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Abstract

A much pursued ontological capability is knowledge reuse and sharing. One aspect of
this is reuse of ontologies across different applications, including construction of other
ontologies. Another aspect is the reuse of knowledge that is founded on ontologies,
which, in principle, is attainable in that an ontology renders well-defined and accessible
the meaning of concepts that underly the knowledge. In this thesis we address both
these aspects of reuse, grounding the study in the problem of synthesis of structural
ecological models.

One basis for the design of ecological models, along with human expertise, is data
properties. This motivated the construction of a formal ontology — Ecolingua —
where we define concepts of the ecological data domain. The diversity of the domain
led us to use the Ontolingua Server as an ontology design tool, since it makes available
an extensive library of shareable ontologies. We reused definitions from several of
these ontologies to design Ecolingua. However, Ecolingua’s specification in the repre-
sentation language of the Ontolingua Server did not easily translate into a manageable,
executable specification in our choice of implementation language, which required us
to develop our own complementary tools for scope reduction and translation. Still, a
great deal of manual re-specification was necessary to achieve an operational, useful
ontology. In sum, reuse of multiple ontologies in ontology construction employing
state-of-the-art tools proved impractical. We analyse the practical problems in reuse of
heterogeneous ontologies for the purpose of developing large, combined ones.

In its operational form, Ecolingua is used to describe ecological data to give what
we call metadata, or, said differently, instantiated ontological concepts. Synthesis is
achieved by connecting metadata to model structure. Two approaches were developed
to do this. The first, realised in the Synthesis-0 system, uses metadata alone as synthe-
sis resource, while the second, realised in the Synthesis-&_ system, exploits Ecolingua
to reuse existing models as an additional synthesis resource. Both Synthesis-0 and
Synthesis-&_ are working systems implemented as logic programs. The systems were
empirically evaluated and compared on run time efficiency criteria. Results show a
remarkable efficiency gain in Synthesis-&, the system with the reuse feature. We gen-
eralise the results to systems for synthesis of structural models informed by domain
data. Once a data ontology and ontology-constrained synthesis mechanisms are in
place, existing models can efficiently be reused to produce new models for new data.
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Chapter 1

Motivation and Research Scenario

Ontologies have been proposed as a means of specification that enables knowledge
reuse and sharing (Neches et al., 1991). They make explicit what is meant by terms
representing concepts and relations, which is necessary for knowledge to be appropri-
ately reused in different contexts and by different users (humans or computer systems).

This thesis contributes towards turning such proposal into reality.

We start this chapter with an introduction to the endeavour of knowledge reuse enabled
by ontologies. Next, we identify a modelling problem and a knowledge reuse scenario

for development of the research. Finally an outline of the thesis is given.

1.1 Ontology-Driven Knowledge Reuse

In a broad perspective, reused knowledge may consist, at a first level, of ontologies
themselves, or more extensively, of knowledge that is founded in ontologies. Most
of the literature deals with reuse of ontologies themselves, either in the construction
of new ontologies or as part of knowledge-based applications. In works on knowledge
engineering using foundational ontologies, the knowledge is largely intended for reuse,

but little has been reported on its actual reuse or on tangible benefits obtained thereby.

Furthermore, the use of formal definitions of concepts in an ontology has been under-

3



4 Chapter 1. Motivation and Research Scenario

exploited, not going much further beyond its role as a knowledge specification lan-
guage. In principle, ontologies can play a more active and direct part in knowledge-
based systems, for example, in the identification of adequate pieces of knowledge for

reuse, or in inference as the system performs tasks.

It is the pursuit of ontologies as a technology that enables knowledge reuse that gener-
ally motivates this thesis. We aim at exploring such potential and demonstrating ways

in which it can be realised in practice to add value to applications.

In the next section we identify a modelling problem to give scope to the exploration.

1.2 Synthesis of Conceptual Models from Ontological

Data Descriptions

The intrinsic relationship between models and data is amply acknowledged in the em-
pirical sciences:
Science consists of confronting different descriptions of how the world
works with data, using the data to arbitrate between the different descrip-
tions, and using the best description to make additional predictions or de-
cisions. These descriptions of how the world might work are hypotheses,

and often they can be translated into quantitative predictions via models.
(Hilborn and Mangel, 1997)

Data is particularly valuable in substantiating models when the real-world systems
they represent are too complex to be perfectly understood and described without bias.
Using data derived from observation to inform model design allows model simulation
results to be accounted with respect to the data which adds credibility to them. Also,
a common methodological approach that facilitates understanding of complex systems
is to firstly design a conceptual (or qualitative) model which is subsequently used as a
framework for specification of a quantitative model. These are reasons that motivate
our choice of synthesis of models in the environmental domain as the intelligent task

where we ground our investigation on knowledge reuse (see Section 1.3).
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Data sets given to support modelling of complex systems, however, contain mainly
quantitative data which is not of much help in the creative early stages of conceptual
model formulation. Quantitative data is usually only directly applied in later stages,
to estimate parameters and calibrate the model. During conceptual model formulation,
modellers subjectively assess whether the data at hand will support their understand-
ing of the system. In doing so, they focus not on data values as such, but rather on
higher-level properties of the data, for example, availability, meaning and types of
measurements, how the data is structured, how representative the samples are, etc. But
in practice it is difficult for modellers to make such assessment and design decisions
consistently with the available data because in its low representational level quantita-
tive data does not directly connect to high-level model conceptualisation. As a result

conceptual models are often led astray from their supporting data sets.

Here is where ontologies come in. An ontology of properties of domain data can pro-
vide a unifying conceptual vocabulary for representation of data sets, by way of which
the data’s level of abstraction is raised to facilitate connections with conceptual models.
We refer to data that is represented through such a vocabulary as metadata. To illus-
trate data, metadata, ontology, and their interrelations in the context of this research
project, let us suppose a forest logging operation where the amount of timber of each
logged tree is measured. The actual measures of tree timber, e.g., 500 kg, are data.
The data property level, in turn, does not concern data values as such but, say, their
existence, or the entities they are attributes of. The ontology vocabulary comprises
terms representing concepts that belong to this level. For example, later in the thesis
we present the ontology term amt_of mat(A,Mt,E, U) used to represent a relation be-
tween an amount A of a material Mt in an entity E expressed in the unit of measure U.
Our amount of timber variable can be represented as amt_of _mat(t,timber,tree, kg), an

example of metadata.

The interesting problem of model synthesis from data ontologies provides the scope for
our investigation on ontology-driven knowledge reuse. Having a data ontology giving
support to conceptual model synthesis can be beneficial in a number of ways. First,
the ontology provides for suitably represented data, as already mentioned. Second,

a synthesis process that transforms ontological data concepts, as opposed to specific
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data, into model elements and structures has its applicability widened. And third, when
represented through the ontology the data becomes more concise, in that many data
values can be collectively described through a single ontological concept. Synthesis
can then start from this concise account of the data, avoiding the problems associated
with manipulating large data volumes as in model induction approaches (Kubat et al.,
1997).

1.3 Setting the Research Scenario

Consider a scenario of synthesis of models of a certain domain as depicted in Figure
1.1. The ontology provides a formally defined vocabulary of data properties in the do-
main, through which data sets about systems of interest are described giving metadata.

Based on such metadata, models of the systems are synthesised by reusing existing

SYSTEM

MODEL
Model
Reuse

models.

t

Synthesis

METADATA
SET

T Vocabulary

Figure 1.1: Model synthesis and reuse scenario.

This is the scenario within which knowledge reuse supported by ontologies is investi-
gated in this thesis. We shall explore, in particular, roles that data ontologies can play
in model synthesis as well as gains that might derive from that. In the process, three

forms of knowledge reuse are addressed, which we enumerate below:

1. Reuse of existing structural models in the synthesis of new models given a new

metadata set, where the reuse is enabled by the data ontology (Figure 1.1). If
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we assume that the existing models have been designed backed by data, then to
reuse one of them means to share its embedded modelling knowledge with the

new model’s data.

2. Reuse of domain-specific heuristic knowledge on connections between metadata
and model structure. The knowledge is firstly formalised to connect metadata to
model structure within an initial synthesis approach where existing models are
not reused (this would correspond to Figure 1.1 without the Model Reuse ar-
row), and subsequently harnessed to, conversely, connect the structure of reused

models to new metadata in the reuse-oriented synthesis approach.

3. Reuse of multiple existing ontologies in the construction of a domain-specific

data ontology.

Such an ontology is built in the context and for the purpose of this research. We do so
from the standpoint of ontology engineers trying to employ existing ontologies as well

as existing technology as much as possible.
The research scenario is grounded in the ecological modelling domain:

o the synthesised models are structural system dynamics models, which represent

flow of material through ecological systems;

e the data sets that inform model synthesis comprise field measurements of eco-
logical variables and other preliminary information such as model objectives and

assumptions; and

e the ontology contains concept definitions of ecological data properties.

1.4 Thesis Outline

The thesis is divided into four main parts as follows:

Part I Introduction and Background. In this chapter we have motivated the research

and delineated a problem and a scenario for it. Chapter 2 surveys literature on
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ontology-driven knowledge reuse, on ontologies related to the ecological do-
main, and on Al techniques applied to ecological modelling. The chapter con-
cludes with an introduction to the kind of models we tackle in our work on

synthesis, namely, system dynamics models.

Part II Ontology Engineering. Chapter 3 presents Ecolingua, the ontology we built
for description of ecological data. In Chapter 4 we report on the knowledge

engineering effort involved in this ontology construction experiment.

Part III Model Synthesis and Reuse. This is the central part of the thesis. It starts
with Chapter 5 showing by example how data is described through Ecolingua to
yield metadata. In Chapter 6 we define the heuristic knowledge used to connect
metadata and model structure in the form of synthesis constraints. Chapter 7
describes Synthesis-0, the first of the two working systems we developed which
have solution of the constraints as part of the synthesis process. Chapter 8 in-
troduces the approach of reusing existing models in the synthesis of new models
and then describes our second system, Synthesis-&X , which implements the ap-

proach.

Part IV Evaluation and Conclusions. Chapter 9 presents an empirical comparative
evaluation of Synthesis-0 and Synthesis-&_ on the run time efficiency criterion,
showing a significantly better performance by the latter system. This empirical
result is generalised in the end of the chapter. To conclude, Chapter 10 enumer-

ates the contributions of the thesis and motivates further work.



Chapter 2

Literature Survey

This literature survey focuses on ontology-driven knowledge reuse and on model syn-
thesis, the two grand themes in the thesis. Section 2.1 reviews work on reuse of ontolo-
gies and reuse of ontology-founded knowledge. As the thesis contains an ontology for
the ecology domain, related ontology building efforts are surveyed in Section 2.2. Sub-
sequently, we turn our attention in Section 2.3 to the development and use of artificial
intelligence techniques in the task of ecological model construction. The last section is
dedicated to a brief introduction of system dynamics, the modelling paradigm in which

our synthesis techniques are grounded.

2.1 Ontologies and Knowledge Reuse

The primary form of ontology-driven knowledge reuse is where the ontologies them-
selves are reused. Regardless of whether or not an ontology is created with a spe-
cific application in mind, one hopes that it will be reused, perhaps after some mod-
ifications, either across different applications and/or in the construction of other on-
tologies (Uschold and Gruninger, 1996). Another, less explored, form of ontology-
driven knowledge reuse is when not the ontology itself is reused, but knowledge that

is founded in or derived from it.
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2.1.1 The Ontolingua Server

The literature indicates that the most widely applied tool so far in reuse of ontologies
themselves has been the web-based Ontolingua Server (Farquhar et al., 1996; Ontolin-
gua Server, 1995), developed and hosted by the Knowledge Systems Laboratory, Stan-
ford University. As its name denotes, the tool is built on Ontolingua, a system created
to solve the portability problem for ontologies (Gruber, 1993). Ontolingua has been
proposed as a standard, system-independent interlingua for ontologies specification
that can be translated and ported into and out of system-specific representation lan-
guages (implementation languages included). Ontolingua’s own underlying represen-
tation language is KIF, Knowledge Interchange Format, a prefix monotonic first-order
logic language extended with set theory (Genesereth and Fikes, 1992). The front-end
representation style of Ontolingua, or its meta-ontology, in the Server is based on the
Frame-Ontology (Gruber, 1993). Ontologies are specified through the frame-system
constructs (class, slot, relation, function, etc.), and when these do not suffice, axioms

can be written in KIF,

One of the main resources the tool provides is an extensive library of shareable ontolo-
gies. Other useful facilities are the group sessions allowing different users to simulta-
neously work on the design of the same ontology, and a service of automatic translation
of ontologies into several target languages, such as Clips, Cml, Loom, and the so-called
Prolog Syntax language, of particular interest to us as we employ Prolog to implement
our Ecolingua ontology. The translation into Prolog Syntax, however, does not pro-
duce Prolog runnable code but logical sentences in a KIF-like Prolog readable syntax.
KIF, a first-order logic language, subsumes Horn clause logic, therefore only a subset
of it is translatable into standard Prolog. A note on design decisions for translating
Ontolingua to Prolog Syntax can be found in (Farquhar, 1995).

The translation service gives the options of translating an ontology in isolation, in
which case the referenced definitions in other ontologies are not included, or translating
the ontology including the referenced definitions through theory inclusion (Farquhar
et al., 1996) — when an ontology (theory) A refers to a concept of another ontology
(theory) B then all definitions in B are incorporated by A. Through this means, the
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resulting ontology is simply the union of the ontologies in full. As far as knowledge
sharing is concerned, we are interested in translation mechanisms that provide for in-
clusion of referred definitions (Cohen et al., 1999) (but not necessarily inclusion of
the complete theories). The motivation for defining a class C of a new ontology as a
subclass of class D of an existing ontology, for example, resides on C inheriting “for
free” the properties of D. Using the first translation option (the new ontology in isola-
tion) would translate the definitions of C alone and the desired properties of D would
be lost (unless there was some dynamic way of accessing the properties of D without

including them in the translation output, but there is not).

In Chapter 4 we will see that while using the Server to design Ecolingua, concepts from
five of its shareable ontologies were reused. Employing the translator, with Prolog
Syntax as choice of target language, produced a specification including Ecolingua’s
own definitions, the five reused ontologies, and several other ontologies that had been
directly or indirectly referred to by Ecolingua’s own definitions or by the definitions of
the reused ontologies. We show how we re-engineered this specification into a smaller

and better Prolog specification.

2.1.2 Approaches and Experiences on Ontology-Driven Knowledge

Reuse

(Pinto and Martins, 2000) discerns two kinds of reuse of ontologies in the construction
of other ontologies: ontologies merging, where different ontologies on the same or
similar subjects are merged into a single unified ontology; and, ontologies integration,
where an ontology is built by aggregating or modifying (adapting, specialising, aug-
menting, etc.) other ontologies which become distinguishable parts of the integrated

ontology.

Ontology reuse as in (Swartout et al., 1996) is an example of ontologies merging ac-
cording to (Pinto and Martins, 2000). In this work a domain specific ontology for
military air campaign planning is constructed through reuse of the SENSUS ontol-
ogy (Knight and Luk, 1994), a natural-language-based ontology of broad coverage
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originally developed to support work on machine translation. Firstly, domain specific
concepts are linked to the large hierarchy of SENSUS concepts. Then, to narrow down
the concepts to those of relevance only, the hierarchy is heuristically pruned (using the
same heuristic as we use in pruning Ecolingua’s hierarchy — Section 4.2.3), followed

by re-introduction of manually selected concepts.

Later developments on the air campaign planning ontology appear in (Valente et al.,
1999). Again, existing ontologies, knowledge bases, and formulated theories are reused
to extend the ontology. Two existing ontologies are merged to form the aircraft sub-
ontology. One other ontology reused is an ontology of time from the Ontolingua
Server. The translation facility provided by the Server was used to translate the on-
tology of time into Loom (MacGregor, 1991), the knowledge representation language
of the air campaign planning ontology, but the result was not satisfactory. Extensive
manual work was further required to adapt the translation output into a simpler speci-

fication that exploited properly Loom’s representational and reasoning capabilities.

For the integration kind of ontology reuse, when constructing other ontologies, (Pinto
and Martins, 2000, 2001) propose a first methodology that applies to specifications
of ontologies at the knowledge (or conceptual) level only — issues related to reuse
of implementation-level ontologies, such as translation between representation lan-
guages, are not considered. The methodology is supposed to be applied as part of
a larger ontology building methodology, such as those in (Uschold and Gruninger,
1996; Fernandez et al., 1997). It gives general guidelines on choosing, assessing and
changing ontologies towards integration, for instance, that designers must ponder on
the meaning of the hierarchical relation (e.g., is-a, part-of) between the concepts of an

ontology to be integrated and on the consequences of changing it.

Two ontology-building experiences are reported where this integration methodology
has been successfully applied, also reusing ontologies from the Ontolingua Server’s
library. The ontologies involved, including the resulting ontologies, are all specified
within the same knowledge-representation system. One experience is on the reuse
of the (KA)? ontology (Benjamins and Fensel, 1998), an ontology of the knowledge

acquisition community (researchers, topics, products, etc.), to build the Reference on-
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tology (Arpirez et al., 2000), an ontology of ontologies, known as the ontology Yellow
pages.

In the other reported experience the Monoatomic Ions ontology (to be part of an Envi-
ronmental Pollutants ontology — see Section 2.2) is built reusing two other ontologies:
the Chemical ontology (Fernandez et al., 1999) and the Standard Units ontology which
is part of EngMath (Gruber and Olsen, 1994), a family of ontologies created with a

view towards enabling reuse and sharing of engineering models.

The process of reusing the Standard Units ontology is detailed in (G6mez-Pérez and
Rojas-Amaya, 1999), where it illustrates an ontological reengineering process adapted
from Chikofsky’s software reengineering process (Chikofsky and Cross II, 1990). The
method fits in the ontologies integration methodology aforementioned as its Integration
Operations activity. It comprises three steps, taken in this order: a reverse engineering
step, where a conceptual model of an existing ontology (being reused) is extracted
from its code; a restructuring step, where the newly obtained conceptual model of the
existing ontology is made more correct and complete with regard to the ontology or
application that is going to reuse it; and finally a forward engineering step, where the
new conceptual model is implemented. During the restructuring step the conceptual
Standard Units ontology undergoes several modifications mainly to improve its clarity
and extendibility.

We also reuse the EngMath ontologies, including Standard Units, in the construction
of Ecolingua, our ontology for description of ecological data. We did not take the
approach, though, of redesigning EngMath’s conceptual model for reuse. We only
selected and reused EngMath’s definitions that were useful to our application, rewriting

axioms where needed (Chapter 3 and Appendix A).

The EngMath ontologies have been well reused, specially in the construction of im-
plemented ontologies (Borst et al., 1997; Uschold et al., 1998), partly due to their
generality (Uschold et al., 1998) and high degree of formality (compared to most other
ontologies available for reuse), which means (re)users can rely less on implicit assump-
tions (Grosso et al., 1998).
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In (Uschold et al., 1998) EngMath is not reused to build another ontology; instead a
part of it is incorporated into a deployed aircraft design application, developed using
Specware, a system for formal specification and development of software. Broadly
speaking, the knowledge engineering steps taken in this work included: finding the
parts of EngMath, or “kernel”, that were relevant to the application; translating the
kernel from Ontolingua representation into Slang, the language of Specware, and aug-
menting the Slang specification with additional concepts not provided by the reused on-
tology; integrating the Slang specification into the application, refining it to the specific
task at hand; and, translation into Lisp, which was automatically done by Specware.
Note that in this experiment the translation from Ontolingua to Slang does not use the
Ontolingua Server’s translator; it is a manual translation from one knowledge-level
representation to another. However, this did not stop the authors from encountering
difficulties in the translation process, mainly bearing on semantic differences between
KIF, which is based on set theory, and Slang, based in turn on categorical type the-
ory. Another source of difficulty was the amount of infrastructure (or meta-ontological
definitions), such as the whole of the frame ontology, that Ontolingua definitions carry

with them.

From the above experiences and our own (Chapter 4) it is clear that reuse of formal on-
tologies rises better to the expectations of knowledge sharing when carried out within
a single knowledge-representation system. When that is not the case one has to deal
with the difficult, largely unresolved problem of reconciling mismatches between the
(inevitably biased) representation and inference styles that the distinct representation
systems commit to (Valente et al., 1999). Notice that this can also happen when trans-
lating ontologies from conceptual-level representation formalisms into implementation
languages. As argued in (Uschold et al., 1999), “there is an inherent tradeoff between
the need for different expressive capabilities for different purposes [provided by the
different formalisms and languages], and the need to share information between sys-
tems”, and in order to ease translation one ought to compromise on the expressive

power of the representation languages.

Clearly, it is by far more common for a single ontology to be reused. In (Gémez-Pérez

and Rojas-Amaya, 1999) two ontologies are reused but there is no overlap between
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them. It should be noted that reusing multiple, overlapping ontologies in one other
ontology or application brings about additional challenges, such as handling possible
conflicting definitions. The ontologies integration methodology in (Pinto and Martins,
2000, 2001) briefly touches upon the reuse of more than one ontology. It can seemingly
be applied by integrating the ontologies one by one. Although a systematic approach,
this would certainly lead to redundancy of engineering effort. Also, needless to say, the
translation problems we mentioned above would be exacerbated in a scenario of reuse
of multiple ontologies specified in distinct formalisms. A method for ontology map-
ping unrestricted to specific representation formalisms is currently under development
(Kalfoglou and Schorlemmer, 2002). To achieve such generality the method grounds
itself on channel theory and information flow theory.

The most straightforward way of assembling multiple interrelated ontologies in one in-
tegrated ontology is through theory inclusion, the strategy of the Ontolingua Server’s
translator. A different means for linking ontologies together has been proposed in the
form of ontology projections (Borst et al., 1996, 1997). These are considered ontolo-
gies in their own right which contain formalisations of mappings between ontologies
that express different viewpoints on a same domain. PhysSys is presented in this work
as an example of such an ontology, created for the purpose of engineering physical
systems modelling. The ontology projections in PhysSys are between ontologies that
conceptualise views of physical systems in terms of components — a system is a con-
figuration of components; processes — the physical processes that determine the sys-
tem’s behaviour; and math — the engineering mathematics that is used to describe the
processes. In a nutshell, the projections formalise (through a set of axioms) the mul-
tifaceted notion that physical systems consist of “components [which] are carriers of
physical processes that are described by mathematics”. The EngMath ontology from
the Ontolingua Server library is also reused here as the latter ontology. The compo-
nent and process ontologies in turn are derived from abstract ontologies of mereology,

topology and systems theory. All ontologies are specified in the Ontolingua formalism.

PhysSys provides the foundation for the design of a library of reusable model frag-
ments, called Olmeco. The fragments are possible representations of components and

their decomposition structures, of descriptions of physical processes, and of mathemat-
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ical relations, all devised based on PhysSys axioms. The ontological representation of
axioms becomes: conceptual database schema to represent components, decomposi-
tion structures, and the links between the various types of fragments; bond graphs to

represent processes; and equations to represent mathematical relations.

The library is intended for modellers of physical systems who can browse the library,
choose fragments and instantiate them to models of specific systems. Using the library
enforces an evolutionary modelling style — from the components viewpoint, via the
processes viewpoint, through to a mathematical specification of the model which can
then be executed by way of numerical simulation. The library is reported to have been
successfully used in several large-scale industrial applications, with gains in modelling

time and model quality.

The model fragments above, in their design and usage, can be considered an example
of reuse of knowledge that is founded in ontologies, where lies the main contribution
of the present thesis. Here we have a wider perspective of ontologies as a specifica-
tion technique that enables knowledge reuse (and sharing, consequently) in general
(Neches et al., 1991) — the reuse of ontologies is only one form of this where the
reused knowledge consists of the ontologies themselves. In our approach, however,
the knowledge reuse process is automated and the foundational ontology plays a more
direct role in it. Given ecological data described through the Ecolingua ontology, or
metadata, an existing model structure is reused by matching with the metadata to give
rise to new models, with ontological constraints being verified along the way. It is
possible to reuse models because we have pinpointed a synthesis mechanism that es-
tablishes connections between metadata and model structure. So, knowing how to
draw a model from metadata enables us to, conversely, find parts of the model that are

reusable by trying to fit it against new metadata.

2.2 Environmental Ontologies

There is little research on the intersection between ontologies and ecology, or envi-

ronmental sciences at large, despite the need for a standard terminology to reconcile
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conflicts of meaning amongst the multitude of fields — biology, geology, chemistry,
law, computing science, etc.— that draw on environmental concepts (Gémez-Pérez
and Rojas-Amaya, 1999). In contrast, the cousin discipline of biology, particularly
molecular biology, has been enjoying significant interest and developments in this di-
rection'. Notably, work has been done on exploring and enhancing current ontology

technologies to suit needs characteristic of the domain.

An early molecular biology ontology is EcoCyc — Encyclopedia of E. coli Genes and
Metabolism (Karp et al., 1996). It comprises a hierarchy of concepts on known genes
of E. coli, enzymes and their reactions and metabolic pathways, represented in a stan-
dard frame-based system (without other explicit axioms). In the formal ontology of
Experimental Molecular Biology (EMB) (Hafner and Fridman, 1996; Noy, 1997; Noy
and Hafner, 2000) the frame formalism and other ontological conventions are extended
to accommodate representational requirements of the field. For example, most ontolo-
gies that involve a concept of tangible objects divide them into either decomposable
objects, which have distinct parts or components (e.g., cars, other artifacts and organ-
isms), or stuff (e.g., water, air), which is distinct from decomposable objects in that
every part taken from stuff is still the same stuff. The EMB ontology adds the con-
cept of mixture to this classification. Mixtures, common in experimental biology, have
properties of both decomposable objects and stuff — a mixture can be decomposed
into the substances it is made of, and every sample from a mixture is still the same
mixture. It is argued that features such as this devised as part of the EMB ontology
should be relevant to experimental sciences in general (biology, chemistry, physics),
and also to other domains like manufacturing, which involve complex substances that

interact and undergo processes of transformation.

(Baker et al., 1999) takes the view of an ontology as a service provider in T.O., the on-
tology of the TAMBIS (Transparent Access to Multiple Biological Information Sources)

system. T.O. builds on concepts from an existing ontology of medical terminology and

IThe specialist events that have been taking place recently are an indication of such interest. For
example, there has been five editions of the annual Bio-Ontologies Workshop in conjunction with the
International Conference on Intelligent Systems for Molecular Biology (ISMB). A compilation of Bio-
Ontologies events maintained by Dr. Robert Stevens at the University of Manchester can be found at
http://www.cs.man.ac.uk/ stevensr/events.html (last accessed on 28 Oct. 2002).
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uses the Description Logics language originally developed to specify such ontology.
T.O.’s role in the TAMBIS system is to give support to a mediation service: external
applications can query for the classification of biological concepts in the ontology, and
queries in terms of these concepts can be converted by TAMBIS into requests to access

other sources round the world.

As for ecology, even though taxonomies have been in use in the field for a long time,
the work started by B.N. Niven (Niven, 1982; Abel and Niven, 1990; Niven, 1992) is
the earliest we are aware of on the definition of ecological concepts, specifically within
theoretical animal and plant ecology, in the shape of what we call today a formal ontol-
ogy (i.e., where concepts’ interpretations are defined in logic). And her motives where
similar to today’s for developing a formal ontology: to have a precise definition of the
theory with all its assumptions explicitly laid down, so that it can be communicated to
others exactly, and so that the discipline is equipped with a framework within which
specific models or theories can be constructed. Ecological concepts (e.g., environ-
ment, niche, community, etc.) were first specified in first-order logic and later in the z

language? (Spivey, 1988) that allows for hierarchical encapsulation of concepts.

We can also find some attempts in structuring and precisely defining ecological knowl-
edge as a means activity in the context of projects with wider purposes. Later in this
chapter we will see a few examples: concept classes organised in hierarchies (Lorenz
et al., 1989; Uhrmacher, 1995) in the context of object-oriented ecological modelling
systems in Section 2.3.1, and an ecological modelling ontology in the context of a

formal modelling language (Uschold, 1991) in Section 2.3.2.

The work in (Kashyap, 1999) is explicitly about building an ontology of environmental
concepts, the EDEN ontology. Like the T.O. biology ontology above it gives support
to an agent-brokering system, InfoSleuth (Bayardo et al., 1997), in the task of envi-
ronmental information retrieval (and update) from distributed resources. It is meant to
express at a semantic level concepts that are believed to be embedded in environmental
databases — examples of concepts in the paper are ‘site’ and ‘contaminant’ in rela-

tion to a land contamination database. For this reason, it was not constructed through

2Concepts of animal ecology only are formalised in z (Abel and Niven, 1990).
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traditional time-consuming knowledge acquisition methods involving domain experts.
Rather, the approach was to build on knowledge “hard-coded” on readily available
environmental information sources such as database schemas, user queries, data dic-
tionaries and standardised vocabulary. Various techniques, such as reverse engineering
of entity-relationship models from databases schemas, are applied in order to abstract
an initial ontology from these sources. Domain experts are involved at this point to
refine the initial ontology. The ontology is represented as a conceptual graph and does
not contain axiomatic knowledge. The ultimate goal, it appears, is to in this way grow
EDEN into a large-scale environmental ontology using a variety of data sources. We
find it is implausible that disparate data sources could reliably give rise to a coherent
and consistent ontology, even if restricted to the few ontological constructs (concept

names, attributes/slots, relations) of the representational formalism employed.

There have been efforts in developing an Environmental Pollutants ontology (Gémez-
Pérez and Rojas-Amaya, 1999; Pinto, 1999). When finalised it shall include concepts
on pollutants of various media (water, air, soil, etc.), methods for detecting pollutants,
and pollutants concentrations regulated by environmental legislation. A Monoatomic-
Ions sub-ontology (Pinto, 1999) — ions are indicators of pollution — has already been
built which reuses an ontology of chemical elements (Ferndndez et al., 1999) (see
Section 2.1).

Ecolingua the ontology we developed, was not intended to encompass a grand theory
of ecology. It gives a small contribution towards such a theory, mainly by formally
characterising ecological quantities that are typically found in supporting data sets of

system dynamics models.

2.3 Al Techniques in Design and Synthesis of Ecologi-

cal Models

Ecological systems make complex objects of study. We only poorly understand the in-

tricate, dynamic webs of dependencies between their innumerous aspects and compo-
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nents. In trying to follow the common “divide and conquer” strategy, one always risks
oversimplifying or misrepresenting because, as opposed to artificial systems, key com-
ponents and/or interrelations in ecological systems are likely to be unknown. Also, in
studying the dynamics of such systems it is virtually impossible to bound all the causes
and implications of change occurring in them. For reasons such as these purely ana-
lytical methods do not suffice in ecology. Traditional statistical methods, for example,
fall short due to inherent difficulties in collecting sound ecological data. Therefore,
as (Hilborn and Mangel, 1997) put, “we must rely on observation, inference, good

thinking, and models to guide our understanding of the world around us”.

Indeed, simulation models in particular are a powerful and widely used tool in envi-
ronmental studies. Modelling enables ecologists to give shape to and to refine their
understanding of complex systems by gradually filling knowledge gaps that are invari-
ably discovered in the process. Once built, models can be used for simulation and
prediction of environmental phenomena which can aid decision making in the defini-

tion and implementation of environmental policies.

2.3.1 Object-Oriented Modelling

Object orientation has been one of the computing paradigms applied to ecological
modelling, probably motivated by the great popularity of this technology since the late
80’s.

In (Lorenz et al., 1989) a tree growth model (CROWN) is designed as an object-
oriented knowledge base, justified in the assumption that this kind of representation
is close to the model conceptions of biological and ecological knowledge. Tree growth
is modelled in three levels of abstraction: the general level, where generic properties of
trees are represented; the species level, comprising species-specific properties; and the
level of individual trees. The inheritance mechanism transfers information from one
level of abstraction to the level immediately below and messages activate computation

of procedures.

In the same line of work we find EMSY, an object-oriented ecological modelling sys-
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tem (Uhrmacher, 1995). Here it is argued that a modelling system for the environmen-
tal domain should support classification of knowledge because humans tend to struc-
ture their perception of the environment into classes and subclasses (Berlin, 1978). The
emphasis is on representing natural phenomena of change of structure and strategy in
ecological system and the new ecological processes that arise from such changes. An
ecological system is represented in EMSY as a hierarchy of entity classes, where each
entity has associated with it at a time #: a set of attributes; a set of rules, which defines
changes the entity is subjected to; its composition (or sub-entities); its environment,
i.e., the other entities that directly influence the entity or are influenced by it; and its
coupling structure, which describes the specific influence relations with the other enti-
ties in the environment. The object-oriented inheritance mechanism proves useful, for
example, to model environmental structural changes over time caused by (or inherited

from) changes in individual entities.

The Object-Oriented (or frame-based) paradigm is present in part of our work, not in
the representation of models as in (Lorenz et al., 1989) and (Uhrmacher, 1995) above
but in the structuring of Ecolingua (Chapters 3 and Appendix A), an ontology we have
engineered through which ecological data is described to support model synthesis.
However, Ecolingua’s frame-based structure was not a deliberate choice but imposed
by the Ontolingua Server. In fact, in ontology design in general it is standard to struc-

ture ontological concepts as a class hierarchy.

2.3.2 Logic-Based Modelling

Our two model synthesisers, Synthesis-0 and Synthesis-®_ (Chapters 6, 7 and 8) are
logic programs, succeeding extensive work on the exploration of logic programming
to support the construction of ecological simulation models. Logic programming tech-
niques have been proven useful to support, for example, guidance during model con-
struction (Robertson et al., 1995; Castro, 1999), handling of qualitative information,
comparative analysis of ecological knowledge bases, and assistance in model valida-
tion (e.g., justification of reasoning steps took by a decision support system to suggest

a decision) (Robertson et al., 1995).



22 Chapter 2. Literature Survey

An initial motivation for this line of work was to use logic to improve both the rigour
and accessibility of ecological modelling (Uschold et al., 1984; Muetzelfeldt et al.,
1989). It is believed that ecologists, who usually have little or no programming back-
ground, have less difficulty with a declarative logic-based modelling style than with
conventional programming-oriented modelling approaches where they are exposed to

unwieldy and distracting implementation details (Castro, 1999).

Early work on improving accessibility of computer-based modelling to non-
programmers is ECO, an intelligent front-end for ecological system dynamics mod-
elling (Uschold et al., 1984). ECO allows a user to engage with the modelling system
in free-form dialogues using ecological terminology. The system then integrates the
modeller’s input with a built-in knowledge base to produce a model in FORTRAN,
which can be executed. The built-in knowledge base is composed of a library of eco-
logical entities (lakes, trees, etc.), a library of ecological processes (respiration, evap-
oration, etc.), and a library of model modules, each module with associated inputs and
outputs indicating its usage (e.g., an equation defining a respiration process, which

would be an output, and its input variables such as temperature).

Follow-up works to the above are (Bundy and Uschold, 1989; Uschold, 1990, 1991) re-
sulting in the development of the Elklogic modelling language based on typed lambda
calculus. The language was designed to tackle two key hindering factors in model
construction in general as argued in (Uschold, 1991), namely, the vast size of the mod-
elling search space and a wide conceptual gap between available tools and the way that

users think about their modelling problems.

The representational constructs in Elklogic derive from an ‘ecological modelling knowl-
edge ontology’ that characterises various kinds of ecological information in four lev-
els of abstraction: general, system-of-interest, user-modelling system dialogue, and
runnable model levels. Ecolingua, our ecological metadata ontology, incorporates
some of the concepts in the general and system-of-interest levels of abstraction. Elk-
logic’s logical foundation provides the language with the versatility needed to repre-
sent knowledge belonging to all four levels of abstraction. In that resides one of the

advantages of applying logic to ecological modelling. With a single representational
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language one can specify general modelling knowledge, information on the specific
modelling problem, and the model itself (Robertson et al., 1991). Furthermore, such
uniformity has positive repercussions on the resulting models and their construction.
Applying Elklogic, for example, led to enhanced consistency between the models and

their domain, and to better structuring of the modelling search space (Uschold, 1991).

Elklogic also has interesting inferential features such as induction of set attributes.
For example, from the weight attribute of an individual animal it can be inferred that
attributes like average, total or maximum weight apply to sets (groups) of the animal.
We believe this kind of attribute induction would be useful in automating estimation of
parameters of system dynamics models, in a modelling stage posterior to the design of

model structure to which our synthesis systems provide automated support (see Section
10.2.4).

The overall assessment in (Uschold, 1991) of the Elklogic language and ELK, the
system built on it, is that they mostly support structuring and pruning of the modelling
search space but are weak in supporting heuristic guidance through the search space.
The primary reason given for this being that the kind of heuristic knowledge needed to

achieve so, used by model designers, is difficult to acquire and generalise.

Ecological modelling is a good example of a human activity where design decisions are
made under uncertainty. Models are built based on assumptions and guess-estimations
as much as they are on factual information. A consensual understanding about how a
complex ecological system works is extremely rare. Thus an ecological model can be
thought of as the formulation of an argument by the modeller about how they think the
system works (Robertson et al., 1991). In such a scenario of incomplete, subjective
knowledge, logic lends itself a convenient language for it can represent both whatever
expertise is available as well as assumptions and forms of argument (Robertson et al.,
1995). Instead of the traditional black-box models, the interpretation of the real-world
that the model represents becomes accessible and the chain of reasoning followed to

obtain simulation results can be reconstructed.

(Brilhante, 1996) and (Robertson and Agusti, 1999, Chapter 9) take advantage of this

capability to make explicit to users sources of uncertainty embedded in simulation
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models, such as background information on the data that calibrate the model (when,
from where and in what conditions the data were collected). Sources of uncertainty are
tagged to the logic-based specification of the model, in a style that resembles endorse-
ments in Cohen’s theory of endorsements (Cohen, 1985). During simulation, as values
for model variables are calculated from other variables, the sources of uncertainty are
accordingly propagated, combined, and then presented to the model user. In this way
the analysis of simulation results becomes more realistically informed — traditionally
simulation results are given with no account of uncertainty in the model. The user
can now adjust her level of trust in the model according to the sources of uncertainty

present and take that into account in her decision-making.

To date (Robertson et al., 1991) is the most extensive reference in this topic containing
a compilation of logic-based approaches and techniques applied to ecological mod-
elling. Our model synthesis systems Synthesis-0 and Synthesis-& incorporate some
of the techniques presented in this work, in particular, the use of abduction to bridge
available knowledge (domain knowledge in their work, metadata in ours) and model
structure, and meta-interpretation and efficiency-improving techniques (Sections 7.4
and 7.6).

All the references cited in this section lay emphasis on logic-based representation of
ecological modelling expertise to support automated modelling. It had not yet been
examined how representations of ecological data could contribute to that. Our work
on model synthesis fills this gap. Based on common modelling practices we have
designed synthesis heuristics that are able to populate the modelling search space with
model components that can be justified in the properties of the data behind the model.

This is realised in two synthesis systems which we describe in Chapters 6, 7 and 8.

2.3.3 Model Induction and Equation Discovery

Model Induction, part of the Machine Learning field, is an approach to derived mod-
els from data. Figure 2.1 summarises the Machine Learning task (Kubat et al., 1997)

viewed from a modelling perspective. Data, together with essential background knowl-
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edge, are used as examples from which a general model can be induced (learnt). The
models come in a variety of forms such as if-then rules, equations, decision and re-

gression trees.

Data
\ Learning

Algorithm
Background / .
Knowledge

—> Model

Figure 2.1: The Machine Learning task from a modelling perspective.

This style of knowledge induction is especially attractive for ill-defined or poorly un-
derstood problems that lack algorithmic solutions. In other words, given that we fail
to formally state the problem and/or analytically solve it and all we have are factual
examples, machine learning attempts to extract general concepts from the examples
by finding patterns in them. As we mentioned in the beginning of this section, the

environmental sciences teem with problems of this nature.

In the series (Kompare et al., 1994; DZeroski et al., 1997) machine learning techniques
are used on automated modelling of ecological systems. The first paper discusses early
results such as the RETIS system which induces regression trees from data related to
algal growth in the Lagoon of Venice (Karali¢, 1992). In the second paper in the
series the induction algorithm CN2 (Clark and Niblett, 1989) learns if-then rules for
classification of water quality of British and Slovenian rivers based on biological and

chemical attributes of the water.

Of more interest to us are systems that discover behaviour patterns in ecological data
and express them as equations, the so-called equation discovery systems, and in par-
ticular systems that induce differential equations as these are closely related to system

dynamics models.

Lagrange (DZeroski and Todorovski, 1993, 1995) is one of such systems. It has also
been applied to data of the Lagoon of Venice. Its performance was found to be good
on synthetic data but poor on actual field data due to the problems of insufficient, in-

adequate or inaccurate data, which are typical of ecological data sets. The Goldhorn
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system (KriZman et al., 1995) upgrades Lagrange by using numerical integration in-
stead of derivation to reduce sensitivity to noisy data. Also, it induces a smaller number
of equations compared to Lagrange. The Lagramge system (Todorovski and DZeroski,
1997) is yet another in this strand of equation discovery systems. The technique it
introduces consists of restricting the equation hypothesis space by employing declar-
ative bias, i.e., pieces of domain specific knowledge encoded in an easily modifiable
form. Lagramge uses context-free grammars prescribing, for example, the composition
of common forms of equation in the ecological domain from primitive mathematical
operators and functions. The search for equations is then restricted to the space delin-
eated by the grammar. The system outperformed its two predecessors in experiments
using data of both artificial and real systems. The latter, though, were systems of
limited complexity — the two-poles-on-cart system® was the most complex tackled.
Moreover, the approach has the drawback of strong reliance on the adequacy of the
declarative bias employed. For ecological systems of real-world complexity this is by
and large difficult to attain. And even with the declarative bias, Lagramge does not dra-
matically reduces, in relation to Lagrange and Goldhorn, the large number of spurious
or hard-to-interpret equations induced. A survey on this family of equation discovery

system applied to ecology can be found in (DZeroski et al., 1999).

In summary, there exist induction algorithms and systems that are capable of extracting
models from ecological data but in a smaller and simpler scale than is desirable for
problems of real interest in this domain. Real-world ecological databases are inevitably
partial, and noisier, larger and more complex than the usual smoothed, single-tabled

databases tackled in published model induction experiments.

The considerations on future work in some of these publications point in the direction
of further exploring techniques such as inductive logic programming to combine data,
which is mostly quantitative, with symbolic, qualitative domain knowledge to provide
more guidance to the induction process. Our work on model synthesis shares with this
view on use of qualitative knowledge in that we do not use quantitative data as starting

point for synthesis but described properties of the data.

3 A system where the task is to balance two poles, one hinged on top of the other, which in turn are
hinged on the top of a cart that moves along a horizontal track.
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2.3.4 Compositional Modelling

Automating the construction of models in general is the ambition of the Automated
Modelling field. Modelling processes of various disciplines are investigated and the
modelling knowledge is explicitly represented, aiming at developing computer tools
able to automatically follow modelling principles (Xia and Smith, 1996). Composi-
tional modelling (Falkenhainer and Forbus, 1991) is the leading automated modelling
approach. In a nutshell, provided a modelling scenario and a library of model frag-
ments, these systems select fragments from the library to try and compose them into
a model that fulfills given requirements. The fragments are often referred to as model
‘building blocks’,

In (Rickel, 1995; Rickel and Porter, 199’}')4 we find an application of compositional
modelling to an ecology-related domain, namely plant physiology, chosen as represen-
tative of complex systems. The compositional modeller built, called TRIPEL, takes as
input the variables of the physical system (e.g., variables involved in plant photosyn-
thesis), the influences among the variables, domain knowledge from a multipurpose
biology knowledge base, and a prediction question with driving condition(s) and vari-
able(s) of interest (e.g., “How would decreasing soil moisture affect a plant’s transpira-
tion rate?” — ‘decreasing soil moisture’ is the driving condition and the ‘plant’s tran-
spiration rate’ is the variable of interest). Given that, the compositional algorithm gives
the minimal qualitative model composed of those variables and their inter-influences
that can adequately answer the prediction question. Model fragments are available as
part of a model of the entire system-of-interest. The algorithm searches for the small-
est sub-model that suffices to answer the prediction question posed. It is argued that
the system would also be able to build numerical models comprising algebraic and

ordinary differential equations.

(Keppens, 2002) presents a novel compositional modelling approach that has been mo-
tivated by challenging requirements of automated ecological modelling that existing

techniques fail to fulfill. Namely, the non-monotonic nature of modelling reasoning,

4We will refer again to this work in Section 6.1.3.3 when looking at our use of influences between
system-of-interest variables in relation to other approaches.
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modellers’ subjective and idiosyncratic preferences for design choices over others, the
diversity of model representation formalisms, and model “disaggregation” — e.g., a
population partitioned into sub-populations or individuals — which does not corre-
spond to merely adjusting the model’s level of detail (or granularity) as in the physical

systems domain.

As givens the compositional ecological modeller has a modelling scenario (e.g., dy-
namics of predator and prey populations), a knowledge base of model fragments, and
model fragment preferences. The modelling process starts with the knowledge base
being exhaustively instantiated to the scenario, and in this way, a space of all possible
partial models is generated. These partial models may then go through a process of
disaggregation where variables and/or equations are replaced by corresponding sets of
more detailed variables and/or equations. At this stage, the problem of selecting and
combining a set of partial models (from the model space) that is consistent and sat-
isfies the modelling assumptions is automatically translated into a dynamic constraint
satisfaction problem (Mittal and Falkenhainer, 1990) of the activity constraint type
(aDCSP) (Miguel, 2001). These are CSPs extended with special constraints, so called
activity constraints, which are able to introduce or remove attributes and their con-
straints to/from the problem space. The advantage of adopting a CSP approach is that
it allows the use of existing, well-studied constraint-satisfaction algorithms, avoiding
the development of yet another ad hoc compositional modelling algorithm. Finally,
user preferences for model fragments are incorporated to form a dynamic preference
constraint satisfaction problem (DPCSP). Consequently, the model solutions yielded
not only satisfy the standard modelling constraints defined but also take into account

preferences of individual users.

As we have seen in the above systems, for compositional modellers to work appro-
priate model fragments must exist in the first place. But model fragment libraries are
bound to be incomplete since it is not possible to anticipate all the fragments that will
be needed. (Clark and Porter, 1997) presents a bold approach to tackle this problem of
unpredictability of knowledge components that will be required to perform an intelli-
gent task. They propose knowledge base components as abstract patterns of interacting

concepts to act as abstract model fragments. On an ‘as-needed’ basis, domain-specific
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and/or task-specific knowledge components can be dynamically synthesised from ap-

plicable abstract patterns by binding their objects to objects of the domain/task.

Without fragments dynamically constructed, an a priori complete and coherent de-
scription of them is required. The good news is that because the fragments are com-
posable, if they are at the right level of generality not too many of them are needed to
form a wide range of models. But still, as is typical of knowledge modelling in general,
acquiring an adequate library of fragments is considered to be the main limitation of
compositional modelling (Keppens and Shen, 2001).

In contrast with our approach to model synthesis, we have ecological metadata as ini-
tial building blocks; these are mapped into model components — that can be broadly
thought of as model fragments — which are assembled into models, again according to
relations in the metadata. The knowledge acquisition effort involved here consists only
of describing an existing ecological dataset through the terms of our domain-specific
ontology, as we explain and exemplify in Chapter 5. Also, the synthesis algorithms
do not require a pre-existing super-model, nor an exhaustive set of partial models to
search from — models are synthesised incrementally through transformation of meta-

data evidence into model structure. The algorithms are shown in Chapters 7 and 8.

2.4 An Introduction to System Dynamics Modelling

This thesis concerns synthesis of ecological models of the system dynamics kind. This
section provides some initial background on this modelling discipline, to which we

will add according to need in Chapters 5 and 6.

System dynamics was first proposed in the early 60’s by J. Forrester as a mathematical
approach based on information-feedback theory to study the behaviour of industrial
systems through modelling and simulation (Forrester, 1961). It was later applied to the
modelling of socioeconomic systems as well but became best known for its applica-
tions to environmental studies (Haefner, 1996; Grant et al., 1997; Ford, 1999). Very

influential to the popularity of system dynamics was the book The Limits to Growth
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(Meadows et al., 1972) where simulations of a global system model showed that we
were heading towards an unsustainable world, given the established rates of food sup-

ply and populational and industrial growth.

The defining characteristic of systems dynamics modelling is its emphasis on connec-
tions between system components. It considers these connections to be more influen-
tial to the dynamics of the system than the components themselves. The goal of model

design is to represent such connections appropriately in both scale and scope.

A complete specification of a system dynamics model consists of a conceptual model
and its corresponding quantitative model. The conceptual model is specified as a struc-
tural diagram (known as flow diagram or Forrester diagram), such as the one in Figure
2.2, with various types of elements and connections between them. This structure is
underlaid by a mathematical specification consisting of a set of ordinary linear and
non-linear differential equations. The equations model continuous change in the real
world system with rates of change defined as functions of the current state of the sys-
tem (Robertson et al., 1991). To run or simulate a model means in effect to calculate
the changing values of the model’s variables through the equations as simulation time
progresses. The values of parameters, which are unchanging, and initial values for state
variables comprise the settings to start up a simulation. Typically, simulated values of
variables are plotted in graphs so that their behaviour, reflecting some dynamic aspect
of the system-of-interest, can be observed for exploratory, descriptive or predictive

purposes.

Elements and connections that compose system dynamics model diagrams can be of

the following types>:

State variables are the elements that define the state of the model as it changes over
time. Each state variable represents accumulated material in some part or entity

of the ecological system.

Flows are both elements and connections. They represent processes that regulate

3System dynamics model components are known by a variety of terms other than the ones we use
here. Some examples of terms are stock, compartment and level for state variable; rate for flow; auxiliary
variable for intermediate variable; exogenous variable for driving variable; and constant for parameter.
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transfer of material to and from state variables — an incoming flow into a state
variable increases the quantity of material in it; conversely an outgoing flow de-
creases the quantity of material in the state variable. Flows can occur between
state variables, from the outside (i.e., from somewhere in the system beyond the

model’s scope) to a state variable, or from a state variable to the outside.

Links are connections only, representing directed information transfer between pairs
of elements in the model (as opposed to material transfer represented by flows).
A link from an element A to an element B denotes that B is a function of, or
is influenced by, A. A model element can be linked in both directions (i.e., can
be influence and be influenced by) multiple other elements. The initial element
of a link can be of any type but the terminal element can only be a flow or

intermediate variable.

Intermediate variables, driving variables and parameters are the remaining types
of model elements which are connected to state variables, flows and between
themselves through links. For an element to be an intermediate variable it has to
be at the end of at least one link, that is it has to be influenced by at least one
other element in the model. Driving variables and parameters, on the other hand,
are only sources of influence links. Parameters’ values remain constant during
simulation, while driving variables’ values may change due to external factors

such as simulation time.

Figure 2.2 shows an abbreviated version of a system dynamics model diagram® from
(Grant et al., 1997). The model is intended to support management, with a view to
increase profit, of a farm pond where fish are periodically stocked and later harvested
to be sold. Profit is calculated based on the biomass of fish harvested , which in turn
depends on the total biomass of fish accumulated in the pond. The accumulation, or
growth, of fish depends on the amount of plants in the pond as fish feed on them, so

the dynamics of aquatic plants biomass is also included in the model.

To further illustrate how dependencies between factors in the system-of-interest are

represented in the model, let us look at weight of individual fish (intermediate vari-

SWe will again make reference to the model in Figure 2.2 in several of the forthcoming chapters.
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Figure 2.2: System dynamics diagrams exemplified: a fish pond management model.

able indiv_fish_-weight) and its relationships with other components in the model.
The value of this variable changes over time and is calculated as the amount of fish
biomass (state variable fish_biomass) divided by the number of fish stocked (parameter
number_fish_stocked). In turn, the weight of individual fish influences the processes of
respiration and excretion (flows respiration and excretion) which decrease fish biomass
in the pond. The weight of individual fish also influences the rate of the process of
consumption of plants by fish (flow consumption) which increases fish biomass in the
pond. These three flows plus stocking and harvest regulate the amount of fish biomass
which feeds back into the calculation of the weight of individual fish.

The diagrammatic conceptual models exemplified above are what make system dy-
namics more appealing in comparison with purely equation-based models. More than
just a graphical representation the diagrams provide a rich framework for the quan-
titative specification of the model. For example, state variable equations are always
differential equations with respect to time defined as the sum of the incoming flows to
the state variable minus the sum of its outgoing flows; an equation defining a flow (or
intermediate variable) must involve all the variables connected to the flow through an

incoming link.
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This thesis gives techniques for the synthesis of system dynamics models in their con-
ceptual form. In Section 10.2.4 we draw considerations on linking synthesised con-

ceptual models to subsequent quantitative models.
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Chapter 3

The Ecolingua Ontology

In Chapter 1 we defined our task of synthesis of structural system dynamics models
informed by properties of ecological data (ecological metadata). Because metadata is
a higher-level, more compact representation of data, exploring metadata for synthesis
eases the problems associated with inducing model structure from large volumes of

data in the style of model induction.

However, a synthesis system of this kind can only be attractive if it is able to work
without being restricted to metadata originating from specific data sets. Predefining
a detailed knowledge base encompassing properties of every ecological data set is
infeasible. Instead we can have a unifying representation language of wide application

whose terms are adequate to describe ecological data sets in general.

A language of this kind is an ontology: a shared understanding of some domain of
interest, specified in the form of definitions of representational vocabulary and ax-
ioms that constrain interpretations over this vocabulary (Uschold and Gruninger, 1996,
Neches et al., 1991).

Ecolingua is a domain-specific prototypical ontology we have developed to serve as
a vocabulary for property-level descriptions of ecological data from which structures
of simulation models can be synthesised. It has been conceptualised within a view

of the world as objects, properties of and relations between objects, and formalised

37
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in first-order logic. The core of Ecolingua consists of a classification of quantitative
ecological data, the main objects in the domain, according to their physical dimension

— a fundamental property of all physical quantities.

This generic vocabulary is then employed to describe (or is instantiated to) specific
data sets. The description is not done automatically. Human judgement determines
the ontological classes and relations that appropriately describe the objects in each
data set. Upon a description of a data set, our systems — Synthesis-0 and Synthesis-
R_— synthesise structural models with the desirable feature of consistency with the

properties of their supporting data.

Ecolingua is a composition of two ontologies: a main ontology of ecological data and

a small ontology of ecological model requirements (Figure 3.1).

Ecological Data
Ontology Ecolingua
Egtlogical Mode]
Requirements
Ontolog

Figure 3.1: Ecolingua’s composition: the Ecological Data Ontology and the Model Re-

quirements Ontology.

The two ontologies are presented in Sections 3.2 and 3.3, after Section 3.1 where we
comment on the textual and axiomatic forms of the Ecolingua vocabulary definitions.
The lower-level relations in Ecolingua are presented in Appendix A with references to

their conceptual foundation, the EngMath ontology.

Ecolingua was not itself an aim of this project, but a necessary means for developing
and demonstrating the techniques of model synthesis based on metadata, and ontology-
enabled reuse of model designs. It is intended as a prototypical, proof-of-principle

ontology, as opposed to a finished, deployed ontology for ecological data description.
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Reuse of ontologies on Ecolingua’s engineering

One of the pursued goals of the knowledge sharing line of research is reusability of
ontologies. Libraries of ontologies are already available for reuse on the World Wide
Web — e.g., the Ontolingua Server library (Ontolingua Server, 1995); the DARPA
Agent Markup Language library (DAML, 2002); the Protégé library (Protégé, 2000)

Motivated by this potential and also by the multidisciplinary nature of ecological data,
we designed Ecolingua trying to build on existing ontologies, having chosen as the

main reference the extensive ontology library of the Ontolingua Server.

The consideration of Ecolingua’s intended usage was another important factor in its
design. We share the view that, no different from knowledge engineering endeavours
in general, an ontology is more likely to be effectively used when its design is guided
not only by the domain but also by the tasks to be performed by the systems that
incorporate the ontology (Uschold et al., 1998). An indication of this is general pur-
pose ontologies not yet being practically and widely applied despite long-term efforts
such as the Cyc project (Cyc, 1995). In Chapter 4 we report on the difficulties we
encountered on tentatively engineering Ecolingua through practical reuse of a number

of specific and general ontologies.

3.1 Forms of Concept Definitions

We consider Ecolingua a semi-formal ontology (Uschold and Gruninger, 1996). Most
of its concepts have textual and axiomatic definitions, the latter intended to more pre-
cisely constrain the interpretation, and thus appropriate uses, of the concepts. With the
axiomatic definitions automated proofs are possible. In Synthesis-0 and Synthesis-&,
data set descriptions are checked for compliance with Ecolingua. Nevertheless, Ecol-
ingua does not qualify as fully formal in that logical properties such as soundness and

completeness are not claimed or proved.

There are two reasons for the lack of axioms for some concepts. First, concepts such

as ecological entity and event have a broad meaning and are inherently hard to con-
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strain. This is why in general ontologies of commonsense knowledge concepts tend
not to have explicit axiomatic definitions. The second reason is that Ecolingua is not a
mature, polished ontology. Axiomatic definitions should be added and refined as the
ontology evolves. For example, a compatibility relation is defined between materials
and ecological entities. The relation’s present axiom merely constrains the classes of
its arguments, but domain knowledge should be formalised to better characterise the

relation.

The current Ecolingua axioms are represented as FOL well-formed formulae of the

form:
Cpt — Ctt
That is, if Cpt holds then Ctz must hold, where:
e (Cpt is an atomic sentence representing an Ecolingua concept.

e (1t is a sentence (possibly with connectives) that constrains the interpretation of

Cpt.

The sentences Cpt make up Ecolingua vocabulary, i.e., the ontology’s descriptional
terms. One describes an ecological data set by instantiating these sentences. In Chapter

5 we discuss through example the process of describing a data set in Ecolingua.

Most relations in Ctt, the consequents of the axioms, are “internal” in that they are not
used as terms to describe data. We call the set of these relations low-level Ecolingua,
which consists of a rendition of parts of the EngMath ontology. Low-level Ecolingua

is specified in Appendix A.

The Ecolingua vocabulary is defined in the next two sections. In the axioms, variables

not explicitly quantified are assumed universally quantified.

3.2 The Ecological Data Ontology

Figure 3.2 shows the class hierarchy of the Ecological Data Ontology, with its two

main sections of Contextual Data classes and Quantity classes.
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Figure 3.2: Class hierarchy of the Ecological Data Ontology.

The hierarchy comprises Ecolingua classes and external classes defined in other ontolo-
gies, namely, Physical-Quantities, Standard-Dimensions, Okbc-Ontology and Hpkb-
Upper-Level, all of which are part of the Ontolingua Server’s library of ontologies.
External classes are denoted Class @Ontology, a notation we borrow from the On-

tolingua Server.

The Physical-Quantities and Standard-Dimensions ontologies both belong to the Eng-
Math family of ontologies (Gruber and Olsen, 1994) on which we comment at various
points throughout the chapter. The Okbc-Ontology is the ontology of the generic frame
protocol (Chaudhri et al., 1998b). The Hpkb-Upper-Level ontology is a public version
of the upper level of the generic ontology Cyc (Lenat and Guha, 1990), containing
about 3000 concepts of commonsense knowledge.

The arcs in the hierarchy represent subclass relations, bottom up, e.g., the “Weight of”



42 Chapter 3. The Ecolingua Ontology

class is a subclass of the ‘Quantity’ class. Ecolingua leaf classes are mutually disjoint,
that is, an object can only belong to one of them. We distinguish two different types of
subclass relations, indicated by the bold and dashed arcs in Figure 3.2. Bold arcs cor-
respond to full, formal subclass relations. Dashed arcs, on the other hand, correspond
to relations between Ecolingua classes and external classes that do not hold beyond
the conceptual level, i.e., definitions the (external) class involves are not incorporated
by the (Ecolingua) subclass. We call these referential subclass relations. In the forth-
coming definitions of the Ecolingua classes we refer to textual and axiomatic KIF'
definitions of their external superclasses as they appear in the Ontolingua Server. In
Chapter 4 we examine what led such subclass relations to hold at the conceptual level

only.

As mentioned earlier, Ecolingua is not a definitive, complete ontology, therefore Figure

3.2 is far from representing an exhaustive classification of ecological data.

3.2.1 Quantity

The bulk of ecological data consist of numeric values representing measurements of
attributes of entities and processes in ecological systems. An ecological data ontology,

hence, must contain concepts that capture properties of this kind of data.

The most intrinsic property of a measurement value lies on the physical nature, or
dimension, of what the value quantifies (Ellis, 1966). For example, a measure of
weight is intrinsically different from a measure of distance because they belong to
different physical dimensions, mass® and length respectively. A single physical dimen-
sion can characterise measurement values regardless of the measured objects (entities,
processes) and units of measure used — grams of algae and gigatons of metal, say,
are not intrinsically different. Their common physical dimension is implicit in ‘grams’

and ‘gigatons’, both units of the mass dimension.

The understanding of this fundamental relation between ecological measurements and

'Knowledge Interchange Format (Genesereth and Fikes, 1992).
2Or force, if rigorously interpreted (see Section 3.2.1.4).
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physical dimensions drew our attention towards the EngMath family of ontologies,
which provides a well-founded and well-defined conceptualisation of quantities and

physical dimensions.

“A physical quantity is a measure of some quantifiable aspect of the modelled world
[and differs from] a purely numeric entity like a real number [because it] is charac-
terised by a physical dimension” (Gruber and Olsen, 1994). All defined properties in
EngMath’s conceptualisation of physical quantities are applicable to ecological mea-

surements:

e cvery ecological measurement has an intrinsic physical dimension — e.g., veg-
etation biomass is of the mass dimension, the height of a tree is of the length

dimension;

e the physical dimension of an ecological measurement can be a composition of
other dimensions through multiplication and exponentiation to a real power —
e.g., the amount of a fertiliser applied to soil every month has the composite

dimension mass/time;

e ccological measurements can be dimensionless — e.g., number of individuals in

a population; and can be non-physical — e.g., profit from a fishing harvest;

e comparisons and algebraic operations (including unit conversion) can be mean-
ingfully applied to ecological measurements, provided that their dimensions are
homogeneous — e.g., you could add or compare an amount of some chemical
to an amount of biomass (both of of the mass dimension), but it would make no

sense to add or compare, an amount of biomass to, say, an amount of time.

Also relevant to Ecolingua is the EngMath conceptualisation of units of measure. They
are defined as physical quantities like all others, with the same properties. The only
thing special about a unit of measure is that it is established by convention as an abso-
lute amount of something to be used as a standard reference for quantities of the same
dimension (we give an axiomatisation of units of measure in Appendix A). Therefore,
one can identify the physical dimension of a quantity from the unit of measure in which

it is expressed (Massey, 1986).
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Ecolingua takes advantage of this. Each ecological quantity class is characterised by
a physical dimension, which is (automatically) elicited from the unit of measure with
which the quantities are specified. In this way, describing a data set in Ecolingua
requires no additional effort since it is of course commonplace to have the units of
measure of the data specified, whereas the physical dimension of the data is not part of

the everyday vocabulary of ecologists.

The magnitude (value) of physical quantities is defined in EngMath as ““a binary func-
tion that maps a quantity and unit of measure to a numeric value (a dimensionless
quantity) ... [for example,] the magnitude of 50 kg in kilogrammes is 50 ... .” Ecol-
ingua is not concerned with magnitudes. As we shall see shortly, numeric values do
not have a role to play in Ecolingua’s characterisation of quantities in terms of their
physical dimensions and properties of the objects they measure. This also excludes

unit conversion from Ecolingua’s axiomatisation.

EngMath divides physical quantities into constant quantities and function quantities.
Constant quantities are mappings of physical things to quantities, whereas function
quantities are mappings, with any finite number of arguments, of constant quantities
to other constant quantities (e.g., the altitude of a particle at particular times is a unary
function quantity). The ontology also draws a distinction between scalars and higher-
order tensors. Scalar quantities have size (or magnitude) but not direction, their mag-
nitudes are real numbers and as such have a linear order. Higher-order tensors, such as
vectors, cannot be fully characterised by ordered magnitude alone, they require an ad-
ditional statement such as direction or orientation. The classes of ecological quantities

defined in Ecolingua apply to constant, scalar, physical quantities.

In the axioms Cpt — Crt (Section 3.1) that follow defining each type of ecological
quantity, the first argument in the Cpr atomic sentences represents an identifier, a string
constant, for each instance of that quantity type (see examples in Chapter 5 and Ap-

pendix B).
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3.2.1.1 Amount quantity

Many quantities in ecology represent an amount of something contained (or how much
of something there is) in a thing or place, for example, carbon content in leaves, wa-
ter in a lake, energy stored in an animal’s body. Clearly, not exclusive to ecology,
amount of something appears to be a commonsense notion having had mention in
works on qualitative modelling (Forbus, 1984) and commonsense reasoning (Davis,
1990, Chapter 4).

Material Quantity

Quantities that represent an amount of material things are of the mass dimension (in-
tuitively a ‘quantity of matter’ (Massey, 1986)). For such quantities we define the
amount of material class. It is a referential subclass of the Mass-Quantity@Standard-

Dimensions class (Figure 3.2), defined in the Ontolingua Server as:
(& (Quantity.Dimension ?X Mass-Dimension) (Mass-Quantity?X))

e The Amount of Material class — amt_of mat(A,Mt,E,U)
If A identifies a measure of amount of material Mt in E specified in U then Mt is a

material, E is an entity which is compatible with Mt, and U is a unit of mass:

amt_of mat(A,Mt,E,U) —
material(Mt) A eco_entity(E) N compatible(Mt,E) N

mass_unit(U)

Other quantities represent measurements of amount of material in relation to space,
e.g., amount of biomass in a crop acre, or of timber harvested in a hectare of a managed
forest. The dimension of such quantities is mass over some power of length, most
commonly area (lengrhz) and volume (Je;:gr}:3). We define the material density class
for these quantities. It is a referential subclass of the Density-Quantity @Standard-
Dimensions class (Figure 3.2) defined in the Ontolingua Server as:

(< (Density-Quantity ?X0)

(Quantity.Dimension ?X0 Density-Dimension))
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However, for our Material Density class the exponent of the length dimension is not
restricted to three? (volume) as in the Ontolingua Server’s definition of the density
physical dimension:
(= Density-Dimension
(* Mass-Dimension (Expt Length-Dimension — 3)))
e The Material Density class — mat_dens(A,Mt,E,U)
If A identifies a measure of density of Mt in E specified in U then Mt is a material, E
is an entity which is compatible with Mt, and U is equivalent to an expression Um[UI,

where Um is a unit of mass and Ul is a unit of some power of length:

mat_dens(A,Mt,E,U) —
material(Mt) A eco_entity(E) N\ compatible(Mt,E) A
3 Um, Ul . eqv_expr(U,Um/Ul) N\ mass_unit(Um) A length" unit(Ul)

The eqgv_expr relation used above and in upcoming axioms holds between expressions
that are syntactically identical or between expressions that might be written differently
but are algebraically equivalent, for example, the expressions Um x (1/Ul) or Ul~" x

Um are equivalent to Um/UL.

Amount of time

Quantities can also represent amounts of immaterial things, time being a common
example. The duration of a sampling campaign and the gestation period of females of
a species are examples of ecological quantities of the amount of time class. The class
is a referential subclass of the Time-Quantity @Standard-Dimensions class (Figure
3.2) defined in the Ontolingua Server as “conceptually, a time-quantity is an amount

(duration) of time ...":

(& (Quantity.Dimension ?X Time-Dimension) (Time-Quantity ?X))

3See also Appendix A.
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e The Amount of Time class — amt_of _time(A,Ev,U)
If A identifies a measure of an amount of time of Ev specified in U then Ev is an event

and U is a unit of time:

amt_of _time(A,Ev,U) —
event(Ev) A

time_unit(U)

Non-Physical Quantity

Despite the name, the ‘physical quantity’ concept in EngMath allows for so-called non-
physical quantities. These would be quantities of new or non-standard dimensions,
which can be defined as long as all the properties of physical quantities, as already
defined in the ontology, apply to them. That is, the quantities have an (new or non-
standard) intrinsic dimension which makes them comparable and which is amenable
to algebraic operations and combination with other dimensions. (Gruber and Olsen,
1994) gives a monetary dimension as an example of a valid non-physical dimension:
“one can accumulate sums of money, do currency conversion, compare relative wealth”
and one can combine amount of money with time, for example, to give a rate of infla-

tion. Can you think of other examples of new dimensions?

The «class of non-physical quantities is a referential subclass of
Constant-Quantity @Physical-Quantities (Figure 3.2) defined in the Ontolin-
gua Server. We quote here only an excerpt of the natural-language definition of the
Constant-Quantity class in the Server (see Section 3.2.1): “A Constant-Quantity
is a constant value of some Physical-Quantity, like 3 meters or 55 miles per hour.
Constant quantities are distinguished from function quantities, which map some

quantities to other quantities.”

Ecological data often involve measurements of money concerning some economical
aspect of the system-of-interest, e.g., profit given by a managed aquatic or forest sys-
tem or balance of a cooperative’s bank account. We define Amount of Money as a

class of non-physical quantities for this kind of data.
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e The Amount of Money class — amt_of money(A,E,U)
If A identifies a measure of amount of money in E specified in U then E is an entity and

U is a unit of money:

amt_of -money(A,E,U) —
eco_entity(E) N

money_unit(U)

3.2.1.2 Time-related Rate Quantity

Generally, rates express a quantity in relation to another. In ecology, rates com-
monly refer to instantaneous measures of processes of movement or transformation
of something occurring over time, for example, decay of vegetation biomass every
year, consumption of food by an animal each day. Therefore, a class of time-related
rate quantities is defined in Ecolingua. The class is also a referential subclass of the
Constant-Quantity @Physical-Quantities class (Figure 3.2) defined in the Ontolin-

gua Server.

The absolute rate class is for measures of processes where an amount of some ma-
terial is processed over time. These quantities have a composite dimension of mass,
mass/length" or money (the dimensions of amount quantities with the exception of
time) over the time dimension. To the mass or mass/length" dimensions will corre-

spond units of material which we define in Section A.1.

e The Absolute Rate class — abs_rate(R,Mt, Egom, E;p, U)
If R identifies a measure of the rate of processing Mt from Epom to E,, specified in U
then Mt is a material, Ef,m and E,, are entities which are different from each other and
compatible with Mt, and U is equivalent to an expression Ua/Ut, where Ua is a unit of

material and Ut is a unit of time:



3.2. The Ecological Data Ontology 49

abs_rate(R,Mt, Efrom, E1o, U) =
material(Mt) A eco_entity(Efrom) A eco_entity(E,,) A
Efyom # Ewo N compatible(Mt, Efro,) N compatible(Mt,E;,) A
3 Ua, Ut . eqv-expr(U,Ua/Ut) A

(mat_unit(Ua) V money_unit(Ua)) A time_unit(Ut)

Sometimes processes are measured in relation to an entity involved in the process. We
call these measures specific rates. Let us take the example of food consumption by an
animal. Suppose measures of how much food the animal consumes are given in g/day.
That would be the absolute rate of consumption. Now, the rate of food consumption
in relation to the animal’s weight would be a specific rate. A measure given in, say,
g/g/day would mean how much food in grams per gram of the animal’s weight is

consumed per day.

Usually specific rates are expressed as a dimensionless quantity (a unitless number)*
over time. This representation leaves implicit that the dimensionless quantity is in
fact a ratio of two quantities of the same dimension whose units have been cancelled
out. This is illustrative of representational issues that can benefit from ontologies.
Ecolingua makes this hidden assumption explicit, and in this way ensures that a specific
rate’s dimension is correctly composed of a ratio of equal dimensions over the time

dimension.

We define the specific rate class in relation to the absolute rate class as follows.

e The Specific Rate class — spf_rate(R, Ry, Mt,U)
If R identifies a measure of a specific rate, related to Raps, of processing Mt specified
in U then: Rups measures the absolute rate of processing Mt from Efgop to Ey, specified
in Ugaps, which is an expression equivalent to Ua/Ut where Ua is a unit of measure of

material; and U is equivalent to an expression Ub/Uc/Ut where both Ub and Uc are

4We will soon see that in fact EngMath defines the physical dimension of dimensionless quantities
as the identity dimension with the identity unit as unit of measure.
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units of measure of material and are of the same dimension D:

spf rate(R, Rops, Mt,U) = 3 Efrom, Evo, Uabs, Ua, Ut .
abs_rate(Rapsy Mt, Efrom; Eto, Uabs) N eqv_expr(Ugps, Ua/Ut) A mat_unit(Ua) N
3 Ub,Uc,D . eqv_expr(U,Ub/Uc/Ut) A matunit(Ub) A mat_unit(Uc) A
unit_dimension(Ub,D) A unit_dimension(Uc,D)

Note that the axiom does not constrain the units of the absolute and specific rates,
U and U s, to be of the same dimension. One can be a unit of mass/time while
the other is a unit of mass/length” /time. However, the dimensions of the two
units, Ub and Uk, part of the specific rate’s composite unit of measure, must be
the same. For example, the absolute rate could be specified in mg/ha/day and

the specific rate in g/kg/day.

Below is the definition of specific rates of processes measured in units of money
per time.

If R identifies a measure of a specific rate, related to Raps, of processing Mt specified
in U then: Rups measures the absolute rate of processing Mt from Efom to Ey, specified
in Ugps, which is an expression equivalent to Ua/Ut where Ua is a unit of measure of
money; and U is equivalent to an expression Ub/Uc /Ut where Ub and Uc are also units

of measure of money:

Spf-?'(!fe(R,Rabs,Mr, U) — 3 Efmnn Etm Uﬂb.\‘} Uaa Ur .
abs_rate(Raps, Mt, Efrom, Eto, Uabs) N eqv_expr(Ugps, Ua/Ut) A money_unit(Ua) A
3 Ub,Uc . eqv_expr(U,Ub/Uc/Ut) N money_unit(Ub) A money_unit(Uc)

3.2.1.3 Temperature Quantity

Another fundamental physical dimension is temperature, which has measurement

scales rather than units (more on this in Section A.2.1). Temperature of water in a

pond and environment temperature in a green house, are two examples of tempera-

ture quantities in ecological data sets. The referential superclass of the class below is
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Temperature-Quantity @Standard-Dimensions (Figure 3.2), defined in the Ontolin-

gua Server as:
(& (Temperature-Quantity ?X0)
(Quantity.Dimension ?X0 Thermodynamic-Temperature-Dimension))

e The Temperature of class — temperature_of (T,E,S)

If T identifies a measure of the temperature of E specified in S then E is an entity and S
is a scale of temperature:
temperature_of (T,E,S) —
eco_entity(E) N

temperature_scale(S)

3.2.1.4 Weight Quantity

Strictly speaking weight is a force, a composite physical dimension of the form
mass x length x time=2. But in ecology, as in many other contexts, people refer to
‘weight” meaning a quantity of mass in fact. For example, the weight of an animal, the

weight of a fishing harvest.

It is in this ‘everyday’ sense of weight that we define a class of weight quantities. It has
Mass-Quantity@Standard-Dimensions as referential superclass (Figure 3.2) defined
in the Ontolingua Server (see Amount of Material class).

e The Weight of class — weight_of (W,E, U)
If W identifies a measure of the weight of E specified in U then E is an entity and U is a

unit of mass:
weight_of (W,E,U) —
eco_entity(E) N

mass_unit(U)

Note that for quantities of both this class and the Amount of Material class the
specified unit must be a unit of mass. But the intuition of a measure of weight
does not bear a containment relationship between a material and an entity like

the intuition of an amount of material does.
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3.2.1.5 Dimensionless Quantity

Another paradoxically named concept in the EngMath ontology is that of dimension-
less quantities. They do have a physical dimension but it is the identity dimension.

Real numbers are an example.

The class of dimensionless quantities has a referential superclass of the same name,
Dimensionless-Quantity @Physical-Quantities (Figure 3.2), defined in the Ontolin-
gua Server as “although it sounds contradictory, a Dimensionless-Quantity is a

quantity whose dimension is the Identity-Dimension:”
(& (Dimensionless-Quantity ?X)
(And (Constant-Quantity ?X)
(= (Quantity.Dimension ?X) Identity-Dimension)))
This concept applies to quantities in ecology that represent counts of things, such as
number of individuals in a population or age group. The class below is defined to this
kind of quantities.
e The Number of class — number_of (N, E, U)

If N measures the number of E specified in U then E is an entity and N is a dimensionless

quantity specified in U :

number_of (N,E,U) —
eco_entity(E) A
dimensionless_qtty(N,U)

Percentages can also be defined as dimensionless quantities. Food assimilation effi-
ciency of a population, mortality and birth rates are examples of ecological quantities

expressed as percentages.

e The Percentage class — percentage(P,E,U)
If P is a percentage that quantifies an attribute of E specified in U then E is an entity

and P is a dimensionless quantity specified in U:
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percentage(P,E,U) —
eco_entity(E) A

dimensionless_qtty(P,U)

3.2.1.6 Some other undefined quantity classes

The ecological quantity classes above are not exhaustive. They do not cover quantities
of space, energy or frequency, amongst other possible dimensions. Also missing are
other forms of density. To classify a population density quantity, for example, we
would need a concept of density of objects that can be discretely counted (in contrast

to material density).

An extension of Ecolingua should consider definitions of quantity classes such as these.

3.2.1.7 Influence relation and constancy of quantities

Besides quantities themselves, influences that hold (or are suspected to hold) between
quantities are also part of ecological data specification. They are denoted in expres-
sions such as ‘A is dependent on B’, ‘A is a function of B’, ‘A increases with B’, etc.,
and in data tables where values of a quantity A are shown as a function of some other

quantity B.
The axiom below defines such relations between quantities.

e The Influence relation between quantities — influences(Q,Q’, Sign)
If Q influences Q' where the influence is qualified with Sign then Q and Q' are differ-

ent quantities of defined classes, the sign Sign of the influence is positive, negative or

undetermined, and Q' is not a constant quantity:

influences(Q,Q', Sign) —
ecoqtty(Q) A ecoquy(Q') A Q# Q' A Sign€ {+,-,7} A

- constant(Q')
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A positive influence sign means that the two quantities change in the same di-
rection, e.g., an influence between an absolute rate plant production, the influ-
encer quantity, and an amount of material plants biomass, the influenced quan-
tity: the more plant production the more biomass, the less plant production the
less biomass. The influence is negative when the two quantities change in oppo-
site directions, e.g., influencer plant mortality (also an absolute rate) and influ-
enced plants biomass. A ‘7" sign means the direction of change is unknown or
unclear, like when there may be threshold values of the quantities where the di-
rection may reverse, e.g., influencer water temperature (a temperature quantity)

and influenced plant production.

The property of constancy of quantities is defined as a contrapositive of the influence

relation. If a quantity is constant then it does not suffer influence of any other.

e The Constancy property of quantities — constant(Q)
If Q is constant then Q is a quantity of a defined class and there is no other quantity Q'

that influences Q:

constant(Q) —
eco_qtty(Q) A
-3 Q' Sign. Q' # Q A influences(Q',Q,Sign)

3.2.2 Contextual Data

An ecological quantity alone does not tell much if it is not contextualised, if no refer-
ence is given on what it quantifies, for example. We define a few, very general concepts
of contextual data around the ecological quantities which form the greater part of the

ontology. The concepts are the following:

e The Ecological Entity class — eco_entity(E)
Referential subclass of the Thing @Okbc-Ontology class (Figure 3.2) of the On-
tolingua Server. The class is not axiomatically defined in the Server. We quote
here an excerpt of the natural-language definition given: “Thing is the class of

everything in the universe of discourse that can be in a class. This includes ...
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all other objects defined in user ontologies. Thing is ... the practical root of all
ontologies.” (Also denoted Entity and T (Sowa, 2000).)

An ecological entity E is any distinguishable thing, natural or artificial, with
attributes of interest in an ecological system (e.g., vegetation, water, an animal,
a group of individuals or population, machinery), the system itself (e.g., a forest,

a lake), or its boundaries (e.g., atmosphere).

Ecological quantities usually consist of measurements of attributes of entities
(e.g., carbon content of vegetation, temperature of an animal’s body, birth rate

of a population, volume of water in a lake).

e The Material class — material(Mt)

Also a referential subclass of the Thing @Hpkb-Upper-Level class (Figure 3.2).

A material Mt is anything that has mass and can be contained in an ecological

entity (e.g., biomass, chemicals, timber).

e The Compatibility relation between materials and entities — compatible(Mt, E)
A material and entity are compatible if it occurs in nature that the entity contains
the material. For example, biomass is only thought of in relation to living entities

(plants and animals), not in relation to inorganic things.
If Mt and E are compatible then Mt is a material and E is an entity:

compatible(Mt,E) —

material(Mt) A eco_entity(E)

e The Event class — event(Ev)
Referential subclass of the Event @Hpkb-upper-level class (Figure 3.2) defined
in the Ontolingua Server, also only in natural language, as “[Event] is one im-
portant subset of Temporal-Thing (the collection of all things which have a
particular temporal extent, things about which one might sensibly ask “When?’).
The elements of Event are events or actions, things that we say are ‘happening’,

changes in the state of the world ...”

An event Ev is any happening of ecological interest with a time duration (e.g.,
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seasons, sampling campaigns, logging or harvest events).

The When class — when(T)

Referential subclass of the Date @Hpkb-upper-level class (Figure 3.2) defined
in the Ontolingua Server, again only in natural language, as “a Date is any
Time-Interval which can be defined purely by its location on the calendar.
Thus a Date could be [a particular calendar minute], a particular calendar day,

..., a particular calendar month, a particular decade, etc.”

A when T is any description that identifies a moment or period in time (e.g., 7.55

pm on the 5th Aug. 2002, 1990-2000 decade, the breeding season).

The Time of Event relation — time_of _event(Ev,T)
Every event occurs at some moment or period in time (e.g., months of the rainy

season, harvest date).
If a time of event Ev is T then Ev is an event and T is a when description:

time_of _event(Ev,T) —

event(Ev) N\ when(T)

3.3 The Ecological Model Requirements Ontology

The Ecological Model Requirements Ontology is a set of only three concepts in Ecol-

ingua which are essential for the model synthesis task (Figure 3.3). The concepts’

axioms given here link model requirements with the Ecological Data Ontology.

Model
Requirement

I

Model Material ~ Model Goal  Model Time
Variable Unit

Figure 3.3: Class hierarchy of the Model Requirements Ontology.

Our model synthesis task is concerned with the class of system dynamics models that
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represent flow of material through ecological systems (e.g., flow of water in a lake
basin, flow of a nutrient through a tropical forest, flow of a pollutant through the envi-
ronment). Materials determine models’ modularisation. Models that represent flow of
multiple materials are divided into submodels, one to each material (Grant et al., 1997,
Haefner, 1996).

e The Model Material class — model_mat(X)

If X is a model material then X is a material:

model_mat(X) — material(X)

Certain model variables are of special interest — those whose behaviour over time the
model is expect to describe or predict. Such variables can be of any Ecolingua quantity
class except Amount of Time for it would be meaningless to simulate the behaviour of

an amount of time over time.

e The Model Goal Variable class — model_goal var(Qyerm)
If Qterm specifies a model goal variable then Q. denotes a quantity of an Ecolingua

class suitable for simulation:

model_goal var (Qferm } — sim_qtty_class ( Qrerm)

Finally, every model has a specified unit of time for simulations. The unit should be of
a resolution appropriate to the processes that occur in the system-of-interest. A model
of forest regeneration, for example, requires a time unit of the order of years since

significant changes only occur in this temporal scale.

e The Model Time Unit class — model_time_unit(U)

If U is a model time unit then U is a unit of time:

model_time_unit(U) — time_unit(U)



Chapter 4

On the Engineering of Ecolingua

In this chapter we report on the knowledge engineering effort that ultimately led to the
Ecolingua ontology presented in the previous chapter and in Appendix A.

Ecolingua was engineered with reuse as the central tenet. In principle, given the task of
engineering a new ontology, the easiest way is to reuse existing ontologies whose con-
cepts overlap with those of the new ontology. We had difficulty in trying to adhere to
this approach, however, and most of the ontology engineering effort we put in ended up
not directly contributing to the Ecolingua needed for metadata-based model synthesis
(shown in Chapter 3). Still we believe reporting the experience is worthwhile as it has
been a realistic attempt of ontology construction through reuse of multiple ontologies
using currently available technology. We are not aware of other reported experience

on this particular style of reuse on the same scale.
An informal methodology for ontology construction proposed in (Uschold and Gruninger,
1996) was followed in the experiment. The methodology is summarised below.
1. Definition of purpose and scope;
2. Capture:
(a) Identification of key concepts and relationships in the domain of interest;

(b) Production of precise unambiguous (as much as possible) text definitions
for the concepts;

59
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(¢) Definition of the meta-ontology — the underlying ontology of representa-
tional primitive terms to be used to express the ontology under construc-
tion;

(d) Agreement on the above;
3. Coding;
4. Integration with existing ontologies;
5. Evaluation;

6. Documentation.

For identification of concepts and relations in the domain we took as initial case study
a data set generated from a tropical forest logging experiment in the Amazon, Brazil
(Biot, 1995). This data set was chosen due to its diversity and large scale which should
provide a good coverage of concepts, and also because it has been applied in modelling.
It underpinned the construction of a large simulation model used to support decision-
making on sustainable logging strategies for forests in that part of the world (Biot
etal., 1996). The concepts identified through the data set fell into three grand groups of
structural (e.g., data types and composition), spatial (e.g., sampling areas and location),

and temporal (e.g., time, duration and frequency of sampling) data properties.

At this stage we started using the Ontolingua Server (Farquhar et al., 1996; Ontolingua
Server, 1995). Its extensive library of shareable ontologies was particularly attractive
to us in that ecological data has a multidisciplinary nature and we were keen to exper-

iment with the reuse of existing ontologies of the various disciplines concerned.

Chapter outline and usage of fonts

We start with briefly commenting on the conceptualisation of Ecolingua using the On-
tolingua Server in Section 4.1. Most of the chapter’s content is in Section 4.2 where we
explain in detail the steps taken to transform this conceptual specification of Ecolingua
into an executable set of Horn clauses. Finally, a discussion of the experiment is given

in Section 4.3.

Various fonts are used throughout the chapter to highlight ontologies and ontologi-

cal definitions. Names of ontologies are written in sans serif (e.g., Ecolingua, Hpkb-
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Upper-Level). Classes, relations and their definitions quoted from the Ontolingua
Server appear in typewriter font (e.g., Class, (Positive-Integer ?N)). Prolog syn-
tax expressions translated from KIF by the Server (Section 4.2.1) also appear in type-
writer font with atoms that start with a capital letter enclosed in single quotes (e.g.,
'Subclass-0f'("Plot’,’ Area’)). Our own logical definitions including those generated

by our Horn clause translator (Section 4.2.5) appear in italic (e.g., unit_of measure(U)).

4.1 Conceptual Ecolingua in the Ontolingua Server

Figure 4.1 presents an extract from an early conceptualisation of Ecolingua, illustrat-
ing the spatial and temporal aspects considered at that stage. The notation is that of
conceptual graphs. Boxes represent classes and ellipses represent relations between
classes. The classes constrain the type of objects involved in the relations. The di-
rected arcs show the direction of the relation, from domain classes to range classes.
For instance, a common sampling strategy in ecological experiments is to replicate
different treatments (interventions) on the environment, where each replicate is parti-
tioned into plots; the ‘Location’ relation locates a quantity ‘Sample’ (domain class)
by giving the ‘Replicate’, ‘Treatment’ and ‘Plot’ (range classes) from where it was
sampled. The passing of Ecolingua modelled as a conceptual graph to the Ontolingua

Server’s frame-based specification style was straightforward.

To give an idea of the size of Ecolingua specified in the Server, excluding reused defini-
tions from other ontologies, it contained 37 classes (including subclasses), 24 relations
and 19 functions, at the time when the translation process described below was initi-

ated.

4.2 Translating Conceptual into Executable

The deployment of an ontology through the Server in a form that can be used by

some automated reasoning system is a two-fold process. First, a conceptual ontology
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Figure 4.1: Extract from early conceptual Ecolingua.

is created by specifying definitions through the Class, Slot, Relation, Function,
Individual and Axiom constructs (which come from the Frame-Ontology). Second,
the conceptual ontology is translated into some target implementation language con-
sidered adequate to the ontology’s intended usage. Having conceptualised Ecolingua
in the Ontolingua Server, the next step was then to translate it into Prolog, our choice

of implementation language.
Ideally the translation should yield an executable Ecolingua containing:
e Ecolingua-specific definitions, conceptualised for description of ecological data.

e definitions inherited from external ontologies through references made to them
in the Ecolingua-specific definitions. Not only the definitions D that Ecolingua
directly refers to should be inherited but also the definitions D' that D refers to,
and the definitions that D’ refers to and so on. If this systematic inclusion of

definitions does not take place the translated theory will not be self-contained.

e definitions related to the meta-ontological frame-based primitive terms (Class,
Relation, etc.) imposed by the Server, since these concepts and associated
mechanisms are not known to our target language. Explicit clauses are needed
through which it can be determined, for example, which are the subclasses of a

class, or the properties they acquired through inheritance.
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The translation of Ecolingua by the Ontolingua Server into its Prolog syntax target
language produced a large specification, far from executable, comprising the union of
Ecolingua with the whole of all ontologies it directly and indirectly referred to. For
example, the Server’s meta-ontology, the Frame-Ontology, includes other four ontolo-
gies: Kif-Extensions, Kif-Meta, Kif-Relations. Ecolingua does not explicitly refer to
definitions in Frame-Ontology, but because it is the meta-ontology it is added to the

translation output together with all its included ontologies.

To re-engineer this output from the Ontolingua Server’s translator into a more man-
ageable specification we have implemented additional tools in the form of Prolog
programs. They perform three major tasks: clean up of extraneous definitions (e.g.
duplicates), pruning of the class hierarchy and related definitions accordingly, and
transformation of logical sentences into Horn clauses. The tools can be applied to
the translation output as a whole as well as to selected definitions, in which case the

latter functionality is of greater relevance.

We now describe a stepwise detailed account of the entire translation process.

4.2.1 Translation by the Ontolingua Server into Prolog Syntax

Conceptual Ecolingua, at the time when this translation work was carried out, referred
to selected definitions of five other ontologies: Hpkb-Upper-Level (Cohen et al., 1998),
Kif-Numbers, Kif-Extensions (Genesereth and Fikes, 1992), Simple-Time (Ontolingua
Server, 1995) and Physical-Quantities (Gruber and Olsen, 1994). The translation of
Ecolingua alone into Prolog Syntax produced an 85Kb file, whereas requesting its
translation along with the ontologies it referred to produced a 5.3Mb file. Through
the steps that follow we re-engineered the 5.3Mb file (hereafter called workfile) in

order to turn it into a smaller, better structured, and more manageable set of axioms.

A last remark is that the Ontolingua Server translator did not translate KIF sequence
variables, inserting commented lines where they appeared in the translation output.
Sequence variables, nonexistent in Prolog, are variables that bind with a finite sequence

of objects (e.g., 1 2 3). We did not tackle this in our re-translation either and left the
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commented lines as they were.

4.2.2 Cleaning up Extraneous Clauses

We call extraneous clauses: over general facts, definitions of self subclasses and dupli-

cated clauses. These clauses were identified and removed from the workfile.

Over General Facts
A fact is defined as over general if all its arguments are uninstantiated variables. These

facts were identified by:

overgeneral(F) <« is_ontolingua_predicate(F) N F N arguments(F, Args) N\
VX .var(X) + member(X,Args)

There were 59 occurrences of over general facts in the workfile (e.g., 'List’(X),
‘Class’(X), 'Relation’(X), 'Set’(X), 'Positive-Integer’(X) and ‘Natural’(X)). To
illustrate this issue, let us consider in detail a particular clause defining the relation
'Positive-Integer’(X), which comes from the axioms defining the Nth-Domain re-

lation in the Frame-Ontology.

Figure 4.2 shows both the original KIF axioms and their Ontolingua Prolog syntax
translation. The axioms refer to domain restrictions generalised to n-ary relations; for
instance, the construct (Nth-Domain Relation 3 Type) says that the third element of

each tuple in the relation Relation is an instance of class Type.

(= (Nth-Domain ?Relation 7N ?Type) = 'Nth-Domain’(Relation,N, Type),

= ember ‘Tuple ‘Relation = ember (Tuple , Relation),

(= (Member ?Tuple ?Relati ("Member' (Tuple,Relation)

nd (> (Length ?Tuple) ? ¢ (> ('Length'(Tuple),N),
And (> (Length ?Tuple) 7N & (> ('Length'(Tuple),N
(Instance-0f (Nth ?Tuple ?N) ?Type)))) '"Instance-0f'('Nth'(Tuple,N), Type)))).
|_}

(Positive-Integer 7N) 'Positive-Integer'(N).
(Relation ?Relation) 'Relation’(Relation).
(Nth-Domain Nth-Domain 3 Class) 'Nth-Domain’('Nth-Domain’,1,' Relation').
(Nth-Domain Nth-Domain 2 Positive-Integer) "Nth-Domain’('Nth-Domain’,2,' Positive-Integer').
(Nth-Domain Nth-Domain 1 Relation) 'Nth-Domain’'('Nth-Domain’, 3, Class’).

Figure 4.2: KIF axioms (left) and their Ontolingua Prolog syntax translation (right).
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The axioms (Positive-Integer ?N) and (Relation ?Relation) define the classes
of objects that instantiate variables 7N and ?Relation. There is a notion of frame
scope for the variables here. An instantiation to ?N or Relation will be shared across
the axioms in the frame. This is what causes the over general facts in the Prolog syn-
tax version. In Prolog, the scope of a variable does not go beyond the clause where it
appears. Thus the variable N in the implication axiom and the other variable N in the
'Positive-Integer’(N) axiom do not share. Any term can match N in the Prolog ax-

iom 'Positive-Integer’(N), leading to unwanted, yet logically sound instantiations.

Self Subclasses

The Ontolingua Server does not allow wusers to define circular sub-
classes/superclasses. On attempting to define such a relation, an error mes-
sage “Cannot have a circular superclass/subclass graph.” is displayed. How-
ever, the query ’Subclass-0f'(X,X) over the workfile succeeds for twelve
instances of X, all of them classes of the Hpkb-Upper-Level ontology (e.g.,

'Subclass-0f’('Locomotion-Process’,’ Locomotion-Process’)).

Duplicated Clauses

Duplicated clauses amounted to 57Kb of the workfile.

4.2.3 Pruning the Class Hierarchy

Every time a class is created in the Server it must be defined as a subclass of some other
existent class through the Subclass-0f relation. The Subclass-0f relation is defined
in the Okbc-Ontology (Chaudhri et al., 1998a) as “a class C is a subclass of parent class
P if and only if every instance of C is also an instance of P”, with the corresponding
KIF axiom:
(< (Subclass-0f ?Child-Class ?Parent-Class)
(Forall (?Instance)
(= (Instance-0f ?Instance ?Child-Class)

(Instance-0f ?Instance ?Parent-Class))))
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The parent class may be chosen among the classes of the end-ontology being built or
from the classes of any of the ontologies in the Server’s library (henceforth called ex-
ternal classes). There were eighteen classes in Ecolingua with external parent classes.
For most of them we were able to find conceptually appropriate parent classes, e.g.,
the parent class Area of the Hpkb-Upper-Level ontology for the Ecolingua class Plot.
For the remaining classes we used the catchall class Thing of the Okbc-Ontology.

The chosen parent classes in turn will also have been defined as a subclass of some
other class, except for the root classes (i.e., parent-less classes). An end-ontology class
cannot be a root class since when created they must be defined as a subclass of some
other class. Ultimately the hierarchy of classes is completed with the end-ontology
classes as leaf nodes and external classes as root nodes. The resulting class hierarchy of
Ecolingua was an acyclic graph structure (or forest) containing 1758 classes altogether,

1721 of which were external.

All classes can be found as the set of all nodes that take part in the Subclass-0f

relation:
SNodes = {Node | 3 Child, Parent . subclass_of (Child,Node) V subclass_of (Node, Parent) }
And the roots in the forest are the nodes that have no parent:

Sroots = {Node | 3 Child . subclass_of (Child, Node) \ — 3 Parent . subclass_of (Node, Parent) }

Sroots contained eight elements: Thing of Okbc-Ontology; Term, Expression and
Operator of KIF-Meta; Set and Bounded of KIF-Sets; List of KIF-Lists; and Number
of KIF-Numbers. The largest tree by far is the tree under Thing containing 1681
classes. The Thing, Set, Bounded and Number trees were connected encompassing all
but 47 of the classes, which were nodes in the four other disjoint trees with roots Term,
Expression, Operator and List. In sum, the topology of the class hierarchy was a

forest of five disjoint trees, one of them containing approximately 90% of the classes.

Figure 4.3 shows an extract of the class hierarchy. It illustrates the myriad of classes
included in the hierarchy, most of them of unlikely practical relevance. The relation

'Subclass-0f/('Plot’,Area’), for example, being Plot an Ecolingua class and Area
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Figure 4.3: Extract of Ecolingua’s class hierarchy in the Ontolingua Server and pruning

paths.

a Hpkb-Upper-Level class, causes all Hpkb-Upper-Level classes to be included in the

hierarchy.

We pruned the hierarchy by traversing it bottom-up, i.e. from the leaf nodes, which are

Ecolingua classes, up to the root nodes.

Sp is the set of pruned classes, the ones we keep, if Sk, is the set of the end-ontology

classes and Sp is connected to Sgco:

pruned _classes(Sp) + Sgco = {Class | ecolingua_class(Class)} A connected(Sp,SEco)
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Sp is connected to Sgco if it is the set of classes that are in the paths from the end-

ontology classes to the forest roots:

connected(Sp,SEco) +

Sp = {Class | 3 Eco_class . Eco_class € Sgco N in_path(Eco_class, Class)}
A class is in its path to a root:
in_path(Class, Class)
And so is any ancestor of the class:
in_path(Class,Aclass) < subclass_of (Class,Pclass) A in_path(Pclass,Aclass)

This pruning method reduced the class hierarchy from 1758 classes to only 76.

The bold arcs in Figure 4.3 represent the paths from Plot, an end-ontology class, to
Thing, a root class. All classes in these paths were kept. The classes with dashed arcs
to their parent class exemplify classes that were pruned off. They are not in the paths
from Plot to Thing (and are not in the paths from any of the end-ontology classes to

any of the root classes).

Despite reducing the hierarchy size dramatically, the method does not guarantee that
all and only classes of interest (conceptually speaking) are kept. It is reasonable
to expect that some specifications, such as slots and axioms, in the definitions of
classes will be useful for a reasoning system using the resulting ontology. For in-
stance, through the path Plot — Area — Scalar-Interval Ecolingua inherits the
slot Absolute-Value-Fn, an Hpkb-Upper-Level unary function that returns the abso-
lute value of its argument with value type Scalar-Interval. The function can be
used to ensure that the area of a plot is given as a positive value. However, as we move
higher along the paths, away from Plot, the class definitions become more and more

remotely related to the concept of plot, rendering unlikely their practical reuse.

At the same time the method may end up pruning off classes of interest. This is the case
of some subclasses of Physical-Attribute, such as Raininess, Color and Mass,

which are desirable as part of Ecolingua’s universe of discourse.
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Only an inspection of the class hierarchy by the ontology designer could guarantee that
all and only classes of interest were maintained, but this was obviously impractical

given the size of the hierarchy.

4.2.4 Pruning Clauses

The objective of this step was to prune the workfile, keeping only clauses that were
relevant. The relevance criteria used is empirical, based on our familiarity with On-
tolingua relations. The method applied reduced the workfile down to 1.4Mb. The
method starts by asserting an initial set of relevant classes, relations and functions and

proceeds by selecting clauses that are related to this initial set.
The initial set of relevant classes was defined as

e all Ecolingua classes and their ancestor classes, i.e., the classes in the set, Sp, of

pruned classes (Section 4.2.3); and

e theclasses Class (Okbc-Ontology), Relation, Binary-Relation and Function
(Kif-Relations), as these are the meta-ontology classes of which the ontological

constructs are instances.

As for the initial set of relevant relations and functions, it consisted of all Ecolingua

relations and functions.

The method checks every clause in the workfile for relevance, with clauses of certain
forms treated specifically. These specific checks first select the clauses that specify rel-
evant instances of the Class, Relation, Individual and Axiom constructs (checks 1
to 5 below), and then the clauses that specify Subclass-0f and Instance-0f relations
involving them (checks 6 and 7). Clauses of other forms are relevant if they involve
relevant classes or relations (check 8). Below we explain the relevance checks for each

of these specific forms of clauses as well as the general case.

1. Clauses 'Class’(C)
A clause 'Class’(C) is relevant if C is one of the initial relevant classes:

relevant(class(C)) « C € Sp V C € {class,relation, binary_relation, function}
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Or if there is a relevant class, relation or function, 7', which is an instance of
class C:

relevant(class(C)) «
instance_of (T,C) A

(relevant(class(T)) V relevant(relation(T)) V relevant(function(T)))

'Instance-0f'(T,C) is an Okbc-Ontology relation that holds for every ontologi-
cal term defined. Every class, relation or function is an instance of some class!.
For example, the Hpkb-Upper-Level relation Adjacent-To is an instance of the

classes Relation (Kif-Relations) and Spatial-Predicate (Hpkb-Upper-Level).

2. Clauses 'Relation’(R) and 'Function’(R)
A clause 'Relation’(R) or 'Function’(R) is relevant if R is one of the initial

relevant relations or functions, i.e., if R is an Ecolingua relation or function:
relevant(P(R)) < P € {function,relation} A ecolingua_relation(R)

In addition to the clauses above were also kept 'Relation’(R) and 'Function’(R)
clauses where R is a relation involving relevant external classes. (Hereafter we

use the generic term ‘relation’ to refer to both relations and functions.)

Relations in Ontolingua are used to describe relationships between n terms,
with n > 2. 'Domain’(R,C) — a domain of relation R is class C —
a relation of Okbc-Ontology, specifies the classes to which each of the
n—1 terms of a relation belong. Each of the n — 1 terms of a rela-
tion must be an instance of its domain class. For instance, the Ecolin-
gua function ‘Domain’('Number-0f-Replicates’,Treatment’) specifies that
'Number-0f-Replicates’ applies to objects of the class 'Treatment’ (also in
Ecolingua). The counter-relation to ‘Domain’(R,C) is 'Range’(R,C) which speci-

fies the class of the relation’s n'" term.

Continuing with the pruning method, we also kept 'Relation’(R) and

'Function’(R) clauses of relations R that had at least one relevant domain class.

!“Instance’ here should not be confused with the Ontolingua construct Individual. In Ontolingua,
a class can be an instance (of the class Class), but a class cannot be an individual.
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Relevant range classes, on the other hand, did not count for relevant relations.
The intuition behind this heuristic is that a relation with a relevant domain class
has a stronger bond with the hierarchy of relevant classes. Relations that have
relevant range classes only are considered outsider relations in that they just end

in a relevant class. Thus:
relevant(P(R)) < P € {function,relation} A domain(R,C) A relevant(class(C))

3. Clauses 'Inverse-0f'(R1,R2)
'Inverse-0f’(R1,R2) is a Kif-Relations function that applies over binary rela-
tions which are equivalent when their arguments are swapped. For instance, the
Simple-Time relations ‘After’(T1,T2) and 'Before’(T2,T1), where T1 and T2

are time ranges, are equivalent — 'Inverse-0f'('After’,Before’) holds.

These clauses were kept when involving a relevant relation, for the sake of re-
taining in the set of clauses the knowledge of the inverse relation of relevant
relations. Thus, a clause 'Inverse-0f'(R1,R2) is relevant if any of R1 or R2 is a
relevant relation:

relevant(inverse_of (R1,R2)) « relevant(relation(R1)) V relevant(relation(R2))

4. Clauses specifying Individuals

Clauses specifying individuals appear in the workfile as ground unary predi-
cates C(I), where I is an individual and C is the class of which I is a mem-
ber. For instance, 'Forest-Logging-Disturbance-Class’('Clearing-Edge’)
(Ecolingua) denotes that ‘Clearing-Edge’ is an individual of the class

'Forest-Logging-Disturbance-Class’.

The pruning method keeps the clauses that specify individuals of relevant classes
excluding the meta-ontology classes Class, Relation, Binary-Relation and
Function. The exclusion is necessary because there exists a clause of the form
'Class’(T), 'Relation/(T), ‘Binary-Relation’(T) or ‘Function’(T) for every
class, relation or function T. Thus:

relevant(C(I)) < C ¢ {class, relation,binary_relation, function} A relevant(class(C))



72

Chapter 4. On the Engineering of Ecolingua

5. Clauses specifying Logical Sentences

The Server’s translator into Prolog syntax writes axioms as clauses with the pred-
icates: 'Exists’, representing the existential quantifier; 'Forall’, for the univer-
sal quantifier; =, for implication; <, for reverse implication; <>, for equiva-

lence; and —, for negation.

All logical sentences that involved relevant classes, relations or functions
were kept. Names of classes, relations and functions appear in the clauses
as functors of the arguments of the logical operator predicates, for instance,
& ('Individual’(A),—('Set’(A))).

Thus, a logical sentence clause is relevant if any of its arguments contains a

functor which is a relevant class, relation or function:
relevant(Lclause) +
predicate_name(Lclause,P) A P € {exists,forall,=, <, < —} A
arguments(Lclause,Args) A contains_functor(Args,F) A

(relevant(class(F)) V relevant(relation(F)) V relevant(function(F)))

. Clauses 'Subclass-0£'(C1,C2)

The 'Subclass-0£'(C1,C2) clauses give shape to the class hierarchy. All these
clauses where at least one of the classes was relevant were kept to allow for

inheritance to occur.
A clause 'Subclass-0f'(C1,C2) is relevant if any of C1 or C2 is a relevant class:

relevant (subclass_of (C1,C2)) < relevant(class(C1)) V relevant(class(C2))

. Clauses 'Instance-0f'(T,C)

A clause 'Instance-0f'(T,C) is relevant if the term T is a relevant class, relation

or function:

relevant(instance_of (T,C)) +

relevant(class(T)) V relevant(relation(T)) V relevant(function(T))

Note that checking relevance of these clauses on the grounds that C is a rel-

evant class would have no pruning effect. The meta-ontology classes Class,
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Relation, Binary-Relation and Function are relevant classes, and to every
term T which is a class exists a clause 'Instance-0f'(T,Class), to every term T

which is a relation exists a clause 'Instance-0f’(T,Relation), and so on.

8. Other clauses
This relevance check applies to any clause that do not fall into the cases above,
i.e., clauses with predicates outside the set:

S class, relation, function, subclass_of ,instance_of ,inverse,
Pred =
exists, forall, =, <=, 4, —

From checks 1 and 2 above, the 'Class’(C) clause of domain classes C of rele-
vant relations are kept in the pruned set of clauses, and subsequent checks guar-
antee that other clauses that involve these domain classes are kept as well. Com-
plementary to that, clauses that contain as a subterm the range class of a relevant

relation should also be kept.

Thus, a clause whose predicate is not in Sprq is relevant if it has a subterm which
is the range class of a relevant relation or function:
relevant(Clause)

predicate_name(Clause,P) N P & Sprea A

(relevant(relation(R)) V relevant(function(R))) A

range(R,Class) A subterm(Clause,Class)
And finally the most general case. A clause whose predicate is not in Spreq 18
relevant if it has a subterm which is a relevant class, relation or function:

relevant(Clause) <+
predicate_name(Clause,P) N P ¢ Sprea N subterm(Clause,T) N

(relevant(class(T)) V relevant(relation(T)) V relevant(function(T)))

4.2.5 Transforming Logical Sentences into Horn Clauses

At this stage we have a much smaller set of clauses (5.3Mb down to 1.4Mb) but these
still are not in the form required for the computations we wish to perform in Pro-



74 Chapter 4. On the Engineering of Ecolingua

log. The good news is that since KIF and Prolog share a common logical parentage,
standard truth-preserving transformations from first order predicate calculus to Horn
clauses (see for example (Lloyd, 1993)) can be used to convert many of the expressions
in the set to exactly the form required. To illustrate this, let us take one of the axioms
from the definition of Unit-0f-Measure, a class of the Physical-Quantities ontology.
The axiom is:

(= (And (Unit-of-Measure ?U) (Real-Number ?N)) (Unit-of-Measure (Expt ?U 7N)))

After applying the Ontolingua Server’s translator followed by our Horn clauses trans-
lator, which implements the standard transformations we mentioned, we obtain:

unit_of measure(expt(U,N)) « unit_of measure(U) A real_number(N)

This is an example of automated translation where the outcome can directly be incor-
porated into the target language specification. The expression above corresponds to
one of the clauses of our unit_of measure/1 predicate specification in low-level Ecol-

ingua (see Section A.2).

The bad news is that not all KIF expressions are translated into an elegant computa-
tional form by this means. An example is the expression (<> (A ?X) (Or (B ?X) (C 7X))).
As a first stage translation we can obtain the equivalent set of expressions {a(X)
(b(X)Ve(X)),a(X) — (b(X)Ve(X))}. The first of these is acceptable as a Homn
clause but the second is not. There is then an issue about the form into which we
should translate the second expression. We observe that in our domain of applica-
tion (and we suspect in many others) circumstances like this one occur when the KIF
expression’s most likely computational use is in testing the consistency of the precon-
dition of the implication. In this example we want to show that b(X) or ¢(X) is true
when a(X) is true. Since we are testing X, rather than generating an instance of it, we
can use the equivalence between P — Q and —(P A —Q) to translate to a Prolog goal.

This is, for the example, the consistency constraint —=(a(X) A =(b(X) V¢(X))).

In addition to the above simplified example, let us show an actual axiom from the

Ontolingua Server, again one from the definition of the Unit-0f-Measure class:
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(= (Unit-of-Measure ?U)
(Forall (?0ther-Unit)
(= (And (Unit-of-Measure ?0ther-Unit)
(Compatible-Quantities ?U ?0ther-Unit))
(And (Real-Number (Magnitude ?U ?0ther-Unit))
(Positive (Magnitude ?U ?0ther-Unit))))))

Which is translated into the consistency test:

consistency-test( — ( unit_of measure(U),
= (= ( ( unit_of -measure(Other _unit),
compatible_quantities(U, Other_unit) ),
- ( real_number(magnitude(U, Other _unit)),

positive(magnitude(U, Other_unit)) ) ) ) ) )

In this case, the translation outcome is not as handy. The sentence is unwieldy com-
pared to what one could achieve by manually rewriting a Prolog specification of the
KIF axiom. Also, the sentence is not relevant to the purposes of Ecolingua in the
knowledge it represents. It involves the magnitude concept, which is alien to an on-
tology not concerned with data values (numeric or non-numeric) but with higher-level

properties of the data.

In summary, all KIF-like logical sentences in the pruned set of clauses were translated
to Prolog, either as program definitions or as consistency constraints. The resulting
specification was small enough (220Kb) to allow us to read it and select definitions for

reuse.

4.3 Experiment Discussion

We now highlight and summarise issues raised by employing, in particular, the On-
tolingua Server in the ontology construction experiment, and conclude with a more

general discussion on ontology reuse.
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4.3.1 Employing the Ontolingua Server

We turned to the Ontolingua Server, with its varied ontologies library, hoping that it
would assist us in quickly constructing an easy-to-apply, well-engineered ontology. It
has been helpful in the design of Ecolingua in its conceptual form (Section 4.1), which
would certainly have taken us longer had we not referred to the Server’s rich pool
of concepts. Selecting concepts of interest for reuse can be tedious, nonetheless, by
browsing the ontologies or through word-matching search. Some other meaning-based

search facility would have been helpful.

The frame system constructs offered by the Server’s interface have been fairly con-
venient for representation of our concepts, promoting a somewhat structured formal
specification. We also found it discouraging to have to write KIF axioms to add to
this specification (Uschold and Gruninger, 1996). Most ontologies in the Server’s li-
brary do not contain KIF axioms because, we suspect, it is unnatural to switch between

representation formalisms and most users are not familiar with KIF.

Beyond the conceptual design, many practical issues arose in taking Ecolingua to its
implementation form. Ecolingua’s translation into Prolog by the Ontolingua Server
was insufficient, leading us to devise our own complementary translation methods and
tools. The problems started with getting as outcome from the Server’s translation the
union of the full content of all ontologies Ecolingua directly and indirectly referred to.
This happens because of the Server’s theory inclusion strategy (Farquhar et al., 1996).
This is the easiest, standard way to obtain the union of both theories but at the risk of
raising inconsistencies. To get round this problem we applied our ontology pruning
method, which is heuristic in nature. This method reduces the ontology by making
informed choices, but is not capable of producing a self-contained, consistent logical

theory.

The Horn clauses translation method, in turn, compromises the expressiveness of KIF,
the original underlying logical language. That would be the case in translating On-
tolingua ontologies into any implementation language, since reasoners that support the

full expressiveness of KIF, a first-order logic, cannot be built. The common logical
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parentage between KIF and Prolog allowed our compromises to be relatively modest.

In the end, after pruning and translation, only a small subset of the resulting clauses
contributed to the Ecolingua specification that we actually employ for model synthesis
(presented in Chapter 3 and Appendix A). Even assisted by our Horn clauses trans-
lator, we often had to manually fine-tune the axioms in this subset to the needs of the
application. The cost of all this manual work of selecting and rewriting definitions
certainly exceeded the benefit of the few definitions we were able to directly, or nearly

directly, reuse.

4.3.2 Ontology Reuse

Over the past few years ontologies have been abundantly produced, many of them
seemingly intended for some form of reuse (Uschold and Gruninger, 1996). Libraries
of ontologies and tools to support ontology construction and sharing are available on
the World Wide Web, e.g., (Ontolingua Server, 1995; Protégé, 2000; DAML, 2002).
However, the number of reports on how and for what ontologies are used or reused once
they are designed still does not grow in the same rate (Uschold, 1998). Convincing

successes on application and reuse of ontologies in a realistic scale are scarce.

Ecolingua’s construction pushes further the ontology reuse potential and currently
available machinery — the Ontolingua Server — by attempting to reuse multiple on-
tologies, in response to the domain’s diversity. Moreover, Ecolingua, as opposed to
being an end in itself, serves a composite purpose: to allow ecological data proper-
ties to be expressed and, thereby, support model synthesis by providing substantiating

information and enabling reuse of models.

Most of the literature either addresses ontology reuse from a theoretical perspective
or is limited to reuse of conceptual-level ontologies. In reports of experiences on the
latter, the *“reused” ontologies are mainly looked up for reference, rather like glos-
saries, and from there knowledge engineers manually write their own ontology or other
application, possibly adapting selected definitions of the referred ontologies, in their

preferred representational language.
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We have shown in this chapter that bringing ontology reuse to the implementational
level is a process fraught with difficulties, only poorly supported by currently technol-
ogy, demanding an impractical amount of time and effort. This corroborates with the
assessment of similar experiments reported in (Swartout et al., 1996; Uschold et al.,
1998; Valente et al., 1999; da Silva et al., 2002)2.

Referring to definitions found in multiple ontologies during Ecolingua’s conceptualisa-
tion led to an oversized automatically translated union of ontologies with no guarantee
of consistency, despite the included ontologies all sharing Ontolingua’s representa-
tional framework. A more challenging, yet plausible, scenario would be to reuse dur-
ing conceptualisation definitions from multiple ontologies that are only available rep-
resented in distinct formalisms. Reuse and integration of multiple ontologies supported
by fully automatic translators is still far from achievable, hindered by the old problem,
larger than ontologies, of translation between logical theories represented in semanti-
cally heterogeneous, inherently biased formalisms (Uschold et al., 1998; Valente et al.,
1999). Methods are lacking to reliably reduce scope and content of imported ontolo-
gies. We have shown one heuristic method. It would be useful for ontology sharing
tools to make such methods available, informing users of possible drawbacks where

heuristics are involved.

Still, our and other experiments suggest that in ontology reuse even if, idealistically,
conceptually suitable definitions are reused, and semantically sound translations and
reliable reduction methods are applied, the resulting specification can be cumbersome,
requiring manual rewrites that take closely into account the assumptions and intended

usage of the new ontology (Grosso et al., 1998).

Unfortunately, we do not have a more objective cost-effectiveness metric for this ex-
periment. Neither could we use an off-the-shelf one for practical metrics on ontologies
reuse are yet to be deployed; (Cohen et al., 1999) is the pioneering work on that. Our
subjective overall assessment is that if we were to engineer another domain-specific
ontology, we would again use the Ontolingua Server or a similar tool for browsing

existing, potentially useful, ontologies, but would prefer to write the specification of

2(da Silva et al., 2002) includes an earlier version of the report we give here of Ecolingua’s construc-
tion experiment.
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the ontology manually, selectively rewriting reusable definitions from other ontologies,

being in complete control of every ontological commitment made.

In summary, one can contemplate an ontologies sharing scenario — this has been
achieved in the experiment to a degree — however, current support technology did
not prove mature enough to sustain such scenario. Methods and tools for cost-effective
reuse of ontologies in ontology construction are still deficient, linked to the largely
unsolved problem of translation between representation formalisms. Ontology reuse is
fundamentally difficult because of the unboundedness and eclecticism of concept for-
mation by humans. But, once the ontology is in place it can indeed empower knowl-

edge reuse with the benefit of efficiency as this thesis shows (Chapters 8 and 9).
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Chapter 5

Metadata: Sources and Ecolingua

Descriptions

As we know from Chapter 3, Ecolingua is intended for description of ecological data
and from these descriptions, which we call metadata, we want to synthesise models.
With our choices of vocabulary in place in Ecolingua, we can now encode descriptions

of specific instances of the metadata-based synthesis problem.

This chapter bridges the chapter on Ecolingua and the next three, which discuss syn-
thesis heuristics, methods and mechanisms by showing through example the kind of

information metadata stems from and how it is specified in the ontology.

To specify metadata is to instantiate Ecolingua

Input to one problem instance is two-fold: a data set, and preliminary information
about the model to be synthesised such as its objectives and assumptions. Ecolingua’s
constructs work as templates for description of this input. Writing metadata terms
consists of applying grounding substitutions to Ecolingua predicates. This is a non-
deterministic knowledge representation exercise to which we do not have an automated
tool nor a precise procedure to follow. It is done by a metadata “mark-up person” who
looks at the data and preliminary model information to identify objects and relations

of interest, and finds appropriate concepts in Ecolingua to instantiate. Knowledge of
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Ecolingua is required in order to understand how the problem (data and preliminary

model information) can be mapped into the ontological concepts.

The subjective manner in which metadata is described makes it best shown by example.
In the context of the sections on metadata sources that follow, we will be using a pond
management example found in (Grant et al., 1997, Chapter 9). It is an example of a
common scenario in Ecology where some ecological system is economically exploited
and better management strategies are sought for. Having a model of the system of
interest allows for simulation and evaluation of alternative strategies. In particular,
the way in which the example is presented, with detailed annotations on development
of the model, makes it interesting material for us. We can think of it as a best case
setting for exercising metadata specification and subsequently synthesising models,
where data, model objectives and assumptions are all explicit and available. Clearly,
the amount and quality of information available at this stage will have an effect on

synthesis success.

However, we do not present here the whole metadata set of the pond management
example. This can be found in Appendix B which contains the Prolog specification of
the full set, accompanied by quotes of the referent metadata sources. In this chapter we
show selected descriptions that are representative of the most commonly used terms in
Ecolingua vocabulary, presented in full in Sections 3.2 and 3.3. The reader may also
consult that chapter for other details on the Ecolingua constructs used in the examples

that follow.

A last remark is that descriptions are shown (here and in Appendix B) as if they are
produced in an one-off manner. In fact, each description may be refined along the way,
as the metadata mark-up person works through all the available information, until a
final form is reached as part of a round metadata set. More than one set of descriptions

may suit the same input information as it can be interpreted and marked up differently.
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5.1 Metadata from Field Data

All models, regardless of modelling paradigms and practices, are just approximate
representations of reality. In that sense they are all wrong. This is so because, to a
greater or lesser degree, the representation will inevitably be prejudiced by the model
designer’s own interpretation of the real system. In this context, data from direct obser-
vation or experimentation with the real system is the least biased kind of information
and thus invaluable in substantiating the model (Grant et al., 1997). Furthermore,
having models rooted in data allows for well-grounded analysis and interpretation of

simulation results.

The problem is that bridging concrete data to abstract conceptual models is not straight-
forward. A compromise is to initially build models without much regard to the data
and later fit them to the data in retrospect. For data to support model conceptualisa-
tion, it is necessary to raise the data’s level of abstraction to make it level with and
thus more easily associated with models. This is the effect we achieve by describing
the data through Ecolingua, transforming it into metadata. Associations with models
become possible in this way because Ecolingua prescribes the properties and relations

of the data that translate into conceptual model representations.

Field Data Metadata by Example

Table 5.1 appears in (Grant et al., 1997) as part of the information provided for con-
struction of a pond management model. It is typical of ecological data in format and
content — a table filled with measurement values of a variable of interest taken un-
der certain conditions. Also, it consists, most likely, of processed data, resulting of
application of some statistical method to extensive raw data as collected in sampling
campaigns. We assume processed data is given for metadata specification and subse-

quent model synthesis.

At the metadata level, Table 5.1 contains information about two quantities, namely
net production rate of plants and water temperature, and a functional relationship

between them. The two quantities map into the Ecolingua quantity classes specific-
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(a) Net Production Rate of Plants (g Produced/kg Plant Biomass-Day)
Net Production
Water Temperature (C) Repl Rep2 Rep3 Rep4 RepS5

10 0.225 0422 0.072 0358 0.002
15 0.639 0.601 0.578 0.143  0.231
20 0.595 0353 1.180 0377  1.555

Table 5.1: Data on processes occurring within the pond system including (a) the net
production rate of plants as a function of water temperature (extract from (Grant et al.,
1997)).

rate and temperature-of respectively, and thus instantiate the Ecolingua predicates
spf -rate(R,Rups, Mt,U) and temperature_of (T,E,U). Generally, each metadatum, or
metadata term, is represented by the unary predicate data with a ground Ecolingua term

as argument. For descriptions of model requirements specific predicates are used.
Hence, the descriptions of the two quantities above are represented as:

data(spf -rate(plant_production_rate, plant_production,biomass, g [kg [day))

data(temperature_of (water_temp, water, celsius))

These are examples of the main descriptive sentence required for every quantity — a
ground term as argument to the data predicate, with its functor being a quantity class
(Section 3.2), its first argument the quantity’s name, and its last argument the quantity’s

unit of measure.

Units of measure are crucial due to the information they hold on the physical dimension
of the quantities (Section 3.2.1). Modellers are advised to get the units right from
the beginning and to rethink the model structure if mismatching units occur along the
design process (Ford, 1999; Grant et al., 1997). Analogously, the synthesis mechanism
uses the unit of measure of a quantity to check whether it is of a physical dimension

that can be associated with certain types of model components (Section 7.4.1).

The sentences are also illustrative of non-primitive sentences with constants that re-

quire further descriptions, such as plant_production, biomass and water. Additional



5.2. Metadata from Preliminary Modelling Information 87

data and/or preliminary model information should furnish the complementary descrip-

tions (see Appendix B).

Lastly, the functional relationship of undetermined sign between the two quantities is
represented by instantiating the influences(Q, Q', Sign) predicate, with water_temp as

influencer quantity and plant_production_rate as influenced quantity, giving:
data(influences(water_temp, plant_production._rate,?))

Being able to describe influences of undetermined sign helps to maximise the use of
metadata evidence. An influence is still an influence — a valuable information for

model structure synthesis — regardless of its sign being unknown.

5.2 Metadata from Preliminary Modelling Information

Most often, it is not data alone that support model conceptualisation. Usually there
are aspects of the system being modelled for which no data is available. In such cases,
modellers resort either to the literature, for theoretical or generally applicable.empirical

information, or to expert opinion (Grant et al., 1997).

Much of this kind of non-data information, that we generally call ‘preliminary mod-
elling information’, can be found in statements of model’s objectives and assumptions.
Complementary to field data, we also use these statements as sources for metadata

specification.

5.2.1 Model Objectives

Ecological modelling authors place great importance on model objectives being clearly
stated (Haefner, 1996; Grant et al., 1997; Ford, 1999). This is essential, they argue,
because model objectives provide focus for model development as well as context and

standards for interpretation and evaluation of simulation results.

Model objectives are usually formulated in general terms at first. For the pond man-
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agement example, for instance, the general model objective is stated as “to determine
if any of several alternative stocking and harvesting schemes will yield higher than
current profits”. For a predator-prey system this could be “to simulate interactions
between one prey population and one predator population to identify circumstances
under which predators affect prey population dynamics and vice versa” (Grant et al.,
1997).

Because they are so broad, general model objectives like these are of little use in in-
forming model conceptualisation (either human-made or via automated synthesis). For
this purpose they must be distilled into more specific objectives. In his ‘Principles of
Qualitative Formulation’ (Haefner, 1996) argues that to discover the simplest descrip-
tion of a system that will satisfy the model’s general objectives, one should start by
precisely identifying the questions to be answered (by the model) and the quantities
and their units needed to answer the questions. It is from this level of detail of model

objectives that we can produce metadata that is useful for informing model synthesis.

Model Objectives Metadata by Example
Back to the pond management example, one of the specific questions to be answered

by the model is:

The current scheme is stocking 75 0.227-kg fish on April 15 and harvesting
them on November 15. What profit is associated with this harvest?

The sentence about the current scheme, albeit short, on close inspection gives rise to
a wealth of modelling information. It denotes two ecological processes (stocking and
harvesting), the dates when they take place, the number of fish stocked (75), and the
weight of individual fish (0.227 kg).

System dynamics models represent transfer of material through a system by processes,
such as stocking and harvest in the case of this system of interest. Material transfer
processes (Section 2.4) like these map into Ecolingua quantity class absolute-rate with
nonground term abs_rate(Rups, Mt, Efrom, Eqo, U). Instantiating this term with the two

processes yields the descriptional sentences:
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data(abs_rate(stocking, biomass, outside, fish, kg / ha/day))
data(abs_rate(harvest, biomass, fish, harv_fish, kg /ha/day))

The dummy constant outside is used to instantiate origins (Efyy,) or destinations (Ez)
of the material that the process carries that are unspecified or external to the system
of interest. The unit kg/ha/day comes from additional information later given (an

example of description refinement mentioned earlier).
The other concerned data are described as:

data(number _of (number fish_stocked, fish_stocked, 1))
data(weight_of (indiv_fish_weight, indiv_fish, kg))
data(time_of _event(stocking, stocking_date))

data(time_of _event(harvest, harvest_date))
And the influence relations between them and the processes as:

data(influences(number _fish_stocked, stocking, ?))
data(influences(init_indiv_fish_weight, stocking, ?))

data(influences(stocking_date, stocking,?) )
data(influences(harvest_date, harvest,?))

Now the question itself “What profit is associated with this harvest?” indicates that the
profit made on the pond system is a quantity whose behaviour the model is expected to

simulate — a model goal variable.

model_goal var(amt_of _money(profit,pond_system,$))

5.2.2 Model Assumptions

Another aspect of the insufficiency of data for modelling is that modellers’ knowledge
about the system of interest usually transcends what can practically be documented by
data. Thus, commonly, a great deal of modelling decisions may be made on the basis

of assumptions derived from this knowledge.

Like model objectives, model assumptions also indicate relevant ecological quantities
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as well as their properties and relations. In particular, they are rich in expressions such
as ‘A depends on B’, ‘A is limited by B’, ‘A increases with B’, etc., which suggest

interdependencies between variables.

Model Assumptions Metadata by Example
We shall again use an extract from the information for construction of the pond man-

agement model to illustrate model assumptions and their expression in Ecolingua:

Processes that affect biomass dynamics of aquatic plants include net pri-
mary production [(measured in kg/ha/day)] ...[which] is a function of
biomass of aquatic plants and water temperature.

Net primary plant production, like stocking and harvesting, is also a material transfer

process, giving the descriptional sentence:

data(abs_rate(plant_production, biomass, outside, aquatic_plants, kg /ha/day))
And the process’ functional relationships become:

data(influences(aquatic_plants_biomass, plant_production,?))

data(influences(water_temp, plant_production,?))

It is apparent from the data and preliminary modelling information quoted thus far that
biomass must have a key role in the model. In fact, biomass is the model material, i.e.,
the material whose flow throughout the system of interest the model shall represent. It
is essential for model structuring guidance to ascertain such materials as they determine

the division of models into submodels.

The following quotation establishes biomass as the pond management model material:

Profit is calculated based in part on the biomass of fish accumulated on
the harvest date, which depends on the net accumulation of fish biomass
in the pond since stocking. Therefore, we need to represent fish biomass
dynamics. Because fish are herbivorous, their growth depends in part on
the amount of plant biomass accumulated in the pond at any given time,
so we also need to represent plant biomass dynamics.

Which is represented as:

model_mat(biomass)
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Lastly, another important piece of information for model synthesis is the model’s time
unit. It may be explicitly stated as a model assumption, or implied, as in this example.
Note that day is the time unit of the net production rate of plants, in Table 5.1, and also
appears in references to other process rates. Hence, day is taken for the model’s time

unit, described as:
model_time_unit(day)

One can expect reasonably adequate model time units to appear in data like in Table
5.1 and also within preliminary model information, since these are elaborated having
in mind time lengths that make sense to the problem at hand. This is obviously a sim-
plification. The questions to be answered by the model may require temporal changes
in processes to be represented in a finer or coarser time resolution. Or, distinct model
time units may appear in different metadata sources, which would require conversion
to a single unit. We shall assume however that these considerations have been taken
into account on provision of the metadata sources — references in them to the rate

time units are homogeneous and adequate.



Chapter 6

Heuristic Knowledge for Synthesis of

Model Components

Recall from Chapter 1 that our task is synthesis of system dynamics model structures
based on ontology-described data, or metadata for short. The task is first tackled with
the metadata-only approach (so called for reasons that shall become clear in Chapter
8). We start presenting the approach in this chapter by discussing its formal definitions

of model components — the compositional units of the model structures.

A metadata set, like the one in Chapter 5, is the starting point of the model synthesis
process. Now, we need formally represented knowledge that can connect the metadata

terms to model structure.

The first point of reference for formulating such knowledge is domain knowledge:
ways in which system dynamics modellers connect data to model structure. This, to a
great extent, however, is a tacit kind of knowledge, not readily available from textbooks
or experts (the old knowledge acquisition problem). No precise characterisation of how
data and model mesh has been proposed as yet. We identified commonplace modelling
practices and based on that developed a characterisation of associations between data

and model structure that is rooted in physical dimensions of ecological quantities.
We make no claim that this characterisation is cognitively plausible. The synthesis

93



94 Chapter 6. Heuristic Knowledge for Synthesis of Model Components

process we have automated is not like human modelling. Modellers use a great deal
of tacit knowledge about the real-world system-of-interest. We only use information
about the system-of-interest that is made explicit as data and model assumptions. In
sum, the knowledge we formalise as part of our synthesis systems is not comparable

to the extensive expertise and techniques applied by ecological modellers.

Also, modellers apply much ecological modelling expertise and techniques other than
what we formalise in our synthesis system. We formalise the corner of the modelling
process to do with linking data and their properties to model structure, guided by model
objectives and assumptions. This is done to support model conceptualisation, the first
stage in the modelling life-cycle (see Chapter 1). Also in this respect, our approach is
unlike conventional modelling practices, where, usually, data is only directly used in
the later stages of quantitative specification of the model. It is difficult in practice for
modellers to link concrete data to conceptual models. They do subjectively consider
what data is there to support the model, but what mainly prevails, maybe for the sake
of conceptual freedom, is the modeller’s understanding of the system-of-interest, the
variables and their interdependencies deemed relevant to the modelling problem at
hand. Then, after the conceptual model is designed, it is confronted with and fitted to

the available data, mostly through parameter estimation.

The twist in our synthesis approach that enables the mapping of data into conceptual
models is that, in describing the data in Ecolingua, we make explicit the characteristics
of the data that connect to models. Data becomes metadata and from then on, a synthe-
sis process is carried out that hypothesises conceptual model alternatives that have the
advantage of being consistent with the available data. These are meant to be prototyp-
ical models, to which modellers can apply further knowledge of the system-of-interest

and other expertise to produce refined final models.

The synthesis process consists, basically, of a reasoning procedure performed over
domain-specific knowledge formalised as Horn clauses. Such knowledge is bound to
be heuristic, given the inherent heuristic nature of the conceptual modelling task itself,
as well as the inherent imperfect nature of ecological data which grounds the task.

As a representation of heuristic knowledge, the set of domain-specific modelling rules



95

we have cannot be claimed either complete or infallible. Devising heuristic rules is
an empirical problem. One can only know how good heuristics are by putting them
to the test on problem instances (Luger and Stubblefield, 1993). In the forthcoming
evaluation chapter (Chapter 9) we show that the set of modelling heuristic rules we

show here is general enough to support the synthesis of a wide range of models.

The space of solutions of the synthesis problem is large. The number of models that
a single data set can potentially support is uncountable. Proportionally, a metadata set
can give rise to many model structure solutions. In representing modelling knowledge,
the heuristics must be able to rule out choices, narrowing them down to those that are
best justified in the metadata. In that sense, the modelling heuristics are constraints that
restrict the space of synthesis solutions. Constraint satisfaction lends itself a convenient

framework within which we shall discuss our synthesis problem-solving methods. !

The goal of this chapter is to present all the pieces of static knowledge, the synthesis
constraints, that define each type of model component. Component is a blanket term
we use to refer to both model elements and model connections. Elements are the
model’s nodes — in analogy to a graph structure — namely, state variables, flows,
intermediate variables, parameters and driving variables. Each element represents an
ecological quantity, has a unit of measure adequate to its role in the model, and has
an equation defining its behaviour. Connections are the model’s arcs, namely, flows
and links, that connect pairs of model elements. Note that flows are both element and

connection. (See Section 2.4 for a model example.)

There are, largely, two kinds of constraints for synthesis of model components: meta-
data constraints and integrity constraints. Under metadata constraints we place all
constraints that involve descriptions from the metadata set as evidence for synthesis
of model components. These range from underlying ontology constraints to classifi-
cation of model elements according to supporting metadata evidence. While metadata

constraints concern single model components, integrity constraints prevent conflicts

ILet us note, however, that we do not take up off-the-shelf resources from the Constraint Logic
Programming (CLP) machinery. The gain over the conventional logic programming techniques we
apply would not be significant. To our synthesis task it suffices to find solution instances. It is not
necessary, as normally done in CLP, to find an initial set of solutions, constrain it until it is optimum,
and then take solution instances from this set.
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between components from occurring within a model.

The chapter is organised round the constraint kinds. It has three sections: the first two
address metadata and integrity constraints, and the third shows the integration of these
two kinds of constraints into rules that define each type of model component. The next
chapter then focuses on the reasoning techniques and algorithms in the Synthesis-0

system that assemble the components into full conceptual models.

6.1 Metadata Constraints

Metadata constraints define the bridges between metadata and the synthesis mecha-
nism. The solving of these constraints is carried out in a hypothesis-formation fashion,

by exploring plausible relationships between metadata and model components.

6.1.1 Underlying Ontology Constraints

We should start with the most fundamental of the constraints, the ontology constraints.
They are the bedrock of the synthesis system. Their definitions consist of Ecolingua
axioms (Chapter 3). Every metadata that feeds into the synthesis mechanism must

conform to Ecolingua, i.e., must satisfy the applicable ontological constraints.

The constraints are called upon in an as-needed basis. Every time a metadata term,
or description, is required by the modelling heuristic rules (Section 6.3) in action, it
is, if existent, retrieved from the metadata set, and attempted to be proven over the
corresponding Ecolingua axiom. If proved the description is carried forward into the
proceeding synthesis process. Otherwise, if the description does not comply with the
ontology, it is considered invalid and is rejected. By allowing only descriptions that
conform to the ontology to get through we also restrict the space of solutions. The
ontology compliance checks are implemented by way of meta-interpretation, as we

shall discuss in Chapter 7.

In conventional human-made model design, the decisions regarding data that back
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model structure, as well as the interpretations data is given, are highly subjective and
thus virtually inaccessible to others but the designers themselves. In our approach, by
contrast, having the synthesis based on ontology-compliant metadata only, renders the
meaning of synthesis input information defined and accessible — an asset for model
analysis, evaluation, and sharing. In fact, in Chapter 8 we present a second synthesis
approach that demonstrates ontology-enabled model reuse.

6.1.2 Library of Metadata<>Model Association Rules

At the basis of the synthesis process we have a library of Metadata<+Model associa-
tion rules. Strictly speaking, these should be called ‘quantity type-model components’
association rules, as the metadata involved are only the quantity type terms in Ecolin-
gua (see Chapter 3 for definitions of each quantity type), each being associated with a

model component term or a conjunction of them.

The association rules bridge metadata and model structure, by heuristically defining
what types of model components each of the quantity types suggest. Domain knowl-
edge dictates that these must not be one-to-one associations. A single quantity type
may suggest multiple alternatives of model component types. To allow for this, while
preserving the direct logical interpretation of the rules, the associations are established
through abduction in the metadata-only approach. We delay a more detailed discus-
sion on such use of abduction until Chapter 7, where the reasoning techniques in the

Synthesis-0 system are addressed.

For devising the rules we, firstly, tried and matched quantity types with model compo-
nent types. In a fundamental level, the matching is between physical dimensions, that
characterise quantity types (as defined in Ecolingua— Section 3.2), with the roles that
the different types of components play in the model. Secondly, these intuitions were

empirically checked up on a wide range of model examples found in the literature.

The library is shown in Table 6.1. The model component types, presented in our intro-

duction to system dynamics in Section 2.4, are represented by the terms on the right
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hand side of the implications, with predicates sv, iv, etc. Later on, in Sections 6.3 and

8.6, we present heuristic rules defining each of the model component types.

Rules 1 and 2 The mass, or ‘quantity of matter’ (Massey, 1986), physical dimension
characterises the amount of material quantity type in Ecolingua. Such metadata con-
cept of amount of material naturally associates with the role of stare variables in the
models, that of representing accumulated material in parts of the system (Ford, 1999;
Forrester, 1961).

Other amounts appear in the models representing calculations over amounts in state
variables, for example, total amount of carbon in a forest vegetation adding up amounts
of carbon in roots, leaves, branches and stems. This kind of aggregated amounts are
represented as intermediate variables, since they are influenced by other variables in

the model (the state variables).

Rules 3 and 4 The same applies to quantities of type material density, which repre-

sent amount of material in relation to space (mass/length dimension).

Rules 5 and 6 Similarly, amounts of non-physical things, such as money, are asso-
ciated with state variables and intermediate variables. Note that differently from the
amount of material and material density types that generically applies to any physi-
cal material, in this case the quantity type itself determines the material argument (the

money constant) in the state variable term.

Rule 7 Amounts per se are static quantities. By contrast, activity or processes that
occur over time are represented by dynamic quantities we call absolute rates. Their
physical dimension is either mass/time, or mass/length” [time, or money/time. In the
class of system dynamics models we deal with, processes are material transfer pro-
cesses, e.g., in a pond system, consumption of plants by fish is a process that over time

transfers biomass from plants to fish; harvest of fish is a process that transfers biomass
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assoc_rule((amt_of mat(A,Mt,E,U) + sv(A,Mt,E,U)))
assoc_rule((amt_of mat(A,Mt,E,U) + iv(A,U)))

assoc_rule((mat_dens(A,Mt,E,U) + sv(A,Mt,E,U)))
assoc_rule((mat_dens(A,Mt,E,U) + iv(A,U)))

assoc_rule((amt_of .money(A,E, U) < sv(A,money, E,U)))
assoc_rule((amt_of money(A,E,U) + iv(A,U)))

assoc_rule((abs_rate(R,Mt, Eprom, Eyp, U) < mattrans(R,Mt, Efrom, E1o,U)))

assoc_rule((spf _rate(R, Raps, Mt, U) < iv(R, U) Alink(R,Raps)))
assoc_rule((spf -rate(R, Raps, Mt,U)  param(R, U) Nlink(R, Rap)))
assoc_rule((spf -rate(R, Raps,Mt,U)  dv(R,U) Alink(R,Raps)))

assoc_rule((temperature_of (T, E,S) + iv(T,S)))
assoc_rule((temperature_of (T, E, S) + param(T,S)))
assoc_rule((temperature_of (T, E,S) « dv(T,S)))

assoc_rule((weight_of (W,E,U) + iv(W,U)))
assoc_rule((weight_of (W, E, U) + param(W,U)))
assoc_rule((weight_of (W,E,U) « dv(W,U)))

assoc_rule((number_of (N, E,U) + iv(N,U)))
assoc_rule((number_of (N, E, U) < param(N, v)))
assoc_rule((number_of (N, E,U) « dv(N,U)))

assoc_rule((percentage(P,E,U) «+ iv(P,U)))
assoc_rule((percentage(P,E,U) < param(P, U)))
assoc_rule((percentage(P,E,U) + dv(P,U)))

assoc_rule((amt_of -time(T, Ev,U) « param(T,U)))
assoc_rule((amt_of -time(T,Ev,U) + dv(T,U)))

Table 6.1: Library of Metadata<»Model association rules.
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to outside the pond. Therefore, absolute rates are associated to material transfer model

elements.

Material transfers are an intermediate structure between absolute rates in the metadata
set and flows in the model. They may be worked out into flow connections in the model,
provided that the concerned synthesis constraints are satisfied (Section 6.3.3.1). The
association cannot be made directly because the origin of the material transfered by a
process (quantified as an absolute rate) as well as its destination are different in nature
from origins and destinations of flows. The distinction takes place because metadata
and models belong to different levels of abstraction. Rates are metadata, where origins
and destinations of material are entities (e.g., a consumption process transfers biomass
from plants into fish). Accordingly, Ecolingua prescribes that the arguments Efyop
and E;, of the absolute rate term are entities (Chapter 3). On the other hand, flows
are model connections. Their origins and destinations are either sources and sinks,
representing the outside of the system, or, more importantly, state variables. A state
variable does not represent just an entity, but the content of material within an entity

(e.g., a consumption flow transfers biomass from plants biomass into fish biomass).

Rules 8, 9and 10 Conjoined with absolute rates, there are specific rates. They also
measure material transfer over time but in relation to the amount of material in entities
involved. For example, for the process of consumption of plants by fish a specific rate

would be a rate of biomass transfer per day in relation to the amount of biomass in fish.

This relation between absolute and specific rates is represented in system dynamics
models as influence links with the model element that holds the specific rate regulating
the model element that holds the absolute one. Thus, a description of a specific rate is
rich enough to suggest both a model element holding it and a link from it to an element

holding the absolute rate.

In system dynamics models specific rates appear modelled as either intermediate vari-
ables, parameters or driving variables. Hence these association rules — a specific rate
may become an intermediate variable, a parameter, or a driving variable in the model,

and be linked to its respective absolute rate model element.
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Rules 11 to 22 The quantity types in the association rules thus far, namely, amounts
(amount of material, material density and amount of money), and rates (absolute and
specific) are distinctive in that they all involve a material M. Accordingly, quantities
of these types are mostly associated, directly and indirectly (in the case of specific
rates), with equally distinctive elements in the model, i.e.state variables and flows that

represent the pathway over which the material of interest flows.

Remaining quantity types in Ecolingua, namely, temperature_of (temperature dimen-
sion), weight_of (mass dimension), number_of and percentage (identity dimension), not
having the distinctive material feature, are associated , by exclusion, with modelling
elements other than state variables and flows, i.e., intermediate variables, driving vari-
ables and parameters. We ratified this heuristic by finding, to each of the association

rules, at least one example of model in the literature where the association rule holds.

Rules 23 and 24 In associating the quantity types in rules 11 to 22 with intermediate
variables, it is implicit that these quantities/variables are liable to being influenced by
other quantities/model elements. In the case of quantities of type time, of the time di-
mension, we exclude the association with intermediate variables, since, by definition,
variables representing time cannot depend on other variables in the model. They are
represented either as parameters — a model input that does not change during simu-
lation — or as driving variables — a model input that may change during simulation,
but not caused by other model element.

Note that almost every quantity type is associated with an intermediate variable in the
library of association rules. This is in accordance with intermediate variables being,
generally, the most versatile, and thus most relatively abundant element type in system

dynamics models.

The set of rules presented support synthesis of a wide range of models within the class
of models tackled, as shown in Chapter 9. We must stress, however, that the library
is not complete, neither has it been intended to be so — because it is a representation

of heuristic knowledge, completeness is inherently unattainable. The idea is that the
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library should be augmented, or altered even, ameliorating the associations between
metadata and model structure and widening the range of synthesisable models. Also,
the synthesis systems are engineered to allow for the library to be modified without
causing side-effects or requiring other modifications elsewhere. The library’s simple
form is meant to make updates easy. Recall that Ecolingua is also extensible. Addition
of new quantity types to the ontology, for instance, would trigger addition of new

Metadata<+»Model association rules to the library.

6.1.3 Influence Constraints

Work in modelling of complex systems shows that some knowledge of influences,
causal relationships, or functional relationships (to mention but a few terms for this
concept) between objects in the domain is essential for automated and non-automated
approaches. It is important for our synthesis systems too. Because it is such a widely
used concept, we have this section specifically on influence constraints, wherein we
discuss our use of influences in perspective, relating it to three other relevant ap-

proaches.

6.1.3.1 Influences in System Dynamics Causal Loop Diagrams

In system dynamics modelling itself, we find Causal Loop Diagrams (Ford, 1999).
While flow diagrams (like the one in Section 2.4) are designed for simulation (the ulti-
mate purpose of system dynamics models), loop diagrams are a tool for understanding
and communication of models. Types of model elements (or variables) — state vari-
ables, flows, intermediate variables, parameters, driving variables — are not specified
in loop diagrams. All variables are treated the same and denoted by their names only.
Likewise, types of connections — flows, links — are not distinguished either. Uni-
form arrows denote causal connections (or influences) between variables, regardless of
whether they may be a flow (material transfer) or a link (information transfer) in the
corresponding flow diagram. The arrows are labelled either + or —. The positive sign

stands for a causal connection where the two variables change in the same direction
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(both increase or both decrease). Otherwise, if the connected variables change in op-
posite directions, the arrow receives a negative sign. In that way, by abstracting types
of variables and connections, a loop diagram gives an overall picture of cause-and-
effect relationships and information feedback in the modelled system, as opposed to

flow diagrams where the different roles of model components are emphasised.

6.1.3.2 Influences in Qualitative Process Theory

Influences are a key modelling concept in Qualitative Process Theory — QPT (Forbus,
1984), the foundational theory of Qualitative Reasoning (Kuipers, 1994). Influences in
QPT specify relations between system processes and quantities that can inflict change
in quantities. Change is assumed to be caused, directly or indirectly, only by processes
(the sole mechanism assumption). Changes inflicted by processes on quantities are
modelled as direct influences. For example, Q is a quantity representing the amount
of some ‘stuff’, and n is the flow rate of some process that directly influences Q. This
would be written as: I+ (Q,n), if the influence is positive (increasing monotonic);
I—(Q,n), if the influence is negative (decreasing monotonic); or I+ (Q,n), if the sign
is unspecified. Indirect influences denote changes inflicted on a quantity by some
other quantity, which in turn changes due to direct or indirect influences. For example,
an indirect influence from a process on a quantity Qp exists, if the process directly

influences a quantity Q> which indirectly influences Q;.

6.1.3.3 Influences in TRIPEL — a system for automated compositional mod-
elling of complex systems

In (Rickel and Porter, 1997; Rickel, 1995) influences are also used to compose quali-
tative models. Influences among system variables are the building blocks from which
a compositional modelling algorithm, within a system called TRIPEL, constructs the
simplest model that can answer a given prediction (what if) question. Additional do-
main knowledge on plant physiology specified by instantiating a large multipurpose
biology knowledge base is also used. Assisted by this domain knowledge, and given
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the complete network of influences, the algorithm searches for the smallest portion of

the network that answers the prediction question.

A similar notion to QPT’s classification of influences into direct and indirect takes
place in TRIPEL. QPT’s direct influences are equivalent to so called differential influ-
ences. Differential influences on a variable are combined to form a differential equation
that defines the variable. QPT’s indirect influences are equivalent to functional influ-
ences. These, in turn, are combined to form algebraic equations defining influenced
variables. The notation used consists of arrows from influencer into influenced vari-
ables. Each influence is labelled with the sign of its partial derivative (+ for increase,
— for decrease). These are like the Causal Loop Diagrams mentioned above, except

that there differential and functional influences are not distinguished.

6.1.3.4 Influences in Metadata-supported Model Synthesis

How influences are described

The Ecolingua term influences(Q,Q’, Sign) (Chapter 3) is used to specify influence
relations between quantities. The influence sign is positive (4) when the two quantities
change in the same direction, negative (—) when the two quantities change in opposite
directions, or is undetermined (?). Like all metadata, influence descriptions come from

field data and other preliminary modelling information (Chapter 5).

What influence descriptions represent

Our specifications of influences belong to the metadata level of abstraction, differently
from QPT and TRIPEL where they denote relationships at the system level of abstrac-
tion. In QPT and TRIPEL the influences are between system variables. Our influences
are between quantities in the data. Therefore, for specifying influences, we do not have
a prominent notion of system process like in QPT, that determine direct and indirect in-
fluences. Metadata sources may refer to processes, but, as metadata, they are described
as rate quantities. Similarly, differential and functional influences as in TRIPEL are not

particularly distinguishable in metadata sources.
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Causal Loop Diagrams relate to our influence descriptions more closely. Still, in loop
diagrams there are influencers and influenced model variables as opposed to data quan-
tities. Another difference is that we may have the sign of the influences unspecified
(like in QPT). The similarity between the approaches is that in both each influence
represents a direct causal relationship from influencer to influenced element, regard-
less of what type of model element they are — in the case of loop diagrams — or may
become — in the case or our synthesis systems — in a corresponding system dynam-
ics flow model. Clearly, indirect influences derive from the direct ones (e.g., suppose
A, B and C are variables or quantities; if A directly influences B and B directly in-
fluences C, then A indirectly influences C). In our synthesis systems, from the set of
individual descriptions of direct influences between quantities may stem a network of
model connections (those whose synthesis constraints are satisfied) that, like in the

loop diagrams, can be diagrammatically represented.

How influence descriptions are explored for synthesis

Influences are not as central to our synthesis systems as they are to QPT and TRIPEL.
The qualitative models TRIPEL produces, in particular, are a subset of the system
description, the given specification of the system of interest in terms of variables and
influences between them. So, the success of the compositional modelling algorithm,
in finding the smallest portion of the system description that answers the prediction
question, depends on how good the given system description is in the first place. For

success, it must contain all relevant variables and influences.

We could not have this sort of requirement, since the metadata sources from where the
influence descriptions come (field data and textual statements of model objectives and
assumptions), are inherently incomplete and possibly ambiguous. The system needs to
be flexible. The more influence descriptions the metadata sources expel, so much the
better — that means more metadata evidence for synthesis, but completeness is not a

requisite.

Influence descriptions are not the only kind of metadata we use for establishing model

connections. As we shall see in Section 6.3, an influence description is required in
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some of the rules for establishing flows and links. They also determine the evidence
class of some types of model elements, but not all. Generally, the importance of meta-
data (an influence description is just one of their kinds) is relative to the type of model
component under synthesis. Also, individual descriptions do not go a long way without
others. For synthesis to work on its best a metadata ser with a variety of interrelated

metadata terms is needed.

The models constructed are conceptual structural models. The signs in the influence
descriptions are important to that because, for flow connections (material transfers)
established from influence descriptions, it is the sign that determines the direction of
the flow in relation to its state variable(s). Establishing a flow connection F into a
established state variable S would require a description of the form influences(F,S,+)
(together with other constraints — see Section 6.3.3.1). The positive influence deter-
mines that 7 must be a flow into S, i.e., F causes S to increase. Conversely, a flow F’

from S, would require a negative influence of F on S, causing the latter to decrease.

As for links (information transfers), the influence sign is irrelevant for structural spec-
ification. The direction of links is always from the model element established from
the influencer quantity o the model element established from the influenced quantity,
regardless of the sign (4, —, or ?). The sign shall be important, however, for future

work on synthesis of algebraic equations defining influenced model elements.

6.1.4 Evidence Classes of Model Elements

In our approach, as we know, model synthesis is substantiated by metadata evidence.
This is done, in part, by finding descriptions of quantities in the metadata set that
instantiate the quantity type terms in the association rules library (Section 6.1.2), and

applying abduction over the rules to connect the quantities to model element types.

To establish a model element by that only, we need what we call minimal evidence
or minimal constraint: a description of a quantity. But that only would be too soft a
constraint, that would ultimately lead to a large number of weakly metadata-supported

model solutions. Besides descriptions of quantities, we also use as additional evidence
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descriptions of properties of quantities (e.g., constancy), descriptions of relations be-
tween quantities (e.g., influence relations), and descriptions of model requirements

(e.g., model material).

Additional evidence descriptions cannot be a hard requirement, though. The meta-
data sources may not cater to them. We make the system flexible by allowing model
elements to be established either way, whether additional evidence holds or not. We
define two evidence classes, strong and weak, and assign model elements to them ac-
cordingly: if full (minimal plus additional) evidence holds to that model element, it is
said to be strongly suggested, otherwise, if only minimal evidence holds, it is said to
be weakly suggested (for short, we also refer to the model elements as strong or weak

elements).

Different metadata make additional evidence to different model element types. The
model material requirement is additional evidence for establishing state variables; the
constancy property for establishing parameters; and the influence relation for estab-
lishing intermediate variables. For driving variables, it is the absence of descriptions
of the constancy and influence properties upon a quantity that constitutes additional

evidence.

Assigning each model element’s evidence class is integral to the heuristic synthesis
rules (in Section 6.3). In establishing a model element through one of these rules, its
evidence class is determined, according to availability or not of additional evidence.
We then take advantage of this evidence classification of model elements to formulate
integrity constraints that resolve possible conflicts between model element alternatives.

Integrity constraints are introduced in the next section (Section 6.2).

Also, the evidence classes can be useful for users in evaluating model alternatives
delivered by the synthesis system. For example, most likely, a user will prefer a syn-
thesised model where a key quantity is, say, strongly suggested as an intermediate
variable to one where it is weakly suggested as a state variable. Or, he may well take
the second alternative, but he would do so knowing that the data set does not provide
as strong an evidence for a state variable element type to hold that quantity, compared

to an intermediate variable element type.



108 Chapter 6. Heuristic Knowledge for Synthesis of Model Components

Partial plans, weak elements. Whole plans, strong elements.

We find a similar approach to our model elements evidence classes in the Al Planning
literature. (Ferguson and Allen, 1994) proposes a model of plans based on defeasible
argumentation, where plans that do not take all preconditions into account, so called
partial plans, can be represented and reasoned upon. For every action with conjunctive
preconditions there is a set of defeasible rules organised in a lattice of specificity —
from the most specific where all preconditions appear, to the least specific with no
preconditions. This renders degrees of support for actions (and plans, consequently)

according to the preconditions’ degree of specificity.

Our approach is a specialisation of this, where metadata evidence (preconditions) is
always required (no evidence cases are not considered), with a bipartite lattice: within
the set of constraints defined, full (most specific) metadata evidence suggests strong
model elements, and minimal (less specific) metadata evidence suggests weak model

elements.

Simplistic evidence class approach

Our dual evidence class approach is clearly very simple. A more sophisticated ev-
idence ranking scheme (classification, valuation, etc.) could be elaborated, not re-
stricted to just two evidence classes. Another strand for further elaboration would be on
combination and propagation of evidence ranks. The assignment of evidence classes
is restricted to atomic model substructures, the model elements. Evidence classes of
connected elements could be somehow combined to assign an evidence class to the
flow or link connecting them. Moreover, a framework for evidence ranking propaga-
tion throughout the connections in the model could be developed. Time did not allow

our current research to explore this direction.

6.2 Integrity Constraints

As mentioned earlier, system dynamics models synthesised from metadata should not

be uniquely determined. This motivates the use of abduction in the solving of metadata
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constraints because it allows for the synthesis of multiple model structure alternatives.
Characteristic problems of abductive reasoning arise (Kakas et al., 1998), however:
possible conflicts between explanations (the general term to what we call model sub-
structures), and a potential large number of explanations. A common solution is to use
integrity constraints to reduce the number of explanations and to handle those that may
lead to inconsistencies. In our model synthesis context, the risk of inconsistency lies
in conflicting synthesisable model substructures (mainly model elements) finding their
way into the same model. Moreover, multiple possible model substructures may lead

to a combinatorial explosion of model alternatives.

In general, we apply integrity constraints at the level of synthesis of individual model

components, and at the level of synthesis of the overall model structure:

1. Based on domain knowledge, preference is given to certain types of model el-
ements over others, depending on the roles the model element types involved
play in the model, and also on the evidence classes the elements belong to. For
example, if both a strong state variable and a strong intermediate variable are
suggested by the same quantity, preference is given to the synthesis of the state
variable, since this type of element is more central to the model than interme-
diate variables. More so, a strong state variable is also given preference over a
weak intermediate variable. Generally, strong model elements are favoured over
weak ones suggested by the same quantity. In other words, we take the practical
stance of preferring model elements with full metadata evidence to the ones with

partial evidence.

2. For cases of multiple substructure alternatives suggested by the same quantity
that do not fall on the above, i.e., when one is not preferred to the other, the con-
straint is then to generate separate models for the alternatives. The preferences
above keep the number of alternatives manageable. Clearly, this constraint can-
not be defined at the level of individual model substructures, but at the level of

assemblage of overall model alternatives. This goes in Chapter 7.

At this point, we will leave the discussion on integrity constraints at this general level.

More detail on integrity constraints specific to each type of model element and con-
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nection 1s given throughout Section 6.3. Resolution of conflicts between the several

model element types are summarised in Section 6.3.2.

6.3 Synthesis Constraints of Model Components

We will now see how metadata and integrity constraints are put together to define the

synthesis constraints for each type of model component.

6.3.1 Constraints of Model Elements

The synthesis constraints of model elements are now discussed. Elements are the nodes
in the model. They can be of types state variable, intermediate variable, parameter,

driving variable, and flow, which is a hybrid element-connection type.

6.3.1.1 State Variables

State variables (also known as stocks, compartments or levels) represent stations of ac-
cumulation of material in the system-of-interest. For example, carbon in roots, leaves,
branches and stems, in a model of carbon flow in a tropical forest; water in a reservoir,
in a model of water storage; DDT in soil, rivers, ocean and air, in a model of accu-
mulation of DDT in the environment; oil in reserves, in storage, in transit, in refinery
stocks, etc., in a model of the world oil industry (Ford, 1999); profit in bay and ocean

fisheries, in an economic model of fisheries management (Grant et al., 1997).

These examples make clear that a state variable represents a relation of containment
between a material and distinguishable entities, or entity, that hold it (e.g., material

carbon in entities roots, leaves, branches and stems).

We add name and unit of measure to material and entity to form the relation that
represents state variables in their synthesis constraints. The relation is denoted
sv(E(S),Mt,E,U), where
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o &£(S), with £ € {stg, weak}, is the state variable’s name S, qualified by its evi-

dence class &;
e Mt refers to a material;
e E refers to an ecological entity; and
e U refers to a unit of measure.

The constraints for state variables with strong metadata support are defined as follows.

S is a strongly suggested state variable, representing material Mt in entity E, with
unit of measure U, if there exists a data term or model goal variable, Qerm, that
can be associated, by abduction, with a sv(S,Mt,E,U) term, if Mt is the model
material; and if the integrity constraint for strong state variables is satisfied for
S and U:

sv(stg(S),Mt,E,U)
3Qterm - (data(Qerm) V model_goal var (Qrerm)) A
metadata
associationagpd (Qrerm,sv(S,Mt,E,U)) A ) (6.1)
constraints
model_mat(Mt) A

sv_integrity(stg(S),U)

Recall that descriptions of quantities are to be found in a metadata set that contains
descriptions of field data and/or model preliminary information (Chapter 5). Also
recall that data is a generic descriptional predicate, used for any metadatum, except
specific model requirements. data(Qrerm) in Rule 6.1 thus means that Qe can be

broadly any of these generically described metadata.

model_goal var(Querm), on the other hand, has a more particular meaning in Rule 6.1.
Model goal variables are identified from model objectives (Chapter 5). The rule en-
codes that in modelling practice the choice of state variables is often driven by model
objectives. State variables usually are the variables whose behaviour the model is
meant to simulate, by calculating the variables’ values over simulation time. The dia-
grammatic structure of system dynamics models reflect the central role of this type of
model element. All parameters, intermediate and driving variables in a model directly

or indirectly regulate the flow variables, which, in turn, regulate the state variables. So,
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all the other variables in an model ultimately exist to determine the behaviour of the

state variables.

The next condition in the rule is that an association between the described Qyerm and a
state variable term must take place. This is done by applying abduction over the associ-

ation rules in Section 6.1.2 that relate descriptions of quantities to model components.

Next, that Mt must be a model material is the additional metadata evidence that as-
signs the strong evidence class to S. Our class of system dynamics models, as we
know, represent flow of material through a system, with state variables representing
storage stations of the material. Therefore, adding to the previous conditions, if there
is a described quantity that can be associated with a state variable term concerning
the material M? known to be a model material (see Section 5.2.2) , then this strongly

suggests a state variable.

This concludes the metadata constraints for strong state variables. Only the integrity
constraint is now left. A note on notation, most other forthcoming model components
rules? have this same structure: all except the last conjunct in the rule’s premise make

up the metadata constraints, with the last conjunct being the integrity constraint.

The integrity constraint for state variables is defined as:

The integrity of a state variable S of any evidence class (strong or weak) with unit
of measure U is verified, if a strongly suggested parameter S with unit U does not
hold:

sv_integrity(E(S),U) < — param(stg(S),Mt, U) (6.2)

This is to say that a strong parameter is preferred to a state variable that originates
from the same quantity. A single quantity, within a single model, cannot be mapped
into multiple model elements of different kinds (Section 6.2). The parameter is pre-
ferred because, as we will see in Section 6.3.1.3, a quantity to become a strong pa-
rameter needs to be described as a constant. This is incompatible with a state variable

behaviour, whose value is expected to fluctuate in simulation.

The exception is Rule 6.8 which does not comprise an integrity constraint.
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The unit of measure argument, U, is important in integrity verification. There only is
a conflict between model elements when they originate from the same quantity, and
a quantity’s unit of measure is its most distinguishing attribute since it identifies the

quantity’s physical dimension (Section 3.2).

We should note that for the association rules library in Section 6.1.2, this integrity
constraint is always satisfied, since there is no quantity type that can be associated
with both a state variable and a parameter model element. Yet the integrity constraint
is included for generality. We want to allow the library to be extended (possibly to
include rules that would make possible the constraint not to hold) without changes

needed in the integrity constraints.

A second rule defines weak state variables. The metadata sources may be short of in-
formation for identification of model material(s), in which case the additional evidence
required for a strong state variable would be absent from the metadata set. This does
not have to stop the state variable from being inferred, but this time, with less evidence,

it will belong to the weak evidence class.

S is a weakly suggested state variable, representing some material Mt in entity E,
with unit of measure U; if no model material is described, if there exists a data
term or model goal variable, Qerm, that can be associated, by abduction, with
a sv(S,Mt,E,U) term; and if the integrity constraint for weak state variables is
satisfied for S and U:

sv(weak(S),Mt,E,U) +
- model_mat(Mt') A
3Q1erm - (data(Qierm) V model_goal var(Qierm)) A (6.3)
associationabd (Qrerm,sv(S,Mt,E,U)) A

sv_integrity(weak(S), U)
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6.3.1.2 Intermediate Variables

Commonly, intermediate (or auxiliary) variables are the most abundant element type
in models. They are the model elements in between the variables representing inputs
to the model — those outer most variables that affect but are not affected by other
model variables — and the model’s core, the chain of flows and state variables. State
variables and flows aside, a model element is an intermediate variable if it is influenced
by at least one other model element (i.e., there must be at least one /ink into it). This
is their most distinctive structural characteristic. They usually are abundant in models
because a complex network of these influences may be needed to represent the linkage

between the model inputs and its core.

In the constraints rules, intermediate variables are represented by a relation of the form
iv(E(I),Mt,U), similar to that of state variables. The rule for inference of strongly

suggested intermediate variables is as follows.

I is a strongly suggested intermediate variable, in a model of flow of material
Mt, with unit of measure U, if there exists a data term or model goal variable
Qrerm that can be associated, by abduction, with an iv(1,U) term; if I is described
as an influenced quantity; and if the integrity constraint for strongly suggested
intermediate variables is satisfied for I, Mt and U:

v(stg(I),Mt,U) +
3Qierm - (data(Querm) V model_goal var(Qrerm)) N
associationapd(Qrerm, V(I,U)) N 6.4)
data(influences(Q,1,Sign)) A
iv_integrity(stg(I),Mt,U)

For state and intermediate variables only, Qe can also be described with the
model_goal var predicate, i.e., quantities described as model goal quantities may be-
come either state variables or intermediate variables in the models. Like state variables,
intermediate variables “"may represent an end product of calculations that is of partic-

ular interest to us” (Grant et al., 1997). In simulation, one is interested in finding out
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how things change over time due to processes and other relationships between entities
in the real system. In the model, these entities and processes become variables and the
changes of interest can be observed as fluctuations in variables’ values over simula-
tion time. Because intermediate variables are, by definition, influenced by other model
elements, they can quantify some of these changes of interest — as the values of the
influencers change during simulation so do the values of the intermediate variables.
By contrast, we do not have model goal quantities leading to parameters, for exam-
ple (Section 6.3.1.3). We are interested in quantities that change and parameters are

constants.

Proceeding with the constraints, an association must hold between a data term Qyepn, in
the metadata set and an intermediate variable term with name I and unit of measure U

(via some rule in the association rules library).

Moreover, data(influences(Q,1,Sign)) is the additional piece of evidence that as-
signs I to the strong evidence class. Once more, evidence is to be found in the
metadata set, where influences between quantities are described by the relation
influences(Influencer, Influenced, Sign). It can only be established that I is an in-
fluenced model element if the quantity it originates from is described as influenced
— [ is unified with the name of the quantity described in Qpn When proving
associationgpq(Qrerm, iv(I,U)) (see Section 7.4.2). This is symbolic of transferring

the ‘influenced’ property from the quantity in the metadata to the model element /.

The integrity constraint for a strongly suggested intermediate variable is that it must

not conflict with a strongly suggested state variable.

The integrity of a strongly suggested intermediate variable I, in a model of flow
of material Mt, with unit of measure U, is verified, if a strongly suggested state
variable I of Mt with unit of measure U does not hold:

iv_integrity(stg(I),Mt,U) « — sv(stg(I),Mt,E, U) (6.5)

That is, between establishing with strong evidence, within a model of flow of some
material, a state variable and an intermediate variable with same name and unit of
measure, we choose the former. The intuition is that state variables are more central

to the model and should be given preference. Each single model is determined by
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the material argument Mt — each model represents flow of a single material through
a system of interest (Section 5.2.2). This is the purpose of the Mt argument in the
integrity constraint rule above. The material is not as intrinsic to intermediate variables
as it is to state variables (which represent amount of material in an entity), but it is

necessary for integrity verification.

As mentioned before, the distinctive structural characteristic of intermediate variables
is that they must be influenced by at least one other model element. If there is no
description in the metadata set providing evidence that the quantity the intermediate
variable will hold is influenced, then the intermediate variable can only be weakly

suggested.

1 is a weakly suggested intermediate variable, in a model of flow of material
Mt, with unit of measure U , if there exists a data term or model goal variable
Qrerm that can, by abduction, be associated with an iv(l,U) term, but there is no
metadata evidence that I is an influenced quantity, and if the integrity constraint
for weakly suggested intermediate variables is satisfied for I, Mt and U:

iv(weak(I),Mt,U) <
3Qierm - (data(Qierm) V model_goal var(Qrerm)) N
associationgpd (Qierm, iv(1,U)) A (6.6)
= data(influences(Q,1,Sign)) A
iv_integrity(weak(I),Mt,U)
A weakly suggested intermediate variable must not conflict with a strongly suggested
state variable nor with a strongly suggested parameter.

The integrity of a weakly suggested intermediate variable I, in a model of flow
of material Mt, with unit of measure U, is verified, if neither holds a strongly
suggested state variable nor a strongly suggested parameter with arguments I,
Mt and U:

iv_integrity(weak(I),Mt,U) <
= (sv(stg(l),Mt,E,U) N param(stg(I),Mt,U)) (6.7)

The integrity constraint encodes that strong evidence (of a state variable or parameter)

is given preference over weak evidence (of an intermediate variable). Also, still applies
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the same reason for preferring strongly suggested state variables to strongly suggested

intermediate variables — that the former are more central to the model,

In Rule 6.5 it was not necessary to check for parameters as in Rule 6.7 because the

ontology already guarantees that influenced quantities do not become parameters (see
Section 6.3.2).

6.3.1.3 Parameters

Parameters, or constants, represent characteristics of the system of interest that are con-
sidered unchanging under all conditions simulated by the model (Grant et al., 1997).
Contrary to intermediate variables, they are not influenced by other model elements.
For this reason they are also known as model inputs or exogenous variables (Ford,
1999).

Two concepts in Ecolingua directly relate to these characteristics of parameter model
elements: the constancy property and the influences relation. The ontology defines
that constants and influenced quantities are mutual exclusive (see Section 3.2.1.7).

Metadata that violates this definition is rejected for model synthesis (Section 7.4.1).

In the synthesis constraints, parameters are represented by the relation
param(E(P),Mt,U), in the same style of state and intermediate variables. The

constraints for strong parameters are like this:

P is a strongly suggested parameter, in a model of flow of material Mt, with unit of
measure U, if there exists a data term Qrerm that can, by abduction, be associated
with a param(P,U) term, and if it is described as constant:

param(stg(P),Mt,U) +
3Qfl.'rﬂl = dara(Qfeml) /\
associationgpd (Qrerm,param(P,U)) A (6.8)

data(constant(P))

The description of P as constant is what makes for its strong class of evidence. Again,

like the ‘influenced’ property for intermediate variables, this is to say that by proving
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associationapd(Qierm, param(P,U)) the constancy property of the quantity described

in Qyerm is transferred to the model element P.

Note the absence of an integrity constraint. Integrity constraint 6.2 already rules out a
conflict with a strong state variable. A conflict with a strong intermediate variable, in
turn, is guaranteed not to take place by Ecolingua constraints. And finally, Rule 6.11
below that establishes strong driving variables makes them mutual exclusive in relation
to strong parameters, in that it requires the originating quantity not to be described
as constant (see Section 6.3.2 for a summary of conflict resolution between model

elements).

If, however, a described quantity exists that can be associated with a param(P, U) term
but the evidence of constancy is missing, P is only suggested as a weak parameter.
P is a weakly suggested parameter, in a model of flow of material Mt, with unit of
measure U, if there exists a data term Qerm that can, by abduction, be associated

with a param(P,U) term, if P is not described as constant, and if the integrity
constraint for weakly suggested parameters is satisfied for P, Mt and U:

param(weak(P),Mt,U) <
3Qserm - data(Qrerm) N
associationabd (Qerm,param(P,U)) A (6.9)
- data(constant(P)) N\

param_integrity(weak(P),Mt, U)

An integrity constraint is needed this time. Preference is given over weak parame-
ters to state and intermediate variables supported by stronger metadata evidence. State
variables are preferred because they are more central to the model, and intermediate
variables because the description of an influence upon the originating quantity over-
rules the absence of a description of the quantity as constant.

The integrity of a weakly suggested parameter P, in a model of flow of material

Mt, with unit of measure U, is verified, if it holds that P is neither a strong state
variable nor an intermediate variable, also with arguments Mt and U:
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param_integrity(weak(P),Mt,U) <+
- (sv(stg(P),Mt,E,U) V iv(stg(P),Mt,U)) (6.10)

6.3.1.4 Driving Variables

Driving variables are similar to parameters in that they are also inputs to the model
and are not influenced by other model elements. But they are not constants. They may
change value during simulation due to factors other than other model elements, such

as simulation time (Grant et al., 1997).

This renders a different use of metadata that relate to these characteristics of driving
variables. Unlike intermediate variables and parameters, what counts for establishing
a driving variable, is the absence of descriptions of the constancy and ‘influenced’
properties applied to quantities that suggest it. In other words, the lack of evidence is

the evidence.

Similarly to the other model elements thus far, driving variables are represented by
a relation of the form dv(£(D),Mt,U) in the synthesis constraints rules, which are

formulated as follows.

D is a strongly suggested driving variable, in a model of flow of material Mt, with
unit of measure U, if there exists a data term Querm that can, by abduction, be
associated with a dv(D, U) term; if there is no description of D as constant, nor
as influenced quantity; and if the driving variables integrity constraint is satisfied
for D, Mt and U:

dv(stg(D),Mt,U) +
3Q1erm - data(Qrerm) N
associationapd (Qierm,dv(D,U)) A (6.11)
~ (data(constant(D)) V data(influences(Q,D, Sign))) A
dv_integrity(stg(D),Mt,U)
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Driving variables can only be strongly suggested. To suggest a weak coun-
terpart, we would have to rely on the existence of data(constant(D)) or
data(influences(Q, D, Sign)). But these already suggest strong parameters and inter-
mediate variables, respectively, which, upon conflict, would be given preference over

a weak driving variable.

Driving variables may however conflict with strong state variables. The following
integrity constraint gives preference to the latter.
The integrity of a strongly suggested state variable D, in a model of flow of mate-

rial Mt, with unit of measure U, is verified, if a strongly suggested state variable
S of Mt with unit U does not hold:

dv_integrity(stg(D),Mt,U) «+ — sv(stg(D),Mt,E,U) (6.12)

Like integrity constraint 6.2 (which resolves conflicts between state variables and
strong parameters), this driving variables integrity constraint is bound to succeed given

the current association rules library; yet it is included for generality.

6.3.2 Summary of (Non-)Conflicts between Model Elements

At various points throughout the previous sections on state variables, intermediate vari-
ables, parameters and driving variables, we have discussed conflicts between model
elements. For better clarity, in Tables 6.2 to 6.5 below we summarise all possible con-
flicts and non-conflicts between pairs of model elements, each characterised by type
(sv, iv, param, dv) and evidence class (stg, weak). Hereafter we will refer to them as

just model elements. The tables show:

e Conflicts resolved by preference defined by integrity constraints — <= and
1} cells. Conflicting pairs of model elements occur in relation to a single meta-
data set and a single material. They may arise from descriptions of a single

quantity (provided the metadata constraints are satisfied) but are not allowed to
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be both established. Rather, one is preferred (and the other rejected) as deter-
mined by an applicable integrity constraint. The arrows in the table point to the

preferred element should a conflict occur.

e Non-conflicts where the model elements are co-established — v/ cells. These
are elements that arise from a single quantity, like before, but have no preference
defined. Both can be established but in separate models. Synthesis of multiple

model alternatives is discussed in Chapter 7.

¢ Non-conflicts determined by underlying ontology constraints or other meta-
data constraints — X cells. These are elements that dispense an integrity con-
straint, since either an ontological or other metadata constraint already prevents

them both from being established.

v

stg weak

stg <= (integ.) | <=(integ.)
weak Vv Vv

Table 6.2: State variables vs intermediate variables. Strong state variables are preferred

SV

to strong and weak intermediate variables (Section 6.3.1.2). Weak state variables can

be co-established with strong and weak intermediate variables.

param

stg weak

stg | 1} Ginteg) | <= (integ)
weak | lnteg) v

Table 6.3: State variables vs parameters. Strong parameters are preferred to strong

SV

and weak state variables (Section 6.3.1.1). Strong state variables are preferred to
weak parameters (Section 6.3.1.3). Weak parameters and state variables can be co-

established.
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param

stg weak

stg X (onto.) | <(integ.)
weak ﬂ(imeg,) \/

Table 6.4: Intermediate variables vs parameters. The Ecolingua constraints in Section

v

3.2.1.7 prevent strong intermediate variables and parameters from conflicting. Strong
intermediate variables are preferred to weak parameters (Section 6.3.1.3) and strong
parameters to weak intermediate variables (Section 6.3.1.2). Weak intermediate vari-

ables and parameters can be co-established.

Y iv param

stg weak stg weak stg  weak
d\r" stg ﬂ(imcg.) \/ X (md) \/ X (md) \/

Table 6.5: Driving variables vs state variables, intermediate variables and parameters.
Strong state variables are preferred to strong driving variables (Section 6.3.1.4). Strong
driving variables can be co-established with weak state variables, intermediate vari-
ables and parameters. Metadata constraints prevent conflicts between strong driving

variables and strong intermediate variables and parameters (Section 6.3.1.4).

In the tables we can see that less pairs of elements can be co-established (7 in total)
than cannot (11 in total). This has the desirable overall effect of restraining a com-
binatorial explosion of model alternatives. Remarkably, the metadata and integrity
constraints have not been devised with this specific purpose in mind — they were pri-
marily intended to just capture domain knowledge. The control over the number of

model alternatives emerges from domain knowledge.

Also note that driving variables are more permissive on being co-established with weak
model elements of other types. This is not surprising. Since strong driving variables
and weak state variables, intermediate variables and parameters are all supported by
the lack of certain metadata specifications, they are less exclusive model elements, and

should be allowed co-establishment.
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6.3.3 Constraints of Model Connections

Connections are the model’s arcs, namely, flows and links, connecting model elements
as nodes. Connections constraints are harder, in the sense that, besides their own, they
also include the constraints of the model elements in the two ends. That is, for a flow
or link to be established the constraints of the two model elements it connects must be
satisfied.

In the synthesis rules, the premises for establishing connections comprise a conjunction
of constraints, with, as indicated in Rule 6.13, the metadata constraints followed by
the constraint(s) for establishing the initial model element and/or the terminal model

element, followed, where appropriate, by the integrity constraint.

6.3.3.1 Flow Element-Connections

The storage of material, represented by the state variables in the models, is regulated by
processes that transfer material throughout the system-of-interest. These processes are
represented by flows. In the model diagrams, a flow pointing into a state variable rep-
resents a process that increases the amount of material in the state variable, whereas, a
flow pointing away from a state variable represents a process that decreases its amount
of material. A flow in between two state variables, hence, represents a process that has
the effect of transferring material, causing a decrease of material in the state variable

it leaves from and an increase in the state variable where it ends.

Flows are both model element and model connection. They are elements because
like state variables, intermediate variables, driving variables and parameters, each has
an equation to quantify it, giving the instantaneous flow rate over time. They are
connections because they connect state variables forming the pathway over which the

material of interest flows.

There are three kinds of flows: from a source into a state variable (an in-flow), from a
state variable into a sink (an out-flow), or from a state variable into another. Sources

and sinks are the boundaries of the ‘flows-and-state variables’ chain. They can also be



124 Chapter 6. Heuristic Knowledge for Synthesis of Model Components

thought of as state variables (although they are not modelled as such) that are outside
of the model’s scope (Ford, 1999).

We encapsulate all these features that constitute flows in a relation of the form
flow(F,Mt,From,To,U/U;), where

e [ is the flow’s name;

e Mt is the material that the flow transfers;

e From is the flow’s origin, either a state variable or a source;

e 7o is the flow’s destination, either a state variable or a sink; and

U /U, is the flow’s unit of measure. Since a flow quantity is a rate of flow of

some material over time, its unit of measure must be a composite of some unit

U, measuring material, over a unit U;, measuring time.

In-flows

F is a flow of material Mt from an entity Ef,,y, into a state variable £(S) with unit
of measure U, and is measured in the unit of measure U [U,, if there exists a data
term Querm that can, by abduction, be associated with a term representing transfer
of Mt from entity Epom into entity Ey,, also measured in U [Uy; if U, is the model
time unit; and if a state variable with unit of measure U cannot be established
representing material Mt in entity Efy,pn, but a state variable E(S) with the same
unit can be established representing material Mt in entity E,,:

flow(F,Mt, Efrom,sv(E(S),U), U/ U,) +
3Q.hemi . data(Qreml) A

metadata
associationapd (Qrerm, mattrans(F,Mt, Egom, E1o, U/ U;)) A )
constraints
model_time_unit(U;) A
- sv(S',Mt, Efrom; U) A From constraint
sv(E(S),Mt,E,,,U) To constraint
(6.13)

This rule defines flows from a source into a state variable taking as starting ground a

description of a quantity that can be associated with a matching material transfer term,
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through a rule such as Rule 7 in the association rules library (Section 6.1.2).

In this rule, an entity, Efyy,, rather than a state variable, is established as the flow’s
origin, because a state variable representing material Mt in Ef,;, cannot be established.
Since in system dynamics sources (and sinks) are not model elements as such, we just
preserve the entity described at the metadata level as the origin of the process rate

quantity that gives rise to the flow.

The units of measure are very important in this rule. In a system dynamics model the
unit of flows, which is the same to all of them, consists of the unit of state variables,
also unique, over the model’s required time unit. The rule requires that the units U and
U;, that compose the unit of measure in the material transfer term, share with the state

variables’ unit and the model’s time unit, respectively, giving the flow’s unit U /U;.

The underlying principle here is to preserve the same physical dimension. Strictly
speaking, we could allow, for example, mattrans(F,Mt,Efom,E,U/U;)), and
model _time_unit(U,}), with U, # U]/, as long as both units, U; and U/, were of the time
dimension. Nevertheless, allowing units not to be the same but just ensuring that they
share the same physical dimension would leave conversion between units of the same
physical dimension — which is always possible — to the quantitative specification of
the model. Since we address synthesis of conceptual models only, we make this sim-
plification: the physical dimensions of units are guaranteed to be the same by way of

requiring the units to be the same. That suffices as a proof of principle.

Besides descriptions of quantities, in-flows can also be established based on descrip-

tions of influences between quantities. This is formalised in the next rule.

F is a flow of material Mt from the outside of the model’s scope into a state
variable E(S) with unit of measure U, and is measured in the unit U [U,, if data
exists of a positive influence of a quantity F into a quantity S; if U, is the model
time unit; if a state variable E(S) with unit of measure U can be established
representing material Mt in some entity; and if the integrity constraint for flows
from the outside is satisfied for F, Mt, &(S) and U:
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flow(F,Mt,outside,sv(E(S),U),U/U;) +
data(influences(F,S,+)) A
model_time_unit(U;) A (6.14)
sv(E(S),Mt,E,U) A
flowyintegrity(F,Mt,E(S), U/ U,)

All the influence data says is that a quantity F positively influences a quantity S.
In system dynamics, only flows can influence state variables. So, if a quantity F is
described to influence a quantity S, and S proves to become a state variable in the
model, then F is bound to be a flow. And since the sign of the influence is positive, S

must be the flow’s destination, i.e., F' carries material into S.

On the other hand, the influence data does not hold any information that can be related
to the origin of the flow. The constant outside is then used, provided that the flow F
does not hold having a state variable as origin. This is part of the integrity constraint
for flows to be established based on a positive influence data description. Compared
to the previous in-flows rule (6.13), the metadata evidence used here is poorer and
calls for checks in relation to conflicting model elements that may hold. The integrity
constraint is formulated as follows.

The integrity of an in-flow F of material Mt into a state variable S, with unit of

measure U [U,, is verified if it does not hold that: F is a state variable of Mt with

unit U; or F is a flow of Mt with unit U /U, from a state variable with unit U; or

F is a flow of Mt with unit U |U,, from an entity Efom that is not ‘outside’ into a
state variable S with unit U:

flowintegrity(F,Mt,E(S),U/U;) +
sv(E(F),MtE,U) V
= | flow(F,Mt,sv(S',U),To,U/U,) V
(flow(F,Mt, Efpom,sv(E(S),U),U/Ur) A = Efpom = outside)

(6.15)

Model assumptions (Chapter 5) can give rise to descriptions of influences between two
quantities which may both become state variables in the model. This happens when

the process that causes the influence is implicit in the description. For example, in the
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assumptions for a pond management model, it could be said that the amount of har-
vested fish biomass increases with the biomass of fish accumulated in the pond. This
could be described as data(influences(fish_biomass, harv_fish_biomass,+)). In system
dynamics models, however, influences between state variables are not directly repre-
sented. The harvest process would become explicit in the model as a flow connecting

the two state variables.

The first condition in the integrity constraint above avoids an inconsistency that could
arise from this kind of situation — for the example given, it avoids fish_biomass being

established as a flow, when it can be more appropriately established as a state variable.

The other two conditions concern the flow’s origin. Recall that the influence descrip-
tion holds no information that can be related to a flow’s origin. But this lack of infor-
mation does not rule out that the flow starts in a state variable. The constant outside
will only be established as the flow’s origin if a state variable cannot be established
for it instead. Neither will outside hold, if some other more informative entity can be
established instead. Although quantitatively it makes no difference if a source or sink
is specified as outside or as a more specific entity such as atmosphere, the latter would

be preferred for it adds qualitative information to the model.

Out-flows
We now show, more briefly, the constraints rules for ‘state variable-to-sink’ flows, or

out-flows, drawing upon what we have already explained for in-flows.

The rationale of Rule 6.16 below is like Rule 6.13’s except that this time a state variable

holds for the flow’s origin and does not for its end.

F is a flow of material Mt from state variable £(S) with unit of measure U into
an entity Ey,, and is measured in the unit of measure U [U,, if there exists a data
term Querm that can, by abduction, be associated with a term representing transfer
of Mt from entity Efyop, into entity E,, also measured in U |Uy; if U, is the model
time unit; if a state variable £(S) with unit of measure U can be established
representing material Mt in entity Efyom; and if a state variable with the same unit
U cannot be established representing material Mt in entity E,,:
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flow(F,Mt,sv(E(S),U),Ew, U/ Ut) +
3Qerm - data(Qrerm) N
associationapd (Qrerm, mattrans(F,Mt, Egom, E1s, U/ U;)) A

model_time_unit(U;) A (6.16)

sv(E(S),Mt, Epom, U) A

= sv(S',Mt,E, U)
Similar to Rule 6.14, the next rule defines out-flows backed by an influence descrip-
tion. For out-flows the influence must be negative, since it is to support a flow ‘taking
material away’ from a state variable.

F is a flow of material Mt from state variable £(S) with unit of measure U into the
outside of the model’s scope, and is measured in the unit U /U,, if data exists of a
negative influence of a quantity F into a quantity S; if U, is the model time unit;
if a state variable £(S), with unit of measure U, can be established representing
material Mt in some entity; and if the integrity constraints for flows to the outside
are satisfied for F, Mt, &(S) and U [U, :

flow(F,Mt,sv(E(S),U),outside,U/U,)
data(influences(F,S,—)) A
model_time_unit(U;) N (6.17)
sv(E(S),MtE,U) A
flowauintegrity(F,Mt,E(S),U/U,)

And similarly to Rule 6.15 we have:

The integrity of an out-flow F of material Mt from a state variable £(S), with unit
of measure U [U,, is verified if it does not hold that: F is a state variable of Mt
with unit U; or F is a flow of Mt with unit U /U, into a state variable with unit U;
or that F is a flow of Mt with unit U /U,, from a state variable S with unit U into
an entity E,, that is not ‘outside’:

flowgintegrity(F,Mt,E(S),U/U;)
sv(E(F),Mt,E,U) V
= | Afow(F,Mt,From,sv(S',U),U/U;) V
(flow(F,Mt,sv(E(S),U),E;,U/U;) A = Ey, = outside)

(6.18)
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In-between-flows
Now we come to the constraint rules for flows in between state variables. Again, a

similar rationale applies, except that state variables must be established for both ends

of the flow.
F is a flow of material Mt with unit of measure U /U, from a state variable £(S))
with unit U into a state variable E(S,) with unit U, if there exists a data term
Qrerm that can, by abduction, be associated with a term representing transfer of
Mt from entity Efyom into entity Eyy, also measured in U |U,; if U, is the model time

unit; and if state variables E(S1) and E(S>) with unit of measure U can both be
established representing material Mt in entities Egom and Ey, respectively:

flow(F,Mt,sv(E(S;),U),sv(E(S2),U),U/U;) «
30 erm - data(Qrerm) N
associationgpd (Querm, mattrans(F,Mt, Efrom, Ero, U/ Uy)) A
model_time_unit(U;) A (6.19)
sv(E(S1),Mt, Efrom, U) A
sv(E(S2),Mt,E,,, U)

Alternatively, a flow between state variables can also be established based on an infiu-

ence description. Two influences are needed: a negative influence of the ‘flow-to-be’
quantity on the starting ‘state variable-to-be’ quantity Sy, and a positive one on the end
‘state variable-to-be’ quantity S>.

F is a flow of material Mt with unit of measure U /U, from a state variable £(S1)
with unit U into a state variable £(S;) with unit of measure U, if data exists of a
negative influence of a quantity F into a quantity S\, as well as a positive influence
of F into a quantity Sy; if U, is the model time unit; if state variables E(S1)
and E(S2) with unit of measure U can be established representing material Mt in
some entities; and if the integrity constraint for flows in between state variables
is satisfied for F, Mt and U:
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flow(F ,Mt,sv(E(S;),U),sv(E(S2),U),U/U;)
data(influences(F,S1,—)) A data(influences(F,Sz,+)) A
model_time_unit(U;) N
sv(&E(S)),MtE;,U) A (6.20)
sv(E(S2),Mt,E>,U) A
SloWpenveenintegrity(F,Mt, U)

Having state variables in both ends simplifies the integrity constraint. Since both ends
of the flow hold as state variables, no checks are necessary of a more informed source
or sink than the generic outside. The only constraint is that ' should not hold as a state

variable.

The integrity of an in-between state variables flow F of material Mt, with unit of
measure U, is verified if it does not hold that F is a state variable of Mt with unit
U:

Slowpenveenintegrity(F,Mt,U) « — sv(E(F),Mt,E,U) (6.21)

6.3.3.2 Link Connections

Links are another kind of connection in the models. While flows connect state vari-
ables, links connect other kinds of model elements, also in pairs and with a direction.
Flows and links have very distinct roles in a model. Each flow represents a material
transfer whose rate is defined by an equation; this is what makes flows model elements
too. A link, in turn, represents information transfer between model elements and does
not have an equation for itself. A link from, say, a model element A to a model ele-
ment B denotes that B is a function of A. Quantitatively this means that values of A
will inform, be used in, the calculation of values of B during simulation. The equation
defining B will include a variable to hold values of A, as well as variables for all other

elements linked into B.
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In the synthesis rules, links are represented by the relation link(Mt, Elemyop, Elemy,),

where
e Mt is the model’s material;

e Elemyy,p is the link’s initial model element, restricted to state variables, inter-

mediate variables, parameters and driving variables; and

e Elemy, is the link’s terminal model element, restricted to flows and intermediate

variables.

The rules for links are unlike the rules of model elements in respect to the kind of meta-
data evidence predominantly used. Model elements represent quantities in the model,
numerical values that are regulated by equations. Therefore, metadata to support their
synthesis will consist mainly of descriptions of quantities. Links, on the other hand, do
not represent quantities but functional relationships between them. Hence, metadata

support for links will consist mainly of descriptions of influences between quantities.

We now show the constraint rules for links between each combination of initial

(Elemgrop,) and terminal (Elen,,) model elements.

Links into flows

We start with a rule for inferring links from state variables to their flows. This kind
of link is commonplace in system dynamics models. They represent the phenomenon
where the amount of material the state variable stands for has an effect on the rate of

its incoming and/or outgoing flows.

The metadata evidence used is a description of an influence of a quantity S into a
quantity F. F must be established as a flow and § as either the state variable flow F

leaves or the state variable it enters.

A link is established from a state variable element £(S) with unit of measure U to
a flow element F in a model of flow of material Mt, if data exists of an influence
of a quantity S into a quantity F; if a flow F of Mt from or to a state variable
&(S) with unit U can be established; and if the indirect link integrity constraint is
satisfied for Mt, sv(E(S),U), and F:



132 Chapter 6. Heuristic Knowledge for Synthesis of Model Components

link(Mt,sv(E(S),U),flowq(F))
data(influences(S,F,Sign)) A
(flow(F,Mt,sv(E(S),U),To,Uyr) V flow(F,Mt,From,sv(E(S),U),Ur)) A
linkingirecrintegrity(Mt, sv(E(S), U), F) (6.22)

Note that the state variable is established by way of establishing the flow, as prescribed

in the flows’ constraint rules showed previously.

The integrity constraint watches for an overlapping indirect link between, in this case,
a state variable and a flow through an interposing intermediate variable. That is, the di-
rect link is established only if a corresponding indirect link cannot be. The indirect link
is preferred to the direct one because it is a more complex substructure that requires

more metadata evidence, and we want to exploit metadata as much as possible.

Terminal elements of links are either intermediate variables or flows. Since we do not
model flow-to-flow links, this fixes the interposing element as an intermediate variable

in the integrity constraint 6.23 below.

The indirect link integrity constraint is satisfied for a link from a model element
Elem to F in a model of flow of material Mt, if data of a specific rate R in relation
to F with unit of measure U cannot be established, and that there can be a link
from Elem to an intermediate variable R with unit U and a link from there to the
flow F:

linkindirecrintegrity(Mt, ELLF) +
data(spf -rate(R,F,Mt,U)) A (6.23)
ﬁ( link(Mt,EL iv(E(R),U)) A link(Mt,iv(E(R),U),flowq(F)) )
The interposing intermediate variable must originate from a quantity of type specific
rate. As explained in Section 3.2, these rates are specified in relation to their absolute
counterparts. Amongst the quantity types prescribed in Ecolingua, only specific rates
can suggest an intrinsic regulating relation between an intermediate variable and a flow,

if so they become in the model.

This integrity constraint is necessary because descriptions that support both a direct
and an indirect link between a model element and a flow may derive from the meta-

data sources (Chapter 5). References can be made to influences of a quantity on both
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a process — that may become a flow — and a rate that regulates the process — that
may become an intermediate variable. See, for example, in Appendix B, the descrip-
tions of influences of aquatic plants biomass on both the consumption process and the

consumption rate.

The next rule, analogous to Rule 6.22, defines the synthesis of a link from an interme-

diate variable to a flow based on an influence description.

A link is established from an intermediate variable element E(I) with unit of mea-
sure U to a flow element F in a model of flow of material Mt, if data exists of an
influence of a quantity I into a quantity F; if an intermediate variable E(I) with
unit U in the flow model of Mt can be established, as well as a flow F of Mt; and
if the indirect link integrity constraint is satisfied for Mt, iv(E(I),U) and F:

link(Mt,iv(E(I), U), flowiy(F)) +
data(influences(1,F,Sign)) A
iv(E(I),Mt,U) A (6.24)
flow(F,Mt, From,To, Us) A
linkigirecrintegrity(Mt,iv(E(1),U), F)

Recall that in the constraint rules for flows the units of measure of state variables and
flows are required to harmonise. In Rule 6.22 for links between a state variable and
a flow this also takes place by way of establishing the flow element. Rule 6.24 above
is different in this respect. It does not encode any agreement between the units of
measure of the intermediate variable and the flow (the flow’s unit, fifth argument in the
flow predicate, does not share). Other than linked state variables and flows, the units
of measure of model elements at the two ends of links need not accord (Grant et al.,

1997). This is so for links into both flows and intermediate variables.

The indirect link integrity constraint applies here in the same way as in Rule 6.22,

except that this time the link goes from an intermediate variable to a flow.

Links between intermediate variables and flows can also be supported by quantity de-
scriptions. The quantity description in the rule below suggests an intermediate variable

as well as a link from it to a flow.
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A link is established from an intermediate variable element E(1) with unit of mea-
sure U to a flow element F in a model of flow of material Mt, if there exists a
data term or model goal variable Querm that can, by abduction, be associated
with an iv(I,U) term and a link(I,F) term; and if £(I) can be established as an
intermediate variable with unit U, and F as a flow, in this flow model of Mt:

link(Mt,iv(E(1),U),flowia(F)) +
30 term - (data(Qrerm) V model_goal var(Qerm)) A
associationapd (Qerm, V(I,U) A link(I,F)) A (6.25)
iv(E(1),Mt,U) A
flow(F,Mt, From,To, Uy)

Like in the flow constraints, descriptions of quantities are a richer kind of metadata
evidence than descriptions of influences for establishing links into flows, and dispense
with the indirect link integrity constraint. A direct link into the flow is suggested
straight from the quantity description term. This is firm support for the direct link and

should prevail over a possible indirect one.

The next two rules, 6.26 and 6.27, are the ‘parameter-to-flow’ equivalent of rules 6.24

and 6.25 for ‘intermediate variable-to-flow’ links.

A link is established from a parameter element E(P) with unit of measure U to a
flow element F in a model of flow of material Mt, if data exists of an influence of
a quantity P into a quantity F; if a parameter E(P) with unit U in a flow model of
Mt can be established, as well as a flow F of Mt; and if the indirect link integrity
constraint is satisfied for Mt, param(E(P),U) and F:

link(Mt, param(E(P), U),flowq(F)) <
data(influences(P, F,Sign)) A
param(E(P),Mt,U) A (6.26)
flow(F,Mt,From,To, Ur) A
linkingireciintegrity(Mt, param(E(P),U), F)

A link is established from a parameter element E(P) with unit of measure U to a
flow element F in a model of flow of material M, if there exists a data term Qierm
that can, by abduction, be associated with a param(P,U) term and a link(P,F)
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term; and if E(P) can be established as a parameter with unit U, and F as a flow,
in this flow model of Mt:

link(Mt, param(E(P), U), flowia(F)) +
30 erm - data(Qrerm) A
associationgpd (Qrerm,param(P,U) A link(P,F)) A (6.27)
param(E(P),Mt,U) A
flow(F,Mt, From,To, Uy)

And Rules 6.28 and 6.29 next, the ‘driving variable-to-flow’ equivalent.

A link is established from a driving variable element £(D) with unit of measure U
to a flow element F in a model of flow of material Mt, if data exists of an influence
of a quantity D into a quantity F; if a driving variable E(D) with unit U, as well
as a flow F can be established in this model of flow of Mt; and if the indirect link
integrity constraint is satisfied for Mt, dv(E(D),U) and F:

link(Mt,dv(E(D),U),flow;y(F)) +
data(influences(D, F,Sign)) A
dv(E(D),Mt,U) A (6.28)
flow(F,Mt, From,To,Us) A
linkingireciintegrity(Mt,dv(E(D),U), F)
A link is established from a driving variable element £(D) with unit of measure U
to a flow element F in a model of flow of material Mt, if there exists a data term
Qrerm that can, by abduction, be associated with a dv(D,U) term and a link(D, F)

term; and if E(D) can be established as a driving variable with unit U, and F as
a flow, in this flow model of Mt:

link(Mt,dv(E(D),Mt,U),flowiq(F)) +
301erm - data(Qrerm) N
associationasd (Qerm,dv(D,U) A link(D,F)) A (6.29)
dv(E(D),Mt,U) A
flow(F,Mt, From, To, Uy)
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Links into intermediate variables
The remaining synthesis rules are for links into intermediate variables. They all use an
influence-between-quantities description as metadata evidence, and the link is estab-
lished if the influencer quantity can be established as the link’s initial model element,
and the influenced quantity as the link’s terminal model element.

A link is established from a state variable element £(S) with unit of measure Uy

to an intermediate variable element E(1) with unit U; in a model of flow of Mt,

if exists data of an influence of a quantity S into a quantity I, if a state variable

E(S) of material Mt with unit U can be established, as well as an intermediate
variable E(1) with unit U;, in this flow model of Mt:

link(Mt, sv(E(S), Us),iv(E(I), Uy)) +
data(influences(S,1,Sign)) A
sv(E(S),Mt,E, Us) A (6.30)
iv(E(I),Mt,U;)

A link is established from an intermediate variable element E(I}) with unit of mea-
sure Uy to another intermediate variable element E(I) with unit U, in a model
of flow of material Mz, if exists data of an influence of a quantity I, into a quan-
tity Iy; and if E(I}) with unit Uy and E(Iy) with unit Uy, can be established as
intermediate variables in this flow model of Mt:

link(Mt,iv(E(I}), U;),iv(E(I2),Uz))
data(influences(I;,1>,Sign)) A
wv(E(I),Mt,U;) A (6.31)
v(E(l2),Mt,U)

A link is established from a parameter element E(P) with unit of measure U, to
an intermediate variable element E(I) with unit U; in a model of flow of material
Mz, if exists data of an influence of a quantity P into a quantity I; if a parameter
E(P) with unit Uy, as well as an intermediate variable &(I) with unit U;, can be
established in this flow model of Mt:
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link(Mt,param(E(P), Up),iv(E(I), Uy)) <
data(influences(P,1,Sign)) A
param(E(P),Mt,U,) A (6.32)
v(E(T),Mt,U;)

A link is established from a driving variable element £(D) with unit of measure
Uy to an intermediate variable element E(I) with unit U; in a model of flow of
material M1, if exists data of an influence of a quantity D into a quantity I; if a
driving variable £(D) with unit U, can be established, as well as an intermediate
variable £(1) with unit U;, in this flow model of Mt:

link(Mt,dv(E(D), Uyg),iv(E(I), U;))
data(influences(D,1,Sign)) A
dv(E(D),Mt,U;) A (6.33)
iv(E(T),Mt,U;)

6.3.4 Summary of Model Connections

As we did for model elements, we now provide a model connections summary in
schematic form for ease of reference. This time, however, the emphasis is not as much

on conflicts, since not many occur between connections.

Model connections are:

e Flows, which can be:
— In-flows (from source to state variable). Their synthesis is based on:
+ a description of a quantity; or

* a description of a positive influence between quantities. In this case, the source is

the outside constant, and
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- an integrity constraint gives preference (over the in-flow) to the following
model components originating from the same quantity:
- a state variable; or
- a flow from a state variable; or

- a flow from an entity.
— Out-flows (from state variable to sink). Their synthesis is based on:
% a description of a quantity; or

* a description of a negative influence between quantities. In this case, the sink is the

outside constant, and

- an integrity constraint gives preference (over the out-flow) to the following
model components originating from the same quantity:
- a state variable; or
- a flow into a state variable; or

- a flow into an entity.
— In-between-flows (from state variable to state variable). Their synthesis is based on:
* a description of a quantity; or

* a description of a positive influence and a description of a negative influence be-

tween quantities. In this case:

- an integrity constraint gives preference (over the in-between-flow) to a state

variable originating from the same quantity.

And

e Links,which can be:
~ Links into flows
* from state variables. Their synthesis is based on:

- a description of an influence between quantities.
- an integrity constraint gives preference (over the direct link from the

state variable to the flow) to an indirect link via an intermediate variable.

* from intermediate variables, parameters and driving variables. Their synthesis

1s based on:

- a description of a quantity; or
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- adescription of an influence between quantities. In this case:
- an integrity constraint gives preference (over the direct link from the
intermediate variable, parameter or driving variable to the flow) to an

indirect link via an intermediate variable.
— Links into intermediate variables

* from state variables, intermediate variables, parameters and driving variables.
Their synthesis is based on:

- a description of an influence between quantities.




Chapter 7

The Synthesis-0 System

We call Synthesis-0 the first of the two model synthesis systems we have developed.
The current chapter is dedicated to such system, with emphasis on the module that
executes the synthesis task, the synthesis mechanism. Ecolingua (Chapter 3 and Ap-
pendix A), Metadata (Chapter 5), and Model Components Constraints (Chapter 6) are
re-addressed as the other three modules in Synthesis-0, and their relations to the syn-

thesis mechanism are explained.

7.1 System Architecture

Figure 7.1 shows Synthesis-0’s architecture in terms of knowledge modules and their
interrelations. Ecolingua, a Metadata Set and the Model Components Constraint rules
are the requisite knowledge modules for the synthesis mechanism, which manipulates

such knowledge to yield model solutions.

Quickly recapitulating, users describe given ecological data through the Ecolingua vo-
cabulary, creating a metadata set; the descriptions in the metadata set are then used
as evidence to support establishing model components through constraint rules that

represent heuristic modelling knowledge.

What we call the synthesis mechanism encapsulates algorithms as well as reasoning

141
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Model Solutions
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Figure 7.1: The architecture of the Synthesis-0 system.

patterns, techniques and mechanisms. We start to describe it in Section 7.2 showing
the synthesis algorithms that put model components together to form full, possibly
multiple, model structure solutions. Section 7.3 addresses the multiplicity of model
solutions. Switching to reasoning patterns, in Section 7.4 we discuss the deductive
and abductive patterns in the system as well as mechanisms built to carry out specific
reasoning tasks. Section 7.5 illustrates the model synthesis mechanism with a worked
example. And to conclude, in Section 7.6 we discuss the use of the meta-interpretation

technique applied in Synthesis-0 and Synthesis-&..

7.2 Algorithms

A connected! directed graph is an appropriate structure to represent a system dynamics
model. The synthesis algorithms build graph structures of this kind, with metadata

determining arcs and their nodes.

The arcs represent model connections (flows and links). The nodes represent model

elements (state variables, intermediate variables, parameters, driving variables and

A graph is connected when there is a path connecting every pair of nodes.
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Sflows — flows are both connection and element (Section 6.3.3.1)) and also sources and

sinks (see Section 2.4 to review system dynamics model structure).

Let us note that the algorithms are not general model synthesis algorithms, but tailored
to system dynamics models, since our metadata-based synthesis approach is grounded
in this domain. Hence, adopting a graph structure to represent models is particularly
useful in that it adds some generality to the algorithms. Besides, it simplifies the

explanation of the algorithms a great deal.

The Top-level Algorithm?

The top-level synthesis algorithm consists, quite simply, of establishing an initial node
for the model, and starting from this seed, incrementally growing, or expanding the
model until no further growth is possible; in other words, until the metadata support
for establishing arcs (and their nodes) is exhausted. A synthesised model is specified

by its arcs (flows and links) as detailed below.

Alg. 7.1 (Top-level) synthesiseO(A,Model) — input: A; output: Model. Given a metadata set A, a
model Model is synthesised by:

seed_model(A,Mt,SeedNode) (Alg. 7.2), establish a material and a seed node for the model; and

grow_model(A,Mt,{SeedNode},{},Model) (Alg.7.3), grow Model, having a set containing the seed

node as initial set of nodes, and an empty set as initial model.

Where Model is a set containing, if not empty, elements representing arcs of the forms
(see Section 6.3 to review representation of model components):

e flow(F,Nodefom,Node,,,U), where
— F is the flow’s name;
— Nodegp, is the flow’s initial node, which is either of the form:

x sv(&(S),U) representing a state variable, with § being its name, £ its evidence class,

and U its unit of measure; or

2Calls to algorithms specified elsewhere appear underlined.
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* a constant representing a source

— Nodey, is the flow’s terminal node, which is either
* a state variable, represented as above; or
* a constant representing a sink

— U is the flow’s unit of measure.

and/or

o link(Nodefrom, Noder,), where

— Nodegom is the link’s initial node, which can be of one of the forms:
* v(E(I),U), representing an intermediate variable;
x param(E(P),U), representing a parameter,
x dv(E(D),U), representing a driving variable; or
= a state variable, represented as above

— Node,, is the link’s terminal node, which can be of the form:
x flowiy(F), representing a flow; or
* an intermediate variable, represented as above

where I, P, D and F, denote the model element’s name; £ its evidence class; and U its

unit of measure.

The Seed Model Algorithm

The seed_model algorithm determines that seeds are state variables. This is also a
domain-specific heuristic, like the ones in Chapter 6. It is inspired by system dynam-
ics modelling practice (Haefner, 1996; Ford, 1999) where model design starts off by
identifying state variables, since they are the key variables, representing where ac-
cumulation of material takes place in the system (Section 6.3.1.1). They usually are

model goal quantities (Section 5.2.1), or, if not, directly influence them.

Support for establishing a seed, as for every node, consists of metadata specifications.
The useful descriptions here are those of amount quantities, either physical or non-
physical, since these are the quantities that suggest state variables, according to the
library of Metadata<>Model association rules (Table 6.1).
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Importantly, seeding the model also determines the model material (Section 5.2.2): the
material the amount quantity refers to becomes the unique material to flow throughout
the model solution, which, therefore, constrains the rest of the synthesis henceforth.
The majority of system dynamics models used in practice represent flow of a single
material. Models of flow of multiple materials are structured as interconnected sub-
models, one to each material. Synthesis-0 is able to synthesise submodels as separate

model solutions (see Section 7.3).

Alg. 7.2 seed_model(A,Mt,sv(E(S),U)) — input: A; outputs: Mt, £(S), U. For a given metadata set A,
a state variable model element sv(&(S),U) is established as a seed for a model of flow of material Mz.
(A number of seeds may hold for the same A.)

Find in A:

A description data(Qype(S,Mt,E,U)) OR model_goal var(Qype(S,Mt,E,U))
such that Qype € PhysAmts , OR

A description data(Qyp. (S, E,U)) OR model_goal_var(Quype(S,E,U))
such that Qype € NonPhysAmts AND nonphys_mat(Qype) = Mt

Where:
e PhysAmts and NonPhysAmts are the sets of relations in Ecolingua prescribing amounts of physi-
cal and non-physical quantities, respectively; and

o nonphys_mat(Qype) is a function that gives the non-physical material intrinsic to Qype.
In the current specification of Ecolingua the PhysAmts and NonPhysAmts sets are:

o PhysAmts = {amt_of _mat, mat_dens}

e NonPhysAmts = {amt_of money}, with nonphys_mat(amt_of _money) = money.

The two relations in the PhysAmts set are comprehensive, encompassing quantities of
the mass and mass/length” physical dimensions, respectively. As discussed in Chapter
3, Ecolingua is amenable to being extended to include concepts prescribing quantities

of other physical dimensions such as energy, for example.
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amt_of -money (amount of money) is illustrative of types of non-physical quantities.

Each non-physical quantity type requires specific definition(s) (see Section 3.2.1.1).

The Grow Model Algorithm

Every time a node (seed and subsequent model elements) is added to the model graph,
arcs (model connections) from and to it are sought for. This is done recursively with
the same behaviour applying to each node, starting with the seed: all arcs from and
to the node are found, those not yet in the model graph are added to it, and the newly
introduced nodes are identified and included in the set of nodes from which the graph

expansion will continue. The synthesis is through when this set of nodes becomes

empty.

Alg. 7.3 grow_model(A,Mt,NewNodes,Model,Model") — inputs: A, Mt, NewNodes, Model; output:
Model". From the set of nodes NewNodes, Model is grown into Model” .
IF NewNodes # {} THEN
Select a Node from NewNodes leaving the remaining nodes NewNodesR
new_arcs(A,Mt, Node, Model, Model',NewNodesN) (Alg. 7.4)
NewNodes2 = NewNodesN U NewNodesR
grow_model(A, Mt,NewNodes2,Model',Model"), keep growing Model' from the updated set of

new nodes NewNodesZ2

ELSE Model" = Model, there is no new node to expand, model growth is finished.

Viewed as search, the algorithm will have a depth-first or breadth-first strategy de-
pending on the position in the NewNodes set of the Node element selected in turn to
be expanded, and on the order in which the elements of NewNodesN and NewNodesR
are put together to form NewNodes2. We have it implemented with a depth-first search
strategy — the first Node in NewNodes is selected each time, and NewNodesN elements

are placed in front of NewNodesR elements (duplicates are removed). The deepening
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of a path stops when, for the current Node, the new_arcs function returns an empty
NewNodesN set.

The search is exhaustive, since the model graph is expanded exhaustively and where
multiple solutions exist all of them can be searched for (see Section 7.3). It is also
guaranteed to terminate, since the metadata sets are finite and Alg. 7.6 does not allow
search loops to occur.

The New Arcs Algorithm

Alg. 7.4 finds arcs connected to each current node, adds to the model the new ones,
i.e., those not yet in the model (arcs connecting the current node to previously vis-
ited nodes will already have been synthesised and included) and returns the set of new
nodes amongst those connected to the current node through the new arcs (it is possible
to have a new arc connected to an “old” node, already included as part of a previously

established arc).

New arcs are identified by first finding one of the current node’s clusters, which in-
cludes all the arcs the node is part of, and then taking the subset of new arcs from the

cluster set.

Alg. 7.4 new_arcs(A,Mt,Node,Model,Model', NewNodesN) — inputs: A, Mt, Node, Model; outputs:
Model', NewNodesN. Given A and Mt, arcs (model connections) from and to Nede (a model element)
are found that are not yet in Model; NewNodesN is the set of model elements connected to Node (through

the new arcs) that are not yet in Model; and Model' is Model with the new arcs added:
find _cluster(A, Mt, Node, Cluster) (Alg. 7.5)

IF Cluster # {} THEN

add_new_arcs(Cluster,Model) = (Model',NewNodesN) (Alg. 7.6)

ELSE Model' = Model
NewNodesN = {}
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The Find Cluster Algorithm

In Alg. 7.5 is where, as indicated, the heuristic rules in Chapter 6 for synthesis of
model elements and connections come through (proving a connection rule involves
proving the model element(s) rule(s) it connects — Section 6.3.3). Each arc connected
to the current node is either a flow or link, established through one of the corresponding

rules.

The algorithm first finds an exhaustive set of arcs connected to the node. Remember
that the synthesis process is rooted in a data set and that a description of a single
quantity from the data set can give rise to multiple model components (see Section
6.1.2). Because of that, in the exhaustive set of one node’s arcs, there may be arcs
connecting the node to multiple other nodes (model elements) originated from the
same quantity. To include them all in the same model would lead to inconsistencies —

a single quantity can only be held in one model by a single model element.

To ensure this, a subset we call a cluster is taken from the exhaustive set of the node’s
arcs, containing a single arc per originating quantity (source and sink nodes originate
from entities rather than quantities; in the algorithm the term ‘datum’ is used to refer to
both quantities and entities). On backtracking, the algorithm yields alternative clusters,

if they exist, each one to compose a separate model (see Section 7.3).
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Alg. 7.5 find_cluster(A,Mt,Node, Cluster) — inputs: A, Mt, Node; output: Cluster. Cluster is a set of

arcs and respective connected nodes to Node. (There may be a number of mutually exclusive Cluster

sets.)

IF Connecs is a non-empty set of elements of the form (C,Node.), where C is an arc and Node, is the

model element connected to Node through C, with each element determined by:
connec(A,Mt,Node,Node,.,C)
CASE It is established:
flow(F,Mt, Node,Node,,,U) (Rules 6.13,6.14, 6.16, 6.17, 6.19, 6.20)
THEN C = flow(F,Node,Node,,,U)
Node, = Nodey,
flow(F,Mt,Nodefrom,Node,U) (Rules 6.13, 6.14, 6.16, 6.17, 6.19, 6.20)
THEN C = flow(F,Nodefy,m,Node,U )
Node. = Nodefmm
link(Mt,Node,Node,,) (Rules 6.22,6.24 - 6.33)
THEN C = link(Node,Node,,)
Node, = Nodey,
link(Mt, Nodefrom,Node) (Rules 6.22,6.24 - 6.33)
THEN C = link(Nodefrom, Node)
Node. = Nodegom

THEN Find Cluster C Connecs by:
Form the set D of datum &, such that each 3 is the quantity or entity each connected node Node,
holds
Form the set Cluster (of elements (C,Node,)) such that it contains a unique Node, to each
deD

ELSE No arc is found, Cluster = {}
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The Add New Arcs Algorithm

Lastly, the function shown in Alg. 7.6 is responsible for, given a cluster and the current
partial model, adding to the model graph the new arcs in the cluster, and for returning

the new connected nodes to be expanded.

One may wonder why the algorithm checks if F ¢ NewNodesN after having already
checked that there is no flow named F € Model'. Recall from Section 6.3.3.1 that flows
are both elements and connections. The above check is necessary because the node F
may have been established (as the terminal node of a link arc) without the arc F having
yet been. Every synthesised model with a node F* will also contain a flow F, since the
node is only established if the flow holds. Yet, a model may have a flow F without the

node F, if no link to such node exists.

Notice also the rejection (for inclusion in the current model) of the whole cluster when
at least one flow or other connected element in the cluster holds a quantity that has
already been established in the model as some other type of model element. This is
so, firstly because the model element type of a quantity must be unique in each model
(Section 6.2). Secondly, all the other arcs in the cluster can be rejected, because since
the synthesis of arcs and clusters is exhaustive (Alg. 7.5), the nodes rejected in this

instance will have been dealt with as part of the cluster already included.
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Alg. 7.6 add new_arcs(Cluster,Model) = (Model',NewNodesN) — inputs: Cluster, Model; outputs:
Model', NewNodesN. Arcs in Cluster not yet in the current model Model are added to it to form Model ,

and NewNodesN is the set of newly added nodes.

Initialise Model' = Model AND NewNodesN = {}

FOR Each (C,Node.) € Cluster
IF Arc C ¢ Model THEN

IF Cis a flow named F THEN
IF Node, is a source or sink THEN
IF There is no other flow named F € Model' THEN
Add C to Model'
IF F ¢ NewNodesN THEN Add F to NewNodesN
ELSE STOP, Cluster rejected
Model' = Model
NewNodesN = {}
ELSE Node, is a state variable

IF There is no other flow named F € Model' AND
The quantity Node, holds is not already held in Model’ by any other node

of a different type THEN
Add C to Model'
IF F ¢ NewNodesN THEN Add F to NewNodesN
IF Node. ¢ NewNodesN THEN Add Node, to NewNodesN
ELSE STOP, Cluster rejected
Model' = Model
NewNodesN = {}
ELSE Cis a link
IF The quantity Node, holds is not already held in Model' by any other node of a
different type THEN
Add C to Model
IF Node. ¢ NewNodesN THEN add Node. to NewNodesN
ELSE STOP, Cluster rejected

Model' = Model
NewNodesN = {}
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7.3 Multiple Model Solutions

Firstly, let us make clear what we mean by model solution: a model solution corre-

sponds to the value in Model after one execution of synthesiseO(A, Model) (Alg. 7.1).

Synthesis-0 is able to synthesise a range of model solutions for one given metadata
set. As mentioned earlier in Chapter 6, this is motivated by the ecological modelling
domain, where, as it happens in modelling disciplines in general, one data set does not
uniquely determine a model solution, as different interpretations of the data may yield

different models.

Multiplicity of model solutions has been introduced in the previous chapter when we
discussed the library of Metadata<»Model association rules (Section 6.1.2) and In-
tegrity Constraints (Sections 6.2 and 6.3.2). The very source of multiple model so-
lutions is the association, through the library, of single quantity types with multiple
model element types (in an abductive fashion, as we shall soon see in Section 7.4.2).
Integrity constraints are then used to resolve conflicts by giving preference to certain
model elements over others and, where preferences are not defined and legitimate al-

ternatives exist, to avoid them being over-generated.

In the previous chapter we showed how the integrity constraints work at the level of
synthesis of individual model components; now, as promised, we highlight how mul-
tiple model solution come to being as the synthesis algorithms above assemble model

components together.

In fact, a mechanism for synthesis of multiple solutions is not built-in in the algorithms.
They are designed as if to yield a single solution. If more solutions are desired, we use
backtracking in Prolog’s execution mechanism to make Synthesis-0 search for them
(Synthesis-0’s implementation in Prolog is briefly discussed in Section 7.4). We can,
however, identify the features in the algorithms that give rise to multiple solutions.
Namely, they arise from multiple seeds and model materials, and multiple clusters, in

combination.
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Seeds and Model Materials

The seed_model algorithm (Alg. 7.2) is purposefully easily solvable. It is meant to
comprehensively explore the metadata set in search of seeds, hoping that from at least
one or a few of them, significant models can be grown. Thus, for a single metadata set,

multiple seed elements (state variables) and/or model materials can be established.

As specified in Alg. 7.1 the seed_model algorithm is followed by the grow_model algo-
rithm. Each solution of seed_model gives rise to one or more new models, depending

on the occurrence or not of multiple clusters (see below).

The relationship between model solutions grown from distinct solutions of seed_model
should be interpreted, by human expertise, in different ways, depending on whether
each of the seeding solutions consists, in relation to the others, of a new material and/or

a new state variable.

Importantly, it is assumed that the metadata set at hand describes the modelling data of
a single system-of-interest (Chapter 5), therefore all synthesised models are somehow
interrelated, even if the metadata set and/or Synthesis-0 are not able to capture such
interrelations.

Also recall that the most distinguishing attribute of a model is its material (Section

5.2.2)— each model solution represents flow of a unique material.

If seed_model can establish multiple model materials, each distinct material will lead
to a subset of solutions for what in system dynamics is called a submodel — system
dynamics models that represent flow of more than one material are subdivided into
submodels that interconnected (through intermediate variables) compose one overall
model. Synthesis-0 is not equipped to interconnect submodels, each submodel is syn-
thesised as a separate model solution. Also, the system does not avoid model elements

of different types in separate model solutions holding a same quantity.

Now, for a same material seed_model may find distinct state variable seeds. The
model solutions grown from them (all within the subset of solutions for a single sub-

model) may contain:
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e Identical solutions. Suppose a model with state variables X and Y. The same

model will be grown if either X or Y is taken as seed.

e Solutions that have at least one state variable in common. This means that these
models, at least in part, represent the same portion of the system-of-interest, and

therefore, should be interpreted as alternative solutions.

e Solutions that do not share state variables with any other. These are assumed to
be disconnected parts of the same model. They occur when the metadata lack
support for synthesis of components that would tie up the disconnected parts.
Here again, there may be inconsistency of disconnected parts including model

elements of different types holding the same quantity.

Clusters

For each seed and model material, Alg. 7.5 may then yield multiple clusters as model
nodes are expanded if it is the case that there are quantities that suggest multiple types
of model elements. That is, multiple clusters can be computed by the algorithm if there
are multiple associations between a quantity and model elements in the heuristic rules

level. Clusters are mutually exclusive, each one goes in a separate model solution.

7.4 Patterns and Mechanisms of Inference and their Im-

plementation

The pattern of inference that applies over most knowledge specifications in Synthesis-0
is conventional deduction. The specifications have been written as to allow Synthesis-0
to infer model components, models, the validity of a metadata term, for example, as

logical consequences of the theory they represent.

To be specific, deduction applies over: the model components synthesis constraints
(Section 6.3); the synthesis algorithms (Section 7.2); the ontological checking mech-

anism (forthcoming Section 7.4.1.1), which makes use of Ecolingua axioms (Chapter
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3); and, the meta-interpreter (forthcoming Section 7.6.1).

To perform the deductions, we employ the standard logic programming framework
(Lloyd, 1993; Apt, 1997) with resolution by refutation as proof procedure over Horn
clauses with negation under the closed world assumption. Evidently, Prolog is the
natural choice of implementation language. SICStus 3.8.5 was the interpreter used,

running on a Unix platform.

Note that the synthesis algorithms are presented in a procedural notation. We chose to
do so due to the strong element of control in the algorithms, but in the implemented

version of Synthesis-0, they too are specified as Horn clauses.

There is, however, one inference step in Synthesis-0 that is non-deductive. It occurs
where metadata is connected to model structure via the association rules in Table 6.1.
In Section 7.4.2 we argue that abduction is the inference pattern that best characterises
the Metadata<»Model connections, and show the abductive mechanism built to estab-
lish them.

Connecting metadata to model structure through abduction is, however, the second
step in the process of directly using metadata evidence to support establishing model
components. The first step is to validate metadata with respect to Ecolingua constraints.

For this purpose, a specialist (deductive) mechanism has also been built.

For the rest of the section we discuss these two inference steps, in precedence order,

together with the mechanisms that execute them.

7.4.1 Ontological Checking: Establishing Ecolingua-Compliant Meta-
data

So far in this chapter we have focused on the mechanisms in Synthesis-0 that assemble
components into models. Clearly, the system must also encompass prior mechanisms
which establish the components in the first place. The foremost of these mechanisms
examines metadata that feeds into the system, ensuring that only metadata that conform

to the underlying ontology gets through. Ontological checking as explained here also
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applies to Synthesis-%, the reuse-synthesis system presented in the next chapter.

Looking back at Synthesis-0’s algorithms, metadata feeds into the synthesis mech-
anism through Alg. 7.2, where descriptions of amount quantities are retrieved, and
through Alg. 7.5, where flows and links are established through the components heuris-
tic rules in Chapter 6. But, only metadata that satisfy the applicable ontological con-
straints (Section 6.1.1), i.e., only the Ecolingua-compliant descriptions, are carried

forward into the synthesis process.

Metadata terms are retrieved from the metadata set when descriptional predicates are

solved. As shown in Chapter 5, the forms of these expressions are:

e data(Cierm), where

— data is the generic descriptional predicate that denotes descriptions of all

quantities and their relations;

— Cierm 18 a ground term, resulting from instantiating some Ecolingua concept

to describe a piece of ecological data;

e model_goal var(Cierm), model_mat(Mt) and model _time_unit(U), the specific de-

scriptional predicates that denote model requirements.

We define that when a descriptional predicate is solved, the metadata term it describes

also holds, in that it exists as part of the metadata set. Thus, for example:
dam(cferm) = Clerm

Now, for the described metadata term (which, from the above, is true if retrieved from
the metadata set) to be established as ontologically valid, it must unify with one of the

Ecolingua concepts and be proven over the corresponding axiom.
As defined in Section 3.1, Ecolingua axioms are written as:
Cpt — Ctt
where Cpt is an Ecolingua concept and Ctt is the concept’s interpretation constraint.

Because in the synthesis systems these axioms are only reasoned upon when a Crerm



7.4. Patterns and Mechanisms of Inference and their Implementation 157

with logical value true unifies with Cpt, the use of the axiom can be reduced to solving
Ctt, since its logical value alone will correspond to the logical value of the whole

expression.

Therefore, each Ecolingua axiom is re-represented in the synthesis systems as a clause

of the form:
c_ctt(Cpt, Ctt)

which links concepts to their respective interpretation constraints. An additional gain is
that the formula conforms to the Horn Clause representational system adopted through-

out Synthesis-0 (and Synthesis-®).

We can now define the Ecolingua compliance checking mechanism.

7.4.1.1 The Ecolingua Compliance Checking Mechanism

Let Cierm be an instance of an Ecolingua concept Cpt. As defined by the Ecolingua
axioms formula, G, being true and unified with Cpt implies that the consequent
constraint Crz must be true. If, however, the concept in question is one that lacks an
axiomatic definition (e.g., the Ecological Entity concept — see Section 3.2.2) it suffices
to verify that Cy.,, unifies with a defined Ecolingua concept. Hence, the mechanism in
Figure 7.2 below. Later in Section 7.6 we show its implementation in connection with

the meta-interpreter applied.

onto_check(Cierm)
c_ctt(Crerm, Ctt) A Ctt
onto_check(Crerm)
= c_ctt(Crerm, -Ctt) A

eco_concept(Crerm)

Figure 7.2: Ecolingua compliance checking mechanism.
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Which checks are needed over each retrieved metadata term is determined by the de-

scriptional predicate at hand:
e data(Cierm) triggers onto_check(Cierm) — the ground concept term is checked;

o model_goal var(Crern)  triggers  onto_check(model_goal var(Cierm)) and

onto_check(Cierm) — the descriptional predicate itself is also an Ecolingua

concept (see Section 3.3), hence the two checks;

o model_mat(Mt) triggers onto_check(model_mat(Mt)) and model_time_unit(U) trig-
gers onto_check(model_time_unit(U)) — only the descriptional predicates are

Ecolingua concepts.

Satisfied the Ecolingua compliance check, a metadata term is established as ontologi-
cally valid, and is then fit to back the synthesis of model components. The next section

is about how this is done in Synthesis-O0.

7.4.2 Abduction: Connecting Metadata to Model Structure

A crucial inference step of the synthesis process is where metadata is associated with
model structure. In fact, this has to be the nub of a system whose overall goal is
precisely that, to synthesise model structure based on metadata. Such associations,
as we know, are drawn between metadata, which is a set of declarative descriptions,
and model structure, which is represented as a graph structure. Let us first look at the

associations’ granularity.

In system dynamics practice, quantities in a data set (assumed to be suitable for the
model objectives and to have been processed for modelling) can be initially related to
model components in the conceptual formulation stage, and later used to calibrate them
in the quantitative specification stage. Shifting this practice to the Synthesis-0 system,
each association is between a quantity description and a fragment of model structure,
such as a single component (element or connection) in most cases. In some cases,
descriptions that are meaningful enough to support so are associated with slightly more

complex fragments, such as an element and a connection from or to it.
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The next aspect of the associations between metadata and model structure to consider
is the inference pattern that best suits them. As givens we have the metadata speci-
fications, established through ontological checking (Section 7.4.1). Their role in the
associations is to provide support, or evidence, from which model components are
synthesised, in an exploratory hypothesis-formation fashion. As opposed to implying
model components (in the logical implication sense), it is more appropriate to say that
descriptions only suggest them. In other words, the associations are a kind of unsound
inference. Even if an association is defined where a description D suggests a com-
ponent C, C will not necessarily hold in every model given D. Moreover, the same
description may suggest not only one but alternatives of components which should not

all apply to the same model.

Clearly, deduction does not lend itself for formalising this kind of reasoning. Model
components are not logical consequences of metadata descriptions. Also, where de-
scriptions suggest alternative components, all the components, as deductive conse-

quents, would necessarily hold, leading to inconsistent models.
In contrast, here we have a non-deductive reasoning pattern that is typically abductive.
Abduction is generally formulated as (Kakas et al., 1998; Flach, 1994):

TUE E O

Given a theory T and an observation O that does not logically follow from
T, an explanation (or evidence) E that might imply O is conjectured and
added to T to allow for the entailment of O.

E — O
Thus, an unsound rule of inference is in effect of the form 0O

E
(Kakas et al., 1998) classifies uses of abduction into causal and non-causal. The clas-
sic application where abduction has a causal interpretation is diagnosis. Hypothe-
ses (explanations) are generated which are causes for observed symptoms or effects
(observations). There are applications, however, where the relationship between ex-

planations and observations is non-causal. Default reasoning is an example, where
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conclusions (observations) are explained by means of assumptions (explanations) that

hold by default unless some contradiction takes place.

In our model synthesis application, the interpretation of abduction is also non-causal,
namely, model components (explanations) are synthesised that are suggested by given

metadata descriptions (observations).

Our use of abduction draws upon (Robertson et al., 1991), a compilation of logic-based
approaches for ecological modelling, where a non-causal interpretation of abduction
for model synthesis has been first proposed. Abduction is used in (Robertson et al.,
1991) to bridge knowledge of ecological systems and structure of simulation mod-
els, which not necessarily belong to the system dynamics paradigm. In comparison,
we use abduction to bridge more restricted forms of ecological knowledge and model
structure, respectively, quantity descriptions (metadata) and system dynamics model

components.

7.4.2.1 The Abductive Mechanism

Abduction takes place every time an associationgpq(Qyerm, ModelFrag) constraint is
verified as the model components synthesis rules are solved. The constraint is defined
as follows, where Qe 1s a quantity term, and ModelFrag is a model fragment con-
sisting of a single model component, Ko, or of a number of model components, which

are represented as a conjunction of the form Ky A ... A K),:

associationgpd (Qrerm, ModelFrag) +

abduce(Qierm,Ks) N VK; . K; € Ks (7.1)

The abduce predicate establishes the set Ks of abduced model components suggested

by the quantity described in Qrerm.

Figure 7.3 shows the Prolog specification of the mechanism in Synthesis-0 that carries
out the abductive proofs. Having a separate, modular abductive mechanism allows
us to plug-in different association mechanisms, possibly non-abductive, if wanted. In

fact, that is what we do in Synthesis-%&, our second synthesis system (Section 8.5).
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abduce (Qterm, KS) :-
abduce (Qterm, [], KS). % components so far initialised with []
abduce(true, KS, KS) :- !.
abduce( (Ki, Kjs), KS1, KS) :- !,
abduce (Ki, KS1, KS2),
abduce (Kjs, KS2, KS).
abduce (Qterm, KS1, KS) :-
assoc_rule( (Qterm :- MFrag)), % matching association library rule
abduce (MFrag, KS1, KS).
abduce(Ki, KS, [Ki|KS]) :-
abducible(Ki).

abducible(Ki) :-
functor(Ki, T, _), % T - abducible model component type

member (T, [sv, iv, param, dv, mattrans, link]).

Figure 7.3: Prolog specification of the abductive mechanism in Synthesis-0.

Note that it is at this point that the library of Metadata<>Model association rules (Table
6.1) is used. The abducibles are the terms that represent model components suggested
by ecological quantities. Again, reasoning over the association rules with abduction
allows inferring alternative hypotheses of model fragments (suggested by a quantity),

whilst the standard logical meaning of the association rules is preserved.

There is, however, one other point in Synthesis-0, the seeding algorithm (Alg. 7.2),
where quantities feed into the model synthesis process not through the abductive mech-
anism. As mentioned before, the seeding procedure is a heuristic meant to tentatively
establish seeds from where models might be grown. They are directly established from
descriptions of amount quantities in a deductive fashion. But, at this stage a seed is not
yet a model element. A seed only becomes a model element once a connection (flow
or link) it is part of is established, involving the abductive mechanism. Therefore, it is
sound to say that abduction applies to every instance where quantities are associated

with model components.
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7.5 Worked Example

To illustrate Synthesis-0 at work we now show part of an example model being grad-
ually synthesised. We shall again refer to the familiar pond management system ex-
ample, upon which we illustrated the process of metadata generation in Chapter 5, and

specified the metadata set in Appendix B.

Given such metadata set, Synthesis-0 synthesises a set of model solutions including
the model in Figure 2.2, depicted in systems dynamics diagrammatic notation. We
will talk through the first states of the synthesis search tree, generated as top-level Alg.

7.1 is executed, that ultimately leads to that model.

The partial search tree is represented in Figure 7.4. Its nodes® represent intermediate
model solutions, or synthesis states, in diagrammatic form (see symbols key in the
figure). In its highest level are the model seeds established by Alg. 7.2. From one of
the seeds descends a subtree with nodes representing successive states of model growth
as specified by Alg. 7.3 — each node corresponds to the value of variable Model after

one iteration of the algorithm.

In order to comment the example in a concise and easy-to-follow manner, we make a

few assumptions and notational simplifications:

i. As we know, model components are established by solving synthesis constraints,
formalised in the heuristic modelling rules in Chapter 6. It would be tedious to
go over every constraint solved to establish each model component. Instead,
we concentrate just on metadata constraints, as they illustrate best the metadata-
supported synthesis task under discussion. Furthermore, we do not show every
metadata constraint solved. For each synthesised model component, we show
only the primary metadata description involved (possibly one among other suit-
able descriptions in the metadata set). Primary descriptions carry the most sig-
nificant evidence. In the synthesis rules, they are the descriptions required first,

followed, in the case of descriptions of quantities, by the abductive association

3Do not confuse search tree nodes we are referring to here with model nodes that represent model
elements as in the synthesis algorithms.
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of the quantity with model component(s), in the way discussed in Section 7.4.2.
For example, the primary description for the in-flows Rule 6.13 is the description
of the quantity that is associated with the material transfer term (rather than the
model time unit description or the further description(s) required to establish the

in-flow’s state variable).

All descriptions retrieved from the metadata set are assumed to be checked for

Ecolingua compliance successfully.

Model components are denoted by type and name only. We omit from the
components’ specification: material, evidence class, unit of measure, as well as
origin and destination in the case of flows. For example, a flow fully specified as
flow(plant_production,biomass, outside, sv(stg(aquatic_plants_biomass), kg [ ha),kg /ha/day)

is  denoted, for short,  flow(plant_production); a state variable

sv(stg(aquatic_plants_biomass),kg/ha) 1s denoted sv(aquatic_plants_biomass).

7.5.1 Tracing the Synthesis Search Tree

State (s1) Alg. 7.2 seeds a model with biomass for model material, and with the seed

node:

e sv(aquatic_plants_biomass) based on the description

data(mat _dens(aquatic_plants_biomass,aquatic _plants,biomass, kg [ ha)).

As assumed, onto_check(mat_dens(aquatic_plants_biomass,aquatic_plants,biomass,kg /ha)) 1s car-

ried out successfully.

State (m1) sv(aquatic_plants_biomass) is a fertile seed. The metadata set contains ev-

idence that allows establishing a number of arcs connected to it (Alg. 7.4), namely

(along with the primary descriptions their synthesis is based on):

e flow(plant_production) from

data(abs._rate(plant_production, outside,aquatic plants, biomass, kg [ ha/day));
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o link(sv(aquatic_plants_biomass),flow(plant_production)) from

data(influences(aquatic_plants_biomass, plant_production,?));

e flow(plant_nat_mortality) from

data(abs_rate(plant _nat_mortality,aquatic_plants,outside, biomass,kg [ ha/day));

o link(sv(aquatic_plants_biomass),flow(plant_nat_mortality)) from

data(influences(aquatic_plants_biomass, plant_nat_mortality,?)),;

e flow(consumption) from

data(abs_rate(consumption,aquatic_plants,fish,biomass, kg [ ha/day)); and

e link(sv(aquatic_plants_biomass), iv(consumption_rate)) from

data(influences(aquatic_plants_biomass,consumption rate,+)).

To illustrate the use of the abductive mechanism, let us take for example the
flow(plant_production) arc. It is established by solving the constraints in Rule 6.13, in-

cluding:

abs_rate(plant _production,biomass,outside,aquatic_plants, kg [ha/day), )

associationgpg
mattrans(F,Mt,E from, Eo,U JU,)

The constraint is solved as defined by expression 7.1, the subgoal to be solved by the
abductive mechanism being;:

abduce (abs_rate (plant_production,biomass, outside, aquatic_plants, kg/ha/day) ., KS)
which succeeds with:

KS = [mattrans(plant_production,biomass,outside,aquatic_plants,kg/ha/day)]

The six established arcs make up a single cluster (Alg. 7.5) and are all added to the

model, since they are all new (Alg. 7.6), composing the partial model (m1).

State (m2) flow(plant_production) is the next node to be expanded (Alg. 7.3). Two
arcs are found to be connected to it: link(sv(aquatic_plants_biomass),flow(plant_production)),

already included in the model, and:
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e link(iv(plant_production_rate),flow(plant_production)) based on

data(spf -rate(plant_production_rate,plant_production,biomass, g [ kg /day)).

Again, the arcs compose a single cluster. The new link is added to the model, compos-

ing the partial model (m2).

States (m3), (m4), (mS) iv(plant_production._rate) is expanded next. Connected to it are
found (Alg. 7.5) link(iv(plant_production_rate),flow(plant_production)), already in the model,

and:
e link(dv(water_temp),iv(plant_production_rate));
e link(iv(water_temp),iv(plant_production_rate)); and
e link(param(water_temp),iv(plant_production_rate));
all based on the primary description data(influences(water_temp,plant_production_rate,?)).

Three clusters are formed out of the arcs found, one to each model element type hold-
ing the water temperature (water_temp) quantity (as in Table 6.5, a (strong) driving
variable, a (weak) intermediate variable, and a (weak) parameter are non-conflicting,

i.e., can be co-established in separate models).

The new arc in each of the clusters is added to the model, giving the three alternative
partial models (m3), (m4) and (mS5).

The synthesis process continues, as illustrated, with the expansion of other nodes
(model elements). At this stage of the synthesis, in (m3) for example, the nodes yet to
be expanded are dv(water_temp), iv(consumption_rate), sv(fish_biomass), flow(consumption) and
flow(plant nat_mortality). Of course, as specified in the model growth algorithm, the set
of nodes to be expanded is updated as new arcs from and to new nodes are established.
A fully synthesised model derived from (m3) (which would be a leaf node had the

synthesis search tree been completed) appears in Figure 2.2.

States (s2), (s3) Other seed nodes the metadata set gives rise to, still with biomass for

model material, are:
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e sv(fish_biomass), based on data(mat_dens(fish_biomass, fish,biomass, kg [ha)); and
o sv(harv_fish_biomass), based on data(mat_dens(harv_fish_biomass,harv fish,biomass, kg [ha)).

The models grown from both these seeds are the same as those grown from

sv(aquatic_plants_biomass).

State (s4) The fourth seed node determines a different model material, namely money:
o sv(profit) based on model_goal var(amt_of -money(profit,pond system,$)).

This turns out to be a sterile seed, however. Synthesis-0 is not able to find metadata

evidence to grow models from it.

7.6 Meta-Interpreting Synthesis-0 (and Synthesis-X)

Synthesis-R_ is our second synthesis system which will be presented in the next chap-

ter. Meta-interpretation as discussed here also applies to that system.

Meta-interpretation is a theoretically simple yet powerful logic programming tech-
nique which gives access to the computation model of the programming language,
making it amenable to modifications and/or augmentations to achieve desired function-
alities of particular applications (Sterling and Shapiro, 1994; O’Keefe, 1990). In partic-
ular, Prolog’s uniform representation of programs and data makes its meta-interpreters

fairly straightforward to write, which contributes to the popularity of the technique.

We use meta-interpretation in Synthesis-0 and Synthesis-% for integration of special-
purpose features, such as ontology compliance checking, without interweaving the
features with the systems’ heuristic rules or algorithms, which helps to keep the imple-

mentation modular and clear.

The meta-interpreter specified, which is shared by Synthesis-0 and Synthesis-& , repli-
cates the standard Prolog interpreter and adds to it ontology compliance checking as

well as caching.
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Caching is an efficiency-improving logic programming technique. Prolog programs
are commonly slow to run due, in part, to unnecessary recomputation of uniquely sat-
isfiable goals. Any goal in standard Prolog will be solved as many times as it is called.
Clearly, this is inefficient if the goal in question has only one solution. In these cases,
we can instead store the goal’s solution when it is first solved and retrieve it whenever
the goal is called again, rather than repeatedly performing the whole proof. This is the
caching technique. As implied, the technique requires the uniquely satisfiable goals to

be identified (which can be a tricky task) and stated in the program.

Our implementation of caching also draws on (Robertson et al., 1991), where the tech-
nique has been applied to reduce run time of Prolog-specified ecological simulation

models.

7.6.1 The Meta-Interpreter

The Prolog specification of Synthesis-0’s and Synthesis-R’s meta-interpreter
solve(Goal) is given in Figure 7.5%.

It is written on top of a standard meta-interpreter known as ‘vanilla’ (Sterling and
Shapiro, 1994), which replicates Prolog’s standard computation model applying goal
reduction as an inference strategy. This is specified in clauses (1) to (3) and in part of
(12) and (13) with clause (X,B), solve(B). The calls to clause(X,B) is what actually
interfaces the meta-interpreter with the program under interpretation, by unifying goals

with the heads of clauses in the program and “handing over” their bodies for solution.

It is interesting to note that the goals of the abductive mechanism, of the form
abduce (Qterm, KS), are among those interpreted by these clauses in the meta-
interpreter that replicate Prolog’s computation model which is deductive. So, in effect,
the abductive mechanism in Synthesis-0 is interpreted by Prolog’s deductive mecha-

nism.

4Figure 7.5 shows the meta-interpreter without cut handling, which has been implemented as in
Robertson et al. (1991). The cut, denoted *!’, is a Prolog control facility used to prevent unnecessary
backtracking. Including the cut handling feature in the meta-interpreter shown here would lead the
presentation astray from the other features we focus on.
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(1) solve((A,B)) :- !, solve(A), solve(B).

(2) solve((A;B)) :- !, (solve(RA); solve(B)).

(3) solve(\+ X) :- !, \+ solve(X).

(4) solve(X) :- meta_pred(X, M), !, M.

(5) solve(X) :- builtin_pred(X), !, X.

(6) solve(X) :- imported_pred(X), !, X.

(7) solve(X) :- data_pred(X, T), onto_check(T).

(8) solve(T) :- data_term(T), onto_check(T).

(9) solve(T) :- model_reqg(T), onto_check(T).

(10) solve(T) :- model_reqg(T, Q), onto_check(T), onto_check(Q).

(11) solve(X) :- \+ (data_pred(X,_); model_req(X); model_req(X, _)),
unique_soln(X), lemma(X), !.

(12) solve(X) :- \+ (data_pred(X,_); model_req(X); model_reg(X, _)),
unique_soln(X), !, clause(X, B), solve(B), !, add_lemma (X).

(13) solve(X) :- \+ (data_pred(X,_); model_reqg(X); model_req(X, _)),

clause(X, B), solve(B).

Figure 7.5: Prolog meta-interpreter shared by Synthesis-0 and Synthesis-&.

Clause (4) handles meta-predicates. The meta_pred/2 predicate redefines the goal
X as M to avoid internal goals in X being directly interpreted by Prolog, rather
than being meta-interpreted. For example, for the setof/3 meta-predicate we have

meta_pred(setof (X, G, S), setof(X, solve(G), S)).

Clauses (5) and (6) specify that built-in predicates and predicates imported from li-
braries, for example, must be interpreted directly by Prolog, since their clauses are not

part of the program under interpretation.

The Ecolingua compliance checking feature figures in clauses (7) to (10). Only de-
scriptional goals, i.e., goals that involve Ecolingua concept terms, are subject to on-
tological checking. The predicates that precede the call to the ontological checking
mechanism, retrieve descriptions from the metadata set discriminating the terms in
them to be checked against the ontology. data_pred/2 succeeds for goals of the form

data(T); data_term/1 succeeds for goals which are described terms in the metadata set
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(the difference between this and the previous goal is that here the goal is the term T
itself, rather than being of the form data(T)); model_req/1 succeeds for goals of the
forms model_mat(Mt) and model_time_unit(U); and, model_req/2 succeeds for goals

of the form model_goal var(Q).

Now, the caching feature is implemented through clauses (11) and (12). If the goal is
known to have a unique solution and a lemma for it exists (i.e., the solution has been
already found and stored), then commit to the lemmaj; otherwise, if the goal is uniquely
satisfiable but a lemma not yet exists, then try and find a solution and, if successful,
add it as a lemma. lemma/1 is a dynamic predicate, which allows clauses of it to be

added to the program during execution.

And lastly, clause (13) is the most general clause which solves all goals that do not fall

in any of the cases above.

For a complete synthesis process by Synthesis-0, the meta-interpreter is accessed via
the call solve (synthesise0 (M) ), where synthesise0/1 is the corresponding predicate
to synthesiseO(A,Model), Alg. 7.1, the top-level algorithm (the metadata set A is a
consulted file).

To conclude, we show in Figure 7.6 the Prolog specification of the Ecolingua compli-
ance checking mechanism described in Section 7.4.1, also shared with Synthesis-&.
Since it suffices to check each descriptional term just once, the mechanism in its im-

plementation form is also enhanced with caching.
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onto_check(X) :-
onto_checked (X), !.

onto_check(X) :-
c_ctt(X, Ctt),
solve(Ctt), !,
add_checked(X) .

onto_check(X) :-
\+ c_ctt(X, _),
eco_concept (X),
add_checked (X) .

Figure 7.6: Prolog specification of the Ecolingua compliance checking mechanism.



Chapter 8

Reuse via Synthesis and the

Synthesis-&X System

Synthesis of model structure based on metadata is a problem that is difficult to con-
strain. A complete and precise characterisation of how data and models mesh does not
seem attainable. Even if it were, modelling practice tells us that innumerable mod-
els can be designed supported by the same data, which makes the space of solutions

infinite.

The metadata-only synthesis approach and the Synthesis-0 system that realises it (pre-
sented in the last two chapters) are reasonably successful in tackling the task as defined
in Section 1.2, but do not appear to scale well. What is more, such success comes at
the cost of substantial engineering effort in honing the synthesis constraints to tame

model inconsistencies (Section 6.3).

As discussed before, Ecolingua and the Metadata<+Model associations library are
amenable to extensions. Data sets more diverse than the ones we have been able to
describe would require Ecolingua to encompass new concepts, and the associations li-
brary to encompass other rules to represent connections between these new kinds of
data and model structure. Such extensions would enlarge the class of models synthe-
sisable by the approach, but they alone cannot sustain the scalability of the approach;

they take effort to construct, which means that we cannot increase Synthesis-0’s scale

173
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indefinitely in this way.

If Synthesis-0 is to be of practical use, another factor relevant to the scalability of its
synthesis approach is metadata volume, as this can have an impact on metadata search

times, particularly in a domain such as ecology where large data sets are commonplace.

In Chapter 9 we show an empirical evaluation of Synthesis-0’s run time performance
under, of course, the current specifications of Ecolingua and the Metadata<+Model
associations library. In the evaluation experiment we have used actual and fictitious
metadata sets of sizes proportional to the sizes of the models synthesisable from them.

Synthesis-0’s run times appear to grow exponentially with model size.

Reuse-synthesis is a second, more parsimonious synthesis approach where such scal-
ability issues raised by the metadata-only approach are alleviated. It was initially mo-
tivated by the idea of gaining more benefit from Ecolingua, or more generally from
having an ontology at the foundation of the synthesis process, taking its use further

than its traditional use as an unifying set of concepts for representing ecological data.

8.1 Reuse via Synthesis

The metadata-only approach lays down precise connections between ontological con-
cepts as metadata, once they are instantiated to a data set, and model structure. In a
nutshell, Synthesis-0 performs synthesis by exploring the space of such connections.

This corresponds to the solid arrow in Figure 8.1 below.

The reuse-synthesis approach is about building models by drawing again these same
connections but in a more controlled, efficient manner, by way of reusing existing mod-
els to guide the synthesis, as opposed to synthesising models “from scratch” supported

by metadata only. We call such existing models reference models.

Reference models are not necessarily models synthesised by one of our systems
(Synthesis-0 and Synthesis-&), they can indeed also come from other sources, such
as literature and experts. The value of reference models for synthesis lies in the mod-

elling knowledge they encapsulate. We assume this is trustworthy knowledge because
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Reference Model Synthesised Model

L

Metadata—only synthesis:

Reuse—Synthesis:

match &  mark up exploratory

R

- e e -

Metadata (in Ecolingua)

Figure 8.1: The metadata-only and the reuse-synthesis approaches.

the models to have been established, by a synthesis mechanism like ours or otherwise,
have had to satisfy all pertinent constraints. One can envisage a library of such refer-

ence models made available for reuse.

Back to our Figure 8.1, notice the dashed arrows. They illustrate the twofold way of
reuse-synthesis. The reference model’s structure (or topology) works as a structural
skeleton which is matched with the given metadata and then marked up, or filled in,
wherever possible with content in the metadata to give a new model. To match is, in
effect, to determine how much of the connecting structure between old data/metadata
and corresponding (reference) model can apply to, or can find support in, the new

metadata.

To do the matching we harness the same connections between metadata and model
structure defined in the metadata-only approach, drawing them in the opposite direc-
tion (note in Figure 8.1 the directions of the ‘Metadata to Synthesised Model’ solid
arrow and the ‘Reference Model to Metadata’ dashed arrow). It arises from the applica-
bility of the same connections that by adapting the metadata-only synthesis algorithms

we can obtain a useful mechanism to match reference models with metadata.

The heart of such adaptation is the reversal of the associations between metadata and
model structure terms specified in Table 6.1. In the metadata-only approach, associa-
tions occur from metadata to model structure, with abduction applied to allow for that,
as explained in Section 7.4.2. In the reuse-synthesis approach, in turn, associations oc-

cur from model structure to metadata — the synthesis is driven by the reference model
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structure, rather than by metadata, reversing the orientation of the associations, which

become deductive. This change in inference pattern is discussed in Section 8.5.

The Ecolingua ontology underlies the synthesis process in both approaches, we should
stress. In the metadata-only approach synthesis originates from the foundational on-
tological concepts, while in reuse-synthesis the reference structure is reduced back to
them. In fact, having an ontology is the very factor that enables reuse of existing mod-
els (derived through whatever means), in that they can be levelled down to the standard

concepts that inform the synthesis process.

Because Ecolingua is founded on universal notions of physical dimensions, a wide
range of reference models can be reduced to its concepts (i.e., the degree of ontological
commitment in Ecolingua is low (Gruber, 1995)). There are no specific requirements to
be fulfilled by models used as reference structures (as long as they are system dynamics

models in standard notation as exemplified in Section 2.4).

Synthesis-%®_ is a working system where we realise the reuse-synthesis idea. It is pre-
sented in the remainder of this chapter, starting with a section on the system’s archi-
tecture. The sections have been structured in line with Chapter 7. We omit a meta-
interpretation section in the current chapter, as the two systems share the same meta-

interpreter and Ecolingua compliance checking mechanism presented in Section 7.6.

Along the forthcoming sections we will see how Synthesis-& is able to lessen the
scalability issues in the metadata-only approach we mentioned earlier. In Section 8.4
we show that even though the reuse-synthesis state space is still large, it can be pruned
a little by using the reference models backbones as benchmarks. Section 8.6 shows
how the synthesis constraints are made simpler and softer, bringing about an efficiency
gain on metadata search, whereby metadata volume becomes less of an issue. And

Chapter 9 shows Synthesis-& ’s much faster run times in comparison to Synthesis-0’s.
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8.2 System Architecture

The architecture of the Synthesis-&_ system is depicted in Figure 8.2.

Model Solutions

w7

Reuse-Synthesis
Mechanism

automated
T check
Model Components ;
Soft Constraints E(%%Iz:ntgr"{g
(Section 8.6) P

Reference Model T
by user

Metadata Set
(Chapter 5)

matching

Figure 8.2: The architecture of the Synthesis-&_ system.

The Ecolingua, Metadata Set and Model Solutions knowledge modules are exactly the
same as in Synthesis-0’s architecture. As before, the metadata set consists of Ecol-
ingua descriptions of data about the system-of-interest, and supports synthesis acting
as evidence for satisfying constraints that establish model components. In addition to
metadata evidence, the system is also resourced with an existing model whose structure
is used as reference to guide the synthesis. The modelling knowledge encapsulated in
the reference structure allows model solutions to be established through satisfaction of

softer constraints in comparison with the metadata-only approach.

8.3 Algorithms

Synthesis-R ’s algorithms are many as well as more elaborate compared to Synthesis-
0’s. This is a trade-off. In the metadata-only approach most of the synthesis knowledge

resides in the constraints, making the algorithms simpler and relatively more general.
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In contrast, in reuse-synthesis most of the synthesis knowledge is embedded in a ref-
erence model structure, which makes the constraints simpler in turn. However, the
system’s algorithms become more complicated for they encode all the control needed
to unravel the model structuring knowledge embedded in the reference model and pass

it on to the new model, at the same time observing the metadata evidence given.

In Synthesis-R’s algorithms, like in Synthesis-0’s (Section 7.2), the general repre-
sentation of models is that of directed graphs, only that this time the graphs may be
disconnected (this is explained in Appendix C, the traverse backbone and match algo-
rithm). Synthesis-&’s algorithms are essentially a number of specialised procedures,
each specifically designed to distill the model structuring knowledge contained in dis-

tinct sections of the graphs, characterised by different forms of flow and link arcs.

All possible forms of flows and links are depicted in Figures 8.3 and 8.4. In discussing
the algorithms in the sequel we refer to these forms of flows and links, in the hope of
facilitating understanding through visualisation. In Figures 8.3 and 8.4 and throughout
the chapter we use the blanket term converter from (Ford, 1999) to refer to intermediate

variables, parameters and driving variables.

The algorithms are hierarchically organised as shown in Figure 8.5. To avoid the chap-
ter becoming too dense with all these algorithms, we focus on the higher and lower
level ones, as highlighted in the figure, which are more fundamental to appreciating
how the system works. The other intermediate algorithms are presented in Appendix

L

—o~__ | [} el |

(f1) in-flow: (f2) out-flow: (f3) in-between-flow:
source to state variable state variable to sink slate variable to state variable

Figure 8.3: Forms of flows.
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(11) state variable to its outward flow (12) state variable to its inward flow (13) converter to flow

O

sy i

(14) state variable to intermediate variable (15) converter to intermediate variable

Figure 8.4: Forms of links.
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Figure 8.5: Hierarchy of Synthesis-R s algorithms.
The Top-level Algorithm
What fundamentally distinguishes Alg. 8.1 below from Synthesis-0’s top-level al-

gorithm is that besides a metadata set it has an extra synthesis resource: a reference
model structure to follow. The algorithm traverses the reference model finding matches
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in the metadata for the model components it visits as it goes along. For each successful

match a component of the same form is synthesised in the new model.

The traversal of the reference model and the synthesis of the new occur in parallel. The
models are traversed/synthesised in a breadth-first fashion, starting with flow arcs and
then carrying on with link arcs. One can view this as a centred graph structure (the
centre being the flows and state variables chain(s)) whose boundaries advance from
the centre outward. We shall hereafter refer to a model’s chain(s) of flows and state

variables as the model’s backbone.

This is how the built-in structural knowledge in the reference model can be best ex-
ploited, from the most to the least specific types of model components. Flow arcs are
the most constrained model components. Consequently, the metadata matching for
them is equally constrained, bearing a more informed, and thus efficient, search pro-
cedure. Working from the flows outward, by the time the links are reached, which are
more general, less constrained components, the already matched flows act as a core

structure that anchors the rest of the synthesis.

Alg. 8.1 (Top-level) synthesiseR (A,M,s,Model') — inputs: A, M,,s; output: Model'. Given a meta-
data set A and a reference model M,,s, a new model Model' is synthesised through reuse of M, by:

match_flows(A, Flows,s, {}, FlowsPairs) (Alg. 8.2), match the flows in M., Flows,s, with A, to give

a set of matched flows, FlowsPairs, with elements of the form Fr.r-Fe-
IF FlowsPairs # {} THEN
Model = {Fpew : Frep-Fyew € FlowsPairs}
IF Linksyes # {}, where Links,s are the links in M,,; THEN

match_links(A, FlowsPairs, Links,.r,Model, Model') (Alg. 8.3), match Links,.s with A, to
give new links which are added to the current model Model forming Model'.

ELSE Model' = Model

ELSE Model' = {}

Note that the algorithm only returns a non-empty Model’ when at least one successful

flows match occurs.
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The FlowsPairs set works as a record of matched flows. Each match is represented by
a Frer-Fpew element in FlowsPairs. Fror, we call matched reference flow, is a flow in the
reference model which has been successfully matched with the metadata to synthesise
Frew, we call matched new flow, a component of the new model Model'. Keeping a
record of established matches serves the purpose of avoiding reference flows being
re-matched with different new flows, which would corrupt the overall matching of the

two structures (reference and new).

Model' is a set that represents a system dynamics model structure in the same way
as in Synthesis-0 (see Section 7.2), except that model elements are not qualified with

evidence classes. The reason for this is explained in Section 8.6.

The algorithm is executed through the meta-interpreter in Figure 7.5 with the call
solve (synthesiseR (Mr,M)), where synthesiseR/2 is the corresponding predicate to
synthesiseR (A,M,.r,Model'), with the metadata set A being a consulted file.

The Match Flows Algorithm

The matching of flows starts by trying to determine the model’s material (Section
5.2.2). If the metadata set contains one or more described model materials, then only
models of flow of such materials are synthesised. Otherwise, the matching initialisa-
tion is called with an undetermined model material, represented by the AnyMt variable.
In this case, the model material is determined by way of the first successful flow match,
that is, whichever material involved in the metadata that match with the reference flow

in question becomes the model material to constrain the synthesis all the way through.

The matching initialisation procedure establishes the first pair of matched flows through
Algs. 8.4 to 8.7, one to each type of flow, namely, in-flows, out-flows and in-between-
flows (either Alg. 8.6 or Alg. 8.7 could have been used, with the same effect, for
in-between-flows). The flows in the reference model which are of the most common
type with respect to each state variable are tried first for for the initial match. For exam-
ple, suppose we have the model in Figure 2.2 as reference model. The first of its flows

to be tried out for matching would be respiration and excretion. They are two out-
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flows, connected to the fish_biomass state variable, compared to at most one out-flow,
in-flow, outward or inward in-between-flow connected to any of the state variables.
The purpose of this is an efficiency gain. The reference flow already matched here will
be excluded from the follow-up exhaustive matches by Alg. C.2 (see Section 8.4). Ex-
cluding a flow of one of the most common types (per state variable) can dramatically

reduce the number of exhaustively found matches for the set of flows of that type.

Clearly, since state variable nodes are intrinsic to flow arcs, establishing a match be-
tween a reference flow and a new flow encompasses matching the flows’ state variables
as well. To an in-flows or out-flows match corresponds a single pair of matched state
variables, while to an in-between-flows match corresponds two pairs of matched state
variables. Alg. 8.2, in matching the initial pair of flows, establishes the initial pair(s)
of matched state variables, which are then the starting point for the traversal/expansion

of the models’ backbones.

Flows connected to the reference state variable in the current pair are identified and
matched with the metadata. Successful matches give rise to new state variable pairs
from where the traversal/expansion process proceeds in the same fashion. This is de-
tailed in Algs. C.1 and C.2. Algs. 8.4 to 8.7 are again referred to by Alg. C.2 to carry
out the matching of reference flows with the metadata, according to the form of each

flow in relation to the current reference state variable.

Alg. 8.2 avoids re-matches that would lead to spurious duplicated components in the
new model, by verifying whether new flows and new state variables returned by the
flows matching procedures have been previously matched. Reference state variables
are also checked for this. It is necessary for reference state variables to be checked
because they can be revisited, as they can be shared by more than one flow. Matched
reference flows, on the other hand, are not revisited, they are removed from the set of

reference flows once matched, and thus do not require to be checked for re-matches.
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Alg. 8.2 match_flows(A, Flows,s, FPsf, FlowsPairs) — inputs: A, Flows.s, FPsf; output: FlowsPairs.
Match the reference flows in Flowsr with A, according to the form of each reference flow (Algs. 8.4 to
8.7), adding successful matches to the pairs of flows found so far, FPsf, giving the set FlowsPairs.

IF 3Mt . model_mat(Mt) THEN

initialise_match(A, Flowsres, Mt, FPsf , FlowsPairs)

ELSE initialise_match(A, Flowsef,AnyMt, FPsf, FlowsPairs)

initialise_match(A, Flowss, Mt, FPsf, FlowsPairs)
From the most to the least common flow type in Flows,,s wrt each state variable
IF 3F,.f . Frer € Flows,,s AND
match_in flow(A, Fror, M1, S of-Snew, Fnew) (Alg. 8.4) OR
match_out flow(A, Fror,Mt,S ef-Spew, Frew) (Alg. 8.5)  OR
match_betweenin flow(A, Frep, Mt, Srer-Snew, S1 ref=S1new, Frew) (Alg. 8.6)
AND There is no matched new flow in FPsf with the same name as Fj,,,

AND None of the newly matched state variables, reference or new, are already

matched with other state variables in FPsf THEN
Flows,es = {Fref | Flows,erl} FP1 = {Fot-Fy0 | FPsf}
traverse_bb_n_match(A,SVpairs, Flows s 1,Mt, FP1,FlowsPairs) (Alg. C.1),

starting from the pair(s) of newly matched state variables in SVpairs, traverse

the reference model’s backbone in Flows,s1 (Alg. C.2), and match it with
A (Algs. 8.4 to 8.7) to find new pairs of matching flows, which are added to
the pair(s) found so far, FP/, giving FlowsPairs.

STOP

ELSE FlowsPairs = FPsf

The Match Links Algorithm

Once a backbone (one or more chains of flows and their state variables) is established
for the new model, Alg. 8.3 attempts to expand it with a network of links. For the
same reason that flows are synthesised first followed by links, in decreasing degree

of constraintship, the algorithm starts with the network of links directly connected to
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flows and state variables, which we call the immediate fringe, and then continues with

the outer network of links, the far fringe.

Of the link forms depicted in Figure 8.4, in the immediate fringe there can be:
e links from state variables into their flows (link forms (11) and (12));
e links from converters into flows (link form (13)); and
e links from state variables into intermediate variables (link form (14)).

Reference links of such forms are found (as detailed in Algs C.5 and C.6) and then
matched with the metadata: links of form (11) and (12) by Alg. 8.8, links of form (13)
by Alg. 8.9, and links of form (14) by Alg. 8.10.

The matching of the two latter forms of links introduces pairs of matched converters,

collected in the CvsPairs set, from where the far fringe matching begins.

Pairs of converters are for the matching of links what pairs of state variables are for the
matching of flows. They function as stepping stones from where proceed the travers-
ing of the reference model’s network of links and the expansion of the new model.
Moreover, similarly to the FlowsPairs set, the record of established converters pairs in

CvsPairs is also used to avoid inconsistent re-matches.

The far fringe is fairly uniform compared to the backbone and immediate fringe model
sections. Again, it is this uniformity that makes this model section the least constrained
of all, embodying relatively little structural information, being thus, the last to be syn-

thesised in the reuse approach.
There is a single link form in the far fringe:

e links from converters into intermediate variables (link form (15) of Figure 8.4)
since, by definition, links cannot end in parameters or driving variables.

Here again specific algorithms are used to match reference links of such form with the
metadata once they are found (as detailed in Alg. C.6). Alg. 8.11 is used for outgoing
links from the current reference converter, and Alg. 8.12, for incoming links to the

current reference converter.
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Not every new far fringe link established will as well establish a new pair of convert-
ers. The algorithm then keeps a log of expanded pairs to make sure only new pairs
are selected for expansion, and to end the synthesis when no more new pairs can be

established.

Alg. 8.3 match_links(A, FlowsPairs, Links,.r, Msf ,Model) — inputs: A, FlowsPairs, Links.r, Msf; out-
put: Model. Given A and the set of matched flows FlowsPairs, match Links,.s, the links of the reference
model stemming from its backbone, with A, to establish links which are added to the new model so far,
Msf, composed of flows only, to form a final new model Model.

CvsPairs = {}, initialise the current set of pairs of matched converters.

match_immediate_fringe(A, FIowsPairs,Links,,.f,Lfnks:ef,Msf,M,CvsPairs, CvsPairs’) (Alg. C.3),
find the links in Links,; composing the reference model’s immediate fringe (Algs. C.5 and

C.6) and match them with A according to the form of each reference link (Algs. C.7 and 8.8 to
8.10), with a view to synthesising the new model’s immediate fringe, expanding the new model
so far Msf into M, and giving a set of pairs of matched converters CvsPairs’. Links outside of

the reference model’s immediate fringe are returned in the set Links,, .
CPlog = CvsPairs' CPtoExpd = CvsPairs'

march_far_fringe(ﬁ\,CvsPairs’,CPIog,CPIoExpd,Link.s";‘,f,M,ModeI) (Alg. C.4), find the links in
Links,,, composing the reference model’s far fringe (Alg. C.6) and match them with A according
to the form of each reference link (Algs. C.7, 8.11 and 8.12), with a view to synthesising an
outer network of links, which is added to the new model so far M to give a final model Model.

The synthesis process ends when all the reference converters have been reached.

The Match Form-Specific Flow Algorithms

The actual matching of reference flows with the metadata set is carried out by Algs.
8.4, 8.5, 8.6 and 8.7, one to each flow form with respect to the current reference state

variable (see their points of call in Algs. 8.2 and C.2).

A match succeeds if the new flow’s reuse-synthesis constraints, formulated as an X -

rule (Section 8.6), are satisfied over the metadata set.
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In the algorithms, the Sy, variable, which represents the new state variable that matches
the current reference state variable, may or may not be ground, meaning that the state
variable may or may not have already been established in the new model. It will not
have been when the match is the initial one (Alg. 8.2), and it will when the flows of a

particular established pair of matching state variables are being surveyed (Alg. C.2).

Alg. 8.4 match_in_flow(A, Fref, Mt, Syor-Snew Jlow(F, Efrom, SV(Spew, U), U/ Uy)) — inputs: A, Fps; in-
puts/outputs: Mz, Syef, Snews outputs: F, Egom, U, Ur. Frgr is an in-flow into the state variable S,
(flow form (f1) of Fig. 8.3) 1F¥

flowinR (F,Mt, Efrom,5V(Snew, U), U/ U;) (R-rules 8.6, 8.7)

Alg. 8.5 match_out flow(A, Frep,Mt,Ser-Snew, flow(F,5v(Snew, U), Eo, U/ U,;)) — inputs: A, Fp.y; in-
puts/outputs: Mz, Sref, Snews outputs: F, Eyy, U, Us. Frer is an out-flow from the state variable S,
(flow form (f2) of Fig. 8.3) IF

flowou R (F,Mt,59(Snew, U), Ero, U/ U;) (R-rules 8.8, 8.9)

AFp ,M-",Sref'Snew:S!ref'anew: — inputs: A, me; o
Slow(F,sv(S1new, U),5V(Snew, U), U/ Uy)

puts/outputs: Mt, Sref, Snews outputs: SIyers Slnews F, U, U;. Frer is an in-between-flow into the
state variable S,,¢ (flow form (f3) of Fig. 8.3) IF

flowp, R (F,Mt,sv(S1new; U),5V(Spew, U), U/U;) (R-rules 8.10, 8.11)

Alg. 8.6 match_betweeni,_flow (

A: Fre 3 Mr:SrEf'SneW: Szref‘sznew:

ﬁOW[F,SV(Snew: U),SV(Sanw, U)’ U/U-')
Srefs Snews outputs: S2refs S2new, F, U, U;. Frer is an in-between-flow out of the state variable

Srer (flow form (f3) of Fig. 8.3) 1
flowy R (F,Mt,sv(Snew, U),5v(S2pers, U), U/ Uy)) (R -rules 8.10, 8.11)

Alg. 8.7 match_betweenu-flow ( ) — inputs: A, Frr, Mt,
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The Match Form-Specific Link Algorithms

Algs. 8.8 to 8.12 are the links’ equivalent of the algorithms for matching form-specific
flows. There is an algorithm to each link form, which succeeds conditioned to the sat-
isfaction of the appropriate reuse-synthesis constraints, formulated as an X -rule (see
Algs. C.5 and C.7 for the algorithms’ points of call). Alg. 8.8 is a little different from
the others in that it establishes only the link itself — the new model elements (a state
variable and a flow) at the two ends of the link are already established and given to the
algorithm. Whereas in Algs. 8.10 to 8.12, just one element in one of the new link’s
ends is given. In establishing the new link these algorithms also establish the pair of

matched elements (reference and new) at the other end of the link.

Alg. 8.8 establish SVFILk(A,SVyew, Fidyew, link(SVyew, flow;q(Fidpey))) — inputs: A, SVyew, Fidnew.
Establish from A a link of form (11) or (12) of Fig. 8.4, between SV,,.,, and the flow named Fid,.\
IF

Link R, (Spew> flowia(Fidnew)) (R-rule 8.12)

Alg. 8.9 match toFILK(A, Fuew, Lref [ink(CVpe, flowia(Fidnew) ), CVref-CView) — inputs: A, Few,
Lyef, Fidnew, CVier; output: CVpey. Match with A the reference link Ly of form (13) of Fig. 8.4,
from the reference converter CV,,s to a flow, and establish in the new model a form-equivalent
link from CVjpew to the flow, which isnamed Fidyew

CASE CV, is an intermediate variable THEN
IF linkR (iv(Inew, U), flowiq(Fidnew)) (R-rules 8.13,8.14) THEN
CVpew = iV(Inew, U)
CVyr is a parameter THEN
IF link®R (param(Ppey, U),flow;y(Fidnew)) (XK-rules8.15,8.16) THEN
CVpew = param(Ppe,, U)
CV/yer is a driving variable THEN
1F link®R (dv(Dnew, U),flowia(Fidnew)) (R-rules8.17, 8.18) THEN
CVyew = dv(Dnew, U)
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Alg. 8.10 match_frSVLk(A,SView, Lref, ink(SVnew, IVaew) s [Vref-IVnew) — inputs: A, SVyew, Ly,
IV,.s; output: IV,,,. Match with A the reference link L.s of form (14) of Fig. 8.4, from a
state variable to the reference intermediate variable IV,,r, and establish in the new model a form-

equivalent link from SVyew to IVy,, IF

linkR (SVnew, I Vnew) (K-rule 8.19)

Alg. 8.11 match frCVLk(A,CVpey, Lyef ,link(CVpew s IView) s IVref-IView) — inputs: A, CVpe, Ly,
IV,er; output: IVye,. Match with A the reference link L,y of form (15) of Fig. 8.4, from a
converter to the reference intermediate variable /V,.r, and establish in the new model a form-

equivalent link from CVpew t0 IVpey, IF

lmkg{(cvnew; anew) (R -rule 8.20)

Alg. 8.12 match_tolVLk(A,IVnew, Lrer, link(CVnew, IVnew); CVref-CView) — inputs: A, IVyew, Ly,
CV,; output: CV,,,,. Match with A the reference link L, of form (I5) of Fig. 8.4, from
the reference converter CVjr to an intermediate variable, and establish in the new model a form-

equivalent link from CVjew 10 Ve
CASE CV,y is an intermediate variable THEN
IF link® (iv(Inew, U),IVpew) (R-rule 8.21) THEN CVyer = iv(Inew, U)
CV,f is a parameter THEN
IF link®R (param(Ppew,U),1Vyew) (R-rule 8.22) THEN CVpen = param(Ppew,U)
CV,r is a driving variable THEN
IF linkR (dv(Dyew, U),1Vpew) (R-rule 8.23) THEN CVyppy = dv(Dyew, U)

8.4 Multiple Model Solutions

Analogously to Synthesis-0, a Synthesis-& model solution corresponds to one output
of the system’s top-level algorithm, i.e., the value in Model' after one execution of
synthesiseR (A, M,,ef,Model’ ) (Alg. 8.1). For a given metadata set, A, and reference

model, M,.r, Synthesis-R  is able to synthesise multiple model solutions.

Once again, the algorithms are designed as though to give a single solution, and once
again, we take advantage of Prolog facilities — backtracking and an all-solutions pred-
icate (Sterling and Shapiro, 1994) — to enable the implemented Synthesis-R_ system
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to find multiple solutions.

In Synthesis-0 no selection of local or global solutions takes place. In Synthesis-RK,,
however, having a reference model compels making some use of it as benchmark. A
model solution (new model) which is structurally identical to the reference model is as
good as a solution can get. Hence, the best solutions, local or global, are those nearest
in size to the corresponding part of or to the whole of the reference model, respectively.
Size, expressed as the number of elements in the sets that represent solutions, is thus
our criterion for solution selection. However simple, size provides a good measure of
the extent (which we want to maximise) to which both reference model and metadata

set are exploited.

One could firstly think of finding all possible global solutions and then select those
that best approximate the reference model. There can be a very large number of global

solutions, however, which makes the cost of such approach prohibitive.

Instead, in a hill-climbing heuristic fashion, one can select local solutions which are
likely to make up the best global ones, and prune the search space by only further ex-
panding the selected local solutions. Solutions are local with respect to each reference
element paired up with a new model element, since the reference model traversal and

new model expansion stem from each of such pairs.

It is again infeasible to do an exhaustive selection of local solutions, i.e., to find to each
pair of elements all local solutions and then select the best ones. The problem is with
link arcs. A single model element can have many links connected to it. As we saw
in Section 6.3.3.2, links represent information transfers. Modellers are unrestrained
in modelling information transfer. They will include in a model as many links as
they believe necessary to express their understanding of the system of interest. If the
reference model contains one or more heavily linked elements and the metadata set
supports successful matches of most or all of such links, we could have a combinatorial

explosion of local solutions.

In contrast, it is unusual to see models where the state variables have many flows

connected to them. As opposed to information, flows represent physical processes
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of transfer of material (Section 6.3.3.1). Modellers tend to focus on a small number
of such processes, since models with state variables overloaded with flows usually
produce simulation results that are difficult to interpret. Moreover, each state variable
can have up to four types of flows connected to it, namely, in-flows, out-flows, inward

and outward in-between-flows.

Having said that, it is unlikely for a combinatorial explosion to happen in finding all
solutions of matching flows per type of flow per state variable. These are, therefore,

the local solutions upon which selection is done in Synthesis-%..

This means that just the backbone of the reference model is used as benchmark. In
other words, it would be too expensive to select the best local matches for arcs (links
and flows) connected to every node (element) in the reference model, in an attempt
to direct the search toward the best global solutions. It is feasible, however, to par-
simoniously select the best local matches of flow arcs (which have state variables as
nodes) only, in an attempt to direct the search toward global solutions where at least
the matching of the core of the reference model, its backbone, is maximised. This does
not necessarily reduce the number of possible global solutions significantly, however,

as there can be many possibilities of matches for the network of links.

The points of selection of local solutions are in Alg. C.2. As specified in the algorithm,
four sets of reference flows are found, one to each type of flow in relation to the current
reference state variable. For each of the four sets, are found all the matching sets of new
(not yet included in the new model) flows and their state variable(s). Then the largest
of these matching sets are selected (the search for all such local solutions and their
selection is not shown in the algorithm). As an example, say a reference state variable
R has two in-flows. These can be successfully matched with a new state variable A
with two new in-flows, as well as with a new state variable B with one new in-flow.

The former match would be selected and the new components added to the new model.

It should be understood that the simple selection (or search) method above is heuristic,
so it is not guaranteed that the optimal backbones, not to mention the optimal complete
models, are synthesised. A selected largest local solution might not lead to the largest

possible backbone (or model), when a smaller local solution thrown away would. This
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makes Synthesis-&K, unlike Synthesis-0, non-exhaustive. In both systems the search is

guaranteed to terminate.

Finally, the reuse of a reference model simplifies how each synthesised model solution
is to be interpreted with respect to the others (several possibilities apply in Synthesis-
0 — see Section 7.3). Each model solution represents a successful different way of
matching the reference model against the given metadata set, and should be seen as an

alternative, independent solution.

8.5 Inference Pattern

We know from the previous chapter that inferences in Synthesis-0 are mostly deduc-

tive, except for the abductive associations between metadata and model structure (see
Section 7.4.2).

In Synthesis-&, in turn, all inferences are performed deductively — the associations
between metadata and model structure are no longer abductive — employing the stan-

dard logic programming framework and the Prolog language as before.

The abductive vs deductive associations, performed over one shared library of Meta-
data <> Model association rules (Table 6.1), constitute a key distinction between the

two systems.

In Synthesis-0, associations occur from given metadata to model structure. Put
briefly, the given metadata terms unify with the consequents of the association rules,
so the model component terms are conjectured through abduction to allow for the

entailment of the metadata terms.

In Synthesis-%&, associations occur from given model structure to (given) meta-
data. The synthesis is driven by the reference model structure, rather than by meta-
data, reversing the orientation of the associations, which become deductive. The given
model component terms (determined by the reference model structure) unify with the

antecedents of the association rules.
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Therefore, the non-abductive association(Qrerm, ModelFrag) constraint, as opposed to
Expression 7.1, is defined as follows, where Qyepy, is a quantity term and ModelFrag is

a model fragment containing one or more model components:

association(Qyerm, ModelFrag) +

assoc_rule((Querm +— ModelFrag)) 8.1

We can see in the association rules library that the same model fragment may imply
multiple quantity terms. That would pose a problem were deduction applied exhaus-
tively to the rules, requiring ill-specified metadata sets with single quantities described
as belonging to orthogonal physical dimensions; but deduction is not applied exhaus-

tively.

The association(Querm, ModelFrag) constraint is applied in the & -rules, the constraints
rules for reuse-synthesis of model components (Section 8.6). The rules existentially
quantify quantity terms and define that a deduced quantity term is (tentatively) uni-
fied with a quantity description in the metadata set. Upon unification, the described
quantity is assigned to the model fragment, which is then established in the current
model solution, provided all other relevant constraints, if any, are satisfied. If, in this
way, multiple described quantities can be assigned to a model fragment, the synthesis
algorithms take care of placing each distinctly assigned model fragment in a separate

model solution.

Ontological Checking
Just as in Synthesis-0, in Synthesis-&_ all retrieved metadata (e.g., following an associ-
ation as above) are checked for Ecolingua-compliance. The same model of execution

and mechanism for ontological checking presented in Section 7.4.1 apply.

8.6 Reuse-Synthesis Constraints of Model Components

The algorithms that match form-specific flows and links (Algs. 8.4-8.7 and 8.8-8.12)

use implication rules to match reference model components with the metadata set,



8.6. Reuse-Synthesis Constraints of Model Components 193

which, if proved successfully, establishes components of the same form in the new

model.

Such rules, we call & -rules, are the reuse-synthesis counterparts of the heuristic rules
in Section 6.3, which define the synthesis constraints of model components in the

metadata-only approach.

The metadata-only rules are formulated as general metadata-based definitions of model
components, acting in synthesis as a representation of constrained modelling knowl-
edge. Because they rely solely on metadata evidence, which is liable to multiple in-
terpretations, tight constraints are necessary to control the synthesis process, to make

sure that each synthesised component does not bring inconsistencies to the model.

While the & -rules encode essentially the same domain-specific heuristic knowledge,
they are not as general as the metadata-only rules but tailored for the reuse algorithms.
The structural knowledge encapsulated in the reference model and its orderly core-
outwards traversal in parallel with the synthesis of the new model, allows synthesis
constraints to be softened. While in the metadata-only approach the synthesis rules are
formulated to maximise the use of metadata, since this is all there is, the & -rules, in
turn, are formulated to maximise the use of the reference model structure — the only
model fragments rejected are those to which contradictory metadata evidence exists.
Ultimately, softer constraints lead to a more efficient synthesis, as we show in Chapter
9.

Recall from Chapter 6 that synthesis constraints are classified into metadata and in-
tegrity constraints. These are softened in the reuse-synthesis approach, in the following

general ways:
Metadata constraints are lessened in quality and quantity.

In the metadata-only approach model elements are assigned the strong or weak
evidence class depending on availability in the metadata set of what we generally
call additional evidence, i.e., descriptions of certain properties applied to the
quantities, such as the constancy property (Section 6.1.4). In the reuse approach

evidence classes are not assigned. Instead, all that is required is that the metadata
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set does not hold evidence which, according to the Ecolingua ontology, would
contradict relevant data properties for establishing model component types. We

call these constraints least constraints.

To establish an arc, that is, a flow or link model connection, besides the metadata
constraints of the arc itself, the constraints of at most only one of the nodes are

verified in practice (with one exception). This is possible for two reasons:

1. Each connection in the new model is a structural copy of a connection in
the reference model. In other words, in synthesising a new connection, its

form is pre-determined by the form of the reference connection at hand.

2. The traversal of the reference model and synthesis of the new one are done
in a pre-defined orientation — flows and state variables first, then the im-
mediate fringe of links, followed by the far fringe of links. The X -rules
are designed in tune with this, defining flow and link arcs connecting a
node (model element) at the borderline of the model synthesised thus far
to a new node. The node at the borderline is already established and so
do not require its constraints to be verified again. Only the constraints of
the new node require verification, by way of which a new model element
is established. In Synthesis-0, models are also expanded from established
nodes, but which nodes these will be cannot be pre-determined. They could
though be identified on the fly, and flows and links synthesis rules compris-
ing only the constraints of the not yet established node could be applied.
This is not done in order to preserve the generality of the metadata-only

synthesis rules.!

The exception hinted above refers to when it is necessary to establish an in-
between-flow as the new model’s initial arc (Alg. 8.2), requiring the verification

of the metadata constraints of both its state variables.

IBut, practically, constraints of established elements are not re-computed by Synthesis-0. The
caching technique is used to avoid this (see Section 7.6).
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Integrity constraints defining preferences between components are waived.

This goes together with the waiving of evidence classes, on which the definitions

of this kind of integrity constraints in Synthesis-0 are mostly based.

Model elements are not preferred over others in order to maximise the use of the
reference model structure. Any element that has metadata to match a reference

element, satisfying the softened reuse constraints is taken in.

Nonetheless, the global kind of integrity constraint, i.e., that each quantity can
only appear once in each alternative model solution, remains applicable. But
with reuse it is much simpler to respect this constraint, for the new model struc-
ture inherits the integrity of the reference model structure. This is handled by
the reuse-synthesis algorithms, by simply making sure that each quantity is in-

troduced only once into the model.

We now show the R -rules for each type of model component, in relation to their
metadata-only rules counterparts in Section 6.3, adding details on the constraints soft-

ening, where needed.

For ease of reference we have kept the notation of the X -rules as similar as possible to
that of the metadata-only rules, at the expense of having a slightly larger than necessary

set of K -rules.

8.6.1 Constraints of Model Elements

R -rule of State Variables — Counterpart of Rules 6.1 and 6.3

S is a state variable, representing material Mt in entity E, with unit of measure
U, if a sv(S,Mt,E,U) term can be associated with some quantity term Qrerm, and
Qrerm is described:

svR (S,Mt,E,U)
3Q1erm - association(Qrerm,sv(S,Mt,E,U)) N (8.2)
(data(Qrerm ) V model_goal var(Qierm )
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In the rule’s reading, as well as in the reading of the rules that follow, we say that
the model component term is associated with the quantity term, rather than the other
way round, to stress the deductive associations from model structure to metadata in

reuse-synthesis (Section 8.5).

Also note in the & -rules that the association relation goal now precedes the descrip-
tional goals. Although declaratively it makes no difference, this change in the goals
order, motivated by the deductive associations, brings about an efficiency gain within
Prolog’s computational model of execution in which the rules are used. Solving the
association relation first (through the corresponding Prolog predicate) instantiates the
quantity term, either fully or partially depending on the algorithm being executed,
which renders a more informed, efficient subsequent search for the term in the meta-

data set.

What is more, since evidence classes are not assigned to model elements, the model
material constraint (which determines strong and weak state variables in the metadata-

only approach) as well as the integrity constraint are waived.

R -rule of Intermediate Variables — Counterpart of Rules 6.4 and 6.6

1 is an intermediate variable with unit of measure U, if an iv(I,U) term can be
associated with some quantity term Qerm, if Qrerm 1s described, and if I is not
described as a constant:

ivR (I,U)
3Qserm - association(Qerm, (I, U)) A
(data(Querm) V model_goal var(Qerm)) A (8.3)

= data(constant(I))

The same softening of constraints for intermediate variables, as well as for parameters

and driving variables in the sequel, is the same as explained for state variables above.

Moreover, there is a change in the constraint over metadata evidence used in addition
to the quantity description (see Section 6.3.1.2). It becomes that the quantity to be

modelled as an intermediate variable must not be described as constant. This is the
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least constraint, in that, according to Ecolingua Influence relation (Section 3.2.1.7),
the constancy property is the only evidence that would imply that the quantity could

not be influenced, which is the fundamental characteristic of intermediate variables.

Another change is in the intermediate variable relation in the head of the rule: the
model material, Mz, is no longer an argument of the relation. Such argument is relevant
in the metadata-only approach for verification of integrity constraints. Since integrity
constraints are not explicitly defined in reuse-synthesis, the model material argument

can be dispensed with. The same applies to & -rules of parameters, driving variables
and links.

R -rule of Parameters — Counterpart of Rules 6.8 and 6.9

P is a parameter with unit of measure U, if a param(P, U) term can be associated

with some quantity term Querm, if Querm is described, and if P is not described as
influenced:

param® (P,U) +
3Qerm . association(Q erm,param(P,U)) A

data(Qerm) N (8.4)
- data(influences(Q, P, Sign))

For parameters, reversely to the intermediate variables R -rule, the least constraint,
besides the quantity description, is that the parameter quantity must not to be described

as influenced, since this would prevent it from holding the constancy property, the

parameters’ fundamental property.

R -rule of Driving Variables — Counterpart of Rule 6.11

D is a driving variable with unit of measure U, if a dv(D,U) term can be associ-

ated with some quantity term Qrerm, if Qrerm is described, and if D is not described
as constant nor as influenced:
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dvR (D,U) +
3Q1erm - association(Qyerm,dv(D,U)) A
data(Qerm) A (8.5)
- data(constant(D)) V (data(influences(Q,D, Sign)))

For driving variables, the least constraint, in addition to the quantity description, is
as in the metadata-only approach, i.e., the lack of evidence of both constancy and
‘influenced’ properties for the described quantity — any of these properties would

prevent the quantity from being modelled as a driving variable (see Section 6.3.1.4).

8.6.2 Constraints of Model Connections

R -rules of In-Flows

— Counterpart of Rule 6.13

F is a flow of material Mt from an entity Ef,y, into a state variable S
with unit of measure U, and is measured in the unit of measure U |U,,
if U, is the model time unit, if S can be established as a state variable
with unit of measure U representing material Mt in entity E,,, if a term
mattrans(F,Mt, Egom, Ero, U/ U,) can be associated with some quantity term
Qrerm and Qe is described, and if a state variable with unit of measure U
cannot be established representing material Mt in entity Efy,:

flowiy R (F,Mt, Efyom,sv(S,U), U/ U;) +
model_time_unit(U;) A
VR (S,Mt, Erp, U) A
3Qterm - association(Qyerm, mattrans(F, Mt, Egom, Ero, U/ U;)) A
data(Qerm) N (8.6)
- svR (S, Mt, Efrom, U)

R -rule 8.6 is used to establish a flow in the new model that matches an in-flow

— from a source into a state variable — in the reference model.
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In the implemented system the state variable constraints represented in the rule
by svR (S, Mt,E,,, U) have different procedural meanings depending on whether
or not the state variable S at the flow’s end has already been established (as
determined by the usage of Alg. 8.4). If so (S is ground), the constraints do
not need to be recomputed — the caching technique through meta-interpretation
caters for this (Section 7.6). The constraints’ purpose in the rule is simply to
bind the state variable S, through the E;, entity, to the material transfer term,
ensuring in this way that the quantity term to be retrieved will be appropriate
to give support to an in-flow into such state variable. If, otherwise, the state
variable § is not yet established, then the constraints, besides the purpose above,

establish it, provided that the subsequent constraints are also verified.

— Counterpart of Rule 6.14

F is a flow of material Mt from the outside of the model’s scope into a state
variable S with unit of measure U, and is measured in the unit of measure
U /U, if U, is the model time unit, if a state variable S with unit of measure
U can be established representing material Mt in some entity, and if data
exists of a positive influence of a quantity F into the quantity S:

flowin R (F,Mt,outside,sv(S,U),U/U,) +
model_time_unit(U;) N\
svR (S,Mt,E,U) A (8.7)
data(influences(F,S,+))

Here again, the svR (S,Mt,E,U) constraints may be computed or the cached

solution retrieved in the implemented system depending on the status of S.

We saw in Section 6.3.3.1 that the use of influence data to synthesise in-flows
and out-flows calls for elaborate integrity constraints, for such descriptions make
weaker metadata evidence compared to quantity descriptions. Also, as men-
tioned earlier, in the reuse approach integrity constraints are waived to maximise
the use of the reference model structure. For & -rule 8.7, in particular, this means
that other more informed synthesisable flows are not given preference over the

in-flow F from outside if it happens to be synthesised first (see Rule 6.15) —
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Algs. 8.2 and C.2 guarantee that a unique flow named F occurs in the model.
The algorithms do not avoid, however, a flow F and a state variable F occurring

in the same model, in which case the flow should be renamed by the model user.

R ~rules of Out-Flows

These are equivalent to the in-flows & -rules for flows from state variables into sinks.

— Counterpart of Rule 6.16

F is a flow of material Mt from a state variable S with unit of mea-
sure U into an entity E,, and is measured in the unit of measure U [U,,
if U, is the model time unit, if S can be established as a state variable
with unit of measure U representing material Mt in entity Eg,pm, if a term
mattrans(F,Mt, Egom, Ep, U/ U;) can be associated with some quantity term
Qrerm and Querm is described, and if a state variable with unit of measure U
cannot be established representing material Mt in entity E,,:

foWou R (F,Mt,5(S,U), Er, U/ Uy)
model_time_unit(U;) N
svR (S, Mt, Efrom, U) N
30 1erm - association(Querm,mattrans(F,Mt, Egom, E;, U [U;)) A
data(Qierm) N (8.8)
- svR (S,Mt,E,,,U)

— Counterpart of Rule 6.17

F is a flow of material Mt from a state variable S with unit of measure U
into the outside of the model’s scope, and is measured in the unit of measure
U /U, if U, is the model time unit, if a state variable S with unit of measure
U can be established representing material Mt in some entity, and if data
exists of a negative influence of a quantity F into the quantity S:

flow o R (F,Mt,sv(S,U),outside, U [U,) +
model_time_unit(U;) A
svR (S, Mt,E,U) A (8.9)
data(influences(F,S,—))
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K -rules of In-between-Flows

As we know, these are flows between two state variables. Their & -rules verify the
constraints of the flow itself and of the two state variables. Although, similarly to the
in-flows and out-flows R -rules, in all but one situation one of the state variables will
already have been established, and its constraints will not be verified again in practice.
The exceptional situation is when the very first matching flow for the new model is an
in-between-flow (Alg. 8.2), in which case X -rule 8.10 or 8.11 establishes a new flow

with two new state variables.

— Counterpart of Rule 6.19

F is a flow of material Mt with unit of measure U /U, from a state variable S,
with unit U into a state variable Sy with unit of measure U, if U; is the model
time unit, if state variables S\ and Sy with unit of measure U can both be
established representing material Mt in entities Epy,y,, and E,, respectively,
and if a term mattrans(F,Mt, Efom, E;o, U | U;) can be associated with some
quantity term Querm and Qyerm is described:

flows R (F,Mt,sv(S1,U),sv(S2,U), U/ Uy)
model_time_unit(U;) A
sVR (S1,Mt, Efrom,U) N sVR (S2,Mt,Ey,,U) A (8.10)
3Q1erm - association(Qierm, mattrans(F,Mt, Epopm, E;o, U/ Uy)) A

data {Q!erm )

— Counterpart of Rule 6.20

F is a flow of material Mt with unit of measure U U, from a state variable
S\ with unit U into a state variable S, with unit of measure U, if U, is the
model time unit, if state variables Sy and S, with unit of measure U can both
be established representing material Mt in some entities, and if data exists
of a negative influence of a quantity F into the quantity Sy, as well as of a
positive influence of F into the quantity S;:

flowy, R (F,Mt,sv(S;,U),sv(S2,U),U/U,)
model_time_unit(U;) N

svR (S;,Mt,E;,U) A svR(S2,Mt,E>,U) A (8.11)
data(influences(F,S;,—)) A data(influences(F,S2,+))
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R -rules of Links into Flows

As determined by the orderly traverse-and-synthesise process where flows and state
variables are synthesised first, in all the & -rules below the link’s terminal node is,
being a flow, an established model element. Therefore, the only metadata constraints
that require verification are the link’s own constraints and the initial node’s constraints,
except for when the initial node is a state variable which will be an established element

as well, not requiring constraints verification (X -rule 8.12).

— Counterpart of Rule 6.22

A link is established from an established state variable element S with unit
of measure U to its established flow element F, if data exists of an influence
of the quantity S into the quantity F:

linkR (sv(S,U),flow;q(F)) +
data(influences(S, F,Sign)) (8.12)

— Counterpart of Rule 6.24

A link is established from an intermediate variable element I with unit of
measure U to an established flow element F, if data exists of an influence of
a quantity I into a quantity F, and if an intermediate variable I with unit U
can be established:

hnk.‘R,(W(l, U},ﬂOW;d(F)) —
data(influences(I, F,Sign)) A (8.13)
ivR (I,U)
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— Counterpart of Rule 6.25

A link is established from an intermediate variable element I with unit of
measure U to an established flow element F, if an iv(1,U) term and a link(I,F)
term can be associated with some quantity term Q1erm and Querm is described,

and if 1 is not described as constant:

linkR (iv(1,U),flow;a(F))
30 erm - association(Qerm,iv(I,U) A link(I,F)) A
(data(Qyerm) V model_goal var(Qierm)) N (8.14)

= data(constant(I))

— Counterpart of Rule 6.26

A link is established from a parameter element P with unit of measure U to
an established flow element F, if data exists of an influence of a quantity P
into a quantity F, and if a parameter P with unit U can be established:

linkR (param(P,U),flow;q(F)) +
data(influences(P, F,Sign)) A (8.15)
param®R (P,U)

— Counterpart of Rule 6.27

A link is established from a parameter element P with unit of measure U to
an established flow element F, if a param(P,U) term and a link(P,F) term can

be associated with a quantity term Qrerm and Qyerm is described, and if P is
not described as influenced:

linkR (param(P,U), flow;a(F)) <
3Qterm - association(Qierm,param(P,U) A link(P,F)) A

dam(Qrerm) A (8.16)
- data(influences(Q, P, Sign))
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— Counterpart of Rule 6.28

A link is established from a driving variable element D with unit of mea-
sure U to an established flow element F, if data exists of an influence of a
quantity D into a quantity F, and if a driving variable D with unit U can be

established:
linkR (av(D, U),flowiq(F)) +
data(influences(D, F,Sign)) A (8.17)
dvR (D,U)
— Counterpart of Rule 6.29

A link is established from a driving variable element D with unit of measure
U to an established flow element F, if a dv(D,U) term and a link(D,F) term
can be associated with some quantity term Quorm and Qe is described, and
if D is not described as influenced neither as constant:

linkR (dv(D, U),flow;a(F)) +
30 erm - association(Qrerm,dv(D,U) A link(D,F)) A
data(Qrerm) N (8.18)
- (data(influences(Q, D, Sign)) V data(constant(D)))

R -rules of Links into Intermediate Variables

— Counterpart of Rule 6.30

A link is established from an established state variable element S with unit of
measure Us to an intermediate variable element I with unit U;, if data exists

of an influence of the quantity S into a quantity I, and if an intermediate
variable I with unit U; can be established:

linkR (sv(S, Us),iv(I,U;)) +
data(influences(S,1,Sign)) A (8.19)
R (1, U;)
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Links of this form are synthesised from established state variables, thus only the
metadata constraints of the link itself and of the intermediate variable are veri-
fied.

— Counterpart of Rules 6.31, 6.32 and 6.33
R -rule 8.20 defines links to intermediate variables where the initial node is an

established converter.

A link is established from an established converter element CV to an inter-
mediate variable element I with unit U, if data exists of an influence of the
quantity Q, held by CV, into a quantity I, and if an intermediate variable |
with unit U can be established:

linkR (CV,iv(l,U)) +
el_qity(CV,0) A
data(influences(Q,1,Sign)) A (8.20)
ivR (1,U)

And R -rules 8.21, 8.22 and 8.23 define links where the established model element is

the terminal intermediate variable.

— Counterpart of Rule 6.31

A link is established from an intermediate variable element I with unit U to
an established intermediate variable element 1V, if data exists of an influ-
ence of a quantity I into the quantity Q held by 1V, and if an intermediate
variable I with unit U can be established:

linkR (iv(1,U),1V) +
el_qity(IV,Q) A
data(influences(I,Q, Sign)) A (8.21)
vR (1,U)
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— Counterpart of Rule 6.32

A link is established from a parameter element P with unit U to an estab-
lished intermediate variable element 1V, if data exists of an influence of a

quantity P into the quantity Q held by 1V, and if a parameter P with unit U
can be established:

linkR (param(P,U),1V) +
el_qtty(IV,Q) A
data(influences(P,Q, Sign)) A (8.22)
param®R (P,U)

— Counterpart of Rule 6.33

A link is established from a driving variable element D with unit U to an
established intermediate variable element IV, if data exists of an influence

of a quantity D into the quantity Q held by 1V, and if a driving variable D
with unit U can be established:

linkR (dv(D,U),IV)
elquy(IV,Q) A
data(influences(D, Q, Sign)) A (8.23)
avR (D,U)

8.7 Worked Example

Figure 8.6 shows part of the reuse-synthesis search tree generated by reusing the de-

picted reference model upon the pond management system metadata set in Appendix
B.

We deliberately use here the same metadata set used to give Synthesis-0’s worked
example. One of the full model solutions synthesisable from this metadata set by
Synthesis-0 is shown in Figure 2.2. The reader may find helpful to compare this full

model solution with the solutions (partial and final) in the reuse-synthesis search tree
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in Figure 8.6. For an easy visual comparison corresponding model components have

been placed, as far as possible, in the same position in both figures.

The reference model is based on a grass-deer ecosystem model found in (Haefner,
1996, Chapter 3), with added components to make the example more interesting. Since
the reference model content is irrelevant — the reuse-synthesis exploits its structure
only — for convenience and clarity we use in the example fictitious short names for

the reference model components.

The search tree shown is partial. Only one branch is shown ending in one of the
possible final model solutions. The tree nodes, or reuse-synthesis states, are numbered
outlining the order in which states are reached (considering the states shown only,
obviously): flows and state variables first, then the immediate fringe of links, and for

last the far fringe of links.

All assumptions and simplifications made on presenting Synthesis-0’s worked exam-
ple, concerning metadata descriptions shown, Ecolingua checks and notation, also ap-
ply here (see Section 7.5). In particular, once again we show only the primary metadata
description involved in synthesising each model component. They are the description
that unify with the non-negated data predicate in the body of the constraints & -rules

in Section 8.6.
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Figure 8.6: A portion of a Synthesis-®_search tree.
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8.7.1 Tracing the Reuse-Synthesis Search Tree

Alg. 8.1, the top-level algorithm, starts with the matching of flows, handing the execu-
tion over to Alg. 8.2.

The metadata set does have a specification of model material, namely biomass, which is
retrieved from the metadata set and given to the initialisation procedure. That is, at this
point it is determined that the model solutions about to be synthesised will represent

flow of biomass.

Notice that in-flow is the most common type of flows connected to any one state vari-
able in the reference model, namely, £,/ and £,2. One of these flows is then tried out
first to initialise the matching (Alg. 8.4), followed, on backtracking, by the other one
and then by other, less common flows. The search tree shows matching initialisation

with the £,/ flow and some of the synthesis states that follow.

State (m1) Alg. 8.4 matches:

e f.1 with the description
data(abs._rate(plant_production,biomass, outside, aquatic plants, kg /ha/day)) in the meta-

data set giving the new flow flow(plant_production); and

e sv,l with data(mat_dens(aquatic_plants_biomass,biomass,aquatic_plants, kg /ha)) giving

sv(aquatic_plants_biomass).

These are the initial matches. Recall that to match means to find evidence in the meta-
data set that supports a model component of the same form as the reference component
at hand (an in-flow and its state variable, in this case), and that this is done by solving
an appropriate reuse-synthesis constraints & -rule. For the above matches, for example,
such R -rule is either 8.6 or 8.7.

Once the initialisation is done, the synthesis process moves on to the traverse backbone

and match procedure (Alg. C.1).
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State (m2) Alg. 8.7 matches:

e .3 with data(abs_rate(consumption,biomass,aquatic_plants, fish,kg/ha/day)) giving

flow(consumption); and
e s5v,2 with data(mat_dens(fish-biomass,biomass,fish,kg/ha)) giving sv(fish_biomass).

The initial pair of state variables sv,! — sv(aquatic_plants_biomass) from state (m1) is the
first to be surveyed (Alg. C.2). f£.3 matches metadata to establish the consumption flow
in the new model, as well as the pair sv,2 — sv(fish-biomass), which is the next pair of state

variables to be surveyed. f,2 finds no match in the metadata set.

States (m3), (m4) Alg. 8.5 matches, respectively to the states:

e f,4 with data(abs_rate(respiration,biomass, fish,outside, kg [ha/day)) giving

flow(respiration); Or
e f,4 with data(abs_rate(excretion,biomass, fish,outside,kg/ha/day)) giving flow(excretion).

f4 can be matched with the metadata set to establish two different new flows, leading

to two alternative states.

That ends the flows traversing and matching procedure for the initialisation as in state
(ml).

State (mS) Alg. 8.4 matches:

e .1 with data(abs_rate(stocking,biomass,outside, fish,kg/ha/day)) giving flow(stocking);
and

e sv,.1 with data(mat_dens(fish_biomass,biomass,fish,kg/ha)) giVINg sv(fish_biomass).

State (m5) shows another initialisation that ultimately leads to a different model solu-

tion to that in state (m10).
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State (m6) Alg. 8.7 matches:

e f,3 with data(abs_rate(harvest,biomass, fish, harv fish,kg/ha/day)) 8Ving flow(harvest);

and

e sv,2 With data(mat_dens(harv_fish_biomass, biomass, harv_fish,kg/ha)) giving

sv(harv_fish_biomass).

State (m7)

e Alg. 8.8 matches link(sv,1,f,1) with
data(influences(aquatic_plants_biomass,plant_production,?)) giving

link(sv(aquatic_plants_biomass), flow(plant_production)); and

e Alg. 8.10 matches link(sv,1,iv,1) with
data(influences(aquatic_plants_biomass,consumption_rate,+)) giving

link(sv(aquatic_plants_biomass),iv(consumption_rate)).

Once the matching of flows is completed, with flows and their state variables estab-
lished in the new model, the matching of links can take place (Alg. 8.3), starting with
the immediate fringe of each pair of matched flows in turn.

Three links are found to be connected to the reference flow f.1 and its state variable

sv1, out of which two are successfully matched with the metadata set.

States (m8), (m9) Alg. 8.9 matches, respectively to the states:

o link(iv.2,f+4) with data(influences(indiv fish-weight, excretion,?)) giving
link(iv(indiv_fish_weight), flow(excretion)),
link(p,1,fr4) with data(influences(water_temp,excretion,?)) giving

link(param(water temp), flow(excretion)); OF

o link(iv,2,fr4) with data(influences(indiv_fish-weight,excretion,?)) giving
link(iv(indiv_fish_weight), flow(excretion)),
link(p,1,fr4) with data(influences(fish-ass_eff ,excretion,?)) giving
link(param(fish_ass_eff ), flow(excretion)).
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The last pair of flows from which successful link matches stem is f,4-flow(excretion) (f,3
has no links connected to it). Again, two out of the three links connected to f,4 are
successfully matched. The parameter in link(p,1,f,4) can be matched with the metadata

set to give param(water temp) (state (m8)) or param(fish_ass_eff) (state (m9)).

Recall that in Synthesis-0’s search tree example (Figure 7.4) the metadata concerning
the water_temp (water temperature) quantity supported it being modelled as either a
driving variable, an intermediate variable or a parameter, leading to three alternative
partial models. In reuse-synthesis, alternative model representations for a quantity do
not occur in this way. Rather, they occur if the quantity’s metadata happen to match

distinct reference components is distinct model solutions.

What determines that the quantity water_temp is modelled as a parameter in state (m8)
is that a reference parameter component matched its metadata. Although this does not
occur in this particular reference model, water_temp could be modelled as, say, a driving
variable in a different model solution if a reference driving variable happened to match

its metadata.

At this point, all established flow pairs have been dealt with and the new model’s

immediate fringe is established. Just the far fringe of links is now left to be synthesised.

State (m10) Alg. 8.12 matches:

o link(p,2,iv,2) with data(influences(number fish_stocked, indiv fish-weight,?)) giving
link(param(number fish_stocked),iv(indiv_fish_-weight)).

A single link lies in the reference model’s far fringe, which matches the metadata set

successfully.

One finalised model solution is reached.

The reuse-synthesis approach best case is to synthesise a new model which is a struc-
tural copy of the reference model, meaning that all reference components have been

successfully matched with the new model’s metadata set.
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More or less of a reference model’s structure will be fit to represent the new model
depending on how compatible it is with the new model’s metadata set, that is, to which
extent it captures the ontological properties of the new model’s data. The ideal refer-
ence model would have a data set whose properties would match the new model’s data
set perfectly.?

If it so happens that the metadata set has more potential for synthesis than the reference
model can fulfill then such potential is undermined. The example presented illustrates
this kind of scenario. Compare the model solution reached (in state (m10)) with the
model solution in Figure 2.2, synthesised from the metadata set alone. The converse
scenario is to have the reference model under-exploited, for being richer than the new

model’s metadata set.

Such trade-offs are explored in the next chapter where Synthesis-0 and Synthesis-%&_

are comparatively evaluated.

2This is not to say that the data itself should be equivalent in the two data sets. For example, a data
set about an animal population and another data set about, say, a crop, may have a matching network
of functional relationships between variables (a match of properties), while the variables themselves are
distinct, representing distinct objects in the respective systems-of-interest.
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Chapter 9

Empirical Evaluation of Synthesis Run

Times

Let us first have a quick look at Synthesis-0 again. In this system Ecolingua plays a

role on metadata specification. This is useful for model synthesis for two interrelated

reasons:

e The foundational, ontological concepts can be connected to model components.
By precisely defining such connections we were able to automate synthesis of
models from metadata, which preserves consistency between models and their

data sets; and

e Being an ontology (i.e. a unifying, standardising set of concepts represented by
terms) many and diverse data sets can be described through such terms to take
advantage of automated synthesis. What is more, since the terms are defined

formally, we can also automate the verification of validity of the descriptions.

These benefits stem from metadata which is obtained by directly using the ontology
vocabulary to describe data; we can view metadata specification as an instance of

ontology-based knowledge specification in general. This is fine, but we do not need to
stop there.

217
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One strong motivation for engineering knowledge founded on ontologies is reusability,
on the grounds that in order to reuse knowledge we, or systems, need to know its
meaning and ontologies make possible to elicit such meaning. So on top of benefitting
from knowledge specified through an ontology (e.g., our metadata) we should be able
to reuse knowledge that can be derived from knowledge specified through an ontology
(e.g., models that can be synthesised from metadata). The question is:

Once knowledge reuse supported by ontologies is achieved somehow, what
practical gains can not “re-inventing the wheel” bring about to systems?
This is the question that motivates this evaluation experiment, and indeed, the Synthesis-
R system to provide for the ‘knowledge reuse supported by ontologies is achieved

somehow’ part of the question.

The goal of the experiment is to provide evidence from data towards answering the
‘gains’ part of the question. The overall strategy of the experiment is like this:
Let us call:

Ko the level of knowledge specified through an ontology —
the level of metadata specified through Ecolingua

K the level of knowledge that can be derived from knowledge
specified through an ontology — the level of models that
can be synthesised, through Synthesis-0 or Synthesis-&,
from metadata

as illustrated in Figure 9.1.

Synthesis-0
Synthesis-R

~ e

specification T
— Ecolingua

Figure 9.1: Ontology-founded knowledge levels.

derivation ‘ et
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Synthesis-0 is a system capable of deriving instances of K
from instances of Ko, supported by Ecolingua; and

Synthesis-& is a system also capable of deriving instances of
K from instances of Ko but through reuse of other in-
stances of K, supported by Ecolingua.

Efficiency is the performance criterion on which the systems are com-
pared. For comparison, the systems are run in a batch of trials and their
run times are measured.

But, in order to explain efficiency gain, if any, and to know to where to allocate the
credit, we need to identify in which features the systems differ and to consider their

influence on efficiency. That is what we do in the next section.

After that we formulate our experimental hypothesis in Section 9.2 and describe the
experimental procedure in Section 9.3. The experimental data and its collection fol-
low in Section 9.4. And finally the evaluation results are presented, interpreted and

generalised in Section 9.5.

9.1 Comparative Featural Characterisation of Synthesis-
0 and Synthesis-&,

The reuse of a reference model by Synthesis-&_ allows various system features to be
improved with respect to Synthesis-0. The model building, model components’ con-
straints and metadata retrieval features are interdependently improved in their effi-
ciency, as we shall discuss shortly. On the other hand, the selection of local solutions
feature, which is exclusive to Synthesis-&, causes an efficiency loss in trying (it is a

heuristic) to improve the quality of model solutions.

The characteristics of such features in the two systems are summarised in Table 9.1
followed by a brief discussion. We give references to where previously in the thesis

the features have been discussed in more detail.



220 Chapter 9. Empirical Evaluation of Synthesis Run Times

Synthesis-0 — metadata Synthesis-& — metadata + )
Feature y 4 X Efficiency
resource reference model resources
Model building exploratory, exhaustive ~ bounded by reference model
general, hard, abductive specific, soft, deductive
Model components’ ’ . increased in
metadata-to-model model fragment-to-
constraints s . , ;i Synthesis-&.
fragment’ associations metadata’ associations
; compared to
) ground or partially ;
: variable to match | ; Synthesis-0
Metadata retrieval instantiated term to
metadata terms
match metadata terms
decreased in
, best local flow matches )
Selection of local Synthesis-&.
. none per type of flow
solutions compared to
per state variable .
Synthesis-0

Table 9.1: Featural characterisation of Synthesis-0 and Synthesis-%..

Features of increased efficiency in Synthesis-X compared to Synthesis-0

Model building is the work of the algorithms described in Sections 7.2 and
8.3. Synthesis-0 builds models by expanding node (model element) by node
in an exploratory, exhaustive fashion. For each node an exhaustive set of arcs
(model connections) that can be connected to the node and do not violate in-
tegrity constraints are searched for and added to the model. All nodes are visited

and expanded in this way until no more new nodes can be established.

Synthesis-&_, on the other hand, builds models by attempting to copy the refer-
ence model’s structure. A pre-determined traversal method (from the core of the
model outwards) sets the order in which the reference model’s nodes are visited
and arcs connected to them identified. As opposed to Synthesis-0’s exhaustive
search for arcs, each arc of the reference model is matched with the metadata
until success occurs (which includes satisfaction of integrity constraints) or no
suitable metadata can be found. And, rather than exhaustively expanding the
model, the synthesis ends with the completion of the traversal of the reference

model.
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Model components’ constraints in Synthesis-0 are general, heuristic metadata-
based definitions of model components formulated as if-then rules (Section 6.3).
Such generality and the use of abduction to associate metadata with model frag-
ments (Section 7.4.2) require integrity constraints as part of the rules to enforce
model consistency (Section 6.2). Besides the cost of verifying integrity con-
straints, there is also the overhead of the abductive associations, which are estab-
lished by a specially built mechanism (Section 7.4.2.1). Even though the mech-
anism is not particularly demanding it is run for every association that takes
place. The deductive ‘model fragment-to-metadata’ associations in Synthesis-
K., in turn, requires no more than Prolog’s built-in unification algorithm (Section
8.5).

Moreover, having a reference model to bound the synthesis makes it possible
for model components’ constraints in Synthesis-&_ to be softened, hence requir-
ing less computation for solution (Section 8.6). Integrity constraints that define
preferences between components can be waived — Synthesis-&'s algorithms
try to copy to the model under synthesis whatever component types are there
in the reference model. Metadata constraints are reduced to the so called least
constraints which just check for contradictions between Ecolingua and relevant
metadata descriptions. Also, redundant verifications of metadata constraints are
cut out. Loss of generality is the price payed for the softening of constraints,
which become useful only if applied in concert with Synthesis-&’s algorithms

(the classic trade-off between generality and efficiency).

Metadata retrieval efficiency is affected by the different styles of constraint
formulation in the two systems, taking into account their solution within Pro-
log’s model of execution (Section 8.6.1). The solution of constraints is driven
by metadata evidence in Synthesis-0. Foremost, some evidence in the form of
a metadata term is retrieved from the metadata set and then associated with the
model component in question. At the point of retrieval metadata evidence is
just a variable with which any described metadata term can unify. The solution
of Synthesis-& ’s constraints, in turn, is driven by model component terms, re-

productions of components in the reference model structure which are, at this
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stage, fully or partially instantiated to content of the new model. These terms
are associated with the metadata terms to be retrieved, which in this way have
their functor and some or all arguments determined. That restricts their possibil-
ities of matching with terms in the metadata set, making retrieval more efficient.
Clearly, such efficiency gain will be more significant where large metadata sets,

which are expected in the ecology domain, are used.

Feature of decreased efficiency in Synthesis-® compared to Synthesis-0

Selection of local solutions concerns selecting the best possible expansions, or
sets of connected arcs, of model nodes. In Synthesis-0 no such selection occurs:
in each run of the system (either initial or subsequent backtracking runs), the set
of arcs of each node that is first found is taken. On the other hand, Synthesis-&
selects, for each type of flow, the sets of new matching flows that best approx-
imate (in number of elements) the corresponding set of flows connected to the
reference state variable, where the selection is preceded by the computation of

all matching sets (Section 8.4).

Apart from the above differences, all motivated by the reference model resource in

Synthesis-& , the two systems are otherwise the same. Namely, they have in common:

data structures for representation of metadata and models, library of metadata<>model

association rules, Ecolingua compliance checking mechanism, meta-interpreter, and

programming language and interpreter.

9.2 Experimental Hypothesis and Measured Variable

Having characterised differences in Synthesis-0 and Synthesis-& systems’ features

and their contribution to relative increased or decreased efficiency, we can now formu-

late our experimental hypothesis.

Experimental Hypothesis: Synthesis-% ’s improved features through reuse
of a reference model give, compared to Synthesis-0, a net increased effi-
ciency reflected in shorter synthesis run times.
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The evaluation criterion is thus efficiency, understood as a measure of resources con-
sumed as a function of the size of the task tackled (Bundy, 2000). In the experiment
the consumed resource is CPU time and the size of the task corresponds to how large,
or complex, the synthesised model is. To compare the systems’ consumption of CPU

time we run them to synthesise a range of models of different complexities.

The metric we define for complexity of a model, denoted cx(M), is the number of
connections (flows and links) in the model M. It is meant to encompass the notions of
size as well as connectedness of the models — complexity is used as an overarching
term. This is why it is a count of connections, rather than a count of model elements

(nodes), for example.

What is more, within our metadata-based modelling approach, the complexity of a
model reflects the complexity of its metadata! — the larger and more connected the
metadata set, i.e., the more relationships exist between the metadata descriptions, the

larger and more connected the models synthesised from it will be.

9.3 Experimental Procedure

Synthesis-0 has a metadata set as single synthesis resource. The procedure to follow
in order to measure the system’s run times is simply:

(1) Take a sample of metadata sets A.

(2) Run Synthesis-0 over each A to synthesise a model M.

Figure 9.2: Experimental procedure for measuring Synthesis-0 run times.

Synthesis-R has two synthesis resources, as we know, a metadata set and a reference
model. Both resources bound the synthesised models as prescribed by the system’s al-

gorithms and constraints. The reference model determines the structure (or topology)

"'We could further argue that the complexity of the metadata reflects the complexity of the data. But
we will go no further than the metadata level since this work only explores in depth metadata<»model
associations as opposed to data+»metadata++model associations.
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of the synthesised model, while the metadata determines its content. The synthesised
model will be structurally equal to or a subset of the reference model, and all its com-
ponents must have metadata support. The ideal, yet unlikely, scenario would be to have
both resources thoroughly exploited: synthesised and reference models with identical

structures and no metadata evidence wasted.

We can visualise the achieved reuse of the reference model resource by comparing
its structure with the structure of the synthesised model. In much the same way, we
can also conveniently visualise the achieved use of the metadata resource. Synthesis-0
exhausts the metadata resource, so by applying it to the given metadata set we obtain
models we call target, in that they are the best one can get as far as use of the metadata
is concerned. Through a target model we can structurally relate the synthesised model

to the metadata set, just as it relates to the reference model.
The three models are denoted:
M,s: a reference model

M': a model synthesised from A, a metadata set, through reuse of M,,s by
Synthesis-&

M arger: @ model synthesised from A by Synthesis-0

We set up appropriate scenarios for measuring Synthesis-&_run times according to the
space of possible relations between the three models. Such relations are the bounding
relations we mentioned earlier between the synthesised model, M’, and the reference
model, My, and between M’ and metadata through Mjareer, the target model. M,r
and Miarger are not directly related. The relations are as follows. Where the relation
between the models is a structural rather than a conventional set relation we indicate it

with an s.

o M ¢ M', the synthesised model is a structural copy of the whole or parts of the

reference model, never outgrowing the reference structure; and

o M'P Marger, the synthesised model does not have components other than those

the metadata set supports, which are all part of the target model.
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That leaves the complement relations:

Mref 2 M C Mmr;gef

That is, M’ ranges from structurally equal to M,.r, when the reuse of the reference
model is optimal, to a structural subset of M,.r, when the reuse of the reference model
is sub-optimal; and likewise on the side of use of metadata, M’ ranges from equal to a
subset of Miarger- As mentioned earlier, complete optimality is unlikely. So the normal
scenario in practice should be M,,r SM' C Miarger-

The pairwise relations between the models can be enforced by establishing correspond-
ing subset relations, conventional subset relations this time, between the metadata sets
of M,,r and M'; this causes the structural subset relation between these two models
to become a conventional subset relation. Namely, to enforce M,,¢ i M' we establish
Aref 2 A, and to enforce M’ C Miyrger We establish Ayr C A,

This is achieved by applying the twofold procedure shown in Figures 9.3 and 9.4. Part
I of the procedure ensures M,.r 2 Mi = Myarger,, and Part I ensures M,r, = Mjc C
Marger, Where k indicates subset instances, in line with the overall relations M,y é
M' C Marger.
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(1) Given A, the metadata set of the reference model, take A, or a subset of it as the
metadata set, A, , of the model to be synthesised — A,r D Ay, .

(2) Run Synthesis-0 to synthesise M, from A,

(3) Run Synthesis-0 to synthesise Marger, from Ay,

(4) Run Synthesis-& to synthesise M, through reuse of M, over A,,. In the case where
Ares = Apy» the whole M,r will match A,,, resulting in M, s = M. When A,r D A, only
parts of M,er will match A,,,, resulting in M,,s D M; (the normal situation in practice).
It must hold that M} = M4,¢.,, . Both systems are bound to fully exploit A,,,: Synthesis-0
by definition, and Synthesis-R_because A,,, is a subset of the original metadata set from

which M,,s was synthesised, so all of A,,, must match M,s.

Figure 9.3: Experimental procedure for measuring Synthesis-&  run times.
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(1) Given A, the metadata set of the model to be synthesised, take A, or a subset of it as
the metadata set, A, , of the reference model — A, C Ay,

(2) Run Synthesis-0 to synthesise Mg, from A,efk.

(3) Run Synthesis-0 to synthesise M qrger from A,,.

(4) Run Synthesis-& to synthesise M}K through reuse of M,.s, over A,. In the case where
Aref, = A, My, will match the whole of A, resulting in My = Mgyger. When Ayr, D A,
M.,

. will only match a subset of A, resulting in M’,’r C M 4rger (the normal situation in

practice).
It must hold that M,,s, = M. A, the metadata set from which M,.;, was synthesised,

is a subset of A,,, so all of M., must match A,,, giving rise to an identical M.

Figure 9.4: Experimental procedure for measuring Synthesis-®_ run times.
Part I1: Myes, = M} € Miarger.
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9.3.1 Other Controls and Simplifications

In order to be able to say that any differences in performance are due to the feature
differences we identified in the systems, they must be executed under the same exper-

imental conditions.

The experimental procedure prescribes how to correctly replicate scenarios where the
run times of the two systems are comparable. Again for comparability, the systems
ought to run over the same material. As we show in the next section, all the metadata
sets used originate from a single sample of models. Initially, a metadata set is generated
to each sample model. Then, following the experimental procedure for Synthesis-&,

each of these metadata sets is partitioned into subsets.

Just as a reminder, if we were to compare the systems’ run times without following this
experimental procedure we would have a common metadata set, manually specified
(like the one in Appendix B) over which the two systems would run and a reference

model (for Synthesis-%&) with an undetermined metadata set.

Control is also needed concerning the systems’ ability to find multiple model solutions
(Section 7.3 and 8.4). In each run of Synthesis-0 we measure the time to synthesise the
model solution that corresponds exactly to the sample model in question, rather than
other possible solutions. In each run of Synthesis-& we measure the time to synthesise
the model solution, M:'k, that is equal to Miarger, , if executing Part I of the experimental

procedure, or equal to M, , if executing Part II.

Because of the controlled experimental procedure and the use of mostly artificial meta-
data we can easily make the systems synthesise the appropriate solutions in their first
run. The first run is the worst case in CPU time consumption in that it takes little
advantage of the efficiency-enhancing caching technique (Section 7.6) compared to

subsequent backtracking runs.

Lastly, Synthesis-0 cannot synthesise disconnected parts of a single model graph in
one run (see Section 7.3), whereas Synthesis-&_ can (see Appendix C). We had a few
of these cases in the experiment. Since we only measure run time of the first run of

each system for each example, we will have Synthesis-0 time of the first disconnected
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part of the model the system can find while the Synthesis-RK_ time will be of the whole

model. Nevertheless, this does not favour Synthesis-R,, the system we expect to be

faster; on the contrary.

9.4 Data

This section concerns the experimental data and the procedures we have automated to
collect it.

9.4.1 Models Sample

Models have been sampled from three well-known textbooks in system dynamics eco-

logical modelling as indicated in Table 9.2 below.

Model cx(M;) Source

M, 7 Haefner (1996), p. 36 - with alterations
Ms 12 Haefner (1996), p. 36 - with alterations
Ms; 18 Grant et al. (1997), p. 220

My 21 Ford (1999), p. 42

Ms 27 Ford (1999), p. 45

Mg 31 Grant et al. (1997), p. 159

M7 33 Grant et al. (1997), p. 236

Mg 38 Grant et al. (1997), p. 261

My 43 Grant et al. (1997), p. 274

Mo 48 Ford (1999), p. 194 - with alterations

My 52 Grant et al. (1997), p. 290 - with alterations
My 56 Grant et al. (1997), p. 329 - with alterations

Table 9.2: Models sample.

Models have been included in the sample on the basis of model complexity, seeking
for a representative, evenly spaced range of complexity. To achieve this we have added

a few connections to some of the textbook models, namely, M1, M, and M.
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We also made alterations on models M; and Mi2. Their flow-to-flow links have been
replaced by parameter-to-flow links, due to the synthesis systems, as currently imple-
mented, not being able to handle the former type of links; and, parameters shared by
many flows have been broken down into several parameters, in order to facilitate the

partition of the models’ metadata sets into subsets (see Section 9.4.3.1).

The range of models in the sample varies from simple yet non-trivial models to reason-
ably complex models, amongst the largest in the textbooks. Although this has not been
taken into consideration for sampling, it is worth mentioning that these are models of
a variety of ecological systems, such as animal population and vegetation dynamics,

aquatic systems and energy balance of animals.

9.4.2 Generating Artificial Metadata

We generate an artificial metadata set for each model in the sample. The only exception
is model M6, which corresponds to the pond management model we have referred to
before in several parts of the thesis. The model’s metadata set appears in Appendix B
and has been manually specified as explained in Chapter 5. This example will illustrate

the impact of non-artificial metadata on synthesis time.
The requirements for an artificially generated metadata set are two; it must:

e provide support for synthesis (through Synthesis-0 and Synthesis-&) of the cor-

responding model; and

e be compliant with Ecolingua, i.e., contain valid instantiated Ecolingua terms

only.

We have written a program which takes a model represented as a set of flow and link
arcs (Section 7.2) and outputs a file containing a metadata set that meets such re-
quirements. In designing the program we have arbitrarily fixed input settings, used to
describe the models, and output settings, which determine the artificial metadata spec-
ifications to be generated to each model component. We illustrate the settings in the

brief example below and leave the details to Appendix D.
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Example
Let us take the least complex model in the sample, M, whose diagram appears in

Figure 9.5.

A

Figure 9.5: Sample model M; in system dynamics diagrammatic notation.

M;’s representation as a set of flows and links described according to the input settings
is:

( flow(f;,outside,sv(a;,kg), kg /year),
ﬁow(fz,sv(a;,kg),sv(ag,kg),kg/year),
flow(fs,sv(az,kg),outside, kg [year),

My = { link(param(p;,kg/kg/year) flowia(f1)),
link(sv(ay,kg),flowia(f1)),
link(sv(az,kg),flowia(f2)),
link(sv(az,kg).flowia(f3)) i

Given M, the artificial metadata generation program produces the set of metadata

v

specifications in Figure 9.6.

model _att(m)
model time_unit(year)

data(abs._rate(fi1,m,outside,ey,kg/year))
model goal var(amt_of mat(ay,m,e,kg))

data(abs_rate(fa,m,e), ez, kg /year))
model_goal var(amt _of _mat(az,m, ez, kg))

data(abs_rate(f3,m,ez,outside, kg /year))

data(spf_rate(p1, fi,m, kg [kg/year))
data(constant(p1))

data(influences(ay, fi,7))
data(influences(az, f>,7))
data(influences(az, f3,?))

Figure 9.6: Artificial metadata set generated for sample model M.
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9.4.3 Collecting Run Time Measurements

We also have programs that automate the experimental procedure for measuring Synthesis-
0 and Synthesis-® run times. The automated procedure in Figure 9.7 corresponds,
including the numbered steps, to the experimental procedure in Figure 9.2; likewise,

Figure 9.8 corresponds to Figures 9.3 and 9.4.

(1) (2) For each metadata set A; of the sample models M;, i =1,2,...,12:

Run Synthesis-0 over A; to synthesise M; measuring run time.

Figure 9.7: Automated procedure for collecting Synthesis-0 run time measurements.

For each metadata set A; of the sample models M;, i =1,2,...,12:
Generate metadata subsets &; of A; (Section 9.4.3.1);

Run Synthesis-0 to synthesise a model N, from each §;.

Part I
(1) Take each &y as A,,,, the metadata set.
(2) Take A; as Ayer and M; as My, the reference model.
(3) Take each Nj as M qrger, , the target model.

(4) Run Synthesis-R to synthesise M, measuring run time.

Part II
(1) Take A; as A,,, the metadata set.
(2) Take each &y as Ay, and each Nj as M, , the reference model.
(3) Take M; as Mqrger, the target model.

(4) Run Synthesis-R, to synthesise M measuring run time.

Figure 9.8: Automated procedure for collecting Synthesis-®_ run time measurements.
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9.4.3.1 Generating Metadata Subsets

The procedure for collecting Synthesis-&_run times (Figure 9.8) starts with the genera-
tion of subsets of the metadata sets. For representativeness and coverage the generated
subsets should range in size and cover different parts of the original metadata set. At
the same time, each subset should be such that a meaningful model can be synthesised

from it.

The simplest meaningful system dynamics model would comprise a flow connected to
a state variable and a few parameters connected to the flow. The idea of the metadata
subsets generation procedure is to take subsets that support such models of minimal
complexity, then take subsets that support models twice as complex, three times as
complex, and so on, until we reach the set itself, which is taken as one of the subsets

to conform with the experimental procedure? (see Figures 9.3 and 9.4).

As determined by the artificial metadata generation settings (Table D.3), the metadata
sets, A;, contain an abs_rate term, representing a rate quantity in the data set, as primary
description to support the synthesis of each flow (the same applies to the manually
specified metadata set Ag). To form a metadata subset the procedure first forms subsets
of abs_rate terms and then finds terms directly and indirectly related to the abs_rate
terms in each subset. An example should illustrate the procedure well. To keep the
example concise we shall denote abs_rate terms by the rates’ identifiers r; (e.g., r

denotes data(abs_rate(r;,m,outside,e;,kg/year))).

Example
Suppose a hypothetical metadata set A; is given containing three abs_rate terms, namely, ry, 2

and r3 (together with other terms of other kinds). The metadata subsets generation procedure:

Finds the set A of all abs_rate terms in A;, A = {r1 12, r;}; then

Finds the set B which is the power set of A except 0 and A itself,
B={{n},{r},{rs}, {r,n2}, {r,ms},{r2,m3}}.

ZBut, obviously, it is not necessary to apply the procedure (even though it would work) to obtain the
set itself.
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Each C € B gives rise to a metadata set &y, k = 1,2,...,6.

Let us take C = {ry}. The procedure takes from A; to compose &;:
— all terms directly related to r, which are:
— terms that include the identifier ry;

— terms that include the identifier a;; @) is obtained through the entity e; in
the r; term and identifies the primary metadata description, representing an
amount in the data set, necessary to synthesise the state variable of the flow

to be synthesised from ry.

— all terms indirectly related to r; through other data identifiers that are part of the
terms above, and all terms directly and indirectly related to these data and so on,

recursively, except:

— terms that include the other abs_rate identifiers, i.e., rp and ry (generally,
rj ¢ C); and

— terms that include amount identifiers other than a; (generally, amount identi-

fiers which are not directly related to any r; € C).

— the model requirements terms model_att(m) and model _time_unit(year) (Table D.2)

if A; is artificial; or otherwise, the manually specified model requirements terms.

Note that it is the number of elements in B, which is 2" — 2 where n is the cardinality
of A, that determines the number of subsets the procedure generates. In the case of
Ag, A11 and Ajp, with 7, 14 and 10 abs_rate terms respectively, taking in all possible
elements of B would over-generate subsets (e.g., 2! — 2 = 1022). In these cases we
sampled elements to form sets B limited to at most 50 elements. The number of subsets

generated from all the metadata sets A;, i = 1,2,...,12, ranges between 2 and 50.

9.5 Results

The systems were executed using a Sun Blade 100 workstation, with a 502 MHz pro-

cessor and 128 MB of main memory running SunOS 5.8. Measured run times cor-
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respond to elapsed CPU time, excluding time spent in low-level operations such as

garbage collection and system calls.

9.5.1 Synthesis-0 Run Times

Figure 9.9 shows Synthesis-0 run times.
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Figure 9.9: Synthesis-0 run times.

The plot suggests that synthesis time grows exponentially with model complexity. Us-
ing the system is still practical, though. The longest times are in the scale of a few
minutes, which is a reasonable time, considering that the models that take this long are

amongst the largest in the textbooks.

Flows, clusters and Synthesis-0 run time
Note the sharp increase in synthesis time from cx(Mg) = 48, just four complexity
units lower, to cx(M11) = 52. This illustrates the load of model structures (topologies)

that are particularly demanding to synthesise: those with many flows and/or highly
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clustered elements. The demanding synthesis is due to the model building and model

components’ constraints features in Synthesis-0 (Table 9.1):

e Highly clustered nodes have an impact on synthesis time because of the way
clusters are determined by Alg. 7.5. Finding a cluster involves computing an
exhaustive set of possible arcs connected to the node, which can be costly when
the metadata support many arcs. We consider highly clustered a node with 5 or
more arcs connected to it. The threshold comes just from a visual inspection of
the models. Compared to the other models in its complexity vicinities (complex-
ity over 40), M ; has 6 highly clustered model elements while the others have 5

or less.

e Flows are the model component type with the hardest constraints (Section 6.3.3.1).
M has 14 flows, the largest number of flows in the sample, followed by M,
with 10.

Artificial metadata and Synthesis-0 run time

The point at cx(Mg) = 31 is another to be noted. Unlike all the other models, Mg is
synthesised from a non-artificial metadata set. The restrictiveness of artificial metadata
explores the space of Synthesis-0’s functionalities narrowly, leading to a simplified,
fast mode of execution. Some of the simplifications brought about by artificial meta-
data are listed below, in a loose decreasing order of impact on synthesis time. The
effect of artificial/non-artificial metadata on synthesis time cannot be attributed to any

of the features in Table 9.1 as Synthesis-0 and Synthesis-R_do not differ in this respect.

e The metadata is artificially made “just right” for the model. There are no extrane-
ous metadata in the set, so no dead-end searches take place as every metadatum

retrieved turns out to be applicable.

e The metadata is fully Ecolingua-compliant. So no time is spent in unsuccessful
ontological checks. Moreover, the terms are all simple (e.g., simple units of

measure are used), keeping the ontological checks inexpensive.

o In the first run of the system the metadata support synthesis of strongly suggested
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model components only, which minimises computation of integrity constraints.

9.5.2 Synthesis-X Run Times

Synthesis-& run times are shown in the 3-D plot in Figure 9.10. The surface was

obtained using the triangle-based linear interpolation method.

Time (s)

cx(M’k), cx(Mtargetk) ex(M'K), cx(Mrefk)

Figure 9.10: Synthesis-&_ run times.

We can distinguish a series of wedge-shaped groups of points along the surface. Each
of these groups was collected by one execution of the procedure in Figure 9.8 for one

of the twelve metadata sets A;.

The descending slope of the surface (from an imaginary line across the wedge tips
down to the right) corresponds to Part I of the procedure. It is easier to visualise this

looking at Figure 9.3. To each of the groups of points there is one fixed Arer and M,y



238 Chapter 9. Empirical Evaluation of Synthesis Run Times

to varying Ay, and Marger,, Where Miarger, = M, the synthesised model. Thus, for the
points on this slope, the complexity of the synthesised model of which synthesis time
is plotted, is the same as the complexity of the target model, cx(M}) = cx(Myarger, )-
These points represent scenarios where the metadata restrain the synthesis potential of

the reference model resource.

Symmetrically, the points on the ascending slope derive from Part II of the experi-
mental procedure illustrated in Figure 9.4. To each of the groups of points there is
one fixed Ay and Miarger to varying Ay, and M., , where Mor, = M;; so the com-
plexity of the synthesised model is the same as the complexity of the reference model,
cx(M}) = cx(M,s,). The scenarios represented here are those where it is the reference

model that restrains the synthesis potential of the metadata.

The points at the tip of the wedges occur where M, = M; = Marger, and where
Myep, = M}c = Miarger, the complexity of the three models being thus the same, with

the synthesis potential of both reference model and metadata exploited to the full.

The complexity axes represent that the complexity of the synthesised model: (1) de-
pends on the complexity of both the reference model and the metadata, the latter rep-
resented in the complexity of the target model; and (2) grows as the complexities of

the reference and target models approximate each other.

On the whole, the surface suggests a linear, gradual increase of synthesis time as
cx(M;,) increases with cx(Myqarger,) and cx(M,y, ), followed by a sudden increase where
cx(M;,) approaches 60. In other words, the more metadata and the more complex the

reference model, the longer, unsurprisingly, Synthesis-%_ takes to synthesise a model.

Selection of flows’ local solutions and Synthesis-X run time

Let us look at the points at the peak of the surface. They show the synthesis time
of M1, of complexity 56, the last model in the sample, given identical reference and
target models. The high synthesis time value in comparison to the others, is due to
Synthesis-R’s selection of local solutions feature (Table 9.1). The system computes
all sets of flow matches per type of flow per state variable in order to select the best

(largest) ones. Two of this model’s state variables have each three flows of the same
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type (out-flows) connected to them. Because the metadata set matches the reference
model perfectly (a A,,s = Ay, case of the experimental procedure) many combinations
of matching flows exist. It is computing these many combinations in this particular
case that gives the sudden increase in synthesis time. Still, a time of about 2.5 seconds
is significantly better than the 190.07 seconds Synthesis-0 takes to synthesise the same

model.

In a non-experimental setting a case like this is unlikely as two conditions have to

coincide:

e The topological characteristic of the model, i.e., state variable(s) having several
flows of the same type. It is more common for state variables to have one or two

flows of each type.

e A perfect match between reference model and metadata to allow for all possible
combinations of matching flows. This only happens experimentally. In reality
reference models will have been derived from (meta)data sets that are different

from the metadata set of the model under synthesis.

Artificial metadata and Synthesis-& run time

Like in Synthesis-0, using non-artificial metadata (run of the procedure in Figure 9.8
for Ag) has a noticeable effect on Synthesis-& run times. It causes the ridge we can see
half way up the surface, for the same reasons as in Synthesis-0 explained in the previ-
ous section, except for the third bullet point since in Synthesis-&, metadata evidence

classes (strong, weak) are not assigned to model components.

9.5.3 Comparative Result

The run time measurements of the two systems come in support of the experimental
hypothesis. They show that Synthesis-%& is indeed remarkably more efficient than
Synthesis-0 as far as run time is concerned. While Synthesis-0 had run times up to
190.07 s, in approximately 600 runs of Synthesis-%&_ all run times were under 3 s, with

the vast majority under 1.2 s.
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So using a reference model does improve synthesis performance. However, it should
be clear that most of the time the reference model will bring some hindrance to the use
of metadata evidence, which does not happen in Synthesis-0. Many different models
may be synthesisable from a metadata set through reuse of a single reference model,
some will have exploited the metadata set well, others will not. It all comes down
to property similarities between the data set behind the metadata set and the data set
behind the reference model. The more properties they share, the more of the reference
model will be successfully matched with the metadata, and the more the synthesised

models will reuse the reference model’s structure.

In our experimental procedure (Section 9.3) reference models are synthesised from the
metadata sets of our sample models. Outside an experimental setting such as this, the
metadata set of the reference model would not be necessarily known, the reference
model could possibly not be sufficiently adequate for reuse over the given metadata
set of the model under synthesis. In these circumstances, alternative reference models
would have to be sought for, and whichever method used — from trial-and-error to
methods based on sophisticated selection criteria — would incur Synthesis-& to run
at a higher computational cost. Such issues that selection of reference models involve

are not dealt with in the evaluation experiment (see Section 10.2.1).

Alternatively, or complementarily, to reference model selection, the metadata-only and
reuse synthesis approaches can be used in combination. Structures of distinct system
dynamics models are often not radically different. For any given reference model
and metadata set, chances are that, in the worst case, small chunks of the reference
model will match the metadata. So, a way to at the same time make the best out of
Synthesis-R ’s efficiency and Synthesis-0’s optimal use of metadata would be to apply
Synthesis-R_ first to cheaply get initial models, then maybe select the best ones and
build them up from there by applying Synthesis-0 to exploit the rest of the relevant

metadata, if any.
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9.5.4 Generalisation

We now generalise the experimental results by identifying the defining factors, in prob-
lems and systems, that are essential for reproduction of the behaviour of the reuse
technique as observed in the experiment. A causal explanation for the expected be-
haviour is given. One follow-up to this work should be testing this generalisation by,
for example, applying the proposed reuse technique to model design problems of other

domains.

To keep the generalisation concise we delay remarks until the end.
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O The experimental results generalise to the class of model design problems where the
models are:

© structural*; and
¢ backed by domain data.

Solution of such problems can be aided by model synthesis systems whose architecture
comprises:

o aformal® ontology of domain data; and
o definitions of connections* between the ontology concepts® and model structure;
where the system’s task is:

o given a data set specified in the ontology, to design a model informed by this data.

O Taking the specified data set as an instantiation of the ontology, the connections defini-
tions can be used to perform the task in (at least) two ways:

o by establishing the connections between the specified data set and a model, which
directly constructs the resulting model; or

o by establishing connections between the structure of an existing model and the
specified data set, where these connections are reused to form the resulting model.

O We propose that:

o the latter reuse-oriented way drastically improves the efficiency of the system at
the cost of possible waste of data

because
¢ the structural knowledge embedded in the reused model.

¢ bounds the state space; and

o reduces computation for establishing the connections, in that it already in-
corporates ontological concepts and relations between them which only need
to be matched with the specified data. In most cases the match will not be
perfect causing some data to be wasted.

*In the sense of having a conceptual framework which is distinguishable from their content. Struc-
tural models are usually compositional. Given a certain type of structural models in a certain domain,
all model instances, each representing a specific system in the domain, will share the same framework
components, but will differ in the components’ assembly and content.

"To give semantics to the connections in the next item.

+*Which can be many-to-many and interrelated.

YBecause model design is informed by high-level data properties rather than by low-level data (see
Section 1.2).



Chapter 10
Looking Back and Looking Ahead

In this final chapter we look back on the thesis contributions and speculate on directions

for further work.

10.1 Contributions

The three major contributions of the thesis are summarised in the sections below.

10.1.1 A Mechanism for Model Reuse via Synthesis and Data On-

tologies

We have described a method in which models are synthesised from data described
through an ontology, or metadata, by reusing existing models (Section 8.1). This is
possible because connections from metadata to model structure have been identified
and logically defined. Knowing how to draw a model from metadata enables us to
take the converse, more efficient approach of matching and refilling the structure of an

existing model with new metadata.

The ontology plays a crucial role in the usefulness of the mechanism. It captures

properties of domain data that are not specific to particular data sets. The connec-
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tions are then defined between these properties and model structure. Thereby, the

reuse-synthesis mechanism can be applied across models and data sets of the domain

concerned.

In realising the mechanism we produced:

A constraints-based characterisation of connections between ecological meta-
data and system dynamics model structure (Chapter 6).

There are metadata constraints which define the ontological data properties that must
hold for model components to be established, and integrity constraints whose solution

prevent models from having incompatible or conflicting components.

The metadata constraints make explicit data properties that connect to model structure.
Such properties are not evident to ecologists when designing models because quanti-
tative data and conceptual model structures belong to different levels of abstraction.
When described through the ontology, the data’s level of abstraction is raised and con-
nections to model structure can be drawn. The metadata constraints formalise such
connections. Moreover, unraveling the data properties has the desirable effect of fos-
tering model-driven data collection. Ecological data sets today are often unnecessarily

large yet short of data evidence needed to support the particular models to which they
are intended.

Solution of the constraints is at the core of two working synthesis systems we have
built:

Synthesis-0, which synthesises models from metadata alone (Chapter 7); and

Synthesis-X, a more efficient system that incorporates the model reuse mecha-
nism (Chapter 8).

The synthesis constraints are essentially the same in both systems except that they

are employed in opposite orientations: to connect metadata to model structure in the
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former, and to connect a (reused) model structure to metadata in the latter (Section

8.6).

A great deal of ecological modelling knowledge is subjective, so the best one can ex-
pect as outcome from automated modelling mechanisms is prototypical models which
can subsequently be enhanced by human modellers. Such mechanisms can be em-
ployed, for example, to supply the standard models and templates that modern ecolog-
ical modelling tools offer to users. Our two synthesis systems are mechanisms of this
kind. However, the prototypical models they synthesise have the advantage of being
consistent with the properties of the supporting data, which will counterbalance the

inevitable bias towards the modeller’s own interpretation of the real system.

Of the two systems Synthesis-& was empirically shown to have a superior efficiency,

leading to the next main contribution of the thesis.

10.1.2 A Procedure for Empirical Evaluation of Synthesis Systems

with Reuse

We have described a procedure through which a reuse-synthesis system can be eval-
uated in relation to a corresponding system that does not incorporate the reuse mech-
anism (Chapter 9). We applied it to evaluate our mechanism’s run-time efficiency in
particular, but the procedure is also applicable to evaluate mechanisms in terms of other
performance criteria. It lays down steps for setting scenarios where the two mecha-
nisms (with and without reuse) are run over metadata sets that are interrelated in a way

so as to give measures of synthesis performance that are empirically comparable.

In generalising our experimental results we propose:

A theory of increased efficiency of synthesis systems furnished with the reuse

mechanism.

The theory applies in general to the problem of designing structural models that are
backed by domain data (Section 9.5.4). It identifies the architectural features of syn-
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thesis systems applied to such problem that are necessary for reproduction of the be-
haviour observed in the experiment, and in the light of that explains why the reuse
mechanism brings about an efficiency gain in the systems. The experimental proce-

dure given can be used to test the theory in other domains.

10.1.3 A Complete Process of Ontology Engineering and Applica-
tion

The construction of Ecolingua, the ontology at the basis of our synthesis mechanisms,

involved:

Reuse of multiple ontologies in ontology conceptualisation and translation.

In Ecolingua’s conceptualisation were reused concepts from five other ontologies, all

available from an actively and widely used! web-based tool for ontology construction
(Section 4.1).

The unwieldy outcome of the tool’s translation service into our target implementation

language led to the next contribution as part of the ontology engineering process.

A method for re-engineering a large implementation-level ontology obtained via
theory inclusion of reused ontologies.

The tool’s translation service gives an ontology specification that comprises the full
content of all ontologies that Ecolingua directly and indirectly refers to through a rel-
atively small number of existing definitions that were explicitly included in Ecolin-
gua’s own definitions. The re-engineering method reduces this specification in scope
and content and produces appropriate representations in the target implementation lan-
guage (Section 4.2). The last step in the method — refinement of target language

expressions — is of course language-specific. Ecolingua’s implementation language

!"Today there are about 200 ontologies published in the Ontolingua Server ontology library.



10.2. Further Work 247

is Prolog. So we developed a translator program to transform the KIF-like Prolog

notation of the original translated ontology into legitimate Horn clauses.

Such engineering effort ultimately yielded a practical Ecolingua which, together with

synthesis, enables our model reuse mechanism.

Ecolingua: a prototype ontology for description of ecological data (Chapter 3 and

Appendix A).

Ecolingua concepts, for the most part, consist of classes of ecological quantities found
in modelling data sets. The axioms of a class characterise its quantities in terms of
their physical dimension, which can be captured through the unit of measure they are
expressed in. The synthesis mechanisms involve proofs over these axioms in order to

validate the metadata descriptions that substantiate the models (Section 7.4.1).

Notably, in this research project the ontology was not an end on itself but was built to
serve a purpose in metadata-based model synthesis. As part and parcel of the model
reuse mechanism it demonstrates a novel and practical use of ontologies in enabling

knowledge reuse.

10.2 Further Work

The work in this thesis has a methodological theme. It articulates a method for con-
struction, application, and evaluation of reuse-oriented automated modelling mecha-

nisms enabled by ontologies. The method is outlined below.
1. Identify a conceptual model design problem in a domain;

2. Identify the kind of information used to substantiate models of systems in the
domain;

3. Build an ontology from scratch or through reuse of other ontologies, or simply
reuse a suitable one if available, for semantic annotation of such information;

4. Build a mechanism from scratch or through reuse of methods and other mech-
anisms, or simply reuse a suitable one if available, for construction of models
based on the annotated information and reuse of existing models;
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5. Apply the mechanism to efficiently obtain models of systems of interest;

6. Evaluate the mechanism’s performance, if desired.

This method has been used in research only. It is desirable to make it into a more
mature method that is useful and usable to knowledge engineers and across domains,
with a suite of tools to accompany. This opens up a number of methodological and

technological issues, some of which we discuss below.

10.2.1 Availability, Selection and Modularity of Reusable Models

Reusability of course presupposes availability. A traditional approach to availability
is to have reusable pieces of knowledge organised in repositories (e.g., libraries of
PSMs — Problem Solving Methods, or model fragments in compositional modelling).
Selection of adequate models, methods, components, etc., that are adequate to the task
at hand is an issue that immediately follows. In the context of our method, the primary
criterion for selection of models for reuse should be their adequacy with respect to the

information annotated to support the new model.

In the thesis (Chapter 8) the reused models (so called reference models) are entire mod-
els. As we argue in Section 9.3, it is unlikely for perfect adequacy to occur between a
reference model and given metadata, leading to waste of either structural knowledge in
the reference model or metadata evidence. If, however, instead of entire models we try
and reuse smaller, more general model modules, the chances are that their adequacy
to the metadata will increase. We would then need techniques to determine the right
scope (size) of the modules so as to make them small enough to maximise reusabil-
ity, yet large enough to contain significant structural knowledge. We would also need
techniques to appropriately combine modules to obtain fully-formed models. Compo-

sitional modelling is a research area to turn to for such techniques.

So, in summary, model reusability may be enhanced through principled modularisation
and composition. We can also think of ways to maximise use of annotated informa-
tion. We suggested in Section 9.5.3 that a model can be reused first to cheaply produce

an initial new model which can then be expanded by a non-reuse-oriented mechanism
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(Synthesis-0 style) that exhausts, at a higher cost, the modelling potential of the anno-

tated information.

10.2.2 Web-Enabling and Tools

The World Wide Web is the obvious medium where to make repositories of reusable
models and reuse tools distributed and publically available. And since the method in-
volves ontology building and reuse, one should consider their specification in semantic
web languages (e.g., RDF, DAML+OIL) which are now strong contenders to become

standard for ontology specification.

Web tools that are being built around these languages (e.g., Protégé-2000) can be valu-
able for the application of the method. For instance, there are annotation tools to link
information — of the kind that substantiates models — with their descriptional on-
tology. In Chapter 5 we showed a purely manual, error-prone process of specifying
data in Ecolingua to obtain metadata® that could be facilitated by one of these tools.
Furthermore, agency technology using the semantic web infrastructure is too attrac-
tive a promise to be ignored. We are interested in building software agents able to
find adequate models for reuse in model repositories and to understand capabilities of

automated modelling mechanisms accessible through the Web.

10.2.3 Domain Modelling Languages

Unlike ontology languages, modelling languages are not amenable to standardisation
across domains. Each domain has distinct problem solving practices to which the
modelling languages are intrinsically related — to model is essentially to transform

one problem representation into another that is more suitable for problem solving.

Having said that, it would be interesting to see how well the method applies in the con-

text of other modelling languages and practices, and UML (Unified Modelling Lan-

2The term ‘metadata’ in semantic web jargon refers in general to semantic annotations, i.e. ontology-
annotated information.
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guage) for software development, would be our first target.

This brings up the question of representativeness of the empirical results in Chapter 9
on efficiency of our model reuse mechanism and applicability of the theory we pro-
pose based on those (Section 9.5.4). We saw in Section 9.5.2 that the efficiency of the
mechanism is sensitive to the topology of the reused model — which will vary across
domain modelling languages — in particular, to the combinatorics involved in search-

ing for structures for the new model that match highly connected nodes in the reused
model.

The evaluation step of the method can be revisited to look at application of optimised

search algorithms, complexity analysis, and other performance criteria.

10.2.4 Link with Quantitative Modelling

A good thing about constructing conceptual models through the method is that these
are more general and thus more widely applicable than quantitative models. However,
there are domains, such as the empirical sciences, where conceptual models make more

impact when translated to their quantitative form (Section 1.2).

Conceptual system dynamics models, which we synthesise in the thesis, function as
frameworks for equation design (Section 2.4). Synthesis mechanisms such as ours,
underpinned by higher-level data properties, could be integrated with equation induc-
tion methods to reduce their hypothesis space and, hence, the large number of spurious

equations they induce (Section 2.3.3).

Equation design is followed by estimation of parameters to calibrate the equations.
In (Brilhante, 1999; Brilhante and Robertson, 2001) we present preliminary work on
metadata-based composition and decomposition of ecological functions for parameter
estimation.
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Low-Level Ecolingua

We call low-level Ecolingua the subset of the ontology’s concepts which are not de-
scriptional, i.e., not directly employed to describe ecological data instances. These
relations are part of the interpretation constraints of the descriptional concepts (Sec-

tion 3.1).

The axiomatisation of low-level Ecolingua consists of a rendition of the parts of the
EngMath ontology that are relevant for our application. The axiomatisation is given in

this appendix in Horn clause notation, assuming a resolution-based system.

The EngMath quotations and references in the sequel are from (Gruber and Olsen,
1994). We also make references to the specification of the EngMath ontology available

in the Ontolingua Server (Ontolingua Server, 1995).

A.1 Ecolingua Quantities and their Units and Scales

Ecolingua quantities

Q is an Ecolingua quantity if Q identifies an instance of any of the Ecolingua quan-

tity classes or an instance of a model goal variable.
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ecoqtty(Q) < amt_of mat(Q,Mt,E,U) V mat_dens(Q,Mt,E,U) v
amt_of _time(Q,U) V amt_of _money(Q,E,U) V
abs_rate(Q,Mt, Efrom, E, U) V spf _rate(Q, Raps, Mt,U) V
temperature_of (Q,E,S) V weight_of (Q,E,U) V
number _of (Q,E,U) V percentage(Q,E,U) V
(model_goal var(Qierm) N name_qtty(Q, Qrerm))

Qrerm is a quantity term of a class suitable for simulation if Qepy is of any of the

defined Ecolingua quantity classes except the class Amount of Time.

amt_of mat(A,Mt,E,U),mat_dens(A,Mt,E,U),
amt_of money(A,E, U),abs_rate(R,Mt, Efyom, E1,, U),
sim_qtty_class(Qrerm) 4 Qterm € § spf -rate(R,Rups,Mt,U), temperature_of (T,E,S),
weight_of (W,E,U),number_of (N,E,U),
percentage(P,E,U)

Q is a dimensionless quantity specified in U if the dimension of unit U is the identity

dimension.

dimensionless_qtty(Q,U) < unit_dimension(U,identity_dimension)

Unit of mass

U is a unit of mass if U is a unit of measure of the mass dimension.

mass_unit(U) < unit_of _measure(U) A unit_dimension(U,mass)

Unit of power of length

U is a unit of a power of length if U is a unit of measure of the length dimension (power

is 1) or, more generally, of the length to a real power dimension.

length" unit(U) < unit_of measure(U) A\
( unit_dimension(U ,length) V )

(unit_dimension(U,length™) A realnum_expr(N))




A.2. Units and Scales of Measure 253

Unit of material
U is a unit of material if U is a unit of mass or if U is equivalent to an expression

Um/Ul, where Um is a unit of mass and Ul is a unit of a power of length.

mat_unit(U) + mass_unit(U)
mat_unit(U) < eqv_expr(U,Um/Ul) A mass_unit(Um) A length" unit(UI)

Unit of money
U is a unit of money if U is a unit of measure of the money dimension.

money_unit(U) <« unit_of measure(U) A unit_dimension(U,money)

Unit of time
U is a unit of time if U is a unit of measure of the time dimension.

time_unit(U) < unit_of _measure(U) A unit_dimension(U,time)

Identity unit

Ontolingua Server: Identity-Unit is an individual in the Physical-Quantities ontol-
ogy (which is part of the EngMath family of ontologies), defined in KIF as
(= Identity-Unit 1).

identity_unit(1)

Scale of temperature

S is a temperature scale if S is a scale of the temperature dimension.

temperature_scale(S) + scale_dimension(S,temperature)

A.2 Units and Scales of Measure

U is a unit of measure if U is the base unit for a fundamental dimension in the defined

system of units (see Section A.4).
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unit_of measure(U) + bu_fdim(U,D)

Units named by convention are units of measure (Massey, 1986).

A conventional unit of mass:

unit_of _measure(g)
Some conventional units of length:

unit_of _measure(cm)
unit_of _-measure(km)
unit_of _measure(inch)
unit_of _measure(foot)
unit_of _-measure(mile)

unit_of _measure(ha)

Some conventional units of time:

unit_of _-measure(min)

(
unit_of _measure(hour)
unit_of measure(day)

(

unit_of _measure(year)

EngMath: Every product of units is also a unit of measure, and the product is com-

mutative.

unit_of measure(U) <« eqv_expr(U,V x W) A

unit_of measure(V) A unit_of measure(W)

EngMath: Every real-valued exponentiation of a unit is also a unit of measure.

unit_of measure(U) < eqv_expr(U,VX) A U #V A realnum_expr(X) A
unit_of -measure(V)
EngMath: Units of measure are positive.

unit_of measure(U) < eqv_expr(U,X x V) A arithm_expr(X) A
unit_of _measure(V) A eval(X,1)
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Unit identities
Identities of conventional units (the = symbol to mean that, for example, g is not

merely equal to or equivalent to 0.001 x kg but that g is 0.001 x kg) (Massey, 1986).

g = Expr + eqv_expr(Expr,0.001 x kg)
cm = Expr + eqv_expr(Expr,0.01 x m)
km = Expr < eqv_expr(Expr,1000 x m)

inch = Expr « eqv_expr(Expr,m/39.37)

foot = Expr + eqv_expr(Expr,12 x inch)

mile = Expr + eqv_expr(Expr,5280 X foot)

ha = Expr + eqv_expr(Expr,10000 x m x m)

min = Expr < eqv_expr(Expr,60 X s)

hour = Expr < eqv_expr(Expr,60 x min)

day = Expr + eqv_expr(Expr,24 x hour)
year = Expr <+ eqv_expr(Expr,365 x day) V

eqv_expr(Expr,366 x day)

A.2.1 Scales of Measurement

Scales in general are not the same as units of measure. They are not a standard quantity
against which other quantities of the same physical dimension can be compared. They
“have reference origins and can have negative values. Units are like distances between

points on a scale” (Ontolingua Server).

Actually scales subsume units of measure. Units can be seen as scales of type ratio
which are characterised by having an absolute zero. For example, K (kelvin) used for
measuring temperature is an absolute (or ratio) scale and thus can also be called a unit
of measure. °C (degree Celsius) and °F (degree Fahrenheit), on the other hand, are

scales that cannot be called units of measure.

This distinction between scales and units is made in the EngMath ontology (even
though the individual Degree-Celcius appears as an instance of the Unit-0f-Measure

class in the ontology’s specification in the Ontolingua Server).

In Ecolingua we define K as a unit of measure (Section A.4) and define °C and °F
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through scale correspondences in relation to K (Massey, 1986):

scale_corresp('K', °C, X °C = (273.15+X) 'K")
scale_corresp(°C, °F, X °C = (9/5 x X +32) °F)

scale_corresp(S,S', Formula) < scale_corresp(S',S, Formula)

We cannot have identities between the temperature scales (like the ones for units) be-
cause the zeros of the scales do not coincide. The left and right-hand sides of the
equality in the formulae above represent points in the different scales at the same tem-

perature.

A.3 Dimensions of Units and Scales

EngMath: Units of measure are also quantities and as such are characterised by their

dimensions.

Units’ dimension
Unit U is of dimension D if, within a defined system of units (Section A.4), U is the
base unit of a fundamental dimension D; or if U is a derived unit of a fundamental or
composite dimension D; or if U is a non-physical unit of a fundamental or composite
dimension D.
unit_dimension(U,D) < bu_fdim(U,D)
unit_dimension(U,D) <« dufdim(U,D) V du_cdim(U,D)
unit_dimension(U,D) < npu_fdim(U,D) V npu_cdim(U,D)

Axiom of the Physical-Quantities ontology (Ontolingua Server):
(= (Quantity.Dimension Identity-Unit) Identity-Dimension).

unit_dimension(U, identity_dimension) < identity_unit(U)

Scales of the temperature dimension
Scale § is of the temperature dimension if S is a unit of measure which is the base unit

or a derived unit of the fundamental dimension temperature.
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scale_dimension(S,temperature) < unit_of measure(S) N\

bu_fdim(S, temperature) V
du_fdim(S,temperature)

Scale S is of the temperature dimension if there is a formula of correspondence between

a measure in S and a measure in §’ and §' is of the temperature dimension.

scale_dimension(S, temperature) < scale_corresp(S,S', Formula) N\

scale_dimension(S',temperature)

A.4 System of Units

EngMath: “A system of units is a class of units defined by composition from a base set
of units, such that every instance of the class is the ‘standard’ unit for a physical

dimension and every physical dimension has an associated unit ...

To define a system of units, the model builder chooses a set of fundamental
dimensions that are orthogonal (i.e., not composable from each other) ...For
each of the fundamental dimensions, the model builder chooses a standard unit
of that dimension; these are called the base-units of the system ...For example,
the [Systéme International d’Unités]! (SI) is a system of units that defines a
set of seven fundamental dimensions with the base-units meter [m, for length],
kilogram [kg, for mass], second [s, for time], ampere [A, for electric current],
Kelvin [K, for temperature], mole [mol, for amount of substance], and candela

[cd, for luminous intensity]'”

Base units of fundamental dimensions
Our chosen fundamental dimensions are mass, length, time, temperature and money.
For the base units we borrow kg for mass, m for length, s for time and K for temperature

from SI and define the base unit $ for the money dimension.

(Massey, 1986)
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bu_fdim(kg, mass)

bu_fdim(m,length)

bu_fdim(s, time)

bu_fdim('K',temperature)

bu_fdim($, money)

EngMath: “The set of fundamental dimensions determines the space of possible quan-
tities that can be described in this system — those whose physical dimensions

are some algebraic combination of the fundamental dimensions.”

Derived units are part of this space of possible quantities. Direct comparison with
a standard (through one of the base units) is feasible for only a limited number of
physical quantities. So the units for most quantities must be derived from (or defined

in terms of) a few base units (Massey, 1986).

EngMath: Every derived unit in the system is a composition, using multiplication and

exponentiation to a real power, of units from the base set.

Derived units of fundamental dimensions
U is a derived unit of a fundamental dimension D if an identity exists between U and

an expression Expr which is a derived unit of D.

du_fdim(U,D) + U = Expr A du_fdim(Expr,D)
U is a derived unit of a fundamental dimension D if U is equivalent to an expression
X x V where X is a positive real number and V is the base unit or a derived unit of D.

du_fdim(U,D) < eqv_expr(U,X xV) AU #V A
posrealnum_expr(X) A
(bufdim(V,D) V dufdim(V,D))

Derived units of composite dimensions
U is a derived unit of a composite dimension D if an identity exists between U and an

expression Expr which is a derived unit of D.

du_cdim(U,D) + U = Expr A du_cdim(Expr,D)
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The composition of a derived unit accord with the composition of the dimension. Phys-
ical dimensions are composed from other dimensions using multiplication and expo-

nentiation to a real power.
du_cdim(U,D) <+ eqv-expr(U,V xW) A
(eqv-expr(D,AxB) V D = A X B) A
unit_dimension(V,A) A unit_dimension(W,B)

du_cdim(U,D) + eqv_expr(U,VX) A U #V A realnum_expr(X) A
(eqv-expr(D,AX) v D = AX) AD#A A
unit_dimension(V,A)

Non-physical units and dimensions

$ is the unit of the non-physical fundamental dimension money.

npu_fdim($, money)

U is the unit of a non-physical composite dimension D if U is equivalent to an expres-
sion V x $ and D is equivalent to an expression A x money where A is the dimension
of the unit V.
npu_cdim(U,D) + eqv_expr(U,V x$) A
eqv_expr(D,A X money) N\

unit_dimension(V,A)

Dimension identities

area = Expr « eqv_expr(Expr,length?)
volume = Expr « eqv_expr(Expr,length®)

frequency = Expr + eqv_expr(Expr,1/time)

A.5 Reals and Real-Valued Expressions

X is a real-valued expression if X is a real number or if X is an arithmetic expression

that evaluates to a real number.
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realnum_expr(X) + X e€RV
(arithm_expr(X) A eval(X,Y) A Y € R)

Likewise to positive reals:

posrealnum_expr(X) + X € R v
(arithm_expr(X) A eval(X,Y) AY € R")



Appendix B

Metadata Specifications of the Pond

Management Example

This appendix contains Prolog-encoded metadata specifications for synthesis of a pond
management model. The metadata sources (data tables and statements, model objec-
tives and assumptions statements) are extracts from (Grant et al., 1997), Chapter 9 —
‘Annotated Example of Model Development and Use: Simulation of Aquaculture Pond

Management’.

The extracts are not exhaustive — they are a sample of data and statements that refer to
the objects and relations described. Some descriptions are reiterated by later extracts.
Units of measure specified later in the chapter have been added to the extracts, where

needed.

%$%% File: metadata_pond.pl
%%% Author: Virginia Brilhante
%%% Purpose: Metadata specifications for synthesis of the Pond

%% Management Model (Grant et al. (1997), Chapter 9)

B o
%% Metadata from Field Data
et i ittt
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%%% From Table B.1l

data(mat_dens (aquatic_plants_biomass, biomass, aquatic_plants, kg/ha)).
data(entity(aquatic_plants)).
data(material (biomass)) .

data(mat_dens(fish_biomass, biomass, fish, kg/ha)).
data(entity(fish)).

data(weight_of (indiv_fish_weight, indiv_fish, kg)).
data(entity(indiv_£fish)).

data(temperature_of (water_temp, water, celsius)).
data(entity(water)).

%%% From Table B.2

data(spf_rate(plant_production_rate, plant_production, biomass, g/kg/day)).
data(influences (water_temp, plant_production_rate, ?)).

data(spf_rate(consumption_rate, consumption, biomass, kg/kg/day)).
data(influences(water_temp, consumption_rate, ?)).
data(influences(indiv_fish_weight, consumption_rate, ?)).

model_time_unit (day).

%$%% '‘'It also is known that consumption by fish becomes limited by
%% plant biomass when the plant biomass falls below 20,000 kg/ha
%$%% and that the consumption rate is reduced by roughly one-half
%%% for every 5,000 kg/ha decrease in plant biomass below that
%%% point.’’

data(influences(aquatic_plants_biomass, consumption, ?)).
data(influences(aquatic_plants_biomass, consumption_rate, +)).

%%% '‘The general objective of the model can be stated quite simply:

%% to determine if any of several alternative stocking and

%% harvesting schemes will yield higher than current profits.

%% Specific questions of interest include the following:

%%% 1. What size harvest is expected in a ‘‘normal’’ year under the
%% usual scheme of stocking 75 0.227-kg fish on April 15 and

%% harvesting them on November 15, and what profit is associated

%%% with this harvest ... ?
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model_goal_var (amt_of_money(profit, pond_system, $)).

P e e e e e
%%% Metadata from Model Assumptions

e e
%$%% '‘'... the biomass of harvested fish [kg/hal is converted into

$%% dollars at the end of the year.’’
$%% '‘'Profit is calculated based in part on the biomass of fish
$%% accumulated on the harvest [kg/ha/day] date, which depends on

%% the net accumulation of fish biomass in the pond since stocking
%% [kg/ha/day] . Therefore, we need to represent fish biomass

$%% dynamics. Because fish are herbivorous, their growth depends in
%%% part on the amount of plant biomass accumulated in the pond at
%% any given time, so we also need to represent plant biomass

$%%  dynamics.’’

data(influences(harv_fish_biomass, profit, +)).
data(mat_dens (harv_fish_biomass, biomass, harv_fish, kg/ha)).

data(entity(harv_fish)).

data(abs_rate(harvest, biomass, fish, harv_fish, kg/ha/day)).
data(abs_rate(stocking, biomass, outside, fish, kg/ha/day)).

model_mat (biomass) .

%$%% ' ‘Processes that affect biomass dynamics of aquatic plants
%%% include net primary production, natural mortality , and

%% consumption by fish.’’

data(influences(plant_production, aquatic_plants_biomass, +)).
data(influences(plant_nat_mortality, aquatic_plants_biomass, -)).

data(influences(consumption, aquatic_plants_biomass, -)).
%$%% ' ‘Processes that affect biomass dynamics of herbivorous fish
%%% include consumption of plants, respiration, excretion, stocking,

$%% and harvest.’’

data(influences(consumption, fish_biomass, +)).
data(influences(respiration, fish biomass, -)).
data(influences(excretion, fish_biomass, -)).
data(influences(stocking, fish_biomass, +)).
data(influences(harvest, fish_biomass, -)).

$%% '‘Net Production of plants is dependent on biomass of plants and
%%% water temperature.’’
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data(abs_rate(plant_production, biomass, outside, aquatic_plants, kg/ha/day)).
data(influences(agquatic_plants_biomass, plant_production, ?)).

data(influences(water_temp, plant_production, ?)).

%%% '‘Natural mortality of plants is a function of plant biomass.’’
$%% ‘It is known [from expert opinion] that the natural mortality
$%% rate of plants [kg/ha/day] is density-dependent.’’

data(abs_rate(plant_nat_mortality, biomass, aquatic_plants, outside, kg/ha/day)).
data(influences(aquatic_plants_biomass, plant_nat_mortality, ?)).

%%% '‘Fish are herbivorous and feed solely on aquatic plants that
%% grow naturally in the pond.'’’

data(abs_rate(consumption, biomass, aquatic_plants, fish, kg/ha/day)).

%%% ' ‘Consumption of plants by fish is a function of biomass of
%%% plants, biomass of fish, and size of individual fish, as well
%%% as being temperature-dependent. '’

data(influences(fish_biomass, consumption, ?)).
data(influences(indiv_fish_weight, consumption, ?)).
data(influences(water_temp, consumption, ?)).

%%% ' ‘'Fish respiration can be represented as a function of the weight
%%% of fish and water temperature by [a] generally applicable
%$%% empirical relationship.’’

data(abs_rate(respiration, biomass, fish, outside, kg/ha/day)).
data(influences(indiv_fish_weight, respiration, ?)).
data(influences(water_temp, respiration, ?)).

$%% ' 'Fish excretion and respiration also are dependent on biomass
%% of fish, size of individual fish, and water temperature ..."’
%%% ''... with excretion also dependent on assimilation efficiency of
%% fish, which is a constant.’'

data(abs_rate(excretion, biomass, fish, outside, kg/ha/day)).

data(influences(fish_biomass, excretion, ?)).
data(influences(indiv_fish_weight, excretion, ?)).
data(influences(water_temp, excretion, ?)).
data(influences(fish_ass_eff, excretion, ?)).



data(percentage(fish_ass_eff, fish, 1)).
data(constant (fish_ass_eff)).

data(influences(fish_biomass, respiration, ?)).

%%% '‘Stocking is calculated based on ... the number of fish
%% stocked, the initial weight of individual fish, which is a
$%% constant, and the stocking date, which also is a constant.’’

data(influences (number_fish stocked, stocking, ?)).
data(influences(init_indiv_fish_weight, stocking, ?)).
data(weight_of(init_indiv_fish weight, indiv_fish, kg)).
data(constant (init_indiv_fish_weight)).
data(influences(stocking date, stocking, ?)).

data(event (stocking) ).

data (when (stocking_date) ).

data(time_of_event (stocking, stocking_date)).
data(constant (stocking_date)) .

%%% ‘‘Harvest is calculated ... from herbivorous fish and harvest
%% date, which is a constant. Note that although we will run

%%% simulations with different values for the stocking date,

%% harvest date, and number of fish stocked to address our

%% managemnet questions, during any given simulation these values
%% remain constant.’’

data(influences(fish_biomass, harvest, ?)).
data(influences (harvest_date, harvest, ?)).
data(event (harvest)).

data (when (harvest_date) ).
data(time_of_event (harvest, harvest_date)).
data(constant (harvest_date)).

%%% '‘The weight of indivifual fish is ... calculated based on the
%% number of fish stocked, which is a constant representing the
%% number of fish in the pond because there is no fish mortality,
%% and the biomass of herbivorous fish.'’

data(influences (number_fish_stocked, indiv_fish_weight, ?)).
data(number_of (number_fish_stocked, fish_stocked, 1)).

data(entity(fish_stocked)).
data (constant (number_fish_stocked)) .

data(influences(fish_biomass, indiv_fish weight, ?)).

265
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Table B.1: Data on historical states of the pond system including (a) the standing crop

biomass of plants and fish, and the average weight of individual fish on various dates

during several years, and (b) the water temperature at selected locations within the

pond on various dates during a “normal” year (extract from (Grant et al., 1997)).

(a) Standing Crop Biomass of Plants and Fish,
and Average Weight of Individual Fish

Standing Crop
Biomass (kg/ha)
Date Plants Fish  Weight of Individual Fish (kg)
1975
Apr. 15 39973 17 0.23
May 15 39,273 18 0.24

(b) Water Temperature

Temperature ("C) at Location

Year Date 1 2 3 4 5
1983 Jan. 1 139 152 160 152 14.7
Jan. 15 156 144 15.1 150 14.8

Table B.2: Data on processes occurring within the pond system including (a) the net

production rate of plants as a function of water temperature and (b) the rate of consump-

tion of plants by fish as a function of water temperature and the weight of individual fish

(extract from (Grant et al., 1997)).

(a) Net Production Rate of Plants (g Produced/kg Plant Biomass-Day)

Net Production
Water Temperature (°C) Rep 1 Rep 2 Rep 3 Rep 4 Rep 5
10 0.225 0.422 0.072 0.358 0.002
15 0.639 0.601 0.578 0.143 0.231
(b) Rate of Consumption of Plants by Fish of Different Sizes
(kg Consumed/kg Fish Biomass-Day)
Weight of Fish (kg)
0.227 1.500 3.636
Water

Temperature 'C) Repl Rep2 Rep3 Repl Rep2 Rep3 Repl Rep2 Rep3
15 0.001 0.340 0.387 0.043 0.056 0243 0.376 0.083 0.086
20 0.739 0534 1.026 0360 0.166 0.605 0.132 0.278 0.254




Appendix C

Synthesis-R ’s Intermediate

Algorithms

In this appendix we present the intermediate algorithms in the hierarchy of algorithms

of the Synthesis-& system, as illustrated in Figure 8.5. The algorithms are referred to

throughout Chapter 8.

The Traverse Backbone and Maich Algorithm

Alg. C.1 traverses the reference model’s backbone, matching its flows and state vari-

ables with the metadata set as it goes along to establish new pairs of matched flows.

The traversal takes off from the matched state variables established by the matching
initialisation procedure. Each flow connected to the initial reference state variable
is tried out for matching with the metadata set (Alg C.2). On success, a new pair of
matched flows is established, as well as, in case of in-between-flows, the corresponding
pair of newly matched state variables. A set of these new state variables pairs is formed.
The reference state variables in the pairs are visited next, one at a time, their flows

matched, state variables to be subsequently visited are established and so on.
The Flowsyer # {} and SVpairs = {} situation occurs when the reference state variables
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Alg. C.1 traverse_bb_n_match(A,SVpairs, Flows,.s;,Mt,FPsf FlowsPairs) — inputs: A, SVpairs,
Flows,es, Mt, FPsf; output: FlowsPairs. Starting from the pair(s) of matched state variables in SVpairs,
traverse the reference model’s backbone in Flows,.r, and match it with A to find new pairs of matching
flows, which are added to the pair(s) found so far, FPsf, giving FlowsPairs.
IF Flows,s # {} THEN
IF SVpairs = {} THEN

match_flows(A, Flows,.s, FPsf, FlowsPairs) (Alg. 8.2)
ELSE SVpairs = {SVpair | SVpsl}

survey SV _n_match(A,SVpair, Flows e, Fsyer1,Mt, FPsf ,FP1,5Vps2) (Alg. C.2)
SVps3 = SVpsl U SVps2

traverse_bb_n_match(A,SVps3,Fsyl,Mt,FP1, FlowsPairs)

ELSE FlowsPairs = FPsf

reachable through the flows matched so far have all been visited, but there are still
reference flows to be matched. In this case, Alg. 8.2 is called again to try and initialise
a separate chain of flows and state variables in the new model, possibly representing
flow of a different material. ‘Separate’ in the sense that it would not be connected
to the previous one by flow arcs. Nevertheless, the separate chains may later become

connected if Alg. 8.3, Match Links, succeeds in establishing link arcs between them.

The Survey Siate Variable and Match Algorithm

Alg. C.2 is executed to each pair of matched state variables as the reference model’s
backbone is traversed. Every flow connected to the current reference state variable is
matched with the metadata set, according to the flow’s form in relation to the state
variable. Each successful new match updates the set of pairs of flows and also the set
of pairs of state variables where appropriate. Flows which are not connected to the
current reference state variable are returned, to be used in other runs of Alg. C.2 for
forthcoming pairs of state variables.

In Alg. C.2’s implementation we select, per pair of state variables, the best matches for
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Alg. C.2 survey SV _n_match(A,Srer-Snew, Flows e, Fsrer4,Mt, FPsf,FP1,SVps) — inputs: A, S,
Snews Flowsrer, Mt, FPsf; outputs: Fspee4, FP1, SVps. Find the flows in Flows,s which are connected
to the reference state variable S,.r, and match them with A to find: new pairs of matched flows, which
are added to the pairs established so far, FPsf, giving FP/; and the corresponding new pairs of matched
state variables, which form the set SVps. Fs.r4 is the subset of Flows,.r of flows not connected to S,

to be tried out for other pairs of matched state variables.
Find InFlows,e = {InFye : InFrer € Flowsyesr A InFrer is an in-flow to Syer}
Fspepl = Flowsrer\InFlows,es

FOR Each InF.s € InFlows,.s
IF  match_in flow(A, InF ref,Mt,S,ef-Snew, InFnew) (Alg. 8.4) AND
There is no matched new flow in FPsf with the same name as /nFew THEN

Add InFrer-InFpew to FPsf
Find OutFlowsref = {OutF,y : OutFyep € Fsperl A OutFye is an out-flow from Sper}
Fspep2 = Fspop 1\ OutFlows

FOR Each OutFres € OutFlows,.s
IF  match_out_flow(A,OutFrer,Mt,S,er-Snew, OutFrey) (Alg 8.5) AND
There is no matched new flow in FPsf with the same name as OutFpey THEN
Add Out Fyop-Out Frew to FPsf

Find BtoFlowsres = {BtF,,f : BtFre € Fspp2 A BtFyy is an in-between-flow entering S,.r }
Fsyef3 = Fspep2\BtoFlows ey

FOR Each BtF s € BtoFlows.s
IF  match_betweenin_flow(A, BtF,or,Mt, S of-Snews S ref-S1new, BtFpew) (Alg. 8.6) AND

There is no matched new flow in FPsf with the same name as BtFyew AND
None of S1,.s and S1,., are matched with other state variables in FPsf THEN
Add Bt Frep-Bt ey to FPsf and S1yef-S1pe to SVps
Find BfrFlowsres = {BfFres : BfFrer € Fsrep3 A BfF s is an in-between-flow leaving S,.r}
Fsyop4 = Fsper 3\BfrFlows e
FOR Each BfF s € BfrFlowsye
IF  match_betweenou flow(A, BfF or, Mt, Sref-Snews S2ref-S2new, BfFnew) (Alg. 8.7) AND

There is no matched new flow in FPsf with the same name as BfFyew AND

None of §2,.r and $2,,,, are matched with other state variables in FPsf THEN

Add BfFrer-B fFuew to FPsf and 82,er-52p,, to SVps

FP1 is the current FPsf
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each of the four flow types (in-flow, out-flow, inward and outward in-between-flow),
with the criterion being the greatest number of matches. Section 8.4 discusses what

motivates such selection of local solutions as well as the effects of doing so.

The Match Immediate Fringe Algorithm

Alg. C.3 examines each pair of matched flows and appropriately starts up algorithms
— Algs. C.5 and C.6 — which will find links connected to the reference flow and its
one or two state variables and match them with the metadata. In examining each and

every pair of matched flows in this way, the algorithm ultimately covers and matches

the whole reference model’s immediate fringe.

The Match Far Fringe Algorithm

While the match immediate fringe algorithm examines each pair of flows, Alg. C.4

below traverses and matches the far fringe by examining each pair of converters.

For each pair, Alg. C.6 is started up to firstly find links leaving the reference converter
in the pair, as well as entering it if an intermediate variable. The links found are then
matched with the metadata in order to synthesise links of the same form in relation to
the new model’s converter in the pair. A successful match may establish a new pair
of converters (the converters at the other end of the matched links) to be examined
subsequently. In this way, the reference model’s far fringe is eventually fully traversed
and the new model’s far fringe expanded where matching metadata hold. The reuse-

synthesis process ends here, when no further traversal and expansion are possible.
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Alg. C.3 match_immediate_ fringe(A, FlowsPairs, Lr’nks,ef,Lfnks:,ef,Msf,M , CvsPairs, CvsPairs') — in-
puts: A, FlowsPairs, Links,.s, Msf, CvsPairs; outputs: ljrzksj,ef. M, CvsPairs'. Find the links in Links e
composing the reference model’s immediate fringe and match them with A according to the form of
each reference link, with a view to synthesising the new model’s immediate fringe, expanding the new
model so far Msf into M, and giving a set of pairs of matched converters CvsPairs'. Links outside of the

reference model’s immediate fringe are returned in the set Link.s’ref.

IF FlowsPairs = {} THEN Links, = Links,y M = Msf CvsPairs' = CvsPairs

ELSE FlowsPairs = {Fpair | FP1}
IF The flows in Fpair have initial state variables, matched in SViPair, which have not yet been
reached THEN
find SVFILk_n_match(A,SVirer, Fpair, Linksrer, Lsrer 1,Msf ,M1) (Alg. C.5), find in
Linksy, and match with A a link of form (I1) of Fig. 8.4, where the flow is the
reference flow in the current Fpair, giving the updated sets Lsy,r/ and M1.

find_ElLks_n_match(A,sv. — iv,SViPair,Lsyer1,Lsyes2, M1,M2,CvsPairs,CPI)  (Alg.
C.6), find in Ls,,s] and match with A links of form (14) of Fig. 8.4, where the state
variable is the initial state variable of the reference flow in the current Fpair, giving

the updated sets Ls,2, M2 and CP1.

ELSE Lsy2 = Links,,y M2 = Msf CPI1 = CvsFairs
IF The flows in Fpair have terminal state variables, matched in §VtPair, which have not yet
been reached THEN

find_SVFILk_n_match(A,SVtyer, Fpair, Lsyes2, Lsyr3,M2,M3) (Alg. C.5), find in Ls,f2
and match with A a link of form (12) of Fig. 8.4, where the flow is the reference flow

in the current Fpair, giving the updated sets Ls,.r3 and M3.
find_ElLks_n_match(A,sve — iv,SVtPair,Lsyef3, Lsrer4,M3,M4,CP1,CP2) (Alg. C.6),

find in Ls,.s3 and match with A links of form (14) of Fig. 8.4, where the state vari-

able is the terminal state variable of the reference flow in the current Fpair, giving

the updated sets Ls,r4, M4 and CP2.

ELSE Ls, 4 = Lsf2 M4=M2 CP2=CPI

find_ElLks_n_match(A,cv — flow,, Fpair, Lsyes4, Lsyes 5, M4,M5,CP2,CP3) (Alg. C.6), find in
Ls;ep4 and match with A links of form (13) of Fig. 8.4, where the flow is the reference flow

in the current Fpair, giving the updated sets Ls,,s5, M5 and CP3.
match_immediate_fringe(A,FPI,Ls. 5, Links"mf, MS5,M,CP3, CvsPFairs')
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Alg. C.4 match.far fringe(A, CvsPairs', CPlog, CPtoExpd, Links,,;,M,Model) — inputs: A, CvsPairs',
CPlog, CPtoExpd, Links;,ef. M; output: Model. Find the links in Links:,e,f composing the reference
model’s far fringe and match them with A according to the form of each reference link, with a view to
synthesising an outer network of links, which is added to the new model so far M to give a final model

Model. The synthesis process ends when all the reachable converters have been expanded.

IF CPtoExpd = {}, the current set of converters pairs to expand became empty THEN

IF CPlog = CvsPairs', new pairs of converters have not been established THEN Model = M
ELSE CPnew = CvsPairs'\ CPlog, find the pairs of converters which are new.
match_far fringe(A, CvsPairs',CvsPairs', CPnew, Links,,.,M,Model)
ELSE CPtoExpd = {CPair | CPrest}

ref?
find in Links;ef and match with A links of form (15) of Fig. 8.4, where the converter is

find_ElLks_n_match(A,cv, — iv,CPair, Links,,;, Ls;.s6,M,M6,CvsPairs’,CP4) (Alg. C.6),

the reference converter in the current Cpair, giving the updated sets Ls,,r6, M6 and CP4.

IF The converters in Cpair are of type intermediate variable THEN

find _ElLks_n_match(A,cv = ive, CPair,Ls 6, Lsys 7, M6,M7,CP4,CP5) (Alg. C.6),
find in Ls,s6 and match with A links of form (I5) of Fig. 8.4, where the inter-
mediate variable is the reference intermediate variable in the current Cpair, giving
the updated sets Ls,s7, M7 and CPS5.

ELSE Lsy7 = Ls;y6 M7 =M6 CP5=CP4
match_far_fringe(A,CP5,CPlog,CPrest,Ls,.;7,M7,Model)
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The Find State Variable-to-Flow Link and Match Algorithm

Alg. C.5 establishes links between state variables and flows connected to them (link
forms (11) and (12) of Figure 8.4).

There can only be a single link between a flow and each of its state variables. The link
is sought for and if found matched with the new model’s metadata set. At the point
of the synthesis process where this algorithm is executed, both nodes (state variable
and flow) the new link is to connect are already established and are given in Fjep —
the flow’s specification includes its state variable(s) (Section 6.3.3.1). Therefore, the
matching consists simply of finding evidence in the metadata set that supports a link

between the established new flow and its state variable.

Alg. C.5 find SVFILk_n_match(A,SV s, Fref-Frew; LSref, Lsrer1,M,M1) — inputs: A, SVyer, Frers Few,
Lsrer, M; outputs: Ls.rl, MI. Given the pair of matched flows Frer-Fpew, find in the set of reference
links Ls,.s and match with A a link of form (11) or (12) of Fig. 8.4, where the flow is F,.; and the state
variable is SV,er; Lyes is removed from Ls,.s giving the updated set of reference links Ls,.s/, and the

matching new link is added to M giving the new model so far M1.
IF 3L,er . Lyes € Lspes A Lygs is a link from SV, to its flow Fy,s THEN

Lsres = {Lyes | Lsyer 1}
IF establish SVFILk(A, SVyew, Fidnew, Luew) (Alg. 8.8), a link L,y is established from the
matched new state variable SVey to its flow named Fid,., THEN

M1 = {Lnps| M}
ELSE MI =M

ELSE Lsyfl =Ly MI=M

The Find Element’s Links and Match Algorithm

Alg. C.6 finds links from and to the current reference model element (link forms (13),

(14) and (15) of Figure 8.4), according to the link form given, and proceeds to match
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the links found with the metadata set.

Alg. C.6 find_ElLks n_match(A, Lform,Elyp-Elyew, Lsref, Lsper 1 ,M,M1,CP,CP1) — inputs: A, Lform,
Elrer, Elyew, Lsrep, M, CP; outputs: LsyrI, M1, CPI. Find in the set of reference links Ls,., the subset
of links of form Lform connected to the reference element El,., leaving the complement subset Ls.s /.
Match the links found with the metadata set A to give new links to update the new model so far giving
M1 as well as the set of pairs of matched converters giving CP1.

CASE Lform € {sv. — iv,cv. — iv} THEN

Find LsEl;es C Lsyer, the subset of all links from the current matched reference element El,.

(a state variable or a converter) into intermediate variables.
Lform € {cv = flow.,cv — iv.} THEN

Find LsEler C Lsy, the subset of all links from converters to the current matched reference
element El,.; (a flow or an intermediate variable).

IF LsEl,s # {} THEN

match_ElLinks(A, Lform, LsEly, Elyew,M,M1,CP,CPI) (Alg. C.7)
Lsrcff = mref\LSEiref

ELSE LSyl =Lsey MI=M CPl=CP

The Match Element’s Links Algorithm

Alg. C.7 does the matching of all links connected to the current reference model ele-
ment, calling the appropriate procedure according to the form of each link, and upon
successful matches, updates the new model and the set of pairs of matched converters.
For updates to occur, the matching links must be new to the current new model, as

well as non-conflicting with previously established components in it. There are two

situations that allow such updates:

e The link is new to the new model, but the converters pair is not. This means that
the converter linked to the current new element has already been matched and

established in the new model. Of course, the only update needed is the addition
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of the link to the new model.

e The link is new to the model and the converters pair is new and non-conflicting,

i.e., the reference converter is unmatched and the new converter introduces a new

quantity into the model.

Alg. C.7 match_ElLinks(A, Lform, LsElyer, Elyey ,M,M2,CP,CP2) — inputs: A, Lform, LsEl,er, Elyey,
M, CP; outputs: M2, CP2. Match with A the links LsEl,.s of form Lform connected to the reference
element matched with the new element Eley, to give new links which are added to the new model so far
M giving M2, and new pairs of matched converters which are added to their set so far CP giving CP2.

IF LsEl={} THEN M2=M CP2=CP

ELSE LSElres = {Lyys | LsElr1}

- Lform = sv. — iv  AND -
match _frSVLk(A, Elnew, Lref ; Lnew, CVrer-CView) (Alg. 8.10)

Lform = cv — flow, AND it
match toFILk(A, Elpew, Lref s Luew, CVyer-CVaew) (Alg. 8.9)

Lform = cv. — iv  AND i
match frCVLK(A, Elnew, Lref s Lnew; CViep-CView) (Alg. 8.11)

Lform =cv — iv, AND -
match _tolVLk(A, Elpew, Lref s Lnew, CVyer-CView) (Alg. 8.12)
IF Lyew @ M AND CV,p-CVper, € CP THEN

Ml = {Lnew I M}
match_ElLinks(A, Lform, LsElyep 1 Elyey,M1,M2,CP, CP2)
ELSE

IF CV, is not matched (it is not the ref. converter of one of the pairs in CP) AND
The quantity CVey holds is not held by any other model element in M THEN

M1 = {Lyew | M}
CPI = {CVyef-CVpew | CP}
match_ElLinks(A,Lform,LsEl .1, Elpey,M1,M2,CP1,CP2)
ELSE match_ElLinks(A, Lform,LsEl, 1, Elye,,, M,M2,CP,CP2)
ELSE match_ElLinks(A, Lform, LsEl,y 1, Elyew,M,M2,CP,CP2)




Appendix D

Input and Output Settings for Artificial

Metadata Generation

D.1 Input Settings

The settings for describing the sample models, shown in Table D.1, comprise iden-
tifiers and units of measure (where appropriate) for each type of model component.
The identifiers index i corresponds to a counter for components of that type in the
model. The two possibilities of unit of measure for parameters are intended simply to

introduce an element of variability into the metadata sets generated.

D.2 Output Settings

As we saw in Chapter 5, a metadata set includes descriptions of model requirements
and of ecological data. Given a sample model described according to the input settings
in Table D.1, the metadata generation program outputs the model requirements de-
scriptions as in Table D.2, and the data descriptions for each type of model component

as in Table D.3.
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Model component type Id Unit of measure

flow fi kg/year

state variable a; kg

intermediate variable i 1 (the identity unit)

parameter pi kg/kg/year, if connected to a flow;
1 (the identity unit), otherwise

driving variable d; day

source/sink outside

Table D.1: Input settings for generation of artificial metadata.

Model requirements

— model_att(m)
— model_time_unit(year)
— model_goal var(amt_of .mat(A,m,E, Ua)),

for each sv(A, Ua) model component

Table D.2: Output settings for generation of artificial metadata: model requirements
descriptions.
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Model component Data descriptions

flow(F,outside,sv(A,Ua),Ua/Ut) — data(abs_rate(F,m,outside,E,Ua/ Ut))
— (sv(A, Ua) data description)

flow(F,sv(A, Ua),outside, Ua/ Ut) — data(abs_rate(F,m, E, outside, Ua/ Ut))

— (sv(A, Ua) data description)

flow(F,sv(A;,Ua),sv(Az,Ua),Ua/Ut) — data(abs-rate(F,m,E;,E>,Ua/Ut))
— (sv(A;, Ua) data description)
— (sv(A2, Ua) data description)

link(sv(A, Ua), flow;4(F)) — data(influences(A,F,?))
link(iv(1, Ui),flowiq(F)) — data(influences(I, F,?))

— (iv(1, Ui) data description)
link(param(P, Up),flow;q(F)) — (flow-connected param(P, Up) data description)
link(dv(D, Ud),flowy(F)) — data(influences(D,F,?))

— (dv(D, Ud) data description)
link(sv(A, Ua),iv(1, Ui)) — data(influences(A,1,?))

— (iv(1, Ui) data description)
link(iv(1;,Uiy),iv(I2,Uiz)) — data(influences(l; ,12,7))

— (iv(I;,Ui;) data description)
— (iv(I2, Uiy) data description)

link(dv(D, Ud),iv(I, Ui)) — data(influences(D,1,?))
— (dv(D, Ud) data description)
— (iv(1, Ui) data description)

link(param(P, Up),iv(1, Ui)) — data(influences(P,1,7))
— (param(P,Up) data description)
— (iv(1, Ui) data description)

iv(1,Ui) — data(proportion(1,Ui))
param(P, Up) — data(spf -rate(P,F,m,Up)), if connected to a flow;
data(number_of (P, Up)), otherwise
— data(constant(P))
dv(D,Ud) — data(time(D, Ud))

Table D.3: Output settings for generation of artificial metadata: data descriptions.
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