image and assigns high values to the pixels with 

random gray tones. The entropy increases with low variability in the computation area of 

radar image and indicates a random mixture of scattering mechanisms (Zakhvatkina et.al 

2016). Hence, high values in a SAR image could indicate sea ice deformation or ice edge 

which create strong reflections. Inhomogeneous areas will also produce enhanced values, 

due to intensity differences in the mixture components, even when the radar reflections 

are not strong (Zakhvatkina et.al 2016). 

 

7. Contrast 

∑ 𝑃𝑖𝑗  (𝑖 − 𝑗)2

𝐺

𝑖𝑗=0

 7.9 

 

Contrast is a measure of local variation in the SAR image (a number of pixels pairs have 

different brightness values). If the SAR image has more heterogeneous texture character 

and if there is a large amount of brightness variations, contrast has higher significance that 

makes objects distinguishable (Zakhvatkina et.al 2016). In case of SAR image, the border 

between a sea ice floe and open water has the highest values.  

 

8. Dissimilarity 

∑ 𝑃𝑖𝑗  (𝑖 − 𝑗)

𝐺

𝑖𝑗=0

 7.10 
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Dissimilarity measures the difference between pixel pairs in the image and assigns high 

values to features with high contrast. Hence, dissimilarity and contrast texture features are 

strongly correlated. 

9.  Homogeneity  

∑
𝑃𝑖𝑗 

1 + (𝑖 − 𝑗)2
 

𝐺

𝑖𝑗=0

 7.11 

 

Homogeneity is a measure of uniformity and assigns high values to the areas with the 

lowest contrast. Calm waters or young ice have high values due to their homogenous 

surface. 

The results of GLCM matrix depends on a few factors such as Gray level values (G), 

window size, orientation (θ) and the distance (δ). In order to achieve good classification 

results, experimentation with the aforementioned parameters should be carried out in order 

to choose the most appropriate values.  

 

 

 

 

 

 

 

 

 



73 

 

7 Supervised classification 

 

7.1 Introduction 

For classifying a SAR image, a classifier is needed where associates each pixel of the 

image with a class (this class can be labeled as Multi-year ice, young ice, water, etc.). The 

classification methods can be categorized in un-supervised and supervised. In the 

literature, there are numerous studies conducted using both supervised and unsupervised 

techniques for sea ice classification. 

In terms of unsupervised classification method, the computer learn how to perform the 

classification without prior knowledge or inputs from the user. The algorithm tries to 

group all pixels in the image with similar spectral values (standard deviation, mean) into 

unique clusters. ISODATA and K-means clustering are some of the widely used 

techniques for un-supervised classification. This classification methods usually produces 

poor results due to the lack of information about the area in which the classification will 

be performed. Without prior knowledge about the scene, the algorithm has to decide how 

to assign the pixels of the image into different classes. The un-supervised method is time 

consuming and is insensitive to the variations of the spectral signatures of different 

features. For instance, if two or more features have similar spectral signature then the 

probability of pixel miss-classification is high. 

On the other hand, supervised classification is the most common method in classification 

problems because it is more accurate than the unsupervised method but it heavily depends 

on training data. The user defines the number of classes that will be used and is responsible 

for specifying the pixel values of the image that should be associated with each class. 

Supervised classifiers such as maximum likelihood classifier, minimum distance 

classification and Neural Networks have been extensively studied in sea ice classification. 

The maximum likelihood classifier has been the most popular method of classification in 

remote sensing (Japan Association of Remote Sensing 1999). In order for this method to 

work, sufficient number of ground truth data is required. Also, the inverse matrix of the 
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variance-covariance matrix becomes unstable in the case where there is a high correlation 

between two bands (Japan Association of Remote Sensing 1999). Finally, if the 

distribution of population does not follow a normal distribution, the maximum likelihood 

method cannot be applied (Japan Association of Remote Sensing 1999). 

Minimum distance classifier is a simple method and faster than the maximum likelihood. 

Due to the fact that it does not use covariance data, it is not as flexible and cannot be used 

to model complex data. 

Neural Networks (NN) has been a very popular technique (the last two decades) for sea 

ice classification in SAR images. This classification technique outperforms the other 

classification methods described above. It has proven to be useful in the past but is slowly 

losing popularity and is showing a trend of being taken over by the Support Vector 

Machine (SVM) (Satyanarayana and Anuradha 2013).  

 

7.2 Supervised learning  

In order to perform supervised learning, we need to provide the algorithm with some 

labeled data (training data) and tune its parameters so that it works well for unseen 

datasets. The first step in supervised classification is the collection of the training samples. 

Say for example, we need to perform a supervised classification for identifying different 

sea ice types. In order to construct the training samples, we need to collect a number of 

samples for each sea ice type shown in the image. These samples are just blocks of pixels. 

In order for the algorithm to perform well, a good set of features is required. One feature 

that we could use is the intensity values of the pixels. It is important to provide the 

algorithm with a good set of features for better performance.  

We may have n models and we want to select the one that performs best through training 

and validation process. The performance of the model is evaluated on different dataset 

(data that has not seen before). Hence, supervised learning can be divided into training, 

testing and validation algorithms. 
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 The concept of training, validating and testing the classifier 

First of all, the classifier should be trained first before making predictions. In the training 

process, the algorithm chooses the best parameters using labeled datasets. These labeled 

datasets are called training data. What we are interested in is the performance of the model 

on the new data and not the performance on the old data (where the training process takes 

place).In order to predict the performance of a classifier on new data, we need to assess 

its error rate on a dataset that played no part in the formation of the classifier (Witten et.al 

2016). This dataset is called the test data. We assume that both the training and test data 

are representative samples of the underlying problem (Witten et.al 2016). 

Secondly, after the training process is completed, we use validation data for tuning the 

parameters of the model to perform better in unseen data and to avoid overfitting. 

Finally, test data are provided to the classifier to do the final classification and evaluate 

its performance. One important parameter is that the test data has not been used to train 

the classifier.  

 

 

7.3 Support Vector Machine classifier 

In this chapter, the support vector machine (SVM) classifier will be discussed. SVM is a 

supervised classifier and it was developed in 1990s. Since then, it has grown rapidly in 

popularity since high resolution satellite data was available. The use of high quality data 

for a classification problem is very important in order to appreciate the effectiveness of a 

supervised classifier. SVM is the newer trend in machine learning algorithm which is 

popular in many pattern recognition problems in recent years, including texture 

classification (Satyanarayana and Anuradha 2013). SVM is considered one of the most 

powerful classifier which have shown to outperform well established classification 

methods such as NN and has slowly evolved into one of the most important main stream 

classifier (Satyanarayana and Anuradha 2013). Due to its popularity as a classification 
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methods, it has recently been applied to SAR image for sea ice classification producing 

very good results.  

The SVM classifier was first developed for binary classification and it was extended to 

support more than two classes. We can divide the SVM into linear and non-linear models. 

If data can be divided linearly be using a straight line then this called a linear classification. 

On the other hand, if data cannot be divided with a straight line then more complex models 

can be used (non-linear models). In this case we perform a classification using non-linear 

model. 

In this chapter we will introduce to SVM binary classification, the maximal margin 

classifier and its extension to a multi-class classification.  

 

 Classification using a separating hyperplane 

In this chapter, we will introduce the concept of the optimal separating hyperplane. In a p 

dimensional space, a hyperplane is a flat affine subspace of dimension p – 11(James et.al 

2013). If the data is in two dimensions then the dimensions of the hyperplane is one (a 

line). Hence, in three dimensions, the hyperplane is a two dimensional subspace.  

The mathematical definition of a hyperplane in two dimensions is given below. 

β0 +  β1𝑋1 +  β2𝑋2 = 0 

 

7.1 

for parameters β0, β1 𝑎𝑛𝑑 β2. If a point X = (𝑋1 , 𝑋2)𝑇 on the hyperplane satisfies (8.1), 

the X lies on the hyperplane. Equation 7.1 can be extended into p dimensions as follows. 

β0 +  β1𝑋1 +  β2𝑋2  +…..+ β𝑝𝑋𝑝= 0 

 

7.2 

Now, consider the case where X does not satisfy (7.2); rather 

β0 +  β1𝑋1 +  β2𝑋2  +…..+ β𝑝𝑋𝑝 >  0 

 

7.3 
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Then, the equation tells us that X lies on the one side of the hyperplane. Conversely, if 

β0 +  β1𝑋1 +  β2𝑋2  +…..+ β𝑝𝑋𝑝 <  0 , 

 

7.4 

then, X lies on the other side of the hyperplane.  

Another mathematical definition that describes the hyperplane that can be found in the 

literature is the following. 

y = 𝑤𝑇 · x + b, 

 

where, 

w is the weight vector 

x is the input vector 

b is the bias weight 

7.5 

  

Note that 𝑤𝑇 · x is the inner product. In other words, 𝑤𝑇 · x = ∑ 𝑤𝑖 𝑥𝑖1  

Hence, any point x where 𝑤𝑇 x + b > 0, it lies on the one side of the hyperplane. If any 

point x where 𝑤𝑇 x + b < 0, it lies on the other side of the hyperplane. 

 

Figure 7.0. A hyperplane. (A) Shows two classes to be classified and (B) shows the 

hyperplane separating the two classes (Harrington 2012) 

 

Now, consider the case where we have a matrix X that consists of a number of training 

observations (𝑥1……𝑥𝑛) in p dimensional space and these training observations fall into 
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two classes. Also, we have test data (𝑦1…….𝑦2) to be used for the classification. The goal 

is to construct a classifier based on the training data that will correctly classify the test 

observations. Figure 7.1 illustrates the classification of the test data. 

 

Figure 7.1. Classification of test observations. The separating hyperplane (𝑤𝑇 · x + b = 

0) divides the two datasets depending on the sign of 𝑤𝑇 · x + b (Ben-Hur and Weston 

2010). 

The test data shown in figure 7.2 has been classified according to the sign. If the sign is 

positive, then the point (x) is classified as blue and if the sign is negative, then the point 

(x) is classified as red. If point x is far from zero, then that means that x lies away from 

the hyperplane and we can be confident that this point has been classified correctly. 

Conversely, if point x is close to zero, that means that x lies close to the hyperplane, and 

we feel less confident about the assignment of x to a particular class. 

 

 Maximal margin classifier 

The Support Vector Machine (SVM) is a generalization of a simple an intuitive classifier 

called maximal margin classifier (James et.al 2013). Unfortunately, the maximal margine 

classifier cannot be applied on complex datasets as it requires the different classes be 

separable by a linear boundary. Due to of this limitation, an extension of maximal margin 
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classifier called support vector machine classifier which can accommodate non-linear 

class boundaries, it will be introduced in chapter 7.3.5. 

As we can see in figure 7.1, we can fit more than one hyperplane to separate the two 

classes. In fact, an infinite number of hyperplanes can be used to separate the two classes. 

Hence, the question which is raised is which of the infinite possible hyperplanes to use. 

A natural choice is the maximal margin hyperplane (also known as the optimal separating 

hyperplane), which is the separating hyperplane that is farthest from the training 

observations (James et.al 2013). Hence, we compute the distance from each point to a 

given hyperplane and the distance that is the smallest is known as the margin. The 

maximal margin hyperplane is the separating hyperplane for which the margin is largest 

– that is the hyperplane that has the farthest minimum distance to the training observations 

(James et.al 2013). Hence, each point can be classified on which side of the maximal 

margin hyperplane it lies. This is the maximal margin classfier. What we want is a 

classifier that has a large margin on both training and test dataset in order to correctly 

classify the test data. Training data is the data we have used to identify the separating 

hyperplane. The algorithm is trying to learn these data and evaluate its performance on 

the test data. 

Figure 7.2 illustrates the maximal margin hyperplane between the two classes. 

 

Figure 7.2. Maximal margin hyperplane. The circled points are the support vectors and 

they determine the margin between the two classes (Ben-Hur and Weston 2010). 
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It can be observed in figure 7.3 that there are two points inside the black circles either side 

of the hyperplane. These two points are knows as support vectors and they ‘support’ the 

maximal margin hyperplane in the sense that if these points were moved slightly then the 

maximal margin hyperplane would move as well (James et.al 2013). It can been seen that 

the maximal margin hyperplane depends on the support vectors and not on the other 

points. Hence, a movement of the other observations would not affect the hyperplane.  

We have described above the concept of maximal margin classifier and now we can 

describe it mathematically as shown below. 

M = 
1

2 |𝑤|
=   

1

2 √𝑤2
 

7.6 

 

Now, given a classification boundary (a vector w and a scalar b that defines the line 𝑤𝑇 · 

x + b) the margin M can be computed. So, what we want is to find those values for w and 

b that maximizes the margin M. Equation 8.6 tells us that in order to make the margin as 

large as possible, we need to make 𝑤2 as small as possible. This would be an easy problem 

if the minimization of 𝑤2  was the only constrain. We would set w = 0 and the problem 

would be solved. Apart from making w as small as possible, we also need a hyperplane 

that can separate the two classes and act as a classifier. Hence, two problems must be 

satisfied. Minimizing w and find a classification boundary that can classify well. This 

leads to the following constrain.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑤, 𝑏
                                 

1

2
 |𝑤|2 

Subject to 𝑦𝑖(𝑤𝑇  ·  x +  b) ≥ 1       𝑖 = 1 … . 𝑛                                       

 

 7.7 

 

7.8 

The constraint in this formulation ensure that the maximum margin classifier classifies 

each example correctly, which is possible since we assume that the data is linearly 



81 

 

separable (Ben-Hur and Weston 2010). The equation above is an optimization problem 

where its solution will give us the optimum margin classifier. 

 The non-separable case 

In the previous chapter we discussed the case where data can be linearly separated. 

However, most of the times, due to data complexity, no separating hyperplanes exist and 

hence, there is no maximal margin classifier. In this case, we cannot apply the optimization 

problem. An example of a non-separable case is shown in figure 7.3. 

 

Figure 7.3. Two classes are shown in blue and purple. In this case, these two classes 

cannot be separated using a linear boundary (James et.al 2013) 

 

In the next chapter we will see how we can develop a hyperplane that separates the two 

classes using soft margin. This is known as support vector classifier 

 

 Support Vector Classifier 

In figure 8.4 we can see that the observations are not separable by a hyperplane. If we 

tried to fit a linear boundary in those data, the misclassification error would be very large 

and we would be able to find a desirable hyperplane. The maximal margin hyperplane is 

extremely sensitive to a change in a single observation which suggests that it may have 
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overfit the training data (James et.al 2013). In this case, we can construct a hyperplane 

that does not perfectly separate the two classes in favor of performing better classification 

of most of the test data.  

The support vector classifier (soft margin) rather than seeking the largest possible margin 

so that every observation is not only on the correct side of the hyperplane but also on the 

correct side of the margin, we instead allow some observations to be on the incorrect side 

of the margin, or even on the incorrect side of the hyperplane (James et.al 2013). An 

example is shown in figure 7.4. 

 

Figure 7.4. On the left, support vector classifier separates the two classes. Points 3, 4, 5 

and 6 are on the correct side of the margin while the point 2 sits exactly on the margin 

and the point one is on the wrong side of the margin. For the blue points, the point 9 is 

on the margin and the point 8 is located on the wrong side of the margin. On the right, 

points 11 and 12 are on the wrong side of the margin and on the wrong side of the 

hyperplane (James et.al 2013). 

 

The support vector classifier can handle data that cannot be separated with a linear 

boundary by introducing a slack variable 𝜉𝑖 that relax the constraints in (8.7). 𝜉1…..𝜉𝑛, 

are called slack variables because they allow some points to be on the wrong side of the 

margin or the hyperplane. Hence, to allow errors, the equation (7.7) becomes 
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𝑦𝑖(𝑤𝑇  ·  x +  b) ≥ 1 − 𝜉𝑖         𝑖 = 1 … . 𝑛 7.9 

 

Where 𝜉1 ≥ 0 is the slack variable as we mentioned before. If 𝜉1 = 0, then the ith point is 

located on the correct side of the margin. If 𝜉1 > 0, then the ith point is on the wrong side 

of the margin and this means that this point has violated the margin. On the other 

hand,𝜉1 > 1 then the point is on the wrong side of the hyperplane. Now, the optimization 

problem becomes 

 

                                 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒
𝑤,𝑏

                                
1

2
 |𝑤|2 + C ∑ 𝜉𝑖

𝑛
𝑖=1                     7.10 

                            Subject to 𝑦𝑖(𝑤𝑇  ·  x +  b) ≥ 1 − 𝜉𝑖 ,      𝜉𝑖 ≥ 0                             7.11 

           𝜉𝑖 > 0,          ∑ 𝜉𝑖
𝑛
𝑖=1 ≤ 𝐶                                                            7.12 

 

The constant C > 0 is a tuning hyperparameter that specifies the misclassification penalty 

and it can be tuned by the user. Hyperparameter C calculates the sum of 𝜉𝑖′𝑠 and it 

determines the number of points that violated the margin (and to the hyperplane). If C =0 

then there are no violations which means that 𝜉𝑖…….𝜉𝑛 =0. For C > 0 no more than C 

observations can be on the wrong side of the hyperplane, because of an observation is on 

the wrong side of the hyperplane then 𝜉𝑖 > 1, and (8.12) require that ∑ 𝜉𝑖
𝑛
𝑖=1 ≤ 𝐶  

(James et.al 2013). For large values of C, the margin narrows and we do not allow many 

violations. On the other hand, as C decreases, the margin widens and we allow more 

violations to the margin. The role of C parameter is illustrated in figure 7.5.  The 

hyperparameter C also controls the bias-variance trade off of our model (models with high 

bias are prone to errors and fail to capture the complexity of the data. Models with high 

variance tend to overfit the data and the model is unable correctly classify the 

observations). When a user chooses a large value for C, this means that the margin narrows 

and the classifier fits the data very well. This leads to a classifier which has low bias but 
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high variance. On the other hand, if a user chooses a small value for C, the margin widens 

and we allow more violations. Such a model does not fit the data very well so, it is more 

biased but may have lower variance.  

 

Figure 7.5. The effect of C value to the decision boundary. On the left, C value was 

increased to 100 resulting in a very narrow margin where only a few points violated the 

margin. On the right, the C value was decreased to 10 resulting in a wider margin with 

more violations (Ben-Hur and Weston 2010). 

 

 The support vector machine                                                         

Until now, we have discussed about data classification using a linear decision boundary. 

There are cases where linear boundary cannot be used to separate two classes because the 

data might be too complex. Hence, another way should be found to map the data 

complexity. Support Vector Machine (SVM) classifier is the solution to that. SVM is an 

extension of support vector classifier that results from enlarging the feature space using 

kernels in order to accommodate a non-linear boundary between two classes (James et.al 

2013).  
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Kernel parameters affect the decision boundary significantly. The degree of the 

polynomial kernel controls the flexibility of the classifier. The linear kernel, as we can see 

in figure 7.6 is not sufficient for separating the two classes. As the polynomial degree 

increases, the flexibility of the decision boundary increases which allows the 

discrimination of the two classes. 

 

Figure 7.6.  How the polynomial degree affects the decision boundary. The higher the 

polynomial degree, the more flexible the decision boundary is going to be (Ben-Hur and 

Weston 2010). 

 

There are four kernels we can choose from for classifying the data. These kernels are, 

linear kernel, polynomial kernel, Radial Basis Function (RBF) kernel and sigmoid kernel. 

A question that is posed is which of these kernel a user should choose to classify the data. 

An experimentation with different kernels should be conducted first before deciding 

which kernel to use. Users can try a linear kernel first and then the model can be improved 

by using a non-linear kernel. The mathematic description of kernels is given below. 

 

 Linear kernel 

K(𝑥𝑖 𝑥𝑗) = 𝑥𝑖
𝑇 𝑥𝑗 

 

7.13 
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K is some function which is referred to as kernel. Linear kernel is the simplest model that 

can be used by SVM but it fails when the data are not linearly separable.  

 

 Polynomial kernel  

 

K(𝑥𝑖 𝑥𝑗) = (γ𝑥𝑖
𝑇 𝑥𝑗 + 𝑟)𝑑 , γ > 0 

 

7.14 

This is a polynomial kernel of degree d, where d is an integer number. By using a kernel 

with d > 1, this leads to an algorithm with more flexible decision boundary.  

 

 Sigmoid kernel 

K(𝑥𝑖 𝑥𝑗) = tanh(γ𝑥𝑖
𝑇 𝑥𝑗 + r) 7.15 

 

The sigmoid kernel is very popular because it comes from Neural Network. It is interesting 

to note that an SVM model using a sigmoid kernel function is equivalent to a two layer 

perception Neural Network (Ahuja and Yadav). 

 

 Radial Basis Function (RBF) 

 

K(𝑥𝑖 𝑥𝑗) = exp( –γ‖𝑥𝑖 −  𝑥𝑗‖
2
 ),  γ > 0 7.16 

 

RBF is another popular kernel that is used for classifying complex dataset (figure 7.7 

illustrates how RBF kernel works). The RBF kernel works as follows. Given some test 

data 𝑥∗ = (𝑥1
∗…….𝑥𝑝

∗) and some training data x = (𝑥1….....𝑥𝑝), if 𝑥∗ is far from a training 

point x (in terms of Euclidian distance) then |𝑥𝑖 −  𝑥𝑗|
2
 will be large and K(𝑥𝑖 𝑥𝑗) = 
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exp( –γ‖𝑥𝑖 −  𝑥𝑗‖
2

 ) will be very small. In other words, if a training observation 𝑥𝑖 is 

far away from a test observation 𝑥∗, it will play no role in predicting the class label for 𝑥∗. 

Note that all the kernels above apart from the linear kernel have the parameters r and γ. 

These parameters can be used to tune the model during the training phase for higher 

performance. The hyperparameter γ is critical for the performance of the model.  The γ 

parameter defines the influence that each observations has. When γ value increases, the 

locality of the support vector expansion increases, leading to greater curvature of the 

decision boundary (Ben-Hur and Weston 2010). If this value is too high then the model 

will overfit the data. 

 

 

Figure 7.7. On the left, a 3rd degree polynomial kernel is illustrated. On the right, an 

RBF kernel has been applied (James et.al 2013) 

 

 

 

 

 



88 

 

 Multi-class SVM 

SVM classifier was originally developed for binary classification (k=2). However, real 

world data is more complex and requires the separation for more than 2 classes. Hence, as 

an extension to the binary classification, two methods for multi-class SVM have been 

developed. These methods are one-against-one and one-against-all. A potential problem 

with one-against-all is that when the number of classes is large, each binary classification 

becomes highly unbalanced (Xue and Wang 2014). The unbalanced classification problem 

can occur when the number of samples of some classes is much higher than other classes. 

In this case, most of the classifiers ignore the classes with a small number of samples and 

focus on the classes with the high number of samples. SVM can be more accurate on 

unbalanced data since only the support vectors (observations located on the margin) are 

used for classification while observations far from the hyperplane do not play a role. 

Below, the mathematical explanation for the two approaches of multi-class problem is 

given. 

 One versus all 

One versus all is the earliest method that has been used for SVM multi-class classification 

problems. This method constructs k binary classifiers (k is the number of classes) for k 

classes. The m-th binary classifier is trained using the data from the m-th classas positive 

examples and the remaining k-1 classes as negative results and the class label is 

determined by the binary classifier that gives maximum output value (Xue and Wang 

2014) .Given some training data (𝑥𝑖, 𝑦𝑖 , ……,(𝑥𝑛, 𝑦𝑛), where 𝑖 = 1…….n and the classes 

for each 𝑥𝑖, we need to solve the following problem.  

                        
𝑚𝑖𝑛

𝑤,𝑏,𝜉
              

1

2
 (𝑤𝑚)𝑇 𝑤𝑚 + C ∑ 𝜉𝑖

𝑚𝑙
𝑖=1  

                         (𝑤𝑚)𝑇 Φ(𝑥𝑖) + 𝑏𝑚 ≥  1 - 𝜉𝑖
𝑚 , if 𝑦𝑖 = m, 

                      (𝑤𝑚)𝑇 Φ(𝑥𝑖) + ≤  - 1 + 𝜉𝑖
𝑚 , if 𝑦𝑖 ≠ m, 

                                            𝜉𝑖
𝑚 ≥ 0 ,  i=1,……,l 

 

7.17 
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C parameter, as we have seen in previous chapters is the penalty parameter and Φ denotes 

the higher dimensional space. 
1

2
 (𝑤𝑚)𝑇 , means that we want to maximize 

2

‖𝑤𝑚‖
 which is 

the margin between the classes. There is a penalty term C ∑ 𝜉𝑖
𝑚𝑙

𝑖=1  for the data that are not 

linearly separable which reduces the training errors. What we are looking for is a balance 

between 
1

2
 (𝑤𝑚)𝑇 𝑤𝑚  and the training errors.  

 One versus one 

One versus one is another method for multi-class classification for SVM. It evaluates all 

possible pairwise classifiers and thus induces k(k-1)/2 individual binary classifiers (Xue 

and Wang 2014). Each classifier is applied to test observations and gives one vote to the 

winning class. A test observation is assigned to a class with the highest number of votes. 

This problem can be solved as follows. 

 

               
𝑚𝑖𝑛

𝑤𝑖𝑗, 𝑏𝑖𝑗,   𝜉𝑖𝑗              
1

2
 (𝑤𝑖𝑗)𝑇 𝑤𝑖𝑗 + C ∑ 𝜉𝑖

𝑖𝑗𝑙
𝑖=1  

                         (𝑤𝑖𝑗)𝑇 Φ(𝑥𝑖) + 𝑏𝑖𝑗 ≥  1 - 𝜉𝑖
𝑖𝑗

 , if 𝑦𝑖 = i, 

                      (𝑤𝑖𝑗)𝑇 Φ(𝑥𝑖) + ≤  - 1 + 𝜉𝑖
𝑖𝑗

 , if 𝑦𝑖 =j, 

                                              𝜉𝑖
𝑖𝑗

≥ 0  

 

7.18 

The approach with voting described above is all called ‘max wins’ strategy. The only issue 

with this method is when there is a case where two classes might have identical votes, in 

this case, ‘max wins’ strategy might not work well in classifying the two classes. 
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8 Results and discussion 

8.1 SAR data pre-processing 

In this chapter, the pre-processing of SAR images are illustrated. All pre-processing steps 

were performed on SNAP toolbox 

 Noise floor reduction  

The Extra Wide Swath (EW) SAR data are contaminated with noise which appears as 

bright stripes along the SAR image. Thermal noise suppression has not been applied to 

SENTINEL-1 data, hence, noise reduction is crucial for better discrimination of sea ice 

types. Image de-noising has been applied to both SAR scenes as shown below.  

 

 

 

 

 

 

 

Figure 8.0: SAR cross-polarized images captured in February 23 of 2016. On the left image, the 

presence of thermal noise is obvious. On the right, the bright stripe is no longer there after the 

thermal noise correction. The graph shows the intensity values before and after the thermal noise 

reduction 
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Figure 8.1: SAR co-polarized images captured in February 23 of 2016. On the left, the 

SAR image before thermal noise correction is shown. On the right, the de-noised image 

is depicted. As it can be noticed, the HH polarization is not affected by thermal noise. 

The graph shows the intensity values before and after the thermal correction where they 

overlap. 
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Figure 8.2: SAR cross-polarized images captured in May 29 of 2016. On the left, the 

presence of thermal noise is illustrated. On the right, the de-noised image is shown. On 

the bottom, the graph shows the intensity values before and after the thermal correction 
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Figure 8.3: SAR co-polarized images captured in May 29 of 2016. On the left, the 

presence of thermal noise is illustrated, while on the right we have the de-noised image 

is. The values of the image before thermal noise correction and the values of de-noised 

image overlap. This is because HH polarization channel is not affected by thermal noise. 

On the bottom, the graph shows the intensity values before and after the thermal 

correction 
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The presence of noise (no signal is returned to the sensor) on the cross-polarized images 

is obvious in both datasets. After thermal noise reduction, the bright stripe has been 

removed improving the image quality. For the SAR scene acquired in May 2016, we 

notice that after image de-noising some residuals were left in the SAR image. The reason 

for this is that this SAR scene is severely affected by thermal noise due to the extremely 

low backscatter energy (<29 dB). 

Apart from visual inspection, graphs have also been created (taking a cross section along 

the image) showing the different before and after thermal noise reduction. The plotted 

black line shows the intensity values before thermal correction was applied and the line in 

blue shows the intensity values of the image after thermal noise correction was applied. It 

can be clearly seen the drop of the intensity values (blue line) after the thermal noise was 

removed. 

On the other hand, the SAR images in co-polarization channel has not been affected by 

the thermal noise. This is due to the fact that the backscatter energy in HH polarization 

channel is much higher than that in HV polarization channel. The graphs produced for the 

images in HH polarization channel confirm that thermal noise is not present as both plotted 

lines overlap. We can see that the black line (before thermal noise correction) overlaps 

with the blue line (after thermal noise correction). 

 

 Radiometrically calibrated SAR images 

Before proceeding to post-processing of SAR data, calibration should be performed to 

convert the DN values into physical units (dB). Calibration performed for both datasets 

using the SNAP tool.  

Below, in figure 8.4 and figure 8.5 the radiometrically calibrated SAR datasets are 

presented. 
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Figure 8.4: Image calibration in both polarization channels has been performed for the 

data captured in 23 of February in 2016. On the top, calibration has been performed in 

HV polarization channel and on the bottom in HH polarization. 
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Figure 8.5: Image calibration in both polarization channels has been performed for the 

data captured in 25 of May in 2016. On the top, calibration has been performed in HV 

polarization channel and on the bottom in HH polarization. 
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The units of radiometrically calibrated SAR images are expressed in decibels (dB). Sigma 

nought (σ0) describes the strength of the backscatter radar signal after interacting with the 

sea ice. The higher the dB values the brighter the SAR image, the lower the dB values, 

the darker the SAR image.  

The backscatter coefficient for the dataset of February in 2016 range from -25 to 2 dB for 

HH polarization and from -35 to -1 for HV polarization. Low dB values correspond to 

areas where calm waters or young ice is present. Due to their smooth surface, they cause 

a specular reflection to the radar signal and only a small proportion of the energy reaches 

the sensor. On the other hand, high dB values can be attributed to rough surfaces such as 

old ice and rough FYI. The difference between HH and HV polarization channels in the 

two images is very obvious. The backscatter coefficient for HV polarization channel is 

lower than the backscatter coefficient in HH polarization channel. Very high dB values 

(up to 2dB) where the water is present can be observed in the HH image, while in HV 

image, the water has very low backscatter energy (close to -30dB).This is because HV 

polarization is not affected by the wind.  

For the datasets captured in May of 2016, the backscatter coefficient of HH channel range 

from -29 to -1 dB and from -36 to -1 for HV channel. High dB values in this dataset are 

produced by the big sea ice floes (old ice and FYI). Lower intensity values can be seen at 

calm waters and new ice. The residuals after the thermal noise reduction in HV 

polarization channel are obvious.  

 

 

 

 Normalization of the incidence angle for the SAR data 

The results of the linear regression analysis for normalizing the incidence angle can be 

viewed in figure 8.6. The pre-computed coefficients that were derived by regression 

analysis from incidence angle (200-490) were used for the normalization. For the selection 
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of the reference incidence angle, the most suitable option is the middle angle of the SAR 

image. Hence, the incidence angle was normalized to 300. We can see in the plots below 

that the incidence angle dependency on the backscatter energy is not present after 

incidence angle normalization. 

 

 

Figure 8.6. (a) EW SAR product 2016/02/23 and (b) normalization of incidence angle.  

(c) EW SAR product 2016/05/25 and (d) normalization of incidence angle 

 

 

 

 

(a) (b) 

(c) 
(d) 
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 Speckle noise suppression and comparison of different filters 

A number of filters with various window sizes (3x3, 5x5 and 7x7) were applied to 

SENTINEL-1 SAR images for minimizing the speckle noise. These filters are the Median 

filter, Boxcar filter, Frost filter, Lee filter and Lee sigma filter. The PyRadar (Herranz and 

Tita 2013) python package and SNAP toolbox were employed for speckle noise 

suppression. For evaluating the performance of the filters, the SAR images were 

segmented. The segmented images contains homogeneous areas and linear features. 

In order to evaluate the capability of those filters not only in reducing the speckle noise 

but preserving the image details and content, a number of quantitative performance 

measures were employed and visual inspection was performed. Figures 8.7 and 8.8 show 

the de-speckled images using different speckle noise suppression filters. 

 

8.1.4.1 Visual assessment 

 

 

Original SAR image 
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Figure 8.7. Filtered SENTINEL-1 images (February 2016) with various window sizes 
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Original SAR image 

 

 

Figure 8.8. Filtered SENTINEL-1 images (May 2016) with various window sizes 
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Overall, all speckle filters are capable of minimizing the speckle noise and preserve the 

edges. We can observe that by increasing the size of the window (from 3x3 to 7x7) for all 

filters, the noise is further reduced but it blurs the SAR image. Hence, this results in losing 

image details and valuable information.  

In figure 8.7, the Lee filter managed to preserve most of the image details but the noise 

suppression is inadequate. The noise (black and white) is still apparent in the de-speckled 

image. It can also be observed, in the center of the image subset, there is some information 

loss. The young ice is not clearly visible. In terms of Median filter, by taking a closer look 

at the dark area (water), we can observe that some gray speckles remained after noise 

suppression. Boxcar and Lee sigma performed the best amongst all the other filters. 

For the SAR scene of May 2016, we can also observe for the speckles of the Median filter 

left in the water. However, all de-speckle filters performed well in achieving a detail 

preserving effect. 

Before deciding which speckle filter should be used for this study, a quantitative 

assessment should be performed. By combining the visual inspection of the SAR images 

and the quantitative assessment, a more intuitive decision can be made. 

 

8.1.4.2 Quantitative assessment 

For the quantitative assessment, three performance measures including normalized mean 

(NM), standard deviation to mean (STM) and speckle suppression index (SSI) were 

computed.  

Normalized mean is used to examine the ability of the filter to preserve the mean of 

homogeneous areas (equation 8.1). 

𝑁𝑀 =  
𝑀𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑

𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙
 

 

8.1 
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Where 𝑀𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 is the mean of the de-speckled image and 𝑀𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 is the mean of the 

original image. The closer the normalized mean is to one, the better the filter’s ability to 

preserve the mean. 

Standard deviation to mean is used for determining the filter’s ability to suppress the 

speckle noise (equation 8.2). 

 

𝑆𝑇𝑀 =  
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
 

 

8.2 

 

For the equation, the standard deviation and the mean of the filtered image are used. Low 

STM values indicate a better noise suppression 

Another measure quantitative for assessing the performance of a filter in reducing the 

speckle noise is the speckle suppression index. The speckle suppression index is the 

coefficient of variance of the filtered image normalized by that of the original image, 

which is defined as (Qiu et.al 2004) 

 

𝑆𝑆𝐼 =  
√𝑉𝑎𝑟(𝑅𝑓)

𝑀𝑒𝑎𝑛(𝑅𝑓)
 
𝑀𝑒𝑎𝑛(𝑅𝑓)

√𝑉𝑎𝑟(𝑅𝑓)
 

 

8.3 

 

Where R is the original image and 𝑅𝑓 is the de-speckled image. A de-speckled image tend 

to have lower variance compared to the original image due to the noise suppression. 

Hence, SSI tends to be less than one. The lower the SSI value the better the noise 

suppression. Tables 8.1 and 8.2 illustrate the results. 
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Filters Pol. NM STM SSI 

Boxcar 3x3 
HH 

HV 

1.000 

1.000 

0.533 

0.640 

0.998 

1.000 

Boxcar 5x5 
HH 

HV 

1.000 

1.000 

0.493 

0.573 

0.995 

0.997 

Boxcar 7x7 
HH 

HV 

1.000 

1.000 

0.472 

0.537 

1.000 

0.992 

Frost 3x3 
HH 

HV 

0.999 

0.998 

0.534 

0.644 

1.000 

0.997 

Frost 5x5 
HH 

HV 

0.997 

0.995 

0.500 

0.589 

0.998 

0.994 

Frost 7x7 
HH 

HV 

0.996 

0.994 

0.484 

0.567 

1.000 

0.997 

Lee 3x3 
HH 

HV 

0.999 

0.999 

0.534 

0.641 

0.993 

0.999 

Lee 5x5 
HH 

HV 

0.997 

0.997 

0.497 

0.576 

0.996 

1.000 

Lee 7x7 
HH 

HV 

0.996 

0.996 

0.479 

0.544 

1.000 

1.000 

Lee Sigma 5x5 
HH 

HV 

1.000 

1.000 

0.508 

0.621 

0.998 

0.997        

Lee Sigma 7x7 
HH 

HV 

1.000 

1.000 

0.494 

0.599 

1.000 

0.998 

Median 3x3 
HH 

HV 

0.986 

0.969 

0.545 

0.650 

1.000 

1.000 

Median 5x5 
HH 

HV 

0.967 

0.940 

0.506 

0.579 

1.000 

1.000 

Median 7x7 
HH 

HV 

0.959 

0.925 

0.487 

0.546 

0.997 

1.000 

Table 8.1. Noise suppression and edge preservation characteristics of different filters for 

the dataset of February 2016 
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Filters Pol. NM STM SSI 

Boxcar 3x3 
HH 

HV 

0.999 

0.999 

0.682 

0.673 

0.997 

1.000 

Boxcar 5x5 
HH 

HV 

0.999 

0.999 

0.640    

0.611      

0.997 

1.000 

Boxcar 7x7 
HH 

HV 

0.999 

1.000 

0.615 

0.577 

0.997 

1.000 

Frost 3x3 
HH 

HV 

0.999 

0.997 

0.684 

0.677 

0.998 

1.000 

Frost 5x5 
HH 

HV 

0.996 

0.994 

0.647 

0.623 

0.997 

1.000 

Frost 7x7 
HH 

HV 

0.995 

0.993 

0.628 

0.597 

0.999 

0.996 

Lee 3x3 
HH 

HV 

0.999 

0.999 

0.683 

0.674 

1.000 

0.997 

Lee 5x5 
HH 

HV 

0.998 

0.998 

0.642 

0.613 

1.000 

0.997 

Lee 7x7 
HH 

HV 

0.997 

0.997 

0.619 

0.580 

0.999 

1.000 

Lee Sigma 5x5 
HH 

HV 

1.000 

1.000 

0.665 

0.649 

0.996 

0.998 

Lee Sigma 7x7 
HH 

HV 

1.000 

1.000 

0.648 

0.630     

1.000 

0.993 

Median 3x3 
HH 

HV 

0.980 

0.977 

0.694 

0.690 

0.999 

1.000 

Median 5x5 
HH 

HV 

0.961 

0.956 

0.652 

0.652 

1.000 

0.996 

Median 7x7 
HH 

HV 

0.950 

0.944 

0.629 

0.589 

1.000 

1.000 

Table 8.2. Noise suppression and edge preservation characteristics of different filters for 

the dataset of February 2016 
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When comparing the above filters (for both datasets) for their ability in noise suppression 

(STM and SSI) and preserving the mean of a homogeneous area, the following results can 

be observed.  

For the dataset in February 2016, Boxcar 5x5 and Lee sigma 7x7 filters have the lowest 

values of 0.493 and 0.494 respectively in STM quantitative measure highlighted in light 

gray color. Low STM value indicates a good performance in suppressing the noise. A 

good performance from Boxcar and Lee sigma filters observed for SSI measure achieving 

a value below 1. The worst performance on noise suppression was achieved by Frost 3x3 

with an STM score of 0.684. In terms of NM quantitative measure, Boxcar and Lee sigma 

scored the highest value of 1 indicating the ability of those filters to effectively preserve 

the mean in homogeneous areas.  

For the dataset in May 2016, Boxcar 5x5 and Lee sigma 7x7 achieved the best results 

scoring the lowest value in STM highlighted in light gray color. Also, in terms of SSI, 

Boxcar 7x7 and Lee sigma 5x5 have the lowest value among all filters indicating a better 

ability in suppressing the noise. Frost 3x3 had the worst performance amongst the all 

filters. In terms of NM, Boxcar and Lee sigma showed a great ability on preserving the 

mean achieving a score of 1. 

After assessing all the filters visually and quantitatively, this suggests that Boxcar filter 

5x5 and Lee sigma filter 5x5 performed the best. Both filters are capable of preserving the 

details of the image and sufficiently suppress the speckle noise. In this study, The Lee 

sigma filter was adopted as it has been widely used in suppressing the noise from SAR 

images.  
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8.2 GLCM interpretation results 

As we have seen in the chapter 6, four GLCM parameters (displacement, orientation, 

quantization levels and window size) are used for creating the GLCM matrix. In this study, 

the role of the window size and gray levels quantization are tested, while the orientation 

and displacement parameters are not discussed since it is accepted by many authors that a 

displacement value of 1 or 2 and an average of the four orientations (N, S, E, W) yield 

better results. Hence, for this research, a displacement value of 1 and the average of four 

orientations was used. Mahotas (Coelho 2013) python library employed for texture 

analysis. 

 

 The effect of window size in GLCM calculation 

The choice of the window size for GLCM calculation is of great importance. In order to 

achieve good class seperability on the SAR image, the appropriate window size should be 

chosen. All texture values were scaled to the same range (between 0 and 1) so that one 

texture measure will not dominate the other due to its greater range. Four window sizes 

(5x5, 7x7, 9x9 and 11x11) are tested and the Transformed Divergence (TD) distance is 

computed for two sea ice types. 

TD is a measure of class seperability and its values ranges between 0 and 1. A values close 

to 1 indicate that the two classes are perfectly separated and a value close to 0 indicates 

that the two classes overlap. The TD distance between two classes (c and d) is given by: 

 

𝑇𝐷 = 2(1 − exp (
𝐷𝑐𝑑

8
)) 

8.4 

 

𝐷𝑐𝑑 =  
1

2
 𝑡𝑟(𝑉𝑐 −  𝑉𝑑)(𝑉𝑐

−1 − 𝑉𝑑
−1)

+
1

2
𝑡𝑟((𝑉𝑐

−1 −  𝑉𝑑
−1)(𝑀𝑐 −  𝑀𝑑)(𝑀𝑐 −  𝑀𝑑

𝑇)) 

8.5 
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Where: 

𝑉𝑐, 𝑉𝑑 = Covariance matrix of classes c and d 

𝑀𝑐, 𝑀𝑑 = Mean values of classes c and d 

tr = trace function 

T = transpose 

 

Figures 8.9 and 8.10 show the effect of window size in class seperability is illustrated. 

 

 

 

 

 

 

 

 

Figure 8.9. Seperability between rough waters and sea ice of various window sizes for 

the SAR image of February 2016 
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Figure 8.10. Seperability between new ice and first year ice of various window sizes for 

the SAR image of May 2016 

 

By looking at both graphs, we see that the class seperability increases linearly with 

increasing the window size. The figure 8.9 shows two classes, rough waters and young 

ice. Normally, water can be easily be discriminated from sea ice due to it specular 

reflection while the backscatter from sea ice is stronger. When rough waters are present 

due to strong winds, its discrimination from sea ice is more challenging due to their similar 

backscatter coefficient. On the graph, it can be observed that by increasing the window 

size, the discrimination between the two classes improves where it reaches the value of 2 

(complete separation) when a window size of 11x11 is selected. 
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In figure 8.10, first year ice and new ice are present. Using a window size 5x5, the 

seperability value for the two classes is 1.66. We can observe a linear increase on the 

seperability value when the window size increases reaching a maximum value of 1.85 for 

window size 11x11. 

Hence, in this study, the 11x11 window size is adopted for calculating the GLCM matrix. 

 

 The effect of various grey level quantizations in the GLCM computation 

In order to investigate the effect of grey level quantization in separating different sea ice 

classes, the SAR images have been reduced to 8, 32 and 64 levels. Smaller grey level 

values accelerate the computation of the GLCM matrix and reduce noise, but on the other 

hand, there is an information loss. It is expected that, a small number of quantization levels 

would reduce the classification accuracy and class seperability while a higher number of 

quantization levels is expected to improve both sperability and classification accuracy. 

The goal of experimenting with various grey levels is to find the optimum quantization 

which produces the best separation between classes. In order to assess the effectiveness 

of the various grey levels, a spatial subset of both datasets (900 x 600 pixels) was 

segmented consisted of sea ice floes and linear features.  

The results of the texture analysis using different quantization levels are described below.  
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Figure 8.11. Texture measures (HH polarization) in various quantization levels for the 

SAR image of February 2016 
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Figure 8.12. Texture measures (HV polarization) in various quantization levels for the 

SAR image of February 2016 

 

Figure 8.11 shows the texture statistics that were calculated in HH polarization channel. 

ASM, homogeneity and energy produce almost identical results. These three measures 

express uniformity. Pixels with the same range of brightness levels appear smooth and 

high values are assigned to them. It can be observed that ASM, homogeneity and energy 

performed equally well in all three quantization levels. The leads (located on the left of 

the SAR image) have been successfully identified in the image with 8, 32 and 64 

quantization levels. The open area in the center of the images is consisted of new ice and 

open water which failed to be identified (in all three texture measures) in the image with 
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8 grey levels, while the image of 64 grey levels contain more information and the two 

classes start to appear.    

Contrast a dissimilarity are very similar. These measures show the local variation present 

in the image. In both coarse and higher quantization it is difficult to discriminate all three 

sea ice types present in the SAR image. Dissimilarity produces slightly better results than 

contrast as it successfully identify the leads. On the other hand, leads cannot be clearly 

identified in contrast.  

The correlation measure has a strong increase in class separation with increasing 

quantization.  

The last three texture measures (GLCM mean, GLCM variance and entropy) show an 

increase in classification accuracy with increasing quantization. Entropy and GLCM mean 

produce slightly better results in 64 grey levels compared to GLCM variance. Variance 

failed to identify the new ice class in the image. Surprisingly, better results achieved for 

variance in 32 grey levels.  

Overall, all the texture measures presented above are capable of discriminating sea ice 

types. However, some features are statistically more significant than others. For example, 

ASM, energy and homogeneity are very similar measures with ASM to produce slightly 

better results. Also, contrast and dissimilarity are not the strongest candidates for class 

seperability compared to other texture measures. 

In the figure 8.12, texture statistics for the HV polarization channel are shown. It can be 

clearly seen that the texture information of all measures have been completely lost in 8 

quantization levels. The results in HV is compressed. In order to achieve a good class 

seperability in HV polarization, much higher quantization is needed. It is obvious that 

there is a very strong correlation between classification accuracy and grey levels. The 

discrimination of the sea ice classes increases with the increase of quantization.   

In figure 8.13 and 8.14, the texture measures for the dataset of May 2016 are presented. 
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Original subset in HH polarization 
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Figure 8.13. Texture measures (HH polarization) in various quantization levels for the 

SAR image of May 2016 
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Figure 8.14. Texture measures (HV polarization) in various quantization levels for the 

SAR image of May 2016 

 

In figure 8.13, the SAR images consisted of FYI floes, new ice and water. It can be 

observed that for ASM, energy and homogeneity, the increase of grey levels does not play 

a huge role in discriminating the different sea ice types. One would expect an image of 8 

grey level value to perform much worse compared to the same image of 64 grey level 

values due to its much less dynamic range of values. We can see that uniform areas (water 

on the right of the image) have high values while less uniform areas (FYI) shown in darker 

color. Slightly better results (in terms of class seperability) can be observed in the SAR 

image with 64 quantization.  

For dissimilarity and contrast, both texture measures have successfully captured the sea 

ice floes due to the high contrast between ice floes and new ice. The results are impressive 

even for image with the 8 quantization levels. 

In correlation measure, we have very high values for the ice floes (which shows a linear 

relationship between the brightness levels of pixels in the radar image) which can be easily 

discriminated from the other sea ice types. We cannot observe a better performance in 

class seperability with increasing quantization.  

The GLCM mean and GLCM variance can perfectly discriminate all sea ice types present 

in the image. These two statistics performed equally well in 8, 32 and 64 quantization 

levels and no major differences can be observed.  
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On the other hand, entropy, surprisingly performed better in 8 rather than in 64 grey levels. 

Hence, it is noticeable that 8 grey levels are sufficient to give information on sea ice types. 

The image in 64 levels is more difficult to interpret due to the higher noise introduced by 

the higher number of quantization levels.  

In general, no big difference in sea ice discrimination can be observed for 8, 32 and 64 

quantization levels. We have seen than an image of 64 grey levels might provide more 

information in terms of the image content, but it is not significantly different from an 

image of 32 or 8 grey levels.  

On the other hand, texture statistics in HV polarization channel can be seen in figure 8.14. 

In 8 grey levels no information is retained and the image interpretation is impossible. 

Hence, there is a very strong correction between class seperability and increasing grey 

levels. Despite the fact the information in 64 quantization is much richer, still, the 

interpretation of the images is difficult. 

After examining the texture statistics in different quantization levels, we can conclude that 

64 grey levels contain more information in both HH and HV polarization which makes 

the interpretation easier and more accurate. Hence, in this study, quantization level of 64 

was used for the calculation of GLCM matrix, 
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8.3 Classification training procedure 

The training procedure of the SVM model was applied to both images. In this procedure, 

a set of data is selected from the SAR image into predefined classes (e.g. various sea ice 

types) and used to train the model in order to make accurate predictions. The two SAR 

scenes contain five sea ice classes and the only difference between the two scenes is that 

the image acquired in May of 2016 contains sea ice deformation to a greater extent. 

 The sea ice types for the first scene (2016-02-23) consists of, a) FYI, b) young ice, c) old 

ice, d) rough water and d) calm water. The selection of the training data was performed 

carefully through visual analysis of the SAR images and using previous classification 

results derived by Danish Meteorological Institute and Norwegian Sea Ice Service. The 

table 8.3 shows the number of the training data used for each sea ice class. 

Type of the Sea Ice Number of training data (pixels) 

First Year Ice 10165 

Young Ice 7972158 

Old Ice 171607 

Rough water 152356 

Calm water 7381 

Total 831367 

Table 8.3: Number of training data for each sea ice type for the scene of February 23 of 

2016 

 

The two scenes were projected to polar stereographic map projection and the land was 

masked. This projection is mainly used for areas located at high latitudes. The polar 

stereographic projections is characterized as conformal which means that the shape of the 

features are accurately represented on the map. 

The training data collected are shown in figures 8.15. Figure 8.16 shows the scatter plot 

produced for different ice types. 
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Figure 8.15: SAR image acquisition in February 23 of 2016 with training data. a) SAR 

image and b) SAR image with the training data overlaid 

 

Figure 8.16. Scatter plot of sea ice types for the datasets of February 23 of 2016  
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The labeled dataset in figure 8.15 are distributed along the image after a careful 

examination of the different sea ice types contained in the scene. In the scatter plot, we 

can see the backscatter coefficient of each ice type. FYI, young ice and calm water are 

well separated, while there is some overlap between old ice and rough water. Due to the 

strong winds, waves formed in the sea produce a strong backscatter similar to that of the 

old ice. 

The same training procedure and training data collection has been applied for the second 

scene captured in 2016-05-25 which is shown below. This scene consists of the following 

sea ice types, a) smooth FYI, b) rough FYI, c) young ice, d) old ice, e) rough water and f) 

calm water. Below, we can see the labeled datasets selected and the amount of training 

data which as shown in the table 8.4 

  

Figure 8.17: SAR image acquisition in May 25 2016 with training data. a) SAR image 

and b) SAR image with the training data overlaid 
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Type of the Sea Ice Number of training data (pixels) 

Rough First Year Ice 612207 

Smooth First Year Ice 22112 

Young Ice 151414 

Old Ice 1765776 

Rough water 301898 

Calm water 301898 

Total 4245131 

Table 8.4: Number of training data for each sea ice type for the scene of May 25 of 2016 

 

 

 

Figure 8.18. Scatter plot of sea ice types for the datasets of May 25 of 2016  
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For the dataset of May 2016, we can see that FYI contains two subclasses, a) rough FYI 

and b) smooth FYI. Due to the sea ice deformation occurred in the scene, FYI was broken 

down into pieces. These ice blokes have been piled up forming a rough surface. It is 

obvious from the figure 8.18 that young ice, old ice and calm water are perfectly separable. 

The confusion occurs between rough and smooth FYI where a considerable part of them 

overlaps. Hence, discriminating rough from the smooth FYI becomes challenging.  

 

8.4 Parameters selection for SVM classifier 

The selection of suitable parameter values when training the SVM model is crucial for 

improving the ability of the model to make accurate predictions. The effectiveness of 

SVM model depends on the selection of kernel and the parameters C and γ. The C 

parameter is the penalty term which controls the influence of each support vector and γ 

defines how constraint we want the model to be.  

In order to find the optimum parameters, a method called grid search is implemented in 

this study. The scikit-learn (Pedregosa et al, 2011) open source python library is used to 

perform a grid search and find the optimum parameters to be used in the SVM model. To 

perform a complete grid search is not practical as it is very computationally expensive, 

hence, the parameter values are evaluated over a coarser grid. The parameter values that 

achieved the highest classification accuracy are chosen.  

The figures below illustrates the results of grid search using radial basis function kernel. 

This type of kernel has been chosen as it is widely accepted that it is the most suitable 

kernel for mapping complex data. It can be observed from both graphs that by increasing 

the C and γ values, the accuracy of the classification increases. Choosing a C value 1 and 

the lowest γ value, the accuracy drops to 85% and 89% for the SAR image of February 

2016 and May of 2016 respectively. When C value increases up to 100, the classification 

accuracy goes above 90% for both SAR datasets.  An interesting characteristic that can be 

noted in the graphs is the rapid linear change in the classification accuracy with increasing 

of γ value. 
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Figure 8.19: Parameters determination (for the SAR image of February 2016) for both C 

and γ using grid search method 

 

 

Figure 8.20: Parameters determination (for the SAR image of May 2016) for both C and 

γ using grid search method 
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It can be clearly seen that by adjusting the γ parameter appropriately a good classification 

accuracy can be achieved. Even if a small C value is selected, by increasing the value of 

γ, we observe a rapid increase in accuracy. 

The grid search method has shown that the best classification accuracy for the dataset of 

February 2016 is achieved with any of the following C values: 20, 50 and 100 and with a 

γ value of 0.010. On the other hand, for the dataset of May 2016, the best parameter values 

are found to be between 50 and 100 for C and 0.01 for γ. 

Hence, in this study, for the SAR image acquired in February 2016, the values 100 and 

0.01 for C and γ parameters have been chosen reaching an accuracy above 90%. Similarly, 

the same values for C and γ parameters have been chosen for the SAR image acquired in 

May 2016 reaching an accuracy above 90%. These values that were produced from grid 

search analysis were used as inputs for the SVM model to perform the classification. 

 

8.5 Texture features selection 

In this study, nine texture features were calculated. Given that texture analysis were 

carried out in both polarization channels (HH and HV) the number of features grow up to 

18 and some of them are strongly correlated. If all these features are used by the classifier, 

it will lead to a confusion, some classes will be overestimated and others will be 

underestimated and this may lead to higher classification error. On the other hand, 

including only a few features in the classifier it can lead to a poor classification. Hence, 

the problem that arises is which features should be included in our classifier for producing 

a higher accuracy in the classification. 

Scikit-learn python library provides a tool where we can investigate which features 

contribute more than others. The selection procedure was carried out before performing 

the classification. A set of training regions were used to test which features produced the 

best results. The figure 8.21 shows the texture features that are the most important (for 

both datasets) for producing a classification with the smallest error. 
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Figure 8.21: Texture features contribution. The GLCM features are plotted on the x-axis 

and the score they have achieve is plotted on the y-axis. 

 

The GLCM features with the highest score are those that are more important than the 

others. By looking at the figure, we can immediately see which features scored the lowest 

and hence, are excluded. These features are the contrast, dissimilarity, entropy and 

correlation in HH polarization channel. GLCM features that achieve the highest score are 

dissimilarity, entropy and the mean in HV polarization channel. 

For this research, eight features were selected for the classification. These features are the 

contrast dissimilarity, entropy, ASM and the mean from HV polarization and ASM, 

energy and variance from HH polarization. 

 

8.6 Sea Ice classification results 

The sea ice classification maps for both SAR scenes are shown in the figures below. The 

classification results are accompanied by classification report and confusion matrix. The 

results were compared with the sea ice charts of DMI which were produced exactly the 

same date with the acquisition of the SAR images. The SVM method one versus one was 

used to perform the sea ice classification. The colors for each ice class were selected 

according to World Meteorological Organization. 
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Figure 8.22:  Sea ice classification map for February of 2016  
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Figure 8.23: Validation data for February of 2016 by DMI 
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Table 8.5: Classification report for the classification map produced in February 23 of 

2016 

 

 

 Old ice FYI Young ice Rough water Calm water 

Old ice 

FYI 

Young ice 

Rough water 

Calm water 

189819 64646 441 144 0 

38390 134522 12641 223 105 

208 6219 56515 264 356 

32 662 1362 448998 0 

0 0 51 0 12604 

 

Table 8.6: Confusion matrix for the classification map produced in February 23 of 2016 

 

The classification map shown in figure 8.22 consists of five sea ice classes (Old ice, FYI, 

young ice, rough water and calm water). The class water was divided into two classes, 

calm and rough water. Due to strong winds, sea acquires high waves which produce a very 

strong backscatter signal. The young ice category which is 30cm thick does not 

significantly affect the navigation of the vessels, especially the big ships with ice breakers. 

 Precision Recall F1-score Support 

Old ice 

FYI 

Young ice 

Rough water 

Calm water 

0.83 0.74 0.79 12655 

0.65 0.72 0.69 185881 

0.80 0.89 0.84 63562 

1.00 1.00 1.00 451054 

0.96 1.00 0.98 12655 

Avg / total 0.91 0.91 0.91 1330524 
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The greatest danger for ships is when navigating though old ice and FYI. These two sea 

ice types reduce the speed of icebreaker and reduce the sailing safety. The deformed FYI 

becomes even more dangerous and can cause a significant damage to any ship. Deformed 

FYI in February datasets is not present.  

The validation data in figure 8.23 is displayed using the ‘egg code’ system to describe the 

sea ice types (detailed description about the egg code system is given in the appendices). 

The different colors displayed on the ice chart correspond to different sea ice 

concentration. The red color on the map suggests that the sea ice concentration is very 

high (above 90%). Also, the validation data suggests that there are three sea ice classes 

dominating this area which correspond to old ice (denoted with the number 7ˑ in the egg 

code), FYI (denoted with the number 6 in the egg code) and young ice (denoted with the 

number 3 in the egg code). 

Looking at the classification results, the area with the high sea ice concentration is 

dominated by old ice and FYI, while the young ice is present in areas of lower ice 

concentration. However, we can notice some openings in the sea ice shown in light blue 

color (these cracks / leads contain water). The backscatter magnitude of leads is lower 

than 19dB. The algorithm has identified all the cracks in sea ice with a precision of 96%. 

This indicates that the algorithm is more capable of indicating more details (compared to 

DMI ice chart) in the high concentration sea ice zone.  

Some classification errors can be found at the ice - water boundary (upper right and bottom 

right) where young ice is present with a curved shape. Due to strong winds, newly formed 

sea ice (such as young ice) is moving around taking a curve shape as shown in the 

classification map. This part of young ice was misclassified as old ice. This 

misclassification can be explained by the appearance of frost flowers. Frost flowers are 

ice crystals that can be found on young ice during winter. They are formed when the air 

temperature is much lower than the underlying ice. The backscatter coefficient can be 

severely affected by the presence of frost flowers which can reach the backscatter 

coefficient of old ice. The backscatter magnitude of young ice covered by from flowers 
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by increase up to 8dB. The most significant classification errors occurs at the ice – water 

boundary zone due to the dynamic nature of sea ice and wind speeds. 

A difference between DMI manual sea ice chart and the SVM classification can be 

detected at the elongated area on the left extended beyond 25 degrees. The DMI ice chart 

shows that this areas is covered by FYI compared to our classification algorithm that 

classified this zone as young ice. The thickness of young ice is below 30cm (a very low 

backscatter coefficient is produced) while the thickness of FYI (which can be divided in 

many sub-classes) varies between 30 and 120cm. The backscatter coefficient in this zone 

is between -23 and -17dB.  Backscatter coefficient tables for C-band during winter were 

produced by Shokr and Sinha 2015 which show that the backscatter intensity for FYI lies 

between -13.5 and -11dB. Hence, with the SVM classifier and the aid of texture analysis, 

this zone was classified as young ice. 

Classification report and confusion matrix have been calculated for each sea ice types. 

The overall classification accuracy was 91%. The rough water and calm water classes 

have been perfectly classified and discriminated from the other sea ice classes with a 

precision of 100% and 96% respectively as it can be seen at the classification report.  Also, 

old ice and young ice have been successfully discriminated achieving an accuracy above 

80%. 

In the confusion matrix, we can see the number of misclassified pixels for each sea ice 

type. The diagonal shows the number of correct pixel classification for each sea ice type. 

The off diagonal values show the number of misclassified pixels. 

Calm water has been classified almost perfectly with 51 pixels misclassified as young ice. 

The biggest confusion occurred between FYI and Old ice. For the old ice, 64646 pixels 

were misclassified as FYI. For the FYI, 38390 pixels were misclassified as old ice. The 

backscatter signature of these two sea ice types is of a few dBs different with a similar 

texture. Hence, this is the reason for having many misclassified pixels between old ice and 

FYI. 

Below, the classification results for the datasets of May 2016 are displayed. 



135 

 

 

 

Figure 8.24: Sea ice classification map for May of 2016  
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Figure 8.25: Validation data for May of 2016 by DMI 
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 Precision Recall F1 – score Support 

Old ice 

Rough FYI 

Smooth FYI 

Young ice 

Rough water 

Calm water 

0.82 0.70 0.76 612207 

0.60 0.79 0.68 301898 

0.82 0.79 0.81 379252 

0.97 0.99 0.98 151414 

0.99 1.00 1.00 212021 

1.00 1.00 1.00 22112 

Avg / total 0.91 0.90 0.90 3372020 

 

Table 8.7: Classification report for the classification map produced in May 25 of 2016 

 

 

 
Old ice 

Rough 

FYI 

Smooth 

FYI 

Young 

ice 

Rough 

water 

Calm 

water 

Old ice 429299 127207 51220 3285 1196 0 

Rough FYI 50411  238805 12665 0 17 0 

Smooth FYI 42644 34554 300222 1522 310 0 

Young ice 376 0 372 150633 0 33 

Rough water 28 84 174 0 211735 174 

Calm water 0 0 0 11 0 22101 

 

Table 8.8: Confusion matrix for the classification map produced in May 25 of 2016 
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The classification results for the SAR scene acquired in May 2016 consists of six classes. 

The melting onset in May change the backscatter energy from the sea ice and the 

discrimination of sea ice types becomes more challenging. The water class was divided 

into calm and rough water. Rough weather conditions prevailed during when the image 

was acquired. Young ice is present on this scene. Old ice and FYI are the sea ice types 

that mostly cover the SAR scene. The FYI was divided into smooth and rough (deformed) 

FYI. Deformed FYI is the most dangerous ice type for ship navigation due to its rough 

texture. Navigating through deformed FYI is very challenging even for big ships with 

icebreakers.    

The validation data is shown in figure 8.25. The sea ice concentration differs across the 

scene. Sea ice concentration is mainly high (above 90% shown in red) on the upper part 

while on the bottom the sea ice concentration decreases (60% shown in yellow). The sea 

ice types identified by DMI are the following. Old ice (denoted with the number 7ˑ in the 

egg code), FYI (denoted with the number 6 in the egg code) and young ice (denoted with 

the number 3 in the egg code). 

Old ice have been successfully identified. The old ice can be discriminated by its high 

backscatter signature and rounded shape. All the big sea ice floes were identified and 

successfully classified as old ice. The majority of the old ice is located at the upper part 

of the SAR image. Deformed FYI which is the most hazardous sea ice type was identified. 

Most of the deformed FYI occurred between old ice floes. Hence, navigating though the 

big ice floes where deformed FYI is present should be avoided. The most challenging part 

is the discrimination between old ice and deformed FYI due to the similar backscatter. 

Young ice is scarce and it is present mainly along the coast.  

Residual noise effects in HV polarization (after thermal noise suppression) in the SAR 

image are still present. The residuals of the thermal noise can be seen at the classified 

image beam boundaries which affect the classification.   

Classification report and confusion matrix have been calculated for each sea ice types. 

The overall classification accuracy was 91%. The classification report shows that rough 
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water and calm water classes have been precisely classified from the other sea ice classes 

with a precision of 99% and 100% respectively. Old ice floes were identified in the SAR 

scene with a precision of 82%. The rough texture and strong backscatter of old ice due to 

volume scattering helps in discriminating it from the other ice types. Difficulties in 

discrimination deformed FYI can be seen in classification report. The precision achieved 

for this ice type is 60%. On the other hand, the classification of smooth FYI was more 

successful reaching a precision of 82%. 

The confusion matrix is more intuitive than classification report because we can see the 

number of pixels that were misclassified as a different ice type. Some pixels of the old ice 

were misclassified as FYI and young ice.  The deformed FYI produces strong backscatter 

equivalent to the backscatter of old ice, hence the confusion. On the other hand, we can 

observe some confusion between old ice and young ice. Due to ice melting, a common 

feature that is observed in old ice is the appearance of a melt pond on top of the ice floe. 

The melt ponds consist of fresh water and due to their smooth surface, the backscatter 

intensity is as low as that of the young ice. This explains the misclassification. A confusion 

between deformed and smooth FYI is expected due to their similar backscatter coefficient. 

Also, due to the face that the backscatter coefficient of deformed FYI is bit higher than 

that of smooth ice, we observe some pixels of deformed ice were classified as old ice. The 

water classes were perfectly classified due to the very low backscatter coefficient of calm 

water (30-29 dB) and very high backscatter coefficient of rough water (11-9 dB). 

Overall, there is a strong agreement between the classification results and the validation 

data. All the hazardous for ships sea ice types have been successfully identified and 

classified. 
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9 Conclusion and suggestions 

 

9.1 Conclusion 

In this study, an approach to sea ice classification combining both backscatter and texture 

analysis is presented. The SVM classifier and GLCM texture analysis with nine texture 

statistics are used. 

Before performing sea ice classification, the SAR images are pre-processed. One of the 

most important steps is to remove the thermal noise from the SAR images. The HV 

polarization channel suffers from thermal noise which might affect the classification 

results. We need to note that despite the fact that the thermal noise removal was applied 

to the datasets, some residuals are still present. 

GLCM texture analysis were performed with the appropriate parameters. The nine GLCM 

features that were calculated for both HH and HV polarizations are the GLCM mean, 

GLCM variance, correlation, homogeneity, entropy, energy, angular second moment, 

contrast and dissimilarity. 

SVM classification with the help of texture analysis was performed. For better 

classification results, the SVM model was optimized using grid search analysis. Grid 

search analysis conducted for both datasets produced the optimum hyper-parameters for 

the SVM model. The value of 100 for C and 0.01 for γ were chosen for both datasets 

achieving an accuracy of 91%  

In this study, we showed that the most hazardous for ships sea ice types such as deformed 

FYI and old ice were successfully discriminated in the SAR imageries. A precision of 

83% and 65% was achieved in discriminating the old ice and FYI respectively for the SAR 

scene of February in 2016. On the other hand, a precision of 82% and 60% was achieved 

in discriminating the old ice and deformed FYI respectively for the SAR scene of May in 

2016. 
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Comparing the two SAR scenes, we can see how the sea ice changes between winters and 

spring period. In freeze up period, the sea ice concentration is high and the discrimination 

between old ice and FYI is easier due to the high contrast between these two ice types. 

The SAR scene in February 2016 mainly consists of old ice and FYI with a few leads (that 

contain water) amongst the sea ice. On the other hand, the SAR scene acquired in May 

2016, the ice concentration decreases and the old ice that does not melt completely 

acquires a rounded shape. Sea ice deformation amongst the old ice floes is observed. The 

discrimination between old ice and FYI is more challenging. As sea ice melts, a transition 

from FYI to young ice is happening. Hence, young ice can be seen amongst the old ice 

floes. 

 

9.2 Suggestions 

In this research, supervised classification algorithm was used which requires priori 

knowledge of sea ice classes. On the other hand, unsupervised classification has not been 

explored in the context of this study. Unsupervised classification methods classify each 

pixel based on based on spectral information without having priori knowledge of the sea 

ice classes. It was shown by Chapelle, et.all (2006) that combining both supervised and 

unsupervised classification methods, in many cases, it improve the classification results. 

Another important factor that can potentially improve the classification accuracy is the 

sea ice concentration layer. Sea ice concentration is the percentage of sea ice in a given 

area. For instance, new ice has low sea ice concentration because it is usually composed 

of small ice floes scattered around which surrounded by open water. On the contrary, the 

sea ice concentration of old ice is very high. Therefore, sea ice concentration of new and 

old ice can assist in discriminating between these two sea ice types.  

The wavelength of the microwave radiation plays an important role on sea ice 

observations. One of the datasets used in this study were captured in May of 2016 which 

is the early melt onset for sea ice. When the melt onset starts, the sea ice floes get flooded 

with sea water which results in an increase of the dielectric constant. As the dielectric 
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constant of sea ice increases, the penetration of the microwave decreases. Hence, in that 

case, C-band is not the ideal one for sea ice observations as its frequency is relatively high. 

On the other hand, longer wavelengths (such as L-band) are preferred in such cases. Long 

wavelength penetrate deeper to the material and interact with the sea ice to give a stronger 

backscatter. 

The backscatter energy from the surface of the earth is proportional to the roughness of 

the material being observed. In case of SENNTINEL-1, the SAR image suffers from 

thermal noise especially in areas of low backscatter. These areas are of higher intensity 

values not because of the surface roughness but due to thermal noise. Hence, thermal noise 

removal is a very important step. If thermal noise is present, then it can severely affect the 

classification results. SNAP toolbox provides a method for minimizing the thermal noise 

but it does not remove it completely. After minimizing the thermal noise, some residuals 

are still present on the SAR image. Hence, a better methodology for removing the thermal 

noise is necessary. 
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Appendices 

Appendix A: Explanation of the symbols in the oval form 

 

      C 

   𝑪𝒂 𝑪𝒃 𝑪𝒄 

   𝑺𝒂 𝑺𝒃 𝑺𝒄 

              𝑭𝒂 𝑭𝒃 𝑭𝒄   

 

Fig A1: Definition of the symbols in the oval shape 

 

Concentration (C) 

C – On the top, we have the total concentration of sea ice in tenths 

𝑪𝒂 𝑪𝒃 𝑪𝒄 – Partial concentration of thickest (𝑪𝒂) ice, partial concentration of second 

thickest (𝑪𝒃) ice and partial concentration of third thickest (𝑪𝒄) ice. 

 

Stage of development (S) 

𝑺𝒂 𝑺𝒃 𝑺𝒄 – Stage of development of thickest (𝑺𝒂) ice, Stage of development of second 

thickest (𝑺𝒃) ice and Stage of development of third thickest (𝑺𝒄) ice. 

 

Form of ice (F) 

𝑭𝒂 𝑭𝒃 𝑭𝒄  - Size of ice floe corresponding to 𝑆𝑎 𝑆𝑏 𝑆𝑐 respectively  
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Concentration Symbol 

Ice free  

Less than one tenth 0 

1/10 1 

2/10 2 

3/10 3 

4/10 4 

5/10 5 

6/10 6 

7/10 7 

8/10 8 

9/10 9 

More than 9/10 9+ 

10/10 10 

Table A1: Total concentration of sea ice 

 

Element Floe size Symbol 

Pancake ice - 0 

Brash ice <2 m 1 

Ice cake 2 – 20 m 2 

Small floe 20 – 100 m 3 

Medium floe 100 -500 m 4 

Big floe 500 m – 2 km 5 

Vast floe 2 – 10 km 6 

Giant floe >10 km 7 

Fast ice - 8 

Icebergs - 9 

Table A2: Form of sea ice 



158 

 

Element  Thickness Symbol 

No stage of development - 0 

New ice - 1 

Nilas <10 cm 2 

Young ice 10 – 30 cm 3 

Grey ice 10 -15 cm 4 

Grey-white ice 15 – 30 cm 5 

First year ice 30 – 200 cm 6 

Thin-first year ice 30 – 70 cm 7 

Thin-first year ice, first stage 30 – 50 cm 8 

Thin-first year ice, second stage 50 – 70 cm 9 

Medium first-year ice 70 -120 cm 1ˑ 

Thick first-year ice >120 cm 4ˑ 

Old ice >200 cm 7ˑ 

Second-year ice >200 cm 8 

Multi-year ice >200 cm 9ˑ 

Table A3: Stage of development 
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Appendix B: SVM and texture analysis code 

import os 

import numpy as np 

from osgeo import gdal, gdal_array, gdalconst 

from osgeo import ogr 

import pandas as pd 

import image_slicer 

 

from sklearn.decomposition import PCA 

 

from sklearn.svm import SVC 

from sklearn.preprocessing import MinMaxScaler 

from sklearn.model_selection import train_test_split 

from sklearn.metrics import confusion_matrix 

from sklearn.metrics import classification_report 

from sklearn.metrics import accuracy_score 

from sklearn.model_selection import cross_val_score, 

StratifiedKFold, StratifiedShuffleSplit 

from sklearn.model_selection import validation_curve, 

GridSearchCV 

from sklearn import preprocessing 

from sklearn.feature_selection import SelectKBest 

from sklearn.feature_selection import chi2 

from sklearn.feature_selection import RFE 

from sklearn.pipeline import Pipeline 

 

from mlxtend.plotting import plot_decision_regions 

from matplotlib.pylab import * 

import matplotlib.patches as mpatches 

 

from multiprocessing import Pool 

from functools import partial 

import time 

 

 

#load the data for texture analysis and SVM classification 

train_data_path = 

'/home/io/ASTROSAT/SVM_seaIce_types/2016_05/TRAINING_data_thesis

' 

sea_ice = 

'/home/io/ASTROSAT/SVM_seaIce_types/2016_05/S1A_EW_polar_stereog

raphic201605_Ice_masked.tif'  

glcm = 

'/home/io/ASTROSAT/SVM_seaIce_types/subset_of_subset_calibration

_201605_Polar_stereographic_ALL_glcm.tif' 

 

#Perform texture analysis using GLCM method 

def haralick_features(img, win, d): 
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    win_sz = 2*win + 1 

    window_shape = (win_sz, win_sz) 

    arr = np.pad(img, win, mode='reflect') 

    windows = util.view_as_windows(arr, window_shape) 

    Nd = len(d) 

    feats = np.zeros(shape=windows.shape[:2] + (Nd, 4, 13), 

dtype=np.float64) 

    for m in xrange(windows.shape[0]): 

        for n in xrange(windows.shape[1]): 

            for i, di in enumerate(d): 

                w = windows[m, n, :, :] 

                feats[m, n, i, :, :] = mht.haralick(w, 

distance=di) 

    return feats.reshape(feats.shape[:2] + (-1,)) 

 

 

 

#Choose the best features for SVM 

test = SelectKBest(chi2, k=8) 

fit_test = test.fit(X_train_minmax, y_train) 

feats = fit_test.transform(X_train_minmax) 

 

#print the scores 

this_scores = cross_val_score(svm, X_test_minmax, y_test, 

n_jobs=1) 

scores = fit_test.scores_ #the features with the highest values 

are the most important 

print (scores) 

 

values = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19] 

features = 

['Contrast_HH','Dissimilarity_HH','Homogeneity_HH','ASM_HH','Ene

rgy_HH','MAX_HH','Entropy_HH','Mean_HH','Variance_HH','Correlati

on_HH', 

            

'Contrast_HV','Dissimilarity_HV','Homogeneity_HV','ASM_HV','Ener

gy_HV','MAX_HV','Entropy_HV','Mean_HV','Variance_HV','Correlatio

n_HV'] 

 

#plot the features 

fig = plt.figure() 

ax = fig.add_subplot(111) 

plt.title(' Score of GLCM features', fontsize=13, 

fontweight='bold') 

ax.bar(values, scores, align = 'center') 

ax.set_xticks(values) 

ax.set_xticklabels(features, rotation='vertical', fontsize=10) 

ax.set_xlabel('GLCM features', fontweight='bold') 

ax.set_ylabel('Score of GLCM features', fontweight='bold') 
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plt.show() 

 

 

 

#The two functions below rasterize the training datasets 

def create_mask_from_vector(vector_data_path, cols, rows, 

geo_transform, 

                            projection, target_value=1): 

    """Rasterize the given vector (wrapper for 

gdal.RasterizeLayer).""" 

    data_source = gdal.OpenEx(vector_data_path, gdal.OF_VECTOR) 

    layer = data_source.GetLayer(0) 

    driver = gdal.GetDriverByName('MEM')  

    target_ds = driver.Create('', cols, rows, 1, 

gdal.GDT_UInt16)# create new layer to save our results 

    target_ds.SetGeoTransform(geo_transform)# set the 

geoinformations for each vector layer 

    target_ds.SetProjection(projection)# set the projection 

    gdal.RasterizeLayer(target_ds, [1], layer, 

burn_values=[target_value])# resterize each vector file 

    return target_ds 

 

 

def vectors_to_raster(file_paths, rows, cols, geo_transform, 

projection): 

    """Rasterize all vectors in a single image.""" 

    labeled_pixels = np.zeros((rows, cols)) 

    for i, path in enumerate(file_paths): 

        label = i+1 

        # rasterize all the vector file by calling the function 

created above 

        ds = create_mask_from_vector(path, cols, rows, 

geo_transform, 

                                     projection, 

target_value=label) 

        band = ds.GetRasterBand(1) 

        labeled_pixels += band.ReadAsArray() 

        ds = None 

    return labeled_pixels 

 

raster_dataset = gdal.Open(sea_ice, gdal.GA_ReadOnly) 

geo_transform = raster_dataset.GetGeoTransform() 

proj = raster_dataset.GetProjectionRef() 

bands_data = [] 

for b in range(1, raster_dataset.RasterCount+1): 

    band = raster_dataset.GetRasterBand(b) 

    bands_data.append(band.ReadAsArray()) 
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bands_data = np.dstack(bands_data) 

row, col, n_bands = bands_data.shape 

 

#Go to the folder where the training data are located and list 

them all 

files = [f for f in os.listdir(train_data_path) if 

f.endswith('.shp')] 

classes = [f.split('.')[0] for f in files] 

shapefile = [os.path.join(train_data_path, f) 

              for f in files if f.endswith('.shp')] 

 

#Convert training data into raster format 

labeled_pixels = vectors_to_raster(shapefile, row, col, 

geo_transform, 

                                   proj) 

 

is_train = np.nonzero(labeled_pixels)#returns the non-zero 

values 

training_labels = labeled_pixels[is_train]#class labels 

training_samples = bands_data[is_train]#pixels to be used for 

training  

 

 

# Tell GDAL to throw Python exceptions, and register all drivers 

gdal.UseExceptions() 

gdal.AllRegister() 

 

img = bands_data #Image we want to classify 

roi = labeled_pixels #training data 

roi_int = roi.astype(int32) 

 

#Read the PCA file 

PCA = gdal.Open(pca, gdal.GA_ReadOnly) 

bands_num = PCA.RasterCount 

PCA_arr = PCA.ReadAsArray() 

PCA_band3 = PCA_arr[0,:,:] 

 

#read intensity values of SAR data 

img_sigma = img[:,:,2:] 

stack = [img_sigma, PCA_band3] 

pca_img = np.dstack(stack) 

 

pca_img[np.isnan(pca_img)]=999 #replace NaN values 

 

 

roi = labeled_pixels #training data 

roi_int = roi.astype(int32) 

 

# check how many samples we have 
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n_samples = (roi>0).sum() 

print('There are {n} samples'.format(n=n_samples)) 

 

labels = np.unique(roi_int[roi_int>0]) 

print('The training data include {n} classes: 

{classes}'.format(n=labels.size, classes=labels))  

 

Xx = pca_img[roi_int > 0] #X is the matrix containing our 

features 

yy = roi[roi>0]#y contains the values of our training data 

print('The X matrix size is: {sz}'.format(sz=Xx.shape)) 

print('The y array size is: {sz}'.format(sz=yy.shape)) 

 

 

 

#Perform classification using multiprocessing to speed up the 

process 

 

split_test_data = 0.30 

X_train, X_test, y_train, y_test = train_test_split(Xx, yy, 

test_size=split_test_data, stratify = yy) 

 

#use pipeline to do all the steps automatically 

pip = Pipeline([('scale', preprocessing.StandardScaler()),  

                ('svm', SVC(kernel='rbf', C=10, gamma=0.065, 

decision_function_shape='ovo', class_weight='balanced'))]) 

pip.fit(X_train, y_train) 

 

 

def predict(input_data): 

    img_predict = pip.predict(input_data) 

    return img_predict 

 

 

start = time.time() 

 

tfs_shape = (pca_img.shape[0] * pca_img.shape[1], 

pca_img.shape[2]) 

tfs_2D = pca_img.reshape(tfs_shape) 

 

# split good data into chunks for parallel processing 

tfsChunks = np.copy(tfs_2D) 

split = np.array_split(tfsChunks, 4) 

 

# run parallel processing of all data with SVM 

pool = Pool(4) 

svmLablesGood = pool.map(predict, split) 

 

# join results back from the queue and insert into full matrix 
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svmLabelsGood = np.hstack(svmLablesGood) 

 

# reshape labels from vector into 2D raster map 

svm_reshape = svmLabelsGood.reshape(img.shape[0], img.shape[1]) 

plt.imshow(svm_reshape) 

plt.show() 

 

 

end = time.time() 

print 'the processing time is:', end - start, '\n' 

 

 

# Compute classification report and confusion matrix 

target_names = ['class %s' % s for s in classes] 

verification_pixels = vectors_to_raster(shapefile, row, col, 

geo_transform, 

                                   proj) 

 

for_verification = np.nonzero(verification_pixels) 

verification_labels = verification_pixels[for_verification] 

predicted_labels = svm_reshape[for_verification] 

 

 

print ('confusion matrix: \n %s' %  

        confusion_matrix(verification_labels, 

predicted_labels)), '\n' 

     

print ('classification report: \n %s' %  

        classification_report(verification_labels, 

predicted_labels, target_names=target_names)) 

 

 

#Grid search analysis for finding the appropriate parameters for 

SVM 

start = time.time() 

 

X_copy = img[roi_int > 0] #X is the matrix containing our 

features 

X_float = X_copy.astype('float') 

X_2bands = X_float[:,[2,3]]#plot decision boundary accepts array 

with <=2 bands only. So, we keep 2nd,3rd bands from the array 

y_int = y.astype(int)# y(our labels) should be integer to be 

used in 'plot_desicon_boundary' 

 

split_test1 = 0.30 

X_train, X_test, y_train, y_test = train_test_split(X_2bands, 

y_int, test_size=split_test1) 

clf = SVC(kernel='rbf') 
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Cs = [1, 5, 10, 20, 50, 100] 

Gammas = [1e-2, 1e-4] 

 

clf = GridSearchCV(clf, 

            dict(C=Cs, 

                 gamma=Gammas), 

                 cv=2, 

                 pre_dispatch='1*n_jobs', 

                 n_jobs=4) 

 

clf.fit(X_train, y_train) 

 

scores = [x[1] for x in clf.grid_scores_] 

scores = np.array(scores).reshape(len(Cs), len(Gammas)) 

 

for ind, i in enumerate(Cs): 

    plt.plot(Gammas, scores[ind], label='C: ' + str(i)) 

 

 

plt.legend() 

plt.grid() 

plt.xscale('linear') 

plt.xlabel('Gamma') 

plt.ylabel('Mean score') 

plt.savefig('parameters_selection201602.tif') 

plt.show() 

 

end = time.time() 

print 'the processing time is:', end - start 
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